1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 133 * IP_SQUEUE_ENTER: squeue_enter 134 * IP_SQUEUE_FILL: squeue_fill 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 squeue_func_t ip_input_proc; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* 180 * Cluster specific hooks. These should be NULL when booted as a non-cluster 181 */ 182 183 /* 184 * Hook functions to enable cluster networking 185 * On non-clustered systems these vectors must always be NULL. 186 * 187 * Hook function to Check ip specified ip address is a shared ip address 188 * in the cluster 189 * 190 */ 191 int (*cl_inet_isclusterwide)(uint8_t protocol, 192 sa_family_t addr_family, uint8_t *laddrp) = NULL; 193 194 /* 195 * Hook function to generate cluster wide ip fragment identifier 196 */ 197 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 198 uint8_t *laddrp, uint8_t *faddrp) = NULL; 199 200 /* 201 * Synchronization notes: 202 * 203 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 204 * MT level protection given by STREAMS. IP uses a combination of its own 205 * internal serialization mechanism and standard Solaris locking techniques. 206 * The internal serialization is per phyint (no IPMP) or per IPMP group. 207 * This is used to serialize plumbing operations, IPMP operations, certain 208 * multicast operations, most set ioctls, igmp/mld timers etc. 209 * 210 * Plumbing is a long sequence of operations involving message 211 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 212 * involved in plumbing operations. A natural model is to serialize these 213 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 214 * parallel without any interference. But various set ioctls on hme0 are best 215 * serialized. However if the system uses IPMP, the operations are easier if 216 * they are serialized on a per IPMP group basis since IPMP operations 217 * happen across ill's of a group. Thus the lowest common denominator is to 218 * serialize most set ioctls, multicast join/leave operations, IPMP operations 219 * igmp/mld timer operations, and processing of DLPI control messages received 220 * from drivers on a per IPMP group basis. If the system does not employ 221 * IPMP the serialization is on a per phyint basis. This serialization is 222 * provided by the ipsq_t and primitives operating on this. Details can 223 * be found in ip_if.c above the core primitives operating on ipsq_t. 224 * 225 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 226 * Simiarly lookup of an ire by a thread also returns a refheld ire. 227 * In addition ipif's and ill's referenced by the ire are also indirectly 228 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 229 * the ipif's address or netmask change as long as an ipif is refheld 230 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 231 * address of an ipif has to go through the ipsq_t. This ensures that only 232 * 1 such exclusive operation proceeds at any time on the ipif. It then 233 * deletes all ires associated with this ipif, and waits for all refcnts 234 * associated with this ipif to come down to zero. The address is changed 235 * only after the ipif has been quiesced. Then the ipif is brought up again. 236 * More details are described above the comment in ip_sioctl_flags. 237 * 238 * Packet processing is based mostly on IREs and are fully multi-threaded 239 * using standard Solaris MT techniques. 240 * 241 * There are explicit locks in IP to handle: 242 * - The ip_g_head list maintained by mi_open_link() and friends. 243 * 244 * - The reassembly data structures (one lock per hash bucket) 245 * 246 * - conn_lock is meant to protect conn_t fields. The fields actually 247 * protected by conn_lock are documented in the conn_t definition. 248 * 249 * - ire_lock to protect some of the fields of the ire, IRE tables 250 * (one lock per hash bucket). Refer to ip_ire.c for details. 251 * 252 * - ndp_g_lock and nce_lock for protecting NCEs. 253 * 254 * - ill_lock protects fields of the ill and ipif. Details in ip.h 255 * 256 * - ill_g_lock: This is a global reader/writer lock. Protects the following 257 * * The AVL tree based global multi list of all ills. 258 * * The linked list of all ipifs of an ill 259 * * The <ill-ipsq> mapping 260 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 261 * * The illgroup list threaded by ill_group_next. 262 * * <ill-phyint> association 263 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 264 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 265 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 266 * will all have to hold the ill_g_lock as writer for the actual duration 267 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 268 * may be found in the IPMP section. 269 * 270 * - ill_lock: This is a per ill mutex. 271 * It protects some members of the ill and is documented below. 272 * It also protects the <ill-ipsq> mapping 273 * It also protects the illgroup list threaded by ill_group_next. 274 * It also protects the <ill-phyint> assoc. 275 * It also protects the list of ipifs hanging off the ill. 276 * 277 * - ipsq_lock: This is a per ipsq_t mutex lock. 278 * This protects all the other members of the ipsq struct except 279 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 280 * 281 * - illgrp_lock: This is a per ill_group mutex lock. 282 * The only thing it protects is the illgrp_ill_schednext member of ill_group 283 * which dictates which is the next ill in an ill_group that is to be chosen 284 * for sending outgoing packets, through creation of an IRE_CACHE that 285 * references this ill. 286 * 287 * - phyint_lock: This is a per phyint mutex lock. Protects just the 288 * phyint_flags 289 * 290 * - ip_g_nd_lock: This is a global reader/writer lock. 291 * Any call to nd_load to load a new parameter to the ND table must hold the 292 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 293 * as reader. 294 * 295 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 296 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 297 * uniqueness check also done atomically. 298 * 299 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 300 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 301 * as a writer when adding or deleting elements from these lists, and 302 * as a reader when walking these lists to send a SADB update to the 303 * IPsec capable ills. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 314 * ip_sioctl_flags since the these operations are executed exclusively and 315 * that ensures that the "usesrc group state" cannot change. The "usesrc 316 * group state" change can happen only in the latter part of 317 * ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 326 * and the ill_lock of the ill in question must be held. 327 * 328 * To change the <ill-illgroup> association the ill_g_lock must be held as 329 * writer and the ill_lock of the ill in question must be held. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq,. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 346 * ill_g_lock -> illgrp_lock -> ill_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * IPsec scenarios 358 * 359 * ipsa_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ipsa_lock 362 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 363 * 364 * Trusted Solaris scenarios 365 * 366 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 367 * igsa_lock -> gcdb_lock 368 * gcgrp_rwlock -> ire_lock 369 * gcgrp_rwlock -> gcdb_lock 370 * 371 * 372 * Routing/forwarding table locking notes: 373 * 374 * Lock acquisition order: Radix tree lock, irb_lock. 375 * Requirements: 376 * i. Walker must not hold any locks during the walker callback. 377 * ii Walker must not see a truncated tree during the walk because of any node 378 * deletion. 379 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 380 * in many places in the code to walk the irb list. Thus even if all the 381 * ires in a bucket have been deleted, we still can't free the radix node 382 * until the ires have actually been inactive'd (freed). 383 * 384 * Tree traversal - Need to hold the global tree lock in read mode. 385 * Before dropping the global tree lock, need to either increment the ire_refcnt 386 * to ensure that the radix node can't be deleted. 387 * 388 * Tree add - Need to hold the global tree lock in write mode to add a 389 * radix node. To prevent the node from being deleted, increment the 390 * irb_refcnt, after the node is added to the tree. The ire itself is 391 * added later while holding the irb_lock, but not the tree lock. 392 * 393 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 394 * All associated ires must be inactive (i.e. freed), and irb_refcnt 395 * must be zero. 396 * 397 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 398 * global tree lock (read mode) for traversal. 399 * 400 * IPsec notes : 401 * 402 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 403 * in front of the actual packet. For outbound datagrams, the M_CTL 404 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 405 * information used by the IPsec code for applying the right level of 406 * protection. The information initialized by IP in the ipsec_out_t 407 * is determined by the per-socket policy or global policy in the system. 408 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 409 * ipsec_info.h) which starts out with nothing in it. It gets filled 410 * with the right information if it goes through the AH/ESP code, which 411 * happens if the incoming packet is secure. The information initialized 412 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 413 * the policy requirements needed by per-socket policy or global policy 414 * is met or not. 415 * 416 * If there is both per-socket policy (set using setsockopt) and there 417 * is also global policy match for the 5 tuples of the socket, 418 * ipsec_override_policy() makes the decision of which one to use. 419 * 420 * For fully connected sockets i.e dst, src [addr, port] is known, 421 * conn_policy_cached is set indicating that policy has been cached. 422 * conn_in_enforce_policy may or may not be set depending on whether 423 * there is a global policy match or per-socket policy match. 424 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 425 * Once the right policy is set on the conn_t, policy cannot change for 426 * this socket. This makes life simpler for TCP (UDP ?) where 427 * re-transmissions go out with the same policy. For symmetry, policy 428 * is cached for fully connected UDP sockets also. Thus if policy is cached, 429 * it also implies that policy is latched i.e policy cannot change 430 * on these sockets. As we have the right policy on the conn, we don't 431 * have to lookup global policy for every outbound and inbound datagram 432 * and thus serving as an optimization. Note that a global policy change 433 * does not affect fully connected sockets if they have policy. If fully 434 * connected sockets did not have any policy associated with it, global 435 * policy change may affect them. 436 * 437 * IP Flow control notes: 438 * 439 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 440 * cannot be sent down to the driver by IP, because of a canput failure, IP 441 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 442 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 443 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 444 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 445 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 446 * the queued messages, and removes the conn from the drain list, if all 447 * messages were drained. It also qenables the next conn in the drain list to 448 * continue the drain process. 449 * 450 * In reality the drain list is not a single list, but a configurable number 451 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 452 * list. If the ip_wsrv of the next qenabled conn does not run, because the 453 * stream closes, ip_close takes responsibility to qenable the next conn in 454 * the drain list. The directly called ip_wput path always does a putq, if 455 * it cannot putnext. Thus synchronization problems are handled between 456 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 457 * functions that manipulate this drain list. Furthermore conn_drain_insert 458 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 459 * running on a queue at any time. conn_drain_tail can be simultaneously called 460 * from both ip_wsrv and ip_close. 461 * 462 * IPQOS notes: 463 * 464 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 465 * and IPQoS modules. IPPF includes hooks in IP at different control points 466 * (callout positions) which direct packets to IPQoS modules for policy 467 * processing. Policies, if present, are global. 468 * 469 * The callout positions are located in the following paths: 470 * o local_in (packets destined for this host) 471 * o local_out (packets orginating from this host ) 472 * o fwd_in (packets forwarded by this m/c - inbound) 473 * o fwd_out (packets forwarded by this m/c - outbound) 474 * Hooks at these callout points can be enabled/disabled using the ndd variable 475 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 476 * By default all the callout positions are enabled. 477 * 478 * Outbound (local_out) 479 * Hooks are placed in ip_wput_ire and ipsec_out_process. 480 * 481 * Inbound (local_in) 482 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 483 * TCP and UDP fanout routines. 484 * 485 * Forwarding (in and out) 486 * Hooks are placed in ip_rput_forward. 487 * 488 * IP Policy Framework processing (IPPF processing) 489 * Policy processing for a packet is initiated by ip_process, which ascertains 490 * that the classifier (ipgpc) is loaded and configured, failing which the 491 * packet resumes normal processing in IP. If the clasifier is present, the 492 * packet is acted upon by one or more IPQoS modules (action instances), per 493 * filters configured in ipgpc and resumes normal IP processing thereafter. 494 * An action instance can drop a packet in course of its processing. 495 * 496 * A boolean variable, ip_policy, is used in all the fanout routines that can 497 * invoke ip_process for a packet. This variable indicates if the packet should 498 * to be sent for policy processing. The variable is set to B_TRUE by default, 499 * i.e. when the routines are invoked in the normal ip procesing path for a 500 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 501 * ip_policy is set to B_FALSE for all the routines called in these two 502 * functions because, in the former case, we don't process loopback traffic 503 * currently while in the latter, the packets have already been processed in 504 * icmp_inbound. 505 * 506 * Zones notes: 507 * 508 * The partitioning rules for networking are as follows: 509 * 1) Packets coming from a zone must have a source address belonging to that 510 * zone. 511 * 2) Packets coming from a zone can only be sent on a physical interface on 512 * which the zone has an IP address. 513 * 3) Between two zones on the same machine, packet delivery is only allowed if 514 * there's a matching route for the destination and zone in the forwarding 515 * table. 516 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 517 * different zones can bind to the same port with the wildcard address 518 * (INADDR_ANY). 519 * 520 * The granularity of interface partitioning is at the logical interface level. 521 * Therefore, every zone has its own IP addresses, and incoming packets can be 522 * attributed to a zone unambiguously. A logical interface is placed into a zone 523 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 524 * structure. Rule (1) is implemented by modifying the source address selection 525 * algorithm so that the list of eligible addresses is filtered based on the 526 * sending process zone. 527 * 528 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 529 * across all zones, depending on their type. Here is the break-up: 530 * 531 * IRE type Shared/exclusive 532 * -------- ---------------- 533 * IRE_BROADCAST Exclusive 534 * IRE_DEFAULT (default routes) Shared (*) 535 * IRE_LOCAL Exclusive (x) 536 * IRE_LOOPBACK Exclusive 537 * IRE_PREFIX (net routes) Shared (*) 538 * IRE_CACHE Exclusive 539 * IRE_IF_NORESOLVER (interface routes) Exclusive 540 * IRE_IF_RESOLVER (interface routes) Exclusive 541 * IRE_HOST (host routes) Shared (*) 542 * 543 * (*) A zone can only use a default or off-subnet route if the gateway is 544 * directly reachable from the zone, that is, if the gateway's address matches 545 * one of the zone's logical interfaces. 546 * 547 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 548 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 549 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 550 * address of the zone itself (the destination). Since IRE_LOCAL is used 551 * for communication between zones, ip_wput_ire has special logic to set 552 * the right source address when sending using an IRE_LOCAL. 553 * 554 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 555 * ire_cache_lookup restricts loopback using an IRE_LOCAL 556 * between zone to the case when L2 would have conceptually looped the packet 557 * back, i.e. the loopback which is required since neither Ethernet drivers 558 * nor Ethernet hardware loops them back. This is the case when the normal 559 * routes (ignoring IREs with different zoneids) would send out the packet on 560 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 561 * associated. 562 * 563 * Multiple zones can share a common broadcast address; typically all zones 564 * share the 255.255.255.255 address. Incoming as well as locally originated 565 * broadcast packets must be dispatched to all the zones on the broadcast 566 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 567 * since some zones may not be on the 10.16.72/24 network. To handle this, each 568 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 569 * sent to every zone that has an IRE_BROADCAST entry for the destination 570 * address on the input ill, see conn_wantpacket(). 571 * 572 * Applications in different zones can join the same multicast group address. 573 * For IPv4, group memberships are per-logical interface, so they're already 574 * inherently part of a zone. For IPv6, group memberships are per-physical 575 * interface, so we distinguish IPv6 group memberships based on group address, 576 * interface and zoneid. In both cases, received multicast packets are sent to 577 * every zone for which a group membership entry exists. On IPv6 we need to 578 * check that the target zone still has an address on the receiving physical 579 * interface; it could have been removed since the application issued the 580 * IPV6_JOIN_GROUP. 581 */ 582 583 /* 584 * Squeue Fanout flags: 585 * 0: No fanout. 586 * 1: Fanout across all squeues 587 */ 588 boolean_t ip_squeue_fanout = 0; 589 590 /* 591 * Maximum dups allowed per packet. 592 */ 593 uint_t ip_max_frag_dups = 10; 594 595 #define IS_SIMPLE_IPH(ipha) \ 596 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 597 598 /* RFC1122 Conformance */ 599 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 600 601 #define ILL_MAX_NAMELEN LIFNAMSIZ 602 603 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 604 605 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 606 cred_t *credp, boolean_t isv6); 607 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena; 789 790 int ip_debug; 791 792 #ifdef DEBUG 793 uint32_t ipsechw_debug = 0; 794 #endif 795 796 /* 797 * Multirouting/CGTP stuff 798 */ 799 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 800 801 /* 802 * XXX following really should only be in a header. Would need more 803 * header and .c clean up first. 804 */ 805 extern optdb_obj_t ip_opt_obj; 806 807 ulong_t ip_squeue_enter_unbound = 0; 808 809 /* 810 * Named Dispatch Parameter Table. 811 * All of these are alterable, within the min/max values given, at run time. 812 */ 813 static ipparam_t lcl_param_arr[] = { 814 /* min max value name */ 815 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 816 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 818 { 0, 1, 0, "ip_respond_to_timestamp"}, 819 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 820 { 0, 1, 1, "ip_send_redirects"}, 821 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 822 { 0, 10, 0, "ip_mrtdebug"}, 823 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 824 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 825 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 826 { 1, 255, 255, "ip_def_ttl" }, 827 { 0, 1, 0, "ip_forward_src_routed"}, 828 { 0, 256, 32, "ip_wroff_extra" }, 829 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 830 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 831 { 0, 1, 1, "ip_path_mtu_discovery" }, 832 { 0, 240, 30, "ip_ignore_delete_time" }, 833 { 0, 1, 0, "ip_ignore_redirect" }, 834 { 0, 1, 1, "ip_output_queue" }, 835 { 1, 254, 1, "ip_broadcast_ttl" }, 836 { 0, 99999, 100, "ip_icmp_err_interval" }, 837 { 1, 99999, 10, "ip_icmp_err_burst" }, 838 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 839 { 0, 1, 0, "ip_strict_dst_multihoming" }, 840 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 841 { 0, 1, 0, "ipsec_override_persocket_policy" }, 842 { 0, 1, 1, "icmp_accept_clear_messages" }, 843 { 0, 1, 1, "igmp_accept_clear_messages" }, 844 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 845 "ip_ndp_delay_first_probe_time"}, 846 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 847 "ip_ndp_max_unicast_solicit"}, 848 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 849 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 850 { 0, 1, 0, "ip6_forward_src_routed"}, 851 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 852 { 0, 1, 1, "ip6_send_redirects"}, 853 { 0, 1, 0, "ip6_ignore_redirect" }, 854 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 855 856 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 857 858 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 859 860 { 0, 1, 1, "pim_accept_clear_messages" }, 861 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 862 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 863 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 864 { 0, 15, 0, "ip_policy_mask" }, 865 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 866 { 0, 255, 1, "ip_multirt_ttl" }, 867 { 0, 1, 1, "ip_multidata_outbound" }, 868 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 869 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 870 { 0, 1000, 1, "ip_max_temp_defend" }, 871 { 0, 1000, 3, "ip_max_defend" }, 872 { 0, 999999, 30, "ip_defend_interval" }, 873 { 0, 3600000, 300000, "ip_dup_recovery" }, 874 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 875 { 0, 1, 1, "ip_lso_outbound" }, 876 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 877 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 878 #ifdef DEBUG 879 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 880 #else 881 { 0, 0, 0, "" }, 882 #endif 883 }; 884 885 /* 886 * Extended NDP table 887 * The addresses for the first two are filled in to be ips_ip_g_forward 888 * and ips_ipv6_forward at init time. 889 */ 890 static ipndp_t lcl_ndp_arr[] = { 891 /* getf setf data name */ 892 #define IPNDP_IP_FORWARDING_OFFSET 0 893 { ip_param_generic_get, ip_forward_set, NULL, 894 "ip_forwarding" }, 895 #define IPNDP_IP6_FORWARDING_OFFSET 1 896 { ip_param_generic_get, ip_forward_set, NULL, 897 "ip6_forwarding" }, 898 { ip_ill_report, NULL, NULL, 899 "ip_ill_status" }, 900 { ip_ipif_report, NULL, NULL, 901 "ip_ipif_status" }, 902 { ip_ire_report, NULL, NULL, 903 "ipv4_ire_status" }, 904 { ip_ire_report_v6, NULL, NULL, 905 "ipv6_ire_status" }, 906 { ip_conn_report, NULL, NULL, 907 "ip_conn_status" }, 908 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 909 "ip_rput_pullups" }, 910 { ndp_report, NULL, NULL, 911 "ip_ndp_cache_report" }, 912 { ip_srcid_report, NULL, NULL, 913 "ip_srcid_status" }, 914 { ip_param_generic_get, ip_squeue_profile_set, 915 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 916 { ip_param_generic_get, ip_squeue_bind_set, 917 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 918 { ip_param_generic_get, ip_input_proc_set, 919 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 920 { ip_param_generic_get, ip_int_set, 921 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 922 #define IPNDP_CGTP_FILTER_OFFSET 14 923 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 924 "ip_cgtp_filter" }, 925 { ip_param_generic_get, ip_int_set, 926 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 927 #define IPNDP_IPMP_HOOK_OFFSET 16 928 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 929 "ipmp_hook_emulation" }, 930 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 931 "ip_debug" }, 932 }; 933 934 /* 935 * Table of IP ioctls encoding the various properties of the ioctl and 936 * indexed based on the last byte of the ioctl command. Occasionally there 937 * is a clash, and there is more than 1 ioctl with the same last byte. 938 * In such a case 1 ioctl is encoded in the ndx table and the remaining 939 * ioctls are encoded in the misc table. An entry in the ndx table is 940 * retrieved by indexing on the last byte of the ioctl command and comparing 941 * the ioctl command with the value in the ndx table. In the event of a 942 * mismatch the misc table is then searched sequentially for the desired 943 * ioctl command. 944 * 945 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 946 */ 947 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 948 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 959 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 960 MISC_CMD, ip_siocaddrt, NULL }, 961 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 962 MISC_CMD, ip_siocdelrt, NULL }, 963 964 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 965 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 966 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 967 IF_CMD, ip_sioctl_get_addr, NULL }, 968 969 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 970 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 971 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 972 IPI_GET_CMD | IPI_REPL, 973 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 974 975 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 976 IPI_PRIV | IPI_WR | IPI_REPL, 977 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 978 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 979 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_flags, NULL }, 981 982 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 983 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 984 985 /* copyin size cannot be coded for SIOCGIFCONF */ 986 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 987 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 988 989 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 990 IF_CMD, ip_sioctl_mtu, NULL }, 991 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 992 IF_CMD, ip_sioctl_get_mtu, NULL }, 993 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 994 IPI_GET_CMD | IPI_REPL, 995 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 996 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_brdaddr, NULL }, 998 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 999 IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_netmask, NULL }, 1001 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1002 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1003 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1004 IPI_GET_CMD | IPI_REPL, 1005 IF_CMD, ip_sioctl_get_metric, NULL }, 1006 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1007 IF_CMD, ip_sioctl_metric, NULL }, 1008 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1009 1010 /* See 166-168 below for extended SIOC*XARP ioctls */ 1011 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1016 ARP_CMD, ip_sioctl_arp, NULL }, 1017 1018 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1041 MISC_CMD, if_unitsel, if_unitsel_restart }, 1042 1043 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 1062 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1063 IPI_PRIV | IPI_WR | IPI_MODOK, 1064 IF_CMD, ip_sioctl_sifname, NULL }, 1065 1066 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 1080 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1081 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1082 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1083 IF_CMD, ip_sioctl_get_muxid, NULL }, 1084 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1085 IPI_PRIV | IPI_WR | IPI_REPL, 1086 IF_CMD, ip_sioctl_muxid, NULL }, 1087 1088 /* Both if and lif variants share same func */ 1089 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1091 /* Both if and lif variants share same func */ 1092 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1093 IPI_PRIV | IPI_WR | IPI_REPL, 1094 IF_CMD, ip_sioctl_slifindex, NULL }, 1095 1096 /* copyin size cannot be coded for SIOCGIFCONF */ 1097 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1098 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1099 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 1117 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1118 IPI_PRIV | IPI_WR | IPI_REPL, 1119 LIF_CMD, ip_sioctl_removeif, 1120 ip_sioctl_removeif_restart }, 1121 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1122 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1123 LIF_CMD, ip_sioctl_addif, NULL }, 1124 #define SIOCLIFADDR_NDX 112 1125 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1126 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1127 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 LIF_CMD, ip_sioctl_get_addr, NULL }, 1130 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1131 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1132 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1133 IPI_GET_CMD | IPI_REPL, 1134 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1135 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1136 IPI_PRIV | IPI_WR | IPI_REPL, 1137 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1138 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1139 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1140 LIF_CMD, ip_sioctl_get_flags, NULL }, 1141 1142 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 1145 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1146 ip_sioctl_get_lifconf, NULL }, 1147 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1148 LIF_CMD, ip_sioctl_mtu, NULL }, 1149 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1151 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1152 IPI_GET_CMD | IPI_REPL, 1153 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1154 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1156 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1157 IPI_GET_CMD | IPI_REPL, 1158 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1159 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1160 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1161 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1162 IPI_GET_CMD | IPI_REPL, 1163 LIF_CMD, ip_sioctl_get_metric, NULL }, 1164 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1165 LIF_CMD, ip_sioctl_metric, NULL }, 1166 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1167 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1168 LIF_CMD, ip_sioctl_slifname, 1169 ip_sioctl_slifname_restart }, 1170 1171 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1172 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1173 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1174 IPI_GET_CMD | IPI_REPL, 1175 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1176 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1177 IPI_PRIV | IPI_WR | IPI_REPL, 1178 LIF_CMD, ip_sioctl_muxid, NULL }, 1179 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1180 IPI_GET_CMD | IPI_REPL, 1181 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1182 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1183 IPI_PRIV | IPI_WR | IPI_REPL, 1184 LIF_CMD, ip_sioctl_slifindex, 0 }, 1185 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1186 LIF_CMD, ip_sioctl_token, NULL }, 1187 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1188 IPI_GET_CMD | IPI_REPL, 1189 LIF_CMD, ip_sioctl_get_token, NULL }, 1190 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1192 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_REPL, 1194 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1195 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1197 1198 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1199 IPI_GET_CMD | IPI_REPL, 1200 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1201 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1202 LIF_CMD, ip_siocdelndp_v6, NULL }, 1203 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1204 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1205 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1206 LIF_CMD, ip_siocsetndp_v6, NULL }, 1207 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1208 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1209 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1210 MISC_CMD, ip_sioctl_tonlink, NULL }, 1211 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1212 MISC_CMD, ip_sioctl_tmysite, NULL }, 1213 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1214 TUN_CMD, ip_sioctl_tunparam, NULL }, 1215 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1216 IPI_PRIV | IPI_WR, 1217 TUN_CMD, ip_sioctl_tunparam, NULL }, 1218 1219 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1220 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1224 1225 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1226 IPI_PRIV | IPI_WR | IPI_REPL, 1227 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1228 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR | IPI_REPL, 1230 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1231 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR, 1233 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1234 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1235 IPI_GET_CMD | IPI_REPL, 1236 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1237 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1238 IPI_GET_CMD | IPI_REPL, 1239 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1240 1241 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1242 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1245 1246 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1248 1249 /* These are handled in ip_sioctl_copyin_setup itself */ 1250 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1251 MISC_CMD, NULL, NULL }, 1252 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1253 MISC_CMD, NULL, NULL }, 1254 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1255 1256 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1257 ip_sioctl_get_lifconf, NULL }, 1258 1259 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1260 XARP_CMD, ip_sioctl_arp, NULL }, 1261 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1262 XARP_CMD, ip_sioctl_arp, NULL }, 1263 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1264 XARP_CMD, ip_sioctl_arp, NULL }, 1265 1266 /* SIOCPOPSOCKFS is not handled by IP */ 1267 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1268 1269 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1270 IPI_GET_CMD | IPI_REPL, 1271 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1272 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1273 IPI_PRIV | IPI_WR | IPI_REPL, 1274 LIF_CMD, ip_sioctl_slifzone, 1275 ip_sioctl_slifzone_restart }, 1276 /* 172-174 are SCTP ioctls and not handled by IP */ 1277 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1278 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1279 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1281 IPI_GET_CMD, LIF_CMD, 1282 ip_sioctl_get_lifusesrc, 0 }, 1283 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_slifusesrc, 1286 NULL }, 1287 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1288 ip_sioctl_get_lifsrcof, NULL }, 1289 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1290 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1294 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1295 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1296 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1297 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1298 ip_sioctl_set_ipmpfailback, NULL }, 1299 /* SIOCSENABLESDP is handled by SDP */ 1300 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1301 }; 1302 1303 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1304 1305 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1306 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1307 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1308 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1309 TUN_CMD, ip_sioctl_tunparam, NULL }, 1310 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1317 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1318 MISC_CMD, mrt_ioctl}, 1319 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1320 MISC_CMD, mrt_ioctl}, 1321 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1322 MISC_CMD, mrt_ioctl} 1323 }; 1324 1325 int ip_misc_ioctl_count = 1326 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1327 1328 int conn_drain_nthreads; /* Number of drainers reqd. */ 1329 /* Settable in /etc/system */ 1330 /* Defined in ip_ire.c */ 1331 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1332 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1333 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1334 1335 static nv_t ire_nv_arr[] = { 1336 { IRE_BROADCAST, "BROADCAST" }, 1337 { IRE_LOCAL, "LOCAL" }, 1338 { IRE_LOOPBACK, "LOOPBACK" }, 1339 { IRE_CACHE, "CACHE" }, 1340 { IRE_DEFAULT, "DEFAULT" }, 1341 { IRE_PREFIX, "PREFIX" }, 1342 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1343 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1344 { IRE_HOST, "HOST" }, 1345 { 0 } 1346 }; 1347 1348 nv_t *ire_nv_tbl = ire_nv_arr; 1349 1350 /* Defined in ip_netinfo.c */ 1351 extern ddi_taskq_t *eventq_queue_nic; 1352 1353 /* Simple ICMP IP Header Template */ 1354 static ipha_t icmp_ipha = { 1355 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1356 }; 1357 1358 struct module_info ip_mod_info = { 1359 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1360 }; 1361 1362 /* 1363 * Duplicate static symbols within a module confuses mdb; so we avoid the 1364 * problem by making the symbols here distinct from those in udp.c. 1365 */ 1366 1367 /* 1368 * Entry points for IP as a device and as a module. 1369 * FIXME: down the road we might want a separate module and driver qinit. 1370 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1371 */ 1372 static struct qinit iprinitv4 = { 1373 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 struct qinit iprinitv6 = { 1378 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit ipwinitv4 = { 1383 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 struct qinit ipwinitv6 = { 1388 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 static struct qinit iplrinit = { 1393 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1394 &ip_mod_info 1395 }; 1396 1397 static struct qinit iplwinit = { 1398 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1399 &ip_mod_info 1400 }; 1401 1402 /* For AF_INET aka /dev/ip */ 1403 struct streamtab ipinfov4 = { 1404 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1405 }; 1406 1407 /* For AF_INET6 aka /dev/ip6 */ 1408 struct streamtab ipinfov6 = { 1409 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1410 }; 1411 1412 #ifdef DEBUG 1413 static boolean_t skip_sctp_cksum = B_FALSE; 1414 #endif 1415 1416 /* 1417 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1418 * ip_rput_v6(), ip_output(), etc. If the message 1419 * block already has a M_CTL at the front of it, then simply set the zoneid 1420 * appropriately. 1421 */ 1422 mblk_t * 1423 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1424 { 1425 mblk_t *first_mp; 1426 ipsec_out_t *io; 1427 1428 ASSERT(zoneid != ALL_ZONES); 1429 if (mp->b_datap->db_type == M_CTL) { 1430 io = (ipsec_out_t *)mp->b_rptr; 1431 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1432 io->ipsec_out_zoneid = zoneid; 1433 return (mp); 1434 } 1435 1436 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1437 if (first_mp == NULL) 1438 return (NULL); 1439 io = (ipsec_out_t *)first_mp->b_rptr; 1440 /* This is not a secure packet */ 1441 io->ipsec_out_secure = B_FALSE; 1442 io->ipsec_out_zoneid = zoneid; 1443 first_mp->b_cont = mp; 1444 return (first_mp); 1445 } 1446 1447 /* 1448 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1449 */ 1450 mblk_t * 1451 ip_copymsg(mblk_t *mp) 1452 { 1453 mblk_t *nmp; 1454 ipsec_info_t *in; 1455 1456 if (mp->b_datap->db_type != M_CTL) 1457 return (copymsg(mp)); 1458 1459 in = (ipsec_info_t *)mp->b_rptr; 1460 1461 /* 1462 * Note that M_CTL is also used for delivering ICMP error messages 1463 * upstream to transport layers. 1464 */ 1465 if (in->ipsec_info_type != IPSEC_OUT && 1466 in->ipsec_info_type != IPSEC_IN) 1467 return (copymsg(mp)); 1468 1469 nmp = copymsg(mp->b_cont); 1470 1471 if (in->ipsec_info_type == IPSEC_OUT) { 1472 return (ipsec_out_tag(mp, nmp, 1473 ((ipsec_out_t *)in)->ipsec_out_ns)); 1474 } else { 1475 return (ipsec_in_tag(mp, nmp, 1476 ((ipsec_in_t *)in)->ipsec_in_ns)); 1477 } 1478 } 1479 1480 /* Generate an ICMP fragmentation needed message. */ 1481 static void 1482 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1483 ip_stack_t *ipst) 1484 { 1485 icmph_t icmph; 1486 mblk_t *first_mp; 1487 boolean_t mctl_present; 1488 1489 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1490 1491 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1492 if (mctl_present) 1493 freeb(first_mp); 1494 return; 1495 } 1496 1497 bzero(&icmph, sizeof (icmph_t)); 1498 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1499 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1500 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1503 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1504 ipst); 1505 } 1506 1507 /* 1508 * icmp_inbound deals with ICMP messages in the following ways. 1509 * 1510 * 1) It needs to send a reply back and possibly delivering it 1511 * to the "interested" upper clients. 1512 * 2) It needs to send it to the upper clients only. 1513 * 3) It needs to change some values in IP only. 1514 * 4) It needs to change some values in IP and upper layers e.g TCP. 1515 * 1516 * We need to accomodate icmp messages coming in clear until we get 1517 * everything secure from the wire. If icmp_accept_clear_messages 1518 * is zero we check with the global policy and act accordingly. If 1519 * it is non-zero, we accept the message without any checks. But 1520 * *this does not mean* that this will be delivered to the upper 1521 * clients. By accepting we might send replies back, change our MTU 1522 * value etc. but delivery to the ULP/clients depends on their policy 1523 * dispositions. 1524 * 1525 * We handle the above 4 cases in the context of IPsec in the 1526 * following way : 1527 * 1528 * 1) Send the reply back in the same way as the request came in. 1529 * If it came in encrypted, it goes out encrypted. If it came in 1530 * clear, it goes out in clear. Thus, this will prevent chosen 1531 * plain text attack. 1532 * 2) The client may or may not expect things to come in secure. 1533 * If it comes in secure, the policy constraints are checked 1534 * before delivering it to the upper layers. If it comes in 1535 * clear, ipsec_inbound_accept_clear will decide whether to 1536 * accept this in clear or not. In both the cases, if the returned 1537 * message (IP header + 8 bytes) that caused the icmp message has 1538 * AH/ESP headers, it is sent up to AH/ESP for validation before 1539 * sending up. If there are only 8 bytes of returned message, then 1540 * upper client will not be notified. 1541 * 3) Check with global policy to see whether it matches the constaints. 1542 * But this will be done only if icmp_accept_messages_in_clear is 1543 * zero. 1544 * 4) If we need to change both in IP and ULP, then the decision taken 1545 * while affecting the values in IP and while delivering up to TCP 1546 * should be the same. 1547 * 1548 * There are two cases. 1549 * 1550 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1551 * failed), we will not deliver it to the ULP, even though they 1552 * are *willing* to accept in *clear*. This is fine as our global 1553 * disposition to icmp messages asks us reject the datagram. 1554 * 1555 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1556 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1557 * to deliver it to ULP (policy failed), it can lead to 1558 * consistency problems. The cases known at this time are 1559 * ICMP_DESTINATION_UNREACHABLE messages with following code 1560 * values : 1561 * 1562 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1563 * and Upper layer rejects. Then the communication will 1564 * come to a stop. This is solved by making similar decisions 1565 * at both levels. Currently, when we are unable to deliver 1566 * to the Upper Layer (due to policy failures) while IP has 1567 * adjusted ire_max_frag, the next outbound datagram would 1568 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1569 * will be with the right level of protection. Thus the right 1570 * value will be communicated even if we are not able to 1571 * communicate when we get from the wire initially. But this 1572 * assumes there would be at least one outbound datagram after 1573 * IP has adjusted its ire_max_frag value. To make things 1574 * simpler, we accept in clear after the validation of 1575 * AH/ESP headers. 