1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 #include <sys/sunddi.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <rpc/pmap_prot.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 132 * IP_SQUEUE_ENTER: squeue_enter 133 * IP_SQUEUE_FILL: squeue_fill 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 squeue_func_t ip_input_proc; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Hook function to generate cluster wide SPI. 201 */ 202 void (*cl_inet_getspi)(uint8_t, uint8_t *, size_t) = NULL; 203 204 /* 205 * Hook function to verify if the SPI is already utlized. 206 */ 207 208 int (*cl_inet_checkspi)(uint8_t, uint32_t) = NULL; 209 210 /* 211 * Hook function to delete the SPI from the cluster wide repository. 212 */ 213 214 void (*cl_inet_deletespi)(uint8_t, uint32_t) = NULL; 215 216 /* 217 * Hook function to inform the cluster when packet received on an IDLE SA 218 */ 219 220 void (*cl_inet_idlesa)(uint8_t, uint32_t, sa_family_t, in6_addr_t, 221 in6_addr_t) = NULL; 222 223 /* 224 * Synchronization notes: 225 * 226 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 227 * MT level protection given by STREAMS. IP uses a combination of its own 228 * internal serialization mechanism and standard Solaris locking techniques. 229 * The internal serialization is per phyint (no IPMP) or per IPMP group. 230 * This is used to serialize plumbing operations, IPMP operations, certain 231 * multicast operations, most set ioctls, igmp/mld timers etc. 232 * 233 * Plumbing is a long sequence of operations involving message 234 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 235 * involved in plumbing operations. A natural model is to serialize these 236 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 237 * parallel without any interference. But various set ioctls on hme0 are best 238 * serialized. However if the system uses IPMP, the operations are easier if 239 * they are serialized on a per IPMP group basis since IPMP operations 240 * happen across ill's of a group. Thus the lowest common denominator is to 241 * serialize most set ioctls, multicast join/leave operations, IPMP operations 242 * igmp/mld timer operations, and processing of DLPI control messages received 243 * from drivers on a per IPMP group basis. If the system does not employ 244 * IPMP the serialization is on a per phyint basis. This serialization is 245 * provided by the ipsq_t and primitives operating on this. Details can 246 * be found in ip_if.c above the core primitives operating on ipsq_t. 247 * 248 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 249 * Simiarly lookup of an ire by a thread also returns a refheld ire. 250 * In addition ipif's and ill's referenced by the ire are also indirectly 251 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 252 * the ipif's address or netmask change as long as an ipif is refheld 253 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 254 * address of an ipif has to go through the ipsq_t. This ensures that only 255 * 1 such exclusive operation proceeds at any time on the ipif. It then 256 * deletes all ires associated with this ipif, and waits for all refcnts 257 * associated with this ipif to come down to zero. The address is changed 258 * only after the ipif has been quiesced. Then the ipif is brought up again. 259 * More details are described above the comment in ip_sioctl_flags. 260 * 261 * Packet processing is based mostly on IREs and are fully multi-threaded 262 * using standard Solaris MT techniques. 263 * 264 * There are explicit locks in IP to handle: 265 * - The ip_g_head list maintained by mi_open_link() and friends. 266 * 267 * - The reassembly data structures (one lock per hash bucket) 268 * 269 * - conn_lock is meant to protect conn_t fields. The fields actually 270 * protected by conn_lock are documented in the conn_t definition. 271 * 272 * - ire_lock to protect some of the fields of the ire, IRE tables 273 * (one lock per hash bucket). Refer to ip_ire.c for details. 274 * 275 * - ndp_g_lock and nce_lock for protecting NCEs. 276 * 277 * - ill_lock protects fields of the ill and ipif. Details in ip.h 278 * 279 * - ill_g_lock: This is a global reader/writer lock. Protects the following 280 * * The AVL tree based global multi list of all ills. 281 * * The linked list of all ipifs of an ill 282 * * The <ill-ipsq> mapping 283 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 284 * * The illgroup list threaded by ill_group_next. 285 * * <ill-phyint> association 286 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 287 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 288 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 289 * will all have to hold the ill_g_lock as writer for the actual duration 290 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 291 * may be found in the IPMP section. 292 * 293 * - ill_lock: This is a per ill mutex. 294 * It protects some members of the ill and is documented below. 295 * It also protects the <ill-ipsq> mapping 296 * It also protects the illgroup list threaded by ill_group_next. 297 * It also protects the <ill-phyint> assoc. 298 * It also protects the list of ipifs hanging off the ill. 299 * 300 * - ipsq_lock: This is a per ipsq_t mutex lock. 301 * This protects all the other members of the ipsq struct except 302 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 303 * 304 * - illgrp_lock: This is a per ill_group mutex lock. 305 * The only thing it protects is the illgrp_ill_schednext member of ill_group 306 * which dictates which is the next ill in an ill_group that is to be chosen 307 * for sending outgoing packets, through creation of an IRE_CACHE that 308 * references this ill. 309 * 310 * - phyint_lock: This is a per phyint mutex lock. Protects just the 311 * phyint_flags 312 * 313 * - ip_g_nd_lock: This is a global reader/writer lock. 314 * Any call to nd_load to load a new parameter to the ND table must hold the 315 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 316 * as reader. 317 * 318 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 319 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 320 * uniqueness check also done atomically. 321 * 322 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 323 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 324 * as a writer when adding or deleting elements from these lists, and 325 * as a reader when walking these lists to send a SADB update to the 326 * IPsec capable ills. 327 * 328 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 329 * group list linked by ill_usesrc_grp_next. It also protects the 330 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 331 * group is being added or deleted. This lock is taken as a reader when 332 * walking the list/group(eg: to get the number of members in a usesrc group). 333 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 334 * field is changing state i.e from NULL to non-NULL or vice-versa. For 335 * example, it is not necessary to take this lock in the initial portion 336 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 337 * ip_sioctl_flags since the these operations are executed exclusively and 338 * that ensures that the "usesrc group state" cannot change. The "usesrc 339 * group state" change can happen only in the latter part of 340 * ip_sioctl_slifusesrc and in ill_delete. 341 * 342 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 343 * 344 * To change the <ill-phyint> association, the ill_g_lock must be held 345 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 346 * must be held. 347 * 348 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 349 * and the ill_lock of the ill in question must be held. 350 * 351 * To change the <ill-illgroup> association the ill_g_lock must be held as 352 * writer and the ill_lock of the ill in question must be held. 353 * 354 * To add or delete an ipif from the list of ipifs hanging off the ill, 355 * ill_g_lock (writer) and ill_lock must be held and the thread must be 356 * a writer on the associated ipsq,. 357 * 358 * To add or delete an ill to the system, the ill_g_lock must be held as 359 * writer and the thread must be a writer on the associated ipsq. 360 * 361 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 362 * must be a writer on the associated ipsq. 363 * 364 * Lock hierarchy 365 * 366 * Some lock hierarchy scenarios are listed below. 367 * 368 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 369 * ill_g_lock -> illgrp_lock -> ill_lock 370 * ill_g_lock -> ill_lock(s) -> phyint_lock 371 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 372 * ill_g_lock -> ip_addr_avail_lock 373 * conn_lock -> irb_lock -> ill_lock -> ire_lock 374 * ill_g_lock -> ip_g_nd_lock 375 * 376 * When more than 1 ill lock is needed to be held, all ill lock addresses 377 * are sorted on address and locked starting from highest addressed lock 378 * downward. 379 * 380 * IPsec scenarios 381 * 382 * ipsa_lock -> ill_g_lock -> ill_lock 383 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 384 * ipsec_capab_ills_lock -> ipsa_lock 385 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 386 * 387 * Trusted Solaris scenarios 388 * 389 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 390 * igsa_lock -> gcdb_lock 391 * gcgrp_rwlock -> ire_lock 392 * gcgrp_rwlock -> gcdb_lock 393 * 394 * 395 * Routing/forwarding table locking notes: 396 * 397 * Lock acquisition order: Radix tree lock, irb_lock. 398 * Requirements: 399 * i. Walker must not hold any locks during the walker callback. 400 * ii Walker must not see a truncated tree during the walk because of any node 401 * deletion. 402 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 403 * in many places in the code to walk the irb list. Thus even if all the 404 * ires in a bucket have been deleted, we still can't free the radix node 405 * until the ires have actually been inactive'd (freed). 406 * 407 * Tree traversal - Need to hold the global tree lock in read mode. 408 * Before dropping the global tree lock, need to either increment the ire_refcnt 409 * to ensure that the radix node can't be deleted. 410 * 411 * Tree add - Need to hold the global tree lock in write mode to add a 412 * radix node. To prevent the node from being deleted, increment the 413 * irb_refcnt, after the node is added to the tree. The ire itself is 414 * added later while holding the irb_lock, but not the tree lock. 415 * 416 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 417 * All associated ires must be inactive (i.e. freed), and irb_refcnt 418 * must be zero. 419 * 420 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 421 * global tree lock (read mode) for traversal. 422 * 423 * IPsec notes : 424 * 425 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 426 * in front of the actual packet. For outbound datagrams, the M_CTL 427 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 428 * information used by the IPsec code for applying the right level of 429 * protection. The information initialized by IP in the ipsec_out_t 430 * is determined by the per-socket policy or global policy in the system. 431 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 432 * ipsec_info.h) which starts out with nothing in it. It gets filled 433 * with the right information if it goes through the AH/ESP code, which 434 * happens if the incoming packet is secure. The information initialized 435 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 436 * the policy requirements needed by per-socket policy or global policy 437 * is met or not. 438 * 439 * If there is both per-socket policy (set using setsockopt) and there 440 * is also global policy match for the 5 tuples of the socket, 441 * ipsec_override_policy() makes the decision of which one to use. 442 * 443 * For fully connected sockets i.e dst, src [addr, port] is known, 444 * conn_policy_cached is set indicating that policy has been cached. 445 * conn_in_enforce_policy may or may not be set depending on whether 446 * there is a global policy match or per-socket policy match. 447 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 448 * Once the right policy is set on the conn_t, policy cannot change for 449 * this socket. This makes life simpler for TCP (UDP ?) where 450 * re-transmissions go out with the same policy. For symmetry, policy 451 * is cached for fully connected UDP sockets also. Thus if policy is cached, 452 * it also implies that policy is latched i.e policy cannot change 453 * on these sockets. As we have the right policy on the conn, we don't 454 * have to lookup global policy for every outbound and inbound datagram 455 * and thus serving as an optimization. Note that a global policy change 456 * does not affect fully connected sockets if they have policy. If fully 457 * connected sockets did not have any policy associated with it, global 458 * policy change may affect them. 459 * 460 * IP Flow control notes: 461 * 462 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 463 * cannot be sent down to the driver by IP, because of a canput failure, IP 464 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 465 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 466 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 467 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 468 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 469 * the queued messages, and removes the conn from the drain list, if all 470 * messages were drained. It also qenables the next conn in the drain list to 471 * continue the drain process. 472 * 473 * In reality the drain list is not a single list, but a configurable number 474 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 475 * list. If the ip_wsrv of the next qenabled conn does not run, because the 476 * stream closes, ip_close takes responsibility to qenable the next conn in 477 * the drain list. The directly called ip_wput path always does a putq, if 478 * it cannot putnext. Thus synchronization problems are handled between 479 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 480 * functions that manipulate this drain list. Furthermore conn_drain_insert 481 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 482 * running on a queue at any time. conn_drain_tail can be simultaneously called 483 * from both ip_wsrv and ip_close. 484 * 485 * IPQOS notes: 486 * 487 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 488 * and IPQoS modules. IPPF includes hooks in IP at different control points 489 * (callout positions) which direct packets to IPQoS modules for policy 490 * processing. Policies, if present, are global. 491 * 492 * The callout positions are located in the following paths: 493 * o local_in (packets destined for this host) 494 * o local_out (packets orginating from this host ) 495 * o fwd_in (packets forwarded by this m/c - inbound) 496 * o fwd_out (packets forwarded by this m/c - outbound) 497 * Hooks at these callout points can be enabled/disabled using the ndd variable 498 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 499 * By default all the callout positions are enabled. 500 * 501 * Outbound (local_out) 502 * Hooks are placed in ip_wput_ire and ipsec_out_process. 503 * 504 * Inbound (local_in) 505 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 506 * TCP and UDP fanout routines. 507 * 508 * Forwarding (in and out) 509 * Hooks are placed in ip_rput_forward. 510 * 511 * IP Policy Framework processing (IPPF processing) 512 * Policy processing for a packet is initiated by ip_process, which ascertains 513 * that the classifier (ipgpc) is loaded and configured, failing which the 514 * packet resumes normal processing in IP. If the clasifier is present, the 515 * packet is acted upon by one or more IPQoS modules (action instances), per 516 * filters configured in ipgpc and resumes normal IP processing thereafter. 517 * An action instance can drop a packet in course of its processing. 518 * 519 * A boolean variable, ip_policy, is used in all the fanout routines that can 520 * invoke ip_process for a packet. This variable indicates if the packet should 521 * to be sent for policy processing. The variable is set to B_TRUE by default, 522 * i.e. when the routines are invoked in the normal ip procesing path for a 523 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 524 * ip_policy is set to B_FALSE for all the routines called in these two 525 * functions because, in the former case, we don't process loopback traffic 526 * currently while in the latter, the packets have already been processed in 527 * icmp_inbound. 528 * 529 * Zones notes: 530 * 531 * The partitioning rules for networking are as follows: 532 * 1) Packets coming from a zone must have a source address belonging to that 533 * zone. 534 * 2) Packets coming from a zone can only be sent on a physical interface on 535 * which the zone has an IP address. 536 * 3) Between two zones on the same machine, packet delivery is only allowed if 537 * there's a matching route for the destination and zone in the forwarding 538 * table. 539 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 540 * different zones can bind to the same port with the wildcard address 541 * (INADDR_ANY). 542 * 543 * The granularity of interface partitioning is at the logical interface level. 544 * Therefore, every zone has its own IP addresses, and incoming packets can be 545 * attributed to a zone unambiguously. A logical interface is placed into a zone 546 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 547 * structure. Rule (1) is implemented by modifying the source address selection 548 * algorithm so that the list of eligible addresses is filtered based on the 549 * sending process zone. 550 * 551 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 552 * across all zones, depending on their type. Here is the break-up: 553 * 554 * IRE type Shared/exclusive 555 * -------- ---------------- 556 * IRE_BROADCAST Exclusive 557 * IRE_DEFAULT (default routes) Shared (*) 558 * IRE_LOCAL Exclusive (x) 559 * IRE_LOOPBACK Exclusive 560 * IRE_PREFIX (net routes) Shared (*) 561 * IRE_CACHE Exclusive 562 * IRE_IF_NORESOLVER (interface routes) Exclusive 563 * IRE_IF_RESOLVER (interface routes) Exclusive 564 * IRE_HOST (host routes) Shared (*) 565 * 566 * (*) A zone can only use a default or off-subnet route if the gateway is 567 * directly reachable from the zone, that is, if the gateway's address matches 568 * one of the zone's logical interfaces. 569 * 570 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 571 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 572 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 573 * address of the zone itself (the destination). Since IRE_LOCAL is used 574 * for communication between zones, ip_wput_ire has special logic to set 575 * the right source address when sending using an IRE_LOCAL. 576 * 577 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 578 * ire_cache_lookup restricts loopback using an IRE_LOCAL 579 * between zone to the case when L2 would have conceptually looped the packet 580 * back, i.e. the loopback which is required since neither Ethernet drivers 581 * nor Ethernet hardware loops them back. This is the case when the normal 582 * routes (ignoring IREs with different zoneids) would send out the packet on 583 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 584 * associated. 585 * 586 * Multiple zones can share a common broadcast address; typically all zones 587 * share the 255.255.255.255 address. Incoming as well as locally originated 588 * broadcast packets must be dispatched to all the zones on the broadcast 589 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 590 * since some zones may not be on the 10.16.72/24 network. To handle this, each 591 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 592 * sent to every zone that has an IRE_BROADCAST entry for the destination 593 * address on the input ill, see conn_wantpacket(). 594 * 595 * Applications in different zones can join the same multicast group address. 596 * For IPv4, group memberships are per-logical interface, so they're already 597 * inherently part of a zone. For IPv6, group memberships are per-physical 598 * interface, so we distinguish IPv6 group memberships based on group address, 599 * interface and zoneid. In both cases, received multicast packets are sent to 600 * every zone for which a group membership entry exists. On IPv6 we need to 601 * check that the target zone still has an address on the receiving physical 602 * interface; it could have been removed since the application issued the 603 * IPV6_JOIN_GROUP. 604 */ 605 606 /* 607 * Squeue Fanout flags: 608 * 0: No fanout. 609 * 1: Fanout across all squeues 610 */ 611 boolean_t ip_squeue_fanout = 0; 612 613 /* 614 * Maximum dups allowed per packet. 615 */ 616 uint_t ip_max_frag_dups = 10; 617 618 #define IS_SIMPLE_IPH(ipha) \ 619 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 620 621 /* RFC1122 Conformance */ 622 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 623 624 #define ILL_MAX_NAMELEN LIFNAMSIZ 625 626 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 627 628 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 629 cred_t *credp, boolean_t isv6); 630 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 631 ipha_t **); 632 633 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 634 ip_stack_t *); 635 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 636 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 637 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 638 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 639 mblk_t *, int, ip_stack_t *); 640 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 641 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 642 ill_t *, zoneid_t); 643 static void icmp_options_update(ipha_t *); 644 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 645 ip_stack_t *); 646 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 647 zoneid_t zoneid, ip_stack_t *); 648 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 649 static void icmp_redirect(ill_t *, mblk_t *); 650 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 651 ip_stack_t *); 652 653 static void ip_arp_news(queue_t *, mblk_t *); 654 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 655 ip_stack_t *); 656 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 657 char *ip_dot_addr(ipaddr_t, char *); 658 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 659 int ip_close(queue_t *, int); 660 static char *ip_dot_saddr(uchar_t *, char *); 661 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 662 boolean_t, boolean_t, ill_t *, zoneid_t); 663 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 664 boolean_t, boolean_t, zoneid_t); 665 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 666 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 667 static void ip_lrput(queue_t *, mblk_t *); 668 ipaddr_t ip_net_mask(ipaddr_t); 669 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 670 ip_stack_t *); 671 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 672 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 673 char *ip_nv_lookup(nv_t *, int); 674 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 675 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 676 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 677 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 678 ipndp_t *, size_t); 679 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 680 void ip_rput(queue_t *, mblk_t *); 681 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 682 void *dummy_arg); 683 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 684 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 685 ip_stack_t *); 686 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 687 ire_t *, ip_stack_t *); 688 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 689 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 690 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 691 ip_stack_t *); 692 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 693 uint16_t *); 694 int ip_snmp_get(queue_t *, mblk_t *, int); 695 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 696 mib2_ipIfStatsEntry_t *, ip_stack_t *); 697 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 698 ip_stack_t *); 699 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 700 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 705 ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 707 ip_stack_t *ipst); 708 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 709 ip_stack_t *ipst); 710 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 711 ip_stack_t *ipst); 712 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 713 ip_stack_t *ipst); 714 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 715 ip_stack_t *ipst); 716 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 717 ip_stack_t *ipst); 718 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 719 ip_stack_t *ipst); 720 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 721 ip_stack_t *ipst); 722 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 723 ip_stack_t *ipst); 724 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 725 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 726 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 727 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 728 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 729 static boolean_t ip_source_route_included(ipha_t *); 730 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 731 732 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 733 zoneid_t, ip_stack_t *); 734 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 735 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 736 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 737 zoneid_t, ip_stack_t *); 738 739 static void conn_drain_init(ip_stack_t *); 740 static void conn_drain_fini(ip_stack_t *); 741 static void conn_drain_tail(conn_t *connp, boolean_t closing); 742 743 static void conn_walk_drain(ip_stack_t *); 744 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 745 zoneid_t); 746 747 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 748 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 749 static void ip_stack_fini(netstackid_t stackid, void *arg); 750 751 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 752 zoneid_t); 753 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 754 void *dummy_arg); 755 756 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 758 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 759 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 760 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 761 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 762 763 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 764 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 765 caddr_t, cred_t *); 766 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 767 caddr_t cp, cred_t *cr); 768 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 769 cred_t *); 770 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 771 caddr_t cp, cred_t *cr); 772 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 773 cred_t *); 774 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 775 cred_t *); 776 static squeue_func_t ip_squeue_switch(int); 777 778 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 779 static void ip_kstat_fini(netstackid_t, kstat_t *); 780 static int ip_kstat_update(kstat_t *kp, int rw); 781 static void *icmp_kstat_init(netstackid_t); 782 static void icmp_kstat_fini(netstackid_t, kstat_t *); 783 static int icmp_kstat_update(kstat_t *kp, int rw); 784 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 785 static void ip_kstat2_fini(netstackid_t, kstat_t *); 786 787 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 788 789 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 790 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 791 792 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 793 ipha_t *, ill_t *, boolean_t); 794 795 static void ipobs_init(ip_stack_t *); 796 static void ipobs_fini(ip_stack_t *); 797 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 798 799 /* How long, in seconds, we allow frags to hang around. */ 800 #define IP_FRAG_TIMEOUT 60 801 802 /* 803 * Threshold which determines whether MDT should be used when 804 * generating IP fragments; payload size must be greater than 805 * this threshold for MDT to take place. 806 */ 807 #define IP_WPUT_FRAG_MDT_MIN 32768 808 809 /* Setable in /etc/system only */ 810 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 811 812 static long ip_rput_pullups; 813 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 814 815 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 816 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 817 818 int ip_debug; 819 820 #ifdef DEBUG 821 uint32_t ipsechw_debug = 0; 822 #endif 823 824 /* 825 * Multirouting/CGTP stuff 826 */ 827 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 828 829 /* 830 * XXX following really should only be in a header. Would need more 831 * header and .c clean up first. 832 */ 833 extern optdb_obj_t ip_opt_obj; 834 835 ulong_t ip_squeue_enter_unbound = 0; 836 837 /* 838 * Named Dispatch Parameter Table. 839 * All of these are alterable, within the min/max values given, at run time. 840 */ 841 static ipparam_t lcl_param_arr[] = { 842 /* min max value name */ 843 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 844 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 845 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 846 { 0, 1, 0, "ip_respond_to_timestamp"}, 847 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 848 { 0, 1, 1, "ip_send_redirects"}, 849 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 850 { 0, 10, 0, "ip_mrtdebug"}, 851 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 852 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 853 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 854 { 1, 255, 255, "ip_def_ttl" }, 855 { 0, 1, 0, "ip_forward_src_routed"}, 856 { 0, 256, 32, "ip_wroff_extra" }, 857 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 858 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 859 { 0, 1, 1, "ip_path_mtu_discovery" }, 860 { 0, 240, 30, "ip_ignore_delete_time" }, 861 { 0, 1, 0, "ip_ignore_redirect" }, 862 { 0, 1, 1, "ip_output_queue" }, 863 { 1, 254, 1, "ip_broadcast_ttl" }, 864 { 0, 99999, 100, "ip_icmp_err_interval" }, 865 { 1, 99999, 10, "ip_icmp_err_burst" }, 866 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 867 { 0, 1, 0, "ip_strict_dst_multihoming" }, 868 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 869 { 0, 1, 0, "ipsec_override_persocket_policy" }, 870 { 0, 1, 1, "icmp_accept_clear_messages" }, 871 { 0, 1, 1, "igmp_accept_clear_messages" }, 872 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 873 "ip_ndp_delay_first_probe_time"}, 874 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 875 "ip_ndp_max_unicast_solicit"}, 876 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 877 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 878 { 0, 1, 0, "ip6_forward_src_routed"}, 879 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 880 { 0, 1, 1, "ip6_send_redirects"}, 881 { 0, 1, 0, "ip6_ignore_redirect" }, 882 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 883 884 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 885 886 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 887 888 { 0, 1, 1, "pim_accept_clear_messages" }, 889 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 890 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 891 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 892 { 0, 15, 0, "ip_policy_mask" }, 893 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 894 { 0, 255, 1, "ip_multirt_ttl" }, 895 { 0, 1, 1, "ip_multidata_outbound" }, 896 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 897 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 898 { 0, 1000, 1, "ip_max_temp_defend" }, 899 { 0, 1000, 3, "ip_max_defend" }, 900 { 0, 999999, 30, "ip_defend_interval" }, 901 { 0, 3600000, 300000, "ip_dup_recovery" }, 902 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 903 { 0, 1, 1, "ip_lso_outbound" }, 904 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 905 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 906 #ifdef DEBUG 907 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 908 #else 909 { 0, 0, 0, "" }, 910 #endif 911 }; 912 913 /* 914 * Extended NDP table 915 * The addresses for the first two are filled in to be ips_ip_g_forward 916 * and ips_ipv6_forward at init time. 917 */ 918 static ipndp_t lcl_ndp_arr[] = { 919 /* getf setf data name */ 920 #define IPNDP_IP_FORWARDING_OFFSET 0 921 { ip_param_generic_get, ip_forward_set, NULL, 922 "ip_forwarding" }, 923 #define IPNDP_IP6_FORWARDING_OFFSET 1 924 { ip_param_generic_get, ip_forward_set, NULL, 925 "ip6_forwarding" }, 926 { ip_ill_report, NULL, NULL, 927 "ip_ill_status" }, 928 { ip_ipif_report, NULL, NULL, 929 "ip_ipif_status" }, 930 { ip_conn_report, NULL, NULL, 931 "ip_conn_status" }, 932 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 933 "ip_rput_pullups" }, 934 { ip_srcid_report, NULL, NULL, 935 "ip_srcid_status" }, 936 { ip_param_generic_get, ip_squeue_profile_set, 937 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 938 { ip_param_generic_get, ip_squeue_bind_set, 939 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 940 { ip_param_generic_get, ip_input_proc_set, 941 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 942 { ip_param_generic_get, ip_int_set, 943 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 944 #define IPNDP_CGTP_FILTER_OFFSET 11 945 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 946 "ip_cgtp_filter" }, 947 { ip_param_generic_get, ip_int_set, 948 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 949 #define IPNDP_IPMP_HOOK_OFFSET 13 950 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 951 "ipmp_hook_emulation" }, 952 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 953 "ip_debug" }, 954 }; 955 956 /* 957 * Table of IP ioctls encoding the various properties of the ioctl and 958 * indexed based on the last byte of the ioctl command. Occasionally there 959 * is a clash, and there is more than 1 ioctl with the same last byte. 960 * In such a case 1 ioctl is encoded in the ndx table and the remaining 961 * ioctls are encoded in the misc table. An entry in the ndx table is 962 * retrieved by indexing on the last byte of the ioctl command and comparing 963 * the ioctl command with the value in the ndx table. In the event of a 964 * mismatch the misc table is then searched sequentially for the desired 965 * ioctl command. 966 * 967 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 968 */ 969 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 970 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 973 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 974 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 975 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 976 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 977 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 978 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 981 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 982 MISC_CMD, ip_siocaddrt, NULL }, 983 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 984 MISC_CMD, ip_siocdelrt, NULL }, 985 986 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 987 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 988 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 989 IF_CMD, ip_sioctl_get_addr, NULL }, 990 991 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 992 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 993 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 994 IPI_GET_CMD | IPI_REPL, 995 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 996 997 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 998 IPI_PRIV | IPI_WR | IPI_REPL, 999 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1000 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1001 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_flags, NULL }, 1003 1004 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1005 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1006 1007 /* copyin size cannot be coded for SIOCGIFCONF */ 1008 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1009 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1010 1011 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1012 IF_CMD, ip_sioctl_mtu, NULL }, 1013 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1014 IF_CMD, ip_sioctl_get_mtu, NULL }, 1015 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1016 IPI_GET_CMD | IPI_REPL, 1017 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1018 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1019 IF_CMD, ip_sioctl_brdaddr, NULL }, 1020 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1021 IPI_GET_CMD | IPI_REPL, 1022 IF_CMD, ip_sioctl_get_netmask, NULL }, 1023 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1024 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1025 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1026 IPI_GET_CMD | IPI_REPL, 1027 IF_CMD, ip_sioctl_get_metric, NULL }, 1028 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1029 IF_CMD, ip_sioctl_metric, NULL }, 1030 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 1032 /* See 166-168 below for extended SIOC*XARP ioctls */ 1033 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1034 ARP_CMD, ip_sioctl_arp, NULL }, 1035 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1036 ARP_CMD, ip_sioctl_arp, NULL }, 1037 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1038 ARP_CMD, ip_sioctl_arp, NULL }, 1039 1040 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 1062 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1063 MISC_CMD, if_unitsel, if_unitsel_restart }, 1064 1065 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 1084 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1085 IPI_PRIV | IPI_WR | IPI_MODOK, 1086 IF_CMD, ip_sioctl_sifname, NULL }, 1087 1088 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 1102 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1103 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1104 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1105 IF_CMD, ip_sioctl_get_muxid, NULL }, 1106 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1107 IPI_PRIV | IPI_WR | IPI_REPL, 1108 IF_CMD, ip_sioctl_muxid, NULL }, 1109 1110 /* Both if and lif variants share same func */ 1111 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1112 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1113 /* Both if and lif variants share same func */ 1114 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1115 IPI_PRIV | IPI_WR | IPI_REPL, 1116 IF_CMD, ip_sioctl_slifindex, NULL }, 1117 1118 /* copyin size cannot be coded for SIOCGIFCONF */ 1119 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1120 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1121 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 1139 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1140 IPI_PRIV | IPI_WR | IPI_REPL, 1141 LIF_CMD, ip_sioctl_removeif, 1142 ip_sioctl_removeif_restart }, 1143 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1144 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1145 LIF_CMD, ip_sioctl_addif, NULL }, 1146 #define SIOCLIFADDR_NDX 112 1147 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1148 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1149 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1150 IPI_GET_CMD | IPI_REPL, 1151 LIF_CMD, ip_sioctl_get_addr, NULL }, 1152 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1153 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1154 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1155 IPI_GET_CMD | IPI_REPL, 1156 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1157 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1158 IPI_PRIV | IPI_WR | IPI_REPL, 1159 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1160 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1161 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1162 LIF_CMD, ip_sioctl_get_flags, NULL }, 1163 1164 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 1167 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1168 ip_sioctl_get_lifconf, NULL }, 1169 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1170 LIF_CMD, ip_sioctl_mtu, NULL }, 1171 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1172 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1173 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1174 IPI_GET_CMD | IPI_REPL, 1175 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1176 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1177 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1178 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1179 IPI_GET_CMD | IPI_REPL, 1180 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1181 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1182 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1183 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1184 IPI_GET_CMD | IPI_REPL, 1185 LIF_CMD, ip_sioctl_get_metric, NULL }, 1186 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1187 LIF_CMD, ip_sioctl_metric, NULL }, 1188 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1190 LIF_CMD, ip_sioctl_slifname, 1191 ip_sioctl_slifname_restart }, 1192 1193 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1194 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1195 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1196 IPI_GET_CMD | IPI_REPL, 1197 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1198 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1199 IPI_PRIV | IPI_WR | IPI_REPL, 1200 LIF_CMD, ip_sioctl_muxid, NULL }, 1201 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1202 IPI_GET_CMD | IPI_REPL, 1203 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1204 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1205 IPI_PRIV | IPI_WR | IPI_REPL, 1206 LIF_CMD, ip_sioctl_slifindex, 0 }, 1207 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1208 LIF_CMD, ip_sioctl_token, NULL }, 1209 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1210 IPI_GET_CMD | IPI_REPL, 1211 LIF_CMD, ip_sioctl_get_token, NULL }, 1212 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1213 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1214 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1215 IPI_GET_CMD | IPI_REPL, 1216 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1217 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1218 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1219 1220 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1221 IPI_GET_CMD | IPI_REPL, 1222 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1223 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1224 LIF_CMD, ip_siocdelndp_v6, NULL }, 1225 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1226 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1227 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1228 LIF_CMD, ip_siocsetndp_v6, NULL }, 1229 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1230 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1231 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1232 MISC_CMD, ip_sioctl_tonlink, NULL }, 1233 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1234 MISC_CMD, ip_sioctl_tmysite, NULL }, 1235 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1236 TUN_CMD, ip_sioctl_tunparam, NULL }, 1237 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1238 IPI_PRIV | IPI_WR, 1239 TUN_CMD, ip_sioctl_tunparam, NULL }, 1240 1241 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1242 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1243 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1244 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1245 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1246 1247 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1248 IPI_PRIV | IPI_WR | IPI_REPL, 1249 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1250 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1251 IPI_PRIV | IPI_WR | IPI_REPL, 1252 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1253 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1254 IPI_PRIV | IPI_WR | IPI_REPL, 1255 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1256 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1259 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1260 IPI_GET_CMD | IPI_REPL, 1261 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1262 1263 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1264 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1265 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1266 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1267 1268 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1269 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1270 1271 /* These are handled in ip_sioctl_copyin_setup itself */ 1272 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1273 MISC_CMD, NULL, NULL }, 1274 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1275 MISC_CMD, NULL, NULL }, 1276 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1277 1278 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1279 ip_sioctl_get_lifconf, NULL }, 1280 1281 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1282 XARP_CMD, ip_sioctl_arp, NULL }, 1283 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1284 XARP_CMD, ip_sioctl_arp, NULL }, 1285 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1286 XARP_CMD, ip_sioctl_arp, NULL }, 1287 1288 /* SIOCPOPSOCKFS is not handled by IP */ 1289 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1290 1291 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1292 IPI_GET_CMD | IPI_REPL, 1293 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1294 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_REPL, 1296 LIF_CMD, ip_sioctl_slifzone, 1297 ip_sioctl_slifzone_restart }, 1298 /* 172-174 are SCTP ioctls and not handled by IP */ 1299 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1300 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1302 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1303 IPI_GET_CMD, LIF_CMD, 1304 ip_sioctl_get_lifusesrc, 0 }, 1305 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1306 IPI_PRIV | IPI_WR, 1307 LIF_CMD, ip_sioctl_slifusesrc, 1308 NULL }, 1309 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1310 ip_sioctl_get_lifsrcof, NULL }, 1311 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1312 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1313 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1314 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1315 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1316 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1317 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1318 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1319 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1320 ip_sioctl_set_ipmpfailback, NULL }, 1321 /* SIOCSENABLESDP is handled by SDP */ 1322 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1323 }; 1324 1325 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1326 1327 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1328 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1329 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1330 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1331 TUN_CMD, ip_sioctl_tunparam, NULL }, 1332 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1333 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1334 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1335 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1336 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1337 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1338 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1339 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1340 MISC_CMD, mrt_ioctl}, 1341 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1342 MISC_CMD, mrt_ioctl}, 1343 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1344 MISC_CMD, mrt_ioctl} 1345 }; 1346 1347 int ip_misc_ioctl_count = 1348 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1349 1350 int conn_drain_nthreads; /* Number of drainers reqd. */ 1351 /* Settable in /etc/system */ 1352 /* Defined in ip_ire.c */ 1353 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1354 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1355 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1356 1357 static nv_t ire_nv_arr[] = { 1358 { IRE_BROADCAST, "BROADCAST" }, 1359 { IRE_LOCAL, "LOCAL" }, 1360 { IRE_LOOPBACK, "LOOPBACK" }, 1361 { IRE_CACHE, "CACHE" }, 1362 { IRE_DEFAULT, "DEFAULT" }, 1363 { IRE_PREFIX, "PREFIX" }, 1364 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1365 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1366 { IRE_HOST, "HOST" }, 1367 { 0 } 1368 }; 1369 1370 nv_t *ire_nv_tbl = ire_nv_arr; 1371 1372 /* Simple ICMP IP Header Template */ 1373 static ipha_t icmp_ipha = { 1374 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1375 }; 1376 1377 struct module_info ip_mod_info = { 1378 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1379 }; 1380 1381 /* 1382 * Duplicate static symbols within a module confuses mdb; so we avoid the 1383 * problem by making the symbols here distinct from those in udp.c. 1384 */ 1385 1386 /* 1387 * Entry points for IP as a device and as a module. 1388 * FIXME: down the road we might want a separate module and driver qinit. 1389 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1390 */ 1391 static struct qinit iprinitv4 = { 1392 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1393 &ip_mod_info 1394 }; 1395 1396 struct qinit iprinitv6 = { 1397 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1398 &ip_mod_info 1399 }; 1400 1401 static struct qinit ipwinitv4 = { 1402 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1403 &ip_mod_info 1404 }; 1405 1406 struct qinit ipwinitv6 = { 1407 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1408 &ip_mod_info 1409 }; 1410 1411 static struct qinit iplrinit = { 1412 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1413 &ip_mod_info 1414 }; 1415 1416 static struct qinit iplwinit = { 1417 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1418 &ip_mod_info 1419 }; 1420 1421 /* For AF_INET aka /dev/ip */ 1422 struct streamtab ipinfov4 = { 1423 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1424 }; 1425 1426 /* For AF_INET6 aka /dev/ip6 */ 1427 struct streamtab ipinfov6 = { 1428 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1429 }; 1430 1431 #ifdef DEBUG 1432 static boolean_t skip_sctp_cksum = B_FALSE; 1433 #endif 1434 1435 /* 1436 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1437 * ip_rput_v6(), ip_output(), etc. If the message 1438 * block already has a M_CTL at the front of it, then simply set the zoneid 1439 * appropriately. 1440 */ 1441 mblk_t * 1442 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1443 { 1444 mblk_t *first_mp; 1445 ipsec_out_t *io; 1446 1447 ASSERT(zoneid != ALL_ZONES); 1448 if (mp->b_datap->db_type == M_CTL) { 1449 io = (ipsec_out_t *)mp->b_rptr; 1450 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1451 io->ipsec_out_zoneid = zoneid; 1452 return (mp); 1453 } 1454 1455 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1456 if (first_mp == NULL) 1457 return (NULL); 1458 io = (ipsec_out_t *)first_mp->b_rptr; 1459 /* This is not a secure packet */ 1460 io->ipsec_out_secure = B_FALSE; 1461 io->ipsec_out_zoneid = zoneid; 1462 first_mp->b_cont = mp; 1463 return (first_mp); 1464 } 1465 1466 /* 1467 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1468 */ 1469 mblk_t * 1470 ip_copymsg(mblk_t *mp) 1471 { 1472 mblk_t *nmp; 1473 ipsec_info_t *in; 1474 1475 if (mp->b_datap->db_type != M_CTL) 1476 return (copymsg(mp)); 1477 1478 in = (ipsec_info_t *)mp->b_rptr; 1479 1480 /* 1481 * Note that M_CTL is also used for delivering ICMP error messages 1482 * upstream to transport layers. 1483 */ 1484 if (in->ipsec_info_type != IPSEC_OUT && 1485 in->ipsec_info_type != IPSEC_IN) 1486 return (copymsg(mp)); 1487 1488 nmp = copymsg(mp->b_cont); 1489 1490 if (in->ipsec_info_type == IPSEC_OUT) { 1491 return (ipsec_out_tag(mp, nmp, 1492 ((ipsec_out_t *)in)->ipsec_out_ns)); 1493 } else { 1494 return (ipsec_in_tag(mp, nmp, 1495 ((ipsec_in_t *)in)->ipsec_in_ns)); 1496 } 1497 } 1498 1499 /* Generate an ICMP fragmentation needed message. */ 1500 static void 1501 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1502 ip_stack_t *ipst) 1503 { 1504 icmph_t icmph; 1505 mblk_t *first_mp; 1506 boolean_t mctl_present; 1507 1508 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1509 1510 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1511 if (mctl_present) 1512 freeb(first_mp); 1513 return; 1514 } 1515 1516 bzero(&icmph, sizeof (icmph_t)); 1517 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1518 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1519 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1520 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1521 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1522 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1523 ipst); 1524 } 1525 1526 /* 1527 * icmp_inbound deals with ICMP messages in the following ways. 1528 * 1529 * 1) It needs to send a reply back and possibly delivering it 1530 * to the "interested" upper clients. 1531 * 2) It needs to send it to the upper clients only. 1532 * 3) It needs to change some values in IP only. 1533 * 4) It needs to change some values in IP and upper layers e.g TCP. 1534 * 1535 * We need to accomodate icmp messages coming in clear until we get 1536 * everything secure from the wire. If icmp_accept_clear_messages 1537 * is zero we check with the global policy and act accordingly. If 1538 * it is non-zero, we accept the message without any checks. But 1539 * *this does not mean* that this will be delivered to the upper 1540 * clients. By accepting we might send replies back, change our MTU 1541 * value etc. but delivery to the ULP/clients depends on their policy 1542 * dispositions. 1543 * 1544 * We handle the above 4 cases in the context of IPsec in the 1545 * following way : 1546 * 1547 * 1) Send the reply back in the same way as the request came in. 1548 * If it came in encrypted, it goes out encrypted. If it came in 1549 * clear, it goes out in clear. Thus, this will prevent chosen 1550 * plain text attack. 1551 * 2) The client may or may not expect things to come in secure. 1552 * If it comes in secure, the policy constraints are checked 1553 * before delivering it to the upper layers. If it comes in 1554 * clear, ipsec_inbound_accept_clear will decide whether to 1555 * accept this in clear or not. In both the cases, if the returned 1556 * message (IP header + 8 bytes) that caused the icmp message has 1557 * AH/ESP headers, it is sent up to AH/ESP for validation before 1558 * sending up. If there are only 8 bytes of returned message, then 1559 * upper client will not be notified. 1560 * 3) Check with global policy to see whether it matches the constaints. 1561 * But this will be done only if icmp_accept_messages_in_clear is 1562 * zero. 1563 * 4) If we need to change both in IP and ULP, then the decision taken 1564 * while affecting the values in IP and while delivering up to TCP 1565 * should be the same. 1566 * 1567 * There are two cases. 1568 * 1569 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1570 * failed), we will not deliver it to the ULP, even though they 1571 * are *willing* to accept in *clear*. This is fine as our global 1572 * disposition to icmp messages asks us reject the datagram. 1573 * 1574 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1575 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1576 * to deliver it to ULP (policy failed), it can lead to 1577 * consistency problems. The cases known at this time are 1578 * ICMP_DESTINATION_UNREACHABLE messages with following code 1579 * values : 1580 * 1581 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1582 * and Upper layer rejects. Then the communication will 1583 * come to a stop. This is solved by making similar decisions 1584 * at both levels. Currently, when we are unable to deliver 1585 * to the Upper Layer (due to policy failures) while IP has 1586 * adjusted ire_max_frag, the next outbound datagram would 1587 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1588 * will be with the right level of protection. Thus the right 1589 * value will be communicated even if we are not able to 1590 * communicate when we get from the wire initially. But this 1591 * assumes there would be at least one outbound datagram after 1592 * IP has adjusted its ire_max_frag value. To make things 1593 * simpler, we accept in clear after the validation of 1594 * AH/ESP headers. 1595 * 1596 * - Other ICMP ERRORS : We may not be able to deliver it to the 1597 * upper layer depending on the level of protection the upper 1598 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1599 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1600 * should be accepted in clear when the Upper layer expects secure. 1601 * Thus the communication may get aborted by some bad ICMP 1602 * packets. 1603 * 1604 * IPQoS Notes: 1605 * The only instance when a packet is sent for processing is when there 1606 * isn't an ICMP client and if we are interested in it. 1607 * If there is a client, IPPF processing will take place in the 1608 * ip_fanout_proto routine. 1609 * 1610 * Zones notes: 1611 * The packet is only processed in the context of the specified zone: typically 1612 * only this zone will reply to an echo request, and only interested clients in 1613 * this zone will receive a copy of the packet. This means that the caller must 1614 * call icmp_inbound() for each relevant zone. 1615 */ 1616 static void 1617 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1618 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1619 ill_t *recv_ill, zoneid_t zoneid) 1620 { 1621 icmph_t *icmph; 1622 ipha_t *ipha; 1623 int iph_hdr_length; 1624 int hdr_length; 1625 boolean_t interested; 1626 uint32_t ts; 1627 uchar_t *wptr; 1628 ipif_t *ipif; 1629 mblk_t *first_mp; 1630 ipsec_in_t *ii; 1631 ire_t *src_ire; 1632 boolean_t onlink; 1633 timestruc_t now; 1634 uint32_t ill_index; 1635 ip_stack_t *ipst; 1636 1637 ASSERT(ill != NULL); 1638 ipst = ill->ill_ipst; 1639 1640 first_mp = mp; 1641 if (mctl_present) { 1642 mp = first_mp->b_cont; 1643 ASSERT(mp != NULL); 1644 } 1645 1646 ipha = (ipha_t *)mp->b_rptr; 1647 if (ipst->ips_icmp_accept_clear_messages == 0) { 1648 first_mp = ipsec_check_global_policy(first_mp, NULL, 1649 ipha, NULL, mctl_present, ipst->ips_netstack); 1650 if (first_mp == NULL) 1651 return; 1652 } 1653 1654 /* 1655 * On a labeled system, we have to check whether the zone itself is 1656 * permitted to receive raw traffic. 1657 */ 1658 if (is_system_labeled()) { 1659 if (zoneid == ALL_ZONES) 1660 zoneid = tsol_packet_to_zoneid(mp); 1661 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1662 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1663 zoneid)); 1664 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1665 freemsg(first_mp); 1666 return; 1667 } 1668 } 1669 1670 /* 1671 * We have accepted the ICMP message. It means that we will 1672 * respond to the packet if needed. It may not be delivered 1673 * to the upper client depending on the policy constraints 1674 * and the disposition in ipsec_inbound_accept_clear. 1675 */ 1676 1677 ASSERT(ill != NULL); 1678 1679 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1680 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1681 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1682 /* Last chance to get real. */ 1683 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1685 freemsg(first_mp); 1686 return; 1687 } 1688 /* Refresh iph following the pullup. */ 1689 ipha = (ipha_t *)mp->b_rptr; 1690 } 1691 /* ICMP header checksum, including checksum field, should be zero. */ 1692 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1693 IP_CSUM(mp, iph_hdr_length, 0)) { 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1695 freemsg(first_mp); 1696 return; 1697 } 1698 /* The IP header will always be a multiple of four bytes */ 1699 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1700 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1701 icmph->icmph_code)); 1702 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1703 /* We will set "interested" to "true" if we want a copy */ 1704 interested = B_FALSE; 1705 switch (icmph->icmph_type) { 1706 case ICMP_ECHO_REPLY: 1707 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1708 break; 1709 case ICMP_DEST_UNREACHABLE: 1710 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1711 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1714 break; 1715 case ICMP_SOURCE_QUENCH: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1718 break; 1719 case ICMP_REDIRECT: 1720 if (!ipst->ips_ip_ignore_redirect) 1721 interested = B_TRUE; 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1723 break; 1724 case ICMP_ECHO_REQUEST: 1725 /* 1726 * Whether to respond to echo requests that come in as IP 1727 * broadcasts or as IP multicast is subject to debate 1728 * (what isn't?). We aim to please, you pick it. 1729 * Default is do it. 1730 */ 1731 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1732 /* unicast: always respond */ 1733 interested = B_TRUE; 1734 } else if (CLASSD(ipha->ipha_dst)) { 1735 /* multicast: respond based on tunable */ 1736 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1737 } else if (broadcast) { 1738 /* broadcast: respond based on tunable */ 1739 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1742 break; 1743 case ICMP_ROUTER_ADVERTISEMENT: 1744 case ICMP_ROUTER_SOLICITATION: 1745 break; 1746 case ICMP_TIME_EXCEEDED: 1747 interested = B_TRUE; /* Pass up to transport */ 1748 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1749 break; 1750 case ICMP_PARAM_PROBLEM: 1751 interested = B_TRUE; /* Pass up to transport */ 1752 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1753 break; 1754 case ICMP_TIME_STAMP_REQUEST: 1755 /* Response to Time Stamp Requests is local policy. */ 1756 if (ipst->ips_ip_g_resp_to_timestamp && 1757 /* So is whether to respond if it was an IP broadcast. */ 1758 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1759 int tstamp_len = 3 * sizeof (uint32_t); 1760 1761 if (wptr + tstamp_len > mp->b_wptr) { 1762 if (!pullupmsg(mp, wptr + tstamp_len - 1763 mp->b_rptr)) { 1764 BUMP_MIB(ill->ill_ip_mib, 1765 ipIfStatsInDiscards); 1766 freemsg(first_mp); 1767 return; 1768 } 1769 /* Refresh ipha following the pullup. */ 1770 ipha = (ipha_t *)mp->b_rptr; 1771 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1772 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1773 } 1774 interested = B_TRUE; 1775 } 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1777 break; 1778 case ICMP_TIME_STAMP_REPLY: 1779 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1780 break; 1781 case ICMP_INFO_REQUEST: 1782 /* Per RFC 1122 3.2.2.7, ignore this. */ 1783 case ICMP_INFO_REPLY: 1784 break; 1785 case ICMP_ADDRESS_MASK_REQUEST: 1786 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1787 !broadcast) && 1788 /* TODO m_pullup of complete header? */ 1789 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1790 interested = B_TRUE; 1791 } 1792 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1793 break; 1794 case ICMP_ADDRESS_MASK_REPLY: 1795 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1796 break; 1797 default: 1798 interested = B_TRUE; /* Pass up to transport */ 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1800 break; 1801 } 1802 /* See if there is an ICMP client. */ 1803 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1804 /* If there is an ICMP client and we want one too, copy it. */ 1805 mblk_t *first_mp1; 1806 1807 if (!interested) { 1808 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1809 ip_policy, recv_ill, zoneid); 1810 return; 1811 } 1812 first_mp1 = ip_copymsg(first_mp); 1813 if (first_mp1 != NULL) { 1814 ip_fanout_proto(q, first_mp1, ill, ipha, 1815 0, mctl_present, ip_policy, recv_ill, zoneid); 1816 } 1817 } else if (!interested) { 1818 freemsg(first_mp); 1819 return; 1820 } else { 1821 /* 1822 * Initiate policy processing for this packet if ip_policy 1823 * is true. 1824 */ 1825 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1826 ill_index = ill->ill_phyint->phyint_ifindex; 1827 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1828 if (mp == NULL) { 1829 if (mctl_present) { 1830 freeb(first_mp); 1831 } 1832 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1833 return; 1834 } 1835 } 1836 } 1837 /* We want to do something with it. */ 1838 /* Check db_ref to make sure we can modify the packet. */ 1839 if (mp->b_datap->db_ref > 1) { 1840 mblk_t *first_mp1; 1841 1842 first_mp1 = ip_copymsg(first_mp); 1843 freemsg(first_mp); 1844 if (!first_mp1) { 1845 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1846 return; 1847 } 1848 first_mp = first_mp1; 1849 if (mctl_present) { 1850 mp = first_mp->b_cont; 1851 ASSERT(mp != NULL); 1852 } else { 1853 mp = first_mp; 1854 } 1855 ipha = (ipha_t *)mp->b_rptr; 1856 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1857 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1858 } 1859 switch (icmph->icmph_type) { 1860 case ICMP_ADDRESS_MASK_REQUEST: 1861 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1862 if (ipif == NULL) { 1863 freemsg(first_mp); 1864 return; 1865 } 1866 /* 1867 * outging interface must be IPv4 1868 */ 1869 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1870 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1871 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1872 ipif_refrele(ipif); 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1874 break; 1875 case ICMP_ECHO_REQUEST: 1876 icmph->icmph_type = ICMP_ECHO_REPLY; 1877 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1878 break; 1879 case ICMP_TIME_STAMP_REQUEST: { 1880 uint32_t *tsp; 1881 1882 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1883 tsp = (uint32_t *)wptr; 1884 tsp++; /* Skip past 'originate time' */ 1885 /* Compute # of milliseconds since midnight */ 1886 gethrestime(&now); 1887 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1888 now.tv_nsec / (NANOSEC / MILLISEC); 1889 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1890 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1891 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1892 break; 1893 } 1894 default: 1895 ipha = (ipha_t *)&icmph[1]; 1896 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1897 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1898 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1899 freemsg(first_mp); 1900 return; 1901 } 1902 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1903 ipha = (ipha_t *)&icmph[1]; 1904 } 1905 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1906 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1907 freemsg(first_mp); 1908 return; 1909 } 1910 hdr_length = IPH_HDR_LENGTH(ipha); 1911 if (hdr_length < sizeof (ipha_t)) { 1912 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1913 freemsg(first_mp); 1914 return; 1915 } 1916 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1917 if (!pullupmsg(mp, 1918 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1919 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1920 freemsg(first_mp); 1921 return; 1922 } 1923 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1924 ipha = (ipha_t *)&icmph[1]; 1925 } 1926 switch (icmph->icmph_type) { 1927 case ICMP_REDIRECT: 1928 /* 1929 * As there is no upper client to deliver, we don't 1930 * need the first_mp any more. 1931 */ 1932 if (mctl_present) { 1933 freeb(first_mp); 1934 } 1935 icmp_redirect(ill, mp); 1936 return; 1937 case ICMP_DEST_UNREACHABLE: 1938 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1939 if (!icmp_inbound_too_big(icmph, ipha, ill, 1940 zoneid, mp, iph_hdr_length, ipst)) { 1941 freemsg(first_mp); 1942 return; 1943 } 1944 /* 1945 * icmp_inbound_too_big() may alter mp. 1946 * Resynch ipha and icmph accordingly. 1947 */ 1948 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1949 ipha = (ipha_t *)&icmph[1]; 1950 } 1951 /* FALLTHRU */ 1952 default : 1953 /* 1954 * IPQoS notes: Since we have already done IPQoS 1955 * processing we don't want to do it again in 1956 * the fanout routines called by 1957 * icmp_inbound_error_fanout, hence the last 1958 * argument, ip_policy, is B_FALSE. 1959 */ 1960 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1961 ipha, iph_hdr_length, hdr_length, mctl_present, 1962 B_FALSE, recv_ill, zoneid); 1963 } 1964 return; 1965 } 1966 /* Send out an ICMP packet */ 1967 icmph->icmph_checksum = 0; 1968 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1969 if (broadcast || CLASSD(ipha->ipha_dst)) { 1970 ipif_t *ipif_chosen; 1971 /* 1972 * Make it look like it was directed to us, so we don't look 1973 * like a fool with a broadcast or multicast source address. 1974 */ 1975 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1976 /* 1977 * Make sure that we haven't grabbed an interface that's DOWN. 1978 */ 1979 if (ipif != NULL) { 1980 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1981 ipha->ipha_src, zoneid); 1982 if (ipif_chosen != NULL) { 1983 ipif_refrele(ipif); 1984 ipif = ipif_chosen; 1985 } 1986 } 1987 if (ipif == NULL) { 1988 ip0dbg(("icmp_inbound: " 1989 "No source for broadcast/multicast:\n" 1990 "\tsrc 0x%x dst 0x%x ill %p " 1991 "ipif_lcl_addr 0x%x\n", 1992 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1993 (void *)ill, 1994 ill->ill_ipif->ipif_lcl_addr)); 1995 freemsg(first_mp); 1996 return; 1997 } 1998 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1999 ipha->ipha_dst = ipif->ipif_src_addr; 2000 ipif_refrele(ipif); 2001 } 2002 /* Reset time to live. */ 2003 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2004 { 2005 /* Swap source and destination addresses */ 2006 ipaddr_t tmp; 2007 2008 tmp = ipha->ipha_src; 2009 ipha->ipha_src = ipha->ipha_dst; 2010 ipha->ipha_dst = tmp; 2011 } 2012 ipha->ipha_ident = 0; 2013 if (!IS_SIMPLE_IPH(ipha)) 2014 icmp_options_update(ipha); 2015 2016 /* 2017 * ICMP echo replies should go out on the same interface 2018 * the request came on as probes used by in.mpathd for detecting 2019 * NIC failures are ECHO packets. We turn-off load spreading 2020 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2021 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2022 * function. This is in turn handled by ip_wput and ip_newroute 2023 * to make sure that the packet goes out on the interface it came 2024 * in on. If we don't turnoff load spreading, the packets might get 2025 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2026 * to go out and in.mpathd would wrongly detect a failure or 2027 * mis-detect a NIC failure for link failure. As load spreading 2028 * can happen only if ill_group is not NULL, we do only for 2029 * that case and this does not affect the normal case. 2030 * 2031 * We turn off load spreading only on echo packets that came from 2032 * on-link hosts. If the interface route has been deleted, this will 2033 * not be enforced as we can't do much. For off-link hosts, as the 2034 * default routes in IPv4 does not typically have an ire_ipif 2035 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2036 * Moreover, expecting a default route through this interface may 2037 * not be correct. We use ipha_dst because of the swap above. 2038 */ 2039 onlink = B_FALSE; 2040 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2041 /* 2042 * First, we need to make sure that it is not one of our 2043 * local addresses. If we set onlink when it is one of 2044 * our local addresses, we will end up creating IRE_CACHES 2045 * for one of our local addresses. Then, we will never 2046 * accept packets for them afterwards. 2047 */ 2048 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2049 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2050 if (src_ire == NULL) { 2051 ipif = ipif_get_next_ipif(NULL, ill); 2052 if (ipif == NULL) { 2053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2054 freemsg(mp); 2055 return; 2056 } 2057 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2058 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2059 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2060 ipif_refrele(ipif); 2061 if (src_ire != NULL) { 2062 onlink = B_TRUE; 2063 ire_refrele(src_ire); 2064 } 2065 } else { 2066 ire_refrele(src_ire); 2067 } 2068 } 2069 if (!mctl_present) { 2070 /* 2071 * This packet should go out the same way as it 2072 * came in i.e in clear. To make sure that global 2073 * policy will not be applied to this in ip_wput_ire, 2074 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2075 */ 2076 ASSERT(first_mp == mp); 2077 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2078 if (first_mp == NULL) { 2079 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2080 freemsg(mp); 2081 return; 2082 } 2083 ii = (ipsec_in_t *)first_mp->b_rptr; 2084 2085 /* This is not a secure packet */ 2086 ii->ipsec_in_secure = B_FALSE; 2087 if (onlink) { 2088 ii->ipsec_in_attach_if = B_TRUE; 2089 ii->ipsec_in_ill_index = 2090 ill->ill_phyint->phyint_ifindex; 2091 ii->ipsec_in_rill_index = 2092 recv_ill->ill_phyint->phyint_ifindex; 2093 } 2094 first_mp->b_cont = mp; 2095 } else if (onlink) { 2096 ii = (ipsec_in_t *)first_mp->b_rptr; 2097 ii->ipsec_in_attach_if = B_TRUE; 2098 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2099 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2100 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2101 } else { 2102 ii = (ipsec_in_t *)first_mp->b_rptr; 2103 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2104 } 2105 ii->ipsec_in_zoneid = zoneid; 2106 ASSERT(zoneid != ALL_ZONES); 2107 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2109 return; 2110 } 2111 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2112 put(WR(q), first_mp); 2113 } 2114 2115 static ipaddr_t 2116 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2117 { 2118 conn_t *connp; 2119 connf_t *connfp; 2120 ipaddr_t nexthop_addr = INADDR_ANY; 2121 int hdr_length = IPH_HDR_LENGTH(ipha); 2122 uint16_t *up; 2123 uint32_t ports; 2124 ip_stack_t *ipst = ill->ill_ipst; 2125 2126 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2127 switch (ipha->ipha_protocol) { 2128 case IPPROTO_TCP: 2129 { 2130 tcph_t *tcph; 2131 2132 /* do a reverse lookup */ 2133 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2134 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2135 TCPS_LISTEN, ipst); 2136 break; 2137 } 2138 case IPPROTO_UDP: 2139 { 2140 uint32_t dstport, srcport; 2141 2142 ((uint16_t *)&ports)[0] = up[1]; 2143 ((uint16_t *)&ports)[1] = up[0]; 2144 2145 /* Extract ports in net byte order */ 2146 dstport = htons(ntohl(ports) & 0xFFFF); 2147 srcport = htons(ntohl(ports) >> 16); 2148 2149 connfp = &ipst->ips_ipcl_udp_fanout[ 2150 IPCL_UDP_HASH(dstport, ipst)]; 2151 mutex_enter(&connfp->connf_lock); 2152 connp = connfp->connf_head; 2153 2154 /* do a reverse lookup */ 2155 while ((connp != NULL) && 2156 (!IPCL_UDP_MATCH(connp, dstport, 2157 ipha->ipha_src, srcport, ipha->ipha_dst) || 2158 !IPCL_ZONE_MATCH(connp, zoneid))) { 2159 connp = connp->conn_next; 2160 } 2161 if (connp != NULL) 2162 CONN_INC_REF(connp); 2163 mutex_exit(&connfp->connf_lock); 2164 break; 2165 } 2166 case IPPROTO_SCTP: 2167 { 2168 in6_addr_t map_src, map_dst; 2169 2170 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2171 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2172 ((uint16_t *)&ports)[0] = up[1]; 2173 ((uint16_t *)&ports)[1] = up[0]; 2174 2175 connp = sctp_find_conn(&map_src, &map_dst, ports, 2176 zoneid, ipst->ips_netstack->netstack_sctp); 2177 if (connp == NULL) { 2178 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2179 zoneid, ports, ipha, ipst); 2180 } else { 2181 CONN_INC_REF(connp); 2182 SCTP_REFRELE(CONN2SCTP(connp)); 2183 } 2184 break; 2185 } 2186 default: 2187 { 2188 ipha_t ripha; 2189 2190 ripha.ipha_src = ipha->ipha_dst; 2191 ripha.ipha_dst = ipha->ipha_src; 2192 ripha.ipha_protocol = ipha->ipha_protocol; 2193 2194 connfp = &ipst->ips_ipcl_proto_fanout[ 2195 ipha->ipha_protocol]; 2196 mutex_enter(&connfp->connf_lock); 2197 connp = connfp->connf_head; 2198 for (connp = connfp->connf_head; connp != NULL; 2199 connp = connp->conn_next) { 2200 if (IPCL_PROTO_MATCH(connp, 2201 ipha->ipha_protocol, &ripha, ill, 2202 0, zoneid)) { 2203 CONN_INC_REF(connp); 2204 break; 2205 } 2206 } 2207 mutex_exit(&connfp->connf_lock); 2208 } 2209 } 2210 if (connp != NULL) { 2211 if (connp->conn_nexthop_set) 2212 nexthop_addr = connp->conn_nexthop_v4; 2213 CONN_DEC_REF(connp); 2214 } 2215 return (nexthop_addr); 2216 } 2217 2218 /* Table from RFC 1191 */ 2219 static int icmp_frag_size_table[] = 2220 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2221 2222 /* 2223 * Process received ICMP Packet too big. 2224 * After updating any IRE it does the fanout to any matching transport streams. 2225 * Assumes the message has been pulled up till the IP header that caused 2226 * the error. 2227 * 2228 * Returns B_FALSE on failure and B_TRUE on success. 2229 */ 2230 static boolean_t 2231 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2232 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2233 ip_stack_t *ipst) 2234 { 2235 ire_t *ire, *first_ire; 2236 int mtu; 2237 int hdr_length; 2238 ipaddr_t nexthop_addr; 2239 2240 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2241 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2242 ASSERT(ill != NULL); 2243 2244 hdr_length = IPH_HDR_LENGTH(ipha); 2245 2246 /* Drop if the original packet contained a source route */ 2247 if (ip_source_route_included(ipha)) { 2248 return (B_FALSE); 2249 } 2250 /* 2251 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2252 * header. 2253 */ 2254 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2255 mp->b_wptr) { 2256 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2257 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2258 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2259 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2260 return (B_FALSE); 2261 } 2262 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2263 ipha = (ipha_t *)&icmph[1]; 2264 } 2265 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2266 if (nexthop_addr != INADDR_ANY) { 2267 /* nexthop set */ 2268 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2269 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2270 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2271 } else { 2272 /* nexthop not set */ 2273 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2274 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2275 } 2276 2277 if (!first_ire) { 2278 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2279 ntohl(ipha->ipha_dst))); 2280 return (B_FALSE); 2281 } 2282 /* Check for MTU discovery advice as described in RFC 1191 */ 2283 mtu = ntohs(icmph->icmph_du_mtu); 2284 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2285 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2286 ire = ire->ire_next) { 2287 /* 2288 * Look for the connection to which this ICMP message is 2289 * directed. If it has the IP_NEXTHOP option set, then the 2290 * search is limited to IREs with the MATCH_IRE_PRIVATE 2291 * option. Else the search is limited to regular IREs. 2292 */ 2293 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2294 (nexthop_addr != ire->ire_gateway_addr)) || 2295 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2296 (nexthop_addr != INADDR_ANY))) 2297 continue; 2298 2299 mutex_enter(&ire->ire_lock); 2300 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2301 /* Reduce the IRE max frag value as advised. */ 2302 ip1dbg(("Received mtu from router: %d (was %d)\n", 2303 mtu, ire->ire_max_frag)); 2304 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2305 } else { 2306 uint32_t length; 2307 int i; 2308 2309 /* 2310 * Use the table from RFC 1191 to figure out 2311 * the next "plateau" based on the length in 2312 * the original IP packet. 2313 */ 2314 length = ntohs(ipha->ipha_length); 2315 if (ire->ire_max_frag <= length && 2316 ire->ire_max_frag >= length - hdr_length) { 2317 /* 2318 * Handle broken BSD 4.2 systems that 2319 * return the wrong iph_length in ICMP 2320 * errors. 2321 */ 2322 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2323 length, ire->ire_max_frag)); 2324 length -= hdr_length; 2325 } 2326 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2327 if (length > icmp_frag_size_table[i]) 2328 break; 2329 } 2330 if (i == A_CNT(icmp_frag_size_table)) { 2331 /* Smaller than 68! */ 2332 ip1dbg(("Too big for packet size %d\n", 2333 length)); 2334 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2335 ire->ire_frag_flag = 0; 2336 } else { 2337 mtu = icmp_frag_size_table[i]; 2338 ip1dbg(("Calculated mtu %d, packet size %d, " 2339 "before %d", mtu, length, 2340 ire->ire_max_frag)); 2341 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2342 ip1dbg((", after %d\n", ire->ire_max_frag)); 2343 } 2344 /* Record the new max frag size for the ULP. */ 2345 icmph->icmph_du_zero = 0; 2346 icmph->icmph_du_mtu = 2347 htons((uint16_t)ire->ire_max_frag); 2348 } 2349 mutex_exit(&ire->ire_lock); 2350 } 2351 rw_exit(&first_ire->ire_bucket->irb_lock); 2352 ire_refrele(first_ire); 2353 return (B_TRUE); 2354 } 2355 2356 /* 2357 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2358 * calls this function. 2359 */ 2360 static mblk_t * 2361 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2362 { 2363 ipha_t *ipha; 2364 icmph_t *icmph; 2365 ipha_t *in_ipha; 2366 int length; 2367 2368 ASSERT(mp->b_datap->db_type == M_DATA); 2369 2370 /* 2371 * For Self-encapsulated packets, we added an extra IP header 2372 * without the options. Inner IP header is the one from which 2373 * the outer IP header was formed. Thus, we need to remove the 2374 * outer IP header. To do this, we pullup the whole message 2375 * and overlay whatever follows the outer IP header over the 2376 * outer IP header. 2377 */ 2378 2379 if (!pullupmsg(mp, -1)) 2380 return (NULL); 2381 2382 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2383 ipha = (ipha_t *)&icmph[1]; 2384 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2385 2386 /* 2387 * The length that we want to overlay is following the inner 2388 * IP header. Subtracting the IP header + icmp header + outer 2389 * IP header's length should give us the length that we want to 2390 * overlay. 2391 */ 2392 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2393 hdr_length; 2394 /* 2395 * Overlay whatever follows the inner header over the 2396 * outer header. 2397 */ 2398 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2399 2400 /* Set the wptr to account for the outer header */ 2401 mp->b_wptr -= hdr_length; 2402 return (mp); 2403 } 2404 2405 /* 2406 * Try to pass the ICMP message upstream in case the ULP cares. 2407 * 2408 * If the packet that caused the ICMP error is secure, we send 2409 * it to AH/ESP to make sure that the attached packet has a 2410 * valid association. ipha in the code below points to the 2411 * IP header of the packet that caused the error. 2412 * 2413 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2414 * in the context of IPsec. Normally we tell the upper layer 2415 * whenever we send the ire (including ip_bind), the IPsec header 2416 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2417 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2418 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2419 * same thing. As TCP has the IPsec options size that needs to be 2420 * adjusted, we just pass the MTU unchanged. 2421 * 2422 * IFN could have been generated locally or by some router. 2423 * 2424 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2425 * This happens because IP adjusted its value of MTU on an 2426 * earlier IFN message and could not tell the upper layer, 2427 * the new adjusted value of MTU e.g. Packet was encrypted 2428 * or there was not enough information to fanout to upper 2429 * layers. Thus on the next outbound datagram, ip_wput_ire 2430 * generates the IFN, where IPsec processing has *not* been 2431 * done. 2432 * 2433 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2434 * could have generated this. This happens because ire_max_frag 2435 * value in IP was set to a new value, while the IPsec processing 2436 * was being done and after we made the fragmentation check in 2437 * ip_wput_ire. Thus on return from IPsec processing, 2438 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2439 * and generates the IFN. As IPsec processing is over, we fanout 2440 * to AH/ESP to remove the header. 2441 * 2442 * In both these cases, ipsec_in_loopback will be set indicating 2443 * that IFN was generated locally. 2444 * 2445 * ROUTER : IFN could be secure or non-secure. 2446 * 2447 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2448 * packet in error has AH/ESP headers to validate the AH/ESP 2449 * headers. AH/ESP will verify whether there is a valid SA or 2450 * not and send it back. We will fanout again if we have more 2451 * data in the packet. 2452 * 2453 * If the packet in error does not have AH/ESP, we handle it 2454 * like any other case. 2455 * 2456 * * NON_SECURE : If the packet in error has AH/ESP headers, 2457 * we attach a dummy ipsec_in and send it up to AH/ESP 2458 * for validation. AH/ESP will verify whether there is a 2459 * valid SA or not and send it back. We will fanout again if 2460 * we have more data in the packet. 2461 * 2462 * If the packet in error does not have AH/ESP, we handle it 2463 * like any other case. 2464 */ 2465 static void 2466 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2467 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2468 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2469 zoneid_t zoneid) 2470 { 2471 uint16_t *up; /* Pointer to ports in ULP header */ 2472 uint32_t ports; /* reversed ports for fanout */ 2473 ipha_t ripha; /* With reversed addresses */ 2474 mblk_t *first_mp; 2475 ipsec_in_t *ii; 2476 tcph_t *tcph; 2477 conn_t *connp; 2478 ip_stack_t *ipst; 2479 2480 ASSERT(ill != NULL); 2481 2482 ASSERT(recv_ill != NULL); 2483 ipst = recv_ill->ill_ipst; 2484 2485 first_mp = mp; 2486 if (mctl_present) { 2487 mp = first_mp->b_cont; 2488 ASSERT(mp != NULL); 2489 2490 ii = (ipsec_in_t *)first_mp->b_rptr; 2491 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2492 } else { 2493 ii = NULL; 2494 } 2495 2496 switch (ipha->ipha_protocol) { 2497 case IPPROTO_UDP: 2498 /* 2499 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2500 * transport header. 2501 */ 2502 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2503 mp->b_wptr) { 2504 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2505 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2506 goto discard_pkt; 2507 } 2508 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2509 ipha = (ipha_t *)&icmph[1]; 2510 } 2511 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2512 2513 /* 2514 * Attempt to find a client stream based on port. 2515 * Note that we do a reverse lookup since the header is 2516 * in the form we sent it out. 2517 * The ripha header is only used for the IP_UDP_MATCH and we 2518 * only set the src and dst addresses and protocol. 2519 */ 2520 ripha.ipha_src = ipha->ipha_dst; 2521 ripha.ipha_dst = ipha->ipha_src; 2522 ripha.ipha_protocol = ipha->ipha_protocol; 2523 ((uint16_t *)&ports)[0] = up[1]; 2524 ((uint16_t *)&ports)[1] = up[0]; 2525 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2526 ntohl(ipha->ipha_src), ntohs(up[0]), 2527 ntohl(ipha->ipha_dst), ntohs(up[1]), 2528 icmph->icmph_type, icmph->icmph_code)); 2529 2530 /* Have to change db_type after any pullupmsg */ 2531 DB_TYPE(mp) = M_CTL; 2532 2533 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2534 mctl_present, ip_policy, recv_ill, zoneid); 2535 return; 2536 2537 case IPPROTO_TCP: 2538 /* 2539 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2540 * transport header. 2541 */ 2542 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2543 mp->b_wptr) { 2544 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2545 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2546 goto discard_pkt; 2547 } 2548 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2549 ipha = (ipha_t *)&icmph[1]; 2550 } 2551 /* 2552 * Find a TCP client stream for this packet. 2553 * Note that we do a reverse lookup since the header is 2554 * in the form we sent it out. 2555 */ 2556 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2557 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2558 ipst); 2559 if (connp == NULL) 2560 goto discard_pkt; 2561 2562 /* Have to change db_type after any pullupmsg */ 2563 DB_TYPE(mp) = M_CTL; 2564 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2565 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2566 return; 2567 2568 case IPPROTO_SCTP: 2569 /* 2570 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2571 * transport header. 2572 */ 2573 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2574 mp->b_wptr) { 2575 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2576 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2577 goto discard_pkt; 2578 } 2579 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2580 ipha = (ipha_t *)&icmph[1]; 2581 } 2582 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2583 /* 2584 * Find a SCTP client stream for this packet. 2585 * Note that we do a reverse lookup since the header is 2586 * in the form we sent it out. 2587 * The ripha header is only used for the matching and we 2588 * only set the src and dst addresses, protocol, and version. 2589 */ 2590 ripha.ipha_src = ipha->ipha_dst; 2591 ripha.ipha_dst = ipha->ipha_src; 2592 ripha.ipha_protocol = ipha->ipha_protocol; 2593 ripha.ipha_version_and_hdr_length = 2594 ipha->ipha_version_and_hdr_length; 2595 ((uint16_t *)&ports)[0] = up[1]; 2596 ((uint16_t *)&ports)[1] = up[0]; 2597 2598 /* Have to change db_type after any pullupmsg */ 2599 DB_TYPE(mp) = M_CTL; 2600 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2601 mctl_present, ip_policy, zoneid); 2602 return; 2603 2604 case IPPROTO_ESP: 2605 case IPPROTO_AH: { 2606 int ipsec_rc; 2607 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2608 2609 /* 2610 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2611 * We will re-use the IPSEC_IN if it is already present as 2612 * AH/ESP will not affect any fields in the IPSEC_IN for 2613 * ICMP errors. If there is no IPSEC_IN, allocate a new 2614 * one and attach it in the front. 2615 */ 2616 if (ii != NULL) { 2617 /* 2618 * ip_fanout_proto_again converts the ICMP errors 2619 * that come back from AH/ESP to M_DATA so that 2620 * if it is non-AH/ESP and we do a pullupmsg in 2621 * this function, it would work. Convert it back 2622 * to M_CTL before we send up as this is a ICMP 2623 * error. This could have been generated locally or 2624 * by some router. Validate the inner IPsec 2625 * headers. 2626 * 2627 * NOTE : ill_index is used by ip_fanout_proto_again 2628 * to locate the ill. 2629 */ 2630 ASSERT(ill != NULL); 2631 ii->ipsec_in_ill_index = 2632 ill->ill_phyint->phyint_ifindex; 2633 ii->ipsec_in_rill_index = 2634 recv_ill->ill_phyint->phyint_ifindex; 2635 DB_TYPE(first_mp->b_cont) = M_CTL; 2636 } else { 2637 /* 2638 * IPSEC_IN is not present. We attach a ipsec_in 2639 * message and send up to IPsec for validating 2640 * and removing the IPsec headers. Clear 2641 * ipsec_in_secure so that when we return 2642 * from IPsec, we don't mistakenly think that this 2643 * is a secure packet came from the network. 2644 * 2645 * NOTE : ill_index is used by ip_fanout_proto_again 2646 * to locate the ill. 2647 */ 2648 ASSERT(first_mp == mp); 2649 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2650 if (first_mp == NULL) { 2651 freemsg(mp); 2652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2653 return; 2654 } 2655 ii = (ipsec_in_t *)first_mp->b_rptr; 2656 2657 /* This is not a secure packet */ 2658 ii->ipsec_in_secure = B_FALSE; 2659 first_mp->b_cont = mp; 2660 DB_TYPE(mp) = M_CTL; 2661 ASSERT(ill != NULL); 2662 ii->ipsec_in_ill_index = 2663 ill->ill_phyint->phyint_ifindex; 2664 ii->ipsec_in_rill_index = 2665 recv_ill->ill_phyint->phyint_ifindex; 2666 } 2667 ip2dbg(("icmp_inbound_error: ipsec\n")); 2668 2669 if (!ipsec_loaded(ipss)) { 2670 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2671 return; 2672 } 2673 2674 if (ipha->ipha_protocol == IPPROTO_ESP) 2675 ipsec_rc = ipsecesp_icmp_error(first_mp); 2676 else 2677 ipsec_rc = ipsecah_icmp_error(first_mp); 2678 if (ipsec_rc == IPSEC_STATUS_FAILED) 2679 return; 2680 2681 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2682 return; 2683 } 2684 default: 2685 /* 2686 * The ripha header is only used for the lookup and we 2687 * only set the src and dst addresses and protocol. 2688 */ 2689 ripha.ipha_src = ipha->ipha_dst; 2690 ripha.ipha_dst = ipha->ipha_src; 2691 ripha.ipha_protocol = ipha->ipha_protocol; 2692 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2693 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2694 ntohl(ipha->ipha_dst), 2695 icmph->icmph_type, icmph->icmph_code)); 2696 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2697 ipha_t *in_ipha; 2698 2699 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2700 mp->b_wptr) { 2701 if (!pullupmsg(mp, (uchar_t *)ipha + 2702 hdr_length + sizeof (ipha_t) - 2703 mp->b_rptr)) { 2704 goto discard_pkt; 2705 } 2706 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2707 ipha = (ipha_t *)&icmph[1]; 2708 } 2709 /* 2710 * Caller has verified that length has to be 2711 * at least the size of IP header. 2712 */ 2713 ASSERT(hdr_length >= sizeof (ipha_t)); 2714 /* 2715 * Check the sanity of the inner IP header like 2716 * we did for the outer header. 2717 */ 2718 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2719 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2720 goto discard_pkt; 2721 } 2722 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2723 goto discard_pkt; 2724 } 2725 /* Check for Self-encapsulated tunnels */ 2726 if (in_ipha->ipha_src == ipha->ipha_src && 2727 in_ipha->ipha_dst == ipha->ipha_dst) { 2728 2729 mp = icmp_inbound_self_encap_error(mp, 2730 iph_hdr_length, hdr_length); 2731 if (mp == NULL) 2732 goto discard_pkt; 2733 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2734 ipha = (ipha_t *)&icmph[1]; 2735 hdr_length = IPH_HDR_LENGTH(ipha); 2736 /* 2737 * The packet in error is self-encapsualted. 2738 * And we are finding it further encapsulated 2739 * which we could not have possibly generated. 2740 */ 2741 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2742 goto discard_pkt; 2743 } 2744 icmp_inbound_error_fanout(q, ill, first_mp, 2745 icmph, ipha, iph_hdr_length, hdr_length, 2746 mctl_present, ip_policy, recv_ill, zoneid); 2747 return; 2748 } 2749 } 2750 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2751 ipha->ipha_protocol == IPPROTO_IPV6) && 2752 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2753 ii != NULL && 2754 ii->ipsec_in_loopback && 2755 ii->ipsec_in_secure) { 2756 /* 2757 * For IP tunnels that get a looped-back 2758 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2759 * reported new MTU to take into account the IPsec 2760 * headers protecting this configured tunnel. 2761 * 2762 * This allows the tunnel module (tun.c) to blindly 2763 * accept the MTU reported in an ICMP "too big" 2764 * message. 2765 * 2766 * Non-looped back ICMP messages will just be 2767 * handled by the security protocols (if needed), 2768 * and the first subsequent packet will hit this 2769 * path. 2770 */ 2771 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2772 ipsec_in_extra_length(first_mp)); 2773 } 2774 /* Have to change db_type after any pullupmsg */ 2775 DB_TYPE(mp) = M_CTL; 2776 2777 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2778 ip_policy, recv_ill, zoneid); 2779 return; 2780 } 2781 /* NOTREACHED */ 2782 discard_pkt: 2783 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2784 drop_pkt:; 2785 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2786 freemsg(first_mp); 2787 } 2788 2789 /* 2790 * Common IP options parser. 2791 * 2792 * Setup routine: fill in *optp with options-parsing state, then 2793 * tail-call ipoptp_next to return the first option. 2794 */ 2795 uint8_t 2796 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2797 { 2798 uint32_t totallen; /* total length of all options */ 2799 2800 totallen = ipha->ipha_version_and_hdr_length - 2801 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2802 totallen <<= 2; 2803 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2804 optp->ipoptp_end = optp->ipoptp_next + totallen; 2805 optp->ipoptp_flags = 0; 2806 return (ipoptp_next(optp)); 2807 } 2808 2809 /* 2810 * Common IP options parser: extract next option. 2811 */ 2812 uint8_t 2813 ipoptp_next(ipoptp_t *optp) 2814 { 2815 uint8_t *end = optp->ipoptp_end; 2816 uint8_t *cur = optp->ipoptp_next; 2817 uint8_t opt, len, pointer; 2818 2819 /* 2820 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2821 * has been corrupted. 2822 */ 2823 ASSERT(cur <= end); 2824 2825 if (cur == end) 2826 return (IPOPT_EOL); 2827 2828 opt = cur[IPOPT_OPTVAL]; 2829 2830 /* 2831 * Skip any NOP options. 2832 */ 2833 while (opt == IPOPT_NOP) { 2834 cur++; 2835 if (cur == end) 2836 return (IPOPT_EOL); 2837 opt = cur[IPOPT_OPTVAL]; 2838 } 2839 2840 if (opt == IPOPT_EOL) 2841 return (IPOPT_EOL); 2842 2843 /* 2844 * Option requiring a length. 2845 */ 2846 if ((cur + 1) >= end) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (IPOPT_EOL); 2849 } 2850 len = cur[IPOPT_OLEN]; 2851 if (len < 2) { 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 return (IPOPT_EOL); 2854 } 2855 optp->ipoptp_cur = cur; 2856 optp->ipoptp_len = len; 2857 optp->ipoptp_next = cur + len; 2858 if (cur + len > end) { 2859 optp->ipoptp_flags |= IPOPTP_ERROR; 2860 return (IPOPT_EOL); 2861 } 2862 2863 /* 2864 * For the options which require a pointer field, make sure 2865 * its there, and make sure it points to either something 2866 * inside this option, or the end of the option. 2867 */ 2868 switch (opt) { 2869 case IPOPT_RR: 2870 case IPOPT_TS: 2871 case IPOPT_LSRR: 2872 case IPOPT_SSRR: 2873 if (len <= IPOPT_OFFSET) { 2874 optp->ipoptp_flags |= IPOPTP_ERROR; 2875 return (opt); 2876 } 2877 pointer = cur[IPOPT_OFFSET]; 2878 if (pointer - 1 > len) { 2879 optp->ipoptp_flags |= IPOPTP_ERROR; 2880 return (opt); 2881 } 2882 break; 2883 } 2884 2885 /* 2886 * Sanity check the pointer field based on the type of the 2887 * option. 2888 */ 2889 switch (opt) { 2890 case IPOPT_RR: 2891 case IPOPT_SSRR: 2892 case IPOPT_LSRR: 2893 if (pointer < IPOPT_MINOFF_SR) 2894 optp->ipoptp_flags |= IPOPTP_ERROR; 2895 break; 2896 case IPOPT_TS: 2897 if (pointer < IPOPT_MINOFF_IT) 2898 optp->ipoptp_flags |= IPOPTP_ERROR; 2899 /* 2900 * Note that the Internet Timestamp option also 2901 * contains two four bit fields (the Overflow field, 2902 * and the Flag field), which follow the pointer 2903 * field. We don't need to check that these fields 2904 * fall within the length of the option because this 2905 * was implicitely done above. We've checked that the 2906 * pointer value is at least IPOPT_MINOFF_IT, and that 2907 * it falls within the option. Since IPOPT_MINOFF_IT > 2908 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2909 */ 2910 ASSERT(len > IPOPT_POS_OV_FLG); 2911 break; 2912 } 2913 2914 return (opt); 2915 } 2916 2917 /* 2918 * Use the outgoing IP header to create an IP_OPTIONS option the way 2919 * it was passed down from the application. 2920 */ 2921 int 2922 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2923 { 2924 ipoptp_t opts; 2925 const uchar_t *opt; 2926 uint8_t optval; 2927 uint8_t optlen; 2928 uint32_t len = 0; 2929 uchar_t *buf1 = buf; 2930 2931 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2932 len += IP_ADDR_LEN; 2933 bzero(buf1, IP_ADDR_LEN); 2934 2935 /* 2936 * OK to cast away const here, as we don't store through the returned 2937 * opts.ipoptp_cur pointer. 2938 */ 2939 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2940 optval != IPOPT_EOL; 2941 optval = ipoptp_next(&opts)) { 2942 int off; 2943 2944 opt = opts.ipoptp_cur; 2945 optlen = opts.ipoptp_len; 2946 switch (optval) { 2947 case IPOPT_SSRR: 2948 case IPOPT_LSRR: 2949 2950 /* 2951 * Insert ipha_dst as the first entry in the source 2952 * route and move down the entries on step. 2953 * The last entry gets placed at buf1. 2954 */ 2955 buf[IPOPT_OPTVAL] = optval; 2956 buf[IPOPT_OLEN] = optlen; 2957 buf[IPOPT_OFFSET] = optlen; 2958 2959 off = optlen - IP_ADDR_LEN; 2960 if (off < 0) { 2961 /* No entries in source route */ 2962 break; 2963 } 2964 /* Last entry in source route */ 2965 bcopy(opt + off, buf1, IP_ADDR_LEN); 2966 off -= IP_ADDR_LEN; 2967 2968 while (off > 0) { 2969 bcopy(opt + off, 2970 buf + off + IP_ADDR_LEN, 2971 IP_ADDR_LEN); 2972 off -= IP_ADDR_LEN; 2973 } 2974 /* ipha_dst into first slot */ 2975 bcopy(&ipha->ipha_dst, 2976 buf + off + IP_ADDR_LEN, 2977 IP_ADDR_LEN); 2978 buf += optlen; 2979 len += optlen; 2980 break; 2981 2982 case IPOPT_COMSEC: 2983 case IPOPT_SECURITY: 2984 /* if passing up a label is not ok, then remove */ 2985 if (is_system_labeled()) 2986 break; 2987 /* FALLTHROUGH */ 2988 default: 2989 bcopy(opt, buf, optlen); 2990 buf += optlen; 2991 len += optlen; 2992 break; 2993 } 2994 } 2995 done: 2996 /* Pad the resulting options */ 2997 while (len & 0x3) { 2998 *buf++ = IPOPT_EOL; 2999 len++; 3000 } 3001 return (len); 3002 } 3003 3004 /* 3005 * Update any record route or timestamp options to include this host. 3006 * Reverse any source route option. 3007 * This routine assumes that the options are well formed i.e. that they 3008 * have already been checked. 3009 */ 3010 static void 3011 icmp_options_update(ipha_t *ipha) 3012 { 3013 ipoptp_t opts; 3014 uchar_t *opt; 3015 uint8_t optval; 3016 ipaddr_t src; /* Our local address */ 3017 ipaddr_t dst; 3018 3019 ip2dbg(("icmp_options_update\n")); 3020 src = ipha->ipha_src; 3021 dst = ipha->ipha_dst; 3022 3023 for (optval = ipoptp_first(&opts, ipha); 3024 optval != IPOPT_EOL; 3025 optval = ipoptp_next(&opts)) { 3026 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3027 opt = opts.ipoptp_cur; 3028 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3029 optval, opts.ipoptp_len)); 3030 switch (optval) { 3031 int off1, off2; 3032 case IPOPT_SSRR: 3033 case IPOPT_LSRR: 3034 /* 3035 * Reverse the source route. The first entry 3036 * should be the next to last one in the current 3037 * source route (the last entry is our address). 3038 * The last entry should be the final destination. 3039 */ 3040 off1 = IPOPT_MINOFF_SR - 1; 3041 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3042 if (off2 < 0) { 3043 /* No entries in source route */ 3044 ip1dbg(( 3045 "icmp_options_update: bad src route\n")); 3046 break; 3047 } 3048 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3049 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3050 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3051 off2 -= IP_ADDR_LEN; 3052 3053 while (off1 < off2) { 3054 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3055 bcopy((char *)opt + off2, (char *)opt + off1, 3056 IP_ADDR_LEN); 3057 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3058 off1 += IP_ADDR_LEN; 3059 off2 -= IP_ADDR_LEN; 3060 } 3061 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3062 break; 3063 } 3064 } 3065 } 3066 3067 /* 3068 * Process received ICMP Redirect messages. 3069 */ 3070 static void 3071 icmp_redirect(ill_t *ill, mblk_t *mp) 3072 { 3073 ipha_t *ipha; 3074 int iph_hdr_length; 3075 icmph_t *icmph; 3076 ipha_t *ipha_err; 3077 ire_t *ire; 3078 ire_t *prev_ire; 3079 ire_t *save_ire; 3080 ipaddr_t src, dst, gateway; 3081 iulp_t ulp_info = { 0 }; 3082 int error; 3083 ip_stack_t *ipst; 3084 3085 ASSERT(ill != NULL); 3086 ipst = ill->ill_ipst; 3087 3088 ipha = (ipha_t *)mp->b_rptr; 3089 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3090 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3091 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3092 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3093 freemsg(mp); 3094 return; 3095 } 3096 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3097 ipha_err = (ipha_t *)&icmph[1]; 3098 src = ipha->ipha_src; 3099 dst = ipha_err->ipha_dst; 3100 gateway = icmph->icmph_rd_gateway; 3101 /* Make sure the new gateway is reachable somehow. */ 3102 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3103 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3104 /* 3105 * Make sure we had a route for the dest in question and that 3106 * that route was pointing to the old gateway (the source of the 3107 * redirect packet.) 3108 */ 3109 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3110 NULL, MATCH_IRE_GW, ipst); 3111 /* 3112 * Check that 3113 * the redirect was not from ourselves 3114 * the new gateway and the old gateway are directly reachable 3115 */ 3116 if (!prev_ire || 3117 !ire || 3118 ire->ire_type == IRE_LOCAL) { 3119 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3120 freemsg(mp); 3121 if (ire != NULL) 3122 ire_refrele(ire); 3123 if (prev_ire != NULL) 3124 ire_refrele(prev_ire); 3125 return; 3126 } 3127 3128 /* 3129 * Should we use the old ULP info to create the new gateway? From 3130 * a user's perspective, we should inherit the info so that it 3131 * is a "smooth" transition. If we do not do that, then new 3132 * connections going thru the new gateway will have no route metrics, 3133 * which is counter-intuitive to user. From a network point of 3134 * view, this may or may not make sense even though the new gateway 3135 * is still directly connected to us so the route metrics should not 3136 * change much. 3137 * 3138 * But if the old ire_uinfo is not initialized, we do another 3139 * recursive lookup on the dest using the new gateway. There may 3140 * be a route to that. If so, use it to initialize the redirect 3141 * route. 3142 */ 3143 if (prev_ire->ire_uinfo.iulp_set) { 3144 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3145 } else { 3146 ire_t *tmp_ire; 3147 ire_t *sire; 3148 3149 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3150 ALL_ZONES, 0, NULL, 3151 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3152 ipst); 3153 if (sire != NULL) { 3154 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3155 /* 3156 * If sire != NULL, ire_ftable_lookup() should not 3157 * return a NULL value. 3158 */ 3159 ASSERT(tmp_ire != NULL); 3160 ire_refrele(tmp_ire); 3161 ire_refrele(sire); 3162 } else if (tmp_ire != NULL) { 3163 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3164 sizeof (iulp_t)); 3165 ire_refrele(tmp_ire); 3166 } 3167 } 3168 if (prev_ire->ire_type == IRE_CACHE) 3169 ire_delete(prev_ire); 3170 ire_refrele(prev_ire); 3171 /* 3172 * TODO: more precise handling for cases 0, 2, 3, the latter two 3173 * require TOS routing 3174 */ 3175 switch (icmph->icmph_code) { 3176 case 0: 3177 case 1: 3178 /* TODO: TOS specificity for cases 2 and 3 */ 3179 case 2: 3180 case 3: 3181 break; 3182 default: 3183 freemsg(mp); 3184 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3185 ire_refrele(ire); 3186 return; 3187 } 3188 /* 3189 * Create a Route Association. This will allow us to remember that 3190 * someone we believe told us to use the particular gateway. 3191 */ 3192 save_ire = ire; 3193 ire = ire_create( 3194 (uchar_t *)&dst, /* dest addr */ 3195 (uchar_t *)&ip_g_all_ones, /* mask */ 3196 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3197 (uchar_t *)&gateway, /* gateway addr */ 3198 &save_ire->ire_max_frag, /* max frag */ 3199 NULL, /* no src nce */ 3200 NULL, /* no rfq */ 3201 NULL, /* no stq */ 3202 IRE_HOST, 3203 NULL, /* ipif */ 3204 0, /* cmask */ 3205 0, /* phandle */ 3206 0, /* ihandle */ 3207 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3208 &ulp_info, 3209 NULL, /* tsol_gc_t */ 3210 NULL, /* gcgrp */ 3211 ipst); 3212 3213 if (ire == NULL) { 3214 freemsg(mp); 3215 ire_refrele(save_ire); 3216 return; 3217 } 3218 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3219 ire_refrele(save_ire); 3220 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3221 3222 if (error == 0) { 3223 ire_refrele(ire); /* Held in ire_add_v4 */ 3224 /* tell routing sockets that we received a redirect */ 3225 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3226 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3227 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3228 } 3229 3230 /* 3231 * Delete any existing IRE_HOST type redirect ires for this destination. 3232 * This together with the added IRE has the effect of 3233 * modifying an existing redirect. 3234 */ 3235 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3236 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3237 if (prev_ire != NULL) { 3238 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3239 ire_delete(prev_ire); 3240 ire_refrele(prev_ire); 3241 } 3242 3243 freemsg(mp); 3244 } 3245 3246 /* 3247 * Generate an ICMP parameter problem message. 3248 */ 3249 static void 3250 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3251 ip_stack_t *ipst) 3252 { 3253 icmph_t icmph; 3254 boolean_t mctl_present; 3255 mblk_t *first_mp; 3256 3257 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3258 3259 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3260 if (mctl_present) 3261 freeb(first_mp); 3262 return; 3263 } 3264 3265 bzero(&icmph, sizeof (icmph_t)); 3266 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3267 icmph.icmph_pp_ptr = ptr; 3268 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3269 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3270 ipst); 3271 } 3272 3273 /* 3274 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3275 * the ICMP header pointed to by "stuff". (May be called as writer.) 3276 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3277 * an icmp error packet can be sent. 3278 * Assigns an appropriate source address to the packet. If ipha_dst is 3279 * one of our addresses use it for source. Otherwise pick a source based 3280 * on a route lookup back to ipha_src. 3281 * Note that ipha_src must be set here since the 3282 * packet is likely to arrive on an ill queue in ip_wput() which will 3283 * not set a source address. 3284 */ 3285 static void 3286 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3287 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3288 { 3289 ipaddr_t dst; 3290 icmph_t *icmph; 3291 ipha_t *ipha; 3292 uint_t len_needed; 3293 size_t msg_len; 3294 mblk_t *mp1; 3295 ipaddr_t src; 3296 ire_t *ire; 3297 mblk_t *ipsec_mp; 3298 ipsec_out_t *io = NULL; 3299 3300 if (mctl_present) { 3301 /* 3302 * If it is : 3303 * 3304 * 1) a IPSEC_OUT, then this is caused by outbound 3305 * datagram originating on this host. IPsec processing 3306 * may or may not have been done. Refer to comments above 3307 * icmp_inbound_error_fanout for details. 3308 * 3309 * 2) a IPSEC_IN if we are generating a icmp_message 3310 * for an incoming datagram destined for us i.e called 3311 * from ip_fanout_send_icmp. 3312 */ 3313 ipsec_info_t *in; 3314 ipsec_mp = mp; 3315 mp = ipsec_mp->b_cont; 3316 3317 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3318 ipha = (ipha_t *)mp->b_rptr; 3319 3320 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3321 in->ipsec_info_type == IPSEC_IN); 3322 3323 if (in->ipsec_info_type == IPSEC_IN) { 3324 /* 3325 * Convert the IPSEC_IN to IPSEC_OUT. 3326 */ 3327 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3328 BUMP_MIB(&ipst->ips_ip_mib, 3329 ipIfStatsOutDiscards); 3330 return; 3331 } 3332 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3333 } else { 3334 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3335 io = (ipsec_out_t *)in; 3336 /* 3337 * Clear out ipsec_out_proc_begin, so we do a fresh 3338 * ire lookup. 3339 */ 3340 io->ipsec_out_proc_begin = B_FALSE; 3341 } 3342 ASSERT(zoneid == io->ipsec_out_zoneid); 3343 ASSERT(zoneid != ALL_ZONES); 3344 } else { 3345 /* 3346 * This is in clear. The icmp message we are building 3347 * here should go out in clear. 3348 * 3349 * Pardon the convolution of it all, but it's easier to 3350 * allocate a "use cleartext" IPSEC_IN message and convert 3351 * it than it is to allocate a new one. 3352 */ 3353 ipsec_in_t *ii; 3354 ASSERT(DB_TYPE(mp) == M_DATA); 3355 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3356 if (ipsec_mp == NULL) { 3357 freemsg(mp); 3358 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3359 return; 3360 } 3361 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3362 3363 /* This is not a secure packet */ 3364 ii->ipsec_in_secure = B_FALSE; 3365 /* 3366 * For trusted extensions using a shared IP address we can 3367 * send using any zoneid. 3368 */ 3369 if (zoneid == ALL_ZONES) 3370 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3371 else 3372 ii->ipsec_in_zoneid = zoneid; 3373 ipsec_mp->b_cont = mp; 3374 ipha = (ipha_t *)mp->b_rptr; 3375 /* 3376 * Convert the IPSEC_IN to IPSEC_OUT. 3377 */ 3378 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3379 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3380 return; 3381 } 3382 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3383 } 3384 3385 /* Remember our eventual destination */ 3386 dst = ipha->ipha_src; 3387 3388 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3389 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3390 if (ire != NULL && 3391 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3392 src = ipha->ipha_dst; 3393 } else { 3394 if (ire != NULL) 3395 ire_refrele(ire); 3396 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3397 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3398 ipst); 3399 if (ire == NULL) { 3400 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3401 freemsg(ipsec_mp); 3402 return; 3403 } 3404 src = ire->ire_src_addr; 3405 } 3406 3407 if (ire != NULL) 3408 ire_refrele(ire); 3409 3410 /* 3411 * Check if we can send back more then 8 bytes in addition to 3412 * the IP header. We try to send 64 bytes of data and the internal 3413 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3414 */ 3415 len_needed = IPH_HDR_LENGTH(ipha); 3416 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3417 ipha->ipha_protocol == IPPROTO_IPV6) { 3418 3419 if (!pullupmsg(mp, -1)) { 3420 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3421 freemsg(ipsec_mp); 3422 return; 3423 } 3424 ipha = (ipha_t *)mp->b_rptr; 3425 3426 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3427 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3428 len_needed)); 3429 } else { 3430 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3431 3432 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3433 len_needed += ip_hdr_length_v6(mp, ip6h); 3434 } 3435 } 3436 len_needed += ipst->ips_ip_icmp_return; 3437 msg_len = msgdsize(mp); 3438 if (msg_len > len_needed) { 3439 (void) adjmsg(mp, len_needed - msg_len); 3440 msg_len = len_needed; 3441 } 3442 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3443 if (mp1 == NULL) { 3444 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3445 freemsg(ipsec_mp); 3446 return; 3447 } 3448 mp1->b_cont = mp; 3449 mp = mp1; 3450 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3451 ipsec_mp->b_rptr == (uint8_t *)io && 3452 io->ipsec_out_type == IPSEC_OUT); 3453 ipsec_mp->b_cont = mp; 3454 3455 /* 3456 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3457 * node generates be accepted in peace by all on-host destinations. 3458 * If we do NOT assume that all on-host destinations trust 3459 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3460 * (Look for ipsec_out_icmp_loopback). 3461 */ 3462 io->ipsec_out_icmp_loopback = B_TRUE; 3463 3464 ipha = (ipha_t *)mp->b_rptr; 3465 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3466 *ipha = icmp_ipha; 3467 ipha->ipha_src = src; 3468 ipha->ipha_dst = dst; 3469 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3470 msg_len += sizeof (icmp_ipha) + len; 3471 if (msg_len > IP_MAXPACKET) { 3472 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3473 msg_len = IP_MAXPACKET; 3474 } 3475 ipha->ipha_length = htons((uint16_t)msg_len); 3476 icmph = (icmph_t *)&ipha[1]; 3477 bcopy(stuff, icmph, len); 3478 icmph->icmph_checksum = 0; 3479 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3480 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3481 put(q, ipsec_mp); 3482 } 3483 3484 /* 3485 * Determine if an ICMP error packet can be sent given the rate limit. 3486 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3487 * in milliseconds) and a burst size. Burst size number of packets can 3488 * be sent arbitrarely closely spaced. 3489 * The state is tracked using two variables to implement an approximate 3490 * token bucket filter: 3491 * icmp_pkt_err_last - lbolt value when the last burst started 3492 * icmp_pkt_err_sent - number of packets sent in current burst 3493 */ 3494 boolean_t 3495 icmp_err_rate_limit(ip_stack_t *ipst) 3496 { 3497 clock_t now = TICK_TO_MSEC(lbolt); 3498 uint_t refilled; /* Number of packets refilled in tbf since last */ 3499 /* Guard against changes by loading into local variable */ 3500 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3501 3502 if (err_interval == 0) 3503 return (B_FALSE); 3504 3505 if (ipst->ips_icmp_pkt_err_last > now) { 3506 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3507 ipst->ips_icmp_pkt_err_last = 0; 3508 ipst->ips_icmp_pkt_err_sent = 0; 3509 } 3510 /* 3511 * If we are in a burst update the token bucket filter. 3512 * Update the "last" time to be close to "now" but make sure 3513 * we don't loose precision. 3514 */ 3515 if (ipst->ips_icmp_pkt_err_sent != 0) { 3516 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3517 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3518 ipst->ips_icmp_pkt_err_sent = 0; 3519 } else { 3520 ipst->ips_icmp_pkt_err_sent -= refilled; 3521 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3522 } 3523 } 3524 if (ipst->ips_icmp_pkt_err_sent == 0) { 3525 /* Start of new burst */ 3526 ipst->ips_icmp_pkt_err_last = now; 3527 } 3528 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3529 ipst->ips_icmp_pkt_err_sent++; 3530 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3531 ipst->ips_icmp_pkt_err_sent)); 3532 return (B_FALSE); 3533 } 3534 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3535 return (B_TRUE); 3536 } 3537 3538 /* 3539 * Check if it is ok to send an IPv4 ICMP error packet in 3540 * response to the IPv4 packet in mp. 3541 * Free the message and return null if no 3542 * ICMP error packet should be sent. 3543 */ 3544 static mblk_t * 3545 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3546 { 3547 icmph_t *icmph; 3548 ipha_t *ipha; 3549 uint_t len_needed; 3550 ire_t *src_ire; 3551 ire_t *dst_ire; 3552 3553 if (!mp) 3554 return (NULL); 3555 ipha = (ipha_t *)mp->b_rptr; 3556 if (ip_csum_hdr(ipha)) { 3557 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3558 freemsg(mp); 3559 return (NULL); 3560 } 3561 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3562 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3563 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3564 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3565 if (src_ire != NULL || dst_ire != NULL || 3566 CLASSD(ipha->ipha_dst) || 3567 CLASSD(ipha->ipha_src) || 3568 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3569 /* Note: only errors to the fragment with offset 0 */ 3570 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3571 freemsg(mp); 3572 if (src_ire != NULL) 3573 ire_refrele(src_ire); 3574 if (dst_ire != NULL) 3575 ire_refrele(dst_ire); 3576 return (NULL); 3577 } 3578 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3579 /* 3580 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3581 * errors in response to any ICMP errors. 