1576 * 1577 * - Other ICMP ERRORS : We may not be able to deliver it to the 1578 * upper layer depending on the level of protection the upper 1579 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1580 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1581 * should be accepted in clear when the Upper layer expects secure. 1582 * Thus the communication may get aborted by some bad ICMP 1583 * packets. 1584 * 1585 * IPQoS Notes: 1586 * The only instance when a packet is sent for processing is when there 1587 * isn't an ICMP client and if we are interested in it. 1588 * If there is a client, IPPF processing will take place in the 1589 * ip_fanout_proto routine. 1590 * 1591 * Zones notes: 1592 * The packet is only processed in the context of the specified zone: typically 1593 * only this zone will reply to an echo request, and only interested clients in 1594 * this zone will receive a copy of the packet. This means that the caller must 1595 * call icmp_inbound() for each relevant zone. 1596 */ 1597 static void 1598 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1599 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1600 ill_t *recv_ill, zoneid_t zoneid) 1601 { 1602 icmph_t *icmph; 1603 ipha_t *ipha; 1604 int iph_hdr_length; 1605 int hdr_length; 1606 boolean_t interested; 1607 uint32_t ts; 1608 uchar_t *wptr; 1609 ipif_t *ipif; 1610 mblk_t *first_mp; 1611 ipsec_in_t *ii; 1612 ire_t *src_ire; 1613 boolean_t onlink; 1614 timestruc_t now; 1615 uint32_t ill_index; 1616 ip_stack_t *ipst; 1617 1618 ASSERT(ill != NULL); 1619 ipst = ill->ill_ipst; 1620 1621 first_mp = mp; 1622 if (mctl_present) { 1623 mp = first_mp->b_cont; 1624 ASSERT(mp != NULL); 1625 } 1626 1627 ipha = (ipha_t *)mp->b_rptr; 1628 if (ipst->ips_icmp_accept_clear_messages == 0) { 1629 first_mp = ipsec_check_global_policy(first_mp, NULL, 1630 ipha, NULL, mctl_present, ipst->ips_netstack); 1631 if (first_mp == NULL) 1632 return; 1633 } 1634 1635 /* 1636 * On a labeled system, we have to check whether the zone itself is 1637 * permitted to receive raw traffic. 1638 */ 1639 if (is_system_labeled()) { 1640 if (zoneid == ALL_ZONES) 1641 zoneid = tsol_packet_to_zoneid(mp); 1642 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1643 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1644 zoneid)); 1645 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1646 freemsg(first_mp); 1647 return; 1648 } 1649 } 1650 1651 /* 1652 * We have accepted the ICMP message. It means that we will 1653 * respond to the packet if needed. It may not be delivered 1654 * to the upper client depending on the policy constraints 1655 * and the disposition in ipsec_inbound_accept_clear. 1656 */ 1657 1658 ASSERT(ill != NULL); 1659 1660 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1661 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1662 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1663 /* Last chance to get real. */ 1664 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1666 freemsg(first_mp); 1667 return; 1668 } 1669 /* Refresh iph following the pullup. */ 1670 ipha = (ipha_t *)mp->b_rptr; 1671 } 1672 /* ICMP header checksum, including checksum field, should be zero. */ 1673 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1674 IP_CSUM(mp, iph_hdr_length, 0)) { 1675 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1676 freemsg(first_mp); 1677 return; 1678 } 1679 /* The IP header will always be a multiple of four bytes */ 1680 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1681 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1682 icmph->icmph_code)); 1683 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1684 /* We will set "interested" to "true" if we want a copy */ 1685 interested = B_FALSE; 1686 switch (icmph->icmph_type) { 1687 case ICMP_ECHO_REPLY: 1688 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1689 break; 1690 case ICMP_DEST_UNREACHABLE: 1691 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1693 interested = B_TRUE; /* Pass up to transport */ 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1695 break; 1696 case ICMP_SOURCE_QUENCH: 1697 interested = B_TRUE; /* Pass up to transport */ 1698 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1699 break; 1700 case ICMP_REDIRECT: 1701 if (!ipst->ips_ip_ignore_redirect) 1702 interested = B_TRUE; 1703 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1704 break; 1705 case ICMP_ECHO_REQUEST: 1706 /* 1707 * Whether to respond to echo requests that come in as IP 1708 * broadcasts or as IP multicast is subject to debate 1709 * (what isn't?). We aim to please, you pick it. 1710 * Default is do it. 1711 */ 1712 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1713 /* unicast: always respond */ 1714 interested = B_TRUE; 1715 } else if (CLASSD(ipha->ipha_dst)) { 1716 /* multicast: respond based on tunable */ 1717 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1718 } else if (broadcast) { 1719 /* broadcast: respond based on tunable */ 1720 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1721 } 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1723 break; 1724 case ICMP_ROUTER_ADVERTISEMENT: 1725 case ICMP_ROUTER_SOLICITATION: 1726 break; 1727 case ICMP_TIME_EXCEEDED: 1728 interested = B_TRUE; /* Pass up to transport */ 1729 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1730 break; 1731 case ICMP_PARAM_PROBLEM: 1732 interested = B_TRUE; /* Pass up to transport */ 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1734 break; 1735 case ICMP_TIME_STAMP_REQUEST: 1736 /* Response to Time Stamp Requests is local policy. */ 1737 if (ipst->ips_ip_g_resp_to_timestamp && 1738 /* So is whether to respond if it was an IP broadcast. */ 1739 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1740 int tstamp_len = 3 * sizeof (uint32_t); 1741 1742 if (wptr + tstamp_len > mp->b_wptr) { 1743 if (!pullupmsg(mp, wptr + tstamp_len - 1744 mp->b_rptr)) { 1745 BUMP_MIB(ill->ill_ip_mib, 1746 ipIfStatsInDiscards); 1747 freemsg(first_mp); 1748 return; 1749 } 1750 /* Refresh ipha following the pullup. */ 1751 ipha = (ipha_t *)mp->b_rptr; 1752 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1753 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1754 } 1755 interested = B_TRUE; 1756 } 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1758 break; 1759 case ICMP_TIME_STAMP_REPLY: 1760 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1761 break; 1762 case ICMP_INFO_REQUEST: 1763 /* Per RFC 1122 3.2.2.7, ignore this. */ 1764 case ICMP_INFO_REPLY: 1765 break; 1766 case ICMP_ADDRESS_MASK_REQUEST: 1767 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1768 !broadcast) && 1769 /* TODO m_pullup of complete header? */ 1770 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1771 interested = B_TRUE; 1772 } 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1774 break; 1775 case ICMP_ADDRESS_MASK_REPLY: 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1777 break; 1778 default: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1781 break; 1782 } 1783 /* See if there is an ICMP client. */ 1784 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1785 /* If there is an ICMP client and we want one too, copy it. */ 1786 mblk_t *first_mp1; 1787 1788 if (!interested) { 1789 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1790 ip_policy, recv_ill, zoneid); 1791 return; 1792 } 1793 first_mp1 = ip_copymsg(first_mp); 1794 if (first_mp1 != NULL) { 1795 ip_fanout_proto(q, first_mp1, ill, ipha, 1796 0, mctl_present, ip_policy, recv_ill, zoneid); 1797 } 1798 } else if (!interested) { 1799 freemsg(first_mp); 1800 return; 1801 } else { 1802 /* 1803 * Initiate policy processing for this packet if ip_policy 1804 * is true. 1805 */ 1806 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1807 ill_index = ill->ill_phyint->phyint_ifindex; 1808 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1809 if (mp == NULL) { 1810 if (mctl_present) { 1811 freeb(first_mp); 1812 } 1813 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1814 return; 1815 } 1816 } 1817 } 1818 /* We want to do something with it. */ 1819 /* Check db_ref to make sure we can modify the packet. */ 1820 if (mp->b_datap->db_ref > 1) { 1821 mblk_t *first_mp1; 1822 1823 first_mp1 = ip_copymsg(first_mp); 1824 freemsg(first_mp); 1825 if (!first_mp1) { 1826 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1827 return; 1828 } 1829 first_mp = first_mp1; 1830 if (mctl_present) { 1831 mp = first_mp->b_cont; 1832 ASSERT(mp != NULL); 1833 } else { 1834 mp = first_mp; 1835 } 1836 ipha = (ipha_t *)mp->b_rptr; 1837 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1838 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1839 } 1840 switch (icmph->icmph_type) { 1841 case ICMP_ADDRESS_MASK_REQUEST: 1842 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1843 if (ipif == NULL) { 1844 freemsg(first_mp); 1845 return; 1846 } 1847 /* 1848 * outging interface must be IPv4 1849 */ 1850 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1851 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1852 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1853 ipif_refrele(ipif); 1854 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1855 break; 1856 case ICMP_ECHO_REQUEST: 1857 icmph->icmph_type = ICMP_ECHO_REPLY; 1858 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1859 break; 1860 case ICMP_TIME_STAMP_REQUEST: { 1861 uint32_t *tsp; 1862 1863 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1864 tsp = (uint32_t *)wptr; 1865 tsp++; /* Skip past 'originate time' */ 1866 /* Compute # of milliseconds since midnight */ 1867 gethrestime(&now); 1868 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1869 now.tv_nsec / (NANOSEC / MILLISEC); 1870 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1871 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1872 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1873 break; 1874 } 1875 default: 1876 ipha = (ipha_t *)&icmph[1]; 1877 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1878 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1884 ipha = (ipha_t *)&icmph[1]; 1885 } 1886 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1888 freemsg(first_mp); 1889 return; 1890 } 1891 hdr_length = IPH_HDR_LENGTH(ipha); 1892 if (hdr_length < sizeof (ipha_t)) { 1893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1894 freemsg(first_mp); 1895 return; 1896 } 1897 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1898 if (!pullupmsg(mp, 1899 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1900 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1901 freemsg(first_mp); 1902 return; 1903 } 1904 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1905 ipha = (ipha_t *)&icmph[1]; 1906 } 1907 switch (icmph->icmph_type) { 1908 case ICMP_REDIRECT: 1909 /* 1910 * As there is no upper client to deliver, we don't 1911 * need the first_mp any more. 1912 */ 1913 if (mctl_present) { 1914 freeb(first_mp); 1915 } 1916 icmp_redirect(ill, mp); 1917 return; 1918 case ICMP_DEST_UNREACHABLE: 1919 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1920 if (!icmp_inbound_too_big(icmph, ipha, ill, 1921 zoneid, mp, iph_hdr_length, ipst)) { 1922 freemsg(first_mp); 1923 return; 1924 } 1925 /* 1926 * icmp_inbound_too_big() may alter mp. 1927 * Resynch ipha and icmph accordingly. 1928 */ 1929 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1930 ipha = (ipha_t *)&icmph[1]; 1931 } 1932 /* FALLTHRU */ 1933 default : 1934 /* 1935 * IPQoS notes: Since we have already done IPQoS 1936 * processing we don't want to do it again in 1937 * the fanout routines called by 1938 * icmp_inbound_error_fanout, hence the last 1939 * argument, ip_policy, is B_FALSE. 1940 */ 1941 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1942 ipha, iph_hdr_length, hdr_length, mctl_present, 1943 B_FALSE, recv_ill, zoneid); 1944 } 1945 return; 1946 } 1947 /* Send out an ICMP packet */ 1948 icmph->icmph_checksum = 0; 1949 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1950 if (broadcast || CLASSD(ipha->ipha_dst)) { 1951 ipif_t *ipif_chosen; 1952 /* 1953 * Make it look like it was directed to us, so we don't look 1954 * like a fool with a broadcast or multicast source address. 1955 */ 1956 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1957 /* 1958 * Make sure that we haven't grabbed an interface that's DOWN. 1959 */ 1960 if (ipif != NULL) { 1961 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1962 ipha->ipha_src, zoneid); 1963 if (ipif_chosen != NULL) { 1964 ipif_refrele(ipif); 1965 ipif = ipif_chosen; 1966 } 1967 } 1968 if (ipif == NULL) { 1969 ip0dbg(("icmp_inbound: " 1970 "No source for broadcast/multicast:\n" 1971 "\tsrc 0x%x dst 0x%x ill %p " 1972 "ipif_lcl_addr 0x%x\n", 1973 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1974 (void *)ill, 1975 ill->ill_ipif->ipif_lcl_addr)); 1976 freemsg(first_mp); 1977 return; 1978 } 1979 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1980 ipha->ipha_dst = ipif->ipif_src_addr; 1981 ipif_refrele(ipif); 1982 } 1983 /* Reset time to live. */ 1984 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1985 { 1986 /* Swap source and destination addresses */ 1987 ipaddr_t tmp; 1988 1989 tmp = ipha->ipha_src; 1990 ipha->ipha_src = ipha->ipha_dst; 1991 ipha->ipha_dst = tmp; 1992 } 1993 ipha->ipha_ident = 0; 1994 if (!IS_SIMPLE_IPH(ipha)) 1995 icmp_options_update(ipha); 1996 1997 /* 1998 * ICMP echo replies should go out on the same interface 1999 * the request came on as probes used by in.mpathd for detecting 2000 * NIC failures are ECHO packets. We turn-off load spreading 2001 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2002 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2003 * function. This is in turn handled by ip_wput and ip_newroute 2004 * to make sure that the packet goes out on the interface it came 2005 * in on. If we don't turnoff load spreading, the packets might get 2006 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2007 * to go out and in.mpathd would wrongly detect a failure or 2008 * mis-detect a NIC failure for link failure. As load spreading 2009 * can happen only if ill_group is not NULL, we do only for 2010 * that case and this does not affect the normal case. 2011 * 2012 * We turn off load spreading only on echo packets that came from 2013 * on-link hosts. If the interface route has been deleted, this will 2014 * not be enforced as we can't do much. For off-link hosts, as the 2015 * default routes in IPv4 does not typically have an ire_ipif 2016 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2017 * Moreover, expecting a default route through this interface may 2018 * not be correct. We use ipha_dst because of the swap above. 2019 */ 2020 onlink = B_FALSE; 2021 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2022 /* 2023 * First, we need to make sure that it is not one of our 2024 * local addresses. If we set onlink when it is one of 2025 * our local addresses, we will end up creating IRE_CACHES 2026 * for one of our local addresses. Then, we will never 2027 * accept packets for them afterwards. 2028 */ 2029 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2030 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2031 if (src_ire == NULL) { 2032 ipif = ipif_get_next_ipif(NULL, ill); 2033 if (ipif == NULL) { 2034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2035 freemsg(mp); 2036 return; 2037 } 2038 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2039 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2040 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2041 ipif_refrele(ipif); 2042 if (src_ire != NULL) { 2043 onlink = B_TRUE; 2044 ire_refrele(src_ire); 2045 } 2046 } else { 2047 ire_refrele(src_ire); 2048 } 2049 } 2050 if (!mctl_present) { 2051 /* 2052 * This packet should go out the same way as it 2053 * came in i.e in clear. To make sure that global 2054 * policy will not be applied to this in ip_wput_ire, 2055 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2056 */ 2057 ASSERT(first_mp == mp); 2058 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2059 if (first_mp == NULL) { 2060 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2061 freemsg(mp); 2062 return; 2063 } 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 2066 /* This is not a secure packet */ 2067 ii->ipsec_in_secure = B_FALSE; 2068 if (onlink) { 2069 ii->ipsec_in_attach_if = B_TRUE; 2070 ii->ipsec_in_ill_index = 2071 ill->ill_phyint->phyint_ifindex; 2072 ii->ipsec_in_rill_index = 2073 recv_ill->ill_phyint->phyint_ifindex; 2074 } 2075 first_mp->b_cont = mp; 2076 } else if (onlink) { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_attach_if = B_TRUE; 2079 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2080 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2081 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2082 } else { 2083 ii = (ipsec_in_t *)first_mp->b_rptr; 2084 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2085 } 2086 ii->ipsec_in_zoneid = zoneid; 2087 ASSERT(zoneid != ALL_ZONES); 2088 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2090 return; 2091 } 2092 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2093 put(WR(q), first_mp); 2094 } 2095 2096 static ipaddr_t 2097 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2098 { 2099 conn_t *connp; 2100 connf_t *connfp; 2101 ipaddr_t nexthop_addr = INADDR_ANY; 2102 int hdr_length = IPH_HDR_LENGTH(ipha); 2103 uint16_t *up; 2104 uint32_t ports; 2105 ip_stack_t *ipst = ill->ill_ipst; 2106 2107 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2108 switch (ipha->ipha_protocol) { 2109 case IPPROTO_TCP: 2110 { 2111 tcph_t *tcph; 2112 2113 /* do a reverse lookup */ 2114 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2115 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2116 TCPS_LISTEN, ipst); 2117 break; 2118 } 2119 case IPPROTO_UDP: 2120 { 2121 uint32_t dstport, srcport; 2122 2123 ((uint16_t *)&ports)[0] = up[1]; 2124 ((uint16_t *)&ports)[1] = up[0]; 2125 2126 /* Extract ports in net byte order */ 2127 dstport = htons(ntohl(ports) & 0xFFFF); 2128 srcport = htons(ntohl(ports) >> 16); 2129 2130 connfp = &ipst->ips_ipcl_udp_fanout[ 2131 IPCL_UDP_HASH(dstport, ipst)]; 2132 mutex_enter(&connfp->connf_lock); 2133 connp = connfp->connf_head; 2134 2135 /* do a reverse lookup */ 2136 while ((connp != NULL) && 2137 (!IPCL_UDP_MATCH(connp, dstport, 2138 ipha->ipha_src, srcport, ipha->ipha_dst) || 2139 !IPCL_ZONE_MATCH(connp, zoneid))) { 2140 connp = connp->conn_next; 2141 } 2142 if (connp != NULL) 2143 CONN_INC_REF(connp); 2144 mutex_exit(&connfp->connf_lock); 2145 break; 2146 } 2147 case IPPROTO_SCTP: 2148 { 2149 in6_addr_t map_src, map_dst; 2150 2151 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2152 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2153 ((uint16_t *)&ports)[0] = up[1]; 2154 ((uint16_t *)&ports)[1] = up[0]; 2155 2156 connp = sctp_find_conn(&map_src, &map_dst, ports, 2157 zoneid, ipst->ips_netstack->netstack_sctp); 2158 if (connp == NULL) { 2159 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2160 zoneid, ports, ipha, ipst); 2161 } else { 2162 CONN_INC_REF(connp); 2163 SCTP_REFRELE(CONN2SCTP(connp)); 2164 } 2165 break; 2166 } 2167 default: 2168 { 2169 ipha_t ripha; 2170 2171 ripha.ipha_src = ipha->ipha_dst; 2172 ripha.ipha_dst = ipha->ipha_src; 2173 ripha.ipha_protocol = ipha->ipha_protocol; 2174 2175 connfp = &ipst->ips_ipcl_proto_fanout[ 2176 ipha->ipha_protocol]; 2177 mutex_enter(&connfp->connf_lock); 2178 connp = connfp->connf_head; 2179 for (connp = connfp->connf_head; connp != NULL; 2180 connp = connp->conn_next) { 2181 if (IPCL_PROTO_MATCH(connp, 2182 ipha->ipha_protocol, &ripha, ill, 2183 0, zoneid)) { 2184 CONN_INC_REF(connp); 2185 break; 2186 } 2187 } 2188 mutex_exit(&connfp->connf_lock); 2189 } 2190 } 2191 if (connp != NULL) { 2192 if (connp->conn_nexthop_set) 2193 nexthop_addr = connp->conn_nexthop_v4; 2194 CONN_DEC_REF(connp); 2195 } 2196 return (nexthop_addr); 2197 } 2198 2199 /* Table from RFC 1191 */ 2200 static int icmp_frag_size_table[] = 2201 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2202 2203 /* 2204 * Process received ICMP Packet too big. 2205 * After updating any IRE it does the fanout to any matching transport streams. 2206 * Assumes the message has been pulled up till the IP header that caused 2207 * the error. 2208 * 2209 * Returns B_FALSE on failure and B_TRUE on success. 2210 */ 2211 static boolean_t 2212 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2213 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2214 ip_stack_t *ipst) 2215 { 2216 ire_t *ire, *first_ire; 2217 int mtu; 2218 int hdr_length; 2219 ipaddr_t nexthop_addr; 2220 2221 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2222 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2223 ASSERT(ill != NULL); 2224 2225 hdr_length = IPH_HDR_LENGTH(ipha); 2226 2227 /* Drop if the original packet contained a source route */ 2228 if (ip_source_route_included(ipha)) { 2229 return (B_FALSE); 2230 } 2231 /* 2232 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2233 * header. 2234 */ 2235 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2236 mp->b_wptr) { 2237 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2238 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2240 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2241 return (B_FALSE); 2242 } 2243 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2244 ipha = (ipha_t *)&icmph[1]; 2245 } 2246 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2247 if (nexthop_addr != INADDR_ANY) { 2248 /* nexthop set */ 2249 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2250 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2251 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2252 } else { 2253 /* nexthop not set */ 2254 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2255 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2256 } 2257 2258 if (!first_ire) { 2259 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2260 ntohl(ipha->ipha_dst))); 2261 return (B_FALSE); 2262 } 2263 /* Check for MTU discovery advice as described in RFC 1191 */ 2264 mtu = ntohs(icmph->icmph_du_mtu); 2265 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2266 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2267 ire = ire->ire_next) { 2268 /* 2269 * Look for the connection to which this ICMP message is 2270 * directed. If it has the IP_NEXTHOP option set, then the 2271 * search is limited to IREs with the MATCH_IRE_PRIVATE 2272 * option. Else the search is limited to regular IREs. 2273 */ 2274 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2275 (nexthop_addr != ire->ire_gateway_addr)) || 2276 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2277 (nexthop_addr != INADDR_ANY))) 2278 continue; 2279 2280 mutex_enter(&ire->ire_lock); 2281 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2282 /* Reduce the IRE max frag value as advised. */ 2283 ip1dbg(("Received mtu from router: %d (was %d)\n", 2284 mtu, ire->ire_max_frag)); 2285 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2286 } else { 2287 uint32_t length; 2288 int i; 2289 2290 /* 2291 * Use the table from RFC 1191 to figure out 2292 * the next "plateau" based on the length in 2293 * the original IP packet. 2294 */ 2295 length = ntohs(ipha->ipha_length); 2296 if (ire->ire_max_frag <= length && 2297 ire->ire_max_frag >= length - hdr_length) { 2298 /* 2299 * Handle broken BSD 4.2 systems that 2300 * return the wrong iph_length in ICMP 2301 * errors. 2302 */ 2303 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2304 length, ire->ire_max_frag)); 2305 length -= hdr_length; 2306 } 2307 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2308 if (length > icmp_frag_size_table[i]) 2309 break; 2310 } 2311 if (i == A_CNT(icmp_frag_size_table)) { 2312 /* Smaller than 68! */ 2313 ip1dbg(("Too big for packet size %d\n", 2314 length)); 2315 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2316 ire->ire_frag_flag = 0; 2317 } else { 2318 mtu = icmp_frag_size_table[i]; 2319 ip1dbg(("Calculated mtu %d, packet size %d, " 2320 "before %d", mtu, length, 2321 ire->ire_max_frag)); 2322 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2323 ip1dbg((", after %d\n", ire->ire_max_frag)); 2324 } 2325 /* Record the new max frag size for the ULP. */ 2326 icmph->icmph_du_zero = 0; 2327 icmph->icmph_du_mtu = 2328 htons((uint16_t)ire->ire_max_frag); 2329 } 2330 mutex_exit(&ire->ire_lock); 2331 } 2332 rw_exit(&first_ire->ire_bucket->irb_lock); 2333 ire_refrele(first_ire); 2334 return (B_TRUE); 2335 } 2336 2337 /* 2338 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2339 * calls this function. 2340 */ 2341 static mblk_t * 2342 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2343 { 2344 ipha_t *ipha; 2345 icmph_t *icmph; 2346 ipha_t *in_ipha; 2347 int length; 2348 2349 ASSERT(mp->b_datap->db_type == M_DATA); 2350 2351 /* 2352 * For Self-encapsulated packets, we added an extra IP header 2353 * without the options. Inner IP header is the one from which 2354 * the outer IP header was formed. Thus, we need to remove the 2355 * outer IP header. To do this, we pullup the whole message 2356 * and overlay whatever follows the outer IP header over the 2357 * outer IP header. 2358 */ 2359 2360 if (!pullupmsg(mp, -1)) 2361 return (NULL); 2362 2363 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2364 ipha = (ipha_t *)&icmph[1]; 2365 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2366 2367 /* 2368 * The length that we want to overlay is following the inner 2369 * IP header. Subtracting the IP header + icmp header + outer 2370 * IP header's length should give us the length that we want to 2371 * overlay. 2372 */ 2373 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2374 hdr_length; 2375 /* 2376 * Overlay whatever follows the inner header over the 2377 * outer header. 2378 */ 2379 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2380 2381 /* Set the wptr to account for the outer header */ 2382 mp->b_wptr -= hdr_length; 2383 return (mp); 2384 } 2385 2386 /* 2387 * Try to pass the ICMP message upstream in case the ULP cares. 2388 * 2389 * If the packet that caused the ICMP error is secure, we send 2390 * it to AH/ESP to make sure that the attached packet has a 2391 * valid association. ipha in the code below points to the 2392 * IP header of the packet that caused the error. 2393 * 2394 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2395 * in the context of IPsec. Normally we tell the upper layer 2396 * whenever we send the ire (including ip_bind), the IPsec header 2397 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2398 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2399 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2400 * same thing. As TCP has the IPsec options size that needs to be 2401 * adjusted, we just pass the MTU unchanged. 2402 * 2403 * IFN could have been generated locally or by some router. 2404 * 2405 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2406 * This happens because IP adjusted its value of MTU on an 2407 * earlier IFN message and could not tell the upper layer, 2408 * the new adjusted value of MTU e.g. Packet was encrypted 2409 * or there was not enough information to fanout to upper 2410 * layers. Thus on the next outbound datagram, ip_wput_ire 2411 * generates the IFN, where IPsec processing has *not* been 2412 * done. 2413 * 2414 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2415 * could have generated this. This happens because ire_max_frag 2416 * value in IP was set to a new value, while the IPsec processing 2417 * was being done and after we made the fragmentation check in 2418 * ip_wput_ire. Thus on return from IPsec processing, 2419 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2420 * and generates the IFN. As IPsec processing is over, we fanout 2421 * to AH/ESP to remove the header. 2422 * 2423 * In both these cases, ipsec_in_loopback will be set indicating 2424 * that IFN was generated locally. 2425 * 2426 * ROUTER : IFN could be secure or non-secure. 2427 * 2428 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2429 * packet in error has AH/ESP headers to validate the AH/ESP 2430 * headers. AH/ESP will verify whether there is a valid SA or 2431 * not and send it back. We will fanout again if we have more 2432 * data in the packet. 2433 * 2434 * If the packet in error does not have AH/ESP, we handle it 2435 * like any other case. 2436 * 2437 * * NON_SECURE : If the packet in error has AH/ESP headers, 2438 * we attach a dummy ipsec_in and send it up to AH/ESP 2439 * for validation. AH/ESP will verify whether there is a 2440 * valid SA or not and send it back. We will fanout again if 2441 * we have more data in the packet. 2442 * 2443 * If the packet in error does not have AH/ESP, we handle it 2444 * like any other case. 2445 */ 2446 static void 2447 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2448 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2449 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2450 zoneid_t zoneid) 2451 { 2452 uint16_t *up; /* Pointer to ports in ULP header */ 2453 uint32_t ports; /* reversed ports for fanout */ 2454 ipha_t ripha; /* With reversed addresses */ 2455 mblk_t *first_mp; 2456 ipsec_in_t *ii; 2457 tcph_t *tcph; 2458 conn_t *connp; 2459 ip_stack_t *ipst; 2460 2461 ASSERT(ill != NULL); 2462 2463 ASSERT(recv_ill != NULL); 2464 ipst = recv_ill->ill_ipst; 2465 2466 first_mp = mp; 2467 if (mctl_present) { 2468 mp = first_mp->b_cont; 2469 ASSERT(mp != NULL); 2470 2471 ii = (ipsec_in_t *)first_mp->b_rptr; 2472 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2473 } else { 2474 ii = NULL; 2475 } 2476 2477 switch (ipha->ipha_protocol) { 2478 case IPPROTO_UDP: 2479 /* 2480 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2481 * transport header. 2482 */ 2483 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2484 mp->b_wptr) { 2485 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2486 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2487 goto discard_pkt; 2488 } 2489 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2490 ipha = (ipha_t *)&icmph[1]; 2491 } 2492 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2493 2494 /* 2495 * Attempt to find a client stream based on port. 2496 * Note that we do a reverse lookup since the header is 2497 * in the form we sent it out. 2498 * The ripha header is only used for the IP_UDP_MATCH and we 2499 * only set the src and dst addresses and protocol. 2500 */ 2501 ripha.ipha_src = ipha->ipha_dst; 2502 ripha.ipha_dst = ipha->ipha_src; 2503 ripha.ipha_protocol = ipha->ipha_protocol; 2504 ((uint16_t *)&ports)[0] = up[1]; 2505 ((uint16_t *)&ports)[1] = up[0]; 2506 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2507 ntohl(ipha->ipha_src), ntohs(up[0]), 2508 ntohl(ipha->ipha_dst), ntohs(up[1]), 2509 icmph->icmph_type, icmph->icmph_code)); 2510 2511 /* Have to change db_type after any pullupmsg */ 2512 DB_TYPE(mp) = M_CTL; 2513 2514 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2515 mctl_present, ip_policy, recv_ill, zoneid); 2516 return; 2517 2518 case IPPROTO_TCP: 2519 /* 2520 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2521 * transport header. 2522 */ 2523 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2524 mp->b_wptr) { 2525 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2526 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2527 goto discard_pkt; 2528 } 2529 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2530 ipha = (ipha_t *)&icmph[1]; 2531 } 2532 /* 2533 * Find a TCP client stream for this packet. 2534 * Note that we do a reverse lookup since the header is 2535 * in the form we sent it out. 2536 */ 2537 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2538 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2539 ipst); 2540 if (connp == NULL) 2541 goto discard_pkt; 2542 2543 /* Have to change db_type after any pullupmsg */ 2544 DB_TYPE(mp) = M_CTL; 2545 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2546 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2547 return; 2548 2549 case IPPROTO_SCTP: 2550 /* 2551 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2552 * transport header. 2553 */ 2554 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2555 mp->b_wptr) { 2556 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2557 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2558 goto discard_pkt; 2559 } 2560 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2561 ipha = (ipha_t *)&icmph[1]; 2562 } 2563 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2564 /* 2565 * Find a SCTP client stream for this packet. 2566 * Note that we do a reverse lookup since the header is 2567 * in the form we sent it out. 2568 * The ripha header is only used for the matching and we 2569 * only set the src and dst addresses, protocol, and version. 2570 */ 2571 ripha.ipha_src = ipha->ipha_dst; 2572 ripha.ipha_dst = ipha->ipha_src; 2573 ripha.ipha_protocol = ipha->ipha_protocol; 2574 ripha.ipha_version_and_hdr_length = 2575 ipha->ipha_version_and_hdr_length; 2576 ((uint16_t *)&ports)[0] = up[1]; 2577 ((uint16_t *)&ports)[1] = up[0]; 2578 2579 /* Have to change db_type after any pullupmsg */ 2580 DB_TYPE(mp) = M_CTL; 2581 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2582 mctl_present, ip_policy, zoneid); 2583 return; 2584 2585 case IPPROTO_ESP: 2586 case IPPROTO_AH: { 2587 int ipsec_rc; 2588 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2589 2590 /* 2591 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2592 * We will re-use the IPSEC_IN if it is already present as 2593 * AH/ESP will not affect any fields in the IPSEC_IN for 2594 * ICMP errors. If there is no IPSEC_IN, allocate a new 2595 * one and attach it in the front. 2596 */ 2597 if (ii != NULL) { 2598 /* 2599 * ip_fanout_proto_again converts the ICMP errors 2600 * that come back from AH/ESP to M_DATA so that 2601 * if it is non-AH/ESP and we do a pullupmsg in 2602 * this function, it would work. Convert it back 2603 * to M_CTL before we send up as this is a ICMP 2604 * error. This could have been generated locally or 2605 * by some router. Validate the inner IPsec 2606 * headers. 2607 * 2608 * NOTE : ill_index is used by ip_fanout_proto_again 2609 * to locate the ill. 2610 */ 2611 ASSERT(ill != NULL); 2612 ii->ipsec_in_ill_index = 2613 ill->ill_phyint->phyint_ifindex; 2614 ii->ipsec_in_rill_index = 2615 recv_ill->ill_phyint->phyint_ifindex; 2616 DB_TYPE(first_mp->b_cont) = M_CTL; 2617 } else { 2618 /* 2619 * IPSEC_IN is not present. We attach a ipsec_in 2620 * message and send up to IPsec for validating 2621 * and removing the IPsec headers. Clear 2622 * ipsec_in_secure so that when we return 2623 * from IPsec, we don't mistakenly think that this 2624 * is a secure packet came from the network. 2625 * 2626 * NOTE : ill_index is used by ip_fanout_proto_again 2627 * to locate the ill. 2628 */ 2629 ASSERT(first_mp == mp); 2630 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2631 if (first_mp == NULL) { 2632 freemsg(mp); 2633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2634 return; 2635 } 2636 ii = (ipsec_in_t *)first_mp->b_rptr; 2637 2638 /* This is not a secure packet */ 2639 ii->ipsec_in_secure = B_FALSE; 2640 first_mp->b_cont = mp; 2641 DB_TYPE(mp) = M_CTL; 2642 ASSERT(ill != NULL); 2643 ii->ipsec_in_ill_index = 2644 ill->ill_phyint->phyint_ifindex; 2645 ii->ipsec_in_rill_index = 2646 recv_ill->ill_phyint->phyint_ifindex; 2647 } 2648 ip2dbg(("icmp_inbound_error: ipsec\n")); 2649 2650 if (!ipsec_loaded(ipss)) { 2651 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2652 return; 2653 } 2654 2655 if (ipha->ipha_protocol == IPPROTO_ESP) 2656 ipsec_rc = ipsecesp_icmp_error(first_mp); 2657 else 2658 ipsec_rc = ipsecah_icmp_error(first_mp); 2659 if (ipsec_rc == IPSEC_STATUS_FAILED) 2660 return; 2661 2662 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2663 return; 2664 } 2665 default: 2666 /* 2667 * The ripha header is only used for the lookup and we 2668 * only set the src and dst addresses and protocol. 2669 */ 2670 ripha.ipha_src = ipha->ipha_dst; 2671 ripha.ipha_dst = ipha->ipha_src; 2672 ripha.ipha_protocol = ipha->ipha_protocol; 2673 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2674 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2675 ntohl(ipha->ipha_dst), 2676 icmph->icmph_type, icmph->icmph_code)); 2677 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2678 ipha_t *in_ipha; 2679 2680 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2681 mp->b_wptr) { 2682 if (!pullupmsg(mp, (uchar_t *)ipha + 2683 hdr_length + sizeof (ipha_t) - 2684 mp->b_rptr)) { 2685 goto discard_pkt; 2686 } 2687 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2688 ipha = (ipha_t *)&icmph[1]; 2689 } 2690 /* 2691 * Caller has verified that length has to be 2692 * at least the size of IP header. 2693 */ 2694 ASSERT(hdr_length >= sizeof (ipha_t)); 2695 /* 2696 * Check the sanity of the inner IP header like 2697 * we did for the outer header. 2698 */ 2699 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2700 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2701 goto discard_pkt; 2702 } 2703 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2704 goto discard_pkt; 2705 } 2706 /* Check for Self-encapsulated tunnels */ 2707 if (in_ipha->ipha_src == ipha->ipha_src && 2708 in_ipha->ipha_dst == ipha->ipha_dst) { 2709 2710 mp = icmp_inbound_self_encap_error(mp, 2711 iph_hdr_length, hdr_length); 2712 if (mp == NULL) 2713 goto discard_pkt; 2714 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2715 ipha = (ipha_t *)&icmph[1]; 2716 hdr_length = IPH_HDR_LENGTH(ipha); 2717 /* 2718 * The packet in error is self-encapsualted. 2719 * And we are finding it further encapsulated 2720 * which we could not have possibly generated. 2721 */ 2722 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2723 goto discard_pkt; 2724 } 2725 icmp_inbound_error_fanout(q, ill, first_mp, 2726 icmph, ipha, iph_hdr_length, hdr_length, 2727 mctl_present, ip_policy, recv_ill, zoneid); 2728 return; 2729 } 2730 } 2731 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2732 ipha->ipha_protocol == IPPROTO_IPV6) && 2733 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2734 ii != NULL && 2735 ii->ipsec_in_loopback && 2736 ii->ipsec_in_secure) { 2737 /* 2738 * For IP tunnels that get a looped-back 2739 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2740 * reported new MTU to take into account the IPsec 2741 * headers protecting this configured tunnel. 2742 * 2743 * This allows the tunnel module (tun.c) to blindly 2744 * accept the MTU reported in an ICMP "too big" 2745 * message. 2746 * 2747 * Non-looped back ICMP messages will just be 2748 * handled by the security protocols (if needed), 2749 * and the first subsequent packet will hit this 2750 * path. 2751 */ 2752 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2753 ipsec_in_extra_length(first_mp)); 2754 } 2755 /* Have to change db_type after any pullupmsg */ 2756 DB_TYPE(mp) = M_CTL; 2757 2758 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2759 ip_policy, recv_ill, zoneid); 2760 return; 2761 } 2762 /* NOTREACHED */ 2763 discard_pkt: 2764 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2765 drop_pkt:; 2766 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2767 freemsg(first_mp); 2768 } 2769 2770 /* 2771 * Common IP options parser. 2772 * 2773 * Setup routine: fill in *optp with options-parsing state, then 2774 * tail-call ipoptp_next to return the first option. 2775 */ 2776 uint8_t 2777 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2778 { 2779 uint32_t totallen; /* total length of all options */ 2780 2781 totallen = ipha->ipha_version_and_hdr_length - 2782 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2783 totallen <<= 2; 2784 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2785 optp->ipoptp_end = optp->ipoptp_next + totallen; 2786 optp->ipoptp_flags = 0; 2787 return (ipoptp_next(optp)); 2788 } 2789 2790 /* 2791 * Common IP options parser: extract next option. 2792 */ 2793 uint8_t 2794 ipoptp_next(ipoptp_t *optp) 2795 { 2796 uint8_t *end = optp->ipoptp_end; 2797 uint8_t *cur = optp->ipoptp_next; 2798 uint8_t opt, len, pointer; 2799 2800 /* 2801 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2802 * has been corrupted. 2803 */ 2804 ASSERT(cur <= end); 2805 2806 if (cur == end) 2807 return (IPOPT_EOL); 2808 2809 opt = cur[IPOPT_OPTVAL]; 2810 2811 /* 2812 * Skip any NOP options. 2813 */ 2814 while (opt == IPOPT_NOP) { 2815 cur++; 2816 if (cur == end) 2817 return (IPOPT_EOL); 2818 opt = cur[IPOPT_OPTVAL]; 2819 } 2820 2821 if (opt == IPOPT_EOL) 2822 return (IPOPT_EOL); 2823 2824 /* 2825 * Option requiring a length. 2826 */ 2827 if ((cur + 1) >= end) { 2828 optp->ipoptp_flags |= IPOPTP_ERROR; 2829 return (IPOPT_EOL); 2830 } 2831 len = cur[IPOPT_OLEN]; 2832 if (len < 2) { 2833 optp->ipoptp_flags |= IPOPTP_ERROR; 2834 return (IPOPT_EOL); 2835 } 2836 optp->ipoptp_cur = cur; 2837 optp->ipoptp_len = len; 2838 optp->ipoptp_next = cur + len; 2839 if (cur + len > end) { 2840 optp->ipoptp_flags |= IPOPTP_ERROR; 2841 return (IPOPT_EOL); 2842 } 2843 2844 /* 2845 * For the options which require a pointer field, make sure 2846 * its there, and make sure it points to either something 2847 * inside this option, or the end of the option. 2848 */ 2849 switch (opt) { 2850 case IPOPT_RR: 2851 case IPOPT_TS: 2852 case IPOPT_LSRR: 2853 case IPOPT_SSRR: 2854 if (len <= IPOPT_OFFSET) { 2855 optp->ipoptp_flags |= IPOPTP_ERROR; 2856 return (opt); 2857 } 2858 pointer = cur[IPOPT_OFFSET]; 2859 if (pointer - 1 > len) { 2860 optp->ipoptp_flags |= IPOPTP_ERROR; 2861 return (opt); 2862 } 2863 break; 2864 } 2865 2866 /* 2867 * Sanity check the pointer field based on the type of the 2868 * option. 2869 */ 2870 switch (opt) { 2871 case IPOPT_RR: 2872 case IPOPT_SSRR: 2873 case IPOPT_LSRR: 2874 if (pointer < IPOPT_MINOFF_SR) 2875 optp->ipoptp_flags |= IPOPTP_ERROR; 2876 break; 2877 case IPOPT_TS: 2878 if (pointer < IPOPT_MINOFF_IT) 2879 optp->ipoptp_flags |= IPOPTP_ERROR; 2880 /* 2881 * Note that the Internet Timestamp option also 2882 * contains two four bit fields (the Overflow field, 2883 * and the Flag field), which follow the pointer 2884 * field. We don't need to check that these fields 2885 * fall within the length of the option because this 2886 * was implicitely done above. We've checked that the 2887 * pointer value is at least IPOPT_MINOFF_IT, and that 2888 * it falls within the option. Since IPOPT_MINOFF_IT > 2889 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2890 */ 2891 ASSERT(len > IPOPT_POS_OV_FLG); 2892 break; 2893 } 2894 2895 return (opt); 2896 } 2897 2898 /* 2899 * Use the outgoing IP header to create an IP_OPTIONS option the way 2900 * it was passed down from the application. 2901 */ 2902 int 2903 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2904 { 2905 ipoptp_t opts; 2906 const uchar_t *opt; 2907 uint8_t optval; 2908 uint8_t optlen; 2909 uint32_t len = 0; 2910 uchar_t *buf1 = buf; 2911 2912 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2913 len += IP_ADDR_LEN; 2914 bzero(buf1, IP_ADDR_LEN); 2915 2916 /* 2917 * OK to cast away const here, as we don't store through the returned 2918 * opts.ipoptp_cur pointer. 2919 */ 2920 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2921 optval != IPOPT_EOL; 2922 optval = ipoptp_next(&opts)) { 2923 int off; 2924 2925 opt = opts.ipoptp_cur; 2926 optlen = opts.ipoptp_len; 2927 switch (optval) { 2928 case IPOPT_SSRR: 2929 case IPOPT_LSRR: 2930 2931 /* 2932 * Insert ipha_dst as the first entry in the source 2933 * route and move down the entries on step. 2934 * The last entry gets placed at buf1. 2935 */ 2936 buf[IPOPT_OPTVAL] = optval; 2937 buf[IPOPT_OLEN] = optlen; 2938 buf[IPOPT_OFFSET] = optlen; 2939 2940 off = optlen - IP_ADDR_LEN; 2941 if (off < 0) { 2942 /* No entries in source route */ 2943 break; 2944 } 2945 /* Last entry in source route */ 2946 bcopy(opt + off, buf1, IP_ADDR_LEN); 2947 off -= IP_ADDR_LEN; 2948 2949 while (off > 0) { 2950 bcopy(opt + off, 2951 buf + off + IP_ADDR_LEN, 2952 IP_ADDR_LEN); 2953 off -= IP_ADDR_LEN; 2954 } 2955 /* ipha_dst into first slot */ 2956 bcopy(&ipha->ipha_dst, 2957 buf + off + IP_ADDR_LEN, 2958 IP_ADDR_LEN); 2959 buf += optlen; 2960 len += optlen; 2961 break; 2962 2963 case IPOPT_COMSEC: 2964 case IPOPT_SECURITY: 2965 /* if passing up a label is not ok, then remove */ 2966 if (is_system_labeled()) 2967 break; 2968 /* FALLTHROUGH */ 2969 default: 2970 bcopy(opt, buf, optlen); 2971 buf += optlen; 2972 len += optlen; 2973 break; 2974 } 2975 } 2976 done: 2977 /* Pad the resulting options */ 2978 while (len & 0x3) { 2979 *buf++ = IPOPT_EOL; 2980 len++; 2981 } 2982 return (len); 2983 } 2984 2985 /* 2986 * Update any record route or timestamp options to include this host. 2987 * Reverse any source route option. 2988 * This routine assumes that the options are well formed i.e. that they 2989 * have already been checked. 2990 */ 2991 static void 2992 icmp_options_update(ipha_t *ipha) 2993 { 2994 ipoptp_t opts; 2995 uchar_t *opt; 2996 uint8_t optval; 2997 ipaddr_t src; /* Our local address */ 2998 ipaddr_t dst; 2999 3000 ip2dbg(("icmp_options_update\n")); 3001 src = ipha->ipha_src; 3002 dst = ipha->ipha_dst; 3003 3004 for (optval = ipoptp_first(&opts, ipha); 3005 optval != IPOPT_EOL; 3006 optval = ipoptp_next(&opts)) { 3007 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3008 opt = opts.ipoptp_cur; 3009 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3010 optval, opts.ipoptp_len)); 3011 switch (optval) { 3012 int off1, off2; 3013 case IPOPT_SSRR: 3014 case IPOPT_LSRR: 3015 /* 3016 * Reverse the source route. The first entry 3017 * should be the next to last one in the current 3018 * source route (the last entry is our address). 3019 * The last entry should be the final destination. 3020 */ 3021 off1 = IPOPT_MINOFF_SR - 1; 3022 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3023 if (off2 < 0) { 3024 /* No entries in source route */ 3025 ip1dbg(( 3026 "icmp_options_update: bad src route\n")); 3027 break; 3028 } 3029 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3030 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3031 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3032 off2 -= IP_ADDR_LEN; 3033 3034 while (off1 < off2) { 3035 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3036 bcopy((char *)opt + off2, (char *)opt + off1, 3037 IP_ADDR_LEN); 3038 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3039 off1 += IP_ADDR_LEN; 3040 off2 -= IP_ADDR_LEN; 3041 } 3042 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3043 break; 3044 } 3045 } 3046 } 3047 3048 /* 3049 * Process received ICMP Redirect messages. 3050 */ 3051 static void 3052 icmp_redirect(ill_t *ill, mblk_t *mp) 3053 { 3054 ipha_t *ipha; 3055 int iph_hdr_length; 3056 icmph_t *icmph; 3057 ipha_t *ipha_err; 3058 ire_t *ire; 3059 ire_t *prev_ire; 3060 ire_t *save_ire; 3061 ipaddr_t src, dst, gateway; 3062 iulp_t ulp_info = { 0 }; 3063 int error; 3064 ip_stack_t *ipst; 3065 3066 ASSERT(ill != NULL); 3067 ipst = ill->ill_ipst; 3068 3069 ipha = (ipha_t *)mp->b_rptr; 3070 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3071 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3072 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3074 freemsg(mp); 3075 return; 3076 } 3077 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3078 ipha_err = (ipha_t *)&icmph[1]; 3079 src = ipha->ipha_src; 3080 dst = ipha_err->ipha_dst; 3081 gateway = icmph->icmph_rd_gateway; 3082 /* Make sure the new gateway is reachable somehow. */ 3083 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3084 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3085 /* 3086 * Make sure we had a route for the dest in question and that 3087 * that route was pointing to the old gateway (the source of the 3088 * redirect packet.) 3089 */ 3090 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3091 NULL, MATCH_IRE_GW, ipst); 3092 /* 3093 * Check that 3094 * the redirect was not from ourselves 3095 * the new gateway and the old gateway are directly reachable 3096 */ 3097 if (!prev_ire || 3098 !ire || 3099 ire->ire_type == IRE_LOCAL) { 3100 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3101 freemsg(mp); 3102 if (ire != NULL) 3103 ire_refrele(ire); 3104 if (prev_ire != NULL) 3105 ire_refrele(prev_ire); 3106 return; 3107 } 3108 3109 /* 3110 * Should we use the old ULP info to create the new gateway? From 3111 * a user's perspective, we should inherit the info so that it 3112 * is a "smooth" transition. If we do not do that, then new 3113 * connections going thru the new gateway will have no route metrics, 3114 * which is counter-intuitive to user. From a network point of 3115 * view, this may or may not make sense even though the new gateway 3116 * is still directly connected to us so the route metrics should not 3117 * change much. 3118 * 3119 * But if the old ire_uinfo is not initialized, we do another 3120 * recursive lookup on the dest using the new gateway. There may 3121 * be a route to that. If so, use it to initialize the redirect 3122 * route. 3123 */ 3124 if (prev_ire->ire_uinfo.iulp_set) { 3125 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3126 } else { 3127 ire_t *tmp_ire; 3128 ire_t *sire; 3129 3130 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3131 ALL_ZONES, 0, NULL, 3132 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3133 ipst); 3134 if (sire != NULL) { 3135 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3136 /* 3137 * If sire != NULL, ire_ftable_lookup() should not 3138 * return a NULL value. 3139 */ 3140 ASSERT(tmp_ire != NULL); 3141 ire_refrele(tmp_ire); 3142 ire_refrele(sire); 3143 } else if (tmp_ire != NULL) { 3144 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3145 sizeof (iulp_t)); 3146 ire_refrele(tmp_ire); 3147 } 3148 } 3149 if (prev_ire->ire_type == IRE_CACHE) 3150 ire_delete(prev_ire); 3151 ire_refrele(prev_ire); 3152 /* 3153 * TODO: more precise handling for cases 0, 2, 3, the latter two 3154 * require TOS routing 3155 */ 3156 switch (icmph->icmph_code) { 3157 case 0: 3158 case 1: 3159 /* TODO: TOS specificity for cases 2 and 3 */ 3160 case 2: 3161 case 3: 3162 break; 3163 default: 3164 freemsg(mp); 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3166 ire_refrele(ire); 3167 return; 3168 } 3169 /* 3170 * Create a Route Association. This will allow us to remember that 3171 * someone we believe told us to use the particular gateway. 3172 */ 3173 save_ire = ire; 3174 ire = ire_create( 3175 (uchar_t *)&dst, /* dest addr */ 3176 (uchar_t *)&ip_g_all_ones, /* mask */ 3177 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3178 (uchar_t *)&gateway, /* gateway addr */ 3179 &save_ire->ire_max_frag, /* max frag */ 3180 NULL, /* no src nce */ 3181 NULL, /* no rfq */ 3182 NULL, /* no stq */ 3183 IRE_HOST, 3184 NULL, /* ipif */ 3185 0, /* cmask */ 3186 0, /* phandle */ 3187 0, /* ihandle */ 3188 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3189 &ulp_info, 3190 NULL, /* tsol_gc_t */ 3191 NULL, /* gcgrp */ 3192 ipst); 3193 3194 if (ire == NULL) { 3195 freemsg(mp); 3196 ire_refrele(save_ire); 3197 return; 3198 } 3199 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3200 ire_refrele(save_ire); 3201 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3202 3203 if (error == 0) { 3204 ire_refrele(ire); /* Held in ire_add_v4 */ 3205 /* tell routing sockets that we received a redirect */ 3206 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3207 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3208 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3209 } 3210 3211 /* 3212 * Delete any existing IRE_HOST type redirect ires for this destination. 3213 * This together with the added IRE has the effect of 3214 * modifying an existing redirect. 3215 */ 3216 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3217 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3218 if (prev_ire != NULL) { 3219 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3220 ire_delete(prev_ire); 3221 ire_refrele(prev_ire); 3222 } 3223 3224 freemsg(mp); 3225 } 3226 3227 /* 3228 * Generate an ICMP parameter problem message. 3229 */ 3230 static void 3231 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3232 ip_stack_t *ipst) 3233 { 3234 icmph_t icmph; 3235 boolean_t mctl_present; 3236 mblk_t *first_mp; 3237 3238 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3239 3240 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3241 if (mctl_present) 3242 freeb(first_mp); 3243 return; 3244 } 3245 3246 bzero(&icmph, sizeof (icmph_t)); 3247 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3248 icmph.icmph_pp_ptr = ptr; 3249 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3250 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3251 ipst); 3252 } 3253 3254 /* 3255 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3256 * the ICMP header pointed to by "stuff". (May be called as writer.) 3257 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3258 * an icmp error packet can be sent. 3259 * Assigns an appropriate source address to the packet. If ipha_dst is 3260 * one of our addresses use it for source. Otherwise pick a source based 3261 * on a route lookup back to ipha_src. 3262 * Note that ipha_src must be set here since the 3263 * packet is likely to arrive on an ill queue in ip_wput() which will 3264 * not set a source address. 3265 */ 3266 static void 3267 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3268 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3269 { 3270 ipaddr_t dst; 3271 icmph_t *icmph; 3272 ipha_t *ipha; 3273 uint_t len_needed; 3274 size_t msg_len; 3275 mblk_t *mp1; 3276 ipaddr_t src; 3277 ire_t *ire; 3278 mblk_t *ipsec_mp; 3279 ipsec_out_t *io = NULL; 3280 3281 if (mctl_present) { 3282 /* 3283 * If it is : 3284 * 3285 * 1) a IPSEC_OUT, then this is caused by outbound 3286 * datagram originating on this host. IPsec processing 3287 * may or may not have been done. Refer to comments above 3288 * icmp_inbound_error_fanout for details. 3289 * 3290 * 2) a IPSEC_IN if we are generating a icmp_message 3291 * for an incoming datagram destined for us i.e called 3292 * from ip_fanout_send_icmp. 3293 */ 3294 ipsec_info_t *in; 3295 ipsec_mp = mp; 3296 mp = ipsec_mp->b_cont; 3297 3298 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3299 ipha = (ipha_t *)mp->b_rptr; 3300 3301 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3302 in->ipsec_info_type == IPSEC_IN); 3303 3304 if (in->ipsec_info_type == IPSEC_IN) { 3305 /* 3306 * Convert the IPSEC_IN to IPSEC_OUT. 3307 */ 3308 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3309 BUMP_MIB(&ipst->ips_ip_mib, 3310 ipIfStatsOutDiscards); 3311 return; 3312 } 3313 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3314 } else { 3315 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3316 io = (ipsec_out_t *)in; 3317 /* 3318 * Clear out ipsec_out_proc_begin, so we do a fresh 3319 * ire lookup. 3320 */ 3321 io->ipsec_out_proc_begin = B_FALSE; 3322 } 3323 ASSERT(zoneid == io->ipsec_out_zoneid); 3324 ASSERT(zoneid != ALL_ZONES); 3325 } else { 3326 /* 3327 * This is in clear. The icmp message we are building 3328 * here should go out in clear. 3329 * 3330 * Pardon the convolution of it all, but it's easier to 3331 * allocate a "use cleartext" IPSEC_IN message and convert 3332 * it than it is to allocate a new one. 3333 */ 3334 ipsec_in_t *ii; 3335 ASSERT(DB_TYPE(mp) == M_DATA); 3336 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3337 if (ipsec_mp == NULL) { 3338 freemsg(mp); 3339 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3340 return; 3341 } 3342 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3343 3344 /* This is not a secure packet */ 3345 ii->ipsec_in_secure = B_FALSE; 3346 /* 3347 * For trusted extensions using a shared IP address we can 3348 * send using any zoneid. 3349 */ 3350 if (zoneid == ALL_ZONES) 3351 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3352 else 3353 ii->ipsec_in_zoneid = zoneid; 3354 ipsec_mp->b_cont = mp; 3355 ipha = (ipha_t *)mp->b_rptr; 3356 /* 3357 * Convert the IPSEC_IN to IPSEC_OUT. 3358 */ 3359 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3360 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3361 return; 3362 } 3363 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3364 } 3365 3366 /* Remember our eventual destination */ 3367 dst = ipha->ipha_src; 3368 3369 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3370 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3371 if (ire != NULL && 3372 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3373 src = ipha->ipha_dst; 3374 } else { 3375 if (ire != NULL) 3376 ire_refrele(ire); 3377 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3378 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3379 ipst); 3380 if (ire == NULL) { 3381 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3382 freemsg(ipsec_mp); 3383 return; 3384 } 3385 src = ire->ire_src_addr; 3386 } 3387 3388 if (ire != NULL) 3389 ire_refrele(ire); 3390 3391 /* 3392 * Check if we can send back more then 8 bytes in addition to 3393 * the IP header. We try to send 64 bytes of data and the internal 3394 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3395 */ 3396 len_needed = IPH_HDR_LENGTH(ipha); 3397 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3398 ipha->ipha_protocol == IPPROTO_IPV6) { 3399 3400 if (!pullupmsg(mp, -1)) { 3401 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3402 freemsg(ipsec_mp); 3403 return; 3404 } 3405 ipha = (ipha_t *)mp->b_rptr; 3406 3407 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3408 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3409 len_needed)); 3410 } else { 3411 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3412 3413 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3414 len_needed += ip_hdr_length_v6(mp, ip6h); 3415 } 3416 } 3417 len_needed += ipst->ips_ip_icmp_return; 3418 msg_len = msgdsize(mp); 3419 if (msg_len > len_needed) { 3420 (void) adjmsg(mp, len_needed - msg_len); 3421 msg_len = len_needed; 3422 } 3423 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3424 if (mp1 == NULL) { 3425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3426 freemsg(ipsec_mp); 3427 return; 3428 } 3429 mp1->b_cont = mp; 3430 mp = mp1; 3431 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3432 ipsec_mp->b_rptr == (uint8_t *)io && 3433 io->ipsec_out_type == IPSEC_OUT); 3434 ipsec_mp->b_cont = mp; 3435 3436 /* 3437 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3438 * node generates be accepted in peace by all on-host destinations. 3439 * If we do NOT assume that all on-host destinations trust 3440 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3441 * (Look for ipsec_out_icmp_loopback). 3442 */ 3443 io->ipsec_out_icmp_loopback = B_TRUE; 3444 3445 ipha = (ipha_t *)mp->b_rptr; 3446 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3447 *ipha = icmp_ipha; 3448 ipha->ipha_src = src; 3449 ipha->ipha_dst = dst; 3450 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3451 msg_len += sizeof (icmp_ipha) + len; 3452 if (msg_len > IP_MAXPACKET) { 3453 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3454 msg_len = IP_MAXPACKET; 3455 } 3456 ipha->ipha_length = htons((uint16_t)msg_len); 3457 icmph = (icmph_t *)&ipha[1]; 3458 bcopy(stuff, icmph, len); 3459 icmph->icmph_checksum = 0; 3460 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3461 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3462 put(q, ipsec_mp); 3463 } 3464 3465 /* 3466 * Determine if an ICMP error packet can be sent given the rate limit. 3467 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3468 * in milliseconds) and a burst size. Burst size number of packets can 3469 * be sent arbitrarely closely spaced. 3470 * The state is tracked using two variables to implement an approximate 3471 * token bucket filter: 3472 * icmp_pkt_err_last - lbolt value when the last burst started 3473 * icmp_pkt_err_sent - number of packets sent in current burst 3474 */ 3475 boolean_t 3476 icmp_err_rate_limit(ip_stack_t *ipst) 3477 { 3478 clock_t now = TICK_TO_MSEC(lbolt); 3479 uint_t refilled; /* Number of packets refilled in tbf since last */ 3480 /* Guard against changes by loading into local variable */ 3481 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3482 3483 if (err_interval == 0) 3484 return (B_FALSE); 3485 3486 if (ipst->ips_icmp_pkt_err_last > now) { 3487 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3488 ipst->ips_icmp_pkt_err_last = 0; 3489 ipst->ips_icmp_pkt_err_sent = 0; 3490 } 3491 /* 3492 * If we are in a burst update the token bucket filter. 3493 * Update the "last" time to be close to "now" but make sure 3494 * we don't loose precision. 3495 */ 3496 if (ipst->ips_icmp_pkt_err_sent != 0) { 3497 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3498 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3499 ipst->ips_icmp_pkt_err_sent = 0; 3500 } else { 3501 ipst->ips_icmp_pkt_err_sent -= refilled; 3502 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3503 } 3504 } 3505 if (ipst->ips_icmp_pkt_err_sent == 0) { 3506 /* Start of new burst */ 3507 ipst->ips_icmp_pkt_err_last = now; 3508 } 3509 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3510 ipst->ips_icmp_pkt_err_sent++; 3511 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3512 ipst->ips_icmp_pkt_err_sent)); 3513 return (B_FALSE); 3514 } 3515 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3516 return (B_TRUE); 3517 } 3518 3519 /* 3520 * Check if it is ok to send an IPv4 ICMP error packet in 3521 * response to the IPv4 packet in mp. 3522 * Free the message and return null if no 3523 * ICMP error packet should be sent. 3524 */ 3525 static mblk_t * 3526 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3527 { 3528 icmph_t *icmph; 3529 ipha_t *ipha; 3530 uint_t len_needed; 3531 ire_t *src_ire; 3532 ire_t *dst_ire; 3533 3534 if (!mp) 3535 return (NULL); 3536 ipha = (ipha_t *)mp->b_rptr; 3537 if (ip_csum_hdr(ipha)) { 3538 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3539 freemsg(mp); 3540 return (NULL); 3541 } 3542 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3543 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3544 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3545 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3546 if (src_ire != NULL || dst_ire != NULL || 3547 CLASSD(ipha->ipha_dst) || 3548 CLASSD(ipha->ipha_src) || 3549 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3550 /* Note: only errors to the fragment with offset 0 */ 3551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3552 freemsg(mp); 3553 if (src_ire != NULL) 3554 ire_refrele(src_ire); 3555 if (dst_ire != NULL) 3556 ire_refrele(dst_ire); 3557 return (NULL); 3558 } 3559 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3560 /* 3561 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3562 * errors in response to any ICMP errors. 3563 */ 3564 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3565 if (mp->b_wptr - mp->b_rptr < len_needed) { 3566 if (!pullupmsg(mp, len_needed)) { 3567 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3568 freemsg(mp); 3569 return (NULL); 3570 } 3571 ipha = (ipha_t *)mp->b_rptr; 3572 } 3573 icmph = (icmph_t *) 3574 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3575 switch (icmph->icmph_type) { 3576 case ICMP_DEST_UNREACHABLE: 3577 case ICMP_SOURCE_QUENCH: 3578 case ICMP_TIME_EXCEEDED: 3579 case ICMP_PARAM_PROBLEM: 3580 case ICMP_REDIRECT: 3581 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3582 freemsg(mp); 3583 return (NULL); 3584 default: 3585 break; 3586 } 3587 } 3588 /* 3589 * If this is a labeled system, then check to see if we're allowed to 3590 * send a response to this particular sender. If not, then just drop. 3591 */ 3592 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3593 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3595 freemsg(mp); 3596 return (NULL); 3597 } 3598 if (icmp_err_rate_limit(ipst)) { 3599 /* 3600 * Only send ICMP error packets every so often. 3601 * This should be done on a per port/source basis, 3602 * but for now this will suffice. 3603 */ 3604 freemsg(mp); 3605 return (NULL); 3606 } 3607 return (mp); 3608 } 3609 3610 /* 3611 * Generate an ICMP redirect message. 3612 */ 3613 static void 3614 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3615 { 3616 icmph_t icmph; 3617 3618 /* 3619 * We are called from ip_rput where we could 3620 * not have attached an IPSEC_IN. 3621 */ 3622 ASSERT(mp->b_datap->db_type == M_DATA); 3623 3624 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3625 return; 3626 } 3627 3628 bzero(&icmph, sizeof (icmph_t)); 3629 icmph.icmph_type = ICMP_REDIRECT; 3630 icmph.icmph_code = 1; 3631 icmph.icmph_rd_gateway = gateway; 3632 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3633 /* Redirects sent by router, and router is global zone */ 3634 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3635 } 3636 3637 /* 3638 * Generate an ICMP time exceeded message. 3639 */ 3640 void 3641 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3642 ip_stack_t *ipst) 3643 { 3644 icmph_t icmph; 3645 boolean_t mctl_present; 3646 mblk_t *first_mp; 3647 3648 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3649 3650 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3651 if (mctl_present) 3652 freeb(first_mp); 3653 return; 3654 } 3655 3656 bzero(&icmph, sizeof (icmph_t)); 3657 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3658 icmph.icmph_code = code; 3659 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3660 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3661 ipst); 3662 } 3663 3664 /* 3665 * Generate an ICMP unreachable message. 3666 */ 3667 void 3668 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3669 ip_stack_t *ipst) 3670 { 3671 icmph_t icmph; 3672 mblk_t *first_mp; 3673 boolean_t mctl_present; 3674 3675 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3676 3677 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3678 if (mctl_present) 3679 freeb(first_mp); 3680 return; 3681 } 3682 3683 bzero(&icmph, sizeof (icmph_t)); 3684 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3685 icmph.icmph_code = code; 3686 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3687 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3688 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3689 zoneid, ipst); 3690 } 3691 3692 /* 3693 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3694 * duplicate. As long as someone else holds the address, the interface will 3695 * stay down. When that conflict goes away, the interface is brought back up. 3696 * This is done so that accidental shutdowns of addresses aren't made 3697 * permanent. Your server will recover from a failure. 3698 * 3699 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3700 * user space process (dhcpagent). 3701 * 3702 * Recovery completes if ARP reports that the address is now ours (via 3703 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3704 * 3705 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3706 */ 3707 static void 3708 ipif_dup_recovery(void *arg) 3709 { 3710 ipif_t *ipif = arg; 3711 ill_t *ill = ipif->ipif_ill; 3712 mblk_t *arp_add_mp; 3713 mblk_t *arp_del_mp; 3714 area_t *area; 3715 ip_stack_t *ipst = ill->ill_ipst; 3716 3717 ipif->ipif_recovery_id = 0; 3718 3719 /* 3720 * No lock needed for moving or condemned check, as this is just an 3721 * optimization. 3722 */ 3723 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3724 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3725 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3726 /* No reason to try to bring this address back. */ 3727 return; 3728 } 3729 3730 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3731 goto alloc_fail; 3732 3733 if (ipif->ipif_arp_del_mp == NULL) { 3734 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3735 goto alloc_fail; 3736 ipif->ipif_arp_del_mp = arp_del_mp; 3737 } 3738 3739 /* Setting the 'unverified' flag restarts DAD */ 3740 area = (area_t *)arp_add_mp->b_rptr; 3741 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3742 ACE_F_UNVERIFIED; 3743 putnext(ill->ill_rq, arp_add_mp); 3744 return; 3745 3746 alloc_fail: 3747 /* 3748 * On allocation failure, just restart the timer. Note that the ipif 3749 * is down here, so no other thread could be trying to start a recovery 3750 * timer. The ill_lock protects the condemned flag and the recovery 3751 * timer ID. 3752 */ 3753 freemsg(arp_add_mp); 3754 mutex_enter(&ill->ill_lock); 3755 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3756 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3757 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3758 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3759 } 3760 mutex_exit(&ill->ill_lock); 3761 } 3762 3763 /* 3764 * This is for exclusive changes due to ARP. Either tear down an interface due 3765 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3766 */ 3767 /* ARGSUSED */ 3768 static void 3769 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3770 { 3771 ill_t *ill = rq->q_ptr; 3772 arh_t *arh; 3773 ipaddr_t src; 3774 ipif_t *ipif; 3775 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3776 char hbuf[MAC_STR_LEN]; 3777 char sbuf[INET_ADDRSTRLEN]; 3778 const char *failtype; 3779 boolean_t bring_up; 3780 ip_stack_t *ipst = ill->ill_ipst; 3781 3782 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3783 case AR_CN_READY: 3784 failtype = NULL; 3785 bring_up = B_TRUE; 3786 break; 3787 case AR_CN_FAILED: 3788 failtype = "in use"; 3789 bring_up = B_FALSE; 3790 break; 3791 default: 3792 failtype = "claimed"; 3793 bring_up = B_FALSE; 3794 break; 3795 } 3796 3797 arh = (arh_t *)mp->b_cont->b_rptr; 3798 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3799 3800 /* Handle failures due to probes */ 3801 if (src == 0) { 3802 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3803 IP_ADDR_LEN); 3804 } 3805 3806 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3807 sizeof (hbuf)); 3808 (void) ip_dot_addr(src, sbuf); 3809 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3810 3811 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3812 ipif->ipif_lcl_addr != src) { 3813 continue; 3814 } 3815 3816 /* 3817 * If we failed on a recovery probe, then restart the timer to 3818 * try again later. 3819 */ 3820 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3821 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3822 ill->ill_net_type == IRE_IF_RESOLVER && 3823 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3824 ipst->ips_ip_dup_recovery > 0 && 3825 ipif->ipif_recovery_id == 0) { 3826 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3827 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3828 continue; 3829 } 3830 3831 /* 3832 * If what we're trying to do has already been done, then do 3833 * nothing. 3834 */ 3835 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3836 continue; 3837 3838 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3839 3840 if (failtype == NULL) { 3841 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3842 ibuf); 3843 } else { 3844 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3845 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3846 } 3847 3848 if (bring_up) { 3849 ASSERT(ill->ill_dl_up); 3850 /* 3851 * Free up the ARP delete message so we can allocate 3852 * a fresh one through the normal path. 3853 */ 3854 freemsg(ipif->ipif_arp_del_mp); 3855 ipif->ipif_arp_del_mp = NULL; 3856 if (ipif_resolver_up(ipif, Res_act_initial) != 3857 EINPROGRESS) { 3858 ipif->ipif_addr_ready = 1; 3859 (void) ipif_up_done(ipif); 3860 } 3861 continue; 3862 } 3863 3864 mutex_enter(&ill->ill_lock); 3865 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3866 ipif->ipif_flags |= IPIF_DUPLICATE; 3867 ill->ill_ipif_dup_count++; 3868 mutex_exit(&ill->ill_lock); 3869 /* 3870 * Already exclusive on the ill; no need to handle deferred 3871 * processing here. 3872 */ 3873 (void) ipif_down(ipif, NULL, NULL); 3874 ipif_down_tail(ipif); 3875 mutex_enter(&ill->ill_lock); 3876 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3877 ill->ill_net_type == IRE_IF_RESOLVER && 3878 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3879 ipst->ips_ip_dup_recovery > 0) { 3880 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3881 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3882 } 3883 mutex_exit(&ill->ill_lock); 3884 } 3885 freemsg(mp); 3886 } 3887 3888 /* ARGSUSED */ 3889 static void 3890 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3891 { 3892 ill_t *ill = rq->q_ptr; 3893 arh_t *arh; 3894 ipaddr_t src; 3895 ipif_t *ipif; 3896 3897 arh = (arh_t *)mp->b_cont->b_rptr; 3898 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3899 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3900 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3901 (void) ipif_resolver_up(ipif, Res_act_defend); 3902 } 3903 freemsg(mp); 3904 } 3905 3906 /* 3907 * News from ARP. ARP sends notification of interesting events down 3908 * to its clients using M_CTL messages with the interesting ARP packet 3909 * attached via b_cont. 3910 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3911 * queue as opposed to ARP sending the message to all the clients, i.e. all 3912 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3913 * table if a cache IRE is found to delete all the entries for the address in 3914 * the packet. 3915 */ 3916 static void 3917 ip_arp_news(queue_t *q, mblk_t *mp) 3918 { 3919 arcn_t *arcn; 3920 arh_t *arh; 3921 ire_t *ire = NULL; 3922 char hbuf[MAC_STR_LEN]; 3923 char sbuf[INET_ADDRSTRLEN]; 3924 ipaddr_t src; 3925 in6_addr_t v6src; 3926 boolean_t isv6 = B_FALSE; 3927 ipif_t *ipif; 3928 ill_t *ill; 3929 ip_stack_t *ipst; 3930 3931 if (CONN_Q(q)) { 3932 conn_t *connp = Q_TO_CONN(q); 3933 3934 ipst = connp->conn_netstack->netstack_ip; 3935 } else { 3936 ill_t *ill = (ill_t *)q->q_ptr; 3937 3938 ipst = ill->ill_ipst; 3939 } 3940 3941 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3942 if (q->q_next) { 3943 putnext(q, mp); 3944 } else 3945 freemsg(mp); 3946 return; 3947 } 3948 arh = (arh_t *)mp->b_cont->b_rptr; 3949 /* Is it one we are interested in? */ 3950 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3951 isv6 = B_TRUE; 3952 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3953 IPV6_ADDR_LEN); 3954 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3955 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3956 IP_ADDR_LEN); 3957 } else { 3958 freemsg(mp); 3959 return; 3960 } 3961 3962 ill = q->q_ptr; 3963 3964 arcn = (arcn_t *)mp->b_rptr; 3965 switch (arcn->arcn_code) { 3966 case AR_CN_BOGON: 3967 /* 3968 * Someone is sending ARP packets with a source protocol 3969 * address that we have published and for which we believe our 3970 * entry is authoritative and (when ill_arp_extend is set) 3971 * verified to be unique on the network. 3972 * 3973 * The ARP module internally handles the cases where the sender 3974 * is just probing (for DAD) and where the hardware address of 3975 * a non-authoritative entry has changed. Thus, these are the 3976 * real conflicts, and we have to do resolution. 3977 * 3978 * We back away quickly from the address if it's from DHCP or 3979 * otherwise temporary and hasn't been used recently (or at 3980 * all). We'd like to include "deprecated" addresses here as 3981 * well (as there's no real reason to defend something we're 3982 * discarding), but IPMP "reuses" this flag to mean something 3983 * other than the standard meaning. 3984 * 3985 * If the ARP module above is not extended (meaning that it 3986 * doesn't know how to defend the address), then we just log 3987 * the problem as we always did and continue on. It's not 3988 * right, but there's little else we can do, and those old ATM 3989 * users are going away anyway. 3990 */ 3991 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3992 hbuf, sizeof (hbuf)); 3993 (void) ip_dot_addr(src, sbuf); 3994 if (isv6) { 3995 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3996 ipst); 3997 } else { 3998 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3999 } 4000 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4001 uint32_t now; 4002 uint32_t maxage; 4003 clock_t lused; 4004 uint_t maxdefense; 4005 uint_t defs; 4006 4007 /* 4008 * First, figure out if this address hasn't been used 4009 * in a while. If it hasn't, then it's a better 4010 * candidate for abandoning. 4011 */ 4012 ipif = ire->ire_ipif; 4013 ASSERT(ipif != NULL); 4014 now = gethrestime_sec(); 4015 maxage = now - ire->ire_create_time; 4016 if (maxage > ipst->ips_ip_max_temp_idle) 4017 maxage = ipst->ips_ip_max_temp_idle; 4018 lused = drv_hztousec(ddi_get_lbolt() - 4019 ire->ire_last_used_time) / MICROSEC + 1; 4020 if (lused >= maxage && (ipif->ipif_flags & 4021 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4022 maxdefense = ipst->ips_ip_max_temp_defend; 4023 else 4024 maxdefense = ipst->ips_ip_max_defend; 4025 4026 /* 4027 * Now figure out how many times we've defended 4028 * ourselves. Ignore defenses that happened long in 4029 * the past. 4030 */ 4031 mutex_enter(&ire->ire_lock); 4032 if ((defs = ire->ire_defense_count) > 0 && 4033 now - ire->ire_defense_time > 4034 ipst->ips_ip_defend_interval) { 4035 ire->ire_defense_count = defs = 0; 4036 } 4037 ire->ire_defense_count++; 4038 ire->ire_defense_time = now; 4039 mutex_exit(&ire->ire_lock); 4040 ill_refhold(ill); 4041 ire_refrele(ire); 4042 4043 /* 4044 * If we've defended ourselves too many times already, 4045 * then give up and tear down the interface(s) using 4046 * this address. Otherwise, defend by sending out a 4047 * gratuitous ARP. 4048 */ 4049 if (defs >= maxdefense && ill->ill_arp_extend) { 4050 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4051 B_FALSE); 4052 } else { 4053 cmn_err(CE_WARN, 4054 "node %s is using our IP address %s on %s", 4055 hbuf, sbuf, ill->ill_name); 4056 /* 4057 * If this is an old (ATM) ARP module, then 4058 * don't try to defend the address. Remain 4059 * compatible with the old behavior. Defend 4060 * only with new ARP. 4061 */ 4062 if (ill->ill_arp_extend) { 4063 qwriter_ip(ill, q, mp, ip_arp_defend, 4064 NEW_OP, B_FALSE); 4065 } else { 4066 ill_refrele(ill); 4067 } 4068 } 4069 return; 4070 } 4071 cmn_err(CE_WARN, 4072 "proxy ARP problem? Node '%s' is using %s on %s", 4073 hbuf, sbuf, ill->ill_name); 4074 if (ire != NULL) 4075 ire_refrele(ire); 4076 break; 4077 case AR_CN_ANNOUNCE: 4078 if (isv6) { 4079 /* 4080 * For XRESOLV interfaces. 4081 * Delete the IRE cache entry and NCE for this 4082 * v6 address 4083 */ 4084 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4085 /* 4086 * If v6src is a non-zero, it's a router address 4087 * as below. Do the same sort of thing to clean 4088 * out off-net IRE_CACHE entries that go through 4089 * the router. 4090 */ 4091 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4092 ire_walk_v6(ire_delete_cache_gw_v6, 4093 (char *)&v6src, ALL_ZONES, ipst); 4094 } 4095 } else { 4096 nce_hw_map_t hwm; 4097 4098 /* 4099 * ARP gives us a copy of any packet where it thinks 4100 * the address has changed, so that we can update our 4101 * caches. We're responsible for caching known answers 4102 * in the current design. We check whether the 4103 * hardware address really has changed in all of our 4104 * entries that have cached this mapping, and if so, we 4105 * blow them away. This way we will immediately pick 4106 * up the rare case of a host changing hardware 4107 * address. 4108 */ 4109 if (src == 0) 4110 break; 4111 hwm.hwm_addr = src; 4112 hwm.hwm_hwlen = arh->arh_hlen; 4113 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4114 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4115 ndp_walk_common(ipst->ips_ndp4, NULL, 4116 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4117 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4118 } 4119 break; 4120 case AR_CN_READY: 4121 /* No external v6 resolver has a contract to use this */ 4122 if (isv6) 4123 break; 4124 /* If the link is down, we'll retry this later */ 4125 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4126 break; 4127 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4128 NULL, NULL, ipst); 4129 if (ipif != NULL) { 4130 /* 4131 * If this is a duplicate recovery, then we now need to 4132 * go exclusive to bring this thing back up. 4133 */ 4134 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4135 IPIF_DUPLICATE) { 4136 ipif_refrele(ipif); 4137 ill_refhold(ill); 4138 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4139 B_FALSE); 4140 return; 4141 } 4142 /* 4143 * If this is the first notice that this address is 4144 * ready, then let the user know now. 4145 */ 4146 if ((ipif->ipif_flags & IPIF_UP) && 4147 !ipif->ipif_addr_ready) { 4148 ipif_mask_reply(ipif); 4149 ip_rts_ifmsg(ipif); 4150 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4151 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4152 } 4153 ipif->ipif_addr_ready = 1; 4154 ipif_refrele(ipif); 4155 } 4156 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4157 if (ire != NULL) { 4158 ire->ire_defense_count = 0; 4159 ire_refrele(ire); 4160 } 4161 break; 4162 case AR_CN_FAILED: 4163 /* No external v6 resolver has a contract to use this */ 4164 if (isv6) 4165 break; 4166 ill_refhold(ill); 4167 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4168 return; 4169 } 4170 freemsg(mp); 4171 } 4172 4173 /* 4174 * Create a mblk suitable for carrying the interface index and/or source link 4175 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4176 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4177 * application. 4178 */ 4179 mblk_t * 4180 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4181 ip_stack_t *ipst) 4182 { 4183 mblk_t *mp; 4184 ip_pktinfo_t *pinfo; 4185 ipha_t *ipha; 4186 struct ether_header *pether; 4187 4188 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4189 if (mp == NULL) { 4190 ip1dbg(("ip_add_info: allocation failure.\n")); 4191 return (data_mp); 4192 } 4193 4194 ipha = (ipha_t *)data_mp->b_rptr; 4195 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4196 bzero(pinfo, sizeof (ip_pktinfo_t)); 4197 pinfo->ip_pkt_flags = (uchar_t)flags; 4198 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4199 4200 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4201 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4202 if (flags & IPF_RECVADDR) { 4203 ipif_t *ipif; 4204 ire_t *ire; 4205 4206 /* 4207 * Only valid for V4 4208 */ 4209 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4210 (IPV4_VERSION << 4)); 4211 4212 ipif = ipif_get_next_ipif(NULL, ill); 4213 if (ipif != NULL) { 4214 /* 4215 * Since a decision has already been made to deliver the 4216 * packet, there is no need to test for SECATTR and 4217 * ZONEONLY. 4218 * When a multicast packet is transmitted 4219 * a cache entry is created for the multicast address. 4220 * When delivering a copy of the packet or when new 4221 * packets are received we do not want to match on the 4222 * cached entry so explicitly match on 4223 * IRE_LOCAL and IRE_LOOPBACK 4224 */ 4225 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4226 IRE_LOCAL | IRE_LOOPBACK, 4227 ipif, zoneid, NULL, 4228 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4229 if (ire == NULL) { 4230 /* 4231 * packet must have come on a different 4232 * interface. 4233 * Since a decision has already been made to 4234 * deliver the packet, there is no need to test 4235 * for SECATTR and ZONEONLY. 4236 * Only match on local and broadcast ire's. 4237 * See detailed comment above. 4238 */ 4239 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4240 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4241 NULL, MATCH_IRE_TYPE, ipst); 4242 } 4243 4244 if (ire == NULL) { 4245 /* 4246 * This is either a multicast packet or 4247 * the address has been removed since 4248 * the packet was received. 4249 * Return INADDR_ANY so that normal source 4250 * selection occurs for the response. 4251 */ 4252 4253 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4254 } else { 4255 pinfo->ip_pkt_match_addr.s_addr = 4256 ire->ire_src_addr; 4257 ire_refrele(ire); 4258 } 4259 ipif_refrele(ipif); 4260 } else { 4261 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4262 } 4263 } 4264 4265 pether = (struct ether_header *)((char *)ipha 4266 - sizeof (struct ether_header)); 4267 /* 4268 * Make sure the interface is an ethernet type, since this option 4269 * is currently supported only on this type of interface. Also make 4270 * sure we are pointing correctly above db_base. 4271 */ 4272 4273 if ((flags & IPF_RECVSLLA) && 4274 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4275 (ill->ill_type == IFT_ETHER) && 4276 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4277 4278 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4279 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4280 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4281 } else { 4282 /* 4283 * Clear the bit. Indicate to upper layer that IP is not 4284 * sending this ancillary info. 4285 */ 4286 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4287 } 4288 4289 mp->b_datap->db_type = M_CTL; 4290 mp->b_wptr += sizeof (ip_pktinfo_t); 4291 mp->b_cont = data_mp; 4292 4293 return (mp); 4294 } 4295 4296 /* 4297 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4298 * part of the bind request. 4299 */ 4300 4301 boolean_t 4302 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4303 { 4304 ipsec_in_t *ii; 4305 4306 ASSERT(policy_mp != NULL); 4307 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4308 4309 ii = (ipsec_in_t *)policy_mp->b_rptr; 4310 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4311 4312 connp->conn_policy = ii->ipsec_in_policy; 4313 ii->ipsec_in_policy = NULL; 4314 4315 if (ii->ipsec_in_action != NULL) { 4316 if (connp->conn_latch == NULL) { 4317 connp->conn_latch = iplatch_create(); 4318 if (connp->conn_latch == NULL) 4319 return (B_FALSE); 4320 } 4321 ipsec_latch_inbound(connp->conn_latch, ii); 4322 } 4323 return (B_TRUE); 4324 } 4325 4326 /* 4327 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4328 * and to arrange for power-fanout assist. The ULP is identified by 4329 * adding a single byte at the end of the original bind message. 4330 * A ULP other than UDP or TCP that wishes to be recognized passes 4331 * down a bind with a zero length address. 4332 * 4333 * The binding works as follows: 4334 * - A zero byte address means just bind to the protocol. 4335 * - A four byte address is treated as a request to validate 4336 * that the address is a valid local address, appropriate for 4337 * an application to bind to. This does not affect any fanout 4338 * information in IP. 4339 * - A sizeof sin_t byte address is used to bind to only the local address 4340 * and port. 4341 * - A sizeof ipa_conn_t byte address contains complete fanout information 4342 * consisting of local and remote addresses and ports. In 4343 * this case, the addresses are both validated as appropriate 4344 * for this operation, and, if so, the information is retained 4345 * for use in the inbound fanout. 4346 * 4347 * The ULP (except in the zero-length bind) can append an 4348 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4349 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4350 * a copy of the source or destination IRE (source for local bind; 4351 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4352 * policy information contained should be copied on to the conn. 4353 * 4354 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4355 */ 4356 mblk_t * 4357 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4358 { 4359 ssize_t len; 4360 struct T_bind_req *tbr; 4361 sin_t *sin; 4362 ipa_conn_t *ac; 4363 uchar_t *ucp; 4364 mblk_t *mp1; 4365 boolean_t ire_requested; 4366 boolean_t ipsec_policy_set = B_FALSE; 4367 int error = 0; 4368 int protocol; 4369 ipa_conn_x_t *acx; 4370 4371 ASSERT(!connp->conn_af_isv6); 4372 connp->conn_pkt_isv6 = B_FALSE; 4373 4374 len = MBLKL(mp); 4375 if (len < (sizeof (*tbr) + 1)) { 4376 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4377 "ip_bind: bogus msg, len %ld", len); 4378 /* XXX: Need to return something better */ 4379 goto bad_addr; 4380 } 4381 /* Back up and extract the protocol identifier. */ 4382 mp->b_wptr--; 4383 protocol = *mp->b_wptr & 0xFF; 4384 tbr = (struct T_bind_req *)mp->b_rptr; 4385 /* Reset the message type in preparation for shipping it back. */ 4386 DB_TYPE(mp) = M_PCPROTO; 4387 4388 connp->conn_ulp = (uint8_t)protocol; 4389 4390 /* 4391 * Check for a zero length address. This is from a protocol that 4392 * wants to register to receive all packets of its type. 4393 */ 4394 if (tbr->ADDR_length == 0) { 4395 /* 4396 * These protocols are now intercepted in ip_bind_v6(). 4397 * Reject protocol-level binds here for now. 4398 * 4399 * For SCTP raw socket, ICMP sends down a bind with sin_t 4400 * so that the protocol type cannot be SCTP. 4401 */ 4402 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4403 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4404 goto bad_addr; 4405 } 4406 4407 /* 4408 * 4409 * The udp module never sends down a zero-length address, 4410 * and allowing this on a labeled system will break MLP 4411 * functionality. 4412 */ 4413 if (is_system_labeled() && protocol == IPPROTO_UDP) 4414 goto bad_addr; 4415 4416 if (connp->conn_mac_exempt) 4417 goto bad_addr; 4418 4419 /* No hash here really. The table is big enough. */ 4420 connp->conn_srcv6 = ipv6_all_zeros; 4421 4422 ipcl_proto_insert(connp, protocol); 4423 4424 tbr->PRIM_type = T_BIND_ACK; 4425 return (mp); 4426 } 4427 4428 /* Extract the address pointer from the message. */ 4429 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4430 tbr->ADDR_length); 4431 if (ucp == NULL) { 4432 ip1dbg(("ip_bind: no address\n")); 4433 goto bad_addr; 4434 } 4435 if (!OK_32PTR(ucp)) { 4436 ip1dbg(("ip_bind: unaligned address\n")); 4437 goto bad_addr; 4438 } 4439 /* 4440 * Check for trailing mps. 4441 */ 4442 4443 mp1 = mp->b_cont; 4444 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4445 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4446 4447 switch (tbr->ADDR_length) { 4448 default: 4449 ip1dbg(("ip_bind: bad address length %d\n", 4450 (int)tbr->ADDR_length)); 4451 goto bad_addr; 4452 4453 case IP_ADDR_LEN: 4454 /* Verification of local address only */ 4455 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4456 ire_requested, ipsec_policy_set, B_FALSE); 4457 break; 4458 4459 case sizeof (sin_t): 4460 sin = (sin_t *)ucp; 4461 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4462 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4463 break; 4464 4465 case sizeof (ipa_conn_t): 4466 ac = (ipa_conn_t *)ucp; 4467 /* For raw socket, the local port is not set. */ 4468 if (ac->ac_lport == 0) 4469 ac->ac_lport = connp->conn_lport; 4470 /* Always verify destination reachability. */ 4471 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4472 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4473 ipsec_policy_set, B_TRUE, B_TRUE); 4474 break; 4475 4476 case sizeof (ipa_conn_x_t): 4477 acx = (ipa_conn_x_t *)ucp; 4478 /* 4479 * Whether or not to verify destination reachability depends 4480 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4481 */ 4482 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4483 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4484 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4485 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4486 break; 4487 } 4488 if (error == EINPROGRESS) 4489 return (NULL); 4490 else if (error != 0) 4491 goto bad_addr; 4492 /* 4493 * Pass the IPsec headers size in ire_ipsec_overhead. 