3582 */ 3583 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3584 if (mp->b_wptr - mp->b_rptr < len_needed) { 3585 if (!pullupmsg(mp, len_needed)) { 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 ipha = (ipha_t *)mp->b_rptr; 3591 } 3592 icmph = (icmph_t *) 3593 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3594 switch (icmph->icmph_type) { 3595 case ICMP_DEST_UNREACHABLE: 3596 case ICMP_SOURCE_QUENCH: 3597 case ICMP_TIME_EXCEEDED: 3598 case ICMP_PARAM_PROBLEM: 3599 case ICMP_REDIRECT: 3600 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3601 freemsg(mp); 3602 return (NULL); 3603 default: 3604 break; 3605 } 3606 } 3607 /* 3608 * If this is a labeled system, then check to see if we're allowed to 3609 * send a response to this particular sender. If not, then just drop. 3610 */ 3611 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3612 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3613 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3614 freemsg(mp); 3615 return (NULL); 3616 } 3617 if (icmp_err_rate_limit(ipst)) { 3618 /* 3619 * Only send ICMP error packets every so often. 3620 * This should be done on a per port/source basis, 3621 * but for now this will suffice. 3622 */ 3623 freemsg(mp); 3624 return (NULL); 3625 } 3626 return (mp); 3627 } 3628 3629 /* 3630 * Generate an ICMP redirect message. 3631 */ 3632 static void 3633 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3634 { 3635 icmph_t icmph; 3636 3637 /* 3638 * We are called from ip_rput where we could 3639 * not have attached an IPSEC_IN. 3640 */ 3641 ASSERT(mp->b_datap->db_type == M_DATA); 3642 3643 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3644 return; 3645 } 3646 3647 bzero(&icmph, sizeof (icmph_t)); 3648 icmph.icmph_type = ICMP_REDIRECT; 3649 icmph.icmph_code = 1; 3650 icmph.icmph_rd_gateway = gateway; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3652 /* Redirects sent by router, and router is global zone */ 3653 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP time exceeded message. 3658 */ 3659 void 3660 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 boolean_t mctl_present; 3665 mblk_t *first_mp; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3679 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3680 ipst); 3681 } 3682 3683 /* 3684 * Generate an ICMP unreachable message. 3685 */ 3686 void 3687 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3688 ip_stack_t *ipst) 3689 { 3690 icmph_t icmph; 3691 mblk_t *first_mp; 3692 boolean_t mctl_present; 3693 3694 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3695 3696 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3697 if (mctl_present) 3698 freeb(first_mp); 3699 return; 3700 } 3701 3702 bzero(&icmph, sizeof (icmph_t)); 3703 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3704 icmph.icmph_code = code; 3705 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3706 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3707 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3708 zoneid, ipst); 3709 } 3710 3711 /* 3712 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3713 * duplicate. As long as someone else holds the address, the interface will 3714 * stay down. When that conflict goes away, the interface is brought back up. 3715 * This is done so that accidental shutdowns of addresses aren't made 3716 * permanent. Your server will recover from a failure. 3717 * 3718 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3719 * user space process (dhcpagent). 3720 * 3721 * Recovery completes if ARP reports that the address is now ours (via 3722 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3723 * 3724 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3725 */ 3726 static void 3727 ipif_dup_recovery(void *arg) 3728 { 3729 ipif_t *ipif = arg; 3730 ill_t *ill = ipif->ipif_ill; 3731 mblk_t *arp_add_mp; 3732 mblk_t *arp_del_mp; 3733 area_t *area; 3734 ip_stack_t *ipst = ill->ill_ipst; 3735 3736 ipif->ipif_recovery_id = 0; 3737 3738 /* 3739 * No lock needed for moving or condemned check, as this is just an 3740 * optimization. 3741 */ 3742 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3743 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3744 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3745 /* No reason to try to bring this address back. */ 3746 return; 3747 } 3748 3749 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3750 goto alloc_fail; 3751 3752 if (ipif->ipif_arp_del_mp == NULL) { 3753 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3754 goto alloc_fail; 3755 ipif->ipif_arp_del_mp = arp_del_mp; 3756 } 3757 3758 /* Setting the 'unverified' flag restarts DAD */ 3759 area = (area_t *)arp_add_mp->b_rptr; 3760 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3761 ACE_F_UNVERIFIED; 3762 putnext(ill->ill_rq, arp_add_mp); 3763 return; 3764 3765 alloc_fail: 3766 /* 3767 * On allocation failure, just restart the timer. Note that the ipif 3768 * is down here, so no other thread could be trying to start a recovery 3769 * timer. The ill_lock protects the condemned flag and the recovery 3770 * timer ID. 3771 */ 3772 freemsg(arp_add_mp); 3773 mutex_enter(&ill->ill_lock); 3774 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3775 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3776 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3777 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3778 } 3779 mutex_exit(&ill->ill_lock); 3780 } 3781 3782 /* 3783 * This is for exclusive changes due to ARP. Either tear down an interface due 3784 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3785 */ 3786 /* ARGSUSED */ 3787 static void 3788 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3789 { 3790 ill_t *ill = rq->q_ptr; 3791 arh_t *arh; 3792 ipaddr_t src; 3793 ipif_t *ipif; 3794 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3795 char hbuf[MAC_STR_LEN]; 3796 char sbuf[INET_ADDRSTRLEN]; 3797 const char *failtype; 3798 boolean_t bring_up; 3799 ip_stack_t *ipst = ill->ill_ipst; 3800 3801 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3802 case AR_CN_READY: 3803 failtype = NULL; 3804 bring_up = B_TRUE; 3805 break; 3806 case AR_CN_FAILED: 3807 failtype = "in use"; 3808 bring_up = B_FALSE; 3809 break; 3810 default: 3811 failtype = "claimed"; 3812 bring_up = B_FALSE; 3813 break; 3814 } 3815 3816 arh = (arh_t *)mp->b_cont->b_rptr; 3817 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3818 3819 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3820 sizeof (hbuf)); 3821 (void) ip_dot_addr(src, sbuf); 3822 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3823 3824 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3825 ipif->ipif_lcl_addr != src) { 3826 continue; 3827 } 3828 3829 /* 3830 * If we failed on a recovery probe, then restart the timer to 3831 * try again later. 3832 */ 3833 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3834 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3835 ill->ill_net_type == IRE_IF_RESOLVER && 3836 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3837 ipst->ips_ip_dup_recovery > 0 && 3838 ipif->ipif_recovery_id == 0) { 3839 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3840 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3841 continue; 3842 } 3843 3844 /* 3845 * If what we're trying to do has already been done, then do 3846 * nothing. 3847 */ 3848 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3849 continue; 3850 3851 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3852 3853 if (failtype == NULL) { 3854 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3855 ibuf); 3856 } else { 3857 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3858 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3859 } 3860 3861 if (bring_up) { 3862 ASSERT(ill->ill_dl_up); 3863 /* 3864 * Free up the ARP delete message so we can allocate 3865 * a fresh one through the normal path. 3866 */ 3867 freemsg(ipif->ipif_arp_del_mp); 3868 ipif->ipif_arp_del_mp = NULL; 3869 if (ipif_resolver_up(ipif, Res_act_initial) != 3870 EINPROGRESS) { 3871 ipif->ipif_addr_ready = 1; 3872 (void) ipif_up_done(ipif); 3873 } 3874 continue; 3875 } 3876 3877 mutex_enter(&ill->ill_lock); 3878 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3879 ipif->ipif_flags |= IPIF_DUPLICATE; 3880 ill->ill_ipif_dup_count++; 3881 mutex_exit(&ill->ill_lock); 3882 /* 3883 * Already exclusive on the ill; no need to handle deferred 3884 * processing here. 3885 */ 3886 (void) ipif_down(ipif, NULL, NULL); 3887 ipif_down_tail(ipif); 3888 mutex_enter(&ill->ill_lock); 3889 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3890 ill->ill_net_type == IRE_IF_RESOLVER && 3891 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3892 ipst->ips_ip_dup_recovery > 0) { 3893 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3894 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3895 } 3896 mutex_exit(&ill->ill_lock); 3897 } 3898 freemsg(mp); 3899 } 3900 3901 /* ARGSUSED */ 3902 static void 3903 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3904 { 3905 ill_t *ill = rq->q_ptr; 3906 arh_t *arh; 3907 ipaddr_t src; 3908 ipif_t *ipif; 3909 3910 arh = (arh_t *)mp->b_cont->b_rptr; 3911 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3912 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3913 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3914 (void) ipif_resolver_up(ipif, Res_act_defend); 3915 } 3916 freemsg(mp); 3917 } 3918 3919 /* 3920 * News from ARP. ARP sends notification of interesting events down 3921 * to its clients using M_CTL messages with the interesting ARP packet 3922 * attached via b_cont. 3923 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3924 * queue as opposed to ARP sending the message to all the clients, i.e. all 3925 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3926 * table if a cache IRE is found to delete all the entries for the address in 3927 * the packet. 3928 */ 3929 static void 3930 ip_arp_news(queue_t *q, mblk_t *mp) 3931 { 3932 arcn_t *arcn; 3933 arh_t *arh; 3934 ire_t *ire = NULL; 3935 char hbuf[MAC_STR_LEN]; 3936 char sbuf[INET_ADDRSTRLEN]; 3937 ipaddr_t src; 3938 in6_addr_t v6src; 3939 boolean_t isv6 = B_FALSE; 3940 ipif_t *ipif; 3941 ill_t *ill; 3942 ip_stack_t *ipst; 3943 3944 if (CONN_Q(q)) { 3945 conn_t *connp = Q_TO_CONN(q); 3946 3947 ipst = connp->conn_netstack->netstack_ip; 3948 } else { 3949 ill_t *ill = (ill_t *)q->q_ptr; 3950 3951 ipst = ill->ill_ipst; 3952 } 3953 3954 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3955 if (q->q_next) { 3956 putnext(q, mp); 3957 } else 3958 freemsg(mp); 3959 return; 3960 } 3961 arh = (arh_t *)mp->b_cont->b_rptr; 3962 /* Is it one we are interested in? */ 3963 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3964 isv6 = B_TRUE; 3965 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3966 IPV6_ADDR_LEN); 3967 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3968 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3969 IP_ADDR_LEN); 3970 } else { 3971 freemsg(mp); 3972 return; 3973 } 3974 3975 ill = q->q_ptr; 3976 3977 arcn = (arcn_t *)mp->b_rptr; 3978 switch (arcn->arcn_code) { 3979 case AR_CN_BOGON: 3980 /* 3981 * Someone is sending ARP packets with a source protocol 3982 * address that we have published and for which we believe our 3983 * entry is authoritative and (when ill_arp_extend is set) 3984 * verified to be unique on the network. 3985 * 3986 * The ARP module internally handles the cases where the sender 3987 * is just probing (for DAD) and where the hardware address of 3988 * a non-authoritative entry has changed. Thus, these are the 3989 * real conflicts, and we have to do resolution. 3990 * 3991 * We back away quickly from the address if it's from DHCP or 3992 * otherwise temporary and hasn't been used recently (or at 3993 * all). We'd like to include "deprecated" addresses here as 3994 * well (as there's no real reason to defend something we're 3995 * discarding), but IPMP "reuses" this flag to mean something 3996 * other than the standard meaning. 3997 * 3998 * If the ARP module above is not extended (meaning that it 3999 * doesn't know how to defend the address), then we just log 4000 * the problem as we always did and continue on. It's not 4001 * right, but there's little else we can do, and those old ATM 4002 * users are going away anyway. 4003 */ 4004 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4005 hbuf, sizeof (hbuf)); 4006 (void) ip_dot_addr(src, sbuf); 4007 if (isv6) { 4008 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4009 ipst); 4010 } else { 4011 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4012 } 4013 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4014 uint32_t now; 4015 uint32_t maxage; 4016 clock_t lused; 4017 uint_t maxdefense; 4018 uint_t defs; 4019 4020 /* 4021 * First, figure out if this address hasn't been used 4022 * in a while. If it hasn't, then it's a better 4023 * candidate for abandoning. 4024 */ 4025 ipif = ire->ire_ipif; 4026 ASSERT(ipif != NULL); 4027 now = gethrestime_sec(); 4028 maxage = now - ire->ire_create_time; 4029 if (maxage > ipst->ips_ip_max_temp_idle) 4030 maxage = ipst->ips_ip_max_temp_idle; 4031 lused = drv_hztousec(ddi_get_lbolt() - 4032 ire->ire_last_used_time) / MICROSEC + 1; 4033 if (lused >= maxage && (ipif->ipif_flags & 4034 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4035 maxdefense = ipst->ips_ip_max_temp_defend; 4036 else 4037 maxdefense = ipst->ips_ip_max_defend; 4038 4039 /* 4040 * Now figure out how many times we've defended 4041 * ourselves. Ignore defenses that happened long in 4042 * the past. 4043 */ 4044 mutex_enter(&ire->ire_lock); 4045 if ((defs = ire->ire_defense_count) > 0 && 4046 now - ire->ire_defense_time > 4047 ipst->ips_ip_defend_interval) { 4048 ire->ire_defense_count = defs = 0; 4049 } 4050 ire->ire_defense_count++; 4051 ire->ire_defense_time = now; 4052 mutex_exit(&ire->ire_lock); 4053 ill_refhold(ill); 4054 ire_refrele(ire); 4055 4056 /* 4057 * If we've defended ourselves too many times already, 4058 * then give up and tear down the interface(s) using 4059 * this address. Otherwise, defend by sending out a 4060 * gratuitous ARP. 4061 */ 4062 if (defs >= maxdefense && ill->ill_arp_extend) { 4063 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4064 B_FALSE); 4065 } else { 4066 cmn_err(CE_WARN, 4067 "node %s is using our IP address %s on %s", 4068 hbuf, sbuf, ill->ill_name); 4069 /* 4070 * If this is an old (ATM) ARP module, then 4071 * don't try to defend the address. Remain 4072 * compatible with the old behavior. Defend 4073 * only with new ARP. 4074 */ 4075 if (ill->ill_arp_extend) { 4076 qwriter_ip(ill, q, mp, ip_arp_defend, 4077 NEW_OP, B_FALSE); 4078 } else { 4079 ill_refrele(ill); 4080 } 4081 } 4082 return; 4083 } 4084 cmn_err(CE_WARN, 4085 "proxy ARP problem? Node '%s' is using %s on %s", 4086 hbuf, sbuf, ill->ill_name); 4087 if (ire != NULL) 4088 ire_refrele(ire); 4089 break; 4090 case AR_CN_ANNOUNCE: 4091 if (isv6) { 4092 /* 4093 * For XRESOLV interfaces. 4094 * Delete the IRE cache entry and NCE for this 4095 * v6 address 4096 */ 4097 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4098 /* 4099 * If v6src is a non-zero, it's a router address 4100 * as below. Do the same sort of thing to clean 4101 * out off-net IRE_CACHE entries that go through 4102 * the router. 4103 */ 4104 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4105 ire_walk_v6(ire_delete_cache_gw_v6, 4106 (char *)&v6src, ALL_ZONES, ipst); 4107 } 4108 } else { 4109 nce_hw_map_t hwm; 4110 4111 /* 4112 * ARP gives us a copy of any packet where it thinks 4113 * the address has changed, so that we can update our 4114 * caches. We're responsible for caching known answers 4115 * in the current design. We check whether the 4116 * hardware address really has changed in all of our 4117 * entries that have cached this mapping, and if so, we 4118 * blow them away. This way we will immediately pick 4119 * up the rare case of a host changing hardware 4120 * address. 4121 */ 4122 if (src == 0) 4123 break; 4124 hwm.hwm_addr = src; 4125 hwm.hwm_hwlen = arh->arh_hlen; 4126 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4127 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4128 ndp_walk_common(ipst->ips_ndp4, NULL, 4129 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4130 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4131 } 4132 break; 4133 case AR_CN_READY: 4134 /* No external v6 resolver has a contract to use this */ 4135 if (isv6) 4136 break; 4137 /* If the link is down, we'll retry this later */ 4138 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4139 break; 4140 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4141 NULL, NULL, ipst); 4142 if (ipif != NULL) { 4143 /* 4144 * If this is a duplicate recovery, then we now need to 4145 * go exclusive to bring this thing back up. 4146 */ 4147 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4148 IPIF_DUPLICATE) { 4149 ipif_refrele(ipif); 4150 ill_refhold(ill); 4151 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4152 B_FALSE); 4153 return; 4154 } 4155 /* 4156 * If this is the first notice that this address is 4157 * ready, then let the user know now. 4158 */ 4159 if ((ipif->ipif_flags & IPIF_UP) && 4160 !ipif->ipif_addr_ready) { 4161 ipif_mask_reply(ipif); 4162 ipif_up_notify(ipif); 4163 } 4164 ipif->ipif_addr_ready = 1; 4165 ipif_refrele(ipif); 4166 } 4167 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4168 if (ire != NULL) { 4169 ire->ire_defense_count = 0; 4170 ire_refrele(ire); 4171 } 4172 break; 4173 case AR_CN_FAILED: 4174 /* No external v6 resolver has a contract to use this */ 4175 if (isv6) 4176 break; 4177 ill_refhold(ill); 4178 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4179 return; 4180 } 4181 freemsg(mp); 4182 } 4183 4184 /* 4185 * Create a mblk suitable for carrying the interface index and/or source link 4186 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4187 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4188 * application. 4189 */ 4190 mblk_t * 4191 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4192 ip_stack_t *ipst) 4193 { 4194 mblk_t *mp; 4195 ip_pktinfo_t *pinfo; 4196 ipha_t *ipha; 4197 struct ether_header *pether; 4198 4199 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4200 if (mp == NULL) { 4201 ip1dbg(("ip_add_info: allocation failure.\n")); 4202 return (data_mp); 4203 } 4204 4205 ipha = (ipha_t *)data_mp->b_rptr; 4206 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4207 bzero(pinfo, sizeof (ip_pktinfo_t)); 4208 pinfo->ip_pkt_flags = (uchar_t)flags; 4209 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4210 4211 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4212 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4213 if (flags & IPF_RECVADDR) { 4214 ipif_t *ipif; 4215 ire_t *ire; 4216 4217 /* 4218 * Only valid for V4 4219 */ 4220 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4221 (IPV4_VERSION << 4)); 4222 4223 ipif = ipif_get_next_ipif(NULL, ill); 4224 if (ipif != NULL) { 4225 /* 4226 * Since a decision has already been made to deliver the 4227 * packet, there is no need to test for SECATTR and 4228 * ZONEONLY. 4229 * When a multicast packet is transmitted 4230 * a cache entry is created for the multicast address. 4231 * When delivering a copy of the packet or when new 4232 * packets are received we do not want to match on the 4233 * cached entry so explicitly match on 4234 * IRE_LOCAL and IRE_LOOPBACK 4235 */ 4236 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4237 IRE_LOCAL | IRE_LOOPBACK, 4238 ipif, zoneid, NULL, 4239 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4240 if (ire == NULL) { 4241 /* 4242 * packet must have come on a different 4243 * interface. 4244 * Since a decision has already been made to 4245 * deliver the packet, there is no need to test 4246 * for SECATTR and ZONEONLY. 4247 * Only match on local and broadcast ire's. 4248 * See detailed comment above. 4249 */ 4250 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4251 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4252 NULL, MATCH_IRE_TYPE, ipst); 4253 } 4254 4255 if (ire == NULL) { 4256 /* 4257 * This is either a multicast packet or 4258 * the address has been removed since 4259 * the packet was received. 4260 * Return INADDR_ANY so that normal source 4261 * selection occurs for the response. 4262 */ 4263 4264 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4265 } else { 4266 pinfo->ip_pkt_match_addr.s_addr = 4267 ire->ire_src_addr; 4268 ire_refrele(ire); 4269 } 4270 ipif_refrele(ipif); 4271 } else { 4272 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4273 } 4274 } 4275 4276 pether = (struct ether_header *)((char *)ipha 4277 - sizeof (struct ether_header)); 4278 /* 4279 * Make sure the interface is an ethernet type, since this option 4280 * is currently supported only on this type of interface. Also make 4281 * sure we are pointing correctly above db_base. 4282 */ 4283 4284 if ((flags & IPF_RECVSLLA) && 4285 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4286 (ill->ill_type == IFT_ETHER) && 4287 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4288 4289 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4290 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4291 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4292 } else { 4293 /* 4294 * Clear the bit. Indicate to upper layer that IP is not 4295 * sending this ancillary info. 4296 */ 4297 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4298 } 4299 4300 mp->b_datap->db_type = M_CTL; 4301 mp->b_wptr += sizeof (ip_pktinfo_t); 4302 mp->b_cont = data_mp; 4303 4304 return (mp); 4305 } 4306 4307 /* 4308 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4309 * part of the bind request. 4310 */ 4311 4312 boolean_t 4313 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4314 { 4315 ipsec_in_t *ii; 4316 4317 ASSERT(policy_mp != NULL); 4318 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4319 4320 ii = (ipsec_in_t *)policy_mp->b_rptr; 4321 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4322 4323 connp->conn_policy = ii->ipsec_in_policy; 4324 ii->ipsec_in_policy = NULL; 4325 4326 if (ii->ipsec_in_action != NULL) { 4327 if (connp->conn_latch == NULL) { 4328 connp->conn_latch = iplatch_create(); 4329 if (connp->conn_latch == NULL) 4330 return (B_FALSE); 4331 } 4332 ipsec_latch_inbound(connp->conn_latch, ii); 4333 } 4334 return (B_TRUE); 4335 } 4336 4337 /* 4338 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4339 * and to arrange for power-fanout assist. The ULP is identified by 4340 * adding a single byte at the end of the original bind message. 4341 * A ULP other than UDP or TCP that wishes to be recognized passes 4342 * down a bind with a zero length address. 4343 * 4344 * The binding works as follows: 4345 * - A zero byte address means just bind to the protocol. 4346 * - A four byte address is treated as a request to validate 4347 * that the address is a valid local address, appropriate for 4348 * an application to bind to. This does not affect any fanout 4349 * information in IP. 4350 * - A sizeof sin_t byte address is used to bind to only the local address 4351 * and port. 4352 * - A sizeof ipa_conn_t byte address contains complete fanout information 4353 * consisting of local and remote addresses and ports. In 4354 * this case, the addresses are both validated as appropriate 4355 * for this operation, and, if so, the information is retained 4356 * for use in the inbound fanout. 4357 * 4358 * The ULP (except in the zero-length bind) can append an 4359 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4360 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4361 * a copy of the source or destination IRE (source for local bind; 4362 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4363 * policy information contained should be copied on to the conn. 4364 * 4365 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4366 */ 4367 mblk_t * 4368 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4369 { 4370 ssize_t len; 4371 struct T_bind_req *tbr; 4372 sin_t *sin; 4373 ipa_conn_t *ac; 4374 uchar_t *ucp; 4375 mblk_t *mp1; 4376 boolean_t ire_requested; 4377 boolean_t ipsec_policy_set = B_FALSE; 4378 int error = 0; 4379 int protocol; 4380 ipa_conn_x_t *acx; 4381 4382 ASSERT(!connp->conn_af_isv6); 4383 connp->conn_pkt_isv6 = B_FALSE; 4384 4385 len = MBLKL(mp); 4386 if (len < (sizeof (*tbr) + 1)) { 4387 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4388 "ip_bind: bogus msg, len %ld", len); 4389 /* XXX: Need to return something better */ 4390 goto bad_addr; 4391 } 4392 /* Back up and extract the protocol identifier. */ 4393 mp->b_wptr--; 4394 protocol = *mp->b_wptr & 0xFF; 4395 tbr = (struct T_bind_req *)mp->b_rptr; 4396 /* Reset the message type in preparation for shipping it back. */ 4397 DB_TYPE(mp) = M_PCPROTO; 4398 4399 connp->conn_ulp = (uint8_t)protocol; 4400 4401 /* 4402 * Check for a zero length address. This is from a protocol that 4403 * wants to register to receive all packets of its type. 4404 */ 4405 if (tbr->ADDR_length == 0) { 4406 /* 4407 * These protocols are now intercepted in ip_bind_v6(). 4408 * Reject protocol-level binds here for now. 4409 * 4410 * For SCTP raw socket, ICMP sends down a bind with sin_t 4411 * so that the protocol type cannot be SCTP. 4412 */ 4413 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4414 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4415 goto bad_addr; 4416 } 4417 4418 /* 4419 * 4420 * The udp module never sends down a zero-length address, 4421 * and allowing this on a labeled system will break MLP 4422 * functionality. 4423 */ 4424 if (is_system_labeled() && protocol == IPPROTO_UDP) 4425 goto bad_addr; 4426 4427 if (connp->conn_mac_exempt) 4428 goto bad_addr; 4429 4430 /* No hash here really. The table is big enough. */ 4431 connp->conn_srcv6 = ipv6_all_zeros; 4432 4433 ipcl_proto_insert(connp, protocol); 4434 4435 tbr->PRIM_type = T_BIND_ACK; 4436 return (mp); 4437 } 4438 4439 /* Extract the address pointer from the message. */ 4440 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4441 tbr->ADDR_length); 4442 if (ucp == NULL) { 4443 ip1dbg(("ip_bind: no address\n")); 4444 goto bad_addr; 4445 } 4446 if (!OK_32PTR(ucp)) { 4447 ip1dbg(("ip_bind: unaligned address\n")); 4448 goto bad_addr; 4449 } 4450 /* 4451 * Check for trailing mps. 4452 */ 4453 4454 mp1 = mp->b_cont; 4455 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4456 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4457 4458 switch (tbr->ADDR_length) { 4459 default: 4460 ip1dbg(("ip_bind: bad address length %d\n", 4461 (int)tbr->ADDR_length)); 4462 goto bad_addr; 4463 4464 case IP_ADDR_LEN: 4465 /* Verification of local address only */ 4466 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4467 ire_requested, ipsec_policy_set, B_FALSE); 4468 break; 4469 4470 case sizeof (sin_t): 4471 sin = (sin_t *)ucp; 4472 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4473 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4474 break; 4475 4476 case sizeof (ipa_conn_t): 4477 ac = (ipa_conn_t *)ucp; 4478 /* For raw socket, the local port is not set. */ 4479 if (ac->ac_lport == 0) 4480 ac->ac_lport = connp->conn_lport; 4481 /* Always verify destination reachability. */ 4482 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4483 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4484 ipsec_policy_set, B_TRUE, B_TRUE); 4485 break; 4486 4487 case sizeof (ipa_conn_x_t): 4488 acx = (ipa_conn_x_t *)ucp; 4489 /* 4490 * Whether or not to verify destination reachability depends 4491 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4492 */ 4493 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4494 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4495 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4496 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4497 break; 4498 } 4499 if (error == EINPROGRESS) 4500 return (NULL); 4501 else if (error != 0) 4502 goto bad_addr; 4503 /* 4504 * Pass the IPsec headers size in ire_ipsec_overhead. 4505 * We can't do this in ip_bind_insert_ire because the policy 4506 * may not have been inherited at that point in time and hence 4507 * conn_out_enforce_policy may not be set. 4508 */ 4509 mp1 = mp->b_cont; 4510 if (ire_requested && connp->conn_out_enforce_policy && 4511 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4512 ire_t *ire = (ire_t *)mp1->b_rptr; 4513 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4514 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4515 } 4516 4517 /* Send it home. */ 4518 mp->b_datap->db_type = M_PCPROTO; 4519 tbr->PRIM_type = T_BIND_ACK; 4520 return (mp); 4521 4522 bad_addr: 4523 /* 4524 * If error = -1 then we generate a TBADADDR - otherwise error is 4525 * a unix errno. 4526 */ 4527 if (error > 0) 4528 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4529 else 4530 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4531 return (mp); 4532 } 4533 4534 /* 4535 * Here address is verified to be a valid local address. 4536 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4537 * address is also considered a valid local address. 4538 * In the case of a broadcast/multicast address, however, the 4539 * upper protocol is expected to reset the src address 4540 * to 0 if it sees a IRE_BROADCAST type returned so that 4541 * no packets are emitted with broadcast/multicast address as 4542 * source address (that violates hosts requirements RFC1122) 4543 * The addresses valid for bind are: 4544 * (1) - INADDR_ANY (0) 4545 * (2) - IP address of an UP interface 4546 * (3) - IP address of a DOWN interface 4547 * (4) - valid local IP broadcast addresses. In this case 4548 * the conn will only receive packets destined to 4549 * the specified broadcast address. 4550 * (5) - a multicast address. In this case 4551 * the conn will only receive packets destined to 4552 * the specified multicast address. Note: the 4553 * application still has to issue an 4554 * IP_ADD_MEMBERSHIP socket option. 4555 * 4556 * On error, return -1 for TBADADDR otherwise pass the 4557 * errno with TSYSERR reply. 4558 * 4559 * In all the above cases, the bound address must be valid in the current zone. 4560 * When the address is loopback, multicast or broadcast, there might be many 4561 * matching IREs so bind has to look up based on the zone. 4562 * 4563 * Note: lport is in network byte order. 4564 */ 4565 int 4566 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4567 boolean_t ire_requested, boolean_t ipsec_policy_set, 4568 boolean_t fanout_insert) 4569 { 4570 int error = 0; 4571 ire_t *src_ire; 4572 mblk_t *policy_mp; 4573 ipif_t *ipif; 4574 zoneid_t zoneid; 4575 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4576 4577 if (ipsec_policy_set) { 4578 policy_mp = mp->b_cont; 4579 } 4580 4581 /* 4582 * If it was previously connected, conn_fully_bound would have 4583 * been set. 4584 */ 4585 connp->conn_fully_bound = B_FALSE; 4586 4587 src_ire = NULL; 4588 ipif = NULL; 4589 4590 zoneid = IPCL_ZONEID(connp); 4591 4592 if (src_addr) { 4593 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4594 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4595 /* 4596 * If an address other than 0.0.0.0 is requested, 4597 * we verify that it is a valid address for bind 4598 * Note: Following code is in if-else-if form for 4599 * readability compared to a condition check. 4600 */ 4601 /* LINTED - statement has no consequent */ 4602 if (IRE_IS_LOCAL(src_ire)) { 4603 /* 4604 * (2) Bind to address of local UP interface 4605 */ 4606 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4607 /* 4608 * (4) Bind to broadcast address 4609 * Note: permitted only from transports that 4610 * request IRE 4611 */ 4612 if (!ire_requested) 4613 error = EADDRNOTAVAIL; 4614 } else { 4615 /* 4616 * (3) Bind to address of local DOWN interface 4617 * (ipif_lookup_addr() looks up all interfaces 4618 * but we do not get here for UP interfaces 4619 * - case (2) above) 4620 * We put the protocol byte back into the mblk 4621 * since we may come back via ip_wput_nondata() 4622 * later with this mblk if ipif_lookup_addr chooses 4623 * to defer processing. 4624 */ 4625 *mp->b_wptr++ = (char)connp->conn_ulp; 4626 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4627 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4628 &error, ipst)) != NULL) { 4629 ipif_refrele(ipif); 4630 } else if (error == EINPROGRESS) { 4631 if (src_ire != NULL) 4632 ire_refrele(src_ire); 4633 return (EINPROGRESS); 4634 } else if (CLASSD(src_addr)) { 4635 error = 0; 4636 if (src_ire != NULL) 4637 ire_refrele(src_ire); 4638 /* 4639 * (5) bind to multicast address. 4640 * Fake out the IRE returned to upper 4641 * layer to be a broadcast IRE. 4642 */ 4643 src_ire = ire_ctable_lookup( 4644 INADDR_BROADCAST, INADDR_ANY, 4645 IRE_BROADCAST, NULL, zoneid, NULL, 4646 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4647 ipst); 4648 if (src_ire == NULL || !ire_requested) 4649 error = EADDRNOTAVAIL; 4650 } else { 4651 /* 4652 * Not a valid address for bind 4653 */ 4654 error = EADDRNOTAVAIL; 4655 } 4656 /* 4657 * Just to keep it consistent with the processing in 4658 * ip_bind_v4() 4659 */ 4660 mp->b_wptr--; 4661 } 4662 if (error) { 4663 /* Red Alert! Attempting to be a bogon! */ 4664 ip1dbg(("ip_bind: bad src address 0x%x\n", 4665 ntohl(src_addr))); 4666 goto bad_addr; 4667 } 4668 } 4669 4670 /* 4671 * Allow setting new policies. For example, disconnects come 4672 * down as ipa_t bind. As we would have set conn_policy_cached 4673 * to B_TRUE before, we should set it to B_FALSE, so that policy 4674 * can change after the disconnect. 4675 */ 4676 connp->conn_policy_cached = B_FALSE; 4677 4678 /* 4679 * If not fanout_insert this was just an address verification 4680 */ 4681 if (fanout_insert) { 4682 /* 4683 * The addresses have been verified. Time to insert in 4684 * the correct fanout list. 4685 */ 4686 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4687 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4688 connp->conn_lport = lport; 4689 connp->conn_fport = 0; 4690 /* 4691 * Do we need to add a check to reject Multicast packets 4692 */ 4693 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4694 } 4695 4696 if (error == 0) { 4697 if (ire_requested) { 4698 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4699 error = -1; 4700 /* Falls through to bad_addr */ 4701 } 4702 } else if (ipsec_policy_set) { 4703 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4704 error = -1; 4705 /* Falls through to bad_addr */ 4706 } 4707 } 4708 } 4709 bad_addr: 4710 if (error != 0) { 4711 if (connp->conn_anon_port) { 4712 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4713 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4714 B_FALSE); 4715 } 4716 connp->conn_mlp_type = mlptSingle; 4717 } 4718 if (src_ire != NULL) 4719 IRE_REFRELE(src_ire); 4720 if (ipsec_policy_set) { 4721 ASSERT(policy_mp == mp->b_cont); 4722 ASSERT(policy_mp != NULL); 4723 freeb(policy_mp); 4724 /* 4725 * As of now assume that nothing else accompanies 4726 * IPSEC_POLICY_SET. 4727 */ 4728 mp->b_cont = NULL; 4729 } 4730 return (error); 4731 } 4732 4733 /* 4734 * Verify that both the source and destination addresses 4735 * are valid. If verify_dst is false, then the destination address may be 4736 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4737 * destination reachability, while tunnels do not. 4738 * Note that we allow connect to broadcast and multicast 4739 * addresses when ire_requested is set. Thus the ULP 4740 * has to check for IRE_BROADCAST and multicast. 4741 * 4742 * Returns zero if ok. 4743 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4744 * (for use with TSYSERR reply). 4745 * 4746 * Note: lport and fport are in network byte order. 4747 */ 4748 int 4749 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4750 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4751 boolean_t ire_requested, boolean_t ipsec_policy_set, 4752 boolean_t fanout_insert, boolean_t verify_dst) 4753 { 4754 ire_t *src_ire; 4755 ire_t *dst_ire; 4756 int error = 0; 4757 int protocol; 4758 mblk_t *policy_mp; 4759 ire_t *sire = NULL; 4760 ire_t *md_dst_ire = NULL; 4761 ire_t *lso_dst_ire = NULL; 4762 ill_t *ill = NULL; 4763 zoneid_t zoneid; 4764 ipaddr_t src_addr = *src_addrp; 4765 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4766 4767 src_ire = dst_ire = NULL; 4768 protocol = *mp->b_wptr & 0xFF; 4769 4770 /* 4771 * If we never got a disconnect before, clear it now. 4772 */ 4773 connp->conn_fully_bound = B_FALSE; 4774 4775 if (ipsec_policy_set) { 4776 policy_mp = mp->b_cont; 4777 } 4778 4779 zoneid = IPCL_ZONEID(connp); 4780 4781 if (CLASSD(dst_addr)) { 4782 /* Pick up an IRE_BROADCAST */ 4783 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4784 NULL, zoneid, MBLK_GETLABEL(mp), 4785 (MATCH_IRE_RECURSIVE | 4786 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4787 MATCH_IRE_SECATTR), ipst); 4788 } else { 4789 /* 4790 * If conn_dontroute is set or if conn_nexthop_set is set, 4791 * and onlink ipif is not found set ENETUNREACH error. 4792 */ 4793 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4794 ipif_t *ipif; 4795 4796 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4797 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4798 if (ipif == NULL) { 4799 error = ENETUNREACH; 4800 goto bad_addr; 4801 } 4802 ipif_refrele(ipif); 4803 } 4804 4805 if (connp->conn_nexthop_set) { 4806 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4807 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4808 MATCH_IRE_SECATTR, ipst); 4809 } else { 4810 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4811 &sire, zoneid, MBLK_GETLABEL(mp), 4812 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4813 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4814 MATCH_IRE_SECATTR), ipst); 4815 } 4816 } 4817 /* 4818 * dst_ire can't be a broadcast when not ire_requested. 4819 * We also prevent ire's with src address INADDR_ANY to 4820 * be used, which are created temporarily for 4821 * sending out packets from endpoints that have 4822 * conn_unspec_src set. If verify_dst is true, the destination must be 4823 * reachable. If verify_dst is false, the destination needn't be 4824 * reachable. 4825 * 4826 * If we match on a reject or black hole, then we've got a 4827 * local failure. May as well fail out the connect() attempt, 4828 * since it's never going to succeed. 4829 */ 4830 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4831 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4832 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4833 /* 4834 * If we're verifying destination reachability, we always want 4835 * to complain here. 4836 * 4837 * If we're not verifying destination reachability but the 4838 * destination has a route, we still want to fail on the 4839 * temporary address and broadcast address tests. 4840 */ 4841 if (verify_dst || (dst_ire != NULL)) { 4842 if (ip_debug > 2) { 4843 pr_addr_dbg("ip_bind_connected: bad connected " 4844 "dst %s\n", AF_INET, &dst_addr); 4845 } 4846 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4847 error = ENETUNREACH; 4848 else 4849 error = EHOSTUNREACH; 4850 goto bad_addr; 4851 } 4852 } 4853 4854 /* 4855 * We now know that routing will allow us to reach the destination. 4856 * Check whether Trusted Solaris policy allows communication with this 4857 * host, and pretend that the destination is unreachable if not. 4858 * 4859 * This is never a problem for TCP, since that transport is known to 4860 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4861 * handling. If the remote is unreachable, it will be detected at that 4862 * point, so there's no reason to check it here. 4863 * 4864 * Note that for sendto (and other datagram-oriented friends), this 4865 * check is done as part of the data path label computation instead. 4866 * The check here is just to make non-TCP connect() report the right 4867 * error. 4868 */ 4869 if (dst_ire != NULL && is_system_labeled() && 4870 !IPCL_IS_TCP(connp) && 4871 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4872 connp->conn_mac_exempt, ipst) != 0) { 4873 error = EHOSTUNREACH; 4874 if (ip_debug > 2) { 4875 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4876 AF_INET, &dst_addr); 4877 } 4878 goto bad_addr; 4879 } 4880 4881 /* 4882 * If the app does a connect(), it means that it will most likely 4883 * send more than 1 packet to the destination. It makes sense 4884 * to clear the temporary flag. 4885 */ 4886 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4887 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4888 irb_t *irb = dst_ire->ire_bucket; 4889 4890 rw_enter(&irb->irb_lock, RW_WRITER); 4891 /* 4892 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4893 * the lock to guarantee irb_tmp_ire_cnt. 4894 */ 4895 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4896 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4897 irb->irb_tmp_ire_cnt--; 4898 } 4899 rw_exit(&irb->irb_lock); 4900 } 4901 4902 /* 4903 * See if we should notify ULP about LSO/MDT; we do this whether or not 4904 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4905 * eligibility tests for passive connects are handled separately 4906 * through tcp_adapt_ire(). We do this before the source address 4907 * selection, because dst_ire may change after a call to 4908 * ipif_select_source(). This is a best-effort check, as the 4909 * packet for this connection may not actually go through 4910 * dst_ire->ire_stq, and the exact IRE can only be known after 4911 * calling ip_newroute(). This is why we further check on the 4912 * IRE during LSO/Multidata packet transmission in 4913 * tcp_lsosend()/tcp_multisend(). 4914 */ 4915 if (!ipsec_policy_set && dst_ire != NULL && 4916 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4917 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4918 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4919 lso_dst_ire = dst_ire; 4920 IRE_REFHOLD(lso_dst_ire); 4921 } else if (ipst->ips_ip_multidata_outbound && 4922 ILL_MDT_CAPABLE(ill)) { 4923 md_dst_ire = dst_ire; 4924 IRE_REFHOLD(md_dst_ire); 4925 } 4926 } 4927 4928 if (dst_ire != NULL && 4929 dst_ire->ire_type == IRE_LOCAL && 4930 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4931 /* 4932 * If the IRE belongs to a different zone, look for a matching 4933 * route in the forwarding table and use the source address from 4934 * that route. 4935 */ 4936 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4937 zoneid, 0, NULL, 4938 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4939 MATCH_IRE_RJ_BHOLE, ipst); 4940 if (src_ire == NULL) { 4941 error = EHOSTUNREACH; 4942 goto bad_addr; 4943 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4944 if (!(src_ire->ire_type & IRE_HOST)) 4945 error = ENETUNREACH; 4946 else 4947 error = EHOSTUNREACH; 4948 goto bad_addr; 4949 } 4950 if (src_addr == INADDR_ANY) 4951 src_addr = src_ire->ire_src_addr; 4952 ire_refrele(src_ire); 4953 src_ire = NULL; 4954 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4955 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4956 src_addr = sire->ire_src_addr; 4957 ire_refrele(dst_ire); 4958 dst_ire = sire; 4959 sire = NULL; 4960 } else { 4961 /* 4962 * Pick a source address so that a proper inbound 4963 * load spreading would happen. 4964 */ 4965 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4966 ipif_t *src_ipif = NULL; 4967 ire_t *ipif_ire; 4968 4969 /* 4970 * Supply a local source address such that inbound 4971 * load spreading happens. 4972 * 4973 * Determine the best source address on this ill for 4974 * the destination. 4975 * 4976 * 1) For broadcast, we should return a broadcast ire 4977 * found above so that upper layers know that the 4978 * destination address is a broadcast address. 4979 * 4980 * 2) If this is part of a group, select a better 4981 * source address so that better inbound load 4982 * balancing happens. Do the same if the ipif 4983 * is DEPRECATED. 4984 * 4985 * 3) If the outgoing interface is part of a usesrc 4986 * group, then try selecting a source address from 4987 * the usesrc ILL. 4988 */ 4989 if ((dst_ire->ire_zoneid != zoneid && 4990 dst_ire->ire_zoneid != ALL_ZONES) || 4991 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4992 (!(dst_ire->ire_type & IRE_BROADCAST) && 4993 ((dst_ill->ill_group != NULL) || 4994 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4995 (dst_ill->ill_usesrc_ifindex != 0)))) { 4996 /* 4997 * If the destination is reachable via a 4998 * given gateway, the selected source address 4999 * should be in the same subnet as the gateway. 5000 * Otherwise, the destination is not reachable. 5001 * 5002 * If there are no interfaces on the same subnet 5003 * as the destination, ipif_select_source gives 5004 * first non-deprecated interface which might be 5005 * on a different subnet than the gateway. 5006 * This is not desirable. Hence pass the dst_ire 5007 * source address to ipif_select_source. 5008 * It is sure that the destination is reachable 5009 * with the dst_ire source address subnet. 5010 * So passing dst_ire source address to 5011 * ipif_select_source will make sure that the 5012 * selected source will be on the same subnet 5013 * as dst_ire source address. 5014 */ 5015 ipaddr_t saddr = 5016 dst_ire->ire_ipif->ipif_src_addr; 5017 src_ipif = ipif_select_source(dst_ill, 5018 saddr, zoneid); 5019 if (src_ipif != NULL) { 5020 if (IS_VNI(src_ipif->ipif_ill)) { 5021 /* 5022 * For VNI there is no 5023 * interface route 5024 */ 5025 src_addr = 5026 src_ipif->ipif_src_addr; 5027 } else { 5028 ipif_ire = 5029 ipif_to_ire(src_ipif); 5030 if (ipif_ire != NULL) { 5031 IRE_REFRELE(dst_ire); 5032 dst_ire = ipif_ire; 5033 } 5034 src_addr = 5035 dst_ire->ire_src_addr; 5036 } 5037 ipif_refrele(src_ipif); 5038 } else { 5039 src_addr = dst_ire->ire_src_addr; 5040 } 5041 } else { 5042 src_addr = dst_ire->ire_src_addr; 5043 } 5044 } 5045 } 5046 5047 /* 5048 * We do ire_route_lookup() here (and not 5049 * interface lookup as we assert that 5050 * src_addr should only come from an 5051 * UP interface for hard binding. 5052 */ 5053 ASSERT(src_ire == NULL); 5054 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5055 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5056 /* src_ire must be a local|loopback */ 5057 if (!IRE_IS_LOCAL(src_ire)) { 5058 if (ip_debug > 2) { 5059 pr_addr_dbg("ip_bind_connected: bad connected " 5060 "src %s\n", AF_INET, &src_addr); 5061 } 5062 error = EADDRNOTAVAIL; 5063 goto bad_addr; 5064 } 5065 5066 /* 5067 * If the source address is a loopback address, the 5068 * destination had best be local or multicast. 5069 * The transports that can't handle multicast will reject 5070 * those addresses. 5071 */ 5072 if (src_ire->ire_type == IRE_LOOPBACK && 5073 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5074 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5075 error = -1; 5076 goto bad_addr; 5077 } 5078 5079 /* 5080 * Allow setting new policies. For example, disconnects come 5081 * down as ipa_t bind. As we would have set conn_policy_cached 5082 * to B_TRUE before, we should set it to B_FALSE, so that policy 5083 * can change after the disconnect. 5084 */ 5085 connp->conn_policy_cached = B_FALSE; 5086 5087 /* 5088 * Set the conn addresses/ports immediately, so the IPsec policy calls 5089 * can handle their passed-in conn's. 5090 */ 5091 5092 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5093 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5094 connp->conn_lport = lport; 5095 connp->conn_fport = fport; 5096 *src_addrp = src_addr; 5097 5098 ASSERT(!(ipsec_policy_set && ire_requested)); 5099 if (ire_requested) { 5100 iulp_t *ulp_info = NULL; 5101 5102 /* 5103 * Note that sire will not be NULL if this is an off-link 5104 * connection and there is not cache for that dest yet. 5105 * 5106 * XXX Because of an existing bug, if there are multiple 5107 * default routes, the IRE returned now may not be the actual 5108 * default route used (default routes are chosen in a 5109 * round robin fashion). So if the metrics for different 5110 * default routes are different, we may return the wrong 5111 * metrics. This will not be a problem if the existing 5112 * bug is fixed. 5113 */ 5114 if (sire != NULL) { 5115 ulp_info = &(sire->ire_uinfo); 5116 } 5117 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5118 error = -1; 5119 goto bad_addr; 5120 } 5121 } else if (ipsec_policy_set) { 5122 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5123 error = -1; 5124 goto bad_addr; 5125 } 5126 } 5127 5128 /* 5129 * Cache IPsec policy in this conn. If we have per-socket policy, 5130 * we'll cache that. If we don't, we'll inherit global policy. 5131 * 5132 * We can't insert until the conn reflects the policy. Note that 5133 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5134 * connections where we don't have a policy. This is to prevent 5135 * global policy lookups in the inbound path. 5136 * 5137 * If we insert before we set conn_policy_cached, 5138 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5139 * because global policy cound be non-empty. We normally call 5140 * ipsec_check_policy() for conn_policy_cached connections only if 5141 * ipc_in_enforce_policy is set. But in this case, 5142 * conn_policy_cached can get set anytime since we made the 5143 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5144 * called, which will make the above assumption false. Thus, we 5145 * need to insert after we set conn_policy_cached. 5146 */ 5147 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5148 goto bad_addr; 5149 5150 if (fanout_insert) { 5151 /* 5152 * The addresses have been verified. Time to insert in 5153 * the correct fanout list. 5154 */ 5155 error = ipcl_conn_insert(connp, protocol, src_addr, 5156 dst_addr, connp->conn_ports); 5157 } 5158 5159 if (error == 0) { 5160 connp->conn_fully_bound = B_TRUE; 5161 /* 5162 * Our initial checks for LSO/MDT have passed; the IRE is not 5163 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5164 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5165 * ip_xxinfo_return(), which performs further checks 5166 * against them and upon success, returns the LSO/MDT info 5167 * mblk which we will attach to the bind acknowledgment. 5168 */ 5169 if (lso_dst_ire != NULL) { 5170 mblk_t *lsoinfo_mp; 5171 5172 ASSERT(ill->ill_lso_capab != NULL); 5173 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5174 ill->ill_name, ill->ill_lso_capab)) != NULL) 5175 linkb(mp, lsoinfo_mp); 5176 } else if (md_dst_ire != NULL) { 5177 mblk_t *mdinfo_mp; 5178 5179 ASSERT(ill->ill_mdt_capab != NULL); 5180 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5181 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5182 linkb(mp, mdinfo_mp); 5183 } 5184 } 5185 bad_addr: 5186 if (ipsec_policy_set) { 5187 ASSERT(policy_mp == mp->b_cont); 5188 ASSERT(policy_mp != NULL); 5189 freeb(policy_mp); 5190 /* 5191 * As of now assume that nothing else accompanies 5192 * IPSEC_POLICY_SET. 5193 */ 5194 mp->b_cont = NULL; 5195 } 5196 if (src_ire != NULL) 5197 IRE_REFRELE(src_ire); 5198 if (dst_ire != NULL) 5199 IRE_REFRELE(dst_ire); 5200 if (sire != NULL) 5201 IRE_REFRELE(sire); 5202 if (md_dst_ire != NULL) 5203 IRE_REFRELE(md_dst_ire); 5204 if (lso_dst_ire != NULL) 5205 IRE_REFRELE(lso_dst_ire); 5206 return (error); 5207 } 5208 5209 /* 5210 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5211 * Prefers dst_ire over src_ire. 5212 */ 5213 static boolean_t 5214 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5215 { 5216 mblk_t *mp1; 5217 ire_t *ret_ire = NULL; 5218 5219 mp1 = mp->b_cont; 5220 ASSERT(mp1 != NULL); 5221 5222 if (ire != NULL) { 5223 /* 5224 * mp1 initialized above to IRE_DB_REQ_TYPE 5225 * appended mblk. Its <upper protocol>'s 5226 * job to make sure there is room. 5227 */ 5228 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5229 return (0); 5230 5231 mp1->b_datap->db_type = IRE_DB_TYPE; 5232 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5233 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5234 ret_ire = (ire_t *)mp1->b_rptr; 5235 /* 5236 * Pass the latest setting of the ip_path_mtu_discovery and 5237 * copy the ulp info if any. 5238 */ 5239 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5240 IPH_DF : 0; 5241 if (ulp_info != NULL) { 5242 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5243 sizeof (iulp_t)); 5244 } 5245 ret_ire->ire_mp = mp1; 5246 } else { 5247 /* 5248 * No IRE was found. Remove IRE mblk. 5249 */ 5250 mp->b_cont = mp1->b_cont; 5251 freeb(mp1); 5252 } 5253 5254 return (1); 5255 } 5256 5257 /* 5258 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5259 * the final piece where we don't. Return a pointer to the first mblk in the 5260 * result, and update the pointer to the next mblk to chew on. If anything 5261 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5262 * NULL pointer. 5263 */ 5264 mblk_t * 5265 ip_carve_mp(mblk_t **mpp, ssize_t len) 5266 { 5267 mblk_t *mp0; 5268 mblk_t *mp1; 5269 mblk_t *mp2; 5270 5271 if (!len || !mpp || !(mp0 = *mpp)) 5272 return (NULL); 5273 /* If we aren't going to consume the first mblk, we need a dup. */ 5274 if (mp0->b_wptr - mp0->b_rptr > len) { 5275 mp1 = dupb(mp0); 5276 if (mp1) { 5277 /* Partition the data between the two mblks. */ 5278 mp1->b_wptr = mp1->b_rptr + len; 5279 mp0->b_rptr = mp1->b_wptr; 5280 /* 5281 * after adjustments if mblk not consumed is now 5282 * unaligned, try to align it. If this fails free 5283 * all messages and let upper layer recover. 5284 */ 5285 if (!OK_32PTR(mp0->b_rptr)) { 5286 if (!pullupmsg(mp0, -1)) { 5287 freemsg(mp0); 5288 freemsg(mp1); 5289 *mpp = NULL; 5290 return (NULL); 5291 } 5292 } 5293 } 5294 return (mp1); 5295 } 5296 /* Eat through as many mblks as we need to get len bytes. */ 5297 len -= mp0->b_wptr - mp0->b_rptr; 5298 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5299 if (mp2->b_wptr - mp2->b_rptr > len) { 5300 /* 5301 * We won't consume the entire last mblk. Like 5302 * above, dup and partition it. 5303 */ 5304 mp1->b_cont = dupb(mp2); 5305 mp1 = mp1->b_cont; 5306 if (!mp1) { 5307 /* 5308 * Trouble. Rather than go to a lot of 5309 * trouble to clean up, we free the messages. 5310 * This won't be any worse than losing it on 5311 * the wire. 5312 */ 5313 freemsg(mp0); 5314 freemsg(mp2); 5315 *mpp = NULL; 5316 return (NULL); 5317 } 5318 mp1->b_wptr = mp1->b_rptr + len; 5319 mp2->b_rptr = mp1->b_wptr; 5320 /* 5321 * after adjustments if mblk not consumed is now 5322 * unaligned, try to align it. If this fails free 5323 * all messages and let upper layer recover. 5324 */ 5325 if (!OK_32PTR(mp2->b_rptr)) { 5326 if (!pullupmsg(mp2, -1)) { 5327 freemsg(mp0); 5328 freemsg(mp2); 5329 *mpp = NULL; 5330 return (NULL); 5331 } 5332 } 5333 *mpp = mp2; 5334 return (mp0); 5335 } 5336 /* Decrement len by the amount we just got. */ 5337 len -= mp2->b_wptr - mp2->b_rptr; 5338 } 5339 /* 5340 * len should be reduced to zero now. If not our caller has 5341 * screwed up. 5342 */ 5343 if (len) { 5344 /* Shouldn't happen! */ 5345 freemsg(mp0); 5346 *mpp = NULL; 5347 return (NULL); 5348 } 5349 /* 5350 * We consumed up to exactly the end of an mblk. Detach the part 5351 * we are returning from the rest of the chain. 5352 */ 5353 mp1->b_cont = NULL; 5354 *mpp = mp2; 5355 return (mp0); 5356 } 5357 5358 /* The ill stream is being unplumbed. Called from ip_close */ 5359 int 5360 ip_modclose(ill_t *ill) 5361 { 5362 boolean_t success; 5363 ipsq_t *ipsq; 5364 ipif_t *ipif; 5365 queue_t *q = ill->ill_rq; 5366 ip_stack_t *ipst = ill->ill_ipst; 5367 clock_t timeout; 5368 5369 /* 5370 * Wait for the ACKs of all deferred control messages to be processed. 5371 * In particular, we wait for a potential capability reset initiated 5372 * in ip_sioctl_plink() to complete before proceeding. 5373 * 5374 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5375 * in case the driver never replies. 5376 */ 5377 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5378 mutex_enter(&ill->ill_lock); 5379 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5380 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5381 /* Timeout */ 5382 break; 5383 } 5384 } 5385 mutex_exit(&ill->ill_lock); 5386 5387 /* 5388 * Forcibly enter the ipsq after some delay. This is to take 5389 * care of the case when some ioctl does not complete because 5390 * we sent a control message to the driver and it did not 5391 * send us a reply. We want to be able to at least unplumb 5392 * and replumb rather than force the user to reboot the system. 5393 */ 5394 success = ipsq_enter(ill, B_FALSE); 5395 5396 /* 5397 * Open/close/push/pop is guaranteed to be single threaded 5398 * per stream by STREAMS. FS guarantees that all references 5399 * from top are gone before close is called. So there can't 5400 * be another close thread that has set CONDEMNED on this ill. 5401 * and cause ipsq_enter to return failure. 5402 */ 5403 ASSERT(success); 5404 ipsq = ill->ill_phyint->phyint_ipsq; 5405 5406 /* 5407 * Mark it condemned. No new reference will be made to this ill. 5408 * Lookup functions will return an error. Threads that try to 5409 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5410 * that the refcnt will drop down to zero. 5411 */ 5412 mutex_enter(&ill->ill_lock); 5413 ill->ill_state_flags |= ILL_CONDEMNED; 5414 for (ipif = ill->ill_ipif; ipif != NULL; 5415 ipif = ipif->ipif_next) { 5416 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5417 } 5418 /* 5419 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5420 * returns error if ILL_CONDEMNED is set 5421 */ 5422 cv_broadcast(&ill->ill_cv); 5423 mutex_exit(&ill->ill_lock); 5424 5425 /* 5426 * Send all the deferred DLPI messages downstream which came in 5427 * during the small window right before ipsq_enter(). We do this 5428 * without waiting for the ACKs because all the ACKs for M_PROTO 5429 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5430 */ 5431 ill_dlpi_send_deferred(ill); 5432 5433 /* 5434 * Shut down fragmentation reassembly. 5435 * ill_frag_timer won't start a timer again. 5436 * Now cancel any existing timer 5437 */ 5438 (void) untimeout(ill->ill_frag_timer_id); 5439 (void) ill_frag_timeout(ill, 0); 5440 5441 /* 5442 * If MOVE was in progress, clear the 5443 * move_in_progress fields also. 5444 */ 5445 if (ill->ill_move_in_progress) { 5446 ILL_CLEAR_MOVE(ill); 5447 } 5448 5449 /* 5450 * Call ill_delete to bring down the ipifs, ilms and ill on 5451 * this ill. Then wait for the refcnts to drop to zero. 5452 * ill_is_freeable checks whether the ill is really quiescent. 5453 * Then make sure that threads that are waiting to enter the 5454 * ipsq have seen the error returned by ipsq_enter and have 5455 * gone away. Then we call ill_delete_tail which does the 5456 * DL_UNBIND_REQ with the driver and then qprocsoff. 5457 */ 5458 ill_delete(ill); 5459 mutex_enter(&ill->ill_lock); 5460 while (!ill_is_freeable(ill)) 5461 cv_wait(&ill->ill_cv, &ill->ill_lock); 5462 while (ill->ill_waiters) 5463 cv_wait(&ill->ill_cv, &ill->ill_lock); 5464 5465 mutex_exit(&ill->ill_lock); 5466 5467 /* 5468 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5469 * it held until the end of the function since the cleanup 5470 * below needs to be able to use the ip_stack_t. 5471 */ 5472 netstack_hold(ipst->ips_netstack); 5473 5474 /* qprocsoff is called in ill_delete_tail */ 5475 ill_delete_tail(ill); 5476 ASSERT(ill->ill_ipst == NULL); 5477 5478 /* 5479 * Walk through all upper (conn) streams and qenable 5480 * those that have queued data. 5481 * close synchronization needs this to 5482 * be done to ensure that all upper layers blocked 5483 * due to flow control to the closing device 5484 * get unblocked. 5485 */ 5486 ip1dbg(("ip_wsrv: walking\n")); 5487 conn_walk_drain(ipst); 5488 5489 mutex_enter(&ipst->ips_ip_mi_lock); 5490 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5491 mutex_exit(&ipst->ips_ip_mi_lock); 5492 5493 /* 5494 * credp could be null if the open didn't succeed and ip_modopen 5495 * itself calls ip_close. 5496 */ 5497 if (ill->ill_credp != NULL) 5498 crfree(ill->ill_credp); 5499 5500 /* 5501 * Now we are done with the module close pieces that 5502 * need the netstack_t. 5503 */ 5504 netstack_rele(ipst->ips_netstack); 5505 5506 mi_close_free((IDP)ill); 5507 q->q_ptr = WR(q)->q_ptr = NULL; 5508 5509 ipsq_exit(ipsq); 5510 5511 return (0); 5512 } 5513 5514 /* 5515 * This is called as part of close() for IP, UDP, ICMP, and RTS 5516 * in order to quiesce the conn. 5517 */ 5518 void 5519 ip_quiesce_conn(conn_t *connp) 5520 { 5521 boolean_t drain_cleanup_reqd = B_FALSE; 5522 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5523 boolean_t ilg_cleanup_reqd = B_FALSE; 5524 ip_stack_t *ipst; 5525 5526 ASSERT(!IPCL_IS_TCP(connp)); 5527 ipst = connp->conn_netstack->netstack_ip; 5528 5529 /* 5530 * Mark the conn as closing, and this conn must not be 5531 * inserted in future into any list. Eg. conn_drain_insert(), 5532 * won't insert this conn into the conn_drain_list. 5533 * Similarly ill_pending_mp_add() will not add any mp to 5534 * the pending mp list, after this conn has started closing. 5535 * 5536 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5537 * cannot get set henceforth. 5538 */ 5539 mutex_enter(&connp->conn_lock); 5540 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5541 connp->conn_state_flags |= CONN_CLOSING; 5542 if (connp->conn_idl != NULL) 5543 drain_cleanup_reqd = B_TRUE; 5544 if (connp->conn_oper_pending_ill != NULL) 5545 conn_ioctl_cleanup_reqd = B_TRUE; 5546 if (connp->conn_dhcpinit_ill != NULL) { 5547 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5548 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5549 connp->conn_dhcpinit_ill = NULL; 5550 } 5551 if (connp->conn_ilg_inuse != 0) 5552 ilg_cleanup_reqd = B_TRUE; 5553 mutex_exit(&connp->conn_lock); 5554 5555 if (conn_ioctl_cleanup_reqd) 5556 conn_ioctl_cleanup(connp); 5557 5558 if (is_system_labeled() && connp->conn_anon_port) { 5559 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5560 connp->conn_mlp_type, connp->conn_ulp, 5561 ntohs(connp->conn_lport), B_FALSE); 5562 connp->conn_anon_port = 0; 5563 } 5564 connp->conn_mlp_type = mlptSingle; 5565 5566 /* 5567 * Remove this conn from any fanout list it is on. 5568 * and then wait for any threads currently operating 5569 * on this endpoint to finish 5570 */ 5571 ipcl_hash_remove(connp); 5572 5573 /* 5574 * Remove this conn from the drain list, and do 5575 * any other cleanup that may be required. 5576 * (Only non-tcp streams may have a non-null conn_idl. 5577 * TCP streams are never flow controlled, and 5578 * conn_idl will be null) 5579 */ 5580 if (drain_cleanup_reqd) 5581 conn_drain_tail(connp, B_TRUE); 5582 5583 if (connp == ipst->ips_ip_g_mrouter) 5584 (void) ip_mrouter_done(NULL, ipst); 5585 5586 if (ilg_cleanup_reqd) 5587 ilg_delete_all(connp); 5588 5589 conn_delete_ire(connp, NULL); 5590 5591 /* 5592 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5593 * callers from write side can't be there now because close 5594 * is in progress. The only other caller is ipcl_walk 5595 * which checks for the condemned flag. 5596 */ 5597 mutex_enter(&connp->conn_lock); 5598 connp->conn_state_flags |= CONN_CONDEMNED; 5599 while (connp->conn_ref != 1) 5600 cv_wait(&connp->conn_cv, &connp->conn_lock); 5601 connp->conn_state_flags |= CONN_QUIESCED; 5602 mutex_exit(&connp->conn_lock); 5603 } 5604 5605 /* ARGSUSED */ 5606 int 5607 ip_close(queue_t *q, int flags) 5608 { 5609 conn_t *connp; 5610 5611 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5612 5613 /* 5614 * Call the appropriate delete routine depending on whether this is 5615 * a module or device. 5616 */ 5617 if (WR(q)->q_next != NULL) { 5618 /* This is a module close */ 5619 return (ip_modclose((ill_t *)q->q_ptr)); 5620 } 5621 5622 connp = q->q_ptr; 5623 ip_quiesce_conn(connp); 5624 5625 qprocsoff(q); 5626 5627 /* 5628 * Now we are truly single threaded on this stream, and can 5629 * delete the things hanging off the connp, and finally the connp. 5630 * We removed this connp from the fanout list, it cannot be 5631 * accessed thru the fanouts, and we already waited for the 5632 * conn_ref to drop to 0. We are already in close, so 5633 * there cannot be any other thread from the top. qprocsoff 5634 * has completed, and service has completed or won't run in 5635 * future. 5636 */ 5637 ASSERT(connp->conn_ref == 1); 5638 5639 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5640 5641 connp->conn_ref--; 5642 ipcl_conn_destroy(connp); 5643 5644 q->q_ptr = WR(q)->q_ptr = NULL; 5645 return (0); 5646 } 5647 5648 /* 5649 * Wapper around putnext() so that ip_rts_request can merely use 5650 * conn_recv. 5651 */ 5652 /*ARGSUSED2*/ 5653 static void 5654 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5655 { 5656 conn_t *connp = (conn_t *)arg1; 5657 5658 putnext(connp->conn_rq, mp); 5659 } 5660 5661 /* Return the IP checksum for the IP header at "iph". */ 5662 uint16_t 5663 ip_csum_hdr(ipha_t *ipha) 5664 { 5665 uint16_t *uph; 5666 uint32_t sum; 5667 int opt_len; 5668 5669 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5670 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5671 uph = (uint16_t *)ipha; 5672 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5673 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5674 if (opt_len > 0) { 5675 do { 5676 sum += uph[10]; 5677 sum += uph[11]; 5678 uph += 2; 5679 } while (--opt_len); 5680 } 5681 sum = (sum & 0xFFFF) + (sum >> 16); 5682 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5683 if (sum == 0xffff) 5684 sum = 0; 5685 return ((uint16_t)sum); 5686 } 5687 5688 /* 5689 * Called when the module is about to be unloaded 5690 */ 5691 void 5692 ip_ddi_destroy(void) 5693 { 5694 tnet_fini(); 5695 5696 icmp_ddi_destroy(); 5697 rts_ddi_destroy(); 5698 udp_ddi_destroy(); 5699 sctp_ddi_g_destroy(); 5700 tcp_ddi_g_destroy(); 5701 ipsec_policy_g_destroy(); 5702 ipcl_g_destroy(); 5703 ip_net_g_destroy(); 5704 ip_ire_g_fini(); 5705 inet_minor_destroy(ip_minor_arena_sa); 5706 #if defined(_LP64) 5707 inet_minor_destroy(ip_minor_arena_la); 5708 #endif 5709 5710 #ifdef DEBUG 5711 list_destroy(&ip_thread_list); 5712 rw_destroy(&ip_thread_rwlock); 5713 tsd_destroy(&ip_thread_data); 5714 #endif 5715 5716 netstack_unregister(NS_IP); 5717 } 5718 5719 /* 5720 * First step in cleanup. 5721 */ 5722 /* ARGSUSED */ 5723 static void 5724 ip_stack_shutdown(netstackid_t stackid, void *arg) 5725 { 5726 ip_stack_t *ipst = (ip_stack_t *)arg; 5727 5728 #ifdef NS_DEBUG 5729 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5730 #endif 5731 5732 /* Get rid of loopback interfaces and their IREs */ 5733 ip_loopback_cleanup(ipst); 5734 5735 /* 5736 * The *_hook_shutdown()s start the process of notifying any 5737 * consumers that things are going away.... nothing is destroyed. 5738 */ 5739 ipv4_hook_shutdown(ipst); 5740 ipv6_hook_shutdown(ipst); 5741 } 5742 5743 /* 5744 * Free the IP stack instance. 5745 */ 5746 static void 5747 ip_stack_fini(netstackid_t stackid, void *arg) 5748 { 5749 ip_stack_t *ipst = (ip_stack_t *)arg; 5750 int ret; 5751 5752 /* 5753 * At this point, all of the notifications that the events and 5754 * protocols are going away have been run, meaning that we can 5755 * now set about starting to clean things up. 5756 */ 5757 ipv4_hook_destroy(ipst); 5758 ipv6_hook_destroy(ipst); 5759 ip_net_destroy(ipst); 5760 5761 #ifdef NS_DEBUG 5762 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5763 #endif 5764 rw_destroy(&ipst->ips_srcid_lock); 5765 5766 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5767 ipst->ips_ip_mibkp = NULL; 5768 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5769 ipst->ips_icmp_mibkp = NULL; 5770 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5771 ipst->ips_ip_kstat = NULL; 5772 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5773 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5774 ipst->ips_ip6_kstat = NULL; 5775 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5776 5777 nd_free(&ipst->ips_ip_g_nd); 5778 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5779 ipst->ips_param_arr = NULL; 5780 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5781 ipst->ips_ndp_arr = NULL; 5782 5783 ip_mrouter_stack_destroy(ipst); 5784 5785 mutex_destroy(&ipst->ips_ip_mi_lock); 5786 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5787 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5788 rw_destroy(&ipst->ips_ip_g_nd_lock); 5789 5790 ret = untimeout(ipst->ips_igmp_timeout_id); 5791 if (ret == -1) { 5792 ASSERT(ipst->ips_igmp_timeout_id == 0); 5793 } else { 5794 ASSERT(ipst->ips_igmp_timeout_id != 0); 5795 ipst->ips_igmp_timeout_id = 0; 5796 } 5797 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5798 if (ret == -1) { 5799 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5800 } else { 5801 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5802 ipst->ips_igmp_slowtimeout_id = 0; 5803 } 5804 ret = untimeout(ipst->ips_mld_timeout_id); 5805 if (ret == -1) { 5806 ASSERT(ipst->ips_mld_timeout_id == 0); 5807 } else { 5808 ASSERT(ipst->ips_mld_timeout_id != 0); 5809 ipst->ips_mld_timeout_id = 0; 5810 } 5811 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5812 if (ret == -1) { 5813 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5814 } else { 5815 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5816 ipst->ips_mld_slowtimeout_id = 0; 5817 } 5818 ret = untimeout(ipst->ips_ip_ire_expire_id); 5819 if (ret == -1) { 5820 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5821 } else { 5822 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5823 ipst->ips_ip_ire_expire_id = 0; 5824 } 5825 5826 mutex_destroy(&ipst->ips_igmp_timer_lock); 5827 mutex_destroy(&ipst->ips_mld_timer_lock); 5828 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5829 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5830 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5831 rw_destroy(&ipst->ips_ill_g_lock); 5832 5833 ipobs_fini(ipst); 5834 ip_ire_fini(ipst); 5835 ip6_asp_free(ipst); 5836 conn_drain_fini(ipst); 5837 ipcl_destroy(ipst); 5838 5839 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5840 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5841 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5842 ipst->ips_ndp4 = NULL; 5843 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5844 ipst->ips_ndp6 = NULL; 5845 5846 if (ipst->ips_loopback_ksp != NULL) { 5847 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5848 ipst->ips_loopback_ksp = NULL; 5849 } 5850 5851 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5852 ipst->ips_phyint_g_list = NULL; 5853 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5854 ipst->ips_ill_g_heads = NULL; 5855 5856 kmem_free(ipst, sizeof (*ipst)); 5857 } 5858 5859 /* 5860 * This function is called from the TSD destructor, and is used to debug 5861 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5862 * details. 5863 */ 5864 static void 5865 ip_thread_exit(void *phash) 5866 { 5867 th_hash_t *thh = phash; 5868 5869 rw_enter(&ip_thread_rwlock, RW_WRITER); 5870 list_remove(&ip_thread_list, thh); 5871 rw_exit(&ip_thread_rwlock); 5872 mod_hash_destroy_hash(thh->thh_hash); 5873 kmem_free(thh, sizeof (*thh)); 5874 } 5875 5876 /* 5877 * Called when the IP kernel module is loaded into the kernel 5878 */ 5879 void 5880 ip_ddi_init(void) 5881 { 5882 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5883 5884 /* 5885 * For IP and TCP the minor numbers should start from 2 since we have 4 5886 * initial devices: ip, ip6, tcp, tcp6. 5887 */ 5888 /* 5889 * If this is a 64-bit kernel, then create two separate arenas - 5890 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5891 * other for socket apps in the range 2^^18 through 2^^32-1. 5892 */ 5893 ip_minor_arena_la = NULL; 5894 ip_minor_arena_sa = NULL; 5895 #if defined(_LP64) 5896 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5897 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5898 cmn_err(CE_PANIC, 5899 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5900 } 5901 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5902 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5903 cmn_err(CE_PANIC, 5904 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5905 } 5906 #else 5907 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5908 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5909 cmn_err(CE_PANIC, 5910 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5911 } 5912 #endif 5913 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5914 5915 ipcl_g_init(); 5916 ip_ire_g_init(); 5917 ip_net_g_init(); 5918 5919 #ifdef DEBUG 5920 tsd_create(&ip_thread_data, ip_thread_exit); 5921 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5922 list_create(&ip_thread_list, sizeof (th_hash_t), 5923 offsetof(th_hash_t, thh_link)); 5924 #endif 5925 5926 /* 5927 * We want to be informed each time a stack is created or 5928 * destroyed in the kernel, so we can maintain the 5929 * set of udp_stack_t's. 5930 */ 5931 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5932 ip_stack_fini); 5933 5934 ipsec_policy_g_init(); 5935 tcp_ddi_g_init(); 5936 sctp_ddi_g_init(); 5937 5938 tnet_init(); 5939 5940 udp_ddi_init(); 5941 rts_ddi_init(); 5942 icmp_ddi_init(); 5943 } 5944 5945 /* 5946 * Initialize the IP stack instance. 5947 */ 5948 static void * 5949 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5950 { 5951 ip_stack_t *ipst; 5952 ipparam_t *pa; 5953 ipndp_t *na; 5954 5955 #ifdef NS_DEBUG 5956 printf("ip_stack_init(stack %d)\n", stackid); 5957 #endif 5958 5959 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5960 ipst->ips_netstack = ns; 5961 5962 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5963 KM_SLEEP); 5964 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5965 KM_SLEEP); 5966 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5967 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5968 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5969 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5970 5971 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5972 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5973 ipst->ips_igmp_deferred_next = INFINITY; 5974 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5975 ipst->ips_mld_deferred_next = INFINITY; 5976 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5977 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5978 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5979 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5980 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5981 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5982 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5983 5984 ipcl_init(ipst); 5985 ip_ire_init(ipst); 5986 ip6_asp_init(ipst); 5987 ipif_init(ipst); 5988 conn_drain_init(ipst); 5989 ip_mrouter_stack_init(ipst); 5990 5991 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5992 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5993 5994 ipst->ips_ip_multirt_log_interval = 1000; 5995 5996 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5997 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5998 ipst->ips_ill_index = 1; 5999 6000 ipst->ips_saved_ip_g_forward = -1; 6001 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6002 6003 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6004 ipst->ips_param_arr = pa; 6005 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6006 6007 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6008 ipst->ips_ndp_arr = na; 6009 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6010 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6011 (caddr_t)&ipst->ips_ip_g_forward; 6012 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6013 (caddr_t)&ipst->ips_ipv6_forward; 6014 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6015 "ip_cgtp_filter") == 0); 6016 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6017 (caddr_t)&ipst->ips_ip_cgtp_filter; 6018 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6019 "ipmp_hook_emulation") == 0); 6020 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6021 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6022 6023 (void) ip_param_register(&ipst->ips_ip_g_nd, 6024 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6025 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6026 6027 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6028 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6029 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6030 ipst->ips_ip6_kstat = 6031 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6032 6033 ipst->ips_ipmp_enable_failback = B_TRUE; 6034 6035 ipst->ips_ip_src_id = 1; 6036 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6037 6038 ipobs_init(ipst); 6039 ip_net_init(ipst, ns); 6040 ipv4_hook_init(ipst); 6041 ipv6_hook_init(ipst); 6042 6043 return (ipst); 6044 } 6045 6046 /* 6047 * Allocate and initialize a DLPI template of the specified length. (May be 6048 * called as writer.) 6049 */ 6050 mblk_t * 6051 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6052 { 6053 mblk_t *mp; 6054 6055 mp = allocb(len, BPRI_MED); 6056 if (!mp) 6057 return (NULL); 6058 6059 /* 6060 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6061 * of which we don't seem to use) are sent with M_PCPROTO, and 6062 * that other DLPI are M_PROTO. 6063 */ 6064 if (prim == DL_INFO_REQ) { 6065 mp->b_datap->db_type = M_PCPROTO; 6066 } else { 6067 mp->b_datap->db_type = M_PROTO; 6068 } 6069 6070 mp->b_wptr = mp->b_rptr + len; 6071 bzero(mp->b_rptr, len); 6072 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6073 return (mp); 6074 } 6075 6076 /* 6077 * Debug formatting routine. Returns a character string representation of the 6078 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6079 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6080 * 6081 * Once the ndd table-printing interfaces are removed, this can be changed to 6082 * standard dotted-decimal form. 6083 */ 6084 char * 6085 ip_dot_addr(ipaddr_t addr, char *buf) 6086 { 6087 uint8_t *ap = (uint8_t *)&addr; 6088 6089 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6090 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6091 return (buf); 6092 } 6093 6094 /* 6095 * Write the given MAC address as a printable string in the usual colon- 6096 * separated format. 6097 */ 6098 const char * 6099 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6100 { 6101 char *bp; 6102 6103 if (alen == 0 || buflen < 4) 6104 return ("?"); 6105 bp = buf; 6106 for (;;) { 6107 /* 6108 * If there are more MAC address bytes available, but we won't 6109 * have any room to print them, then add "..." to the string 6110 * instead. See below for the 'magic number' explanation. 6111 */ 6112 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6113 (void) strcpy(bp, "..."); 6114 break; 6115 } 6116 (void) sprintf(bp, "%02x", *addr++); 6117 bp += 2; 6118 if (--alen == 0) 6119 break; 6120 *bp++ = ':'; 6121 buflen -= 3; 6122 /* 6123 * At this point, based on the first 'if' statement above, 6124 * either alen == 1 and buflen >= 3, or alen > 1 and 6125 * buflen >= 4. The first case leaves room for the final "xx" 6126 * number and trailing NUL byte. The second leaves room for at 6127 * least "...". Thus the apparently 'magic' numbers chosen for 6128 * that statement. 6129 */ 6130 } 6131 return (buf); 6132 } 6133 6134 /* 6135 * Send an ICMP error after patching up the packet appropriately. Returns 6136 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6137 */ 6138 static boolean_t 6139 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6140 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6141 zoneid_t zoneid, ip_stack_t *ipst) 6142 { 6143 ipha_t *ipha; 6144 mblk_t *first_mp; 6145 boolean_t secure; 6146 unsigned char db_type; 6147 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6148 6149 first_mp = mp; 6150 if (mctl_present) { 6151 mp = mp->b_cont; 6152 secure = ipsec_in_is_secure(first_mp); 6153 ASSERT(mp != NULL); 6154 } else { 6155 /* 6156 * If this is an ICMP error being reported - which goes 6157 * up as M_CTLs, we need to convert them to M_DATA till 6158 * we finish checking with global policy because 6159 * ipsec_check_global_policy() assumes M_DATA as clear 6160 * and M_CTL as secure. 6161 */ 6162 db_type = DB_TYPE(mp); 6163 DB_TYPE(mp) = M_DATA; 6164 secure = B_FALSE; 6165 } 6166 /* 6167 * We are generating an icmp error for some inbound packet. 6168 * Called from all ip_fanout_(udp, tcp, proto) functions. 6169 * Before we generate an error, check with global policy 6170 * to see whether this is allowed to enter the system. As 6171 * there is no "conn", we are checking with global policy. 6172 */ 6173 ipha = (ipha_t *)mp->b_rptr; 6174 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6175 first_mp = ipsec_check_global_policy(first_mp, NULL, 6176 ipha, NULL, mctl_present, ipst->ips_netstack); 6177 if (first_mp == NULL) 6178 return (B_FALSE); 6179 } 6180 6181 if (!mctl_present) 6182 DB_TYPE(mp) = db_type; 6183 6184 if (flags & IP_FF_SEND_ICMP) { 6185 if (flags & IP_FF_HDR_COMPLETE) { 6186 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6187 freemsg(first_mp); 6188 return (B_TRUE); 6189 } 6190 } 6191 if (flags & IP_FF_CKSUM) { 6192 /* 6193 * Have to correct checksum since 6194 * the packet might have been 6195 * fragmented and the reassembly code in ip_rput 6196 * does not restore the IP checksum. 6197 */ 6198 ipha->ipha_hdr_checksum = 0; 6199 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6200 } 6201 switch (icmp_type) { 6202 case ICMP_DEST_UNREACHABLE: 6203 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6204 ipst); 6205 break; 6206 default: 6207 freemsg(first_mp); 6208 break; 6209 } 6210 } else { 6211 freemsg(first_mp); 6212 return (B_FALSE); 6213 } 6214 6215 return (B_TRUE); 6216 } 6217 6218 /* 6219 * Used to send an ICMP error message when a packet is received for 6220 * a protocol that is not supported. The mblk passed as argument 6221 * is consumed by this function. 6222 */ 6223 void 6224 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6225 ip_stack_t *ipst) 6226 { 6227 mblk_t *mp; 6228 ipha_t *ipha; 6229 ill_t *ill; 6230 ipsec_in_t *ii; 6231 6232 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6233 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6234 6235 mp = ipsec_mp->b_cont; 6236 ipsec_mp->b_cont = NULL; 6237 ipha = (ipha_t *)mp->b_rptr; 6238 /* Get ill from index in ipsec_in_t. */ 6239 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6240 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6241 ipst); 6242 if (ill != NULL) { 6243 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6244 if (ip_fanout_send_icmp(q, mp, flags, 6245 ICMP_DEST_UNREACHABLE, 6246 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6247 BUMP_MIB(ill->ill_ip_mib, 6248 ipIfStatsInUnknownProtos); 6249 } 6250 } else { 6251 if (ip_fanout_send_icmp_v6(q, mp, flags, 6252 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6253 0, B_FALSE, zoneid, ipst)) { 6254 BUMP_MIB(ill->ill_ip_mib, 6255 ipIfStatsInUnknownProtos); 6256 } 6257 } 6258 ill_refrele(ill); 6259 } else { /* re-link for the freemsg() below. */ 6260 ipsec_mp->b_cont = mp; 6261 } 6262 6263 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6264 freemsg(ipsec_mp); 6265 } 6266 6267 /* 6268 * See if the inbound datagram has had IPsec processing applied to it. 6269 */ 6270 boolean_t 6271 ipsec_in_is_secure(mblk_t *ipsec_mp) 6272 { 6273 ipsec_in_t *ii; 6274 6275 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6276 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6277 6278 if (ii->ipsec_in_loopback) { 6279 return (ii->ipsec_in_secure); 6280 } else { 6281 return (ii->ipsec_in_ah_sa != NULL || 6282 ii->ipsec_in_esp_sa != NULL || 6283 ii->ipsec_in_decaps); 6284 } 6285 } 6286 6287 /* 6288 * Handle protocols with which IP is less intimate. There 6289 * can be more than one stream bound to a particular 6290 * protocol. When this is the case, normally each one gets a copy 6291 * of any incoming packets. 6292 * 6293 * IPsec NOTE : 6294 * 6295 * Don't allow a secure packet going up a non-secure connection. 6296 * We don't allow this because 6297 * 6298 * 1) Reply might go out in clear which will be dropped at 6299 * the sending side. 6300 * 2) If the reply goes out in clear it will give the 6301 * adversary enough information for getting the key in 6302 * most of the cases. 6303 * 6304 * Moreover getting a secure packet when we expect clear 6305 * implies that SA's were added without checking for 6306 * policy on both ends. This should not happen once ISAKMP 6307 * is used to negotiate SAs as SAs will be added only after 6308 * verifying the policy. 6309 * 6310 * NOTE : If the packet was tunneled and not multicast we only send 6311 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6312 * back to delivering packets to AF_INET6 raw sockets. 6313 * 6314 * IPQoS Notes: 6315 * Once we have determined the client, invoke IPPF processing. 6316 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6317 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6318 * ip_policy will be false. 6319 * 6320 * Zones notes: 6321 * Currently only applications in the global zone can create raw sockets for 6322 * protocols other than ICMP. So unlike the broadcast / multicast case of 6323 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6324 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6325 */ 6326 static void 6327 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6328 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6329 zoneid_t zoneid) 6330 { 6331 queue_t *rq; 6332 mblk_t *mp1, *first_mp1; 6333 uint_t protocol = ipha->ipha_protocol; 6334 ipaddr_t dst; 6335 boolean_t one_only; 6336 mblk_t *first_mp = mp; 6337 boolean_t secure; 6338 uint32_t ill_index; 6339 conn_t *connp, *first_connp, *next_connp; 6340 connf_t *connfp; 6341 boolean_t shared_addr; 6342 mib2_ipIfStatsEntry_t *mibptr; 6343 ip_stack_t *ipst = recv_ill->ill_ipst; 6344 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6345 6346 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6347 if (mctl_present) { 6348 mp = first_mp->b_cont; 6349 secure = ipsec_in_is_secure(first_mp); 6350 ASSERT(mp != NULL); 6351 } else { 6352 secure = B_FALSE; 6353 } 6354 dst = ipha->ipha_dst; 6355 /* 6356 * If the packet was tunneled and not multicast we only send to it 6357 * the first match. 6358 */ 6359 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6360 !CLASSD(dst)); 6361 6362 shared_addr = (zoneid == ALL_ZONES); 6363 if (shared_addr) { 6364 /* 6365 * We don't allow multilevel ports for raw IP, so no need to 6366 * check for that here. 6367 */ 6368 zoneid = tsol_packet_to_zoneid(mp); 6369 } 6370 6371 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6372 mutex_enter(&connfp->connf_lock); 6373 connp = connfp->connf_head; 6374 for (connp = connfp->connf_head; connp != NULL; 6375 connp = connp->conn_next) { 6376 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6377 zoneid) && 6378 (!is_system_labeled() || 6379 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6380 connp))) { 6381 break; 6382 } 6383 } 6384 6385 if (connp == NULL || connp->conn_upq == NULL) { 6386 /* 6387 * No one bound to these addresses. Is 6388 * there a client that wants all 6389 * unclaimed datagrams? 6390 */ 6391 mutex_exit(&connfp->connf_lock); 6392 /* 6393 * Check for IPPROTO_ENCAP... 6394 */ 6395 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6396 /* 6397 * If an IPsec mblk is here on a multicast 6398 * tunnel (using ip_mroute stuff), check policy here, 6399 * THEN ship off to ip_mroute_decap(). 6400 * 6401 * BTW, If I match a configured IP-in-IP 6402 * tunnel, this path will not be reached, and 6403 * ip_mroute_decap will never be called. 6404 */ 6405 first_mp = ipsec_check_global_policy(first_mp, connp, 6406 ipha, NULL, mctl_present, ipst->ips_netstack); 6407 if (first_mp != NULL) { 6408 if (mctl_present) 6409 freeb(first_mp); 6410 ip_mroute_decap(q, mp, ill); 6411 } /* Else we already freed everything! */ 6412 } else { 6413 /* 6414 * Otherwise send an ICMP protocol unreachable. 6415 */ 6416 if (ip_fanout_send_icmp(q, first_mp, flags, 6417 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6418 mctl_present, zoneid, ipst)) { 6419 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6420 } 6421 } 6422 return; 6423 } 6424 CONN_INC_REF(connp); 6425 first_connp = connp; 6426 6427 /* 6428 * Only send message to one tunnel driver by immediately 6429 * terminating the loop. 6430 */ 6431 connp = one_only ? NULL : connp->conn_next; 6432 6433 for (;;) { 6434 while (connp != NULL) { 6435 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6436 flags, zoneid) && 6437 (!is_system_labeled() || 6438 tsol_receive_local(mp, &dst, IPV4_VERSION, 6439 shared_addr, connp))) 6440 break; 6441 connp = connp->conn_next; 6442 } 6443 6444 /* 6445 * Copy the packet. 6446 */ 6447 if (connp == NULL || connp->conn_upq == NULL || 6448 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6449 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6450 /* 6451 * No more interested clients or memory 6452 * allocation failed 6453 */ 6454 connp = first_connp; 6455 break; 6456 } 6457 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6458 CONN_INC_REF(connp); 6459 mutex_exit(&connfp->connf_lock); 6460 rq = connp->conn_rq; 6461 if (!canputnext(rq)) { 6462 if (flags & IP_FF_RAWIP) { 6463 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6464 } else { 6465 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6466 } 6467 6468 freemsg(first_mp1); 6469 } else { 6470 /* 6471 * Don't enforce here if we're an actual tunnel - 6472 * let "tun" do it instead. 6473 */ 6474 if (!IPCL_IS_IPTUN(connp) && 6475 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6476 secure)) { 6477 first_mp1 = ipsec_check_inbound_policy 6478 (first_mp1, connp, ipha, NULL, 6479 mctl_present); 6480 } 6481 if (first_mp1 != NULL) { 6482 int in_flags = 0; 6483 /* 6484 * ip_fanout_proto also gets called from 6485 * icmp_inbound_error_fanout, in which case 6486 * the msg type is M_CTL. Don't add info 6487 * in this case for the time being. In future 6488 * when there is a need for knowing the 6489 * inbound iface index for ICMP error msgs, 6490 * then this can be changed. 6491 */ 6492 if (connp->conn_recvif) 6493 in_flags = IPF_RECVIF; 6494 /* 6495 * The ULP may support IP_RECVPKTINFO for both 6496 * IP v4 and v6 so pass the appropriate argument 6497 * based on conn IP version. 6498 */ 6499 if (connp->conn_ip_recvpktinfo) { 6500 if (connp->conn_af_isv6) { 6501 /* 6502 * V6 only needs index 6503 */ 6504 in_flags |= IPF_RECVIF; 6505 } else { 6506 /* 6507 * V4 needs index + 6508 * matching address. 6509 */ 6510 in_flags |= IPF_RECVADDR; 6511 } 6512 } 6513 if ((in_flags != 0) && 6514 (mp->b_datap->db_type != M_CTL)) { 6515 /* 6516 * the actual data will be 6517 * contained in b_cont upon 6518 * successful return of the 6519 * following call else 6520 * original mblk is returned 6521 */ 6522 ASSERT(recv_ill != NULL); 6523 mp1 = ip_add_info(mp1, recv_ill, 6524 in_flags, IPCL_ZONEID(connp), ipst); 6525 } 6526 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6527 if (mctl_present) 6528 freeb(first_mp1); 6529 (connp->conn_recv)(connp, mp1, NULL); 6530 } 6531 } 6532 mutex_enter(&connfp->connf_lock); 6533 /* Follow the next pointer before releasing the conn. */ 6534 next_connp = connp->conn_next; 6535 CONN_DEC_REF(connp); 6536 connp = next_connp; 6537 } 6538 6539 /* Last one. Send it upstream. */ 6540 mutex_exit(&connfp->connf_lock); 6541 6542 /* 6543 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6544 * will be set to false. 6545 */ 6546 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6547 ill_index = ill->ill_phyint->phyint_ifindex; 6548 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6549 if (mp == NULL) { 6550 CONN_DEC_REF(connp); 6551 if (mctl_present) { 6552 freeb(first_mp); 6553 } 6554 return; 6555 } 6556 } 6557 6558 rq = connp->conn_rq; 6559 if (!canputnext(rq)) { 6560 if (flags & IP_FF_RAWIP) { 6561 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6562 } else { 6563 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6564 } 6565 6566 freemsg(first_mp); 6567 } else { 6568 if (IPCL_IS_IPTUN(connp)) { 6569 /* 6570 * Tunneled packet. We enforce policy in the tunnel 6571 * module itself. 6572 * 6573 * Send the WHOLE packet up (incl. IPSEC_IN) without 6574 * a policy check. 6575 * FIXME to use conn_recv for tun later. 6576 */ 6577 putnext(rq, first_mp); 6578 CONN_DEC_REF(connp); 6579 return; 6580 } 6581 6582 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6583 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6584 ipha, NULL, mctl_present); 6585 } 6586 6587 if (first_mp != NULL) { 6588 int in_flags = 0; 6589 6590 /* 6591 * ip_fanout_proto also gets called 6592 * from icmp_inbound_error_fanout, in 6593 * which case the msg type is M_CTL. 6594 * Don't add info in this case for time 6595 * being. In future when there is a 6596 * need for knowing the inbound iface 6597 * index for ICMP error msgs, then this 6598 * can be changed 6599 */ 6600 if (connp->conn_recvif) 6601 in_flags = IPF_RECVIF; 6602 if (connp->conn_ip_recvpktinfo) { 6603 if (connp->conn_af_isv6) { 6604 /* 6605 * V6 only needs index 6606 */ 6607 in_flags |= IPF_RECVIF; 6608 } else { 6609 /* 6610 * V4 needs index + 6611 * matching address. 6612 */ 6613 in_flags |= IPF_RECVADDR; 6614 } 6615 } 6616 if ((in_flags != 0) && 6617 (mp->b_datap->db_type != M_CTL)) { 6618 6619 /* 6620 * the actual data will be contained in 6621 * b_cont upon successful return 6622 * of the following call else original 6623 * mblk is returned 6624 */ 6625 ASSERT(recv_ill != NULL); 6626 mp = ip_add_info(mp, recv_ill, 6627 in_flags, IPCL_ZONEID(connp), ipst); 6628 } 6629 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6630 (connp->conn_recv)(connp, mp, NULL); 6631 if (mctl_present) 6632 freeb(first_mp); 6633 } 6634 } 6635 CONN_DEC_REF(connp); 6636 } 6637 6638 /* 6639 * Fanout for TCP packets 6640 * The caller puts <fport, lport> in the ports parameter. 6641 * 6642 * IPQoS Notes 6643 * Before sending it to the client, invoke IPPF processing. 6644 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6645 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6646 * ip_policy is false. 6647 */ 6648 static void 6649 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6650 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6651 { 6652 mblk_t *first_mp; 6653 boolean_t secure; 6654 uint32_t ill_index; 6655 int ip_hdr_len; 6656 tcph_t *tcph; 6657 boolean_t syn_present = B_FALSE; 6658 conn_t *connp; 6659 ip_stack_t *ipst = recv_ill->ill_ipst; 6660 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6661 6662 ASSERT(recv_ill != NULL); 6663 6664 first_mp = mp; 6665 if (mctl_present) { 6666 ASSERT(first_mp->b_datap->db_type == M_CTL); 6667 mp = first_mp->b_cont; 6668 secure = ipsec_in_is_secure(first_mp); 6669 ASSERT(mp != NULL); 6670 } else { 6671 secure = B_FALSE; 6672 } 6673 6674 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6675 6676 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6677 zoneid, ipst)) == NULL) { 6678 /* 6679 * No connected connection or listener. Send a 6680 * TH_RST via tcp_xmit_listeners_reset. 6681 */ 6682 6683 /* Initiate IPPf processing, if needed. */ 6684 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6685 uint32_t ill_index; 6686 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6687 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6688 if (first_mp == NULL) 6689 return; 6690 } 6691 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6692 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6693 zoneid)); 6694 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6695 ipst->ips_netstack->netstack_tcp, NULL); 6696 return; 6697 } 6698 6699 /* 6700 * Allocate the SYN for the TCP connection here itself 6701 */ 6702 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6703 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6704 if (IPCL_IS_TCP(connp)) { 6705 squeue_t *sqp; 6706 6707 /* 6708 * For fused tcp loopback, assign the eager's 6709 * squeue to be that of the active connect's. 6710 * Note that we don't check for IP_FF_LOOPBACK 6711 * here since this routine gets called only 6712 * for loopback (unlike the IPv6 counterpart). 6713 */ 6714 ASSERT(Q_TO_CONN(q) != NULL); 6715 if (do_tcp_fusion && 6716 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6717 !secure && 6718 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6719 IPCL_IS_TCP(Q_TO_CONN(q))) { 6720 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6721 sqp = Q_TO_CONN(q)->conn_sqp; 6722 } else { 6723 sqp = IP_SQUEUE_GET(lbolt); 6724 } 6725 6726 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6727 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6728 syn_present = B_TRUE; 6729 } 6730 } 6731 6732 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6733 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6734 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6735 if ((flags & TH_RST) || (flags & TH_URG)) { 6736 CONN_DEC_REF(connp); 6737 freemsg(first_mp); 6738 return; 6739 } 6740 if (flags & TH_ACK) { 6741 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6742 ipst->ips_netstack->netstack_tcp, connp); 6743 CONN_DEC_REF(connp); 6744 return; 6745 } 6746 6747 CONN_DEC_REF(connp); 6748 freemsg(first_mp); 6749 return; 6750 } 6751 6752 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6753 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6754 NULL, mctl_present); 6755 if (first_mp == NULL) { 6756 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6757 CONN_DEC_REF(connp); 6758 return; 6759 } 6760 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6761 ASSERT(syn_present); 6762 if (mctl_present) { 6763 ASSERT(first_mp != mp); 6764 first_mp->b_datap->db_struioflag |= 6765 STRUIO_POLICY; 6766 } else { 6767 ASSERT(first_mp == mp); 6768 mp->b_datap->db_struioflag &= 6769 ~STRUIO_EAGER; 6770 mp->b_datap->db_struioflag |= 6771 STRUIO_POLICY; 6772 } 6773 } else { 6774 /* 6775 * Discard first_mp early since we're dealing with a 6776 * fully-connected conn_t and tcp doesn't do policy in 6777 * this case. 6778 */ 6779 if (mctl_present) { 6780 freeb(first_mp); 6781 mctl_present = B_FALSE; 6782 } 6783 first_mp = mp; 6784 } 6785 } 6786 6787 /* 6788 * Initiate policy processing here if needed. If we get here from 6789 * icmp_inbound_error_fanout, ip_policy is false. 6790 */ 6791 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6792 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6793 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6794 if (mp == NULL) { 6795 CONN_DEC_REF(connp); 6796 if (mctl_present) 6797 freeb(first_mp); 6798 return; 6799 } else if (mctl_present) { 6800 ASSERT(first_mp != mp); 6801 first_mp->b_cont = mp; 6802 } else { 6803 first_mp = mp; 6804 } 6805 } 6806 6807 6808 6809 /* Handle socket options. */ 6810 if (!syn_present && 6811 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6812 /* Add header */ 6813 ASSERT(recv_ill != NULL); 6814 /* 6815 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6816 * IPF_RECVIF. 6817 */ 6818 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6819 ipst); 6820 if (mp == NULL) { 6821 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6822 CONN_DEC_REF(connp); 6823 if (mctl_present) 6824 freeb(first_mp); 6825 return; 6826 } else if (mctl_present) { 6827 /* 6828 * ip_add_info might return a new mp. 6829 */ 6830 ASSERT(first_mp != mp); 6831 first_mp->b_cont = mp; 6832 } else { 6833 first_mp = mp; 6834 } 6835 } 6836 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6837 if (IPCL_IS_TCP(connp)) { 6838 /* do not drain, certain use cases can blow the stack */ 6839 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6840 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6841 } else { 6842 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6843 (connp->conn_recv)(connp, first_mp, NULL); 6844 CONN_DEC_REF(connp); 6845 } 6846 } 6847 6848 /* 6849 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6850 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6851 * is not consumed. 6852 * 6853 * One of four things can happen, all of which affect the passed-in mblk: 6854 * 6855 * 1.) ICMP messages that go through here just get returned TRUE. 6856 * 6857 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6858 * 6859 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6860 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6861 * 6862 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6863 */ 6864 static boolean_t 6865 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6866 ipsec_stack_t *ipss) 6867 { 6868 int shift, plen, iph_len; 6869 ipha_t *ipha; 6870 udpha_t *udpha; 6871 uint32_t *spi; 6872 uint32_t esp_ports; 6873 uint8_t *orptr; 6874 boolean_t free_ire; 6875 6876 if (DB_TYPE(mp) == M_CTL) { 6877 /* 6878 * ICMP message with UDP inside. Don't bother stripping, just 6879 * send it up. 6880 * 6881 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6882 * to ignore errors set by ICMP anyway ('cause they might be 6883 * forged), but that's the app's decision, not ours. 6884 */ 6885 6886 /* Bunch of reality checks for DEBUG kernels... */ 6887 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6888 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6889 6890 return (B_TRUE); 6891 } 6892 6893 ipha = (ipha_t *)mp->b_rptr; 6894 iph_len = IPH_HDR_LENGTH(ipha); 6895 plen = ntohs(ipha->ipha_length); 6896 6897 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6898 /* 6899 * Most likely a keepalive for the benefit of an intervening 6900 * NAT. These aren't for us, per se, so drop it. 6901 * 6902 * RFC 3947/8 doesn't say for sure what to do for 2-3 6903 * byte packets (keepalives are 1-byte), but we'll drop them 6904 * also. 6905 */ 6906 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6907 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6908 return (B_FALSE); 6909 } 6910 6911 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6912 /* might as well pull it all up - it might be ESP. */ 6913 if (!pullupmsg(mp, -1)) { 6914 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6915 DROPPER(ipss, ipds_esp_nomem), 6916 &ipss->ipsec_dropper); 6917 return (B_FALSE); 6918 } 6919 6920 ipha = (ipha_t *)mp->b_rptr; 6921 } 6922 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6923 if (*spi == 0) { 6924 /* UDP packet - remove 0-spi. */ 6925 shift = sizeof (uint32_t); 6926 } else { 6927 /* ESP-in-UDP packet - reduce to ESP. */ 6928 ipha->ipha_protocol = IPPROTO_ESP; 6929 shift = sizeof (udpha_t); 6930 } 6931 6932 /* Fix IP header */ 6933 ipha->ipha_length = htons(plen - shift); 6934 ipha->ipha_hdr_checksum = 0; 6935 6936 orptr = mp->b_rptr; 6937 mp->b_rptr += shift; 6938 6939 udpha = (udpha_t *)(orptr + iph_len); 6940 if (*spi == 0) { 6941 ASSERT((uint8_t *)ipha == orptr); 6942 udpha->uha_length = htons(plen - shift - iph_len); 6943 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6944 esp_ports = 0; 6945 } else { 6946 esp_ports = *((uint32_t *)udpha); 6947 ASSERT(esp_ports != 0); 6948 } 6949 ovbcopy(orptr, orptr + shift, iph_len); 6950 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6951 ipha = (ipha_t *)(orptr + shift); 6952 6953 free_ire = (ire == NULL); 6954 if (free_ire) { 6955 /* Re-acquire ire. */ 6956 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6957 ipss->ipsec_netstack->netstack_ip); 6958 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6959 if (ire != NULL) 6960 ire_refrele(ire); 6961 /* 6962 * Do a regular freemsg(), as this is an IP 6963 * error (no local route) not an IPsec one. 6964 */ 6965 freemsg(mp); 6966 } 6967 } 6968 6969 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6970 if (free_ire) 6971 ire_refrele(ire); 6972 } 6973 6974 return (esp_ports == 0); 6975 } 6976 6977 /* 6978 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6979 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6980 * Caller is responsible for dropping references to the conn, and freeing 6981 * first_mp. 6982 * 6983 * IPQoS Notes 6984 * Before sending it to the client, invoke IPPF processing. Policy processing 6985 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6986 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6987 * ip_wput_local, ip_policy is false. 6988 */ 6989 static void 6990 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6991 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6992 boolean_t ip_policy) 6993 { 6994 boolean_t mctl_present = (first_mp != NULL); 6995 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6996 uint32_t ill_index; 6997 ip_stack_t *ipst = recv_ill->ill_ipst; 6998 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6999 7000 ASSERT(ill != NULL); 7001 7002 if (mctl_present) 7003 first_mp->b_cont = mp; 7004 else 7005 first_mp = mp; 7006 7007 if (CONN_UDP_FLOWCTLD(connp)) { 7008 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7009 freemsg(first_mp); 7010 return; 7011 } 7012 7013 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7014 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7015 NULL, mctl_present); 7016 if (first_mp == NULL) { 7017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7018 return; /* Freed by ipsec_check_inbound_policy(). */ 7019 } 7020 } 7021 if (mctl_present) 7022 freeb(first_mp); 7023 7024 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7025 if (connp->conn_udp->udp_nat_t_endpoint) { 7026 if (mctl_present) { 7027 /* mctl_present *shouldn't* happen. */ 7028 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7029 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7030 &ipss->ipsec_dropper); 7031 return; 7032 } 7033 7034 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7035 return; 7036 } 7037 7038 /* Handle options. */ 7039 if (connp->conn_recvif) 7040 in_flags = IPF_RECVIF; 7041 /* 7042 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7043 * passed to ip_add_info is based on IP version of connp. 7044 */ 7045 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7046 if (connp->conn_af_isv6) { 7047 /* 7048 * V6 only needs index 7049 */ 7050 in_flags |= IPF_RECVIF; 7051 } else { 7052 /* 7053 * V4 needs index + matching address. 7054 */ 7055 in_flags |= IPF_RECVADDR; 7056 } 7057 } 7058 7059 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7060 in_flags |= IPF_RECVSLLA; 7061 7062 /* 7063 * Initiate IPPF processing here, if needed. Note first_mp won't be 7064 * freed if the packet is dropped. The caller will do so. 7065 */ 7066 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7067 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7068 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7069 if (mp == NULL) { 7070 return; 7071 } 7072 } 7073 if ((in_flags != 0) && 7074 (mp->b_datap->db_type != M_CTL)) { 7075 /* 7076 * The actual data will be contained in b_cont 7077 * upon successful return of the following call 7078 * else original mblk is returned 7079 */ 7080 ASSERT(recv_ill != NULL); 7081 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7082 ipst); 7083 } 7084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7085 /* Send it upstream */ 7086 (connp->conn_recv)(connp, mp, NULL); 7087 } 7088 7089 /* 7090 * Fanout for UDP packets. 7091 * The caller puts <fport, lport> in the ports parameter. 7092 * 7093 * If SO_REUSEADDR is set all multicast and broadcast packets 7094 * will be delivered to all streams bound to the same port. 7095 * 7096 * Zones notes: 7097 * Multicast and broadcast packets will be distributed to streams in all zones. 7098 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7099 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7100 * packets. To maintain this behavior with multiple zones, the conns are grouped 7101 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7102 * each zone. If unset, all the following conns in the same zone are skipped. 7103 */ 7104 static void 7105 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7106 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7107 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7108 { 7109 uint32_t dstport, srcport; 7110 ipaddr_t dst; 7111 mblk_t *first_mp; 7112 boolean_t secure; 7113 in6_addr_t v6src; 7114 conn_t *connp; 7115 connf_t *connfp; 7116 conn_t *first_connp; 7117 conn_t *next_connp; 7118 mblk_t *mp1, *first_mp1; 7119 ipaddr_t src; 7120 zoneid_t last_zoneid; 7121 boolean_t reuseaddr; 7122 boolean_t shared_addr; 7123 boolean_t unlabeled; 7124 ip_stack_t *ipst; 7125 7126 ASSERT(recv_ill != NULL); 7127 ipst = recv_ill->ill_ipst; 7128 7129 first_mp = mp; 7130 if (mctl_present) { 7131 mp = first_mp->b_cont; 7132 first_mp->b_cont = NULL; 7133 secure = ipsec_in_is_secure(first_mp); 7134 ASSERT(mp != NULL); 7135 } else { 7136 first_mp = NULL; 7137 secure = B_FALSE; 7138 } 7139 7140 /* Extract ports in net byte order */ 7141 dstport = htons(ntohl(ports) & 0xFFFF); 7142 srcport = htons(ntohl(ports) >> 16); 7143 dst = ipha->ipha_dst; 7144 src = ipha->ipha_src; 7145 7146 unlabeled = B_FALSE; 7147 if (is_system_labeled()) 7148 /* Cred cannot be null on IPv4 */ 7149 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7150 TSLF_UNLABELED) != 0; 7151 shared_addr = (zoneid == ALL_ZONES); 7152 if (shared_addr) { 7153 /* 7154 * No need to handle exclusive-stack zones since ALL_ZONES 7155 * only applies to the shared stack. 7156 */ 7157 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7158 /* 7159 * If no shared MLP is found, tsol_mlp_findzone returns 7160 * ALL_ZONES. In that case, we assume it's SLP, and 7161 * search for the zone based on the packet label. 7162 * 7163 * If there is such a zone, we prefer to find a 7164 * connection in it. Otherwise, we look for a 7165 * MAC-exempt connection in any zone whose label 7166 * dominates the default label on the packet. 7167 */ 7168 if (zoneid == ALL_ZONES) 7169 zoneid = tsol_packet_to_zoneid(mp); 7170 else 7171 unlabeled = B_FALSE; 7172 } 7173 7174 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7175 mutex_enter(&connfp->connf_lock); 7176 connp = connfp->connf_head; 7177 if (!broadcast && !CLASSD(dst)) { 7178 /* 7179 * Not broadcast or multicast. Send to the one (first) 7180 * client we find. No need to check conn_wantpacket() 7181 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7182 * IPv4 unicast packets. 7183 */ 7184 while ((connp != NULL) && 7185 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7186 (!IPCL_ZONE_MATCH(connp, zoneid) && 7187 !(unlabeled && connp->conn_mac_exempt)))) { 7188 /* 7189 * We keep searching since the conn did not match, 7190 * or its zone did not match and it is not either 7191 * an allzones conn or a mac exempt conn (if the 7192 * sender is unlabeled.) 7193 */ 7194 connp = connp->conn_next; 7195 } 7196 7197 if (connp == NULL || connp->conn_upq == NULL) 7198 goto notfound; 7199 7200 if (is_system_labeled() && 7201 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7202 connp)) 7203 goto notfound; 7204 7205 CONN_INC_REF(connp); 7206 mutex_exit(&connfp->connf_lock); 7207 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7208 flags, recv_ill, ip_policy); 7209 IP_STAT(ipst, ip_udp_fannorm); 7210 CONN_DEC_REF(connp); 7211 return; 7212 } 7213 7214 /* 7215 * Broadcast and multicast case 7216 * 7217 * Need to check conn_wantpacket(). 7218 * If SO_REUSEADDR has been set on the first we send the 7219 * packet to all clients that have joined the group and 7220 * match the port. 7221 */ 7222 7223 while (connp != NULL) { 7224 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7225 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7226 (!is_system_labeled() || 7227 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7228 connp))) 7229 break; 7230 connp = connp->conn_next; 7231 } 7232 7233 if (connp == NULL || connp->conn_upq == NULL) 7234 goto notfound; 7235 7236 first_connp = connp; 7237 /* 7238 * When SO_REUSEADDR is not set, send the packet only to the first 7239 * matching connection in its zone by keeping track of the zoneid. 7240 */ 7241 reuseaddr = first_connp->conn_reuseaddr; 7242 last_zoneid = first_connp->conn_zoneid; 7243 7244 CONN_INC_REF(connp); 7245 connp = connp->conn_next; 7246 for (;;) { 7247 while (connp != NULL) { 7248 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7249 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7250 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7251 (!is_system_labeled() || 7252 tsol_receive_local(mp, &dst, IPV4_VERSION, 7253 shared_addr, connp))) 7254 break; 7255 connp = connp->conn_next; 7256 } 7257 /* 7258 * Just copy the data part alone. The mctl part is 7259 * needed just for verifying policy and it is never 7260 * sent up. 7261 */ 7262 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7263 ((mp1 = copymsg(mp)) == NULL))) { 7264 /* 7265 * No more interested clients or memory 7266 * allocation failed 7267 */ 7268 connp = first_connp; 7269 break; 7270 } 7271 if (connp->conn_zoneid != last_zoneid) { 7272 /* 7273 * Update the zoneid so that the packet isn't sent to 7274 * any more conns in the same zone unless SO_REUSEADDR 7275 * is set. 7276 */ 7277 reuseaddr = connp->conn_reuseaddr; 7278 last_zoneid = connp->conn_zoneid; 7279 } 7280 if (first_mp != NULL) { 7281 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7282 ipsec_info_type == IPSEC_IN); 7283 first_mp1 = ipsec_in_tag(first_mp, NULL, 7284 ipst->ips_netstack); 7285 if (first_mp1 == NULL) { 7286 freemsg(mp1); 7287 connp = first_connp; 7288 break; 7289 } 7290 } else { 7291 first_mp1 = NULL; 7292 } 7293 CONN_INC_REF(connp); 7294 mutex_exit(&connfp->connf_lock); 7295 /* 7296 * IPQoS notes: We don't send the packet for policy 7297 * processing here, will do it for the last one (below). 7298 * i.e. we do it per-packet now, but if we do policy 7299 * processing per-conn, then we would need to do it 7300 * here too. 7301 */ 7302 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7303 ipha, flags, recv_ill, B_FALSE); 7304 mutex_enter(&connfp->connf_lock); 7305 /* Follow the next pointer before releasing the conn. */ 7306 next_connp = connp->conn_next; 7307 IP_STAT(ipst, ip_udp_fanmb); 7308 CONN_DEC_REF(connp); 7309 connp = next_connp; 7310 } 7311 7312 /* Last one. Send it upstream. */ 7313 mutex_exit(&connfp->connf_lock); 7314 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7315 recv_ill, ip_policy); 7316 IP_STAT(ipst, ip_udp_fanmb); 7317 CONN_DEC_REF(connp); 7318 return; 7319 7320 notfound: 7321 7322 mutex_exit(&connfp->connf_lock); 7323 IP_STAT(ipst, ip_udp_fanothers); 7324 /* 7325 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7326 * have already been matched above, since they live in the IPv4 7327 * fanout tables. This implies we only need to 7328 * check for IPv6 in6addr_any endpoints here. 7329 * Thus we compare using ipv6_all_zeros instead of the destination 7330 * address, except for the multicast group membership lookup which 7331 * uses the IPv4 destination. 7332 */ 7333 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7334 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7335 mutex_enter(&connfp->connf_lock); 7336 connp = connfp->connf_head; 7337 if (!broadcast && !CLASSD(dst)) { 7338 while (connp != NULL) { 7339 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7340 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7341 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7342 !connp->conn_ipv6_v6only) 7343 break; 7344 connp = connp->conn_next; 7345 } 7346 7347 if (connp != NULL && is_system_labeled() && 7348 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7349 connp)) 7350 connp = NULL; 7351 7352 if (connp == NULL || connp->conn_upq == NULL) { 7353 /* 7354 * No one bound to this port. Is 7355 * there a client that wants all 7356 * unclaimed datagrams? 7357 */ 7358 mutex_exit(&connfp->connf_lock); 7359 7360 if (mctl_present) 7361 first_mp->b_cont = mp; 7362 else 7363 first_mp = mp; 7364 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7365 connf_head != NULL) { 7366 ip_fanout_proto(q, first_mp, ill, ipha, 7367 flags | IP_FF_RAWIP, mctl_present, 7368 ip_policy, recv_ill, zoneid); 7369 } else { 7370 if (ip_fanout_send_icmp(q, first_mp, flags, 7371 ICMP_DEST_UNREACHABLE, 7372 ICMP_PORT_UNREACHABLE, 7373 mctl_present, zoneid, ipst)) { 7374 BUMP_MIB(ill->ill_ip_mib, 7375 udpIfStatsNoPorts); 7376 } 7377 } 7378 return; 7379 } 7380 7381 CONN_INC_REF(connp); 7382 mutex_exit(&connfp->connf_lock); 7383 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7384 flags, recv_ill, ip_policy); 7385 CONN_DEC_REF(connp); 7386 return; 7387 } 7388 /* 7389 * IPv4 multicast packet being delivered to an AF_INET6 7390 * in6addr_any endpoint. 7391 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7392 * and not conn_wantpacket_v6() since any multicast membership is 7393 * for an IPv4-mapped multicast address. 7394 * The packet is sent to all clients in all zones that have joined the 7395 * group and match the port. 7396 */ 7397 while (connp != NULL) { 7398 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7399 srcport, v6src) && 7400 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7401 (!is_system_labeled() || 7402 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7403 connp))) 7404 break; 7405 connp = connp->conn_next; 7406 } 7407 7408 if (connp == NULL || connp->conn_upq == NULL) { 7409 /* 7410 * No one bound to this port. Is 7411 * there a client that wants all 7412 * unclaimed datagrams? 7413 */ 7414 mutex_exit(&connfp->connf_lock); 7415 7416 if (mctl_present) 7417 first_mp->b_cont = mp; 7418 else 7419 first_mp = mp; 7420 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7421 NULL) { 7422 ip_fanout_proto(q, first_mp, ill, ipha, 7423 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7424 recv_ill, zoneid); 7425 } else { 7426 /* 7427 * We used to attempt to send an icmp error here, but 7428 * since this is known to be a multicast packet 7429 * and we don't send icmp errors in response to 7430 * multicast, just drop the packet and give up sooner. 7431 */ 7432 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7433 freemsg(first_mp); 7434 } 7435 return; 7436 } 7437 7438 first_connp = connp; 7439 7440 CONN_INC_REF(connp); 7441 connp = connp->conn_next; 7442 for (;;) { 7443 while (connp != NULL) { 7444 if (IPCL_UDP_MATCH_V6(connp, dstport, 7445 ipv6_all_zeros, srcport, v6src) && 7446 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7447 (!is_system_labeled() || 7448 tsol_receive_local(mp, &dst, IPV4_VERSION, 7449 shared_addr, connp))) 7450 break; 7451 connp = connp->conn_next; 7452 } 7453 /* 7454 * Just copy the data part alone. The mctl part is 7455 * needed just for verifying policy and it is never 7456 * sent up. 7457 */ 7458 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7459 ((mp1 = copymsg(mp)) == NULL))) { 7460 /* 7461 * No more intested clients or memory 7462 * allocation failed 7463 */ 7464 connp = first_connp; 7465 break; 7466 } 7467 if (first_mp != NULL) { 7468 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7469 ipsec_info_type == IPSEC_IN); 7470 first_mp1 = ipsec_in_tag(first_mp, NULL, 7471 ipst->ips_netstack); 7472 if (first_mp1 == NULL) { 7473 freemsg(mp1); 7474 connp = first_connp; 7475 break; 7476 } 7477 } else { 7478 first_mp1 = NULL; 7479 } 7480 CONN_INC_REF(connp); 7481 mutex_exit(&connfp->connf_lock); 7482 /* 7483 * IPQoS notes: We don't send the packet for policy 7484 * processing here, will do it for the last one (below). 7485 * i.e. we do it per-packet now, but if we do policy 7486 * processing per-conn, then we would need to do it 7487 * here too. 7488 */ 7489 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7490 ipha, flags, recv_ill, B_FALSE); 7491 mutex_enter(&connfp->connf_lock); 7492 /* Follow the next pointer before releasing the conn. */ 7493 next_connp = connp->conn_next; 7494 CONN_DEC_REF(connp); 7495 connp = next_connp; 7496 } 7497 7498 /* Last one. Send it upstream. */ 7499 mutex_exit(&connfp->connf_lock); 7500 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7501 recv_ill, ip_policy); 7502 CONN_DEC_REF(connp); 7503 } 7504 7505 /* 7506 * Complete the ip_wput header so that it 7507 * is possible to generate ICMP 7508 * errors. 