4494 * We can't do this in ip_bind_insert_ire because the policy 4495 * may not have been inherited at that point in time and hence 4496 * conn_out_enforce_policy may not be set. 4497 */ 4498 mp1 = mp->b_cont; 4499 if (ire_requested && connp->conn_out_enforce_policy && 4500 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4501 ire_t *ire = (ire_t *)mp1->b_rptr; 4502 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4503 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4504 } 4505 4506 /* Send it home. */ 4507 mp->b_datap->db_type = M_PCPROTO; 4508 tbr->PRIM_type = T_BIND_ACK; 4509 return (mp); 4510 4511 bad_addr: 4512 /* 4513 * If error = -1 then we generate a TBADADDR - otherwise error is 4514 * a unix errno. 4515 */ 4516 if (error > 0) 4517 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4518 else 4519 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4520 return (mp); 4521 } 4522 4523 /* 4524 * Here address is verified to be a valid local address. 4525 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4526 * address is also considered a valid local address. 4527 * In the case of a broadcast/multicast address, however, the 4528 * upper protocol is expected to reset the src address 4529 * to 0 if it sees a IRE_BROADCAST type returned so that 4530 * no packets are emitted with broadcast/multicast address as 4531 * source address (that violates hosts requirements RFC1122) 4532 * The addresses valid for bind are: 4533 * (1) - INADDR_ANY (0) 4534 * (2) - IP address of an UP interface 4535 * (3) - IP address of a DOWN interface 4536 * (4) - valid local IP broadcast addresses. In this case 4537 * the conn will only receive packets destined to 4538 * the specified broadcast address. 4539 * (5) - a multicast address. In this case 4540 * the conn will only receive packets destined to 4541 * the specified multicast address. Note: the 4542 * application still has to issue an 4543 * IP_ADD_MEMBERSHIP socket option. 4544 * 4545 * On error, return -1 for TBADADDR otherwise pass the 4546 * errno with TSYSERR reply. 4547 * 4548 * In all the above cases, the bound address must be valid in the current zone. 4549 * When the address is loopback, multicast or broadcast, there might be many 4550 * matching IREs so bind has to look up based on the zone. 4551 * 4552 * Note: lport is in network byte order. 4553 */ 4554 int 4555 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4556 boolean_t ire_requested, boolean_t ipsec_policy_set, 4557 boolean_t fanout_insert) 4558 { 4559 int error = 0; 4560 ire_t *src_ire; 4561 mblk_t *policy_mp; 4562 ipif_t *ipif; 4563 zoneid_t zoneid; 4564 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4565 4566 if (ipsec_policy_set) { 4567 policy_mp = mp->b_cont; 4568 } 4569 4570 /* 4571 * If it was previously connected, conn_fully_bound would have 4572 * been set. 4573 */ 4574 connp->conn_fully_bound = B_FALSE; 4575 4576 src_ire = NULL; 4577 ipif = NULL; 4578 4579 zoneid = IPCL_ZONEID(connp); 4580 4581 if (src_addr) { 4582 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4583 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4584 /* 4585 * If an address other than 0.0.0.0 is requested, 4586 * we verify that it is a valid address for bind 4587 * Note: Following code is in if-else-if form for 4588 * readability compared to a condition check. 4589 */ 4590 /* LINTED - statement has no consequent */ 4591 if (IRE_IS_LOCAL(src_ire)) { 4592 /* 4593 * (2) Bind to address of local UP interface 4594 */ 4595 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4596 /* 4597 * (4) Bind to broadcast address 4598 * Note: permitted only from transports that 4599 * request IRE 4600 */ 4601 if (!ire_requested) 4602 error = EADDRNOTAVAIL; 4603 } else { 4604 /* 4605 * (3) Bind to address of local DOWN interface 4606 * (ipif_lookup_addr() looks up all interfaces 4607 * but we do not get here for UP interfaces 4608 * - case (2) above) 4609 * We put the protocol byte back into the mblk 4610 * since we may come back via ip_wput_nondata() 4611 * later with this mblk if ipif_lookup_addr chooses 4612 * to defer processing. 4613 */ 4614 *mp->b_wptr++ = (char)connp->conn_ulp; 4615 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4616 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4617 &error, ipst)) != NULL) { 4618 ipif_refrele(ipif); 4619 } else if (error == EINPROGRESS) { 4620 if (src_ire != NULL) 4621 ire_refrele(src_ire); 4622 return (EINPROGRESS); 4623 } else if (CLASSD(src_addr)) { 4624 error = 0; 4625 if (src_ire != NULL) 4626 ire_refrele(src_ire); 4627 /* 4628 * (5) bind to multicast address. 4629 * Fake out the IRE returned to upper 4630 * layer to be a broadcast IRE. 4631 */ 4632 src_ire = ire_ctable_lookup( 4633 INADDR_BROADCAST, INADDR_ANY, 4634 IRE_BROADCAST, NULL, zoneid, NULL, 4635 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4636 ipst); 4637 if (src_ire == NULL || !ire_requested) 4638 error = EADDRNOTAVAIL; 4639 } else { 4640 /* 4641 * Not a valid address for bind 4642 */ 4643 error = EADDRNOTAVAIL; 4644 } 4645 /* 4646 * Just to keep it consistent with the processing in 4647 * ip_bind_v4() 4648 */ 4649 mp->b_wptr--; 4650 } 4651 if (error) { 4652 /* Red Alert! Attempting to be a bogon! */ 4653 ip1dbg(("ip_bind: bad src address 0x%x\n", 4654 ntohl(src_addr))); 4655 goto bad_addr; 4656 } 4657 } 4658 4659 /* 4660 * Allow setting new policies. For example, disconnects come 4661 * down as ipa_t bind. As we would have set conn_policy_cached 4662 * to B_TRUE before, we should set it to B_FALSE, so that policy 4663 * can change after the disconnect. 4664 */ 4665 connp->conn_policy_cached = B_FALSE; 4666 4667 /* 4668 * If not fanout_insert this was just an address verification 4669 */ 4670 if (fanout_insert) { 4671 /* 4672 * The addresses have been verified. Time to insert in 4673 * the correct fanout list. 4674 */ 4675 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4676 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4677 connp->conn_lport = lport; 4678 connp->conn_fport = 0; 4679 /* 4680 * Do we need to add a check to reject Multicast packets 4681 */ 4682 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4683 } 4684 4685 if (error == 0) { 4686 if (ire_requested) { 4687 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4688 error = -1; 4689 /* Falls through to bad_addr */ 4690 } 4691 } else if (ipsec_policy_set) { 4692 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4693 error = -1; 4694 /* Falls through to bad_addr */ 4695 } 4696 } 4697 } 4698 bad_addr: 4699 if (error != 0) { 4700 if (connp->conn_anon_port) { 4701 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4702 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4703 B_FALSE); 4704 } 4705 connp->conn_mlp_type = mlptSingle; 4706 } 4707 if (src_ire != NULL) 4708 IRE_REFRELE(src_ire); 4709 if (ipsec_policy_set) { 4710 ASSERT(policy_mp == mp->b_cont); 4711 ASSERT(policy_mp != NULL); 4712 freeb(policy_mp); 4713 /* 4714 * As of now assume that nothing else accompanies 4715 * IPSEC_POLICY_SET. 4716 */ 4717 mp->b_cont = NULL; 4718 } 4719 return (error); 4720 } 4721 4722 /* 4723 * Verify that both the source and destination addresses 4724 * are valid. If verify_dst is false, then the destination address may be 4725 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4726 * destination reachability, while tunnels do not. 4727 * Note that we allow connect to broadcast and multicast 4728 * addresses when ire_requested is set. Thus the ULP 4729 * has to check for IRE_BROADCAST and multicast. 4730 * 4731 * Returns zero if ok. 4732 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4733 * (for use with TSYSERR reply). 4734 * 4735 * Note: lport and fport are in network byte order. 4736 */ 4737 int 4738 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4739 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4740 boolean_t ire_requested, boolean_t ipsec_policy_set, 4741 boolean_t fanout_insert, boolean_t verify_dst) 4742 { 4743 ire_t *src_ire; 4744 ire_t *dst_ire; 4745 int error = 0; 4746 int protocol; 4747 mblk_t *policy_mp; 4748 ire_t *sire = NULL; 4749 ire_t *md_dst_ire = NULL; 4750 ire_t *lso_dst_ire = NULL; 4751 ill_t *ill = NULL; 4752 zoneid_t zoneid; 4753 ipaddr_t src_addr = *src_addrp; 4754 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4755 4756 src_ire = dst_ire = NULL; 4757 protocol = *mp->b_wptr & 0xFF; 4758 4759 /* 4760 * If we never got a disconnect before, clear it now. 4761 */ 4762 connp->conn_fully_bound = B_FALSE; 4763 4764 if (ipsec_policy_set) { 4765 policy_mp = mp->b_cont; 4766 } 4767 4768 zoneid = IPCL_ZONEID(connp); 4769 4770 if (CLASSD(dst_addr)) { 4771 /* Pick up an IRE_BROADCAST */ 4772 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4773 NULL, zoneid, MBLK_GETLABEL(mp), 4774 (MATCH_IRE_RECURSIVE | 4775 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4776 MATCH_IRE_SECATTR), ipst); 4777 } else { 4778 /* 4779 * If conn_dontroute is set or if conn_nexthop_set is set, 4780 * and onlink ipif is not found set ENETUNREACH error. 4781 */ 4782 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4783 ipif_t *ipif; 4784 4785 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4786 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4787 if (ipif == NULL) { 4788 error = ENETUNREACH; 4789 goto bad_addr; 4790 } 4791 ipif_refrele(ipif); 4792 } 4793 4794 if (connp->conn_nexthop_set) { 4795 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4796 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4797 MATCH_IRE_SECATTR, ipst); 4798 } else { 4799 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4800 &sire, zoneid, MBLK_GETLABEL(mp), 4801 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4802 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4803 MATCH_IRE_SECATTR), ipst); 4804 } 4805 } 4806 /* 4807 * dst_ire can't be a broadcast when not ire_requested. 4808 * We also prevent ire's with src address INADDR_ANY to 4809 * be used, which are created temporarily for 4810 * sending out packets from endpoints that have 4811 * conn_unspec_src set. If verify_dst is true, the destination must be 4812 * reachable. If verify_dst is false, the destination needn't be 4813 * reachable. 4814 * 4815 * If we match on a reject or black hole, then we've got a 4816 * local failure. May as well fail out the connect() attempt, 4817 * since it's never going to succeed. 4818 */ 4819 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4820 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4821 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4822 /* 4823 * If we're verifying destination reachability, we always want 4824 * to complain here. 4825 * 4826 * If we're not verifying destination reachability but the 4827 * destination has a route, we still want to fail on the 4828 * temporary address and broadcast address tests. 4829 */ 4830 if (verify_dst || (dst_ire != NULL)) { 4831 if (ip_debug > 2) { 4832 pr_addr_dbg("ip_bind_connected: bad connected " 4833 "dst %s\n", AF_INET, &dst_addr); 4834 } 4835 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4836 error = ENETUNREACH; 4837 else 4838 error = EHOSTUNREACH; 4839 goto bad_addr; 4840 } 4841 } 4842 4843 /* 4844 * We now know that routing will allow us to reach the destination. 4845 * Check whether Trusted Solaris policy allows communication with this 4846 * host, and pretend that the destination is unreachable if not. 4847 * 4848 * This is never a problem for TCP, since that transport is known to 4849 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4850 * handling. If the remote is unreachable, it will be detected at that 4851 * point, so there's no reason to check it here. 4852 * 4853 * Note that for sendto (and other datagram-oriented friends), this 4854 * check is done as part of the data path label computation instead. 4855 * The check here is just to make non-TCP connect() report the right 4856 * error. 4857 */ 4858 if (dst_ire != NULL && is_system_labeled() && 4859 !IPCL_IS_TCP(connp) && 4860 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4861 connp->conn_mac_exempt, ipst) != 0) { 4862 error = EHOSTUNREACH; 4863 if (ip_debug > 2) { 4864 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4865 AF_INET, &dst_addr); 4866 } 4867 goto bad_addr; 4868 } 4869 4870 /* 4871 * If the app does a connect(), it means that it will most likely 4872 * send more than 1 packet to the destination. It makes sense 4873 * to clear the temporary flag. 4874 */ 4875 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4876 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4877 irb_t *irb = dst_ire->ire_bucket; 4878 4879 rw_enter(&irb->irb_lock, RW_WRITER); 4880 /* 4881 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4882 * the lock to guarantee irb_tmp_ire_cnt. 4883 */ 4884 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4885 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4886 irb->irb_tmp_ire_cnt--; 4887 } 4888 rw_exit(&irb->irb_lock); 4889 } 4890 4891 /* 4892 * See if we should notify ULP about LSO/MDT; we do this whether or not 4893 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4894 * eligibility tests for passive connects are handled separately 4895 * through tcp_adapt_ire(). We do this before the source address 4896 * selection, because dst_ire may change after a call to 4897 * ipif_select_source(). This is a best-effort check, as the 4898 * packet for this connection may not actually go through 4899 * dst_ire->ire_stq, and the exact IRE can only be known after 4900 * calling ip_newroute(). This is why we further check on the 4901 * IRE during LSO/Multidata packet transmission in 4902 * tcp_lsosend()/tcp_multisend(). 4903 */ 4904 if (!ipsec_policy_set && dst_ire != NULL && 4905 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4906 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4907 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4908 lso_dst_ire = dst_ire; 4909 IRE_REFHOLD(lso_dst_ire); 4910 } else if (ipst->ips_ip_multidata_outbound && 4911 ILL_MDT_CAPABLE(ill)) { 4912 md_dst_ire = dst_ire; 4913 IRE_REFHOLD(md_dst_ire); 4914 } 4915 } 4916 4917 if (dst_ire != NULL && 4918 dst_ire->ire_type == IRE_LOCAL && 4919 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4920 /* 4921 * If the IRE belongs to a different zone, look for a matching 4922 * route in the forwarding table and use the source address from 4923 * that route. 4924 */ 4925 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4926 zoneid, 0, NULL, 4927 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4928 MATCH_IRE_RJ_BHOLE, ipst); 4929 if (src_ire == NULL) { 4930 error = EHOSTUNREACH; 4931 goto bad_addr; 4932 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4933 if (!(src_ire->ire_type & IRE_HOST)) 4934 error = ENETUNREACH; 4935 else 4936 error = EHOSTUNREACH; 4937 goto bad_addr; 4938 } 4939 if (src_addr == INADDR_ANY) 4940 src_addr = src_ire->ire_src_addr; 4941 ire_refrele(src_ire); 4942 src_ire = NULL; 4943 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4944 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4945 src_addr = sire->ire_src_addr; 4946 ire_refrele(dst_ire); 4947 dst_ire = sire; 4948 sire = NULL; 4949 } else { 4950 /* 4951 * Pick a source address so that a proper inbound 4952 * load spreading would happen. 4953 */ 4954 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4955 ipif_t *src_ipif = NULL; 4956 ire_t *ipif_ire; 4957 4958 /* 4959 * Supply a local source address such that inbound 4960 * load spreading happens. 4961 * 4962 * Determine the best source address on this ill for 4963 * the destination. 4964 * 4965 * 1) For broadcast, we should return a broadcast ire 4966 * found above so that upper layers know that the 4967 * destination address is a broadcast address. 4968 * 4969 * 2) If this is part of a group, select a better 4970 * source address so that better inbound load 4971 * balancing happens. Do the same if the ipif 4972 * is DEPRECATED. 4973 * 4974 * 3) If the outgoing interface is part of a usesrc 4975 * group, then try selecting a source address from 4976 * the usesrc ILL. 4977 */ 4978 if ((dst_ire->ire_zoneid != zoneid && 4979 dst_ire->ire_zoneid != ALL_ZONES) || 4980 (!(dst_ire->ire_type & IRE_BROADCAST) && 4981 ((dst_ill->ill_group != NULL) || 4982 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4983 (dst_ill->ill_usesrc_ifindex != 0)))) { 4984 /* 4985 * If the destination is reachable via a 4986 * given gateway, the selected source address 4987 * should be in the same subnet as the gateway. 4988 * Otherwise, the destination is not reachable. 4989 * 4990 * If there are no interfaces on the same subnet 4991 * as the destination, ipif_select_source gives 4992 * first non-deprecated interface which might be 4993 * on a different subnet than the gateway. 4994 * This is not desirable. Hence pass the dst_ire 4995 * source address to ipif_select_source. 4996 * It is sure that the destination is reachable 4997 * with the dst_ire source address subnet. 4998 * So passing dst_ire source address to 4999 * ipif_select_source will make sure that the 5000 * selected source will be on the same subnet 5001 * as dst_ire source address. 5002 */ 5003 ipaddr_t saddr = 5004 dst_ire->ire_ipif->ipif_src_addr; 5005 src_ipif = ipif_select_source(dst_ill, 5006 saddr, zoneid); 5007 if (src_ipif != NULL) { 5008 if (IS_VNI(src_ipif->ipif_ill)) { 5009 /* 5010 * For VNI there is no 5011 * interface route 5012 */ 5013 src_addr = 5014 src_ipif->ipif_src_addr; 5015 } else { 5016 ipif_ire = 5017 ipif_to_ire(src_ipif); 5018 if (ipif_ire != NULL) { 5019 IRE_REFRELE(dst_ire); 5020 dst_ire = ipif_ire; 5021 } 5022 src_addr = 5023 dst_ire->ire_src_addr; 5024 } 5025 ipif_refrele(src_ipif); 5026 } else { 5027 src_addr = dst_ire->ire_src_addr; 5028 } 5029 } else { 5030 src_addr = dst_ire->ire_src_addr; 5031 } 5032 } 5033 } 5034 5035 /* 5036 * We do ire_route_lookup() here (and not 5037 * interface lookup as we assert that 5038 * src_addr should only come from an 5039 * UP interface for hard binding. 5040 */ 5041 ASSERT(src_ire == NULL); 5042 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5043 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5044 /* src_ire must be a local|loopback */ 5045 if (!IRE_IS_LOCAL(src_ire)) { 5046 if (ip_debug > 2) { 5047 pr_addr_dbg("ip_bind_connected: bad connected " 5048 "src %s\n", AF_INET, &src_addr); 5049 } 5050 error = EADDRNOTAVAIL; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * If the source address is a loopback address, the 5056 * destination had best be local or multicast. 5057 * The transports that can't handle multicast will reject 5058 * those addresses. 5059 */ 5060 if (src_ire->ire_type == IRE_LOOPBACK && 5061 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5062 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5063 error = -1; 5064 goto bad_addr; 5065 } 5066 5067 /* 5068 * Allow setting new policies. For example, disconnects come 5069 * down as ipa_t bind. As we would have set conn_policy_cached 5070 * to B_TRUE before, we should set it to B_FALSE, so that policy 5071 * can change after the disconnect. 5072 */ 5073 connp->conn_policy_cached = B_FALSE; 5074 5075 /* 5076 * Set the conn addresses/ports immediately, so the IPsec policy calls 5077 * can handle their passed-in conn's. 5078 */ 5079 5080 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5081 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5082 connp->conn_lport = lport; 5083 connp->conn_fport = fport; 5084 *src_addrp = src_addr; 5085 5086 ASSERT(!(ipsec_policy_set && ire_requested)); 5087 if (ire_requested) { 5088 iulp_t *ulp_info = NULL; 5089 5090 /* 5091 * Note that sire will not be NULL if this is an off-link 5092 * connection and there is not cache for that dest yet. 5093 * 5094 * XXX Because of an existing bug, if there are multiple 5095 * default routes, the IRE returned now may not be the actual 5096 * default route used (default routes are chosen in a 5097 * round robin fashion). So if the metrics for different 5098 * default routes are different, we may return the wrong 5099 * metrics. This will not be a problem if the existing 5100 * bug is fixed. 5101 */ 5102 if (sire != NULL) { 5103 ulp_info = &(sire->ire_uinfo); 5104 } 5105 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5106 error = -1; 5107 goto bad_addr; 5108 } 5109 } else if (ipsec_policy_set) { 5110 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5111 error = -1; 5112 goto bad_addr; 5113 } 5114 } 5115 5116 /* 5117 * Cache IPsec policy in this conn. If we have per-socket policy, 5118 * we'll cache that. If we don't, we'll inherit global policy. 5119 * 5120 * We can't insert until the conn reflects the policy. Note that 5121 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5122 * connections where we don't have a policy. This is to prevent 5123 * global policy lookups in the inbound path. 5124 * 5125 * If we insert before we set conn_policy_cached, 5126 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5127 * because global policy cound be non-empty. We normally call 5128 * ipsec_check_policy() for conn_policy_cached connections only if 5129 * ipc_in_enforce_policy is set. But in this case, 5130 * conn_policy_cached can get set anytime since we made the 5131 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5132 * called, which will make the above assumption false. Thus, we 5133 * need to insert after we set conn_policy_cached. 5134 */ 5135 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5136 goto bad_addr; 5137 5138 if (fanout_insert) { 5139 /* 5140 * The addresses have been verified. Time to insert in 5141 * the correct fanout list. 5142 */ 5143 error = ipcl_conn_insert(connp, protocol, src_addr, 5144 dst_addr, connp->conn_ports); 5145 } 5146 5147 if (error == 0) { 5148 connp->conn_fully_bound = B_TRUE; 5149 /* 5150 * Our initial checks for LSO/MDT have passed; the IRE is not 5151 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5152 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5153 * ip_xxinfo_return(), which performs further checks 5154 * against them and upon success, returns the LSO/MDT info 5155 * mblk which we will attach to the bind acknowledgment. 5156 */ 5157 if (lso_dst_ire != NULL) { 5158 mblk_t *lsoinfo_mp; 5159 5160 ASSERT(ill->ill_lso_capab != NULL); 5161 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5162 ill->ill_name, ill->ill_lso_capab)) != NULL) 5163 linkb(mp, lsoinfo_mp); 5164 } else if (md_dst_ire != NULL) { 5165 mblk_t *mdinfo_mp; 5166 5167 ASSERT(ill->ill_mdt_capab != NULL); 5168 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5169 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5170 linkb(mp, mdinfo_mp); 5171 } 5172 } 5173 bad_addr: 5174 if (ipsec_policy_set) { 5175 ASSERT(policy_mp == mp->b_cont); 5176 ASSERT(policy_mp != NULL); 5177 freeb(policy_mp); 5178 /* 5179 * As of now assume that nothing else accompanies 5180 * IPSEC_POLICY_SET. 5181 */ 5182 mp->b_cont = NULL; 5183 } 5184 if (src_ire != NULL) 5185 IRE_REFRELE(src_ire); 5186 if (dst_ire != NULL) 5187 IRE_REFRELE(dst_ire); 5188 if (sire != NULL) 5189 IRE_REFRELE(sire); 5190 if (md_dst_ire != NULL) 5191 IRE_REFRELE(md_dst_ire); 5192 if (lso_dst_ire != NULL) 5193 IRE_REFRELE(lso_dst_ire); 5194 return (error); 5195 } 5196 5197 /* 5198 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5199 * Prefers dst_ire over src_ire. 5200 */ 5201 static boolean_t 5202 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5203 { 5204 mblk_t *mp1; 5205 ire_t *ret_ire = NULL; 5206 5207 mp1 = mp->b_cont; 5208 ASSERT(mp1 != NULL); 5209 5210 if (ire != NULL) { 5211 /* 5212 * mp1 initialized above to IRE_DB_REQ_TYPE 5213 * appended mblk. Its <upper protocol>'s 5214 * job to make sure there is room. 5215 */ 5216 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5217 return (0); 5218 5219 mp1->b_datap->db_type = IRE_DB_TYPE; 5220 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5221 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5222 ret_ire = (ire_t *)mp1->b_rptr; 5223 /* 5224 * Pass the latest setting of the ip_path_mtu_discovery and 5225 * copy the ulp info if any. 5226 */ 5227 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5228 IPH_DF : 0; 5229 if (ulp_info != NULL) { 5230 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5231 sizeof (iulp_t)); 5232 } 5233 ret_ire->ire_mp = mp1; 5234 } else { 5235 /* 5236 * No IRE was found. Remove IRE mblk. 5237 */ 5238 mp->b_cont = mp1->b_cont; 5239 freeb(mp1); 5240 } 5241 5242 return (1); 5243 } 5244 5245 /* 5246 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5247 * the final piece where we don't. Return a pointer to the first mblk in the 5248 * result, and update the pointer to the next mblk to chew on. If anything 5249 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5250 * NULL pointer. 5251 */ 5252 mblk_t * 5253 ip_carve_mp(mblk_t **mpp, ssize_t len) 5254 { 5255 mblk_t *mp0; 5256 mblk_t *mp1; 5257 mblk_t *mp2; 5258 5259 if (!len || !mpp || !(mp0 = *mpp)) 5260 return (NULL); 5261 /* If we aren't going to consume the first mblk, we need a dup. */ 5262 if (mp0->b_wptr - mp0->b_rptr > len) { 5263 mp1 = dupb(mp0); 5264 if (mp1) { 5265 /* Partition the data between the two mblks. */ 5266 mp1->b_wptr = mp1->b_rptr + len; 5267 mp0->b_rptr = mp1->b_wptr; 5268 /* 5269 * after adjustments if mblk not consumed is now 5270 * unaligned, try to align it. If this fails free 5271 * all messages and let upper layer recover. 5272 */ 5273 if (!OK_32PTR(mp0->b_rptr)) { 5274 if (!pullupmsg(mp0, -1)) { 5275 freemsg(mp0); 5276 freemsg(mp1); 5277 *mpp = NULL; 5278 return (NULL); 5279 } 5280 } 5281 } 5282 return (mp1); 5283 } 5284 /* Eat through as many mblks as we need to get len bytes. */ 5285 len -= mp0->b_wptr - mp0->b_rptr; 5286 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5287 if (mp2->b_wptr - mp2->b_rptr > len) { 5288 /* 5289 * We won't consume the entire last mblk. Like 5290 * above, dup and partition it. 5291 */ 5292 mp1->b_cont = dupb(mp2); 5293 mp1 = mp1->b_cont; 5294 if (!mp1) { 5295 /* 5296 * Trouble. Rather than go to a lot of 5297 * trouble to clean up, we free the messages. 5298 * This won't be any worse than losing it on 5299 * the wire. 5300 */ 5301 freemsg(mp0); 5302 freemsg(mp2); 5303 *mpp = NULL; 5304 return (NULL); 5305 } 5306 mp1->b_wptr = mp1->b_rptr + len; 5307 mp2->b_rptr = mp1->b_wptr; 5308 /* 5309 * after adjustments if mblk not consumed is now 5310 * unaligned, try to align it. If this fails free 5311 * all messages and let upper layer recover. 5312 */ 5313 if (!OK_32PTR(mp2->b_rptr)) { 5314 if (!pullupmsg(mp2, -1)) { 5315 freemsg(mp0); 5316 freemsg(mp2); 5317 *mpp = NULL; 5318 return (NULL); 5319 } 5320 } 5321 *mpp = mp2; 5322 return (mp0); 5323 } 5324 /* Decrement len by the amount we just got. */ 5325 len -= mp2->b_wptr - mp2->b_rptr; 5326 } 5327 /* 5328 * len should be reduced to zero now. If not our caller has 5329 * screwed up. 5330 */ 5331 if (len) { 5332 /* Shouldn't happen! */ 5333 freemsg(mp0); 5334 *mpp = NULL; 5335 return (NULL); 5336 } 5337 /* 5338 * We consumed up to exactly the end of an mblk. Detach the part 5339 * we are returning from the rest of the chain. 5340 */ 5341 mp1->b_cont = NULL; 5342 *mpp = mp2; 5343 return (mp0); 5344 } 5345 5346 /* The ill stream is being unplumbed. Called from ip_close */ 5347 int 5348 ip_modclose(ill_t *ill) 5349 { 5350 boolean_t success; 5351 ipsq_t *ipsq; 5352 ipif_t *ipif; 5353 queue_t *q = ill->ill_rq; 5354 ip_stack_t *ipst = ill->ill_ipst; 5355 clock_t timeout; 5356 5357 /* 5358 * Wait for the ACKs of all deferred control messages to be processed. 5359 * In particular, we wait for a potential capability reset initiated 5360 * in ip_sioctl_plink() to complete before proceeding. 5361 * 5362 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5363 * in case the driver never replies. 5364 */ 5365 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5366 mutex_enter(&ill->ill_lock); 5367 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5368 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5369 /* Timeout */ 5370 break; 5371 } 5372 } 5373 mutex_exit(&ill->ill_lock); 5374 5375 /* 5376 * Forcibly enter the ipsq after some delay. This is to take 5377 * care of the case when some ioctl does not complete because 5378 * we sent a control message to the driver and it did not 5379 * send us a reply. We want to be able to at least unplumb 5380 * and replumb rather than force the user to reboot the system. 5381 */ 5382 success = ipsq_enter(ill, B_FALSE); 5383 5384 /* 5385 * Open/close/push/pop is guaranteed to be single threaded 5386 * per stream by STREAMS. FS guarantees that all references 5387 * from top are gone before close is called. So there can't 5388 * be another close thread that has set CONDEMNED on this ill. 5389 * and cause ipsq_enter to return failure. 5390 */ 5391 ASSERT(success); 5392 ipsq = ill->ill_phyint->phyint_ipsq; 5393 5394 /* 5395 * Mark it condemned. No new reference will be made to this ill. 5396 * Lookup functions will return an error. Threads that try to 5397 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5398 * that the refcnt will drop down to zero. 5399 */ 5400 mutex_enter(&ill->ill_lock); 5401 ill->ill_state_flags |= ILL_CONDEMNED; 5402 for (ipif = ill->ill_ipif; ipif != NULL; 5403 ipif = ipif->ipif_next) { 5404 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5405 } 5406 /* 5407 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5408 * returns error if ILL_CONDEMNED is set 5409 */ 5410 cv_broadcast(&ill->ill_cv); 5411 mutex_exit(&ill->ill_lock); 5412 5413 /* 5414 * Send all the deferred DLPI messages downstream which came in 5415 * during the small window right before ipsq_enter(). We do this 5416 * without waiting for the ACKs because all the ACKs for M_PROTO 5417 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5418 */ 5419 ill_dlpi_send_deferred(ill); 5420 5421 /* 5422 * Shut down fragmentation reassembly. 5423 * ill_frag_timer won't start a timer again. 5424 * Now cancel any existing timer 5425 */ 5426 (void) untimeout(ill->ill_frag_timer_id); 5427 (void) ill_frag_timeout(ill, 0); 5428 5429 /* 5430 * If MOVE was in progress, clear the 5431 * move_in_progress fields also. 5432 */ 5433 if (ill->ill_move_in_progress) { 5434 ILL_CLEAR_MOVE(ill); 5435 } 5436 5437 /* 5438 * Call ill_delete to bring down the ipifs, ilms and ill on 5439 * this ill. Then wait for the refcnts to drop to zero. 5440 * ill_is_quiescent checks whether the ill is really quiescent. 5441 * Then make sure that threads that are waiting to enter the 5442 * ipsq have seen the error returned by ipsq_enter and have 5443 * gone away. Then we call ill_delete_tail which does the 5444 * DL_UNBIND_REQ with the driver and then qprocsoff. 5445 */ 5446 ill_delete(ill); 5447 mutex_enter(&ill->ill_lock); 5448 while (!ill_is_quiescent(ill)) 5449 cv_wait(&ill->ill_cv, &ill->ill_lock); 5450 while (ill->ill_waiters) 5451 cv_wait(&ill->ill_cv, &ill->ill_lock); 5452 5453 mutex_exit(&ill->ill_lock); 5454 5455 /* 5456 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5457 * it held until the end of the function since the cleanup 5458 * below needs to be able to use the ip_stack_t. 5459 */ 5460 netstack_hold(ipst->ips_netstack); 5461 5462 /* qprocsoff is called in ill_delete_tail */ 5463 ill_delete_tail(ill); 5464 ASSERT(ill->ill_ipst == NULL); 5465 5466 /* 5467 * Walk through all upper (conn) streams and qenable 5468 * those that have queued data. 5469 * close synchronization needs this to 5470 * be done to ensure that all upper layers blocked 5471 * due to flow control to the closing device 5472 * get unblocked. 5473 */ 5474 ip1dbg(("ip_wsrv: walking\n")); 5475 conn_walk_drain(ipst); 5476 5477 mutex_enter(&ipst->ips_ip_mi_lock); 5478 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5479 mutex_exit(&ipst->ips_ip_mi_lock); 5480 5481 /* 5482 * credp could be null if the open didn't succeed and ip_modopen 5483 * itself calls ip_close. 5484 */ 5485 if (ill->ill_credp != NULL) 5486 crfree(ill->ill_credp); 5487 5488 mutex_enter(&ill->ill_lock); 5489 ill_nic_info_dispatch(ill); 5490 mutex_exit(&ill->ill_lock); 5491 5492 /* 5493 * Now we are done with the module close pieces that 5494 * need the netstack_t. 5495 */ 5496 netstack_rele(ipst->ips_netstack); 5497 5498 mi_close_free((IDP)ill); 5499 q->q_ptr = WR(q)->q_ptr = NULL; 5500 5501 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5502 5503 return (0); 5504 } 5505 5506 /* 5507 * This is called as part of close() for IP, UDP, ICMP, and RTS 5508 * in order to quiesce the conn. 5509 */ 5510 void 5511 ip_quiesce_conn(conn_t *connp) 5512 { 5513 boolean_t drain_cleanup_reqd = B_FALSE; 5514 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5515 boolean_t ilg_cleanup_reqd = B_FALSE; 5516 ip_stack_t *ipst; 5517 5518 ASSERT(!IPCL_IS_TCP(connp)); 5519 ipst = connp->conn_netstack->netstack_ip; 5520 5521 /* 5522 * Mark the conn as closing, and this conn must not be 5523 * inserted in future into any list. Eg. conn_drain_insert(), 5524 * won't insert this conn into the conn_drain_list. 5525 * Similarly ill_pending_mp_add() will not add any mp to 5526 * the pending mp list, after this conn has started closing. 5527 * 5528 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5529 * cannot get set henceforth. 5530 */ 5531 mutex_enter(&connp->conn_lock); 5532 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5533 connp->conn_state_flags |= CONN_CLOSING; 5534 if (connp->conn_idl != NULL) 5535 drain_cleanup_reqd = B_TRUE; 5536 if (connp->conn_oper_pending_ill != NULL) 5537 conn_ioctl_cleanup_reqd = B_TRUE; 5538 if (connp->conn_dhcpinit_ill != NULL) { 5539 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5540 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5541 connp->conn_dhcpinit_ill = NULL; 5542 } 5543 if (connp->conn_ilg_inuse != 0) 5544 ilg_cleanup_reqd = B_TRUE; 5545 mutex_exit(&connp->conn_lock); 5546 5547 if (conn_ioctl_cleanup_reqd) 5548 conn_ioctl_cleanup(connp); 5549 5550 if (is_system_labeled() && connp->conn_anon_port) { 5551 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5552 connp->conn_mlp_type, connp->conn_ulp, 5553 ntohs(connp->conn_lport), B_FALSE); 5554 connp->conn_anon_port = 0; 5555 } 5556 connp->conn_mlp_type = mlptSingle; 5557 5558 /* 5559 * Remove this conn from any fanout list it is on. 5560 * and then wait for any threads currently operating 5561 * on this endpoint to finish 5562 */ 5563 ipcl_hash_remove(connp); 5564 5565 /* 5566 * Remove this conn from the drain list, and do 5567 * any other cleanup that may be required. 5568 * (Only non-tcp streams may have a non-null conn_idl. 5569 * TCP streams are never flow controlled, and 5570 * conn_idl will be null) 5571 */ 5572 if (drain_cleanup_reqd) 5573 conn_drain_tail(connp, B_TRUE); 5574 5575 if (connp == ipst->ips_ip_g_mrouter) 5576 (void) ip_mrouter_done(NULL, ipst); 5577 5578 if (ilg_cleanup_reqd) 5579 ilg_delete_all(connp); 5580 5581 conn_delete_ire(connp, NULL); 5582 5583 /* 5584 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5585 * callers from write side can't be there now because close 5586 * is in progress. The only other caller is ipcl_walk 5587 * which checks for the condemned flag. 5588 */ 5589 mutex_enter(&connp->conn_lock); 5590 connp->conn_state_flags |= CONN_CONDEMNED; 5591 while (connp->conn_ref != 1) 5592 cv_wait(&connp->conn_cv, &connp->conn_lock); 5593 connp->conn_state_flags |= CONN_QUIESCED; 5594 mutex_exit(&connp->conn_lock); 5595 } 5596 5597 /* ARGSUSED */ 5598 int 5599 ip_close(queue_t *q, int flags) 5600 { 5601 conn_t *connp; 5602 5603 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5604 5605 /* 5606 * Call the appropriate delete routine depending on whether this is 5607 * a module or device. 5608 */ 5609 if (WR(q)->q_next != NULL) { 5610 /* This is a module close */ 5611 return (ip_modclose((ill_t *)q->q_ptr)); 5612 } 5613 5614 connp = q->q_ptr; 5615 ip_quiesce_conn(connp); 5616 5617 qprocsoff(q); 5618 5619 /* 5620 * Now we are truly single threaded on this stream, and can 5621 * delete the things hanging off the connp, and finally the connp. 5622 * We removed this connp from the fanout list, it cannot be 5623 * accessed thru the fanouts, and we already waited for the 5624 * conn_ref to drop to 0. We are already in close, so 5625 * there cannot be any other thread from the top. qprocsoff 5626 * has completed, and service has completed or won't run in 5627 * future. 5628 */ 5629 ASSERT(connp->conn_ref == 1); 5630 5631 inet_minor_free(ip_minor_arena, connp->conn_dev); 5632 5633 connp->conn_ref--; 5634 ipcl_conn_destroy(connp); 5635 5636 q->q_ptr = WR(q)->q_ptr = NULL; 5637 return (0); 5638 } 5639 5640 /* 5641 * Wapper around putnext() so that ip_rts_request can merely use 5642 * conn_recv. 5643 */ 5644 /*ARGSUSED2*/ 5645 static void 5646 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5647 { 5648 conn_t *connp = (conn_t *)arg1; 5649 5650 putnext(connp->conn_rq, mp); 5651 } 5652 5653 /* Return the IP checksum for the IP header at "iph". */ 5654 uint16_t 5655 ip_csum_hdr(ipha_t *ipha) 5656 { 5657 uint16_t *uph; 5658 uint32_t sum; 5659 int opt_len; 5660 5661 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5662 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5663 uph = (uint16_t *)ipha; 5664 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5665 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5666 if (opt_len > 0) { 5667 do { 5668 sum += uph[10]; 5669 sum += uph[11]; 5670 uph += 2; 5671 } while (--opt_len); 5672 } 5673 sum = (sum & 0xFFFF) + (sum >> 16); 5674 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5675 if (sum == 0xffff) 5676 sum = 0; 5677 return ((uint16_t)sum); 5678 } 5679 5680 /* 5681 * Called when the module is about to be unloaded 5682 */ 5683 void 5684 ip_ddi_destroy(void) 5685 { 5686 tnet_fini(); 5687 5688 icmp_ddi_destroy(); 5689 rts_ddi_destroy(); 5690 udp_ddi_destroy(); 5691 sctp_ddi_g_destroy(); 5692 tcp_ddi_g_destroy(); 5693 ipsec_policy_g_destroy(); 5694 ipcl_g_destroy(); 5695 ip_net_g_destroy(); 5696 ip_ire_g_fini(); 5697 inet_minor_destroy(ip_minor_arena); 5698 5699 #ifdef DEBUG 5700 list_destroy(&ip_thread_list); 5701 rw_destroy(&ip_thread_rwlock); 5702 tsd_destroy(&ip_thread_data); 5703 #endif 5704 5705 netstack_unregister(NS_IP); 5706 } 5707 5708 /* 5709 * First step in cleanup. 5710 */ 5711 /* ARGSUSED */ 5712 static void 5713 ip_stack_shutdown(netstackid_t stackid, void *arg) 5714 { 5715 ip_stack_t *ipst = (ip_stack_t *)arg; 5716 5717 #ifdef NS_DEBUG 5718 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5719 #endif 5720 5721 /* Get rid of loopback interfaces and their IREs */ 5722 ip_loopback_cleanup(ipst); 5723 } 5724 5725 /* 5726 * Free the IP stack instance. 5727 */ 5728 static void 5729 ip_stack_fini(netstackid_t stackid, void *arg) 5730 { 5731 ip_stack_t *ipst = (ip_stack_t *)arg; 5732 int ret; 5733 5734 #ifdef NS_DEBUG 5735 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5736 #endif 5737 ipv4_hook_destroy(ipst); 5738 ipv6_hook_destroy(ipst); 5739 ip_net_destroy(ipst); 5740 5741 rw_destroy(&ipst->ips_srcid_lock); 5742 5743 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5744 ipst->ips_ip_mibkp = NULL; 5745 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5746 ipst->ips_icmp_mibkp = NULL; 5747 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5748 ipst->ips_ip_kstat = NULL; 5749 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5750 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5751 ipst->ips_ip6_kstat = NULL; 5752 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5753 5754 nd_free(&ipst->ips_ip_g_nd); 5755 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5756 ipst->ips_param_arr = NULL; 5757 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5758 ipst->ips_ndp_arr = NULL; 5759 5760 ip_mrouter_stack_destroy(ipst); 5761 5762 mutex_destroy(&ipst->ips_ip_mi_lock); 5763 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5764 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5765 rw_destroy(&ipst->ips_ip_g_nd_lock); 5766 5767 ret = untimeout(ipst->ips_igmp_timeout_id); 5768 if (ret == -1) { 5769 ASSERT(ipst->ips_igmp_timeout_id == 0); 5770 } else { 5771 ASSERT(ipst->ips_igmp_timeout_id != 0); 5772 ipst->ips_igmp_timeout_id = 0; 5773 } 5774 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5775 if (ret == -1) { 5776 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5777 } else { 5778 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5779 ipst->ips_igmp_slowtimeout_id = 0; 5780 } 5781 ret = untimeout(ipst->ips_mld_timeout_id); 5782 if (ret == -1) { 5783 ASSERT(ipst->ips_mld_timeout_id == 0); 5784 } else { 5785 ASSERT(ipst->ips_mld_timeout_id != 0); 5786 ipst->ips_mld_timeout_id = 0; 5787 } 5788 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5789 if (ret == -1) { 5790 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5791 } else { 5792 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5793 ipst->ips_mld_slowtimeout_id = 0; 5794 } 5795 ret = untimeout(ipst->ips_ip_ire_expire_id); 5796 if (ret == -1) { 5797 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5798 } else { 5799 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5800 ipst->ips_ip_ire_expire_id = 0; 5801 } 5802 5803 mutex_destroy(&ipst->ips_igmp_timer_lock); 5804 mutex_destroy(&ipst->ips_mld_timer_lock); 5805 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5806 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5807 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5808 rw_destroy(&ipst->ips_ill_g_lock); 5809 5810 ip_ire_fini(ipst); 5811 ip6_asp_free(ipst); 5812 conn_drain_fini(ipst); 5813 ipcl_destroy(ipst); 5814 5815 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5816 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5817 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5818 ipst->ips_ndp4 = NULL; 5819 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5820 ipst->ips_ndp6 = NULL; 5821 5822 if (ipst->ips_loopback_ksp != NULL) { 5823 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5824 ipst->ips_loopback_ksp = NULL; 5825 } 5826 5827 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5828 ipst->ips_phyint_g_list = NULL; 5829 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5830 ipst->ips_ill_g_heads = NULL; 5831 5832 kmem_free(ipst, sizeof (*ipst)); 5833 } 5834 5835 /* 5836 * This function is called from the TSD destructor, and is used to debug 5837 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5838 * details. 5839 */ 5840 static void 5841 ip_thread_exit(void *phash) 5842 { 5843 th_hash_t *thh = phash; 5844 5845 rw_enter(&ip_thread_rwlock, RW_WRITER); 5846 list_remove(&ip_thread_list, thh); 5847 rw_exit(&ip_thread_rwlock); 5848 mod_hash_destroy_hash(thh->thh_hash); 5849 kmem_free(thh, sizeof (*thh)); 5850 } 5851 5852 /* 5853 * Called when the IP kernel module is loaded into the kernel 5854 */ 5855 void 5856 ip_ddi_init(void) 5857 { 5858 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5859 5860 /* 5861 * For IP and TCP the minor numbers should start from 2 since we have 4 5862 * initial devices: ip, ip6, tcp, tcp6. 5863 */ 5864 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5865 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5866 cmn_err(CE_PANIC, 5867 "ip_ddi_init: ip_minor_arena creation failed\n"); 5868 } 5869 5870 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5871 5872 ipcl_g_init(); 5873 ip_ire_g_init(); 5874 ip_net_g_init(); 5875 5876 #ifdef DEBUG 5877 tsd_create(&ip_thread_data, ip_thread_exit); 5878 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5879 list_create(&ip_thread_list, sizeof (th_hash_t), 5880 offsetof(th_hash_t, thh_link)); 5881 #endif 5882 5883 /* 5884 * We want to be informed each time a stack is created or 5885 * destroyed in the kernel, so we can maintain the 5886 * set of udp_stack_t's. 5887 */ 5888 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5889 ip_stack_fini); 5890 5891 ipsec_policy_g_init(); 5892 tcp_ddi_g_init(); 5893 sctp_ddi_g_init(); 5894 5895 tnet_init(); 5896 5897 udp_ddi_init(); 5898 rts_ddi_init(); 5899 icmp_ddi_init(); 5900 } 5901 5902 /* 5903 * Initialize the IP stack instance. 5904 */ 5905 static void * 5906 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5907 { 5908 ip_stack_t *ipst; 5909 ipparam_t *pa; 5910 ipndp_t *na; 5911 5912 #ifdef NS_DEBUG 5913 printf("ip_stack_init(stack %d)\n", stackid); 5914 #endif 5915 5916 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5917 ipst->ips_netstack = ns; 5918 5919 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5920 KM_SLEEP); 5921 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5922 KM_SLEEP); 5923 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5924 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5925 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5926 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5927 5928 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5929 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5930 ipst->ips_igmp_deferred_next = INFINITY; 5931 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5932 ipst->ips_mld_deferred_next = INFINITY; 5933 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5934 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5935 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5936 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5937 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5938 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5939 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5940 5941 ipcl_init(ipst); 5942 ip_ire_init(ipst); 5943 ip6_asp_init(ipst); 5944 ipif_init(ipst); 5945 conn_drain_init(ipst); 5946 ip_mrouter_stack_init(ipst); 5947 5948 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5949 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5950 5951 ipst->ips_ip_multirt_log_interval = 1000; 5952 5953 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5954 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5955 ipst->ips_ill_index = 1; 5956 5957 ipst->ips_saved_ip_g_forward = -1; 5958 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5959 5960 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5961 ipst->ips_param_arr = pa; 5962 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5963 5964 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5965 ipst->ips_ndp_arr = na; 5966 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5967 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5968 (caddr_t)&ipst->ips_ip_g_forward; 5969 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5970 (caddr_t)&ipst->ips_ipv6_forward; 5971 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5972 "ip_cgtp_filter") == 0); 5973 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5974 (caddr_t)&ipst->ips_ip_cgtp_filter; 5975 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5976 "ipmp_hook_emulation") == 0); 5977 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5978 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5979 5980 (void) ip_param_register(&ipst->ips_ip_g_nd, 5981 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5982 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5983 5984 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5985 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5986 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5987 ipst->ips_ip6_kstat = 5988 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5989 5990 ipst->ips_ipmp_enable_failback = B_TRUE; 5991 5992 ipst->ips_ip_src_id = 1; 5993 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5994 5995 ip_net_init(ipst, ns); 5996 ipv4_hook_init(ipst); 5997 ipv6_hook_init(ipst); 5998 5999 return (ipst); 6000 } 6001 6002 /* 6003 * Allocate and initialize a DLPI template of the specified length. (May be 6004 * called as writer.) 6005 */ 6006 mblk_t * 6007 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6008 { 6009 mblk_t *mp; 6010 6011 mp = allocb(len, BPRI_MED); 6012 if (!mp) 6013 return (NULL); 6014 6015 /* 6016 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6017 * of which we don't seem to use) are sent with M_PCPROTO, and 6018 * that other DLPI are M_PROTO. 6019 */ 6020 if (prim == DL_INFO_REQ) { 6021 mp->b_datap->db_type = M_PCPROTO; 6022 } else { 6023 mp->b_datap->db_type = M_PROTO; 6024 } 6025 6026 mp->b_wptr = mp->b_rptr + len; 6027 bzero(mp->b_rptr, len); 6028 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6029 return (mp); 6030 } 6031 6032 const char * 6033 dlpi_prim_str(int prim) 6034 { 6035 switch (prim) { 6036 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6037 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6038 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6039 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6040 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6041 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6042 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6043 case DL_OK_ACK: return ("DL_OK_ACK"); 6044 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6045 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6046 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6047 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6048 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6049 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6050 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6051 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6052 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6053 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6054 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6055 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6056 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6057 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6058 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6059 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6060 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6061 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6062 default: return ("<unknown primitive>"); 6063 } 6064 } 6065 6066 const char * 6067 dlpi_err_str(int err) 6068 { 6069 switch (err) { 6070 case DL_ACCESS: return ("DL_ACCESS"); 6071 case DL_BADADDR: return ("DL_BADADDR"); 6072 case DL_BADCORR: return ("DL_BADCORR"); 6073 case DL_BADDATA: return ("DL_BADDATA"); 6074 case DL_BADPPA: return ("DL_BADPPA"); 6075 case DL_BADPRIM: return ("DL_BADPRIM"); 6076 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6077 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6078 case DL_BADSAP: return ("DL_BADSAP"); 6079 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6080 case DL_BOUND: return ("DL_BOUND"); 6081 case DL_INITFAILED: return ("DL_INITFAILED"); 6082 case DL_NOADDR: return ("DL_NOADDR"); 6083 case DL_NOTINIT: return ("DL_NOTINIT"); 6084 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6085 case DL_SYSERR: return ("DL_SYSERR"); 6086 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6087 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6088 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6089 case DL_TOOMANY: return ("DL_TOOMANY"); 6090 case DL_NOTENAB: return ("DL_NOTENAB"); 6091 case DL_BUSY: return ("DL_BUSY"); 6092 case DL_NOAUTO: return ("DL_NOAUTO"); 6093 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6094 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6095 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6096 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6097 case DL_PENDING: return ("DL_PENDING"); 6098 default: return ("<unknown error>"); 6099 } 6100 } 6101 6102 /* 6103 * Debug formatting routine. Returns a character string representation of the 6104 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6105 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6106 * 6107 * Once the ndd table-printing interfaces are removed, this can be changed to 6108 * standard dotted-decimal form. 6109 */ 6110 char * 6111 ip_dot_addr(ipaddr_t addr, char *buf) 6112 { 6113 uint8_t *ap = (uint8_t *)&addr; 6114 6115 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6116 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6117 return (buf); 6118 } 6119 6120 /* 6121 * Write the given MAC address as a printable string in the usual colon- 6122 * separated format. 6123 */ 6124 const char * 6125 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6126 { 6127 char *bp; 6128 6129 if (alen == 0 || buflen < 4) 6130 return ("?"); 6131 bp = buf; 6132 for (;;) { 6133 /* 6134 * If there are more MAC address bytes available, but we won't 6135 * have any room to print them, then add "..." to the string 6136 * instead. See below for the 'magic number' explanation. 6137 */ 6138 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6139 (void) strcpy(bp, "..."); 6140 break; 6141 } 6142 (void) sprintf(bp, "%02x", *addr++); 6143 bp += 2; 6144 if (--alen == 0) 6145 break; 6146 *bp++ = ':'; 6147 buflen -= 3; 6148 /* 6149 * At this point, based on the first 'if' statement above, 6150 * either alen == 1 and buflen >= 3, or alen > 1 and 6151 * buflen >= 4. The first case leaves room for the final "xx" 6152 * number and trailing NUL byte. The second leaves room for at 6153 * least "...". Thus the apparently 'magic' numbers chosen for 6154 * that statement. 6155 */ 6156 } 6157 return (buf); 6158 } 6159 6160 /* 6161 * Send an ICMP error after patching up the packet appropriately. Returns 6162 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6163 */ 6164 static boolean_t 6165 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6166 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6167 zoneid_t zoneid, ip_stack_t *ipst) 6168 { 6169 ipha_t *ipha; 6170 mblk_t *first_mp; 6171 boolean_t secure; 6172 unsigned char db_type; 6173 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6174 6175 first_mp = mp; 6176 if (mctl_present) { 6177 mp = mp->b_cont; 6178 secure = ipsec_in_is_secure(first_mp); 6179 ASSERT(mp != NULL); 6180 } else { 6181 /* 6182 * If this is an ICMP error being reported - which goes 6183 * up as M_CTLs, we need to convert them to M_DATA till 6184 * we finish checking with global policy because 6185 * ipsec_check_global_policy() assumes M_DATA as clear 6186 * and M_CTL as secure. 6187 */ 6188 db_type = DB_TYPE(mp); 6189 DB_TYPE(mp) = M_DATA; 6190 secure = B_FALSE; 6191 } 6192 /* 6193 * We are generating an icmp error for some inbound packet. 6194 * Called from all ip_fanout_(udp, tcp, proto) functions. 6195 * Before we generate an error, check with global policy 6196 * to see whether this is allowed to enter the system. As 6197 * there is no "conn", we are checking with global policy. 6198 */ 6199 ipha = (ipha_t *)mp->b_rptr; 6200 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6201 first_mp = ipsec_check_global_policy(first_mp, NULL, 6202 ipha, NULL, mctl_present, ipst->ips_netstack); 6203 if (first_mp == NULL) 6204 return (B_FALSE); 6205 } 6206 6207 if (!mctl_present) 6208 DB_TYPE(mp) = db_type; 6209 6210 if (flags & IP_FF_SEND_ICMP) { 6211 if (flags & IP_FF_HDR_COMPLETE) { 6212 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6213 freemsg(first_mp); 6214 return (B_TRUE); 6215 } 6216 } 6217 if (flags & IP_FF_CKSUM) { 6218 /* 6219 * Have to correct checksum since 6220 * the packet might have been 6221 * fragmented and the reassembly code in ip_rput 6222 * does not restore the IP checksum. 6223 */ 6224 ipha->ipha_hdr_checksum = 0; 6225 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6226 } 6227 switch (icmp_type) { 6228 case ICMP_DEST_UNREACHABLE: 6229 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6230 ipst); 6231 break; 6232 default: 6233 freemsg(first_mp); 6234 break; 6235 } 6236 } else { 6237 freemsg(first_mp); 6238 return (B_FALSE); 6239 } 6240 6241 return (B_TRUE); 6242 } 6243 6244 /* 6245 * Used to send an ICMP error message when a packet is received for 6246 * a protocol that is not supported. The mblk passed as argument 6247 * is consumed by this function. 6248 */ 6249 void 6250 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6251 ip_stack_t *ipst) 6252 { 6253 mblk_t *mp; 6254 ipha_t *ipha; 6255 ill_t *ill; 6256 ipsec_in_t *ii; 6257 6258 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6259 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6260 6261 mp = ipsec_mp->b_cont; 6262 ipsec_mp->b_cont = NULL; 6263 ipha = (ipha_t *)mp->b_rptr; 6264 /* Get ill from index in ipsec_in_t. */ 6265 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6266 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6267 ipst); 6268 if (ill != NULL) { 6269 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6270 if (ip_fanout_send_icmp(q, mp, flags, 6271 ICMP_DEST_UNREACHABLE, 6272 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6273 BUMP_MIB(ill->ill_ip_mib, 6274 ipIfStatsInUnknownProtos); 6275 } 6276 } else { 6277 if (ip_fanout_send_icmp_v6(q, mp, flags, 6278 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6279 0, B_FALSE, zoneid, ipst)) { 6280 BUMP_MIB(ill->ill_ip_mib, 6281 ipIfStatsInUnknownProtos); 6282 } 6283 } 6284 ill_refrele(ill); 6285 } else { /* re-link for the freemsg() below. */ 6286 ipsec_mp->b_cont = mp; 6287 } 6288 6289 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6290 freemsg(ipsec_mp); 6291 } 6292 6293 /* 6294 * See if the inbound datagram has had IPsec processing applied to it. 6295 */ 6296 boolean_t 6297 ipsec_in_is_secure(mblk_t *ipsec_mp) 6298 { 6299 ipsec_in_t *ii; 6300 6301 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6302 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6303 6304 if (ii->ipsec_in_loopback) { 6305 return (ii->ipsec_in_secure); 6306 } else { 6307 return (ii->ipsec_in_ah_sa != NULL || 6308 ii->ipsec_in_esp_sa != NULL || 6309 ii->ipsec_in_decaps); 6310 } 6311 } 6312 6313 /* 6314 * Handle protocols with which IP is less intimate. There 6315 * can be more than one stream bound to a particular 6316 * protocol. When this is the case, normally each one gets a copy 6317 * of any incoming packets. 6318 * 6319 * IPsec NOTE : 6320 * 6321 * Don't allow a secure packet going up a non-secure connection. 6322 * We don't allow this because 6323 * 6324 * 1) Reply might go out in clear which will be dropped at 6325 * the sending side. 6326 * 2) If the reply goes out in clear it will give the 6327 * adversary enough information for getting the key in 6328 * most of the cases. 6329 * 6330 * Moreover getting a secure packet when we expect clear 6331 * implies that SA's were added without checking for 6332 * policy on both ends. This should not happen once ISAKMP 6333 * is used to negotiate SAs as SAs will be added only after 6334 * verifying the policy. 6335 * 6336 * NOTE : If the packet was tunneled and not multicast we only send 6337 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6338 * back to delivering packets to AF_INET6 raw sockets. 6339 * 6340 * IPQoS Notes: 6341 * Once we have determined the client, invoke IPPF processing. 6342 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6343 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6344 * ip_policy will be false. 6345 * 6346 * Zones notes: 6347 * Currently only applications in the global zone can create raw sockets for 6348 * protocols other than ICMP. So unlike the broadcast / multicast case of 6349 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6350 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6351 */ 6352 static void 6353 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6354 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6355 zoneid_t zoneid) 6356 { 6357 queue_t *rq; 6358 mblk_t *mp1, *first_mp1; 6359 uint_t protocol = ipha->ipha_protocol; 6360 ipaddr_t dst; 6361 boolean_t one_only; 6362 mblk_t *first_mp = mp; 6363 boolean_t secure; 6364 uint32_t ill_index; 6365 conn_t *connp, *first_connp, *next_connp; 6366 connf_t *connfp; 6367 boolean_t shared_addr; 6368 mib2_ipIfStatsEntry_t *mibptr; 6369 ip_stack_t *ipst = recv_ill->ill_ipst; 6370 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6371 6372 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6373 if (mctl_present) { 6374 mp = first_mp->b_cont; 6375 secure = ipsec_in_is_secure(first_mp); 6376 ASSERT(mp != NULL); 6377 } else { 6378 secure = B_FALSE; 6379 } 6380 dst = ipha->ipha_dst; 6381 /* 6382 * If the packet was tunneled and not multicast we only send to it 6383 * the first match. 6384 */ 6385 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6386 !CLASSD(dst)); 6387 6388 shared_addr = (zoneid == ALL_ZONES); 6389 if (shared_addr) { 6390 /* 6391 * We don't allow multilevel ports for raw IP, so no need to 6392 * check for that here. 6393 */ 6394 zoneid = tsol_packet_to_zoneid(mp); 6395 } 6396 6397 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6398 mutex_enter(&connfp->connf_lock); 6399 connp = connfp->connf_head; 6400 for (connp = connfp->connf_head; connp != NULL; 6401 connp = connp->conn_next) { 6402 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6403 zoneid) && 6404 (!is_system_labeled() || 6405 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6406 connp))) { 6407 break; 6408 } 6409 } 6410 6411 if (connp == NULL || connp->conn_upq == NULL) { 6412 /* 6413 * No one bound to these addresses. Is 6414 * there a client that wants all 6415 * unclaimed datagrams? 6416 */ 6417 mutex_exit(&connfp->connf_lock); 6418 /* 6419 * Check for IPPROTO_ENCAP... 6420 */ 6421 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6422 /* 6423 * If an IPsec mblk is here on a multicast 6424 * tunnel (using ip_mroute stuff), check policy here, 6425 * THEN ship off to ip_mroute_decap(). 6426 * 6427 * BTW, If I match a configured IP-in-IP 6428 * tunnel, this path will not be reached, and 6429 * ip_mroute_decap will never be called. 6430 */ 6431 first_mp = ipsec_check_global_policy(first_mp, connp, 6432 ipha, NULL, mctl_present, ipst->ips_netstack); 6433 if (first_mp != NULL) { 6434 if (mctl_present) 6435 freeb(first_mp); 6436 ip_mroute_decap(q, mp, ill); 6437 } /* Else we already freed everything! */ 6438 } else { 6439 /* 6440 * Otherwise send an ICMP protocol unreachable. 6441 */ 6442 if (ip_fanout_send_icmp(q, first_mp, flags, 6443 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6444 mctl_present, zoneid, ipst)) { 6445 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6446 } 6447 } 6448 return; 6449 } 6450 CONN_INC_REF(connp); 6451 first_connp = connp; 6452 6453 /* 6454 * Only send message to one tunnel driver by immediately 6455 * terminating the loop. 6456 */ 6457 connp = one_only ? NULL : connp->conn_next; 6458 6459 for (;;) { 6460 while (connp != NULL) { 6461 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6462 flags, zoneid) && 6463 (!is_system_labeled() || 6464 tsol_receive_local(mp, &dst, IPV4_VERSION, 6465 shared_addr, connp))) 6466 break; 6467 connp = connp->conn_next; 6468 } 6469 6470 /* 6471 * Copy the packet. 6472 */ 6473 if (connp == NULL || connp->conn_upq == NULL || 6474 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6475 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6476 /* 6477 * No more interested clients or memory 6478 * allocation failed 6479 */ 6480 connp = first_connp; 6481 break; 6482 } 6483 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6484 CONN_INC_REF(connp); 6485 mutex_exit(&connfp->connf_lock); 6486 rq = connp->conn_rq; 6487 if (!canputnext(rq)) { 6488 if (flags & IP_FF_RAWIP) { 6489 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6490 } else { 6491 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6492 } 6493 6494 freemsg(first_mp1); 6495 } else { 6496 /* 6497 * Don't enforce here if we're an actual tunnel - 6498 * let "tun" do it instead. 6499 */ 6500 if (!IPCL_IS_IPTUN(connp) && 6501 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6502 secure)) { 6503 first_mp1 = ipsec_check_inbound_policy 6504 (first_mp1, connp, ipha, NULL, 6505 mctl_present); 6506 } 6507 if (first_mp1 != NULL) { 6508 int in_flags = 0; 6509 /* 6510 * ip_fanout_proto also gets called from 6511 * icmp_inbound_error_fanout, in which case 6512 * the msg type is M_CTL. Don't add info 6513 * in this case for the time being. In future 6514 * when there is a need for knowing the 6515 * inbound iface index for ICMP error msgs, 6516 * then this can be changed. 6517 */ 6518 if (connp->conn_recvif) 6519 in_flags = IPF_RECVIF; 6520 /* 6521 * The ULP may support IP_RECVPKTINFO for both 6522 * IP v4 and v6 so pass the appropriate argument 6523 * based on conn IP version. 6524 */ 6525 if (connp->conn_ip_recvpktinfo) { 6526 if (connp->conn_af_isv6) { 6527 /* 6528 * V6 only needs index 6529 */ 6530 in_flags |= IPF_RECVIF; 6531 } else { 6532 /* 6533 * V4 needs index + 6534 * matching address. 6535 */ 6536 in_flags |= IPF_RECVADDR; 6537 } 6538 } 6539 if ((in_flags != 0) && 6540 (mp->b_datap->db_type != M_CTL)) { 6541 /* 6542 * the actual data will be 6543 * contained in b_cont upon 6544 * successful return of the 6545 * following call else 6546 * original mblk is returned 6547 */ 6548 ASSERT(recv_ill != NULL); 6549 mp1 = ip_add_info(mp1, recv_ill, 6550 in_flags, IPCL_ZONEID(connp), ipst); 6551 } 6552 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6553 if (mctl_present) 6554 freeb(first_mp1); 6555 (connp->conn_recv)(connp, mp1, NULL); 6556 } 6557 } 6558 mutex_enter(&connfp->connf_lock); 6559 /* Follow the next pointer before releasing the conn. */ 6560 next_connp = connp->conn_next; 6561 CONN_DEC_REF(connp); 6562 connp = next_connp; 6563 } 6564 6565 /* Last one. Send it upstream. */ 6566 mutex_exit(&connfp->connf_lock); 6567 6568 /* 6569 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6570 * will be set to false. 6571 */ 6572 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6573 ill_index = ill->ill_phyint->phyint_ifindex; 6574 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6575 if (mp == NULL) { 6576 CONN_DEC_REF(connp); 6577 if (mctl_present) { 6578 freeb(first_mp); 6579 } 6580 return; 6581 } 6582 } 6583 6584 rq = connp->conn_rq; 6585 if (!canputnext(rq)) { 6586 if (flags & IP_FF_RAWIP) { 6587 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6588 } else { 6589 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6590 } 6591 6592 freemsg(first_mp); 6593 } else { 6594 if (IPCL_IS_IPTUN(connp)) { 6595 /* 6596 * Tunneled packet. We enforce policy in the tunnel 6597 * module itself. 6598 * 6599 * Send the WHOLE packet up (incl. IPSEC_IN) without 6600 * a policy check. 6601 * FIXME to use conn_recv for tun later. 6602 */ 6603 putnext(rq, first_mp); 6604 CONN_DEC_REF(connp); 6605 return; 6606 } 6607 6608 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6609 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6610 ipha, NULL, mctl_present); 6611 } 6612 6613 if (first_mp != NULL) { 6614 int in_flags = 0; 6615 6616 /* 6617 * ip_fanout_proto also gets called 6618 * from icmp_inbound_error_fanout, in 6619 * which case the msg type is M_CTL. 6620 * Don't add info in this case for time 6621 * being. In future when there is a 6622 * need for knowing the inbound iface 6623 * index for ICMP error msgs, then this 6624 * can be changed 6625 */ 6626 if (connp->conn_recvif) 6627 in_flags = IPF_RECVIF; 6628 if (connp->conn_ip_recvpktinfo) { 6629 if (connp->conn_af_isv6) { 6630 /* 6631 * V6 only needs index 6632 */ 6633 in_flags |= IPF_RECVIF; 6634 } else { 6635 /* 6636 * V4 needs index + 6637 * matching address. 6638 */ 6639 in_flags |= IPF_RECVADDR; 6640 } 6641 } 6642 if ((in_flags != 0) && 6643 (mp->b_datap->db_type != M_CTL)) { 6644 6645 /* 6646 * the actual data will be contained in 6647 * b_cont upon successful return 6648 * of the following call else original 6649 * mblk is returned 6650 */ 6651 ASSERT(recv_ill != NULL); 6652 mp = ip_add_info(mp, recv_ill, 6653 in_flags, IPCL_ZONEID(connp), ipst); 6654 } 6655 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6656 (connp->conn_recv)(connp, mp, NULL); 6657 if (mctl_present) 6658 freeb(first_mp); 6659 } 6660 } 6661 CONN_DEC_REF(connp); 6662 } 6663 6664 /* 6665 * Fanout for TCP packets 6666 * The caller puts <fport, lport> in the ports parameter. 6667 * 6668 * IPQoS Notes 6669 * Before sending it to the client, invoke IPPF processing. 6670 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6671 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6672 * ip_policy is false. 6673 */ 6674 static void 6675 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6676 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6677 { 6678 mblk_t *first_mp; 6679 boolean_t secure; 6680 uint32_t ill_index; 6681 int ip_hdr_len; 6682 tcph_t *tcph; 6683 boolean_t syn_present = B_FALSE; 6684 conn_t *connp; 6685 ip_stack_t *ipst = recv_ill->ill_ipst; 6686 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6687 6688 ASSERT(recv_ill != NULL); 6689 6690 first_mp = mp; 6691 if (mctl_present) { 6692 ASSERT(first_mp->b_datap->db_type == M_CTL); 6693 mp = first_mp->b_cont; 6694 secure = ipsec_in_is_secure(first_mp); 6695 ASSERT(mp != NULL); 6696 } else { 6697 secure = B_FALSE; 6698 } 6699 6700 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6701 6702 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6703 zoneid, ipst)) == NULL) { 6704 /* 6705 * No connected connection or listener. Send a 6706 * TH_RST via tcp_xmit_listeners_reset. 6707 */ 6708 6709 /* Initiate IPPf processing, if needed. */ 6710 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6711 uint32_t ill_index; 6712 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6713 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6714 if (first_mp == NULL) 6715 return; 6716 } 6717 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6718 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6719 zoneid)); 6720 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6721 ipst->ips_netstack->netstack_tcp, NULL); 6722 return; 6723 } 6724 6725 /* 6726 * Allocate the SYN for the TCP connection here itself 6727 */ 6728 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6729 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6730 if (IPCL_IS_TCP(connp)) { 6731 squeue_t *sqp; 6732 6733 /* 6734 * For fused tcp loopback, assign the eager's 6735 * squeue to be that of the active connect's. 6736 * Note that we don't check for IP_FF_LOOPBACK 6737 * here since this routine gets called only 6738 * for loopback (unlike the IPv6 counterpart). 6739 */ 6740 ASSERT(Q_TO_CONN(q) != NULL); 6741 if (do_tcp_fusion && 6742 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6743 !secure && 6744 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6745 IPCL_IS_TCP(Q_TO_CONN(q))) { 6746 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6747 sqp = Q_TO_CONN(q)->conn_sqp; 6748 } else { 6749 sqp = IP_SQUEUE_GET(lbolt); 6750 } 6751 6752 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6753 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6754 syn_present = B_TRUE; 6755 } 6756 } 6757 6758 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6759 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6760 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6761 if ((flags & TH_RST) || (flags & TH_URG)) { 6762 CONN_DEC_REF(connp); 6763 freemsg(first_mp); 6764 return; 6765 } 6766 if (flags & TH_ACK) { 6767 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6768 ipst->ips_netstack->netstack_tcp, connp); 6769 CONN_DEC_REF(connp); 6770 return; 6771 } 6772 6773 CONN_DEC_REF(connp); 6774 freemsg(first_mp); 6775 return; 6776 } 6777 6778 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6779 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6780 NULL, mctl_present); 6781 if (first_mp == NULL) { 6782 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6783 CONN_DEC_REF(connp); 6784 return; 6785 } 6786 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6787 ASSERT(syn_present); 6788 if (mctl_present) { 6789 ASSERT(first_mp != mp); 6790 first_mp->b_datap->db_struioflag |= 6791 STRUIO_POLICY; 6792 } else { 6793 ASSERT(first_mp == mp); 6794 mp->b_datap->db_struioflag &= 6795 ~STRUIO_EAGER; 6796 mp->b_datap->db_struioflag |= 6797 STRUIO_POLICY; 6798 } 6799 } else { 6800 /* 6801 * Discard first_mp early since we're dealing with a 6802 * fully-connected conn_t and tcp doesn't do policy in 6803 * this case. 6804 */ 6805 if (mctl_present) { 6806 freeb(first_mp); 6807 mctl_present = B_FALSE; 6808 } 6809 first_mp = mp; 6810 } 6811 } 6812 6813 /* 6814 * Initiate policy processing here if needed. If we get here from 6815 * icmp_inbound_error_fanout, ip_policy is false. 6816 */ 6817 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6818 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6819 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6820 if (mp == NULL) { 6821 CONN_DEC_REF(connp); 6822 if (mctl_present) 6823 freeb(first_mp); 6824 return; 6825 } else if (mctl_present) { 6826 ASSERT(first_mp != mp); 6827 first_mp->b_cont = mp; 6828 } else { 6829 first_mp = mp; 6830 } 6831 } 6832 6833 6834 6835 /* Handle socket options. */ 6836 if (!syn_present && 6837 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6838 /* Add header */ 6839 ASSERT(recv_ill != NULL); 6840 /* 6841 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6842 * IPF_RECVIF. 6843 */ 6844 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6845 ipst); 6846 if (mp == NULL) { 6847 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6848 CONN_DEC_REF(connp); 6849 if (mctl_present) 6850 freeb(first_mp); 6851 return; 6852 } else if (mctl_present) { 6853 /* 6854 * ip_add_info might return a new mp. 6855 */ 6856 ASSERT(first_mp != mp); 6857 first_mp->b_cont = mp; 6858 } else { 6859 first_mp = mp; 6860 } 6861 } 6862 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6863 if (IPCL_IS_TCP(connp)) { 6864 /* do not drain, certain use cases can blow the stack */ 6865 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6866 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6867 } else { 6868 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6869 (connp->conn_recv)(connp, first_mp, NULL); 6870 CONN_DEC_REF(connp); 6871 } 6872 } 6873 6874 /* 6875 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6876 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6877 * is not consumed. 6878 * 6879 * One of four things can happen, all of which affect the passed-in mblk: 6880 * 6881 * 1.) ICMP messages that go through here just get returned TRUE. 6882 * 6883 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6884 * 6885 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6886 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6887 * 6888 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6889 */ 6890 static boolean_t 6891 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6892 ipsec_stack_t *ipss) 6893 { 6894 int shift, plen, iph_len; 6895 ipha_t *ipha; 6896 udpha_t *udpha; 6897 uint32_t *spi; 6898 uint8_t *orptr; 6899 boolean_t udp_pkt, free_ire; 6900 6901 if (DB_TYPE(mp) == M_CTL) { 6902 /* 6903 * ICMP message with UDP inside. Don't bother stripping, just 6904 * send it up. 6905 * 6906 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6907 * to ignore errors set by ICMP anyway ('cause they might be 6908 * forged), but that's the app's decision, not ours. 6909 */ 6910 6911 /* Bunch of reality checks for DEBUG kernels... */ 6912 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6913 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6914 6915 return (B_TRUE); 6916 } 6917 6918 ipha = (ipha_t *)mp->b_rptr; 6919 iph_len = IPH_HDR_LENGTH(ipha); 6920 plen = ntohs(ipha->ipha_length); 6921 6922 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6923 /* 6924 * Most likely a keepalive for the benefit of an intervening 6925 * NAT. These aren't for us, per se, so drop it. 6926 * 6927 * RFC 3947/8 doesn't say for sure what to do for 2-3 6928 * byte packets (keepalives are 1-byte), but we'll drop them 6929 * also. 6930 */ 6931 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6932 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6933 return (B_FALSE); 6934 } 6935 6936 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6937 /* might as well pull it all up - it might be ESP. */ 6938 if (!pullupmsg(mp, -1)) { 6939 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6940 DROPPER(ipss, ipds_esp_nomem), 6941 &ipss->ipsec_dropper); 6942 return (B_FALSE); 6943 } 6944 6945 ipha = (ipha_t *)mp->b_rptr; 6946 } 6947 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6948 if (*spi == 0) { 6949 /* UDP packet - remove 0-spi. */ 6950 shift = sizeof (uint32_t); 6951 } else { 6952 /* ESP-in-UDP packet - reduce to ESP. */ 6953 ipha->ipha_protocol = IPPROTO_ESP; 6954 shift = sizeof (udpha_t); 6955 } 6956 6957 /* Fix IP header */ 6958 ipha->ipha_length = htons(plen - shift); 6959 ipha->ipha_hdr_checksum = 0; 6960 6961 orptr = mp->b_rptr; 6962 mp->b_rptr += shift; 6963 6964 if (*spi == 0) { 6965 ASSERT((uint8_t *)ipha == orptr); 6966 udpha = (udpha_t *)(orptr + iph_len); 6967 udpha->uha_length = htons(plen - shift - iph_len); 6968 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6969 udp_pkt = B_TRUE; 6970 } else { 6971 udp_pkt = B_FALSE; 6972 } 6973 ovbcopy(orptr, orptr + shift, iph_len); 6974 if (!udp_pkt) /* Punt up for ESP processing. */ { 6975 ipha = (ipha_t *)(orptr + shift); 6976 6977 free_ire = (ire == NULL); 6978 if (free_ire) { 6979 /* Re-acquire ire. */ 6980 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6981 ipss->ipsec_netstack->netstack_ip); 6982 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6983 if (ire != NULL) 6984 ire_refrele(ire); 6985 /* 6986 * Do a regular freemsg(), as this is an IP 6987 * error (no local route) not an IPsec one. 6988 */ 6989 freemsg(mp); 6990 } 6991 } 6992 6993 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6994 if (free_ire) 6995 ire_refrele(ire); 6996 } 6997 6998 return (udp_pkt); 6999 } 7000 7001 /* 7002 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7003 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7004 * Caller is responsible for dropping references to the conn, and freeing 7005 * first_mp. 7006 * 7007 * IPQoS Notes 7008 * Before sending it to the client, invoke IPPF processing. Policy processing 7009 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7010 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7011 * ip_wput_local, ip_policy is false. 7012 */ 7013 static void 7014 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7015 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7016 boolean_t ip_policy) 7017 { 7018 boolean_t mctl_present = (first_mp != NULL); 7019 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7020 uint32_t ill_index; 7021 ip_stack_t *ipst = recv_ill->ill_ipst; 7022 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7023 7024 ASSERT(ill != NULL); 7025 7026 if (mctl_present) 7027 first_mp->b_cont = mp; 7028 else 7029 first_mp = mp; 7030 7031 if (CONN_UDP_FLOWCTLD(connp)) { 7032 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7033 freemsg(first_mp); 7034 return; 7035 } 7036 7037 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7038 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7039 NULL, mctl_present); 7040 if (first_mp == NULL) { 7041 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7042 return; /* Freed by ipsec_check_inbound_policy(). */ 7043 } 7044 } 7045 if (mctl_present) 7046 freeb(first_mp); 7047 7048 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7049 if (connp->conn_udp->udp_nat_t_endpoint) { 7050 if (mctl_present) { 7051 /* mctl_present *shouldn't* happen. */ 7052 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7053 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7054 &ipss->ipsec_dropper); 7055 return; 7056 } 7057 7058 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7059 return; 7060 } 7061 7062 /* Handle options. */ 7063 if (connp->conn_recvif) 7064 in_flags = IPF_RECVIF; 7065 /* 7066 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7067 * passed to ip_add_info is based on IP version of connp. 7068 */ 7069 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7070 if (connp->conn_af_isv6) { 7071 /* 7072 * V6 only needs index 7073 */ 7074 in_flags |= IPF_RECVIF; 7075 } else { 7076 /* 7077 * V4 needs index + matching address. 7078 */ 7079 in_flags |= IPF_RECVADDR; 7080 } 7081 } 7082 7083 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7084 in_flags |= IPF_RECVSLLA; 7085 7086 /* 7087 * Initiate IPPF processing here, if needed. Note first_mp won't be 7088 * freed if the packet is dropped. The caller will do so. 7089 */ 7090 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7091 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7092 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7093 if (mp == NULL) { 7094 return; 7095 } 7096 } 7097 if ((in_flags != 0) && 7098 (mp->b_datap->db_type != M_CTL)) { 7099 /* 7100 * The actual data will be contained in b_cont 7101 * upon successful return of the following call 7102 * else original mblk is returned 7103 */ 7104 ASSERT(recv_ill != NULL); 7105 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7106 ipst); 7107 } 7108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7109 /* Send it upstream */ 7110 (connp->conn_recv)(connp, mp, NULL); 7111 } 7112 7113 /* 7114 * Fanout for UDP packets. 7115 * The caller puts <fport, lport> in the ports parameter. 7116 * 7117 * If SO_REUSEADDR is set all multicast and broadcast packets 7118 * will be delivered to all streams bound to the same port. 7119 * 7120 * Zones notes: 7121 * Multicast and broadcast packets will be distributed to streams in all zones. 7122 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7123 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7124 * packets. To maintain this behavior with multiple zones, the conns are grouped 7125 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7126 * each zone. If unset, all the following conns in the same zone are skipped. 7127 */ 7128 static void 7129 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7130 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7131 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7132 { 7133 uint32_t dstport, srcport; 7134 ipaddr_t dst; 7135 mblk_t *first_mp; 7136 boolean_t secure; 7137 in6_addr_t v6src; 7138 conn_t *connp; 7139 connf_t *connfp; 7140 conn_t *first_connp; 7141 conn_t *next_connp; 7142 mblk_t *mp1, *first_mp1; 7143 ipaddr_t src; 7144 zoneid_t last_zoneid; 7145 boolean_t reuseaddr; 7146 boolean_t shared_addr; 7147 ip_stack_t *ipst; 7148 7149 ASSERT(recv_ill != NULL); 7150 ipst = recv_ill->ill_ipst; 7151 7152 first_mp = mp; 7153 if (mctl_present) { 7154 mp = first_mp->b_cont; 7155 first_mp->b_cont = NULL; 7156 secure = ipsec_in_is_secure(first_mp); 7157 ASSERT(mp != NULL); 7158 } else { 7159 first_mp = NULL; 7160 secure = B_FALSE; 7161 } 7162 7163 /* Extract ports in net byte order */ 7164 dstport = htons(ntohl(ports) & 0xFFFF); 7165 srcport = htons(ntohl(ports) >> 16); 7166 dst = ipha->ipha_dst; 7167 src = ipha->ipha_src; 7168 7169 shared_addr = (zoneid == ALL_ZONES); 7170 if (shared_addr) { 7171 /* 7172 * No need to handle exclusive-stack zones since ALL_ZONES 7173 * only applies to the shared stack. 7174 */ 7175 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7176 if (zoneid == ALL_ZONES) 7177 zoneid = tsol_packet_to_zoneid(mp); 7178 } 7179 7180 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7181 mutex_enter(&connfp->connf_lock); 7182 connp = connfp->connf_head; 7183 if (!broadcast && !CLASSD(dst)) { 7184 /* 7185 * Not broadcast or multicast. Send to the one (first) 7186 * client we find. No need to check conn_wantpacket() 7187 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7188 * IPv4 unicast packets. 7189 */ 7190 while ((connp != NULL) && 7191 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7192 !IPCL_ZONE_MATCH(connp, zoneid))) { 7193 connp = connp->conn_next; 7194 } 7195 7196 if (connp == NULL || connp->conn_upq == NULL) 7197 goto notfound; 7198 7199 if (is_system_labeled() && 7200 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7201 connp)) 7202 goto notfound; 7203 7204 CONN_INC_REF(connp); 7205 mutex_exit(&connfp->connf_lock); 7206 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7207 flags, recv_ill, ip_policy); 7208 IP_STAT(ipst, ip_udp_fannorm); 7209 CONN_DEC_REF(connp); 7210 return; 7211 } 7212 7213 /* 7214 * Broadcast and multicast case 7215 * 7216 * Need to check conn_wantpacket(). 7217 * If SO_REUSEADDR has been set on the first we send the 7218 * packet to all clients that have joined the group and 7219 * match the port. 7220 */ 7221 7222 while (connp != NULL) { 7223 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7224 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7225 (!is_system_labeled() || 7226 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7227 connp))) 7228 break; 7229 connp = connp->conn_next; 7230 } 7231 7232 if (connp == NULL || connp->conn_upq == NULL) 7233 goto notfound; 7234 7235 first_connp = connp; 7236 /* 7237 * When SO_REUSEADDR is not set, send the packet only to the first 7238 * matching connection in its zone by keeping track of the zoneid. 7239 */ 7240 reuseaddr = first_connp->conn_reuseaddr; 7241 last_zoneid = first_connp->conn_zoneid; 7242 7243 CONN_INC_REF(connp); 7244 connp = connp->conn_next; 7245 for (;;) { 7246 while (connp != NULL) { 7247 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7248 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7249 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7250 (!is_system_labeled() || 7251 tsol_receive_local(mp, &dst, IPV4_VERSION, 7252 shared_addr, connp))) 7253 break; 7254 connp = connp->conn_next; 7255 } 7256 /* 7257 * Just copy the data part alone. The mctl part is 7258 * needed just for verifying policy and it is never 7259 * sent up. 7260 */ 7261 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7262 ((mp1 = copymsg(mp)) == NULL))) { 7263 /* 7264 * No more interested clients or memory 7265 * allocation failed 7266 */ 7267 connp = first_connp; 7268 break; 7269 } 7270 if (connp->conn_zoneid != last_zoneid) { 7271 /* 7272 * Update the zoneid so that the packet isn't sent to 7273 * any more conns in the same zone unless SO_REUSEADDR 7274 * is set. 7275 */ 7276 reuseaddr = connp->conn_reuseaddr; 7277 last_zoneid = connp->conn_zoneid; 7278 } 7279 if (first_mp != NULL) { 7280 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7281 ipsec_info_type == IPSEC_IN); 7282 first_mp1 = ipsec_in_tag(first_mp, NULL, 7283 ipst->ips_netstack); 7284 if (first_mp1 == NULL) { 7285 freemsg(mp1); 7286 connp = first_connp; 7287 break; 7288 } 7289 } else { 7290 first_mp1 = NULL; 7291 } 7292 CONN_INC_REF(connp); 7293 mutex_exit(&connfp->connf_lock); 7294 /* 7295 * IPQoS notes: We don't send the packet for policy 7296 * processing here, will do it for the last one (below). 7297 * i.e. we do it per-packet now, but if we do policy 7298 * processing per-conn, then we would need to do it 7299 * here too. 7300 */ 7301 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7302 ipha, flags, recv_ill, B_FALSE); 7303 mutex_enter(&connfp->connf_lock); 7304 /* Follow the next pointer before releasing the conn. */ 7305 next_connp = connp->conn_next; 7306 IP_STAT(ipst, ip_udp_fanmb); 7307 CONN_DEC_REF(connp); 7308 connp = next_connp; 7309 } 7310 7311 /* Last one. Send it upstream. */ 7312 mutex_exit(&connfp->connf_lock); 7313 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7314 recv_ill, ip_policy); 7315 IP_STAT(ipst, ip_udp_fanmb); 7316 CONN_DEC_REF(connp); 7317 return; 7318 7319 notfound: 7320 7321 mutex_exit(&connfp->connf_lock); 7322 IP_STAT(ipst, ip_udp_fanothers); 7323 /* 7324 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7325 * have already been matched above, since they live in the IPv4 7326 * fanout tables. This implies we only need to 7327 * check for IPv6 in6addr_any endpoints here. 7328 * Thus we compare using ipv6_all_zeros instead of the destination 7329 * address, except for the multicast group membership lookup which 7330 * uses the IPv4 destination. 7331 */ 7332 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7333 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7334 mutex_enter(&connfp->connf_lock); 7335 connp = connfp->connf_head; 7336 if (!broadcast && !CLASSD(dst)) { 7337 while (connp != NULL) { 7338 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7339 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7340 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7341 !connp->conn_ipv6_v6only) 7342 break; 7343 connp = connp->conn_next; 7344 } 7345 7346 if (connp != NULL && is_system_labeled() && 7347 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7348 connp)) 7349 connp = NULL; 7350 7351 if (connp == NULL || connp->conn_upq == NULL) { 7352 /* 7353 * No one bound to this port. Is 7354 * there a client that wants all 7355 * unclaimed datagrams? 7356 */ 7357 mutex_exit(&connfp->connf_lock); 7358 7359 if (mctl_present) 7360 first_mp->b_cont = mp; 7361 else 7362 first_mp = mp; 7363 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7364 connf_head != NULL) { 7365 ip_fanout_proto(q, first_mp, ill, ipha, 7366 flags | IP_FF_RAWIP, mctl_present, 7367 ip_policy, recv_ill, zoneid); 7368 } else { 7369 if (ip_fanout_send_icmp(q, first_mp, flags, 7370 ICMP_DEST_UNREACHABLE, 7371 ICMP_PORT_UNREACHABLE, 7372 mctl_present, zoneid, ipst)) { 7373 BUMP_MIB(ill->ill_ip_mib, 7374 udpIfStatsNoPorts); 7375 } 7376 } 7377 return; 7378 } 7379 7380 CONN_INC_REF(connp); 7381 mutex_exit(&connfp->connf_lock); 7382 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7383 flags, recv_ill, ip_policy); 7384 CONN_DEC_REF(connp); 7385 return; 7386 } 7387 /* 7388 * IPv4 multicast packet being delivered to an AF_INET6 7389 * in6addr_any endpoint. 7390 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7391 * and not conn_wantpacket_v6() since any multicast membership is 7392 * for an IPv4-mapped multicast address. 7393 * The packet is sent to all clients in all zones that have joined the 7394 * group and match the port. 7395 */ 7396 while (connp != NULL) { 7397 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7398 srcport, v6src) && 7399 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7400 (!is_system_labeled() || 7401 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7402 connp))) 7403 break; 7404 connp = connp->conn_next; 7405 } 7406 7407 if (connp == NULL || connp->conn_upq == NULL) { 7408 /* 7409 * No one bound to this port. Is 7410 * there a client that wants all 7411 * unclaimed datagrams? 7412 */ 7413 mutex_exit(&connfp->connf_lock); 7414 7415 if (mctl_present) 7416 first_mp->b_cont = mp; 7417 else 7418 first_mp = mp; 7419 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7420 NULL) { 7421 ip_fanout_proto(q, first_mp, ill, ipha, 7422 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7423 recv_ill, zoneid); 7424 } else { 7425 /* 7426 * We used to attempt to send an icmp error here, but 7427 * since this is known to be a multicast packet 7428 * and we don't send icmp errors in response to 7429 * multicast, just drop the packet and give up sooner. 