7509 */ 7510 int 7511 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7512 { 7513 ire_t *ire; 7514 7515 if (ipha->ipha_src == INADDR_ANY) { 7516 ire = ire_lookup_local(zoneid, ipst); 7517 if (ire == NULL) { 7518 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7519 return (1); 7520 } 7521 ipha->ipha_src = ire->ire_addr; 7522 ire_refrele(ire); 7523 } 7524 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7525 ipha->ipha_hdr_checksum = 0; 7526 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7527 return (0); 7528 } 7529 7530 /* 7531 * Nobody should be sending 7532 * packets up this stream 7533 */ 7534 static void 7535 ip_lrput(queue_t *q, mblk_t *mp) 7536 { 7537 mblk_t *mp1; 7538 7539 switch (mp->b_datap->db_type) { 7540 case M_FLUSH: 7541 /* Turn around */ 7542 if (*mp->b_rptr & FLUSHW) { 7543 *mp->b_rptr &= ~FLUSHR; 7544 qreply(q, mp); 7545 return; 7546 } 7547 break; 7548 } 7549 /* Could receive messages that passed through ar_rput */ 7550 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7551 mp1->b_prev = mp1->b_next = NULL; 7552 freemsg(mp); 7553 } 7554 7555 /* Nobody should be sending packets down this stream */ 7556 /* ARGSUSED */ 7557 void 7558 ip_lwput(queue_t *q, mblk_t *mp) 7559 { 7560 freemsg(mp); 7561 } 7562 7563 /* 7564 * Move the first hop in any source route to ipha_dst and remove that part of 7565 * the source route. Called by other protocols. Errors in option formatting 7566 * are ignored - will be handled by ip_wput_options Return the final 7567 * destination (either ipha_dst or the last entry in a source route.) 7568 */ 7569 ipaddr_t 7570 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7571 { 7572 ipoptp_t opts; 7573 uchar_t *opt; 7574 uint8_t optval; 7575 uint8_t optlen; 7576 ipaddr_t dst; 7577 int i; 7578 ire_t *ire; 7579 ip_stack_t *ipst = ns->netstack_ip; 7580 7581 ip2dbg(("ip_massage_options\n")); 7582 dst = ipha->ipha_dst; 7583 for (optval = ipoptp_first(&opts, ipha); 7584 optval != IPOPT_EOL; 7585 optval = ipoptp_next(&opts)) { 7586 opt = opts.ipoptp_cur; 7587 switch (optval) { 7588 uint8_t off; 7589 case IPOPT_SSRR: 7590 case IPOPT_LSRR: 7591 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7592 ip1dbg(("ip_massage_options: bad src route\n")); 7593 break; 7594 } 7595 optlen = opts.ipoptp_len; 7596 off = opt[IPOPT_OFFSET]; 7597 off--; 7598 redo_srr: 7599 if (optlen < IP_ADDR_LEN || 7600 off > optlen - IP_ADDR_LEN) { 7601 /* End of source route */ 7602 ip1dbg(("ip_massage_options: end of SR\n")); 7603 break; 7604 } 7605 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7606 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7607 ntohl(dst))); 7608 /* 7609 * Check if our address is present more than 7610 * once as consecutive hops in source route. 7611 * XXX verify per-interface ip_forwarding 7612 * for source route? 7613 */ 7614 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7615 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7616 if (ire != NULL) { 7617 ire_refrele(ire); 7618 off += IP_ADDR_LEN; 7619 goto redo_srr; 7620 } 7621 if (dst == htonl(INADDR_LOOPBACK)) { 7622 ip1dbg(("ip_massage_options: loopback addr in " 7623 "source route!\n")); 7624 break; 7625 } 7626 /* 7627 * Update ipha_dst to be the first hop and remove the 7628 * first hop from the source route (by overwriting 7629 * part of the option with NOP options). 7630 */ 7631 ipha->ipha_dst = dst; 7632 /* Put the last entry in dst */ 7633 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7634 3; 7635 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7636 7637 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7638 ntohl(dst))); 7639 /* Move down and overwrite */ 7640 opt[IP_ADDR_LEN] = opt[0]; 7641 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7642 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7643 for (i = 0; i < IP_ADDR_LEN; i++) 7644 opt[i] = IPOPT_NOP; 7645 break; 7646 } 7647 } 7648 return (dst); 7649 } 7650 7651 /* 7652 * Return the network mask 7653 * associated with the specified address. 7654 */ 7655 ipaddr_t 7656 ip_net_mask(ipaddr_t addr) 7657 { 7658 uchar_t *up = (uchar_t *)&addr; 7659 ipaddr_t mask = 0; 7660 uchar_t *maskp = (uchar_t *)&mask; 7661 7662 #if defined(__i386) || defined(__amd64) 7663 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7664 #endif 7665 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7666 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7667 #endif 7668 if (CLASSD(addr)) { 7669 maskp[0] = 0xF0; 7670 return (mask); 7671 } 7672 7673 /* We assume Class E default netmask to be 32 */ 7674 if (CLASSE(addr)) 7675 return (0xffffffffU); 7676 7677 if (addr == 0) 7678 return (0); 7679 maskp[0] = 0xFF; 7680 if ((up[0] & 0x80) == 0) 7681 return (mask); 7682 7683 maskp[1] = 0xFF; 7684 if ((up[0] & 0xC0) == 0x80) 7685 return (mask); 7686 7687 maskp[2] = 0xFF; 7688 if ((up[0] & 0xE0) == 0xC0) 7689 return (mask); 7690 7691 /* Otherwise return no mask */ 7692 return ((ipaddr_t)0); 7693 } 7694 7695 /* 7696 * Select an ill for the packet by considering load spreading across 7697 * a different ill in the group if dst_ill is part of some group. 7698 */ 7699 ill_t * 7700 ip_newroute_get_dst_ill(ill_t *dst_ill) 7701 { 7702 ill_t *ill; 7703 7704 /* 7705 * We schedule irrespective of whether the source address is 7706 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7707 */ 7708 ill = illgrp_scheduler(dst_ill); 7709 if (ill == NULL) 7710 return (NULL); 7711 7712 /* 7713 * For groups with names ip_sioctl_groupname ensures that all 7714 * ills are of same type. For groups without names, ifgrp_insert 7715 * ensures this. 7716 */ 7717 ASSERT(dst_ill->ill_type == ill->ill_type); 7718 7719 return (ill); 7720 } 7721 7722 /* 7723 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7724 */ 7725 ill_t * 7726 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7727 ip_stack_t *ipst) 7728 { 7729 ill_t *ret_ill; 7730 7731 ASSERT(ifindex != 0); 7732 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7733 ipst); 7734 if (ret_ill == NULL || 7735 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7736 if (isv6) { 7737 if (ill != NULL) { 7738 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7739 } else { 7740 BUMP_MIB(&ipst->ips_ip6_mib, 7741 ipIfStatsOutDiscards); 7742 } 7743 ip1dbg(("ip_grab_attach_ill (IPv6): " 7744 "bad ifindex %d.\n", ifindex)); 7745 } else { 7746 if (ill != NULL) { 7747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7748 } else { 7749 BUMP_MIB(&ipst->ips_ip_mib, 7750 ipIfStatsOutDiscards); 7751 } 7752 ip1dbg(("ip_grab_attach_ill (IPv4): " 7753 "bad ifindex %d.\n", ifindex)); 7754 } 7755 if (ret_ill != NULL) 7756 ill_refrele(ret_ill); 7757 freemsg(first_mp); 7758 return (NULL); 7759 } 7760 7761 return (ret_ill); 7762 } 7763 7764 /* 7765 * IPv4 - 7766 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7767 * out a packet to a destination address for which we do not have specific 7768 * (or sufficient) routing information. 7769 * 7770 * NOTE : These are the scopes of some of the variables that point at IRE, 7771 * which needs to be followed while making any future modifications 7772 * to avoid memory leaks. 7773 * 7774 * - ire and sire are the entries looked up initially by 7775 * ire_ftable_lookup. 7776 * - ipif_ire is used to hold the interface ire associated with 7777 * the new cache ire. But it's scope is limited, so we always REFRELE 7778 * it before branching out to error paths. 7779 * - save_ire is initialized before ire_create, so that ire returned 7780 * by ire_create will not over-write the ire. We REFRELE save_ire 7781 * before breaking out of the switch. 7782 * 7783 * Thus on failures, we have to REFRELE only ire and sire, if they 7784 * are not NULL. 7785 */ 7786 void 7787 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7788 zoneid_t zoneid, ip_stack_t *ipst) 7789 { 7790 areq_t *areq; 7791 ipaddr_t gw = 0; 7792 ire_t *ire = NULL; 7793 mblk_t *res_mp; 7794 ipaddr_t *addrp; 7795 ipaddr_t nexthop_addr; 7796 ipif_t *src_ipif = NULL; 7797 ill_t *dst_ill = NULL; 7798 ipha_t *ipha; 7799 ire_t *sire = NULL; 7800 mblk_t *first_mp; 7801 ire_t *save_ire; 7802 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7803 ushort_t ire_marks = 0; 7804 boolean_t mctl_present; 7805 ipsec_out_t *io; 7806 mblk_t *saved_mp; 7807 ire_t *first_sire = NULL; 7808 mblk_t *copy_mp = NULL; 7809 mblk_t *xmit_mp = NULL; 7810 ipaddr_t save_dst; 7811 uint32_t multirt_flags = 7812 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7813 boolean_t multirt_is_resolvable; 7814 boolean_t multirt_resolve_next; 7815 boolean_t unspec_src; 7816 boolean_t do_attach_ill = B_FALSE; 7817 boolean_t ip_nexthop = B_FALSE; 7818 tsol_ire_gw_secattr_t *attrp = NULL; 7819 tsol_gcgrp_t *gcgrp = NULL; 7820 tsol_gcgrp_addr_t ga; 7821 7822 if (ip_debug > 2) { 7823 /* ip1dbg */ 7824 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7825 } 7826 7827 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7828 if (mctl_present) { 7829 io = (ipsec_out_t *)first_mp->b_rptr; 7830 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7831 ASSERT(zoneid == io->ipsec_out_zoneid); 7832 ASSERT(zoneid != ALL_ZONES); 7833 } 7834 7835 ipha = (ipha_t *)mp->b_rptr; 7836 7837 /* All multicast lookups come through ip_newroute_ipif() */ 7838 if (CLASSD(dst)) { 7839 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7840 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7841 freemsg(first_mp); 7842 return; 7843 } 7844 7845 if (mctl_present && io->ipsec_out_attach_if) { 7846 /* ip_grab_attach_ill returns a held ill */ 7847 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7848 io->ipsec_out_ill_index, B_FALSE, ipst); 7849 7850 /* Failure case frees things for us. */ 7851 if (attach_ill == NULL) 7852 return; 7853 7854 /* 7855 * Check if we need an ire that will not be 7856 * looked up by anybody else i.e. HIDDEN. 7857 */ 7858 if (ill_is_probeonly(attach_ill)) 7859 ire_marks = IRE_MARK_HIDDEN; 7860 } 7861 if (mctl_present && io->ipsec_out_ip_nexthop) { 7862 ip_nexthop = B_TRUE; 7863 nexthop_addr = io->ipsec_out_nexthop_addr; 7864 } 7865 /* 7866 * If this IRE is created for forwarding or it is not for 7867 * traffic for congestion controlled protocols, mark it as temporary. 7868 */ 7869 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7870 ire_marks |= IRE_MARK_TEMPORARY; 7871 7872 /* 7873 * Get what we can from ire_ftable_lookup which will follow an IRE 7874 * chain until it gets the most specific information available. 7875 * For example, we know that there is no IRE_CACHE for this dest, 7876 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7877 * ire_ftable_lookup will look up the gateway, etc. 7878 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7879 * to the destination, of equal netmask length in the forward table, 7880 * will be recursively explored. If no information is available 7881 * for the final gateway of that route, we force the returned ire 7882 * to be equal to sire using MATCH_IRE_PARENT. 7883 * At least, in this case we have a starting point (in the buckets) 7884 * to look for other routes to the destination in the forward table. 7885 * This is actually used only for multirouting, where a list 7886 * of routes has to be processed in sequence. 7887 * 7888 * In the process of coming up with the most specific information, 7889 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7890 * for the gateway (i.e., one for which the ire_nce->nce_state is 7891 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7892 * Two caveats when handling incomplete ire's in ip_newroute: 7893 * - we should be careful when accessing its ire_nce (specifically 7894 * the nce_res_mp) ast it might change underneath our feet, and, 7895 * - not all legacy code path callers are prepared to handle 7896 * incomplete ire's, so we should not create/add incomplete 7897 * ire_cache entries here. (See discussion about temporary solution 7898 * further below). 7899 * 7900 * In order to minimize packet dropping, and to preserve existing 7901 * behavior, we treat this case as if there were no IRE_CACHE for the 7902 * gateway, and instead use the IF_RESOLVER ire to send out 7903 * another request to ARP (this is achieved by passing the 7904 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7905 * arp response comes back in ip_wput_nondata, we will create 7906 * a per-dst ire_cache that has an ND_COMPLETE ire. 7907 * 7908 * Note that this is a temporary solution; the correct solution is 7909 * to create an incomplete per-dst ire_cache entry, and send the 7910 * packet out when the gw's nce is resolved. In order to achieve this, 7911 * all packet processing must have been completed prior to calling 7912 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7913 * to be modified to accomodate this solution. 7914 */ 7915 if (ip_nexthop) { 7916 /* 7917 * The first time we come here, we look for an IRE_INTERFACE 7918 * entry for the specified nexthop, set the dst to be the 7919 * nexthop address and create an IRE_CACHE entry for the 7920 * nexthop. The next time around, we are able to find an 7921 * IRE_CACHE entry for the nexthop, set the gateway to be the 7922 * nexthop address and create an IRE_CACHE entry for the 7923 * destination address via the specified nexthop. 7924 */ 7925 ire = ire_cache_lookup(nexthop_addr, zoneid, 7926 MBLK_GETLABEL(mp), ipst); 7927 if (ire != NULL) { 7928 gw = nexthop_addr; 7929 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7930 } else { 7931 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7932 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7933 MBLK_GETLABEL(mp), 7934 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7935 ipst); 7936 if (ire != NULL) { 7937 dst = nexthop_addr; 7938 } 7939 } 7940 } else if (attach_ill == NULL) { 7941 ire = ire_ftable_lookup(dst, 0, 0, 0, 7942 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7943 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7944 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7945 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7946 ipst); 7947 } else { 7948 /* 7949 * attach_ill is set only for communicating with 7950 * on-link hosts. So, don't look for DEFAULT. 7951 */ 7952 ipif_t *attach_ipif; 7953 7954 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7955 if (attach_ipif == NULL) { 7956 ill_refrele(attach_ill); 7957 goto icmp_err_ret; 7958 } 7959 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7960 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7961 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7962 MATCH_IRE_SECATTR, ipst); 7963 ipif_refrele(attach_ipif); 7964 } 7965 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7966 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7967 7968 /* 7969 * This loop is run only once in most cases. 7970 * We loop to resolve further routes only when the destination 7971 * can be reached through multiple RTF_MULTIRT-flagged ires. 7972 */ 7973 do { 7974 /* Clear the previous iteration's values */ 7975 if (src_ipif != NULL) { 7976 ipif_refrele(src_ipif); 7977 src_ipif = NULL; 7978 } 7979 if (dst_ill != NULL) { 7980 ill_refrele(dst_ill); 7981 dst_ill = NULL; 7982 } 7983 7984 multirt_resolve_next = B_FALSE; 7985 /* 7986 * We check if packets have to be multirouted. 7987 * In this case, given the current <ire, sire> couple, 7988 * we look for the next suitable <ire, sire>. 7989 * This check is done in ire_multirt_lookup(), 7990 * which applies various criteria to find the next route 7991 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7992 * unchanged if it detects it has not been tried yet. 7993 */ 7994 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7995 ip3dbg(("ip_newroute: starting next_resolution " 7996 "with first_mp %p, tag %d\n", 7997 (void *)first_mp, 7998 MULTIRT_DEBUG_TAGGED(first_mp))); 7999 8000 ASSERT(sire != NULL); 8001 multirt_is_resolvable = 8002 ire_multirt_lookup(&ire, &sire, multirt_flags, 8003 MBLK_GETLABEL(mp), ipst); 8004 8005 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8006 "ire %p, sire %p\n", 8007 multirt_is_resolvable, 8008 (void *)ire, (void *)sire)); 8009 8010 if (!multirt_is_resolvable) { 8011 /* 8012 * No more multirt route to resolve; give up 8013 * (all routes resolved or no more 8014 * resolvable routes). 8015 */ 8016 if (ire != NULL) { 8017 ire_refrele(ire); 8018 ire = NULL; 8019 } 8020 } else { 8021 ASSERT(sire != NULL); 8022 ASSERT(ire != NULL); 8023 /* 8024 * We simply use first_sire as a flag that 8025 * indicates if a resolvable multirt route 8026 * has already been found. 8027 * If it is not the case, we may have to send 8028 * an ICMP error to report that the 8029 * destination is unreachable. 8030 * We do not IRE_REFHOLD first_sire. 8031 */ 8032 if (first_sire == NULL) { 8033 first_sire = sire; 8034 } 8035 } 8036 } 8037 if (ire == NULL) { 8038 if (ip_debug > 3) { 8039 /* ip2dbg */ 8040 pr_addr_dbg("ip_newroute: " 8041 "can't resolve %s\n", AF_INET, &dst); 8042 } 8043 ip3dbg(("ip_newroute: " 8044 "ire %p, sire %p, first_sire %p\n", 8045 (void *)ire, (void *)sire, (void *)first_sire)); 8046 8047 if (sire != NULL) { 8048 ire_refrele(sire); 8049 sire = NULL; 8050 } 8051 8052 if (first_sire != NULL) { 8053 /* 8054 * At least one multirt route has been found 8055 * in the same call to ip_newroute(); 8056 * there is no need to report an ICMP error. 8057 * first_sire was not IRE_REFHOLDed. 8058 */ 8059 MULTIRT_DEBUG_UNTAG(first_mp); 8060 freemsg(first_mp); 8061 return; 8062 } 8063 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8064 RTA_DST, ipst); 8065 if (attach_ill != NULL) 8066 ill_refrele(attach_ill); 8067 goto icmp_err_ret; 8068 } 8069 8070 /* 8071 * Verify that the returned IRE does not have either 8072 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8073 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8074 */ 8075 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8076 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8077 if (attach_ill != NULL) 8078 ill_refrele(attach_ill); 8079 goto icmp_err_ret; 8080 } 8081 /* 8082 * Increment the ire_ob_pkt_count field for ire if it is an 8083 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8084 * increment the same for the parent IRE, sire, if it is some 8085 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8086 */ 8087 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8088 UPDATE_OB_PKT_COUNT(ire); 8089 ire->ire_last_used_time = lbolt; 8090 } 8091 8092 if (sire != NULL) { 8093 gw = sire->ire_gateway_addr; 8094 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8095 IRE_INTERFACE)) == 0); 8096 UPDATE_OB_PKT_COUNT(sire); 8097 sire->ire_last_used_time = lbolt; 8098 } 8099 /* 8100 * We have a route to reach the destination. 8101 * 8102 * 1) If the interface is part of ill group, try to get a new 8103 * ill taking load spreading into account. 8104 * 8105 * 2) After selecting the ill, get a source address that 8106 * might create good inbound load spreading. 8107 * ipif_select_source does this for us. 8108 * 8109 * If the application specified the ill (ifindex), we still 8110 * load spread. Only if the packets needs to go out 8111 * specifically on a given ill e.g. binding to 8112 * IPIF_NOFAILOVER address, then we don't try to use a 8113 * different ill for load spreading. 8114 */ 8115 if (attach_ill == NULL) { 8116 /* 8117 * Don't perform outbound load spreading in the 8118 * case of an RTF_MULTIRT route, as we actually 8119 * typically want to replicate outgoing packets 8120 * through particular interfaces. 8121 */ 8122 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8123 dst_ill = ire->ire_ipif->ipif_ill; 8124 /* for uniformity */ 8125 ill_refhold(dst_ill); 8126 } else { 8127 /* 8128 * If we are here trying to create an IRE_CACHE 8129 * for an offlink destination and have the 8130 * IRE_CACHE for the next hop and the latter is 8131 * using virtual IP source address selection i.e 8132 * it's ire->ire_ipif is pointing to a virtual 8133 * network interface (vni) then 8134 * ip_newroute_get_dst_ll() will return the vni 8135 * interface as the dst_ill. Since the vni is 8136 * virtual i.e not associated with any physical 8137 * interface, it cannot be the dst_ill, hence 8138 * in such a case call ip_newroute_get_dst_ll() 8139 * with the stq_ill instead of the ire_ipif ILL. 8140 * The function returns a refheld ill. 8141 */ 8142 if ((ire->ire_type == IRE_CACHE) && 8143 IS_VNI(ire->ire_ipif->ipif_ill)) 8144 dst_ill = ip_newroute_get_dst_ill( 8145 ire->ire_stq->q_ptr); 8146 else 8147 dst_ill = ip_newroute_get_dst_ill( 8148 ire->ire_ipif->ipif_ill); 8149 } 8150 if (dst_ill == NULL) { 8151 if (ip_debug > 2) { 8152 pr_addr_dbg("ip_newroute: " 8153 "no dst ill for dst" 8154 " %s\n", AF_INET, &dst); 8155 } 8156 goto icmp_err_ret; 8157 } 8158 } else { 8159 dst_ill = ire->ire_ipif->ipif_ill; 8160 /* for uniformity */ 8161 ill_refhold(dst_ill); 8162 /* 8163 * We should have found a route matching ill as we 8164 * called ire_ftable_lookup with MATCH_IRE_ILL. 8165 * Rather than asserting, when there is a mismatch, 8166 * we just drop the packet. 8167 */ 8168 if (dst_ill != attach_ill) { 8169 ip0dbg(("ip_newroute: Packet dropped as " 8170 "IPIF_NOFAILOVER ill is %s, " 8171 "ire->ire_ipif->ipif_ill is %s\n", 8172 attach_ill->ill_name, 8173 dst_ill->ill_name)); 8174 ill_refrele(attach_ill); 8175 goto icmp_err_ret; 8176 } 8177 } 8178 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8179 if (attach_ill != NULL) { 8180 ill_refrele(attach_ill); 8181 attach_ill = NULL; 8182 do_attach_ill = B_TRUE; 8183 } 8184 ASSERT(dst_ill != NULL); 8185 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8186 8187 /* 8188 * Pick the best source address from dst_ill. 8189 * 8190 * 1) If it is part of a multipathing group, we would 8191 * like to spread the inbound packets across different 8192 * interfaces. ipif_select_source picks a random source 8193 * across the different ills in the group. 8194 * 8195 * 2) If it is not part of a multipathing group, we try 8196 * to pick the source address from the destination 8197 * route. Clustering assumes that when we have multiple 8198 * prefixes hosted on an interface, the prefix of the 8199 * source address matches the prefix of the destination 8200 * route. We do this only if the address is not 8201 * DEPRECATED. 8202 * 8203 * 3) If the conn is in a different zone than the ire, we 8204 * need to pick a source address from the right zone. 8205 * 8206 * NOTE : If we hit case (1) above, the prefix of the source 8207 * address picked may not match the prefix of the 8208 * destination routes prefix as ipif_select_source 8209 * does not look at "dst" while picking a source 8210 * address. 8211 * If we want the same behavior as (2), we will need 8212 * to change the behavior of ipif_select_source. 8213 */ 8214 ASSERT(src_ipif == NULL); 8215 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8216 /* 8217 * The RTF_SETSRC flag is set in the parent ire (sire). 8218 * Check that the ipif matching the requested source 8219 * address still exists. 8220 */ 8221 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8222 zoneid, NULL, NULL, NULL, NULL, ipst); 8223 } 8224 8225 unspec_src = (connp != NULL && connp->conn_unspec_src); 8226 8227 if (src_ipif == NULL && 8228 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8229 ire_marks |= IRE_MARK_USESRC_CHECK; 8230 if ((dst_ill->ill_group != NULL) || 8231 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8232 (connp != NULL && ire->ire_zoneid != zoneid && 8233 ire->ire_zoneid != ALL_ZONES) || 8234 (dst_ill->ill_usesrc_ifindex != 0)) { 8235 /* 8236 * If the destination is reachable via a 8237 * given gateway, the selected source address 8238 * should be in the same subnet as the gateway. 8239 * Otherwise, the destination is not reachable. 8240 * 8241 * If there are no interfaces on the same subnet 8242 * as the destination, ipif_select_source gives 8243 * first non-deprecated interface which might be 8244 * on a different subnet than the gateway. 8245 * This is not desirable. Hence pass the dst_ire 8246 * source address to ipif_select_source. 8247 * It is sure that the destination is reachable 8248 * with the dst_ire source address subnet. 8249 * So passing dst_ire source address to 8250 * ipif_select_source will make sure that the 8251 * selected source will be on the same subnet 8252 * as dst_ire source address. 8253 */ 8254 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8255 src_ipif = ipif_select_source(dst_ill, saddr, 8256 zoneid); 8257 if (src_ipif == NULL) { 8258 if (ip_debug > 2) { 8259 pr_addr_dbg("ip_newroute: " 8260 "no src for dst %s ", 8261 AF_INET, &dst); 8262 printf("through interface %s\n", 8263 dst_ill->ill_name); 8264 } 8265 goto icmp_err_ret; 8266 } 8267 } else { 8268 src_ipif = ire->ire_ipif; 8269 ASSERT(src_ipif != NULL); 8270 /* hold src_ipif for uniformity */ 8271 ipif_refhold(src_ipif); 8272 } 8273 } 8274 8275 /* 8276 * Assign a source address while we have the conn. 8277 * We can't have ip_wput_ire pick a source address when the 8278 * packet returns from arp since we need to look at 8279 * conn_unspec_src and conn_zoneid, and we lose the conn when 8280 * going through arp. 8281 * 8282 * NOTE : ip_newroute_v6 does not have this piece of code as 8283 * it uses ip6i to store this information. 8284 */ 8285 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8286 ipha->ipha_src = src_ipif->ipif_src_addr; 8287 8288 if (ip_debug > 3) { 8289 /* ip2dbg */ 8290 pr_addr_dbg("ip_newroute: first hop %s\n", 8291 AF_INET, &gw); 8292 } 8293 ip2dbg(("\tire type %s (%d)\n", 8294 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8295 8296 /* 8297 * The TTL of multirouted packets is bounded by the 8298 * ip_multirt_ttl ndd variable. 8299 */ 8300 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8301 /* Force TTL of multirouted packets */ 8302 if ((ipst->ips_ip_multirt_ttl > 0) && 8303 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8304 ip2dbg(("ip_newroute: forcing multirt TTL " 8305 "to %d (was %d), dst 0x%08x\n", 8306 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8307 ntohl(sire->ire_addr))); 8308 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8309 } 8310 } 8311 /* 8312 * At this point in ip_newroute(), ire is either the 8313 * IRE_CACHE of the next-hop gateway for an off-subnet 8314 * destination or an IRE_INTERFACE type that should be used 8315 * to resolve an on-subnet destination or an on-subnet 8316 * next-hop gateway. 8317 * 8318 * In the IRE_CACHE case, we have the following : 8319 * 8320 * 1) src_ipif - used for getting a source address. 8321 * 8322 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8323 * means packets using this IRE_CACHE will go out on 8324 * dst_ill. 8325 * 8326 * 3) The IRE sire will point to the prefix that is the 8327 * longest matching route for the destination. These 8328 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8329 * 8330 * The newly created IRE_CACHE entry for the off-subnet 8331 * destination is tied to both the prefix route and the 8332 * interface route used to resolve the next-hop gateway 8333 * via the ire_phandle and ire_ihandle fields, 8334 * respectively. 8335 * 8336 * In the IRE_INTERFACE case, we have the following : 8337 * 8338 * 1) src_ipif - used for getting a source address. 8339 * 8340 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8341 * means packets using the IRE_CACHE that we will build 8342 * here will go out on dst_ill. 8343 * 8344 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8345 * to be created will only be tied to the IRE_INTERFACE 8346 * that was derived from the ire_ihandle field. 8347 * 8348 * If sire is non-NULL, it means the destination is 8349 * off-link and we will first create the IRE_CACHE for the 8350 * gateway. Next time through ip_newroute, we will create 8351 * the IRE_CACHE for the final destination as described 8352 * above. 8353 * 8354 * In both cases, after the current resolution has been 8355 * completed (or possibly initialised, in the IRE_INTERFACE 8356 * case), the loop may be re-entered to attempt the resolution 8357 * of another RTF_MULTIRT route. 8358 * 8359 * When an IRE_CACHE entry for the off-subnet destination is 8360 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8361 * for further processing in emission loops. 8362 */ 8363 save_ire = ire; 8364 switch (ire->ire_type) { 8365 case IRE_CACHE: { 8366 ire_t *ipif_ire; 8367 8368 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8369 if (gw == 0) 8370 gw = ire->ire_gateway_addr; 8371 /* 8372 * We need 3 ire's to create a new cache ire for an 8373 * off-link destination from the cache ire of the 8374 * gateway. 8375 * 8376 * 1. The prefix ire 'sire' (Note that this does 8377 * not apply to the conn_nexthop_set case) 8378 * 2. The cache ire of the gateway 'ire' 8379 * 3. The interface ire 'ipif_ire' 8380 * 8381 * We have (1) and (2). We lookup (3) below. 8382 * 8383 * If there is no interface route to the gateway, 8384 * it is a race condition, where we found the cache 8385 * but the interface route has been deleted. 8386 */ 8387 if (ip_nexthop) { 8388 ipif_ire = ire_ihandle_lookup_onlink(ire); 8389 } else { 8390 ipif_ire = 8391 ire_ihandle_lookup_offlink(ire, sire); 8392 } 8393 if (ipif_ire == NULL) { 8394 ip1dbg(("ip_newroute: " 8395 "ire_ihandle_lookup_offlink failed\n")); 8396 goto icmp_err_ret; 8397 } 8398 8399 /* 8400 * Check cached gateway IRE for any security 8401 * attributes; if found, associate the gateway 8402 * credentials group to the destination IRE. 8403 */ 8404 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8405 mutex_enter(&attrp->igsa_lock); 8406 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8407 GCGRP_REFHOLD(gcgrp); 8408 mutex_exit(&attrp->igsa_lock); 8409 } 8410 8411 /* 8412 * XXX For the source of the resolver mp, 8413 * we are using the same DL_UNITDATA_REQ 8414 * (from save_ire->ire_nce->nce_res_mp) 8415 * though the save_ire is not pointing at the same ill. 8416 * This is incorrect. We need to send it up to the 8417 * resolver to get the right res_mp. For ethernets 8418 * this may be okay (ill_type == DL_ETHER). 8419 */ 8420 8421 ire = ire_create( 8422 (uchar_t *)&dst, /* dest address */ 8423 (uchar_t *)&ip_g_all_ones, /* mask */ 8424 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8425 (uchar_t *)&gw, /* gateway address */ 8426 &save_ire->ire_max_frag, 8427 save_ire->ire_nce, /* src nce */ 8428 dst_ill->ill_rq, /* recv-from queue */ 8429 dst_ill->ill_wq, /* send-to queue */ 8430 IRE_CACHE, /* IRE type */ 8431 src_ipif, 8432 (sire != NULL) ? 8433 sire->ire_mask : 0, /* Parent mask */ 8434 (sire != NULL) ? 8435 sire->ire_phandle : 0, /* Parent handle */ 8436 ipif_ire->ire_ihandle, /* Interface handle */ 8437 (sire != NULL) ? (sire->ire_flags & 8438 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8439 (sire != NULL) ? 8440 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8441 NULL, 8442 gcgrp, 8443 ipst); 8444 8445 if (ire == NULL) { 8446 if (gcgrp != NULL) { 8447 GCGRP_REFRELE(gcgrp); 8448 gcgrp = NULL; 8449 } 8450 ire_refrele(ipif_ire); 8451 ire_refrele(save_ire); 8452 break; 8453 } 8454 8455 /* reference now held by IRE */ 8456 gcgrp = NULL; 8457 8458 ire->ire_marks |= ire_marks; 8459 8460 /* 8461 * Prevent sire and ipif_ire from getting deleted. 8462 * The newly created ire is tied to both of them via 8463 * the phandle and ihandle respectively. 8464 */ 8465 if (sire != NULL) { 8466 IRB_REFHOLD(sire->ire_bucket); 8467 /* Has it been removed already ? */ 8468 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8469 IRB_REFRELE(sire->ire_bucket); 8470 ire_refrele(ipif_ire); 8471 ire_refrele(save_ire); 8472 break; 8473 } 8474 } 8475 8476 IRB_REFHOLD(ipif_ire->ire_bucket); 8477 /* Has it been removed already ? */ 8478 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8479 IRB_REFRELE(ipif_ire->ire_bucket); 8480 if (sire != NULL) 8481 IRB_REFRELE(sire->ire_bucket); 8482 ire_refrele(ipif_ire); 8483 ire_refrele(save_ire); 8484 break; 8485 } 8486 8487 xmit_mp = first_mp; 8488 /* 8489 * In the case of multirouting, a copy 8490 * of the packet is done before its sending. 8491 * The copy is used to attempt another 8492 * route resolution, in a next loop. 8493 */ 8494 if (ire->ire_flags & RTF_MULTIRT) { 8495 copy_mp = copymsg(first_mp); 8496 if (copy_mp != NULL) { 8497 xmit_mp = copy_mp; 8498 MULTIRT_DEBUG_TAG(first_mp); 8499 } 8500 } 8501 ire_add_then_send(q, ire, xmit_mp); 8502 ire_refrele(save_ire); 8503 8504 /* Assert that sire is not deleted yet. */ 8505 if (sire != NULL) { 8506 ASSERT(sire->ire_ptpn != NULL); 8507 IRB_REFRELE(sire->ire_bucket); 8508 } 8509 8510 /* Assert that ipif_ire is not deleted yet. */ 8511 ASSERT(ipif_ire->ire_ptpn != NULL); 8512 IRB_REFRELE(ipif_ire->ire_bucket); 8513 ire_refrele(ipif_ire); 8514 8515 /* 8516 * If copy_mp is not NULL, multirouting was 8517 * requested. We loop to initiate a next 8518 * route resolution attempt, starting from sire. 8519 */ 8520 if (copy_mp != NULL) { 8521 /* 8522 * Search for the next unresolved 8523 * multirt route. 8524 */ 8525 copy_mp = NULL; 8526 ipif_ire = NULL; 8527 ire = NULL; 8528 multirt_resolve_next = B_TRUE; 8529 continue; 8530 } 8531 if (sire != NULL) 8532 ire_refrele(sire); 8533 ipif_refrele(src_ipif); 8534 ill_refrele(dst_ill); 8535 return; 8536 } 8537 case IRE_IF_NORESOLVER: { 8538 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8539 dst_ill->ill_resolver_mp == NULL) { 8540 ip1dbg(("ip_newroute: dst_ill %p " 8541 "for IRE_IF_NORESOLVER ire %p has " 8542 "no ill_resolver_mp\n", 8543 (void *)dst_ill, (void *)ire)); 8544 break; 8545 } 8546 8547 /* 8548 * TSol note: We are creating the ire cache for the 8549 * destination 'dst'. If 'dst' is offlink, going 8550 * through the first hop 'gw', the security attributes 8551 * of 'dst' must be set to point to the gateway 8552 * credentials of gateway 'gw'. If 'dst' is onlink, it 8553 * is possible that 'dst' is a potential gateway that is 8554 * referenced by some route that has some security 8555 * attributes. Thus in the former case, we need to do a 8556 * gcgrp_lookup of 'gw' while in the latter case we 8557 * need to do gcgrp_lookup of 'dst' itself. 8558 */ 8559 ga.ga_af = AF_INET; 8560 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8561 &ga.ga_addr); 8562 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8563 8564 ire = ire_create( 8565 (uchar_t *)&dst, /* dest address */ 8566 (uchar_t *)&ip_g_all_ones, /* mask */ 8567 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8568 (uchar_t *)&gw, /* gateway address */ 8569 &save_ire->ire_max_frag, 8570 NULL, /* no src nce */ 8571 dst_ill->ill_rq, /* recv-from queue */ 8572 dst_ill->ill_wq, /* send-to queue */ 8573 IRE_CACHE, 8574 src_ipif, 8575 save_ire->ire_mask, /* Parent mask */ 8576 (sire != NULL) ? /* Parent handle */ 8577 sire->ire_phandle : 0, 8578 save_ire->ire_ihandle, /* Interface handle */ 8579 (sire != NULL) ? sire->ire_flags & 8580 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8581 &(save_ire->ire_uinfo), 8582 NULL, 8583 gcgrp, 8584 ipst); 8585 8586 if (ire == NULL) { 8587 if (gcgrp != NULL) { 8588 GCGRP_REFRELE(gcgrp); 8589 gcgrp = NULL; 8590 } 8591 ire_refrele(save_ire); 8592 break; 8593 } 8594 8595 /* reference now held by IRE */ 8596 gcgrp = NULL; 8597 8598 ire->ire_marks |= ire_marks; 8599 8600 /* Prevent save_ire from getting deleted */ 8601 IRB_REFHOLD(save_ire->ire_bucket); 8602 /* Has it been removed already ? */ 8603 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8604 IRB_REFRELE(save_ire->ire_bucket); 8605 ire_refrele(save_ire); 8606 break; 8607 } 8608 8609 /* 8610 * In the case of multirouting, a copy 8611 * of the packet is made before it is sent. 8612 * The copy is used in the next 8613 * loop to attempt another resolution. 8614 */ 8615 xmit_mp = first_mp; 8616 if ((sire != NULL) && 8617 (sire->ire_flags & RTF_MULTIRT)) { 8618 copy_mp = copymsg(first_mp); 8619 if (copy_mp != NULL) { 8620 xmit_mp = copy_mp; 8621 MULTIRT_DEBUG_TAG(first_mp); 8622 } 8623 } 8624 ire_add_then_send(q, ire, xmit_mp); 8625 8626 /* Assert that it is not deleted yet. */ 8627 ASSERT(save_ire->ire_ptpn != NULL); 8628 IRB_REFRELE(save_ire->ire_bucket); 8629 ire_refrele(save_ire); 8630 8631 if (copy_mp != NULL) { 8632 /* 8633 * If we found a (no)resolver, we ignore any 8634 * trailing top priority IRE_CACHE in further 8635 * loops. This ensures that we do not omit any 8636 * (no)resolver. 8637 * This IRE_CACHE, if any, will be processed 8638 * by another thread entering ip_newroute(). 8639 * IRE_CACHE entries, if any, will be processed 8640 * by another thread entering ip_newroute(), 8641 * (upon resolver response, for instance). 8642 * This aims to force parallel multirt 8643 * resolutions as soon as a packet must be sent. 8644 * In the best case, after the tx of only one 8645 * packet, all reachable routes are resolved. 8646 * Otherwise, the resolution of all RTF_MULTIRT 8647 * routes would require several emissions. 8648 */ 8649 multirt_flags &= ~MULTIRT_CACHEGW; 8650 8651 /* 8652 * Search for the next unresolved multirt 8653 * route. 8654 */ 8655 copy_mp = NULL; 8656 save_ire = NULL; 8657 ire = NULL; 8658 multirt_resolve_next = B_TRUE; 8659 continue; 8660 } 8661 8662 /* 8663 * Don't need sire anymore 8664 */ 8665 if (sire != NULL) 8666 ire_refrele(sire); 8667 8668 ipif_refrele(src_ipif); 8669 ill_refrele(dst_ill); 8670 return; 8671 } 8672 case IRE_IF_RESOLVER: 8673 /* 8674 * We can't build an IRE_CACHE yet, but at least we 8675 * found a resolver that can help. 8676 */ 8677 res_mp = dst_ill->ill_resolver_mp; 8678 if (!OK_RESOLVER_MP(res_mp)) 8679 break; 8680 8681 /* 8682 * To be at this point in the code with a non-zero gw 8683 * means that dst is reachable through a gateway that 8684 * we have never resolved. By changing dst to the gw 8685 * addr we resolve the gateway first. 8686 * When ire_add_then_send() tries to put the IP dg 8687 * to dst, it will reenter ip_newroute() at which 8688 * time we will find the IRE_CACHE for the gw and 8689 * create another IRE_CACHE in case IRE_CACHE above. 8690 */ 8691 if (gw != INADDR_ANY) { 8692 /* 8693 * The source ipif that was determined above was 8694 * relative to the destination address, not the 8695 * gateway's. If src_ipif was not taken out of 8696 * the IRE_IF_RESOLVER entry, we'll need to call 8697 * ipif_select_source() again. 8698 */ 8699 if (src_ipif != ire->ire_ipif) { 8700 ipif_refrele(src_ipif); 8701 src_ipif = ipif_select_source(dst_ill, 8702 gw, zoneid); 8703 if (src_ipif == NULL) { 8704 if (ip_debug > 2) { 8705 pr_addr_dbg( 8706 "ip_newroute: no " 8707 "src for gw %s ", 8708 AF_INET, &gw); 8709 printf("through " 8710 "interface %s\n", 8711 dst_ill->ill_name); 8712 } 8713 goto icmp_err_ret; 8714 } 8715 } 8716 save_dst = dst; 8717 dst = gw; 8718 gw = INADDR_ANY; 8719 } 8720 8721 /* 8722 * We obtain a partial IRE_CACHE which we will pass 8723 * along with the resolver query. When the response 8724 * comes back it will be there ready for us to add. 8725 * The ire_max_frag is atomically set under the 8726 * irebucket lock in ire_add_v[46]. 8727 */ 8728 8729 ire = ire_create_mp( 8730 (uchar_t *)&dst, /* dest address */ 8731 (uchar_t *)&ip_g_all_ones, /* mask */ 8732 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8733 (uchar_t *)&gw, /* gateway address */ 8734 NULL, /* ire_max_frag */ 8735 NULL, /* no src nce */ 8736 dst_ill->ill_rq, /* recv-from queue */ 8737 dst_ill->ill_wq, /* send-to queue */ 8738 IRE_CACHE, 8739 src_ipif, /* Interface ipif */ 8740 save_ire->ire_mask, /* Parent mask */ 8741 0, 8742 save_ire->ire_ihandle, /* Interface handle */ 8743 0, /* flags if any */ 8744 &(save_ire->ire_uinfo), 8745 NULL, 8746 NULL, 8747 ipst); 8748 8749 if (ire == NULL) { 8750 ire_refrele(save_ire); 8751 break; 8752 } 8753 8754 if ((sire != NULL) && 8755 (sire->ire_flags & RTF_MULTIRT)) { 8756 copy_mp = copymsg(first_mp); 8757 if (copy_mp != NULL) 8758 MULTIRT_DEBUG_TAG(copy_mp); 8759 } 8760 8761 ire->ire_marks |= ire_marks; 8762 8763 /* 8764 * Construct message chain for the resolver 8765 * of the form: 8766 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8767 * Packet could contain a IPSEC_OUT mp. 8768 * 8769 * NOTE : ire will be added later when the response 8770 * comes back from ARP. If the response does not 8771 * come back, ARP frees the packet. For this reason, 8772 * we can't REFHOLD the bucket of save_ire to prevent 8773 * deletions. We may not be able to REFRELE the bucket 8774 * if the response never comes back. Thus, before 8775 * adding the ire, ire_add_v4 will make sure that the 8776 * interface route does not get deleted. This is the 8777 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8778 * where we can always prevent deletions because of 8779 * the synchronous nature of adding IRES i.e 8780 * ire_add_then_send is called after creating the IRE. 8781 */ 8782 ASSERT(ire->ire_mp != NULL); 8783 ire->ire_mp->b_cont = first_mp; 8784 /* Have saved_mp handy, for cleanup if canput fails */ 8785 saved_mp = mp; 8786 mp = copyb(res_mp); 8787 if (mp == NULL) { 8788 /* Prepare for cleanup */ 8789 mp = saved_mp; /* pkt */ 8790 ire_delete(ire); /* ire_mp */ 8791 ire = NULL; 8792 ire_refrele(save_ire); 8793 if (copy_mp != NULL) { 8794 MULTIRT_DEBUG_UNTAG(copy_mp); 8795 freemsg(copy_mp); 8796 copy_mp = NULL; 8797 } 8798 break; 8799 } 8800 linkb(mp, ire->ire_mp); 8801 8802 /* 8803 * Fill in the source and dest addrs for the resolver. 8804 * NOTE: this depends on memory layouts imposed by 8805 * ill_init(). 8806 */ 8807 areq = (areq_t *)mp->b_rptr; 8808 addrp = (ipaddr_t *)((char *)areq + 8809 areq->areq_sender_addr_offset); 8810 if (do_attach_ill) { 8811 /* 8812 * This is bind to no failover case. 8813 * arp packet also must go out on attach_ill. 8814 */ 8815 ASSERT(ipha->ipha_src != NULL); 8816 *addrp = ipha->ipha_src; 8817 } else { 8818 *addrp = save_ire->ire_src_addr; 8819 } 8820 8821 ire_refrele(save_ire); 8822 addrp = (ipaddr_t *)((char *)areq + 8823 areq->areq_target_addr_offset); 8824 *addrp = dst; 8825 /* Up to the resolver. */ 8826 if (canputnext(dst_ill->ill_rq) && 8827 !(dst_ill->ill_arp_closing)) { 8828 putnext(dst_ill->ill_rq, mp); 8829 ire = NULL; 8830 if (copy_mp != NULL) { 8831 /* 8832 * If we found a resolver, we ignore 8833 * any trailing top priority IRE_CACHE 8834 * in the further loops. This ensures 8835 * that we do not omit any resolver. 8836 * IRE_CACHE entries, if any, will be 8837 * processed next time we enter 8838 * ip_newroute(). 8839 */ 8840 multirt_flags &= ~MULTIRT_CACHEGW; 8841 /* 8842 * Search for the next unresolved 8843 * multirt route. 8844 */ 8845 first_mp = copy_mp; 8846 copy_mp = NULL; 8847 /* Prepare the next resolution loop. */ 8848 mp = first_mp; 8849 EXTRACT_PKT_MP(mp, first_mp, 8850 mctl_present); 8851 if (mctl_present) 8852 io = (ipsec_out_t *) 8853 first_mp->b_rptr; 8854 ipha = (ipha_t *)mp->b_rptr; 8855 8856 ASSERT(sire != NULL); 8857 8858 dst = save_dst; 8859 multirt_resolve_next = B_TRUE; 8860 continue; 8861 } 8862 8863 if (sire != NULL) 8864 ire_refrele(sire); 8865 8866 /* 8867 * The response will come back in ip_wput 8868 * with db_type IRE_DB_TYPE. 8869 */ 8870 ipif_refrele(src_ipif); 8871 ill_refrele(dst_ill); 8872 return; 8873 } else { 8874 /* Prepare for cleanup */ 8875 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8876 mp); 8877 mp->b_cont = NULL; 8878 freeb(mp); /* areq */ 8879 /* 8880 * this is an ire that is not added to the 8881 * cache. ire_freemblk will handle the release 8882 * of any resources associated with the ire. 8883 */ 8884 ire_delete(ire); /* ire_mp */ 8885 mp = saved_mp; /* pkt */ 8886 ire = NULL; 8887 if (copy_mp != NULL) { 8888 MULTIRT_DEBUG_UNTAG(copy_mp); 8889 freemsg(copy_mp); 8890 copy_mp = NULL; 8891 } 8892 break; 8893 } 8894 default: 8895 break; 8896 } 8897 } while (multirt_resolve_next); 8898 8899 ip1dbg(("ip_newroute: dropped\n")); 8900 /* Did this packet originate externally? */ 8901 if (mp->b_prev) { 8902 mp->b_next = NULL; 8903 mp->b_prev = NULL; 8904 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8905 } else { 8906 if (dst_ill != NULL) { 8907 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8908 } else { 8909 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8910 } 8911 } 8912 ASSERT(copy_mp == NULL); 8913 MULTIRT_DEBUG_UNTAG(first_mp); 8914 freemsg(first_mp); 8915 if (ire != NULL) 8916 ire_refrele(ire); 8917 if (sire != NULL) 8918 ire_refrele(sire); 8919 if (src_ipif != NULL) 8920 ipif_refrele(src_ipif); 8921 if (dst_ill != NULL) 8922 ill_refrele(dst_ill); 8923 return; 8924 8925 icmp_err_ret: 8926 ip1dbg(("ip_newroute: no route\n")); 8927 if (src_ipif != NULL) 8928 ipif_refrele(src_ipif); 8929 if (dst_ill != NULL) 8930 ill_refrele(dst_ill); 8931 if (sire != NULL) 8932 ire_refrele(sire); 8933 /* Did this packet originate externally? */ 8934 if (mp->b_prev) { 8935 mp->b_next = NULL; 8936 mp->b_prev = NULL; 8937 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8938 q = WR(q); 8939 } else { 8940 /* 8941 * There is no outgoing ill, so just increment the 8942 * system MIB. 8943 */ 8944 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8945 /* 8946 * Since ip_wput() isn't close to finished, we fill 8947 * in enough of the header for credible error reporting. 8948 */ 8949 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8950 /* Failed */ 8951 MULTIRT_DEBUG_UNTAG(first_mp); 8952 freemsg(first_mp); 8953 if (ire != NULL) 8954 ire_refrele(ire); 8955 return; 8956 } 8957 } 8958 8959 /* 8960 * At this point we will have ire only if RTF_BLACKHOLE 8961 * or RTF_REJECT flags are set on the IRE. It will not 8962 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8963 */ 8964 if (ire != NULL) { 8965 if (ire->ire_flags & RTF_BLACKHOLE) { 8966 ire_refrele(ire); 8967 MULTIRT_DEBUG_UNTAG(first_mp); 8968 freemsg(first_mp); 8969 return; 8970 } 8971 ire_refrele(ire); 8972 } 8973 if (ip_source_routed(ipha, ipst)) { 8974 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8975 zoneid, ipst); 8976 return; 8977 } 8978 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8979 } 8980 8981 ip_opt_info_t zero_info; 8982 8983 /* 8984 * IPv4 - 8985 * ip_newroute_ipif is called by ip_wput_multicast and 8986 * ip_rput_forward_multicast whenever we need to send 8987 * out a packet to a destination address for which we do not have specific 8988 * routing information. It is used when the packet will be sent out 8989 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8990 * socket option is set or icmp error message wants to go out on a particular 8991 * interface for a unicast packet. 8992 * 8993 * In most cases, the destination address is resolved thanks to the ipif 8994 * intrinsic resolver. However, there are some cases where the call to 8995 * ip_newroute_ipif must take into account the potential presence of 8996 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8997 * that uses the interface. This is specified through flags, 8998 * which can be a combination of: 8999 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9000 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9001 * and flags. Additionally, the packet source address has to be set to 9002 * the specified address. The caller is thus expected to set this flag 9003 * if the packet has no specific source address yet. 9004 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9005 * flag, the resulting ire will inherit the flag. All unresolved routes 9006 * to the destination must be explored in the same call to 9007 * ip_newroute_ipif(). 9008 */ 9009 static void 9010 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9011 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9012 { 9013 areq_t *areq; 9014 ire_t *ire = NULL; 9015 mblk_t *res_mp; 9016 ipaddr_t *addrp; 9017 mblk_t *first_mp; 9018 ire_t *save_ire = NULL; 9019 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9020 ipif_t *src_ipif = NULL; 9021 ushort_t ire_marks = 0; 9022 ill_t *dst_ill = NULL; 9023 boolean_t mctl_present; 9024 ipsec_out_t *io; 9025 ipha_t *ipha; 9026 int ihandle = 0; 9027 mblk_t *saved_mp; 9028 ire_t *fire = NULL; 9029 mblk_t *copy_mp = NULL; 9030 boolean_t multirt_resolve_next; 9031 boolean_t unspec_src; 9032 ipaddr_t ipha_dst; 9033 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9034 9035 /* 9036 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9037 * here for uniformity 9038 */ 9039 ipif_refhold(ipif); 9040 9041 /* 9042 * This loop is run only once in most cases. 9043 * We loop to resolve further routes only when the destination 9044 * can be reached through multiple RTF_MULTIRT-flagged ires. 9045 */ 9046 do { 9047 if (dst_ill != NULL) { 9048 ill_refrele(dst_ill); 9049 dst_ill = NULL; 9050 } 9051 if (src_ipif != NULL) { 9052 ipif_refrele(src_ipif); 9053 src_ipif = NULL; 9054 } 9055 multirt_resolve_next = B_FALSE; 9056 9057 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9058 ipif->ipif_ill->ill_name)); 9059 9060 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9061 if (mctl_present) 9062 io = (ipsec_out_t *)first_mp->b_rptr; 9063 9064 ipha = (ipha_t *)mp->b_rptr; 9065 9066 /* 9067 * Save the packet destination address, we may need it after 9068 * the packet has been consumed. 9069 */ 9070 ipha_dst = ipha->ipha_dst; 9071 9072 /* 9073 * If the interface is a pt-pt interface we look for an 9074 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9075 * local_address and the pt-pt destination address. Otherwise 9076 * we just match the local address. 9077 * NOTE: dst could be different than ipha->ipha_dst in case 9078 * of sending igmp multicast packets over a point-to-point 9079 * connection. 9080 * Thus we must be careful enough to check ipha_dst to be a 9081 * multicast address, otherwise it will take xmit_if path for 9082 * multicast packets resulting into kernel stack overflow by 9083 * repeated calls to ip_newroute_ipif from ire_send(). 9084 */ 9085 if (CLASSD(ipha_dst) && 9086 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9087 goto err_ret; 9088 } 9089 9090 /* 9091 * We check if an IRE_OFFSUBNET for the addr that goes through 9092 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9093 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9094 * propagate its flags to the new ire. 9095 */ 9096 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9097 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9098 ip2dbg(("ip_newroute_ipif: " 9099 "ipif_lookup_multi_ire(" 9100 "ipif %p, dst %08x) = fire %p\n", 9101 (void *)ipif, ntohl(dst), (void *)fire)); 9102 } 9103 9104 if (mctl_present && io->ipsec_out_attach_if) { 9105 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9106 io->ipsec_out_ill_index, B_FALSE, ipst); 9107 9108 /* Failure case frees things for us. */ 9109 if (attach_ill == NULL) { 9110 ipif_refrele(ipif); 9111 if (fire != NULL) 9112 ire_refrele(fire); 9113 return; 9114 } 9115 9116 /* 9117 * Check if we need an ire that will not be 9118 * looked up by anybody else i.e. HIDDEN. 9119 */ 9120 if (ill_is_probeonly(attach_ill)) { 9121 ire_marks = IRE_MARK_HIDDEN; 9122 } 9123 /* 9124 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9125 * case. 9126 */ 9127 dst_ill = ipif->ipif_ill; 9128 /* attach_ill has been refheld by ip_grab_attach_ill */ 9129 ASSERT(dst_ill == attach_ill); 9130 } else { 9131 /* 9132 * If the interface belongs to an interface group, 9133 * make sure the next possible interface in the group 9134 * is used. This encourages load spreading among 9135 * peers in an interface group. 9136 * Note: load spreading is disabled for RTF_MULTIRT 9137 * routes. 9138 */ 9139 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9140 (fire->ire_flags & RTF_MULTIRT)) { 9141 /* 9142 * Don't perform outbound load spreading 9143 * in the case of an RTF_MULTIRT issued route, 9144 * we actually typically want to replicate 9145 * outgoing packets through particular 9146 * interfaces. 9147 */ 9148 dst_ill = ipif->ipif_ill; 9149 ill_refhold(dst_ill); 9150 } else { 9151 dst_ill = ip_newroute_get_dst_ill( 9152 ipif->ipif_ill); 9153 } 9154 if (dst_ill == NULL) { 9155 if (ip_debug > 2) { 9156 pr_addr_dbg("ip_newroute_ipif: " 9157 "no dst ill for dst %s\n", 9158 AF_INET, &dst); 9159 } 9160 goto err_ret; 9161 } 9162 } 9163 9164 /* 9165 * Pick a source address preferring non-deprecated ones. 9166 * Unlike ip_newroute, we don't do any source address 9167 * selection here since for multicast it really does not help 9168 * in inbound load spreading as in the unicast case. 9169 */ 9170 if ((flags & RTF_SETSRC) && (fire != NULL) && 9171 (fire->ire_flags & RTF_SETSRC)) { 9172 /* 9173 * As requested by flags, an IRE_OFFSUBNET was looked up 9174 * on that interface. This ire has RTF_SETSRC flag, so 9175 * the source address of the packet must be changed. 9176 * Check that the ipif matching the requested source 9177 * address still exists. 9178 */ 9179 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9180 zoneid, NULL, NULL, NULL, NULL, ipst); 9181 } 9182 9183 unspec_src = (connp != NULL && connp->conn_unspec_src); 9184 9185 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9186 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9187 (connp != NULL && ipif->ipif_zoneid != zoneid && 9188 ipif->ipif_zoneid != ALL_ZONES)) && 9189 (src_ipif == NULL) && 9190 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9191 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9192 if (src_ipif == NULL) { 9193 if (ip_debug > 2) { 9194 /* ip1dbg */ 9195 pr_addr_dbg("ip_newroute_ipif: " 9196 "no src for dst %s", 9197 AF_INET, &dst); 9198 } 9199 ip1dbg((" through interface %s\n", 9200 dst_ill->ill_name)); 9201 goto err_ret; 9202 } 9203 ipif_refrele(ipif); 9204 ipif = src_ipif; 9205 ipif_refhold(ipif); 9206 } 9207 if (src_ipif == NULL) { 9208 src_ipif = ipif; 9209 ipif_refhold(src_ipif); 9210 } 9211 9212 /* 9213 * Assign a source address while we have the conn. 9214 * We can't have ip_wput_ire pick a source address when the 9215 * packet returns from arp since conn_unspec_src might be set 9216 * and we lose the conn when going through arp. 9217 */ 9218 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9219 ipha->ipha_src = src_ipif->ipif_src_addr; 9220 9221 /* 9222 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9223 * that the outgoing interface does not have an interface ire. 9224 */ 9225 if (CLASSD(ipha_dst) && (connp == NULL || 9226 connp->conn_outgoing_ill == NULL) && 9227 infop->ip_opt_ill_index == 0) { 9228 /* ipif_to_ire returns an held ire */ 9229 ire = ipif_to_ire(ipif); 9230 if (ire == NULL) 9231 goto err_ret; 9232 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9233 goto err_ret; 9234 /* 9235 * ihandle is needed when the ire is added to 9236 * cache table. 9237 */ 9238 save_ire = ire; 9239 ihandle = save_ire->ire_ihandle; 9240 9241 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9242 "flags %04x\n", 9243 (void *)ire, (void *)ipif, flags)); 9244 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9245 (fire->ire_flags & RTF_MULTIRT)) { 9246 /* 9247 * As requested by flags, an IRE_OFFSUBNET was 9248 * looked up on that interface. This ire has 9249 * RTF_MULTIRT flag, so the resolution loop will 9250 * be re-entered to resolve additional routes on 9251 * other interfaces. For that purpose, a copy of 9252 * the packet is performed at this point. 9253 */ 9254 fire->ire_last_used_time = lbolt; 9255 copy_mp = copymsg(first_mp); 9256 if (copy_mp) { 9257 MULTIRT_DEBUG_TAG(copy_mp); 9258 } 9259 } 9260 if ((flags & RTF_SETSRC) && (fire != NULL) && 9261 (fire->ire_flags & RTF_SETSRC)) { 9262 /* 9263 * As requested by flags, an IRE_OFFSUBET was 9264 * looked up on that interface. This ire has 9265 * RTF_SETSRC flag, so the source address of the 9266 * packet must be changed. 9267 */ 9268 ipha->ipha_src = fire->ire_src_addr; 9269 } 9270 } else { 9271 ASSERT((connp == NULL) || 9272 (connp->conn_outgoing_ill != NULL) || 9273 (connp->conn_dontroute) || 9274 infop->ip_opt_ill_index != 0); 9275 /* 9276 * The only ways we can come here are: 9277 * 1) IP_BOUND_IF socket option is set 9278 * 2) SO_DONTROUTE socket option is set 9279 * 3) IP_PKTINFO option is passed in as ancillary data. 9280 * In all cases, the new ire will not be added 9281 * into cache table. 9282 */ 9283 ire_marks |= IRE_MARK_NOADD; 9284 } 9285 9286 switch (ipif->ipif_net_type) { 9287 case IRE_IF_NORESOLVER: { 9288 /* We have what we need to build an IRE_CACHE. */ 9289 9290 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9291 (dst_ill->ill_resolver_mp == NULL)) { 9292 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9293 "for IRE_IF_NORESOLVER ire %p has " 9294 "no ill_resolver_mp\n", 9295 (void *)dst_ill, (void *)ire)); 9296 break; 9297 } 9298 9299 /* 9300 * The new ire inherits the IRE_OFFSUBNET flags 9301 * and source address, if this was requested. 9302 */ 9303 ire = ire_create( 9304 (uchar_t *)&dst, /* dest address */ 9305 (uchar_t *)&ip_g_all_ones, /* mask */ 9306 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9307 NULL, /* gateway address */ 9308 &ipif->ipif_mtu, 9309 NULL, /* no src nce */ 9310 dst_ill->ill_rq, /* recv-from queue */ 9311 dst_ill->ill_wq, /* send-to queue */ 9312 IRE_CACHE, 9313 src_ipif, 9314 (save_ire != NULL ? save_ire->ire_mask : 0), 9315 (fire != NULL) ? /* Parent handle */ 9316 fire->ire_phandle : 0, 9317 ihandle, /* Interface handle */ 9318 (fire != NULL) ? 9319 (fire->ire_flags & 9320 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9321 (save_ire == NULL ? &ire_uinfo_null : 9322 &save_ire->ire_uinfo), 9323 NULL, 9324 NULL, 9325 ipst); 9326 9327 if (ire == NULL) { 9328 if (save_ire != NULL) 9329 ire_refrele(save_ire); 9330 break; 9331 } 9332 9333 ire->ire_marks |= ire_marks; 9334 9335 /* 9336 * If IRE_MARK_NOADD is set then we need to convert 9337 * the max_fragp to a useable value now. This is 9338 * normally done in ire_add_v[46]. We also need to 9339 * associate the ire with an nce (normally would be 9340 * done in ip_wput_nondata()). 9341 * 9342 * Note that IRE_MARK_NOADD packets created here 9343 * do not have a non-null ire_mp pointer. The null 9344 * value of ire_bucket indicates that they were 9345 * never added. 9346 */ 9347 if (ire->ire_marks & IRE_MARK_NOADD) { 9348 uint_t max_frag; 9349 9350 max_frag = *ire->ire_max_fragp; 9351 ire->ire_max_fragp = NULL; 9352 ire->ire_max_frag = max_frag; 9353 9354 if ((ire->ire_nce = ndp_lookup_v4( 9355 ire_to_ill(ire), 9356 (ire->ire_gateway_addr != INADDR_ANY ? 9357 &ire->ire_gateway_addr : &ire->ire_addr), 9358 B_FALSE)) == NULL) { 9359 if (save_ire != NULL) 9360 ire_refrele(save_ire); 9361 break; 9362 } 9363 ASSERT(ire->ire_nce->nce_state == 9364 ND_REACHABLE); 9365 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9366 } 9367 9368 /* Prevent save_ire from getting deleted */ 9369 if (save_ire != NULL) { 9370 IRB_REFHOLD(save_ire->ire_bucket); 9371 /* Has it been removed already ? */ 9372 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9373 IRB_REFRELE(save_ire->ire_bucket); 9374 ire_refrele(save_ire); 9375 break; 9376 } 9377 } 9378 9379 ire_add_then_send(q, ire, first_mp); 9380 9381 /* Assert that save_ire is not deleted yet. */ 9382 if (save_ire != NULL) { 9383 ASSERT(save_ire->ire_ptpn != NULL); 9384 IRB_REFRELE(save_ire->ire_bucket); 9385 ire_refrele(save_ire); 9386 save_ire = NULL; 9387 } 9388 if (fire != NULL) { 9389 ire_refrele(fire); 9390 fire = NULL; 9391 } 9392 9393 /* 9394 * the resolution loop is re-entered if this 9395 * was requested through flags and if we 9396 * actually are in a multirouting case. 9397 */ 9398 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9399 boolean_t need_resolve = 9400 ire_multirt_need_resolve(ipha_dst, 9401 MBLK_GETLABEL(copy_mp), ipst); 9402 if (!need_resolve) { 9403 MULTIRT_DEBUG_UNTAG(copy_mp); 9404 freemsg(copy_mp); 9405 copy_mp = NULL; 9406 } else { 9407 /* 9408 * ipif_lookup_group() calls 9409 * ire_lookup_multi() that uses 9410 * ire_ftable_lookup() to find 9411 * an IRE_INTERFACE for the group. 9412 * In the multirt case, 9413 * ire_lookup_multi() then invokes 9414 * ire_multirt_lookup() to find 9415 * the next resolvable ire. 9416 * As a result, we obtain an new 9417 * interface, derived from the 9418 * next ire. 9419 */ 9420 ipif_refrele(ipif); 9421 ipif = ipif_lookup_group(ipha_dst, 9422 zoneid, ipst); 9423 ip2dbg(("ip_newroute_ipif: " 9424 "multirt dst %08x, ipif %p\n", 9425 htonl(dst), (void *)ipif)); 9426 if (ipif != NULL) { 9427 mp = copy_mp; 9428 copy_mp = NULL; 9429 multirt_resolve_next = B_TRUE; 9430 continue; 9431 } else { 9432 freemsg(copy_mp); 9433 } 9434 } 9435 } 9436 if (ipif != NULL) 9437 ipif_refrele(ipif); 9438 ill_refrele(dst_ill); 9439 ipif_refrele(src_ipif); 9440 return; 9441 } 9442 case IRE_IF_RESOLVER: 9443 /* 9444 * We can't build an IRE_CACHE yet, but at least 9445 * we found a resolver that can help. 9446 */ 9447 res_mp = dst_ill->ill_resolver_mp; 9448 if (!OK_RESOLVER_MP(res_mp)) 9449 break; 9450 9451 /* 9452 * We obtain a partial IRE_CACHE which we will pass 9453 * along with the resolver query. When the response 9454 * comes back it will be there ready for us to add. 9455 * The new ire inherits the IRE_OFFSUBNET flags 9456 * and source address, if this was requested. 9457 * The ire_max_frag is atomically set under the 9458 * irebucket lock in ire_add_v[46]. Only in the 9459 * case of IRE_MARK_NOADD, we set it here itself. 9460 */ 9461 ire = ire_create_mp( 9462 (uchar_t *)&dst, /* dest address */ 9463 (uchar_t *)&ip_g_all_ones, /* mask */ 9464 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9465 NULL, /* gateway address */ 9466 (ire_marks & IRE_MARK_NOADD) ? 9467 ipif->ipif_mtu : 0, /* max_frag */ 9468 NULL, /* no src nce */ 9469 dst_ill->ill_rq, /* recv-from queue */ 9470 dst_ill->ill_wq, /* send-to queue */ 9471 IRE_CACHE, 9472 src_ipif, 9473 (save_ire != NULL ? save_ire->ire_mask : 0), 9474 (fire != NULL) ? /* Parent handle */ 9475 fire->ire_phandle : 0, 9476 ihandle, /* Interface handle */ 9477 (fire != NULL) ? /* flags if any */ 9478 (fire->ire_flags & 9479 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9480 (save_ire == NULL ? &ire_uinfo_null : 9481 &save_ire->ire_uinfo), 9482 NULL, 9483 NULL, 9484 ipst); 9485 9486 if (save_ire != NULL) { 9487 ire_refrele(save_ire); 9488 save_ire = NULL; 9489 } 9490 if (ire == NULL) 9491 break; 9492 9493 ire->ire_marks |= ire_marks; 9494 /* 9495 * Construct message chain for the resolver of the 9496 * form: 9497 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9498 * 9499 * NOTE : ire will be added later when the response 9500 * comes back from ARP. If the response does not 9501 * come back, ARP frees the packet. For this reason, 9502 * we can't REFHOLD the bucket of save_ire to prevent 9503 * deletions. We may not be able to REFRELE the 9504 * bucket if the response never comes back. 9505 * Thus, before adding the ire, ire_add_v4 will make 9506 * sure that the interface route does not get deleted. 9507 * This is the only case unlike ip_newroute_v6, 9508 * ip_newroute_ipif_v6 where we can always prevent 9509 * deletions because ire_add_then_send is called after 9510 * creating the IRE. 9511 * If IRE_MARK_NOADD is set, then ire_add_then_send 9512 * does not add this IRE into the IRE CACHE. 9513 */ 9514 ASSERT(ire->ire_mp != NULL); 9515 ire->ire_mp->b_cont = first_mp; 9516 /* Have saved_mp handy, for cleanup if canput fails */ 9517 saved_mp = mp; 9518 mp = copyb(res_mp); 9519 if (mp == NULL) { 9520 /* Prepare for cleanup */ 9521 mp = saved_mp; /* pkt */ 9522 ire_delete(ire); /* ire_mp */ 9523 ire = NULL; 9524 if (copy_mp != NULL) { 9525 MULTIRT_DEBUG_UNTAG(copy_mp); 9526 freemsg(copy_mp); 9527 copy_mp = NULL; 9528 } 9529 break; 9530 } 9531 linkb(mp, ire->ire_mp); 9532 9533 /* 9534 * Fill in the source and dest addrs for the resolver. 9535 * NOTE: this depends on memory layouts imposed by 9536 * ill_init(). 9537 */ 9538 areq = (areq_t *)mp->b_rptr; 9539 addrp = (ipaddr_t *)((char *)areq + 9540 areq->areq_sender_addr_offset); 9541 *addrp = ire->ire_src_addr; 9542 addrp = (ipaddr_t *)((char *)areq + 9543 areq->areq_target_addr_offset); 9544 *addrp = dst; 9545 /* Up to the resolver. */ 9546 if (canputnext(dst_ill->ill_rq) && 9547 !(dst_ill->ill_arp_closing)) { 9548 putnext(dst_ill->ill_rq, mp); 9549 /* 9550 * The response will come back in ip_wput 9551 * with db_type IRE_DB_TYPE. 9552 */ 9553 } else { 9554 mp->b_cont = NULL; 9555 freeb(mp); /* areq */ 9556 ire_delete(ire); /* ire_mp */ 9557 saved_mp->b_next = NULL; 9558 saved_mp->b_prev = NULL; 9559 freemsg(first_mp); /* pkt */ 9560 ip2dbg(("ip_newroute_ipif: dropped\n")); 9561 } 9562 9563 if (fire != NULL) { 9564 ire_refrele(fire); 9565 fire = NULL; 9566 } 9567 9568 9569 /* 9570 * The resolution loop is re-entered if this was 9571 * requested through flags and we actually are 9572 * in a multirouting case. 9573 */ 9574 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9575 boolean_t need_resolve = 9576 ire_multirt_need_resolve(ipha_dst, 9577 MBLK_GETLABEL(copy_mp), ipst); 9578 if (!need_resolve) { 9579 MULTIRT_DEBUG_UNTAG(copy_mp); 9580 freemsg(copy_mp); 9581 copy_mp = NULL; 9582 } else { 9583 /* 9584 * ipif_lookup_group() calls 9585 * ire_lookup_multi() that uses 9586 * ire_ftable_lookup() to find 9587 * an IRE_INTERFACE for the group. 9588 * In the multirt case, 9589 * ire_lookup_multi() then invokes 9590 * ire_multirt_lookup() to find 9591 * the next resolvable ire. 9592 * As a result, we obtain an new 9593 * interface, derived from the 9594 * next ire. 9595 */ 9596 ipif_refrele(ipif); 9597 ipif = ipif_lookup_group(ipha_dst, 9598 zoneid, ipst); 9599 if (ipif != NULL) { 9600 mp = copy_mp; 9601 copy_mp = NULL; 9602 multirt_resolve_next = B_TRUE; 9603 continue; 9604 } else { 9605 freemsg(copy_mp); 9606 } 9607 } 9608 } 9609 if (ipif != NULL) 9610 ipif_refrele(ipif); 9611 ill_refrele(dst_ill); 9612 ipif_refrele(src_ipif); 9613 return; 9614 default: 9615 break; 9616 } 9617 } while (multirt_resolve_next); 9618 9619 err_ret: 9620 ip2dbg(("ip_newroute_ipif: dropped\n")); 9621 if (fire != NULL) 9622 ire_refrele(fire); 9623 ipif_refrele(ipif); 9624 /* Did this packet originate externally? */ 9625 if (dst_ill != NULL) 9626 ill_refrele(dst_ill); 9627 if (src_ipif != NULL) 9628 ipif_refrele(src_ipif); 9629 if (mp->b_prev || mp->b_next) { 9630 mp->b_next = NULL; 9631 mp->b_prev = NULL; 9632 } else { 9633 /* 9634 * Since ip_wput() isn't close to finished, we fill 9635 * in enough of the header for credible error reporting. 9636 */ 9637 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9638 /* Failed */ 9639 freemsg(first_mp); 9640 if (ire != NULL) 9641 ire_refrele(ire); 9642 return; 9643 } 9644 } 9645 /* 9646 * At this point we will have ire only if RTF_BLACKHOLE 9647 * or RTF_REJECT flags are set on the IRE. It will not 9648 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9649 */ 9650 if (ire != NULL) { 9651 if (ire->ire_flags & RTF_BLACKHOLE) { 9652 ire_refrele(ire); 9653 freemsg(first_mp); 9654 return; 9655 } 9656 ire_refrele(ire); 9657 } 9658 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9659 } 9660 9661 /* Name/Value Table Lookup Routine */ 9662 char * 9663 ip_nv_lookup(nv_t *nv, int value) 9664 { 9665 if (!nv) 9666 return (NULL); 9667 for (; nv->nv_name; nv++) { 9668 if (nv->nv_value == value) 9669 return (nv->nv_name); 9670 } 9671 return ("unknown"); 9672 } 9673 9674 /* 9675 * This is a module open, i.e. this is a control stream for access 9676 * to a DLPI device. We allocate an ill_t as the instance data in 9677 * this case. 9678 */ 9679 int 9680 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9681 { 9682 ill_t *ill; 9683 int err; 9684 zoneid_t zoneid; 9685 netstack_t *ns; 9686 ip_stack_t *ipst; 9687 9688 /* 9689 * Prevent unprivileged processes from pushing IP so that 9690 * they can't send raw IP. 9691 */ 9692 if (secpolicy_net_rawaccess(credp) != 0) 9693 return (EPERM); 9694 9695 ns = netstack_find_by_cred(credp); 9696 ASSERT(ns != NULL); 9697 ipst = ns->netstack_ip; 9698 ASSERT(ipst != NULL); 9699 9700 /* 9701 * For exclusive stacks we set the zoneid to zero 9702 * to make IP operate as if in the global zone. 9703 */ 9704 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9705 zoneid = GLOBAL_ZONEID; 9706 else 9707 zoneid = crgetzoneid(credp); 9708 9709 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9710 q->q_ptr = WR(q)->q_ptr = ill; 9711 ill->ill_ipst = ipst; 9712 ill->ill_zoneid = zoneid; 9713 9714 /* 9715 * ill_init initializes the ill fields and then sends down 9716 * down a DL_INFO_REQ after calling qprocson. 9717 */ 9718 err = ill_init(q, ill); 9719 if (err != 0) { 9720 mi_free(ill); 9721 netstack_rele(ipst->ips_netstack); 9722 q->q_ptr = NULL; 9723 WR(q)->q_ptr = NULL; 9724 return (err); 9725 } 9726 9727 /* ill_init initializes the ipsq marking this thread as writer */ 9728 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9729 /* Wait for the DL_INFO_ACK */ 9730 mutex_enter(&ill->ill_lock); 9731 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9732 /* 9733 * Return value of 0 indicates a pending signal. 9734 */ 9735 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9736 if (err == 0) { 9737 mutex_exit(&ill->ill_lock); 9738 (void) ip_close(q, 0); 9739 return (EINTR); 9740 } 9741 } 9742 mutex_exit(&ill->ill_lock); 9743 9744 /* 9745 * ip_rput_other could have set an error in ill_error on 9746 * receipt of M_ERROR. 9747 */ 9748 9749 err = ill->ill_error; 9750 if (err != 0) { 9751 (void) ip_close(q, 0); 9752 return (err); 9753 } 9754 9755 ill->ill_credp = credp; 9756 crhold(credp); 9757 9758 mutex_enter(&ipst->ips_ip_mi_lock); 9759 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9760 credp); 9761 mutex_exit(&ipst->ips_ip_mi_lock); 9762 if (err) { 9763 (void) ip_close(q, 0); 9764 return (err); 9765 } 9766 return (0); 9767 } 9768 9769 /* For /dev/ip aka AF_INET open */ 9770 int 9771 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9772 { 9773 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9774 } 9775 9776 /* For /dev/ip6 aka AF_INET6 open */ 9777 int 9778 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9779 { 9780 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9781 } 9782 9783 /* IP open routine. */ 9784 int 9785 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9786 boolean_t isv6) 9787 { 9788 conn_t *connp; 9789 major_t maj; 9790 zoneid_t zoneid; 9791 netstack_t *ns; 9792 ip_stack_t *ipst; 9793 9794 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9795 9796 /* Allow reopen. */ 9797 if (q->q_ptr != NULL) 9798 return (0); 9799 9800 if (sflag & MODOPEN) { 9801 /* This is a module open */ 9802 return (ip_modopen(q, devp, flag, sflag, credp)); 9803 } 9804 9805 ns = netstack_find_by_cred(credp); 9806 ASSERT(ns != NULL); 9807 ipst = ns->netstack_ip; 9808 ASSERT(ipst != NULL); 9809 9810 /* 9811 * For exclusive stacks we set the zoneid to zero 9812 * to make IP operate as if in the global zone. 9813 */ 9814 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9815 zoneid = GLOBAL_ZONEID; 9816 else 9817 zoneid = crgetzoneid(credp); 9818 9819 /* 9820 * We are opening as a device. This is an IP client stream, and we 9821 * allocate an conn_t as the instance data. 9822 */ 9823 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9824 9825 /* 9826 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9827 * done by netstack_find_by_cred() 9828 */ 9829 netstack_rele(ipst->ips_netstack); 9830 9831 connp->conn_zoneid = zoneid; 9832 9833 connp->conn_upq = q; 9834 q->q_ptr = WR(q)->q_ptr = connp; 9835 9836 if (flag & SO_SOCKSTR) 9837 connp->conn_flags |= IPCL_SOCKET; 9838 9839 /* Minor tells us which /dev entry was opened */ 9840 if (isv6) { 9841 connp->conn_flags |= IPCL_ISV6; 9842 connp->conn_af_isv6 = B_TRUE; 9843 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9844 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9845 } else { 9846 connp->conn_af_isv6 = B_FALSE; 9847 connp->conn_pkt_isv6 = B_FALSE; 9848 } 9849 9850 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9851 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9852 connp->conn_minor_arena = ip_minor_arena_la; 9853 } else { 9854 /* 9855 * Either minor numbers in the large arena were exhausted 9856 * or a non socket application is doing the open. 9857 * Try to allocate from the small arena. 9858 */ 9859 if ((connp->conn_dev = 9860 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9861 /* CONN_DEC_REF takes care of netstack_rele() */ 9862 q->q_ptr = WR(q)->q_ptr = NULL; 9863 CONN_DEC_REF(connp); 9864 return (EBUSY); 9865 } 9866 connp->conn_minor_arena = ip_minor_arena_sa; 9867 } 9868 9869 maj = getemajor(*devp); 9870 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9871 9872 /* 9873 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9874 */ 9875 connp->conn_cred = credp; 9876 9877 /* 9878 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9879 */ 9880 connp->conn_recv = ip_conn_input; 9881 9882 crhold(connp->conn_cred); 9883 9884 /* 9885 * If the caller has the process-wide flag set, then default to MAC 9886 * exempt mode. This allows read-down to unlabeled hosts. 9887 */ 9888 if (getpflags(NET_MAC_AWARE, credp) != 0) 9889 connp->conn_mac_exempt = B_TRUE; 9890 9891 connp->conn_rq = q; 9892 connp->conn_wq = WR(q); 9893 9894 /* Non-zero default values */ 9895 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9896 9897 /* 9898 * Make the conn globally visible to walkers 9899 */ 9900 ASSERT(connp->conn_ref == 1); 9901 mutex_enter(&connp->conn_lock); 9902 connp->conn_state_flags &= ~CONN_INCIPIENT; 9903 mutex_exit(&connp->conn_lock); 9904 9905 qprocson(q); 9906 9907 return (0); 9908 } 9909 9910 /* 9911 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9912 * Note that there is no race since either ip_output function works - it 9913 * is just an optimization to enter the best ip_output routine directly. 9914 */ 9915 void 9916 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9917 ip_stack_t *ipst) 9918 { 9919 if (isv6) { 9920 if (bump_mib) { 9921 BUMP_MIB(&ipst->ips_ip6_mib, 9922 ipIfStatsOutSwitchIPVersion); 9923 } 9924 connp->conn_send = ip_output_v6; 9925 connp->conn_pkt_isv6 = B_TRUE; 9926 } else { 9927 if (bump_mib) { 9928 BUMP_MIB(&ipst->ips_ip_mib, 9929 ipIfStatsOutSwitchIPVersion); 9930 } 9931 connp->conn_send = ip_output; 9932 connp->conn_pkt_isv6 = B_FALSE; 9933 } 9934 9935 } 9936 9937 /* 9938 * See if IPsec needs loading because of the options in mp. 9939 */ 9940 static boolean_t 9941 ipsec_opt_present(mblk_t *mp) 9942 { 9943 uint8_t *optcp, *next_optcp, *opt_endcp; 9944 struct opthdr *opt; 9945 struct T_opthdr *topt; 9946 int opthdr_len; 9947 t_uscalar_t optname, optlevel; 9948 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9949 ipsec_req_t *ipsr; 9950 9951 /* 9952 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9953 * return TRUE. 9954 */ 9955 9956 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9957 opt_endcp = optcp + tor->OPT_length; 9958 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9959 opthdr_len = sizeof (struct T_opthdr); 9960 } else { /* O_OPTMGMT_REQ */ 9961 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9962 opthdr_len = sizeof (struct opthdr); 9963 } 9964 for (; optcp < opt_endcp; optcp = next_optcp) { 9965 if (optcp + opthdr_len > opt_endcp) 9966 return (B_FALSE); /* Not enough option header. */ 9967 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9968 topt = (struct T_opthdr *)optcp; 9969 optlevel = topt->level; 9970 optname = topt->name; 9971 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9972 } else { 9973 opt = (struct opthdr *)optcp; 9974 optlevel = opt->level; 9975 optname = opt->name; 9976 next_optcp = optcp + opthdr_len + 9977 _TPI_ALIGN_OPT(opt->len); 9978 } 9979 if ((next_optcp < optcp) || /* wraparound pointer space */ 9980 ((next_optcp >= opt_endcp) && /* last option bad len */ 9981 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9982 return (B_FALSE); /* bad option buffer */ 9983 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9984 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9985 /* 9986 * Check to see if it's an all-bypass or all-zeroes 9987 * IPsec request. Don't bother loading IPsec if 9988 * the socket doesn't want to use it. (A good example 9989 * is a bypass request.) 9990 * 9991 * Basically, if any of the non-NEVER bits are set, 9992 * load IPsec. 9993 */ 9994 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9995 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9996 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9997 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9998 != 0) 9999 return (B_TRUE); 10000 } 10001 } 10002 return (B_FALSE); 10003 } 10004 10005 /* 10006 * If conn is is waiting for ipsec to finish loading, kick it. 10007 */ 10008 /* ARGSUSED */ 10009 static void 10010 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10011 { 10012 t_scalar_t optreq_prim; 10013 mblk_t *mp; 10014 cred_t *cr; 10015 int err = 0; 10016 10017 /* 10018 * This function is called, after ipsec loading is complete. 10019 * Since IP checks exclusively and atomically (i.e it prevents 10020 * ipsec load from completing until ip_optcom_req completes) 10021 * whether ipsec load is complete, there cannot be a race with IP 10022 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10023 */ 10024 mutex_enter(&connp->conn_lock); 10025 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10026 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10027 mp = connp->conn_ipsec_opt_mp; 10028 connp->conn_ipsec_opt_mp = NULL; 10029 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10030 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10031 mutex_exit(&connp->conn_lock); 10032 10033 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10034 10035 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10036 if (optreq_prim == T_OPTMGMT_REQ) { 10037 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10038 &ip_opt_obj, B_FALSE); 10039 } else { 10040 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10041 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10042 &ip_opt_obj, B_FALSE); 10043 } 10044 if (err != EINPROGRESS) 10045 CONN_OPER_PENDING_DONE(connp); 10046 return; 10047 } 10048 mutex_exit(&connp->conn_lock); 10049 } 10050 10051 /* 10052 * Called from the ipsec_loader thread, outside any perimeter, to tell 10053 * ip qenable any of the queues waiting for the ipsec loader to 10054 * complete. 10055 */ 10056 void 10057 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10058 { 10059 netstack_t *ns = ipss->ipsec_netstack; 10060 10061 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10062 } 10063 10064 /* 10065 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10066 * determines the grp on which it has to become exclusive, queues the mp 10067 * and sq draining restarts the optmgmt 10068 */ 10069 static boolean_t 10070 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10071 { 10072 conn_t *connp = Q_TO_CONN(q); 10073 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10074 10075 /* 10076 * Take IPsec requests and treat them special. 10077 */ 10078 if (ipsec_opt_present(mp)) { 10079 /* First check if IPsec is loaded. */ 10080 mutex_enter(&ipss->ipsec_loader_lock); 10081 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10082 mutex_exit(&ipss->ipsec_loader_lock); 10083 return (B_FALSE); 10084 } 10085 mutex_enter(&connp->conn_lock); 10086 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10087 10088 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10089 connp->conn_ipsec_opt_mp = mp; 10090 mutex_exit(&connp->conn_lock); 10091 mutex_exit(&ipss->ipsec_loader_lock); 10092 10093 ipsec_loader_loadnow(ipss); 10094 return (B_TRUE); 10095 } 10096 return (B_FALSE); 10097 } 10098 10099 /* 10100 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10101 * all of them are copied to the conn_t. If the req is "zero", the policy is 10102 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10103 * fields. 10104 * We keep only the latest setting of the policy and thus policy setting 10105 * is not incremental/cumulative. 10106 * 10107 * Requests to set policies with multiple alternative actions will 10108 * go through a different API. 10109 */ 10110 int 10111 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10112 { 10113 uint_t ah_req = 0; 10114 uint_t esp_req = 0; 10115 uint_t se_req = 0; 10116 ipsec_selkey_t sel; 10117 ipsec_act_t *actp = NULL; 10118 uint_t nact; 10119 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10120 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10121 ipsec_policy_root_t *pr; 10122 ipsec_policy_head_t *ph; 10123 int fam; 10124 boolean_t is_pol_reset; 10125 int error = 0; 10126 netstack_t *ns = connp->conn_netstack; 10127 ip_stack_t *ipst = ns->netstack_ip; 10128 ipsec_stack_t *ipss = ns->netstack_ipsec; 10129 10130 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10131 10132 /* 10133 * The IP_SEC_OPT option does not allow variable length parameters, 10134 * hence a request cannot be NULL. 10135 */ 10136 if (req == NULL) 10137 return (EINVAL); 10138 10139 ah_req = req->ipsr_ah_req; 10140 esp_req = req->ipsr_esp_req; 10141 se_req = req->ipsr_self_encap_req; 10142 10143 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10144 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10145 return (EINVAL); 10146 10147 /* 10148 * Are we dealing with a request to reset the policy (i.e. 10149 * zero requests). 10150 */ 10151 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10152 (esp_req & REQ_MASK) == 0 && 10153 (se_req & REQ_MASK) == 0); 10154 10155 if (!is_pol_reset) { 10156 /* 10157 * If we couldn't load IPsec, fail with "protocol 10158 * not supported". 10159 * IPsec may not have been loaded for a request with zero 10160 * policies, so we don't fail in this case. 10161 */ 10162 mutex_enter(&ipss->ipsec_loader_lock); 10163 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10164 mutex_exit(&ipss->ipsec_loader_lock); 10165 return (EPROTONOSUPPORT); 10166 } 10167 mutex_exit(&ipss->ipsec_loader_lock); 10168 10169 /* 10170 * Test for valid requests. Invalid algorithms 10171 * need to be tested by IPsec code because new 10172 * algorithms can be added dynamically. 10173 */ 10174 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10175 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10176 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10177 return (EINVAL); 10178 } 10179 10180 /* 10181 * Only privileged users can issue these 10182 * requests. 10183 */ 10184 if (((ah_req & IPSEC_PREF_NEVER) || 10185 (esp_req & IPSEC_PREF_NEVER) || 10186 (se_req & IPSEC_PREF_NEVER)) && 10187 secpolicy_ip_config(cr, B_FALSE) != 0) { 10188 return (EPERM); 10189 } 10190 10191 /* 10192 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10193 * are mutually exclusive. 10194 */ 10195 if (((ah_req & REQ_MASK) == REQ_MASK) || 10196 ((esp_req & REQ_MASK) == REQ_MASK) || 10197 ((se_req & REQ_MASK) == REQ_MASK)) { 10198 /* Both of them are set */ 10199 return (EINVAL); 10200 } 10201 } 10202 10203 mutex_enter(&connp->conn_lock); 10204 10205 /* 10206 * If we have already cached policies in ip_bind_connected*(), don't 10207 * let them change now. We cache policies for connections 10208 * whose src,dst [addr, port] is known. 10209 */ 10210 if (connp->conn_policy_cached) { 10211 mutex_exit(&connp->conn_lock); 10212 return (EINVAL); 10213 } 10214 10215 /* 10216 * We have a zero policies, reset the connection policy if already 10217 * set. This will cause the connection to inherit the 10218 * global policy, if any. 10219 */ 10220 if (is_pol_reset) { 10221 if (connp->conn_policy != NULL) { 10222 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10223 connp->conn_policy = NULL; 10224 } 10225 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10226 connp->conn_in_enforce_policy = B_FALSE; 10227 connp->conn_out_enforce_policy = B_FALSE; 10228 mutex_exit(&connp->conn_lock); 10229 return (0); 10230 } 10231 10232 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10233 ipst->ips_netstack); 10234 if (ph == NULL) 10235 goto enomem; 10236 10237 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10238 if (actp == NULL) 10239 goto enomem; 10240 10241 /* 10242 * Always allocate IPv4 policy entries, since they can also 10243 * apply to ipv6 sockets being used in ipv4-compat mode. 10244 */ 10245 bzero(&sel, sizeof (sel)); 10246 sel.ipsl_valid = IPSL_IPV4; 10247 10248 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10249 ipst->ips_netstack); 10250 if (pin4 == NULL) 10251 goto enomem; 10252 10253 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10254 ipst->ips_netstack); 10255 if (pout4 == NULL) 10256 goto enomem; 10257 10258 if (connp->conn_af_isv6) { 10259 /* 10260 * We're looking at a v6 socket, also allocate the 10261 * v6-specific entries... 10262 */ 10263 sel.ipsl_valid = IPSL_IPV6; 10264 pin6 = ipsec_policy_create(&sel, actp, nact, 10265 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10266 if (pin6 == NULL) 10267 goto enomem; 10268 10269 pout6 = ipsec_policy_create(&sel, actp, nact, 10270 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10271 if (pout6 == NULL) 10272 goto enomem; 10273 10274 /* 10275 * .. and file them away in the right place. 10276 */ 10277 fam = IPSEC_AF_V6; 10278 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10279 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10280 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10281 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10282 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10283 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10284 } 10285 10286 ipsec_actvec_free(actp, nact); 10287 10288 /* 10289 * File the v4 policies. 10290 */ 10291 fam = IPSEC_AF_V4; 10292 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10293 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10294 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10295 10296 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10297 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10298 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10299 10300 /* 10301 * If the requests need security, set enforce_policy. 10302 * If the requests are IPSEC_PREF_NEVER, one should 10303 * still set conn_out_enforce_policy so that an ipsec_out 10304 * gets attached in ip_wput. This is needed so that 10305 * for connections that we don't cache policy in ip_bind, 10306 * if global policy matches in ip_wput_attach_policy, we 10307 * don't wrongly inherit global policy. Similarly, we need 10308 * to set conn_in_enforce_policy also so that we don't verify 10309 * policy wrongly. 10310 */ 10311 if ((ah_req & REQ_MASK) != 0 || 10312 (esp_req & REQ_MASK) != 0 || 10313 (se_req & REQ_MASK) != 0) { 10314 connp->conn_in_enforce_policy = B_TRUE; 10315 connp->conn_out_enforce_policy = B_TRUE; 10316 connp->conn_flags |= IPCL_CHECK_POLICY; 10317 } 10318 10319 mutex_exit(&connp->conn_lock); 10320 return (error); 10321 #undef REQ_MASK 10322 10323 /* 10324 * Common memory-allocation-failure exit path. 10325 */ 10326 enomem: 10327 mutex_exit(&connp->conn_lock); 10328 if (actp != NULL) 10329 ipsec_actvec_free(actp, nact); 10330 if (pin4 != NULL) 10331 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10332 if (pout4 != NULL) 10333 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10334 if (pin6 != NULL) 10335 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10336 if (pout6 != NULL) 10337 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10338 return (ENOMEM); 10339 } 10340 10341 /* 10342 * Only for options that pass in an IP addr. Currently only V4 options 10343 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10344 * So this function assumes level is IPPROTO_IP 10345 */ 10346 int 10347 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10348 mblk_t *first_mp) 10349 { 10350 ipif_t *ipif = NULL; 10351 int error; 10352 ill_t *ill; 10353 int zoneid; 10354 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10355 10356 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10357 10358 if (addr != INADDR_ANY || checkonly) { 10359 ASSERT(connp != NULL); 10360 zoneid = IPCL_ZONEID(connp); 10361 if (option == IP_NEXTHOP) { 10362 ipif = ipif_lookup_onlink_addr(addr, 10363 connp->conn_zoneid, ipst); 10364 } else { 10365 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10366 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10367 &error, ipst); 10368 } 10369 if (ipif == NULL) { 10370 if (error == EINPROGRESS) 10371 return (error); 10372 else if ((option == IP_MULTICAST_IF) || 10373 (option == IP_NEXTHOP)) 10374 return (EHOSTUNREACH); 10375 else 10376 return (EINVAL); 10377 } else if (checkonly) { 10378 if (option == IP_MULTICAST_IF) { 10379 ill = ipif->ipif_ill; 10380 /* not supported by the virtual network iface */ 10381 if (IS_VNI(ill)) { 10382 ipif_refrele(ipif); 10383 return (EINVAL); 10384 } 10385 } 10386 ipif_refrele(ipif); 10387 return (0); 10388 } 10389 ill = ipif->ipif_ill; 10390 mutex_enter(&connp->conn_lock); 10391 mutex_enter(&ill->ill_lock); 10392 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10393 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10394 mutex_exit(&ill->ill_lock); 10395 mutex_exit(&connp->conn_lock); 10396 ipif_refrele(ipif); 10397 return (option == IP_MULTICAST_IF ? 10398 EHOSTUNREACH : EINVAL); 10399 } 10400 } else { 10401 mutex_enter(&connp->conn_lock); 10402 } 10403 10404 /* None of the options below are supported on the VNI */ 10405 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10406 mutex_exit(&ill->ill_lock); 10407 mutex_exit(&connp->conn_lock); 10408 ipif_refrele(ipif); 10409 return (EINVAL); 10410 } 10411 10412 switch (option) { 10413 case IP_DONTFAILOVER_IF: 10414 /* 10415 * This option is used by in.mpathd to ensure 10416 * that IPMP probe packets only go out on the 10417 * test interfaces. in.mpathd sets this option 10418 * on the non-failover interfaces. 10419 * For backward compatibility, this option 10420 * implicitly sets IP_MULTICAST_IF, as used 10421 * be done in bind(), so that ip_wput gets 10422 * this ipif to send mcast packets. 10423 */ 10424 if (ipif != NULL) { 10425 ASSERT(addr != INADDR_ANY); 10426 connp->conn_nofailover_ill = ipif->ipif_ill; 10427 connp->conn_multicast_ipif = ipif; 10428 } else { 10429 ASSERT(addr == INADDR_ANY); 10430 connp->conn_nofailover_ill = NULL; 10431 connp->conn_multicast_ipif = NULL; 10432 } 10433 break; 10434 10435 case IP_MULTICAST_IF: 10436 connp->conn_multicast_ipif = ipif; 10437 break; 10438 case IP_NEXTHOP: 10439 connp->conn_nexthop_v4 = addr; 10440 connp->conn_nexthop_set = B_TRUE; 10441 break; 10442 } 10443 10444 if (ipif != NULL) { 10445 mutex_exit(&ill->ill_lock); 10446 mutex_exit(&connp->conn_lock); 10447 ipif_refrele(ipif); 10448 return (0); 10449 } 10450 mutex_exit(&connp->conn_lock); 10451 /* We succeded in cleared the option */ 10452 return (0); 10453 } 10454 10455 /* 10456 * For options that pass in an ifindex specifying the ill. V6 options always 10457 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10458 */ 10459 int 10460 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10461 int level, int option, mblk_t *first_mp) 10462 { 10463 ill_t *ill = NULL; 10464 int error = 0; 10465 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10466 10467 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10468 if (ifindex != 0) { 10469 ASSERT(connp != NULL); 10470 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10471 first_mp, ip_restart_optmgmt, &error, ipst); 10472 if (ill != NULL) { 10473 if (checkonly) { 10474 /* not supported by the virtual network iface */ 10475 if (IS_VNI(ill)) { 10476 ill_refrele(ill); 10477 return (EINVAL); 10478 } 10479 ill_refrele(ill); 10480 return (0); 10481 } 10482 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10483 0, NULL)) { 10484 ill_refrele(ill); 10485 ill = NULL; 10486 mutex_enter(&connp->conn_lock); 10487 goto setit; 10488 } 10489 mutex_enter(&connp->conn_lock); 10490 mutex_enter(&ill->ill_lock); 10491 if (ill->ill_state_flags & ILL_CONDEMNED) { 10492 mutex_exit(&ill->ill_lock); 10493 mutex_exit(&connp->conn_lock); 10494 ill_refrele(ill); 10495 ill = NULL; 10496 mutex_enter(&connp->conn_lock); 10497 } 10498 goto setit; 10499 } else if (error == EINPROGRESS) { 10500 return (error); 10501 } else { 10502 error = 0; 10503 } 10504 } 10505 mutex_enter(&connp->conn_lock); 10506 setit: 10507 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10508 10509 /* 10510 * The options below assume that the ILL (if any) transmits and/or 10511 * receives traffic. Neither of which is true for the virtual network 10512 * interface, so fail setting these on a VNI. 10513 */ 10514 if (IS_VNI(ill)) { 10515 ASSERT(ill != NULL); 10516 mutex_exit(&ill->ill_lock); 10517 mutex_exit(&connp->conn_lock); 10518 ill_refrele(ill); 10519 return (EINVAL); 10520 } 10521 10522 if (level == IPPROTO_IP) { 10523 switch (option) { 10524 case IP_BOUND_IF: 10525 connp->conn_incoming_ill = ill; 10526 connp->conn_outgoing_ill = ill; 10527 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10528 0 : ifindex; 10529 break; 10530 10531 case IP_MULTICAST_IF: 10532 /* 10533 * This option is an internal special. The socket 10534 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10535 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10536 * specifies an ifindex and we try first on V6 ill's. 10537 * If we don't find one, we they try using on v4 ill's 10538 * intenally and we come here. 10539 */ 10540 if (!checkonly && ill != NULL) { 10541 ipif_t *ipif; 10542 ipif = ill->ill_ipif; 10543 10544 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10545 mutex_exit(&ill->ill_lock); 10546 mutex_exit(&connp->conn_lock); 10547 ill_refrele(ill); 10548 ill = NULL; 10549 mutex_enter(&connp->conn_lock); 10550 } else { 10551 connp->conn_multicast_ipif = ipif; 10552 } 10553 } 10554 break; 10555 10556 case IP_DHCPINIT_IF: 10557 if (connp->conn_dhcpinit_ill != NULL) { 10558 /* 10559 * We've locked the conn so conn_cleanup_ill() 10560 * cannot clear conn_dhcpinit_ill -- so it's 10561 * safe to access the ill. 10562 */ 10563 ill_t *oill = connp->conn_dhcpinit_ill; 10564 10565 ASSERT(oill->ill_dhcpinit != 0); 10566 atomic_dec_32(&oill->ill_dhcpinit); 10567 connp->conn_dhcpinit_ill = NULL; 10568 } 10569 10570 if (ill != NULL) { 10571 connp->conn_dhcpinit_ill = ill; 10572 atomic_inc_32(&ill->ill_dhcpinit); 10573 } 10574 break; 10575 } 10576 } else { 10577 switch (option) { 10578 case IPV6_BOUND_IF: 10579 connp->conn_incoming_ill = ill; 10580 connp->conn_outgoing_ill = ill; 10581 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10582 0 : ifindex; 10583 break; 10584 10585 case IPV6_BOUND_PIF: 10586 /* 10587 * Limit all transmit to this ill. 10588 * Unlike IPV6_BOUND_IF, using this option 10589 * prevents load spreading and failover from 10590 * happening when the interface is part of the 10591 * group. That's why we don't need to remember 10592 * the ifindex in orig_bound_ifindex as in 10593 * IPV6_BOUND_IF. 10594 */ 10595 connp->conn_outgoing_pill = ill; 10596 break; 10597 10598 case IPV6_DONTFAILOVER_IF: 10599 /* 10600 * This option is used by in.mpathd to ensure 10601 * that IPMP probe packets only go out on the 10602 * test interfaces. in.mpathd sets this option 10603 * on the non-failover interfaces. 10604 */ 10605 connp->conn_nofailover_ill = ill; 10606 /* 10607 * For backward compatibility, this option 10608 * implicitly sets ip_multicast_ill as used in 10609 * IPV6_MULTICAST_IF so that ip_wput gets 10610 * this ill to send mcast packets. 10611 */ 10612 connp->conn_multicast_ill = ill; 10613 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10614 0 : ifindex; 10615 break; 10616 10617 case IPV6_MULTICAST_IF: 10618 /* 10619 * Set conn_multicast_ill to be the IPv6 ill. 10620 * Set conn_multicast_ipif to be an IPv4 ipif 10621 * for ifindex to make IPv4 mapped addresses 10622 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10623 * Even if no IPv6 ill exists for the ifindex 10624 * we need to check for an IPv4 ifindex in order 10625 * for this to work with mapped addresses. In that 10626 * case only set conn_multicast_ipif. 10627 */ 10628 if (!checkonly) { 10629 if (ifindex == 0) { 10630 connp->conn_multicast_ill = NULL; 10631 connp->conn_orig_multicast_ifindex = 0; 10632 connp->conn_multicast_ipif = NULL; 10633 } else if (ill != NULL) { 10634 connp->conn_multicast_ill = ill; 10635 connp->conn_orig_multicast_ifindex = 10636 ifindex; 10637 } 10638 } 10639 break; 10640 } 10641 } 10642 10643 if (ill != NULL) { 10644 mutex_exit(&ill->ill_lock); 10645 mutex_exit(&connp->conn_lock); 10646 ill_refrele(ill); 10647 return (0); 10648 } 10649 mutex_exit(&connp->conn_lock); 10650 /* 10651 * We succeeded in clearing the option (ifindex == 0) or failed to 10652 * locate the ill and could not set the option (ifindex != 0) 10653 */ 10654 return (ifindex == 0 ? 0 : EINVAL); 10655 } 10656 10657 /* This routine sets socket options. */ 10658 /* ARGSUSED */ 10659 int 10660 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10661 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10662 void *dummy, cred_t *cr, mblk_t *first_mp) 10663 { 10664 int *i1 = (int *)invalp; 10665 conn_t *connp = Q_TO_CONN(q); 10666 int error = 0; 10667 boolean_t checkonly; 10668 ire_t *ire; 10669 boolean_t found; 10670 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10671 10672 switch (optset_context) { 10673 10674 case SETFN_OPTCOM_CHECKONLY: 10675 checkonly = B_TRUE; 10676 /* 10677 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10678 * inlen != 0 implies value supplied and 10679 * we have to "pretend" to set it. 10680 * inlen == 0 implies that there is no 10681 * value part in T_CHECK request and just validation 10682 * done elsewhere should be enough, we just return here. 10683 */ 10684 if (inlen == 0) { 10685 *outlenp = 0; 10686 return (0); 10687 } 10688 break; 10689 case SETFN_OPTCOM_NEGOTIATE: 10690 case SETFN_UD_NEGOTIATE: 10691 case SETFN_CONN_NEGOTIATE: 10692 checkonly = B_FALSE; 10693 break; 10694 default: 10695 /* 10696 * We should never get here 10697 */ 10698 *outlenp = 0; 10699 return (EINVAL); 10700 } 10701 10702 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10703 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10704 10705 /* 10706 * For fixed length options, no sanity check 10707 * of passed in length is done. It is assumed *_optcom_req() 10708 * routines do the right thing. 10709 */ 10710 10711 switch (level) { 10712 case SOL_SOCKET: 10713 /* 10714 * conn_lock protects the bitfields, and is used to 10715 * set the fields atomically. 10716 */ 10717 switch (name) { 10718 case SO_BROADCAST: 10719 if (!checkonly) { 10720 /* TODO: use value someplace? */ 10721 mutex_enter(&connp->conn_lock); 10722 connp->conn_broadcast = *i1 ? 1 : 0; 10723 mutex_exit(&connp->conn_lock); 10724 } 10725 break; /* goto sizeof (int) option return */ 10726 case SO_USELOOPBACK: 10727 if (!checkonly) { 10728 /* TODO: use value someplace? */ 10729 mutex_enter(&connp->conn_lock); 10730 connp->conn_loopback = *i1 ? 1 : 0; 10731 mutex_exit(&connp->conn_lock); 10732 } 10733 break; /* goto sizeof (int) option return */ 10734 case SO_DONTROUTE: 10735 if (!checkonly) { 10736 mutex_enter(&connp->conn_lock); 10737 connp->conn_dontroute = *i1 ? 1 : 0; 10738 mutex_exit(&connp->conn_lock); 10739 } 10740 break; /* goto sizeof (int) option return */ 10741 case SO_REUSEADDR: 10742 if (!checkonly) { 10743 mutex_enter(&connp->conn_lock); 10744 connp->conn_reuseaddr = *i1 ? 1 : 0; 10745 mutex_exit(&connp->conn_lock); 10746 } 10747 break; /* goto sizeof (int) option return */ 10748 case SO_PROTOTYPE: 10749 if (!checkonly) { 10750 mutex_enter(&connp->conn_lock); 10751 connp->conn_proto = *i1; 10752 mutex_exit(&connp->conn_lock); 10753 } 10754 break; /* goto sizeof (int) option return */ 10755 case SO_ALLZONES: 10756 if (!checkonly) { 10757 mutex_enter(&connp->conn_lock); 10758 if (IPCL_IS_BOUND(connp)) { 10759 mutex_exit(&connp->conn_lock); 10760 return (EINVAL); 10761 } 10762 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10763 mutex_exit(&connp->conn_lock); 10764 } 10765 break; /* goto sizeof (int) option return */ 10766 case SO_ANON_MLP: 10767 if (!checkonly) { 10768 mutex_enter(&connp->conn_lock); 10769 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10770 mutex_exit(&connp->conn_lock); 10771 } 10772 break; /* goto sizeof (int) option return */ 10773 case SO_MAC_EXEMPT: 10774 if (secpolicy_net_mac_aware(cr) != 0 || 10775 IPCL_IS_BOUND(connp)) 10776 return (EACCES); 10777 if (!checkonly) { 10778 mutex_enter(&connp->conn_lock); 10779 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10780 mutex_exit(&connp->conn_lock); 10781 } 10782 break; /* goto sizeof (int) option return */ 10783 default: 10784 /* 10785 * "soft" error (negative) 10786 * option not handled at this level 10787 * Note: Do not modify *outlenp 10788 */ 10789 return (-EINVAL); 10790 } 10791 break; 10792 case IPPROTO_IP: 10793 switch (name) { 10794 case IP_NEXTHOP: 10795 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10796 return (EPERM); 10797 /* FALLTHRU */ 10798 case IP_MULTICAST_IF: 10799 case IP_DONTFAILOVER_IF: { 10800 ipaddr_t addr = *i1; 10801 10802 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10803 first_mp); 10804 if (error != 0) 10805 return (error); 10806 break; /* goto sizeof (int) option return */ 10807 } 10808 10809 case IP_MULTICAST_TTL: 10810 /* Recorded in transport above IP */ 10811 *outvalp = *invalp; 10812 *outlenp = sizeof (uchar_t); 10813 return (0); 10814 case IP_MULTICAST_LOOP: 10815 if (!checkonly) { 10816 mutex_enter(&connp->conn_lock); 10817 connp->conn_multicast_loop = *invalp ? 1 : 0; 10818 mutex_exit(&connp->conn_lock); 10819 } 10820 *outvalp = *invalp; 10821 *outlenp = sizeof (uchar_t); 10822 return (0); 10823 case IP_ADD_MEMBERSHIP: 10824 case MCAST_JOIN_GROUP: 10825 case IP_DROP_MEMBERSHIP: 10826 case MCAST_LEAVE_GROUP: { 10827 struct ip_mreq *mreqp; 10828 struct group_req *greqp; 10829 ire_t *ire; 10830 boolean_t done = B_FALSE; 10831 ipaddr_t group, ifaddr; 10832 struct sockaddr_in *sin; 10833 uint32_t *ifindexp; 10834 boolean_t mcast_opt = B_TRUE; 10835 mcast_record_t fmode; 10836 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10837 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10838 10839 switch (name) { 10840 case IP_ADD_MEMBERSHIP: 10841 mcast_opt = B_FALSE; 10842 /* FALLTHRU */ 10843 case MCAST_JOIN_GROUP: 10844 fmode = MODE_IS_EXCLUDE; 10845 optfn = ip_opt_add_group; 10846 break; 10847 10848 case IP_DROP_MEMBERSHIP: 10849 mcast_opt = B_FALSE; 10850 /* FALLTHRU */ 10851 case MCAST_LEAVE_GROUP: 10852 fmode = MODE_IS_INCLUDE; 10853 optfn = ip_opt_delete_group; 10854 break; 10855 } 10856 10857 if (mcast_opt) { 10858 greqp = (struct group_req *)i1; 10859 sin = (struct sockaddr_in *)&greqp->gr_group; 10860 if (sin->sin_family != AF_INET) { 10861 *outlenp = 0; 10862 return (ENOPROTOOPT); 10863 } 10864 group = (ipaddr_t)sin->sin_addr.s_addr; 10865 ifaddr = INADDR_ANY; 10866 ifindexp = &greqp->gr_interface; 10867 } else { 10868 mreqp = (struct ip_mreq *)i1; 10869 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10870 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10871 ifindexp = NULL; 10872 } 10873 10874 /* 10875 * In the multirouting case, we need to replicate 10876 * the request on all interfaces that will take part 10877 * in replication. We do so because multirouting is 10878 * reflective, thus we will probably receive multi- 10879 * casts on those interfaces. 10880 * The ip_multirt_apply_membership() succeeds if the 10881 * operation succeeds on at least one interface. 10882 */ 10883 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10884 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10885 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10886 if (ire != NULL) { 10887 if (ire->ire_flags & RTF_MULTIRT) { 10888 error = ip_multirt_apply_membership( 10889 optfn, ire, connp, checkonly, group, 10890 fmode, INADDR_ANY, first_mp); 10891 done = B_TRUE; 10892 } 10893 ire_refrele(ire); 10894 } 10895 if (!done) { 10896 error = optfn(connp, checkonly, group, ifaddr, 10897 ifindexp, fmode, INADDR_ANY, first_mp); 10898 } 10899 if (error) { 10900 /* 10901 * EINPROGRESS is a soft error, needs retry 10902 * so don't make *outlenp zero. 10903 */ 10904 if (error != EINPROGRESS) 10905 *outlenp = 0; 10906 return (error); 10907 } 10908 /* OK return - copy input buffer into output buffer */ 10909 if (invalp != outvalp) { 10910 /* don't trust bcopy for identical src/dst */ 10911 bcopy(invalp, outvalp, inlen); 10912 } 10913 *outlenp = inlen; 10914 return (0); 10915 } 10916 case IP_BLOCK_SOURCE: 10917 case IP_UNBLOCK_SOURCE: 10918 case IP_ADD_SOURCE_MEMBERSHIP: 10919 case IP_DROP_SOURCE_MEMBERSHIP: 10920 case MCAST_BLOCK_SOURCE: 10921 case MCAST_UNBLOCK_SOURCE: 10922 case MCAST_JOIN_SOURCE_GROUP: 10923 case MCAST_LEAVE_SOURCE_GROUP: { 10924 struct ip_mreq_source *imreqp; 10925 struct group_source_req *gsreqp; 10926 in_addr_t grp, src, ifaddr = INADDR_ANY; 10927 uint32_t ifindex = 0; 10928 mcast_record_t fmode; 10929 struct sockaddr_in *sin; 10930 ire_t *ire; 10931 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10932 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10933 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10934 10935 switch (name) { 10936 case IP_BLOCK_SOURCE: 10937 mcast_opt = B_FALSE; 10938 /* FALLTHRU */ 10939 case MCAST_BLOCK_SOURCE: 10940 fmode = MODE_IS_EXCLUDE; 10941 optfn = ip_opt_add_group; 10942 break; 10943 10944 case IP_UNBLOCK_SOURCE: 10945 mcast_opt = B_FALSE; 10946 /* FALLTHRU */ 10947 case MCAST_UNBLOCK_SOURCE: 10948 fmode = MODE_IS_EXCLUDE; 10949 optfn = ip_opt_delete_group; 10950 break; 10951 10952 case IP_ADD_SOURCE_MEMBERSHIP: 10953 mcast_opt = B_FALSE; 10954 /* FALLTHRU */ 10955 case MCAST_JOIN_SOURCE_GROUP: 10956 fmode = MODE_IS_INCLUDE; 10957 optfn = ip_opt_add_group; 10958 break; 10959 10960 case IP_DROP_SOURCE_MEMBERSHIP: 10961 mcast_opt = B_FALSE; 10962 /* FALLTHRU */ 10963 case MCAST_LEAVE_SOURCE_GROUP: 10964 fmode = MODE_IS_INCLUDE; 10965 optfn = ip_opt_delete_group; 10966 break; 10967 } 10968 10969 if (mcast_opt) { 10970 gsreqp = (struct group_source_req *)i1; 10971 if (gsreqp->gsr_group.ss_family != AF_INET) { 10972 *outlenp = 0; 10973 return (ENOPROTOOPT); 10974 } 10975 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10976 grp = (ipaddr_t)sin->sin_addr.s_addr; 10977 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10978 src = (ipaddr_t)sin->sin_addr.s_addr; 10979 ifindex = gsreqp->gsr_interface; 10980 } else { 10981 imreqp = (struct ip_mreq_source *)i1; 10982 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10983 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10984 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10985 } 10986 10987 /* 10988 * In the multirouting case, we need to replicate 10989 * the request as noted in the mcast cases above. 10990 */ 10991 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10992 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10993 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10994 if (ire != NULL) { 10995 if (ire->ire_flags & RTF_MULTIRT) { 10996 error = ip_multirt_apply_membership( 10997 optfn, ire, connp, checkonly, grp, 10998 fmode, src, first_mp); 10999 done = B_TRUE; 11000 } 11001 ire_refrele(ire); 11002 } 11003 if (!done) { 11004 error = optfn(connp, checkonly, grp, ifaddr, 11005 &ifindex, fmode, src, first_mp); 11006 } 11007 if (error != 0) { 11008 /* 11009 * EINPROGRESS is a soft error, needs retry 11010 * so don't make *outlenp zero. 11011 */ 11012 if (error != EINPROGRESS) 11013 *outlenp = 0; 11014 return (error); 11015 } 11016 /* OK return - copy input buffer into output buffer */ 11017 if (invalp != outvalp) { 11018 bcopy(invalp, outvalp, inlen); 11019 } 11020 *outlenp = inlen; 11021 return (0); 11022 } 11023 case IP_SEC_OPT: 11024 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11025 if (error != 0) { 11026 *outlenp = 0; 11027 return (error); 11028 } 11029 break; 11030 case IP_HDRINCL: 11031 case IP_OPTIONS: 11032 case T_IP_OPTIONS: 11033 case IP_TOS: 11034 case T_IP_TOS: 11035 case IP_TTL: 11036 case IP_RECVDSTADDR: 11037 case IP_RECVOPTS: 11038 /* OK return - copy input buffer into output buffer */ 11039 if (invalp != outvalp) { 11040 /* don't trust bcopy for identical src/dst */ 11041 bcopy(invalp, outvalp, inlen); 11042 } 11043 *outlenp = inlen; 11044 return (0); 11045 case IP_RECVIF: 11046 /* Retrieve the inbound interface index */ 11047 if (!checkonly) { 11048 mutex_enter(&connp->conn_lock); 11049 connp->conn_recvif = *i1 ? 1 : 0; 11050 mutex_exit(&connp->conn_lock); 11051 } 11052 break; /* goto sizeof (int) option return */ 11053 case IP_RECVPKTINFO: 11054 if (!checkonly) { 11055 mutex_enter(&connp->conn_lock); 11056 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11057 mutex_exit(&connp->conn_lock); 11058 } 11059 break; /* goto sizeof (int) option return */ 11060 case IP_RECVSLLA: 11061 /* Retrieve the source link layer address */ 11062 if (!checkonly) { 11063 mutex_enter(&connp->conn_lock); 11064 connp->conn_recvslla = *i1 ? 1 : 0; 11065 mutex_exit(&connp->conn_lock); 11066 } 11067 break; /* goto sizeof (int) option return */ 11068 case MRT_INIT: 11069 case MRT_DONE: 11070 case MRT_ADD_VIF: 11071 case MRT_DEL_VIF: 11072 case MRT_ADD_MFC: 11073 case MRT_DEL_MFC: 11074 case MRT_ASSERT: 11075 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11076 *outlenp = 0; 11077 return (error); 11078 } 11079 error = ip_mrouter_set((int)name, q, checkonly, 11080 (uchar_t *)invalp, inlen, first_mp); 11081 if (error) { 11082 *outlenp = 0; 11083 return (error); 11084 } 11085 /* OK return - copy input buffer into output buffer */ 11086 if (invalp != outvalp) { 11087 /* don't trust bcopy for identical src/dst */ 11088 bcopy(invalp, outvalp, inlen); 11089 } 11090 *outlenp = inlen; 11091 return (0); 11092 case IP_BOUND_IF: 11093 case IP_DHCPINIT_IF: 11094 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11095 level, name, first_mp); 11096 if (error != 0) 11097 return (error); 11098 break; /* goto sizeof (int) option return */ 11099 11100 case IP_UNSPEC_SRC: 11101 /* Allow sending with a zero source address */ 11102 if (!checkonly) { 11103 mutex_enter(&connp->conn_lock); 11104 connp->conn_unspec_src = *i1 ? 1 : 0; 11105 mutex_exit(&connp->conn_lock); 11106 } 11107 break; /* goto sizeof (int) option return */ 11108 default: 11109 /* 11110 * "soft" error (negative) 11111 * option not handled at this level 11112 * Note: Do not modify *outlenp 11113 */ 11114 return (-EINVAL); 11115 } 11116 break; 11117 case IPPROTO_IPV6: 11118 switch (name) { 11119 case IPV6_BOUND_IF: 11120 case IPV6_BOUND_PIF: 11121 case IPV6_DONTFAILOVER_IF: 11122 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11123 level, name, first_mp); 11124 if (error != 0) 11125 return (error); 11126 break; /* goto sizeof (int) option return */ 11127 11128 case IPV6_MULTICAST_IF: 11129 /* 11130 * The only possible errors are EINPROGRESS and 11131 * EINVAL. EINPROGRESS will be restarted and is not 11132 * a hard error. We call this option on both V4 and V6 11133 * If both return EINVAL, then this call returns 11134 * EINVAL. If at least one of them succeeds we 11135 * return success. 11136 */ 11137 found = B_FALSE; 11138 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11139 level, name, first_mp); 11140 if (error == EINPROGRESS) 11141 return (error); 11142 if (error == 0) 11143 found = B_TRUE; 11144 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11145 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11146 if (error == 0) 11147 found = B_TRUE; 11148 if (!found) 11149 return (error); 11150 break; /* goto sizeof (int) option return */ 11151 11152 case IPV6_MULTICAST_HOPS: 11153 /* Recorded in transport above IP */ 11154 break; /* goto sizeof (int) option return */ 11155 case IPV6_MULTICAST_LOOP: 11156 if (!checkonly) { 11157 mutex_enter(&connp->conn_lock); 11158 connp->conn_multicast_loop = *i1; 11159 mutex_exit(&connp->conn_lock); 11160 } 11161 break; /* goto sizeof (int) option return */ 11162 case IPV6_JOIN_GROUP: 11163 case MCAST_JOIN_GROUP: 11164 case IPV6_LEAVE_GROUP: 11165 case MCAST_LEAVE_GROUP: { 11166 struct ipv6_mreq *ip_mreqp; 11167 struct group_req *greqp; 11168 ire_t *ire; 11169 boolean_t done = B_FALSE; 11170 in6_addr_t groupv6; 11171 uint32_t ifindex; 11172 boolean_t mcast_opt = B_TRUE; 11173 mcast_record_t fmode; 11174 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11175 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11176 11177 switch (name) { 11178 case IPV6_JOIN_GROUP: 11179 mcast_opt = B_FALSE; 11180 /* FALLTHRU */ 11181 case MCAST_JOIN_GROUP: 11182 fmode = MODE_IS_EXCLUDE; 11183 optfn = ip_opt_add_group_v6; 11184 break; 11185 11186 case IPV6_LEAVE_GROUP: 11187 mcast_opt = B_FALSE; 11188 /* FALLTHRU */ 11189 case MCAST_LEAVE_GROUP: 11190 fmode = MODE_IS_INCLUDE; 11191 optfn = ip_opt_delete_group_v6; 11192 break; 11193 } 11194 11195 if (mcast_opt) { 11196 struct sockaddr_in *sin; 11197 struct sockaddr_in6 *sin6; 11198 greqp = (struct group_req *)i1; 11199 if (greqp->gr_group.ss_family == AF_INET) { 11200 sin = (struct sockaddr_in *) 11201 &(greqp->gr_group); 11202 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11203 &groupv6); 11204 } else { 11205 sin6 = (struct sockaddr_in6 *) 11206 &(greqp->gr_group); 11207 groupv6 = sin6->sin6_addr; 11208 } 11209 ifindex = greqp->gr_interface; 11210 } else { 11211 ip_mreqp = (struct ipv6_mreq *)i1; 11212 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11213 ifindex = ip_mreqp->ipv6mr_interface; 11214 } 11215 /* 11216 * In the multirouting case, we need to replicate 11217 * the request on all interfaces that will take part 11218 * in replication. We do so because multirouting is 11219 * reflective, thus we will probably receive multi- 11220 * casts on those interfaces. 11221 * The ip_multirt_apply_membership_v6() succeeds if 11222 * the operation succeeds on at least one interface. 11223 */ 11224 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11225 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11226 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11227 if (ire != NULL) { 11228 if (ire->ire_flags & RTF_MULTIRT) { 11229 error = ip_multirt_apply_membership_v6( 11230 optfn, ire, connp, checkonly, 11231 &groupv6, fmode, &ipv6_all_zeros, 11232 first_mp); 11233 done = B_TRUE; 11234 } 11235 ire_refrele(ire); 11236 } 11237 if (!done) { 11238 error = optfn(connp, checkonly, &groupv6, 11239 ifindex, fmode, &ipv6_all_zeros, first_mp); 11240 } 11241 if (error) { 11242 /* 11243 * EINPROGRESS is a soft error, needs retry 11244 * so don't make *outlenp zero. 11245 */ 11246 if (error != EINPROGRESS) 11247 *outlenp = 0; 11248 return (error); 11249 } 11250 /* OK return - copy input buffer into output buffer */ 11251 if (invalp != outvalp) { 11252 /* don't trust bcopy for identical src/dst */ 11253 bcopy(invalp, outvalp, inlen); 11254 } 11255 *outlenp = inlen; 11256 return (0); 11257 } 11258 case MCAST_BLOCK_SOURCE: 11259 case MCAST_UNBLOCK_SOURCE: 11260 case MCAST_JOIN_SOURCE_GROUP: 11261 case MCAST_LEAVE_SOURCE_GROUP: { 11262 struct group_source_req *gsreqp; 11263 in6_addr_t v6grp, v6src; 11264 uint32_t ifindex; 11265 mcast_record_t fmode; 11266 ire_t *ire; 11267 boolean_t done = B_FALSE; 11268 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11269 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11270 11271 switch (name) { 11272 case MCAST_BLOCK_SOURCE: 11273 fmode = MODE_IS_EXCLUDE; 11274 optfn = ip_opt_add_group_v6; 11275 break; 11276 case MCAST_UNBLOCK_SOURCE: 11277 fmode = MODE_IS_EXCLUDE; 11278 optfn = ip_opt_delete_group_v6; 11279 break; 11280 case MCAST_JOIN_SOURCE_GROUP: 11281 fmode = MODE_IS_INCLUDE; 11282 optfn = ip_opt_add_group_v6; 11283 break; 11284 case MCAST_LEAVE_SOURCE_GROUP: 11285 fmode = MODE_IS_INCLUDE; 11286 optfn = ip_opt_delete_group_v6; 11287 break; 11288 } 11289 11290 gsreqp = (struct group_source_req *)i1; 11291 ifindex = gsreqp->gsr_interface; 11292 if (gsreqp->gsr_group.ss_family == AF_INET) { 11293 struct sockaddr_in *s; 11294 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11295 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11296 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11297 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11298 } else { 11299 struct sockaddr_in6 *s6; 11300 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11301 v6grp = s6->sin6_addr; 11302 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11303 v6src = s6->sin6_addr; 11304 } 11305 11306 /* 11307 * In the multirouting case, we need to replicate 11308 * the request as noted in the mcast cases above. 11309 */ 11310 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11311 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11312 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11313 if (ire != NULL) { 11314 if (ire->ire_flags & RTF_MULTIRT) { 11315 error = ip_multirt_apply_membership_v6( 11316 optfn, ire, connp, checkonly, 11317 &v6grp, fmode, &v6src, first_mp); 11318 done = B_TRUE; 11319 } 11320 ire_refrele(ire); 11321 } 11322 if (!done) { 11323 error = optfn(connp, checkonly, &v6grp, 11324 ifindex, fmode, &v6src, first_mp); 11325 } 11326 if (error != 0) { 11327 /* 11328 * EINPROGRESS is a soft error, needs retry 11329 * so don't make *outlenp zero. 11330 */ 11331 if (error != EINPROGRESS) 11332 *outlenp = 0; 11333 return (error); 11334 } 11335 /* OK return - copy input buffer into output buffer */ 11336 if (invalp != outvalp) { 11337 bcopy(invalp, outvalp, inlen); 11338 } 11339 *outlenp = inlen; 11340 return (0); 11341 } 11342 case IPV6_UNICAST_HOPS: 11343 /* Recorded in transport above IP */ 11344 break; /* goto sizeof (int) option return */ 11345 case IPV6_UNSPEC_SRC: 11346 /* Allow sending with a zero source address */ 11347 if (!checkonly) { 11348 mutex_enter(&connp->conn_lock); 11349 connp->conn_unspec_src = *i1 ? 1 : 0; 11350 mutex_exit(&connp->conn_lock); 11351 } 11352 break; /* goto sizeof (int) option return */ 11353 case IPV6_RECVPKTINFO: 11354 if (!checkonly) { 11355 mutex_enter(&connp->conn_lock); 11356 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11357 mutex_exit(&connp->conn_lock); 11358 } 11359 break; /* goto sizeof (int) option return */ 11360 case IPV6_RECVTCLASS: 11361 if (!checkonly) { 11362 if (*i1 < 0 || *i1 > 1) { 11363 return (EINVAL); 11364 } 11365 mutex_enter(&connp->conn_lock); 11366 connp->conn_ipv6_recvtclass = *i1; 11367 mutex_exit(&connp->conn_lock); 11368 } 11369 break; 11370 case IPV6_RECVPATHMTU: 11371 if (!checkonly) { 11372 if (*i1 < 0 || *i1 > 1) { 11373 return (EINVAL); 11374 } 11375 mutex_enter(&connp->conn_lock); 11376 connp->conn_ipv6_recvpathmtu = *i1; 11377 mutex_exit(&connp->conn_lock); 11378 } 11379 break; 11380 case IPV6_RECVHOPLIMIT: 11381 if (!checkonly) { 11382 mutex_enter(&connp->conn_lock); 11383 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11384 mutex_exit(&connp->conn_lock); 11385 } 11386 break; /* goto sizeof (int) option return */ 11387 case IPV6_RECVHOPOPTS: 11388 if (!checkonly) { 11389 mutex_enter(&connp->conn_lock); 11390 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11391 mutex_exit(&connp->conn_lock); 11392 } 11393 break; /* goto sizeof (int) option return */ 11394 case IPV6_RECVDSTOPTS: 11395 if (!checkonly) { 11396 mutex_enter(&connp->conn_lock); 11397 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11398 mutex_exit(&connp->conn_lock); 11399 } 11400 break; /* goto sizeof (int) option return */ 11401 case IPV6_RECVRTHDR: 11402 if (!checkonly) { 11403 mutex_enter(&connp->conn_lock); 11404 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11405 mutex_exit(&connp->conn_lock); 11406 } 11407 break; /* goto sizeof (int) option return */ 11408 case IPV6_RECVRTHDRDSTOPTS: 11409 if (!checkonly) { 11410 mutex_enter(&connp->conn_lock); 11411 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11412 mutex_exit(&connp->conn_lock); 11413 } 11414 break; /* goto sizeof (int) option return */ 11415 case IPV6_PKTINFO: 11416 if (inlen == 0) 11417 return (-EINVAL); /* clearing option */ 11418 error = ip6_set_pktinfo(cr, connp, 11419 (struct in6_pktinfo *)invalp, first_mp); 11420 if (error != 0) 11421 *outlenp = 0; 11422 else 11423 *outlenp = inlen; 11424 return (error); 11425 case IPV6_NEXTHOP: { 11426 struct sockaddr_in6 *sin6; 11427 11428 /* Verify that the nexthop is reachable */ 11429 if (inlen == 0) 11430 return (-EINVAL); /* clearing option */ 11431 11432 sin6 = (struct sockaddr_in6 *)invalp; 11433 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11434 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11435 NULL, MATCH_IRE_DEFAULT, ipst); 11436 11437 if (ire == NULL) { 11438 *outlenp = 0; 11439 return (EHOSTUNREACH); 11440 } 11441 ire_refrele(ire); 11442 return (-EINVAL); 11443 } 11444 case IPV6_SEC_OPT: 11445 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11446 if (error != 0) { 11447 *outlenp = 0; 11448 return (error); 11449 } 11450 break; 11451 case IPV6_SRC_PREFERENCES: { 11452 /* 11453 * This is implemented strictly in the ip module 11454 * (here and in tcp_opt_*() to accomodate tcp 11455 * sockets). Modules above ip pass this option 11456 * down here since ip is the only one that needs to 11457 * be aware of source address preferences. 11458 * 11459 * This socket option only affects connected 11460 * sockets that haven't already bound to a specific 11461 * IPv6 address. In other words, sockets that 11462 * don't call bind() with an address other than the 11463 * unspecified address and that call connect(). 11464 * ip_bind_connected_v6() passes these preferences 11465 * to the ipif_select_source_v6() function. 11466 */ 11467 if (inlen != sizeof (uint32_t)) 11468 return (EINVAL); 11469 error = ip6_set_src_preferences(connp, 11470 *(uint32_t *)invalp); 11471 if (error != 0) { 11472 *outlenp = 0; 11473 return (error); 11474 } else { 11475 *outlenp = sizeof (uint32_t); 11476 } 11477 break; 11478 } 11479 case IPV6_V6ONLY: 11480 if (*i1 < 0 || *i1 > 1) { 11481 return (EINVAL); 11482 } 11483 mutex_enter(&connp->conn_lock); 11484 connp->conn_ipv6_v6only = *i1; 11485 mutex_exit(&connp->conn_lock); 11486 break; 11487 default: 11488 return (-EINVAL); 11489 } 11490 break; 11491 default: 11492 /* 11493 * "soft" error (negative) 11494 * option not handled at this level 11495 * Note: Do not modify *outlenp 11496 */ 11497 return (-EINVAL); 11498 } 11499 /* 11500 * Common case of return from an option that is sizeof (int) 11501 */ 11502 *(int *)outvalp = *i1; 11503 *outlenp = sizeof (int); 11504 return (0); 11505 } 11506 11507 /* 11508 * This routine gets default values of certain options whose default 11509 * values are maintained by protocol specific code 11510 */ 11511 /* ARGSUSED */ 11512 int 11513 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11514 { 11515 int *i1 = (int *)ptr; 11516 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11517 11518 switch (level) { 11519 case IPPROTO_IP: 11520 switch (name) { 11521 case IP_MULTICAST_TTL: 11522 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11523 return (sizeof (uchar_t)); 11524 case IP_MULTICAST_LOOP: 11525 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11526 return (sizeof (uchar_t)); 11527 default: 11528 return (-1); 11529 } 11530 case IPPROTO_IPV6: 11531 switch (name) { 11532 case IPV6_UNICAST_HOPS: 11533 *i1 = ipst->ips_ipv6_def_hops; 11534 return (sizeof (int)); 11535 case IPV6_MULTICAST_HOPS: 11536 *i1 = IP_DEFAULT_MULTICAST_TTL; 11537 return (sizeof (int)); 11538 case IPV6_MULTICAST_LOOP: 11539 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11540 return (sizeof (int)); 11541 case IPV6_V6ONLY: 11542 *i1 = 1; 11543 return (sizeof (int)); 11544 default: 11545 return (-1); 11546 } 11547 default: 11548 return (-1); 11549 } 11550 /* NOTREACHED */ 11551 } 11552 11553 /* 11554 * Given a destination address and a pointer to where to put the information 11555 * this routine fills in the mtuinfo. 11556 */ 11557 int 11558 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11559 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11560 { 11561 ire_t *ire; 11562 ip_stack_t *ipst = ns->netstack_ip; 11563 11564 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11565 return (-1); 11566 11567 bzero(mtuinfo, sizeof (*mtuinfo)); 11568 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11569 mtuinfo->ip6m_addr.sin6_port = port; 11570 mtuinfo->ip6m_addr.sin6_addr = *in6; 11571 11572 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11573 if (ire != NULL) { 11574 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11575 ire_refrele(ire); 11576 } else { 11577 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11578 } 11579 return (sizeof (struct ip6_mtuinfo)); 11580 } 11581 11582 /* 11583 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11584 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11585 * isn't. This doesn't matter as the error checking is done properly for the 11586 * other MRT options coming in through ip_opt_set. 11587 */ 11588 int 11589 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11590 { 11591 conn_t *connp = Q_TO_CONN(q); 11592 ipsec_req_t *req = (ipsec_req_t *)ptr; 11593 11594 switch (level) { 11595 case IPPROTO_IP: 11596 switch (name) { 11597 case MRT_VERSION: 11598 case MRT_ASSERT: 11599 (void) ip_mrouter_get(name, q, ptr); 11600 return (sizeof (int)); 11601 case IP_SEC_OPT: 11602 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11603 case IP_NEXTHOP: 11604 if (connp->conn_nexthop_set) { 11605 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11606 return (sizeof (ipaddr_t)); 11607 } else 11608 return (0); 11609 case IP_RECVPKTINFO: 11610 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11611 return (sizeof (int)); 11612 default: 11613 break; 11614 } 11615 break; 11616 case IPPROTO_IPV6: 11617 switch (name) { 11618 case IPV6_SEC_OPT: 11619 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11620 case IPV6_SRC_PREFERENCES: { 11621 return (ip6_get_src_preferences(connp, 11622 (uint32_t *)ptr)); 11623 } 11624 case IPV6_V6ONLY: 11625 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11626 return (sizeof (int)); 11627 case IPV6_PATHMTU: 11628 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11629 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11630 default: 11631 break; 11632 } 11633 break; 11634 default: 11635 break; 11636 } 11637 return (-1); 11638 } 11639 11640 /* Named Dispatch routine to get a current value out of our parameter table. */ 11641 /* ARGSUSED */ 11642 static int 11643 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11644 { 11645 ipparam_t *ippa = (ipparam_t *)cp; 11646 11647 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11648 return (0); 11649 } 11650 11651 /* ARGSUSED */ 11652 static int 11653 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11654 { 11655 11656 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11657 return (0); 11658 } 11659 11660 /* 11661 * Set ip{,6}_forwarding values. This means walking through all of the 11662 * ill's and toggling their forwarding values. 11663 */ 11664 /* ARGSUSED */ 11665 static int 11666 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11667 { 11668 long new_value; 11669 int *forwarding_value = (int *)cp; 11670 ill_t *ill; 11671 boolean_t isv6; 11672 ill_walk_context_t ctx; 11673 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11674 11675 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11676 11677 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11678 new_value < 0 || new_value > 1) { 11679 return (EINVAL); 11680 } 11681 11682 *forwarding_value = new_value; 11683 11684 /* 11685 * Regardless of the current value of ip_forwarding, set all per-ill 11686 * values of ip_forwarding to the value being set. 11687 * 11688 * Bring all the ill's up to date with the new global value. 11689 */ 11690 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11691 11692 if (isv6) 11693 ill = ILL_START_WALK_V6(&ctx, ipst); 11694 else 11695 ill = ILL_START_WALK_V4(&ctx, ipst); 11696 11697 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11698 (void) ill_forward_set(ill, new_value != 0); 11699 11700 rw_exit(&ipst->ips_ill_g_lock); 11701 return (0); 11702 } 11703 11704 /* 11705 * Walk through the param array specified registering each element with the 11706 * Named Dispatch handler. This is called only during init. So it is ok 11707 * not to acquire any locks 11708 */ 11709 static boolean_t 11710 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11711 ipndp_t *ipnd, size_t ipnd_cnt) 11712 { 11713 for (; ippa_cnt-- > 0; ippa++) { 11714 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11715 if (!nd_load(ndp, ippa->ip_param_name, 11716 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11717 nd_free(ndp); 11718 return (B_FALSE); 11719 } 11720 } 11721 } 11722 11723 for (; ipnd_cnt-- > 0; ipnd++) { 11724 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11725 if (!nd_load(ndp, ipnd->ip_ndp_name, 11726 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11727 ipnd->ip_ndp_data)) { 11728 nd_free(ndp); 11729 return (B_FALSE); 11730 } 11731 } 11732 } 11733 11734 return (B_TRUE); 11735 } 11736 11737 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11738 /* ARGSUSED */ 11739 static int 11740 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11741 { 11742 long new_value; 11743 ipparam_t *ippa = (ipparam_t *)cp; 11744 11745 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11746 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11747 return (EINVAL); 11748 } 11749 ippa->ip_param_value = new_value; 11750 return (0); 11751 } 11752 11753 /* 11754 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11755 * When an ipf is passed here for the first time, if 11756 * we already have in-order fragments on the queue, we convert from the fast- 11757 * path reassembly scheme to the hard-case scheme. From then on, additional 11758 * fragments are reassembled here. We keep track of the start and end offsets 11759 * of each piece, and the number of holes in the chain. When the hole count 11760 * goes to zero, we are done! 11761 * 11762 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11763 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11764 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11765 * after the call to ip_reassemble(). 11766 */ 11767 int 11768 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11769 size_t msg_len) 11770 { 11771 uint_t end; 11772 mblk_t *next_mp; 11773 mblk_t *mp1; 11774 uint_t offset; 11775 boolean_t incr_dups = B_TRUE; 11776 boolean_t offset_zero_seen = B_FALSE; 11777 boolean_t pkt_boundary_checked = B_FALSE; 11778 11779 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11780 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11781 11782 /* Add in byte count */ 11783 ipf->ipf_count += msg_len; 11784 if (ipf->ipf_end) { 11785 /* 11786 * We were part way through in-order reassembly, but now there 11787 * is a hole. We walk through messages already queued, and 11788 * mark them for hard case reassembly. We know that up till 11789 * now they were in order starting from offset zero. 11790 */ 11791 offset = 0; 11792 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11793 IP_REASS_SET_START(mp1, offset); 11794 if (offset == 0) { 11795 ASSERT(ipf->ipf_nf_hdr_len != 0); 11796 offset = -ipf->ipf_nf_hdr_len; 11797 } 11798 offset += mp1->b_wptr - mp1->b_rptr; 11799 IP_REASS_SET_END(mp1, offset); 11800 } 11801 /* One hole at the end. */ 11802 ipf->ipf_hole_cnt = 1; 11803 /* Brand it as a hard case, forever. */ 11804 ipf->ipf_end = 0; 11805 } 11806 /* Walk through all the new pieces. */ 11807 do { 11808 end = start + (mp->b_wptr - mp->b_rptr); 11809 /* 11810 * If start is 0, decrease 'end' only for the first mblk of 11811 * the fragment. Otherwise 'end' can get wrong value in the 11812 * second pass of the loop if first mblk is exactly the 11813 * size of ipf_nf_hdr_len. 11814 */ 11815 if (start == 0 && !offset_zero_seen) { 11816 /* First segment */ 11817 ASSERT(ipf->ipf_nf_hdr_len != 0); 11818 end -= ipf->ipf_nf_hdr_len; 11819 offset_zero_seen = B_TRUE; 11820 } 11821 next_mp = mp->b_cont; 11822 /* 11823 * We are checking to see if there is any interesing data 11824 * to process. If there isn't and the mblk isn't the 11825 * one which carries the unfragmentable header then we 11826 * drop it. It's possible to have just the unfragmentable 11827 * header come through without any data. That needs to be 11828 * saved. 11829 * 11830 * If the assert at the top of this function holds then the 11831 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11832 * is infrequently traveled enough that the test is left in 11833 * to protect against future code changes which break that 11834 * invariant. 11835 */ 11836 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11837 /* Empty. Blast it. */ 11838 IP_REASS_SET_START(mp, 0); 11839 IP_REASS_SET_END(mp, 0); 11840 /* 11841 * If the ipf points to the mblk we are about to free, 11842 * update ipf to point to the next mblk (or NULL 11843 * if none). 11844 */ 11845 if (ipf->ipf_mp->b_cont == mp) 11846 ipf->ipf_mp->b_cont = next_mp; 11847 freeb(mp); 11848 continue; 11849 } 11850 mp->b_cont = NULL; 11851 IP_REASS_SET_START(mp, start); 11852 IP_REASS_SET_END(mp, end); 11853 if (!ipf->ipf_tail_mp) { 11854 ipf->ipf_tail_mp = mp; 11855 ipf->ipf_mp->b_cont = mp; 11856 if (start == 0 || !more) { 11857 ipf->ipf_hole_cnt = 1; 11858 /* 11859 * if the first fragment comes in more than one 11860 * mblk, this loop will be executed for each 11861 * mblk. Need to adjust hole count so exiting 11862 * this routine will leave hole count at 1. 11863 */ 11864 if (next_mp) 11865 ipf->ipf_hole_cnt++; 11866 } else 11867 ipf->ipf_hole_cnt = 2; 11868 continue; 11869 } else if (ipf->ipf_last_frag_seen && !more && 11870 !pkt_boundary_checked) { 11871 /* 11872 * We check datagram boundary only if this fragment 11873 * claims to be the last fragment and we have seen a 11874 * last fragment in the past too. We do this only 11875 * once for a given fragment. 11876 * 11877 * start cannot be 0 here as fragments with start=0 11878 * and MF=0 gets handled as a complete packet. These 11879 * fragments should not reach here. 11880 */ 11881 11882 if (start + msgdsize(mp) != 11883 IP_REASS_END(ipf->ipf_tail_mp)) { 11884 /* 11885 * We have two fragments both of which claim 11886 * to be the last fragment but gives conflicting 11887 * information about the whole datagram size. 11888 * Something fishy is going on. Drop the 11889 * fragment and free up the reassembly list. 11890 */ 11891 return (IP_REASS_FAILED); 11892 } 11893 11894 /* 11895 * We shouldn't come to this code block again for this 11896 * particular fragment. 11897 */ 11898 pkt_boundary_checked = B_TRUE; 11899 } 11900 11901 /* New stuff at or beyond tail? */ 11902 offset = IP_REASS_END(ipf->ipf_tail_mp); 11903 if (start >= offset) { 11904 if (ipf->ipf_last_frag_seen) { 11905 /* current fragment is beyond last fragment */ 11906 return (IP_REASS_FAILED); 11907 } 11908 /* Link it on end. */ 11909 ipf->ipf_tail_mp->b_cont = mp; 11910 ipf->ipf_tail_mp = mp; 11911 if (more) { 11912 if (start != offset) 11913 ipf->ipf_hole_cnt++; 11914 } else if (start == offset && next_mp == NULL) 11915 ipf->ipf_hole_cnt--; 11916 continue; 11917 } 11918 mp1 = ipf->ipf_mp->b_cont; 11919 offset = IP_REASS_START(mp1); 11920 /* New stuff at the front? */ 11921 if (start < offset) { 11922 if (start == 0) { 11923 if (end >= offset) { 11924 /* Nailed the hole at the begining. */ 11925 ipf->ipf_hole_cnt--; 11926 } 11927 } else if (end < offset) { 11928 /* 11929 * A hole, stuff, and a hole where there used 11930 * to be just a hole. 11931 */ 11932 ipf->ipf_hole_cnt++; 11933 } 11934 mp->b_cont = mp1; 11935 /* Check for overlap. */ 11936 while (end > offset) { 11937 if (end < IP_REASS_END(mp1)) { 11938 mp->b_wptr -= end - offset; 11939 IP_REASS_SET_END(mp, offset); 11940 BUMP_MIB(ill->ill_ip_mib, 11941 ipIfStatsReasmPartDups); 11942 break; 11943 } 11944 /* Did we cover another hole? */ 11945 if ((mp1->b_cont && 11946 IP_REASS_END(mp1) != 11947 IP_REASS_START(mp1->b_cont) && 11948 end >= IP_REASS_START(mp1->b_cont)) || 11949 (!ipf->ipf_last_frag_seen && !more)) { 11950 ipf->ipf_hole_cnt--; 11951 } 11952 /* Clip out mp1. */ 11953 if ((mp->b_cont = mp1->b_cont) == NULL) { 11954 /* 11955 * After clipping out mp1, this guy 11956 * is now hanging off the end. 11957 */ 11958 ipf->ipf_tail_mp = mp; 11959 } 11960 IP_REASS_SET_START(mp1, 0); 11961 IP_REASS_SET_END(mp1, 0); 11962 /* Subtract byte count */ 11963 ipf->ipf_count -= mp1->b_datap->db_lim - 11964 mp1->b_datap->db_base; 11965 freeb(mp1); 11966 BUMP_MIB(ill->ill_ip_mib, 11967 ipIfStatsReasmPartDups); 11968 mp1 = mp->b_cont; 11969 if (!mp1) 11970 break; 11971 offset = IP_REASS_START(mp1); 11972 } 11973 ipf->ipf_mp->b_cont = mp; 11974 continue; 11975 } 11976 /* 11977 * The new piece starts somewhere between the start of the head 11978 * and before the end of the tail. 11979 */ 11980 for (; mp1; mp1 = mp1->b_cont) { 11981 offset = IP_REASS_END(mp1); 11982 if (start < offset) { 11983 if (end <= offset) { 11984 /* Nothing new. */ 11985 IP_REASS_SET_START(mp, 0); 11986 IP_REASS_SET_END(mp, 0); 11987 /* Subtract byte count */ 11988 ipf->ipf_count -= mp->b_datap->db_lim - 11989 mp->b_datap->db_base; 11990 if (incr_dups) { 11991 ipf->ipf_num_dups++; 11992 incr_dups = B_FALSE; 11993 } 11994 freeb(mp); 11995 BUMP_MIB(ill->ill_ip_mib, 11996 ipIfStatsReasmDuplicates); 11997 break; 11998 } 11999 /* 12000 * Trim redundant stuff off beginning of new 12001 * piece. 12002 */ 12003 IP_REASS_SET_START(mp, offset); 12004 mp->b_rptr += offset - start; 12005 BUMP_MIB(ill->ill_ip_mib, 12006 ipIfStatsReasmPartDups); 12007 start = offset; 12008 if (!mp1->b_cont) { 12009 /* 12010 * After trimming, this guy is now 12011 * hanging off the end. 12012 */ 12013 mp1->b_cont = mp; 12014 ipf->ipf_tail_mp = mp; 12015 if (!more) { 12016 ipf->ipf_hole_cnt--; 12017 } 12018 break; 12019 } 12020 } 12021 if (start >= IP_REASS_START(mp1->b_cont)) 12022 continue; 12023 /* Fill a hole */ 12024 if (start > offset) 12025 ipf->ipf_hole_cnt++; 12026 mp->b_cont = mp1->b_cont; 12027 mp1->b_cont = mp; 12028 mp1 = mp->b_cont; 12029 offset = IP_REASS_START(mp1); 12030 if (end >= offset) { 12031 ipf->ipf_hole_cnt--; 12032 /* Check for overlap. */ 12033 while (end > offset) { 12034 if (end < IP_REASS_END(mp1)) { 12035 mp->b_wptr -= end - offset; 12036 IP_REASS_SET_END(mp, offset); 12037 /* 12038 * TODO we might bump 12039 * this up twice if there is 12040 * overlap at both ends. 12041 */ 12042 BUMP_MIB(ill->ill_ip_mib, 12043 ipIfStatsReasmPartDups); 12044 break; 12045 } 12046 /* Did we cover another hole? */ 12047 if ((mp1->b_cont && 12048 IP_REASS_END(mp1) 12049 != IP_REASS_START(mp1->b_cont) && 12050 end >= 12051 IP_REASS_START(mp1->b_cont)) || 12052 (!ipf->ipf_last_frag_seen && 12053 !more)) { 12054 ipf->ipf_hole_cnt--; 12055 } 12056 /* Clip out mp1. */ 12057 if ((mp->b_cont = mp1->b_cont) == 12058 NULL) { 12059 /* 12060 * After clipping out mp1, 12061 * this guy is now hanging 12062 * off the end. 12063 */ 12064 ipf->ipf_tail_mp = mp; 12065 } 12066 IP_REASS_SET_START(mp1, 0); 12067 IP_REASS_SET_END(mp1, 0); 12068 /* Subtract byte count */ 12069 ipf->ipf_count -= 12070 mp1->b_datap->db_lim - 12071 mp1->b_datap->db_base; 12072 freeb(mp1); 12073 BUMP_MIB(ill->ill_ip_mib, 12074 ipIfStatsReasmPartDups); 12075 mp1 = mp->b_cont; 12076 if (!mp1) 12077 break; 12078 offset = IP_REASS_START(mp1); 12079 } 12080 } 12081 break; 12082 } 12083 } while (start = end, mp = next_mp); 12084 12085 /* Fragment just processed could be the last one. Remember this fact */ 12086 if (!more) 12087 ipf->ipf_last_frag_seen = B_TRUE; 12088 12089 /* Still got holes? */ 12090 if (ipf->ipf_hole_cnt) 12091 return (IP_REASS_PARTIAL); 12092 /* Clean up overloaded fields to avoid upstream disasters. */ 12093 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12094 IP_REASS_SET_START(mp1, 0); 12095 IP_REASS_SET_END(mp1, 0); 12096 } 12097 return (IP_REASS_COMPLETE); 12098 } 12099 12100 /* 12101 * ipsec processing for the fast path, used for input UDP Packets 12102 * Returns true if ready for passup to UDP. 12103 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12104 * was an ESP-in-UDP packet, etc.). 12105 */ 12106 static boolean_t 12107 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12108 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12109 { 12110 uint32_t ill_index; 12111 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12112 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12113 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12114 udp_t *udp = connp->conn_udp; 12115 12116 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12117 /* The ill_index of the incoming ILL */ 12118 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12119 12120 /* pass packet up to the transport */ 12121 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12122 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12123 NULL, mctl_present); 12124 if (*first_mpp == NULL) { 12125 return (B_FALSE); 12126 } 12127 } 12128 12129 /* Initiate IPPF processing for fastpath UDP */ 12130 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12131 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12132 if (*mpp == NULL) { 12133 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12134 "deferred/dropped during IPPF processing\n")); 12135 return (B_FALSE); 12136 } 12137 } 12138 /* 12139 * Remove 0-spi if it's 0, or move everything behind 12140 * the UDP header over it and forward to ESP via 12141 * ip_proto_input(). 12142 */ 12143 if (udp->udp_nat_t_endpoint) { 12144 if (mctl_present) { 12145 /* mctl_present *shouldn't* happen. */ 12146 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12147 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12148 &ipss->ipsec_dropper); 12149 *first_mpp = NULL; 12150 return (B_FALSE); 12151 } 12152 12153 /* "ill" is "recv_ill" in actuality. */ 12154 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12155 return (B_FALSE); 12156 12157 /* Else continue like a normal UDP packet. */ 12158 } 12159 12160 /* 12161 * We make the checks as below since we are in the fast path 12162 * and want to minimize the number of checks if the IP_RECVIF and/or 12163 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12164 */ 12165 if (connp->conn_recvif || connp->conn_recvslla || 12166 connp->conn_ip_recvpktinfo) { 12167 if (connp->conn_recvif) { 12168 in_flags = IPF_RECVIF; 12169 } 12170 /* 12171 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12172 * so the flag passed to ip_add_info is based on IP version 12173 * of connp. 12174 */ 12175 if (connp->conn_ip_recvpktinfo) { 12176 if (connp->conn_af_isv6) { 12177 /* 12178 * V6 only needs index 12179 */ 12180 in_flags |= IPF_RECVIF; 12181 } else { 12182 /* 12183 * V4 needs index + matching address. 12184 */ 12185 in_flags |= IPF_RECVADDR; 12186 } 12187 } 12188 if (connp->conn_recvslla) { 12189 in_flags |= IPF_RECVSLLA; 12190 } 12191 /* 12192 * since in_flags are being set ill will be 12193 * referenced in ip_add_info, so it better not 12194 * be NULL. 12195 */ 12196 /* 12197 * the actual data will be contained in b_cont 12198 * upon successful return of the following call. 12199 * If the call fails then the original mblk is 12200 * returned. 12201 */ 12202 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12203 ipst); 12204 } 12205 12206 return (B_TRUE); 12207 } 12208 12209 /* 12210 * Fragmentation reassembly. Each ILL has a hash table for 12211 * queuing packets undergoing reassembly for all IPIFs 12212 * associated with the ILL. The hash is based on the packet 12213 * IP ident field. The ILL frag hash table was allocated 12214 * as a timer block at the time the ILL was created. Whenever 12215 * there is anything on the reassembly queue, the timer will 12216 * be running. Returns B_TRUE if successful else B_FALSE; 12217 * frees mp on failure. 12218 */ 12219 static boolean_t 12220 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12221 uint32_t *cksum_val, uint16_t *cksum_flags) 12222 { 12223 uint32_t frag_offset_flags; 12224 ill_t *ill = (ill_t *)q->q_ptr; 12225 mblk_t *mp = *mpp; 12226 mblk_t *t_mp; 12227 ipaddr_t dst; 12228 uint8_t proto = ipha->ipha_protocol; 12229 uint32_t sum_val; 12230 uint16_t sum_flags; 12231 ipf_t *ipf; 12232 ipf_t **ipfp; 12233 ipfb_t *ipfb; 12234 uint16_t ident; 12235 uint32_t offset; 12236 ipaddr_t src; 12237 uint_t hdr_length; 12238 uint32_t end; 12239 mblk_t *mp1; 12240 mblk_t *tail_mp; 12241 size_t count; 12242 size_t msg_len; 12243 uint8_t ecn_info = 0; 12244 uint32_t packet_size; 12245 boolean_t pruned = B_FALSE; 12246 ip_stack_t *ipst = ill->ill_ipst; 12247 12248 if (cksum_val != NULL) 12249 *cksum_val = 0; 12250 if (cksum_flags != NULL) 12251 *cksum_flags = 0; 12252 12253 /* 12254 * Drop the fragmented as early as possible, if 12255 * we don't have resource(s) to re-assemble. 12256 */ 12257 if (ipst->ips_ip_reass_queue_bytes == 0) { 12258 freemsg(mp); 12259 return (B_FALSE); 12260 } 12261 12262 /* Check for fragmentation offset; return if there's none */ 12263 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12264 (IPH_MF | IPH_OFFSET)) == 0) 12265 return (B_TRUE); 12266 12267 /* 12268 * We utilize hardware computed checksum info only for UDP since 12269 * IP fragmentation is a normal occurence for the protocol. In 12270 * addition, checksum offload support for IP fragments carrying 12271 * UDP payload is commonly implemented across network adapters. 12272 */ 12273 ASSERT(ill != NULL); 12274 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12275 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12276 mblk_t *mp1 = mp->b_cont; 12277 int32_t len; 12278 12279 /* Record checksum information from the packet */ 12280 sum_val = (uint32_t)DB_CKSUM16(mp); 12281 sum_flags = DB_CKSUMFLAGS(mp); 12282 12283 /* IP payload offset from beginning of mblk */ 12284 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12285 12286 if ((sum_flags & HCK_PARTIALCKSUM) && 12287 (mp1 == NULL || mp1->b_cont == NULL) && 12288 offset >= DB_CKSUMSTART(mp) && 12289 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12290 uint32_t adj; 12291 /* 12292 * Partial checksum has been calculated by hardware 12293 * and attached to the packet; in addition, any 12294 * prepended extraneous data is even byte aligned. 12295 * If any such data exists, we adjust the checksum; 12296 * this would also handle any postpended data. 12297 */ 12298 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12299 mp, mp1, len, adj); 12300 12301 /* One's complement subtract extraneous checksum */ 12302 if (adj >= sum_val) 12303 sum_val = ~(adj - sum_val) & 0xFFFF; 12304 else 12305 sum_val -= adj; 12306 } 12307 } else { 12308 sum_val = 0; 12309 sum_flags = 0; 12310 } 12311 12312 /* Clear hardware checksumming flag */ 12313 DB_CKSUMFLAGS(mp) = 0; 12314 12315 ident = ipha->ipha_ident; 12316 offset = (frag_offset_flags << 3) & 0xFFFF; 12317 src = ipha->ipha_src; 12318 dst = ipha->ipha_dst; 12319 hdr_length = IPH_HDR_LENGTH(ipha); 12320 end = ntohs(ipha->ipha_length) - hdr_length; 12321 12322 /* If end == 0 then we have a packet with no data, so just free it */ 12323 if (end == 0) { 12324 freemsg(mp); 12325 return (B_FALSE); 12326 } 12327 12328 /* Record the ECN field info. */ 12329 ecn_info = (ipha->ipha_type_of_service & 0x3); 12330 if (offset != 0) { 12331 /* 12332 * If this isn't the first piece, strip the header, and 12333 * add the offset to the end value. 12334 */ 12335 mp->b_rptr += hdr_length; 12336 end += offset; 12337 } 12338 12339 msg_len = MBLKSIZE(mp); 12340 tail_mp = mp; 12341 while (tail_mp->b_cont != NULL) { 12342 tail_mp = tail_mp->b_cont; 12343 msg_len += MBLKSIZE(tail_mp); 12344 } 12345 12346 /* If the reassembly list for this ILL will get too big, prune it */ 12347 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12348 ipst->ips_ip_reass_queue_bytes) { 12349 ill_frag_prune(ill, 12350 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12351 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12352 pruned = B_TRUE; 12353 } 12354 12355 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12356 mutex_enter(&ipfb->ipfb_lock); 12357 12358 ipfp = &ipfb->ipfb_ipf; 12359 /* Try to find an existing fragment queue for this packet. */ 12360 for (;;) { 12361 ipf = ipfp[0]; 12362 if (ipf != NULL) { 12363 /* 12364 * It has to match on ident and src/dst address. 12365 */ 12366 if (ipf->ipf_ident == ident && 12367 ipf->ipf_src == src && 12368 ipf->ipf_dst == dst && 12369 ipf->ipf_protocol == proto) { 12370 /* 12371 * If we have received too many 12372 * duplicate fragments for this packet 12373 * free it. 12374 */ 12375 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12376 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12377 freemsg(mp); 12378 mutex_exit(&ipfb->ipfb_lock); 12379 return (B_FALSE); 12380 } 12381 /* Found it. */ 12382 break; 12383 } 12384 ipfp = &ipf->ipf_hash_next; 12385 continue; 12386 } 12387 12388 /* 12389 * If we pruned the list, do we want to store this new 12390 * fragment?. We apply an optimization here based on the 12391 * fact that most fragments will be received in order. 12392 * So if the offset of this incoming fragment is zero, 12393 * it is the first fragment of a new packet. We will 12394 * keep it. Otherwise drop the fragment, as we have 12395 * probably pruned the packet already (since the 12396 * packet cannot be found). 12397 */ 12398 if (pruned && offset != 0) { 12399 mutex_exit(&ipfb->ipfb_lock); 12400 freemsg(mp); 12401 return (B_FALSE); 12402 } 12403 12404 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12405 /* 12406 * Too many fragmented packets in this hash 12407 * bucket. Free the oldest. 12408 */ 12409 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12410 } 12411 12412 /* New guy. Allocate a frag message. */ 12413 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12414 if (mp1 == NULL) { 12415 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12416 freemsg(mp); 12417 reass_done: 12418 mutex_exit(&ipfb->ipfb_lock); 12419 return (B_FALSE); 12420 } 12421 12422 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12423 mp1->b_cont = mp; 12424 12425 /* Initialize the fragment header. */ 12426 ipf = (ipf_t *)mp1->b_rptr; 12427 ipf->ipf_mp = mp1; 12428 ipf->ipf_ptphn = ipfp; 12429 ipfp[0] = ipf; 12430 ipf->ipf_hash_next = NULL; 12431 ipf->ipf_ident = ident; 12432 ipf->ipf_protocol = proto; 12433 ipf->ipf_src = src; 12434 ipf->ipf_dst = dst; 12435 ipf->ipf_nf_hdr_len = 0; 12436 /* Record reassembly start time. */ 12437 ipf->ipf_timestamp = gethrestime_sec(); 12438 /* Record ipf generation and account for frag header */ 12439 ipf->ipf_gen = ill->ill_ipf_gen++; 12440 ipf->ipf_count = MBLKSIZE(mp1); 12441 ipf->ipf_last_frag_seen = B_FALSE; 12442 ipf->ipf_ecn = ecn_info; 12443 ipf->ipf_num_dups = 0; 12444 ipfb->ipfb_frag_pkts++; 12445 ipf->ipf_checksum = 0; 12446 ipf->ipf_checksum_flags = 0; 12447 12448 /* Store checksum value in fragment header */ 12449 if (sum_flags != 0) { 12450 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12451 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12452 ipf->ipf_checksum = sum_val; 12453 ipf->ipf_checksum_flags = sum_flags; 12454 } 12455 12456 /* 12457 * We handle reassembly two ways. In the easy case, 12458 * where all the fragments show up in order, we do 12459 * minimal bookkeeping, and just clip new pieces on 12460 * the end. If we ever see a hole, then we go off 12461 * to ip_reassemble which has to mark the pieces and 12462 * keep track of the number of holes, etc. Obviously, 12463 * the point of having both mechanisms is so we can 12464 * handle the easy case as efficiently as possible. 12465 */ 12466 if (offset == 0) { 12467 /* Easy case, in-order reassembly so far. */ 12468 ipf->ipf_count += msg_len; 12469 ipf->ipf_tail_mp = tail_mp; 12470 /* 12471 * Keep track of next expected offset in 12472 * ipf_end. 12473 */ 12474 ipf->ipf_end = end; 12475 ipf->ipf_nf_hdr_len = hdr_length; 12476 } else { 12477 /* Hard case, hole at the beginning. */ 12478 ipf->ipf_tail_mp = NULL; 12479 /* 12480 * ipf_end == 0 means that we have given up 12481 * on easy reassembly. 12482 */ 12483 ipf->ipf_end = 0; 12484 12485 /* Forget checksum offload from now on */ 12486 ipf->ipf_checksum_flags = 0; 12487 12488 /* 12489 * ipf_hole_cnt is set by ip_reassemble. 12490 * ipf_count is updated by ip_reassemble. 12491 * No need to check for return value here 12492 * as we don't expect reassembly to complete 12493 * or fail for the first fragment itself. 12494 */ 12495 (void) ip_reassemble(mp, ipf, 12496 (frag_offset_flags & IPH_OFFSET) << 3, 12497 (frag_offset_flags & IPH_MF), ill, msg_len); 12498 } 12499 /* Update per ipfb and ill byte counts */ 12500 ipfb->ipfb_count += ipf->ipf_count; 12501 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12502 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12503 /* If the frag timer wasn't already going, start it. */ 12504 mutex_enter(&ill->ill_lock); 12505 ill_frag_timer_start(ill); 12506 mutex_exit(&ill->ill_lock); 12507 goto reass_done; 12508 } 12509 12510 /* 12511 * If the packet's flag has changed (it could be coming up 12512 * from an interface different than the previous, therefore 12513 * possibly different checksum capability), then forget about 12514 * any stored checksum states. Otherwise add the value to 12515 * the existing one stored in the fragment header. 12516 */ 12517 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12518 sum_val += ipf->ipf_checksum; 12519 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12520 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12521 ipf->ipf_checksum = sum_val; 12522 } else if (ipf->ipf_checksum_flags != 0) { 12523 /* Forget checksum offload from now on */ 12524 ipf->ipf_checksum_flags = 0; 12525 } 12526 12527 /* 12528 * We have a new piece of a datagram which is already being 12529 * reassembled. Update the ECN info if all IP fragments 12530 * are ECN capable. If there is one which is not, clear 12531 * all the info. If there is at least one which has CE 12532 * code point, IP needs to report that up to transport. 12533 */ 12534 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12535 if (ecn_info == IPH_ECN_CE) 12536 ipf->ipf_ecn = IPH_ECN_CE; 12537 } else { 12538 ipf->ipf_ecn = IPH_ECN_NECT; 12539 } 12540 if (offset && ipf->ipf_end == offset) { 12541 /* The new fragment fits at the end */ 12542 ipf->ipf_tail_mp->b_cont = mp; 12543 /* Update the byte count */ 12544 ipf->ipf_count += msg_len; 12545 /* Update per ipfb and ill byte counts */ 12546 ipfb->ipfb_count += msg_len; 12547 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12548 atomic_add_32(&ill->ill_frag_count, msg_len); 12549 if (frag_offset_flags & IPH_MF) { 12550 /* More to come. */ 12551 ipf->ipf_end = end; 12552 ipf->ipf_tail_mp = tail_mp; 12553 goto reass_done; 12554 } 12555 } else { 12556 /* Go do the hard cases. */ 12557 int ret; 12558 12559 if (offset == 0) 12560 ipf->ipf_nf_hdr_len = hdr_length; 12561 12562 /* Save current byte count */ 12563 count = ipf->ipf_count; 12564 ret = ip_reassemble(mp, ipf, 12565 (frag_offset_flags & IPH_OFFSET) << 3, 12566 (frag_offset_flags & IPH_MF), ill, msg_len); 12567 /* Count of bytes added and subtracted (freeb()ed) */ 12568 count = ipf->ipf_count - count; 12569 if (count) { 12570 /* Update per ipfb and ill byte counts */ 12571 ipfb->ipfb_count += count; 12572 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12573 atomic_add_32(&ill->ill_frag_count, count); 12574 } 12575 if (ret == IP_REASS_PARTIAL) { 12576 goto reass_done; 12577 } else if (ret == IP_REASS_FAILED) { 12578 /* Reassembly failed. Free up all resources */ 12579 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12580 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12581 IP_REASS_SET_START(t_mp, 0); 12582 IP_REASS_SET_END(t_mp, 0); 12583 } 12584 freemsg(mp); 12585 goto reass_done; 12586 } 12587 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12588 } 12589 /* 12590 * We have completed reassembly. Unhook the frag header from 12591 * the reassembly list. 12592 * 12593 * Before we free the frag header, record the ECN info 12594 * to report back to the transport. 12595 */ 12596 ecn_info = ipf->ipf_ecn; 12597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12598 ipfp = ipf->ipf_ptphn; 12599 12600 /* We need to supply these to caller */ 12601 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12602 sum_val = ipf->ipf_checksum; 12603 else 12604 sum_val = 0; 12605 12606 mp1 = ipf->ipf_mp; 12607 count = ipf->ipf_count; 12608 ipf = ipf->ipf_hash_next; 12609 if (ipf != NULL) 12610 ipf->ipf_ptphn = ipfp; 12611 ipfp[0] = ipf; 12612 atomic_add_32(&ill->ill_frag_count, -count); 12613 ASSERT(ipfb->ipfb_count >= count); 12614 ipfb->ipfb_count -= count; 12615 ipfb->ipfb_frag_pkts--; 12616 mutex_exit(&ipfb->ipfb_lock); 12617 /* Ditch the frag header. */ 12618 mp = mp1->b_cont; 12619 12620 freeb(mp1); 12621 12622 /* Restore original IP length in header. */ 12623 packet_size = (uint32_t)msgdsize(mp); 12624 if (packet_size > IP_MAXPACKET) { 12625 freemsg(mp); 12626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12627 return (B_FALSE); 12628 } 12629 12630 if (DB_REF(mp) > 1) { 12631 mblk_t *mp2 = copymsg(mp); 12632 12633 freemsg(mp); 12634 if (mp2 == NULL) { 12635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12636 return (B_FALSE); 12637 } 12638 mp = mp2; 12639 } 12640 ipha = (ipha_t *)mp->b_rptr; 12641 12642 ipha->ipha_length = htons((uint16_t)packet_size); 12643 /* We're now complete, zip the frag state */ 12644 ipha->ipha_fragment_offset_and_flags = 0; 12645 /* Record the ECN info. */ 12646 ipha->ipha_type_of_service &= 0xFC; 12647 ipha->ipha_type_of_service |= ecn_info; 12648 *mpp = mp; 12649 12650 /* Reassembly is successful; return checksum information if needed */ 12651 if (cksum_val != NULL) 12652 *cksum_val = sum_val; 12653 if (cksum_flags != NULL) 12654 *cksum_flags = sum_flags; 12655 12656 return (B_TRUE); 12657 } 12658 12659 /* 12660 * Perform ip header check sum update local options. 12661 * return B_TRUE if all is well, else return B_FALSE and release 12662 * the mp. caller is responsible for decrementing ire ref cnt. 12663 */ 12664 static boolean_t 12665 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12666 ip_stack_t *ipst) 12667 { 12668 mblk_t *first_mp; 12669 boolean_t mctl_present; 12670 uint16_t sum; 12671 12672 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12673 /* 12674 * Don't do the checksum if it has gone through AH/ESP 12675 * processing. 12676 */ 12677 if (!mctl_present) { 12678 sum = ip_csum_hdr(ipha); 12679 if (sum != 0) { 12680 if (ill != NULL) { 12681 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12682 } else { 12683 BUMP_MIB(&ipst->ips_ip_mib, 12684 ipIfStatsInCksumErrs); 12685 } 12686 freemsg(first_mp); 12687 return (B_FALSE); 12688 } 12689 } 12690 12691 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12692 if (mctl_present) 12693 freeb(first_mp); 12694 return (B_FALSE); 12695 } 12696 12697 return (B_TRUE); 12698 } 12699 12700 /* 12701 * All udp packet are delivered to the local host via this routine. 12702 */ 12703 void 12704 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12705 ill_t *recv_ill) 12706 { 12707 uint32_t sum; 12708 uint32_t u1; 12709 boolean_t mctl_present; 12710 conn_t *connp; 12711 mblk_t *first_mp; 12712 uint16_t *up; 12713 ill_t *ill = (ill_t *)q->q_ptr; 12714 uint16_t reass_hck_flags = 0; 12715 ip_stack_t *ipst; 12716 12717 ASSERT(recv_ill != NULL); 12718 ipst = recv_ill->ill_ipst; 12719 12720 #define rptr ((uchar_t *)ipha) 12721 12722 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12723 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12724 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12725 ASSERT(ill != NULL); 12726 12727 /* 12728 * FAST PATH for udp packets 12729 */ 12730 12731 /* u1 is # words of IP options */ 12732 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12733 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12734 12735 /* IP options present */ 12736 if (u1 != 0) 12737 goto ipoptions; 12738 12739 /* Check the IP header checksum. */ 12740 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12741 /* Clear the IP header h/w cksum flag */ 12742 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12743 } else if (!mctl_present) { 12744 /* 12745 * Don't verify header checksum if this packet is coming 12746 * back from AH/ESP as we already did it. 12747 */ 12748 #define uph ((uint16_t *)ipha) 12749 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12750 uph[6] + uph[7] + uph[8] + uph[9]; 12751 #undef uph 12752 /* finish doing IP checksum */ 12753 sum = (sum & 0xFFFF) + (sum >> 16); 12754 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12755 if (sum != 0 && sum != 0xFFFF) { 12756 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12757 freemsg(first_mp); 12758 return; 12759 } 12760 } 12761 12762 /* 12763 * Count for SNMP of inbound packets for ire. 12764 * if mctl is present this might be a secure packet and 12765 * has already been counted for in ip_proto_input(). 12766 */ 12767 if (!mctl_present) { 12768 UPDATE_IB_PKT_COUNT(ire); 12769 ire->ire_last_used_time = lbolt; 12770 } 12771 12772 /* packet part of fragmented IP packet? */ 12773 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12774 if (u1 & (IPH_MF | IPH_OFFSET)) { 12775 goto fragmented; 12776 } 12777 12778 /* u1 = IP header length (20 bytes) */ 12779 u1 = IP_SIMPLE_HDR_LENGTH; 12780 12781 /* packet does not contain complete IP & UDP headers */ 12782 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12783 goto udppullup; 12784 12785 /* up points to UDP header */ 12786 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12787 #define iphs ((uint16_t *)ipha) 12788 12789 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12790 if (up[3] != 0) { 12791 mblk_t *mp1 = mp->b_cont; 12792 boolean_t cksum_err; 12793 uint16_t hck_flags = 0; 12794 12795 /* Pseudo-header checksum */ 12796 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12797 iphs[9] + up[2]; 12798 12799 /* 12800 * Revert to software checksum calculation if the interface 12801 * isn't capable of checksum offload or if IPsec is present. 12802 */ 12803 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12804 hck_flags = DB_CKSUMFLAGS(mp); 12805 12806 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12807 IP_STAT(ipst, ip_in_sw_cksum); 12808 12809 IP_CKSUM_RECV(hck_flags, u1, 12810 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12811 (int32_t)((uchar_t *)up - rptr), 12812 mp, mp1, cksum_err); 12813 12814 if (cksum_err) { 12815 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12816 if (hck_flags & HCK_FULLCKSUM) 12817 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12818 else if (hck_flags & HCK_PARTIALCKSUM) 12819 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12820 else 12821 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12822 12823 freemsg(first_mp); 12824 return; 12825 } 12826 } 12827 12828 /* Non-fragmented broadcast or multicast packet? */ 12829 if (ire->ire_type == IRE_BROADCAST) 12830 goto udpslowpath; 12831 12832 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12833 ire->ire_zoneid, ipst)) != NULL) { 12834 ASSERT(connp->conn_upq != NULL); 12835 IP_STAT(ipst, ip_udp_fast_path); 12836 12837 if (CONN_UDP_FLOWCTLD(connp)) { 12838 freemsg(mp); 12839 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12840 } else { 12841 if (!mctl_present) { 12842 BUMP_MIB(ill->ill_ip_mib, 12843 ipIfStatsHCInDelivers); 12844 } 12845 /* 12846 * mp and first_mp can change. 12847 */ 12848 if (ip_udp_check(q, connp, recv_ill, 12849 ipha, &mp, &first_mp, mctl_present, ire)) { 12850 /* Send it upstream */ 12851 (connp->conn_recv)(connp, mp, NULL); 12852 } 12853 } 12854 /* 12855 * freeb() cannot deal with null mblk being passed 12856 * in and first_mp can be set to null in the call 12857 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12858 */ 12859 if (mctl_present && first_mp != NULL) { 12860 freeb(first_mp); 12861 } 12862 CONN_DEC_REF(connp); 12863 return; 12864 } 12865 12866 /* 12867 * if we got here we know the packet is not fragmented and 12868 * has no options. The classifier could not find a conn_t and 12869 * most likely its an icmp packet so send it through slow path. 12870 */ 12871 12872 goto udpslowpath; 12873 12874 ipoptions: 12875 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12876 goto slow_done; 12877 } 12878 12879 UPDATE_IB_PKT_COUNT(ire); 12880 ire->ire_last_used_time = lbolt; 12881 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12882 if (u1 & (IPH_MF | IPH_OFFSET)) { 12883 fragmented: 12884 /* 12885 * "sum" and "reass_hck_flags" are non-zero if the 12886 * reassembled packet has a valid hardware computed 12887 * checksum information associated with it. 12888 */ 12889 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12890 goto slow_done; 12891 /* 12892 * Make sure that first_mp points back to mp as 12893 * the mp we came in with could have changed in 12894 * ip_rput_fragment(). 12895 */ 12896 ASSERT(!mctl_present); 12897 ipha = (ipha_t *)mp->b_rptr; 12898 first_mp = mp; 12899 } 12900 12901 /* Now we have a complete datagram, destined for this machine. */ 12902 u1 = IPH_HDR_LENGTH(ipha); 12903 /* Pull up the UDP header, if necessary. */ 12904 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12905 udppullup: 12906 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12907 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12908 freemsg(first_mp); 12909 goto slow_done; 12910 } 12911 ipha = (ipha_t *)mp->b_rptr; 12912 } 12913 12914 /* 12915 * Validate the checksum for the reassembled packet; for the 12916 * pullup case we calculate the payload checksum in software. 12917 */ 12918 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12919 if (up[3] != 0) { 12920 boolean_t cksum_err; 12921 12922 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12923 IP_STAT(ipst, ip_in_sw_cksum); 12924 12925 IP_CKSUM_RECV_REASS(reass_hck_flags, 12926 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12927 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12928 iphs[9] + up[2], sum, cksum_err); 12929 12930 if (cksum_err) { 12931 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12932 12933 if (reass_hck_flags & HCK_FULLCKSUM) 12934 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12935 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12936 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12937 else 12938 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12939 12940 freemsg(first_mp); 12941 goto slow_done; 12942 } 12943 } 12944 udpslowpath: 12945 12946 /* Clear hardware checksum flag to be safe */ 12947 DB_CKSUMFLAGS(mp) = 0; 12948 12949 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12950 (ire->ire_type == IRE_BROADCAST), 12951 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12952 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12953 12954 slow_done: 12955 IP_STAT(ipst, ip_udp_slow_path); 12956 return; 12957 12958 #undef iphs 12959 #undef rptr 12960 } 12961 12962 /* ARGSUSED */ 12963 static mblk_t * 12964 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12965 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12966 ill_rx_ring_t *ill_ring) 12967 { 12968 conn_t *connp; 12969 uint32_t sum; 12970 uint32_t u1; 12971 uint16_t *up; 12972 int offset; 12973 ssize_t len; 12974 mblk_t *mp1; 12975 boolean_t syn_present = B_FALSE; 12976 tcph_t *tcph; 12977 uint_t ip_hdr_len; 12978 ill_t *ill = (ill_t *)q->q_ptr; 12979 zoneid_t zoneid = ire->ire_zoneid; 12980 boolean_t cksum_err; 12981 uint16_t hck_flags = 0; 12982 ip_stack_t *ipst = recv_ill->ill_ipst; 12983 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12984 12985 #define rptr ((uchar_t *)ipha) 12986 12987 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12988 ASSERT(ill != NULL); 12989 12990 /* 12991 * FAST PATH for tcp packets 12992 */ 12993 12994 /* u1 is # words of IP options */ 12995 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12996 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12997 12998 /* IP options present */ 12999 if (u1) { 13000 goto ipoptions; 13001 } else if (!mctl_present) { 13002 /* Check the IP header checksum. */ 13003 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13004 /* Clear the IP header h/w cksum flag */ 13005 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13006 } else if (!mctl_present) { 13007 /* 13008 * Don't verify header checksum if this packet 13009 * is coming back from AH/ESP as we already did it. 13010 */ 13011 #define uph ((uint16_t *)ipha) 13012 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13013 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13014 #undef uph 13015 /* finish doing IP checksum */ 13016 sum = (sum & 0xFFFF) + (sum >> 16); 13017 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13018 if (sum != 0 && sum != 0xFFFF) { 13019 BUMP_MIB(ill->ill_ip_mib, 13020 ipIfStatsInCksumErrs); 13021 goto error; 13022 } 13023 } 13024 } 13025 13026 if (!mctl_present) { 13027 UPDATE_IB_PKT_COUNT(ire); 13028 ire->ire_last_used_time = lbolt; 13029 } 13030 13031 /* packet part of fragmented IP packet? */ 13032 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13033 if (u1 & (IPH_MF | IPH_OFFSET)) { 13034 goto fragmented; 13035 } 13036 13037 /* u1 = IP header length (20 bytes) */ 13038 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13039 13040 /* does packet contain IP+TCP headers? */ 13041 len = mp->b_wptr - rptr; 13042 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13043 IP_STAT(ipst, ip_tcppullup); 13044 goto tcppullup; 13045 } 13046 13047 /* TCP options present? */ 13048 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13049 13050 /* 13051 * If options need to be pulled up, then goto tcpoptions. 13052 * otherwise we are still in the fast path 13053 */ 13054 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13055 IP_STAT(ipst, ip_tcpoptions); 13056 goto tcpoptions; 13057 } 13058 13059 /* multiple mblks of tcp data? */ 13060 if ((mp1 = mp->b_cont) != NULL) { 13061 /* more then two? */ 13062 if (mp1->b_cont != NULL) { 13063 IP_STAT(ipst, ip_multipkttcp); 13064 goto multipkttcp; 13065 } 13066 len += mp1->b_wptr - mp1->b_rptr; 13067 } 13068 13069 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13070 13071 /* part of pseudo checksum */ 13072 13073 /* TCP datagram length */ 13074 u1 = len - IP_SIMPLE_HDR_LENGTH; 13075 13076 #define iphs ((uint16_t *)ipha) 13077 13078 #ifdef _BIG_ENDIAN 13079 u1 += IPPROTO_TCP; 13080 #else 13081 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13082 #endif 13083 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13084 13085 /* 13086 * Revert to software checksum calculation if the interface 13087 * isn't capable of checksum offload or if IPsec is present. 13088 */ 13089 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13090 hck_flags = DB_CKSUMFLAGS(mp); 13091 13092 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13093 IP_STAT(ipst, ip_in_sw_cksum); 13094 13095 IP_CKSUM_RECV(hck_flags, u1, 13096 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13097 (int32_t)((uchar_t *)up - rptr), 13098 mp, mp1, cksum_err); 13099 13100 if (cksum_err) { 13101 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13102 13103 if (hck_flags & HCK_FULLCKSUM) 13104 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13105 else if (hck_flags & HCK_PARTIALCKSUM) 13106 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13107 else 13108 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13109 13110 goto error; 13111 } 13112 13113 try_again: 13114 13115 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13116 zoneid, ipst)) == NULL) { 13117 /* Send the TH_RST */ 13118 goto no_conn; 13119 } 13120 13121 /* 13122 * TCP FAST PATH for AF_INET socket. 13123 * 13124 * TCP fast path to avoid extra work. An AF_INET socket type 13125 * does not have facility to receive extra information via 13126 * ip_process or ip_add_info. Also, when the connection was 13127 * established, we made a check if this connection is impacted 13128 * by any global IPsec policy or per connection policy (a 13129 * policy that comes in effect later will not apply to this 13130 * connection). Since all this can be determined at the 13131 * connection establishment time, a quick check of flags 13132 * can avoid extra work. 13133 */ 13134 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13135 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13136 ASSERT(first_mp == mp); 13137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13138 SET_SQUEUE(mp, tcp_rput_data, connp); 13139 return (mp); 13140 } 13141 13142 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13143 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13144 if (IPCL_IS_TCP(connp)) { 13145 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13146 DB_CKSUMSTART(mp) = 13147 (intptr_t)ip_squeue_get(ill_ring); 13148 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13149 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13150 BUMP_MIB(ill->ill_ip_mib, 13151 ipIfStatsHCInDelivers); 13152 SET_SQUEUE(mp, connp->conn_recv, connp); 13153 return (mp); 13154 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13155 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13156 BUMP_MIB(ill->ill_ip_mib, 13157 ipIfStatsHCInDelivers); 13158 ip_squeue_enter_unbound++; 13159 SET_SQUEUE(mp, tcp_conn_request_unbound, 13160 connp); 13161 return (mp); 13162 } 13163 syn_present = B_TRUE; 13164 } 13165 13166 } 13167 13168 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13169 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13170 13171 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13172 /* No need to send this packet to TCP */ 13173 if ((flags & TH_RST) || (flags & TH_URG)) { 13174 CONN_DEC_REF(connp); 13175 freemsg(first_mp); 13176 return (NULL); 13177 } 13178 if (flags & TH_ACK) { 13179 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13180 ipst->ips_netstack->netstack_tcp, connp); 13181 CONN_DEC_REF(connp); 13182 return (NULL); 13183 } 13184 13185 CONN_DEC_REF(connp); 13186 freemsg(first_mp); 13187 return (NULL); 13188 } 13189 13190 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13191 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13192 ipha, NULL, mctl_present); 13193 if (first_mp == NULL) { 13194 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13195 CONN_DEC_REF(connp); 13196 return (NULL); 13197 } 13198 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13199 ASSERT(syn_present); 13200 if (mctl_present) { 13201 ASSERT(first_mp != mp); 13202 first_mp->b_datap->db_struioflag |= 13203 STRUIO_POLICY; 13204 } else { 13205 ASSERT(first_mp == mp); 13206 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13207 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13208 } 13209 } else { 13210 /* 13211 * Discard first_mp early since we're dealing with a 13212 * fully-connected conn_t and tcp doesn't do policy in 13213 * this case. 13214 */ 13215 if (mctl_present) { 13216 freeb(first_mp); 13217 mctl_present = B_FALSE; 13218 } 13219 first_mp = mp; 13220 } 13221 } 13222 13223 /* Initiate IPPF processing for fastpath */ 13224 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13225 uint32_t ill_index; 13226 13227 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13228 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13229 if (mp == NULL) { 13230 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13231 "deferred/dropped during IPPF processing\n")); 13232 CONN_DEC_REF(connp); 13233 if (mctl_present) 13234 freeb(first_mp); 13235 return (NULL); 13236 } else if (mctl_present) { 13237 /* 13238 * ip_process might return a new mp. 13239 */ 13240 ASSERT(first_mp != mp); 13241 first_mp->b_cont = mp; 13242 } else { 13243 first_mp = mp; 13244 } 13245 13246 } 13247 13248 if (!syn_present && connp->conn_ip_recvpktinfo) { 13249 /* 13250 * TCP does not support IP_RECVPKTINFO for v4 so lets 13251 * make sure IPF_RECVIF is passed to ip_add_info. 13252 */ 13253 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13254 IPCL_ZONEID(connp), ipst); 13255 if (mp == NULL) { 13256 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13257 CONN_DEC_REF(connp); 13258 if (mctl_present) 13259 freeb(first_mp); 13260 return (NULL); 13261 } else if (mctl_present) { 13262 /* 13263 * ip_add_info might return a new mp. 13264 */ 13265 ASSERT(first_mp != mp); 13266 first_mp->b_cont = mp; 13267 } else { 13268 first_mp = mp; 13269 } 13270 } 13271 13272 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13273 if (IPCL_IS_TCP(connp)) { 13274 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13275 return (first_mp); 13276 } else { 13277 /* SOCK_RAW, IPPROTO_TCP case */ 13278 (connp->conn_recv)(connp, first_mp, NULL); 13279 CONN_DEC_REF(connp); 13280 return (NULL); 13281 } 13282 13283 no_conn: 13284 /* Initiate IPPf processing, if needed. */ 13285 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13286 uint32_t ill_index; 13287 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13288 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13289 if (first_mp == NULL) { 13290 return (NULL); 13291 } 13292 } 13293 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13294 13295 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13296 ipst->ips_netstack->netstack_tcp, NULL); 13297 return (NULL); 13298 ipoptions: 13299 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13300 goto slow_done; 13301 } 13302 13303 UPDATE_IB_PKT_COUNT(ire); 13304 ire->ire_last_used_time = lbolt; 13305 13306 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13307 if (u1 & (IPH_MF | IPH_OFFSET)) { 13308 fragmented: 13309 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13310 if (mctl_present) 13311 freeb(first_mp); 13312 goto slow_done; 13313 } 13314 /* 13315 * Make sure that first_mp points back to mp as 13316 * the mp we came in with could have changed in 13317 * ip_rput_fragment(). 13318 */ 13319 ASSERT(!mctl_present); 13320 ipha = (ipha_t *)mp->b_rptr; 13321 first_mp = mp; 13322 } 13323 13324 /* Now we have a complete datagram, destined for this machine. */ 13325 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13326 13327 len = mp->b_wptr - mp->b_rptr; 13328 /* Pull up a minimal TCP header, if necessary. */ 13329 if (len < (u1 + 20)) { 13330 tcppullup: 13331 if (!pullupmsg(mp, u1 + 20)) { 13332 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13333 goto error; 13334 } 13335 ipha = (ipha_t *)mp->b_rptr; 13336 len = mp->b_wptr - mp->b_rptr; 13337 } 13338 13339 /* 13340 * Extract the offset field from the TCP header. As usual, we 13341 * try to help the compiler more than the reader. 13342 */ 13343 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13344 if (offset != 5) { 13345 tcpoptions: 13346 if (offset < 5) { 13347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13348 goto error; 13349 } 13350 /* 13351 * There must be TCP options. 13352 * Make sure we can grab them. 13353 */ 13354 offset <<= 2; 13355 offset += u1; 13356 if (len < offset) { 13357 if (!pullupmsg(mp, offset)) { 13358 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13359 goto error; 13360 } 13361 ipha = (ipha_t *)mp->b_rptr; 13362 len = mp->b_wptr - rptr; 13363 } 13364 } 13365 13366 /* Get the total packet length in len, including headers. */ 13367 if (mp->b_cont) { 13368 multipkttcp: 13369 len = msgdsize(mp); 13370 } 13371 13372 /* 13373 * Check the TCP checksum by pulling together the pseudo- 13374 * header checksum, and passing it to ip_csum to be added in 13375 * with the TCP datagram. 13376 * 13377 * Since we are not using the hwcksum if available we must 13378 * clear the flag. We may come here via tcppullup or tcpoptions. 13379 * If either of these fails along the way the mblk is freed. 13380 * If this logic ever changes and mblk is reused to say send 13381 * ICMP's back, then this flag may need to be cleared in 13382 * other places as well. 13383 */ 13384 DB_CKSUMFLAGS(mp) = 0; 13385 13386 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13387 13388 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13389 #ifdef _BIG_ENDIAN 13390 u1 += IPPROTO_TCP; 13391 #else 13392 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13393 #endif 13394 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13395 /* 13396 * Not M_DATA mblk or its a dup, so do the checksum now. 13397 */ 13398 IP_STAT(ipst, ip_in_sw_cksum); 13399 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13400 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13401 goto error; 13402 } 13403 13404 IP_STAT(ipst, ip_tcp_slow_path); 13405 goto try_again; 13406 #undef iphs 13407 #undef rptr 13408 13409 error: 13410 freemsg(first_mp); 13411 slow_done: 13412 return (NULL); 13413 } 13414 13415 /* ARGSUSED */ 13416 static void 13417 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13418 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13419 { 13420 conn_t *connp; 13421 uint32_t sum; 13422 uint32_t u1; 13423 ssize_t len; 13424 sctp_hdr_t *sctph; 13425 zoneid_t zoneid = ire->ire_zoneid; 13426 uint32_t pktsum; 13427 uint32_t calcsum; 13428 uint32_t ports; 13429 in6_addr_t map_src, map_dst; 13430 ill_t *ill = (ill_t *)q->q_ptr; 13431 ip_stack_t *ipst; 13432 sctp_stack_t *sctps; 13433 boolean_t sctp_csum_err = B_FALSE; 13434 13435 ASSERT(recv_ill != NULL); 13436 ipst = recv_ill->ill_ipst; 13437 sctps = ipst->ips_netstack->netstack_sctp; 13438 13439 #define rptr ((uchar_t *)ipha) 13440 13441 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13442 ASSERT(ill != NULL); 13443 13444 /* u1 is # words of IP options */ 13445 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13446 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13447 13448 /* IP options present */ 13449 if (u1 > 0) { 13450 goto ipoptions; 13451 } else { 13452 /* Check the IP header checksum. */ 13453 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13454 !mctl_present) { 13455 #define uph ((uint16_t *)ipha) 13456 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13457 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13458 #undef uph 13459 /* finish doing IP checksum */ 13460 sum = (sum & 0xFFFF) + (sum >> 16); 13461 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13462 /* 13463 * Don't verify header checksum if this packet 13464 * is coming back from AH/ESP as we already did it. 13465 */ 13466 if (sum != 0 && sum != 0xFFFF) { 13467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13468 goto error; 13469 } 13470 } 13471 /* 13472 * Since there is no SCTP h/w cksum support yet, just 13473 * clear the flag. 13474 */ 13475 DB_CKSUMFLAGS(mp) = 0; 13476 } 13477 13478 /* 13479 * Don't verify header checksum if this packet is coming 13480 * back from AH/ESP as we already did it. 13481 */ 13482 if (!mctl_present) { 13483 UPDATE_IB_PKT_COUNT(ire); 13484 ire->ire_last_used_time = lbolt; 13485 } 13486 13487 /* packet part of fragmented IP packet? */ 13488 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13489 if (u1 & (IPH_MF | IPH_OFFSET)) 13490 goto fragmented; 13491 13492 /* u1 = IP header length (20 bytes) */ 13493 u1 = IP_SIMPLE_HDR_LENGTH; 13494 13495 find_sctp_client: 13496 /* Pullup if we don't have the sctp common header. */ 13497 len = MBLKL(mp); 13498 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13499 if (mp->b_cont == NULL || 13500 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13502 goto error; 13503 } 13504 ipha = (ipha_t *)mp->b_rptr; 13505 len = MBLKL(mp); 13506 } 13507 13508 sctph = (sctp_hdr_t *)(rptr + u1); 13509 #ifdef DEBUG 13510 if (!skip_sctp_cksum) { 13511 #endif 13512 pktsum = sctph->sh_chksum; 13513 sctph->sh_chksum = 0; 13514 calcsum = sctp_cksum(mp, u1); 13515 sctph->sh_chksum = pktsum; 13516 if (calcsum != pktsum) 13517 sctp_csum_err = B_TRUE; 13518 #ifdef DEBUG /* skip_sctp_cksum */ 13519 } 13520 #endif 13521 /* get the ports */ 13522 ports = *(uint32_t *)&sctph->sh_sport; 13523 13524 IRE_REFRELE(ire); 13525 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13526 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13527 if (sctp_csum_err) { 13528 /* 13529 * No potential sctp checksum errors go to the Sun 13530 * sctp stack however they might be Adler-32 summed 13531 * packets a userland stack bound to a raw IP socket 13532 * could reasonably use. Note though that Adler-32 is 13533 * a long deprecated algorithm and customer sctp 13534 * networks should eventually migrate to CRC-32 at 13535 * which time this facility should be removed. 13536 */ 13537 flags |= IP_FF_SCTP_CSUM_ERR; 13538 goto no_conn; 13539 } 13540 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13541 sctps)) == NULL) { 13542 /* Check for raw socket or OOTB handling */ 13543 goto no_conn; 13544 } 13545 13546 /* Found a client; up it goes */ 13547 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13548 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13549 return; 13550 13551 no_conn: 13552 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13553 ports, mctl_present, flags, B_TRUE, zoneid); 13554 return; 13555 13556 ipoptions: 13557 DB_CKSUMFLAGS(mp) = 0; 13558 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13559 goto slow_done; 13560 13561 UPDATE_IB_PKT_COUNT(ire); 13562 ire->ire_last_used_time = lbolt; 13563 13564 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13565 if (u1 & (IPH_MF | IPH_OFFSET)) { 13566 fragmented: 13567 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13568 goto slow_done; 13569 /* 13570 * Make sure that first_mp points back to mp as 13571 * the mp we came in with could have changed in 13572 * ip_rput_fragment(). 13573 */ 13574 ASSERT(!mctl_present); 13575 ipha = (ipha_t *)mp->b_rptr; 13576 first_mp = mp; 13577 } 13578 13579 /* Now we have a complete datagram, destined for this machine. */ 13580 u1 = IPH_HDR_LENGTH(ipha); 13581 goto find_sctp_client; 13582 #undef iphs 13583 #undef rptr 13584 13585 error: 13586 freemsg(first_mp); 13587 slow_done: 13588 IRE_REFRELE(ire); 13589 } 13590 13591 #define VER_BITS 0xF0 13592 #define VERSION_6 0x60 13593 13594 static boolean_t 13595 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13596 ipaddr_t *dstp, ip_stack_t *ipst) 13597 { 13598 uint_t opt_len; 13599 ipha_t *ipha; 13600 ssize_t len; 13601 uint_t pkt_len; 13602 13603 ASSERT(ill != NULL); 13604 IP_STAT(ipst, ip_ipoptions); 13605 ipha = *iphapp; 13606 13607 #define rptr ((uchar_t *)ipha) 13608 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13609 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13610 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13611 freemsg(mp); 13612 return (B_FALSE); 13613 } 13614 13615 /* multiple mblk or too short */ 13616 pkt_len = ntohs(ipha->ipha_length); 13617 13618 /* Get the number of words of IP options in the IP header. */ 13619 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13620 if (opt_len) { 13621 /* IP Options present! Validate and process. */ 13622 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13624 goto done; 13625 } 13626 /* 13627 * Recompute complete header length and make sure we 13628 * have access to all of it. 13629 */ 13630 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13631 if (len > (mp->b_wptr - rptr)) { 13632 if (len > pkt_len) { 13633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13634 goto done; 13635 } 13636 if (!pullupmsg(mp, len)) { 13637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13638 goto done; 13639 } 13640 ipha = (ipha_t *)mp->b_rptr; 13641 } 13642 /* 13643 * Go off to ip_rput_options which returns the next hop 13644 * destination address, which may have been affected 13645 * by source routing. 13646 */ 13647 IP_STAT(ipst, ip_opt); 13648 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13650 return (B_FALSE); 13651 } 13652 } 13653 *iphapp = ipha; 13654 return (B_TRUE); 13655 done: 13656 /* clear b_prev - used by ip_mroute_decap */ 13657 mp->b_prev = NULL; 13658 freemsg(mp); 13659 return (B_FALSE); 13660 #undef rptr 13661 } 13662 13663 /* 13664 * Deal with the fact that there is no ire for the destination. 13665 */ 13666 static ire_t * 13667 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13668 { 13669 ipha_t *ipha; 13670 ill_t *ill; 13671 ire_t *ire; 13672 ip_stack_t *ipst; 13673 enum ire_forward_action ret_action; 13674 13675 ipha = (ipha_t *)mp->b_rptr; 13676 ill = (ill_t *)q->q_ptr; 13677 13678 ASSERT(ill != NULL); 13679 ipst = ill->ill_ipst; 13680 13681 /* 13682 * No IRE for this destination, so it can't be for us. 13683 * Unless we are forwarding, drop the packet. 13684 * We have to let source routed packets through 13685 * since we don't yet know if they are 'ping -l' 13686 * packets i.e. if they will go out over the 13687 * same interface as they came in on. 13688 */ 13689 if (ll_multicast) { 13690 freemsg(mp); 13691 return (NULL); 13692 } 13693 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13694 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13695 freemsg(mp); 13696 return (NULL); 13697 } 13698 13699 /* 13700 * Mark this packet as having originated externally. 13701 * 13702 * For non-forwarding code path, ire_send later double 13703 * checks this interface to see if it is still exists 13704 * post-ARP resolution. 13705 * 13706 * Also, IPQOS uses this to differentiate between 13707 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13708 * QOS packet processing in ip_wput_attach_llhdr(). 13709 * The QoS module can mark the b_band for a fastpath message 13710 * or the dl_priority field in a unitdata_req header for 13711 * CoS marking. This info can only be found in 13712 * ip_wput_attach_llhdr(). 13713 */ 13714 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13715 /* 13716 * Clear the indication that this may have a hardware checksum 13717 * as we are not using it 13718 */ 13719 DB_CKSUMFLAGS(mp) = 0; 13720 13721 ire = ire_forward(dst, &ret_action, NULL, NULL, 13722 MBLK_GETLABEL(mp), ipst); 13723 13724 if (ire == NULL && ret_action == Forward_check_multirt) { 13725 /* Let ip_newroute handle CGTP */ 13726 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13727 return (NULL); 13728 } 13729 13730 if (ire != NULL) 13731 return (ire); 13732 13733 mp->b_prev = mp->b_next = 0; 13734 13735 if (ret_action == Forward_blackhole) { 13736 freemsg(mp); 13737 return (NULL); 13738 } 13739 /* send icmp unreachable */ 13740 q = WR(q); 13741 /* Sent by forwarding path, and router is global zone */ 13742 if (ip_source_routed(ipha, ipst)) { 13743 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13744 GLOBAL_ZONEID, ipst); 13745 } else { 13746 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13747 ipst); 13748 } 13749 13750 return (NULL); 13751 13752 } 13753 13754 /* 13755 * check ip header length and align it. 13756 */ 13757 static boolean_t 13758 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13759 { 13760 ssize_t len; 13761 ill_t *ill; 13762 ipha_t *ipha; 13763 13764 len = MBLKL(mp); 13765 13766 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13767 ill = (ill_t *)q->q_ptr; 13768 13769 if (!OK_32PTR(mp->b_rptr)) 13770 IP_STAT(ipst, ip_notaligned1); 13771 else 13772 IP_STAT(ipst, ip_notaligned2); 13773 /* Guard against bogus device drivers */ 13774 if (len < 0) { 13775 /* clear b_prev - used by ip_mroute_decap */ 13776 mp->b_prev = NULL; 13777 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13778 freemsg(mp); 13779 return (B_FALSE); 13780 } 13781 13782 if (ip_rput_pullups++ == 0) { 13783 ipha = (ipha_t *)mp->b_rptr; 13784 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13785 "ip_check_and_align_header: %s forced us to " 13786 " pullup pkt, hdr len %ld, hdr addr %p", 13787 ill->ill_name, len, (void *)ipha); 13788 } 13789 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13790 /* clear b_prev - used by ip_mroute_decap */ 13791 mp->b_prev = NULL; 13792 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13793 freemsg(mp); 13794 return (B_FALSE); 13795 } 13796 } 13797 return (B_TRUE); 13798 } 13799 13800 ire_t * 13801 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13802 { 13803 ire_t *new_ire; 13804 ill_t *ire_ill; 13805 uint_t ifindex; 13806 ip_stack_t *ipst = ill->ill_ipst; 13807 boolean_t strict_check = B_FALSE; 13808 13809 /* 13810 * This packet came in on an interface other than the one associated 13811 * with the first ire we found for the destination address. We do 13812 * another ire lookup here, using the ingress ill, to see if the 13813 * interface is in an interface group. 13814 * As long as the ills belong to the same group, we don't consider 13815 * them to be arriving on the wrong interface. Thus, if the switch 13816 * is doing inbound load spreading, we won't drop packets when the 13817 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13818 * for 'usesrc groups' where the destination address may belong to 13819 * another interface to allow multipathing to happen. 13820 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13821 * where the local address may not be unique. In this case we were 13822 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13823 * actually returned. The new lookup, which is more specific, should 13824 * only find the IRE_LOCAL associated with the ingress ill if one 13825 * exists. 13826 */ 13827 13828 if (ire->ire_ipversion == IPV4_VERSION) { 13829 if (ipst->ips_ip_strict_dst_multihoming) 13830 strict_check = B_TRUE; 13831 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13832 ill->ill_ipif, ALL_ZONES, NULL, 13833 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13834 } else { 13835 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13836 if (ipst->ips_ipv6_strict_dst_multihoming) 13837 strict_check = B_TRUE; 13838 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13839 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13840 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13841 } 13842 /* 13843 * If the same ire that was returned in ip_input() is found then this 13844 * is an indication that interface groups are in use. The packet 13845 * arrived on a different ill in the group than the one associated with 13846 * the destination address. If a different ire was found then the same 13847 * IP address must be hosted on multiple ills. This is possible with 13848 * unnumbered point2point interfaces. We switch to use this new ire in 13849 * order to have accurate interface statistics. 13850 */ 13851 if (new_ire != NULL) { 13852 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13853 ire_refrele(ire); 13854 ire = new_ire; 13855 } else { 13856 ire_refrele(new_ire); 13857 } 13858 return (ire); 13859 } else if ((ire->ire_rfq == NULL) && 13860 (ire->ire_ipversion == IPV4_VERSION)) { 13861 /* 13862 * The best match could have been the original ire which 13863 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13864 * the strict multihoming checks are irrelevant as we consider 13865 * local addresses hosted on lo0 to be interface agnostic. We 13866 * only expect a null ire_rfq on IREs which are associated with 13867 * lo0 hence we can return now. 13868 */ 13869 return (ire); 13870 } 13871 13872 /* 13873 * Chase pointers once and store locally. 13874 */ 13875 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13876 (ill_t *)(ire->ire_rfq->q_ptr); 13877 ifindex = ill->ill_usesrc_ifindex; 13878 13879 /* 13880 * Check if it's a legal address on the 'usesrc' interface. 13881 */ 13882 if ((ifindex != 0) && (ire_ill != NULL) && 13883 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13884 return (ire); 13885 } 13886 13887 /* 13888 * If the ip*_strict_dst_multihoming switch is on then we can 13889 * only accept this packet if the interface is marked as routing. 13890 */ 13891 if (!(strict_check)) 13892 return (ire); 13893 13894 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13895 ILLF_ROUTER) != 0) { 13896 return (ire); 13897 } 13898 13899 ire_refrele(ire); 13900 return (NULL); 13901 } 13902 13903 ire_t * 13904 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13905 { 13906 ipha_t *ipha; 13907 ire_t *src_ire; 13908 ill_t *stq_ill; 13909 uint_t hlen; 13910 uint_t pkt_len; 13911 uint32_t sum; 13912 queue_t *dev_q; 13913 ip_stack_t *ipst = ill->ill_ipst; 13914 mblk_t *fpmp; 13915 enum ire_forward_action ret_action; 13916 13917 ipha = (ipha_t *)mp->b_rptr; 13918 13919 if (ire != NULL && 13920 ire->ire_zoneid != GLOBAL_ZONEID && 13921 ire->ire_zoneid != ALL_ZONES) { 13922 /* 13923 * Should only use IREs that are visible to the global 13924 * zone for forwarding. 13925 */ 13926 ire_refrele(ire); 13927 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13928 } 13929 13930 /* 13931 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13932 * The loopback address check for both src and dst has already 13933 * been checked in ip_input 13934 */ 13935 13936 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13938 goto drop; 13939 } 13940 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13941 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13942 13943 if (src_ire != NULL) { 13944 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13945 ire_refrele(src_ire); 13946 goto drop; 13947 } 13948 13949 /* No ire cache of nexthop. So first create one */ 13950 if (ire == NULL) { 13951 13952 ire = ire_forward(dst, &ret_action, NULL, NULL, 13953 NULL, ipst); 13954 /* 13955 * We only come to ip_fast_forward if ip_cgtp_filter 13956 * is not set. So ire_forward() should not return with 13957 * Forward_check_multirt as the next action. 13958 */ 13959 ASSERT(ret_action != Forward_check_multirt); 13960 if (ire == NULL) { 13961 /* An attempt was made to forward the packet */ 13962 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13963 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13964 mp->b_prev = mp->b_next = 0; 13965 /* send icmp unreachable */ 13966 /* Sent by forwarding path, and router is global zone */ 13967 if (ret_action == Forward_ret_icmp_err) { 13968 if (ip_source_routed(ipha, ipst)) { 13969 icmp_unreachable(ill->ill_wq, mp, 13970 ICMP_SOURCE_ROUTE_FAILED, 13971 GLOBAL_ZONEID, ipst); 13972 } else { 13973 icmp_unreachable(ill->ill_wq, mp, 13974 ICMP_HOST_UNREACHABLE, 13975 GLOBAL_ZONEID, ipst); 13976 } 13977 } else { 13978 freemsg(mp); 13979 } 13980 return (NULL); 13981 } 13982 } 13983 13984 /* 13985 * Forwarding fastpath exception case: 13986 * If either of the follwoing case is true, we take 13987 * the slowpath 13988 * o forwarding is not enabled 13989 * o incoming and outgoing interface are the same, or the same 13990 * IPMP group 13991 * o corresponding ire is in incomplete state 13992 * o packet needs fragmentation 13993 * o ARP cache is not resolved 13994 * 13995 * The codeflow from here on is thus: 13996 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13997 */ 13998 pkt_len = ntohs(ipha->ipha_length); 13999 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14000 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14001 !(ill->ill_flags & ILLF_ROUTER) || 14002 (ill == stq_ill) || 14003 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14004 (ire->ire_nce == NULL) || 14005 (pkt_len > ire->ire_max_frag) || 14006 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14007 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14008 ipha->ipha_ttl <= 1) { 14009 ip_rput_process_forward(ill->ill_rq, mp, ire, 14010 ipha, ill, B_FALSE); 14011 return (ire); 14012 } 14013 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14014 14015 DTRACE_PROBE4(ip4__forwarding__start, 14016 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14017 14018 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14019 ipst->ips_ipv4firewall_forwarding, 14020 ill, stq_ill, ipha, mp, mp, 0, ipst); 14021 14022 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14023 14024 if (mp == NULL) 14025 goto drop; 14026 14027 mp->b_datap->db_struioun.cksum.flags = 0; 14028 /* Adjust the checksum to reflect the ttl decrement. */ 14029 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14030 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14031 ipha->ipha_ttl--; 14032 14033 /* 14034 * Write the link layer header. We can do this safely here, 14035 * because we have already tested to make sure that the IP 14036 * policy is not set, and that we have a fast path destination 14037 * header. 14038 */ 14039 mp->b_rptr -= hlen; 14040 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14041 14042 UPDATE_IB_PKT_COUNT(ire); 14043 ire->ire_last_used_time = lbolt; 14044 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14045 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14046 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14047 14048 dev_q = ire->ire_stq->q_next; 14049 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14050 !canputnext(ire->ire_stq)) { 14051 goto indiscard; 14052 } 14053 if (ILL_DLS_CAPABLE(stq_ill)) { 14054 /* 14055 * Send the packet directly to DLD, where it 14056 * may be queued depending on the availability 14057 * of transmit resources at the media layer. 14058 */ 14059 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst, hlen); 14060 } else { 14061 DTRACE_PROBE4(ip4__physical__out__start, 14062 ill_t *, NULL, ill_t *, stq_ill, 14063 ipha_t *, ipha, mblk_t *, mp); 14064 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14065 ipst->ips_ipv4firewall_physical_out, 14066 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14067 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14068 if (mp == NULL) 14069 goto drop; 14070 14071 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14072 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14073 ip6_t *, NULL, int, 0); 14074 14075 putnext(ire->ire_stq, mp); 14076 } 14077 return (ire); 14078 14079 indiscard: 14080 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14081 drop: 14082 if (mp != NULL) 14083 freemsg(mp); 14084 return (ire); 14085 14086 } 14087 14088 /* 14089 * This function is called in the forwarding slowpath, when 14090 * either the ire lacks the link-layer address, or the packet needs 14091 * further processing(eg. fragmentation), before transmission. 14092 */ 14093 14094 static void 14095 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14096 ill_t *ill, boolean_t ll_multicast) 14097 { 14098 ill_group_t *ill_group; 14099 ill_group_t *ire_group; 14100 queue_t *dev_q; 14101 ire_t *src_ire; 14102 ip_stack_t *ipst = ill->ill_ipst; 14103 14104 ASSERT(ire->ire_stq != NULL); 14105 14106 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14107 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14108 14109 if (ll_multicast != 0) { 14110 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14111 goto drop_pkt; 14112 } 14113 14114 /* 14115 * check if ipha_src is a broadcast address. Note that this 14116 * check is redundant when we get here from ip_fast_forward() 14117 * which has already done this check. However, since we can 14118 * also get here from ip_rput_process_broadcast() or, for 14119 * for the slow path through ip_fast_forward(), we perform 14120 * the check again for code-reusability 14121 */ 14122 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14123 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14124 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14125 if (src_ire != NULL) 14126 ire_refrele(src_ire); 14127 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14128 ip2dbg(("ip_rput_process_forward: Received packet with" 14129 " bad src/dst address on %s\n", ill->ill_name)); 14130 goto drop_pkt; 14131 } 14132 14133 ill_group = ill->ill_group; 14134 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14135 /* 14136 * Check if we want to forward this one at this time. 14137 * We allow source routed packets on a host provided that 14138 * they go out the same interface or same interface group 14139 * as they came in on. 14140 * 14141 * XXX To be quicker, we may wish to not chase pointers to 14142 * get the ILLF_ROUTER flag and instead store the 14143 * forwarding policy in the ire. An unfortunate 14144 * side-effect of that would be requiring an ire flush 14145 * whenever the ILLF_ROUTER flag changes. 14146 */ 14147 if (((ill->ill_flags & 14148 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14149 ILLF_ROUTER) == 0) && 14150 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14151 (ill_group != NULL && ill_group == ire_group)))) { 14152 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14153 if (ip_source_routed(ipha, ipst)) { 14154 q = WR(q); 14155 /* 14156 * Clear the indication that this may have 14157 * hardware checksum as we are not using it. 14158 */ 14159 DB_CKSUMFLAGS(mp) = 0; 14160 /* Sent by forwarding path, and router is global zone */ 14161 icmp_unreachable(q, mp, 14162 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14163 return; 14164 } 14165 goto drop_pkt; 14166 } 14167 14168 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14169 14170 /* Packet is being forwarded. Turning off hwcksum flag. */ 14171 DB_CKSUMFLAGS(mp) = 0; 14172 if (ipst->ips_ip_g_send_redirects) { 14173 /* 14174 * Check whether the incoming interface and outgoing 14175 * interface is part of the same group. If so, 14176 * send redirects. 14177 * 14178 * Check the source address to see if it originated 14179 * on the same logical subnet it is going back out on. 14180 * If so, we should be able to send it a redirect. 14181 * Avoid sending a redirect if the destination 14182 * is directly connected (i.e., ipha_dst is the same 14183 * as ire_gateway_addr or the ire_addr of the 14184 * nexthop IRE_CACHE ), or if the packet was source 14185 * routed out this interface. 14186 */ 14187 ipaddr_t src, nhop; 14188 mblk_t *mp1; 14189 ire_t *nhop_ire = NULL; 14190 14191 /* 14192 * Check whether ire_rfq and q are from the same ill 14193 * or if they are not same, they at least belong 14194 * to the same group. If so, send redirects. 14195 */ 14196 if ((ire->ire_rfq == q || 14197 (ill_group != NULL && ill_group == ire_group)) && 14198 !ip_source_routed(ipha, ipst)) { 14199 14200 nhop = (ire->ire_gateway_addr != 0 ? 14201 ire->ire_gateway_addr : ire->ire_addr); 14202 14203 if (ipha->ipha_dst == nhop) { 14204 /* 14205 * We avoid sending a redirect if the 14206 * destination is directly connected 14207 * because it is possible that multiple 14208 * IP subnets may have been configured on 14209 * the link, and the source may not 14210 * be on the same subnet as ip destination, 14211 * even though they are on the same 14212 * physical link. 14213 */ 14214 goto sendit; 14215 } 14216 14217 src = ipha->ipha_src; 14218 14219 /* 14220 * We look up the interface ire for the nexthop, 14221 * to see if ipha_src is in the same subnet 14222 * as the nexthop. 14223 * 14224 * Note that, if, in the future, IRE_CACHE entries 14225 * are obsoleted, this lookup will not be needed, 14226 * as the ire passed to this function will be the 14227 * same as the nhop_ire computed below. 14228 */ 14229 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14230 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14231 0, NULL, MATCH_IRE_TYPE, ipst); 14232 14233 if (nhop_ire != NULL) { 14234 if ((src & nhop_ire->ire_mask) == 14235 (nhop & nhop_ire->ire_mask)) { 14236 /* 14237 * The source is directly connected. 14238 * Just copy the ip header (which is 14239 * in the first mblk) 14240 */ 14241 mp1 = copyb(mp); 14242 if (mp1 != NULL) { 14243 icmp_send_redirect(WR(q), mp1, 14244 nhop, ipst); 14245 } 14246 } 14247 ire_refrele(nhop_ire); 14248 } 14249 } 14250 } 14251 sendit: 14252 dev_q = ire->ire_stq->q_next; 14253 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14254 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14255 freemsg(mp); 14256 return; 14257 } 14258 14259 ip_rput_forward(ire, ipha, mp, ill); 14260 return; 14261 14262 drop_pkt: 14263 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14264 freemsg(mp); 14265 } 14266 14267 ire_t * 14268 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14269 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14270 { 14271 queue_t *q; 14272 uint16_t hcksumflags; 14273 ip_stack_t *ipst = ill->ill_ipst; 14274 14275 q = *qp; 14276 14277 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14278 14279 /* 14280 * Clear the indication that this may have hardware 14281 * checksum as we are not using it for forwarding. 14282 */ 14283 hcksumflags = DB_CKSUMFLAGS(mp); 14284 DB_CKSUMFLAGS(mp) = 0; 14285 14286 /* 14287 * Directed broadcast forwarding: if the packet came in over a 14288 * different interface then it is routed out over we can forward it. 14289 */ 14290 if (ipha->ipha_protocol == IPPROTO_TCP) { 14291 ire_refrele(ire); 14292 freemsg(mp); 14293 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14294 return (NULL); 14295 } 14296 /* 14297 * For multicast we have set dst to be INADDR_BROADCAST 14298 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14299 * only for broadcast packets. 14300 */ 14301 if (!CLASSD(ipha->ipha_dst)) { 14302 ire_t *new_ire; 14303 ipif_t *ipif; 14304 /* 14305 * For ill groups, as the switch duplicates broadcasts 14306 * across all the ports, we need to filter out and 14307 * send up only one copy. There is one copy for every 14308 * broadcast address on each ill. Thus, we look for a 14309 * specific IRE on this ill and look at IRE_MARK_NORECV 14310 * later to see whether this ill is eligible to receive 14311 * them or not. ill_nominate_bcast_rcv() nominates only 14312 * one set of IREs for receiving. 14313 */ 14314 14315 ipif = ipif_get_next_ipif(NULL, ill); 14316 if (ipif == NULL) { 14317 ire_refrele(ire); 14318 freemsg(mp); 14319 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14320 return (NULL); 14321 } 14322 new_ire = ire_ctable_lookup(dst, 0, 0, 14323 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14324 ipif_refrele(ipif); 14325 14326 if (new_ire != NULL) { 14327 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14328 ire_refrele(ire); 14329 ire_refrele(new_ire); 14330 freemsg(mp); 14331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14332 return (NULL); 14333 } 14334 /* 14335 * In the special case of multirouted broadcast 14336 * packets, we unconditionally need to "gateway" 14337 * them to the appropriate interface here. 14338 * In the normal case, this cannot happen, because 14339 * there is no broadcast IRE tagged with the 14340 * RTF_MULTIRT flag. 14341 */ 14342 if (new_ire->ire_flags & RTF_MULTIRT) { 14343 ire_refrele(new_ire); 14344 if (ire->ire_rfq != NULL) { 14345 q = ire->ire_rfq; 14346 *qp = q; 14347 } 14348 } else { 14349 ire_refrele(ire); 14350 ire = new_ire; 14351 } 14352 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14353 if (!ipst->ips_ip_g_forward_directed_bcast) { 14354 /* 14355 * Free the message if 14356 * ip_g_forward_directed_bcast is turned 14357 * off for non-local broadcast. 14358 */ 14359 ire_refrele(ire); 14360 freemsg(mp); 14361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14362 return (NULL); 14363 } 14364 } else { 14365 /* 14366 * This CGTP packet successfully passed the 14367 * CGTP filter, but the related CGTP 14368 * broadcast IRE has not been found, 14369 * meaning that the redundant ipif is 14370 * probably down. However, if we discarded 14371 * this packet, its duplicate would be 14372 * filtered out by the CGTP filter so none 14373 * of them would get through. So we keep 14374 * going with this one. 14375 */ 14376 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14377 if (ire->ire_rfq != NULL) { 14378 q = ire->ire_rfq; 14379 *qp = q; 14380 } 14381 } 14382 } 14383 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14384 /* 14385 * Verify that there are not more then one 14386 * IRE_BROADCAST with this broadcast address which 14387 * has ire_stq set. 14388 * TODO: simplify, loop over all IRE's 14389 */ 14390 ire_t *ire1; 14391 int num_stq = 0; 14392 mblk_t *mp1; 14393 14394 /* Find the first one with ire_stq set */ 14395 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14396 for (ire1 = ire; ire1 && 14397 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14398 ire1 = ire1->ire_next) 14399 ; 14400 if (ire1) { 14401 ire_refrele(ire); 14402 ire = ire1; 14403 IRE_REFHOLD(ire); 14404 } 14405 14406 /* Check if there are additional ones with stq set */ 14407 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14408 if (ire->ire_addr != ire1->ire_addr) 14409 break; 14410 if (ire1->ire_stq) { 14411 num_stq++; 14412 break; 14413 } 14414 } 14415 rw_exit(&ire->ire_bucket->irb_lock); 14416 if (num_stq == 1 && ire->ire_stq != NULL) { 14417 ip1dbg(("ip_rput_process_broadcast: directed " 14418 "broadcast to 0x%x\n", 14419 ntohl(ire->ire_addr))); 14420 mp1 = copymsg(mp); 14421 if (mp1) { 14422 switch (ipha->ipha_protocol) { 14423 case IPPROTO_UDP: 14424 ip_udp_input(q, mp1, ipha, ire, ill); 14425 break; 14426 default: 14427 ip_proto_input(q, mp1, ipha, ire, ill, 14428 0); 14429 break; 14430 } 14431 } 14432 /* 14433 * Adjust ttl to 2 (1+1 - the forward engine 14434 * will decrement it by one. 14435 */ 14436 if (ip_csum_hdr(ipha)) { 14437 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14438 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14439 freemsg(mp); 14440 ire_refrele(ire); 14441 return (NULL); 14442 } 14443 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14444 ipha->ipha_hdr_checksum = 0; 14445 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14446 ip_rput_process_forward(q, mp, ire, ipha, 14447 ill, ll_multicast); 14448 ire_refrele(ire); 14449 return (NULL); 14450 } 14451 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14452 ntohl(ire->ire_addr))); 14453 } 14454 14455 14456 /* Restore any hardware checksum flags */ 14457 DB_CKSUMFLAGS(mp) = hcksumflags; 14458 return (ire); 14459 } 14460 14461 /* ARGSUSED */ 14462 static boolean_t 14463 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14464 int *ll_multicast, ipaddr_t *dstp) 14465 { 14466 ip_stack_t *ipst = ill->ill_ipst; 14467 14468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14469 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14470 ntohs(ipha->ipha_length)); 14471 14472 /* 14473 * Forward packets only if we have joined the allmulti 14474 * group on this interface. 14475 */ 14476 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14477 int retval; 14478 14479 /* 14480 * Clear the indication that this may have hardware 14481 * checksum as we are not using it. 14482 */ 14483 DB_CKSUMFLAGS(mp) = 0; 14484 retval = ip_mforward(ill, ipha, mp); 14485 /* ip_mforward updates mib variables if needed */ 14486 /* clear b_prev - used by ip_mroute_decap */ 14487 mp->b_prev = NULL; 14488 14489 switch (retval) { 14490 case 0: 14491 /* 14492 * pkt is okay and arrived on phyint. 14493 * 14494 * If we are running as a multicast router 14495 * we need to see all IGMP and/or PIM packets. 14496 */ 14497 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14498 (ipha->ipha_protocol == IPPROTO_PIM)) { 14499 goto done; 14500 } 14501 break; 14502 case -1: 14503 /* pkt is mal-formed, toss it */ 14504 goto drop_pkt; 14505 case 1: 14506 /* pkt is okay and arrived on a tunnel */ 14507 /* 14508 * If we are running a multicast router 14509 * we need to see all igmp packets. 14510 */ 14511 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14512 *dstp = INADDR_BROADCAST; 14513 *ll_multicast = 1; 14514 return (B_FALSE); 14515 } 14516 14517 goto drop_pkt; 14518 } 14519 } 14520 14521 ILM_WALKER_HOLD(ill); 14522 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14523 /* 14524 * This might just be caused by the fact that 14525 * multiple IP Multicast addresses map to the same 14526 * link layer multicast - no need to increment counter! 14527 */ 14528 ILM_WALKER_RELE(ill); 14529 freemsg(mp); 14530 return (B_TRUE); 14531 } 14532 ILM_WALKER_RELE(ill); 14533 done: 14534 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14535 /* 14536 * This assumes the we deliver to all streams for multicast 14537 * and broadcast packets. 14538 */ 14539 *dstp = INADDR_BROADCAST; 14540 *ll_multicast = 1; 14541 return (B_FALSE); 14542 drop_pkt: 14543 ip2dbg(("ip_rput: drop pkt\n")); 14544 freemsg(mp); 14545 return (B_TRUE); 14546 } 14547 14548 /* 14549 * This function is used to both return an indication of whether or not 14550 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14551 * and in doing so, determine whether or not it is broadcast vs multicast. 14552 * For it to be a broadcast packet, we must have the appropriate mblk_t 14553 * hanging off the ill_t. If this is either not present or doesn't match 14554 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14555 * to be multicast. Thus NICs that have no broadcast address (or no 14556 * capability for one, such as point to point links) cannot return as 14557 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14558 * the return values simplifies the current use of the return value of this 14559 * function, which is to pass through the multicast/broadcast characteristic 14560 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14561 * changing the return value to some other symbol demands the appropriate 14562 * "translation" when hpe_flags is set prior to calling hook_run() for 14563 * packet events. 14564 */ 14565 int 14566 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14567 { 14568 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14569 mblk_t *bmp; 14570 14571 if (ind->dl_group_address) { 14572 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14573 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14574 MBLKL(mb) && 14575 (bmp = ill->ill_bcast_mp) != NULL) { 14576 dl_unitdata_req_t *dlur; 14577 uint8_t *bphys_addr; 14578 14579 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14580 if (ill->ill_sap_length < 0) 14581 bphys_addr = (uchar_t *)dlur + 14582 dlur->dl_dest_addr_offset; 14583 else 14584 bphys_addr = (uchar_t *)dlur + 14585 dlur->dl_dest_addr_offset + 14586 ill->ill_sap_length; 14587 14588 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14589 bphys_addr, ind->dl_dest_addr_length) == 0) { 14590 return (HPE_BROADCAST); 14591 } 14592 return (HPE_MULTICAST); 14593 } 14594 return (HPE_MULTICAST); 14595 } 14596 return (0); 14597 } 14598 14599 static boolean_t 14600 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14601 int *ll_multicast, mblk_t **mpp) 14602 { 14603 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14604 boolean_t must_copy = B_FALSE; 14605 struct iocblk *iocp; 14606 ipha_t *ipha; 14607 ip_stack_t *ipst = ill->ill_ipst; 14608 14609 #define rptr ((uchar_t *)ipha) 14610 14611 first_mp = *first_mpp; 14612 mp = *mpp; 14613 14614 ASSERT(first_mp == mp); 14615 14616 /* 14617 * if db_ref > 1 then copymsg and free original. Packet may be 14618 * changed and do not want other entity who has a reference to this 14619 * message to trip over the changes. This is a blind change because 14620 * trying to catch all places that might change packet is too 14621 * difficult (since it may be a module above this one) 14622 * 14623 * This corresponds to the non-fast path case. We walk down the full 14624 * chain in this case, and check the db_ref count of all the dblks, 14625 * and do a copymsg if required. It is possible that the db_ref counts 14626 * of the data blocks in the mblk chain can be different. 14627 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14628 * count of 1, followed by a M_DATA block with a ref count of 2, if 14629 * 'snoop' is running. 14630 */ 14631 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14632 if (mp1->b_datap->db_ref > 1) { 14633 must_copy = B_TRUE; 14634 break; 14635 } 14636 } 14637 14638 if (must_copy) { 14639 mp1 = copymsg(mp); 14640 if (mp1 == NULL) { 14641 for (mp1 = mp; mp1 != NULL; 14642 mp1 = mp1->b_cont) { 14643 mp1->b_next = NULL; 14644 mp1->b_prev = NULL; 14645 } 14646 freemsg(mp); 14647 if (ill != NULL) { 14648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14649 } else { 14650 BUMP_MIB(&ipst->ips_ip_mib, 14651 ipIfStatsInDiscards); 14652 } 14653 return (B_TRUE); 14654 } 14655 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14656 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14657 /* Copy b_prev - used by ip_mroute_decap */ 14658 to_mp->b_prev = from_mp->b_prev; 14659 from_mp->b_prev = NULL; 14660 } 14661 *first_mpp = first_mp = mp1; 14662 freemsg(mp); 14663 mp = mp1; 14664 *mpp = mp1; 14665 } 14666 14667 ipha = (ipha_t *)mp->b_rptr; 14668 14669 /* 14670 * previous code has a case for M_DATA. 14671 * We want to check how that happens. 14672 */ 14673 ASSERT(first_mp->b_datap->db_type != M_DATA); 14674 switch (first_mp->b_datap->db_type) { 14675 case M_PROTO: 14676 case M_PCPROTO: 14677 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14678 DL_UNITDATA_IND) { 14679 /* Go handle anything other than data elsewhere. */ 14680 ip_rput_dlpi(q, mp); 14681 return (B_TRUE); 14682 } 14683 14684 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14685 /* Ditch the DLPI header. */ 14686 mp1 = mp->b_cont; 14687 ASSERT(first_mp == mp); 14688 *first_mpp = mp1; 14689 freeb(mp); 14690 *mpp = mp1; 14691 return (B_FALSE); 14692 case M_IOCACK: 14693 ip1dbg(("got iocack ")); 14694 iocp = (struct iocblk *)mp->b_rptr; 14695 switch (iocp->ioc_cmd) { 14696 case DL_IOC_HDR_INFO: 14697 ill = (ill_t *)q->q_ptr; 14698 ill_fastpath_ack(ill, mp); 14699 return (B_TRUE); 14700 case SIOCSTUNPARAM: 14701 case OSIOCSTUNPARAM: 14702 /* Go through qwriter_ip */ 14703 break; 14704 case SIOCGTUNPARAM: 14705 case OSIOCGTUNPARAM: 14706 ip_rput_other(NULL, q, mp, NULL); 14707 return (B_TRUE); 14708 default: 14709 putnext(q, mp); 14710 return (B_TRUE); 14711 } 14712 /* FALLTHRU */ 14713 case M_ERROR: 14714 case M_HANGUP: 14715 /* 14716 * Since this is on the ill stream we unconditionally 14717 * bump up the refcount 14718 */ 14719 ill_refhold(ill); 14720 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14721 return (B_TRUE); 14722 case M_CTL: 14723 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14724 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14725 IPHADA_M_CTL)) { 14726 /* 14727 * It's an IPsec accelerated packet. 14728 * Make sure that the ill from which we received the 14729 * packet has enabled IPsec hardware acceleration. 14730 */ 14731 if (!(ill->ill_capabilities & 14732 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14733 /* IPsec kstats: bean counter */ 14734 freemsg(mp); 14735 return (B_TRUE); 14736 } 14737 14738 /* 14739 * Make mp point to the mblk following the M_CTL, 14740 * then process according to type of mp. 14741 * After this processing, first_mp will point to 14742 * the data-attributes and mp to the pkt following 14743 * the M_CTL. 14744 */ 14745 mp = first_mp->b_cont; 14746 if (mp == NULL) { 14747 freemsg(first_mp); 14748 return (B_TRUE); 14749 } 14750 /* 14751 * A Hardware Accelerated packet can only be M_DATA 14752 * ESP or AH packet. 14753 */ 14754 if (mp->b_datap->db_type != M_DATA) { 14755 /* non-M_DATA IPsec accelerated packet */ 14756 IPSECHW_DEBUG(IPSECHW_PKT, 14757 ("non-M_DATA IPsec accelerated pkt\n")); 14758 freemsg(first_mp); 14759 return (B_TRUE); 14760 } 14761 ipha = (ipha_t *)mp->b_rptr; 14762 if (ipha->ipha_protocol != IPPROTO_AH && 14763 ipha->ipha_protocol != IPPROTO_ESP) { 14764 IPSECHW_DEBUG(IPSECHW_PKT, 14765 ("non-M_DATA IPsec accelerated pkt\n")); 14766 freemsg(first_mp); 14767 return (B_TRUE); 14768 } 14769 *mpp = mp; 14770 return (B_FALSE); 14771 } 14772 putnext(q, mp); 14773 return (B_TRUE); 14774 case M_IOCNAK: 14775 ip1dbg(("got iocnak ")); 14776 iocp = (struct iocblk *)mp->b_rptr; 14777 switch (iocp->ioc_cmd) { 14778 case SIOCSTUNPARAM: 14779 case OSIOCSTUNPARAM: 14780 /* 14781 * Since this is on the ill stream we unconditionally 14782 * bump up the refcount 14783 */ 14784 ill_refhold(ill); 14785 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14786 return (B_TRUE); 14787 case DL_IOC_HDR_INFO: 14788 case SIOCGTUNPARAM: 14789 case OSIOCGTUNPARAM: 14790 ip_rput_other(NULL, q, mp, NULL); 14791 return (B_TRUE); 14792 default: 14793 break; 14794 } 14795 /* FALLTHRU */ 14796 default: 14797 putnext(q, mp); 14798 return (B_TRUE); 14799 } 14800 } 14801 14802 /* Read side put procedure. Packets coming from the wire arrive here. */ 14803 void 14804 ip_rput(queue_t *q, mblk_t *mp) 14805 { 14806 ill_t *ill; 14807 union DL_primitives *dl; 14808 14809 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14810 14811 ill = (ill_t *)q->q_ptr; 14812 14813 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14814 /* 14815 * If things are opening or closing, only accept high-priority 14816 * DLPI messages. (On open ill->ill_ipif has not yet been 14817 * created; on close, things hanging off the ill may have been 14818 * freed already.) 14819 */ 14820 dl = (union DL_primitives *)mp->b_rptr; 14821 if (DB_TYPE(mp) != M_PCPROTO || 14822 dl->dl_primitive == DL_UNITDATA_IND) { 14823 /* 14824 * SIOC[GS]TUNPARAM ioctls can come here. 14825 */ 14826 inet_freemsg(mp); 14827 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14828 "ip_rput_end: q %p (%S)", q, "uninit"); 14829 return; 14830 } 14831 } 14832 14833 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14834 "ip_rput_end: q %p (%S)", q, "end"); 14835 14836 ip_input(ill, NULL, mp, NULL); 14837 } 14838 14839 static mblk_t * 14840 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14841 { 14842 mblk_t *mp1; 14843 boolean_t adjusted = B_FALSE; 14844 ip_stack_t *ipst = ill->ill_ipst; 14845 14846 IP_STAT(ipst, ip_db_ref); 14847 /* 14848 * The IP_RECVSLLA option depends on having the 14849 * link layer header. First check that: 14850 * a> the underlying device is of type ether, 14851 * since this option is currently supported only 14852 * over ethernet. 14853 * b> there is enough room to copy over the link 14854 * layer header. 14855 * 14856 * Once the checks are done, adjust rptr so that 14857 * the link layer header will be copied via 14858 * copymsg. Note that, IFT_ETHER may be returned 14859 * by some non-ethernet drivers but in this case 14860 * the second check will fail. 14861 */ 14862 if (ill->ill_type == IFT_ETHER && 14863 (mp->b_rptr - mp->b_datap->db_base) >= 14864 sizeof (struct ether_header)) { 14865 mp->b_rptr -= sizeof (struct ether_header); 14866 adjusted = B_TRUE; 14867 } 14868 mp1 = copymsg(mp); 14869 14870 if (mp1 == NULL) { 14871 mp->b_next = NULL; 14872 /* clear b_prev - used by ip_mroute_decap */ 14873 mp->b_prev = NULL; 14874 freemsg(mp); 14875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14876 return (NULL); 14877 } 14878 14879 if (adjusted) { 14880 /* 14881 * Copy is done. Restore the pointer in 14882 * the _new_ mblk 14883 */ 14884 mp1->b_rptr += sizeof (struct ether_header); 14885 } 14886 14887 /* Copy b_prev - used by ip_mroute_decap */ 14888 mp1->b_prev = mp->b_prev; 14889 mp->b_prev = NULL; 14890 14891 /* preserve the hardware checksum flags and data, if present */ 14892 if (DB_CKSUMFLAGS(mp) != 0) { 14893 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14894 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14895 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14896 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14897 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14898 } 14899 14900 freemsg(mp); 14901 return (mp1); 14902 } 14903 14904 /* 14905 * Direct read side procedure capable of dealing with chains. GLDv3 based 14906 * drivers call this function directly with mblk chains while STREAMS 14907 * read side procedure ip_rput() calls this for single packet with ip_ring 14908 * set to NULL to process one packet at a time. 14909 * 14910 * The ill will always be valid if this function is called directly from 14911 * the driver. 14912 * 14913 * If ip_input() is called from GLDv3: 14914 * 14915 * - This must be a non-VLAN IP stream. 14916 * - 'mp' is either an untagged or a special priority-tagged packet. 14917 * - Any VLAN tag that was in the MAC header has been stripped. 14918 * 14919 * If the IP header in packet is not 32-bit aligned, every message in the 14920 * chain will be aligned before further operations. This is required on SPARC 14921 * platform. 14922 */ 14923 /* ARGSUSED */ 14924 void 14925 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14926 struct mac_header_info_s *mhip) 14927 { 14928 ipaddr_t dst = NULL; 14929 ipaddr_t prev_dst; 14930 ire_t *ire = NULL; 14931 ipha_t *ipha; 14932 uint_t pkt_len; 14933 ssize_t len; 14934 uint_t opt_len; 14935 int ll_multicast; 14936 int cgtp_flt_pkt; 14937 queue_t *q = ill->ill_rq; 14938 squeue_t *curr_sqp = NULL; 14939 mblk_t *head = NULL; 14940 mblk_t *tail = NULL; 14941 mblk_t *first_mp; 14942 mblk_t *mp; 14943 mblk_t *dmp; 14944 int cnt = 0; 14945 ip_stack_t *ipst = ill->ill_ipst; 14946 14947 ASSERT(mp_chain != NULL); 14948 ASSERT(ill != NULL); 14949 14950 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14951 14952 #define rptr ((uchar_t *)ipha) 14953 14954 while (mp_chain != NULL) { 14955 first_mp = mp = mp_chain; 14956 mp_chain = mp_chain->b_next; 14957 mp->b_next = NULL; 14958 ll_multicast = 0; 14959 14960 /* 14961 * We do ire caching from one iteration to 14962 * another. In the event the packet chain contains 14963 * all packets from the same dst, this caching saves 14964 * an ire_cache_lookup for each of the succeeding 14965 * packets in a packet chain. 14966 */ 14967 prev_dst = dst; 14968 14969 /* 14970 * if db_ref > 1 then copymsg and free original. Packet 14971 * may be changed and we do not want the other entity 14972 * who has a reference to this message to trip over the 14973 * changes. This is a blind change because trying to 14974 * catch all places that might change the packet is too 14975 * difficult. 14976 * 14977 * This corresponds to the fast path case, where we have 14978 * a chain of M_DATA mblks. We check the db_ref count 14979 * of only the 1st data block in the mblk chain. There 14980 * doesn't seem to be a reason why a device driver would 14981 * send up data with varying db_ref counts in the mblk 14982 * chain. In any case the Fast path is a private 14983 * interface, and our drivers don't do such a thing. 14984 * Given the above assumption, there is no need to walk 14985 * down the entire mblk chain (which could have a 14986 * potential performance problem) 14987 */ 14988 14989 if (DB_REF(mp) > 1) { 14990 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14991 continue; 14992 } 14993 14994 /* 14995 * Check and align the IP header. 14996 */ 14997 first_mp = mp; 14998 if (DB_TYPE(mp) == M_DATA) { 14999 dmp = mp; 15000 } else if (DB_TYPE(mp) == M_PROTO && 15001 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15002 dmp = mp->b_cont; 15003 } else { 15004 dmp = NULL; 15005 } 15006 if (dmp != NULL) { 15007 /* 15008 * IP header ptr not aligned? 15009 * OR IP header not complete in first mblk 15010 */ 15011 if (!OK_32PTR(dmp->b_rptr) || 15012 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15013 if (!ip_check_and_align_header(q, dmp, ipst)) 15014 continue; 15015 } 15016 } 15017 15018 /* 15019 * ip_input fast path 15020 */ 15021 15022 /* mblk type is not M_DATA */ 15023 if (DB_TYPE(mp) != M_DATA) { 15024 if (ip_rput_process_notdata(q, &first_mp, ill, 15025 &ll_multicast, &mp)) 15026 continue; 15027 15028 /* 15029 * The only way we can get here is if we had a 15030 * packet that was either a DL_UNITDATA_IND or 15031 * an M_CTL for an IPsec accelerated packet. 15032 * 15033 * In either case, the first_mp will point to 15034 * the leading M_PROTO or M_CTL. 15035 */ 15036 ASSERT(first_mp != NULL); 15037 } else if (mhip != NULL) { 15038 /* 15039 * ll_multicast is set here so that it is ready 15040 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15041 * manipulates ll_multicast in the same fashion when 15042 * called from ip_rput_process_notdata. 15043 */ 15044 switch (mhip->mhi_dsttype) { 15045 case MAC_ADDRTYPE_MULTICAST : 15046 ll_multicast = HPE_MULTICAST; 15047 break; 15048 case MAC_ADDRTYPE_BROADCAST : 15049 ll_multicast = HPE_BROADCAST; 15050 break; 15051 default : 15052 break; 15053 } 15054 } 15055 15056 /* Make sure its an M_DATA and that its aligned */ 15057 ASSERT(DB_TYPE(mp) == M_DATA); 15058 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15059 15060 ipha = (ipha_t *)mp->b_rptr; 15061 len = mp->b_wptr - rptr; 15062 pkt_len = ntohs(ipha->ipha_length); 15063 15064 /* 15065 * We must count all incoming packets, even if they end 15066 * up being dropped later on. 15067 */ 15068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15069 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15070 15071 /* multiple mblk or too short */ 15072 len -= pkt_len; 15073 if (len != 0) { 15074 /* 15075 * Make sure we have data length consistent 15076 * with the IP header. 15077 */ 15078 if (mp->b_cont == NULL) { 15079 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15080 BUMP_MIB(ill->ill_ip_mib, 15081 ipIfStatsInHdrErrors); 15082 ip2dbg(("ip_input: drop pkt\n")); 15083 freemsg(mp); 15084 continue; 15085 } 15086 mp->b_wptr = rptr + pkt_len; 15087 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15088 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15089 BUMP_MIB(ill->ill_ip_mib, 15090 ipIfStatsInHdrErrors); 15091 ip2dbg(("ip_input: drop pkt\n")); 15092 freemsg(mp); 15093 continue; 15094 } 15095 (void) adjmsg(mp, -len); 15096 IP_STAT(ipst, ip_multimblk3); 15097 } 15098 } 15099 15100 /* Obtain the dst of the current packet */ 15101 dst = ipha->ipha_dst; 15102 15103 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15104 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15105 ipha, ip6_t *, NULL, int, 0); 15106 15107 /* 15108 * The following test for loopback is faster than 15109 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15110 * operations. 15111 * Note that these addresses are always in network byte order 15112 */ 15113 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15114 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15115 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15116 freemsg(mp); 15117 continue; 15118 } 15119 15120 /* 15121 * The event for packets being received from a 'physical' 15122 * interface is placed after validation of the source and/or 15123 * destination address as being local so that packets can be 15124 * redirected to loopback addresses using ipnat. 15125 */ 15126 DTRACE_PROBE4(ip4__physical__in__start, 15127 ill_t *, ill, ill_t *, NULL, 15128 ipha_t *, ipha, mblk_t *, first_mp); 15129 15130 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15131 ipst->ips_ipv4firewall_physical_in, 15132 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15133 15134 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15135 15136 if (first_mp == NULL) { 15137 continue; 15138 } 15139 dst = ipha->ipha_dst; 15140 15141 /* 15142 * Attach any necessary label information to 15143 * this packet 15144 */ 15145 if (is_system_labeled() && 15146 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15147 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15148 freemsg(mp); 15149 continue; 15150 } 15151 15152 if (ipst->ips_ipobs_enabled) { 15153 zoneid_t dzone; 15154 15155 /* 15156 * On the inbound path the src zone will be unknown as 15157 * this packet has come from the wire. 15158 */ 15159 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15160 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15161 ill, IPV4_VERSION, 0, ipst); 15162 } 15163 15164 /* 15165 * Reuse the cached ire only if the ipha_dst of the previous 15166 * packet is the same as the current packet AND it is not 15167 * INADDR_ANY. 15168 */ 15169 if (!(dst == prev_dst && dst != INADDR_ANY) && 15170 (ire != NULL)) { 15171 ire_refrele(ire); 15172 ire = NULL; 15173 } 15174 15175 opt_len = ipha->ipha_version_and_hdr_length - 15176 IP_SIMPLE_HDR_VERSION; 15177 15178 /* 15179 * Check to see if we can take the fastpath. 15180 * That is possible if the following conditions are met 15181 * o Tsol disabled 15182 * o CGTP disabled 15183 * o ipp_action_count is 0 15184 * o no options in the packet 15185 * o not a RSVP packet 15186 * o not a multicast packet 15187 * o ill not in IP_DHCPINIT_IF mode 15188 */ 15189 if (!is_system_labeled() && 15190 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15191 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15192 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15193 if (ire == NULL) 15194 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15195 ipst); 15196 15197 /* incoming packet is for forwarding */ 15198 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15199 ire = ip_fast_forward(ire, dst, ill, mp); 15200 continue; 15201 } 15202 /* incoming packet is for local consumption */ 15203 if (ire->ire_type & IRE_LOCAL) 15204 goto local; 15205 } 15206 15207 /* 15208 * Disable ire caching for anything more complex 15209 * than the simple fast path case we checked for above. 15210 */ 15211 if (ire != NULL) { 15212 ire_refrele(ire); 15213 ire = NULL; 15214 } 15215 15216 /* 15217 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15218 * server to unicast DHCP packets to a DHCP client using the 15219 * IP address it is offering to the client. This can be 15220 * disabled through the "broadcast bit", but not all DHCP 15221 * servers honor that bit. Therefore, to interoperate with as 15222 * many DHCP servers as possible, the DHCP client allows the 15223 * server to unicast, but we treat those packets as broadcast 15224 * here. Note that we don't rewrite the packet itself since 15225 * (a) that would mess up the checksums and (b) the DHCP 15226 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15227 * hand it the packet regardless. 15228 */ 15229 if (ill->ill_dhcpinit != 0 && 15230 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15231 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15232 udpha_t *udpha; 15233 15234 /* 15235 * Reload ipha since pullupmsg() can change b_rptr. 15236 */ 15237 ipha = (ipha_t *)mp->b_rptr; 15238 udpha = (udpha_t *)&ipha[1]; 15239 15240 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15241 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15242 mblk_t *, mp); 15243 dst = INADDR_BROADCAST; 15244 } 15245 } 15246 15247 /* Full-blown slow path */ 15248 if (opt_len != 0) { 15249 if (len != 0) 15250 IP_STAT(ipst, ip_multimblk4); 15251 else 15252 IP_STAT(ipst, ip_ipoptions); 15253 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15254 &dst, ipst)) 15255 continue; 15256 } 15257 15258 /* 15259 * Invoke the CGTP (multirouting) filtering module to process 15260 * the incoming packet. Packets identified as duplicates 15261 * must be discarded. Filtering is active only if the 15262 * the ip_cgtp_filter ndd variable is non-zero. 15263 */ 15264 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15265 if (ipst->ips_ip_cgtp_filter && 15266 ipst->ips_ip_cgtp_filter_ops != NULL) { 15267 netstackid_t stackid; 15268 15269 stackid = ipst->ips_netstack->netstack_stackid; 15270 cgtp_flt_pkt = 15271 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15272 ill->ill_phyint->phyint_ifindex, mp); 15273 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15274 freemsg(first_mp); 15275 continue; 15276 } 15277 } 15278 15279 /* 15280 * If rsvpd is running, let RSVP daemon handle its processing 15281 * and forwarding of RSVP multicast/unicast packets. 15282 * If rsvpd is not running but mrouted is running, RSVP 15283 * multicast packets are forwarded as multicast traffic 15284 * and RSVP unicast packets are forwarded by unicast router. 15285 * If neither rsvpd nor mrouted is running, RSVP multicast 15286 * packets are not forwarded, but the unicast packets are 15287 * forwarded like unicast traffic. 15288 */ 15289 if (ipha->ipha_protocol == IPPROTO_RSVP && 15290 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15291 NULL) { 15292 /* RSVP packet and rsvpd running. Treat as ours */ 15293 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15294 /* 15295 * This assumes that we deliver to all streams for 15296 * multicast and broadcast packets. 15297 * We have to force ll_multicast to 1 to handle the 15298 * M_DATA messages passed in from ip_mroute_decap. 15299 */ 15300 dst = INADDR_BROADCAST; 15301 ll_multicast = 1; 15302 } else if (CLASSD(dst)) { 15303 /* packet is multicast */ 15304 mp->b_next = NULL; 15305 if (ip_rput_process_multicast(q, mp, ill, ipha, 15306 &ll_multicast, &dst)) 15307 continue; 15308 } 15309 15310 if (ire == NULL) { 15311 ire = ire_cache_lookup(dst, ALL_ZONES, 15312 MBLK_GETLABEL(mp), ipst); 15313 } 15314 15315 if (ire != NULL && ire->ire_stq != NULL && 15316 ire->ire_zoneid != GLOBAL_ZONEID && 15317 ire->ire_zoneid != ALL_ZONES) { 15318 /* 15319 * Should only use IREs that are visible from the 15320 * global zone for forwarding. 15321 */ 15322 ire_refrele(ire); 15323 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15324 MBLK_GETLABEL(mp), ipst); 15325 } 15326 15327 if (ire == NULL) { 15328 /* 15329 * No IRE for this destination, so it can't be for us. 15330 * Unless we are forwarding, drop the packet. 15331 * We have to let source routed packets through 15332 * since we don't yet know if they are 'ping -l' 15333 * packets i.e. if they will go out over the 15334 * same interface as they came in on. 15335 */ 15336 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15337 if (ire == NULL) 15338 continue; 15339 } 15340 15341 /* 15342 * Broadcast IRE may indicate either broadcast or 15343 * multicast packet 15344 */ 15345 if (ire->ire_type == IRE_BROADCAST) { 15346 /* 15347 * Skip broadcast checks if packet is UDP multicast; 15348 * we'd rather not enter ip_rput_process_broadcast() 15349 * unless the packet is broadcast for real, since 15350 * that routine is a no-op for multicast. 15351 */ 15352 if (ipha->ipha_protocol != IPPROTO_UDP || 15353 !CLASSD(ipha->ipha_dst)) { 15354 ire = ip_rput_process_broadcast(&q, mp, 15355 ire, ipha, ill, dst, cgtp_flt_pkt, 15356 ll_multicast); 15357 if (ire == NULL) 15358 continue; 15359 } 15360 } else if (ire->ire_stq != NULL) { 15361 /* fowarding? */ 15362 ip_rput_process_forward(q, mp, ire, ipha, ill, 15363 ll_multicast); 15364 /* ip_rput_process_forward consumed the packet */ 15365 continue; 15366 } 15367 15368 local: 15369 /* 15370 * If the queue in the ire is different to the ingress queue 15371 * then we need to check to see if we can accept the packet. 