7430 */ 7431 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7432 freemsg(first_mp); 7433 } 7434 return; 7435 } 7436 7437 first_connp = connp; 7438 7439 CONN_INC_REF(connp); 7440 connp = connp->conn_next; 7441 for (;;) { 7442 while (connp != NULL) { 7443 if (IPCL_UDP_MATCH_V6(connp, dstport, 7444 ipv6_all_zeros, srcport, v6src) && 7445 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7446 (!is_system_labeled() || 7447 tsol_receive_local(mp, &dst, IPV4_VERSION, 7448 shared_addr, connp))) 7449 break; 7450 connp = connp->conn_next; 7451 } 7452 /* 7453 * Just copy the data part alone. The mctl part is 7454 * needed just for verifying policy and it is never 7455 * sent up. 7456 */ 7457 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7458 ((mp1 = copymsg(mp)) == NULL))) { 7459 /* 7460 * No more intested clients or memory 7461 * allocation failed 7462 */ 7463 connp = first_connp; 7464 break; 7465 } 7466 if (first_mp != NULL) { 7467 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7468 ipsec_info_type == IPSEC_IN); 7469 first_mp1 = ipsec_in_tag(first_mp, NULL, 7470 ipst->ips_netstack); 7471 if (first_mp1 == NULL) { 7472 freemsg(mp1); 7473 connp = first_connp; 7474 break; 7475 } 7476 } else { 7477 first_mp1 = NULL; 7478 } 7479 CONN_INC_REF(connp); 7480 mutex_exit(&connfp->connf_lock); 7481 /* 7482 * IPQoS notes: We don't send the packet for policy 7483 * processing here, will do it for the last one (below). 7484 * i.e. we do it per-packet now, but if we do policy 7485 * processing per-conn, then we would need to do it 7486 * here too. 7487 */ 7488 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7489 ipha, flags, recv_ill, B_FALSE); 7490 mutex_enter(&connfp->connf_lock); 7491 /* Follow the next pointer before releasing the conn. */ 7492 next_connp = connp->conn_next; 7493 CONN_DEC_REF(connp); 7494 connp = next_connp; 7495 } 7496 7497 /* Last one. Send it upstream. */ 7498 mutex_exit(&connfp->connf_lock); 7499 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7500 recv_ill, ip_policy); 7501 CONN_DEC_REF(connp); 7502 } 7503 7504 /* 7505 * Complete the ip_wput header so that it 7506 * is possible to generate ICMP 7507 * errors. 7508 */ 7509 int 7510 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7511 { 7512 ire_t *ire; 7513 7514 if (ipha->ipha_src == INADDR_ANY) { 7515 ire = ire_lookup_local(zoneid, ipst); 7516 if (ire == NULL) { 7517 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7518 return (1); 7519 } 7520 ipha->ipha_src = ire->ire_addr; 7521 ire_refrele(ire); 7522 } 7523 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7524 ipha->ipha_hdr_checksum = 0; 7525 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7526 return (0); 7527 } 7528 7529 /* 7530 * Nobody should be sending 7531 * packets up this stream 7532 */ 7533 static void 7534 ip_lrput(queue_t *q, mblk_t *mp) 7535 { 7536 mblk_t *mp1; 7537 7538 switch (mp->b_datap->db_type) { 7539 case M_FLUSH: 7540 /* Turn around */ 7541 if (*mp->b_rptr & FLUSHW) { 7542 *mp->b_rptr &= ~FLUSHR; 7543 qreply(q, mp); 7544 return; 7545 } 7546 break; 7547 } 7548 /* Could receive messages that passed through ar_rput */ 7549 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7550 mp1->b_prev = mp1->b_next = NULL; 7551 freemsg(mp); 7552 } 7553 7554 /* Nobody should be sending packets down this stream */ 7555 /* ARGSUSED */ 7556 void 7557 ip_lwput(queue_t *q, mblk_t *mp) 7558 { 7559 freemsg(mp); 7560 } 7561 7562 /* 7563 * Move the first hop in any source route to ipha_dst and remove that part of 7564 * the source route. Called by other protocols. Errors in option formatting 7565 * are ignored - will be handled by ip_wput_options Return the final 7566 * destination (either ipha_dst or the last entry in a source route.) 7567 */ 7568 ipaddr_t 7569 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7570 { 7571 ipoptp_t opts; 7572 uchar_t *opt; 7573 uint8_t optval; 7574 uint8_t optlen; 7575 ipaddr_t dst; 7576 int i; 7577 ire_t *ire; 7578 ip_stack_t *ipst = ns->netstack_ip; 7579 7580 ip2dbg(("ip_massage_options\n")); 7581 dst = ipha->ipha_dst; 7582 for (optval = ipoptp_first(&opts, ipha); 7583 optval != IPOPT_EOL; 7584 optval = ipoptp_next(&opts)) { 7585 opt = opts.ipoptp_cur; 7586 switch (optval) { 7587 uint8_t off; 7588 case IPOPT_SSRR: 7589 case IPOPT_LSRR: 7590 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7591 ip1dbg(("ip_massage_options: bad src route\n")); 7592 break; 7593 } 7594 optlen = opts.ipoptp_len; 7595 off = opt[IPOPT_OFFSET]; 7596 off--; 7597 redo_srr: 7598 if (optlen < IP_ADDR_LEN || 7599 off > optlen - IP_ADDR_LEN) { 7600 /* End of source route */ 7601 ip1dbg(("ip_massage_options: end of SR\n")); 7602 break; 7603 } 7604 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7605 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7606 ntohl(dst))); 7607 /* 7608 * Check if our address is present more than 7609 * once as consecutive hops in source route. 7610 * XXX verify per-interface ip_forwarding 7611 * for source route? 7612 */ 7613 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7614 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7615 if (ire != NULL) { 7616 ire_refrele(ire); 7617 off += IP_ADDR_LEN; 7618 goto redo_srr; 7619 } 7620 if (dst == htonl(INADDR_LOOPBACK)) { 7621 ip1dbg(("ip_massage_options: loopback addr in " 7622 "source route!\n")); 7623 break; 7624 } 7625 /* 7626 * Update ipha_dst to be the first hop and remove the 7627 * first hop from the source route (by overwriting 7628 * part of the option with NOP options). 7629 */ 7630 ipha->ipha_dst = dst; 7631 /* Put the last entry in dst */ 7632 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7633 3; 7634 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7635 7636 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7637 ntohl(dst))); 7638 /* Move down and overwrite */ 7639 opt[IP_ADDR_LEN] = opt[0]; 7640 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7641 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7642 for (i = 0; i < IP_ADDR_LEN; i++) 7643 opt[i] = IPOPT_NOP; 7644 break; 7645 } 7646 } 7647 return (dst); 7648 } 7649 7650 /* 7651 * Return the network mask 7652 * associated with the specified address. 7653 */ 7654 ipaddr_t 7655 ip_net_mask(ipaddr_t addr) 7656 { 7657 uchar_t *up = (uchar_t *)&addr; 7658 ipaddr_t mask = 0; 7659 uchar_t *maskp = (uchar_t *)&mask; 7660 7661 #if defined(__i386) || defined(__amd64) 7662 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7663 #endif 7664 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7665 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7666 #endif 7667 if (CLASSD(addr)) { 7668 maskp[0] = 0xF0; 7669 return (mask); 7670 } 7671 if (addr == 0) 7672 return (0); 7673 maskp[0] = 0xFF; 7674 if ((up[0] & 0x80) == 0) 7675 return (mask); 7676 7677 maskp[1] = 0xFF; 7678 if ((up[0] & 0xC0) == 0x80) 7679 return (mask); 7680 7681 maskp[2] = 0xFF; 7682 if ((up[0] & 0xE0) == 0xC0) 7683 return (mask); 7684 7685 /* Must be experimental or multicast, indicate as much */ 7686 return ((ipaddr_t)0); 7687 } 7688 7689 /* 7690 * Select an ill for the packet by considering load spreading across 7691 * a different ill in the group if dst_ill is part of some group. 7692 */ 7693 ill_t * 7694 ip_newroute_get_dst_ill(ill_t *dst_ill) 7695 { 7696 ill_t *ill; 7697 7698 /* 7699 * We schedule irrespective of whether the source address is 7700 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7701 */ 7702 ill = illgrp_scheduler(dst_ill); 7703 if (ill == NULL) 7704 return (NULL); 7705 7706 /* 7707 * For groups with names ip_sioctl_groupname ensures that all 7708 * ills are of same type. For groups without names, ifgrp_insert 7709 * ensures this. 7710 */ 7711 ASSERT(dst_ill->ill_type == ill->ill_type); 7712 7713 return (ill); 7714 } 7715 7716 /* 7717 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7718 */ 7719 ill_t * 7720 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7721 ip_stack_t *ipst) 7722 { 7723 ill_t *ret_ill; 7724 7725 ASSERT(ifindex != 0); 7726 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7727 ipst); 7728 if (ret_ill == NULL || 7729 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7730 if (isv6) { 7731 if (ill != NULL) { 7732 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7733 } else { 7734 BUMP_MIB(&ipst->ips_ip6_mib, 7735 ipIfStatsOutDiscards); 7736 } 7737 ip1dbg(("ip_grab_attach_ill (IPv6): " 7738 "bad ifindex %d.\n", ifindex)); 7739 } else { 7740 if (ill != NULL) { 7741 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7742 } else { 7743 BUMP_MIB(&ipst->ips_ip_mib, 7744 ipIfStatsOutDiscards); 7745 } 7746 ip1dbg(("ip_grab_attach_ill (IPv4): " 7747 "bad ifindex %d.\n", ifindex)); 7748 } 7749 if (ret_ill != NULL) 7750 ill_refrele(ret_ill); 7751 freemsg(first_mp); 7752 return (NULL); 7753 } 7754 7755 return (ret_ill); 7756 } 7757 7758 /* 7759 * IPv4 - 7760 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7761 * out a packet to a destination address for which we do not have specific 7762 * (or sufficient) routing information. 7763 * 7764 * NOTE : These are the scopes of some of the variables that point at IRE, 7765 * which needs to be followed while making any future modifications 7766 * to avoid memory leaks. 7767 * 7768 * - ire and sire are the entries looked up initially by 7769 * ire_ftable_lookup. 7770 * - ipif_ire is used to hold the interface ire associated with 7771 * the new cache ire. But it's scope is limited, so we always REFRELE 7772 * it before branching out to error paths. 7773 * - save_ire is initialized before ire_create, so that ire returned 7774 * by ire_create will not over-write the ire. We REFRELE save_ire 7775 * before breaking out of the switch. 7776 * 7777 * Thus on failures, we have to REFRELE only ire and sire, if they 7778 * are not NULL. 7779 */ 7780 void 7781 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7782 zoneid_t zoneid, ip_stack_t *ipst) 7783 { 7784 areq_t *areq; 7785 ipaddr_t gw = 0; 7786 ire_t *ire = NULL; 7787 mblk_t *res_mp; 7788 ipaddr_t *addrp; 7789 ipaddr_t nexthop_addr; 7790 ipif_t *src_ipif = NULL; 7791 ill_t *dst_ill = NULL; 7792 ipha_t *ipha; 7793 ire_t *sire = NULL; 7794 mblk_t *first_mp; 7795 ire_t *save_ire; 7796 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7797 ushort_t ire_marks = 0; 7798 boolean_t mctl_present; 7799 ipsec_out_t *io; 7800 mblk_t *saved_mp; 7801 ire_t *first_sire = NULL; 7802 mblk_t *copy_mp = NULL; 7803 mblk_t *xmit_mp = NULL; 7804 ipaddr_t save_dst; 7805 uint32_t multirt_flags = 7806 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7807 boolean_t multirt_is_resolvable; 7808 boolean_t multirt_resolve_next; 7809 boolean_t unspec_src; 7810 boolean_t do_attach_ill = B_FALSE; 7811 boolean_t ip_nexthop = B_FALSE; 7812 tsol_ire_gw_secattr_t *attrp = NULL; 7813 tsol_gcgrp_t *gcgrp = NULL; 7814 tsol_gcgrp_addr_t ga; 7815 7816 if (ip_debug > 2) { 7817 /* ip1dbg */ 7818 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7819 } 7820 7821 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7822 if (mctl_present) { 7823 io = (ipsec_out_t *)first_mp->b_rptr; 7824 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7825 ASSERT(zoneid == io->ipsec_out_zoneid); 7826 ASSERT(zoneid != ALL_ZONES); 7827 } 7828 7829 ipha = (ipha_t *)mp->b_rptr; 7830 7831 /* All multicast lookups come through ip_newroute_ipif() */ 7832 if (CLASSD(dst)) { 7833 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7834 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7835 freemsg(first_mp); 7836 return; 7837 } 7838 7839 if (mctl_present && io->ipsec_out_attach_if) { 7840 /* ip_grab_attach_ill returns a held ill */ 7841 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7842 io->ipsec_out_ill_index, B_FALSE, ipst); 7843 7844 /* Failure case frees things for us. */ 7845 if (attach_ill == NULL) 7846 return; 7847 7848 /* 7849 * Check if we need an ire that will not be 7850 * looked up by anybody else i.e. HIDDEN. 7851 */ 7852 if (ill_is_probeonly(attach_ill)) 7853 ire_marks = IRE_MARK_HIDDEN; 7854 } 7855 if (mctl_present && io->ipsec_out_ip_nexthop) { 7856 ip_nexthop = B_TRUE; 7857 nexthop_addr = io->ipsec_out_nexthop_addr; 7858 } 7859 /* 7860 * If this IRE is created for forwarding or it is not for 7861 * traffic for congestion controlled protocols, mark it as temporary. 7862 */ 7863 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7864 ire_marks |= IRE_MARK_TEMPORARY; 7865 7866 /* 7867 * Get what we can from ire_ftable_lookup which will follow an IRE 7868 * chain until it gets the most specific information available. 7869 * For example, we know that there is no IRE_CACHE for this dest, 7870 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7871 * ire_ftable_lookup will look up the gateway, etc. 7872 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7873 * to the destination, of equal netmask length in the forward table, 7874 * will be recursively explored. If no information is available 7875 * for the final gateway of that route, we force the returned ire 7876 * to be equal to sire using MATCH_IRE_PARENT. 7877 * At least, in this case we have a starting point (in the buckets) 7878 * to look for other routes to the destination in the forward table. 7879 * This is actually used only for multirouting, where a list 7880 * of routes has to be processed in sequence. 7881 * 7882 * In the process of coming up with the most specific information, 7883 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7884 * for the gateway (i.e., one for which the ire_nce->nce_state is 7885 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7886 * Two caveats when handling incomplete ire's in ip_newroute: 7887 * - we should be careful when accessing its ire_nce (specifically 7888 * the nce_res_mp) ast it might change underneath our feet, and, 7889 * - not all legacy code path callers are prepared to handle 7890 * incomplete ire's, so we should not create/add incomplete 7891 * ire_cache entries here. (See discussion about temporary solution 7892 * further below). 7893 * 7894 * In order to minimize packet dropping, and to preserve existing 7895 * behavior, we treat this case as if there were no IRE_CACHE for the 7896 * gateway, and instead use the IF_RESOLVER ire to send out 7897 * another request to ARP (this is achieved by passing the 7898 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7899 * arp response comes back in ip_wput_nondata, we will create 7900 * a per-dst ire_cache that has an ND_COMPLETE ire. 7901 * 7902 * Note that this is a temporary solution; the correct solution is 7903 * to create an incomplete per-dst ire_cache entry, and send the 7904 * packet out when the gw's nce is resolved. In order to achieve this, 7905 * all packet processing must have been completed prior to calling 7906 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7907 * to be modified to accomodate this solution. 7908 */ 7909 if (ip_nexthop) { 7910 /* 7911 * The first time we come here, we look for an IRE_INTERFACE 7912 * entry for the specified nexthop, set the dst to be the 7913 * nexthop address and create an IRE_CACHE entry for the 7914 * nexthop. The next time around, we are able to find an 7915 * IRE_CACHE entry for the nexthop, set the gateway to be the 7916 * nexthop address and create an IRE_CACHE entry for the 7917 * destination address via the specified nexthop. 7918 */ 7919 ire = ire_cache_lookup(nexthop_addr, zoneid, 7920 MBLK_GETLABEL(mp), ipst); 7921 if (ire != NULL) { 7922 gw = nexthop_addr; 7923 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7924 } else { 7925 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7926 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7927 MBLK_GETLABEL(mp), 7928 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7929 ipst); 7930 if (ire != NULL) { 7931 dst = nexthop_addr; 7932 } 7933 } 7934 } else if (attach_ill == NULL) { 7935 ire = ire_ftable_lookup(dst, 0, 0, 0, 7936 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7937 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7938 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7939 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7940 ipst); 7941 } else { 7942 /* 7943 * attach_ill is set only for communicating with 7944 * on-link hosts. So, don't look for DEFAULT. 7945 */ 7946 ipif_t *attach_ipif; 7947 7948 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7949 if (attach_ipif == NULL) { 7950 ill_refrele(attach_ill); 7951 goto icmp_err_ret; 7952 } 7953 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7954 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7955 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7956 MATCH_IRE_SECATTR, ipst); 7957 ipif_refrele(attach_ipif); 7958 } 7959 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7960 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7961 7962 /* 7963 * This loop is run only once in most cases. 7964 * We loop to resolve further routes only when the destination 7965 * can be reached through multiple RTF_MULTIRT-flagged ires. 7966 */ 7967 do { 7968 /* Clear the previous iteration's values */ 7969 if (src_ipif != NULL) { 7970 ipif_refrele(src_ipif); 7971 src_ipif = NULL; 7972 } 7973 if (dst_ill != NULL) { 7974 ill_refrele(dst_ill); 7975 dst_ill = NULL; 7976 } 7977 7978 multirt_resolve_next = B_FALSE; 7979 /* 7980 * We check if packets have to be multirouted. 7981 * In this case, given the current <ire, sire> couple, 7982 * we look for the next suitable <ire, sire>. 7983 * This check is done in ire_multirt_lookup(), 7984 * which applies various criteria to find the next route 7985 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7986 * unchanged if it detects it has not been tried yet. 7987 */ 7988 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7989 ip3dbg(("ip_newroute: starting next_resolution " 7990 "with first_mp %p, tag %d\n", 7991 (void *)first_mp, 7992 MULTIRT_DEBUG_TAGGED(first_mp))); 7993 7994 ASSERT(sire != NULL); 7995 multirt_is_resolvable = 7996 ire_multirt_lookup(&ire, &sire, multirt_flags, 7997 MBLK_GETLABEL(mp), ipst); 7998 7999 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8000 "ire %p, sire %p\n", 8001 multirt_is_resolvable, 8002 (void *)ire, (void *)sire)); 8003 8004 if (!multirt_is_resolvable) { 8005 /* 8006 * No more multirt route to resolve; give up 8007 * (all routes resolved or no more 8008 * resolvable routes). 8009 */ 8010 if (ire != NULL) { 8011 ire_refrele(ire); 8012 ire = NULL; 8013 } 8014 } else { 8015 ASSERT(sire != NULL); 8016 ASSERT(ire != NULL); 8017 /* 8018 * We simply use first_sire as a flag that 8019 * indicates if a resolvable multirt route 8020 * has already been found. 8021 * If it is not the case, we may have to send 8022 * an ICMP error to report that the 8023 * destination is unreachable. 8024 * We do not IRE_REFHOLD first_sire. 8025 */ 8026 if (first_sire == NULL) { 8027 first_sire = sire; 8028 } 8029 } 8030 } 8031 if (ire == NULL) { 8032 if (ip_debug > 3) { 8033 /* ip2dbg */ 8034 pr_addr_dbg("ip_newroute: " 8035 "can't resolve %s\n", AF_INET, &dst); 8036 } 8037 ip3dbg(("ip_newroute: " 8038 "ire %p, sire %p, first_sire %p\n", 8039 (void *)ire, (void *)sire, (void *)first_sire)); 8040 8041 if (sire != NULL) { 8042 ire_refrele(sire); 8043 sire = NULL; 8044 } 8045 8046 if (first_sire != NULL) { 8047 /* 8048 * At least one multirt route has been found 8049 * in the same call to ip_newroute(); 8050 * there is no need to report an ICMP error. 8051 * first_sire was not IRE_REFHOLDed. 8052 */ 8053 MULTIRT_DEBUG_UNTAG(first_mp); 8054 freemsg(first_mp); 8055 return; 8056 } 8057 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8058 RTA_DST, ipst); 8059 if (attach_ill != NULL) 8060 ill_refrele(attach_ill); 8061 goto icmp_err_ret; 8062 } 8063 8064 /* 8065 * Verify that the returned IRE does not have either 8066 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8067 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8068 */ 8069 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8070 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8071 if (attach_ill != NULL) 8072 ill_refrele(attach_ill); 8073 goto icmp_err_ret; 8074 } 8075 /* 8076 * Increment the ire_ob_pkt_count field for ire if it is an 8077 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8078 * increment the same for the parent IRE, sire, if it is some 8079 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8080 */ 8081 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8082 UPDATE_OB_PKT_COUNT(ire); 8083 ire->ire_last_used_time = lbolt; 8084 } 8085 8086 if (sire != NULL) { 8087 gw = sire->ire_gateway_addr; 8088 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8089 IRE_INTERFACE)) == 0); 8090 UPDATE_OB_PKT_COUNT(sire); 8091 sire->ire_last_used_time = lbolt; 8092 } 8093 /* 8094 * We have a route to reach the destination. 8095 * 8096 * 1) If the interface is part of ill group, try to get a new 8097 * ill taking load spreading into account. 8098 * 8099 * 2) After selecting the ill, get a source address that 8100 * might create good inbound load spreading. 8101 * ipif_select_source does this for us. 8102 * 8103 * If the application specified the ill (ifindex), we still 8104 * load spread. Only if the packets needs to go out 8105 * specifically on a given ill e.g. binding to 8106 * IPIF_NOFAILOVER address, then we don't try to use a 8107 * different ill for load spreading. 8108 */ 8109 if (attach_ill == NULL) { 8110 /* 8111 * Don't perform outbound load spreading in the 8112 * case of an RTF_MULTIRT route, as we actually 8113 * typically want to replicate outgoing packets 8114 * through particular interfaces. 8115 */ 8116 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8117 dst_ill = ire->ire_ipif->ipif_ill; 8118 /* for uniformity */ 8119 ill_refhold(dst_ill); 8120 } else { 8121 /* 8122 * If we are here trying to create an IRE_CACHE 8123 * for an offlink destination and have the 8124 * IRE_CACHE for the next hop and the latter is 8125 * using virtual IP source address selection i.e 8126 * it's ire->ire_ipif is pointing to a virtual 8127 * network interface (vni) then 8128 * ip_newroute_get_dst_ll() will return the vni 8129 * interface as the dst_ill. Since the vni is 8130 * virtual i.e not associated with any physical 8131 * interface, it cannot be the dst_ill, hence 8132 * in such a case call ip_newroute_get_dst_ll() 8133 * with the stq_ill instead of the ire_ipif ILL. 8134 * The function returns a refheld ill. 8135 */ 8136 if ((ire->ire_type == IRE_CACHE) && 8137 IS_VNI(ire->ire_ipif->ipif_ill)) 8138 dst_ill = ip_newroute_get_dst_ill( 8139 ire->ire_stq->q_ptr); 8140 else 8141 dst_ill = ip_newroute_get_dst_ill( 8142 ire->ire_ipif->ipif_ill); 8143 } 8144 if (dst_ill == NULL) { 8145 if (ip_debug > 2) { 8146 pr_addr_dbg("ip_newroute: " 8147 "no dst ill for dst" 8148 " %s\n", AF_INET, &dst); 8149 } 8150 goto icmp_err_ret; 8151 } 8152 } else { 8153 dst_ill = ire->ire_ipif->ipif_ill; 8154 /* for uniformity */ 8155 ill_refhold(dst_ill); 8156 /* 8157 * We should have found a route matching ill as we 8158 * called ire_ftable_lookup with MATCH_IRE_ILL. 8159 * Rather than asserting, when there is a mismatch, 8160 * we just drop the packet. 8161 */ 8162 if (dst_ill != attach_ill) { 8163 ip0dbg(("ip_newroute: Packet dropped as " 8164 "IPIF_NOFAILOVER ill is %s, " 8165 "ire->ire_ipif->ipif_ill is %s\n", 8166 attach_ill->ill_name, 8167 dst_ill->ill_name)); 8168 ill_refrele(attach_ill); 8169 goto icmp_err_ret; 8170 } 8171 } 8172 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8173 if (attach_ill != NULL) { 8174 ill_refrele(attach_ill); 8175 attach_ill = NULL; 8176 do_attach_ill = B_TRUE; 8177 } 8178 ASSERT(dst_ill != NULL); 8179 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8180 8181 /* 8182 * Pick the best source address from dst_ill. 8183 * 8184 * 1) If it is part of a multipathing group, we would 8185 * like to spread the inbound packets across different 8186 * interfaces. ipif_select_source picks a random source 8187 * across the different ills in the group. 8188 * 8189 * 2) If it is not part of a multipathing group, we try 8190 * to pick the source address from the destination 8191 * route. Clustering assumes that when we have multiple 8192 * prefixes hosted on an interface, the prefix of the 8193 * source address matches the prefix of the destination 8194 * route. We do this only if the address is not 8195 * DEPRECATED. 8196 * 8197 * 3) If the conn is in a different zone than the ire, we 8198 * need to pick a source address from the right zone. 8199 * 8200 * NOTE : If we hit case (1) above, the prefix of the source 8201 * address picked may not match the prefix of the 8202 * destination routes prefix as ipif_select_source 8203 * does not look at "dst" while picking a source 8204 * address. 8205 * If we want the same behavior as (2), we will need 8206 * to change the behavior of ipif_select_source. 8207 */ 8208 ASSERT(src_ipif == NULL); 8209 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8210 /* 8211 * The RTF_SETSRC flag is set in the parent ire (sire). 8212 * Check that the ipif matching the requested source 8213 * address still exists. 8214 */ 8215 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8216 zoneid, NULL, NULL, NULL, NULL, ipst); 8217 } 8218 8219 unspec_src = (connp != NULL && connp->conn_unspec_src); 8220 8221 if (src_ipif == NULL && 8222 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8223 ire_marks |= IRE_MARK_USESRC_CHECK; 8224 if ((dst_ill->ill_group != NULL) || 8225 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8226 (connp != NULL && ire->ire_zoneid != zoneid && 8227 ire->ire_zoneid != ALL_ZONES) || 8228 (dst_ill->ill_usesrc_ifindex != 0)) { 8229 /* 8230 * If the destination is reachable via a 8231 * given gateway, the selected source address 8232 * should be in the same subnet as the gateway. 8233 * Otherwise, the destination is not reachable. 8234 * 8235 * If there are no interfaces on the same subnet 8236 * as the destination, ipif_select_source gives 8237 * first non-deprecated interface which might be 8238 * on a different subnet than the gateway. 8239 * This is not desirable. Hence pass the dst_ire 8240 * source address to ipif_select_source. 8241 * It is sure that the destination is reachable 8242 * with the dst_ire source address subnet. 8243 * So passing dst_ire source address to 8244 * ipif_select_source will make sure that the 8245 * selected source will be on the same subnet 8246 * as dst_ire source address. 8247 */ 8248 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8249 src_ipif = ipif_select_source(dst_ill, saddr, 8250 zoneid); 8251 if (src_ipif == NULL) { 8252 if (ip_debug > 2) { 8253 pr_addr_dbg("ip_newroute: " 8254 "no src for dst %s ", 8255 AF_INET, &dst); 8256 printf("through interface %s\n", 8257 dst_ill->ill_name); 8258 } 8259 goto icmp_err_ret; 8260 } 8261 } else { 8262 src_ipif = ire->ire_ipif; 8263 ASSERT(src_ipif != NULL); 8264 /* hold src_ipif for uniformity */ 8265 ipif_refhold(src_ipif); 8266 } 8267 } 8268 8269 /* 8270 * Assign a source address while we have the conn. 8271 * We can't have ip_wput_ire pick a source address when the 8272 * packet returns from arp since we need to look at 8273 * conn_unspec_src and conn_zoneid, and we lose the conn when 8274 * going through arp. 8275 * 8276 * NOTE : ip_newroute_v6 does not have this piece of code as 8277 * it uses ip6i to store this information. 8278 */ 8279 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8280 ipha->ipha_src = src_ipif->ipif_src_addr; 8281 8282 if (ip_debug > 3) { 8283 /* ip2dbg */ 8284 pr_addr_dbg("ip_newroute: first hop %s\n", 8285 AF_INET, &gw); 8286 } 8287 ip2dbg(("\tire type %s (%d)\n", 8288 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8289 8290 /* 8291 * The TTL of multirouted packets is bounded by the 8292 * ip_multirt_ttl ndd variable. 8293 */ 8294 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8295 /* Force TTL of multirouted packets */ 8296 if ((ipst->ips_ip_multirt_ttl > 0) && 8297 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8298 ip2dbg(("ip_newroute: forcing multirt TTL " 8299 "to %d (was %d), dst 0x%08x\n", 8300 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8301 ntohl(sire->ire_addr))); 8302 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8303 } 8304 } 8305 /* 8306 * At this point in ip_newroute(), ire is either the 8307 * IRE_CACHE of the next-hop gateway for an off-subnet 8308 * destination or an IRE_INTERFACE type that should be used 8309 * to resolve an on-subnet destination or an on-subnet 8310 * next-hop gateway. 8311 * 8312 * In the IRE_CACHE case, we have the following : 8313 * 8314 * 1) src_ipif - used for getting a source address. 8315 * 8316 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8317 * means packets using this IRE_CACHE will go out on 8318 * dst_ill. 8319 * 8320 * 3) The IRE sire will point to the prefix that is the 8321 * longest matching route for the destination. These 8322 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8323 * 8324 * The newly created IRE_CACHE entry for the off-subnet 8325 * destination is tied to both the prefix route and the 8326 * interface route used to resolve the next-hop gateway 8327 * via the ire_phandle and ire_ihandle fields, 8328 * respectively. 8329 * 8330 * In the IRE_INTERFACE case, we have the following : 8331 * 8332 * 1) src_ipif - used for getting a source address. 8333 * 8334 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8335 * means packets using the IRE_CACHE that we will build 8336 * here will go out on dst_ill. 8337 * 8338 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8339 * to be created will only be tied to the IRE_INTERFACE 8340 * that was derived from the ire_ihandle field. 8341 * 8342 * If sire is non-NULL, it means the destination is 8343 * off-link and we will first create the IRE_CACHE for the 8344 * gateway. Next time through ip_newroute, we will create 8345 * the IRE_CACHE for the final destination as described 8346 * above. 8347 * 8348 * In both cases, after the current resolution has been 8349 * completed (or possibly initialised, in the IRE_INTERFACE 8350 * case), the loop may be re-entered to attempt the resolution 8351 * of another RTF_MULTIRT route. 8352 * 8353 * When an IRE_CACHE entry for the off-subnet destination is 8354 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8355 * for further processing in emission loops. 8356 */ 8357 save_ire = ire; 8358 switch (ire->ire_type) { 8359 case IRE_CACHE: { 8360 ire_t *ipif_ire; 8361 8362 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8363 if (gw == 0) 8364 gw = ire->ire_gateway_addr; 8365 /* 8366 * We need 3 ire's to create a new cache ire for an 8367 * off-link destination from the cache ire of the 8368 * gateway. 8369 * 8370 * 1. The prefix ire 'sire' (Note that this does 8371 * not apply to the conn_nexthop_set case) 8372 * 2. The cache ire of the gateway 'ire' 8373 * 3. The interface ire 'ipif_ire' 8374 * 8375 * We have (1) and (2). We lookup (3) below. 8376 * 8377 * If there is no interface route to the gateway, 8378 * it is a race condition, where we found the cache 8379 * but the interface route has been deleted. 8380 */ 8381 if (ip_nexthop) { 8382 ipif_ire = ire_ihandle_lookup_onlink(ire); 8383 } else { 8384 ipif_ire = 8385 ire_ihandle_lookup_offlink(ire, sire); 8386 } 8387 if (ipif_ire == NULL) { 8388 ip1dbg(("ip_newroute: " 8389 "ire_ihandle_lookup_offlink failed\n")); 8390 goto icmp_err_ret; 8391 } 8392 8393 /* 8394 * Check cached gateway IRE for any security 8395 * attributes; if found, associate the gateway 8396 * credentials group to the destination IRE. 8397 */ 8398 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8399 mutex_enter(&attrp->igsa_lock); 8400 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8401 GCGRP_REFHOLD(gcgrp); 8402 mutex_exit(&attrp->igsa_lock); 8403 } 8404 8405 /* 8406 * XXX For the source of the resolver mp, 8407 * we are using the same DL_UNITDATA_REQ 8408 * (from save_ire->ire_nce->nce_res_mp) 8409 * though the save_ire is not pointing at the same ill. 8410 * This is incorrect. We need to send it up to the 8411 * resolver to get the right res_mp. For ethernets 8412 * this may be okay (ill_type == DL_ETHER). 8413 */ 8414 8415 ire = ire_create( 8416 (uchar_t *)&dst, /* dest address */ 8417 (uchar_t *)&ip_g_all_ones, /* mask */ 8418 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8419 (uchar_t *)&gw, /* gateway address */ 8420 &save_ire->ire_max_frag, 8421 save_ire->ire_nce, /* src nce */ 8422 dst_ill->ill_rq, /* recv-from queue */ 8423 dst_ill->ill_wq, /* send-to queue */ 8424 IRE_CACHE, /* IRE type */ 8425 src_ipif, 8426 (sire != NULL) ? 8427 sire->ire_mask : 0, /* Parent mask */ 8428 (sire != NULL) ? 8429 sire->ire_phandle : 0, /* Parent handle */ 8430 ipif_ire->ire_ihandle, /* Interface handle */ 8431 (sire != NULL) ? (sire->ire_flags & 8432 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8433 (sire != NULL) ? 8434 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8435 NULL, 8436 gcgrp, 8437 ipst); 8438 8439 if (ire == NULL) { 8440 if (gcgrp != NULL) { 8441 GCGRP_REFRELE(gcgrp); 8442 gcgrp = NULL; 8443 } 8444 ire_refrele(ipif_ire); 8445 ire_refrele(save_ire); 8446 break; 8447 } 8448 8449 /* reference now held by IRE */ 8450 gcgrp = NULL; 8451 8452 ire->ire_marks |= ire_marks; 8453 8454 /* 8455 * Prevent sire and ipif_ire from getting deleted. 8456 * The newly created ire is tied to both of them via 8457 * the phandle and ihandle respectively. 8458 */ 8459 if (sire != NULL) { 8460 IRB_REFHOLD(sire->ire_bucket); 8461 /* Has it been removed already ? */ 8462 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8463 IRB_REFRELE(sire->ire_bucket); 8464 ire_refrele(ipif_ire); 8465 ire_refrele(save_ire); 8466 break; 8467 } 8468 } 8469 8470 IRB_REFHOLD(ipif_ire->ire_bucket); 8471 /* Has it been removed already ? */ 8472 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8473 IRB_REFRELE(ipif_ire->ire_bucket); 8474 if (sire != NULL) 8475 IRB_REFRELE(sire->ire_bucket); 8476 ire_refrele(ipif_ire); 8477 ire_refrele(save_ire); 8478 break; 8479 } 8480 8481 xmit_mp = first_mp; 8482 /* 8483 * In the case of multirouting, a copy 8484 * of the packet is done before its sending. 8485 * The copy is used to attempt another 8486 * route resolution, in a next loop. 8487 */ 8488 if (ire->ire_flags & RTF_MULTIRT) { 8489 copy_mp = copymsg(first_mp); 8490 if (copy_mp != NULL) { 8491 xmit_mp = copy_mp; 8492 MULTIRT_DEBUG_TAG(first_mp); 8493 } 8494 } 8495 ire_add_then_send(q, ire, xmit_mp); 8496 ire_refrele(save_ire); 8497 8498 /* Assert that sire is not deleted yet. */ 8499 if (sire != NULL) { 8500 ASSERT(sire->ire_ptpn != NULL); 8501 IRB_REFRELE(sire->ire_bucket); 8502 } 8503 8504 /* Assert that ipif_ire is not deleted yet. */ 8505 ASSERT(ipif_ire->ire_ptpn != NULL); 8506 IRB_REFRELE(ipif_ire->ire_bucket); 8507 ire_refrele(ipif_ire); 8508 8509 /* 8510 * If copy_mp is not NULL, multirouting was 8511 * requested. We loop to initiate a next 8512 * route resolution attempt, starting from sire. 8513 */ 8514 if (copy_mp != NULL) { 8515 /* 8516 * Search for the next unresolved 8517 * multirt route. 8518 */ 8519 copy_mp = NULL; 8520 ipif_ire = NULL; 8521 ire = NULL; 8522 multirt_resolve_next = B_TRUE; 8523 continue; 8524 } 8525 if (sire != NULL) 8526 ire_refrele(sire); 8527 ipif_refrele(src_ipif); 8528 ill_refrele(dst_ill); 8529 return; 8530 } 8531 case IRE_IF_NORESOLVER: { 8532 8533 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8534 dst_ill->ill_resolver_mp == NULL) { 8535 ip1dbg(("ip_newroute: dst_ill %p " 8536 "for IRE_IF_NORESOLVER ire %p has " 8537 "no ill_resolver_mp\n", 8538 (void *)dst_ill, (void *)ire)); 8539 break; 8540 } 8541 8542 /* 8543 * TSol note: We are creating the ire cache for the 8544 * destination 'dst'. If 'dst' is offlink, going 8545 * through the first hop 'gw', the security attributes 8546 * of 'dst' must be set to point to the gateway 8547 * credentials of gateway 'gw'. If 'dst' is onlink, it 8548 * is possible that 'dst' is a potential gateway that is 8549 * referenced by some route that has some security 8550 * attributes. Thus in the former case, we need to do a 8551 * gcgrp_lookup of 'gw' while in the latter case we 8552 * need to do gcgrp_lookup of 'dst' itself. 8553 */ 8554 ga.ga_af = AF_INET; 8555 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8556 &ga.ga_addr); 8557 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8558 8559 ire = ire_create( 8560 (uchar_t *)&dst, /* dest address */ 8561 (uchar_t *)&ip_g_all_ones, /* mask */ 8562 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8563 (uchar_t *)&gw, /* gateway address */ 8564 &save_ire->ire_max_frag, 8565 NULL, /* no src nce */ 8566 dst_ill->ill_rq, /* recv-from queue */ 8567 dst_ill->ill_wq, /* send-to queue */ 8568 IRE_CACHE, 8569 src_ipif, 8570 save_ire->ire_mask, /* Parent mask */ 8571 (sire != NULL) ? /* Parent handle */ 8572 sire->ire_phandle : 0, 8573 save_ire->ire_ihandle, /* Interface handle */ 8574 (sire != NULL) ? sire->ire_flags & 8575 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8576 &(save_ire->ire_uinfo), 8577 NULL, 8578 gcgrp, 8579 ipst); 8580 8581 if (ire == NULL) { 8582 if (gcgrp != NULL) { 8583 GCGRP_REFRELE(gcgrp); 8584 gcgrp = NULL; 8585 } 8586 ire_refrele(save_ire); 8587 break; 8588 } 8589 8590 /* reference now held by IRE */ 8591 gcgrp = NULL; 8592 8593 ire->ire_marks |= ire_marks; 8594 8595 /* Prevent save_ire from getting deleted */ 8596 IRB_REFHOLD(save_ire->ire_bucket); 8597 /* Has it been removed already ? */ 8598 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8599 IRB_REFRELE(save_ire->ire_bucket); 8600 ire_refrele(save_ire); 8601 break; 8602 } 8603 8604 /* 8605 * In the case of multirouting, a copy 8606 * of the packet is made before it is sent. 8607 * The copy is used in the next 8608 * loop to attempt another resolution. 8609 */ 8610 xmit_mp = first_mp; 8611 if ((sire != NULL) && 8612 (sire->ire_flags & RTF_MULTIRT)) { 8613 copy_mp = copymsg(first_mp); 8614 if (copy_mp != NULL) { 8615 xmit_mp = copy_mp; 8616 MULTIRT_DEBUG_TAG(first_mp); 8617 } 8618 } 8619 ire_add_then_send(q, ire, xmit_mp); 8620 8621 /* Assert that it is not deleted yet. */ 8622 ASSERT(save_ire->ire_ptpn != NULL); 8623 IRB_REFRELE(save_ire->ire_bucket); 8624 ire_refrele(save_ire); 8625 8626 if (copy_mp != NULL) { 8627 /* 8628 * If we found a (no)resolver, we ignore any 8629 * trailing top priority IRE_CACHE in further 8630 * loops. This ensures that we do not omit any 8631 * (no)resolver. 8632 * This IRE_CACHE, if any, will be processed 8633 * by another thread entering ip_newroute(). 8634 * IRE_CACHE entries, if any, will be processed 8635 * by another thread entering ip_newroute(), 8636 * (upon resolver response, for instance). 8637 * This aims to force parallel multirt 8638 * resolutions as soon as a packet must be sent. 8639 * In the best case, after the tx of only one 8640 * packet, all reachable routes are resolved. 8641 * Otherwise, the resolution of all RTF_MULTIRT 8642 * routes would require several emissions. 8643 */ 8644 multirt_flags &= ~MULTIRT_CACHEGW; 8645 8646 /* 8647 * Search for the next unresolved multirt 8648 * route. 8649 */ 8650 copy_mp = NULL; 8651 save_ire = NULL; 8652 ire = NULL; 8653 multirt_resolve_next = B_TRUE; 8654 continue; 8655 } 8656 8657 /* 8658 * Don't need sire anymore 8659 */ 8660 if (sire != NULL) 8661 ire_refrele(sire); 8662 8663 ipif_refrele(src_ipif); 8664 ill_refrele(dst_ill); 8665 return; 8666 } 8667 case IRE_IF_RESOLVER: 8668 /* 8669 * We can't build an IRE_CACHE yet, but at least we 8670 * found a resolver that can help. 8671 */ 8672 res_mp = dst_ill->ill_resolver_mp; 8673 if (!OK_RESOLVER_MP(res_mp)) 8674 break; 8675 8676 /* 8677 * To be at this point in the code with a non-zero gw 8678 * means that dst is reachable through a gateway that 8679 * we have never resolved. By changing dst to the gw 8680 * addr we resolve the gateway first. 8681 * When ire_add_then_send() tries to put the IP dg 8682 * to dst, it will reenter ip_newroute() at which 8683 * time we will find the IRE_CACHE for the gw and 8684 * create another IRE_CACHE in case IRE_CACHE above. 8685 */ 8686 if (gw != INADDR_ANY) { 8687 /* 8688 * The source ipif that was determined above was 8689 * relative to the destination address, not the 8690 * gateway's. If src_ipif was not taken out of 8691 * the IRE_IF_RESOLVER entry, we'll need to call 8692 * ipif_select_source() again. 8693 */ 8694 if (src_ipif != ire->ire_ipif) { 8695 ipif_refrele(src_ipif); 8696 src_ipif = ipif_select_source(dst_ill, 8697 gw, zoneid); 8698 if (src_ipif == NULL) { 8699 if (ip_debug > 2) { 8700 pr_addr_dbg( 8701 "ip_newroute: no " 8702 "src for gw %s ", 8703 AF_INET, &gw); 8704 printf("through " 8705 "interface %s\n", 8706 dst_ill->ill_name); 8707 } 8708 goto icmp_err_ret; 8709 } 8710 } 8711 save_dst = dst; 8712 dst = gw; 8713 gw = INADDR_ANY; 8714 } 8715 8716 /* 8717 * We obtain a partial IRE_CACHE which we will pass 8718 * along with the resolver query. When the response 8719 * comes back it will be there ready for us to add. 8720 * The ire_max_frag is atomically set under the 8721 * irebucket lock in ire_add_v[46]. 8722 */ 8723 8724 ire = ire_create_mp( 8725 (uchar_t *)&dst, /* dest address */ 8726 (uchar_t *)&ip_g_all_ones, /* mask */ 8727 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8728 (uchar_t *)&gw, /* gateway address */ 8729 NULL, /* ire_max_frag */ 8730 NULL, /* no src nce */ 8731 dst_ill->ill_rq, /* recv-from queue */ 8732 dst_ill->ill_wq, /* send-to queue */ 8733 IRE_CACHE, 8734 src_ipif, /* Interface ipif */ 8735 save_ire->ire_mask, /* Parent mask */ 8736 0, 8737 save_ire->ire_ihandle, /* Interface handle */ 8738 0, /* flags if any */ 8739 &(save_ire->ire_uinfo), 8740 NULL, 8741 NULL, 8742 ipst); 8743 8744 if (ire == NULL) { 8745 ire_refrele(save_ire); 8746 break; 8747 } 8748 8749 if ((sire != NULL) && 8750 (sire->ire_flags & RTF_MULTIRT)) { 8751 copy_mp = copymsg(first_mp); 8752 if (copy_mp != NULL) 8753 MULTIRT_DEBUG_TAG(copy_mp); 8754 } 8755 8756 ire->ire_marks |= ire_marks; 8757 8758 /* 8759 * Construct message chain for the resolver 8760 * of the form: 8761 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8762 * Packet could contain a IPSEC_OUT mp. 8763 * 8764 * NOTE : ire will be added later when the response 8765 * comes back from ARP. If the response does not 8766 * come back, ARP frees the packet. For this reason, 8767 * we can't REFHOLD the bucket of save_ire to prevent 8768 * deletions. We may not be able to REFRELE the bucket 8769 * if the response never comes back. Thus, before 8770 * adding the ire, ire_add_v4 will make sure that the 8771 * interface route does not get deleted. This is the 8772 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8773 * where we can always prevent deletions because of 8774 * the synchronous nature of adding IRES i.e 8775 * ire_add_then_send is called after creating the IRE. 8776 */ 8777 ASSERT(ire->ire_mp != NULL); 8778 ire->ire_mp->b_cont = first_mp; 8779 /* Have saved_mp handy, for cleanup if canput fails */ 8780 saved_mp = mp; 8781 mp = copyb(res_mp); 8782 if (mp == NULL) { 8783 /* Prepare for cleanup */ 8784 mp = saved_mp; /* pkt */ 8785 ire_delete(ire); /* ire_mp */ 8786 ire = NULL; 8787 ire_refrele(save_ire); 8788 if (copy_mp != NULL) { 8789 MULTIRT_DEBUG_UNTAG(copy_mp); 8790 freemsg(copy_mp); 8791 copy_mp = NULL; 8792 } 8793 break; 8794 } 8795 linkb(mp, ire->ire_mp); 8796 8797 /* 8798 * Fill in the source and dest addrs for the resolver. 8799 * NOTE: this depends on memory layouts imposed by 8800 * ill_init(). 8801 */ 8802 areq = (areq_t *)mp->b_rptr; 8803 addrp = (ipaddr_t *)((char *)areq + 8804 areq->areq_sender_addr_offset); 8805 if (do_attach_ill) { 8806 /* 8807 * This is bind to no failover case. 8808 * arp packet also must go out on attach_ill. 8809 */ 8810 ASSERT(ipha->ipha_src != NULL); 8811 *addrp = ipha->ipha_src; 8812 } else { 8813 *addrp = save_ire->ire_src_addr; 8814 } 8815 8816 ire_refrele(save_ire); 8817 addrp = (ipaddr_t *)((char *)areq + 8818 areq->areq_target_addr_offset); 8819 *addrp = dst; 8820 /* Up to the resolver. */ 8821 if (canputnext(dst_ill->ill_rq) && 8822 !(dst_ill->ill_arp_closing)) { 8823 putnext(dst_ill->ill_rq, mp); 8824 ire = NULL; 8825 if (copy_mp != NULL) { 8826 /* 8827 * If we found a resolver, we ignore 8828 * any trailing top priority IRE_CACHE 8829 * in the further loops. This ensures 8830 * that we do not omit any resolver. 8831 * IRE_CACHE entries, if any, will be 8832 * processed next time we enter 8833 * ip_newroute(). 8834 */ 8835 multirt_flags &= ~MULTIRT_CACHEGW; 8836 /* 8837 * Search for the next unresolved 8838 * multirt route. 8839 */ 8840 first_mp = copy_mp; 8841 copy_mp = NULL; 8842 /* Prepare the next resolution loop. */ 8843 mp = first_mp; 8844 EXTRACT_PKT_MP(mp, first_mp, 8845 mctl_present); 8846 if (mctl_present) 8847 io = (ipsec_out_t *) 8848 first_mp->b_rptr; 8849 ipha = (ipha_t *)mp->b_rptr; 8850 8851 ASSERT(sire != NULL); 8852 8853 dst = save_dst; 8854 multirt_resolve_next = B_TRUE; 8855 continue; 8856 } 8857 8858 if (sire != NULL) 8859 ire_refrele(sire); 8860 8861 /* 8862 * The response will come back in ip_wput 8863 * with db_type IRE_DB_TYPE. 8864 */ 8865 ipif_refrele(src_ipif); 8866 ill_refrele(dst_ill); 8867 return; 8868 } else { 8869 /* Prepare for cleanup */ 8870 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8871 mp); 8872 mp->b_cont = NULL; 8873 freeb(mp); /* areq */ 8874 /* 8875 * this is an ire that is not added to the 8876 * cache. ire_freemblk will handle the release 8877 * of any resources associated with the ire. 8878 */ 8879 ire_delete(ire); /* ire_mp */ 8880 mp = saved_mp; /* pkt */ 8881 ire = NULL; 8882 if (copy_mp != NULL) { 8883 MULTIRT_DEBUG_UNTAG(copy_mp); 8884 freemsg(copy_mp); 8885 copy_mp = NULL; 8886 } 8887 break; 8888 } 8889 default: 8890 break; 8891 } 8892 } while (multirt_resolve_next); 8893 8894 ip1dbg(("ip_newroute: dropped\n")); 8895 /* Did this packet originate externally? */ 8896 if (mp->b_prev) { 8897 mp->b_next = NULL; 8898 mp->b_prev = NULL; 8899 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8900 } else { 8901 if (dst_ill != NULL) { 8902 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8903 } else { 8904 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8905 } 8906 } 8907 ASSERT(copy_mp == NULL); 8908 MULTIRT_DEBUG_UNTAG(first_mp); 8909 freemsg(first_mp); 8910 if (ire != NULL) 8911 ire_refrele(ire); 8912 if (sire != NULL) 8913 ire_refrele(sire); 8914 if (src_ipif != NULL) 8915 ipif_refrele(src_ipif); 8916 if (dst_ill != NULL) 8917 ill_refrele(dst_ill); 8918 return; 8919 8920 icmp_err_ret: 8921 ip1dbg(("ip_newroute: no route\n")); 8922 if (src_ipif != NULL) 8923 ipif_refrele(src_ipif); 8924 if (dst_ill != NULL) 8925 ill_refrele(dst_ill); 8926 if (sire != NULL) 8927 ire_refrele(sire); 8928 /* Did this packet originate externally? */ 8929 if (mp->b_prev) { 8930 mp->b_next = NULL; 8931 mp->b_prev = NULL; 8932 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8933 q = WR(q); 8934 } else { 8935 /* 8936 * There is no outgoing ill, so just increment the 8937 * system MIB. 8938 */ 8939 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8940 /* 8941 * Since ip_wput() isn't close to finished, we fill 8942 * in enough of the header for credible error reporting. 8943 */ 8944 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8945 /* Failed */ 8946 MULTIRT_DEBUG_UNTAG(first_mp); 8947 freemsg(first_mp); 8948 if (ire != NULL) 8949 ire_refrele(ire); 8950 return; 8951 } 8952 } 8953 8954 /* 8955 * At this point we will have ire only if RTF_BLACKHOLE 8956 * or RTF_REJECT flags are set on the IRE. It will not 8957 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8958 */ 8959 if (ire != NULL) { 8960 if (ire->ire_flags & RTF_BLACKHOLE) { 8961 ire_refrele(ire); 8962 MULTIRT_DEBUG_UNTAG(first_mp); 8963 freemsg(first_mp); 8964 return; 8965 } 8966 ire_refrele(ire); 8967 } 8968 if (ip_source_routed(ipha, ipst)) { 8969 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8970 zoneid, ipst); 8971 return; 8972 } 8973 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8974 } 8975 8976 ip_opt_info_t zero_info; 8977 8978 /* 8979 * IPv4 - 8980 * ip_newroute_ipif is called by ip_wput_multicast and 8981 * ip_rput_forward_multicast whenever we need to send 8982 * out a packet to a destination address for which we do not have specific 8983 * routing information. It is used when the packet will be sent out 8984 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8985 * socket option is set or icmp error message wants to go out on a particular 8986 * interface for a unicast packet. 8987 * 8988 * In most cases, the destination address is resolved thanks to the ipif 8989 * intrinsic resolver. However, there are some cases where the call to 8990 * ip_newroute_ipif must take into account the potential presence of 8991 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8992 * that uses the interface. This is specified through flags, 8993 * which can be a combination of: 8994 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8995 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8996 * and flags. Additionally, the packet source address has to be set to 8997 * the specified address. The caller is thus expected to set this flag 8998 * if the packet has no specific source address yet. 8999 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9000 * flag, the resulting ire will inherit the flag. All unresolved routes 9001 * to the destination must be explored in the same call to 9002 * ip_newroute_ipif(). 9003 */ 9004 static void 9005 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9006 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9007 { 9008 areq_t *areq; 9009 ire_t *ire = NULL; 9010 mblk_t *res_mp; 9011 ipaddr_t *addrp; 9012 mblk_t *first_mp; 9013 ire_t *save_ire = NULL; 9014 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9015 ipif_t *src_ipif = NULL; 9016 ushort_t ire_marks = 0; 9017 ill_t *dst_ill = NULL; 9018 boolean_t mctl_present; 9019 ipsec_out_t *io; 9020 ipha_t *ipha; 9021 int ihandle = 0; 9022 mblk_t *saved_mp; 9023 ire_t *fire = NULL; 9024 mblk_t *copy_mp = NULL; 9025 boolean_t multirt_resolve_next; 9026 boolean_t unspec_src; 9027 ipaddr_t ipha_dst; 9028 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9029 9030 /* 9031 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9032 * here for uniformity 9033 */ 9034 ipif_refhold(ipif); 9035 9036 /* 9037 * This loop is run only once in most cases. 9038 * We loop to resolve further routes only when the destination 9039 * can be reached through multiple RTF_MULTIRT-flagged ires. 9040 */ 9041 do { 9042 if (dst_ill != NULL) { 9043 ill_refrele(dst_ill); 9044 dst_ill = NULL; 9045 } 9046 if (src_ipif != NULL) { 9047 ipif_refrele(src_ipif); 9048 src_ipif = NULL; 9049 } 9050 multirt_resolve_next = B_FALSE; 9051 9052 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9053 ipif->ipif_ill->ill_name)); 9054 9055 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9056 if (mctl_present) 9057 io = (ipsec_out_t *)first_mp->b_rptr; 9058 9059 ipha = (ipha_t *)mp->b_rptr; 9060 9061 /* 9062 * Save the packet destination address, we may need it after 9063 * the packet has been consumed. 9064 */ 9065 ipha_dst = ipha->ipha_dst; 9066 9067 /* 9068 * If the interface is a pt-pt interface we look for an 9069 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9070 * local_address and the pt-pt destination address. Otherwise 9071 * we just match the local address. 9072 * NOTE: dst could be different than ipha->ipha_dst in case 9073 * of sending igmp multicast packets over a point-to-point 9074 * connection. 9075 * Thus we must be careful enough to check ipha_dst to be a 9076 * multicast address, otherwise it will take xmit_if path for 9077 * multicast packets resulting into kernel stack overflow by 9078 * repeated calls to ip_newroute_ipif from ire_send(). 9079 */ 9080 if (CLASSD(ipha_dst) && 9081 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9082 goto err_ret; 9083 } 9084 9085 /* 9086 * We check if an IRE_OFFSUBNET for the addr that goes through 9087 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9088 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9089 * propagate its flags to the new ire. 9090 */ 9091 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9092 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9093 ip2dbg(("ip_newroute_ipif: " 9094 "ipif_lookup_multi_ire(" 9095 "ipif %p, dst %08x) = fire %p\n", 9096 (void *)ipif, ntohl(dst), (void *)fire)); 9097 } 9098 9099 if (mctl_present && io->ipsec_out_attach_if) { 9100 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9101 io->ipsec_out_ill_index, B_FALSE, ipst); 9102 9103 /* Failure case frees things for us. */ 9104 if (attach_ill == NULL) { 9105 ipif_refrele(ipif); 9106 if (fire != NULL) 9107 ire_refrele(fire); 9108 return; 9109 } 9110 9111 /* 9112 * Check if we need an ire that will not be 9113 * looked up by anybody else i.e. HIDDEN. 9114 */ 9115 if (ill_is_probeonly(attach_ill)) { 9116 ire_marks = IRE_MARK_HIDDEN; 9117 } 9118 /* 9119 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9120 * case. 9121 */ 9122 dst_ill = ipif->ipif_ill; 9123 /* attach_ill has been refheld by ip_grab_attach_ill */ 9124 ASSERT(dst_ill == attach_ill); 9125 } else { 9126 /* 9127 * If the interface belongs to an interface group, 9128 * make sure the next possible interface in the group 9129 * is used. This encourages load spreading among 9130 * peers in an interface group. 9131 * Note: load spreading is disabled for RTF_MULTIRT 9132 * routes. 9133 */ 9134 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9135 (fire->ire_flags & RTF_MULTIRT)) { 9136 /* 9137 * Don't perform outbound load spreading 9138 * in the case of an RTF_MULTIRT issued route, 9139 * we actually typically want to replicate 9140 * outgoing packets through particular 9141 * interfaces. 9142 */ 9143 dst_ill = ipif->ipif_ill; 9144 ill_refhold(dst_ill); 9145 } else { 9146 dst_ill = ip_newroute_get_dst_ill( 9147 ipif->ipif_ill); 9148 } 9149 if (dst_ill == NULL) { 9150 if (ip_debug > 2) { 9151 pr_addr_dbg("ip_newroute_ipif: " 9152 "no dst ill for dst %s\n", 9153 AF_INET, &dst); 9154 } 9155 goto err_ret; 9156 } 9157 } 9158 9159 /* 9160 * Pick a source address preferring non-deprecated ones. 9161 * Unlike ip_newroute, we don't do any source address 9162 * selection here since for multicast it really does not help 9163 * in inbound load spreading as in the unicast case. 9164 */ 9165 if ((flags & RTF_SETSRC) && (fire != NULL) && 9166 (fire->ire_flags & RTF_SETSRC)) { 9167 /* 9168 * As requested by flags, an IRE_OFFSUBNET was looked up 9169 * on that interface. This ire has RTF_SETSRC flag, so 9170 * the source address of the packet must be changed. 9171 * Check that the ipif matching the requested source 9172 * address still exists. 9173 */ 9174 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9175 zoneid, NULL, NULL, NULL, NULL, ipst); 9176 } 9177 9178 unspec_src = (connp != NULL && connp->conn_unspec_src); 9179 9180 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9181 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9182 (connp != NULL && ipif->ipif_zoneid != zoneid && 9183 ipif->ipif_zoneid != ALL_ZONES)) && 9184 (src_ipif == NULL) && 9185 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9186 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9187 if (src_ipif == NULL) { 9188 if (ip_debug > 2) { 9189 /* ip1dbg */ 9190 pr_addr_dbg("ip_newroute_ipif: " 9191 "no src for dst %s", 9192 AF_INET, &dst); 9193 } 9194 ip1dbg((" through interface %s\n", 9195 dst_ill->ill_name)); 9196 goto err_ret; 9197 } 9198 ipif_refrele(ipif); 9199 ipif = src_ipif; 9200 ipif_refhold(ipif); 9201 } 9202 if (src_ipif == NULL) { 9203 src_ipif = ipif; 9204 ipif_refhold(src_ipif); 9205 } 9206 9207 /* 9208 * Assign a source address while we have the conn. 9209 * We can't have ip_wput_ire pick a source address when the 9210 * packet returns from arp since conn_unspec_src might be set 9211 * and we lose the conn when going through arp. 9212 */ 9213 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9214 ipha->ipha_src = src_ipif->ipif_src_addr; 9215 9216 /* 9217 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9218 * that the outgoing interface does not have an interface ire. 9219 */ 9220 if (CLASSD(ipha_dst) && (connp == NULL || 9221 connp->conn_outgoing_ill == NULL) && 9222 infop->ip_opt_ill_index == 0) { 9223 /* ipif_to_ire returns an held ire */ 9224 ire = ipif_to_ire(ipif); 9225 if (ire == NULL) 9226 goto err_ret; 9227 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9228 goto err_ret; 9229 /* 9230 * ihandle is needed when the ire is added to 9231 * cache table. 9232 */ 9233 save_ire = ire; 9234 ihandle = save_ire->ire_ihandle; 9235 9236 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9237 "flags %04x\n", 9238 (void *)ire, (void *)ipif, flags)); 9239 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9240 (fire->ire_flags & RTF_MULTIRT)) { 9241 /* 9242 * As requested by flags, an IRE_OFFSUBNET was 9243 * looked up on that interface. This ire has 9244 * RTF_MULTIRT flag, so the resolution loop will 9245 * be re-entered to resolve additional routes on 9246 * other interfaces. For that purpose, a copy of 9247 * the packet is performed at this point. 9248 */ 9249 fire->ire_last_used_time = lbolt; 9250 copy_mp = copymsg(first_mp); 9251 if (copy_mp) { 9252 MULTIRT_DEBUG_TAG(copy_mp); 9253 } 9254 } 9255 if ((flags & RTF_SETSRC) && (fire != NULL) && 9256 (fire->ire_flags & RTF_SETSRC)) { 9257 /* 9258 * As requested by flags, an IRE_OFFSUBET was 9259 * looked up on that interface. This ire has 9260 * RTF_SETSRC flag, so the source address of the 9261 * packet must be changed. 9262 */ 9263 ipha->ipha_src = fire->ire_src_addr; 9264 } 9265 } else { 9266 ASSERT((connp == NULL) || 9267 (connp->conn_outgoing_ill != NULL) || 9268 (connp->conn_dontroute) || 9269 infop->ip_opt_ill_index != 0); 9270 /* 9271 * The only ways we can come here are: 9272 * 1) IP_BOUND_IF socket option is set 9273 * 2) SO_DONTROUTE socket option is set 9274 * 3) IP_PKTINFO option is passed in as ancillary data. 9275 * In all cases, the new ire will not be added 9276 * into cache table. 9277 */ 9278 ire_marks |= IRE_MARK_NOADD; 9279 } 9280 9281 switch (ipif->ipif_net_type) { 9282 case IRE_IF_NORESOLVER: { 9283 /* We have what we need to build an IRE_CACHE. */ 9284 9285 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9286 (dst_ill->ill_resolver_mp == NULL)) { 9287 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9288 "for IRE_IF_NORESOLVER ire %p has " 9289 "no ill_resolver_mp\n", 9290 (void *)dst_ill, (void *)ire)); 9291 break; 9292 } 9293 9294 /* 9295 * The new ire inherits the IRE_OFFSUBNET flags 9296 * and source address, if this was requested. 9297 */ 9298 ire = ire_create( 9299 (uchar_t *)&dst, /* dest address */ 9300 (uchar_t *)&ip_g_all_ones, /* mask */ 9301 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9302 NULL, /* gateway address */ 9303 &ipif->ipif_mtu, 9304 NULL, /* no src nce */ 9305 dst_ill->ill_rq, /* recv-from queue */ 9306 dst_ill->ill_wq, /* send-to queue */ 9307 IRE_CACHE, 9308 src_ipif, 9309 (save_ire != NULL ? save_ire->ire_mask : 0), 9310 (fire != NULL) ? /* Parent handle */ 9311 fire->ire_phandle : 0, 9312 ihandle, /* Interface handle */ 9313 (fire != NULL) ? 9314 (fire->ire_flags & 9315 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9316 (save_ire == NULL ? &ire_uinfo_null : 9317 &save_ire->ire_uinfo), 9318 NULL, 9319 NULL, 9320 ipst); 9321 9322 if (ire == NULL) { 9323 if (save_ire != NULL) 9324 ire_refrele(save_ire); 9325 break; 9326 } 9327 9328 ire->ire_marks |= ire_marks; 9329 9330 /* 9331 * If IRE_MARK_NOADD is set then we need to convert 9332 * the max_fragp to a useable value now. This is 9333 * normally done in ire_add_v[46]. We also need to 9334 * associate the ire with an nce (normally would be 9335 * done in ip_wput_nondata()). 9336 * 9337 * Note that IRE_MARK_NOADD packets created here 9338 * do not have a non-null ire_mp pointer. The null 9339 * value of ire_bucket indicates that they were 9340 * never added. 9341 */ 9342 if (ire->ire_marks & IRE_MARK_NOADD) { 9343 uint_t max_frag; 9344 9345 max_frag = *ire->ire_max_fragp; 9346 ire->ire_max_fragp = NULL; 9347 ire->ire_max_frag = max_frag; 9348 9349 if ((ire->ire_nce = ndp_lookup_v4( 9350 ire_to_ill(ire), 9351 (ire->ire_gateway_addr != INADDR_ANY ? 9352 &ire->ire_gateway_addr : &ire->ire_addr), 9353 B_FALSE)) == NULL) { 9354 if (save_ire != NULL) 9355 ire_refrele(save_ire); 9356 break; 9357 } 9358 ASSERT(ire->ire_nce->nce_state == 9359 ND_REACHABLE); 9360 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9361 } 9362 9363 /* Prevent save_ire from getting deleted */ 9364 if (save_ire != NULL) { 9365 IRB_REFHOLD(save_ire->ire_bucket); 9366 /* Has it been removed already ? */ 9367 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9368 IRB_REFRELE(save_ire->ire_bucket); 9369 ire_refrele(save_ire); 9370 break; 9371 } 9372 } 9373 9374 ire_add_then_send(q, ire, first_mp); 9375 9376 /* Assert that save_ire is not deleted yet. */ 9377 if (save_ire != NULL) { 9378 ASSERT(save_ire->ire_ptpn != NULL); 9379 IRB_REFRELE(save_ire->ire_bucket); 9380 ire_refrele(save_ire); 9381 save_ire = NULL; 9382 } 9383 if (fire != NULL) { 9384 ire_refrele(fire); 9385 fire = NULL; 9386 } 9387 9388 /* 9389 * the resolution loop is re-entered if this 9390 * was requested through flags and if we 9391 * actually are in a multirouting case. 9392 */ 9393 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9394 boolean_t need_resolve = 9395 ire_multirt_need_resolve(ipha_dst, 9396 MBLK_GETLABEL(copy_mp), ipst); 9397 if (!need_resolve) { 9398 MULTIRT_DEBUG_UNTAG(copy_mp); 9399 freemsg(copy_mp); 9400 copy_mp = NULL; 9401 } else { 9402 /* 9403 * ipif_lookup_group() calls 9404 * ire_lookup_multi() that uses 9405 * ire_ftable_lookup() to find 9406 * an IRE_INTERFACE for the group. 9407 * In the multirt case, 9408 * ire_lookup_multi() then invokes 9409 * ire_multirt_lookup() to find 9410 * the next resolvable ire. 9411 * As a result, we obtain an new 9412 * interface, derived from the 9413 * next ire. 9414 */ 9415 ipif_refrele(ipif); 9416 ipif = ipif_lookup_group(ipha_dst, 9417 zoneid, ipst); 9418 ip2dbg(("ip_newroute_ipif: " 9419 "multirt dst %08x, ipif %p\n", 9420 htonl(dst), (void *)ipif)); 9421 if (ipif != NULL) { 9422 mp = copy_mp; 9423 copy_mp = NULL; 9424 multirt_resolve_next = B_TRUE; 9425 continue; 9426 } else { 9427 freemsg(copy_mp); 9428 } 9429 } 9430 } 9431 if (ipif != NULL) 9432 ipif_refrele(ipif); 9433 ill_refrele(dst_ill); 9434 ipif_refrele(src_ipif); 9435 return; 9436 } 9437 case IRE_IF_RESOLVER: 9438 /* 9439 * We can't build an IRE_CACHE yet, but at least 9440 * we found a resolver that can help. 9441 */ 9442 res_mp = dst_ill->ill_resolver_mp; 9443 if (!OK_RESOLVER_MP(res_mp)) 9444 break; 9445 9446 /* 9447 * We obtain a partial IRE_CACHE which we will pass 9448 * along with the resolver query. When the response 9449 * comes back it will be there ready for us to add. 9450 * The new ire inherits the IRE_OFFSUBNET flags 9451 * and source address, if this was requested. 9452 * The ire_max_frag is atomically set under the 9453 * irebucket lock in ire_add_v[46]. Only in the 9454 * case of IRE_MARK_NOADD, we set it here itself. 9455 */ 9456 ire = ire_create_mp( 9457 (uchar_t *)&dst, /* dest address */ 9458 (uchar_t *)&ip_g_all_ones, /* mask */ 9459 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9460 NULL, /* gateway address */ 9461 (ire_marks & IRE_MARK_NOADD) ? 9462 ipif->ipif_mtu : 0, /* max_frag */ 9463 NULL, /* no src nce */ 9464 dst_ill->ill_rq, /* recv-from queue */ 9465 dst_ill->ill_wq, /* send-to queue */ 9466 IRE_CACHE, 9467 src_ipif, 9468 (save_ire != NULL ? save_ire->ire_mask : 0), 9469 (fire != NULL) ? /* Parent handle */ 9470 fire->ire_phandle : 0, 9471 ihandle, /* Interface handle */ 9472 (fire != NULL) ? /* flags if any */ 9473 (fire->ire_flags & 9474 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9475 (save_ire == NULL ? &ire_uinfo_null : 9476 &save_ire->ire_uinfo), 9477 NULL, 9478 NULL, 9479 ipst); 9480 9481 if (save_ire != NULL) { 9482 ire_refrele(save_ire); 9483 save_ire = NULL; 9484 } 9485 if (ire == NULL) 9486 break; 9487 9488 ire->ire_marks |= ire_marks; 9489 /* 9490 * Construct message chain for the resolver of the 9491 * form: 9492 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9493 * 9494 * NOTE : ire will be added later when the response 9495 * comes back from ARP. If the response does not 9496 * come back, ARP frees the packet. For this reason, 9497 * we can't REFHOLD the bucket of save_ire to prevent 9498 * deletions. We may not be able to REFRELE the 9499 * bucket if the response never comes back. 9500 * Thus, before adding the ire, ire_add_v4 will make 9501 * sure that the interface route does not get deleted. 9502 * This is the only case unlike ip_newroute_v6, 9503 * ip_newroute_ipif_v6 where we can always prevent 9504 * deletions because ire_add_then_send is called after 9505 * creating the IRE. 9506 * If IRE_MARK_NOADD is set, then ire_add_then_send 9507 * does not add this IRE into the IRE CACHE. 9508 */ 9509 ASSERT(ire->ire_mp != NULL); 9510 ire->ire_mp->b_cont = first_mp; 9511 /* Have saved_mp handy, for cleanup if canput fails */ 9512 saved_mp = mp; 9513 mp = copyb(res_mp); 9514 if (mp == NULL) { 9515 /* Prepare for cleanup */ 9516 mp = saved_mp; /* pkt */ 9517 ire_delete(ire); /* ire_mp */ 9518 ire = NULL; 9519 if (copy_mp != NULL) { 9520 MULTIRT_DEBUG_UNTAG(copy_mp); 9521 freemsg(copy_mp); 9522 copy_mp = NULL; 9523 } 9524 break; 9525 } 9526 linkb(mp, ire->ire_mp); 9527 9528 /* 9529 * Fill in the source and dest addrs for the resolver. 9530 * NOTE: this depends on memory layouts imposed by 9531 * ill_init(). 9532 */ 9533 areq = (areq_t *)mp->b_rptr; 9534 addrp = (ipaddr_t *)((char *)areq + 9535 areq->areq_sender_addr_offset); 9536 *addrp = ire->ire_src_addr; 9537 addrp = (ipaddr_t *)((char *)areq + 9538 areq->areq_target_addr_offset); 9539 *addrp = dst; 9540 /* Up to the resolver. */ 9541 if (canputnext(dst_ill->ill_rq) && 9542 !(dst_ill->ill_arp_closing)) { 9543 putnext(dst_ill->ill_rq, mp); 9544 /* 9545 * The response will come back in ip_wput 9546 * with db_type IRE_DB_TYPE. 9547 */ 9548 } else { 9549 mp->b_cont = NULL; 9550 freeb(mp); /* areq */ 9551 ire_delete(ire); /* ire_mp */ 9552 saved_mp->b_next = NULL; 9553 saved_mp->b_prev = NULL; 9554 freemsg(first_mp); /* pkt */ 9555 ip2dbg(("ip_newroute_ipif: dropped\n")); 9556 } 9557 9558 if (fire != NULL) { 9559 ire_refrele(fire); 9560 fire = NULL; 9561 } 9562 9563 9564 /* 9565 * The resolution loop is re-entered if this was 9566 * requested through flags and we actually are 9567 * in a multirouting case. 9568 */ 9569 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9570 boolean_t need_resolve = 9571 ire_multirt_need_resolve(ipha_dst, 9572 MBLK_GETLABEL(copy_mp), ipst); 9573 if (!need_resolve) { 9574 MULTIRT_DEBUG_UNTAG(copy_mp); 9575 freemsg(copy_mp); 9576 copy_mp = NULL; 9577 } else { 9578 /* 9579 * ipif_lookup_group() calls 9580 * ire_lookup_multi() that uses 9581 * ire_ftable_lookup() to find 9582 * an IRE_INTERFACE for the group. 9583 * In the multirt case, 9584 * ire_lookup_multi() then invokes 9585 * ire_multirt_lookup() to find 9586 * the next resolvable ire. 9587 * As a result, we obtain an new 9588 * interface, derived from the 9589 * next ire. 9590 */ 9591 ipif_refrele(ipif); 9592 ipif = ipif_lookup_group(ipha_dst, 9593 zoneid, ipst); 9594 if (ipif != NULL) { 9595 mp = copy_mp; 9596 copy_mp = NULL; 9597 multirt_resolve_next = B_TRUE; 9598 continue; 9599 } else { 9600 freemsg(copy_mp); 9601 } 9602 } 9603 } 9604 if (ipif != NULL) 9605 ipif_refrele(ipif); 9606 ill_refrele(dst_ill); 9607 ipif_refrele(src_ipif); 9608 return; 9609 default: 9610 break; 9611 } 9612 } while (multirt_resolve_next); 9613 9614 err_ret: 9615 ip2dbg(("ip_newroute_ipif: dropped\n")); 9616 if (fire != NULL) 9617 ire_refrele(fire); 9618 ipif_refrele(ipif); 9619 /* Did this packet originate externally? */ 9620 if (dst_ill != NULL) 9621 ill_refrele(dst_ill); 9622 if (src_ipif != NULL) 9623 ipif_refrele(src_ipif); 9624 if (mp->b_prev || mp->b_next) { 9625 mp->b_next = NULL; 9626 mp->b_prev = NULL; 9627 } else { 9628 /* 9629 * Since ip_wput() isn't close to finished, we fill 9630 * in enough of the header for credible error reporting. 9631 */ 9632 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9633 /* Failed */ 9634 freemsg(first_mp); 9635 if (ire != NULL) 9636 ire_refrele(ire); 9637 return; 9638 } 9639 } 9640 /* 9641 * At this point we will have ire only if RTF_BLACKHOLE 9642 * or RTF_REJECT flags are set on the IRE. It will not 9643 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9644 */ 9645 if (ire != NULL) { 9646 if (ire->ire_flags & RTF_BLACKHOLE) { 9647 ire_refrele(ire); 9648 freemsg(first_mp); 9649 return; 9650 } 9651 ire_refrele(ire); 9652 } 9653 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9654 } 9655 9656 /* Name/Value Table Lookup Routine */ 9657 char * 9658 ip_nv_lookup(nv_t *nv, int value) 9659 { 9660 if (!nv) 9661 return (NULL); 9662 for (; nv->nv_name; nv++) { 9663 if (nv->nv_value == value) 9664 return (nv->nv_name); 9665 } 9666 return ("unknown"); 9667 } 9668 9669 /* 9670 * This is a module open, i.e. this is a control stream for access 9671 * to a DLPI device. We allocate an ill_t as the instance data in 9672 * this case. 9673 */ 9674 int 9675 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9676 { 9677 ill_t *ill; 9678 int err; 9679 zoneid_t zoneid; 9680 netstack_t *ns; 9681 ip_stack_t *ipst; 9682 9683 /* 9684 * Prevent unprivileged processes from pushing IP so that 9685 * they can't send raw IP. 9686 */ 9687 if (secpolicy_net_rawaccess(credp) != 0) 9688 return (EPERM); 9689 9690 ns = netstack_find_by_cred(credp); 9691 ASSERT(ns != NULL); 9692 ipst = ns->netstack_ip; 9693 ASSERT(ipst != NULL); 9694 9695 /* 9696 * For exclusive stacks we set the zoneid to zero 9697 * to make IP operate as if in the global zone. 9698 */ 9699 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9700 zoneid = GLOBAL_ZONEID; 9701 else 9702 zoneid = crgetzoneid(credp); 9703 9704 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9705 q->q_ptr = WR(q)->q_ptr = ill; 9706 ill->ill_ipst = ipst; 9707 ill->ill_zoneid = zoneid; 9708 9709 /* 9710 * ill_init initializes the ill fields and then sends down 9711 * down a DL_INFO_REQ after calling qprocson. 9712 */ 9713 err = ill_init(q, ill); 9714 if (err != 0) { 9715 mi_free(ill); 9716 netstack_rele(ipst->ips_netstack); 9717 q->q_ptr = NULL; 9718 WR(q)->q_ptr = NULL; 9719 return (err); 9720 } 9721 9722 /* ill_init initializes the ipsq marking this thread as writer */ 9723 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9724 /* Wait for the DL_INFO_ACK */ 9725 mutex_enter(&ill->ill_lock); 9726 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9727 /* 9728 * Return value of 0 indicates a pending signal. 9729 */ 9730 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9731 if (err == 0) { 9732 mutex_exit(&ill->ill_lock); 9733 (void) ip_close(q, 0); 9734 return (EINTR); 9735 } 9736 } 9737 mutex_exit(&ill->ill_lock); 9738 9739 /* 9740 * ip_rput_other could have set an error in ill_error on 9741 * receipt of M_ERROR. 9742 */ 9743 9744 err = ill->ill_error; 9745 if (err != 0) { 9746 (void) ip_close(q, 0); 9747 return (err); 9748 } 9749 9750 ill->ill_credp = credp; 9751 crhold(credp); 9752 9753 mutex_enter(&ipst->ips_ip_mi_lock); 9754 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9755 credp); 9756 mutex_exit(&ipst->ips_ip_mi_lock); 9757 if (err) { 9758 (void) ip_close(q, 0); 9759 return (err); 9760 } 9761 return (0); 9762 } 9763 9764 /* For /dev/ip aka AF_INET open */ 9765 int 9766 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9767 { 9768 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9769 } 9770 9771 /* For /dev/ip6 aka AF_INET6 open */ 9772 int 9773 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9774 { 9775 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9776 } 9777 9778 /* IP open routine. */ 9779 int 9780 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9781 boolean_t isv6) 9782 { 9783 conn_t *connp; 9784 major_t maj; 9785 zoneid_t zoneid; 9786 netstack_t *ns; 9787 ip_stack_t *ipst; 9788 9789 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9790 9791 /* Allow reopen. */ 9792 if (q->q_ptr != NULL) 9793 return (0); 9794 9795 if (sflag & MODOPEN) { 9796 /* This is a module open */ 9797 return (ip_modopen(q, devp, flag, sflag, credp)); 9798 } 9799 9800 ns = netstack_find_by_cred(credp); 9801 ASSERT(ns != NULL); 9802 ipst = ns->netstack_ip; 9803 ASSERT(ipst != NULL); 9804 9805 /* 9806 * For exclusive stacks we set the zoneid to zero 9807 * to make IP operate as if in the global zone. 9808 */ 9809 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9810 zoneid = GLOBAL_ZONEID; 9811 else 9812 zoneid = crgetzoneid(credp); 9813 9814 /* 9815 * We are opening as a device. This is an IP client stream, and we 9816 * allocate an conn_t as the instance data. 9817 */ 9818 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9819 9820 /* 9821 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9822 * done by netstack_find_by_cred() 9823 */ 9824 netstack_rele(ipst->ips_netstack); 9825 9826 connp->conn_zoneid = zoneid; 9827 9828 connp->conn_upq = q; 9829 q->q_ptr = WR(q)->q_ptr = connp; 9830 9831 if (flag & SO_SOCKSTR) 9832 connp->conn_flags |= IPCL_SOCKET; 9833 9834 /* Minor tells us which /dev entry was opened */ 9835 if (isv6) { 9836 connp->conn_flags |= IPCL_ISV6; 9837 connp->conn_af_isv6 = B_TRUE; 9838 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9839 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9840 } else { 9841 connp->conn_af_isv6 = B_FALSE; 9842 connp->conn_pkt_isv6 = B_FALSE; 9843 } 9844 9845 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9846 /* CONN_DEC_REF takes care of netstack_rele() */ 9847 q->q_ptr = WR(q)->q_ptr = NULL; 9848 CONN_DEC_REF(connp); 9849 return (EBUSY); 9850 } 9851 9852 maj = getemajor(*devp); 9853 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9854 9855 /* 9856 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9857 */ 9858 connp->conn_cred = credp; 9859 9860 /* 9861 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9862 */ 9863 connp->conn_recv = ip_conn_input; 9864 9865 crhold(connp->conn_cred); 9866 9867 /* 9868 * If the caller has the process-wide flag set, then default to MAC 9869 * exempt mode. This allows read-down to unlabeled hosts. 9870 */ 9871 if (getpflags(NET_MAC_AWARE, credp) != 0) 9872 connp->conn_mac_exempt = B_TRUE; 9873 9874 connp->conn_rq = q; 9875 connp->conn_wq = WR(q); 9876 9877 /* Non-zero default values */ 9878 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9879 9880 /* 9881 * Make the conn globally visible to walkers 9882 */ 9883 ASSERT(connp->conn_ref == 1); 9884 mutex_enter(&connp->conn_lock); 9885 connp->conn_state_flags &= ~CONN_INCIPIENT; 9886 mutex_exit(&connp->conn_lock); 9887 9888 qprocson(q); 9889 9890 return (0); 9891 } 9892 9893 /* 9894 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9895 * Note that there is no race since either ip_output function works - it 9896 * is just an optimization to enter the best ip_output routine directly. 9897 */ 9898 void 9899 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9900 ip_stack_t *ipst) 9901 { 9902 if (isv6) { 9903 if (bump_mib) { 9904 BUMP_MIB(&ipst->ips_ip6_mib, 9905 ipIfStatsOutSwitchIPVersion); 9906 } 9907 connp->conn_send = ip_output_v6; 9908 connp->conn_pkt_isv6 = B_TRUE; 9909 } else { 9910 if (bump_mib) { 9911 BUMP_MIB(&ipst->ips_ip_mib, 9912 ipIfStatsOutSwitchIPVersion); 9913 } 9914 connp->conn_send = ip_output; 9915 connp->conn_pkt_isv6 = B_FALSE; 9916 } 9917 9918 } 9919 9920 /* 9921 * See if IPsec needs loading because of the options in mp. 9922 */ 9923 static boolean_t 9924 ipsec_opt_present(mblk_t *mp) 9925 { 9926 uint8_t *optcp, *next_optcp, *opt_endcp; 9927 struct opthdr *opt; 9928 struct T_opthdr *topt; 9929 int opthdr_len; 9930 t_uscalar_t optname, optlevel; 9931 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9932 ipsec_req_t *ipsr; 9933 9934 /* 9935 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9936 * return TRUE. 9937 */ 9938 9939 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9940 opt_endcp = optcp + tor->OPT_length; 9941 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9942 opthdr_len = sizeof (struct T_opthdr); 9943 } else { /* O_OPTMGMT_REQ */ 9944 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9945 opthdr_len = sizeof (struct opthdr); 9946 } 9947 for (; optcp < opt_endcp; optcp = next_optcp) { 9948 if (optcp + opthdr_len > opt_endcp) 9949 return (B_FALSE); /* Not enough option header. */ 9950 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9951 topt = (struct T_opthdr *)optcp; 9952 optlevel = topt->level; 9953 optname = topt->name; 9954 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9955 } else { 9956 opt = (struct opthdr *)optcp; 9957 optlevel = opt->level; 9958 optname = opt->name; 9959 next_optcp = optcp + opthdr_len + 9960 _TPI_ALIGN_OPT(opt->len); 9961 } 9962 if ((next_optcp < optcp) || /* wraparound pointer space */ 9963 ((next_optcp >= opt_endcp) && /* last option bad len */ 9964 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9965 return (B_FALSE); /* bad option buffer */ 9966 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9967 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9968 /* 9969 * Check to see if it's an all-bypass or all-zeroes 9970 * IPsec request. Don't bother loading IPsec if 9971 * the socket doesn't want to use it. (A good example 9972 * is a bypass request.) 9973 * 9974 * Basically, if any of the non-NEVER bits are set, 9975 * load IPsec. 9976 */ 9977 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9978 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9979 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9980 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9981 != 0) 9982 return (B_TRUE); 9983 } 9984 } 9985 return (B_FALSE); 9986 } 9987 9988 /* 9989 * If conn is is waiting for ipsec to finish loading, kick it. 9990 */ 9991 /* ARGSUSED */ 9992 static void 9993 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9994 { 9995 t_scalar_t optreq_prim; 9996 mblk_t *mp; 9997 cred_t *cr; 9998 int err = 0; 9999 10000 /* 10001 * This function is called, after ipsec loading is complete. 10002 * Since IP checks exclusively and atomically (i.e it prevents 10003 * ipsec load from completing until ip_optcom_req completes) 10004 * whether ipsec load is complete, there cannot be a race with IP 10005 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10006 */ 10007 mutex_enter(&connp->conn_lock); 10008 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10009 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10010 mp = connp->conn_ipsec_opt_mp; 10011 connp->conn_ipsec_opt_mp = NULL; 10012 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10013 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10014 mutex_exit(&connp->conn_lock); 10015 10016 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10017 10018 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10019 if (optreq_prim == T_OPTMGMT_REQ) { 10020 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10021 &ip_opt_obj, B_FALSE); 10022 } else { 10023 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10024 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10025 &ip_opt_obj, B_FALSE); 10026 } 10027 if (err != EINPROGRESS) 10028 CONN_OPER_PENDING_DONE(connp); 10029 return; 10030 } 10031 mutex_exit(&connp->conn_lock); 10032 } 10033 10034 /* 10035 * Called from the ipsec_loader thread, outside any perimeter, to tell 10036 * ip qenable any of the queues waiting for the ipsec loader to 10037 * complete. 10038 */ 10039 void 10040 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10041 { 10042 netstack_t *ns = ipss->ipsec_netstack; 10043 10044 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10045 } 10046 10047 /* 10048 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10049 * determines the grp on which it has to become exclusive, queues the mp 10050 * and sq draining restarts the optmgmt 10051 */ 10052 static boolean_t 10053 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10054 { 10055 conn_t *connp = Q_TO_CONN(q); 10056 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10057 10058 /* 10059 * Take IPsec requests and treat them special. 10060 */ 10061 if (ipsec_opt_present(mp)) { 10062 /* First check if IPsec is loaded. */ 10063 mutex_enter(&ipss->ipsec_loader_lock); 10064 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10065 mutex_exit(&ipss->ipsec_loader_lock); 10066 return (B_FALSE); 10067 } 10068 mutex_enter(&connp->conn_lock); 10069 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10070 10071 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10072 connp->conn_ipsec_opt_mp = mp; 10073 mutex_exit(&connp->conn_lock); 10074 mutex_exit(&ipss->ipsec_loader_lock); 10075 10076 ipsec_loader_loadnow(ipss); 10077 return (B_TRUE); 10078 } 10079 return (B_FALSE); 10080 } 10081 10082 /* 10083 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10084 * all of them are copied to the conn_t. If the req is "zero", the policy is 10085 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10086 * fields. 10087 * We keep only the latest setting of the policy and thus policy setting 10088 * is not incremental/cumulative. 10089 * 10090 * Requests to set policies with multiple alternative actions will 10091 * go through a different API. 10092 */ 10093 int 10094 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10095 { 10096 uint_t ah_req = 0; 10097 uint_t esp_req = 0; 10098 uint_t se_req = 0; 10099 ipsec_selkey_t sel; 10100 ipsec_act_t *actp = NULL; 10101 uint_t nact; 10102 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10103 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10104 ipsec_policy_root_t *pr; 10105 ipsec_policy_head_t *ph; 10106 int fam; 10107 boolean_t is_pol_reset; 10108 int error = 0; 10109 netstack_t *ns = connp->conn_netstack; 10110 ip_stack_t *ipst = ns->netstack_ip; 10111 ipsec_stack_t *ipss = ns->netstack_ipsec; 10112 10113 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10114 10115 /* 10116 * The IP_SEC_OPT option does not allow variable length parameters, 10117 * hence a request cannot be NULL. 10118 */ 10119 if (req == NULL) 10120 return (EINVAL); 10121 10122 ah_req = req->ipsr_ah_req; 10123 esp_req = req->ipsr_esp_req; 10124 se_req = req->ipsr_self_encap_req; 10125 10126 /* 10127 * Are we dealing with a request to reset the policy (i.e. 10128 * zero requests). 10129 */ 10130 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10131 (esp_req & REQ_MASK) == 0 && 10132 (se_req & REQ_MASK) == 0); 10133 10134 if (!is_pol_reset) { 10135 /* 10136 * If we couldn't load IPsec, fail with "protocol 10137 * not supported". 10138 * IPsec may not have been loaded for a request with zero 10139 * policies, so we don't fail in this case. 10140 */ 10141 mutex_enter(&ipss->ipsec_loader_lock); 10142 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10143 mutex_exit(&ipss->ipsec_loader_lock); 10144 return (EPROTONOSUPPORT); 10145 } 10146 mutex_exit(&ipss->ipsec_loader_lock); 10147 10148 /* 10149 * Test for valid requests. Invalid algorithms 10150 * need to be tested by IPsec code because new 10151 * algorithms can be added dynamically. 10152 */ 10153 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10154 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10155 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10156 return (EINVAL); 10157 } 10158 10159 /* 10160 * Only privileged users can issue these 10161 * requests. 10162 */ 10163 if (((ah_req & IPSEC_PREF_NEVER) || 10164 (esp_req & IPSEC_PREF_NEVER) || 10165 (se_req & IPSEC_PREF_NEVER)) && 10166 secpolicy_ip_config(cr, B_FALSE) != 0) { 10167 return (EPERM); 10168 } 10169 10170 /* 10171 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10172 * are mutually exclusive. 10173 */ 10174 if (((ah_req & REQ_MASK) == REQ_MASK) || 10175 ((esp_req & REQ_MASK) == REQ_MASK) || 10176 ((se_req & REQ_MASK) == REQ_MASK)) { 10177 /* Both of them are set */ 10178 return (EINVAL); 10179 } 10180 } 10181 10182 mutex_enter(&connp->conn_lock); 10183 10184 /* 10185 * If we have already cached policies in ip_bind_connected*(), don't 10186 * let them change now. We cache policies for connections 10187 * whose src,dst [addr, port] is known. 10188 */ 10189 if (connp->conn_policy_cached) { 10190 mutex_exit(&connp->conn_lock); 10191 return (EINVAL); 10192 } 10193 10194 /* 10195 * We have a zero policies, reset the connection policy if already 10196 * set. This will cause the connection to inherit the 10197 * global policy, if any. 10198 */ 10199 if (is_pol_reset) { 10200 if (connp->conn_policy != NULL) { 10201 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10202 connp->conn_policy = NULL; 10203 } 10204 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10205 connp->conn_in_enforce_policy = B_FALSE; 10206 connp->conn_out_enforce_policy = B_FALSE; 10207 mutex_exit(&connp->conn_lock); 10208 return (0); 10209 } 10210 10211 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10212 ipst->ips_netstack); 10213 if (ph == NULL) 10214 goto enomem; 10215 10216 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10217 if (actp == NULL) 10218 goto enomem; 10219 10220 /* 10221 * Always allocate IPv4 policy entries, since they can also 10222 * apply to ipv6 sockets being used in ipv4-compat mode. 10223 */ 10224 bzero(&sel, sizeof (sel)); 10225 sel.ipsl_valid = IPSL_IPV4; 10226 10227 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10228 ipst->ips_netstack); 10229 if (pin4 == NULL) 10230 goto enomem; 10231 10232 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10233 ipst->ips_netstack); 10234 if (pout4 == NULL) 10235 goto enomem; 10236 10237 if (connp->conn_af_isv6) { 10238 /* 10239 * We're looking at a v6 socket, also allocate the 10240 * v6-specific entries... 10241 */ 10242 sel.ipsl_valid = IPSL_IPV6; 10243 pin6 = ipsec_policy_create(&sel, actp, nact, 10244 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10245 if (pin6 == NULL) 10246 goto enomem; 10247 10248 pout6 = ipsec_policy_create(&sel, actp, nact, 10249 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10250 if (pout6 == NULL) 10251 goto enomem; 10252 10253 /* 10254 * .. and file them away in the right place. 10255 */ 10256 fam = IPSEC_AF_V6; 10257 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10258 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10259 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10260 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10261 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10262 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10263 } 10264 10265 ipsec_actvec_free(actp, nact); 10266 10267 /* 10268 * File the v4 policies. 10269 */ 10270 fam = IPSEC_AF_V4; 10271 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10272 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10273 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10274 10275 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10276 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10277 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10278 10279 /* 10280 * If the requests need security, set enforce_policy. 10281 * If the requests are IPSEC_PREF_NEVER, one should 10282 * still set conn_out_enforce_policy so that an ipsec_out 10283 * gets attached in ip_wput. This is needed so that 10284 * for connections that we don't cache policy in ip_bind, 10285 * if global policy matches in ip_wput_attach_policy, we 10286 * don't wrongly inherit global policy. Similarly, we need 10287 * to set conn_in_enforce_policy also so that we don't verify 10288 * policy wrongly. 10289 */ 10290 if ((ah_req & REQ_MASK) != 0 || 10291 (esp_req & REQ_MASK) != 0 || 10292 (se_req & REQ_MASK) != 0) { 10293 connp->conn_in_enforce_policy = B_TRUE; 10294 connp->conn_out_enforce_policy = B_TRUE; 10295 connp->conn_flags |= IPCL_CHECK_POLICY; 10296 } 10297 10298 mutex_exit(&connp->conn_lock); 10299 return (error); 10300 #undef REQ_MASK 10301 10302 /* 10303 * Common memory-allocation-failure exit path. 10304 */ 10305 enomem: 10306 mutex_exit(&connp->conn_lock); 10307 if (actp != NULL) 10308 ipsec_actvec_free(actp, nact); 10309 if (pin4 != NULL) 10310 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10311 if (pout4 != NULL) 10312 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10313 if (pin6 != NULL) 10314 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10315 if (pout6 != NULL) 10316 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10317 return (ENOMEM); 10318 } 10319 10320 /* 10321 * Only for options that pass in an IP addr. Currently only V4 options 10322 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10323 * So this function assumes level is IPPROTO_IP 10324 */ 10325 int 10326 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10327 mblk_t *first_mp) 10328 { 10329 ipif_t *ipif = NULL; 10330 int error; 10331 ill_t *ill; 10332 int zoneid; 10333 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10334 10335 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10336 10337 if (addr != INADDR_ANY || checkonly) { 10338 ASSERT(connp != NULL); 10339 zoneid = IPCL_ZONEID(connp); 10340 if (option == IP_NEXTHOP) { 10341 ipif = ipif_lookup_onlink_addr(addr, 10342 connp->conn_zoneid, ipst); 10343 } else { 10344 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10345 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10346 &error, ipst); 10347 } 10348 if (ipif == NULL) { 10349 if (error == EINPROGRESS) 10350 return (error); 10351 else if ((option == IP_MULTICAST_IF) || 10352 (option == IP_NEXTHOP)) 10353 return (EHOSTUNREACH); 10354 else 10355 return (EINVAL); 10356 } else if (checkonly) { 10357 if (option == IP_MULTICAST_IF) { 10358 ill = ipif->ipif_ill; 10359 /* not supported by the virtual network iface */ 10360 if (IS_VNI(ill)) { 10361 ipif_refrele(ipif); 10362 return (EINVAL); 10363 } 10364 } 10365 ipif_refrele(ipif); 10366 return (0); 10367 } 10368 ill = ipif->ipif_ill; 10369 mutex_enter(&connp->conn_lock); 10370 mutex_enter(&ill->ill_lock); 10371 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10372 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10373 mutex_exit(&ill->ill_lock); 10374 mutex_exit(&connp->conn_lock); 10375 ipif_refrele(ipif); 10376 return (option == IP_MULTICAST_IF ? 10377 EHOSTUNREACH : EINVAL); 10378 } 10379 } else { 10380 mutex_enter(&connp->conn_lock); 10381 } 10382 10383 /* None of the options below are supported on the VNI */ 10384 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10385 mutex_exit(&ill->ill_lock); 10386 mutex_exit(&connp->conn_lock); 10387 ipif_refrele(ipif); 10388 return (EINVAL); 10389 } 10390 10391 switch (option) { 10392 case IP_DONTFAILOVER_IF: 10393 /* 10394 * This option is used by in.mpathd to ensure 10395 * that IPMP probe packets only go out on the 10396 * test interfaces. in.mpathd sets this option 10397 * on the non-failover interfaces. 10398 * For backward compatibility, this option 10399 * implicitly sets IP_MULTICAST_IF, as used 10400 * be done in bind(), so that ip_wput gets 10401 * this ipif to send mcast packets. 