15372 * Note that for multicast packets and broadcast packets sent 15373 * to a broadcast address which is shared between multiple 15374 * interfaces we should not do this since we just got a random 15375 * broadcast ire. 15376 */ 15377 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15378 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15379 ill)) == NULL) { 15380 /* Drop packet */ 15381 BUMP_MIB(ill->ill_ip_mib, 15382 ipIfStatsForwProhibits); 15383 freemsg(mp); 15384 continue; 15385 } 15386 if (ire->ire_rfq != NULL) 15387 q = ire->ire_rfq; 15388 } 15389 15390 switch (ipha->ipha_protocol) { 15391 case IPPROTO_TCP: 15392 ASSERT(first_mp == mp); 15393 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15394 mp, 0, q, ip_ring)) != NULL) { 15395 if (curr_sqp == NULL) { 15396 curr_sqp = GET_SQUEUE(mp); 15397 ASSERT(cnt == 0); 15398 cnt++; 15399 head = tail = mp; 15400 } else if (curr_sqp == GET_SQUEUE(mp)) { 15401 ASSERT(tail != NULL); 15402 cnt++; 15403 tail->b_next = mp; 15404 tail = mp; 15405 } else { 15406 /* 15407 * A different squeue. Send the 15408 * chain for the previous squeue on 15409 * its way. This shouldn't happen 15410 * often unless interrupt binding 15411 * changes. 15412 */ 15413 IP_STAT(ipst, ip_input_multi_squeue); 15414 squeue_enter_chain(curr_sqp, head, 15415 tail, cnt, SQTAG_IP_INPUT); 15416 curr_sqp = GET_SQUEUE(mp); 15417 head = mp; 15418 tail = mp; 15419 cnt = 1; 15420 } 15421 } 15422 continue; 15423 case IPPROTO_UDP: 15424 ASSERT(first_mp == mp); 15425 ip_udp_input(q, mp, ipha, ire, ill); 15426 continue; 15427 case IPPROTO_SCTP: 15428 ASSERT(first_mp == mp); 15429 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15430 q, dst); 15431 /* ire has been released by ip_sctp_input */ 15432 ire = NULL; 15433 continue; 15434 default: 15435 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15436 continue; 15437 } 15438 } 15439 15440 if (ire != NULL) 15441 ire_refrele(ire); 15442 15443 if (head != NULL) 15444 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15445 15446 /* 15447 * This code is there just to make netperf/ttcp look good. 15448 * 15449 * Its possible that after being in polling mode (and having cleared 15450 * the backlog), squeues have turned the interrupt frequency higher 15451 * to improve latency at the expense of more CPU utilization (less 15452 * packets per interrupts or more number of interrupts). Workloads 15453 * like ttcp/netperf do manage to tickle polling once in a while 15454 * but for the remaining time, stay in higher interrupt mode since 15455 * their packet arrival rate is pretty uniform and this shows up 15456 * as higher CPU utilization. Since people care about CPU utilization 15457 * while running netperf/ttcp, turn the interrupt frequency back to 15458 * normal/default if polling has not been used in ip_poll_normal_ticks. 15459 */ 15460 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15461 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15462 ip_ring->rr_poll_state &= ~ILL_POLLING; 15463 ip_ring->rr_blank(ip_ring->rr_handle, 15464 ip_ring->rr_normal_blank_time, 15465 ip_ring->rr_normal_pkt_cnt); 15466 } 15467 } 15468 15469 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15470 "ip_input_end: q %p (%S)", q, "end"); 15471 #undef rptr 15472 } 15473 15474 static void 15475 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15476 t_uscalar_t err) 15477 { 15478 if (dl_err == DL_SYSERR) { 15479 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15480 "%s: %s failed: DL_SYSERR (errno %u)\n", 15481 ill->ill_name, dl_primstr(prim), err); 15482 return; 15483 } 15484 15485 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15486 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15487 dl_errstr(dl_err)); 15488 } 15489 15490 /* 15491 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15492 * than DL_UNITDATA_IND messages. If we need to process this message 15493 * exclusively, we call qwriter_ip, in which case we also need to call 15494 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15495 */ 15496 void 15497 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15498 { 15499 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15500 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15501 ill_t *ill = q->q_ptr; 15502 t_uscalar_t prim = dloa->dl_primitive; 15503 t_uscalar_t reqprim = DL_PRIM_INVAL; 15504 15505 ip1dbg(("ip_rput_dlpi")); 15506 15507 /* 15508 * If we received an ACK but didn't send a request for it, then it 15509 * can't be part of any pending operation; discard up-front. 15510 */ 15511 switch (prim) { 15512 case DL_ERROR_ACK: 15513 reqprim = dlea->dl_error_primitive; 15514 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15515 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15516 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15517 dlea->dl_unix_errno)); 15518 break; 15519 case DL_OK_ACK: 15520 reqprim = dloa->dl_correct_primitive; 15521 break; 15522 case DL_INFO_ACK: 15523 reqprim = DL_INFO_REQ; 15524 break; 15525 case DL_BIND_ACK: 15526 reqprim = DL_BIND_REQ; 15527 break; 15528 case DL_PHYS_ADDR_ACK: 15529 reqprim = DL_PHYS_ADDR_REQ; 15530 break; 15531 case DL_NOTIFY_ACK: 15532 reqprim = DL_NOTIFY_REQ; 15533 break; 15534 case DL_CONTROL_ACK: 15535 reqprim = DL_CONTROL_REQ; 15536 break; 15537 case DL_CAPABILITY_ACK: 15538 reqprim = DL_CAPABILITY_REQ; 15539 break; 15540 } 15541 15542 if (prim != DL_NOTIFY_IND) { 15543 if (reqprim == DL_PRIM_INVAL || 15544 !ill_dlpi_pending(ill, reqprim)) { 15545 /* Not a DLPI message we support or expected */ 15546 freemsg(mp); 15547 return; 15548 } 15549 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15550 dl_primstr(reqprim))); 15551 } 15552 15553 switch (reqprim) { 15554 case DL_UNBIND_REQ: 15555 /* 15556 * NOTE: we mark the unbind as complete even if we got a 15557 * DL_ERROR_ACK, since there's not much else we can do. 15558 */ 15559 mutex_enter(&ill->ill_lock); 15560 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15561 cv_signal(&ill->ill_cv); 15562 mutex_exit(&ill->ill_lock); 15563 break; 15564 15565 case DL_ENABMULTI_REQ: 15566 if (prim == DL_OK_ACK) { 15567 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15568 ill->ill_dlpi_multicast_state = IDS_OK; 15569 } 15570 break; 15571 } 15572 15573 /* 15574 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15575 * need to become writer to continue to process it. Because an 15576 * exclusive operation doesn't complete until replies to all queued 15577 * DLPI messages have been received, we know we're in the middle of an 15578 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15579 * 15580 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15581 * Since this is on the ill stream we unconditionally bump up the 15582 * refcount without doing ILL_CAN_LOOKUP(). 15583 */ 15584 ill_refhold(ill); 15585 if (prim == DL_NOTIFY_IND) 15586 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15587 else 15588 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15589 } 15590 15591 /* 15592 * Handling of DLPI messages that require exclusive access to the ipsq. 15593 * 15594 * Need to do ill_pending_mp_release on ioctl completion, which could 15595 * happen here. (along with mi_copy_done) 15596 */ 15597 /* ARGSUSED */ 15598 static void 15599 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15600 { 15601 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15602 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15603 int err = 0; 15604 ill_t *ill; 15605 ipif_t *ipif = NULL; 15606 mblk_t *mp1 = NULL; 15607 conn_t *connp = NULL; 15608 t_uscalar_t paddrreq; 15609 mblk_t *mp_hw; 15610 boolean_t success; 15611 boolean_t ioctl_aborted = B_FALSE; 15612 boolean_t log = B_TRUE; 15613 ip_stack_t *ipst; 15614 15615 ip1dbg(("ip_rput_dlpi_writer ..")); 15616 ill = (ill_t *)q->q_ptr; 15617 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15618 15619 ASSERT(IAM_WRITER_ILL(ill)); 15620 15621 ipst = ill->ill_ipst; 15622 15623 /* 15624 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15625 * both are null or non-null. However we can assert that only 15626 * after grabbing the ipsq_lock. So we don't make any assertion 15627 * here and in other places in the code. 15628 */ 15629 ipif = ipsq->ipsq_pending_ipif; 15630 /* 15631 * The current ioctl could have been aborted by the user and a new 15632 * ioctl to bring up another ill could have started. We could still 15633 * get a response from the driver later. 15634 */ 15635 if (ipif != NULL && ipif->ipif_ill != ill) 15636 ioctl_aborted = B_TRUE; 15637 15638 switch (dloa->dl_primitive) { 15639 case DL_ERROR_ACK: 15640 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15641 dl_primstr(dlea->dl_error_primitive))); 15642 15643 switch (dlea->dl_error_primitive) { 15644 case DL_DISABMULTI_REQ: 15645 if (!ill->ill_isv6) 15646 ipsq_current_finish(ipsq); 15647 ill_dlpi_done(ill, dlea->dl_error_primitive); 15648 break; 15649 case DL_PROMISCON_REQ: 15650 case DL_PROMISCOFF_REQ: 15651 case DL_UNBIND_REQ: 15652 case DL_ATTACH_REQ: 15653 case DL_INFO_REQ: 15654 ill_dlpi_done(ill, dlea->dl_error_primitive); 15655 break; 15656 case DL_NOTIFY_REQ: 15657 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15658 log = B_FALSE; 15659 break; 15660 case DL_PHYS_ADDR_REQ: 15661 /* 15662 * For IPv6 only, there are two additional 15663 * phys_addr_req's sent to the driver to get the 15664 * IPv6 token and lla. This allows IP to acquire 15665 * the hardware address format for a given interface 15666 * without having built in knowledge of the hardware 15667 * address. ill_phys_addr_pend keeps track of the last 15668 * DL_PAR sent so we know which response we are 15669 * dealing with. ill_dlpi_done will update 15670 * ill_phys_addr_pend when it sends the next req. 15671 * We don't complete the IOCTL until all three DL_PARs 15672 * have been attempted, so set *_len to 0 and break. 15673 */ 15674 paddrreq = ill->ill_phys_addr_pend; 15675 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15676 if (paddrreq == DL_IPV6_TOKEN) { 15677 ill->ill_token_length = 0; 15678 log = B_FALSE; 15679 break; 15680 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15681 ill->ill_nd_lla_len = 0; 15682 log = B_FALSE; 15683 break; 15684 } 15685 /* 15686 * Something went wrong with the DL_PHYS_ADDR_REQ. 15687 * We presumably have an IOCTL hanging out waiting 15688 * for completion. Find it and complete the IOCTL 15689 * with the error noted. 15690 * However, ill_dl_phys was called on an ill queue 15691 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15692 * set. But the ioctl is known to be pending on ill_wq. 15693 */ 15694 if (!ill->ill_ifname_pending) 15695 break; 15696 ill->ill_ifname_pending = 0; 15697 if (!ioctl_aborted) 15698 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15699 if (mp1 != NULL) { 15700 /* 15701 * This operation (SIOCSLIFNAME) must have 15702 * happened on the ill. Assert there is no conn 15703 */ 15704 ASSERT(connp == NULL); 15705 q = ill->ill_wq; 15706 } 15707 break; 15708 case DL_BIND_REQ: 15709 ill_dlpi_done(ill, DL_BIND_REQ); 15710 if (ill->ill_ifname_pending) 15711 break; 15712 /* 15713 * Something went wrong with the bind. We presumably 15714 * have an IOCTL hanging out waiting for completion. 15715 * Find it, take down the interface that was coming 15716 * up, and complete the IOCTL with the error noted. 15717 */ 15718 if (!ioctl_aborted) 15719 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15720 if (mp1 != NULL) { 15721 /* 15722 * This operation (SIOCSLIFFLAGS) must have 15723 * happened from a conn. 15724 */ 15725 ASSERT(connp != NULL); 15726 q = CONNP_TO_WQ(connp); 15727 if (ill->ill_move_in_progress) { 15728 ILL_CLEAR_MOVE(ill); 15729 } 15730 (void) ipif_down(ipif, NULL, NULL); 15731 /* error is set below the switch */ 15732 } 15733 break; 15734 case DL_ENABMULTI_REQ: 15735 if (!ill->ill_isv6) 15736 ipsq_current_finish(ipsq); 15737 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15738 15739 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15740 ill->ill_dlpi_multicast_state = IDS_FAILED; 15741 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15742 ipif_t *ipif; 15743 15744 printf("ip: joining multicasts failed (%d)" 15745 " on %s - will use link layer " 15746 "broadcasts for multicast\n", 15747 dlea->dl_errno, ill->ill_name); 15748 15749 /* 15750 * Set up the multicast mapping alone. 15751 * writer, so ok to access ill->ill_ipif 15752 * without any lock. 15753 */ 15754 ipif = ill->ill_ipif; 15755 mutex_enter(&ill->ill_phyint->phyint_lock); 15756 ill->ill_phyint->phyint_flags |= 15757 PHYI_MULTI_BCAST; 15758 mutex_exit(&ill->ill_phyint->phyint_lock); 15759 15760 if (!ill->ill_isv6) { 15761 (void) ipif_arp_setup_multicast(ipif, 15762 NULL); 15763 } else { 15764 (void) ipif_ndp_setup_multicast(ipif, 15765 NULL); 15766 } 15767 } 15768 freemsg(mp); /* Don't want to pass this up */ 15769 return; 15770 15771 case DL_CAPABILITY_REQ: 15772 case DL_CONTROL_REQ: 15773 ill_dlpi_done(ill, dlea->dl_error_primitive); 15774 ill->ill_dlpi_capab_state = IDS_FAILED; 15775 freemsg(mp); 15776 return; 15777 } 15778 /* 15779 * Note the error for IOCTL completion (mp1 is set when 15780 * ready to complete ioctl). If ill_ifname_pending_err is 15781 * set, an error occured during plumbing (ill_ifname_pending), 15782 * so we want to report that error. 15783 * 15784 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15785 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15786 * expected to get errack'd if the driver doesn't support 15787 * these flags (e.g. ethernet). log will be set to B_FALSE 15788 * if these error conditions are encountered. 15789 */ 15790 if (mp1 != NULL) { 15791 if (ill->ill_ifname_pending_err != 0) { 15792 err = ill->ill_ifname_pending_err; 15793 ill->ill_ifname_pending_err = 0; 15794 } else { 15795 err = dlea->dl_unix_errno ? 15796 dlea->dl_unix_errno : ENXIO; 15797 } 15798 /* 15799 * If we're plumbing an interface and an error hasn't already 15800 * been saved, set ill_ifname_pending_err to the error passed 15801 * up. Ignore the error if log is B_FALSE (see comment above). 15802 */ 15803 } else if (log && ill->ill_ifname_pending && 15804 ill->ill_ifname_pending_err == 0) { 15805 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15806 dlea->dl_unix_errno : ENXIO; 15807 } 15808 15809 if (log) 15810 ip_dlpi_error(ill, dlea->dl_error_primitive, 15811 dlea->dl_errno, dlea->dl_unix_errno); 15812 break; 15813 case DL_CAPABILITY_ACK: 15814 /* Call a routine to handle this one. */ 15815 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15816 ill_capability_ack(ill, mp); 15817 15818 /* 15819 * If the ack is due to renegotiation, we will need to send 15820 * a new CAPABILITY_REQ to start the renegotiation. 15821 */ 15822 if (ill->ill_capab_reneg) { 15823 ill->ill_capab_reneg = B_FALSE; 15824 ill_capability_probe(ill); 15825 } 15826 break; 15827 case DL_CONTROL_ACK: 15828 /* We treat all of these as "fire and forget" */ 15829 ill_dlpi_done(ill, DL_CONTROL_REQ); 15830 break; 15831 case DL_INFO_ACK: 15832 /* Call a routine to handle this one. */ 15833 ill_dlpi_done(ill, DL_INFO_REQ); 15834 ip_ll_subnet_defaults(ill, mp); 15835 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15836 return; 15837 case DL_BIND_ACK: 15838 /* 15839 * We should have an IOCTL waiting on this unless 15840 * sent by ill_dl_phys, in which case just return 15841 */ 15842 ill_dlpi_done(ill, DL_BIND_REQ); 15843 if (ill->ill_ifname_pending) 15844 break; 15845 15846 if (!ioctl_aborted) 15847 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15848 if (mp1 == NULL) 15849 break; 15850 /* 15851 * Because mp1 was added by ill_dl_up(), and it always 15852 * passes a valid connp, connp must be valid here. 15853 */ 15854 ASSERT(connp != NULL); 15855 q = CONNP_TO_WQ(connp); 15856 15857 /* 15858 * We are exclusive. So nothing can change even after 15859 * we get the pending mp. If need be we can put it back 15860 * and restart, as in calling ipif_arp_up() below. 15861 */ 15862 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15863 15864 mutex_enter(&ill->ill_lock); 15865 ill->ill_dl_up = 1; 15866 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15867 mutex_exit(&ill->ill_lock); 15868 15869 /* 15870 * Now bring up the resolver; when that is complete, we'll 15871 * create IREs. Note that we intentionally mirror what 15872 * ipif_up() would have done, because we got here by way of 15873 * ill_dl_up(), which stopped ipif_up()'s processing. 15874 */ 15875 if (ill->ill_isv6) { 15876 /* 15877 * v6 interfaces. 15878 * Unlike ARP which has to do another bind 15879 * and attach, once we get here we are 15880 * done with NDP. Except in the case of 15881 * ILLF_XRESOLV, in which case we send an 15882 * AR_INTERFACE_UP to the external resolver. 15883 * If all goes well, the ioctl will complete 15884 * in ip_rput(). If there's an error, we 15885 * complete it here. 15886 */ 15887 if ((err = ipif_ndp_up(ipif)) == 0) { 15888 if (ill->ill_flags & ILLF_XRESOLV) { 15889 mutex_enter(&connp->conn_lock); 15890 mutex_enter(&ill->ill_lock); 15891 success = ipsq_pending_mp_add( 15892 connp, ipif, q, mp1, 0); 15893 mutex_exit(&ill->ill_lock); 15894 mutex_exit(&connp->conn_lock); 15895 if (success) { 15896 err = ipif_resolver_up(ipif, 15897 Res_act_initial); 15898 if (err == EINPROGRESS) { 15899 freemsg(mp); 15900 return; 15901 } 15902 ASSERT(err != 0); 15903 mp1 = ipsq_pending_mp_get(ipsq, 15904 &connp); 15905 ASSERT(mp1 != NULL); 15906 } else { 15907 /* conn has started closing */ 15908 err = EINTR; 15909 } 15910 } else { /* Non XRESOLV interface */ 15911 (void) ipif_resolver_up(ipif, 15912 Res_act_initial); 15913 err = ipif_up_done_v6(ipif); 15914 } 15915 } 15916 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15917 /* 15918 * ARP and other v4 external resolvers. 15919 * Leave the pending mblk intact so that 15920 * the ioctl completes in ip_rput(). 15921 */ 15922 mutex_enter(&connp->conn_lock); 15923 mutex_enter(&ill->ill_lock); 15924 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15925 mutex_exit(&ill->ill_lock); 15926 mutex_exit(&connp->conn_lock); 15927 if (success) { 15928 err = ipif_resolver_up(ipif, Res_act_initial); 15929 if (err == EINPROGRESS) { 15930 freemsg(mp); 15931 return; 15932 } 15933 ASSERT(err != 0); 15934 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15935 } else { 15936 /* The conn has started closing */ 15937 err = EINTR; 15938 } 15939 } else { 15940 /* 15941 * This one is complete. Reply to pending ioctl. 15942 */ 15943 (void) ipif_resolver_up(ipif, Res_act_initial); 15944 err = ipif_up_done(ipif); 15945 } 15946 15947 if ((err == 0) && (ill->ill_up_ipifs)) { 15948 err = ill_up_ipifs(ill, q, mp1); 15949 if (err == EINPROGRESS) { 15950 freemsg(mp); 15951 return; 15952 } 15953 } 15954 15955 if (ill->ill_up_ipifs) { 15956 ill_group_cleanup(ill); 15957 } 15958 15959 break; 15960 case DL_NOTIFY_IND: { 15961 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15962 ire_t *ire; 15963 boolean_t need_ire_walk_v4 = B_FALSE; 15964 boolean_t need_ire_walk_v6 = B_FALSE; 15965 15966 switch (notify->dl_notification) { 15967 case DL_NOTE_PHYS_ADDR: 15968 err = ill_set_phys_addr(ill, mp); 15969 break; 15970 15971 case DL_NOTE_FASTPATH_FLUSH: 15972 ill_fastpath_flush(ill); 15973 break; 15974 15975 case DL_NOTE_SDU_SIZE: 15976 /* 15977 * Change the MTU size of the interface, of all 15978 * attached ipif's, and of all relevant ire's. The 15979 * new value's a uint32_t at notify->dl_data. 15980 * Mtu change Vs. new ire creation - protocol below. 15981 * 15982 * a Mark the ipif as IPIF_CHANGING. 15983 * b Set the new mtu in the ipif. 15984 * c Change the ire_max_frag on all affected ires 15985 * d Unmark the IPIF_CHANGING 15986 * 15987 * To see how the protocol works, assume an interface 15988 * route is also being added simultaneously by 15989 * ip_rt_add and let 'ipif' be the ipif referenced by 15990 * the ire. If the ire is created before step a, 15991 * it will be cleaned up by step c. If the ire is 15992 * created after step d, it will see the new value of 15993 * ipif_mtu. Any attempt to create the ire between 15994 * steps a to d will fail because of the IPIF_CHANGING 15995 * flag. Note that ire_create() is passed a pointer to 15996 * the ipif_mtu, and not the value. During ire_add 15997 * under the bucket lock, the ire_max_frag of the 15998 * new ire being created is set from the ipif/ire from 15999 * which it is being derived. 16000 */ 16001 mutex_enter(&ill->ill_lock); 16002 ill->ill_max_frag = (uint_t)notify->dl_data; 16003 16004 /* 16005 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16006 * leave it alone 16007 */ 16008 if (ill->ill_mtu_userspecified) { 16009 mutex_exit(&ill->ill_lock); 16010 break; 16011 } 16012 ill->ill_max_mtu = ill->ill_max_frag; 16013 if (ill->ill_isv6) { 16014 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16015 ill->ill_max_mtu = IPV6_MIN_MTU; 16016 } else { 16017 if (ill->ill_max_mtu < IP_MIN_MTU) 16018 ill->ill_max_mtu = IP_MIN_MTU; 16019 } 16020 for (ipif = ill->ill_ipif; ipif != NULL; 16021 ipif = ipif->ipif_next) { 16022 /* 16023 * Don't override the mtu if the user 16024 * has explicitly set it. 16025 */ 16026 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16027 continue; 16028 ipif->ipif_mtu = (uint_t)notify->dl_data; 16029 if (ipif->ipif_isv6) 16030 ire = ipif_to_ire_v6(ipif); 16031 else 16032 ire = ipif_to_ire(ipif); 16033 if (ire != NULL) { 16034 ire->ire_max_frag = ipif->ipif_mtu; 16035 ire_refrele(ire); 16036 } 16037 if (ipif->ipif_flags & IPIF_UP) { 16038 if (ill->ill_isv6) 16039 need_ire_walk_v6 = B_TRUE; 16040 else 16041 need_ire_walk_v4 = B_TRUE; 16042 } 16043 } 16044 mutex_exit(&ill->ill_lock); 16045 if (need_ire_walk_v4) 16046 ire_walk_v4(ill_mtu_change, (char *)ill, 16047 ALL_ZONES, ipst); 16048 if (need_ire_walk_v6) 16049 ire_walk_v6(ill_mtu_change, (char *)ill, 16050 ALL_ZONES, ipst); 16051 break; 16052 case DL_NOTE_LINK_UP: 16053 case DL_NOTE_LINK_DOWN: { 16054 /* 16055 * We are writer. ill / phyint / ipsq assocs stable. 16056 * The RUNNING flag reflects the state of the link. 16057 */ 16058 phyint_t *phyint = ill->ill_phyint; 16059 uint64_t new_phyint_flags; 16060 boolean_t changed = B_FALSE; 16061 boolean_t went_up; 16062 16063 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16064 mutex_enter(&phyint->phyint_lock); 16065 new_phyint_flags = went_up ? 16066 phyint->phyint_flags | PHYI_RUNNING : 16067 phyint->phyint_flags & ~PHYI_RUNNING; 16068 if (new_phyint_flags != phyint->phyint_flags) { 16069 phyint->phyint_flags = new_phyint_flags; 16070 changed = B_TRUE; 16071 } 16072 mutex_exit(&phyint->phyint_lock); 16073 /* 16074 * ill_restart_dad handles the DAD restart and routing 16075 * socket notification logic. 16076 */ 16077 if (changed) { 16078 ill_restart_dad(phyint->phyint_illv4, went_up); 16079 ill_restart_dad(phyint->phyint_illv6, went_up); 16080 } 16081 break; 16082 } 16083 case DL_NOTE_PROMISC_ON_PHYS: 16084 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16085 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16086 mutex_enter(&ill->ill_lock); 16087 ill->ill_promisc_on_phys = B_TRUE; 16088 mutex_exit(&ill->ill_lock); 16089 break; 16090 case DL_NOTE_PROMISC_OFF_PHYS: 16091 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16092 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16093 mutex_enter(&ill->ill_lock); 16094 ill->ill_promisc_on_phys = B_FALSE; 16095 mutex_exit(&ill->ill_lock); 16096 break; 16097 case DL_NOTE_CAPAB_RENEG: 16098 /* 16099 * Something changed on the driver side. 16100 * It wants us to renegotiate the capabilities 16101 * on this ill. One possible cause is the aggregation 16102 * interface under us where a port got added or 16103 * went away. 16104 * 16105 * If the capability negotiation is already done 16106 * or is in progress, reset the capabilities and 16107 * mark the ill's ill_capab_reneg to be B_TRUE, 16108 * so that when the ack comes back, we can start 16109 * the renegotiation process. 16110 * 16111 * Note that if ill_capab_reneg is already B_TRUE 16112 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16113 * the capability resetting request has been sent 16114 * and the renegotiation has not been started yet; 16115 * nothing needs to be done in this case. 16116 */ 16117 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16118 ill_capability_reset(ill); 16119 ill->ill_capab_reneg = B_TRUE; 16120 } 16121 break; 16122 default: 16123 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16124 "type 0x%x for DL_NOTIFY_IND\n", 16125 notify->dl_notification)); 16126 break; 16127 } 16128 16129 /* 16130 * As this is an asynchronous operation, we 16131 * should not call ill_dlpi_done 16132 */ 16133 break; 16134 } 16135 case DL_NOTIFY_ACK: { 16136 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16137 16138 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16139 ill->ill_note_link = 1; 16140 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16141 break; 16142 } 16143 case DL_PHYS_ADDR_ACK: { 16144 /* 16145 * As part of plumbing the interface via SIOCSLIFNAME, 16146 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16147 * whose answers we receive here. As each answer is received, 16148 * we call ill_dlpi_done() to dispatch the next request as 16149 * we're processing the current one. Once all answers have 16150 * been received, we use ipsq_pending_mp_get() to dequeue the 16151 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16152 * is invoked from an ill queue, conn_oper_pending_ill is not 16153 * available, but we know the ioctl is pending on ill_wq.) 16154 */ 16155 uint_t paddrlen, paddroff; 16156 16157 paddrreq = ill->ill_phys_addr_pend; 16158 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16159 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16160 16161 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16162 if (paddrreq == DL_IPV6_TOKEN) { 16163 /* 16164 * bcopy to low-order bits of ill_token 16165 * 16166 * XXX Temporary hack - currently, all known tokens 16167 * are 64 bits, so I'll cheat for the moment. 16168 */ 16169 bcopy(mp->b_rptr + paddroff, 16170 &ill->ill_token.s6_addr32[2], paddrlen); 16171 ill->ill_token_length = paddrlen; 16172 break; 16173 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16174 ASSERT(ill->ill_nd_lla_mp == NULL); 16175 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16176 mp = NULL; 16177 break; 16178 } 16179 16180 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16181 ASSERT(ill->ill_phys_addr_mp == NULL); 16182 if (!ill->ill_ifname_pending) 16183 break; 16184 ill->ill_ifname_pending = 0; 16185 if (!ioctl_aborted) 16186 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16187 if (mp1 != NULL) { 16188 ASSERT(connp == NULL); 16189 q = ill->ill_wq; 16190 } 16191 /* 16192 * If any error acks received during the plumbing sequence, 16193 * ill_ifname_pending_err will be set. Break out and send up 16194 * the error to the pending ioctl. 16195 */ 16196 if (ill->ill_ifname_pending_err != 0) { 16197 err = ill->ill_ifname_pending_err; 16198 ill->ill_ifname_pending_err = 0; 16199 break; 16200 } 16201 16202 ill->ill_phys_addr_mp = mp; 16203 ill->ill_phys_addr = mp->b_rptr + paddroff; 16204 mp = NULL; 16205 16206 /* 16207 * If paddrlen is zero, the DLPI provider doesn't support 16208 * physical addresses. The other two tests were historical 16209 * workarounds for bugs in our former PPP implementation, but 16210 * now other things have grown dependencies on them -- e.g., 16211 * the tun module specifies a dl_addr_length of zero in its 16212 * DL_BIND_ACK, but then specifies an incorrect value in its 16213 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16214 * but only after careful testing ensures that all dependent 16215 * broken DLPI providers have been fixed. 16216 */ 16217 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16218 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16219 ill->ill_phys_addr = NULL; 16220 } else if (paddrlen != ill->ill_phys_addr_length) { 16221 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16222 paddrlen, ill->ill_phys_addr_length)); 16223 err = EINVAL; 16224 break; 16225 } 16226 16227 if (ill->ill_nd_lla_mp == NULL) { 16228 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16229 err = ENOMEM; 16230 break; 16231 } 16232 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16233 } 16234 16235 /* 16236 * Set the interface token. If the zeroth interface address 16237 * is unspecified, then set it to the link local address. 16238 */ 16239 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16240 (void) ill_setdefaulttoken(ill); 16241 16242 ASSERT(ill->ill_ipif->ipif_id == 0); 16243 if (ipif != NULL && 16244 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16245 (void) ipif_setlinklocal(ipif); 16246 } 16247 break; 16248 } 16249 case DL_OK_ACK: 16250 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16251 dl_primstr((int)dloa->dl_correct_primitive), 16252 dloa->dl_correct_primitive)); 16253 switch (dloa->dl_correct_primitive) { 16254 case DL_ENABMULTI_REQ: 16255 case DL_DISABMULTI_REQ: 16256 if (!ill->ill_isv6) 16257 ipsq_current_finish(ipsq); 16258 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16259 break; 16260 case DL_PROMISCON_REQ: 16261 case DL_PROMISCOFF_REQ: 16262 case DL_UNBIND_REQ: 16263 case DL_ATTACH_REQ: 16264 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16265 break; 16266 } 16267 break; 16268 default: 16269 break; 16270 } 16271 16272 freemsg(mp); 16273 if (mp1 != NULL) { 16274 /* 16275 * The operation must complete without EINPROGRESS 16276 * since ipsq_pending_mp_get() has removed the mblk 16277 * from ipsq_pending_mp. Otherwise, the operation 16278 * will be stuck forever in the ipsq. 16279 */ 16280 ASSERT(err != EINPROGRESS); 16281 16282 switch (ipsq->ipsq_current_ioctl) { 16283 case 0: 16284 ipsq_current_finish(ipsq); 16285 break; 16286 16287 case SIOCLIFADDIF: 16288 case SIOCSLIFNAME: 16289 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16290 break; 16291 16292 default: 16293 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16294 break; 16295 } 16296 } 16297 } 16298 16299 /* 16300 * ip_rput_other is called by ip_rput to handle messages modifying the global 16301 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16302 */ 16303 /* ARGSUSED */ 16304 void 16305 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16306 { 16307 ill_t *ill; 16308 struct iocblk *iocp; 16309 mblk_t *mp1; 16310 conn_t *connp = NULL; 16311 16312 ip1dbg(("ip_rput_other ")); 16313 ill = (ill_t *)q->q_ptr; 16314 /* 16315 * This routine is not a writer in the case of SIOCGTUNPARAM 16316 * in which case ipsq is NULL. 16317 */ 16318 if (ipsq != NULL) { 16319 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16320 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16321 } 16322 16323 switch (mp->b_datap->db_type) { 16324 case M_ERROR: 16325 case M_HANGUP: 16326 /* 16327 * The device has a problem. We force the ILL down. It can 16328 * be brought up again manually using SIOCSIFFLAGS (via 16329 * ifconfig or equivalent). 16330 */ 16331 ASSERT(ipsq != NULL); 16332 if (mp->b_rptr < mp->b_wptr) 16333 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16334 if (ill->ill_error == 0) 16335 ill->ill_error = ENXIO; 16336 if (!ill_down_start(q, mp)) 16337 return; 16338 ipif_all_down_tail(ipsq, q, mp, NULL); 16339 break; 16340 case M_IOCACK: 16341 iocp = (struct iocblk *)mp->b_rptr; 16342 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16343 switch (iocp->ioc_cmd) { 16344 case SIOCSTUNPARAM: 16345 case OSIOCSTUNPARAM: 16346 ASSERT(ipsq != NULL); 16347 /* 16348 * Finish socket ioctl passed through to tun. 16349 * We should have an IOCTL waiting on this. 16350 */ 16351 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16352 if (ill->ill_isv6) { 16353 struct iftun_req *ta; 16354 16355 /* 16356 * if a source or destination is 16357 * being set, try and set the link 16358 * local address for the tunnel 16359 */ 16360 ta = (struct iftun_req *)mp->b_cont-> 16361 b_cont->b_rptr; 16362 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16363 ipif_set_tun_llink(ill, ta); 16364 } 16365 16366 } 16367 if (mp1 != NULL) { 16368 /* 16369 * Now copy back the b_next/b_prev used by 16370 * mi code for the mi_copy* functions. 16371 * See ip_sioctl_tunparam() for the reason. 16372 * Also protect against missing b_cont. 16373 */ 16374 if (mp->b_cont != NULL) { 16375 mp->b_cont->b_next = 16376 mp1->b_cont->b_next; 16377 mp->b_cont->b_prev = 16378 mp1->b_cont->b_prev; 16379 } 16380 inet_freemsg(mp1); 16381 ASSERT(connp != NULL); 16382 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16383 iocp->ioc_error, NO_COPYOUT, ipsq); 16384 } else { 16385 ASSERT(connp == NULL); 16386 putnext(q, mp); 16387 } 16388 break; 16389 case SIOCGTUNPARAM: 16390 case OSIOCGTUNPARAM: 16391 /* 16392 * This is really M_IOCDATA from the tunnel driver. 16393 * convert back and complete the ioctl. 16394 * We should have an IOCTL waiting on this. 16395 */ 16396 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16397 if (mp1) { 16398 /* 16399 * Now copy back the b_next/b_prev used by 16400 * mi code for the mi_copy* functions. 16401 * See ip_sioctl_tunparam() for the reason. 16402 * Also protect against missing b_cont. 16403 */ 16404 if (mp->b_cont != NULL) { 16405 mp->b_cont->b_next = 16406 mp1->b_cont->b_next; 16407 mp->b_cont->b_prev = 16408 mp1->b_cont->b_prev; 16409 } 16410 inet_freemsg(mp1); 16411 if (iocp->ioc_error == 0) 16412 mp->b_datap->db_type = M_IOCDATA; 16413 ASSERT(connp != NULL); 16414 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16415 iocp->ioc_error, COPYOUT, NULL); 16416 } else { 16417 ASSERT(connp == NULL); 16418 putnext(q, mp); 16419 } 16420 break; 16421 default: 16422 break; 16423 } 16424 break; 16425 case M_IOCNAK: 16426 iocp = (struct iocblk *)mp->b_rptr; 16427 16428 switch (iocp->ioc_cmd) { 16429 int mode; 16430 16431 case DL_IOC_HDR_INFO: 16432 /* 16433 * If this was the first attempt turn of the 16434 * fastpath probing. 16435 */ 16436 mutex_enter(&ill->ill_lock); 16437 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16438 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16439 mutex_exit(&ill->ill_lock); 16440 ill_fastpath_nack(ill); 16441 ip1dbg(("ip_rput: DLPI fastpath off on " 16442 "interface %s\n", 16443 ill->ill_name)); 16444 } else { 16445 mutex_exit(&ill->ill_lock); 16446 } 16447 freemsg(mp); 16448 break; 16449 case SIOCSTUNPARAM: 16450 case OSIOCSTUNPARAM: 16451 ASSERT(ipsq != NULL); 16452 /* 16453 * Finish socket ioctl passed through to tun 16454 * We should have an IOCTL waiting on this. 16455 */ 16456 /* FALLTHRU */ 16457 case SIOCGTUNPARAM: 16458 case OSIOCGTUNPARAM: 16459 /* 16460 * This is really M_IOCDATA from the tunnel driver. 16461 * convert back and complete the ioctl. 16462 * We should have an IOCTL waiting on this. 16463 */ 16464 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16465 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16466 mp1 = ill_pending_mp_get(ill, &connp, 16467 iocp->ioc_id); 16468 mode = COPYOUT; 16469 ipsq = NULL; 16470 } else { 16471 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16472 mode = NO_COPYOUT; 16473 } 16474 if (mp1 != NULL) { 16475 /* 16476 * Now copy back the b_next/b_prev used by 16477 * mi code for the mi_copy* functions. 16478 * See ip_sioctl_tunparam() for the reason. 16479 * Also protect against missing b_cont. 16480 */ 16481 if (mp->b_cont != NULL) { 16482 mp->b_cont->b_next = 16483 mp1->b_cont->b_next; 16484 mp->b_cont->b_prev = 16485 mp1->b_cont->b_prev; 16486 } 16487 inet_freemsg(mp1); 16488 if (iocp->ioc_error == 0) 16489 iocp->ioc_error = EINVAL; 16490 ASSERT(connp != NULL); 16491 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16492 iocp->ioc_error, mode, ipsq); 16493 } else { 16494 ASSERT(connp == NULL); 16495 putnext(q, mp); 16496 } 16497 break; 16498 default: 16499 break; 16500 } 16501 default: 16502 break; 16503 } 16504 } 16505 16506 /* 16507 * NOTE : This function does not ire_refrele the ire argument passed in. 16508 * 16509 * IPQoS notes 16510 * IP policy is invoked twice for a forwarded packet, once on the read side 16511 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16512 * enabled. An additional parameter, in_ill, has been added for this purpose. 16513 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16514 * because ip_mroute drops this information. 16515 * 16516 */ 16517 void 16518 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16519 { 16520 uint32_t old_pkt_len; 16521 uint32_t pkt_len; 16522 queue_t *q; 16523 uint32_t sum; 16524 #define rptr ((uchar_t *)ipha) 16525 uint32_t max_frag; 16526 uint32_t ill_index; 16527 ill_t *out_ill; 16528 mib2_ipIfStatsEntry_t *mibptr; 16529 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16530 16531 /* Get the ill_index of the incoming ILL */ 16532 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16533 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16534 16535 /* Initiate Read side IPPF processing */ 16536 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16537 ip_process(IPP_FWD_IN, &mp, ill_index); 16538 if (mp == NULL) { 16539 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16540 "during IPPF processing\n")); 16541 return; 16542 } 16543 } 16544 16545 /* Adjust the checksum to reflect the ttl decrement. */ 16546 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16547 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16548 16549 if (ipha->ipha_ttl-- <= 1) { 16550 if (ip_csum_hdr(ipha)) { 16551 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16552 goto drop_pkt; 16553 } 16554 /* 16555 * Note: ire_stq this will be NULL for multicast 16556 * datagrams using the long path through arp (the IRE 16557 * is not an IRE_CACHE). This should not cause 16558 * problems since we don't generate ICMP errors for 16559 * multicast packets. 16560 */ 16561 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16562 q = ire->ire_stq; 16563 if (q != NULL) { 16564 /* Sent by forwarding path, and router is global zone */ 16565 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16566 GLOBAL_ZONEID, ipst); 16567 } else 16568 freemsg(mp); 16569 return; 16570 } 16571 16572 /* 16573 * Don't forward if the interface is down 16574 */ 16575 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16576 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16577 ip2dbg(("ip_rput_forward:interface is down\n")); 16578 goto drop_pkt; 16579 } 16580 16581 /* Get the ill_index of the outgoing ILL */ 16582 out_ill = ire_to_ill(ire); 16583 ill_index = out_ill->ill_phyint->phyint_ifindex; 16584 16585 DTRACE_PROBE4(ip4__forwarding__start, 16586 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16587 16588 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16589 ipst->ips_ipv4firewall_forwarding, 16590 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16591 16592 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16593 16594 if (mp == NULL) 16595 return; 16596 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16597 16598 if (is_system_labeled()) { 16599 mblk_t *mp1; 16600 16601 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16602 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16603 goto drop_pkt; 16604 } 16605 /* Size may have changed */ 16606 mp = mp1; 16607 ipha = (ipha_t *)mp->b_rptr; 16608 pkt_len = ntohs(ipha->ipha_length); 16609 } 16610 16611 /* Check if there are options to update */ 16612 if (!IS_SIMPLE_IPH(ipha)) { 16613 if (ip_csum_hdr(ipha)) { 16614 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16615 goto drop_pkt; 16616 } 16617 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16618 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16619 return; 16620 } 16621 16622 ipha->ipha_hdr_checksum = 0; 16623 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16624 } 16625 max_frag = ire->ire_max_frag; 16626 if (pkt_len > max_frag) { 16627 /* 16628 * It needs fragging on its way out. We haven't 16629 * verified the header checksum yet. Since we 16630 * are going to put a surely good checksum in the 16631 * outgoing header, we have to make sure that it 16632 * was good coming in. 16633 */ 16634 if (ip_csum_hdr(ipha)) { 16635 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16636 goto drop_pkt; 16637 } 16638 /* Initiate Write side IPPF processing */ 16639 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16640 ip_process(IPP_FWD_OUT, &mp, ill_index); 16641 if (mp == NULL) { 16642 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16643 " during IPPF processing\n")); 16644 return; 16645 } 16646 } 16647 /* 16648 * Handle labeled packet resizing. 16649 * 16650 * If we have added a label, inform ip_wput_frag() of its 16651 * effect on the MTU for ICMP messages. 16652 */ 16653 if (pkt_len > old_pkt_len) { 16654 uint32_t secopt_size; 16655 16656 secopt_size = pkt_len - old_pkt_len; 16657 if (secopt_size < max_frag) 16658 max_frag -= secopt_size; 16659 } 16660 16661 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16662 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16663 return; 16664 } 16665 16666 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16667 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16668 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16669 ipst->ips_ipv4firewall_physical_out, 16670 NULL, out_ill, ipha, mp, mp, 0, ipst); 16671 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16672 if (mp == NULL) 16673 return; 16674 16675 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16676 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16677 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16678 /* ip_xmit_v4 always consumes the packet */ 16679 return; 16680 16681 drop_pkt:; 16682 ip1dbg(("ip_rput_forward: drop pkt\n")); 16683 freemsg(mp); 16684 #undef rptr 16685 } 16686 16687 void 16688 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16689 { 16690 ire_t *ire; 16691 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16692 16693 ASSERT(!ipif->ipif_isv6); 16694 /* 16695 * Find an IRE which matches the destination and the outgoing 16696 * queue in the cache table. All we need is an IRE_CACHE which 16697 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16698 * then it is enough to have some IRE_CACHE in the group. 16699 */ 16700 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16701 dst = ipif->ipif_pp_dst_addr; 16702 16703 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16704 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16705 if (ire == NULL) { 16706 /* 16707 * Mark this packet to make it be delivered to 16708 * ip_rput_forward after the new ire has been 16709 * created. 16710 */ 16711 mp->b_prev = NULL; 16712 mp->b_next = mp; 16713 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16714 NULL, 0, GLOBAL_ZONEID, &zero_info); 16715 } else { 16716 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16717 IRE_REFRELE(ire); 16718 } 16719 } 16720 16721 /* Update any source route, record route or timestamp options */ 16722 static int 16723 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16724 { 16725 ipoptp_t opts; 16726 uchar_t *opt; 16727 uint8_t optval; 16728 uint8_t optlen; 16729 ipaddr_t dst; 16730 uint32_t ts; 16731 ire_t *dst_ire = NULL; 16732 ire_t *tmp_ire = NULL; 16733 timestruc_t now; 16734 16735 ip2dbg(("ip_rput_forward_options\n")); 16736 dst = ipha->ipha_dst; 16737 for (optval = ipoptp_first(&opts, ipha); 16738 optval != IPOPT_EOL; 16739 optval = ipoptp_next(&opts)) { 16740 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16741 opt = opts.ipoptp_cur; 16742 optlen = opts.ipoptp_len; 16743 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16744 optval, opts.ipoptp_len)); 16745 switch (optval) { 16746 uint32_t off; 16747 case IPOPT_SSRR: 16748 case IPOPT_LSRR: 16749 /* Check if adminstratively disabled */ 16750 if (!ipst->ips_ip_forward_src_routed) { 16751 if (ire->ire_stq != NULL) { 16752 /* 16753 * Sent by forwarding path, and router 16754 * is global zone 16755 */ 16756 icmp_unreachable(ire->ire_stq, mp, 16757 ICMP_SOURCE_ROUTE_FAILED, 16758 GLOBAL_ZONEID, ipst); 16759 } else { 16760 ip0dbg(("ip_rput_forward_options: " 16761 "unable to send unreach\n")); 16762 freemsg(mp); 16763 } 16764 return (-1); 16765 } 16766 16767 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16768 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16769 if (dst_ire == NULL) { 16770 /* 16771 * Must be partial since ip_rput_options 16772 * checked for strict. 16773 */ 16774 break; 16775 } 16776 off = opt[IPOPT_OFFSET]; 16777 off--; 16778 redo_srr: 16779 if (optlen < IP_ADDR_LEN || 16780 off > optlen - IP_ADDR_LEN) { 16781 /* End of source route */ 16782 ip1dbg(( 16783 "ip_rput_forward_options: end of SR\n")); 16784 ire_refrele(dst_ire); 16785 break; 16786 } 16787 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16788 bcopy(&ire->ire_src_addr, (char *)opt + off, 16789 IP_ADDR_LEN); 16790 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16791 ntohl(dst))); 16792 16793 /* 16794 * Check if our address is present more than 16795 * once as consecutive hops in source route. 16796 */ 16797 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16798 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16799 if (tmp_ire != NULL) { 16800 ire_refrele(tmp_ire); 16801 off += IP_ADDR_LEN; 16802 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16803 goto redo_srr; 16804 } 16805 ipha->ipha_dst = dst; 16806 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16807 ire_refrele(dst_ire); 16808 break; 16809 case IPOPT_RR: 16810 off = opt[IPOPT_OFFSET]; 16811 off--; 16812 if (optlen < IP_ADDR_LEN || 16813 off > optlen - IP_ADDR_LEN) { 16814 /* No more room - ignore */ 16815 ip1dbg(( 16816 "ip_rput_forward_options: end of RR\n")); 16817 break; 16818 } 16819 bcopy(&ire->ire_src_addr, (char *)opt + off, 16820 IP_ADDR_LEN); 16821 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16822 break; 16823 case IPOPT_TS: 16824 /* Insert timestamp if there is room */ 16825 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16826 case IPOPT_TS_TSONLY: 16827 off = IPOPT_TS_TIMELEN; 16828 break; 16829 case IPOPT_TS_PRESPEC: 16830 case IPOPT_TS_PRESPEC_RFC791: 16831 /* Verify that the address matched */ 16832 off = opt[IPOPT_OFFSET] - 1; 16833 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16834 dst_ire = ire_ctable_lookup(dst, 0, 16835 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16836 MATCH_IRE_TYPE, ipst); 16837 if (dst_ire == NULL) { 16838 /* Not for us */ 16839 break; 16840 } 16841 ire_refrele(dst_ire); 16842 /* FALLTHRU */ 16843 case IPOPT_TS_TSANDADDR: 16844 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16845 break; 16846 default: 16847 /* 16848 * ip_*put_options should have already 16849 * dropped this packet. 16850 */ 16851 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16852 "unknown IT - bug in ip_rput_options?\n"); 16853 return (0); /* Keep "lint" happy */ 16854 } 16855 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16856 /* Increase overflow counter */ 16857 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16858 opt[IPOPT_POS_OV_FLG] = 16859 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16860 (off << 4)); 16861 break; 16862 } 16863 off = opt[IPOPT_OFFSET] - 1; 16864 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16865 case IPOPT_TS_PRESPEC: 16866 case IPOPT_TS_PRESPEC_RFC791: 16867 case IPOPT_TS_TSANDADDR: 16868 bcopy(&ire->ire_src_addr, 16869 (char *)opt + off, IP_ADDR_LEN); 16870 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16871 /* FALLTHRU */ 16872 case IPOPT_TS_TSONLY: 16873 off = opt[IPOPT_OFFSET] - 1; 16874 /* Compute # of milliseconds since midnight */ 16875 gethrestime(&now); 16876 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16877 now.tv_nsec / (NANOSEC / MILLISEC); 16878 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16879 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16880 break; 16881 } 16882 break; 16883 } 16884 } 16885 return (0); 16886 } 16887 16888 /* 16889 * This is called after processing at least one of AH/ESP headers. 16890 * 16891 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16892 * the actual, physical interface on which the packet was received, 16893 * but, when ip_strict_dst_multihoming is set to 1, could be the 16894 * interface which had the ipha_dst configured when the packet went 16895 * through ip_rput. The ill_index corresponding to the recv_ill 16896 * is saved in ipsec_in_rill_index 16897 * 16898 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16899 * cannot assume "ire" points to valid data for any IPv6 cases. 16900 */ 16901 void 16902 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16903 { 16904 mblk_t *mp; 16905 ipaddr_t dst; 16906 in6_addr_t *v6dstp; 16907 ipha_t *ipha; 16908 ip6_t *ip6h; 16909 ipsec_in_t *ii; 16910 boolean_t ill_need_rele = B_FALSE; 16911 boolean_t rill_need_rele = B_FALSE; 16912 boolean_t ire_need_rele = B_FALSE; 16913 netstack_t *ns; 16914 ip_stack_t *ipst; 16915 16916 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16917 ASSERT(ii->ipsec_in_ill_index != 0); 16918 ns = ii->ipsec_in_ns; 16919 ASSERT(ii->ipsec_in_ns != NULL); 16920 ipst = ns->netstack_ip; 16921 16922 mp = ipsec_mp->b_cont; 16923 ASSERT(mp != NULL); 16924 16925 16926 if (ill == NULL) { 16927 ASSERT(recv_ill == NULL); 16928 /* 16929 * We need to get the original queue on which ip_rput_local 16930 * or ip_rput_data_v6 was called. 16931 */ 16932 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16933 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16934 ill_need_rele = B_TRUE; 16935 16936 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16937 recv_ill = ill_lookup_on_ifindex( 16938 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16939 NULL, NULL, NULL, NULL, ipst); 16940 rill_need_rele = B_TRUE; 16941 } else { 16942 recv_ill = ill; 16943 } 16944 16945 if ((ill == NULL) || (recv_ill == NULL)) { 16946 ip0dbg(("ip_fanout_proto_again: interface " 16947 "disappeared\n")); 16948 if (ill != NULL) 16949 ill_refrele(ill); 16950 if (recv_ill != NULL) 16951 ill_refrele(recv_ill); 16952 freemsg(ipsec_mp); 16953 return; 16954 } 16955 } 16956 16957 ASSERT(ill != NULL && recv_ill != NULL); 16958 16959 if (mp->b_datap->db_type == M_CTL) { 16960 /* 16961 * AH/ESP is returning the ICMP message after 16962 * removing their headers. Fanout again till 16963 * it gets to the right protocol. 16964 */ 16965 if (ii->ipsec_in_v4) { 16966 icmph_t *icmph; 16967 int iph_hdr_length; 16968 int hdr_length; 16969 16970 ipha = (ipha_t *)mp->b_rptr; 16971 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16972 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16973 ipha = (ipha_t *)&icmph[1]; 16974 hdr_length = IPH_HDR_LENGTH(ipha); 16975 /* 16976 * icmp_inbound_error_fanout may need to do pullupmsg. 16977 * Reset the type to M_DATA. 16978 */ 16979 mp->b_datap->db_type = M_DATA; 16980 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16981 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16982 B_FALSE, ill, ii->ipsec_in_zoneid); 16983 } else { 16984 icmp6_t *icmp6; 16985 int hdr_length; 16986 16987 ip6h = (ip6_t *)mp->b_rptr; 16988 /* Don't call hdr_length_v6() unless you have to. */ 16989 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16990 hdr_length = ip_hdr_length_v6(mp, ip6h); 16991 else 16992 hdr_length = IPV6_HDR_LEN; 16993 16994 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16995 /* 16996 * icmp_inbound_error_fanout_v6 may need to do 16997 * pullupmsg. Reset the type to M_DATA. 16998 */ 16999 mp->b_datap->db_type = M_DATA; 17000 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17001 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17002 } 17003 if (ill_need_rele) 17004 ill_refrele(ill); 17005 if (rill_need_rele) 17006 ill_refrele(recv_ill); 17007 return; 17008 } 17009 17010 if (ii->ipsec_in_v4) { 17011 ipha = (ipha_t *)mp->b_rptr; 17012 dst = ipha->ipha_dst; 17013 if (CLASSD(dst)) { 17014 /* 17015 * Multicast has to be delivered to all streams. 17016 */ 17017 dst = INADDR_BROADCAST; 17018 } 17019 17020 if (ire == NULL) { 17021 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17022 MBLK_GETLABEL(mp), ipst); 17023 if (ire == NULL) { 17024 if (ill_need_rele) 17025 ill_refrele(ill); 17026 if (rill_need_rele) 17027 ill_refrele(recv_ill); 17028 ip1dbg(("ip_fanout_proto_again: " 17029 "IRE not found")); 17030 freemsg(ipsec_mp); 17031 return; 17032 } 17033 ire_need_rele = B_TRUE; 17034 } 17035 17036 switch (ipha->ipha_protocol) { 17037 case IPPROTO_UDP: 17038 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17039 recv_ill); 17040 if (ire_need_rele) 17041 ire_refrele(ire); 17042 break; 17043 case IPPROTO_TCP: 17044 if (!ire_need_rele) 17045 IRE_REFHOLD(ire); 17046 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17047 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17048 IRE_REFRELE(ire); 17049 if (mp != NULL) 17050 squeue_enter_chain(GET_SQUEUE(mp), mp, 17051 mp, 1, SQTAG_IP_PROTO_AGAIN); 17052 break; 17053 case IPPROTO_SCTP: 17054 if (!ire_need_rele) 17055 IRE_REFHOLD(ire); 17056 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17057 ipsec_mp, 0, ill->ill_rq, dst); 17058 break; 17059 default: 17060 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17061 recv_ill, 0); 17062 if (ire_need_rele) 17063 ire_refrele(ire); 17064 break; 17065 } 17066 } else { 17067 uint32_t rput_flags = 0; 17068 17069 ip6h = (ip6_t *)mp->b_rptr; 17070 v6dstp = &ip6h->ip6_dst; 17071 /* 17072 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17073 * address. 17074 * 17075 * Currently, we don't store that state in the IPSEC_IN 17076 * message, and we may need to. 17077 */ 17078 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17079 IP6_IN_LLMCAST : 0); 17080 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17081 NULL, NULL); 17082 } 17083 if (ill_need_rele) 17084 ill_refrele(ill); 17085 if (rill_need_rele) 17086 ill_refrele(recv_ill); 17087 } 17088 17089 /* 17090 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17091 * returns 'true' if there are still fragments left on the queue, in 17092 * which case we restart the timer. 17093 */ 17094 void 17095 ill_frag_timer(void *arg) 17096 { 17097 ill_t *ill = (ill_t *)arg; 17098 boolean_t frag_pending; 17099 ip_stack_t *ipst = ill->ill_ipst; 17100 17101 mutex_enter(&ill->ill_lock); 17102 ASSERT(!ill->ill_fragtimer_executing); 17103 if (ill->ill_state_flags & ILL_CONDEMNED) { 17104 ill->ill_frag_timer_id = 0; 17105 mutex_exit(&ill->ill_lock); 17106 return; 17107 } 17108 ill->ill_fragtimer_executing = 1; 17109 mutex_exit(&ill->ill_lock); 17110 17111 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17112 17113 /* 17114 * Restart the timer, if we have fragments pending or if someone 17115 * wanted us to be scheduled again. 17116 */ 17117 mutex_enter(&ill->ill_lock); 17118 ill->ill_fragtimer_executing = 0; 17119 ill->ill_frag_timer_id = 0; 17120 if (frag_pending || ill->ill_fragtimer_needrestart) 17121 ill_frag_timer_start(ill); 17122 mutex_exit(&ill->ill_lock); 17123 } 17124 17125 void 17126 ill_frag_timer_start(ill_t *ill) 17127 { 17128 ip_stack_t *ipst = ill->ill_ipst; 17129 17130 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17131 17132 /* If the ill is closing or opening don't proceed */ 17133 if (ill->ill_state_flags & ILL_CONDEMNED) 17134 return; 17135 17136 if (ill->ill_fragtimer_executing) { 17137 /* 17138 * ill_frag_timer is currently executing. Just record the 17139 * the fact that we want the timer to be restarted. 17140 * ill_frag_timer will post a timeout before it returns, 17141 * ensuring it will be called again. 17142 */ 17143 ill->ill_fragtimer_needrestart = 1; 17144 return; 17145 } 17146 17147 if (ill->ill_frag_timer_id == 0) { 17148 /* 17149 * The timer is neither running nor is the timeout handler 17150 * executing. Post a timeout so that ill_frag_timer will be 17151 * called 17152 */ 17153 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17154 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17155 ill->ill_fragtimer_needrestart = 0; 17156 } 17157 } 17158 17159 /* 17160 * This routine is needed for loopback when forwarding multicasts. 17161 * 17162 * IPQoS Notes: 17163 * IPPF processing is done in fanout routines. 17164 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17165 * processing for IPsec packets is done when it comes back in clear. 17166 * NOTE : The callers of this function need to do the ire_refrele for the 17167 * ire that is being passed in. 17168 */ 17169 void 17170 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17171 ill_t *recv_ill, uint32_t esp_udp_ports) 17172 { 17173 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17174 ill_t *ill = (ill_t *)q->q_ptr; 17175 uint32_t sum; 17176 uint32_t u1; 17177 uint32_t u2; 17178 int hdr_length; 17179 boolean_t mctl_present; 17180 mblk_t *first_mp = mp; 17181 mblk_t *hada_mp = NULL; 17182 ipha_t *inner_ipha; 17183 ip_stack_t *ipst; 17184 17185 ASSERT(recv_ill != NULL); 17186 ipst = recv_ill->ill_ipst; 17187 17188 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17189 "ip_rput_locl_start: q %p", q); 17190 17191 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17192 ASSERT(ill != NULL); 17193 17194 17195 #define rptr ((uchar_t *)ipha) 17196 #define iphs ((uint16_t *)ipha) 17197 17198 /* 17199 * no UDP or TCP packet should come here anymore. 17200 */ 17201 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17202 ipha->ipha_protocol != IPPROTO_UDP); 17203 17204 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17205 if (mctl_present && 17206 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17207 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17208 17209 /* 17210 * It's an IPsec accelerated packet. 17211 * Keep a pointer to the data attributes around until 17212 * we allocate the ipsec_info_t. 17213 */ 17214 IPSECHW_DEBUG(IPSECHW_PKT, 17215 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17216 hada_mp = first_mp; 17217 hada_mp->b_cont = NULL; 17218 /* 17219 * Since it is accelerated, it comes directly from 17220 * the ill and the data attributes is followed by 17221 * the packet data. 17222 */ 17223 ASSERT(mp->b_datap->db_type != M_CTL); 17224 first_mp = mp; 17225 mctl_present = B_FALSE; 17226 } 17227 17228 /* 17229 * IF M_CTL is not present, then ipsec_in_is_secure 17230 * should return B_TRUE. There is a case where loopback 17231 * packets has an M_CTL in the front with all the 17232 * IPsec options set to IPSEC_PREF_NEVER - which means 17233 * ipsec_in_is_secure will return B_FALSE. As loopback 17234 * packets never comes here, it is safe to ASSERT the 17235 * following. 17236 */ 17237 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17238 17239 /* 17240 * Also, we should never have an mctl_present if this is an 17241 * ESP-in-UDP packet. 17242 */ 17243 ASSERT(!mctl_present || !esp_in_udp_packet); 17244 17245 17246 /* u1 is # words of IP options */ 17247 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17248 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17249 17250 /* 17251 * Don't verify header checksum if we just removed UDP header or 17252 * packet is coming back from AH/ESP. 17253 */ 17254 if (!esp_in_udp_packet && !mctl_present) { 17255 if (u1) { 17256 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17257 if (hada_mp != NULL) 17258 freemsg(hada_mp); 17259 return; 17260 } 17261 } else { 17262 /* Check the IP header checksum. */ 17263 #define uph ((uint16_t *)ipha) 17264 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17265 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17266 #undef uph 17267 /* finish doing IP checksum */ 17268 sum = (sum & 0xFFFF) + (sum >> 16); 17269 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17270 if (sum && sum != 0xFFFF) { 17271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17272 goto drop_pkt; 17273 } 17274 } 17275 } 17276 17277 /* 17278 * Count for SNMP of inbound packets for ire. As ip_proto_input 17279 * might be called more than once for secure packets, count only 17280 * the first time. 17281 */ 17282 if (!mctl_present) { 17283 UPDATE_IB_PKT_COUNT(ire); 17284 ire->ire_last_used_time = lbolt; 17285 } 17286 17287 /* Check for fragmentation offset. */ 17288 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17289 u1 = u2 & (IPH_MF | IPH_OFFSET); 17290 if (u1) { 17291 /* 17292 * We re-assemble fragments before we do the AH/ESP 17293 * processing. Thus, M_CTL should not be present 17294 * while we are re-assembling. 17295 */ 17296 ASSERT(!mctl_present); 17297 ASSERT(first_mp == mp); 17298 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17299 return; 17300 } 17301 /* 17302 * Make sure that first_mp points back to mp as 17303 * the mp we came in with could have changed in 17304 * ip_rput_fragment(). 17305 */ 17306 ipha = (ipha_t *)mp->b_rptr; 17307 first_mp = mp; 17308 } 17309 17310 /* 17311 * Clear hardware checksumming flag as it is currently only 17312 * used by TCP and UDP. 17313 */ 17314 DB_CKSUMFLAGS(mp) = 0; 17315 17316 /* Now we have a complete datagram, destined for this machine. */ 17317 u1 = IPH_HDR_LENGTH(ipha); 17318 switch (ipha->ipha_protocol) { 17319 case IPPROTO_ICMP: { 17320 ire_t *ire_zone; 17321 ilm_t *ilm; 17322 mblk_t *mp1; 17323 zoneid_t last_zoneid; 17324 17325 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17326 ASSERT(ire->ire_type == IRE_BROADCAST); 17327 /* 17328 * Inactive/Failed interfaces are not supposed to 17329 * respond to the multicast packets. 17330 */ 17331 if (ill_is_probeonly(ill)) { 17332 freemsg(first_mp); 17333 return; 17334 } 17335 17336 /* 17337 * In the multicast case, applications may have joined 17338 * the group from different zones, so we need to deliver 17339 * the packet to each of them. Loop through the 17340 * multicast memberships structures (ilm) on the receive 17341 * ill and send a copy of the packet up each matching 17342 * one. However, we don't do this for multicasts sent on 17343 * the loopback interface (PHYI_LOOPBACK flag set) as 17344 * they must stay in the sender's zone. 17345 * 17346 * ilm_add_v6() ensures that ilms in the same zone are 17347 * contiguous in the ill_ilm list. We use this property 17348 * to avoid sending duplicates needed when two 17349 * applications in the same zone join the same group on 17350 * different logical interfaces: we ignore the ilm if 17351 * its zoneid is the same as the last matching one. 17352 * In addition, the sending of the packet for 17353 * ire_zoneid is delayed until all of the other ilms 17354 * have been exhausted. 17355 */ 17356 last_zoneid = -1; 17357 ILM_WALKER_HOLD(recv_ill); 17358 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17359 ilm = ilm->ilm_next) { 17360 if ((ilm->ilm_flags & ILM_DELETED) || 17361 ipha->ipha_dst != ilm->ilm_addr || 17362 ilm->ilm_zoneid == last_zoneid || 17363 ilm->ilm_zoneid == ire->ire_zoneid || 17364 ilm->ilm_zoneid == ALL_ZONES || 17365 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17366 continue; 17367 mp1 = ip_copymsg(first_mp); 17368 if (mp1 == NULL) 17369 continue; 17370 icmp_inbound(q, mp1, B_TRUE, ill, 17371 0, sum, mctl_present, B_TRUE, 17372 recv_ill, ilm->ilm_zoneid); 17373 last_zoneid = ilm->ilm_zoneid; 17374 } 17375 ILM_WALKER_RELE(recv_ill); 17376 } else if (ire->ire_type == IRE_BROADCAST) { 17377 /* 17378 * In the broadcast case, there may be many zones 17379 * which need a copy of the packet delivered to them. 17380 * There is one IRE_BROADCAST per broadcast address 17381 * and per zone; we walk those using a helper function. 17382 * In addition, the sending of the packet for ire is 17383 * delayed until all of the other ires have been 17384 * processed. 17385 */ 17386 IRB_REFHOLD(ire->ire_bucket); 17387 ire_zone = NULL; 17388 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17389 ire)) != NULL) { 17390 mp1 = ip_copymsg(first_mp); 17391 if (mp1 == NULL) 17392 continue; 17393 17394 UPDATE_IB_PKT_COUNT(ire_zone); 17395 ire_zone->ire_last_used_time = lbolt; 17396 icmp_inbound(q, mp1, B_TRUE, ill, 17397 0, sum, mctl_present, B_TRUE, 17398 recv_ill, ire_zone->ire_zoneid); 17399 } 17400 IRB_REFRELE(ire->ire_bucket); 17401 } 17402 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17403 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17404 ire->ire_zoneid); 17405 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17406 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17407 return; 17408 } 17409 case IPPROTO_IGMP: 17410 /* 17411 * If we are not willing to accept IGMP packets in clear, 17412 * then check with global policy. 17413 */ 17414 if (ipst->ips_igmp_accept_clear_messages == 0) { 17415 first_mp = ipsec_check_global_policy(first_mp, NULL, 17416 ipha, NULL, mctl_present, ipst->ips_netstack); 17417 if (first_mp == NULL) 17418 return; 17419 } 17420 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17421 freemsg(first_mp); 17422 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17423 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17424 return; 17425 } 17426 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17427 /* Bad packet - discarded by igmp_input */ 17428 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17429 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17430 if (mctl_present) 17431 freeb(first_mp); 17432 return; 17433 } 17434 /* 17435 * igmp_input() may have returned the pulled up message. 17436 * So first_mp and ipha need to be reinitialized. 17437 */ 17438 ipha = (ipha_t *)mp->b_rptr; 17439 if (mctl_present) 17440 first_mp->b_cont = mp; 17441 else 17442 first_mp = mp; 17443 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17444 connf_head != NULL) { 17445 /* No user-level listener for IGMP packets */ 17446 goto drop_pkt; 17447 } 17448 /* deliver to local raw users */ 17449 break; 17450 case IPPROTO_PIM: 17451 /* 17452 * If we are not willing to accept PIM packets in clear, 17453 * then check with global policy. 17454 */ 17455 if (ipst->ips_pim_accept_clear_messages == 0) { 17456 first_mp = ipsec_check_global_policy(first_mp, NULL, 17457 ipha, NULL, mctl_present, ipst->ips_netstack); 17458 if (first_mp == NULL) 17459 return; 17460 } 17461 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17462 freemsg(first_mp); 17463 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17464 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17465 return; 17466 } 17467 if (pim_input(q, mp, ill) != 0) { 17468 /* Bad packet - discarded by pim_input */ 17469 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17470 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17471 if (mctl_present) 17472 freeb(first_mp); 17473 return; 17474 } 17475 17476 /* 17477 * pim_input() may have pulled up the message so ipha needs to 17478 * be reinitialized. 17479 */ 17480 ipha = (ipha_t *)mp->b_rptr; 17481 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17482 connf_head != NULL) { 17483 /* No user-level listener for PIM packets */ 17484 goto drop_pkt; 17485 } 17486 /* deliver to local raw users */ 17487 break; 17488 case IPPROTO_ENCAP: 17489 /* 17490 * Handle self-encapsulated packets (IP-in-IP where 17491 * the inner addresses == the outer addresses). 17492 */ 17493 hdr_length = IPH_HDR_LENGTH(ipha); 17494 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17495 mp->b_wptr) { 17496 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17497 sizeof (ipha_t) - mp->b_rptr)) { 17498 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17499 freemsg(first_mp); 17500 return; 17501 } 17502 ipha = (ipha_t *)mp->b_rptr; 17503 } 17504 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17505 /* 17506 * Check the sanity of the inner IP header. 17507 */ 17508 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17509 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17510 freemsg(first_mp); 17511 return; 17512 } 17513 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17514 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17515 freemsg(first_mp); 17516 return; 17517 } 17518 if (inner_ipha->ipha_src == ipha->ipha_src && 17519 inner_ipha->ipha_dst == ipha->ipha_dst) { 17520 ipsec_in_t *ii; 17521 17522 /* 17523 * Self-encapsulated tunnel packet. Remove 17524 * the outer IP header and fanout again. 17525 * We also need to make sure that the inner 17526 * header is pulled up until options. 17527 */ 17528 mp->b_rptr = (uchar_t *)inner_ipha; 17529 ipha = inner_ipha; 17530 hdr_length = IPH_HDR_LENGTH(ipha); 17531 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17532 if (!pullupmsg(mp, (uchar_t *)ipha + 17533 + hdr_length - mp->b_rptr)) { 17534 freemsg(first_mp); 17535 return; 17536 } 17537 ipha = (ipha_t *)mp->b_rptr; 17538 } 17539 if (hdr_length > sizeof (ipha_t)) { 17540 /* We got options on the inner packet. */ 17541 ipaddr_t dst = ipha->ipha_dst; 17542 17543 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17544 -1) { 17545 /* Bad options! */ 17546 return; 17547 } 17548 if (dst != ipha->ipha_dst) { 17549 /* 17550 * Someone put a source-route in 17551 * the inside header of a self- 17552 * encapsulated packet. Drop it 17553 * with extreme prejudice and let 17554 * the sender know. 17555 */ 17556 icmp_unreachable(q, first_mp, 17557 ICMP_SOURCE_ROUTE_FAILED, 17558 recv_ill->ill_zoneid, ipst); 17559 return; 17560 } 17561 } 17562 if (!mctl_present) { 17563 ASSERT(first_mp == mp); 17564 /* 17565 * This means that somebody is sending 17566 * Self-encapsualted packets without AH/ESP. 17567 * If AH/ESP was present, we would have already 17568 * allocated the first_mp. 17569 * 17570 * Send this packet to find a tunnel endpoint. 17571 * if I can't find one, an ICMP 17572 * PROTOCOL_UNREACHABLE will get sent. 17573 */ 17574 goto fanout; 17575 } 17576 /* 17577 * We generally store the ill_index if we need to 17578 * do IPsec processing as we lose the ill queue when 17579 * we come back. But in this case, we never should 17580 * have to store the ill_index here as it should have 17581 * been stored previously when we processed the 17582 * AH/ESP header in this routine or for non-ipsec 17583 * cases, we still have the queue. But for some bad 17584 * packets from the wire, we can get to IPsec after 17585 * this and we better store the index for that case. 17586 */ 17587 ill = (ill_t *)q->q_ptr; 17588 ii = (ipsec_in_t *)first_mp->b_rptr; 17589 ii->ipsec_in_ill_index = 17590 ill->ill_phyint->phyint_ifindex; 17591 ii->ipsec_in_rill_index = 17592 recv_ill->ill_phyint->phyint_ifindex; 17593 if (ii->ipsec_in_decaps) { 17594 /* 17595 * This packet is self-encapsulated multiple 17596 * times. We don't want to recurse infinitely. 17597 * To keep it simple, drop the packet. 17598 */ 17599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17600 freemsg(first_mp); 17601 return; 17602 } 17603 ii->ipsec_in_decaps = B_TRUE; 17604 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17605 ire); 17606 return; 17607 } 17608 break; 17609 case IPPROTO_AH: 17610 case IPPROTO_ESP: { 17611 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17612 17613 /* 17614 * Fast path for AH/ESP. If this is the first time 17615 * we are sending a datagram to AH/ESP, allocate 17616 * a IPSEC_IN message and prepend it. Otherwise, 17617 * just fanout. 17618 */ 17619 17620 int ipsec_rc; 17621 ipsec_in_t *ii; 17622 netstack_t *ns = ipst->ips_netstack; 17623 17624 IP_STAT(ipst, ipsec_proto_ahesp); 17625 if (!mctl_present) { 17626 ASSERT(first_mp == mp); 17627 first_mp = ipsec_in_alloc(B_TRUE, ns); 17628 if (first_mp == NULL) { 17629 ip1dbg(("ip_proto_input: IPSEC_IN " 17630 "allocation failure.\n")); 17631 freemsg(hada_mp); /* okay ifnull */ 17632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17633 freemsg(mp); 17634 return; 17635 } 17636 /* 17637 * Store the ill_index so that when we come back 17638 * from IPsec we ride on the same queue. 17639 */ 17640 ill = (ill_t *)q->q_ptr; 17641 ii = (ipsec_in_t *)first_mp->b_rptr; 17642 ii->ipsec_in_ill_index = 17643 ill->ill_phyint->phyint_ifindex; 17644 ii->ipsec_in_rill_index = 17645 recv_ill->ill_phyint->phyint_ifindex; 17646 first_mp->b_cont = mp; 17647 /* 17648 * Cache hardware acceleration info. 17649 */ 17650 if (hada_mp != NULL) { 17651 IPSECHW_DEBUG(IPSECHW_PKT, 17652 ("ip_rput_local: caching data attr.\n")); 17653 ii->ipsec_in_accelerated = B_TRUE; 17654 ii->ipsec_in_da = hada_mp; 17655 hada_mp = NULL; 17656 } 17657 } else { 17658 ii = (ipsec_in_t *)first_mp->b_rptr; 17659 } 17660 17661 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17662 17663 if (!ipsec_loaded(ipss)) { 17664 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17665 ire->ire_zoneid, ipst); 17666 return; 17667 } 17668 17669 ns = ipst->ips_netstack; 17670 /* select inbound SA and have IPsec process the pkt */ 17671 if (ipha->ipha_protocol == IPPROTO_ESP) { 17672 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17673 boolean_t esp_in_udp_sa; 17674 if (esph == NULL) 17675 return; 17676 ASSERT(ii->ipsec_in_esp_sa != NULL); 17677 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17678 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17679 IPSA_F_NATT) != 0); 17680 /* 17681 * The following is a fancy, but quick, way of saying: 17682 * ESP-in-UDP SA and Raw ESP packet --> drop 17683 * OR 17684 * ESP SA and ESP-in-UDP packet --> drop 17685 */ 17686 if (esp_in_udp_sa != esp_in_udp_packet) { 17687 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17688 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17689 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17690 &ns->netstack_ipsec->ipsec_dropper); 17691 return; 17692 } 17693 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17694 first_mp, esph); 17695 } else { 17696 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17697 if (ah == NULL) 17698 return; 17699 ASSERT(ii->ipsec_in_ah_sa != NULL); 17700 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17701 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17702 first_mp, ah); 17703 } 17704 17705 switch (ipsec_rc) { 17706 case IPSEC_STATUS_SUCCESS: 17707 break; 17708 case IPSEC_STATUS_FAILED: 17709 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17710 /* FALLTHRU */ 17711 case IPSEC_STATUS_PENDING: 17712 return; 17713 } 17714 /* we're done with IPsec processing, send it up */ 17715 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17716 return; 17717 } 17718 default: 17719 break; 17720 } 17721 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17722 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17723 ire->ire_zoneid)); 17724 goto drop_pkt; 17725 } 17726 /* 17727 * Handle protocols with which IP is less intimate. There 17728 * can be more than one stream bound to a particular 17729 * protocol. When this is the case, each one gets a copy 17730 * of any incoming packets. 17731 */ 17732 fanout: 17733 ip_fanout_proto(q, first_mp, ill, ipha, 17734 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17735 B_TRUE, recv_ill, ire->ire_zoneid); 17736 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17737 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17738 return; 17739 17740 drop_pkt: 17741 freemsg(first_mp); 17742 if (hada_mp != NULL) 17743 freeb(hada_mp); 17744 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17745 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17746 #undef rptr 17747 #undef iphs 17748 17749 } 17750 17751 /* 17752 * Update any source route, record route or timestamp options. 17753 * Check that we are at end of strict source route. 17754 * The options have already been checked for sanity in ip_rput_options(). 17755 */ 17756 static boolean_t 17757 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17758 ip_stack_t *ipst) 17759 { 17760 ipoptp_t opts; 17761 uchar_t *opt; 17762 uint8_t optval; 17763 uint8_t optlen; 17764 ipaddr_t dst; 17765 uint32_t ts; 17766 ire_t *dst_ire; 17767 timestruc_t now; 17768 zoneid_t zoneid; 17769 ill_t *ill; 17770 17771 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17772 17773 ip2dbg(("ip_rput_local_options\n")); 17774 17775 for (optval = ipoptp_first(&opts, ipha); 17776 optval != IPOPT_EOL; 17777 optval = ipoptp_next(&opts)) { 17778 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17779 opt = opts.ipoptp_cur; 17780 optlen = opts.ipoptp_len; 17781 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17782 optval, optlen)); 17783 switch (optval) { 17784 uint32_t off; 17785 case IPOPT_SSRR: 17786 case IPOPT_LSRR: 17787 off = opt[IPOPT_OFFSET]; 17788 off--; 17789 if (optlen < IP_ADDR_LEN || 17790 off > optlen - IP_ADDR_LEN) { 17791 /* End of source route */ 17792 ip1dbg(("ip_rput_local_options: end of SR\n")); 17793 break; 17794 } 17795 /* 17796 * This will only happen if two consecutive entries 17797 * in the source route contains our address or if 17798 * it is a packet with a loose source route which 17799 * reaches us before consuming the whole source route 17800 */ 17801 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17802 if (optval == IPOPT_SSRR) { 17803 goto bad_src_route; 17804 } 17805 /* 17806 * Hack: instead of dropping the packet truncate the 17807 * source route to what has been used by filling the 17808 * rest with IPOPT_NOP. 17809 */ 17810 opt[IPOPT_OLEN] = (uint8_t)off; 17811 while (off < optlen) { 17812 opt[off++] = IPOPT_NOP; 17813 } 17814 break; 17815 case IPOPT_RR: 17816 off = opt[IPOPT_OFFSET]; 17817 off--; 17818 if (optlen < IP_ADDR_LEN || 17819 off > optlen - IP_ADDR_LEN) { 17820 /* No more room - ignore */ 17821 ip1dbg(( 17822 "ip_rput_local_options: end of RR\n")); 17823 break; 17824 } 17825 bcopy(&ire->ire_src_addr, (char *)opt + off, 17826 IP_ADDR_LEN); 17827 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17828 break; 17829 case IPOPT_TS: 17830 /* Insert timestamp if there is romm */ 17831 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17832 case IPOPT_TS_TSONLY: 17833 off = IPOPT_TS_TIMELEN; 17834 break; 17835 case IPOPT_TS_PRESPEC: 17836 case IPOPT_TS_PRESPEC_RFC791: 17837 /* Verify that the address matched */ 17838 off = opt[IPOPT_OFFSET] - 1; 17839 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17840 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17841 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17842 ipst); 17843 if (dst_ire == NULL) { 17844 /* Not for us */ 17845 break; 17846 } 17847 ire_refrele(dst_ire); 17848 /* FALLTHRU */ 17849 case IPOPT_TS_TSANDADDR: 17850 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17851 break; 17852 default: 17853 /* 17854 * ip_*put_options should have already 17855 * dropped this packet. 17856 */ 17857 cmn_err(CE_PANIC, "ip_rput_local_options: " 17858 "unknown IT - bug in ip_rput_options?\n"); 17859 return (B_TRUE); /* Keep "lint" happy */ 17860 } 17861 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17862 /* Increase overflow counter */ 17863 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17864 opt[IPOPT_POS_OV_FLG] = 17865 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17866 (off << 4)); 17867 break; 17868 } 17869 off = opt[IPOPT_OFFSET] - 1; 17870 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17871 case IPOPT_TS_PRESPEC: 17872 case IPOPT_TS_PRESPEC_RFC791: 17873 case IPOPT_TS_TSANDADDR: 17874 bcopy(&ire->ire_src_addr, (char *)opt + off, 17875 IP_ADDR_LEN); 17876 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17877 /* FALLTHRU */ 17878 case IPOPT_TS_TSONLY: 17879 off = opt[IPOPT_OFFSET] - 1; 17880 /* Compute # of milliseconds since midnight */ 17881 gethrestime(&now); 17882 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17883 now.tv_nsec / (NANOSEC / MILLISEC); 17884 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17885 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17886 break; 17887 } 17888 break; 17889 } 17890 } 17891 return (B_TRUE); 17892 17893 bad_src_route: 17894 q = WR(q); 17895 if (q->q_next != NULL) 17896 ill = q->q_ptr; 17897 else 17898 ill = NULL; 17899 17900 /* make sure we clear any indication of a hardware checksum */ 17901 DB_CKSUMFLAGS(mp) = 0; 17902 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17903 if (zoneid == ALL_ZONES) 17904 freemsg(mp); 17905 else 17906 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17907 return (B_FALSE); 17908 17909 } 17910 17911 /* 17912 * Process IP options in an inbound packet. If an option affects the 17913 * effective destination address, return the next hop address via dstp. 17914 * Returns -1 if something fails in which case an ICMP error has been sent 17915 * and mp freed. 17916 */ 17917 static int 17918 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17919 ip_stack_t *ipst) 17920 { 17921 ipoptp_t opts; 17922 uchar_t *opt; 17923 uint8_t optval; 17924 uint8_t optlen; 17925 ipaddr_t dst; 17926 intptr_t code = 0; 17927 ire_t *ire = NULL; 17928 zoneid_t zoneid; 17929 ill_t *ill; 17930 17931 ip2dbg(("ip_rput_options\n")); 17932 dst = ipha->ipha_dst; 17933 for (optval = ipoptp_first(&opts, ipha); 17934 optval != IPOPT_EOL; 17935 optval = ipoptp_next(&opts)) { 17936 opt = opts.ipoptp_cur; 17937 optlen = opts.ipoptp_len; 17938 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17939 optval, optlen)); 17940 /* 17941 * Note: we need to verify the checksum before we 17942 * modify anything thus this routine only extracts the next 17943 * hop dst from any source route. 17944 */ 17945 switch (optval) { 17946 uint32_t off; 17947 case IPOPT_SSRR: 17948 case IPOPT_LSRR: 17949 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17950 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17951 if (ire == NULL) { 17952 if (optval == IPOPT_SSRR) { 17953 ip1dbg(("ip_rput_options: not next" 17954 " strict source route 0x%x\n", 17955 ntohl(dst))); 17956 code = (char *)&ipha->ipha_dst - 17957 (char *)ipha; 17958 goto param_prob; /* RouterReq's */ 17959 } 17960 ip2dbg(("ip_rput_options: " 17961 "not next source route 0x%x\n", 17962 ntohl(dst))); 17963 break; 17964 } 17965 ire_refrele(ire); 17966 17967 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17968 ip1dbg(( 17969 "ip_rput_options: bad option offset\n")); 17970 code = (char *)&opt[IPOPT_OLEN] - 17971 (char *)ipha; 17972 goto param_prob; 17973 } 17974 off = opt[IPOPT_OFFSET]; 17975 off--; 17976 redo_srr: 17977 if (optlen < IP_ADDR_LEN || 17978 off > optlen - IP_ADDR_LEN) { 17979 /* End of source route */ 17980 ip1dbg(("ip_rput_options: end of SR\n")); 17981 break; 17982 } 17983 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17984 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17985 ntohl(dst))); 17986 17987 /* 17988 * Check if our address is present more than 17989 * once as consecutive hops in source route. 17990 * XXX verify per-interface ip_forwarding 17991 * for source route? 17992 */ 17993 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17994 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17995 17996 if (ire != NULL) { 17997 ire_refrele(ire); 17998 off += IP_ADDR_LEN; 17999 goto redo_srr; 18000 } 18001 18002 if (dst == htonl(INADDR_LOOPBACK)) { 18003 ip1dbg(("ip_rput_options: loopback addr in " 18004 "source route!\n")); 18005 goto bad_src_route; 18006 } 18007 /* 18008 * For strict: verify that dst is directly 18009 * reachable. 18010 */ 18011 if (optval == IPOPT_SSRR) { 18012 ire = ire_ftable_lookup(dst, 0, 0, 18013 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18014 MBLK_GETLABEL(mp), 18015 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18016 if (ire == NULL) { 18017 ip1dbg(("ip_rput_options: SSRR not " 18018 "directly reachable: 0x%x\n", 18019 ntohl(dst))); 18020 goto bad_src_route; 18021 } 18022 ire_refrele(ire); 18023 } 18024 /* 18025 * Defer update of the offset and the record route 18026 * until the packet is forwarded. 18027 */ 18028 break; 18029 case IPOPT_RR: 18030 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18031 ip1dbg(( 18032 "ip_rput_options: bad option offset\n")); 18033 code = (char *)&opt[IPOPT_OLEN] - 18034 (char *)ipha; 18035 goto param_prob; 18036 } 18037 break; 18038 case IPOPT_TS: 18039 /* 18040 * Verify that length >= 5 and that there is either 18041 * room for another timestamp or that the overflow 18042 * counter is not maxed out. 18043 */ 18044 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18045 if (optlen < IPOPT_MINLEN_IT) { 18046 goto param_prob; 18047 } 18048 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18049 ip1dbg(( 18050 "ip_rput_options: bad option offset\n")); 18051 code = (char *)&opt[IPOPT_OFFSET] - 18052 (char *)ipha; 18053 goto param_prob; 18054 } 18055 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18056 case IPOPT_TS_TSONLY: 18057 off = IPOPT_TS_TIMELEN; 18058 break; 18059 case IPOPT_TS_TSANDADDR: 18060 case IPOPT_TS_PRESPEC: 18061 case IPOPT_TS_PRESPEC_RFC791: 18062 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18063 break; 18064 default: 18065 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18066 (char *)ipha; 18067 goto param_prob; 18068 } 18069 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18070 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18071 /* 18072 * No room and the overflow counter is 15 18073 * already. 18074 */ 18075 goto param_prob; 18076 } 18077 break; 18078 } 18079 } 18080 18081 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18082 *dstp = dst; 18083 return (0); 18084 } 18085 18086 ip1dbg(("ip_rput_options: error processing IP options.")); 18087 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18088 18089 param_prob: 18090 q = WR(q); 18091 if (q->q_next != NULL) 18092 ill = q->q_ptr; 18093 else 18094 ill = NULL; 18095 18096 /* make sure we clear any indication of a hardware checksum */ 18097 DB_CKSUMFLAGS(mp) = 0; 18098 /* Don't know whether this is for non-global or global/forwarding */ 18099 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18100 if (zoneid == ALL_ZONES) 18101 freemsg(mp); 18102 else 18103 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18104 return (-1); 18105 18106 bad_src_route: 18107 q = WR(q); 18108 if (q->q_next != NULL) 18109 ill = q->q_ptr; 18110 else 18111 ill = NULL; 18112 18113 /* make sure we clear any indication of a hardware checksum */ 18114 DB_CKSUMFLAGS(mp) = 0; 18115 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18116 if (zoneid == ALL_ZONES) 18117 freemsg(mp); 18118 else 18119 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18120 return (-1); 18121 } 18122 18123 /* 18124 * IP & ICMP info in >=14 msg's ... 18125 * - ip fixed part (mib2_ip_t) 18126 * - icmp fixed part (mib2_icmp_t) 18127 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18128 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18129 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18130 * - ipRouteAttributeTable (ip 102) labeled routes 18131 * - ip multicast membership (ip_member_t) 18132 * - ip multicast source filtering (ip_grpsrc_t) 18133 * - igmp fixed part (struct igmpstat) 18134 * - multicast routing stats (struct mrtstat) 18135 * - multicast routing vifs (array of struct vifctl) 18136 * - multicast routing routes (array of struct mfcctl) 18137 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18138 * One per ill plus one generic 18139 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18140 * One per ill plus one generic 18141 * - ipv6RouteEntry all IPv6 IREs 18142 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18143 * - ipv6NetToMediaEntry all Neighbor Cache entries 18144 * - ipv6AddrEntry all IPv6 ipifs 18145 * - ipv6 multicast membership (ipv6_member_t) 18146 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18147 * 18148 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18149 * 18150 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18151 * already filled in by the caller. 18152 * Return value of 0 indicates that no messages were sent and caller 18153 * should free mpctl. 18154 */ 18155 int 18156 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18157 { 18158 ip_stack_t *ipst; 18159 sctp_stack_t *sctps; 18160 18161 if (q->q_next != NULL) { 18162 ipst = ILLQ_TO_IPST(q); 18163 } else { 18164 ipst = CONNQ_TO_IPST(q); 18165 } 18166 ASSERT(ipst != NULL); 18167 sctps = ipst->ips_netstack->netstack_sctp; 18168 18169 if (mpctl == NULL || mpctl->b_cont == NULL) { 18170 return (0); 18171 } 18172 18173 /* 18174 * For the purposes of the (broken) packet shell use 18175 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18176 * to make TCP and UDP appear first in the list of mib items. 18177 * TBD: We could expand this and use it in netstat so that 18178 * the kernel doesn't have to produce large tables (connections, 18179 * routes, etc) when netstat only wants the statistics or a particular 18180 * table. 18181 */ 18182 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18183 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18184 return (1); 18185 } 18186 } 18187 18188 if (level != MIB2_TCP) { 18189 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18190 return (1); 18191 } 18192 } 18193 18194 if (level != MIB2_UDP) { 18195 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18196 return (1); 18197 } 18198 } 18199 18200 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18201 ipst)) == NULL) { 18202 return (1); 18203 } 18204 18205 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18206 return (1); 18207 } 18208 18209 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18210 return (1); 18211 } 18212 18213 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18214 return (1); 18215 } 18216 18217 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18218 return (1); 18219 } 18220 18221 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18222 return (1); 18223 } 18224 18225 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18226 return (1); 18227 } 18228 18229 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18230 return (1); 18231 } 18232 18233 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18234 return (1); 18235 } 18236 18237 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18238 return (1); 18239 } 18240 18241 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18242 return (1); 18243 } 18244 18245 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18246 return (1); 18247 } 18248 18249 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18250 return (1); 18251 } 18252 18253 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18254 return (1); 18255 } 18256 18257 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18258 return (1); 18259 } 18260 18261 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18262 if (mpctl == NULL) { 18263 return (1); 18264 } 18265 18266 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18267 return (1); 18268 } 18269 freemsg(mpctl); 18270 return (1); 18271 } 18272 18273 18274 /* Get global (legacy) IPv4 statistics */ 18275 static mblk_t * 18276 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18277 ip_stack_t *ipst) 18278 { 18279 mib2_ip_t old_ip_mib; 18280 struct opthdr *optp; 18281 mblk_t *mp2ctl; 18282 18283 /* 18284 * make a copy of the original message 18285 */ 18286 mp2ctl = copymsg(mpctl); 18287 18288 /* fixed length IP structure... */ 18289 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18290 optp->level = MIB2_IP; 18291 optp->name = 0; 18292 SET_MIB(old_ip_mib.ipForwarding, 18293 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18294 SET_MIB(old_ip_mib.ipDefaultTTL, 18295 (uint32_t)ipst->ips_ip_def_ttl); 18296 SET_MIB(old_ip_mib.ipReasmTimeout, 18297 ipst->ips_ip_g_frag_timeout); 18298 SET_MIB(old_ip_mib.ipAddrEntrySize, 18299 sizeof (mib2_ipAddrEntry_t)); 18300 SET_MIB(old_ip_mib.ipRouteEntrySize, 18301 sizeof (mib2_ipRouteEntry_t)); 18302 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18303 sizeof (mib2_ipNetToMediaEntry_t)); 18304 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18305 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18306 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18307 sizeof (mib2_ipAttributeEntry_t)); 18308 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18309 18310 /* 18311 * Grab the statistics from the new IP MIB 18312 */ 18313 SET_MIB(old_ip_mib.ipInReceives, 18314 (uint32_t)ipmib->ipIfStatsHCInReceives); 18315 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18316 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18317 SET_MIB(old_ip_mib.ipForwDatagrams, 18318 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18319 SET_MIB(old_ip_mib.ipInUnknownProtos, 18320 ipmib->ipIfStatsInUnknownProtos); 18321 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18322 SET_MIB(old_ip_mib.ipInDelivers, 18323 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18324 SET_MIB(old_ip_mib.ipOutRequests, 18325 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18326 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18327 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18328 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18329 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18330 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18331 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18332 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18333 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18334 18335 /* ipRoutingDiscards is not being used */ 18336 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18337 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18338 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18339 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18340 SET_MIB(old_ip_mib.ipReasmDuplicates, 18341 ipmib->ipIfStatsReasmDuplicates); 18342 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18343 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18344 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18345 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18346 SET_MIB(old_ip_mib.rawipInOverflows, 18347 ipmib->rawipIfStatsInOverflows); 18348 18349 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18350 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18351 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18352 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18353 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18354 ipmib->ipIfStatsOutSwitchIPVersion); 18355 18356 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18357 (int)sizeof (old_ip_mib))) { 18358 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18359 (uint_t)sizeof (old_ip_mib))); 18360 } 18361 18362 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18363 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18364 (int)optp->level, (int)optp->name, (int)optp->len)); 18365 qreply(q, mpctl); 18366 return (mp2ctl); 18367 } 18368 18369 /* Per interface IPv4 statistics */ 18370 static mblk_t * 18371 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18372 { 18373 struct opthdr *optp; 18374 mblk_t *mp2ctl; 18375 ill_t *ill; 18376 ill_walk_context_t ctx; 18377 mblk_t *mp_tail = NULL; 18378 mib2_ipIfStatsEntry_t global_ip_mib; 18379 18380 /* 18381 * Make a copy of the original message 18382 */ 18383 mp2ctl = copymsg(mpctl); 18384 18385 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18386 optp->level = MIB2_IP; 18387 optp->name = MIB2_IP_TRAFFIC_STATS; 18388 /* Include "unknown interface" ip_mib */ 18389 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18390 ipst->ips_ip_mib.ipIfStatsIfIndex = 18391 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18392 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18393 (ipst->ips_ip_g_forward ? 1 : 2)); 18394 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18395 (uint32_t)ipst->ips_ip_def_ttl); 18396 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18397 sizeof (mib2_ipIfStatsEntry_t)); 18398 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18399 sizeof (mib2_ipAddrEntry_t)); 18400 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18401 sizeof (mib2_ipRouteEntry_t)); 18402 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18403 sizeof (mib2_ipNetToMediaEntry_t)); 18404 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18405 sizeof (ip_member_t)); 18406 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18407 sizeof (ip_grpsrc_t)); 18408 18409 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18410 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18411 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18412 "failed to allocate %u bytes\n", 18413 (uint_t)sizeof (ipst->ips_ip_mib))); 18414 } 18415 18416 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18417 18418 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18419 ill = ILL_START_WALK_V4(&ctx, ipst); 18420 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18421 ill->ill_ip_mib->ipIfStatsIfIndex = 18422 ill->ill_phyint->phyint_ifindex; 18423 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18424 (ipst->ips_ip_g_forward ? 1 : 2)); 18425 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18426 (uint32_t)ipst->ips_ip_def_ttl); 18427 18428 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18429 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18430 (char *)ill->ill_ip_mib, 18431 (int)sizeof (*ill->ill_ip_mib))) { 18432 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18433 "failed to allocate %u bytes\n", 18434 (uint_t)sizeof (*ill->ill_ip_mib))); 18435 } 18436 } 18437 rw_exit(&ipst->ips_ill_g_lock); 18438 18439 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18440 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18441 "level %d, name %d, len %d\n", 18442 (int)optp->level, (int)optp->name, (int)optp->len)); 18443 qreply(q, mpctl); 18444 18445 if (mp2ctl == NULL) 18446 return (NULL); 18447 18448 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18449 } 18450 18451 /* Global IPv4 ICMP statistics */ 18452 static mblk_t * 18453 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18454 { 18455 struct opthdr *optp; 18456 mblk_t *mp2ctl; 18457 18458 /* 18459 * Make a copy of the original message 18460 */ 18461 mp2ctl = copymsg(mpctl); 18462 18463 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18464 optp->level = MIB2_ICMP; 18465 optp->name = 0; 18466 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18467 (int)sizeof (ipst->ips_icmp_mib))) { 18468 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18469 (uint_t)sizeof (ipst->ips_icmp_mib))); 18470 } 18471 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18472 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18473 (int)optp->level, (int)optp->name, (int)optp->len)); 18474 qreply(q, mpctl); 18475 return (mp2ctl); 18476 } 18477 18478 /* Global IPv4 IGMP statistics */ 18479 static mblk_t * 18480 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18481 { 18482 struct opthdr *optp; 18483 mblk_t *mp2ctl; 18484 18485 /* 18486 * make a copy of the original message 18487 */ 18488 mp2ctl = copymsg(mpctl); 18489 18490 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18491 optp->level = EXPER_IGMP; 18492 optp->name = 0; 18493 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18494 (int)sizeof (ipst->ips_igmpstat))) { 18495 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18496 (uint_t)sizeof (ipst->ips_igmpstat))); 18497 } 18498 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18499 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18500 (int)optp->level, (int)optp->name, (int)optp->len)); 18501 qreply(q, mpctl); 18502 return (mp2ctl); 18503 } 18504 18505 /* Global IPv4 Multicast Routing statistics */ 18506 static mblk_t * 18507 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18508 { 18509 struct opthdr *optp; 18510 mblk_t *mp2ctl; 18511 18512 /* 18513 * make a copy of the original message 18514 */ 18515 mp2ctl = copymsg(mpctl); 18516 18517 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18518 optp->level = EXPER_DVMRP; 18519 optp->name = 0; 18520 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18521 ip0dbg(("ip_mroute_stats: failed\n")); 18522 } 18523 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18524 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18525 (int)optp->level, (int)optp->name, (int)optp->len)); 18526 qreply(q, mpctl); 18527 return (mp2ctl); 18528 } 18529 18530 /* IPv4 address information */ 18531 static mblk_t * 18532 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18533 { 18534 struct opthdr *optp; 18535 mblk_t *mp2ctl; 18536 mblk_t *mp_tail = NULL; 18537 ill_t *ill; 18538 ipif_t *ipif; 18539 uint_t bitval; 18540 mib2_ipAddrEntry_t mae; 18541 zoneid_t zoneid; 18542 ill_walk_context_t ctx; 18543 18544 /* 18545 * make a copy of the original message 18546 */ 18547 mp2ctl = copymsg(mpctl); 18548 18549 /* ipAddrEntryTable */ 18550 18551 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18552 optp->level = MIB2_IP; 18553 optp->name = MIB2_IP_ADDR; 18554 zoneid = Q_TO_CONN(q)->conn_zoneid; 18555 18556 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18557 ill = ILL_START_WALK_V4(&ctx, ipst); 18558 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18559 for (ipif = ill->ill_ipif; ipif != NULL; 18560 ipif = ipif->ipif_next) { 18561 if (ipif->ipif_zoneid != zoneid && 18562 ipif->ipif_zoneid != ALL_ZONES) 18563 continue; 18564 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18565 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18566 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18567 18568 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18569 OCTET_LENGTH); 18570 mae.ipAdEntIfIndex.o_length = 18571 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18572 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18573 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18574 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18575 mae.ipAdEntInfo.ae_subnet_len = 18576 ip_mask_to_plen(ipif->ipif_net_mask); 18577 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18578 for (bitval = 1; 18579 bitval && 18580 !(bitval & ipif->ipif_brd_addr); 18581 bitval <<= 1) 18582 noop; 18583 mae.ipAdEntBcastAddr = bitval; 18584 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18585 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18586 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18587 mae.ipAdEntInfo.ae_broadcast_addr = 18588 ipif->ipif_brd_addr; 18589 mae.ipAdEntInfo.ae_pp_dst_addr = 18590 ipif->ipif_pp_dst_addr; 18591 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18592 ill->ill_flags | ill->ill_phyint->phyint_flags; 18593 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18594 18595 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18596 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18597 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18598 "allocate %u bytes\n", 18599 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18600 } 18601 } 18602 } 18603 rw_exit(&ipst->ips_ill_g_lock); 18604 18605 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18606 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18607 (int)optp->level, (int)optp->name, (int)optp->len)); 18608 qreply(q, mpctl); 18609 return (mp2ctl); 18610 } 18611 18612 /* IPv6 address information */ 18613 static mblk_t * 18614 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18615 { 18616 struct opthdr *optp; 18617 mblk_t *mp2ctl; 18618 mblk_t *mp_tail = NULL; 18619 ill_t *ill; 18620 ipif_t *ipif; 18621 mib2_ipv6AddrEntry_t mae6; 18622 zoneid_t zoneid; 18623 ill_walk_context_t ctx; 18624 18625 /* 18626 * make a copy of the original message 18627 */ 18628 mp2ctl = copymsg(mpctl); 18629 18630 /* ipv6AddrEntryTable */ 18631 18632 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18633 optp->level = MIB2_IP6; 18634 optp->name = MIB2_IP6_ADDR; 18635 zoneid = Q_TO_CONN(q)->conn_zoneid; 18636 18637 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18638 ill = ILL_START_WALK_V6(&ctx, ipst); 18639 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18640 for (ipif = ill->ill_ipif; ipif != NULL; 18641 ipif = ipif->ipif_next) { 18642 if (ipif->ipif_zoneid != zoneid && 18643 ipif->ipif_zoneid != ALL_ZONES) 18644 continue; 18645 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18646 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18647 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18648 18649 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18650 OCTET_LENGTH); 18651 mae6.ipv6AddrIfIndex.o_length = 18652 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18653 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18654 mae6.ipv6AddrPfxLength = 18655 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18656 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18657 mae6.ipv6AddrInfo.ae_subnet_len = 18658 mae6.ipv6AddrPfxLength; 18659 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18660 18661 /* Type: stateless(1), stateful(2), unknown(3) */ 18662 if (ipif->ipif_flags & IPIF_ADDRCONF) 18663 mae6.ipv6AddrType = 1; 18664 else 18665 mae6.ipv6AddrType = 2; 18666 /* Anycast: true(1), false(2) */ 18667 if (ipif->ipif_flags & IPIF_ANYCAST) 18668 mae6.ipv6AddrAnycastFlag = 1; 18669 else 18670 mae6.ipv6AddrAnycastFlag = 2; 18671 18672 /* 18673 * Address status: preferred(1), deprecated(2), 18674 * invalid(3), inaccessible(4), unknown(5) 18675 */ 18676 if (ipif->ipif_flags & IPIF_NOLOCAL) 18677 mae6.ipv6AddrStatus = 3; 18678 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18679 mae6.ipv6AddrStatus = 2; 18680 else 18681 mae6.ipv6AddrStatus = 1; 18682 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18683 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18684 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18685 ipif->ipif_v6pp_dst_addr; 18686 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18687 ill->ill_flags | ill->ill_phyint->phyint_flags; 18688 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18689 mae6.ipv6AddrIdentifier = ill->ill_token; 18690 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18691 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18692 mae6.ipv6AddrRetransmitTime = 18693 ill->ill_reachable_retrans_time; 18694 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18695 (char *)&mae6, 18696 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18697 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18698 "allocate %u bytes\n", 18699 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18700 } 18701 } 18702 } 18703 rw_exit(&ipst->ips_ill_g_lock); 18704 18705 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18706 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18707 (int)optp->level, (int)optp->name, (int)optp->len)); 18708 qreply(q, mpctl); 18709 return (mp2ctl); 18710 } 18711 18712 /* IPv4 multicast group membership. */ 18713 static mblk_t * 18714 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18715 { 18716 struct opthdr *optp; 18717 mblk_t *mp2ctl; 18718 ill_t *ill; 18719 ipif_t *ipif; 18720 ilm_t *ilm; 18721 ip_member_t ipm; 18722 mblk_t *mp_tail = NULL; 18723 ill_walk_context_t ctx; 18724 zoneid_t zoneid; 18725 18726 /* 18727 * make a copy of the original message 18728 */ 18729 mp2ctl = copymsg(mpctl); 18730 zoneid = Q_TO_CONN(q)->conn_zoneid; 18731 18732 /* ipGroupMember table */ 18733 optp = (struct opthdr *)&mpctl->b_rptr[ 18734 sizeof (struct T_optmgmt_ack)]; 18735 optp->level = MIB2_IP; 18736 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18737 18738 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18739 ill = ILL_START_WALK_V4(&ctx, ipst); 18740 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18741 ILM_WALKER_HOLD(ill); 18742 for (ipif = ill->ill_ipif; ipif != NULL; 18743 ipif = ipif->ipif_next) { 18744 if (ipif->ipif_zoneid != zoneid && 18745 ipif->ipif_zoneid != ALL_ZONES) 18746 continue; /* not this zone */ 18747 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18748 OCTET_LENGTH); 18749 ipm.ipGroupMemberIfIndex.o_length = 18750 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18751 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18752 ASSERT(ilm->ilm_ipif != NULL); 18753 ASSERT(ilm->ilm_ill == NULL); 18754 if (ilm->ilm_ipif != ipif) 18755 continue; 18756 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18757 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18758 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18759 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18760 (char *)&ipm, (int)sizeof (ipm))) { 18761 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18762 "failed to allocate %u bytes\n", 18763 (uint_t)sizeof (ipm))); 18764 } 18765 } 18766 } 18767 ILM_WALKER_RELE(ill); 18768 } 18769 rw_exit(&ipst->ips_ill_g_lock); 18770 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18771 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18772 (int)optp->level, (int)optp->name, (int)optp->len)); 18773 qreply(q, mpctl); 18774 return (mp2ctl); 18775 } 18776 18777 /* IPv6 multicast group membership. */ 18778 static mblk_t * 18779 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18780 { 18781 struct opthdr *optp; 18782 mblk_t *mp2ctl; 18783 ill_t *ill; 18784 ilm_t *ilm; 18785 ipv6_member_t ipm6; 18786 mblk_t *mp_tail = NULL; 18787 ill_walk_context_t ctx; 18788 zoneid_t zoneid; 18789 18790 /* 18791 * make a copy of the original message 18792 */ 18793 mp2ctl = copymsg(mpctl); 18794 zoneid = Q_TO_CONN(q)->conn_zoneid; 18795 18796 /* ip6GroupMember table */ 18797 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18798 optp->level = MIB2_IP6; 18799 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18800 18801 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18802 ill = ILL_START_WALK_V6(&ctx, ipst); 18803 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18804 ILM_WALKER_HOLD(ill); 18805 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18806 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18807 ASSERT(ilm->ilm_ipif == NULL); 18808 ASSERT(ilm->ilm_ill != NULL); 18809 if (ilm->ilm_zoneid != zoneid) 18810 continue; /* not this zone */ 18811 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18812 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18813 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18814 if (!snmp_append_data2(mpctl->b_cont, 18815 &mp_tail, 18816 (char *)&ipm6, (int)sizeof (ipm6))) { 18817 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18818 "failed to allocate %u bytes\n", 18819 (uint_t)sizeof (ipm6))); 18820 } 18821 } 18822 ILM_WALKER_RELE(ill); 18823 } 18824 rw_exit(&ipst->ips_ill_g_lock); 18825 18826 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18827 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18828 (int)optp->level, (int)optp->name, (int)optp->len)); 18829 qreply(q, mpctl); 18830 return (mp2ctl); 18831 } 18832 18833 /* IP multicast filtered sources */ 18834 static mblk_t * 18835 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18836 { 18837 struct opthdr *optp; 18838 mblk_t *mp2ctl; 18839 ill_t *ill; 18840 ipif_t *ipif; 18841 ilm_t *ilm; 18842 ip_grpsrc_t ips; 18843 mblk_t *mp_tail = NULL; 18844 ill_walk_context_t ctx; 18845 zoneid_t zoneid; 18846 int i; 18847 slist_t *sl; 18848 18849 /* 18850 * make a copy of the original message 18851 */ 18852 mp2ctl = copymsg(mpctl); 18853 zoneid = Q_TO_CONN(q)->conn_zoneid; 18854 18855 /* ipGroupSource table */ 18856 optp = (struct opthdr *)&mpctl->b_rptr[ 18857 sizeof (struct T_optmgmt_ack)]; 18858 optp->level = MIB2_IP; 18859 optp->name = EXPER_IP_GROUP_SOURCES; 18860 18861 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18862 ill = ILL_START_WALK_V4(&ctx, ipst); 18863 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18864 ILM_WALKER_HOLD(ill); 18865 for (ipif = ill->ill_ipif; ipif != NULL; 18866 ipif = ipif->ipif_next) { 18867 if (ipif->ipif_zoneid != zoneid) 18868 continue; /* not this zone */ 18869 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18870 OCTET_LENGTH); 18871 ips.ipGroupSourceIfIndex.o_length = 18872 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18873 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18874 ASSERT(ilm->ilm_ipif != NULL); 18875 ASSERT(ilm->ilm_ill == NULL); 18876 sl = ilm->ilm_filter; 18877 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18878 continue; 18879 ips.ipGroupSourceGroup = ilm->ilm_addr; 18880 for (i = 0; i < sl->sl_numsrc; i++) { 18881 if (!IN6_IS_ADDR_V4MAPPED( 18882 &sl->sl_addr[i])) 18883 continue; 18884 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18885 ips.ipGroupSourceAddress); 18886 if (snmp_append_data2(mpctl->b_cont, 18887 &mp_tail, (char *)&ips, 18888 (int)sizeof (ips)) == 0) { 18889 ip1dbg(("ip_snmp_get_mib2_" 18890 "ip_group_src: failed to " 18891 "allocate %u bytes\n", 18892 (uint_t)sizeof (ips))); 18893 } 18894 } 18895 } 18896 } 18897 ILM_WALKER_RELE(ill); 18898 } 18899 rw_exit(&ipst->ips_ill_g_lock); 18900 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18901 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18902 (int)optp->level, (int)optp->name, (int)optp->len)); 18903 qreply(q, mpctl); 18904 return (mp2ctl); 18905 } 18906 18907 /* IPv6 multicast filtered sources. */ 18908 static mblk_t * 18909 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18910 { 18911 struct opthdr *optp; 18912 mblk_t *mp2ctl; 18913 ill_t *ill; 18914 ilm_t *ilm; 18915 ipv6_grpsrc_t ips6; 18916 mblk_t *mp_tail = NULL; 18917 ill_walk_context_t ctx; 18918 zoneid_t zoneid; 18919 int i; 18920 slist_t *sl; 18921 18922 /* 18923 * make a copy of the original message 18924 */ 18925 mp2ctl = copymsg(mpctl); 18926 zoneid = Q_TO_CONN(q)->conn_zoneid; 18927 18928 /* ip6GroupMember table */ 18929 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18930 optp->level = MIB2_IP6; 18931 optp->name = EXPER_IP6_GROUP_SOURCES; 18932 18933 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18934 ill = ILL_START_WALK_V6(&ctx, ipst); 18935 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18936 ILM_WALKER_HOLD(ill); 18937 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18938 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18939 ASSERT(ilm->ilm_ipif == NULL); 18940 ASSERT(ilm->ilm_ill != NULL); 18941 sl = ilm->ilm_filter; 18942 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18943 continue; 18944 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18945 for (i = 0; i < sl->sl_numsrc; i++) { 18946 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18947 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18948 (char *)&ips6, (int)sizeof (ips6))) { 18949 ip1dbg(("ip_snmp_get_mib2_ip6_" 18950 "group_src: failed to allocate " 18951 "%u bytes\n", 18952 (uint_t)sizeof (ips6))); 18953 } 18954 } 18955 } 18956 ILM_WALKER_RELE(ill); 18957 } 18958 rw_exit(&ipst->ips_ill_g_lock); 18959 18960 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18961 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18962 (int)optp->level, (int)optp->name, (int)optp->len)); 18963 qreply(q, mpctl); 18964 return (mp2ctl); 18965 } 18966 18967 /* Multicast routing virtual interface table. */ 18968 static mblk_t * 18969 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18970 { 18971 struct opthdr *optp; 18972 mblk_t *mp2ctl; 18973 18974 /* 18975 * make a copy of the original message 18976 */ 18977 mp2ctl = copymsg(mpctl); 18978 18979 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18980 optp->level = EXPER_DVMRP; 18981 optp->name = EXPER_DVMRP_VIF; 18982 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18983 ip0dbg(("ip_mroute_vif: failed\n")); 18984 } 18985 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18986 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18987 (int)optp->level, (int)optp->name, (int)optp->len)); 18988 qreply(q, mpctl); 18989 return (mp2ctl); 18990 } 18991 18992 /* Multicast routing table. */ 18993 static mblk_t * 18994 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18995 { 18996 struct opthdr *optp; 18997 mblk_t *mp2ctl; 18998 18999 /* 19000 * make a copy of the original message 19001 */ 19002 mp2ctl = copymsg(mpctl); 19003 19004 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19005 optp->level = EXPER_DVMRP; 19006 optp->name = EXPER_DVMRP_MRT; 19007 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19008 ip0dbg(("ip_mroute_mrt: failed\n")); 19009 } 19010 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19011 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19012 (int)optp->level, (int)optp->name, (int)optp->len)); 19013 qreply(q, mpctl); 19014 return (mp2ctl); 19015 } 19016 19017 /* 19018 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19019 * in one IRE walk. 19020 */ 19021 static mblk_t * 19022 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19023 { 19024 struct opthdr *optp; 19025 mblk_t *mp2ctl; /* Returned */ 19026 mblk_t *mp3ctl; /* nettomedia */ 19027 mblk_t *mp4ctl; /* routeattrs */ 19028 iproutedata_t ird; 19029 zoneid_t zoneid; 19030 19031 /* 19032 * make copies of the original message 19033 * - mp2ctl is returned unchanged to the caller for his use 19034 * - mpctl is sent upstream as ipRouteEntryTable 19035 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19036 * - mp4ctl is sent upstream as ipRouteAttributeTable 19037 */ 19038 mp2ctl = copymsg(mpctl); 19039 mp3ctl = copymsg(mpctl); 19040 mp4ctl = copymsg(mpctl); 19041 if (mp3ctl == NULL || mp4ctl == NULL) { 19042 freemsg(mp4ctl); 19043 freemsg(mp3ctl); 19044 freemsg(mp2ctl); 19045 freemsg(mpctl); 19046 return (NULL); 19047 } 19048 19049 bzero(&ird, sizeof (ird)); 19050 19051 ird.ird_route.lp_head = mpctl->b_cont; 19052 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19053 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19054 19055 zoneid = Q_TO_CONN(q)->conn_zoneid; 19056 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19057 19058 /* ipRouteEntryTable in mpctl */ 19059 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19060 optp->level = MIB2_IP; 19061 optp->name = MIB2_IP_ROUTE; 19062 optp->len = msgdsize(ird.ird_route.lp_head); 19063 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19064 (int)optp->level, (int)optp->name, (int)optp->len)); 19065 qreply(q, mpctl); 19066 19067 /* ipNetToMediaEntryTable in mp3ctl */ 19068 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19069 optp->level = MIB2_IP; 19070 optp->name = MIB2_IP_MEDIA; 19071 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19072 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19073 (int)optp->level, (int)optp->name, (int)optp->len)); 19074 qreply(q, mp3ctl); 19075 19076 /* ipRouteAttributeTable in mp4ctl */ 19077 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19078 optp->level = MIB2_IP; 19079 optp->name = EXPER_IP_RTATTR; 19080 optp->len = msgdsize(ird.ird_attrs.lp_head); 19081 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19082 (int)optp->level, (int)optp->name, (int)optp->len)); 19083 if (optp->len == 0) 19084 freemsg(mp4ctl); 19085 else 19086 qreply(q, mp4ctl); 19087 19088 return (mp2ctl); 19089 } 19090 19091 /* 19092 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19093 * ipv6NetToMediaEntryTable in an NDP walk. 19094 */ 19095 static mblk_t * 19096 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19097 { 19098 struct opthdr *optp; 19099 mblk_t *mp2ctl; /* Returned */ 19100 mblk_t *mp3ctl; /* nettomedia */ 19101 mblk_t *mp4ctl; /* routeattrs */ 19102 iproutedata_t ird; 19103 zoneid_t zoneid; 19104 19105 /* 19106 * make copies of the original message 19107 * - mp2ctl is returned unchanged to the caller for his use 19108 * - mpctl is sent upstream as ipv6RouteEntryTable 19109 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19110 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19111 */ 19112 mp2ctl = copymsg(mpctl); 19113 mp3ctl = copymsg(mpctl); 19114 mp4ctl = copymsg(mpctl); 19115 if (mp3ctl == NULL || mp4ctl == NULL) { 19116 freemsg(mp4ctl); 19117 freemsg(mp3ctl); 19118 freemsg(mp2ctl); 19119 freemsg(mpctl); 19120 return (NULL); 19121 } 19122 19123 bzero(&ird, sizeof (ird)); 19124 19125 ird.ird_route.lp_head = mpctl->b_cont; 19126 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19127 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19128 19129 zoneid = Q_TO_CONN(q)->conn_zoneid; 19130 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19131 19132 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19133 optp->level = MIB2_IP6; 19134 optp->name = MIB2_IP6_ROUTE; 19135 optp->len = msgdsize(ird.ird_route.lp_head); 19136 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19137 (int)optp->level, (int)optp->name, (int)optp->len)); 19138 qreply(q, mpctl); 19139 19140 /* ipv6NetToMediaEntryTable in mp3ctl */ 19141 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19142 19143 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19144 optp->level = MIB2_IP6; 19145 optp->name = MIB2_IP6_MEDIA; 19146 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19147 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19148 (int)optp->level, (int)optp->name, (int)optp->len)); 19149 qreply(q, mp3ctl); 19150 19151 /* ipv6RouteAttributeTable in mp4ctl */ 19152 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19153 optp->level = MIB2_IP6; 19154 optp->name = EXPER_IP_RTATTR; 19155 optp->len = msgdsize(ird.ird_attrs.lp_head); 19156 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19157 (int)optp->level, (int)optp->name, (int)optp->len)); 19158 if (optp->len == 0) 19159 freemsg(mp4ctl); 19160 else 19161 qreply(q, mp4ctl); 19162 19163 return (mp2ctl); 19164 } 19165 19166 /* 19167 * IPv6 mib: One per ill 19168 */ 19169 static mblk_t * 19170 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19171 { 19172 struct opthdr *optp; 19173 mblk_t *mp2ctl; 19174 ill_t *ill; 19175 ill_walk_context_t ctx; 19176 mblk_t *mp_tail = NULL; 19177 19178 /* 19179 * Make a copy of the original message 19180 */ 19181 mp2ctl = copymsg(mpctl); 19182 19183 /* fixed length IPv6 structure ... */ 19184 19185 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19186 optp->level = MIB2_IP6; 19187 optp->name = 0; 19188 /* Include "unknown interface" ip6_mib */ 19189 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19190 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19191 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19192 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19193 ipst->ips_ipv6_forward ? 1 : 2); 19194 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19195 ipst->ips_ipv6_def_hops); 19196 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19197 sizeof (mib2_ipIfStatsEntry_t)); 19198 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19199 sizeof (mib2_ipv6AddrEntry_t)); 19200 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19201 sizeof (mib2_ipv6RouteEntry_t)); 19202 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19203 sizeof (mib2_ipv6NetToMediaEntry_t)); 19204 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19205 sizeof (ipv6_member_t)); 19206 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19207 sizeof (ipv6_grpsrc_t)); 19208 19209 /* 19210 * Synchronize 64- and 32-bit counters 19211 */ 19212 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19213 ipIfStatsHCInReceives); 19214 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19215 ipIfStatsHCInDelivers); 19216 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19217 ipIfStatsHCOutRequests); 19218 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19219 ipIfStatsHCOutForwDatagrams); 19220 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19221 ipIfStatsHCOutMcastPkts); 19222 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19223 ipIfStatsHCInMcastPkts); 19224 19225 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19226 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19227 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19228 (uint_t)sizeof (ipst->ips_ip6_mib))); 19229 } 19230 19231 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19232 ill = ILL_START_WALK_V6(&ctx, ipst); 19233 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19234 ill->ill_ip_mib->ipIfStatsIfIndex = 19235 ill->ill_phyint->phyint_ifindex; 19236 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19237 ipst->ips_ipv6_forward ? 1 : 2); 19238 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19239 ill->ill_max_hops); 19240 19241 /* 19242 * Synchronize 64- and 32-bit counters 19243 */ 19244 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19245 ipIfStatsHCInReceives); 19246 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19247 ipIfStatsHCInDelivers); 19248 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19249 ipIfStatsHCOutRequests); 19250 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19251 ipIfStatsHCOutForwDatagrams); 19252 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19253 ipIfStatsHCOutMcastPkts); 19254 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19255 ipIfStatsHCInMcastPkts); 19256 19257 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19258 (char *)ill->ill_ip_mib, 19259 (int)sizeof (*ill->ill_ip_mib))) { 19260 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19261 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19262 } 19263 } 19264 rw_exit(&ipst->ips_ill_g_lock); 19265 19266 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19267 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19268 (int)optp->level, (int)optp->name, (int)optp->len)); 19269 qreply(q, mpctl); 19270 return (mp2ctl); 19271 } 19272 19273 /* 19274 * ICMPv6 mib: One per ill 19275 */ 19276 static mblk_t * 19277 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19278 { 19279 struct opthdr *optp; 19280 mblk_t *mp2ctl; 19281 ill_t *ill; 19282 ill_walk_context_t ctx; 19283 mblk_t *mp_tail = NULL; 19284 /* 19285 * Make a copy of the original message 19286 */ 19287 mp2ctl = copymsg(mpctl); 19288 19289 /* fixed length ICMPv6 structure ... */ 19290 19291 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19292 optp->level = MIB2_ICMP6; 19293 optp->name = 0; 19294 /* Include "unknown interface" icmp6_mib */ 19295 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19296 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19297 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19298 sizeof (mib2_ipv6IfIcmpEntry_t); 19299 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19300 (char *)&ipst->ips_icmp6_mib, 19301 (int)sizeof (ipst->ips_icmp6_mib))) { 19302 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19303 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19304 } 19305 19306 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19307 ill = ILL_START_WALK_V6(&ctx, ipst); 19308 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19309 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19310 ill->ill_phyint->phyint_ifindex; 19311 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19312 (char *)ill->ill_icmp6_mib, 19313 (int)sizeof (*ill->ill_icmp6_mib))) { 19314 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19315 "%u bytes\n", 19316 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19317 } 19318 } 19319 rw_exit(&ipst->ips_ill_g_lock); 19320 19321 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19322 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19323 (int)optp->level, (int)optp->name, (int)optp->len)); 19324 qreply(q, mpctl); 19325 return (mp2ctl); 19326 } 19327 19328 /* 19329 * ire_walk routine to create both ipRouteEntryTable and 19330 * ipRouteAttributeTable in one IRE walk 19331 */ 19332 static void 19333 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19334 { 19335 ill_t *ill; 19336 ipif_t *ipif; 19337 mib2_ipRouteEntry_t *re; 19338 mib2_ipAttributeEntry_t *iae, *iaeptr; 19339 ipaddr_t gw_addr; 19340 tsol_ire_gw_secattr_t *attrp; 19341 tsol_gc_t *gc = NULL; 19342 tsol_gcgrp_t *gcgrp = NULL; 19343 uint_t sacnt = 0; 19344 int i; 19345 19346 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19347 19348 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19349 return; 19350 19351 if ((attrp = ire->ire_gw_secattr) != NULL) { 19352 mutex_enter(&attrp->igsa_lock); 19353 if ((gc = attrp->igsa_gc) != NULL) { 19354 gcgrp = gc->gc_grp; 19355 ASSERT(gcgrp != NULL); 19356 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19357 sacnt = 1; 19358 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19359 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19360 gc = gcgrp->gcgrp_head; 19361 sacnt = gcgrp->gcgrp_count; 19362 } 19363 mutex_exit(&attrp->igsa_lock); 19364 19365 /* do nothing if there's no gc to report */ 19366 if (gc == NULL) { 19367 ASSERT(sacnt == 0); 19368 if (gcgrp != NULL) { 19369 /* we might as well drop the lock now */ 19370 rw_exit(&gcgrp->gcgrp_rwlock); 19371 gcgrp = NULL; 19372 } 19373 attrp = NULL; 19374 } 19375 19376 ASSERT(gc == NULL || (gcgrp != NULL && 19377 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19378 } 19379 ASSERT(sacnt == 0 || gc != NULL); 19380 19381 if (sacnt != 0 && 19382 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19383 kmem_free(re, sizeof (*re)); 19384 rw_exit(&gcgrp->gcgrp_rwlock); 19385 return; 19386 } 19387 19388 /* 19389 * Return all IRE types for route table... let caller pick and choose 19390 */ 19391 re->ipRouteDest = ire->ire_addr; 19392 ipif = ire->ire_ipif; 19393 re->ipRouteIfIndex.o_length = 0; 19394 if (ire->ire_type == IRE_CACHE) { 19395 ill = (ill_t *)ire->ire_stq->q_ptr; 19396 re->ipRouteIfIndex.o_length = 19397 ill->ill_name_length == 0 ? 0 : 19398 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19399 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19400 re->ipRouteIfIndex.o_length); 19401 } else if (ipif != NULL) { 19402 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19403 re->ipRouteIfIndex.o_length = 19404 mi_strlen(re->ipRouteIfIndex.o_bytes); 19405 } 19406 re->ipRouteMetric1 = -1; 19407 re->ipRouteMetric2 = -1; 19408 re->ipRouteMetric3 = -1; 19409 re->ipRouteMetric4 = -1; 19410 19411 gw_addr = ire->ire_gateway_addr; 19412 19413 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19414 re->ipRouteNextHop = ire->ire_src_addr; 19415 else 19416 re->ipRouteNextHop = gw_addr; 19417 /* indirect(4), direct(3), or invalid(2) */ 19418 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19419 re->ipRouteType = 2; 19420 else 19421 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19422 re->ipRouteProto = -1; 19423 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19424 re->ipRouteMask = ire->ire_mask; 19425 re->ipRouteMetric5 = -1; 19426 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19427 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19428 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19429 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19430 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19431 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19432 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19433 re->ipRouteInfo.re_flags = ire->ire_flags; 19434 19435 if (ire->ire_flags & RTF_DYNAMIC) { 19436 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19437 } else { 19438 re->ipRouteInfo.re_ire_type = ire->ire_type; 19439 } 19440 19441 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19442 (char *)re, (int)sizeof (*re))) { 19443 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19444 (uint_t)sizeof (*re))); 19445 } 19446 19447 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19448 iaeptr->iae_routeidx = ird->ird_idx; 19449 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19450 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19451 } 19452 19453 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19454 (char *)iae, sacnt * sizeof (*iae))) { 19455 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19456 (unsigned)(sacnt * sizeof (*iae)))); 19457 } 19458 19459 /* bump route index for next pass */ 19460 ird->ird_idx++; 19461 19462 kmem_free(re, sizeof (*re)); 19463 if (sacnt != 0) 19464 kmem_free(iae, sacnt * sizeof (*iae)); 19465 19466 if (gcgrp != NULL) 19467 rw_exit(&gcgrp->gcgrp_rwlock); 19468 } 19469 19470 /* 19471 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19472 */ 19473 static void 19474 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19475 { 19476 ill_t *ill; 19477 ipif_t *ipif; 19478 mib2_ipv6RouteEntry_t *re; 19479 mib2_ipAttributeEntry_t *iae, *iaeptr; 19480 in6_addr_t gw_addr_v6; 19481 tsol_ire_gw_secattr_t *attrp; 19482 tsol_gc_t *gc = NULL; 19483 tsol_gcgrp_t *gcgrp = NULL; 19484 uint_t sacnt = 0; 19485 int i; 19486 19487 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19488 19489 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19490 return; 19491 19492 if ((attrp = ire->ire_gw_secattr) != NULL) { 19493 mutex_enter(&attrp->igsa_lock); 19494 if ((gc = attrp->igsa_gc) != NULL) { 19495 gcgrp = gc->gc_grp; 19496 ASSERT(gcgrp != NULL); 19497 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19498 sacnt = 1; 19499 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19500 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19501 gc = gcgrp->gcgrp_head; 19502 sacnt = gcgrp->gcgrp_count; 19503 } 19504 mutex_exit(&attrp->igsa_lock); 19505 19506 /* do nothing if there's no gc to report */ 19507 if (gc == NULL) { 19508 ASSERT(sacnt == 0); 19509 if (gcgrp != NULL) { 19510 /* we might as well drop the lock now */ 19511 rw_exit(&gcgrp->gcgrp_rwlock); 19512 gcgrp = NULL; 19513 } 19514 attrp = NULL; 19515 } 19516 19517 ASSERT(gc == NULL || (gcgrp != NULL && 19518 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19519 } 19520 ASSERT(sacnt == 0 || gc != NULL); 19521 19522 if (sacnt != 0 && 19523 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19524 kmem_free(re, sizeof (*re)); 19525 rw_exit(&gcgrp->gcgrp_rwlock); 19526 return; 19527 } 19528 19529 /* 19530 * Return all IRE types for route table... let caller pick and choose 19531 */ 19532 re->ipv6RouteDest = ire->ire_addr_v6; 19533 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19534 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19535 re->ipv6RouteIfIndex.o_length = 0; 19536 ipif = ire->ire_ipif; 19537 if (ire->ire_type == IRE_CACHE) { 19538 ill = (ill_t *)ire->ire_stq->q_ptr; 19539 re->ipv6RouteIfIndex.o_length = 19540 ill->ill_name_length == 0 ? 0 : 19541 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19542 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19543 re->ipv6RouteIfIndex.o_length); 19544 } else if (ipif != NULL) { 19545 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19546 re->ipv6RouteIfIndex.o_length = 19547 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19548 } 19549 19550 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19551 19552 mutex_enter(&ire->ire_lock); 19553 gw_addr_v6 = ire->ire_gateway_addr_v6; 19554 mutex_exit(&ire->ire_lock); 19555 19556 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19557 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19558 else 19559 re->ipv6RouteNextHop = gw_addr_v6; 19560 19561 /* remote(4), local(3), or discard(2) */ 19562 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19563 re->ipv6RouteType = 2; 19564 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19565 re->ipv6RouteType = 3; 19566 else 19567 re->ipv6RouteType = 4; 19568 19569 re->ipv6RouteProtocol = -1; 19570 re->ipv6RoutePolicy = 0; 19571 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19572 re->ipv6RouteNextHopRDI = 0; 19573 re->ipv6RouteWeight = 0; 19574 re->ipv6RouteMetric = 0; 19575 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19576 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19577 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19578 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19579 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19580 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19581 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19582 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19583 19584 if (ire->ire_flags & RTF_DYNAMIC) { 19585 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19586 } else { 19587 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19588 } 19589 19590 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19591 (char *)re, (int)sizeof (*re))) { 19592 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19593 (uint_t)sizeof (*re))); 19594 } 19595 19596 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19597 iaeptr->iae_routeidx = ird->ird_idx; 19598 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19599 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19600 } 19601 19602 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19603 (char *)iae, sacnt * sizeof (*iae))) { 19604 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19605 (unsigned)(sacnt * sizeof (*iae)))); 19606 } 19607 19608 /* bump route index for next pass */ 19609 ird->ird_idx++; 19610 19611 kmem_free(re, sizeof (*re)); 19612 if (sacnt != 0) 19613 kmem_free(iae, sacnt * sizeof (*iae)); 19614 19615 if (gcgrp != NULL) 19616 rw_exit(&gcgrp->gcgrp_rwlock); 19617 } 19618 19619 /* 19620 * ndp_walk routine to create ipv6NetToMediaEntryTable 19621 */ 19622 static int 19623 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19624 { 19625 ill_t *ill; 19626 mib2_ipv6NetToMediaEntry_t ntme; 19627 dl_unitdata_req_t *dl; 19628 19629 ill = nce->nce_ill; 19630 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19631 return (0); 19632 19633 /* 19634 * Neighbor cache entry attached to IRE with on-link 19635 * destination. 19636 */ 19637 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19638 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19639 if ((ill->ill_flags & ILLF_XRESOLV) && 19640 (nce->nce_res_mp != NULL)) { 19641 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19642 ntme.ipv6NetToMediaPhysAddress.o_length = 19643 dl->dl_dest_addr_length; 19644 } else { 19645 ntme.ipv6NetToMediaPhysAddress.o_length = 19646 ill->ill_phys_addr_length; 19647 } 19648 if (nce->nce_res_mp != NULL) { 19649 bcopy((char *)nce->nce_res_mp->b_rptr + 19650 NCE_LL_ADDR_OFFSET(ill), 19651 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19652 ntme.ipv6NetToMediaPhysAddress.o_length); 19653 } else { 19654 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19655 ill->ill_phys_addr_length); 19656 } 19657 /* 19658 * Note: Returns ND_* states. Should be: 19659 * reachable(1), stale(2), delay(3), probe(4), 19660 * invalid(5), unknown(6) 19661 */ 19662 ntme.ipv6NetToMediaState = nce->nce_state; 19663 ntme.ipv6NetToMediaLastUpdated = 0; 19664 19665 /* other(1), dynamic(2), static(3), local(4) */ 19666 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19667 ntme.ipv6NetToMediaType = 4; 19668 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19669 ntme.ipv6NetToMediaType = 1; 19670 } else { 19671 ntme.ipv6NetToMediaType = 2; 19672 } 19673 19674 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19675 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19676 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19677 (uint_t)sizeof (ntme))); 19678 } 19679 return (0); 19680 } 19681 19682 /* 19683 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19684 */ 19685 /* ARGSUSED */ 19686 int 19687 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19688 { 19689 switch (level) { 19690 case MIB2_IP: 19691 case MIB2_ICMP: 19692 switch (name) { 19693 default: 19694 break; 19695 } 19696 return (1); 19697 default: 19698 return (1); 19699 } 19700 } 19701 19702 /* 19703 * When there exists both a 64- and 32-bit counter of a particular type 19704 * (i.e., InReceives), only the 64-bit counters are added. 19705 */ 19706 void 19707 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19708 { 19709 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19710 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19711 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19712 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19713 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19714 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19715 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19716 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19717 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19718 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19719 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19720 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19721 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19722 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19723 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19724 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19725 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19726 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19727 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19728 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19729 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19730 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19731 o2->ipIfStatsInWrongIPVersion); 19732 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19733 o2->ipIfStatsInWrongIPVersion); 19734 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19735 o2->ipIfStatsOutSwitchIPVersion); 19736 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19737 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19738 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19739 o2->ipIfStatsHCInForwDatagrams); 19740 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19741 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19742 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19743 o2->ipIfStatsHCOutForwDatagrams); 19744 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19745 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19746 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19747 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19748 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19749 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19750 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19751 o2->ipIfStatsHCOutMcastOctets); 19752 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19753 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19754 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19755 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19756 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19757 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19758 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19759 } 19760 19761 void 19762 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19763 { 19764 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19765 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19766 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19767 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19768 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19769 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19770 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19771 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19772 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19773 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19774 o2->ipv6IfIcmpInRouterSolicits); 19775 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19776 o2->ipv6IfIcmpInRouterAdvertisements); 19777 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19778 o2->ipv6IfIcmpInNeighborSolicits); 19779 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19780 o2->ipv6IfIcmpInNeighborAdvertisements); 19781 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19782 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19783 o2->ipv6IfIcmpInGroupMembQueries); 19784 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19785 o2->ipv6IfIcmpInGroupMembResponses); 19786 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19787 o2->ipv6IfIcmpInGroupMembReductions); 19788 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19789 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19790 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19791 o2->ipv6IfIcmpOutDestUnreachs); 19792 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19793 o2->ipv6IfIcmpOutAdminProhibs); 19794 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19795 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19796 o2->ipv6IfIcmpOutParmProblems); 19797 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19798 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19799 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19800 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19801 o2->ipv6IfIcmpOutRouterSolicits); 19802 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19803 o2->ipv6IfIcmpOutRouterAdvertisements); 19804 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19805 o2->ipv6IfIcmpOutNeighborSolicits); 19806 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19807 o2->ipv6IfIcmpOutNeighborAdvertisements); 19808 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19809 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19810 o2->ipv6IfIcmpOutGroupMembQueries); 19811 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19812 o2->ipv6IfIcmpOutGroupMembResponses); 19813 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19814 o2->ipv6IfIcmpOutGroupMembReductions); 19815 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19816 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19817 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19818 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19819 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19820 o2->ipv6IfIcmpInBadNeighborSolicitations); 19821 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19822 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19823 o2->ipv6IfIcmpInGroupMembTotal); 19824 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19825 o2->ipv6IfIcmpInGroupMembBadQueries); 19826 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19827 o2->ipv6IfIcmpInGroupMembBadReports); 19828 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19829 o2->ipv6IfIcmpInGroupMembOurReports); 19830 } 19831 19832 /* 19833 * Called before the options are updated to check if this packet will 19834 * be source routed from here. 19835 * This routine assumes that the options are well formed i.e. that they 19836 * have already been checked. 19837 */ 19838 static boolean_t 19839 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19840 { 19841 ipoptp_t opts; 19842 uchar_t *opt; 19843 uint8_t optval; 19844 uint8_t optlen; 19845 ipaddr_t dst; 19846 ire_t *ire; 19847 19848 if (IS_SIMPLE_IPH(ipha)) { 19849 ip2dbg(("not source routed\n")); 19850 return (B_FALSE); 19851 } 19852 dst = ipha->ipha_dst; 19853 for (optval = ipoptp_first(&opts, ipha); 19854 optval != IPOPT_EOL; 19855 optval = ipoptp_next(&opts)) { 19856 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19857 opt = opts.ipoptp_cur; 19858 optlen = opts.ipoptp_len; 19859 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19860 optval, optlen)); 19861 switch (optval) { 19862 uint32_t off; 19863 case IPOPT_SSRR: 19864 case IPOPT_LSRR: 19865 /* 19866 * If dst is one of our addresses and there are some 19867 * entries left in the source route return (true). 19868 */ 19869 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19870 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19871 if (ire == NULL) { 19872 ip2dbg(("ip_source_routed: not next" 19873 " source route 0x%x\n", 19874 ntohl(dst))); 19875 return (B_FALSE); 19876 } 19877 ire_refrele(ire); 19878 off = opt[IPOPT_OFFSET]; 19879 off--; 19880 if (optlen < IP_ADDR_LEN || 19881 off > optlen - IP_ADDR_LEN) { 19882 /* End of source route */ 19883 ip1dbg(("ip_source_routed: end of SR\n")); 19884 return (B_FALSE); 19885 } 19886 return (B_TRUE); 19887 } 19888 } 19889 ip2dbg(("not source routed\n")); 19890 return (B_FALSE); 19891 } 19892 19893 /* 19894 * Check if the packet contains any source route. 19895 */ 19896 static boolean_t 19897 ip_source_route_included(ipha_t *ipha) 19898 { 19899 ipoptp_t opts; 19900 uint8_t optval; 19901 19902 if (IS_SIMPLE_IPH(ipha)) 19903 return (B_FALSE); 19904 for (optval = ipoptp_first(&opts, ipha); 19905 optval != IPOPT_EOL; 19906 optval = ipoptp_next(&opts)) { 19907 switch (optval) { 19908 case IPOPT_SSRR: 19909 case IPOPT_LSRR: 19910 return (B_TRUE); 19911 } 19912 } 19913 return (B_FALSE); 19914 } 19915 19916 /* 19917 * Called when the IRE expiration timer fires. 19918 */ 19919 void 19920 ip_trash_timer_expire(void *args) 19921 { 19922 int flush_flag = 0; 19923 ire_expire_arg_t iea; 19924 ip_stack_t *ipst = (ip_stack_t *)args; 19925 19926 iea.iea_ipst = ipst; /* No netstack_hold */ 19927 19928 /* 19929 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19930 * This lock makes sure that a new invocation of this function 19931 * that occurs due to an almost immediate timer firing will not 19932 * progress beyond this point until the current invocation is done 19933 */ 19934 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19935 ipst->ips_ip_ire_expire_id = 0; 19936 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19937 19938 /* Periodic timer */ 19939 if (ipst->ips_ip_ire_arp_time_elapsed >= 19940 ipst->ips_ip_ire_arp_interval) { 19941 /* 19942 * Remove all IRE_CACHE entries since they might 19943 * contain arp information. 19944 */ 19945 flush_flag |= FLUSH_ARP_TIME; 19946 ipst->ips_ip_ire_arp_time_elapsed = 0; 19947 IP_STAT(ipst, ip_ire_arp_timer_expired); 19948 } 19949 if (ipst->ips_ip_ire_rd_time_elapsed >= 19950 ipst->ips_ip_ire_redir_interval) { 19951 /* Remove all redirects */ 19952 flush_flag |= FLUSH_REDIRECT_TIME; 19953 ipst->ips_ip_ire_rd_time_elapsed = 0; 19954 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19955 } 19956 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19957 ipst->ips_ip_ire_pathmtu_interval) { 19958 /* Increase path mtu */ 19959 flush_flag |= FLUSH_MTU_TIME; 19960 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19961 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19962 } 19963 19964 /* 19965 * Optimize for the case when there are no redirects in the 19966 * ftable, that is, no need to walk the ftable in that case. 19967 */ 19968 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19969 iea.iea_flush_flag = flush_flag; 19970 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19971 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19972 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19973 NULL, ALL_ZONES, ipst); 19974 } 19975 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19976 ipst->ips_ip_redirect_cnt > 0) { 19977 iea.iea_flush_flag = flush_flag; 19978 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19979 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19980 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19981 } 19982 if (flush_flag & FLUSH_MTU_TIME) { 19983 /* 19984 * Walk all IPv6 IRE's and update them 19985 * Note that ARP and redirect timers are not 19986 * needed since NUD handles stale entries. 19987 */ 19988 flush_flag = FLUSH_MTU_TIME; 19989 iea.iea_flush_flag = flush_flag; 19990 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19991 ALL_ZONES, ipst); 19992 } 19993 19994 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19995 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19996 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19997 19998 /* 19999 * Hold the lock to serialize timeout calls and prevent 20000 * stale values in ip_ire_expire_id. Otherwise it is possible 20001 * for the timer to fire and a new invocation of this function 20002 * to start before the return value of timeout has been stored 20003 * in ip_ire_expire_id by the current invocation. 20004 */ 20005 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20006 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20007 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20008 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20009 } 20010 20011 /* 20012 * Called by the memory allocator subsystem directly, when the system 20013 * is running low on memory. 20014 */ 20015 /* ARGSUSED */ 20016 void 20017 ip_trash_ire_reclaim(void *args) 20018 { 20019 netstack_handle_t nh; 20020 netstack_t *ns; 20021 20022 netstack_next_init(&nh); 20023 while ((ns = netstack_next(&nh)) != NULL) { 20024 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20025 netstack_rele(ns); 20026 } 20027 netstack_next_fini(&nh); 20028 } 20029 20030 static void 20031 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20032 { 20033 ire_cache_count_t icc; 20034 ire_cache_reclaim_t icr; 20035 ncc_cache_count_t ncc; 20036 nce_cache_reclaim_t ncr; 20037 uint_t delete_cnt; 20038 /* 20039 * Memory reclaim call back. 20040 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20041 * Then, with a target of freeing 1/Nth of IRE_CACHE 20042 * entries, determine what fraction to free for 20043 * each category of IRE_CACHE entries giving absolute priority 20044 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20045 * entry will be freed unless all offlink entries are freed). 20046 */ 20047 icc.icc_total = 0; 20048 icc.icc_unused = 0; 20049 icc.icc_offlink = 0; 20050 icc.icc_pmtu = 0; 20051 icc.icc_onlink = 0; 20052 ire_walk(ire_cache_count, (char *)&icc, ipst); 20053 20054 /* 20055 * Free NCEs for IPv6 like the onlink ires. 20056 */ 20057 ncc.ncc_total = 0; 20058 ncc.ncc_host = 0; 20059 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20060 20061 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20062 icc.icc_pmtu + icc.icc_onlink); 20063 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20064 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20065 if (delete_cnt == 0) 20066 return; 20067 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20068 /* Always delete all unused offlink entries */ 20069 icr.icr_ipst = ipst; 20070 icr.icr_unused = 1; 20071 if (delete_cnt <= icc.icc_unused) { 20072 /* 20073 * Only need to free unused entries. In other words, 20074 * there are enough unused entries to free to meet our 20075 * target number of freed ire cache entries. 20076 */ 20077 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20078 ncr.ncr_host = 0; 20079 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20080 /* 20081 * Only need to free unused entries, plus a fraction of offlink 20082 * entries. It follows from the first if statement that 20083 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20084 */ 20085 delete_cnt -= icc.icc_unused; 20086 /* Round up # deleted by truncating fraction */ 20087 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20088 icr.icr_pmtu = icr.icr_onlink = 0; 20089 ncr.ncr_host = 0; 20090 } else if (delete_cnt <= 20091 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20092 /* 20093 * Free all unused and offlink entries, plus a fraction of 20094 * pmtu entries. It follows from the previous if statement 20095 * that icc_pmtu is non-zero, and that 20096 * delete_cnt != icc_unused + icc_offlink. 20097 */ 20098 icr.icr_offlink = 1; 20099 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20100 /* Round up # deleted by truncating fraction */ 20101 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20102 icr.icr_onlink = 0; 20103 ncr.ncr_host = 0; 20104 } else { 20105 /* 20106 * Free all unused, offlink, and pmtu entries, plus a fraction 20107 * of onlink entries. If we're here, then we know that 20108 * icc_onlink is non-zero, and that 20109 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20110 */ 20111 icr.icr_offlink = icr.icr_pmtu = 1; 20112 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20113 icc.icc_pmtu; 20114 /* Round up # deleted by truncating fraction */ 20115 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20116 /* Using the same delete fraction as for onlink IREs */ 20117 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20118 } 20119 #ifdef DEBUG 20120 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20121 "fractions %d/%d/%d/%d\n", 20122 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20123 icc.icc_unused, icc.icc_offlink, 20124 icc.icc_pmtu, icc.icc_onlink, 20125 icr.icr_unused, icr.icr_offlink, 20126 icr.icr_pmtu, icr.icr_onlink)); 20127 #endif 20128 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20129 if (ncr.ncr_host != 0) 20130 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20131 (uchar_t *)&ncr, ipst); 20132 #ifdef DEBUG 20133 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20134 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20135 ire_walk(ire_cache_count, (char *)&icc, ipst); 20136 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20137 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20138 icc.icc_pmtu, icc.icc_onlink)); 20139 #endif 20140 } 20141 20142 /* 20143 * ip_unbind is called when a copy of an unbind request is received from the 20144 * upper level protocol. We remove this conn from any fanout hash list it is 20145 * on, and zero out the bind information. No reply is expected up above. 20146 */ 20147 mblk_t * 20148 ip_unbind(queue_t *q, mblk_t *mp) 20149 { 20150 conn_t *connp = Q_TO_CONN(q); 20151 20152 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20153 20154 if (is_system_labeled() && connp->conn_anon_port) { 20155 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20156 connp->conn_mlp_type, connp->conn_ulp, 20157 ntohs(connp->conn_lport), B_FALSE); 20158 connp->conn_anon_port = 0; 20159 } 20160 connp->conn_mlp_type = mlptSingle; 20161 20162 ipcl_hash_remove(connp); 20163 20164 ASSERT(mp->b_cont == NULL); 20165 /* 20166 * Convert mp into a T_OK_ACK 20167 */ 20168 mp = mi_tpi_ok_ack_alloc(mp); 20169 20170 /* 20171 * should not happen in practice... T_OK_ACK is smaller than the 20172 * original message. 20173 */ 20174 if (mp == NULL) 20175 return (NULL); 20176 20177 return (mp); 20178 } 20179 20180 /* 20181 * Write side put procedure. Outbound data, IOCTLs, responses from 20182 * resolvers, etc, come down through here. 20183 * 20184 * arg2 is always a queue_t *. 20185 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20186 * the zoneid. 20187 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20188 */ 20189 void 20190 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20191 { 20192 ip_output_options(arg, mp, arg2, caller, &zero_info); 20193 } 20194 20195 void 20196 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20197 ip_opt_info_t *infop) 20198 { 20199 conn_t *connp = NULL; 20200 queue_t *q = (queue_t *)arg2; 20201 ipha_t *ipha; 20202 #define rptr ((uchar_t *)ipha) 20203 ire_t *ire = NULL; 20204 ire_t *sctp_ire = NULL; 20205 uint32_t v_hlen_tos_len; 20206 ipaddr_t dst; 20207 mblk_t *first_mp = NULL; 20208 boolean_t mctl_present; 20209 ipsec_out_t *io; 20210 int match_flags; 20211 ill_t *attach_ill = NULL; 20212 /* Bind to IPIF_NOFAILOVER ill etc. */ 20213 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20214 ipif_t *dst_ipif; 20215 boolean_t multirt_need_resolve = B_FALSE; 20216 mblk_t *copy_mp = NULL; 20217 int err; 20218 zoneid_t zoneid; 20219 boolean_t need_decref = B_FALSE; 20220 boolean_t ignore_dontroute = B_FALSE; 20221 boolean_t ignore_nexthop = B_FALSE; 20222 boolean_t ip_nexthop = B_FALSE; 20223 ipaddr_t nexthop_addr; 20224 ip_stack_t *ipst; 20225 20226 #ifdef _BIG_ENDIAN 20227 #define V_HLEN (v_hlen_tos_len >> 24) 20228 #else 20229 #define V_HLEN (v_hlen_tos_len & 0xFF) 20230 #endif 20231 20232 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20233 "ip_wput_start: q %p", q); 20234 20235 /* 20236 * ip_wput fast path 20237 */ 20238 20239 /* is packet from ARP ? */ 20240 if (q->q_next != NULL) { 20241 zoneid = (zoneid_t)(uintptr_t)arg; 20242 goto qnext; 20243 } 20244 20245 connp = (conn_t *)arg; 20246 ASSERT(connp != NULL); 20247 zoneid = connp->conn_zoneid; 20248 ipst = connp->conn_netstack->netstack_ip; 20249 20250 /* is queue flow controlled? */ 20251 if ((q->q_first != NULL || connp->conn_draining) && 20252 (caller == IP_WPUT)) { 20253 ASSERT(!need_decref); 20254 (void) putq(q, mp); 20255 return; 20256 } 20257 20258 /* Multidata transmit? */ 20259 if (DB_TYPE(mp) == M_MULTIDATA) { 20260 /* 20261 * We should never get here, since all Multidata messages 20262 * originating from tcp should have been directed over to 20263 * tcp_multisend() in the first place. 20264 */ 20265 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20266 freemsg(mp); 20267 return; 20268 } else if (DB_TYPE(mp) != M_DATA) 20269 goto notdata; 20270 20271 if (mp->b_flag & MSGHASREF) { 20272 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20273 mp->b_flag &= ~MSGHASREF; 20274 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20275 need_decref = B_TRUE; 20276 } 20277 ipha = (ipha_t *)mp->b_rptr; 20278 20279 /* is IP header non-aligned or mblk smaller than basic IP header */ 20280 #ifndef SAFETY_BEFORE_SPEED 20281 if (!OK_32PTR(rptr) || 20282 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20283 goto hdrtoosmall; 20284 #endif 20285 20286 ASSERT(OK_32PTR(ipha)); 20287 20288 /* 20289 * This function assumes that mp points to an IPv4 packet. If it's the 20290 * wrong version, we'll catch it again in ip_output_v6. 20291 * 20292 * Note that this is *only* locally-generated output here, and never 20293 * forwarded data, and that we need to deal only with transports that 20294 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20295 * label.) 20296 */ 20297 if (is_system_labeled() && 20298 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20299 !connp->conn_ulp_labeled) { 20300 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20301 connp->conn_mac_exempt, ipst); 20302 ipha = (ipha_t *)mp->b_rptr; 20303 if (err != 0) { 20304 first_mp = mp; 20305 if (err == EINVAL) 20306 goto icmp_parameter_problem; 20307 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20308 goto discard_pkt; 20309 } 20310 } 20311 20312 ASSERT(infop != NULL); 20313 20314 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20315 /* 20316 * IP_PKTINFO ancillary option is present. 20317 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20318 * allows using address of any zone as the source address. 20319 */ 20320 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20321 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20322 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20323 if (ire == NULL) 20324 goto drop_pkt; 20325 ire_refrele(ire); 20326 ire = NULL; 20327 } 20328 20329 /* 20330 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20331 * passed in IP_PKTINFO. 20332 */ 20333 if (infop->ip_opt_ill_index != 0 && 20334 connp->conn_outgoing_ill == NULL && 20335 connp->conn_nofailover_ill == NULL) { 20336 20337 xmit_ill = ill_lookup_on_ifindex( 20338 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20339 ipst); 20340 20341 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20342 goto drop_pkt; 20343 /* 20344 * check that there is an ipif belonging 20345 * to our zone. IPCL_ZONEID is not used because 20346 * IP_ALLZONES option is valid only when the ill is 20347 * accessible from all zones i.e has a valid ipif in 20348 * all zones. 20349 */ 20350 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20351 goto drop_pkt; 20352 } 20353 } 20354 20355 /* 20356 * If there is a policy, try to attach an ipsec_out in 20357 * the front. At the end, first_mp either points to a 20358 * M_DATA message or IPSEC_OUT message linked to a 20359 * M_DATA message. We have to do it now as we might 20360 * lose the "conn" if we go through ip_newroute. 20361 */ 20362 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20363 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20364 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20365 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20366 if (need_decref) 20367 CONN_DEC_REF(connp); 20368 return; 20369 } else { 20370 ASSERT(mp->b_datap->db_type == M_CTL); 20371 first_mp = mp; 20372 mp = mp->b_cont; 20373 mctl_present = B_TRUE; 20374 } 20375 } else { 20376 first_mp = mp; 20377 mctl_present = B_FALSE; 20378 } 20379 20380 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20381 20382 /* is wrong version or IP options present */ 20383 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20384 goto version_hdrlen_check; 20385 dst = ipha->ipha_dst; 20386 20387 if (connp->conn_nofailover_ill != NULL) { 20388 attach_ill = conn_get_held_ill(connp, 20389 &connp->conn_nofailover_ill, &err); 20390 if (err == ILL_LOOKUP_FAILED) { 20391 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20392 if (need_decref) 20393 CONN_DEC_REF(connp); 20394 freemsg(first_mp); 20395 return; 20396 } 20397 } 20398 20399 /* If IP_BOUND_IF has been set, use that ill. */ 20400 if (connp->conn_outgoing_ill != NULL) { 20401 xmit_ill = conn_get_held_ill(connp, 20402 &connp->conn_outgoing_ill, &err); 20403 if (err == ILL_LOOKUP_FAILED) 20404 goto drop_pkt; 20405 20406 goto send_from_ill; 20407 } 20408 20409 /* is packet multicast? */ 20410 if (CLASSD(dst)) 20411 goto multicast; 20412 20413 /* 20414 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20415 * takes precedence over conn_dontroute and conn_nexthop_set 20416 */ 20417 if (xmit_ill != NULL) 20418 goto send_from_ill; 20419 20420 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20421 /* 20422 * If the destination is a broadcast, local, or loopback 20423 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20424 * standard path. 20425 */ 20426 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20427 if ((ire == NULL) || (ire->ire_type & 20428 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20429 if (ire != NULL) { 20430 ire_refrele(ire); 20431 /* No more access to ire */ 20432 ire = NULL; 20433 } 20434 /* 20435 * bypass routing checks and go directly to interface. 20436 */ 20437 if (connp->conn_dontroute) 20438 goto dontroute; 20439 20440 ASSERT(connp->conn_nexthop_set); 20441 ip_nexthop = B_TRUE; 20442 nexthop_addr = connp->conn_nexthop_v4; 20443 goto send_from_ill; 20444 } 20445 20446 /* Must be a broadcast, a loopback or a local ire */ 20447 ire_refrele(ire); 20448 /* No more access to ire */ 20449 ire = NULL; 20450 } 20451 20452 if (attach_ill != NULL) 20453 goto send_from_ill; 20454 20455 /* 20456 * We cache IRE_CACHEs to avoid lookups. We don't do 20457 * this for the tcp global queue and listen end point 20458 * as it does not really have a real destination to 20459 * talk to. This is also true for SCTP. 20460 */ 20461 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20462 !connp->conn_fully_bound) { 20463 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20464 if (ire == NULL) 20465 goto noirefound; 20466 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20467 "ip_wput_end: q %p (%S)", q, "end"); 20468 20469 /* 20470 * Check if the ire has the RTF_MULTIRT flag, inherited 20471 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20472 */ 20473 if (ire->ire_flags & RTF_MULTIRT) { 20474 20475 /* 20476 * Force the TTL of multirouted packets if required. 20477 * The TTL of such packets is bounded by the 20478 * ip_multirt_ttl ndd variable. 20479 */ 20480 if ((ipst->ips_ip_multirt_ttl > 0) && 20481 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20482 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20483 "(was %d), dst 0x%08x\n", 20484 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20485 ntohl(ire->ire_addr))); 20486 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20487 } 20488 /* 20489 * We look at this point if there are pending 20490 * unresolved routes. ire_multirt_resolvable() 20491 * checks in O(n) that all IRE_OFFSUBNET ire 20492 * entries for the packet's destination and 20493 * flagged RTF_MULTIRT are currently resolved. 20494 * If some remain unresolved, we make a copy 20495 * of the current message. It will be used 20496 * to initiate additional route resolutions. 20497 */ 20498 multirt_need_resolve = 20499 ire_multirt_need_resolve(ire->ire_addr, 20500 MBLK_GETLABEL(first_mp), ipst); 20501 ip2dbg(("ip_wput[TCP]: ire %p, " 20502 "multirt_need_resolve %d, first_mp %p\n", 20503 (void *)ire, multirt_need_resolve, 20504 (void *)first_mp)); 20505 if (multirt_need_resolve) { 20506 copy_mp = copymsg(first_mp); 20507 if (copy_mp != NULL) { 20508 MULTIRT_DEBUG_TAG(copy_mp); 20509 } 20510 } 20511 } 20512 20513 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20514 20515 /* 20516 * Try to resolve another multiroute if 20517 * ire_multirt_need_resolve() deemed it necessary. 20518 */ 20519 if (copy_mp != NULL) 20520 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20521 if (need_decref) 20522 CONN_DEC_REF(connp); 20523 return; 20524 } 20525 20526 /* 20527 * Access to conn_ire_cache. (protected by conn_lock) 20528 * 20529 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20530 * the ire bucket lock here to check for CONDEMNED as it is okay to 20531 * send a packet or two with the IRE_CACHE that is going away. 20532 * Access to the ire requires an ire refhold on the ire prior to 20533 * its use since an interface unplumb thread may delete the cached 20534 * ire and release the refhold at any time. 20535 * 20536 * Caching an ire in the conn_ire_cache 20537 * 20538 * o Caching an ire pointer in the conn requires a strict check for 20539 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20540 * ires before cleaning up the conns. So the caching of an ire pointer 20541 * in the conn is done after making sure under the bucket lock that the 20542 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20543 * caching an ire after the unplumb thread has cleaned up the conn. 20544 * If the conn does not send a packet subsequently the unplumb thread 20545 * will be hanging waiting for the ire count to drop to zero. 20546 * 20547 * o We also need to atomically test for a null conn_ire_cache and 20548 * set the conn_ire_cache under the the protection of the conn_lock 20549 * to avoid races among concurrent threads trying to simultaneously 20550 * cache an ire in the conn_ire_cache. 20551 */ 20552 mutex_enter(&connp->conn_lock); 20553 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20554 20555 if (ire != NULL && ire->ire_addr == dst && 20556 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20557 20558 IRE_REFHOLD(ire); 20559 mutex_exit(&connp->conn_lock); 20560 20561 } else { 20562 boolean_t cached = B_FALSE; 20563 connp->conn_ire_cache = NULL; 20564 mutex_exit(&connp->conn_lock); 20565 /* Release the old ire */ 20566 if (ire != NULL && sctp_ire == NULL) 20567 IRE_REFRELE_NOTR(ire); 20568 20569 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20570 if (ire == NULL) 20571 goto noirefound; 20572 IRE_REFHOLD_NOTR(ire); 20573 20574 mutex_enter(&connp->conn_lock); 20575 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20576 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20577 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20578 if (connp->conn_ulp == IPPROTO_TCP) 20579 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20580 connp->conn_ire_cache = ire; 20581 cached = B_TRUE; 20582 } 20583 rw_exit(&ire->ire_bucket->irb_lock); 20584 } 20585 mutex_exit(&connp->conn_lock); 20586 20587 /* 20588 * We can continue to use the ire but since it was 20589 * not cached, we should drop the extra reference. 20590 */ 20591 if (!cached) 20592 IRE_REFRELE_NOTR(ire); 20593 } 20594 20595 20596 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20597 "ip_wput_end: q %p (%S)", q, "end"); 20598 20599 /* 20600 * Check if the ire has the RTF_MULTIRT flag, inherited 20601 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20602 */ 20603 if (ire->ire_flags & RTF_MULTIRT) { 20604 20605 /* 20606 * Force the TTL of multirouted packets if required. 20607 * The TTL of such packets is bounded by the 20608 * ip_multirt_ttl ndd variable. 20609 */ 20610 if ((ipst->ips_ip_multirt_ttl > 0) && 20611 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20612 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20613 "(was %d), dst 0x%08x\n", 20614 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20615 ntohl(ire->ire_addr))); 20616 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20617 } 20618 20619 /* 20620 * At this point, we check to see if there are any pending 20621 * unresolved routes. ire_multirt_resolvable() 20622 * checks in O(n) that all IRE_OFFSUBNET ire 20623 * entries for the packet's destination and 20624 * flagged RTF_MULTIRT are currently resolved. 20625 * If some remain unresolved, we make a copy 20626 * of the current message. It will be used 20627 * to initiate additional route resolutions. 20628 */ 20629 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20630 MBLK_GETLABEL(first_mp), ipst); 20631 ip2dbg(("ip_wput[not TCP]: ire %p, " 20632 "multirt_need_resolve %d, first_mp %p\n", 20633 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20634 if (multirt_need_resolve) { 20635 copy_mp = copymsg(first_mp); 20636 if (copy_mp != NULL) { 20637 MULTIRT_DEBUG_TAG(copy_mp); 20638 } 20639 } 20640 } 20641 20642 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20643 20644 /* 20645 * Try to resolve another multiroute if 20646 * ire_multirt_resolvable() deemed it necessary 20647 */ 20648 if (copy_mp != NULL) 20649 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20650 if (need_decref) 20651 CONN_DEC_REF(connp); 20652 return; 20653 20654 qnext: 20655 /* 20656 * Upper Level Protocols pass down complete IP datagrams 20657 * as M_DATA messages. Everything else is a sideshow. 20658 * 20659 * 1) We could be re-entering ip_wput because of ip_neworute 20660 * in which case we could have a IPSEC_OUT message. We 20661 * need to pass through ip_wput like other datagrams and 20662 * hence cannot branch to ip_wput_nondata. 20663 * 20664 * 2) ARP, AH, ESP, and other clients who are on the module 20665 * instance of IP stream, give us something to deal with. 20666 * We will handle AH and ESP here and rest in ip_wput_nondata. 20667 * 20668 * 3) ICMP replies also could come here. 20669 */ 20670 ipst = ILLQ_TO_IPST(q); 20671 20672 if (DB_TYPE(mp) != M_DATA) { 20673 notdata: 20674 if (DB_TYPE(mp) == M_CTL) { 20675 /* 20676 * M_CTL messages are used by ARP, AH and ESP to 20677 * communicate with IP. We deal with IPSEC_IN and 20678 * IPSEC_OUT here. ip_wput_nondata handles other 20679 * cases. 20680 */ 20681 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20682 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20683 first_mp = mp->b_cont; 20684 first_mp->b_flag &= ~MSGHASREF; 20685 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20686 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20687 CONN_DEC_REF(connp); 20688 connp = NULL; 20689 } 20690 if (ii->ipsec_info_type == IPSEC_IN) { 20691 /* 20692 * Either this message goes back to 20693 * IPsec for further processing or to 20694 * ULP after policy checks. 20695 */ 20696 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20697 return; 20698 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20699 io = (ipsec_out_t *)ii; 20700 if (io->ipsec_out_proc_begin) { 20701 /* 20702 * IPsec processing has already started. 20703 * Complete it. 20704 * IPQoS notes: We don't care what is 20705 * in ipsec_out_ill_index since this 20706 * won't be processed for IPQoS policies 20707 * in ipsec_out_process. 20708 */ 20709 ipsec_out_process(q, mp, NULL, 20710 io->ipsec_out_ill_index); 20711 return; 20712 } else { 20713 connp = (q->q_next != NULL) ? 20714 NULL : Q_TO_CONN(q); 20715 first_mp = mp; 20716 mp = mp->b_cont; 20717 mctl_present = B_TRUE; 20718 } 20719 zoneid = io->ipsec_out_zoneid; 20720 ASSERT(zoneid != ALL_ZONES); 20721 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20722 /* 20723 * It's an IPsec control message requesting 20724 * an SADB update to be sent to the IPsec 20725 * hardware acceleration capable ills. 20726 */ 20727 ipsec_ctl_t *ipsec_ctl = 20728 (ipsec_ctl_t *)mp->b_rptr; 20729 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20730 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20731 mblk_t *cmp = mp->b_cont; 20732 20733 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20734 ASSERT(cmp != NULL); 20735 20736 freeb(mp); 20737 ill_ipsec_capab_send_all(satype, cmp, sa, 20738 ipst->ips_netstack); 20739 return; 20740 } else { 20741 /* 20742 * This must be ARP or special TSOL signaling. 20743 */ 20744 ip_wput_nondata(NULL, q, mp, NULL); 20745 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20746 "ip_wput_end: q %p (%S)", q, "nondata"); 20747 return; 20748 } 20749 } else { 20750 /* 20751 * This must be non-(ARP/AH/ESP) messages. 20752 */ 20753 ASSERT(!need_decref); 20754 ip_wput_nondata(NULL, q, mp, NULL); 20755 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20756 "ip_wput_end: q %p (%S)", q, "nondata"); 20757 return; 20758 } 20759 } else { 20760 first_mp = mp; 20761 mctl_present = B_FALSE; 20762 } 20763 20764 ASSERT(first_mp != NULL); 20765 /* 20766 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20767 * to make sure that this packet goes out on the same interface it 20768 * came in. We handle that here. 20769 */ 20770 if (mctl_present) { 20771 uint_t ifindex; 20772 20773 io = (ipsec_out_t *)first_mp->b_rptr; 20774 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20775 /* 20776 * We may have lost the conn context if we are 20777 * coming here from ip_newroute(). Copy the 20778 * nexthop information. 20779 */ 20780 if (io->ipsec_out_ip_nexthop) { 20781 ip_nexthop = B_TRUE; 20782 nexthop_addr = io->ipsec_out_nexthop_addr; 20783 20784 ipha = (ipha_t *)mp->b_rptr; 20785 dst = ipha->ipha_dst; 20786 goto send_from_ill; 20787 } else { 20788 ASSERT(io->ipsec_out_ill_index != 0); 20789 ifindex = io->ipsec_out_ill_index; 20790 attach_ill = ill_lookup_on_ifindex(ifindex, 20791 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20792 if (attach_ill == NULL) { 20793 ASSERT(xmit_ill == NULL); 20794 ip1dbg(("ip_output: bad ifindex for " 20795 "(BIND TO IPIF_NOFAILOVER) %d\n", 20796 ifindex)); 20797 freemsg(first_mp); 20798 BUMP_MIB(&ipst->ips_ip_mib, 20799 ipIfStatsOutDiscards); 20800 ASSERT(!need_decref); 20801 return; 20802 } 20803 } 20804 } 20805 } 20806 20807 ASSERT(xmit_ill == NULL); 20808 20809 /* We have a complete IP datagram heading outbound. */ 20810 ipha = (ipha_t *)mp->b_rptr; 20811 20812 #ifndef SPEED_BEFORE_SAFETY 20813 /* 20814 * Make sure we have a full-word aligned message and that at least 20815 * a simple IP header is accessible in the first message. If not, 20816 * try a pullup. For labeled systems we need to always take this 20817 * path as M_CTLs are "notdata" but have trailing data to process. 20818 */ 20819 if (!OK_32PTR(rptr) || 20820 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20821 hdrtoosmall: 20822 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20823 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20824 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20825 if (first_mp == NULL) 20826 first_mp = mp; 20827 goto discard_pkt; 20828 } 20829 20830 /* This function assumes that mp points to an IPv4 packet. */ 20831 if (is_system_labeled() && q->q_next == NULL && 20832 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20833 !connp->conn_ulp_labeled) { 20834 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20835 connp->conn_mac_exempt, ipst); 20836 ipha = (ipha_t *)mp->b_rptr; 20837 if (first_mp != NULL) 20838 first_mp->b_cont = mp; 20839 if (err != 0) { 20840 if (first_mp == NULL) 20841 first_mp = mp; 20842 if (err == EINVAL) 20843 goto icmp_parameter_problem; 20844 ip2dbg(("ip_wput: label check failed (%d)\n", 20845 err)); 20846 goto discard_pkt; 20847 } 20848 } 20849 20850 ipha = (ipha_t *)mp->b_rptr; 20851 if (first_mp == NULL) { 20852 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20853 /* 20854 * If we got here because of "goto hdrtoosmall" 20855 * We need to attach a IPSEC_OUT. 20856 */ 20857 if (connp->conn_out_enforce_policy) { 20858 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20859 NULL, ipha->ipha_protocol, 20860 ipst->ips_netstack)) == NULL)) { 20861 BUMP_MIB(&ipst->ips_ip_mib, 20862 ipIfStatsOutDiscards); 20863 if (need_decref) 20864 CONN_DEC_REF(connp); 20865 return; 20866 } else { 20867 ASSERT(mp->b_datap->db_type == M_CTL); 20868 first_mp = mp; 20869 mp = mp->b_cont; 20870 mctl_present = B_TRUE; 20871 } 20872 } else { 20873 first_mp = mp; 20874 mctl_present = B_FALSE; 20875 } 20876 } 20877 } 20878 #endif 20879 20880 /* Most of the code below is written for speed, not readability */ 20881 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20882 20883 /* 20884 * If ip_newroute() fails, we're going to need a full 20885 * header for the icmp wraparound. 20886 */ 20887 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20888 uint_t v_hlen; 20889 version_hdrlen_check: 20890 ASSERT(first_mp != NULL); 20891 v_hlen = V_HLEN; 20892 /* 20893 * siphon off IPv6 packets coming down from transport 20894 * layer modules here. 20895 * Note: high-order bit carries NUD reachability confirmation 20896 */ 20897 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20898 /* 20899 * FIXME: assume that callers of ip_output* call 20900 * the right version? 20901 */ 20902 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20903 ASSERT(xmit_ill == NULL); 20904 if (attach_ill != NULL) 20905 ill_refrele(attach_ill); 20906 if (need_decref) 20907 mp->b_flag |= MSGHASREF; 20908 (void) ip_output_v6(arg, first_mp, arg2, caller); 20909 return; 20910 } 20911 20912 if ((v_hlen >> 4) != IP_VERSION) { 20913 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20914 "ip_wput_end: q %p (%S)", q, "badvers"); 20915 goto discard_pkt; 20916 } 20917 /* 20918 * Is the header length at least 20 bytes? 20919 * 20920 * Are there enough bytes accessible in the header? If 20921 * not, try a pullup. 20922 */ 20923 v_hlen &= 0xF; 20924 v_hlen <<= 2; 20925 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20926 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20927 "ip_wput_end: q %p (%S)", q, "badlen"); 20928 goto discard_pkt; 20929 } 20930 if (v_hlen > (mp->b_wptr - rptr)) { 20931 if (!pullupmsg(mp, v_hlen)) { 20932 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20933 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20934 goto discard_pkt; 20935 } 20936 ipha = (ipha_t *)mp->b_rptr; 20937 } 20938 /* 20939 * Move first entry from any source route into ipha_dst and 20940 * verify the options 20941 */ 20942 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20943 zoneid, ipst)) { 20944 ASSERT(xmit_ill == NULL); 20945 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20946 if (attach_ill != NULL) 20947 ill_refrele(attach_ill); 20948 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20949 "ip_wput_end: q %p (%S)", q, "badopts"); 20950 if (need_decref) 20951 CONN_DEC_REF(connp); 20952 return; 20953 } 20954 } 20955 dst = ipha->ipha_dst; 20956 20957 /* 20958 * Try to get an IRE_CACHE for the destination address. If we can't, 20959 * we have to run the packet through ip_newroute which will take 20960 * the appropriate action to arrange for an IRE_CACHE, such as querying 20961 * a resolver, or assigning a default gateway, etc. 20962 */ 20963 if (CLASSD(dst)) { 20964 ipif_t *ipif; 20965 uint32_t setsrc = 0; 20966 20967 multicast: 20968 ASSERT(first_mp != NULL); 20969 ip2dbg(("ip_wput: CLASSD\n")); 20970 if (connp == NULL) { 20971 /* 20972 * Use the first good ipif on the ill. 20973 * XXX Should this ever happen? (Appears 20974 * to show up with just ppp and no ethernet due 20975 * to in.rdisc.) 20976 * However, ire_send should be able to 20977 * call ip_wput_ire directly. 20978 * 20979 * XXX Also, this can happen for ICMP and other packets 20980 * with multicast source addresses. Perhaps we should 20981 * fix things so that we drop the packet in question, 20982 * but for now, just run with it. 20983 */ 20984 ill_t *ill = (ill_t *)q->q_ptr; 20985 20986 /* 20987 * Don't honor attach_if for this case. If ill 20988 * is part of the group, ipif could belong to 20989 * any ill and we cannot maintain attach_ill 20990 * and ipif_ill same anymore and the assert 20991 * below would fail. 20992 */ 20993 if (mctl_present && io->ipsec_out_attach_if) { 20994 io->ipsec_out_ill_index = 0; 20995 io->ipsec_out_attach_if = B_FALSE; 20996 ASSERT(attach_ill != NULL); 20997 ill_refrele(attach_ill); 20998 attach_ill = NULL; 20999 } 21000 21001 ASSERT(attach_ill == NULL); 21002 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21003 if (ipif == NULL) { 21004 if (need_decref) 21005 CONN_DEC_REF(connp); 21006 freemsg(first_mp); 21007 return; 21008 } 21009 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21010 ntohl(dst), ill->ill_name)); 21011 } else { 21012 /* 21013 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21014 * and IP_MULTICAST_IF. The block comment above this 21015 * function explains the locking mechanism used here. 21016 */ 21017 if (xmit_ill == NULL) { 21018 xmit_ill = conn_get_held_ill(connp, 21019 &connp->conn_outgoing_ill, &err); 21020 if (err == ILL_LOOKUP_FAILED) { 21021 ip1dbg(("ip_wput: No ill for " 21022 "IP_BOUND_IF\n")); 21023 BUMP_MIB(&ipst->ips_ip_mib, 21024 ipIfStatsOutNoRoutes); 21025 goto drop_pkt; 21026 } 21027 } 21028 21029 if (xmit_ill == NULL) { 21030 ipif = conn_get_held_ipif(connp, 21031 &connp->conn_multicast_ipif, &err); 21032 if (err == IPIF_LOOKUP_FAILED) { 21033 ip1dbg(("ip_wput: No ipif for " 21034 "multicast\n")); 21035 BUMP_MIB(&ipst->ips_ip_mib, 21036 ipIfStatsOutNoRoutes); 21037 goto drop_pkt; 21038 } 21039 } 21040 if (xmit_ill != NULL) { 21041 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21042 if (ipif == NULL) { 21043 ip1dbg(("ip_wput: No ipif for " 21044 "xmit_ill\n")); 21045 BUMP_MIB(&ipst->ips_ip_mib, 21046 ipIfStatsOutNoRoutes); 21047 goto drop_pkt; 21048 } 21049 } else if (ipif == NULL || ipif->ipif_isv6) { 21050 /* 21051 * We must do this ipif determination here 21052 * else we could pass through ip_newroute 21053 * and come back here without the conn context. 21054 * 21055 * Note: we do late binding i.e. we bind to 21056 * the interface when the first packet is sent. 21057 * For performance reasons we do not rebind on 21058 * each packet but keep the binding until the 21059 * next IP_MULTICAST_IF option. 21060 * 21061 * conn_multicast_{ipif,ill} are shared between 21062 * IPv4 and IPv6 and AF_INET6 sockets can 21063 * send both IPv4 and IPv6 packets. Hence 21064 * we have to check that "isv6" matches above. 21065 */ 21066 if (ipif != NULL) 21067 ipif_refrele(ipif); 21068 ipif = ipif_lookup_group(dst, zoneid, ipst); 21069 if (ipif == NULL) { 21070 ip1dbg(("ip_wput: No ipif for " 21071 "multicast\n")); 21072 BUMP_MIB(&ipst->ips_ip_mib, 21073 ipIfStatsOutNoRoutes); 21074 goto drop_pkt; 21075 } 21076 err = conn_set_held_ipif(connp, 21077 &connp->conn_multicast_ipif, ipif); 21078 if (err == IPIF_LOOKUP_FAILED) { 21079 ipif_refrele(ipif); 21080 ip1dbg(("ip_wput: No ipif for " 21081 "multicast\n")); 21082 BUMP_MIB(&ipst->ips_ip_mib, 21083 ipIfStatsOutNoRoutes); 21084 goto drop_pkt; 21085 } 21086 } 21087 } 21088 ASSERT(!ipif->ipif_isv6); 21089 /* 21090 * As we may lose the conn by the time we reach ip_wput_ire, 21091 * we copy conn_multicast_loop and conn_dontroute on to an 21092 * ipsec_out. In case if this datagram goes out secure, 21093 * we need the ill_index also. Copy that also into the 21094 * ipsec_out. 21095 */ 21096 if (mctl_present) { 21097 io = (ipsec_out_t *)first_mp->b_rptr; 21098 ASSERT(first_mp->b_datap->db_type == M_CTL); 21099 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21100 } else { 21101 ASSERT(mp == first_mp); 21102 if ((first_mp = allocb(sizeof (ipsec_info_t), 21103 BPRI_HI)) == NULL) { 21104 ipif_refrele(ipif); 21105 first_mp = mp; 21106 goto discard_pkt; 21107 } 21108 first_mp->b_datap->db_type = M_CTL; 21109 first_mp->b_wptr += sizeof (ipsec_info_t); 21110 /* ipsec_out_secure is B_FALSE now */ 21111 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21112 io = (ipsec_out_t *)first_mp->b_rptr; 21113 io->ipsec_out_type = IPSEC_OUT; 21114 io->ipsec_out_len = sizeof (ipsec_out_t); 21115 io->ipsec_out_use_global_policy = B_TRUE; 21116 io->ipsec_out_ns = ipst->ips_netstack; 21117 first_mp->b_cont = mp; 21118 mctl_present = B_TRUE; 21119 } 21120 if (attach_ill != NULL) { 21121 ASSERT(attach_ill == ipif->ipif_ill); 21122 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21123 21124 /* 21125 * Check if we need an ire that will not be 21126 * looked up by anybody else i.e. HIDDEN. 21127 */ 21128 if (ill_is_probeonly(attach_ill)) { 21129 match_flags |= MATCH_IRE_MARK_HIDDEN; 21130 } 21131 io->ipsec_out_ill_index = 21132 attach_ill->ill_phyint->phyint_ifindex; 21133 io->ipsec_out_attach_if = B_TRUE; 21134 } else { 21135 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21136 io->ipsec_out_ill_index = 21137 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21138 } 21139 if (connp != NULL) { 21140 io->ipsec_out_multicast_loop = 21141 connp->conn_multicast_loop; 21142 io->ipsec_out_dontroute = connp->conn_dontroute; 21143 io->ipsec_out_zoneid = connp->conn_zoneid; 21144 } 21145 /* 21146 * If the application uses IP_MULTICAST_IF with 21147 * different logical addresses of the same ILL, we 21148 * need to make sure that the soruce address of 21149 * the packet matches the logical IP address used 21150 * in the option. We do it by initializing ipha_src 21151 * here. This should keep IPsec also happy as 21152 * when we return from IPsec processing, we don't 21153 * have to worry about getting the right address on 21154 * the packet. Thus it is sufficient to look for 21155 * IRE_CACHE using MATCH_IRE_ILL rathen than 21156 * MATCH_IRE_IPIF. 21157 * 21158 * NOTE : We need to do it for non-secure case also as 21159 * this might go out secure if there is a global policy 21160 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21161 * address, the source should be initialized already and 21162 * hence we won't be initializing here. 21163 * 21164 * As we do not have the ire yet, it is possible that 21165 * we set the source address here and then later discover 21166 * that the ire implies the source address to be assigned 21167 * through the RTF_SETSRC flag. 21168 * In that case, the setsrc variable will remind us 21169 * that overwritting the source address by the one 21170 * of the RTF_SETSRC-flagged ire is allowed. 21171 */ 21172 if (ipha->ipha_src == INADDR_ANY && 21173 (connp == NULL || !connp->conn_unspec_src)) { 21174 ipha->ipha_src = ipif->ipif_src_addr; 21175 setsrc = RTF_SETSRC; 21176 } 21177 /* 21178 * Find an IRE which matches the destination and the outgoing 21179 * queue (i.e. the outgoing interface.) 21180 * For loopback use a unicast IP address for 21181 * the ire lookup. 21182 */ 21183 if (IS_LOOPBACK(ipif->ipif_ill)) 21184 dst = ipif->ipif_lcl_addr; 21185 21186 /* 21187 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21188 * We don't need to lookup ire in ctable as the packet 21189 * needs to be sent to the destination through the specified 21190 * ill irrespective of ires in the cache table. 21191 */ 21192 ire = NULL; 21193 if (xmit_ill == NULL) { 21194 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21195 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21196 } 21197 21198 /* 21199 * refrele attach_ill as its not needed anymore. 21200 */ 21201 if (attach_ill != NULL) { 21202 ill_refrele(attach_ill); 21203 attach_ill = NULL; 21204 } 21205 21206 if (ire == NULL) { 21207 /* 21208 * Multicast loopback and multicast forwarding is 21209 * done in ip_wput_ire. 21210 * 21211 * Mark this packet to make it be delivered to 21212 * ip_wput_ire after the new ire has been 21213 * created. 21214 * 21215 * The call to ip_newroute_ipif takes into account 21216 * the setsrc reminder. In any case, we take care 21217 * of the RTF_MULTIRT flag. 21218 */ 21219 mp->b_prev = mp->b_next = NULL; 21220 if (xmit_ill == NULL || 21221 xmit_ill->ill_ipif_up_count > 0) { 21222 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21223 setsrc | RTF_MULTIRT, zoneid, infop); 21224 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21225 "ip_wput_end: q %p (%S)", q, "noire"); 21226 } else { 21227 freemsg(first_mp); 21228 } 21229 ipif_refrele(ipif); 21230 if (xmit_ill != NULL) 21231 ill_refrele(xmit_ill); 21232 if (need_decref) 21233 CONN_DEC_REF(connp); 21234 return; 21235 } 21236 21237 ipif_refrele(ipif); 21238 ipif = NULL; 21239 ASSERT(xmit_ill == NULL); 21240 21241 /* 21242 * Honor the RTF_SETSRC flag for multicast packets, 21243 * if allowed by the setsrc reminder. 21244 */ 21245 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21246 ipha->ipha_src = ire->ire_src_addr; 21247 } 21248 21249 /* 21250 * Unconditionally force the TTL to 1 for 21251 * multirouted multicast packets: 21252 * multirouted multicast should not cross 21253 * multicast routers. 21254 */ 21255 if (ire->ire_flags & RTF_MULTIRT) { 21256 if (ipha->ipha_ttl > 1) { 21257 ip2dbg(("ip_wput: forcing multicast " 21258 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21259 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21260 ipha->ipha_ttl = 1; 21261 } 21262 } 21263 } else { 21264 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21265 if ((ire != NULL) && (ire->ire_type & 21266 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21267 ignore_dontroute = B_TRUE; 21268 ignore_nexthop = B_TRUE; 21269 } 21270 if (ire != NULL) { 21271 ire_refrele(ire); 21272 ire = NULL; 21273 } 21274 /* 21275 * Guard against coming in from arp in which case conn is NULL. 21276 * Also guard against non M_DATA with dontroute set but 21277 * destined to local, loopback or broadcast addresses. 21278 */ 21279 if (connp != NULL && connp->conn_dontroute && 21280 !ignore_dontroute) { 21281 dontroute: 21282 /* 21283 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21284 * routing protocols from seeing false direct 21285 * connectivity. 21286 */ 21287 ipha->ipha_ttl = 1; 21288 21289 /* If suitable ipif not found, drop packet */ 21290 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21291 if (dst_ipif == NULL) { 21292 noroute: 21293 ip1dbg(("ip_wput: no route for dst using" 21294 " SO_DONTROUTE\n")); 21295 BUMP_MIB(&ipst->ips_ip_mib, 21296 ipIfStatsOutNoRoutes); 21297 mp->b_prev = mp->b_next = NULL; 21298 if (first_mp == NULL) 21299 first_mp = mp; 21300 goto drop_pkt; 21301 } else { 21302 /* 21303 * If suitable ipif has been found, set 21304 * xmit_ill to the corresponding 21305 * ipif_ill because we'll be using the 21306 * send_from_ill logic below. 21307 */ 21308 ASSERT(xmit_ill == NULL); 21309 xmit_ill = dst_ipif->ipif_ill; 21310 mutex_enter(&xmit_ill->ill_lock); 21311 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21312 mutex_exit(&xmit_ill->ill_lock); 21313 xmit_ill = NULL; 21314 ipif_refrele(dst_ipif); 21315 goto noroute; 21316 } 21317 ill_refhold_locked(xmit_ill); 21318 mutex_exit(&xmit_ill->ill_lock); 21319 ipif_refrele(dst_ipif); 21320 } 21321 } 21322 /* 21323 * If we are bound to IPIF_NOFAILOVER address, look for 21324 * an IRE_CACHE matching the ill. 21325 */ 21326 send_from_ill: 21327 if (attach_ill != NULL) { 21328 ipif_t *attach_ipif; 21329 21330 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21331 21332 /* 21333 * Check if we need an ire that will not be 21334 * looked up by anybody else i.e. HIDDEN. 21335 */ 21336 if (ill_is_probeonly(attach_ill)) { 21337 match_flags |= MATCH_IRE_MARK_HIDDEN; 21338 } 21339 21340 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21341 if (attach_ipif == NULL) { 21342 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21343 goto discard_pkt; 21344 } 21345 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21346 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21347 ipif_refrele(attach_ipif); 21348 } else if (xmit_ill != NULL) { 21349 ipif_t *ipif; 21350 21351 /* 21352 * Mark this packet as originated locally 21353 */ 21354 mp->b_prev = mp->b_next = NULL; 21355 21356 /* 21357 * Could be SO_DONTROUTE case also. 21358 * Verify that at least one ipif is up on the ill. 21359 */ 21360 if (xmit_ill->ill_ipif_up_count == 0) { 21361 ip1dbg(("ip_output: xmit_ill %s is down\n", 21362 xmit_ill->ill_name)); 21363 goto drop_pkt; 21364 } 21365 21366 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21367 if (ipif == NULL) { 21368 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21369 xmit_ill->ill_name)); 21370 goto drop_pkt; 21371 } 21372 21373 /* 21374 * Look for a ire that is part of the group, 21375 * if found use it else call ip_newroute_ipif. 21376 * IPCL_ZONEID is not used for matching because 21377 * IP_ALLZONES option is valid only when the 21378 * ill is accessible from all zones i.e has a 21379 * valid ipif in all zones. 21380 */ 21381 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21382 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21383 MBLK_GETLABEL(mp), match_flags, ipst); 21384 /* 21385 * If an ire exists use it or else create 21386 * an ire but don't add it to the cache. 21387 * Adding an ire may cause issues with 21388 * asymmetric routing. 21389 * In case of multiroute always act as if 21390 * ire does not exist. 21391 */ 21392 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21393 if (ire != NULL) 21394 ire_refrele(ire); 21395 ip_newroute_ipif(q, first_mp, ipif, 21396 dst, connp, 0, zoneid, infop); 21397 ipif_refrele(ipif); 21398 ip1dbg(("ip_output: xmit_ill via %s\n", 21399 xmit_ill->ill_name)); 21400 ill_refrele(xmit_ill); 21401 if (need_decref) 21402 CONN_DEC_REF(connp); 21403 return; 21404 } 21405 ipif_refrele(ipif); 21406 } else if (ip_nexthop || (connp != NULL && 21407 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21408 if (!ip_nexthop) { 21409 ip_nexthop = B_TRUE; 21410 nexthop_addr = connp->conn_nexthop_v4; 21411 } 21412 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21413 MATCH_IRE_GW; 21414 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21415 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21416 } else { 21417 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21418 ipst); 21419 } 21420 if (!ire) { 21421 /* 21422 * Make sure we don't load spread if this 21423 * is IPIF_NOFAILOVER case. 21424 */ 21425 if ((attach_ill != NULL) || 21426 (ip_nexthop && !ignore_nexthop)) { 21427 if (mctl_present) { 21428 io = (ipsec_out_t *)first_mp->b_rptr; 21429 ASSERT(first_mp->b_datap->db_type == 21430 M_CTL); 21431 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21432 } else { 21433 ASSERT(mp == first_mp); 21434 first_mp = allocb( 21435 sizeof (ipsec_info_t), BPRI_HI); 21436 if (first_mp == NULL) { 21437 first_mp = mp; 21438 goto discard_pkt; 21439 } 21440 first_mp->b_datap->db_type = M_CTL; 21441 first_mp->b_wptr += 21442 sizeof (ipsec_info_t); 21443 /* ipsec_out_secure is B_FALSE now */ 21444 bzero(first_mp->b_rptr, 21445 sizeof (ipsec_info_t)); 21446 io = (ipsec_out_t *)first_mp->b_rptr; 21447 io->ipsec_out_type = IPSEC_OUT; 21448 io->ipsec_out_len = 21449 sizeof (ipsec_out_t); 21450 io->ipsec_out_use_global_policy = 21451 B_TRUE; 21452 io->ipsec_out_ns = ipst->ips_netstack; 21453 first_mp->b_cont = mp; 21454 mctl_present = B_TRUE; 21455 } 21456 if (attach_ill != NULL) { 21457 io->ipsec_out_ill_index = attach_ill-> 21458 ill_phyint->phyint_ifindex; 21459 io->ipsec_out_attach_if = B_TRUE; 21460 } else { 21461 io->ipsec_out_ip_nexthop = ip_nexthop; 21462 io->ipsec_out_nexthop_addr = 21463 nexthop_addr; 21464 } 21465 } 21466 noirefound: 21467 /* 21468 * Mark this packet as having originated on 21469 * this machine. This will be noted in 21470 * ire_add_then_send, which needs to know 21471 * whether to run it back through ip_wput or 21472 * ip_rput following successful resolution. 21473 */ 21474 mp->b_prev = NULL; 21475 mp->b_next = NULL; 21476 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21477 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21478 "ip_wput_end: q %p (%S)", q, "newroute"); 21479 if (attach_ill != NULL) 21480 ill_refrele(attach_ill); 21481 if (xmit_ill != NULL) 21482 ill_refrele(xmit_ill); 21483 if (need_decref) 21484 CONN_DEC_REF(connp); 21485 return; 21486 } 21487 } 21488 21489 /* We now know where we are going with it. */ 21490 21491 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21492 "ip_wput_end: q %p (%S)", q, "end"); 21493 21494 /* 21495 * Check if the ire has the RTF_MULTIRT flag, inherited 21496 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21497 */ 21498 if (ire->ire_flags & RTF_MULTIRT) { 21499 /* 21500 * Force the TTL of multirouted packets if required. 21501 * The TTL of such packets is bounded by the 21502 * ip_multirt_ttl ndd variable. 21503 */ 21504 if ((ipst->ips_ip_multirt_ttl > 0) && 21505 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21506 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21507 "(was %d), dst 0x%08x\n", 21508 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21509 ntohl(ire->ire_addr))); 21510 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21511 } 21512 /* 21513 * At this point, we check to see if there are any pending 21514 * unresolved routes. ire_multirt_resolvable() 21515 * checks in O(n) that all IRE_OFFSUBNET ire 21516 * entries for the packet's destination and 21517 * flagged RTF_MULTIRT are currently resolved. 21518 * If some remain unresolved, we make a copy 21519 * of the current message. It will be used 21520 * to initiate additional route resolutions. 21521 */ 21522 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21523 MBLK_GETLABEL(first_mp), ipst); 21524 ip2dbg(("ip_wput[noirefound]: ire %p, " 21525 "multirt_need_resolve %d, first_mp %p\n", 21526 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21527 if (multirt_need_resolve) { 21528 copy_mp = copymsg(first_mp); 21529 if (copy_mp != NULL) { 21530 MULTIRT_DEBUG_TAG(copy_mp); 21531 } 21532 } 21533 } 21534 21535 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21536 /* 21537 * Try to resolve another multiroute if 21538 * ire_multirt_resolvable() deemed it necessary. 21539 * At this point, we need to distinguish 21540 * multicasts from other packets. For multicasts, 21541 * we call ip_newroute_ipif() and request that both 21542 * multirouting and setsrc flags are checked. 21543 */ 21544 if (copy_mp != NULL) { 21545 if (CLASSD(dst)) { 21546 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21547 if (ipif) { 21548 ASSERT(infop->ip_opt_ill_index == 0); 21549 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21550 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21551 ipif_refrele(ipif); 21552 } else { 21553 MULTIRT_DEBUG_UNTAG(copy_mp); 21554 freemsg(copy_mp); 21555 copy_mp = NULL; 21556 } 21557 } else { 21558 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21559 } 21560 } 21561 if (attach_ill != NULL) 21562 ill_refrele(attach_ill); 21563 if (xmit_ill != NULL) 21564 ill_refrele(xmit_ill); 21565 if (need_decref) 21566 CONN_DEC_REF(connp); 21567 return; 21568 21569 icmp_parameter_problem: 21570 /* could not have originated externally */ 21571 ASSERT(mp->b_prev == NULL); 21572 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21573 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21574 /* it's the IP header length that's in trouble */ 21575 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21576 first_mp = NULL; 21577 } 21578 21579 discard_pkt: 21580 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21581 drop_pkt: 21582 ip1dbg(("ip_wput: dropped packet\n")); 21583 if (ire != NULL) 21584 ire_refrele(ire); 21585 if (need_decref) 21586 CONN_DEC_REF(connp); 21587 freemsg(first_mp); 21588 if (attach_ill != NULL) 21589 ill_refrele(attach_ill); 21590 if (xmit_ill != NULL) 21591 ill_refrele(xmit_ill); 21592 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21593 "ip_wput_end: q %p (%S)", q, "droppkt"); 21594 } 21595 21596 /* 21597 * If this is a conn_t queue, then we pass in the conn. This includes the 21598 * zoneid. 21599 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21600 * in which case we use the global zoneid since those are all part of 21601 * the global zone. 21602 */ 21603 void 21604 ip_wput(queue_t *q, mblk_t *mp) 21605 { 21606 if (CONN_Q(q)) 21607 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21608 else 21609 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21610 } 21611 21612 /* 21613 * 21614 * The following rules must be observed when accessing any ipif or ill 21615 * that has been cached in the conn. Typically conn_nofailover_ill, 21616 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21617 * 21618 * Access: The ipif or ill pointed to from the conn can be accessed under 21619 * the protection of the conn_lock or after it has been refheld under the 21620 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21621 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21622 * The reason for this is that a concurrent unplumb could actually be 21623 * cleaning up these cached pointers by walking the conns and might have 21624 * finished cleaning up the conn in question. The macros check that an 21625 * unplumb has not yet started on the ipif or ill. 21626 * 21627 * Caching: An ipif or ill pointer may be cached in the conn only after 21628 * making sure that an unplumb has not started. So the caching is done 21629 * while holding both the conn_lock and the ill_lock and after using the 21630 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21631 * flag before starting the cleanup of conns. 21632 * 21633 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21634 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21635 * or a reference to the ipif or a reference to an ire that references the 21636 * ipif. An ipif does not change its ill except for failover/failback. Since 21637 * failover/failback happens only after bringing down the ipif and making sure 21638 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21639 * the above holds. 21640 */ 21641 ipif_t * 21642 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21643 { 21644 ipif_t *ipif; 21645 ill_t *ill; 21646 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21647 21648 *err = 0; 21649 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21650 mutex_enter(&connp->conn_lock); 21651 ipif = *ipifp; 21652 if (ipif != NULL) { 21653 ill = ipif->ipif_ill; 21654 mutex_enter(&ill->ill_lock); 21655 if (IPIF_CAN_LOOKUP(ipif)) { 21656 ipif_refhold_locked(ipif); 21657 mutex_exit(&ill->ill_lock); 21658 mutex_exit(&connp->conn_lock); 21659 rw_exit(&ipst->ips_ill_g_lock); 21660 return (ipif); 21661 } else { 21662 *err = IPIF_LOOKUP_FAILED; 21663 } 21664 mutex_exit(&ill->ill_lock); 21665 } 21666 mutex_exit(&connp->conn_lock); 21667 rw_exit(&ipst->ips_ill_g_lock); 21668 return (NULL); 21669 } 21670 21671 ill_t * 21672 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21673 { 21674 ill_t *ill; 21675 21676 *err = 0; 21677 mutex_enter(&connp->conn_lock); 21678 ill = *illp; 21679 if (ill != NULL) { 21680 mutex_enter(&ill->ill_lock); 21681 if (ILL_CAN_LOOKUP(ill)) { 21682 ill_refhold_locked(ill); 21683 mutex_exit(&ill->ill_lock); 21684 mutex_exit(&connp->conn_lock); 21685 return (ill); 21686 } else { 21687 *err = ILL_LOOKUP_FAILED; 21688 } 21689 mutex_exit(&ill->ill_lock); 21690 } 21691 mutex_exit(&connp->conn_lock); 21692 return (NULL); 21693 } 21694 21695 static int 21696 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21697 { 21698 ill_t *ill; 21699 21700 ill = ipif->ipif_ill; 21701 mutex_enter(&connp->conn_lock); 21702 mutex_enter(&ill->ill_lock); 21703 if (IPIF_CAN_LOOKUP(ipif)) { 21704 *ipifp = ipif; 21705 mutex_exit(&ill->ill_lock); 21706 mutex_exit(&connp->conn_lock); 21707 return (0); 21708 } 21709 mutex_exit(&ill->ill_lock); 21710 mutex_exit(&connp->conn_lock); 21711 return (IPIF_LOOKUP_FAILED); 21712 } 21713 21714 /* 21715 * This is called if the outbound datagram needs fragmentation. 21716 * 21717 * NOTE : This function does not ire_refrele the ire argument passed in. 21718 */ 21719 static void 21720 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21721 ip_stack_t *ipst) 21722 { 21723 ipha_t *ipha; 21724 mblk_t *mp; 21725 uint32_t v_hlen_tos_len; 21726 uint32_t max_frag; 21727 uint32_t frag_flag; 21728 boolean_t dont_use; 21729 21730 if (ipsec_mp->b_datap->db_type == M_CTL) { 21731 mp = ipsec_mp->b_cont; 21732 } else { 21733 mp = ipsec_mp; 21734 } 21735 21736 ipha = (ipha_t *)mp->b_rptr; 21737 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21738 21739 #ifdef _BIG_ENDIAN 21740 #define V_HLEN (v_hlen_tos_len >> 24) 21741 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21742 #else 21743 #define V_HLEN (v_hlen_tos_len & 0xFF) 21744 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21745 #endif 21746 21747 #ifndef SPEED_BEFORE_SAFETY 21748 /* 21749 * Check that ipha_length is consistent with 21750 * the mblk length 21751 */ 21752 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21753 ip0dbg(("Packet length mismatch: %d, %ld\n", 21754 LENGTH, msgdsize(mp))); 21755 freemsg(ipsec_mp); 21756 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21757 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21758 "packet length mismatch"); 21759 return; 21760 } 21761 #endif 21762 /* 21763 * Don't use frag_flag if pre-built packet or source 21764 * routed or if multicast (since multicast packets do not solicit 21765 * ICMP "packet too big" messages). Get the values of 21766 * max_frag and frag_flag atomically by acquiring the 21767 * ire_lock. 21768 */ 21769 mutex_enter(&ire->ire_lock); 21770 max_frag = ire->ire_max_frag; 21771 frag_flag = ire->ire_frag_flag; 21772 mutex_exit(&ire->ire_lock); 21773 21774 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21775 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21776 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21777 21778 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21779 (dont_use ? 0 : frag_flag), zoneid, ipst); 21780 } 21781 21782 /* 21783 * Used for deciding the MSS size for the upper layer. Thus 21784 * we need to check the outbound policy values in the conn. 21785 */ 21786 int 21787 conn_ipsec_length(conn_t *connp) 21788 { 21789 ipsec_latch_t *ipl; 21790 21791 ipl = connp->conn_latch; 21792 if (ipl == NULL) 21793 return (0); 21794 21795 if (ipl->ipl_out_policy == NULL) 21796 return (0); 21797 21798 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21799 } 21800 21801 /* 21802 * Returns an estimate of the IPsec headers size. This is used if 21803 * we don't want to call into IPsec to get the exact size. 21804 */ 21805 int 21806 ipsec_out_extra_length(mblk_t *ipsec_mp) 21807 { 21808 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21809 ipsec_action_t *a; 21810 21811 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21812 if (!io->ipsec_out_secure) 21813 return (0); 21814 21815 a = io->ipsec_out_act; 21816 21817 if (a == NULL) { 21818 ASSERT(io->ipsec_out_policy != NULL); 21819 a = io->ipsec_out_policy->ipsp_act; 21820 } 21821 ASSERT(a != NULL); 21822 21823 return (a->ipa_ovhd); 21824 } 21825 21826 /* 21827 * Returns an estimate of the IPsec headers size. This is used if 21828 * we don't want to call into IPsec to get the exact size. 21829 */ 21830 int 21831 ipsec_in_extra_length(mblk_t *ipsec_mp) 21832 { 21833 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21834 ipsec_action_t *a; 21835 21836 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21837 21838 a = ii->ipsec_in_action; 21839 return (a == NULL ? 0 : a->ipa_ovhd); 21840 } 21841 21842 /* 21843 * If there are any source route options, return the true final 21844 * destination. Otherwise, return the destination. 21845 */ 21846 ipaddr_t 21847 ip_get_dst(ipha_t *ipha) 21848 { 21849 ipoptp_t opts; 21850 uchar_t *opt; 21851 uint8_t optval; 21852 uint8_t optlen; 21853 ipaddr_t dst; 21854 uint32_t off; 21855 21856 dst = ipha->ipha_dst; 21857 21858 if (IS_SIMPLE_IPH(ipha)) 21859 return (dst); 21860 21861 for (optval = ipoptp_first(&opts, ipha); 21862 optval != IPOPT_EOL; 21863 optval = ipoptp_next(&opts)) { 21864 opt = opts.ipoptp_cur; 21865 optlen = opts.ipoptp_len; 21866 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21867 switch (optval) { 21868 case IPOPT_SSRR: 21869 case IPOPT_LSRR: 21870 off = opt[IPOPT_OFFSET]; 21871 /* 21872 * If one of the conditions is true, it means 21873 * end of options and dst already has the right 21874 * value. 21875 */ 21876 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21877 off = optlen - IP_ADDR_LEN; 21878 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21879 } 21880 return (dst); 21881 default: 21882 break; 21883 } 21884 } 21885 21886 return (dst); 21887 } 21888 21889 mblk_t * 21890 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21891 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21892 { 21893 ipsec_out_t *io; 21894 mblk_t *first_mp; 21895 boolean_t policy_present; 21896 ip_stack_t *ipst; 21897 ipsec_stack_t *ipss; 21898 21899 ASSERT(ire != NULL); 21900 ipst = ire->ire_ipst; 21901 ipss = ipst->ips_netstack->netstack_ipsec; 21902 21903 first_mp = mp; 21904 if (mp->b_datap->db_type == M_CTL) { 21905 io = (ipsec_out_t *)first_mp->b_rptr; 21906 /* 21907 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21908 * 21909 * 1) There is per-socket policy (including cached global 21910 * policy) or a policy on the IP-in-IP tunnel. 21911 * 2) There is no per-socket policy, but it is 21912 * a multicast packet that needs to go out 21913 * on a specific interface. This is the case 21914 * where (ip_wput and ip_wput_multicast) attaches 21915 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21916 * 21917 * In case (2) we check with global policy to 21918 * see if there is a match and set the ill_index 21919 * appropriately so that we can lookup the ire 21920 * properly in ip_wput_ipsec_out. 21921 */ 21922 21923 /* 21924 * ipsec_out_use_global_policy is set to B_FALSE 21925 * in ipsec_in_to_out(). Refer to that function for 21926 * details. 21927 */ 21928 if ((io->ipsec_out_latch == NULL) && 21929 (io->ipsec_out_use_global_policy)) { 21930 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21931 ire, connp, unspec_src, zoneid)); 21932 } 21933 if (!io->ipsec_out_secure) { 21934 /* 21935 * If this is not a secure packet, drop 21936 * the IPSEC_OUT mp and treat it as a clear 21937 * packet. This happens when we are sending 21938 * a ICMP reply back to a clear packet. See 21939 * ipsec_in_to_out() for details. 21940 */ 21941 mp = first_mp->b_cont; 21942 freeb(first_mp); 21943 } 21944 return (mp); 21945 } 21946 /* 21947 * See whether we need to attach a global policy here. We 21948 * don't depend on the conn (as it could be null) for deciding 21949 * what policy this datagram should go through because it 21950 * should have happened in ip_wput if there was some 21951 * policy. This normally happens for connections which are not 21952 * fully bound preventing us from caching policies in 21953 * ip_bind. Packets coming from the TCP listener/global queue 21954 * - which are non-hard_bound - could also be affected by 21955 * applying policy here. 21956 * 21957 * If this packet is coming from tcp global queue or listener, 21958 * we will be applying policy here. This may not be *right* 21959 * if these packets are coming from the detached connection as 21960 * it could have gone in clear before. This happens only if a 21961 * TCP connection started when there is no policy and somebody 21962 * added policy before it became detached. Thus packets of the 21963 * detached connection could go out secure and the other end 21964 * would drop it because it will be expecting in clear. The 21965 * converse is not true i.e if somebody starts a TCP 21966 * connection and deletes the policy, all the packets will 21967 * still go out with the policy that existed before deleting 21968 * because ip_unbind sends up policy information which is used 21969 * by TCP on subsequent ip_wputs. The right solution is to fix 21970 * TCP to attach a dummy IPSEC_OUT and set 21971 * ipsec_out_use_global_policy to B_FALSE. As this might 21972 * affect performance for normal cases, we are not doing it. 21973 * Thus, set policy before starting any TCP connections. 21974 * 21975 * NOTE - We might apply policy even for a hard bound connection 21976 * - for which we cached policy in ip_bind - if somebody added 21977 * global policy after we inherited the policy in ip_bind. 21978 * This means that the packets that were going out in clear 21979 * previously would start going secure and hence get dropped 21980 * on the other side. To fix this, TCP attaches a dummy 21981 * ipsec_out and make sure that we don't apply global policy. 21982 */ 21983 if (ipha != NULL) 21984 policy_present = ipss->ipsec_outbound_v4_policy_present; 21985 else 21986 policy_present = ipss->ipsec_outbound_v6_policy_present; 21987 if (!policy_present) 21988 return (mp); 21989 21990 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21991 zoneid)); 21992 } 21993 21994 ire_t * 21995 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21996 { 21997 ipaddr_t addr; 21998 ire_t *save_ire; 21999 irb_t *irb; 22000 ill_group_t *illgrp; 22001 int err; 22002 22003 save_ire = ire; 22004 addr = ire->ire_addr; 22005 22006 ASSERT(ire->ire_type == IRE_BROADCAST); 22007 22008 illgrp = connp->conn_outgoing_ill->ill_group; 22009 if (illgrp == NULL) { 22010 *conn_outgoing_ill = conn_get_held_ill(connp, 22011 &connp->conn_outgoing_ill, &err); 22012 if (err == ILL_LOOKUP_FAILED) { 22013 ire_refrele(save_ire); 22014 return (NULL); 22015 } 22016 return (save_ire); 22017 } 22018 /* 22019 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22020 * If it is part of the group, we need to send on the ire 22021 * that has been cleared of IRE_MARK_NORECV and that belongs 22022 * to this group. This is okay as IP_BOUND_IF really means 22023 * any ill in the group. We depend on the fact that the 22024 * first ire in the group is always cleared of IRE_MARK_NORECV 22025 * if such an ire exists. This is possible only if you have 22026 * at least one ill in the group that has not failed. 22027 * 22028 * First get to the ire that matches the address and group. 22029 * 22030 * We don't look for an ire with a matching zoneid because a given zone 22031 * won't always have broadcast ires on all ills in the group. 22032 */ 22033 irb = ire->ire_bucket; 22034 rw_enter(&irb->irb_lock, RW_READER); 22035 if (ire->ire_marks & IRE_MARK_NORECV) { 22036 /* 22037 * If the current zone only has an ire broadcast for this 22038 * address marked NORECV, the ire we want is ahead in the 22039 * bucket, so we look it up deliberately ignoring the zoneid. 22040 */ 22041 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22042 if (ire->ire_addr != addr) 22043 continue; 22044 /* skip over deleted ires */ 22045 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22046 continue; 22047 } 22048 } 22049 while (ire != NULL) { 22050 /* 22051 * If a new interface is coming up, we could end up 22052 * seeing the loopback ire and the non-loopback ire 22053 * may not have been added yet. So check for ire_stq 22054 */ 22055 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22056 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22057 break; 22058 } 22059 ire = ire->ire_next; 22060 } 22061 if (ire != NULL && ire->ire_addr == addr && 22062 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22063 IRE_REFHOLD(ire); 22064 rw_exit(&irb->irb_lock); 22065 ire_refrele(save_ire); 22066 *conn_outgoing_ill = ire_to_ill(ire); 22067 /* 22068 * Refhold the ill to make the conn_outgoing_ill 22069 * independent of the ire. ip_wput_ire goes in a loop 22070 * and may refrele the ire. Since we have an ire at this 22071 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22072 */ 22073 ill_refhold(*conn_outgoing_ill); 22074 return (ire); 22075 } 22076 rw_exit(&irb->irb_lock); 22077 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22078 /* 22079 * If we can't find a suitable ire, return the original ire. 22080 */ 22081 return (save_ire); 22082 } 22083 22084 /* 22085 * This function does the ire_refrele of the ire passed in as the 22086 * argument. As this function looks up more ires i.e broadcast ires, 22087 * it needs to REFRELE them. Currently, for simplicity we don't 22088 * differentiate the one passed in and looked up here. We always 22089 * REFRELE. 22090 * IPQoS Notes: 22091 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22092 * IPsec packets are done in ipsec_out_process. 22093 * 22094 */ 22095 void 22096 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22097 zoneid_t zoneid) 22098 { 22099 ipha_t *ipha; 22100 #define rptr ((uchar_t *)ipha) 22101 queue_t *stq; 22102 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22103 uint32_t v_hlen_tos_len; 22104 uint32_t ttl_protocol; 22105 ipaddr_t src; 22106 ipaddr_t dst; 22107 uint32_t cksum; 22108 ipaddr_t orig_src; 22109 ire_t *ire1; 22110 mblk_t *next_mp; 22111 uint_t hlen; 22112 uint16_t *up; 22113 uint32_t max_frag = ire->ire_max_frag; 22114 ill_t *ill = ire_to_ill(ire); 22115 int clusterwide; 22116 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22117 int ipsec_len; 22118 mblk_t *first_mp; 22119 ipsec_out_t *io; 22120 boolean_t conn_dontroute; /* conn value for multicast */ 22121 boolean_t conn_multicast_loop; /* conn value for multicast */ 22122 boolean_t multicast_forward; /* Should we forward ? */ 22123 boolean_t unspec_src; 22124 ill_t *conn_outgoing_ill = NULL; 22125 ill_t *ire_ill; 22126 ill_t *ire1_ill; 22127 ill_t *out_ill; 22128 uint32_t ill_index = 0; 22129 boolean_t multirt_send = B_FALSE; 22130 int err; 22131 ipxmit_state_t pktxmit_state; 22132 ip_stack_t *ipst = ire->ire_ipst; 22133 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22134 22135 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22136 "ip_wput_ire_start: q %p", q); 22137 22138 multicast_forward = B_FALSE; 22139 unspec_src = (connp != NULL && connp->conn_unspec_src); 22140 22141 if (ire->ire_flags & RTF_MULTIRT) { 22142 /* 22143 * Multirouting case. The bucket where ire is stored 22144 * probably holds other RTF_MULTIRT flagged ire 22145 * to the destination. In this call to ip_wput_ire, 22146 * we attempt to send the packet through all 22147 * those ires. Thus, we first ensure that ire is the 22148 * first RTF_MULTIRT ire in the bucket, 22149 * before walking the ire list. 22150 */ 22151 ire_t *first_ire; 22152 irb_t *irb = ire->ire_bucket; 22153 ASSERT(irb != NULL); 22154 22155 /* Make sure we do not omit any multiroute ire. */ 22156 IRB_REFHOLD(irb); 22157 for (first_ire = irb->irb_ire; 22158 first_ire != NULL; 22159 first_ire = first_ire->ire_next) { 22160 if ((first_ire->ire_flags & RTF_MULTIRT) && 22161 (first_ire->ire_addr == ire->ire_addr) && 22162 !(first_ire->ire_marks & 22163 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22164 break; 22165 } 22166 } 22167 22168 if ((first_ire != NULL) && (first_ire != ire)) { 22169 IRE_REFHOLD(first_ire); 22170 ire_refrele(ire); 22171 ire = first_ire; 22172 ill = ire_to_ill(ire); 22173 } 22174 IRB_REFRELE(irb); 22175 } 22176 22177 /* 22178 * conn_outgoing_ill variable is used only in the broadcast loop. 22179 * for performance we don't grab the mutexs in the fastpath 22180 */ 22181 if ((connp != NULL) && 22182 (ire->ire_type == IRE_BROADCAST) && 22183 ((connp->conn_nofailover_ill != NULL) || 22184 (connp->conn_outgoing_ill != NULL))) { 22185 /* 22186 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22187 * option. So, see if this endpoint is bound to a 22188 * IPIF_NOFAILOVER address. If so, honor it. This implies 22189 * that if the interface is failed, we will still send 22190 * the packet on the same ill which is what we want. 22191 */ 22192 conn_outgoing_ill = conn_get_held_ill(connp, 22193 &connp->conn_nofailover_ill, &err); 22194 if (err == ILL_LOOKUP_FAILED) { 22195 ire_refrele(ire); 22196 freemsg(mp); 22197 return; 22198 } 22199 if (conn_outgoing_ill == NULL) { 22200 /* 22201 * Choose a good ill in the group to send the 22202 * packets on. 22203 */ 22204 ire = conn_set_outgoing_ill(connp, ire, 22205 &conn_outgoing_ill); 22206 if (ire == NULL) { 22207 freemsg(mp); 22208 return; 22209 } 22210 } 22211 } 22212 22213 if (mp->b_datap->db_type != M_CTL) { 22214 ipha = (ipha_t *)mp->b_rptr; 22215 } else { 22216 io = (ipsec_out_t *)mp->b_rptr; 22217 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22218 ASSERT(zoneid == io->ipsec_out_zoneid); 22219 ASSERT(zoneid != ALL_ZONES); 22220 ipha = (ipha_t *)mp->b_cont->b_rptr; 22221 dst = ipha->ipha_dst; 22222 /* 22223 * For the multicast case, ipsec_out carries conn_dontroute and 22224 * conn_multicast_loop as conn may not be available here. We 22225 * need this for multicast loopback and forwarding which is done 22226 * later in the code. 22227 */ 22228 if (CLASSD(dst)) { 22229 conn_dontroute = io->ipsec_out_dontroute; 22230 conn_multicast_loop = io->ipsec_out_multicast_loop; 22231 /* 22232 * If conn_dontroute is not set or conn_multicast_loop 22233 * is set, we need to do forwarding/loopback. For 22234 * datagrams from ip_wput_multicast, conn_dontroute is 22235 * set to B_TRUE and conn_multicast_loop is set to 22236 * B_FALSE so that we neither do forwarding nor 22237 * loopback. 22238 */ 22239 if (!conn_dontroute || conn_multicast_loop) 22240 multicast_forward = B_TRUE; 22241 } 22242 } 22243 22244 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22245 ire->ire_zoneid != ALL_ZONES) { 22246 /* 22247 * When a zone sends a packet to another zone, we try to deliver 22248 * the packet under the same conditions as if the destination 22249 * was a real node on the network. To do so, we look for a 22250 * matching route in the forwarding table. 22251 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22252 * ip_newroute() does. 22253 * Note that IRE_LOCAL are special, since they are used 22254 * when the zoneid doesn't match in some cases. This means that 22255 * we need to handle ipha_src differently since ire_src_addr 22256 * belongs to the receiving zone instead of the sending zone. 22257 * When ip_restrict_interzone_loopback is set, then 22258 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22259 * for loopback between zones when the logical "Ethernet" would 22260 * have looped them back. 22261 */ 22262 ire_t *src_ire; 22263 22264 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22265 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22266 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22267 if (src_ire != NULL && 22268 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22269 (!ipst->ips_ip_restrict_interzone_loopback || 22270 ire_local_same_ill_group(ire, src_ire))) { 22271 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22272 ipha->ipha_src = src_ire->ire_src_addr; 22273 ire_refrele(src_ire); 22274 } else { 22275 ire_refrele(ire); 22276 if (conn_outgoing_ill != NULL) 22277 ill_refrele(conn_outgoing_ill); 22278 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22279 if (src_ire != NULL) { 22280 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22281 ire_refrele(src_ire); 22282 freemsg(mp); 22283 return; 22284 } 22285 ire_refrele(src_ire); 22286 } 22287 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22288 /* Failed */ 22289 freemsg(mp); 22290 return; 22291 } 22292 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22293 ipst); 22294 return; 22295 } 22296 } 22297 22298 if (mp->b_datap->db_type == M_CTL || 22299 ipss->ipsec_outbound_v4_policy_present) { 22300 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22301 unspec_src, zoneid); 22302 if (mp == NULL) { 22303 ire_refrele(ire); 22304 if (conn_outgoing_ill != NULL) 22305 ill_refrele(conn_outgoing_ill); 22306 return; 22307 } 22308 /* 22309 * Trusted Extensions supports all-zones interfaces, so 22310 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22311 * the global zone. 22312 */ 22313 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22314 io = (ipsec_out_t *)mp->b_rptr; 22315 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22316 zoneid = io->ipsec_out_zoneid; 22317 } 22318 } 22319 22320 first_mp = mp; 22321 ipsec_len = 0; 22322 22323 if (first_mp->b_datap->db_type == M_CTL) { 22324 io = (ipsec_out_t *)first_mp->b_rptr; 22325 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22326 mp = first_mp->b_cont; 22327 ipsec_len = ipsec_out_extra_length(first_mp); 22328 ASSERT(ipsec_len >= 0); 22329 /* We already picked up the zoneid from the M_CTL above */ 22330 ASSERT(zoneid == io->ipsec_out_zoneid); 22331 ASSERT(zoneid != ALL_ZONES); 22332 22333 /* 22334 * Drop M_CTL here if IPsec processing is not needed. 22335 * (Non-IPsec use of M_CTL extracted any information it 22336 * needed above). 22337 */ 22338 if (ipsec_len == 0) { 22339 freeb(first_mp); 22340 first_mp = mp; 22341 } 22342 } 22343 22344 /* 22345 * Fast path for ip_wput_ire 22346 */ 22347 22348 ipha = (ipha_t *)mp->b_rptr; 22349 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22350 dst = ipha->ipha_dst; 22351 22352 /* 22353 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22354 * if the socket is a SOCK_RAW type. The transport checksum should 22355 * be provided in the pre-built packet, so we don't need to compute it. 22356 * Also, other application set flags, like DF, should not be altered. 22357 * Other transport MUST pass down zero. 22358 */ 22359 ip_hdr_included = ipha->ipha_ident; 22360 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22361 22362 if (CLASSD(dst)) { 22363 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22364 ntohl(dst), 22365 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22366 ntohl(ire->ire_addr))); 22367 } 22368 22369 /* Macros to extract header fields from data already in registers */ 22370 #ifdef _BIG_ENDIAN 22371 #define V_HLEN (v_hlen_tos_len >> 24) 22372 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22373 #define PROTO (ttl_protocol & 0xFF) 22374 #else 22375 #define V_HLEN (v_hlen_tos_len & 0xFF) 22376 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22377 #define PROTO (ttl_protocol >> 8) 22378 #endif 22379 22380 22381 orig_src = src = ipha->ipha_src; 22382 /* (The loop back to "another" is explained down below.) */ 22383 another:; 22384 /* 22385 * Assign an ident value for this packet. We assign idents on 22386 * a per destination basis out of the IRE. There could be 22387 * other threads targeting the same destination, so we have to 22388 * arrange for a atomic increment. Note that we use a 32-bit 22389 * atomic add because it has better performance than its 22390 * 16-bit sibling. 22391 * 22392 * If running in cluster mode and if the source address 22393 * belongs to a replicated service then vector through 22394 * cl_inet_ipident vector to allocate ip identifier 22395 * NOTE: This is a contract private interface with the 22396 * clustering group. 22397 */ 22398 clusterwide = 0; 22399 if (cl_inet_ipident) { 22400 ASSERT(cl_inet_isclusterwide); 22401 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22402 AF_INET, (uint8_t *)(uintptr_t)src)) { 22403 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22404 AF_INET, (uint8_t *)(uintptr_t)src, 22405 (uint8_t *)(uintptr_t)dst); 22406 clusterwide = 1; 22407 } 22408 } 22409 if (!clusterwide) { 22410 ipha->ipha_ident = 22411 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22412 } 22413 22414 #ifndef _BIG_ENDIAN 22415 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22416 #endif 22417 22418 /* 22419 * Set source address unless sent on an ill or conn_unspec_src is set. 22420 * This is needed to obey conn_unspec_src when packets go through 22421 * ip_newroute + arp. 22422 * Assumes ip_newroute{,_multi} sets the source address as well. 22423 */ 22424 if (src == INADDR_ANY && !unspec_src) { 22425 /* 22426 * Assign the appropriate source address from the IRE if none 22427 * was specified. 22428 */ 22429 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22430 22431 /* 22432 * With IP multipathing, broadcast packets are sent on the ire 22433 * that has been cleared of IRE_MARK_NORECV and that belongs to 22434 * the group. However, this ire might not be in the same zone so 22435 * we can't always use its source address. We look for a 22436 * broadcast ire in the same group and in the right zone. 22437 */ 22438 if (ire->ire_type == IRE_BROADCAST && 22439 ire->ire_zoneid != zoneid) { 22440 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22441 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22442 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22443 if (src_ire != NULL) { 22444 src = src_ire->ire_src_addr; 22445 ire_refrele(src_ire); 22446 } else { 22447 ire_refrele(ire); 22448 if (conn_outgoing_ill != NULL) 22449 ill_refrele(conn_outgoing_ill); 22450 freemsg(first_mp); 22451 if (ill != NULL) { 22452 BUMP_MIB(ill->ill_ip_mib, 22453 ipIfStatsOutDiscards); 22454 } else { 22455 BUMP_MIB(&ipst->ips_ip_mib, 22456 ipIfStatsOutDiscards); 22457 } 22458 return; 22459 } 22460 } else { 22461 src = ire->ire_src_addr; 22462 } 22463 22464 if (connp == NULL) { 22465 ip1dbg(("ip_wput_ire: no connp and no src " 22466 "address for dst 0x%x, using src 0x%x\n", 22467 ntohl(dst), 22468 ntohl(src))); 22469 } 22470 ipha->ipha_src = src; 22471 } 22472 stq = ire->ire_stq; 22473 22474 /* 22475 * We only allow ire chains for broadcasts since there will 22476 * be multiple IRE_CACHE entries for the same multicast 22477 * address (one per ipif). 22478 */ 22479 next_mp = NULL; 22480 22481 /* broadcast packet */ 22482 if (ire->ire_type == IRE_BROADCAST) 22483 goto broadcast; 22484 22485 /* loopback ? */ 22486 if (stq == NULL) 22487 goto nullstq; 22488 22489 /* The ill_index for outbound ILL */ 22490 ill_index = Q_TO_INDEX(stq); 22491 22492 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22493 ttl_protocol = ((uint16_t *)ipha)[4]; 22494 22495 /* pseudo checksum (do it in parts for IP header checksum) */ 22496 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22497 22498 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22499 queue_t *dev_q = stq->q_next; 22500 22501 /* flow controlled */ 22502 if ((dev_q->q_next || dev_q->q_first) && 22503 !canput(dev_q)) 22504 goto blocked; 22505 if ((PROTO == IPPROTO_UDP) && 22506 (ip_hdr_included != IP_HDR_INCLUDED)) { 22507 hlen = (V_HLEN & 0xF) << 2; 22508 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22509 if (*up != 0) { 22510 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22511 hlen, LENGTH, max_frag, ipsec_len, cksum); 22512 /* Software checksum? */ 22513 if (DB_CKSUMFLAGS(mp) == 0) { 22514 IP_STAT(ipst, ip_out_sw_cksum); 22515 IP_STAT_UPDATE(ipst, 22516 ip_udp_out_sw_cksum_bytes, 22517 LENGTH - hlen); 22518 } 22519 } 22520 } 22521 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22522 hlen = (V_HLEN & 0xF) << 2; 22523 if (PROTO == IPPROTO_TCP) { 22524 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22525 /* 22526 * The packet header is processed once and for all, even 22527 * in the multirouting case. We disable hardware 22528 * checksum if the packet is multirouted, as it will be 22529 * replicated via several interfaces, and not all of 22530 * them may have this capability. 22531 */ 22532 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22533 LENGTH, max_frag, ipsec_len, cksum); 22534 /* Software checksum? */ 22535 if (DB_CKSUMFLAGS(mp) == 0) { 22536 IP_STAT(ipst, ip_out_sw_cksum); 22537 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22538 LENGTH - hlen); 22539 } 22540 } else { 22541 sctp_hdr_t *sctph; 22542 22543 ASSERT(PROTO == IPPROTO_SCTP); 22544 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22545 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22546 /* 22547 * Zero out the checksum field to ensure proper 22548 * checksum calculation. 22549 */ 22550 sctph->sh_chksum = 0; 22551 #ifdef DEBUG 22552 if (!skip_sctp_cksum) 22553 #endif 22554 sctph->sh_chksum = sctp_cksum(mp, hlen); 22555 } 22556 } 22557 22558 /* 22559 * If this is a multicast packet and originated from ip_wput 22560 * we need to do loopback and forwarding checks. If it comes 22561 * from ip_wput_multicast, we SHOULD not do this. 22562 */ 22563 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22564 22565 /* checksum */ 22566 cksum += ttl_protocol; 22567 22568 /* fragment the packet */ 22569 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22570 goto fragmentit; 22571 /* 22572 * Don't use frag_flag if packet is pre-built or source 22573 * routed or if multicast (since multicast packets do 22574 * not solicit ICMP "packet too big" messages). 22575 */ 22576 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22577 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22578 !ip_source_route_included(ipha)) && 22579 !CLASSD(ipha->ipha_dst)) 22580 ipha->ipha_fragment_offset_and_flags |= 22581 htons(ire->ire_frag_flag); 22582 22583 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22584 /* calculate IP header checksum */ 22585 cksum += ipha->ipha_ident; 22586 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22587 cksum += ipha->ipha_fragment_offset_and_flags; 22588 22589 /* IP options present */ 22590 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22591 if (hlen) 22592 goto checksumoptions; 22593 22594 /* calculate hdr checksum */ 22595 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22596 cksum = ~(cksum + (cksum >> 16)); 22597 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22598 } 22599 if (ipsec_len != 0) { 22600 /* 22601 * We will do the rest of the processing after 22602 * we come back from IPsec in ip_wput_ipsec_out(). 22603 */ 22604 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22605 22606 io = (ipsec_out_t *)first_mp->b_rptr; 22607 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22608 ill_phyint->phyint_ifindex; 22609 22610 ipsec_out_process(q, first_mp, ire, ill_index); 22611 ire_refrele(ire); 22612 if (conn_outgoing_ill != NULL) 22613 ill_refrele(conn_outgoing_ill); 22614 return; 22615 } 22616 22617 /* 22618 * In most cases, the emission loop below is entered only 22619 * once. Only in the case where the ire holds the 22620 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22621 * flagged ires in the bucket, and send the packet 22622 * through all crossed RTF_MULTIRT routes. 22623 */ 22624 if (ire->ire_flags & RTF_MULTIRT) { 22625 multirt_send = B_TRUE; 22626 } 22627 do { 22628 if (multirt_send) { 22629 irb_t *irb; 22630 /* 22631 * We are in a multiple send case, need to get 22632 * the next ire and make a duplicate of the packet. 22633 * ire1 holds here the next ire to process in the 22634 * bucket. If multirouting is expected, 22635 * any non-RTF_MULTIRT ire that has the 22636 * right destination address is ignored. 22637 */ 22638 irb = ire->ire_bucket; 22639 ASSERT(irb != NULL); 22640 22641 IRB_REFHOLD(irb); 22642 for (ire1 = ire->ire_next; 22643 ire1 != NULL; 22644 ire1 = ire1->ire_next) { 22645 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22646 continue; 22647 if (ire1->ire_addr != ire->ire_addr) 22648 continue; 22649 if (ire1->ire_marks & 22650 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22651 continue; 22652 22653 /* Got one */ 22654 IRE_REFHOLD(ire1); 22655 break; 22656 } 22657 IRB_REFRELE(irb); 22658 22659 if (ire1 != NULL) { 22660 next_mp = copyb(mp); 22661 if ((next_mp == NULL) || 22662 ((mp->b_cont != NULL) && 22663 ((next_mp->b_cont = 22664 dupmsg(mp->b_cont)) == NULL))) { 22665 freemsg(next_mp); 22666 next_mp = NULL; 22667 ire_refrele(ire1); 22668 ire1 = NULL; 22669 } 22670 } 22671 22672 /* Last multiroute ire; don't loop anymore. */ 22673 if (ire1 == NULL) { 22674 multirt_send = B_FALSE; 22675 } 22676 } 22677 22678 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22679 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22680 mblk_t *, mp); 22681 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22682 ipst->ips_ipv4firewall_physical_out, 22683 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22684 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22685 if (mp == NULL) 22686 goto release_ire_and_ill; 22687 22688 if (ipst->ips_ipobs_enabled) { 22689 zoneid_t szone; 22690 22691 /* 22692 * On the outbound path the destination zone will be 22693 * unknown as we're sending this packet out on the 22694 * wire. 22695 */ 22696 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22697 ALL_ZONES); 22698 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22699 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22700 } 22701 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22702 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22703 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22704 if ((pktxmit_state == SEND_FAILED) || 22705 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22706 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22707 "- packet dropped\n")); 22708 release_ire_and_ill: 22709 ire_refrele(ire); 22710 if (next_mp != NULL) { 22711 freemsg(next_mp); 22712 ire_refrele(ire1); 22713 } 22714 if (conn_outgoing_ill != NULL) 22715 ill_refrele(conn_outgoing_ill); 22716 return; 22717 } 22718 22719 if (CLASSD(dst)) { 22720 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22721 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22722 LENGTH); 22723 } 22724 22725 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22726 "ip_wput_ire_end: q %p (%S)", 22727 q, "last copy out"); 22728 IRE_REFRELE(ire); 22729 22730 if (multirt_send) { 22731 ASSERT(ire1); 22732 /* 22733 * Proceed with the next RTF_MULTIRT ire, 22734 * Also set up the send-to queue accordingly. 22735 */ 22736 ire = ire1; 22737 ire1 = NULL; 22738 stq = ire->ire_stq; 22739 mp = next_mp; 22740 next_mp = NULL; 22741 ipha = (ipha_t *)mp->b_rptr; 22742 ill_index = Q_TO_INDEX(stq); 22743 ill = (ill_t *)stq->q_ptr; 22744 } 22745 } while (multirt_send); 22746 if (conn_outgoing_ill != NULL) 22747 ill_refrele(conn_outgoing_ill); 22748 return; 22749 22750 /* 22751 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22752 */ 22753 broadcast: 22754 { 22755 /* 22756 * To avoid broadcast storms, we usually set the TTL to 1 for 22757 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22758 * can be overridden stack-wide through the ip_broadcast_ttl 22759 * ndd tunable, or on a per-connection basis through the 22760 * IP_BROADCAST_TTL socket option. 22761 * 22762 * In the event that we are replying to incoming ICMP packets, 22763 * connp could be NULL. 22764 */ 22765 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22766 if (connp != NULL) { 22767 if (connp->conn_dontroute) 22768 ipha->ipha_ttl = 1; 22769 else if (connp->conn_broadcast_ttl != 0) 22770 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22771 } 22772 22773 /* 22774 * Note that we are not doing a IRB_REFHOLD here. 22775 * Actually we don't care if the list changes i.e 22776 * if somebody deletes an IRE from the list while 22777 * we drop the lock, the next time we come around 22778 * ire_next will be NULL and hence we won't send 22779 * out multiple copies which is fine. 22780 */ 22781 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22782 ire1 = ire->ire_next; 22783 if (conn_outgoing_ill != NULL) { 22784 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22785 ASSERT(ire1 == ire->ire_next); 22786 if (ire1 != NULL && ire1->ire_addr == dst) { 22787 ire_refrele(ire); 22788 ire = ire1; 22789 IRE_REFHOLD(ire); 22790 ire1 = ire->ire_next; 22791 continue; 22792 } 22793 rw_exit(&ire->ire_bucket->irb_lock); 22794 /* Did not find a matching ill */ 22795 ip1dbg(("ip_wput_ire: broadcast with no " 22796 "matching IP_BOUND_IF ill %s dst %x\n", 22797 conn_outgoing_ill->ill_name, dst)); 22798 freemsg(first_mp); 22799 if (ire != NULL) 22800 ire_refrele(ire); 22801 ill_refrele(conn_outgoing_ill); 22802 return; 22803 } 22804 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22805 /* 22806 * If the next IRE has the same address and is not one 22807 * of the two copies that we need to send, try to see 22808 * whether this copy should be sent at all. This 22809 * assumes that we insert loopbacks first and then 22810 * non-loopbacks. This is acheived by inserting the 22811 * loopback always before non-loopback. 22812 * This is used to send a single copy of a broadcast 22813 * packet out all physical interfaces that have an 22814 * matching IRE_BROADCAST while also looping 22815 * back one copy (to ip_wput_local) for each 22816 * matching physical interface. However, we avoid 22817 * sending packets out different logical that match by 22818 * having ipif_up/ipif_down supress duplicate 22819 * IRE_BROADCASTS. 22820 * 22821 * This feature is currently used to get broadcasts 22822 * sent to multiple interfaces, when the broadcast 22823 * address being used applies to multiple interfaces. 22824 * For example, a whole net broadcast will be 22825 * replicated on every connected subnet of 22826 * the target net. 22827 * 22828 * Each zone has its own set of IRE_BROADCASTs, so that 22829 * we're able to distribute inbound packets to multiple 22830 * zones who share a broadcast address. We avoid looping 22831 * back outbound packets in different zones but on the 22832 * same ill, as the application would see duplicates. 22833 * 22834 * If the interfaces are part of the same group, 22835 * we would want to send only one copy out for 22836 * whole group. 22837 * 22838 * This logic assumes that ire_add_v4() groups the 22839 * IRE_BROADCAST entries so that those with the same 22840 * ire_addr and ill_group are kept together. 22841 */ 22842 ire_ill = ire->ire_ipif->ipif_ill; 22843 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22844 if (ire_ill->ill_group != NULL && 22845 (ire->ire_marks & IRE_MARK_NORECV)) { 22846 /* 22847 * If the current zone only has an ire 22848 * broadcast for this address marked 22849 * NORECV, the ire we want is ahead in 22850 * the bucket, so we look it up 22851 * deliberately ignoring the zoneid. 22852 */ 22853 for (ire1 = ire->ire_bucket->irb_ire; 22854 ire1 != NULL; 22855 ire1 = ire1->ire_next) { 22856 ire1_ill = 22857 ire1->ire_ipif->ipif_ill; 22858 if (ire1->ire_addr != dst) 22859 continue; 22860 /* skip over the current ire */ 22861 if (ire1 == ire) 22862 continue; 22863 /* skip over deleted ires */ 22864 if (ire1->ire_marks & 22865 IRE_MARK_CONDEMNED) 22866 continue; 22867 /* 22868 * non-loopback ire in our 22869 * group: use it for the next 22870 * pass in the loop 22871 */ 22872 if (ire1->ire_stq != NULL && 22873 ire1_ill->ill_group == 22874 ire_ill->ill_group) 22875 break; 22876 } 22877 } 22878 } else { 22879 while (ire1 != NULL && ire1->ire_addr == dst) { 22880 ire1_ill = ire1->ire_ipif->ipif_ill; 22881 /* 22882 * We can have two broadcast ires on the 22883 * same ill in different zones; here 22884 * we'll send a copy of the packet on 22885 * each ill and the fanout code will 22886 * call conn_wantpacket() to check that 22887 * the zone has the broadcast address 22888 * configured on the ill. If the two 22889 * ires are in the same group we only 22890 * send one copy up. 22891 */ 22892 if (ire1_ill != ire_ill && 22893 (ire1_ill->ill_group == NULL || 22894 ire_ill->ill_group == NULL || 22895 ire1_ill->ill_group != 22896 ire_ill->ill_group)) { 22897 break; 22898 } 22899 ire1 = ire1->ire_next; 22900 } 22901 } 22902 } 22903 ASSERT(multirt_send == B_FALSE); 22904 if (ire1 != NULL && ire1->ire_addr == dst) { 22905 if ((ire->ire_flags & RTF_MULTIRT) && 22906 (ire1->ire_flags & RTF_MULTIRT)) { 22907 /* 22908 * We are in the multirouting case. 22909 * The message must be sent at least 22910 * on both ires. These ires have been 22911 * inserted AFTER the standard ones 22912 * in ip_rt_add(). There are thus no 22913 * other ire entries for the destination 22914 * address in the rest of the bucket 22915 * that do not have the RTF_MULTIRT 22916 * flag. We don't process a copy 22917 * of the message here. This will be 22918 * done in the final sending loop. 22919 */ 22920 multirt_send = B_TRUE; 22921 } else { 22922 next_mp = ip_copymsg(first_mp); 22923 if (next_mp != NULL) 22924 IRE_REFHOLD(ire1); 22925 } 22926 } 22927 rw_exit(&ire->ire_bucket->irb_lock); 22928 } 22929 22930 if (stq) { 22931 /* 22932 * A non-NULL send-to queue means this packet is going 22933 * out of this machine. 22934 */ 22935 out_ill = (ill_t *)stq->q_ptr; 22936 22937 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22938 ttl_protocol = ((uint16_t *)ipha)[4]; 22939 /* 22940 * We accumulate the pseudo header checksum in cksum. 22941 * This is pretty hairy code, so watch close. One 22942 * thing to keep in mind is that UDP and TCP have 22943 * stored their respective datagram lengths in their 22944 * checksum fields. This lines things up real nice. 22945 */ 22946 cksum = (dst >> 16) + (dst & 0xFFFF) + 22947 (src >> 16) + (src & 0xFFFF); 22948 /* 22949 * We assume the udp checksum field contains the 22950 * length, so to compute the pseudo header checksum, 22951 * all we need is the protocol number and src/dst. 22952 */ 22953 /* Provide the checksums for UDP and TCP. */ 22954 if ((PROTO == IPPROTO_TCP) && 22955 (ip_hdr_included != IP_HDR_INCLUDED)) { 22956 /* hlen gets the number of uchar_ts in the IP header */ 22957 hlen = (V_HLEN & 0xF) << 2; 22958 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22959 IP_STAT(ipst, ip_out_sw_cksum); 22960 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22961 LENGTH - hlen); 22962 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22963 } else if (PROTO == IPPROTO_SCTP && 22964 (ip_hdr_included != IP_HDR_INCLUDED)) { 22965 sctp_hdr_t *sctph; 22966 22967 hlen = (V_HLEN & 0xF) << 2; 22968 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22969 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22970 sctph->sh_chksum = 0; 22971 #ifdef DEBUG 22972 if (!skip_sctp_cksum) 22973 #endif 22974 sctph->sh_chksum = sctp_cksum(mp, hlen); 22975 } else { 22976 queue_t *dev_q = stq->q_next; 22977 22978 if ((dev_q->q_next || dev_q->q_first) && 22979 !canput(dev_q)) { 22980 blocked: 22981 ipha->ipha_ident = ip_hdr_included; 22982 /* 22983 * If we don't have a conn to apply 22984 * backpressure, free the message. 22985 * In the ire_send path, we don't know 22986 * the position to requeue the packet. Rather 22987 * than reorder packets, we just drop this 22988 * packet. 22989 */ 22990 if (ipst->ips_ip_output_queue && 22991 connp != NULL && 22992 caller != IRE_SEND) { 22993 if (caller == IP_WSRV) { 22994 connp->conn_did_putbq = 1; 22995 (void) putbq(connp->conn_wq, 22996 first_mp); 22997 conn_drain_insert(connp); 22998 /* 22999 * This is the service thread, 23000 * and the queue is already 23001 * noenabled. The check for 23002 * canput and the putbq is not 23003 * atomic. So we need to check 23004 * again. 23005 */ 23006 if (canput(stq->q_next)) 23007 connp->conn_did_putbq 23008 = 0; 23009 IP_STAT(ipst, ip_conn_flputbq); 23010 } else { 23011 /* 23012 * We are not the service proc. 23013 * ip_wsrv will be scheduled or 23014 * is already running. 23015 */ 23016 (void) putq(connp->conn_wq, 23017 first_mp); 23018 } 23019 } else { 23020 out_ill = (ill_t *)stq->q_ptr; 23021 BUMP_MIB(out_ill->ill_ip_mib, 23022 ipIfStatsOutDiscards); 23023 freemsg(first_mp); 23024 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23025 "ip_wput_ire_end: q %p (%S)", 23026 q, "discard"); 23027 } 23028 ire_refrele(ire); 23029 if (next_mp) { 23030 ire_refrele(ire1); 23031 freemsg(next_mp); 23032 } 23033 if (conn_outgoing_ill != NULL) 23034 ill_refrele(conn_outgoing_ill); 23035 return; 23036 } 23037 if ((PROTO == IPPROTO_UDP) && 23038 (ip_hdr_included != IP_HDR_INCLUDED)) { 23039 /* 23040 * hlen gets the number of uchar_ts in the 23041 * IP header 23042 */ 23043 hlen = (V_HLEN & 0xF) << 2; 23044 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23045 max_frag = ire->ire_max_frag; 23046 if (*up != 0) { 23047 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 23048 up, PROTO, hlen, LENGTH, max_frag, 23049 ipsec_len, cksum); 23050 /* Software checksum? */ 23051 if (DB_CKSUMFLAGS(mp) == 0) { 23052 IP_STAT(ipst, ip_out_sw_cksum); 23053 IP_STAT_UPDATE(ipst, 23054 ip_udp_out_sw_cksum_bytes, 23055 LENGTH - hlen); 23056 } 23057 } 23058 } 23059 } 23060 /* 23061 * Need to do this even when fragmenting. The local 23062 * loopback can be done without computing checksums 23063 * but forwarding out other interface must be done 23064 * after the IP checksum (and ULP checksums) have been 23065 * computed. 23066 * 23067 * NOTE : multicast_forward is set only if this packet 23068 * originated from ip_wput. For packets originating from 23069 * ip_wput_multicast, it is not set. 23070 */ 23071 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23072 multi_loopback: 23073 ip2dbg(("ip_wput: multicast, loop %d\n", 23074 conn_multicast_loop)); 23075 23076 /* Forget header checksum offload */ 23077 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23078 23079 /* 23080 * Local loopback of multicasts? Check the 23081 * ill. 23082 * 23083 * Note that the loopback function will not come 23084 * in through ip_rput - it will only do the 23085 * client fanout thus we need to do an mforward 23086 * as well. The is different from the BSD 23087 * logic. 23088 */ 23089 if (ill != NULL) { 23090 ilm_t *ilm; 23091 23092 ILM_WALKER_HOLD(ill); 23093 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23094 ALL_ZONES); 23095 ILM_WALKER_RELE(ill); 23096 if (ilm != NULL) { 23097 /* 23098 * Pass along the virtual output q. 23099 * ip_wput_local() will distribute the 23100 * packet to all the matching zones, 23101 * except the sending zone when 23102 * IP_MULTICAST_LOOP is false. 23103 */ 23104 ip_multicast_loopback(q, ill, first_mp, 23105 conn_multicast_loop ? 0 : 23106 IP_FF_NO_MCAST_LOOP, zoneid); 23107 } 23108 } 23109 if (ipha->ipha_ttl == 0) { 23110 /* 23111 * 0 => only to this host i.e. we are 23112 * done. We are also done if this was the 23113 * loopback interface since it is sufficient 23114 * to loopback one copy of a multicast packet. 23115 */ 23116 freemsg(first_mp); 23117 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23118 "ip_wput_ire_end: q %p (%S)", 23119 q, "loopback"); 23120 ire_refrele(ire); 23121 if (conn_outgoing_ill != NULL) 23122 ill_refrele(conn_outgoing_ill); 23123 return; 23124 } 23125 /* 23126 * ILLF_MULTICAST is checked in ip_newroute 23127 * i.e. we don't need to check it here since 23128 * all IRE_CACHEs come from ip_newroute. 23129 * For multicast traffic, SO_DONTROUTE is interpreted 23130 * to mean only send the packet out the interface 23131 * (optionally specified with IP_MULTICAST_IF) 23132 * and do not forward it out additional interfaces. 23133 * RSVP and the rsvp daemon is an example of a 23134 * protocol and user level process that 23135 * handles it's own routing. Hence, it uses the 23136 * SO_DONTROUTE option to accomplish this. 23137 */ 23138 23139 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23140 ill != NULL) { 23141 /* Unconditionally redo the checksum */ 23142 ipha->ipha_hdr_checksum = 0; 23143 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23144 23145 /* 23146 * If this needs to go out secure, we need 23147 * to wait till we finish the IPsec 23148 * processing. 23149 */ 23150 if (ipsec_len == 0 && 23151 ip_mforward(ill, ipha, mp)) { 23152 freemsg(first_mp); 23153 ip1dbg(("ip_wput: mforward failed\n")); 23154 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23155 "ip_wput_ire_end: q %p (%S)", 23156 q, "mforward failed"); 23157 ire_refrele(ire); 23158 if (conn_outgoing_ill != NULL) 23159 ill_refrele(conn_outgoing_ill); 23160 return; 23161 } 23162 } 23163 } 23164 max_frag = ire->ire_max_frag; 23165 cksum += ttl_protocol; 23166 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23167 /* No fragmentation required for this one. */ 23168 /* 23169 * Don't use frag_flag if packet is pre-built or source 23170 * routed or if multicast (since multicast packets do 23171 * not solicit ICMP "packet too big" messages). 23172 */ 23173 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23174 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23175 !ip_source_route_included(ipha)) && 23176 !CLASSD(ipha->ipha_dst)) 23177 ipha->ipha_fragment_offset_and_flags |= 23178 htons(ire->ire_frag_flag); 23179 23180 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23181 /* Complete the IP header checksum. */ 23182 cksum += ipha->ipha_ident; 23183 cksum += (v_hlen_tos_len >> 16)+ 23184 (v_hlen_tos_len & 0xFFFF); 23185 cksum += ipha->ipha_fragment_offset_and_flags; 23186 hlen = (V_HLEN & 0xF) - 23187 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23188 if (hlen) { 23189 checksumoptions: 23190 /* 23191 * Account for the IP Options in the IP 23192 * header checksum. 23193 */ 23194 up = (uint16_t *)(rptr+ 23195 IP_SIMPLE_HDR_LENGTH); 23196 do { 23197 cksum += up[0]; 23198 cksum += up[1]; 23199 up += 2; 23200 } while (--hlen); 23201 } 23202 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23203 cksum = ~(cksum + (cksum >> 16)); 23204 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23205 } 23206 if (ipsec_len != 0) { 23207 ipsec_out_process(q, first_mp, ire, ill_index); 23208 if (!next_mp) { 23209 ire_refrele(ire); 23210 if (conn_outgoing_ill != NULL) 23211 ill_refrele(conn_outgoing_ill); 23212 return; 23213 } 23214 goto next; 23215 } 23216 23217 /* 23218 * multirt_send has already been handled 23219 * for broadcast, but not yet for multicast 23220 * or IP options. 23221 */ 23222 if (next_mp == NULL) { 23223 if (ire->ire_flags & RTF_MULTIRT) { 23224 multirt_send = B_TRUE; 23225 } 23226 } 23227 23228 /* 23229 * In most cases, the emission loop below is 23230 * entered only once. Only in the case where 23231 * the ire holds the RTF_MULTIRT flag, do we loop 23232 * to process all RTF_MULTIRT ires in the bucket, 23233 * and send the packet through all crossed 23234 * RTF_MULTIRT routes. 23235 */ 23236 do { 23237 if (multirt_send) { 23238 irb_t *irb; 23239 23240 irb = ire->ire_bucket; 23241 ASSERT(irb != NULL); 23242 /* 23243 * We are in a multiple send case, 23244 * need to get the next IRE and make 23245 * a duplicate of the packet. 23246 */ 23247 IRB_REFHOLD(irb); 23248 for (ire1 = ire->ire_next; 23249 ire1 != NULL; 23250 ire1 = ire1->ire_next) { 23251 if (!(ire1->ire_flags & 23252 RTF_MULTIRT)) { 23253 continue; 23254 } 23255 if (ire1->ire_addr != 23256 ire->ire_addr) { 23257 continue; 23258 } 23259 if (ire1->ire_marks & 23260 (IRE_MARK_CONDEMNED| 23261 IRE_MARK_HIDDEN)) { 23262 continue; 23263 } 23264 23265 /* Got one */ 23266 IRE_REFHOLD(ire1); 23267 break; 23268 } 23269 IRB_REFRELE(irb); 23270 23271 if (ire1 != NULL) { 23272 next_mp = copyb(mp); 23273 if ((next_mp == NULL) || 23274 ((mp->b_cont != NULL) && 23275 ((next_mp->b_cont = 23276 dupmsg(mp->b_cont)) 23277 == NULL))) { 23278 freemsg(next_mp); 23279 next_mp = NULL; 23280 ire_refrele(ire1); 23281 ire1 = NULL; 23282 } 23283 } 23284 23285 /* 23286 * Last multiroute ire; don't loop 23287 * anymore. The emission is over 23288 * and next_mp is NULL. 23289 */ 23290 if (ire1 == NULL) { 23291 multirt_send = B_FALSE; 23292 } 23293 } 23294 23295 out_ill = ire_to_ill(ire); 23296 DTRACE_PROBE4(ip4__physical__out__start, 23297 ill_t *, NULL, 23298 ill_t *, out_ill, 23299 ipha_t *, ipha, mblk_t *, mp); 23300 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23301 ipst->ips_ipv4firewall_physical_out, 23302 NULL, out_ill, ipha, mp, mp, 0, ipst); 23303 DTRACE_PROBE1(ip4__physical__out__end, 23304 mblk_t *, mp); 23305 if (mp == NULL) 23306 goto release_ire_and_ill_2; 23307 23308 ASSERT(ipsec_len == 0); 23309 mp->b_prev = 23310 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23311 DTRACE_PROBE2(ip__xmit__2, 23312 mblk_t *, mp, ire_t *, ire); 23313 pktxmit_state = ip_xmit_v4(mp, ire, 23314 NULL, B_TRUE); 23315 if ((pktxmit_state == SEND_FAILED) || 23316 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23317 release_ire_and_ill_2: 23318 if (next_mp) { 23319 freemsg(next_mp); 23320 ire_refrele(ire1); 23321 } 23322 ire_refrele(ire); 23323 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23324 "ip_wput_ire_end: q %p (%S)", 23325 q, "discard MDATA"); 23326 if (conn_outgoing_ill != NULL) 23327 ill_refrele(conn_outgoing_ill); 23328 return; 23329 } 23330 23331 if (CLASSD(dst)) { 23332 BUMP_MIB(out_ill->ill_ip_mib, 23333 ipIfStatsHCOutMcastPkts); 23334 UPDATE_MIB(out_ill->ill_ip_mib, 23335 ipIfStatsHCOutMcastOctets, 23336 LENGTH); 23337 } else if (ire->ire_type == IRE_BROADCAST) { 23338 BUMP_MIB(out_ill->ill_ip_mib, 23339 ipIfStatsHCOutBcastPkts); 23340 } 23341 23342 if (multirt_send) { 23343 /* 23344 * We are in a multiple send case, 23345 * need to re-enter the sending loop 23346 * using the next ire. 23347 */ 23348 ire_refrele(ire); 23349 ire = ire1; 23350 stq = ire->ire_stq; 23351 mp = next_mp; 23352 next_mp = NULL; 23353 ipha = (ipha_t *)mp->b_rptr; 23354 ill_index = Q_TO_INDEX(stq); 23355 } 23356 } while (multirt_send); 23357 23358 if (!next_mp) { 23359 /* 23360 * Last copy going out (the ultra-common 23361 * case). Note that we intentionally replicate 23362 * the putnext rather than calling it before 23363 * the next_mp check in hopes of a little 23364 * tail-call action out of the compiler. 23365 */ 23366 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23367 "ip_wput_ire_end: q %p (%S)", 23368 q, "last copy out(1)"); 23369 ire_refrele(ire); 23370 if (conn_outgoing_ill != NULL) 23371 ill_refrele(conn_outgoing_ill); 23372 return; 23373 } 23374 /* More copies going out below. */ 23375 } else { 23376 int offset; 23377 fragmentit: 23378 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23379 /* 23380 * If this would generate a icmp_frag_needed message, 23381 * we need to handle it before we do the IPsec 23382 * processing. Otherwise, we need to strip the IPsec 23383 * headers before we send up the message to the ULPs 23384 * which becomes messy and difficult. 23385 */ 23386 if (ipsec_len != 0) { 23387 if ((max_frag < (unsigned int)(LENGTH + 23388 ipsec_len)) && (offset & IPH_DF)) { 23389 out_ill = (ill_t *)stq->q_ptr; 23390 BUMP_MIB(out_ill->ill_ip_mib, 23391 ipIfStatsOutFragFails); 23392 BUMP_MIB(out_ill->ill_ip_mib, 23393 ipIfStatsOutFragReqds); 23394 ipha->ipha_hdr_checksum = 0; 23395 ipha->ipha_hdr_checksum = 23396 (uint16_t)ip_csum_hdr(ipha); 23397 icmp_frag_needed(ire->ire_stq, first_mp, 23398 max_frag, zoneid, ipst); 23399 if (!next_mp) { 23400 ire_refrele(ire); 23401 if (conn_outgoing_ill != NULL) { 23402 ill_refrele( 23403 conn_outgoing_ill); 23404 } 23405 return; 23406 } 23407 } else { 23408 /* 23409 * This won't cause a icmp_frag_needed 23410 * message. to be generated. Send it on 23411 * the wire. Note that this could still 23412 * cause fragmentation and all we 23413 * do is the generation of the message 23414 * to the ULP if needed before IPsec. 23415 */ 23416 if (!next_mp) { 23417 ipsec_out_process(q, first_mp, 23418 ire, ill_index); 23419 TRACE_2(TR_FAC_IP, 23420 TR_IP_WPUT_IRE_END, 23421 "ip_wput_ire_end: q %p " 23422 "(%S)", q, 23423 "last ipsec_out_process"); 23424 ire_refrele(ire); 23425 if (conn_outgoing_ill != NULL) { 23426 ill_refrele( 23427 conn_outgoing_ill); 23428 } 23429 return; 23430 } 23431 ipsec_out_process(q, first_mp, 23432 ire, ill_index); 23433 } 23434 } else { 23435 /* 23436 * Initiate IPPF processing. For 23437 * fragmentable packets we finish 23438 * all QOS packet processing before 23439 * calling: 23440 * ip_wput_ire_fragmentit->ip_wput_frag 23441 */ 23442 23443 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23444 ip_process(IPP_LOCAL_OUT, &mp, 23445 ill_index); 23446 if (mp == NULL) { 23447 out_ill = (ill_t *)stq->q_ptr; 23448 BUMP_MIB(out_ill->ill_ip_mib, 23449 ipIfStatsOutDiscards); 23450 if (next_mp != NULL) { 23451 freemsg(next_mp); 23452 ire_refrele(ire1); 23453 } 23454 ire_refrele(ire); 23455 TRACE_2(TR_FAC_IP, 23456 TR_IP_WPUT_IRE_END, 23457 "ip_wput_ire: q %p (%S)", 23458 q, "discard MDATA"); 23459 if (conn_outgoing_ill != NULL) { 23460 ill_refrele( 23461 conn_outgoing_ill); 23462 } 23463 return; 23464 } 23465 } 23466 if (!next_mp) { 23467 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23468 "ip_wput_ire_end: q %p (%S)", 23469 q, "last fragmentation"); 23470 ip_wput_ire_fragmentit(mp, ire, 23471 zoneid, ipst); 23472 ire_refrele(ire); 23473 if (conn_outgoing_ill != NULL) 23474 ill_refrele(conn_outgoing_ill); 23475 return; 23476 } 23477 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23478 } 23479 } 23480 } else { 23481 nullstq: 23482 /* A NULL stq means the destination address is local. */ 23483 UPDATE_OB_PKT_COUNT(ire); 23484 ire->ire_last_used_time = lbolt; 23485 ASSERT(ire->ire_ipif != NULL); 23486 if (!next_mp) { 23487 /* 23488 * Is there an "in" and "out" for traffic local 23489 * to a host (loopback)? The code in Solaris doesn't 23490 * explicitly draw a line in its code for in vs out, 23491 * so we've had to draw a line in the sand: ip_wput_ire 23492 * is considered to be the "output" side and 23493 * ip_wput_local to be the "input" side. 23494 */ 23495 out_ill = ire_to_ill(ire); 23496 23497 /* 23498 * DTrace this as ip:::send. A blocked packet will 23499 * fire the send probe, but not the receive probe. 23500 */ 23501 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23502 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23503 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23504 23505 DTRACE_PROBE4(ip4__loopback__out__start, 23506 ill_t *, NULL, ill_t *, out_ill, 23507 ipha_t *, ipha, mblk_t *, first_mp); 23508 23509 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23510 ipst->ips_ipv4firewall_loopback_out, 23511 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23512 23513 DTRACE_PROBE1(ip4__loopback__out_end, 23514 mblk_t *, first_mp); 23515 23516 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23517 "ip_wput_ire_end: q %p (%S)", 23518 q, "local address"); 23519 23520 if (first_mp != NULL) 23521 ip_wput_local(q, out_ill, ipha, 23522 first_mp, ire, 0, ire->ire_zoneid); 23523 ire_refrele(ire); 23524 if (conn_outgoing_ill != NULL) 23525 ill_refrele(conn_outgoing_ill); 23526 return; 23527 } 23528 23529 out_ill = ire_to_ill(ire); 23530 23531 /* 23532 * DTrace this as ip:::send. A blocked packet will fire the 23533 * send probe, but not the receive probe. 23534 */ 23535 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23536 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23537 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23538 23539 DTRACE_PROBE4(ip4__loopback__out__start, 23540 ill_t *, NULL, ill_t *, out_ill, 23541 ipha_t *, ipha, mblk_t *, first_mp); 23542 23543 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23544 ipst->ips_ipv4firewall_loopback_out, 23545 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23546 23547 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23548 23549 if (first_mp != NULL) 23550 ip_wput_local(q, out_ill, ipha, 23551 first_mp, ire, 0, ire->ire_zoneid); 23552 } 23553 next: 23554 /* 23555 * More copies going out to additional interfaces. 23556 * ire1 has already been held. We don't need the 23557 * "ire" anymore. 23558 */ 23559 ire_refrele(ire); 23560 ire = ire1; 23561 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23562 mp = next_mp; 23563 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23564 ill = ire_to_ill(ire); 23565 first_mp = mp; 23566 if (ipsec_len != 0) { 23567 ASSERT(first_mp->b_datap->db_type == M_CTL); 23568 mp = mp->b_cont; 23569 } 23570 dst = ire->ire_addr; 23571 ipha = (ipha_t *)mp->b_rptr; 23572 /* 23573 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23574 * Restore ipha_ident "no checksum" flag. 23575 */ 23576 src = orig_src; 23577 ipha->ipha_ident = ip_hdr_included; 23578 goto another; 23579 23580 #undef rptr 23581 #undef Q_TO_INDEX 23582 } 23583 23584 /* 23585 * Routine to allocate a message that is used to notify the ULP about MDT. 23586 * The caller may provide a pointer to the link-layer MDT capabilities, 23587 * or NULL if MDT is to be disabled on the stream. 23588 */ 23589 mblk_t * 23590 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23591 { 23592 mblk_t *mp; 23593 ip_mdt_info_t *mdti; 23594 ill_mdt_capab_t *idst; 23595 23596 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23597 DB_TYPE(mp) = M_CTL; 23598 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23599 mdti = (ip_mdt_info_t *)mp->b_rptr; 23600 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23601 idst = &(mdti->mdt_capab); 23602 23603 /* 23604 * If the caller provides us with the capability, copy 23605 * it over into our notification message; otherwise 23606 * we zero out the capability portion. 23607 */ 23608 if (isrc != NULL) 23609 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23610 else 23611 bzero((caddr_t)idst, sizeof (*idst)); 23612 } 23613 return (mp); 23614 } 23615 23616 /* 23617 * Routine which determines whether MDT can be enabled on the destination 23618 * IRE and IPC combination, and if so, allocates and returns the MDT 23619 * notification mblk that may be used by ULP. We also check if we need to 23620 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23621 * MDT usage in the past have been lifted. This gets called during IP 23622 * and ULP binding. 23623 */ 23624 mblk_t * 23625 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23626 ill_mdt_capab_t *mdt_cap) 23627 { 23628 mblk_t *mp; 23629 boolean_t rc = B_FALSE; 23630 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23631 23632 ASSERT(dst_ire != NULL); 23633 ASSERT(connp != NULL); 23634 ASSERT(mdt_cap != NULL); 23635 23636 /* 23637 * Currently, we only support simple TCP/{IPv4,IPv6} with 23638 * Multidata, which is handled in tcp_multisend(). This 23639 * is the reason why we do all these checks here, to ensure 23640 * that we don't enable Multidata for the cases which we 23641 * can't handle at the moment. 23642 */ 23643 do { 23644 /* Only do TCP at the moment */ 23645 if (connp->conn_ulp != IPPROTO_TCP) 23646 break; 23647 23648 /* 23649 * IPsec outbound policy present? Note that we get here 23650 * after calling ipsec_conn_cache_policy() where the global 23651 * policy checking is performed. conn_latch will be 23652 * non-NULL as long as there's a policy defined, 23653 * i.e. conn_out_enforce_policy may be NULL in such case 23654 * when the connection is non-secure, and hence we check 23655 * further if the latch refers to an outbound policy. 23656 */ 23657 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23658 break; 23659 23660 /* CGTP (multiroute) is enabled? */ 23661 if (dst_ire->ire_flags & RTF_MULTIRT) 23662 break; 23663 23664 /* Outbound IPQoS enabled? */ 23665 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23666 /* 23667 * In this case, we disable MDT for this and all 23668 * future connections going over the interface. 23669 */ 23670 mdt_cap->ill_mdt_on = 0; 23671 break; 23672 } 23673 23674 /* socket option(s) present? */ 23675 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23676 break; 23677 23678 rc = B_TRUE; 23679 /* CONSTCOND */ 23680 } while (0); 23681 23682 /* Remember the result */ 23683 connp->conn_mdt_ok = rc; 23684 23685 if (!rc) 23686 return (NULL); 23687 else if (!mdt_cap->ill_mdt_on) { 23688 /* 23689 * If MDT has been previously turned off in the past, and we 23690 * currently can do MDT (due to IPQoS policy removal, etc.) 23691 * then enable it for this interface. 23692 */ 23693 mdt_cap->ill_mdt_on = 1; 23694 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23695 "interface %s\n", ill_name)); 23696 } 23697 23698 /* Allocate the MDT info mblk */ 23699 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23700 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23701 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23702 return (NULL); 23703 } 23704 return (mp); 23705 } 23706 23707 /* 23708 * Routine to allocate a message that is used to notify the ULP about LSO. 23709 * The caller may provide a pointer to the link-layer LSO capabilities, 23710 * or NULL if LSO is to be disabled on the stream. 23711 */ 23712 mblk_t * 23713 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23714 { 23715 mblk_t *mp; 23716 ip_lso_info_t *lsoi; 23717 ill_lso_capab_t *idst; 23718 23719 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23720 DB_TYPE(mp) = M_CTL; 23721 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23722 lsoi = (ip_lso_info_t *)mp->b_rptr; 23723 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23724 idst = &(lsoi->lso_capab); 23725 23726 /* 23727 * If the caller provides us with the capability, copy 23728 * it over into our notification message; otherwise 23729 * we zero out the capability portion. 23730 */ 23731 if (isrc != NULL) 23732 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23733 else 23734 bzero((caddr_t)idst, sizeof (*idst)); 23735 } 23736 return (mp); 23737 } 23738 23739 /* 23740 * Routine which determines whether LSO can be enabled on the destination 23741 * IRE and IPC combination, and if so, allocates and returns the LSO 23742 * notification mblk that may be used by ULP. We also check if we need to 23743 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23744 * LSO usage in the past have been lifted. This gets called during IP 23745 * and ULP binding. 23746 */ 23747 mblk_t * 23748 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23749 ill_lso_capab_t *lso_cap) 23750 { 23751 mblk_t *mp; 23752 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23753 23754 ASSERT(dst_ire != NULL); 23755 ASSERT(connp != NULL); 23756 ASSERT(lso_cap != NULL); 23757 23758 connp->conn_lso_ok = B_TRUE; 23759 23760 if ((connp->conn_ulp != IPPROTO_TCP) || 23761 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23762 (dst_ire->ire_flags & RTF_MULTIRT) || 23763 !CONN_IS_LSO_MD_FASTPATH(connp) || 23764 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23765 connp->conn_lso_ok = B_FALSE; 23766 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23767 /* 23768 * Disable LSO for this and all future connections going 23769 * over the interface. 23770 */ 23771 lso_cap->ill_lso_on = 0; 23772 } 23773 } 23774 23775 if (!connp->conn_lso_ok) 23776 return (NULL); 23777 else if (!lso_cap->ill_lso_on) { 23778 /* 23779 * If LSO has been previously turned off in the past, and we 23780 * currently can do LSO (due to IPQoS policy removal, etc.) 23781 * then enable it for this interface. 23782 */ 23783 lso_cap->ill_lso_on = 1; 23784 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23785 ill_name)); 23786 } 23787 23788 /* Allocate the LSO info mblk */ 23789 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23790 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23791 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23792 23793 return (mp); 23794 } 23795 23796 /* 23797 * Create destination address attribute, and fill it with the physical 23798 * destination address and SAP taken from the template DL_UNITDATA_REQ 23799 * message block. 23800 */ 23801 boolean_t 23802 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23803 { 23804 dl_unitdata_req_t *dlurp; 23805 pattr_t *pa; 23806 pattrinfo_t pa_info; 23807 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23808 uint_t das_len, das_off; 23809 23810 ASSERT(dlmp != NULL); 23811 23812 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23813 das_len = dlurp->dl_dest_addr_length; 23814 das_off = dlurp->dl_dest_addr_offset; 23815 23816 pa_info.type = PATTR_DSTADDRSAP; 23817 pa_info.len = sizeof (**das) + das_len - 1; 23818 23819 /* create and associate the attribute */ 23820 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23821 if (pa != NULL) { 23822 ASSERT(*das != NULL); 23823 (*das)->addr_is_group = 0; 23824 (*das)->addr_len = (uint8_t)das_len; 23825 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23826 } 23827 23828 return (pa != NULL); 23829 } 23830 23831 /* 23832 * Create hardware checksum attribute and fill it with the values passed. 23833 */ 23834 boolean_t 23835 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23836 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23837 { 23838 pattr_t *pa; 23839 pattrinfo_t pa_info; 23840 23841 ASSERT(mmd != NULL); 23842 23843 pa_info.type = PATTR_HCKSUM; 23844 pa_info.len = sizeof (pattr_hcksum_t); 23845 23846 /* create and associate the attribute */ 23847 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23848 if (pa != NULL) { 23849 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23850 23851 hck->hcksum_start_offset = start_offset; 23852 hck->hcksum_stuff_offset = stuff_offset; 23853 hck->hcksum_end_offset = end_offset; 23854 hck->hcksum_flags = flags; 23855 } 23856 return (pa != NULL); 23857 } 23858 23859 /* 23860 * Create zerocopy attribute and fill it with the specified flags 23861 */ 23862 boolean_t 23863 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23864 { 23865 pattr_t *pa; 23866 pattrinfo_t pa_info; 23867 23868 ASSERT(mmd != NULL); 23869 pa_info.type = PATTR_ZCOPY; 23870 pa_info.len = sizeof (pattr_zcopy_t); 23871 23872 /* create and associate the attribute */ 23873 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23874 if (pa != NULL) { 23875 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23876 23877 zcopy->zcopy_flags = flags; 23878 } 23879 return (pa != NULL); 23880 } 23881 23882 /* 23883 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23884 * block chain. We could rewrite to handle arbitrary message block chains but 23885 * that would make the code complicated and slow. Right now there three 23886 * restrictions: 23887 * 23888 * 1. The first message block must contain the complete IP header and 23889 * at least 1 byte of payload data. 23890 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23891 * so that we can use a single Multidata message. 23892 * 3. No frag must be distributed over two or more message blocks so 23893 * that we don't need more than two packet descriptors per frag. 23894 * 23895 * The above restrictions allow us to support userland applications (which 23896 * will send down a single message block) and NFS over UDP (which will 23897 * send down a chain of at most three message blocks). 23898 * 23899 * We also don't use MDT for payloads with less than or equal to 23900 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23901 */ 23902 boolean_t 23903 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23904 { 23905 int blocks; 23906 ssize_t total, missing, size; 23907 23908 ASSERT(mp != NULL); 23909 ASSERT(hdr_len > 0); 23910 23911 size = MBLKL(mp) - hdr_len; 23912 if (size <= 0) 23913 return (B_FALSE); 23914 23915 /* The first mblk contains the header and some payload. */ 23916 blocks = 1; 23917 total = size; 23918 size %= len; 23919 missing = (size == 0) ? 0 : (len - size); 23920 mp = mp->b_cont; 23921 23922 while (mp != NULL) { 23923 /* 23924 * Give up if we encounter a zero length message block. 23925 * In practice, this should rarely happen and therefore 23926 * not worth the trouble of freeing and re-linking the 23927 * mblk from the chain to handle such case. 23928 */ 23929 if ((size = MBLKL(mp)) == 0) 23930 return (B_FALSE); 23931 23932 /* Too many payload buffers for a single Multidata message? */ 23933 if (++blocks > MULTIDATA_MAX_PBUFS) 23934 return (B_FALSE); 23935 23936 total += size; 23937 /* Is a frag distributed over two or more message blocks? */ 23938 if (missing > size) 23939 return (B_FALSE); 23940 size -= missing; 23941 23942 size %= len; 23943 missing = (size == 0) ? 0 : (len - size); 23944 23945 mp = mp->b_cont; 23946 } 23947 23948 return (total > ip_wput_frag_mdt_min); 23949 } 23950 23951 /* 23952 * Outbound IPv4 fragmentation routine using MDT. 23953 */ 23954 static void 23955 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23956 uint32_t frag_flag, int offset) 23957 { 23958 ipha_t *ipha_orig; 23959 int i1, ip_data_end; 23960 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23961 mblk_t *hdr_mp, *md_mp = NULL; 23962 unsigned char *hdr_ptr, *pld_ptr; 23963 multidata_t *mmd; 23964 ip_pdescinfo_t pdi; 23965 ill_t *ill; 23966 ip_stack_t *ipst = ire->ire_ipst; 23967 23968 ASSERT(DB_TYPE(mp) == M_DATA); 23969 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23970 23971 ill = ire_to_ill(ire); 23972 ASSERT(ill != NULL); 23973 23974 ipha_orig = (ipha_t *)mp->b_rptr; 23975 mp->b_rptr += sizeof (ipha_t); 23976 23977 /* Calculate how many packets we will send out */ 23978 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23979 pkts = (i1 + len - 1) / len; 23980 ASSERT(pkts > 1); 23981 23982 /* Allocate a message block which will hold all the IP Headers. */ 23983 wroff = ipst->ips_ip_wroff_extra; 23984 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23985 23986 i1 = pkts * hdr_chunk_len; 23987 /* 23988 * Create the header buffer, Multidata and destination address 23989 * and SAP attribute that should be associated with it. 23990 */ 23991 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23992 ((hdr_mp->b_wptr += i1), 23993 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23994 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23995 freemsg(mp); 23996 if (md_mp == NULL) { 23997 freemsg(hdr_mp); 23998 } else { 23999 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24000 freemsg(md_mp); 24001 } 24002 IP_STAT(ipst, ip_frag_mdt_allocfail); 24003 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24004 return; 24005 } 24006 IP_STAT(ipst, ip_frag_mdt_allocd); 24007 24008 /* 24009 * Add a payload buffer to the Multidata; this operation must not 24010 * fail, or otherwise our logic in this routine is broken. There 24011 * is no memory allocation done by the routine, so any returned 24012 * failure simply tells us that we've done something wrong. 24013 * 24014 * A failure tells us that either we're adding the same payload 24015 * buffer more than once, or we're trying to add more buffers than 24016 * allowed. None of the above cases should happen, and we panic 24017 * because either there's horrible heap corruption, and/or 24018 * programming mistake. 24019 */ 24020 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24021 goto pbuf_panic; 24022 24023 hdr_ptr = hdr_mp->b_rptr; 24024 pld_ptr = mp->b_rptr; 24025 24026 /* Establish the ending byte offset, based on the starting offset. */ 24027 offset <<= 3; 24028 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24029 IP_SIMPLE_HDR_LENGTH; 24030 24031 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24032 24033 while (pld_ptr < mp->b_wptr) { 24034 ipha_t *ipha; 24035 uint16_t offset_and_flags; 24036 uint16_t ip_len; 24037 int error; 24038 24039 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24040 ipha = (ipha_t *)(hdr_ptr + wroff); 24041 ASSERT(OK_32PTR(ipha)); 24042 *ipha = *ipha_orig; 24043 24044 if (ip_data_end - offset > len) { 24045 offset_and_flags = IPH_MF; 24046 } else { 24047 /* 24048 * Last frag. Set len to the length of this last piece. 24049 */ 24050 len = ip_data_end - offset; 24051 /* A frag of a frag might have IPH_MF non-zero */ 24052 offset_and_flags = 24053 ntohs(ipha->ipha_fragment_offset_and_flags) & 24054 IPH_MF; 24055 } 24056 offset_and_flags |= (uint16_t)(offset >> 3); 24057 offset_and_flags |= (uint16_t)frag_flag; 24058 /* Store the offset and flags in the IP header. */ 24059 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24060 24061 /* Store the length in the IP header. */ 24062 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24063 ipha->ipha_length = htons(ip_len); 24064 24065 /* 24066 * Set the IP header checksum. Note that mp is just 24067 * the header, so this is easy to pass to ip_csum. 24068 */ 24069 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24070 24071 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24072 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24073 NULL, int, 0); 24074 24075 /* 24076 * Record offset and size of header and data of the next packet 24077 * in the multidata message. 24078 */ 24079 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24080 PDESC_PLD_INIT(&pdi); 24081 i1 = MIN(mp->b_wptr - pld_ptr, len); 24082 ASSERT(i1 > 0); 24083 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24084 if (i1 == len) { 24085 pld_ptr += len; 24086 } else { 24087 i1 = len - i1; 24088 mp = mp->b_cont; 24089 ASSERT(mp != NULL); 24090 ASSERT(MBLKL(mp) >= i1); 24091 /* 24092 * Attach the next payload message block to the 24093 * multidata message. 24094 */ 24095 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24096 goto pbuf_panic; 24097 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24098 pld_ptr = mp->b_rptr + i1; 24099 } 24100 24101 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24102 KM_NOSLEEP)) == NULL) { 24103 /* 24104 * Any failure other than ENOMEM indicates that we 24105 * have passed in invalid pdesc info or parameters 24106 * to mmd_addpdesc, which must not happen. 24107 * 24108 * EINVAL is a result of failure on boundary checks 24109 * against the pdesc info contents. It should not 24110 * happen, and we panic because either there's 24111 * horrible heap corruption, and/or programming 24112 * mistake. 24113 */ 24114 if (error != ENOMEM) { 24115 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24116 "pdesc logic error detected for " 24117 "mmd %p pinfo %p (%d)\n", 24118 (void *)mmd, (void *)&pdi, error); 24119 /* NOTREACHED */ 24120 } 24121 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24122 /* Free unattached payload message blocks as well */ 24123 md_mp->b_cont = mp->b_cont; 24124 goto free_mmd; 24125 } 24126 24127 /* Advance fragment offset. */ 24128 offset += len; 24129 24130 /* Advance to location for next header in the buffer. */ 24131 hdr_ptr += hdr_chunk_len; 24132 24133 /* Did we reach the next payload message block? */ 24134 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24135 mp = mp->b_cont; 24136 /* 24137 * Attach the next message block with payload 24138 * data to the multidata message. 24139 */ 24140 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24141 goto pbuf_panic; 24142 pld_ptr = mp->b_rptr; 24143 } 24144 } 24145 24146 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24147 ASSERT(mp->b_wptr == pld_ptr); 24148 24149 /* Update IP statistics */ 24150 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24151 24152 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24153 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24154 24155 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24156 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24157 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24158 24159 if (pkt_type == OB_PKT) { 24160 ire->ire_ob_pkt_count += pkts; 24161 if (ire->ire_ipif != NULL) 24162 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24163 } else { 24164 /* The type is IB_PKT in the forwarding path. */ 24165 ire->ire_ib_pkt_count += pkts; 24166 ASSERT(!IRE_IS_LOCAL(ire)); 24167 if (ire->ire_type & IRE_BROADCAST) { 24168 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24169 } else { 24170 UPDATE_MIB(ill->ill_ip_mib, 24171 ipIfStatsHCOutForwDatagrams, pkts); 24172 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24173 } 24174 } 24175 ire->ire_last_used_time = lbolt; 24176 /* Send it down */ 24177 putnext(ire->ire_stq, md_mp); 24178 return; 24179 24180 pbuf_panic: 24181 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24182 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24183 pbuf_idx); 24184 /* NOTREACHED */ 24185 } 24186 24187 /* 24188 * Outbound IP fragmentation routine. 24189 * 24190 * NOTE : This routine does not ire_refrele the ire that is passed in 24191 * as the argument. 24192 */ 24193 static void 24194 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24195 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24196 { 24197 int i1; 24198 mblk_t *ll_hdr_mp; 24199 int ll_hdr_len; 24200 int hdr_len; 24201 mblk_t *hdr_mp; 24202 ipha_t *ipha; 24203 int ip_data_end; 24204 int len; 24205 mblk_t *mp = mp_orig, *mp1; 24206 int offset; 24207 queue_t *q; 24208 uint32_t v_hlen_tos_len; 24209 mblk_t *first_mp; 24210 boolean_t mctl_present; 24211 ill_t *ill; 24212 ill_t *out_ill; 24213 mblk_t *xmit_mp; 24214 mblk_t *carve_mp; 24215 ire_t *ire1 = NULL; 24216 ire_t *save_ire = NULL; 24217 mblk_t *next_mp = NULL; 24218 boolean_t last_frag = B_FALSE; 24219 boolean_t multirt_send = B_FALSE; 24220 ire_t *first_ire = NULL; 24221 irb_t *irb = NULL; 24222 mib2_ipIfStatsEntry_t *mibptr = NULL; 24223 24224 ill = ire_to_ill(ire); 24225 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24226 24227 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24228 24229 if (max_frag == 0) { 24230 ip1dbg(("ip_wput_frag: ire frag size is 0" 24231 " - dropping packet\n")); 24232 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24233 freemsg(mp); 24234 return; 24235 } 24236 24237 /* 24238 * IPsec does not allow hw accelerated packets to be fragmented 24239 * This check is made in ip_wput_ipsec_out prior to coming here 24240 * via ip_wput_ire_fragmentit. 24241 * 24242 * If at this point we have an ire whose ARP request has not 24243 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24244 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24245 * This packet and all fragmentable packets for this ire will 24246 * continue to get dropped while ire_nce->nce_state remains in 24247 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24248 * ND_REACHABLE, all subsquent large packets for this ire will 24249 * get fragemented and sent out by this function. 24250 */ 24251 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24252 /* If nce_state is ND_INITIAL, trigger ARP query */ 24253 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24254 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24255 " - dropping packet\n")); 24256 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24257 freemsg(mp); 24258 return; 24259 } 24260 24261 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24262 "ip_wput_frag_start:"); 24263 24264 if (mp->b_datap->db_type == M_CTL) { 24265 first_mp = mp; 24266 mp_orig = mp = mp->b_cont; 24267 mctl_present = B_TRUE; 24268 } else { 24269 first_mp = mp; 24270 mctl_present = B_FALSE; 24271 } 24272 24273 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24274 ipha = (ipha_t *)mp->b_rptr; 24275 24276 /* 24277 * If the Don't Fragment flag is on, generate an ICMP destination 24278 * unreachable, fragmentation needed. 24279 */ 24280 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24281 if (offset & IPH_DF) { 24282 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24283 if (is_system_labeled()) { 24284 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24285 ire->ire_max_frag - max_frag, AF_INET); 24286 } 24287 /* 24288 * Need to compute hdr checksum if called from ip_wput_ire. 24289 * Note that ip_rput_forward verifies the checksum before 24290 * calling this routine so in that case this is a noop. 24291 */ 24292 ipha->ipha_hdr_checksum = 0; 24293 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24294 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24295 ipst); 24296 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24297 "ip_wput_frag_end:(%S)", 24298 "don't fragment"); 24299 return; 24300 } 24301 /* 24302 * Labeled systems adjust max_frag if they add a label 24303 * to send the correct path mtu. We need the real mtu since we 24304 * are fragmenting the packet after label adjustment. 24305 */ 24306 if (is_system_labeled()) 24307 max_frag = ire->ire_max_frag; 24308 if (mctl_present) 24309 freeb(first_mp); 24310 /* 24311 * Establish the starting offset. May not be zero if we are fragging 24312 * a fragment that is being forwarded. 24313 */ 24314 offset = offset & IPH_OFFSET; 24315 24316 /* TODO why is this test needed? */ 24317 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24318 if (((max_frag - LENGTH) & ~7) < 8) { 24319 /* TODO: notify ulp somehow */ 24320 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24321 freemsg(mp); 24322 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24323 "ip_wput_frag_end:(%S)", 24324 "len < 8"); 24325 return; 24326 } 24327 24328 hdr_len = (V_HLEN & 0xF) << 2; 24329 24330 ipha->ipha_hdr_checksum = 0; 24331 24332 /* 24333 * Establish the number of bytes maximum per frag, after putting 24334 * in the header. 24335 */ 24336 len = (max_frag - hdr_len) & ~7; 24337 24338 /* Check if we can use MDT to send out the frags. */ 24339 ASSERT(!IRE_IS_LOCAL(ire)); 24340 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24341 ipst->ips_ip_multidata_outbound && 24342 !(ire->ire_flags & RTF_MULTIRT) && 24343 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24344 ill != NULL && ILL_MDT_CAPABLE(ill) && 24345 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24346 ASSERT(ill->ill_mdt_capab != NULL); 24347 if (!ill->ill_mdt_capab->ill_mdt_on) { 24348 /* 24349 * If MDT has been previously turned off in the past, 24350 * and we currently can do MDT (due to IPQoS policy 24351 * removal, etc.) then enable it for this interface. 24352 */ 24353 ill->ill_mdt_capab->ill_mdt_on = 1; 24354 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24355 ill->ill_name)); 24356 } 24357 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24358 offset); 24359 return; 24360 } 24361 24362 /* Get a copy of the header for the trailing frags */ 24363 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24364 if (!hdr_mp) { 24365 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24366 freemsg(mp); 24367 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24368 "ip_wput_frag_end:(%S)", 24369 "couldn't copy hdr"); 24370 return; 24371 } 24372 if (DB_CRED(mp) != NULL) 24373 mblk_setcred(hdr_mp, DB_CRED(mp)); 24374 24375 /* Store the starting offset, with the MoreFrags flag. */ 24376 i1 = offset | IPH_MF | frag_flag; 24377 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24378 24379 /* Establish the ending byte offset, based on the starting offset. */ 24380 offset <<= 3; 24381 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24382 24383 /* Store the length of the first fragment in the IP header. */ 24384 i1 = len + hdr_len; 24385 ASSERT(i1 <= IP_MAXPACKET); 24386 ipha->ipha_length = htons((uint16_t)i1); 24387 24388 /* 24389 * Compute the IP header checksum for the first frag. We have to 24390 * watch out that we stop at the end of the header. 24391 */ 24392 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24393 24394 /* 24395 * Now carve off the first frag. Note that this will include the 24396 * original IP header. 24397 */ 24398 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24399 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24400 freeb(hdr_mp); 24401 freemsg(mp_orig); 24402 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24403 "ip_wput_frag_end:(%S)", 24404 "couldn't carve first"); 24405 return; 24406 } 24407 24408 /* 24409 * Multirouting case. Each fragment is replicated 24410 * via all non-condemned RTF_MULTIRT routes 24411 * currently resolved. 24412 * We ensure that first_ire is the first RTF_MULTIRT 24413 * ire in the bucket. 24414 */ 24415 if (ire->ire_flags & RTF_MULTIRT) { 24416 irb = ire->ire_bucket; 24417 ASSERT(irb != NULL); 24418 24419 multirt_send = B_TRUE; 24420 24421 /* Make sure we do not omit any multiroute ire. */ 24422 IRB_REFHOLD(irb); 24423 for (first_ire = irb->irb_ire; 24424 first_ire != NULL; 24425 first_ire = first_ire->ire_next) { 24426 if ((first_ire->ire_flags & RTF_MULTIRT) && 24427 (first_ire->ire_addr == ire->ire_addr) && 24428 !(first_ire->ire_marks & 24429 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24430 break; 24431 } 24432 } 24433 24434 if (first_ire != NULL) { 24435 if (first_ire != ire) { 24436 IRE_REFHOLD(first_ire); 24437 /* 24438 * Do not release the ire passed in 24439 * as the argument. 24440 */ 24441 ire = first_ire; 24442 } else { 24443 first_ire = NULL; 24444 } 24445 } 24446 IRB_REFRELE(irb); 24447 24448 /* 24449 * Save the first ire; we will need to restore it 24450 * for the trailing frags. 24451 * We REFHOLD save_ire, as each iterated ire will be 24452 * REFRELEd. 24453 */ 24454 save_ire = ire; 24455 IRE_REFHOLD(save_ire); 24456 } 24457 24458 /* 24459 * First fragment emission loop. 24460 * In most cases, the emission loop below is entered only 24461 * once. Only in the case where the ire holds the RTF_MULTIRT 24462 * flag, do we loop to process all RTF_MULTIRT ires in the 24463 * bucket, and send the fragment through all crossed 24464 * RTF_MULTIRT routes. 24465 */ 24466 do { 24467 if (ire->ire_flags & RTF_MULTIRT) { 24468 /* 24469 * We are in a multiple send case, need to get 24470 * the next ire and make a copy of the packet. 24471 * ire1 holds here the next ire to process in the 24472 * bucket. If multirouting is expected, 24473 * any non-RTF_MULTIRT ire that has the 24474 * right destination address is ignored. 24475 * 24476 * We have to take into account the MTU of 24477 * each walked ire. max_frag is set by the 24478 * the caller and generally refers to 24479 * the primary ire entry. Here we ensure that 24480 * no route with a lower MTU will be used, as 24481 * fragments are carved once for all ires, 24482 * then replicated. 24483 */ 24484 ASSERT(irb != NULL); 24485 IRB_REFHOLD(irb); 24486 for (ire1 = ire->ire_next; 24487 ire1 != NULL; 24488 ire1 = ire1->ire_next) { 24489 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24490 continue; 24491 if (ire1->ire_addr != ire->ire_addr) 24492 continue; 24493 if (ire1->ire_marks & 24494 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24495 continue; 24496 /* 24497 * Ensure we do not exceed the MTU 24498 * of the next route. 24499 */ 24500 if (ire1->ire_max_frag < max_frag) { 24501 ip_multirt_bad_mtu(ire1, max_frag); 24502 continue; 24503 } 24504 24505 /* Got one. */ 24506 IRE_REFHOLD(ire1); 24507 break; 24508 } 24509 IRB_REFRELE(irb); 24510 24511 if (ire1 != NULL) { 24512 next_mp = copyb(mp); 24513 if ((next_mp == NULL) || 24514 ((mp->b_cont != NULL) && 24515 ((next_mp->b_cont = 24516 dupmsg(mp->b_cont)) == NULL))) { 24517 freemsg(next_mp); 24518 next_mp = NULL; 24519 ire_refrele(ire1); 24520 ire1 = NULL; 24521 } 24522 } 24523 24524 /* Last multiroute ire; don't loop anymore. */ 24525 if (ire1 == NULL) { 24526 multirt_send = B_FALSE; 24527 } 24528 } 24529 24530 ll_hdr_len = 0; 24531 LOCK_IRE_FP_MP(ire); 24532 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24533 if (ll_hdr_mp != NULL) { 24534 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24535 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24536 } else { 24537 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24538 } 24539 24540 /* If there is a transmit header, get a copy for this frag. */ 24541 /* 24542 * TODO: should check db_ref before calling ip_carve_mp since 24543 * it might give us a dup. 24544 */ 24545 if (!ll_hdr_mp) { 24546 /* No xmit header. */ 24547 xmit_mp = mp; 24548 24549 /* We have a link-layer header that can fit in our mblk. */ 24550 } else if (mp->b_datap->db_ref == 1 && 24551 ll_hdr_len != 0 && 24552 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24553 /* M_DATA fastpath */ 24554 mp->b_rptr -= ll_hdr_len; 24555 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24556 xmit_mp = mp; 24557 24558 /* Corner case if copyb has failed */ 24559 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24560 UNLOCK_IRE_FP_MP(ire); 24561 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24562 freeb(hdr_mp); 24563 freemsg(mp); 24564 freemsg(mp_orig); 24565 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24566 "ip_wput_frag_end:(%S)", 24567 "discard"); 24568 24569 if (multirt_send) { 24570 ASSERT(ire1); 24571 ASSERT(next_mp); 24572 24573 freemsg(next_mp); 24574 ire_refrele(ire1); 24575 } 24576 if (save_ire != NULL) 24577 IRE_REFRELE(save_ire); 24578 24579 if (first_ire != NULL) 24580 ire_refrele(first_ire); 24581 return; 24582 24583 /* 24584 * Case of res_mp OR the fastpath mp can't fit 24585 * in the mblk 24586 */ 24587 } else { 24588 xmit_mp->b_cont = mp; 24589 if (DB_CRED(mp) != NULL) 24590 mblk_setcred(xmit_mp, DB_CRED(mp)); 24591 /* 24592 * Get priority marking, if any. 24593 * We propagate the CoS marking from the 24594 * original packet that went to QoS processing 24595 * in ip_wput_ire to the newly carved mp. 24596 */ 24597 if (DB_TYPE(xmit_mp) == M_DATA) 24598 xmit_mp->b_band = mp->b_band; 24599 } 24600 UNLOCK_IRE_FP_MP(ire); 24601 24602 q = ire->ire_stq; 24603 out_ill = (ill_t *)q->q_ptr; 24604 24605 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24606 24607 DTRACE_PROBE4(ip4__physical__out__start, 24608 ill_t *, NULL, ill_t *, out_ill, 24609 ipha_t *, ipha, mblk_t *, xmit_mp); 24610 24611 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24612 ipst->ips_ipv4firewall_physical_out, 24613 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24614 24615 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24616 24617 if (xmit_mp != NULL) { 24618 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24619 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24620 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24621 24622 putnext(q, xmit_mp); 24623 24624 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24625 UPDATE_MIB(out_ill->ill_ip_mib, 24626 ipIfStatsHCOutOctets, i1); 24627 24628 if (pkt_type != OB_PKT) { 24629 /* 24630 * Update the packet count and MIB stats 24631 * of trailing RTF_MULTIRT ires. 24632 */ 24633 UPDATE_OB_PKT_COUNT(ire); 24634 BUMP_MIB(out_ill->ill_ip_mib, 24635 ipIfStatsOutFragReqds); 24636 } 24637 } 24638 24639 if (multirt_send) { 24640 /* 24641 * We are in a multiple send case; look for 24642 * the next ire and re-enter the loop. 24643 */ 24644 ASSERT(ire1); 24645 ASSERT(next_mp); 24646 /* REFRELE the current ire before looping */ 24647 ire_refrele(ire); 24648 ire = ire1; 24649 ire1 = NULL; 24650 mp = next_mp; 24651 next_mp = NULL; 24652 } 24653 } while (multirt_send); 24654 24655 ASSERT(ire1 == NULL); 24656 24657 /* Restore the original ire; we need it for the trailing frags */ 24658 if (save_ire != NULL) { 24659 /* REFRELE the last iterated ire */ 24660 ire_refrele(ire); 24661 /* save_ire has been REFHOLDed */ 24662 ire = save_ire; 24663 save_ire = NULL; 24664 q = ire->ire_stq; 24665 } 24666 24667 if (pkt_type == OB_PKT) { 24668 UPDATE_OB_PKT_COUNT(ire); 24669 } else { 24670 out_ill = (ill_t *)q->q_ptr; 24671 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24672 UPDATE_IB_PKT_COUNT(ire); 24673 } 24674 24675 /* Advance the offset to the second frag starting point. */ 24676 offset += len; 24677 /* 24678 * Update hdr_len from the copied header - there might be less options 24679 * in the later fragments. 24680 */ 24681 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24682 /* Loop until done. */ 24683 for (;;) { 24684 uint16_t offset_and_flags; 24685 uint16_t ip_len; 24686 24687 if (ip_data_end - offset > len) { 24688 /* 24689 * Carve off the appropriate amount from the original 24690 * datagram. 24691 */ 24692 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24693 mp = NULL; 24694 break; 24695 } 24696 /* 24697 * More frags after this one. Get another copy 24698 * of the header. 24699 */ 24700 if (carve_mp->b_datap->db_ref == 1 && 24701 hdr_mp->b_wptr - hdr_mp->b_rptr < 24702 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24703 /* Inline IP header */ 24704 carve_mp->b_rptr -= hdr_mp->b_wptr - 24705 hdr_mp->b_rptr; 24706 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24707 hdr_mp->b_wptr - hdr_mp->b_rptr); 24708 mp = carve_mp; 24709 } else { 24710 if (!(mp = copyb(hdr_mp))) { 24711 freemsg(carve_mp); 24712 break; 24713 } 24714 /* Get priority marking, if any. */ 24715 mp->b_band = carve_mp->b_band; 24716 mp->b_cont = carve_mp; 24717 } 24718 ipha = (ipha_t *)mp->b_rptr; 24719 offset_and_flags = IPH_MF; 24720 } else { 24721 /* 24722 * Last frag. Consume the header. Set len to 24723 * the length of this last piece. 24724 */ 24725 len = ip_data_end - offset; 24726 24727 /* 24728 * Carve off the appropriate amount from the original 24729 * datagram. 24730 */ 24731 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24732 mp = NULL; 24733 break; 24734 } 24735 if (carve_mp->b_datap->db_ref == 1 && 24736 hdr_mp->b_wptr - hdr_mp->b_rptr < 24737 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24738 /* Inline IP header */ 24739 carve_mp->b_rptr -= hdr_mp->b_wptr - 24740 hdr_mp->b_rptr; 24741 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24742 hdr_mp->b_wptr - hdr_mp->b_rptr); 24743 mp = carve_mp; 24744 freeb(hdr_mp); 24745 hdr_mp = mp; 24746 } else { 24747 mp = hdr_mp; 24748 /* Get priority marking, if any. */ 24749 mp->b_band = carve_mp->b_band; 24750 mp->b_cont = carve_mp; 24751 } 24752 ipha = (ipha_t *)mp->b_rptr; 24753 /* A frag of a frag might have IPH_MF non-zero */ 24754 offset_and_flags = 24755 ntohs(ipha->ipha_fragment_offset_and_flags) & 24756 IPH_MF; 24757 } 24758 offset_and_flags |= (uint16_t)(offset >> 3); 24759 offset_and_flags |= (uint16_t)frag_flag; 24760 /* Store the offset and flags in the IP header. */ 24761 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24762 24763 /* Store the length in the IP header. */ 24764 ip_len = (uint16_t)(len + hdr_len); 24765 ipha->ipha_length = htons(ip_len); 24766 24767 /* 24768 * Set the IP header checksum. Note that mp is just 24769 * the header, so this is easy to pass to ip_csum. 24770 */ 24771 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24772 24773 /* Attach a transmit header, if any, and ship it. */ 24774 if (pkt_type == OB_PKT) { 24775 UPDATE_OB_PKT_COUNT(ire); 24776 } else { 24777 out_ill = (ill_t *)q->q_ptr; 24778 BUMP_MIB(out_ill->ill_ip_mib, 24779 ipIfStatsHCOutForwDatagrams); 24780 UPDATE_IB_PKT_COUNT(ire); 24781 } 24782 24783 if (ire->ire_flags & RTF_MULTIRT) { 24784 irb = ire->ire_bucket; 24785 ASSERT(irb != NULL); 24786 24787 multirt_send = B_TRUE; 24788 24789 /* 24790 * Save the original ire; we will need to restore it 24791 * for the tailing frags. 24792 */ 24793 save_ire = ire; 24794 IRE_REFHOLD(save_ire); 24795 } 24796 /* 24797 * Emission loop for this fragment, similar 24798 * to what is done for the first fragment. 24799 */ 24800 do { 24801 if (multirt_send) { 24802 /* 24803 * We are in a multiple send case, need to get 24804 * the next ire and make a copy of the packet. 24805 */ 24806 ASSERT(irb != NULL); 24807 IRB_REFHOLD(irb); 24808 for (ire1 = ire->ire_next; 24809 ire1 != NULL; 24810 ire1 = ire1->ire_next) { 24811 if (!(ire1->ire_flags & RTF_MULTIRT)) 24812 continue; 24813 if (ire1->ire_addr != ire->ire_addr) 24814 continue; 24815 if (ire1->ire_marks & 24816 (IRE_MARK_CONDEMNED| 24817 IRE_MARK_HIDDEN)) { 24818 continue; 24819 } 24820 /* 24821 * Ensure we do not exceed the MTU 24822 * of the next route. 24823 */ 24824 if (ire1->ire_max_frag < max_frag) { 24825 ip_multirt_bad_mtu(ire1, 24826 max_frag); 24827 continue; 24828 } 24829 24830 /* Got one. */ 24831 IRE_REFHOLD(ire1); 24832 break; 24833 } 24834 IRB_REFRELE(irb); 24835 24836 if (ire1 != NULL) { 24837 next_mp = copyb(mp); 24838 if ((next_mp == NULL) || 24839 ((mp->b_cont != NULL) && 24840 ((next_mp->b_cont = 24841 dupmsg(mp->b_cont)) == NULL))) { 24842 freemsg(next_mp); 24843 next_mp = NULL; 24844 ire_refrele(ire1); 24845 ire1 = NULL; 24846 } 24847 } 24848 24849 /* Last multiroute ire; don't loop anymore. */ 24850 if (ire1 == NULL) { 24851 multirt_send = B_FALSE; 24852 } 24853 } 24854 24855 /* Update transmit header */ 24856 ll_hdr_len = 0; 24857 LOCK_IRE_FP_MP(ire); 24858 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24859 if (ll_hdr_mp != NULL) { 24860 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24861 ll_hdr_len = MBLKL(ll_hdr_mp); 24862 } else { 24863 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24864 } 24865 24866 if (!ll_hdr_mp) { 24867 xmit_mp = mp; 24868 24869 /* 24870 * We have link-layer header that can fit in 24871 * our mblk. 24872 */ 24873 } else if (mp->b_datap->db_ref == 1 && 24874 ll_hdr_len != 0 && 24875 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24876 /* M_DATA fastpath */ 24877 mp->b_rptr -= ll_hdr_len; 24878 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24879 ll_hdr_len); 24880 xmit_mp = mp; 24881 24882 /* 24883 * Case of res_mp OR the fastpath mp can't fit 24884 * in the mblk 24885 */ 24886 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24887 xmit_mp->b_cont = mp; 24888 if (DB_CRED(mp) != NULL) 24889 mblk_setcred(xmit_mp, DB_CRED(mp)); 24890 /* Get priority marking, if any. */ 24891 if (DB_TYPE(xmit_mp) == M_DATA) 24892 xmit_mp->b_band = mp->b_band; 24893 24894 /* Corner case if copyb failed */ 24895 } else { 24896 /* 24897 * Exit both the replication and 24898 * fragmentation loops. 24899 */ 24900 UNLOCK_IRE_FP_MP(ire); 24901 goto drop_pkt; 24902 } 24903 UNLOCK_IRE_FP_MP(ire); 24904 24905 mp1 = mp; 24906 out_ill = (ill_t *)q->q_ptr; 24907 24908 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24909 24910 DTRACE_PROBE4(ip4__physical__out__start, 24911 ill_t *, NULL, ill_t *, out_ill, 24912 ipha_t *, ipha, mblk_t *, xmit_mp); 24913 24914 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24915 ipst->ips_ipv4firewall_physical_out, 24916 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24917 24918 DTRACE_PROBE1(ip4__physical__out__end, 24919 mblk_t *, xmit_mp); 24920 24921 if (mp != mp1 && hdr_mp == mp1) 24922 hdr_mp = mp; 24923 if (mp != mp1 && mp_orig == mp1) 24924 mp_orig = mp; 24925 24926 if (xmit_mp != NULL) { 24927 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24928 NULL, void_ip_t *, ipha, 24929 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24930 ipha, ip6_t *, NULL, int, 0); 24931 24932 putnext(q, xmit_mp); 24933 24934 BUMP_MIB(out_ill->ill_ip_mib, 24935 ipIfStatsHCOutTransmits); 24936 UPDATE_MIB(out_ill->ill_ip_mib, 24937 ipIfStatsHCOutOctets, ip_len); 24938 24939 if (pkt_type != OB_PKT) { 24940 /* 24941 * Update the packet count of trailing 24942 * RTF_MULTIRT ires. 24943 */ 24944 UPDATE_OB_PKT_COUNT(ire); 24945 } 24946 } 24947 24948 /* All done if we just consumed the hdr_mp. */ 24949 if (mp == hdr_mp) { 24950 last_frag = B_TRUE; 24951 BUMP_MIB(out_ill->ill_ip_mib, 24952 ipIfStatsOutFragOKs); 24953 } 24954 24955 if (multirt_send) { 24956 /* 24957 * We are in a multiple send case; look for 24958 * the next ire and re-enter the loop. 24959 */ 24960 ASSERT(ire1); 24961 ASSERT(next_mp); 24962 /* REFRELE the current ire before looping */ 24963 ire_refrele(ire); 24964 ire = ire1; 24965 ire1 = NULL; 24966 q = ire->ire_stq; 24967 mp = next_mp; 24968 next_mp = NULL; 24969 } 24970 } while (multirt_send); 24971 /* 24972 * Restore the original ire; we need it for the 24973 * trailing frags 24974 */ 24975 if (save_ire != NULL) { 24976 ASSERT(ire1 == NULL); 24977 /* REFRELE the last iterated ire */ 24978 ire_refrele(ire); 24979 /* save_ire has been REFHOLDed */ 24980 ire = save_ire; 24981 q = ire->ire_stq; 24982 save_ire = NULL; 24983 } 24984 24985 if (last_frag) { 24986 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24987 "ip_wput_frag_end:(%S)", 24988 "consumed hdr_mp"); 24989 24990 if (first_ire != NULL) 24991 ire_refrele(first_ire); 24992 return; 24993 } 24994 /* Otherwise, advance and loop. */ 24995 offset += len; 24996 } 24997 24998 drop_pkt: 24999 /* Clean up following allocation failure. */ 25000 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25001 freemsg(mp); 25002 if (mp != hdr_mp) 25003 freeb(hdr_mp); 25004 if (mp != mp_orig) 25005 freemsg(mp_orig); 25006 25007 if (save_ire != NULL) 25008 IRE_REFRELE(save_ire); 25009 if (first_ire != NULL) 25010 ire_refrele(first_ire); 25011 25012 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25013 "ip_wput_frag_end:(%S)", 25014 "end--alloc failure"); 25015 } 25016 25017 /* 25018 * Copy the header plus those options which have the copy bit set 25019 */ 25020 static mblk_t * 25021 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25022 { 25023 mblk_t *mp; 25024 uchar_t *up; 25025 25026 /* 25027 * Quick check if we need to look for options without the copy bit 25028 * set 25029 */ 25030 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25031 if (!mp) 25032 return (mp); 25033 mp->b_rptr += ipst->ips_ip_wroff_extra; 25034 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25035 bcopy(rptr, mp->b_rptr, hdr_len); 25036 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25037 return (mp); 25038 } 25039 up = mp->b_rptr; 25040 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25041 up += IP_SIMPLE_HDR_LENGTH; 25042 rptr += IP_SIMPLE_HDR_LENGTH; 25043 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25044 while (hdr_len > 0) { 25045 uint32_t optval; 25046 uint32_t optlen; 25047 25048 optval = *rptr; 25049 if (optval == IPOPT_EOL) 25050 break; 25051 if (optval == IPOPT_NOP) 25052 optlen = 1; 25053 else 25054 optlen = rptr[1]; 25055 if (optval & IPOPT_COPY) { 25056 bcopy(rptr, up, optlen); 25057 up += optlen; 25058 } 25059 rptr += optlen; 25060 hdr_len -= optlen; 25061 } 25062 /* 25063 * Make sure that we drop an even number of words by filling 25064 * with EOL to the next word boundary. 25065 */ 25066 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25067 hdr_len & 0x3; hdr_len++) 25068 *up++ = IPOPT_EOL; 25069 mp->b_wptr = up; 25070 /* Update header length */ 25071 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25072 return (mp); 25073 } 25074 25075 /* 25076 * Delivery to local recipients including fanout to multiple recipients. 25077 * Does not do checksumming of UDP/TCP. 25078 * Note: q should be the read side queue for either the ill or conn. 25079 * Note: rq should be the read side q for the lower (ill) stream. 25080 * We don't send packets to IPPF processing, thus the last argument 25081 * to all the fanout calls are B_FALSE. 25082 */ 25083 void 25084 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25085 int fanout_flags, zoneid_t zoneid) 25086 { 25087 uint32_t protocol; 25088 mblk_t *first_mp; 25089 boolean_t mctl_present; 25090 int ire_type; 25091 #define rptr ((uchar_t *)ipha) 25092 ip_stack_t *ipst = ill->ill_ipst; 25093 25094 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25095 "ip_wput_local_start: q %p", q); 25096 25097 if (ire != NULL) { 25098 ire_type = ire->ire_type; 25099 } else { 25100 /* 25101 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25102 * packet is not multicast, we can't tell the ire type. 25103 */ 25104 ASSERT(CLASSD(ipha->ipha_dst)); 25105 ire_type = IRE_BROADCAST; 25106 } 25107 25108 first_mp = mp; 25109 if (first_mp->b_datap->db_type == M_CTL) { 25110 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25111 if (!io->ipsec_out_secure) { 25112 /* 25113 * This ipsec_out_t was allocated in ip_wput 25114 * for multicast packets to store the ill_index. 25115 * As this is being delivered locally, we don't 25116 * need this anymore. 25117 */ 25118 mp = first_mp->b_cont; 25119 freeb(first_mp); 25120 first_mp = mp; 25121 mctl_present = B_FALSE; 25122 } else { 25123 /* 25124 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25125 * security properties for the looped-back packet. 25126 */ 25127 mctl_present = B_TRUE; 25128 mp = first_mp->b_cont; 25129 ASSERT(mp != NULL); 25130 ipsec_out_to_in(first_mp); 25131 } 25132 } else { 25133 mctl_present = B_FALSE; 25134 } 25135 25136 DTRACE_PROBE4(ip4__loopback__in__start, 25137 ill_t *, ill, ill_t *, NULL, 25138 ipha_t *, ipha, mblk_t *, first_mp); 25139 25140 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25141 ipst->ips_ipv4firewall_loopback_in, 25142 ill, NULL, ipha, first_mp, mp, 0, ipst); 25143 25144 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25145 25146 if (first_mp == NULL) 25147 return; 25148 25149 if (ipst->ips_ipobs_enabled) { 25150 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25151 zoneid_t stackzoneid = netstackid_to_zoneid( 25152 ipst->ips_netstack->netstack_stackid); 25153 25154 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25155 /* 25156 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25157 * address. Restrict the lookup below to the destination zone. 25158 */ 25159 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25160 lookup_zoneid = zoneid; 25161 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25162 lookup_zoneid); 25163 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25164 IPV4_VERSION, 0, ipst); 25165 } 25166 25167 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25168 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25169 int, 1); 25170 25171 ipst->ips_loopback_packets++; 25172 25173 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25174 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25175 if (!IS_SIMPLE_IPH(ipha)) { 25176 ip_wput_local_options(ipha, ipst); 25177 } 25178 25179 protocol = ipha->ipha_protocol; 25180 switch (protocol) { 25181 case IPPROTO_ICMP: { 25182 ire_t *ire_zone; 25183 ilm_t *ilm; 25184 mblk_t *mp1; 25185 zoneid_t last_zoneid; 25186 25187 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25188 ASSERT(ire_type == IRE_BROADCAST); 25189 /* 25190 * In the multicast case, applications may have joined 25191 * the group from different zones, so we need to deliver 25192 * the packet to each of them. Loop through the 25193 * multicast memberships structures (ilm) on the receive 25194 * ill and send a copy of the packet up each matching 25195 * one. However, we don't do this for multicasts sent on 25196 * the loopback interface (PHYI_LOOPBACK flag set) as 25197 * they must stay in the sender's zone. 25198 * 25199 * ilm_add_v6() ensures that ilms in the same zone are 25200 * contiguous in the ill_ilm list. We use this property 25201 * to avoid sending duplicates needed when two 25202 * applications in the same zone join the same group on 25203 * different logical interfaces: we ignore the ilm if 25204 * it's zoneid is the same as the last matching one. 25205 * In addition, the sending of the packet for 25206 * ire_zoneid is delayed until all of the other ilms 25207 * have been exhausted. 25208 */ 25209 last_zoneid = -1; 25210 ILM_WALKER_HOLD(ill); 25211 for (ilm = ill->ill_ilm; ilm != NULL; 25212 ilm = ilm->ilm_next) { 25213 if ((ilm->ilm_flags & ILM_DELETED) || 25214 ipha->ipha_dst != ilm->ilm_addr || 25215 ilm->ilm_zoneid == last_zoneid || 25216 ilm->ilm_zoneid == zoneid || 25217 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25218 continue; 25219 mp1 = ip_copymsg(first_mp); 25220 if (mp1 == NULL) 25221 continue; 25222 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25223 mctl_present, B_FALSE, ill, 25224 ilm->ilm_zoneid); 25225 last_zoneid = ilm->ilm_zoneid; 25226 } 25227 ILM_WALKER_RELE(ill); 25228 /* 25229 * Loopback case: the sending endpoint has 25230 * IP_MULTICAST_LOOP disabled, therefore we don't 25231 * dispatch the multicast packet to the sending zone. 25232 */ 25233 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25234 freemsg(first_mp); 25235 return; 25236 } 25237 } else if (ire_type == IRE_BROADCAST) { 25238 /* 25239 * In the broadcast case, there may be many zones 25240 * which need a copy of the packet delivered to them. 25241 * There is one IRE_BROADCAST per broadcast address 25242 * and per zone; we walk those using a helper function. 25243 * In addition, the sending of the packet for zoneid is 25244 * delayed until all of the other ires have been 25245 * processed. 25246 */ 25247 IRB_REFHOLD(ire->ire_bucket); 25248 ire_zone = NULL; 25249 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25250 ire)) != NULL) { 25251 mp1 = ip_copymsg(first_mp); 25252 if (mp1 == NULL) 25253 continue; 25254 25255 UPDATE_IB_PKT_COUNT(ire_zone); 25256 ire_zone->ire_last_used_time = lbolt; 25257 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25258 mctl_present, B_FALSE, ill, 25259 ire_zone->ire_zoneid); 25260 } 25261 IRB_REFRELE(ire->ire_bucket); 25262 } 25263 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25264 0, mctl_present, B_FALSE, ill, zoneid); 25265 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25266 "ip_wput_local_end: q %p (%S)", 25267 q, "icmp"); 25268 return; 25269 } 25270 case IPPROTO_IGMP: 25271 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25272 /* Bad packet - discarded by igmp_input */ 25273 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25274 "ip_wput_local_end: q %p (%S)", 25275 q, "igmp_input--bad packet"); 25276 if (mctl_present) 25277 freeb(first_mp); 25278 return; 25279 } 25280 /* 25281 * igmp_input() may have returned the pulled up message. 25282 * So first_mp and ipha need to be reinitialized. 25283 */ 25284 ipha = (ipha_t *)mp->b_rptr; 25285 if (mctl_present) 25286 first_mp->b_cont = mp; 25287 else 25288 first_mp = mp; 25289 /* deliver to local raw users */ 25290 break; 25291 case IPPROTO_ENCAP: 25292 /* 25293 * This case is covered by either ip_fanout_proto, or by 25294 * the above security processing for self-tunneled packets. 25295 */ 25296 break; 25297 case IPPROTO_UDP: { 25298 uint16_t *up; 25299 uint32_t ports; 25300 25301 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25302 UDP_PORTS_OFFSET); 25303 /* Force a 'valid' checksum. */ 25304 up[3] = 0; 25305 25306 ports = *(uint32_t *)up; 25307 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25308 (ire_type == IRE_BROADCAST), 25309 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25310 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25311 ill, zoneid); 25312 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25313 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25314 return; 25315 } 25316 case IPPROTO_TCP: { 25317 25318 /* 25319 * For TCP, discard broadcast packets. 25320 */ 25321 if ((ushort_t)ire_type == IRE_BROADCAST) { 25322 freemsg(first_mp); 25323 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25324 ip2dbg(("ip_wput_local: discard broadcast\n")); 25325 return; 25326 } 25327 25328 if (mp->b_datap->db_type == M_DATA) { 25329 /* 25330 * M_DATA mblk, so init mblk (chain) for no struio(). 25331 */ 25332 mblk_t *mp1 = mp; 25333 25334 do { 25335 mp1->b_datap->db_struioflag = 0; 25336 } while ((mp1 = mp1->b_cont) != NULL); 25337 } 25338 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25339 <= mp->b_wptr); 25340 ip_fanout_tcp(q, first_mp, ill, ipha, 25341 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25342 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25343 mctl_present, B_FALSE, zoneid); 25344 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25345 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25346 return; 25347 } 25348 case IPPROTO_SCTP: 25349 { 25350 uint32_t ports; 25351 25352 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25353 ip_fanout_sctp(first_mp, ill, ipha, ports, 25354 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25355 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25356 return; 25357 } 25358 25359 default: 25360 break; 25361 } 25362 /* 25363 * Find a client for some other protocol. We give 25364 * copies to multiple clients, if more than one is 25365 * bound. 25366 */ 25367 ip_fanout_proto(q, first_mp, ill, ipha, 25368 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25369 mctl_present, B_FALSE, ill, zoneid); 25370 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25371 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25372 #undef rptr 25373 } 25374 25375 /* 25376 * Update any source route, record route, or timestamp options. 25377 * Check that we are at end of strict source route. 25378 * The options have been sanity checked by ip_wput_options(). 25379 */ 25380 static void 25381 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25382 { 25383 ipoptp_t opts; 25384 uchar_t *opt; 25385 uint8_t optval; 25386 uint8_t optlen; 25387 ipaddr_t dst; 25388 uint32_t ts; 25389 ire_t *ire; 25390 timestruc_t now; 25391 25392 ip2dbg(("ip_wput_local_options\n")); 25393 for (optval = ipoptp_first(&opts, ipha); 25394 optval != IPOPT_EOL; 25395 optval = ipoptp_next(&opts)) { 25396 opt = opts.ipoptp_cur; 25397 optlen = opts.ipoptp_len; 25398 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25399 switch (optval) { 25400 uint32_t off; 25401 case IPOPT_SSRR: 25402 case IPOPT_LSRR: 25403 off = opt[IPOPT_OFFSET]; 25404 off--; 25405 if (optlen < IP_ADDR_LEN || 25406 off > optlen - IP_ADDR_LEN) { 25407 /* End of source route */ 25408 break; 25409 } 25410 /* 25411 * This will only happen if two consecutive entries 25412 * in the source route contains our address or if 25413 * it is a packet with a loose source route which 25414 * reaches us before consuming the whole source route 25415 */ 25416 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25417 if (optval == IPOPT_SSRR) { 25418 return; 25419 } 25420 /* 25421 * Hack: instead of dropping the packet truncate the 25422 * source route to what has been used by filling the 25423 * rest with IPOPT_NOP. 25424 */ 25425 opt[IPOPT_OLEN] = (uint8_t)off; 25426 while (off < optlen) { 25427 opt[off++] = IPOPT_NOP; 25428 } 25429 break; 25430 case IPOPT_RR: 25431 off = opt[IPOPT_OFFSET]; 25432 off--; 25433 if (optlen < IP_ADDR_LEN || 25434 off > optlen - IP_ADDR_LEN) { 25435 /* No more room - ignore */ 25436 ip1dbg(( 25437 "ip_wput_forward_options: end of RR\n")); 25438 break; 25439 } 25440 dst = htonl(INADDR_LOOPBACK); 25441 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25442 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25443 break; 25444 case IPOPT_TS: 25445 /* Insert timestamp if there is romm */ 25446 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25447 case IPOPT_TS_TSONLY: 25448 off = IPOPT_TS_TIMELEN; 25449 break; 25450 case IPOPT_TS_PRESPEC: 25451 case IPOPT_TS_PRESPEC_RFC791: 25452 /* Verify that the address matched */ 25453 off = opt[IPOPT_OFFSET] - 1; 25454 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25455 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25456 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25457 ipst); 25458 if (ire == NULL) { 25459 /* Not for us */ 25460 break; 25461 } 25462 ire_refrele(ire); 25463 /* FALLTHRU */ 25464 case IPOPT_TS_TSANDADDR: 25465 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25466 break; 25467 default: 25468 /* 25469 * ip_*put_options should have already 25470 * dropped this packet. 25471 */ 25472 cmn_err(CE_PANIC, "ip_wput_local_options: " 25473 "unknown IT - bug in ip_wput_options?\n"); 25474 return; /* Keep "lint" happy */ 25475 } 25476 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25477 /* Increase overflow counter */ 25478 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25479 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25480 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25481 (off << 4); 25482 break; 25483 } 25484 off = opt[IPOPT_OFFSET] - 1; 25485 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25486 case IPOPT_TS_PRESPEC: 25487 case IPOPT_TS_PRESPEC_RFC791: 25488 case IPOPT_TS_TSANDADDR: 25489 dst = htonl(INADDR_LOOPBACK); 25490 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25491 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25492 /* FALLTHRU */ 25493 case IPOPT_TS_TSONLY: 25494 off = opt[IPOPT_OFFSET] - 1; 25495 /* Compute # of milliseconds since midnight */ 25496 gethrestime(&now); 25497 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25498 now.tv_nsec / (NANOSEC / MILLISEC); 25499 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25500 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25501 break; 25502 } 25503 break; 25504 } 25505 } 25506 } 25507 25508 /* 25509 * Send out a multicast packet on interface ipif. 25510 * The sender does not have an conn. 25511 * Caller verifies that this isn't a PHYI_LOOPBACK. 25512 */ 25513 void 25514 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25515 { 25516 ipha_t *ipha; 25517 ire_t *ire; 25518 ipaddr_t dst; 25519 mblk_t *first_mp; 25520 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25521 25522 /* igmp_sendpkt always allocates a ipsec_out_t */ 25523 ASSERT(mp->b_datap->db_type == M_CTL); 25524 ASSERT(!ipif->ipif_isv6); 25525 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25526 25527 first_mp = mp; 25528 mp = first_mp->b_cont; 25529 ASSERT(mp->b_datap->db_type == M_DATA); 25530 ipha = (ipha_t *)mp->b_rptr; 25531 25532 /* 25533 * Find an IRE which matches the destination and the outgoing 25534 * queue (i.e. the outgoing interface.) 25535 */ 25536 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25537 dst = ipif->ipif_pp_dst_addr; 25538 else 25539 dst = ipha->ipha_dst; 25540 /* 25541 * The source address has already been initialized by the 25542 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25543 * be sufficient rather than MATCH_IRE_IPIF. 25544 * 25545 * This function is used for sending IGMP packets. We need 25546 * to make sure that we send the packet out of the interface 25547 * (ipif->ipif_ill) where we joined the group. This is to 25548 * prevent from switches doing IGMP snooping to send us multicast 25549 * packets for a given group on the interface we have joined. 25550 * If we can't find an ire, igmp_sendpkt has already initialized 25551 * ipsec_out_attach_if so that this will not be load spread in 25552 * ip_newroute_ipif. 25553 */ 25554 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25555 MATCH_IRE_ILL, ipst); 25556 if (!ire) { 25557 /* 25558 * Mark this packet to make it be delivered to 25559 * ip_wput_ire after the new ire has been 25560 * created. 25561 */ 25562 mp->b_prev = NULL; 25563 mp->b_next = NULL; 25564 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25565 zoneid, &zero_info); 25566 return; 25567 } 25568 25569 /* 25570 * Honor the RTF_SETSRC flag; this is the only case 25571 * where we force this addr whatever the current src addr is, 25572 * because this address is set by igmp_sendpkt(), and 25573 * cannot be specified by any user. 25574 */ 25575 if (ire->ire_flags & RTF_SETSRC) { 25576 ipha->ipha_src = ire->ire_src_addr; 25577 } 25578 25579 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25580 } 25581 25582 /* 25583 * NOTE : This function does not ire_refrele the ire argument passed in. 25584 * 25585 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25586 * failure. The nce_fp_mp can vanish any time in the case of 25587 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25588 * the ire_lock to access the nce_fp_mp in this case. 25589 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25590 * prepending a fastpath message IPQoS processing must precede it, we also set 25591 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25592 * (IPQoS might have set the b_band for CoS marking). 25593 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25594 * must follow it so that IPQoS can mark the dl_priority field for CoS 25595 * marking, if needed. 25596 */ 25597 static mblk_t * 25598 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25599 uint32_t ill_index, ipha_t **iphap) 25600 { 25601 uint_t hlen; 25602 ipha_t *ipha; 25603 mblk_t *mp1; 25604 boolean_t qos_done = B_FALSE; 25605 uchar_t *ll_hdr; 25606 ip_stack_t *ipst = ire->ire_ipst; 25607 25608 #define rptr ((uchar_t *)ipha) 25609 25610 ipha = (ipha_t *)mp->b_rptr; 25611 hlen = 0; 25612 LOCK_IRE_FP_MP(ire); 25613 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25614 ASSERT(DB_TYPE(mp1) == M_DATA); 25615 /* Initiate IPPF processing */ 25616 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25617 UNLOCK_IRE_FP_MP(ire); 25618 ip_process(proc, &mp, ill_index); 25619 if (mp == NULL) 25620 return (NULL); 25621 25622 ipha = (ipha_t *)mp->b_rptr; 25623 LOCK_IRE_FP_MP(ire); 25624 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25625 qos_done = B_TRUE; 25626 goto no_fp_mp; 25627 } 25628 ASSERT(DB_TYPE(mp1) == M_DATA); 25629 } 25630 hlen = MBLKL(mp1); 25631 /* 25632 * Check if we have enough room to prepend fastpath 25633 * header 25634 */ 25635 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25636 ll_hdr = rptr - hlen; 25637 bcopy(mp1->b_rptr, ll_hdr, hlen); 25638 /* 25639 * Set the b_rptr to the start of the link layer 25640 * header 25641 */ 25642 mp->b_rptr = ll_hdr; 25643 mp1 = mp; 25644 } else { 25645 mp1 = copyb(mp1); 25646 if (mp1 == NULL) 25647 goto unlock_err; 25648 mp1->b_band = mp->b_band; 25649 mp1->b_cont = mp; 25650 /* 25651 * certain system generated traffic may not 25652 * have cred/label in ip header block. This 25653 * is true even for a labeled system. But for 25654 * labeled traffic, inherit the label in the 25655 * new header. 25656 */ 25657 if (DB_CRED(mp) != NULL) 25658 mblk_setcred(mp1, DB_CRED(mp)); 25659 /* 25660 * XXX disable ICK_VALID and compute checksum 25661 * here; can happen if nce_fp_mp changes and 25662 * it can't be copied now due to insufficient 25663 * space. (unlikely, fp mp can change, but it 25664 * does not increase in length) 25665 */ 25666 } 25667 UNLOCK_IRE_FP_MP(ire); 25668 } else { 25669 no_fp_mp: 25670 mp1 = copyb(ire->ire_nce->nce_res_mp); 25671 if (mp1 == NULL) { 25672 unlock_err: 25673 UNLOCK_IRE_FP_MP(ire); 25674 freemsg(mp); 25675 return (NULL); 25676 } 25677 UNLOCK_IRE_FP_MP(ire); 25678 mp1->b_cont = mp; 25679 /* 25680 * certain system generated traffic may not 25681 * have cred/label in ip header block. This 25682 * is true even for a labeled system. But for 25683 * labeled traffic, inherit the label in the 25684 * new header. 25685 */ 25686 if (DB_CRED(mp) != NULL) 25687 mblk_setcred(mp1, DB_CRED(mp)); 25688 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25689 ip_process(proc, &mp1, ill_index); 25690 if (mp1 == NULL) 25691 return (NULL); 25692 25693 if (mp1->b_cont == NULL) 25694 ipha = NULL; 25695 else 25696 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25697 } 25698 } 25699 25700 *iphap = ipha; 25701 return (mp1); 25702 #undef rptr 25703 } 25704 25705 /* 25706 * Finish the outbound IPsec processing for an IPv6 packet. This function 25707 * is called from ipsec_out_process() if the IPsec packet was processed 25708 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25709 * asynchronously. 25710 */ 25711 void 25712 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25713 ire_t *ire_arg) 25714 { 25715 in6_addr_t *v6dstp; 25716 ire_t *ire; 25717 mblk_t *mp; 25718 ip6_t *ip6h1; 25719 uint_t ill_index; 25720 ipsec_out_t *io; 25721 boolean_t attach_if, hwaccel; 25722 uint32_t flags = IP6_NO_IPPOLICY; 25723 int match_flags; 25724 zoneid_t zoneid; 25725 boolean_t ill_need_rele = B_FALSE; 25726 boolean_t ire_need_rele = B_FALSE; 25727 ip_stack_t *ipst; 25728 25729 mp = ipsec_mp->b_cont; 25730 ip6h1 = (ip6_t *)mp->b_rptr; 25731 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25732 ASSERT(io->ipsec_out_ns != NULL); 25733 ipst = io->ipsec_out_ns->netstack_ip; 25734 ill_index = io->ipsec_out_ill_index; 25735 if (io->ipsec_out_reachable) { 25736 flags |= IPV6_REACHABILITY_CONFIRMATION; 25737 } 25738 attach_if = io->ipsec_out_attach_if; 25739 hwaccel = io->ipsec_out_accelerated; 25740 zoneid = io->ipsec_out_zoneid; 25741 ASSERT(zoneid != ALL_ZONES); 25742 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25743 /* Multicast addresses should have non-zero ill_index. */ 25744 v6dstp = &ip6h->ip6_dst; 25745 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25746 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25747 ASSERT(!attach_if || ill_index != 0); 25748 if (ill_index != 0) { 25749 if (ill == NULL) { 25750 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25751 B_TRUE, ipst); 25752 25753 /* Failure case frees things for us. */ 25754 if (ill == NULL) 25755 return; 25756 25757 ill_need_rele = B_TRUE; 25758 } 25759 /* 25760 * If this packet needs to go out on a particular interface 25761 * honor it. 25762 */ 25763 if (attach_if) { 25764 match_flags = MATCH_IRE_ILL; 25765 25766 /* 25767 * Check if we need an ire that will not be 25768 * looked up by anybody else i.e. HIDDEN. 25769 */ 25770 if (ill_is_probeonly(ill)) { 25771 match_flags |= MATCH_IRE_MARK_HIDDEN; 25772 } 25773 } 25774 } 25775 ASSERT(mp != NULL); 25776 25777 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25778 boolean_t unspec_src; 25779 ipif_t *ipif; 25780 25781 /* 25782 * Use the ill_index to get the right ill. 25783 */ 25784 unspec_src = io->ipsec_out_unspec_src; 25785 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25786 if (ipif == NULL) { 25787 if (ill_need_rele) 25788 ill_refrele(ill); 25789 freemsg(ipsec_mp); 25790 return; 25791 } 25792 25793 if (ire_arg != NULL) { 25794 ire = ire_arg; 25795 } else { 25796 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25797 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25798 ire_need_rele = B_TRUE; 25799 } 25800 if (ire != NULL) { 25801 ipif_refrele(ipif); 25802 /* 25803 * XXX Do the multicast forwarding now, as the IPsec 25804 * processing has been done. 25805 */ 25806 goto send; 25807 } 25808 25809 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25810 mp->b_prev = NULL; 25811 mp->b_next = NULL; 25812 25813 /* 25814 * If the IPsec packet was processed asynchronously, 25815 * drop it now. 25816 */ 25817 if (q == NULL) { 25818 if (ill_need_rele) 25819 ill_refrele(ill); 25820 freemsg(ipsec_mp); 25821 return; 25822 } 25823 25824 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25825 unspec_src, zoneid); 25826 ipif_refrele(ipif); 25827 } else { 25828 if (attach_if) { 25829 ipif_t *ipif; 25830 25831 ipif = ipif_get_next_ipif(NULL, ill); 25832 if (ipif == NULL) { 25833 if (ill_need_rele) 25834 ill_refrele(ill); 25835 freemsg(ipsec_mp); 25836 return; 25837 } 25838 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25839 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25840 ire_need_rele = B_TRUE; 25841 ipif_refrele(ipif); 25842 } else { 25843 if (ire_arg != NULL) { 25844 ire = ire_arg; 25845 } else { 25846 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25847 ipst); 25848 ire_need_rele = B_TRUE; 25849 } 25850 } 25851 if (ire != NULL) 25852 goto send; 25853 /* 25854 * ire disappeared underneath. 25855 * 25856 * What we need to do here is the ip_newroute 25857 * logic to get the ire without doing the IPsec 25858 * processing. Follow the same old path. But this 25859 * time, ip_wput or ire_add_then_send will call us 25860 * directly as all the IPsec operations are done. 25861 */ 25862 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25863 mp->b_prev = NULL; 25864 mp->b_next = NULL; 25865 25866 /* 25867 * If the IPsec packet was processed asynchronously, 25868 * drop it now. 25869 */ 25870 if (q == NULL) { 25871 if (ill_need_rele) 25872 ill_refrele(ill); 25873 freemsg(ipsec_mp); 25874 return; 25875 } 25876 25877 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25878 zoneid, ipst); 25879 } 25880 if (ill != NULL && ill_need_rele) 25881 ill_refrele(ill); 25882 return; 25883 send: 25884 if (ill != NULL && ill_need_rele) 25885 ill_refrele(ill); 25886 25887 /* Local delivery */ 25888 if (ire->ire_stq == NULL) { 25889 ill_t *out_ill; 25890 ASSERT(q != NULL); 25891 25892 /* PFHooks: LOOPBACK_OUT */ 25893 out_ill = ire_to_ill(ire); 25894 25895 /* 25896 * DTrace this as ip:::send. A blocked packet will fire the 25897 * send probe, but not the receive probe. 25898 */ 25899 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25900 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25901 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25902 25903 DTRACE_PROBE4(ip6__loopback__out__start, 25904 ill_t *, NULL, ill_t *, out_ill, 25905 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25906 25907 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25908 ipst->ips_ipv6firewall_loopback_out, 25909 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25910 25911 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25912 25913 if (ipsec_mp != NULL) { 25914 ip_wput_local_v6(RD(q), out_ill, 25915 ip6h, ipsec_mp, ire, 0, zoneid); 25916 } 25917 if (ire_need_rele) 25918 ire_refrele(ire); 25919 return; 25920 } 25921 /* 25922 * Everything is done. Send it out on the wire. 25923 * We force the insertion of a fragment header using the 25924 * IPH_FRAG_HDR flag in two cases: 25925 * - after reception of an ICMPv6 "packet too big" message 25926 * with a MTU < 1280 (cf. RFC 2460 section 5) 25927 * - for multirouted IPv6 packets, so that the receiver can 25928 * discard duplicates according to their fragment identifier 25929 */ 25930 /* XXX fix flow control problems. */ 25931 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25932 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25933 if (hwaccel) { 25934 /* 25935 * hardware acceleration does not handle these 25936 * "slow path" cases. 25937 */ 25938 /* IPsec KSTATS: should bump bean counter here. */ 25939 if (ire_need_rele) 25940 ire_refrele(ire); 25941 freemsg(ipsec_mp); 25942 return; 25943 } 25944 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25945 (mp->b_cont ? msgdsize(mp) : 25946 mp->b_wptr - (uchar_t *)ip6h)) { 25947 /* IPsec KSTATS: should bump bean counter here. */ 25948 ip0dbg(("Packet length mismatch: %d, %ld\n", 25949 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25950 msgdsize(mp))); 25951 if (ire_need_rele) 25952 ire_refrele(ire); 25953 freemsg(ipsec_mp); 25954 return; 25955 } 25956 ASSERT(mp->b_prev == NULL); 25957 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25958 ntohs(ip6h->ip6_plen) + 25959 IPV6_HDR_LEN, ire->ire_max_frag)); 25960 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25961 ire->ire_max_frag); 25962 } else { 25963 UPDATE_OB_PKT_COUNT(ire); 25964 ire->ire_last_used_time = lbolt; 25965 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25966 } 25967 if (ire_need_rele) 25968 ire_refrele(ire); 25969 freeb(ipsec_mp); 25970 } 25971 25972 void 25973 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25974 { 25975 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25976 da_ipsec_t *hada; /* data attributes */ 25977 ill_t *ill = (ill_t *)q->q_ptr; 25978 25979 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25980 25981 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25982 /* IPsec KSTATS: Bump lose counter here! */ 25983 freemsg(mp); 25984 return; 25985 } 25986 25987 /* 25988 * It's an IPsec packet that must be 25989 * accelerated by the Provider, and the 25990 * outbound ill is IPsec acceleration capable. 25991 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25992 * to the ill. 25993 * IPsec KSTATS: should bump packet counter here. 25994 */ 25995 25996 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25997 if (hada_mp == NULL) { 25998 /* IPsec KSTATS: should bump packet counter here. */ 25999 freemsg(mp); 26000 return; 26001 } 26002 26003 hada_mp->b_datap->db_type = M_CTL; 26004 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26005 hada_mp->b_cont = mp; 26006 26007 hada = (da_ipsec_t *)hada_mp->b_rptr; 26008 bzero(hada, sizeof (da_ipsec_t)); 26009 hada->da_type = IPHADA_M_CTL; 26010 26011 putnext(q, hada_mp); 26012 } 26013 26014 /* 26015 * Finish the outbound IPsec processing. This function is called from 26016 * ipsec_out_process() if the IPsec packet was processed 26017 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26018 * asynchronously. 26019 */ 26020 void 26021 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26022 ire_t *ire_arg) 26023 { 26024 uint32_t v_hlen_tos_len; 26025 ipaddr_t dst; 26026 ipif_t *ipif = NULL; 26027 ire_t *ire; 26028 ire_t *ire1 = NULL; 26029 mblk_t *next_mp = NULL; 26030 uint32_t max_frag; 26031 boolean_t multirt_send = B_FALSE; 26032 mblk_t *mp; 26033 ipha_t *ipha1; 26034 uint_t ill_index; 26035 ipsec_out_t *io; 26036 boolean_t attach_if; 26037 int match_flags; 26038 irb_t *irb = NULL; 26039 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26040 zoneid_t zoneid; 26041 ipxmit_state_t pktxmit_state; 26042 ip_stack_t *ipst; 26043 26044 #ifdef _BIG_ENDIAN 26045 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26046 #else 26047 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26048 #endif 26049 26050 mp = ipsec_mp->b_cont; 26051 ipha1 = (ipha_t *)mp->b_rptr; 26052 ASSERT(mp != NULL); 26053 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26054 dst = ipha->ipha_dst; 26055 26056 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26057 ill_index = io->ipsec_out_ill_index; 26058 attach_if = io->ipsec_out_attach_if; 26059 zoneid = io->ipsec_out_zoneid; 26060 ASSERT(zoneid != ALL_ZONES); 26061 ipst = io->ipsec_out_ns->netstack_ip; 26062 ASSERT(io->ipsec_out_ns != NULL); 26063 26064 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26065 if (ill_index != 0) { 26066 if (ill == NULL) { 26067 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26068 ill_index, B_FALSE, ipst); 26069 26070 /* Failure case frees things for us. */ 26071 if (ill == NULL) 26072 return; 26073 26074 ill_need_rele = B_TRUE; 26075 } 26076 /* 26077 * If this packet needs to go out on a particular interface 26078 * honor it. 26079 */ 26080 if (attach_if) { 26081 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26082 26083 /* 26084 * Check if we need an ire that will not be 26085 * looked up by anybody else i.e. HIDDEN. 26086 */ 26087 if (ill_is_probeonly(ill)) { 26088 match_flags |= MATCH_IRE_MARK_HIDDEN; 26089 } 26090 } 26091 } 26092 26093 if (CLASSD(dst)) { 26094 boolean_t conn_dontroute; 26095 /* 26096 * Use the ill_index to get the right ipif. 26097 */ 26098 conn_dontroute = io->ipsec_out_dontroute; 26099 if (ill_index == 0) 26100 ipif = ipif_lookup_group(dst, zoneid, ipst); 26101 else 26102 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26103 if (ipif == NULL) { 26104 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26105 " multicast\n")); 26106 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26107 freemsg(ipsec_mp); 26108 goto done; 26109 } 26110 /* 26111 * ipha_src has already been intialized with the 26112 * value of the ipif in ip_wput. All we need now is 26113 * an ire to send this downstream. 26114 */ 26115 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26116 MBLK_GETLABEL(mp), match_flags, ipst); 26117 if (ire != NULL) { 26118 ill_t *ill1; 26119 /* 26120 * Do the multicast forwarding now, as the IPsec 26121 * processing has been done. 26122 */ 26123 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26124 (ill1 = ire_to_ill(ire))) { 26125 if (ip_mforward(ill1, ipha, mp)) { 26126 freemsg(ipsec_mp); 26127 ip1dbg(("ip_wput_ipsec_out: mforward " 26128 "failed\n")); 26129 ire_refrele(ire); 26130 goto done; 26131 } 26132 } 26133 goto send; 26134 } 26135 26136 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26137 mp->b_prev = NULL; 26138 mp->b_next = NULL; 26139 26140 /* 26141 * If the IPsec packet was processed asynchronously, 26142 * drop it now. 26143 */ 26144 if (q == NULL) { 26145 freemsg(ipsec_mp); 26146 goto done; 26147 } 26148 26149 /* 26150 * We may be using a wrong ipif to create the ire. 26151 * But it is okay as the source address is assigned 26152 * for the packet already. Next outbound packet would 26153 * create the IRE with the right IPIF in ip_wput. 26154 * 26155 * Also handle RTF_MULTIRT routes. 26156 */ 26157 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26158 zoneid, &zero_info); 26159 } else { 26160 if (attach_if) { 26161 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26162 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26163 } else { 26164 if (ire_arg != NULL) { 26165 ire = ire_arg; 26166 ire_need_rele = B_FALSE; 26167 } else { 26168 ire = ire_cache_lookup(dst, zoneid, 26169 MBLK_GETLABEL(mp), ipst); 26170 } 26171 } 26172 if (ire != NULL) { 26173 goto send; 26174 } 26175 26176 /* 26177 * ire disappeared underneath. 26178 * 26179 * What we need to do here is the ip_newroute 26180 * logic to get the ire without doing the IPsec 26181 * processing. Follow the same old path. But this 26182 * time, ip_wput or ire_add_then_put will call us 26183 * directly as all the IPsec operations are done. 26184 */ 26185 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26186 mp->b_prev = NULL; 26187 mp->b_next = NULL; 26188 26189 /* 26190 * If the IPsec packet was processed asynchronously, 26191 * drop it now. 26192 */ 26193 if (q == NULL) { 26194 freemsg(ipsec_mp); 26195 goto done; 26196 } 26197 26198 /* 26199 * Since we're going through ip_newroute() again, we 26200 * need to make sure we don't: 26201 * 26202 * 1.) Trigger the ASSERT() with the ipha_ident 26203 * overloading. 26204 * 2.) Redo transport-layer checksumming, since we've 26205 * already done all that to get this far. 26206 * 26207 * The easiest way not do either of the above is to set 26208 * the ipha_ident field to IP_HDR_INCLUDED. 26209 */ 26210 ipha->ipha_ident = IP_HDR_INCLUDED; 26211 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26212 zoneid, ipst); 26213 } 26214 goto done; 26215 send: 26216 if (ire->ire_stq == NULL) { 26217 ill_t *out_ill; 26218 /* 26219 * Loopbacks go through ip_wput_local except for one case. 26220 * We come here if we generate a icmp_frag_needed message 26221 * after IPsec processing is over. When this function calls 26222 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26223 * icmp_frag_needed. The message generated comes back here 26224 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26225 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26226 * source address as it is usually set in ip_wput_ire. As 26227 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26228 * and we end up here. We can't enter ip_wput_ire once the 26229 * IPsec processing is over and hence we need to do it here. 26230 */ 26231 ASSERT(q != NULL); 26232 UPDATE_OB_PKT_COUNT(ire); 26233 ire->ire_last_used_time = lbolt; 26234 if (ipha->ipha_src == 0) 26235 ipha->ipha_src = ire->ire_src_addr; 26236 26237 /* PFHooks: LOOPBACK_OUT */ 26238 out_ill = ire_to_ill(ire); 26239 26240 /* 26241 * DTrace this as ip:::send. A blocked packet will fire the 26242 * send probe, but not the receive probe. 26243 */ 26244 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26245 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26246 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26247 26248 DTRACE_PROBE4(ip4__loopback__out__start, 26249 ill_t *, NULL, ill_t *, out_ill, 26250 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26251 26252 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26253 ipst->ips_ipv4firewall_loopback_out, 26254 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26255 26256 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26257 26258 if (ipsec_mp != NULL) 26259 ip_wput_local(RD(q), out_ill, 26260 ipha, ipsec_mp, ire, 0, zoneid); 26261 if (ire_need_rele) 26262 ire_refrele(ire); 26263 goto done; 26264 } 26265 26266 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26267 /* 26268 * We are through with IPsec processing. 26269 * Fragment this and send it on the wire. 26270 */ 26271 if (io->ipsec_out_accelerated) { 26272 /* 26273 * The packet has been accelerated but must 26274 * be fragmented. This should not happen 26275 * since AH and ESP must not accelerate 26276 * packets that need fragmentation, however 26277 * the configuration could have changed 26278 * since the AH or ESP processing. 26279 * Drop packet. 26280 * IPsec KSTATS: bump bean counter here. 26281 */ 26282 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26283 "fragmented accelerated packet!\n")); 26284 freemsg(ipsec_mp); 26285 } else { 26286 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26287 } 26288 if (ire_need_rele) 26289 ire_refrele(ire); 26290 goto done; 26291 } 26292 26293 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26294 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26295 (void *)ire->ire_ipif, (void *)ipif)); 26296 26297 /* 26298 * Multiroute the secured packet, unless IPsec really 26299 * requires the packet to go out only through a particular 26300 * interface. 26301 */ 26302 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26303 ire_t *first_ire; 26304 irb = ire->ire_bucket; 26305 ASSERT(irb != NULL); 26306 /* 26307 * This ire has been looked up as the one that 26308 * goes through the given ipif; 26309 * make sure we do not omit any other multiroute ire 26310 * that may be present in the bucket before this one. 26311 */ 26312 IRB_REFHOLD(irb); 26313 for (first_ire = irb->irb_ire; 26314 first_ire != NULL; 26315 first_ire = first_ire->ire_next) { 26316 if ((first_ire->ire_flags & RTF_MULTIRT) && 26317 (first_ire->ire_addr == ire->ire_addr) && 26318 !(first_ire->ire_marks & 26319 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26320 break; 26321 } 26322 } 26323 26324 if ((first_ire != NULL) && (first_ire != ire)) { 26325 /* 26326 * Don't change the ire if the packet must 26327 * be fragmented if sent via this new one. 26328 */ 26329 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26330 IRE_REFHOLD(first_ire); 26331 if (ire_need_rele) 26332 ire_refrele(ire); 26333 else 26334 ire_need_rele = B_TRUE; 26335 ire = first_ire; 26336 } 26337 } 26338 IRB_REFRELE(irb); 26339 26340 multirt_send = B_TRUE; 26341 max_frag = ire->ire_max_frag; 26342 } else { 26343 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26344 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26345 "flag, attach_if %d\n", attach_if)); 26346 } 26347 } 26348 26349 /* 26350 * In most cases, the emission loop below is entered only once. 26351 * Only in the case where the ire holds the RTF_MULTIRT 26352 * flag, we loop to process all RTF_MULTIRT ires in the 26353 * bucket, and send the packet through all crossed 26354 * RTF_MULTIRT routes. 26355 */ 26356 do { 26357 if (multirt_send) { 26358 /* 26359 * ire1 holds here the next ire to process in the 26360 * bucket. If multirouting is expected, 26361 * any non-RTF_MULTIRT ire that has the 26362 * right destination address is ignored. 26363 */ 26364 ASSERT(irb != NULL); 26365 IRB_REFHOLD(irb); 26366 for (ire1 = ire->ire_next; 26367 ire1 != NULL; 26368 ire1 = ire1->ire_next) { 26369 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26370 continue; 26371 if (ire1->ire_addr != ire->ire_addr) 26372 continue; 26373 if (ire1->ire_marks & 26374 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26375 continue; 26376 /* No loopback here */ 26377 if (ire1->ire_stq == NULL) 26378 continue; 26379 /* 26380 * Ensure we do not exceed the MTU 26381 * of the next route. 26382 */ 26383 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26384 ip_multirt_bad_mtu(ire1, max_frag); 26385 continue; 26386 } 26387 26388 IRE_REFHOLD(ire1); 26389 break; 26390 } 26391 IRB_REFRELE(irb); 26392 if (ire1 != NULL) { 26393 /* 26394 * We are in a multiple send case, need to 26395 * make a copy of the packet. 26396 */ 26397 next_mp = copymsg(ipsec_mp); 26398 if (next_mp == NULL) { 26399 ire_refrele(ire1); 26400 ire1 = NULL; 26401 } 26402 } 26403 } 26404 /* 26405 * Everything is done. Send it out on the wire 26406 * 26407 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26408 * either send it on the wire or, in the case of 26409 * HW acceleration, call ipsec_hw_putnext. 26410 */ 26411 if (ire->ire_nce && 26412 ire->ire_nce->nce_state != ND_REACHABLE) { 26413 DTRACE_PROBE2(ip__wput__ipsec__bail, 26414 (ire_t *), ire, (mblk_t *), ipsec_mp); 26415 /* 26416 * If ire's link-layer is unresolved (this 26417 * would only happen if the incomplete ire 26418 * was added to cachetable via forwarding path) 26419 * don't bother going to ip_xmit_v4. Just drop the 26420 * packet. 26421 * There is a slight risk here, in that, if we 26422 * have the forwarding path create an incomplete 26423 * IRE, then until the IRE is completed, any 26424 * transmitted IPsec packets will be dropped 26425 * instead of being queued waiting for resolution. 26426 * 26427 * But the likelihood of a forwarding packet and a wput 26428 * packet sending to the same dst at the same time 26429 * and there not yet be an ARP entry for it is small. 26430 * Furthermore, if this actually happens, it might 26431 * be likely that wput would generate multiple 26432 * packets (and forwarding would also have a train 26433 * of packets) for that destination. If this is 26434 * the case, some of them would have been dropped 26435 * anyway, since ARP only queues a few packets while 26436 * waiting for resolution 26437 * 26438 * NOTE: We should really call ip_xmit_v4, 26439 * and let it queue the packet and send the 26440 * ARP query and have ARP come back thus: 26441 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26442 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26443 * hw accel work. But it's too complex to get 26444 * the IPsec hw acceleration approach to fit 26445 * well with ip_xmit_v4 doing ARP without 26446 * doing IPsec simplification. For now, we just 26447 * poke ip_xmit_v4 to trigger the arp resolve, so 26448 * that we can continue with the send on the next 26449 * attempt. 26450 * 26451 * XXX THis should be revisited, when 26452 * the IPsec/IP interaction is cleaned up 26453 */ 26454 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26455 " - dropping packet\n")); 26456 freemsg(ipsec_mp); 26457 /* 26458 * Call ip_xmit_v4() to trigger ARP query 26459 * in case the nce_state is ND_INITIAL 26460 */ 26461 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26462 goto drop_pkt; 26463 } 26464 26465 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26466 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26467 mblk_t *, ipsec_mp); 26468 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26469 ipst->ips_ipv4firewall_physical_out, NULL, 26470 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26471 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26472 if (ipsec_mp == NULL) 26473 goto drop_pkt; 26474 26475 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26476 pktxmit_state = ip_xmit_v4(mp, ire, 26477 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26478 26479 if ((pktxmit_state == SEND_FAILED) || 26480 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26481 26482 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26483 drop_pkt: 26484 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26485 ipIfStatsOutDiscards); 26486 if (ire_need_rele) 26487 ire_refrele(ire); 26488 if (ire1 != NULL) { 26489 ire_refrele(ire1); 26490 freemsg(next_mp); 26491 } 26492 goto done; 26493 } 26494 26495 freeb(ipsec_mp); 26496 if (ire_need_rele) 26497 ire_refrele(ire); 26498 26499 if (ire1 != NULL) { 26500 ire = ire1; 26501 ire_need_rele = B_TRUE; 26502 ASSERT(next_mp); 26503 ipsec_mp = next_mp; 26504 mp = ipsec_mp->b_cont; 26505 ire1 = NULL; 26506 next_mp = NULL; 26507 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26508 } else { 26509 multirt_send = B_FALSE; 26510 } 26511 } while (multirt_send); 26512 done: 26513 if (ill != NULL && ill_need_rele) 26514 ill_refrele(ill); 26515 if (ipif != NULL) 26516 ipif_refrele(ipif); 26517 } 26518 26519 /* 26520 * Get the ill corresponding to the specified ire, and compare its 26521 * capabilities with the protocol and algorithms specified by the 26522 * the SA obtained from ipsec_out. If they match, annotate the 26523 * ipsec_out structure to indicate that the packet needs acceleration. 26524 * 26525 * 26526 * A packet is eligible for outbound hardware acceleration if the 26527 * following conditions are satisfied: 26528 * 26529 * 1. the packet will not be fragmented 26530 * 2. the provider supports the algorithm 26531 * 3. there is no pending control message being exchanged 26532 * 4. snoop is not attached 26533 * 5. the destination address is not a broadcast or multicast address. 26534 * 26535 * Rationale: 26536 * - Hardware drivers do not support fragmentation with 26537 * the current interface. 26538 * - snoop, multicast, and broadcast may result in exposure of 26539 * a cleartext datagram. 26540 * We check all five of these conditions here. 26541 * 26542 * XXX would like to nuke "ire_t *" parameter here; problem is that 26543 * IRE is only way to figure out if a v4 address is a broadcast and 26544 * thus ineligible for acceleration... 26545 */ 26546 static void 26547 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26548 { 26549 ipsec_out_t *io; 26550 mblk_t *data_mp; 26551 uint_t plen, overhead; 26552 ip_stack_t *ipst; 26553 26554 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26555 return; 26556 26557 if (ill == NULL) 26558 return; 26559 ipst = ill->ill_ipst; 26560 /* 26561 * Destination address is a broadcast or multicast. Punt. 26562 */ 26563 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26564 IRE_LOCAL))) 26565 return; 26566 26567 data_mp = ipsec_mp->b_cont; 26568 26569 if (ill->ill_isv6) { 26570 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26571 26572 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26573 return; 26574 26575 plen = ip6h->ip6_plen; 26576 } else { 26577 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26578 26579 if (CLASSD(ipha->ipha_dst)) 26580 return; 26581 26582 plen = ipha->ipha_length; 26583 } 26584 /* 26585 * Is there a pending DLPI control message being exchanged 26586 * between IP/IPsec and the DLS Provider? If there is, it 26587 * could be a SADB update, and the state of the DLS Provider 26588 * SADB might not be in sync with the SADB maintained by 26589 * IPsec. To avoid dropping packets or using the wrong keying 26590 * material, we do not accelerate this packet. 26591 */ 26592 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26593 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26594 "ill_dlpi_pending! don't accelerate packet\n")); 26595 return; 26596 } 26597 26598 /* 26599 * Is the Provider in promiscous mode? If it does, we don't 26600 * accelerate the packet since it will bounce back up to the 26601 * listeners in the clear. 26602 */ 26603 if (ill->ill_promisc_on_phys) { 26604 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26605 "ill in promiscous mode, don't accelerate packet\n")); 26606 return; 26607 } 26608 26609 /* 26610 * Will the packet require fragmentation? 26611 */ 26612 26613 /* 26614 * IPsec ESP note: this is a pessimistic estimate, but the same 26615 * as is used elsewhere. 26616 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26617 * + 2-byte trailer 26618 */ 26619 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26620 IPSEC_BASE_ESP_HDR_SIZE(sa); 26621 26622 if ((plen + overhead) > ill->ill_max_mtu) 26623 return; 26624 26625 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26626 26627 /* 26628 * Can the ill accelerate this IPsec protocol and algorithm 26629 * specified by the SA? 26630 */ 26631 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26632 ill->ill_isv6, sa, ipst->ips_netstack)) { 26633 return; 26634 } 26635 26636 /* 26637 * Tell AH or ESP that the outbound ill is capable of 26638 * accelerating this packet. 26639 */ 26640 io->ipsec_out_is_capab_ill = B_TRUE; 26641 } 26642 26643 /* 26644 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26645 * 26646 * If this function returns B_TRUE, the requested SA's have been filled 26647 * into the ipsec_out_*_sa pointers. 26648 * 26649 * If the function returns B_FALSE, the packet has been "consumed", most 26650 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26651 * 26652 * The SA references created by the protocol-specific "select" 26653 * function will be released when the ipsec_mp is freed, thanks to the 26654 * ipsec_out_free destructor -- see spd.c. 26655 */ 26656 static boolean_t 26657 ipsec_out_select_sa(mblk_t *ipsec_mp) 26658 { 26659 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26660 ipsec_out_t *io; 26661 ipsec_policy_t *pp; 26662 ipsec_action_t *ap; 26663 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26664 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26665 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26666 26667 if (!io->ipsec_out_secure) { 26668 /* 26669 * We came here by mistake. 26670 * Don't bother with ipsec processing 26671 * We should "discourage" this path in the future. 26672 */ 26673 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26674 return (B_FALSE); 26675 } 26676 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26677 ASSERT((io->ipsec_out_policy != NULL) || 26678 (io->ipsec_out_act != NULL)); 26679 26680 ASSERT(io->ipsec_out_failed == B_FALSE); 26681 26682 /* 26683 * IPsec processing has started. 26684 */ 26685 io->ipsec_out_proc_begin = B_TRUE; 26686 ap = io->ipsec_out_act; 26687 if (ap == NULL) { 26688 pp = io->ipsec_out_policy; 26689 ASSERT(pp != NULL); 26690 ap = pp->ipsp_act; 26691 ASSERT(ap != NULL); 26692 } 26693 26694 /* 26695 * We have an action. now, let's select SA's. 26696 * (In the future, we can cache this in the conn_t..) 26697 */ 26698 if (ap->ipa_want_esp) { 26699 if (io->ipsec_out_esp_sa == NULL) { 26700 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26701 IPPROTO_ESP); 26702 } 26703 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26704 } 26705 26706 if (ap->ipa_want_ah) { 26707 if (io->ipsec_out_ah_sa == NULL) { 26708 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26709 IPPROTO_AH); 26710 } 26711 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26712 /* 26713 * The ESP and AH processing order needs to be preserved 26714 * when both protocols are required (ESP should be applied 26715 * before AH for an outbound packet). Force an ESP ACQUIRE 26716 * when both ESP and AH are required, and an AH ACQUIRE 26717 * is needed. 26718 */ 26719 if (ap->ipa_want_esp && need_ah_acquire) 26720 need_esp_acquire = B_TRUE; 26721 } 26722 26723 /* 26724 * Send an ACQUIRE (extended, regular, or both) if we need one. 26725 * Release SAs that got referenced, but will not be used until we 26726 * acquire _all_ of the SAs we need. 26727 */ 26728 if (need_ah_acquire || need_esp_acquire) { 26729 if (io->ipsec_out_ah_sa != NULL) { 26730 IPSA_REFRELE(io->ipsec_out_ah_sa); 26731 io->ipsec_out_ah_sa = NULL; 26732 } 26733 if (io->ipsec_out_esp_sa != NULL) { 26734 IPSA_REFRELE(io->ipsec_out_esp_sa); 26735 io->ipsec_out_esp_sa = NULL; 26736 } 26737 26738 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26739 return (B_FALSE); 26740 } 26741 26742 return (B_TRUE); 26743 } 26744 26745 /* 26746 * Process an IPSEC_OUT message and see what you can 26747 * do with it. 26748 * IPQoS Notes: 26749 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26750 * IPsec. 26751 * XXX would like to nuke ire_t. 26752 * XXX ill_index better be "real" 26753 */ 26754 void 26755 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26756 { 26757 ipsec_out_t *io; 26758 ipsec_policy_t *pp; 26759 ipsec_action_t *ap; 26760 ipha_t *ipha; 26761 ip6_t *ip6h; 26762 mblk_t *mp; 26763 ill_t *ill; 26764 zoneid_t zoneid; 26765 ipsec_status_t ipsec_rc; 26766 boolean_t ill_need_rele = B_FALSE; 26767 ip_stack_t *ipst; 26768 ipsec_stack_t *ipss; 26769 26770 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26771 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26772 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26773 ipst = io->ipsec_out_ns->netstack_ip; 26774 mp = ipsec_mp->b_cont; 26775 26776 /* 26777 * Initiate IPPF processing. We do it here to account for packets 26778 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26779 * We can check for ipsec_out_proc_begin even for such packets, as 26780 * they will always be false (asserted below). 26781 */ 26782 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26783 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26784 io->ipsec_out_ill_index : ill_index); 26785 if (mp == NULL) { 26786 ip2dbg(("ipsec_out_process: packet dropped "\ 26787 "during IPPF processing\n")); 26788 freeb(ipsec_mp); 26789 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26790 return; 26791 } 26792 } 26793 26794 if (!io->ipsec_out_secure) { 26795 /* 26796 * We came here by mistake. 26797 * Don't bother with ipsec processing 26798 * Should "discourage" this path in the future. 26799 */ 26800 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26801 goto done; 26802 } 26803 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26804 ASSERT((io->ipsec_out_policy != NULL) || 26805 (io->ipsec_out_act != NULL)); 26806 ASSERT(io->ipsec_out_failed == B_FALSE); 26807 26808 ipss = ipst->ips_netstack->netstack_ipsec; 26809 if (!ipsec_loaded(ipss)) { 26810 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26811 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26812 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26813 } else { 26814 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26815 } 26816 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26817 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26818 &ipss->ipsec_dropper); 26819 return; 26820 } 26821 26822 /* 26823 * IPsec processing has started. 26824 */ 26825 io->ipsec_out_proc_begin = B_TRUE; 26826 ap = io->ipsec_out_act; 26827 if (ap == NULL) { 26828 pp = io->ipsec_out_policy; 26829 ASSERT(pp != NULL); 26830 ap = pp->ipsp_act; 26831 ASSERT(ap != NULL); 26832 } 26833 26834 /* 26835 * Save the outbound ill index. When the packet comes back 26836 * from IPsec, we make sure the ill hasn't changed or disappeared 26837 * before sending it the accelerated packet. 26838 */ 26839 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26840 int ifindex; 26841 ill = ire_to_ill(ire); 26842 ifindex = ill->ill_phyint->phyint_ifindex; 26843 io->ipsec_out_capab_ill_index = ifindex; 26844 } 26845 26846 /* 26847 * The order of processing is first insert a IP header if needed. 26848 * Then insert the ESP header and then the AH header. 26849 */ 26850 if ((io->ipsec_out_se_done == B_FALSE) && 26851 (ap->ipa_want_se)) { 26852 /* 26853 * First get the outer IP header before sending 26854 * it to ESP. 26855 */ 26856 ipha_t *oipha, *iipha; 26857 mblk_t *outer_mp, *inner_mp; 26858 26859 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26860 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26861 "ipsec_out_process: " 26862 "Self-Encapsulation failed: Out of memory\n"); 26863 freemsg(ipsec_mp); 26864 if (ill != NULL) { 26865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26866 } else { 26867 BUMP_MIB(&ipst->ips_ip_mib, 26868 ipIfStatsOutDiscards); 26869 } 26870 return; 26871 } 26872 inner_mp = ipsec_mp->b_cont; 26873 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26874 oipha = (ipha_t *)outer_mp->b_rptr; 26875 iipha = (ipha_t *)inner_mp->b_rptr; 26876 *oipha = *iipha; 26877 outer_mp->b_wptr += sizeof (ipha_t); 26878 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26879 sizeof (ipha_t)); 26880 oipha->ipha_protocol = IPPROTO_ENCAP; 26881 oipha->ipha_version_and_hdr_length = 26882 IP_SIMPLE_HDR_VERSION; 26883 oipha->ipha_hdr_checksum = 0; 26884 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26885 outer_mp->b_cont = inner_mp; 26886 ipsec_mp->b_cont = outer_mp; 26887 26888 io->ipsec_out_se_done = B_TRUE; 26889 io->ipsec_out_tunnel = B_TRUE; 26890 } 26891 26892 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26893 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26894 !ipsec_out_select_sa(ipsec_mp)) 26895 return; 26896 26897 /* 26898 * By now, we know what SA's to use. Toss over to ESP & AH 26899 * to do the heavy lifting. 26900 */ 26901 zoneid = io->ipsec_out_zoneid; 26902 ASSERT(zoneid != ALL_ZONES); 26903 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26904 ASSERT(io->ipsec_out_esp_sa != NULL); 26905 io->ipsec_out_esp_done = B_TRUE; 26906 /* 26907 * Note that since hw accel can only apply one transform, 26908 * not two, we skip hw accel for ESP if we also have AH 26909 * This is an design limitation of the interface 26910 * which should be revisited. 26911 */ 26912 ASSERT(ire != NULL); 26913 if (io->ipsec_out_ah_sa == NULL) { 26914 ill = (ill_t *)ire->ire_stq->q_ptr; 26915 ipsec_out_is_accelerated(ipsec_mp, 26916 io->ipsec_out_esp_sa, ill, ire); 26917 } 26918 26919 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26920 switch (ipsec_rc) { 26921 case IPSEC_STATUS_SUCCESS: 26922 break; 26923 case IPSEC_STATUS_FAILED: 26924 if (ill != NULL) { 26925 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26926 } else { 26927 BUMP_MIB(&ipst->ips_ip_mib, 26928 ipIfStatsOutDiscards); 26929 } 26930 /* FALLTHRU */ 26931 case IPSEC_STATUS_PENDING: 26932 return; 26933 } 26934 } 26935 26936 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26937 ASSERT(io->ipsec_out_ah_sa != NULL); 26938 io->ipsec_out_ah_done = B_TRUE; 26939 if (ire == NULL) { 26940 int idx = io->ipsec_out_capab_ill_index; 26941 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26942 NULL, NULL, NULL, NULL, ipst); 26943 ill_need_rele = B_TRUE; 26944 } else { 26945 ill = (ill_t *)ire->ire_stq->q_ptr; 26946 } 26947 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26948 ire); 26949 26950 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26951 switch (ipsec_rc) { 26952 case IPSEC_STATUS_SUCCESS: 26953 break; 26954 case IPSEC_STATUS_FAILED: 26955 if (ill != NULL) { 26956 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26957 } else { 26958 BUMP_MIB(&ipst->ips_ip_mib, 26959 ipIfStatsOutDiscards); 26960 } 26961 /* FALLTHRU */ 26962 case IPSEC_STATUS_PENDING: 26963 if (ill != NULL && ill_need_rele) 26964 ill_refrele(ill); 26965 return; 26966 } 26967 } 26968 /* 26969 * We are done with IPsec processing. Send it over 26970 * the wire. 26971 */ 26972 done: 26973 mp = ipsec_mp->b_cont; 26974 ipha = (ipha_t *)mp->b_rptr; 26975 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26976 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26977 } else { 26978 ip6h = (ip6_t *)ipha; 26979 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26980 } 26981 if (ill != NULL && ill_need_rele) 26982 ill_refrele(ill); 26983 } 26984 26985 /* ARGSUSED */ 26986 void 26987 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26988 { 26989 opt_restart_t *or; 26990 int err; 26991 conn_t *connp; 26992 26993 ASSERT(CONN_Q(q)); 26994 connp = Q_TO_CONN(q); 26995 26996 ASSERT(first_mp->b_datap->db_type == M_CTL); 26997 or = (opt_restart_t *)first_mp->b_rptr; 26998 /* 26999 * We don't need to pass any credentials here since this is just 27000 * a restart. The credentials are passed in when svr4_optcom_req 27001 * is called the first time (from ip_wput_nondata). 27002 */ 27003 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27004 err = svr4_optcom_req(q, first_mp, NULL, 27005 &ip_opt_obj, B_FALSE); 27006 } else { 27007 ASSERT(or->or_type == T_OPTMGMT_REQ); 27008 err = tpi_optcom_req(q, first_mp, NULL, 27009 &ip_opt_obj, B_FALSE); 27010 } 27011 if (err != EINPROGRESS) { 27012 /* operation is done */ 27013 CONN_OPER_PENDING_DONE(connp); 27014 } 27015 } 27016 27017 /* 27018 * ioctls that go through a down/up sequence may need to wait for the down 27019 * to complete. This involves waiting for the ire and ipif refcnts to go down 27020 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27021 */ 27022 /* ARGSUSED */ 27023 void 27024 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27025 { 27026 struct iocblk *iocp; 27027 mblk_t *mp1; 27028 ip_ioctl_cmd_t *ipip; 27029 int err; 27030 sin_t *sin; 27031 struct lifreq *lifr; 27032 struct ifreq *ifr; 27033 27034 iocp = (struct iocblk *)mp->b_rptr; 27035 ASSERT(ipsq != NULL); 27036 /* Existence of mp1 verified in ip_wput_nondata */ 27037 mp1 = mp->b_cont->b_cont; 27038 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27039 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27040 /* 27041 * Special case where ipsq_current_ipif is not set: 27042 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27043 * ill could also have become part of a ipmp group in the 27044 * process, we are here as were not able to complete the 27045 * operation in ipif_set_values because we could not become 27046 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27047 * will not be set so we need to set it. 27048 */ 27049 ill_t *ill = q->q_ptr; 27050 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27051 } 27052 ASSERT(ipsq->ipsq_current_ipif != NULL); 27053 27054 if (ipip->ipi_cmd_type == IF_CMD) { 27055 /* This a old style SIOC[GS]IF* command */ 27056 ifr = (struct ifreq *)mp1->b_rptr; 27057 sin = (sin_t *)&ifr->ifr_addr; 27058 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27059 /* This a new style SIOC[GS]LIF* command */ 27060 lifr = (struct lifreq *)mp1->b_rptr; 27061 sin = (sin_t *)&lifr->lifr_addr; 27062 } else { 27063 sin = NULL; 27064 } 27065 27066 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27067 ipip, mp1->b_rptr); 27068 27069 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27070 } 27071 27072 /* 27073 * ioctl processing 27074 * 27075 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27076 * the ioctl command in the ioctl tables, determines the copyin data size 27077 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27078 * 27079 * ioctl processing then continues when the M_IOCDATA makes its way down to 27080 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27081 * associated 'conn' is refheld till the end of the ioctl and the general 27082 * ioctl processing function ip_process_ioctl() is called to extract the 27083 * arguments and process the ioctl. To simplify extraction, ioctl commands 27084 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27085 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27086 * is used to extract the ioctl's arguments. 27087 * 27088 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27089 * so goes thru the serialization primitive ipsq_try_enter. Then the 27090 * appropriate function to handle the ioctl is called based on the entry in 27091 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27092 * which also refreleases the 'conn' that was refheld at the start of the 27093 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27094 * 27095 * Many exclusive ioctls go thru an internal down up sequence as part of 27096 * the operation. For example an attempt to change the IP address of an 27097 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27098 * does all the cleanup such as deleting all ires that use this address. 27099 * Then we need to wait till all references to the interface go away. 27100 */ 27101 void 27102 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27103 { 27104 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27105 ip_ioctl_cmd_t *ipip = arg; 27106 ip_extract_func_t *extract_funcp; 27107 cmd_info_t ci; 27108 int err; 27109 27110 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27111 27112 if (ipip == NULL) 27113 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27114 27115 /* 27116 * SIOCLIFADDIF needs to go thru a special path since the 27117 * ill may not exist yet. This happens in the case of lo0 27118 * which is created using this ioctl. 27119 */ 27120 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27121 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27122 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27123 return; 27124 } 27125 27126 ci.ci_ipif = NULL; 27127 if (ipip->ipi_cmd_type == MISC_CMD) { 27128 /* 27129 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27130 */ 27131 if (ipip->ipi_cmd == IF_UNITSEL) { 27132 /* ioctl comes down the ill */ 27133 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27134 ipif_refhold(ci.ci_ipif); 27135 } 27136 err = 0; 27137 ci.ci_sin = NULL; 27138 ci.ci_sin6 = NULL; 27139 ci.ci_lifr = NULL; 27140 } else { 27141 switch (ipip->ipi_cmd_type) { 27142 case IF_CMD: 27143 case LIF_CMD: 27144 extract_funcp = ip_extract_lifreq; 27145 break; 27146 27147 case ARP_CMD: 27148 case XARP_CMD: 27149 extract_funcp = ip_extract_arpreq; 27150 break; 27151 27152 case TUN_CMD: 27153 extract_funcp = ip_extract_tunreq; 27154 break; 27155 27156 case MSFILT_CMD: 27157 extract_funcp = ip_extract_msfilter; 27158 break; 27159 27160 default: 27161 ASSERT(0); 27162 } 27163 27164 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27165 if (err != 0) { 27166 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27167 return; 27168 } 27169 27170 /* 27171 * All of the extraction functions return a refheld ipif. 27172 */ 27173 ASSERT(ci.ci_ipif != NULL); 27174 } 27175 27176 if (!(ipip->ipi_flags & IPI_WR)) { 27177 /* 27178 * A return value of EINPROGRESS means the ioctl is 27179 * either queued and waiting for some reason or has 27180 * already completed. 27181 */ 27182 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27183 ci.ci_lifr); 27184 if (ci.ci_ipif != NULL) 27185 ipif_refrele(ci.ci_ipif); 27186 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27187 return; 27188 } 27189 27190 /* 27191 * If ipsq is non-null, we are already being called exclusively on an 27192 * ill but in the case of a failover in progress it is the "from" ill, 27193 * rather than the "to" ill (which is the ill ptr passed in). 27194 * In order to ensure we are exclusive on both ILLs we rerun 27195 * ipsq_try_enter() here, ipsq's support recursive entry. 27196 */ 27197 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27198 ASSERT(ci.ci_ipif != NULL); 27199 27200 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27201 NEW_OP, B_TRUE); 27202 27203 /* 27204 * Release the ipif so that ipif_down and friends that wait for 27205 * references to go away are not misled about the current ipif_refcnt 27206 * values. We are writer so we can access the ipif even after releasing 27207 * the ipif. 27208 */ 27209 ipif_refrele(ci.ci_ipif); 27210 if (ipsq == NULL) 27211 return; 27212 27213 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27214 27215 /* 27216 * For most set ioctls that come here, this serves as a single point 27217 * where we set the IPIF_CHANGING flag. This ensures that there won't 27218 * be any new references to the ipif. This helps functions that go 27219 * through this path and end up trying to wait for the refcnts 27220 * associated with the ipif to go down to zero. Some exceptions are 27221 * Failover, Failback, and Groupname commands that operate on more than 27222 * just the ci.ci_ipif. These commands internally determine the 27223 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27224 * flags on that set. Another exception is the Removeif command that 27225 * sets the IPIF_CONDEMNED flag internally after identifying the right 27226 * ipif to operate on. 27227 */ 27228 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27229 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27230 ipip->ipi_cmd != SIOCLIFFAILOVER && 27231 ipip->ipi_cmd != SIOCLIFFAILBACK && 27232 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27233 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27234 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27235 27236 /* 27237 * A return value of EINPROGRESS means the ioctl is 27238 * either queued and waiting for some reason or has 27239 * already completed. 27240 */ 27241 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27242 27243 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27244 27245 ipsq_exit(ipsq); 27246 } 27247 27248 /* 27249 * Complete the ioctl. Typically ioctls use the mi package and need to 27250 * do mi_copyout/mi_copy_done. 27251 */ 27252 void 27253 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27254 { 27255 conn_t *connp = NULL; 27256 27257 if (err == EINPROGRESS) 27258 return; 27259 27260 if (CONN_Q(q)) { 27261 connp = Q_TO_CONN(q); 27262 ASSERT(connp->conn_ref >= 2); 27263 } 27264 27265 switch (mode) { 27266 case COPYOUT: 27267 if (err == 0) 27268 mi_copyout(q, mp); 27269 else 27270 mi_copy_done(q, mp, err); 27271 break; 27272 27273 case NO_COPYOUT: 27274 mi_copy_done(q, mp, err); 27275 break; 27276 27277 default: 27278 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27279 break; 27280 } 27281 27282 /* 27283 * The refhold placed at the start of the ioctl is released here. 27284 */ 27285 if (connp != NULL) 27286 CONN_OPER_PENDING_DONE(connp); 27287 27288 if (ipsq != NULL) 27289 ipsq_current_finish(ipsq); 27290 } 27291 27292 /* 27293 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27294 */ 27295 /* ARGSUSED */ 27296 void 27297 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27298 { 27299 conn_t *connp = arg; 27300 tcp_t *tcp; 27301 27302 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27303 tcp = connp->conn_tcp; 27304 27305 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27306 freemsg(mp); 27307 else 27308 tcp_rput_other(tcp, mp); 27309 CONN_OPER_PENDING_DONE(connp); 27310 } 27311 27312 /* Called from ip_wput for all non data messages */ 27313 /* ARGSUSED */ 27314 void 27315 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27316 { 27317 mblk_t *mp1; 27318 ire_t *ire, *fake_ire; 27319 ill_t *ill; 27320 struct iocblk *iocp; 27321 ip_ioctl_cmd_t *ipip; 27322 cred_t *cr; 27323 conn_t *connp; 27324 int err; 27325 nce_t *nce; 27326 ipif_t *ipif; 27327 ip_stack_t *ipst; 27328 char *proto_str; 27329 27330 if (CONN_Q(q)) { 27331 connp = Q_TO_CONN(q); 27332 ipst = connp->conn_netstack->netstack_ip; 27333 } else { 27334 connp = NULL; 27335 ipst = ILLQ_TO_IPST(q); 27336 } 27337 27338 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27339 27340 switch (DB_TYPE(mp)) { 27341 case M_IOCTL: 27342 /* 27343 * IOCTL processing begins in ip_sioctl_copyin_setup which 27344 * will arrange to copy in associated control structures. 27345 */ 27346 ip_sioctl_copyin_setup(q, mp); 27347 return; 27348 case M_IOCDATA: 27349 /* 27350 * Ensure that this is associated with one of our trans- 27351 * parent ioctls. If it's not ours, discard it if we're 27352 * running as a driver, or pass it on if we're a module. 27353 */ 27354 iocp = (struct iocblk *)mp->b_rptr; 27355 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27356 if (ipip == NULL) { 27357 if (q->q_next == NULL) { 27358 goto nak; 27359 } else { 27360 putnext(q, mp); 27361 } 27362 return; 27363 } 27364 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27365 /* 27366 * the ioctl is one we recognise, but is not 27367 * consumed by IP as a module, pass M_IOCDATA 27368 * for processing downstream, but only for 27369 * common Streams ioctls. 27370 */ 27371 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27372 putnext(q, mp); 27373 return; 27374 } else { 27375 goto nak; 27376 } 27377 } 27378 27379 /* IOCTL continuation following copyin or copyout. */ 27380 if (mi_copy_state(q, mp, NULL) == -1) { 27381 /* 27382 * The copy operation failed. mi_copy_state already 27383 * cleaned up, so we're out of here. 27384 */ 27385 return; 27386 } 27387 /* 27388 * If we just completed a copy in, we become writer and 27389 * continue processing in ip_sioctl_copyin_done. If it 27390 * was a copy out, we call mi_copyout again. If there is 27391 * nothing more to copy out, it will complete the IOCTL. 27392 */ 27393 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27394 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27395 mi_copy_done(q, mp, EPROTO); 27396 return; 27397 } 27398 /* 27399 * Check for cases that need more copying. A return 27400 * value of 0 means a second copyin has been started, 27401 * so we return; a return value of 1 means no more 27402 * copying is needed, so we continue. 27403 */ 27404 if (ipip->ipi_cmd_type == MSFILT_CMD && 27405 MI_COPY_COUNT(mp) == 1) { 27406 if (ip_copyin_msfilter(q, mp) == 0) 27407 return; 27408 } 27409 /* 27410 * Refhold the conn, till the ioctl completes. This is 27411 * needed in case the ioctl ends up in the pending mp 27412 * list. Every mp in the ill_pending_mp list and 27413 * the ipsq_pending_mp must have a refhold on the conn 27414 * to resume processing. The refhold is released when 27415 * the ioctl completes. (normally or abnormally) 27416 * In all cases ip_ioctl_finish is called to finish 27417 * the ioctl. 27418 */ 27419 if (connp != NULL) { 27420 /* This is not a reentry */ 27421 ASSERT(ipsq == NULL); 27422 CONN_INC_REF(connp); 27423 } else { 27424 if (!(ipip->ipi_flags & IPI_MODOK)) { 27425 mi_copy_done(q, mp, EINVAL); 27426 return; 27427 } 27428 } 27429 27430 ip_process_ioctl(ipsq, q, mp, ipip); 27431 27432 } else { 27433 mi_copyout(q, mp); 27434 } 27435 return; 27436 nak: 27437 iocp->ioc_error = EINVAL; 27438 mp->b_datap->db_type = M_IOCNAK; 27439 iocp->ioc_count = 0; 27440 qreply(q, mp); 27441 return; 27442 27443 case M_IOCNAK: 27444 /* 27445 * The only way we could get here is if a resolver didn't like 27446 * an IOCTL we sent it. This shouldn't happen. 27447 */ 27448 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27449 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27450 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27451 freemsg(mp); 27452 return; 27453 case M_IOCACK: 27454 /* /dev/ip shouldn't see this */ 27455 if (CONN_Q(q)) 27456 goto nak; 27457 27458 /* Finish socket ioctls passed through to ARP. */ 27459 ip_sioctl_iocack(q, mp); 27460 return; 27461 case M_FLUSH: 27462 if (*mp->b_rptr & FLUSHW) 27463 flushq(q, FLUSHALL); 27464 if (q->q_next) { 27465 putnext(q, mp); 27466 return; 27467 } 27468 if (*mp->b_rptr & FLUSHR) { 27469 *mp->b_rptr &= ~FLUSHW; 27470 qreply(q, mp); 27471 return; 27472 } 27473 freemsg(mp); 27474 return; 27475 case IRE_DB_REQ_TYPE: 27476 if (connp == NULL) { 27477 proto_str = "IRE_DB_REQ_TYPE"; 27478 goto protonak; 27479 } 27480 /* An Upper Level Protocol wants a copy of an IRE. */ 27481 ip_ire_req(q, mp); 27482 return; 27483 case M_CTL: 27484 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27485 break; 27486 27487 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27488 TUN_HELLO) { 27489 ASSERT(connp != NULL); 27490 connp->conn_flags |= IPCL_IPTUN; 27491 freeb(mp); 27492 return; 27493 } 27494 27495 /* M_CTL messages are used by ARP to tell us things. */ 27496 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27497 break; 27498 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27499 case AR_ENTRY_SQUERY: 27500 ip_wput_ctl(q, mp); 27501 return; 27502 case AR_CLIENT_NOTIFY: 27503 ip_arp_news(q, mp); 27504 return; 27505 case AR_DLPIOP_DONE: 27506 ASSERT(q->q_next != NULL); 27507 ill = (ill_t *)q->q_ptr; 27508 /* qwriter_ip releases the refhold */ 27509 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27510 ill_refhold(ill); 27511 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27512 return; 27513 case AR_ARP_CLOSING: 27514 /* 27515 * ARP (above us) is closing. If no ARP bringup is 27516 * currently pending, ack the message so that ARP 27517 * can complete its close. Also mark ill_arp_closing 27518 * so that new ARP bringups will fail. If any 27519 * ARP bringup is currently in progress, we will 27520 * ack this when the current ARP bringup completes. 27521 */ 27522 ASSERT(q->q_next != NULL); 27523 ill = (ill_t *)q->q_ptr; 27524 mutex_enter(&ill->ill_lock); 27525 ill->ill_arp_closing = 1; 27526 if (!ill->ill_arp_bringup_pending) { 27527 mutex_exit(&ill->ill_lock); 27528 qreply(q, mp); 27529 } else { 27530 mutex_exit(&ill->ill_lock); 27531 freemsg(mp); 27532 } 27533 return; 27534 case AR_ARP_EXTEND: 27535 /* 27536 * The ARP module above us is capable of duplicate 27537 * address detection. Old ATM drivers will not send 27538 * this message. 27539 */ 27540 ASSERT(q->q_next != NULL); 27541 ill = (ill_t *)q->q_ptr; 27542 ill->ill_arp_extend = B_TRUE; 27543 freemsg(mp); 27544 return; 27545 default: 27546 break; 27547 } 27548 break; 27549 case M_PROTO: 27550 case M_PCPROTO: 27551 /* 27552 * The only PROTO messages we expect are ULP binds and 27553 * copies of option negotiation acknowledgements. 27554 */ 27555 switch (((union T_primitives *)mp->b_rptr)->type) { 27556 case O_T_BIND_REQ: 27557 case T_BIND_REQ: { 27558 /* Request can get queued in bind */ 27559 if (connp == NULL) { 27560 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27561 goto protonak; 27562 } 27563 /* 27564 * The transports except SCTP call ip_bind_{v4,v6}() 27565 * directly instead of a a putnext. SCTP doesn't 27566 * generate any T_BIND_REQ since it has its own 27567 * fanout data structures. However, ESP and AH 27568 * come in for regular binds; all other cases are 27569 * bind retries. 27570 */ 27571 ASSERT(!IPCL_IS_SCTP(connp)); 27572 27573 /* Don't increment refcnt if this is a re-entry */ 27574 if (ipsq == NULL) 27575 CONN_INC_REF(connp); 27576 27577 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27578 connp, NULL) : ip_bind_v4(q, mp, connp); 27579 if (mp == NULL) 27580 return; 27581 if (IPCL_IS_TCP(connp)) { 27582 /* 27583 * In the case of TCP endpoint we 27584 * come here only for bind retries 27585 */ 27586 ASSERT(ipsq != NULL); 27587 CONN_INC_REF(connp); 27588 squeue_fill(connp->conn_sqp, mp, 27589 ip_resume_tcp_bind, connp, 27590 SQTAG_BIND_RETRY); 27591 } else if (IPCL_IS_UDP(connp)) { 27592 /* 27593 * In the case of UDP endpoint we 27594 * come here only for bind retries 27595 */ 27596 ASSERT(ipsq != NULL); 27597 udp_resume_bind(connp, mp); 27598 } else if (IPCL_IS_RAWIP(connp)) { 27599 /* 27600 * In the case of RAWIP endpoint we 27601 * come here only for bind retries 27602 */ 27603 ASSERT(ipsq != NULL); 27604 rawip_resume_bind(connp, mp); 27605 } else { 27606 /* The case of AH and ESP */ 27607 qreply(q, mp); 27608 CONN_OPER_PENDING_DONE(connp); 27609 } 27610 return; 27611 } 27612 case T_SVR4_OPTMGMT_REQ: 27613 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27614 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27615 27616 if (connp == NULL) { 27617 proto_str = "T_SVR4_OPTMGMT_REQ"; 27618 goto protonak; 27619 } 27620 27621 if (!snmpcom_req(q, mp, ip_snmp_set, 27622 ip_snmp_get, cr)) { 27623 /* 27624 * Call svr4_optcom_req so that it can 27625 * generate the ack. We don't come here 27626 * if this operation is being restarted. 27627 * ip_restart_optmgmt will drop the conn ref. 27628 * In the case of ipsec option after the ipsec 27629 * load is complete conn_restart_ipsec_waiter 27630 * drops the conn ref. 27631 */ 27632 ASSERT(ipsq == NULL); 27633 CONN_INC_REF(connp); 27634 if (ip_check_for_ipsec_opt(q, mp)) 27635 return; 27636 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27637 B_FALSE); 27638 if (err != EINPROGRESS) { 27639 /* Operation is done */ 27640 CONN_OPER_PENDING_DONE(connp); 27641 } 27642 } 27643 return; 27644 case T_OPTMGMT_REQ: 27645 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27646 /* 27647 * Note: No snmpcom_req support through new 27648 * T_OPTMGMT_REQ. 27649 * Call tpi_optcom_req so that it can 27650 * generate the ack. 27651 */ 27652 if (connp == NULL) { 27653 proto_str = "T_OPTMGMT_REQ"; 27654 goto protonak; 27655 } 27656 27657 ASSERT(ipsq == NULL); 27658 /* 27659 * We don't come here for restart. ip_restart_optmgmt 27660 * will drop the conn ref. In the case of ipsec option 27661 * after the ipsec load is complete 27662 * conn_restart_ipsec_waiter drops the conn ref. 27663 */ 27664 CONN_INC_REF(connp); 27665 if (ip_check_for_ipsec_opt(q, mp)) 27666 return; 27667 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27668 if (err != EINPROGRESS) { 27669 /* Operation is done */ 27670 CONN_OPER_PENDING_DONE(connp); 27671 } 27672 return; 27673 case T_UNBIND_REQ: 27674 if (connp == NULL) { 27675 proto_str = "T_UNBIND_REQ"; 27676 goto protonak; 27677 } 27678 mp = ip_unbind(q, mp); 27679 qreply(q, mp); 27680 return; 27681 default: 27682 /* 27683 * Have to drop any DLPI messages coming down from 27684 * arp (such as an info_req which would cause ip 27685 * to receive an extra info_ack if it was passed 27686 * through. 27687 */ 27688 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27689 (int)*(uint_t *)mp->b_rptr)); 27690 freemsg(mp); 27691 return; 27692 } 27693 /* NOTREACHED */ 27694 case IRE_DB_TYPE: { 27695 nce_t *nce; 27696 ill_t *ill; 27697 in6_addr_t gw_addr_v6; 27698 27699 27700 /* 27701 * This is a response back from a resolver. It 27702 * consists of a message chain containing: 27703 * IRE_MBLK-->LL_HDR_MBLK->pkt 27704 * The IRE_MBLK is the one we allocated in ip_newroute. 27705 * The LL_HDR_MBLK is the DLPI header to use to get 27706 * the attached packet, and subsequent ones for the 27707 * same destination, transmitted. 27708 */ 27709 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27710 break; 27711 /* 27712 * First, check to make sure the resolution succeeded. 27713 * If it failed, the second mblk will be empty. 27714 * If it is, free the chain, dropping the packet. 27715 * (We must ire_delete the ire; that frees the ire mblk) 27716 * We're doing this now to support PVCs for ATM; it's 27717 * a partial xresolv implementation. When we fully implement 27718 * xresolv interfaces, instead of freeing everything here 27719 * we'll initiate neighbor discovery. 27720 * 27721 * For v4 (ARP and other external resolvers) the resolver 27722 * frees the message, so no check is needed. This check 27723 * is required, though, for a full xresolve implementation. 27724 * Including this code here now both shows how external 27725 * resolvers can NACK a resolution request using an 27726 * existing design that has no specific provisions for NACKs, 27727 * and also takes into account that the current non-ARP 27728 * external resolver has been coded to use this method of 27729 * NACKing for all IPv6 (xresolv) cases, 27730 * whether our xresolv implementation is complete or not. 27731 * 27732 */ 27733 ire = (ire_t *)mp->b_rptr; 27734 ill = ire_to_ill(ire); 27735 mp1 = mp->b_cont; /* dl_unitdata_req */ 27736 if (mp1->b_rptr == mp1->b_wptr) { 27737 if (ire->ire_ipversion == IPV6_VERSION) { 27738 /* 27739 * XRESOLV interface. 27740 */ 27741 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27742 mutex_enter(&ire->ire_lock); 27743 gw_addr_v6 = ire->ire_gateway_addr_v6; 27744 mutex_exit(&ire->ire_lock); 27745 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27746 nce = ndp_lookup_v6(ill, 27747 &ire->ire_addr_v6, B_FALSE); 27748 } else { 27749 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27750 B_FALSE); 27751 } 27752 if (nce != NULL) { 27753 nce_resolv_failed(nce); 27754 ndp_delete(nce); 27755 NCE_REFRELE(nce); 27756 } 27757 } 27758 mp->b_cont = NULL; 27759 freemsg(mp1); /* frees the pkt as well */ 27760 ASSERT(ire->ire_nce == NULL); 27761 ire_delete((ire_t *)mp->b_rptr); 27762 return; 27763 } 27764 27765 /* 27766 * Split them into IRE_MBLK and pkt and feed it into 27767 * ire_add_then_send. Then in ire_add_then_send 27768 * the IRE will be added, and then the packet will be 27769 * run back through ip_wput. This time it will make 27770 * it to the wire. 27771 */ 27772 mp->b_cont = NULL; 27773 mp = mp1->b_cont; /* now, mp points to pkt */ 27774 mp1->b_cont = NULL; 27775 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27776 if (ire->ire_ipversion == IPV6_VERSION) { 27777 /* 27778 * XRESOLV interface. Find the nce and put a copy 27779 * of the dl_unitdata_req in nce_res_mp 27780 */ 27781 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27782 mutex_enter(&ire->ire_lock); 27783 gw_addr_v6 = ire->ire_gateway_addr_v6; 27784 mutex_exit(&ire->ire_lock); 27785 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27786 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27787 B_FALSE); 27788 } else { 27789 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27790 } 27791 if (nce != NULL) { 27792 /* 27793 * We have to protect nce_res_mp here 27794 * from being accessed by other threads 27795 * while we change the mblk pointer. 27796 * Other functions will also lock the nce when 27797 * accessing nce_res_mp. 27798 * 27799 * The reason we change the mblk pointer 27800 * here rather than copying the resolved address 27801 * into the template is that, unlike with 27802 * ethernet, we have no guarantee that the 27803 * resolved address length will be 27804 * smaller than or equal to the lla length 27805 * with which the template was allocated, 27806 * (for ethernet, they're equal) 27807 * so we have to use the actual resolved 27808 * address mblk - which holds the real 27809 * dl_unitdata_req with the resolved address. 27810 * 27811 * Doing this is the same behavior as was 27812 * previously used in the v4 ARP case. 27813 */ 27814 mutex_enter(&nce->nce_lock); 27815 if (nce->nce_res_mp != NULL) 27816 freemsg(nce->nce_res_mp); 27817 nce->nce_res_mp = mp1; 27818 mutex_exit(&nce->nce_lock); 27819 /* 27820 * We do a fastpath probe here because 27821 * we have resolved the address without 27822 * using Neighbor Discovery. 27823 * In the non-XRESOLV v6 case, the fastpath 27824 * probe is done right after neighbor 27825 * discovery completes. 27826 */ 27827 if (nce->nce_res_mp != NULL) { 27828 int res; 27829 nce_fastpath_list_add(nce); 27830 res = ill_fastpath_probe(ill, 27831 nce->nce_res_mp); 27832 if (res != 0 && res != EAGAIN) 27833 nce_fastpath_list_delete(nce); 27834 } 27835 27836 ire_add_then_send(q, ire, mp); 27837 /* 27838 * Now we have to clean out any packets 27839 * that may have been queued on the nce 27840 * while it was waiting for address resolution 27841 * to complete. 27842 */ 27843 mutex_enter(&nce->nce_lock); 27844 mp1 = nce->nce_qd_mp; 27845 nce->nce_qd_mp = NULL; 27846 mutex_exit(&nce->nce_lock); 27847 while (mp1 != NULL) { 27848 mblk_t *nxt_mp; 27849 queue_t *fwdq = NULL; 27850 ill_t *inbound_ill; 27851 uint_t ifindex; 27852 27853 nxt_mp = mp1->b_next; 27854 mp1->b_next = NULL; 27855 /* 27856 * Retrieve ifindex stored in 27857 * ip_rput_data_v6() 27858 */ 27859 ifindex = 27860 (uint_t)(uintptr_t)mp1->b_prev; 27861 inbound_ill = 27862 ill_lookup_on_ifindex(ifindex, 27863 B_TRUE, NULL, NULL, NULL, 27864 NULL, ipst); 27865 mp1->b_prev = NULL; 27866 if (inbound_ill != NULL) 27867 fwdq = inbound_ill->ill_rq; 27868 27869 if (fwdq != NULL) { 27870 put(fwdq, mp1); 27871 ill_refrele(inbound_ill); 27872 } else 27873 put(WR(ill->ill_rq), mp1); 27874 mp1 = nxt_mp; 27875 } 27876 NCE_REFRELE(nce); 27877 } else { /* nce is NULL; clean up */ 27878 ire_delete(ire); 27879 freemsg(mp); 27880 freemsg(mp1); 27881 return; 27882 } 27883 } else { 27884 nce_t *arpce; 27885 /* 27886 * Link layer resolution succeeded. Recompute the 27887 * ire_nce. 27888 */ 27889 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27890 if ((arpce = ndp_lookup_v4(ill, 27891 (ire->ire_gateway_addr != INADDR_ANY ? 27892 &ire->ire_gateway_addr : &ire->ire_addr), 27893 B_FALSE)) == NULL) { 27894 freeb(ire->ire_mp); 27895 freeb(mp1); 27896 freemsg(mp); 27897 return; 27898 } 27899 mutex_enter(&arpce->nce_lock); 27900 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27901 if (arpce->nce_state == ND_REACHABLE) { 27902 /* 27903 * Someone resolved this before us; 27904 * cleanup the res_mp. Since ire has 27905 * not been added yet, the call to ire_add_v4 27906 * from ire_add_then_send (when a dup is 27907 * detected) will clean up the ire. 27908 */ 27909 freeb(mp1); 27910 } else { 27911 ASSERT(arpce->nce_res_mp == NULL); 27912 arpce->nce_res_mp = mp1; 27913 arpce->nce_state = ND_REACHABLE; 27914 } 27915 mutex_exit(&arpce->nce_lock); 27916 if (ire->ire_marks & IRE_MARK_NOADD) { 27917 /* 27918 * this ire will not be added to the ire 27919 * cache table, so we can set the ire_nce 27920 * here, as there are no atomicity constraints. 27921 */ 27922 ire->ire_nce = arpce; 27923 /* 27924 * We are associating this nce with the ire 27925 * so change the nce ref taken in 27926 * ndp_lookup_v4() from 27927 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27928 */ 27929 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27930 } else { 27931 NCE_REFRELE(arpce); 27932 } 27933 ire_add_then_send(q, ire, mp); 27934 } 27935 return; /* All is well, the packet has been sent. */ 27936 } 27937 case IRE_ARPRESOLVE_TYPE: { 27938 27939 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27940 break; 27941 mp1 = mp->b_cont; /* dl_unitdata_req */ 27942 mp->b_cont = NULL; 27943 /* 27944 * First, check to make sure the resolution succeeded. 27945 * If it failed, the second mblk will be empty. 27946 */ 27947 if (mp1->b_rptr == mp1->b_wptr) { 27948 /* cleanup the incomplete ire, free queued packets */ 27949 freemsg(mp); /* fake ire */ 27950 freeb(mp1); /* dl_unitdata response */ 27951 return; 27952 } 27953 27954 /* 27955 * Update any incomplete nce_t found. We search the ctable 27956 * and find the nce from the ire->ire_nce because we need 27957 * to pass the ire to ip_xmit_v4 later, and can find both 27958 * ire and nce in one lookup. 27959 */ 27960 fake_ire = (ire_t *)mp->b_rptr; 27961 27962 /* 27963 * By the time we come back here from ARP the incomplete ire 27964 * created in ire_forward() could have been removed. We use 27965 * the parameters stored in the fake_ire to specify the real 27966 * ire as explicitly as possible. This avoids problems when 27967 * IPMP groups are configured as an ipif can 'float' 27968 * across several ill queues. We can be confident that the 27969 * the inability to find an ire is because it no longer exists. 27970 */ 27971 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27972 NULL, NULL, NULL, NULL, ipst); 27973 if (ill == NULL) { 27974 ip1dbg(("ill for incomplete ire vanished\n")); 27975 freemsg(mp); /* fake ire */ 27976 freeb(mp1); /* dl_unitdata response */ 27977 return; 27978 } 27979 27980 /* Get the outgoing ipif */ 27981 mutex_enter(&ill->ill_lock); 27982 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27983 if (ipif == NULL) { 27984 mutex_exit(&ill->ill_lock); 27985 ill_refrele(ill); 27986 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27987 freemsg(mp); /* fake_ire */ 27988 freeb(mp1); /* dl_unitdata response */ 27989 return; 27990 } 27991 27992 ipif_refhold_locked(ipif); 27993 mutex_exit(&ill->ill_lock); 27994 ill_refrele(ill); 27995 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27996 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27997 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27998 ipif_refrele(ipif); 27999 if (ire == NULL) { 28000 /* 28001 * no ire was found; check if there is an nce 28002 * for this lookup; if it has no ire's pointing at it 28003 * cleanup. 28004 */ 28005 if ((nce = ndp_lookup_v4(q->q_ptr, 28006 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28007 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28008 B_FALSE)) != NULL) { 28009 /* 28010 * cleanup: 28011 * We check for refcnt 2 (one for the nce 28012 * hash list + 1 for the ref taken by 28013 * ndp_lookup_v4) to check that there are 28014 * no ire's pointing at the nce. 28015 */ 28016 if (nce->nce_refcnt == 2) 28017 ndp_delete(nce); 28018 NCE_REFRELE(nce); 28019 } 28020 freeb(mp1); /* dl_unitdata response */ 28021 freemsg(mp); /* fake ire */ 28022 return; 28023 } 28024 nce = ire->ire_nce; 28025 DTRACE_PROBE2(ire__arpresolve__type, 28026 ire_t *, ire, nce_t *, nce); 28027 ASSERT(nce->nce_state != ND_INITIAL); 28028 mutex_enter(&nce->nce_lock); 28029 nce->nce_last = TICK_TO_MSEC(lbolt64); 28030 if (nce->nce_state == ND_REACHABLE) { 28031 /* 28032 * Someone resolved this before us; 28033 * our response is not needed any more. 28034 */ 28035 mutex_exit(&nce->nce_lock); 28036 freeb(mp1); /* dl_unitdata response */ 28037 } else { 28038 ASSERT(nce->nce_res_mp == NULL); 28039 nce->nce_res_mp = mp1; 28040 nce->nce_state = ND_REACHABLE; 28041 mutex_exit(&nce->nce_lock); 28042 nce_fastpath(nce); 28043 } 28044 /* 28045 * The cached nce_t has been updated to be reachable; 28046 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 28047 */ 28048 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28049 freemsg(mp); 28050 /* 28051 * send out queued packets. 28052 */ 28053 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28054 28055 IRE_REFRELE(ire); 28056 return; 28057 } 28058 default: 28059 break; 28060 } 28061 if (q->q_next) { 28062 putnext(q, mp); 28063 } else 28064 freemsg(mp); 28065 return; 28066 28067 protonak: 28068 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28069 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28070 qreply(q, mp); 28071 } 28072 28073 /* 28074 * Process IP options in an outbound packet. Modify the destination if there 28075 * is a source route option. 28076 * Returns non-zero if something fails in which case an ICMP error has been 28077 * sent and mp freed. 28078 */ 28079 static int 28080 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28081 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28082 { 28083 ipoptp_t opts; 28084 uchar_t *opt; 28085 uint8_t optval; 28086 uint8_t optlen; 28087 ipaddr_t dst; 28088 intptr_t code = 0; 28089 mblk_t *mp; 28090 ire_t *ire = NULL; 28091 28092 ip2dbg(("ip_wput_options\n")); 28093 mp = ipsec_mp; 28094 if (mctl_present) { 28095 mp = ipsec_mp->b_cont; 28096 } 28097 28098 dst = ipha->ipha_dst; 28099 for (optval = ipoptp_first(&opts, ipha); 28100 optval != IPOPT_EOL; 28101 optval = ipoptp_next(&opts)) { 28102 opt = opts.ipoptp_cur; 28103 optlen = opts.ipoptp_len; 28104 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28105 optval, optlen)); 28106 switch (optval) { 28107 uint32_t off; 28108 case IPOPT_SSRR: 28109 case IPOPT_LSRR: 28110 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28111 ip1dbg(( 28112 "ip_wput_options: bad option offset\n")); 28113 code = (char *)&opt[IPOPT_OLEN] - 28114 (char *)ipha; 28115 goto param_prob; 28116 } 28117 off = opt[IPOPT_OFFSET]; 28118 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28119 ntohl(dst))); 28120 /* 28121 * For strict: verify that dst is directly 28122 * reachable. 28123 */ 28124 if (optval == IPOPT_SSRR) { 28125 ire = ire_ftable_lookup(dst, 0, 0, 28126 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28127 MBLK_GETLABEL(mp), 28128 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28129 if (ire == NULL) { 28130 ip1dbg(("ip_wput_options: SSRR not" 28131 " directly reachable: 0x%x\n", 28132 ntohl(dst))); 28133 goto bad_src_route; 28134 } 28135 ire_refrele(ire); 28136 } 28137 break; 28138 case IPOPT_RR: 28139 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28140 ip1dbg(( 28141 "ip_wput_options: bad option offset\n")); 28142 code = (char *)&opt[IPOPT_OLEN] - 28143 (char *)ipha; 28144 goto param_prob; 28145 } 28146 break; 28147 case IPOPT_TS: 28148 /* 28149 * Verify that length >=5 and that there is either 28150 * room for another timestamp or that the overflow 28151 * counter is not maxed out. 28152 */ 28153 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28154 if (optlen < IPOPT_MINLEN_IT) { 28155 goto param_prob; 28156 } 28157 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28158 ip1dbg(( 28159 "ip_wput_options: bad option offset\n")); 28160 code = (char *)&opt[IPOPT_OFFSET] - 28161 (char *)ipha; 28162 goto param_prob; 28163 } 28164 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28165 case IPOPT_TS_TSONLY: 28166 off = IPOPT_TS_TIMELEN; 28167 break; 28168 case IPOPT_TS_TSANDADDR: 28169 case IPOPT_TS_PRESPEC: 28170 case IPOPT_TS_PRESPEC_RFC791: 28171 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28172 break; 28173 default: 28174 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28175 (char *)ipha; 28176 goto param_prob; 28177 } 28178 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28179 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28180 /* 28181 * No room and the overflow counter is 15 28182 * already. 28183 */ 28184 goto param_prob; 28185 } 28186 break; 28187 } 28188 } 28189 28190 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28191 return (0); 28192 28193 ip1dbg(("ip_wput_options: error processing IP options.")); 28194 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28195 28196 param_prob: 28197 /* 28198 * Since ip_wput() isn't close to finished, we fill 28199 * in enough of the header for credible error reporting. 28200 */ 28201 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28202 /* Failed */ 28203 freemsg(ipsec_mp); 28204 return (-1); 28205 } 28206 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28207 return (-1); 28208 28209 bad_src_route: 28210 /* 28211 * Since ip_wput() isn't close to finished, we fill 28212 * in enough of the header for credible error reporting. 28213 */ 28214 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28215 /* Failed */ 28216 freemsg(ipsec_mp); 28217 return (-1); 28218 } 28219 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28220 return (-1); 28221 } 28222 28223 /* 28224 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28225 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28226 * thru /etc/system. 28227 */ 28228 #define CONN_MAXDRAINCNT 64 28229 28230 static void 28231 conn_drain_init(ip_stack_t *ipst) 28232 { 28233 int i; 28234 28235 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28236 28237 if ((ipst->ips_conn_drain_list_cnt == 0) || 28238 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28239 /* 28240 * Default value of the number of drainers is the 28241 * number of cpus, subject to maximum of 8 drainers. 28242 */ 28243 if (boot_max_ncpus != -1) 28244 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28245 else 28246 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28247 } 28248 28249 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28250 sizeof (idl_t), KM_SLEEP); 28251 28252 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28253 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28254 MUTEX_DEFAULT, NULL); 28255 } 28256 } 28257 28258 static void 28259 conn_drain_fini(ip_stack_t *ipst) 28260 { 28261 int i; 28262 28263 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28264 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28265 kmem_free(ipst->ips_conn_drain_list, 28266 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28267 ipst->ips_conn_drain_list = NULL; 28268 } 28269 28270 /* 28271 * Note: For an overview of how flowcontrol is handled in IP please see the 28272 * IP Flowcontrol notes at the top of this file. 28273 * 28274 * Flow control has blocked us from proceeding. Insert the given conn in one 28275 * of the conn drain lists. These conn wq's will be qenabled later on when 28276 * STREAMS flow control does a backenable. conn_walk_drain will enable 28277 * the first conn in each of these drain lists. Each of these qenabled conns 28278 * in turn enables the next in the list, after it runs, or when it closes, 28279 * thus sustaining the drain process. 28280 * 28281 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28282 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28283 * running at any time, on a given conn, since there can be only 1 service proc 28284 * running on a queue at any time. 28285 */ 28286 void 28287 conn_drain_insert(conn_t *connp) 28288 { 28289 idl_t *idl; 28290 uint_t index; 28291 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28292 28293 mutex_enter(&connp->conn_lock); 28294 if (connp->conn_state_flags & CONN_CLOSING) { 28295 /* 28296 * The conn is closing as a result of which CONN_CLOSING 28297 * is set. Return. 28298 */ 28299 mutex_exit(&connp->conn_lock); 28300 return; 28301 } else if (connp->conn_idl == NULL) { 28302 /* 28303 * Assign the next drain list round robin. We dont' use 28304 * a lock, and thus it may not be strictly round robin. 28305 * Atomicity of load/stores is enough to make sure that 28306 * conn_drain_list_index is always within bounds. 28307 */ 28308 index = ipst->ips_conn_drain_list_index; 28309 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28310 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28311 index++; 28312 if (index == ipst->ips_conn_drain_list_cnt) 28313 index = 0; 28314 ipst->ips_conn_drain_list_index = index; 28315 } 28316 mutex_exit(&connp->conn_lock); 28317 28318 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28319 if ((connp->conn_drain_prev != NULL) || 28320 (connp->conn_state_flags & CONN_CLOSING)) { 28321 /* 28322 * The conn is already in the drain list, OR 28323 * the conn is closing. We need to check again for 28324 * the closing case again since close can happen 28325 * after we drop the conn_lock, and before we 28326 * acquire the CONN_DRAIN_LIST_LOCK. 28327 */ 28328 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28329 return; 28330 } else { 28331 idl = connp->conn_idl; 28332 } 28333 28334 /* 28335 * The conn is not in the drain list. Insert it at the 28336 * tail of the drain list. The drain list is circular 28337 * and doubly linked. idl_conn points to the 1st element 28338 * in the list. 28339 */ 28340 if (idl->idl_conn == NULL) { 28341 idl->idl_conn = connp; 28342 connp->conn_drain_next = connp; 28343 connp->conn_drain_prev = connp; 28344 } else { 28345 conn_t *head = idl->idl_conn; 28346 28347 connp->conn_drain_next = head; 28348 connp->conn_drain_prev = head->conn_drain_prev; 28349 head->conn_drain_prev->conn_drain_next = connp; 28350 head->conn_drain_prev = connp; 28351 } 28352 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28353 } 28354 28355 /* 28356 * This conn is closing, and we are called from ip_close. OR 28357 * This conn has been serviced by ip_wsrv, and we need to do the tail 28358 * processing. 28359 * If this conn is part of the drain list, we may need to sustain the drain 28360 * process by qenabling the next conn in the drain list. We may also need to 28361 * remove this conn from the list, if it is done. 28362 */ 28363 static void 28364 conn_drain_tail(conn_t *connp, boolean_t closing) 28365 { 28366 idl_t *idl; 28367 28368 /* 28369 * connp->conn_idl is stable at this point, and no lock is needed 28370 * to check it. If we are called from ip_close, close has already 28371 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28372 * called us only because conn_idl is non-null. If we are called thru 28373 * service, conn_idl could be null, but it cannot change because 28374 * service is single-threaded per queue, and there cannot be another 28375 * instance of service trying to call conn_drain_insert on this conn 28376 * now. 28377 */ 28378 ASSERT(!closing || (connp->conn_idl != NULL)); 28379 28380 /* 28381 * If connp->conn_idl is null, the conn has not been inserted into any 28382 * drain list even once since creation of the conn. Just return. 28383 */ 28384 if (connp->conn_idl == NULL) 28385 return; 28386 28387 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28388 28389 if (connp->conn_drain_prev == NULL) { 28390 /* This conn is currently not in the drain list. */ 28391 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28392 return; 28393 } 28394 idl = connp->conn_idl; 28395 if (idl->idl_conn_draining == connp) { 28396 /* 28397 * This conn is the current drainer. If this is the last conn 28398 * in the drain list, we need to do more checks, in the 'if' 28399 * below. Otherwwise we need to just qenable the next conn, 28400 * to sustain the draining, and is handled in the 'else' 28401 * below. 28402 */ 28403 if (connp->conn_drain_next == idl->idl_conn) { 28404 /* 28405 * This conn is the last in this list. This round 28406 * of draining is complete. If idl_repeat is set, 28407 * it means another flow enabling has happened from 28408 * the driver/streams and we need to another round 28409 * of draining. 28410 * If there are more than 2 conns in the drain list, 28411 * do a left rotate by 1, so that all conns except the 28412 * conn at the head move towards the head by 1, and the 28413 * the conn at the head goes to the tail. This attempts 28414 * a more even share for all queues that are being 28415 * drained. 28416 */ 28417 if ((connp->conn_drain_next != connp) && 28418 (idl->idl_conn->conn_drain_next != connp)) { 28419 idl->idl_conn = idl->idl_conn->conn_drain_next; 28420 } 28421 if (idl->idl_repeat) { 28422 qenable(idl->idl_conn->conn_wq); 28423 idl->idl_conn_draining = idl->idl_conn; 28424 idl->idl_repeat = 0; 28425 } else { 28426 idl->idl_conn_draining = NULL; 28427 } 28428 } else { 28429 /* 28430 * If the next queue that we are now qenable'ing, 28431 * is closing, it will remove itself from this list 28432 * and qenable the subsequent queue in ip_close(). 28433 * Serialization is acheived thru idl_lock. 28434 */ 28435 qenable(connp->conn_drain_next->conn_wq); 28436 idl->idl_conn_draining = connp->conn_drain_next; 28437 } 28438 } 28439 if (!connp->conn_did_putbq || closing) { 28440 /* 28441 * Remove ourself from the drain list, if we did not do 28442 * a putbq, or if the conn is closing. 28443 * Note: It is possible that q->q_first is non-null. It means 28444 * that these messages landed after we did a enableok() in 28445 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28446 * service them. 28447 */ 28448 if (connp->conn_drain_next == connp) { 28449 /* Singleton in the list */ 28450 ASSERT(connp->conn_drain_prev == connp); 28451 idl->idl_conn = NULL; 28452 idl->idl_conn_draining = NULL; 28453 } else { 28454 connp->conn_drain_prev->conn_drain_next = 28455 connp->conn_drain_next; 28456 connp->conn_drain_next->conn_drain_prev = 28457 connp->conn_drain_prev; 28458 if (idl->idl_conn == connp) 28459 idl->idl_conn = connp->conn_drain_next; 28460 ASSERT(idl->idl_conn_draining != connp); 28461 28462 } 28463 connp->conn_drain_next = NULL; 28464 connp->conn_drain_prev = NULL; 28465 } 28466 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28467 } 28468 28469 /* 28470 * Write service routine. Shared perimeter entry point. 28471 * ip_wsrv can be called in any of the following ways. 28472 * 1. The device queue's messages has fallen below the low water mark 28473 * and STREAMS has backenabled the ill_wq. We walk thru all the 28474 * the drain lists and backenable the first conn in each list. 28475 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28476 * qenabled non-tcp upper layers. We start dequeing messages and call 28477 * ip_wput for each message. 28478 */ 28479 28480 void 28481 ip_wsrv(queue_t *q) 28482 { 28483 conn_t *connp; 28484 ill_t *ill; 28485 mblk_t *mp; 28486 28487 if (q->q_next) { 28488 ill = (ill_t *)q->q_ptr; 28489 if (ill->ill_state_flags == 0) { 28490 /* 28491 * The device flow control has opened up. 28492 * Walk through conn drain lists and qenable the 28493 * first conn in each list. This makes sense only 28494 * if the stream is fully plumbed and setup. 28495 * Hence the if check above. 28496 */ 28497 ip1dbg(("ip_wsrv: walking\n")); 28498 conn_walk_drain(ill->ill_ipst); 28499 } 28500 return; 28501 } 28502 28503 connp = Q_TO_CONN(q); 28504 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28505 28506 /* 28507 * 1. Set conn_draining flag to signal that service is active. 28508 * 28509 * 2. ip_output determines whether it has been called from service, 28510 * based on the last parameter. If it is IP_WSRV it concludes it 28511 * has been called from service. 28512 * 28513 * 3. Message ordering is preserved by the following logic. 28514 * i. A directly called ip_output (i.e. not thru service) will queue 28515 * the message at the tail, if conn_draining is set (i.e. service 28516 * is running) or if q->q_first is non-null. 28517 * 28518 * ii. If ip_output is called from service, and if ip_output cannot 28519 * putnext due to flow control, it does a putbq. 28520 * 28521 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28522 * (causing an infinite loop). 28523 */ 28524 ASSERT(!connp->conn_did_putbq); 28525 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28526 connp->conn_draining = 1; 28527 noenable(q); 28528 while ((mp = getq(q)) != NULL) { 28529 ASSERT(CONN_Q(q)); 28530 28531 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28532 if (connp->conn_did_putbq) { 28533 /* ip_wput did a putbq */ 28534 break; 28535 } 28536 } 28537 /* 28538 * At this point, a thread coming down from top, calling 28539 * ip_wput, may end up queueing the message. We have not yet 28540 * enabled the queue, so ip_wsrv won't be called again. 28541 * To avoid this race, check q->q_first again (in the loop) 28542 * If the other thread queued the message before we call 28543 * enableok(), we will catch it in the q->q_first check. 28544 * If the other thread queues the message after we call 28545 * enableok(), ip_wsrv will be called again by STREAMS. 28546 */ 28547 connp->conn_draining = 0; 28548 enableok(q); 28549 } 28550 28551 /* Enable the next conn for draining */ 28552 conn_drain_tail(connp, B_FALSE); 28553 28554 connp->conn_did_putbq = 0; 28555 } 28556 28557 /* 28558 * Walk the list of all conn's calling the function provided with the 28559 * specified argument for each. Note that this only walks conn's that 28560 * have been bound. 28561 * Applies to both IPv4 and IPv6. 28562 */ 28563 static void 28564 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28565 { 28566 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28567 ipst->ips_ipcl_udp_fanout_size, 28568 func, arg, zoneid); 28569 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28570 ipst->ips_ipcl_conn_fanout_size, 28571 func, arg, zoneid); 28572 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28573 ipst->ips_ipcl_bind_fanout_size, 28574 func, arg, zoneid); 28575 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28576 IPPROTO_MAX, func, arg, zoneid); 28577 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28578 IPPROTO_MAX, func, arg, zoneid); 28579 } 28580 28581 /* 28582 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28583 * of conns that need to be drained, check if drain is already in progress. 28584 * If so set the idl_repeat bit, indicating that the last conn in the list 28585 * needs to reinitiate the drain once again, for the list. If drain is not 28586 * in progress for the list, initiate the draining, by qenabling the 1st 28587 * conn in the list. The drain is self-sustaining, each qenabled conn will 28588 * in turn qenable the next conn, when it is done/blocked/closing. 28589 */ 28590 static void 28591 conn_walk_drain(ip_stack_t *ipst) 28592 { 28593 int i; 28594 idl_t *idl; 28595 28596 IP_STAT(ipst, ip_conn_walk_drain); 28597 28598 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28599 idl = &ipst->ips_conn_drain_list[i]; 28600 mutex_enter(&idl->idl_lock); 28601 if (idl->idl_conn == NULL) { 28602 mutex_exit(&idl->idl_lock); 28603 continue; 28604 } 28605 /* 28606 * If this list is not being drained currently by 28607 * an ip_wsrv thread, start the process. 28608 */ 28609 if (idl->idl_conn_draining == NULL) { 28610 ASSERT(idl->idl_repeat == 0); 28611 qenable(idl->idl_conn->conn_wq); 28612 idl->idl_conn_draining = idl->idl_conn; 28613 } else { 28614 idl->idl_repeat = 1; 28615 } 28616 mutex_exit(&idl->idl_lock); 28617 } 28618 } 28619 28620 /* 28621 * Walk an conn hash table of `count' buckets, calling func for each entry. 28622 */ 28623 static void 28624 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28625 zoneid_t zoneid) 28626 { 28627 conn_t *connp; 28628 28629 while (count-- > 0) { 28630 mutex_enter(&connfp->connf_lock); 28631 for (connp = connfp->connf_head; connp != NULL; 28632 connp = connp->conn_next) { 28633 if (zoneid == GLOBAL_ZONEID || 28634 zoneid == connp->conn_zoneid) { 28635 CONN_INC_REF(connp); 28636 mutex_exit(&connfp->connf_lock); 28637 (*func)(connp, arg); 28638 mutex_enter(&connfp->connf_lock); 28639 CONN_DEC_REF(connp); 28640 } 28641 } 28642 mutex_exit(&connfp->connf_lock); 28643 connfp++; 28644 } 28645 } 28646 28647 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28648 static void 28649 conn_report1(conn_t *connp, void *mp) 28650 { 28651 char buf1[INET6_ADDRSTRLEN]; 28652 char buf2[INET6_ADDRSTRLEN]; 28653 uint_t print_len, buf_len; 28654 28655 ASSERT(connp != NULL); 28656 28657 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28658 if (buf_len <= 0) 28659 return; 28660 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28661 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28662 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28663 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28664 "%5d %s/%05d %s/%05d\n", 28665 (void *)connp, (void *)CONNP_TO_RQ(connp), 28666 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28667 buf1, connp->conn_lport, 28668 buf2, connp->conn_fport); 28669 if (print_len < buf_len) { 28670 ((mblk_t *)mp)->b_wptr += print_len; 28671 } else { 28672 ((mblk_t *)mp)->b_wptr += buf_len; 28673 } 28674 } 28675 28676 /* 28677 * Named Dispatch routine to produce a formatted report on all conns 28678 * that are listed in one of the fanout tables. 28679 * This report is accessed by using the ndd utility to "get" ND variable 28680 * "ip_conn_status". 28681 */ 28682 /* ARGSUSED */ 28683 static int 28684 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28685 { 28686 conn_t *connp = Q_TO_CONN(q); 28687 28688 (void) mi_mpprintf(mp, 28689 "CONN " MI_COL_HDRPAD_STR 28690 "rfq " MI_COL_HDRPAD_STR 28691 "stq " MI_COL_HDRPAD_STR 28692 " zone local remote"); 28693 28694 /* 28695 * Because of the ndd constraint, at most we can have 64K buffer 28696 * to put in all conn info. So to be more efficient, just 28697 * allocate a 64K buffer here, assuming we need that large buffer. 28698 * This should be OK as only privileged processes can do ndd /dev/ip. 28699 */ 28700 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28701 /* The following may work even if we cannot get a large buf. */ 28702 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28703 return (0); 28704 } 28705 28706 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28707 connp->conn_netstack->netstack_ip); 28708 return (0); 28709 } 28710 28711 /* 28712 * Determine if the ill and multicast aspects of that packets 28713 * "matches" the conn. 28714 */ 28715 boolean_t 28716 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28717 zoneid_t zoneid) 28718 { 28719 ill_t *in_ill; 28720 boolean_t found; 28721 ipif_t *ipif; 28722 ire_t *ire; 28723 ipaddr_t dst, src; 28724 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28725 28726 dst = ipha->ipha_dst; 28727 src = ipha->ipha_src; 28728 28729 /* 28730 * conn_incoming_ill is set by IP_BOUND_IF which limits 28731 * unicast, broadcast and multicast reception to 28732 * conn_incoming_ill. conn_wantpacket itself is called 28733 * only for BROADCAST and multicast. 28734 * 28735 * 1) ip_rput supresses duplicate broadcasts if the ill 28736 * is part of a group. Hence, we should be receiving 28737 * just one copy of broadcast for the whole group. 28738 * Thus, if it is part of the group the packet could 28739 * come on any ill of the group and hence we need a 28740 * match on the group. Otherwise, match on ill should 28741 * be sufficient. 28742 * 28743 * 2) ip_rput does not suppress duplicate multicast packets. 28744 * If there are two interfaces in a ill group and we have 28745 * 2 applications (conns) joined a multicast group G on 28746 * both the interfaces, ilm_lookup_ill filter in ip_rput 28747 * will give us two packets because we join G on both the 28748 * interfaces rather than nominating just one interface 28749 * for receiving multicast like broadcast above. So, 28750 * we have to call ilg_lookup_ill to filter out duplicate 28751 * copies, if ill is part of a group. 28752 */ 28753 in_ill = connp->conn_incoming_ill; 28754 if (in_ill != NULL) { 28755 if (in_ill->ill_group == NULL) { 28756 if (in_ill != ill) 28757 return (B_FALSE); 28758 } else if (in_ill->ill_group != ill->ill_group) { 28759 return (B_FALSE); 28760 } 28761 } 28762 28763 if (!CLASSD(dst)) { 28764 if (IPCL_ZONE_MATCH(connp, zoneid)) 28765 return (B_TRUE); 28766 /* 28767 * The conn is in a different zone; we need to check that this 28768 * broadcast address is configured in the application's zone and 28769 * on one ill in the group. 28770 */ 28771 ipif = ipif_get_next_ipif(NULL, ill); 28772 if (ipif == NULL) 28773 return (B_FALSE); 28774 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28775 connp->conn_zoneid, NULL, 28776 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28777 ipif_refrele(ipif); 28778 if (ire != NULL) { 28779 ire_refrele(ire); 28780 return (B_TRUE); 28781 } else { 28782 return (B_FALSE); 28783 } 28784 } 28785 28786 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28787 connp->conn_zoneid == zoneid) { 28788 /* 28789 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28790 * disabled, therefore we don't dispatch the multicast packet to 28791 * the sending zone. 28792 */ 28793 return (B_FALSE); 28794 } 28795 28796 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28797 /* 28798 * Multicast packet on the loopback interface: we only match 28799 * conns who joined the group in the specified zone. 28800 */ 28801 return (B_FALSE); 28802 } 28803 28804 if (connp->conn_multi_router) { 28805 /* multicast packet and multicast router socket: send up */ 28806 return (B_TRUE); 28807 } 28808 28809 mutex_enter(&connp->conn_lock); 28810 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28811 mutex_exit(&connp->conn_lock); 28812 return (found); 28813 } 28814 28815 /* 28816 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28817 */ 28818 /* ARGSUSED */ 28819 static void 28820 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28821 { 28822 ill_t *ill = (ill_t *)q->q_ptr; 28823 mblk_t *mp1, *mp2; 28824 ipif_t *ipif; 28825 int err = 0; 28826 conn_t *connp = NULL; 28827 ipsq_t *ipsq; 28828 arc_t *arc; 28829 28830 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28831 28832 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28833 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28834 28835 ASSERT(IAM_WRITER_ILL(ill)); 28836 mp2 = mp->b_cont; 28837 mp->b_cont = NULL; 28838 28839 /* 28840 * We have now received the arp bringup completion message 28841 * from ARP. Mark the arp bringup as done. Also if the arp 28842 * stream has already started closing, send up the AR_ARP_CLOSING 28843 * ack now since ARP is waiting in close for this ack. 28844 */ 28845 mutex_enter(&ill->ill_lock); 28846 ill->ill_arp_bringup_pending = 0; 28847 if (ill->ill_arp_closing) { 28848 mutex_exit(&ill->ill_lock); 28849 /* Let's reuse the mp for sending the ack */ 28850 arc = (arc_t *)mp->b_rptr; 28851 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28852 arc->arc_cmd = AR_ARP_CLOSING; 28853 qreply(q, mp); 28854 } else { 28855 mutex_exit(&ill->ill_lock); 28856 freeb(mp); 28857 } 28858 28859 ipsq = ill->ill_phyint->phyint_ipsq; 28860 ipif = ipsq->ipsq_pending_ipif; 28861 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28862 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28863 if (mp1 == NULL) { 28864 /* bringup was aborted by the user */ 28865 freemsg(mp2); 28866 return; 28867 } 28868 28869 /* 28870 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28871 * must have an associated conn_t. Otherwise, we're bringing this 28872 * interface back up as part of handling an asynchronous event (e.g., 28873 * physical address change). 28874 */ 28875 if (ipsq->ipsq_current_ioctl != 0) { 28876 ASSERT(connp != NULL); 28877 q = CONNP_TO_WQ(connp); 28878 } else { 28879 ASSERT(connp == NULL); 28880 q = ill->ill_rq; 28881 } 28882 28883 /* 28884 * If the DL_BIND_REQ fails, it is noted 28885 * in arc_name_offset. 28886 */ 28887 err = *((int *)mp2->b_rptr); 28888 if (err == 0) { 28889 if (ipif->ipif_isv6) { 28890 if ((err = ipif_up_done_v6(ipif)) != 0) 28891 ip0dbg(("ip_arp_done: init failed\n")); 28892 } else { 28893 if ((err = ipif_up_done(ipif)) != 0) 28894 ip0dbg(("ip_arp_done: init failed\n")); 28895 } 28896 } else { 28897 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28898 } 28899 28900 freemsg(mp2); 28901 28902 if ((err == 0) && (ill->ill_up_ipifs)) { 28903 err = ill_up_ipifs(ill, q, mp1); 28904 if (err == EINPROGRESS) 28905 return; 28906 } 28907 28908 if (ill->ill_up_ipifs) 28909 ill_group_cleanup(ill); 28910 28911 /* 28912 * The operation must complete without EINPROGRESS since 28913 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28914 * Otherwise, the operation will be stuck forever in the ipsq. 28915 */ 28916 ASSERT(err != EINPROGRESS); 28917 if (ipsq->ipsq_current_ioctl != 0) 28918 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28919 else 28920 ipsq_current_finish(ipsq); 28921 } 28922 28923 /* Allocate the private structure */ 28924 static int 28925 ip_priv_alloc(void **bufp) 28926 { 28927 void *buf; 28928 28929 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28930 return (ENOMEM); 28931 28932 *bufp = buf; 28933 return (0); 28934 } 28935 28936 /* Function to delete the private structure */ 28937 void 28938 ip_priv_free(void *buf) 28939 { 28940 ASSERT(buf != NULL); 28941 kmem_free(buf, sizeof (ip_priv_t)); 28942 } 28943 28944 /* 28945 * The entry point for IPPF processing. 28946 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28947 * routine just returns. 28948 * 28949 * When called, ip_process generates an ipp_packet_t structure 28950 * which holds the state information for this packet and invokes the 28951 * the classifier (via ipp_packet_process). The classification, depending on 28952 * configured filters, results in a list of actions for this packet. Invoking 28953 * an action may cause the packet to be dropped, in which case the resulting 28954 * mblk (*mpp) is NULL. proc indicates the callout position for 28955 * this packet and ill_index is the interface this packet on or will leave 28956 * on (inbound and outbound resp.). 28957 */ 28958 void 28959 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28960 { 28961 mblk_t *mp; 28962 ip_priv_t *priv; 28963 ipp_action_id_t aid; 28964 int rc = 0; 28965 ipp_packet_t *pp; 28966 #define IP_CLASS "ip" 28967 28968 /* If the classifier is not loaded, return */ 28969 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28970 return; 28971 } 28972 28973 mp = *mpp; 28974 ASSERT(mp != NULL); 28975 28976 /* Allocate the packet structure */ 28977 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28978 if (rc != 0) { 28979 *mpp = NULL; 28980 freemsg(mp); 28981 return; 28982 } 28983 28984 /* Allocate the private structure */ 28985 rc = ip_priv_alloc((void **)&priv); 28986 if (rc != 0) { 28987 *mpp = NULL; 28988 freemsg(mp); 28989 ipp_packet_free(pp); 28990 return; 28991 } 28992 priv->proc = proc; 28993 priv->ill_index = ill_index; 28994 ipp_packet_set_private(pp, priv, ip_priv_free); 28995 ipp_packet_set_data(pp, mp); 28996 28997 /* Invoke the classifier */ 28998 rc = ipp_packet_process(&pp); 28999 if (pp != NULL) { 29000 mp = ipp_packet_get_data(pp); 29001 ipp_packet_free(pp); 29002 if (rc != 0) { 29003 freemsg(mp); 29004 *mpp = NULL; 29005 } 29006 } else { 29007 *mpp = NULL; 29008 } 29009 #undef IP_CLASS 29010 } 29011 29012 /* 29013 * Propagate a multicast group membership operation (add/drop) on 29014 * all the interfaces crossed by the related multirt routes. 29015 * The call is considered successful if the operation succeeds 29016 * on at least one interface. 29017 */ 29018 static int 29019 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29020 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29021 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29022 mblk_t *first_mp) 29023 { 29024 ire_t *ire_gw; 29025 irb_t *irb; 29026 int error = 0; 29027 opt_restart_t *or; 29028 ip_stack_t *ipst = ire->ire_ipst; 29029 29030 irb = ire->ire_bucket; 29031 ASSERT(irb != NULL); 29032 29033 ASSERT(DB_TYPE(first_mp) == M_CTL); 29034 29035 or = (opt_restart_t *)first_mp->b_rptr; 29036 IRB_REFHOLD(irb); 29037 for (; ire != NULL; ire = ire->ire_next) { 29038 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29039 continue; 29040 if (ire->ire_addr != group) 29041 continue; 29042 29043 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29044 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29045 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29046 /* No resolver exists for the gateway; skip this ire. */ 29047 if (ire_gw == NULL) 29048 continue; 29049 29050 /* 29051 * This function can return EINPROGRESS. If so the operation 29052 * will be restarted from ip_restart_optmgmt which will 29053 * call ip_opt_set and option processing will restart for 29054 * this option. So we may end up calling 'fn' more than once. 29055 * This requires that 'fn' is idempotent except for the 29056 * return value. The operation is considered a success if 29057 * it succeeds at least once on any one interface. 29058 */ 29059 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29060 NULL, fmode, src, first_mp); 29061 if (error == 0) 29062 or->or_private = CGTP_MCAST_SUCCESS; 29063 29064 if (ip_debug > 0) { 29065 ulong_t off; 29066 char *ksym; 29067 ksym = kobj_getsymname((uintptr_t)fn, &off); 29068 ip2dbg(("ip_multirt_apply_membership: " 29069 "called %s, multirt group 0x%08x via itf 0x%08x, " 29070 "error %d [success %u]\n", 29071 ksym ? ksym : "?", 29072 ntohl(group), ntohl(ire_gw->ire_src_addr), 29073 error, or->or_private)); 29074 } 29075 29076 ire_refrele(ire_gw); 29077 if (error == EINPROGRESS) { 29078 IRB_REFRELE(irb); 29079 return (error); 29080 } 29081 } 29082 IRB_REFRELE(irb); 29083 /* 29084 * Consider the call as successful if we succeeded on at least 29085 * one interface. Otherwise, return the last encountered error. 29086 */ 29087 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29088 } 29089 29090 29091 /* 29092 * Issue a warning regarding a route crossing an interface with an 29093 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29094 * amount of time is logged. 29095 */ 29096 static void 29097 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29098 { 29099 hrtime_t current = gethrtime(); 29100 char buf[INET_ADDRSTRLEN]; 29101 ip_stack_t *ipst = ire->ire_ipst; 29102 29103 /* Convert interval in ms to hrtime in ns */ 29104 if (ipst->ips_multirt_bad_mtu_last_time + 29105 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29106 current) { 29107 cmn_err(CE_WARN, "ip: ignoring multiroute " 29108 "to %s, incorrect MTU %u (expected %u)\n", 29109 ip_dot_addr(ire->ire_addr, buf), 29110 ire->ire_max_frag, max_frag); 29111 29112 ipst->ips_multirt_bad_mtu_last_time = current; 29113 } 29114 } 29115 29116 29117 /* 29118 * Get the CGTP (multirouting) filtering status. 29119 * If 0, the CGTP hooks are transparent. 29120 */ 29121 /* ARGSUSED */ 29122 static int 29123 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29124 { 29125 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29126 29127 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29128 return (0); 29129 } 29130 29131 29132 /* 29133 * Set the CGTP (multirouting) filtering status. 29134 * If the status is changed from active to transparent 29135 * or from transparent to active, forward the new status 29136 * to the filtering module (if loaded). 29137 */ 29138 /* ARGSUSED */ 29139 static int 29140 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29141 cred_t *ioc_cr) 29142 { 29143 long new_value; 29144 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29145 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29146 29147 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29148 return (EPERM); 29149 29150 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29151 new_value < 0 || new_value > 1) { 29152 return (EINVAL); 29153 } 29154 29155 if ((!*ip_cgtp_filter_value) && new_value) { 29156 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29157 ipst->ips_ip_cgtp_filter_ops == NULL ? 29158 " (module not loaded)" : ""); 29159 } 29160 if (*ip_cgtp_filter_value && (!new_value)) { 29161 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29162 ipst->ips_ip_cgtp_filter_ops == NULL ? 29163 " (module not loaded)" : ""); 29164 } 29165 29166 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29167 int res; 29168 netstackid_t stackid; 29169 29170 stackid = ipst->ips_netstack->netstack_stackid; 29171 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29172 new_value); 29173 if (res) 29174 return (res); 29175 } 29176 29177 *ip_cgtp_filter_value = (boolean_t)new_value; 29178 29179 return (0); 29180 } 29181 29182 29183 /* 29184 * Return the expected CGTP hooks version number. 29185 */ 29186 int 29187 ip_cgtp_filter_supported(void) 29188 { 29189 return (ip_cgtp_filter_rev); 29190 } 29191 29192 29193 /* 29194 * CGTP hooks can be registered by invoking this function. 29195 * Checks that the version number matches. 29196 */ 29197 int 29198 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29199 { 29200 netstack_t *ns; 29201 ip_stack_t *ipst; 29202 29203 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29204 return (ENOTSUP); 29205 29206 ns = netstack_find_by_stackid(stackid); 29207 if (ns == NULL) 29208 return (EINVAL); 29209 ipst = ns->netstack_ip; 29210 ASSERT(ipst != NULL); 29211 29212 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29213 netstack_rele(ns); 29214 return (EALREADY); 29215 } 29216 29217 ipst->ips_ip_cgtp_filter_ops = ops; 29218 netstack_rele(ns); 29219 return (0); 29220 } 29221 29222 /* 29223 * CGTP hooks can be unregistered by invoking this function. 29224 * Returns ENXIO if there was no registration. 29225 * Returns EBUSY if the ndd variable has not been turned off. 29226 */ 29227 int 29228 ip_cgtp_filter_unregister(netstackid_t stackid) 29229 { 29230 netstack_t *ns; 29231 ip_stack_t *ipst; 29232 29233 ns = netstack_find_by_stackid(stackid); 29234 if (ns == NULL) 29235 return (EINVAL); 29236 ipst = ns->netstack_ip; 29237 ASSERT(ipst != NULL); 29238 29239 if (ipst->ips_ip_cgtp_filter) { 29240 netstack_rele(ns); 29241 return (EBUSY); 29242 } 29243 29244 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29245 netstack_rele(ns); 29246 return (ENXIO); 29247 } 29248 ipst->ips_ip_cgtp_filter_ops = NULL; 29249 netstack_rele(ns); 29250 return (0); 29251 } 29252 29253 /* 29254 * Check whether there is a CGTP filter registration. 29255 * Returns non-zero if there is a registration, otherwise returns zero. 29256 * Note: returns zero if bad stackid. 29257 */ 29258 int 29259 ip_cgtp_filter_is_registered(netstackid_t stackid) 29260 { 29261 netstack_t *ns; 29262 ip_stack_t *ipst; 29263 int ret; 29264 29265 ns = netstack_find_by_stackid(stackid); 29266 if (ns == NULL) 29267 return (0); 29268 ipst = ns->netstack_ip; 29269 ASSERT(ipst != NULL); 29270 29271 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29272 ret = 1; 29273 else 29274 ret = 0; 29275 29276 netstack_rele(ns); 29277 return (ret); 29278 } 29279 29280 static squeue_func_t 29281 ip_squeue_switch(int val) 29282 { 29283 squeue_func_t rval = squeue_fill; 29284 29285 switch (val) { 29286 case IP_SQUEUE_ENTER_NODRAIN: 29287 rval = squeue_enter_nodrain; 29288 break; 29289 case IP_SQUEUE_ENTER: 29290 rval = squeue_enter; 29291 break; 29292 default: 29293 break; 29294 } 29295 return (rval); 29296 } 29297 29298 /* ARGSUSED */ 29299 static int 29300 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29301 caddr_t addr, cred_t *cr) 29302 { 29303 int *v = (int *)addr; 29304 long new_value; 29305 29306 if (secpolicy_net_config(cr, B_FALSE) != 0) 29307 return (EPERM); 29308 29309 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29310 return (EINVAL); 29311 29312 ip_input_proc = ip_squeue_switch(new_value); 29313 *v = new_value; 29314 return (0); 29315 } 29316 29317 /* 29318 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29319 * ip_debug. 29320 */ 29321 /* ARGSUSED */ 29322 static int 29323 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29324 caddr_t addr, cred_t *cr) 29325 { 29326 int *v = (int *)addr; 29327 long new_value; 29328 29329 if (secpolicy_net_config(cr, B_FALSE) != 0) 29330 return (EPERM); 29331 29332 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29333 return (EINVAL); 29334 29335 *v = new_value; 29336 return (0); 29337 } 29338 29339 /* 29340 * Handle changes to ipmp_hook_emulation ndd variable. 29341 * Need to update phyint_hook_ifindex. 29342 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29343 */ 29344 static void 29345 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29346 { 29347 phyint_t *phyi; 29348 phyint_t *phyi_tmp; 29349 char *groupname; 29350 int namelen; 29351 ill_t *ill; 29352 boolean_t new_group; 29353 29354 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29355 /* 29356 * Group indicies are stored in the phyint - a common structure 29357 * to both IPv4 and IPv6. 29358 */ 29359 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29360 for (; phyi != NULL; 29361 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29362 phyi, AVL_AFTER)) { 29363 /* Ignore the ones that do not have a group */ 29364 if (phyi->phyint_groupname_len == 0) 29365 continue; 29366 29367 /* 29368 * Look for other phyint in group. 29369 * Clear name/namelen so the lookup doesn't find ourselves. 29370 */ 29371 namelen = phyi->phyint_groupname_len; 29372 groupname = phyi->phyint_groupname; 29373 phyi->phyint_groupname_len = 0; 29374 phyi->phyint_groupname = NULL; 29375 29376 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29377 /* Restore */ 29378 phyi->phyint_groupname_len = namelen; 29379 phyi->phyint_groupname = groupname; 29380 29381 new_group = B_FALSE; 29382 if (ipst->ips_ipmp_hook_emulation) { 29383 /* 29384 * If the group already exists and has already 29385 * been assigned a group ifindex, we use the existing 29386 * group_ifindex, otherwise we pick a new group_ifindex 29387 * here. 29388 */ 29389 if (phyi_tmp != NULL && 29390 phyi_tmp->phyint_group_ifindex != 0) { 29391 phyi->phyint_group_ifindex = 29392 phyi_tmp->phyint_group_ifindex; 29393 } else { 29394 /* XXX We need a recovery strategy here. */ 29395 if (!ip_assign_ifindex( 29396 &phyi->phyint_group_ifindex, ipst)) 29397 cmn_err(CE_PANIC, 29398 "ip_assign_ifindex() failed"); 29399 new_group = B_TRUE; 29400 } 29401 } else { 29402 phyi->phyint_group_ifindex = 0; 29403 } 29404 if (ipst->ips_ipmp_hook_emulation) 29405 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29406 else 29407 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29408 29409 /* 29410 * For IP Filter to find out the relationship between 29411 * names and interface indicies, we need to generate 29412 * a NE_PLUMB event when a new group can appear. 29413 * We always generate events when a new interface appears 29414 * (even when ipmp_hook_emulation is set) so there 29415 * is no need to generate NE_PLUMB events when 29416 * ipmp_hook_emulation is turned off. 29417 * And since it isn't critical for IP Filter to get 29418 * the NE_UNPLUMB events we skip those here. 29419 */ 29420 if (new_group) { 29421 /* 29422 * First phyint in group - generate group PLUMB event. 29423 * Since we are not running inside the ipsq we do 29424 * the dispatch immediately. 29425 */ 29426 if (phyi->phyint_illv4 != NULL) 29427 ill = phyi->phyint_illv4; 29428 else 29429 ill = phyi->phyint_illv6; 29430 29431 if (ill != NULL) 29432 ill_nic_event_plumb(ill, B_TRUE); 29433 } 29434 } 29435 rw_exit(&ipst->ips_ill_g_lock); 29436 } 29437 29438 /* ARGSUSED */ 29439 static int 29440 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29441 caddr_t addr, cred_t *cr) 29442 { 29443 int *v = (int *)addr; 29444 long new_value; 29445 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29446 29447 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29448 return (EINVAL); 29449 29450 if (*v != new_value) { 29451 *v = new_value; 29452 ipmp_hook_emulation_changed(ipst); 29453 } 29454 return (0); 29455 } 29456 29457 static void * 29458 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29459 { 29460 kstat_t *ksp; 29461 29462 ip_stat_t template = { 29463 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29464 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29465 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29466 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29467 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29468 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29469 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29470 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29471 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29472 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29473 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29474 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29475 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29476 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29477 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29478 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29479 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29480 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29481 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29482 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29483 { "ip_opt", KSTAT_DATA_UINT64 }, 29484 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29485 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29486 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29487 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29488 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29489 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29490 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29491 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29492 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29493 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29494 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29495 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29496 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29497 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29498 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29499 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29500 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29501 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29502 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29503 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29504 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29505 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29506 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29507 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29508 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29509 }; 29510 29511 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29512 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29513 KSTAT_FLAG_VIRTUAL, stackid); 29514 29515 if (ksp == NULL) 29516 return (NULL); 29517 29518 bcopy(&template, ip_statisticsp, sizeof (template)); 29519 ksp->ks_data = (void *)ip_statisticsp; 29520 ksp->ks_private = (void *)(uintptr_t)stackid; 29521 29522 kstat_install(ksp); 29523 return (ksp); 29524 } 29525 29526 static void 29527 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29528 { 29529 if (ksp != NULL) { 29530 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29531 kstat_delete_netstack(ksp, stackid); 29532 } 29533 } 29534 29535 static void * 29536 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29537 { 29538 kstat_t *ksp; 29539 29540 ip_named_kstat_t template = { 29541 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29542 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29543 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29544 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29545 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29546 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29547 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29548 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29549 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29550 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29551 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29552 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29553 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29554 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29555 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29556 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29557 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29558 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29559 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29560 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29561 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29562 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29563 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29564 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29565 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29566 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29567 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29568 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29569 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29570 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29571 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29572 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29573 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29574 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29575 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29576 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29577 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29578 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29579 }; 29580 29581 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29582 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29583 if (ksp == NULL || ksp->ks_data == NULL) 29584 return (NULL); 29585 29586 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29587 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29588 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29589 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29590 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29591 29592 template.netToMediaEntrySize.value.i32 = 29593 sizeof (mib2_ipNetToMediaEntry_t); 29594 29595 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29596 29597 bcopy(&template, ksp->ks_data, sizeof (template)); 29598 ksp->ks_update = ip_kstat_update; 29599 ksp->ks_private = (void *)(uintptr_t)stackid; 29600 29601 kstat_install(ksp); 29602 return (ksp); 29603 } 29604 29605 static void 29606 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29607 { 29608 if (ksp != NULL) { 29609 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29610 kstat_delete_netstack(ksp, stackid); 29611 } 29612 } 29613 29614 static int 29615 ip_kstat_update(kstat_t *kp, int rw) 29616 { 29617 ip_named_kstat_t *ipkp; 29618 mib2_ipIfStatsEntry_t ipmib; 29619 ill_walk_context_t ctx; 29620 ill_t *ill; 29621 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29622 netstack_t *ns; 29623 ip_stack_t *ipst; 29624 29625 if (kp == NULL || kp->ks_data == NULL) 29626 return (EIO); 29627 29628 if (rw == KSTAT_WRITE) 29629 return (EACCES); 29630 29631 ns = netstack_find_by_stackid(stackid); 29632 if (ns == NULL) 29633 return (-1); 29634 ipst = ns->netstack_ip; 29635 if (ipst == NULL) { 29636 netstack_rele(ns); 29637 return (-1); 29638 } 29639 ipkp = (ip_named_kstat_t *)kp->ks_data; 29640 29641 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29642 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29643 ill = ILL_START_WALK_V4(&ctx, ipst); 29644 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29645 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29646 rw_exit(&ipst->ips_ill_g_lock); 29647 29648 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29649 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29650 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29651 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29652 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29653 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29654 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29655 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29656 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29657 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29658 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29659 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29660 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29661 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29662 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29663 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29664 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29665 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29666 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29667 29668 ipkp->routingDiscards.value.ui32 = 0; 29669 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29670 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29671 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29672 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29673 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29674 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29675 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29676 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29677 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29678 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29679 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29680 29681 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29682 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29683 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29684 29685 netstack_rele(ns); 29686 29687 return (0); 29688 } 29689 29690 static void * 29691 icmp_kstat_init(netstackid_t stackid) 29692 { 29693 kstat_t *ksp; 29694 29695 icmp_named_kstat_t template = { 29696 { "inMsgs", KSTAT_DATA_UINT32 }, 29697 { "inErrors", KSTAT_DATA_UINT32 }, 29698 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29699 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29700 { "inParmProbs", KSTAT_DATA_UINT32 }, 29701 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29702 { "inRedirects", KSTAT_DATA_UINT32 }, 29703 { "inEchos", KSTAT_DATA_UINT32 }, 29704 { "inEchoReps", KSTAT_DATA_UINT32 }, 29705 { "inTimestamps", KSTAT_DATA_UINT32 }, 29706 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29707 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29708 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29709 { "outMsgs", KSTAT_DATA_UINT32 }, 29710 { "outErrors", KSTAT_DATA_UINT32 }, 29711 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29712 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29713 { "outParmProbs", KSTAT_DATA_UINT32 }, 29714 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29715 { "outRedirects", KSTAT_DATA_UINT32 }, 29716 { "outEchos", KSTAT_DATA_UINT32 }, 29717 { "outEchoReps", KSTAT_DATA_UINT32 }, 29718 { "outTimestamps", KSTAT_DATA_UINT32 }, 29719 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29720 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29721 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29722 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29723 { "inUnknowns", KSTAT_DATA_UINT32 }, 29724 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29725 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29726 { "outDrops", KSTAT_DATA_UINT32 }, 29727 { "inOverFlows", KSTAT_DATA_UINT32 }, 29728 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29729 }; 29730 29731 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29732 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29733 if (ksp == NULL || ksp->ks_data == NULL) 29734 return (NULL); 29735 29736 bcopy(&template, ksp->ks_data, sizeof (template)); 29737 29738 ksp->ks_update = icmp_kstat_update; 29739 ksp->ks_private = (void *)(uintptr_t)stackid; 29740 29741 kstat_install(ksp); 29742 return (ksp); 29743 } 29744 29745 static void 29746 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29747 { 29748 if (ksp != NULL) { 29749 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29750 kstat_delete_netstack(ksp, stackid); 29751 } 29752 } 29753 29754 static int 29755 icmp_kstat_update(kstat_t *kp, int rw) 29756 { 29757 icmp_named_kstat_t *icmpkp; 29758 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29759 netstack_t *ns; 29760 ip_stack_t *ipst; 29761 29762 if ((kp == NULL) || (kp->ks_data == NULL)) 29763 return (EIO); 29764 29765 if (rw == KSTAT_WRITE) 29766 return (EACCES); 29767 29768 ns = netstack_find_by_stackid(stackid); 29769 if (ns == NULL) 29770 return (-1); 29771 ipst = ns->netstack_ip; 29772 if (ipst == NULL) { 29773 netstack_rele(ns); 29774 return (-1); 29775 } 29776 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29777 29778 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29779 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29780 icmpkp->inDestUnreachs.value.ui32 = 29781 ipst->ips_icmp_mib.icmpInDestUnreachs; 29782 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29783 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29784 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29785 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29786 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29787 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29788 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29789 icmpkp->inTimestampReps.value.ui32 = 29790 ipst->ips_icmp_mib.icmpInTimestampReps; 29791 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29792 icmpkp->inAddrMaskReps.value.ui32 = 29793 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29794 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29795 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29796 icmpkp->outDestUnreachs.value.ui32 = 29797 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29798 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29799 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29800 icmpkp->outSrcQuenchs.value.ui32 = 29801 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29802 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29803 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29804 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29805 icmpkp->outTimestamps.value.ui32 = 29806 ipst->ips_icmp_mib.icmpOutTimestamps; 29807 icmpkp->outTimestampReps.value.ui32 = 29808 ipst->ips_icmp_mib.icmpOutTimestampReps; 29809 icmpkp->outAddrMasks.value.ui32 = 29810 ipst->ips_icmp_mib.icmpOutAddrMasks; 29811 icmpkp->outAddrMaskReps.value.ui32 = 29812 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29813 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29814 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29815 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29816 icmpkp->outFragNeeded.value.ui32 = 29817 ipst->ips_icmp_mib.icmpOutFragNeeded; 29818 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29819 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29820 icmpkp->inBadRedirects.value.ui32 = 29821 ipst->ips_icmp_mib.icmpInBadRedirects; 29822 29823 netstack_rele(ns); 29824 return (0); 29825 } 29826 29827 /* 29828 * This is the fanout function for raw socket opened for SCTP. Note 29829 * that it is called after SCTP checks that there is no socket which 29830 * wants a packet. Then before SCTP handles this out of the blue packet, 29831 * this function is called to see if there is any raw socket for SCTP. 29832 * If there is and it is bound to the correct address, the packet will 29833 * be sent to that socket. Note that only one raw socket can be bound to 29834 * a port. This is assured in ipcl_sctp_hash_insert(); 29835 */ 29836 void 29837 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29838 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29839 zoneid_t zoneid) 29840 { 29841 conn_t *connp; 29842 queue_t *rq; 29843 mblk_t *first_mp; 29844 boolean_t secure; 29845 ip6_t *ip6h; 29846 ip_stack_t *ipst = recv_ill->ill_ipst; 29847 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29848 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29849 boolean_t sctp_csum_err = B_FALSE; 29850 29851 if (flags & IP_FF_SCTP_CSUM_ERR) { 29852 sctp_csum_err = B_TRUE; 29853 flags &= ~IP_FF_SCTP_CSUM_ERR; 29854 } 29855 29856 first_mp = mp; 29857 if (mctl_present) { 29858 mp = first_mp->b_cont; 29859 secure = ipsec_in_is_secure(first_mp); 29860 ASSERT(mp != NULL); 29861 } else { 29862 secure = B_FALSE; 29863 } 29864 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29865 29866 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29867 if (connp == NULL) { 29868 /* 29869 * Although raw sctp is not summed, OOB chunks must be. 29870 * Drop the packet here if the sctp checksum failed. 29871 */ 29872 if (sctp_csum_err) { 29873 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29874 freemsg(first_mp); 29875 return; 29876 } 29877 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29878 return; 29879 } 29880 rq = connp->conn_rq; 29881 if (!canputnext(rq)) { 29882 CONN_DEC_REF(connp); 29883 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29884 freemsg(first_mp); 29885 return; 29886 } 29887 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29888 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29889 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29890 (isv4 ? ipha : NULL), ip6h, mctl_present); 29891 if (first_mp == NULL) { 29892 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29893 CONN_DEC_REF(connp); 29894 return; 29895 } 29896 } 29897 /* 29898 * We probably should not send M_CTL message up to 29899 * raw socket. 29900 */ 29901 if (mctl_present) 29902 freeb(first_mp); 29903 29904 /* Initiate IPPF processing here if needed. */ 29905 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29906 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29907 ip_process(IPP_LOCAL_IN, &mp, 29908 recv_ill->ill_phyint->phyint_ifindex); 29909 if (mp == NULL) { 29910 CONN_DEC_REF(connp); 29911 return; 29912 } 29913 } 29914 29915 if (connp->conn_recvif || connp->conn_recvslla || 29916 ((connp->conn_ip_recvpktinfo || 29917 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29918 (flags & IP_FF_IPINFO))) { 29919 int in_flags = 0; 29920 29921 /* 29922 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29923 * IPF_RECVIF. 29924 */ 29925 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29926 in_flags = IPF_RECVIF; 29927 } 29928 if (connp->conn_recvslla) { 29929 in_flags |= IPF_RECVSLLA; 29930 } 29931 if (isv4) { 29932 mp = ip_add_info(mp, recv_ill, in_flags, 29933 IPCL_ZONEID(connp), ipst); 29934 } else { 29935 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29936 if (mp == NULL) { 29937 BUMP_MIB(recv_ill->ill_ip_mib, 29938 ipIfStatsInDiscards); 29939 CONN_DEC_REF(connp); 29940 return; 29941 } 29942 } 29943 } 29944 29945 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29946 /* 29947 * We are sending the IPSEC_IN message also up. Refer 29948 * to comments above this function. 29949 * This is the SOCK_RAW, IPPROTO_SCTP case. 29950 */ 29951 (connp->conn_recv)(connp, mp, NULL); 29952 CONN_DEC_REF(connp); 29953 } 29954 29955 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29956 { \ 29957 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29958 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29959 } 29960 /* 29961 * This function should be called only if all packet processing 29962 * including fragmentation is complete. Callers of this function 29963 * must set mp->b_prev to one of these values: 29964 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29965 * prior to handing over the mp as first argument to this function. 29966 * 29967 * If the ire passed by caller is incomplete, this function 29968 * queues the packet and if necessary, sends ARP request and bails. 29969 * If the ire passed is fully resolved, we simply prepend 29970 * the link-layer header to the packet, do ipsec hw acceleration 29971 * work if necessary, and send the packet out on the wire. 29972 * 29973 * NOTE: IPsec will only call this function with fully resolved 29974 * ires if hw acceleration is involved. 29975 * TODO list : 29976 * a Handle M_MULTIDATA so that 29977 * tcp_multisend->tcp_multisend_data can 29978 * call ip_xmit_v4 directly 29979 * b Handle post-ARP work for fragments so that 29980 * ip_wput_frag can call this function. 29981 */ 29982 ipxmit_state_t 29983 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29984 { 29985 nce_t *arpce; 29986 ipha_t *ipha; 29987 queue_t *q; 29988 int ill_index; 29989 mblk_t *nxt_mp, *first_mp; 29990 boolean_t xmit_drop = B_FALSE; 29991 ip_proc_t proc; 29992 ill_t *out_ill; 29993 int pkt_len; 29994 29995 arpce = ire->ire_nce; 29996 ASSERT(arpce != NULL); 29997 29998 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29999 30000 mutex_enter(&arpce->nce_lock); 30001 switch (arpce->nce_state) { 30002 case ND_REACHABLE: 30003 /* If there are other queued packets, queue this packet */ 30004 if (arpce->nce_qd_mp != NULL) { 30005 if (mp != NULL) 30006 nce_queue_mp_common(arpce, mp, B_FALSE); 30007 mp = arpce->nce_qd_mp; 30008 } 30009 arpce->nce_qd_mp = NULL; 30010 mutex_exit(&arpce->nce_lock); 30011 30012 /* 30013 * Flush the queue. In the common case, where the 30014 * ARP is already resolved, it will go through the 30015 * while loop only once. 30016 */ 30017 while (mp != NULL) { 30018 30019 nxt_mp = mp->b_next; 30020 mp->b_next = NULL; 30021 ASSERT(mp->b_datap->db_type != M_CTL); 30022 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30023 /* 30024 * This info is needed for IPQOS to do COS marking 30025 * in ip_wput_attach_llhdr->ip_process. 30026 */ 30027 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30028 mp->b_prev = NULL; 30029 30030 /* set up ill index for outbound qos processing */ 30031 out_ill = ire_to_ill(ire); 30032 ill_index = out_ill->ill_phyint->phyint_ifindex; 30033 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30034 ill_index, &ipha); 30035 if (first_mp == NULL) { 30036 xmit_drop = B_TRUE; 30037 BUMP_MIB(out_ill->ill_ip_mib, 30038 ipIfStatsOutDiscards); 30039 goto next_mp; 30040 } 30041 30042 /* non-ipsec hw accel case */ 30043 if (io == NULL || !io->ipsec_out_accelerated) { 30044 /* send it */ 30045 q = ire->ire_stq; 30046 if (proc == IPP_FWD_OUT) { 30047 UPDATE_IB_PKT_COUNT(ire); 30048 } else { 30049 UPDATE_OB_PKT_COUNT(ire); 30050 } 30051 ire->ire_last_used_time = lbolt; 30052 30053 if (flow_ctl_enabled || canputnext(q)) { 30054 if (proc == IPP_FWD_OUT) { 30055 30056 BUMP_MIB(out_ill->ill_ip_mib, 30057 ipIfStatsHCOutForwDatagrams); 30058 30059 } 30060 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30061 pkt_len); 30062 30063 DTRACE_IP7(send, mblk_t *, first_mp, 30064 conn_t *, NULL, void_ip_t *, ipha, 30065 __dtrace_ipsr_ill_t *, out_ill, 30066 ipha_t *, ipha, ip6_t *, NULL, int, 30067 0); 30068 30069 putnext(q, first_mp); 30070 } else { 30071 BUMP_MIB(out_ill->ill_ip_mib, 30072 ipIfStatsOutDiscards); 30073 xmit_drop = B_TRUE; 30074 freemsg(first_mp); 30075 } 30076 } else { 30077 /* 30078 * Safety Pup says: make sure this 30079 * is going to the right interface! 30080 */ 30081 ill_t *ill1 = 30082 (ill_t *)ire->ire_stq->q_ptr; 30083 int ifindex = 30084 ill1->ill_phyint->phyint_ifindex; 30085 if (ifindex != 30086 io->ipsec_out_capab_ill_index) { 30087 xmit_drop = B_TRUE; 30088 freemsg(mp); 30089 } else { 30090 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30091 pkt_len); 30092 30093 DTRACE_IP7(send, mblk_t *, first_mp, 30094 conn_t *, NULL, void_ip_t *, ipha, 30095 __dtrace_ipsr_ill_t *, ill1, 30096 ipha_t *, ipha, ip6_t *, NULL, 30097 int, 0); 30098 30099 ipsec_hw_putnext(ire->ire_stq, mp); 30100 } 30101 } 30102 next_mp: 30103 mp = nxt_mp; 30104 } /* while (mp != NULL) */ 30105 if (xmit_drop) 30106 return (SEND_FAILED); 30107 else 30108 return (SEND_PASSED); 30109 30110 case ND_INITIAL: 30111 case ND_INCOMPLETE: 30112 30113 /* 30114 * While we do send off packets to dests that 30115 * use fully-resolved CGTP routes, we do not 30116 * handle unresolved CGTP routes. 30117 */ 30118 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30119 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30120 30121 if (mp != NULL) { 30122 /* queue the packet */ 30123 nce_queue_mp_common(arpce, mp, B_FALSE); 30124 } 30125 30126 if (arpce->nce_state == ND_INCOMPLETE) { 30127 mutex_exit(&arpce->nce_lock); 30128 DTRACE_PROBE3(ip__xmit__incomplete, 30129 (ire_t *), ire, (mblk_t *), mp, 30130 (ipsec_out_t *), io); 30131 return (LOOKUP_IN_PROGRESS); 30132 } 30133 30134 arpce->nce_state = ND_INCOMPLETE; 30135 mutex_exit(&arpce->nce_lock); 30136 /* 30137 * Note that ire_add() (called from ire_forward()) 30138 * holds a ref on the ire until ARP is completed. 30139 */ 30140 30141 ire_arpresolve(ire, ire_to_ill(ire)); 30142 return (LOOKUP_IN_PROGRESS); 30143 default: 30144 ASSERT(0); 30145 mutex_exit(&arpce->nce_lock); 30146 return (LLHDR_RESLV_FAILED); 30147 } 30148 } 30149 30150 #undef UPDATE_IP_MIB_OB_COUNTERS 30151 30152 /* 30153 * Return B_TRUE if the buffers differ in length or content. 30154 * This is used for comparing extension header buffers. 30155 * Note that an extension header would be declared different 30156 * even if all that changed was the next header value in that header i.e. 30157 * what really changed is the next extension header. 30158 */ 30159 boolean_t 30160 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30161 uint_t blen) 30162 { 30163 if (!b_valid) 30164 blen = 0; 30165 30166 if (alen != blen) 30167 return (B_TRUE); 30168 if (alen == 0) 30169 return (B_FALSE); /* Both zero length */ 30170 return (bcmp(abuf, bbuf, alen)); 30171 } 30172 30173 /* 30174 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30175 * Return B_FALSE if memory allocation fails - don't change any state! 30176 */ 30177 boolean_t 30178 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30179 const void *src, uint_t srclen) 30180 { 30181 void *dst; 30182 30183 if (!src_valid) 30184 srclen = 0; 30185 30186 ASSERT(*dstlenp == 0); 30187 if (src != NULL && srclen != 0) { 30188 dst = mi_alloc(srclen, BPRI_MED); 30189 if (dst == NULL) 30190 return (B_FALSE); 30191 } else { 30192 dst = NULL; 30193 } 30194 if (*dstp != NULL) 30195 mi_free(*dstp); 30196 *dstp = dst; 30197 *dstlenp = dst == NULL ? 0 : srclen; 30198 return (B_TRUE); 30199 } 30200 30201 /* 30202 * Replace what is in *dst, *dstlen with the source. 30203 * Assumes ip_allocbuf has already been called. 30204 */ 30205 void 30206 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30207 const void *src, uint_t srclen) 30208 { 30209 if (!src_valid) 30210 srclen = 0; 30211 30212 ASSERT(*dstlenp == srclen); 30213 if (src != NULL && srclen != 0) 30214 bcopy(src, *dstp, srclen); 30215 } 30216 30217 /* 30218 * Free the storage pointed to by the members of an ip6_pkt_t. 30219 */ 30220 void 30221 ip6_pkt_free(ip6_pkt_t *ipp) 30222 { 30223 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30224 30225 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30226 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30227 ipp->ipp_hopopts = NULL; 30228 ipp->ipp_hopoptslen = 0; 30229 } 30230 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30231 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30232 ipp->ipp_rtdstopts = NULL; 30233 ipp->ipp_rtdstoptslen = 0; 30234 } 30235 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30236 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30237 ipp->ipp_dstopts = NULL; 30238 ipp->ipp_dstoptslen = 0; 30239 } 30240 if (ipp->ipp_fields & IPPF_RTHDR) { 30241 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30242 ipp->ipp_rthdr = NULL; 30243 ipp->ipp_rthdrlen = 0; 30244 } 30245 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30246 IPPF_RTHDR); 30247 } 30248 30249 zoneid_t 30250 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30251 zoneid_t lookup_zoneid) 30252 { 30253 ire_t *ire; 30254 int ire_flags = MATCH_IRE_TYPE; 30255 zoneid_t zoneid = ALL_ZONES; 30256 30257 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30258 return (ALL_ZONES); 30259 30260 if (lookup_zoneid != ALL_ZONES) 30261 ire_flags |= MATCH_IRE_ZONEONLY; 30262 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30263 lookup_zoneid, NULL, ire_flags, ipst); 30264 if (ire != NULL) { 30265 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30266 ire_refrele(ire); 30267 } 30268 return (zoneid); 30269 } 30270 30271 zoneid_t 30272 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30273 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30274 { 30275 ire_t *ire; 30276 int ire_flags = MATCH_IRE_TYPE; 30277 zoneid_t zoneid = ALL_ZONES; 30278 ipif_t *ipif_arg = NULL; 30279 30280 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30281 return (ALL_ZONES); 30282 30283 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30284 ire_flags |= MATCH_IRE_ILL_GROUP; 30285 ipif_arg = ill->ill_ipif; 30286 } 30287 if (lookup_zoneid != ALL_ZONES) 30288 ire_flags |= MATCH_IRE_ZONEONLY; 30289 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30290 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30291 if (ire != NULL) { 30292 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30293 ire_refrele(ire); 30294 } 30295 return (zoneid); 30296 } 30297 30298 /* 30299 * IP obserability hook support functions. 30300 */ 30301 30302 static void 30303 ipobs_init(ip_stack_t *ipst) 30304 { 30305 ipst->ips_ipobs_enabled = B_FALSE; 30306 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30307 offsetof(ipobs_cb_t, ipobs_cbnext)); 30308 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30309 ipst->ips_ipobs_cb_nwalkers = 0; 30310 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30311 } 30312 30313 static void 30314 ipobs_fini(ip_stack_t *ipst) 30315 { 30316 ipobs_cb_t *cb; 30317 30318 mutex_enter(&ipst->ips_ipobs_cb_lock); 30319 while (ipst->ips_ipobs_cb_nwalkers != 0) 30320 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30321 30322 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30323 list_remove(&ipst->ips_ipobs_cb_list, cb); 30324 kmem_free(cb, sizeof (*cb)); 30325 } 30326 list_destroy(&ipst->ips_ipobs_cb_list); 30327 mutex_exit(&ipst->ips_ipobs_cb_lock); 30328 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30329 cv_destroy(&ipst->ips_ipobs_cb_cv); 30330 } 30331 30332 void 30333 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30334 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30335 { 30336 ipobs_cb_t *ipobs_cb; 30337 30338 ASSERT(DB_TYPE(mp) == M_DATA); 30339 30340 mutex_enter(&ipst->ips_ipobs_cb_lock); 30341 ipst->ips_ipobs_cb_nwalkers++; 30342 mutex_exit(&ipst->ips_ipobs_cb_lock); 30343 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30344 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30345 mblk_t *mp2 = allocb(sizeof (ipobs_hook_data_t), 30346 BPRI_HI); 30347 if (mp2 != NULL) { 30348 ipobs_hook_data_t *ihd = 30349 (ipobs_hook_data_t *)mp2->b_rptr; 30350 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30351 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30352 freemsg(mp2); 30353 continue; 30354 } 30355 ihd->ihd_mp->b_rptr += hlen; 30356 ihd->ihd_htype = htype; 30357 ihd->ihd_ipver = ipver; 30358 ihd->ihd_zsrc = zsrc; 30359 ihd->ihd_zdst = zdst; 30360 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30361 ihd->ihd_stack = ipst->ips_netstack; 30362 mp2->b_wptr += sizeof (*ihd); 30363 ipobs_cb->ipobs_cbfunc(mp2); 30364 } 30365 } 30366 mutex_enter(&ipst->ips_ipobs_cb_lock); 30367 ipst->ips_ipobs_cb_nwalkers--; 30368 if (ipst->ips_ipobs_cb_nwalkers == 0) 30369 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30370 mutex_exit(&ipst->ips_ipobs_cb_lock); 30371 } 30372 30373 void 30374 ipobs_register_hook(netstack_t *ns, pfv_t func) 30375 { 30376 ipobs_cb_t *cb; 30377 ip_stack_t *ipst = ns->netstack_ip; 30378 30379 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30380 30381 mutex_enter(&ipst->ips_ipobs_cb_lock); 30382 while (ipst->ips_ipobs_cb_nwalkers != 0) 30383 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30384 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30385 30386 cb->ipobs_cbfunc = func; 30387 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30388 ipst->ips_ipobs_enabled = B_TRUE; 30389 mutex_exit(&ipst->ips_ipobs_cb_lock); 30390 } 30391 30392 void 30393 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30394 { 30395 ipobs_cb_t *curcb; 30396 ip_stack_t *ipst = ns->netstack_ip; 30397 30398 mutex_enter(&ipst->ips_ipobs_cb_lock); 30399 while (ipst->ips_ipobs_cb_nwalkers != 0) 30400 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30401 30402 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30403 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30404 if (func == curcb->ipobs_cbfunc) { 30405 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30406 kmem_free(curcb, sizeof (*curcb)); 30407 break; 30408 } 30409 } 30410 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30411 ipst->ips_ipobs_enabled = B_FALSE; 30412 mutex_exit(&ipst->ips_ipobs_cb_lock); 30413 } 30414