10402 */ 10403 if (ipif != NULL) { 10404 ASSERT(addr != INADDR_ANY); 10405 connp->conn_nofailover_ill = ipif->ipif_ill; 10406 connp->conn_multicast_ipif = ipif; 10407 } else { 10408 ASSERT(addr == INADDR_ANY); 10409 connp->conn_nofailover_ill = NULL; 10410 connp->conn_multicast_ipif = NULL; 10411 } 10412 break; 10413 10414 case IP_MULTICAST_IF: 10415 connp->conn_multicast_ipif = ipif; 10416 break; 10417 case IP_NEXTHOP: 10418 connp->conn_nexthop_v4 = addr; 10419 connp->conn_nexthop_set = B_TRUE; 10420 break; 10421 } 10422 10423 if (ipif != NULL) { 10424 mutex_exit(&ill->ill_lock); 10425 mutex_exit(&connp->conn_lock); 10426 ipif_refrele(ipif); 10427 return (0); 10428 } 10429 mutex_exit(&connp->conn_lock); 10430 /* We succeded in cleared the option */ 10431 return (0); 10432 } 10433 10434 /* 10435 * For options that pass in an ifindex specifying the ill. V6 options always 10436 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10437 */ 10438 int 10439 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10440 int level, int option, mblk_t *first_mp) 10441 { 10442 ill_t *ill = NULL; 10443 int error = 0; 10444 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10445 10446 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10447 if (ifindex != 0) { 10448 ASSERT(connp != NULL); 10449 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10450 first_mp, ip_restart_optmgmt, &error, ipst); 10451 if (ill != NULL) { 10452 if (checkonly) { 10453 /* not supported by the virtual network iface */ 10454 if (IS_VNI(ill)) { 10455 ill_refrele(ill); 10456 return (EINVAL); 10457 } 10458 ill_refrele(ill); 10459 return (0); 10460 } 10461 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10462 0, NULL)) { 10463 ill_refrele(ill); 10464 ill = NULL; 10465 mutex_enter(&connp->conn_lock); 10466 goto setit; 10467 } 10468 mutex_enter(&connp->conn_lock); 10469 mutex_enter(&ill->ill_lock); 10470 if (ill->ill_state_flags & ILL_CONDEMNED) { 10471 mutex_exit(&ill->ill_lock); 10472 mutex_exit(&connp->conn_lock); 10473 ill_refrele(ill); 10474 ill = NULL; 10475 mutex_enter(&connp->conn_lock); 10476 } 10477 goto setit; 10478 } else if (error == EINPROGRESS) { 10479 return (error); 10480 } else { 10481 error = 0; 10482 } 10483 } 10484 mutex_enter(&connp->conn_lock); 10485 setit: 10486 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10487 10488 /* 10489 * The options below assume that the ILL (if any) transmits and/or 10490 * receives traffic. Neither of which is true for the virtual network 10491 * interface, so fail setting these on a VNI. 10492 */ 10493 if (IS_VNI(ill)) { 10494 ASSERT(ill != NULL); 10495 mutex_exit(&ill->ill_lock); 10496 mutex_exit(&connp->conn_lock); 10497 ill_refrele(ill); 10498 return (EINVAL); 10499 } 10500 10501 if (level == IPPROTO_IP) { 10502 switch (option) { 10503 case IP_BOUND_IF: 10504 connp->conn_incoming_ill = ill; 10505 connp->conn_outgoing_ill = ill; 10506 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10507 0 : ifindex; 10508 break; 10509 10510 case IP_MULTICAST_IF: 10511 /* 10512 * This option is an internal special. The socket 10513 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10514 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10515 * specifies an ifindex and we try first on V6 ill's. 10516 * If we don't find one, we they try using on v4 ill's 10517 * intenally and we come here. 10518 */ 10519 if (!checkonly && ill != NULL) { 10520 ipif_t *ipif; 10521 ipif = ill->ill_ipif; 10522 10523 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10524 mutex_exit(&ill->ill_lock); 10525 mutex_exit(&connp->conn_lock); 10526 ill_refrele(ill); 10527 ill = NULL; 10528 mutex_enter(&connp->conn_lock); 10529 } else { 10530 connp->conn_multicast_ipif = ipif; 10531 } 10532 } 10533 break; 10534 10535 case IP_DHCPINIT_IF: 10536 if (connp->conn_dhcpinit_ill != NULL) { 10537 /* 10538 * We've locked the conn so conn_cleanup_ill() 10539 * cannot clear conn_dhcpinit_ill -- so it's 10540 * safe to access the ill. 10541 */ 10542 ill_t *oill = connp->conn_dhcpinit_ill; 10543 10544 ASSERT(oill->ill_dhcpinit != 0); 10545 atomic_dec_32(&oill->ill_dhcpinit); 10546 connp->conn_dhcpinit_ill = NULL; 10547 } 10548 10549 if (ill != NULL) { 10550 connp->conn_dhcpinit_ill = ill; 10551 atomic_inc_32(&ill->ill_dhcpinit); 10552 } 10553 break; 10554 } 10555 } else { 10556 switch (option) { 10557 case IPV6_BOUND_IF: 10558 connp->conn_incoming_ill = ill; 10559 connp->conn_outgoing_ill = ill; 10560 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10561 0 : ifindex; 10562 break; 10563 10564 case IPV6_BOUND_PIF: 10565 /* 10566 * Limit all transmit to this ill. 10567 * Unlike IPV6_BOUND_IF, using this option 10568 * prevents load spreading and failover from 10569 * happening when the interface is part of the 10570 * group. That's why we don't need to remember 10571 * the ifindex in orig_bound_ifindex as in 10572 * IPV6_BOUND_IF. 10573 */ 10574 connp->conn_outgoing_pill = ill; 10575 break; 10576 10577 case IPV6_DONTFAILOVER_IF: 10578 /* 10579 * This option is used by in.mpathd to ensure 10580 * that IPMP probe packets only go out on the 10581 * test interfaces. in.mpathd sets this option 10582 * on the non-failover interfaces. 10583 */ 10584 connp->conn_nofailover_ill = ill; 10585 /* 10586 * For backward compatibility, this option 10587 * implicitly sets ip_multicast_ill as used in 10588 * IPV6_MULTICAST_IF so that ip_wput gets 10589 * this ill to send mcast packets. 10590 */ 10591 connp->conn_multicast_ill = ill; 10592 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10593 0 : ifindex; 10594 break; 10595 10596 case IPV6_MULTICAST_IF: 10597 /* 10598 * Set conn_multicast_ill to be the IPv6 ill. 10599 * Set conn_multicast_ipif to be an IPv4 ipif 10600 * for ifindex to make IPv4 mapped addresses 10601 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10602 * Even if no IPv6 ill exists for the ifindex 10603 * we need to check for an IPv4 ifindex in order 10604 * for this to work with mapped addresses. In that 10605 * case only set conn_multicast_ipif. 10606 */ 10607 if (!checkonly) { 10608 if (ifindex == 0) { 10609 connp->conn_multicast_ill = NULL; 10610 connp->conn_orig_multicast_ifindex = 0; 10611 connp->conn_multicast_ipif = NULL; 10612 } else if (ill != NULL) { 10613 connp->conn_multicast_ill = ill; 10614 connp->conn_orig_multicast_ifindex = 10615 ifindex; 10616 } 10617 } 10618 break; 10619 } 10620 } 10621 10622 if (ill != NULL) { 10623 mutex_exit(&ill->ill_lock); 10624 mutex_exit(&connp->conn_lock); 10625 ill_refrele(ill); 10626 return (0); 10627 } 10628 mutex_exit(&connp->conn_lock); 10629 /* 10630 * We succeeded in clearing the option (ifindex == 0) or failed to 10631 * locate the ill and could not set the option (ifindex != 0) 10632 */ 10633 return (ifindex == 0 ? 0 : EINVAL); 10634 } 10635 10636 /* This routine sets socket options. */ 10637 /* ARGSUSED */ 10638 int 10639 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10640 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10641 void *dummy, cred_t *cr, mblk_t *first_mp) 10642 { 10643 int *i1 = (int *)invalp; 10644 conn_t *connp = Q_TO_CONN(q); 10645 int error = 0; 10646 boolean_t checkonly; 10647 ire_t *ire; 10648 boolean_t found; 10649 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10650 10651 switch (optset_context) { 10652 10653 case SETFN_OPTCOM_CHECKONLY: 10654 checkonly = B_TRUE; 10655 /* 10656 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10657 * inlen != 0 implies value supplied and 10658 * we have to "pretend" to set it. 10659 * inlen == 0 implies that there is no 10660 * value part in T_CHECK request and just validation 10661 * done elsewhere should be enough, we just return here. 10662 */ 10663 if (inlen == 0) { 10664 *outlenp = 0; 10665 return (0); 10666 } 10667 break; 10668 case SETFN_OPTCOM_NEGOTIATE: 10669 case SETFN_UD_NEGOTIATE: 10670 case SETFN_CONN_NEGOTIATE: 10671 checkonly = B_FALSE; 10672 break; 10673 default: 10674 /* 10675 * We should never get here 10676 */ 10677 *outlenp = 0; 10678 return (EINVAL); 10679 } 10680 10681 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10682 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10683 10684 /* 10685 * For fixed length options, no sanity check 10686 * of passed in length is done. It is assumed *_optcom_req() 10687 * routines do the right thing. 10688 */ 10689 10690 switch (level) { 10691 case SOL_SOCKET: 10692 /* 10693 * conn_lock protects the bitfields, and is used to 10694 * set the fields atomically. 10695 */ 10696 switch (name) { 10697 case SO_BROADCAST: 10698 if (!checkonly) { 10699 /* TODO: use value someplace? */ 10700 mutex_enter(&connp->conn_lock); 10701 connp->conn_broadcast = *i1 ? 1 : 0; 10702 mutex_exit(&connp->conn_lock); 10703 } 10704 break; /* goto sizeof (int) option return */ 10705 case SO_USELOOPBACK: 10706 if (!checkonly) { 10707 /* TODO: use value someplace? */ 10708 mutex_enter(&connp->conn_lock); 10709 connp->conn_loopback = *i1 ? 1 : 0; 10710 mutex_exit(&connp->conn_lock); 10711 } 10712 break; /* goto sizeof (int) option return */ 10713 case SO_DONTROUTE: 10714 if (!checkonly) { 10715 mutex_enter(&connp->conn_lock); 10716 connp->conn_dontroute = *i1 ? 1 : 0; 10717 mutex_exit(&connp->conn_lock); 10718 } 10719 break; /* goto sizeof (int) option return */ 10720 case SO_REUSEADDR: 10721 if (!checkonly) { 10722 mutex_enter(&connp->conn_lock); 10723 connp->conn_reuseaddr = *i1 ? 1 : 0; 10724 mutex_exit(&connp->conn_lock); 10725 } 10726 break; /* goto sizeof (int) option return */ 10727 case SO_PROTOTYPE: 10728 if (!checkonly) { 10729 mutex_enter(&connp->conn_lock); 10730 connp->conn_proto = *i1; 10731 mutex_exit(&connp->conn_lock); 10732 } 10733 break; /* goto sizeof (int) option return */ 10734 case SO_ALLZONES: 10735 if (!checkonly) { 10736 mutex_enter(&connp->conn_lock); 10737 if (IPCL_IS_BOUND(connp)) { 10738 mutex_exit(&connp->conn_lock); 10739 return (EINVAL); 10740 } 10741 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10742 mutex_exit(&connp->conn_lock); 10743 } 10744 break; /* goto sizeof (int) option return */ 10745 case SO_ANON_MLP: 10746 if (!checkonly) { 10747 mutex_enter(&connp->conn_lock); 10748 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10749 mutex_exit(&connp->conn_lock); 10750 } 10751 break; /* goto sizeof (int) option return */ 10752 case SO_MAC_EXEMPT: 10753 if (secpolicy_net_mac_aware(cr) != 0 || 10754 IPCL_IS_BOUND(connp)) 10755 return (EACCES); 10756 if (!checkonly) { 10757 mutex_enter(&connp->conn_lock); 10758 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10759 mutex_exit(&connp->conn_lock); 10760 } 10761 break; /* goto sizeof (int) option return */ 10762 default: 10763 /* 10764 * "soft" error (negative) 10765 * option not handled at this level 10766 * Note: Do not modify *outlenp 10767 */ 10768 return (-EINVAL); 10769 } 10770 break; 10771 case IPPROTO_IP: 10772 switch (name) { 10773 case IP_NEXTHOP: 10774 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10775 return (EPERM); 10776 /* FALLTHRU */ 10777 case IP_MULTICAST_IF: 10778 case IP_DONTFAILOVER_IF: { 10779 ipaddr_t addr = *i1; 10780 10781 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10782 first_mp); 10783 if (error != 0) 10784 return (error); 10785 break; /* goto sizeof (int) option return */ 10786 } 10787 10788 case IP_MULTICAST_TTL: 10789 /* Recorded in transport above IP */ 10790 *outvalp = *invalp; 10791 *outlenp = sizeof (uchar_t); 10792 return (0); 10793 case IP_MULTICAST_LOOP: 10794 if (!checkonly) { 10795 mutex_enter(&connp->conn_lock); 10796 connp->conn_multicast_loop = *invalp ? 1 : 0; 10797 mutex_exit(&connp->conn_lock); 10798 } 10799 *outvalp = *invalp; 10800 *outlenp = sizeof (uchar_t); 10801 return (0); 10802 case IP_ADD_MEMBERSHIP: 10803 case MCAST_JOIN_GROUP: 10804 case IP_DROP_MEMBERSHIP: 10805 case MCAST_LEAVE_GROUP: { 10806 struct ip_mreq *mreqp; 10807 struct group_req *greqp; 10808 ire_t *ire; 10809 boolean_t done = B_FALSE; 10810 ipaddr_t group, ifaddr; 10811 struct sockaddr_in *sin; 10812 uint32_t *ifindexp; 10813 boolean_t mcast_opt = B_TRUE; 10814 mcast_record_t fmode; 10815 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10816 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10817 10818 switch (name) { 10819 case IP_ADD_MEMBERSHIP: 10820 mcast_opt = B_FALSE; 10821 /* FALLTHRU */ 10822 case MCAST_JOIN_GROUP: 10823 fmode = MODE_IS_EXCLUDE; 10824 optfn = ip_opt_add_group; 10825 break; 10826 10827 case IP_DROP_MEMBERSHIP: 10828 mcast_opt = B_FALSE; 10829 /* FALLTHRU */ 10830 case MCAST_LEAVE_GROUP: 10831 fmode = MODE_IS_INCLUDE; 10832 optfn = ip_opt_delete_group; 10833 break; 10834 } 10835 10836 if (mcast_opt) { 10837 greqp = (struct group_req *)i1; 10838 sin = (struct sockaddr_in *)&greqp->gr_group; 10839 if (sin->sin_family != AF_INET) { 10840 *outlenp = 0; 10841 return (ENOPROTOOPT); 10842 } 10843 group = (ipaddr_t)sin->sin_addr.s_addr; 10844 ifaddr = INADDR_ANY; 10845 ifindexp = &greqp->gr_interface; 10846 } else { 10847 mreqp = (struct ip_mreq *)i1; 10848 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10849 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10850 ifindexp = NULL; 10851 } 10852 10853 /* 10854 * In the multirouting case, we need to replicate 10855 * the request on all interfaces that will take part 10856 * in replication. We do so because multirouting is 10857 * reflective, thus we will probably receive multi- 10858 * casts on those interfaces. 10859 * The ip_multirt_apply_membership() succeeds if the 10860 * operation succeeds on at least one interface. 10861 */ 10862 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10863 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10864 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10865 if (ire != NULL) { 10866 if (ire->ire_flags & RTF_MULTIRT) { 10867 error = ip_multirt_apply_membership( 10868 optfn, ire, connp, checkonly, group, 10869 fmode, INADDR_ANY, first_mp); 10870 done = B_TRUE; 10871 } 10872 ire_refrele(ire); 10873 } 10874 if (!done) { 10875 error = optfn(connp, checkonly, group, ifaddr, 10876 ifindexp, fmode, INADDR_ANY, first_mp); 10877 } 10878 if (error) { 10879 /* 10880 * EINPROGRESS is a soft error, needs retry 10881 * so don't make *outlenp zero. 10882 */ 10883 if (error != EINPROGRESS) 10884 *outlenp = 0; 10885 return (error); 10886 } 10887 /* OK return - copy input buffer into output buffer */ 10888 if (invalp != outvalp) { 10889 /* don't trust bcopy for identical src/dst */ 10890 bcopy(invalp, outvalp, inlen); 10891 } 10892 *outlenp = inlen; 10893 return (0); 10894 } 10895 case IP_BLOCK_SOURCE: 10896 case IP_UNBLOCK_SOURCE: 10897 case IP_ADD_SOURCE_MEMBERSHIP: 10898 case IP_DROP_SOURCE_MEMBERSHIP: 10899 case MCAST_BLOCK_SOURCE: 10900 case MCAST_UNBLOCK_SOURCE: 10901 case MCAST_JOIN_SOURCE_GROUP: 10902 case MCAST_LEAVE_SOURCE_GROUP: { 10903 struct ip_mreq_source *imreqp; 10904 struct group_source_req *gsreqp; 10905 in_addr_t grp, src, ifaddr = INADDR_ANY; 10906 uint32_t ifindex = 0; 10907 mcast_record_t fmode; 10908 struct sockaddr_in *sin; 10909 ire_t *ire; 10910 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10911 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10912 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10913 10914 switch (name) { 10915 case IP_BLOCK_SOURCE: 10916 mcast_opt = B_FALSE; 10917 /* FALLTHRU */ 10918 case MCAST_BLOCK_SOURCE: 10919 fmode = MODE_IS_EXCLUDE; 10920 optfn = ip_opt_add_group; 10921 break; 10922 10923 case IP_UNBLOCK_SOURCE: 10924 mcast_opt = B_FALSE; 10925 /* FALLTHRU */ 10926 case MCAST_UNBLOCK_SOURCE: 10927 fmode = MODE_IS_EXCLUDE; 10928 optfn = ip_opt_delete_group; 10929 break; 10930 10931 case IP_ADD_SOURCE_MEMBERSHIP: 10932 mcast_opt = B_FALSE; 10933 /* FALLTHRU */ 10934 case MCAST_JOIN_SOURCE_GROUP: 10935 fmode = MODE_IS_INCLUDE; 10936 optfn = ip_opt_add_group; 10937 break; 10938 10939 case IP_DROP_SOURCE_MEMBERSHIP: 10940 mcast_opt = B_FALSE; 10941 /* FALLTHRU */ 10942 case MCAST_LEAVE_SOURCE_GROUP: 10943 fmode = MODE_IS_INCLUDE; 10944 optfn = ip_opt_delete_group; 10945 break; 10946 } 10947 10948 if (mcast_opt) { 10949 gsreqp = (struct group_source_req *)i1; 10950 if (gsreqp->gsr_group.ss_family != AF_INET) { 10951 *outlenp = 0; 10952 return (ENOPROTOOPT); 10953 } 10954 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10955 grp = (ipaddr_t)sin->sin_addr.s_addr; 10956 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10957 src = (ipaddr_t)sin->sin_addr.s_addr; 10958 ifindex = gsreqp->gsr_interface; 10959 } else { 10960 imreqp = (struct ip_mreq_source *)i1; 10961 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10962 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10963 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10964 } 10965 10966 /* 10967 * In the multirouting case, we need to replicate 10968 * the request as noted in the mcast cases above. 10969 */ 10970 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10971 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10972 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10973 if (ire != NULL) { 10974 if (ire->ire_flags & RTF_MULTIRT) { 10975 error = ip_multirt_apply_membership( 10976 optfn, ire, connp, checkonly, grp, 10977 fmode, src, first_mp); 10978 done = B_TRUE; 10979 } 10980 ire_refrele(ire); 10981 } 10982 if (!done) { 10983 error = optfn(connp, checkonly, grp, ifaddr, 10984 &ifindex, fmode, src, first_mp); 10985 } 10986 if (error != 0) { 10987 /* 10988 * EINPROGRESS is a soft error, needs retry 10989 * so don't make *outlenp zero. 10990 */ 10991 if (error != EINPROGRESS) 10992 *outlenp = 0; 10993 return (error); 10994 } 10995 /* OK return - copy input buffer into output buffer */ 10996 if (invalp != outvalp) { 10997 bcopy(invalp, outvalp, inlen); 10998 } 10999 *outlenp = inlen; 11000 return (0); 11001 } 11002 case IP_SEC_OPT: 11003 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11004 if (error != 0) { 11005 *outlenp = 0; 11006 return (error); 11007 } 11008 break; 11009 case IP_HDRINCL: 11010 case IP_OPTIONS: 11011 case T_IP_OPTIONS: 11012 case IP_TOS: 11013 case T_IP_TOS: 11014 case IP_TTL: 11015 case IP_RECVDSTADDR: 11016 case IP_RECVOPTS: 11017 /* OK return - copy input buffer into output buffer */ 11018 if (invalp != outvalp) { 11019 /* don't trust bcopy for identical src/dst */ 11020 bcopy(invalp, outvalp, inlen); 11021 } 11022 *outlenp = inlen; 11023 return (0); 11024 case IP_RECVIF: 11025 /* Retrieve the inbound interface index */ 11026 if (!checkonly) { 11027 mutex_enter(&connp->conn_lock); 11028 connp->conn_recvif = *i1 ? 1 : 0; 11029 mutex_exit(&connp->conn_lock); 11030 } 11031 break; /* goto sizeof (int) option return */ 11032 case IP_RECVPKTINFO: 11033 if (!checkonly) { 11034 mutex_enter(&connp->conn_lock); 11035 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11036 mutex_exit(&connp->conn_lock); 11037 } 11038 break; /* goto sizeof (int) option return */ 11039 case IP_RECVSLLA: 11040 /* Retrieve the source link layer address */ 11041 if (!checkonly) { 11042 mutex_enter(&connp->conn_lock); 11043 connp->conn_recvslla = *i1 ? 1 : 0; 11044 mutex_exit(&connp->conn_lock); 11045 } 11046 break; /* goto sizeof (int) option return */ 11047 case MRT_INIT: 11048 case MRT_DONE: 11049 case MRT_ADD_VIF: 11050 case MRT_DEL_VIF: 11051 case MRT_ADD_MFC: 11052 case MRT_DEL_MFC: 11053 case MRT_ASSERT: 11054 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11055 *outlenp = 0; 11056 return (error); 11057 } 11058 error = ip_mrouter_set((int)name, q, checkonly, 11059 (uchar_t *)invalp, inlen, first_mp); 11060 if (error) { 11061 *outlenp = 0; 11062 return (error); 11063 } 11064 /* OK return - copy input buffer into output buffer */ 11065 if (invalp != outvalp) { 11066 /* don't trust bcopy for identical src/dst */ 11067 bcopy(invalp, outvalp, inlen); 11068 } 11069 *outlenp = inlen; 11070 return (0); 11071 case IP_BOUND_IF: 11072 case IP_DHCPINIT_IF: 11073 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11074 level, name, first_mp); 11075 if (error != 0) 11076 return (error); 11077 break; /* goto sizeof (int) option return */ 11078 11079 case IP_UNSPEC_SRC: 11080 /* Allow sending with a zero source address */ 11081 if (!checkonly) { 11082 mutex_enter(&connp->conn_lock); 11083 connp->conn_unspec_src = *i1 ? 1 : 0; 11084 mutex_exit(&connp->conn_lock); 11085 } 11086 break; /* goto sizeof (int) option return */ 11087 default: 11088 /* 11089 * "soft" error (negative) 11090 * option not handled at this level 11091 * Note: Do not modify *outlenp 11092 */ 11093 return (-EINVAL); 11094 } 11095 break; 11096 case IPPROTO_IPV6: 11097 switch (name) { 11098 case IPV6_BOUND_IF: 11099 case IPV6_BOUND_PIF: 11100 case IPV6_DONTFAILOVER_IF: 11101 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11102 level, name, first_mp); 11103 if (error != 0) 11104 return (error); 11105 break; /* goto sizeof (int) option return */ 11106 11107 case IPV6_MULTICAST_IF: 11108 /* 11109 * The only possible errors are EINPROGRESS and 11110 * EINVAL. EINPROGRESS will be restarted and is not 11111 * a hard error. We call this option on both V4 and V6 11112 * If both return EINVAL, then this call returns 11113 * EINVAL. If at least one of them succeeds we 11114 * return success. 11115 */ 11116 found = B_FALSE; 11117 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11118 level, name, first_mp); 11119 if (error == EINPROGRESS) 11120 return (error); 11121 if (error == 0) 11122 found = B_TRUE; 11123 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11124 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11125 if (error == 0) 11126 found = B_TRUE; 11127 if (!found) 11128 return (error); 11129 break; /* goto sizeof (int) option return */ 11130 11131 case IPV6_MULTICAST_HOPS: 11132 /* Recorded in transport above IP */ 11133 break; /* goto sizeof (int) option return */ 11134 case IPV6_MULTICAST_LOOP: 11135 if (!checkonly) { 11136 mutex_enter(&connp->conn_lock); 11137 connp->conn_multicast_loop = *i1; 11138 mutex_exit(&connp->conn_lock); 11139 } 11140 break; /* goto sizeof (int) option return */ 11141 case IPV6_JOIN_GROUP: 11142 case MCAST_JOIN_GROUP: 11143 case IPV6_LEAVE_GROUP: 11144 case MCAST_LEAVE_GROUP: { 11145 struct ipv6_mreq *ip_mreqp; 11146 struct group_req *greqp; 11147 ire_t *ire; 11148 boolean_t done = B_FALSE; 11149 in6_addr_t groupv6; 11150 uint32_t ifindex; 11151 boolean_t mcast_opt = B_TRUE; 11152 mcast_record_t fmode; 11153 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11154 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11155 11156 switch (name) { 11157 case IPV6_JOIN_GROUP: 11158 mcast_opt = B_FALSE; 11159 /* FALLTHRU */ 11160 case MCAST_JOIN_GROUP: 11161 fmode = MODE_IS_EXCLUDE; 11162 optfn = ip_opt_add_group_v6; 11163 break; 11164 11165 case IPV6_LEAVE_GROUP: 11166 mcast_opt = B_FALSE; 11167 /* FALLTHRU */ 11168 case MCAST_LEAVE_GROUP: 11169 fmode = MODE_IS_INCLUDE; 11170 optfn = ip_opt_delete_group_v6; 11171 break; 11172 } 11173 11174 if (mcast_opt) { 11175 struct sockaddr_in *sin; 11176 struct sockaddr_in6 *sin6; 11177 greqp = (struct group_req *)i1; 11178 if (greqp->gr_group.ss_family == AF_INET) { 11179 sin = (struct sockaddr_in *) 11180 &(greqp->gr_group); 11181 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11182 &groupv6); 11183 } else { 11184 sin6 = (struct sockaddr_in6 *) 11185 &(greqp->gr_group); 11186 groupv6 = sin6->sin6_addr; 11187 } 11188 ifindex = greqp->gr_interface; 11189 } else { 11190 ip_mreqp = (struct ipv6_mreq *)i1; 11191 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11192 ifindex = ip_mreqp->ipv6mr_interface; 11193 } 11194 /* 11195 * In the multirouting case, we need to replicate 11196 * the request on all interfaces that will take part 11197 * in replication. We do so because multirouting is 11198 * reflective, thus we will probably receive multi- 11199 * casts on those interfaces. 11200 * The ip_multirt_apply_membership_v6() succeeds if 11201 * the operation succeeds on at least one interface. 11202 */ 11203 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11204 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11205 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11206 if (ire != NULL) { 11207 if (ire->ire_flags & RTF_MULTIRT) { 11208 error = ip_multirt_apply_membership_v6( 11209 optfn, ire, connp, checkonly, 11210 &groupv6, fmode, &ipv6_all_zeros, 11211 first_mp); 11212 done = B_TRUE; 11213 } 11214 ire_refrele(ire); 11215 } 11216 if (!done) { 11217 error = optfn(connp, checkonly, &groupv6, 11218 ifindex, fmode, &ipv6_all_zeros, first_mp); 11219 } 11220 if (error) { 11221 /* 11222 * EINPROGRESS is a soft error, needs retry 11223 * so don't make *outlenp zero. 11224 */ 11225 if (error != EINPROGRESS) 11226 *outlenp = 0; 11227 return (error); 11228 } 11229 /* OK return - copy input buffer into output buffer */ 11230 if (invalp != outvalp) { 11231 /* don't trust bcopy for identical src/dst */ 11232 bcopy(invalp, outvalp, inlen); 11233 } 11234 *outlenp = inlen; 11235 return (0); 11236 } 11237 case MCAST_BLOCK_SOURCE: 11238 case MCAST_UNBLOCK_SOURCE: 11239 case MCAST_JOIN_SOURCE_GROUP: 11240 case MCAST_LEAVE_SOURCE_GROUP: { 11241 struct group_source_req *gsreqp; 11242 in6_addr_t v6grp, v6src; 11243 uint32_t ifindex; 11244 mcast_record_t fmode; 11245 ire_t *ire; 11246 boolean_t done = B_FALSE; 11247 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11248 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11249 11250 switch (name) { 11251 case MCAST_BLOCK_SOURCE: 11252 fmode = MODE_IS_EXCLUDE; 11253 optfn = ip_opt_add_group_v6; 11254 break; 11255 case MCAST_UNBLOCK_SOURCE: 11256 fmode = MODE_IS_EXCLUDE; 11257 optfn = ip_opt_delete_group_v6; 11258 break; 11259 case MCAST_JOIN_SOURCE_GROUP: 11260 fmode = MODE_IS_INCLUDE; 11261 optfn = ip_opt_add_group_v6; 11262 break; 11263 case MCAST_LEAVE_SOURCE_GROUP: 11264 fmode = MODE_IS_INCLUDE; 11265 optfn = ip_opt_delete_group_v6; 11266 break; 11267 } 11268 11269 gsreqp = (struct group_source_req *)i1; 11270 ifindex = gsreqp->gsr_interface; 11271 if (gsreqp->gsr_group.ss_family == AF_INET) { 11272 struct sockaddr_in *s; 11273 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11274 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11275 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11276 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11277 } else { 11278 struct sockaddr_in6 *s6; 11279 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11280 v6grp = s6->sin6_addr; 11281 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11282 v6src = s6->sin6_addr; 11283 } 11284 11285 /* 11286 * In the multirouting case, we need to replicate 11287 * the request as noted in the mcast cases above. 11288 */ 11289 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11290 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11291 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11292 if (ire != NULL) { 11293 if (ire->ire_flags & RTF_MULTIRT) { 11294 error = ip_multirt_apply_membership_v6( 11295 optfn, ire, connp, checkonly, 11296 &v6grp, fmode, &v6src, first_mp); 11297 done = B_TRUE; 11298 } 11299 ire_refrele(ire); 11300 } 11301 if (!done) { 11302 error = optfn(connp, checkonly, &v6grp, 11303 ifindex, fmode, &v6src, first_mp); 11304 } 11305 if (error != 0) { 11306 /* 11307 * EINPROGRESS is a soft error, needs retry 11308 * so don't make *outlenp zero. 11309 */ 11310 if (error != EINPROGRESS) 11311 *outlenp = 0; 11312 return (error); 11313 } 11314 /* OK return - copy input buffer into output buffer */ 11315 if (invalp != outvalp) { 11316 bcopy(invalp, outvalp, inlen); 11317 } 11318 *outlenp = inlen; 11319 return (0); 11320 } 11321 case IPV6_UNICAST_HOPS: 11322 /* Recorded in transport above IP */ 11323 break; /* goto sizeof (int) option return */ 11324 case IPV6_UNSPEC_SRC: 11325 /* Allow sending with a zero source address */ 11326 if (!checkonly) { 11327 mutex_enter(&connp->conn_lock); 11328 connp->conn_unspec_src = *i1 ? 1 : 0; 11329 mutex_exit(&connp->conn_lock); 11330 } 11331 break; /* goto sizeof (int) option return */ 11332 case IPV6_RECVPKTINFO: 11333 if (!checkonly) { 11334 mutex_enter(&connp->conn_lock); 11335 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11336 mutex_exit(&connp->conn_lock); 11337 } 11338 break; /* goto sizeof (int) option return */ 11339 case IPV6_RECVTCLASS: 11340 if (!checkonly) { 11341 if (*i1 < 0 || *i1 > 1) { 11342 return (EINVAL); 11343 } 11344 mutex_enter(&connp->conn_lock); 11345 connp->conn_ipv6_recvtclass = *i1; 11346 mutex_exit(&connp->conn_lock); 11347 } 11348 break; 11349 case IPV6_RECVPATHMTU: 11350 if (!checkonly) { 11351 if (*i1 < 0 || *i1 > 1) { 11352 return (EINVAL); 11353 } 11354 mutex_enter(&connp->conn_lock); 11355 connp->conn_ipv6_recvpathmtu = *i1; 11356 mutex_exit(&connp->conn_lock); 11357 } 11358 break; 11359 case IPV6_RECVHOPLIMIT: 11360 if (!checkonly) { 11361 mutex_enter(&connp->conn_lock); 11362 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11363 mutex_exit(&connp->conn_lock); 11364 } 11365 break; /* goto sizeof (int) option return */ 11366 case IPV6_RECVHOPOPTS: 11367 if (!checkonly) { 11368 mutex_enter(&connp->conn_lock); 11369 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11370 mutex_exit(&connp->conn_lock); 11371 } 11372 break; /* goto sizeof (int) option return */ 11373 case IPV6_RECVDSTOPTS: 11374 if (!checkonly) { 11375 mutex_enter(&connp->conn_lock); 11376 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11377 mutex_exit(&connp->conn_lock); 11378 } 11379 break; /* goto sizeof (int) option return */ 11380 case IPV6_RECVRTHDR: 11381 if (!checkonly) { 11382 mutex_enter(&connp->conn_lock); 11383 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11384 mutex_exit(&connp->conn_lock); 11385 } 11386 break; /* goto sizeof (int) option return */ 11387 case IPV6_RECVRTHDRDSTOPTS: 11388 if (!checkonly) { 11389 mutex_enter(&connp->conn_lock); 11390 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11391 mutex_exit(&connp->conn_lock); 11392 } 11393 break; /* goto sizeof (int) option return */ 11394 case IPV6_PKTINFO: 11395 if (inlen == 0) 11396 return (-EINVAL); /* clearing option */ 11397 error = ip6_set_pktinfo(cr, connp, 11398 (struct in6_pktinfo *)invalp, first_mp); 11399 if (error != 0) 11400 *outlenp = 0; 11401 else 11402 *outlenp = inlen; 11403 return (error); 11404 case IPV6_NEXTHOP: { 11405 struct sockaddr_in6 *sin6; 11406 11407 /* Verify that the nexthop is reachable */ 11408 if (inlen == 0) 11409 return (-EINVAL); /* clearing option */ 11410 11411 sin6 = (struct sockaddr_in6 *)invalp; 11412 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11413 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11414 NULL, MATCH_IRE_DEFAULT, ipst); 11415 11416 if (ire == NULL) { 11417 *outlenp = 0; 11418 return (EHOSTUNREACH); 11419 } 11420 ire_refrele(ire); 11421 return (-EINVAL); 11422 } 11423 case IPV6_SEC_OPT: 11424 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11425 if (error != 0) { 11426 *outlenp = 0; 11427 return (error); 11428 } 11429 break; 11430 case IPV6_SRC_PREFERENCES: { 11431 /* 11432 * This is implemented strictly in the ip module 11433 * (here and in tcp_opt_*() to accomodate tcp 11434 * sockets). Modules above ip pass this option 11435 * down here since ip is the only one that needs to 11436 * be aware of source address preferences. 11437 * 11438 * This socket option only affects connected 11439 * sockets that haven't already bound to a specific 11440 * IPv6 address. In other words, sockets that 11441 * don't call bind() with an address other than the 11442 * unspecified address and that call connect(). 11443 * ip_bind_connected_v6() passes these preferences 11444 * to the ipif_select_source_v6() function. 11445 */ 11446 if (inlen != sizeof (uint32_t)) 11447 return (EINVAL); 11448 error = ip6_set_src_preferences(connp, 11449 *(uint32_t *)invalp); 11450 if (error != 0) { 11451 *outlenp = 0; 11452 return (error); 11453 } else { 11454 *outlenp = sizeof (uint32_t); 11455 } 11456 break; 11457 } 11458 case IPV6_V6ONLY: 11459 if (*i1 < 0 || *i1 > 1) { 11460 return (EINVAL); 11461 } 11462 mutex_enter(&connp->conn_lock); 11463 connp->conn_ipv6_v6only = *i1; 11464 mutex_exit(&connp->conn_lock); 11465 break; 11466 default: 11467 return (-EINVAL); 11468 } 11469 break; 11470 default: 11471 /* 11472 * "soft" error (negative) 11473 * option not handled at this level 11474 * Note: Do not modify *outlenp 11475 */ 11476 return (-EINVAL); 11477 } 11478 /* 11479 * Common case of return from an option that is sizeof (int) 11480 */ 11481 *(int *)outvalp = *i1; 11482 *outlenp = sizeof (int); 11483 return (0); 11484 } 11485 11486 /* 11487 * This routine gets default values of certain options whose default 11488 * values are maintained by protocol specific code 11489 */ 11490 /* ARGSUSED */ 11491 int 11492 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11493 { 11494 int *i1 = (int *)ptr; 11495 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11496 11497 switch (level) { 11498 case IPPROTO_IP: 11499 switch (name) { 11500 case IP_MULTICAST_TTL: 11501 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11502 return (sizeof (uchar_t)); 11503 case IP_MULTICAST_LOOP: 11504 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11505 return (sizeof (uchar_t)); 11506 default: 11507 return (-1); 11508 } 11509 case IPPROTO_IPV6: 11510 switch (name) { 11511 case IPV6_UNICAST_HOPS: 11512 *i1 = ipst->ips_ipv6_def_hops; 11513 return (sizeof (int)); 11514 case IPV6_MULTICAST_HOPS: 11515 *i1 = IP_DEFAULT_MULTICAST_TTL; 11516 return (sizeof (int)); 11517 case IPV6_MULTICAST_LOOP: 11518 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11519 return (sizeof (int)); 11520 case IPV6_V6ONLY: 11521 *i1 = 1; 11522 return (sizeof (int)); 11523 default: 11524 return (-1); 11525 } 11526 default: 11527 return (-1); 11528 } 11529 /* NOTREACHED */ 11530 } 11531 11532 /* 11533 * Given a destination address and a pointer to where to put the information 11534 * this routine fills in the mtuinfo. 11535 */ 11536 int 11537 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11538 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11539 { 11540 ire_t *ire; 11541 ip_stack_t *ipst = ns->netstack_ip; 11542 11543 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11544 return (-1); 11545 11546 bzero(mtuinfo, sizeof (*mtuinfo)); 11547 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11548 mtuinfo->ip6m_addr.sin6_port = port; 11549 mtuinfo->ip6m_addr.sin6_addr = *in6; 11550 11551 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11552 if (ire != NULL) { 11553 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11554 ire_refrele(ire); 11555 } else { 11556 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11557 } 11558 return (sizeof (struct ip6_mtuinfo)); 11559 } 11560 11561 /* 11562 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11563 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11564 * isn't. This doesn't matter as the error checking is done properly for the 11565 * other MRT options coming in through ip_opt_set. 11566 */ 11567 int 11568 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11569 { 11570 conn_t *connp = Q_TO_CONN(q); 11571 ipsec_req_t *req = (ipsec_req_t *)ptr; 11572 11573 switch (level) { 11574 case IPPROTO_IP: 11575 switch (name) { 11576 case MRT_VERSION: 11577 case MRT_ASSERT: 11578 (void) ip_mrouter_get(name, q, ptr); 11579 return (sizeof (int)); 11580 case IP_SEC_OPT: 11581 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11582 case IP_NEXTHOP: 11583 if (connp->conn_nexthop_set) { 11584 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11585 return (sizeof (ipaddr_t)); 11586 } else 11587 return (0); 11588 case IP_RECVPKTINFO: 11589 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11590 return (sizeof (int)); 11591 default: 11592 break; 11593 } 11594 break; 11595 case IPPROTO_IPV6: 11596 switch (name) { 11597 case IPV6_SEC_OPT: 11598 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11599 case IPV6_SRC_PREFERENCES: { 11600 return (ip6_get_src_preferences(connp, 11601 (uint32_t *)ptr)); 11602 } 11603 case IPV6_V6ONLY: 11604 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11605 return (sizeof (int)); 11606 case IPV6_PATHMTU: 11607 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11608 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11609 default: 11610 break; 11611 } 11612 break; 11613 default: 11614 break; 11615 } 11616 return (-1); 11617 } 11618 11619 /* Named Dispatch routine to get a current value out of our parameter table. */ 11620 /* ARGSUSED */ 11621 static int 11622 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11623 { 11624 ipparam_t *ippa = (ipparam_t *)cp; 11625 11626 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11627 return (0); 11628 } 11629 11630 /* ARGSUSED */ 11631 static int 11632 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11633 { 11634 11635 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11636 return (0); 11637 } 11638 11639 /* 11640 * Set ip{,6}_forwarding values. This means walking through all of the 11641 * ill's and toggling their forwarding values. 11642 */ 11643 /* ARGSUSED */ 11644 static int 11645 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11646 { 11647 long new_value; 11648 int *forwarding_value = (int *)cp; 11649 ill_t *ill; 11650 boolean_t isv6; 11651 ill_walk_context_t ctx; 11652 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11653 11654 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11655 11656 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11657 new_value < 0 || new_value > 1) { 11658 return (EINVAL); 11659 } 11660 11661 *forwarding_value = new_value; 11662 11663 /* 11664 * Regardless of the current value of ip_forwarding, set all per-ill 11665 * values of ip_forwarding to the value being set. 11666 * 11667 * Bring all the ill's up to date with the new global value. 11668 */ 11669 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11670 11671 if (isv6) 11672 ill = ILL_START_WALK_V6(&ctx, ipst); 11673 else 11674 ill = ILL_START_WALK_V4(&ctx, ipst); 11675 11676 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11677 (void) ill_forward_set(ill, new_value != 0); 11678 11679 rw_exit(&ipst->ips_ill_g_lock); 11680 return (0); 11681 } 11682 11683 /* 11684 * Walk through the param array specified registering each element with the 11685 * Named Dispatch handler. This is called only during init. So it is ok 11686 * not to acquire any locks 11687 */ 11688 static boolean_t 11689 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11690 ipndp_t *ipnd, size_t ipnd_cnt) 11691 { 11692 for (; ippa_cnt-- > 0; ippa++) { 11693 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11694 if (!nd_load(ndp, ippa->ip_param_name, 11695 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11696 nd_free(ndp); 11697 return (B_FALSE); 11698 } 11699 } 11700 } 11701 11702 for (; ipnd_cnt-- > 0; ipnd++) { 11703 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11704 if (!nd_load(ndp, ipnd->ip_ndp_name, 11705 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11706 ipnd->ip_ndp_data)) { 11707 nd_free(ndp); 11708 return (B_FALSE); 11709 } 11710 } 11711 } 11712 11713 return (B_TRUE); 11714 } 11715 11716 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11717 /* ARGSUSED */ 11718 static int 11719 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11720 { 11721 long new_value; 11722 ipparam_t *ippa = (ipparam_t *)cp; 11723 11724 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11725 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11726 return (EINVAL); 11727 } 11728 ippa->ip_param_value = new_value; 11729 return (0); 11730 } 11731 11732 /* 11733 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11734 * When an ipf is passed here for the first time, if 11735 * we already have in-order fragments on the queue, we convert from the fast- 11736 * path reassembly scheme to the hard-case scheme. From then on, additional 11737 * fragments are reassembled here. We keep track of the start and end offsets 11738 * of each piece, and the number of holes in the chain. When the hole count 11739 * goes to zero, we are done! 11740 * 11741 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11742 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11743 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11744 * after the call to ip_reassemble(). 11745 */ 11746 int 11747 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11748 size_t msg_len) 11749 { 11750 uint_t end; 11751 mblk_t *next_mp; 11752 mblk_t *mp1; 11753 uint_t offset; 11754 boolean_t incr_dups = B_TRUE; 11755 boolean_t offset_zero_seen = B_FALSE; 11756 boolean_t pkt_boundary_checked = B_FALSE; 11757 11758 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11759 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11760 11761 /* Add in byte count */ 11762 ipf->ipf_count += msg_len; 11763 if (ipf->ipf_end) { 11764 /* 11765 * We were part way through in-order reassembly, but now there 11766 * is a hole. We walk through messages already queued, and 11767 * mark them for hard case reassembly. We know that up till 11768 * now they were in order starting from offset zero. 11769 */ 11770 offset = 0; 11771 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11772 IP_REASS_SET_START(mp1, offset); 11773 if (offset == 0) { 11774 ASSERT(ipf->ipf_nf_hdr_len != 0); 11775 offset = -ipf->ipf_nf_hdr_len; 11776 } 11777 offset += mp1->b_wptr - mp1->b_rptr; 11778 IP_REASS_SET_END(mp1, offset); 11779 } 11780 /* One hole at the end. */ 11781 ipf->ipf_hole_cnt = 1; 11782 /* Brand it as a hard case, forever. */ 11783 ipf->ipf_end = 0; 11784 } 11785 /* Walk through all the new pieces. */ 11786 do { 11787 end = start + (mp->b_wptr - mp->b_rptr); 11788 /* 11789 * If start is 0, decrease 'end' only for the first mblk of 11790 * the fragment. Otherwise 'end' can get wrong value in the 11791 * second pass of the loop if first mblk is exactly the 11792 * size of ipf_nf_hdr_len. 11793 */ 11794 if (start == 0 && !offset_zero_seen) { 11795 /* First segment */ 11796 ASSERT(ipf->ipf_nf_hdr_len != 0); 11797 end -= ipf->ipf_nf_hdr_len; 11798 offset_zero_seen = B_TRUE; 11799 } 11800 next_mp = mp->b_cont; 11801 /* 11802 * We are checking to see if there is any interesing data 11803 * to process. If there isn't and the mblk isn't the 11804 * one which carries the unfragmentable header then we 11805 * drop it. It's possible to have just the unfragmentable 11806 * header come through without any data. That needs to be 11807 * saved. 11808 * 11809 * If the assert at the top of this function holds then the 11810 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11811 * is infrequently traveled enough that the test is left in 11812 * to protect against future code changes which break that 11813 * invariant. 11814 */ 11815 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11816 /* Empty. Blast it. */ 11817 IP_REASS_SET_START(mp, 0); 11818 IP_REASS_SET_END(mp, 0); 11819 /* 11820 * If the ipf points to the mblk we are about to free, 11821 * update ipf to point to the next mblk (or NULL 11822 * if none). 11823 */ 11824 if (ipf->ipf_mp->b_cont == mp) 11825 ipf->ipf_mp->b_cont = next_mp; 11826 freeb(mp); 11827 continue; 11828 } 11829 mp->b_cont = NULL; 11830 IP_REASS_SET_START(mp, start); 11831 IP_REASS_SET_END(mp, end); 11832 if (!ipf->ipf_tail_mp) { 11833 ipf->ipf_tail_mp = mp; 11834 ipf->ipf_mp->b_cont = mp; 11835 if (start == 0 || !more) { 11836 ipf->ipf_hole_cnt = 1; 11837 /* 11838 * if the first fragment comes in more than one 11839 * mblk, this loop will be executed for each 11840 * mblk. Need to adjust hole count so exiting 11841 * this routine will leave hole count at 1. 11842 */ 11843 if (next_mp) 11844 ipf->ipf_hole_cnt++; 11845 } else 11846 ipf->ipf_hole_cnt = 2; 11847 continue; 11848 } else if (ipf->ipf_last_frag_seen && !more && 11849 !pkt_boundary_checked) { 11850 /* 11851 * We check datagram boundary only if this fragment 11852 * claims to be the last fragment and we have seen a 11853 * last fragment in the past too. We do this only 11854 * once for a given fragment. 11855 * 11856 * start cannot be 0 here as fragments with start=0 11857 * and MF=0 gets handled as a complete packet. These 11858 * fragments should not reach here. 11859 */ 11860 11861 if (start + msgdsize(mp) != 11862 IP_REASS_END(ipf->ipf_tail_mp)) { 11863 /* 11864 * We have two fragments both of which claim 11865 * to be the last fragment but gives conflicting 11866 * information about the whole datagram size. 11867 * Something fishy is going on. Drop the 11868 * fragment and free up the reassembly list. 11869 */ 11870 return (IP_REASS_FAILED); 11871 } 11872 11873 /* 11874 * We shouldn't come to this code block again for this 11875 * particular fragment. 11876 */ 11877 pkt_boundary_checked = B_TRUE; 11878 } 11879 11880 /* New stuff at or beyond tail? */ 11881 offset = IP_REASS_END(ipf->ipf_tail_mp); 11882 if (start >= offset) { 11883 if (ipf->ipf_last_frag_seen) { 11884 /* current fragment is beyond last fragment */ 11885 return (IP_REASS_FAILED); 11886 } 11887 /* Link it on end. */ 11888 ipf->ipf_tail_mp->b_cont = mp; 11889 ipf->ipf_tail_mp = mp; 11890 if (more) { 11891 if (start != offset) 11892 ipf->ipf_hole_cnt++; 11893 } else if (start == offset && next_mp == NULL) 11894 ipf->ipf_hole_cnt--; 11895 continue; 11896 } 11897 mp1 = ipf->ipf_mp->b_cont; 11898 offset = IP_REASS_START(mp1); 11899 /* New stuff at the front? */ 11900 if (start < offset) { 11901 if (start == 0) { 11902 if (end >= offset) { 11903 /* Nailed the hole at the begining. */ 11904 ipf->ipf_hole_cnt--; 11905 } 11906 } else if (end < offset) { 11907 /* 11908 * A hole, stuff, and a hole where there used 11909 * to be just a hole. 11910 */ 11911 ipf->ipf_hole_cnt++; 11912 } 11913 mp->b_cont = mp1; 11914 /* Check for overlap. */ 11915 while (end > offset) { 11916 if (end < IP_REASS_END(mp1)) { 11917 mp->b_wptr -= end - offset; 11918 IP_REASS_SET_END(mp, offset); 11919 BUMP_MIB(ill->ill_ip_mib, 11920 ipIfStatsReasmPartDups); 11921 break; 11922 } 11923 /* Did we cover another hole? */ 11924 if ((mp1->b_cont && 11925 IP_REASS_END(mp1) != 11926 IP_REASS_START(mp1->b_cont) && 11927 end >= IP_REASS_START(mp1->b_cont)) || 11928 (!ipf->ipf_last_frag_seen && !more)) { 11929 ipf->ipf_hole_cnt--; 11930 } 11931 /* Clip out mp1. */ 11932 if ((mp->b_cont = mp1->b_cont) == NULL) { 11933 /* 11934 * After clipping out mp1, this guy 11935 * is now hanging off the end. 11936 */ 11937 ipf->ipf_tail_mp = mp; 11938 } 11939 IP_REASS_SET_START(mp1, 0); 11940 IP_REASS_SET_END(mp1, 0); 11941 /* Subtract byte count */ 11942 ipf->ipf_count -= mp1->b_datap->db_lim - 11943 mp1->b_datap->db_base; 11944 freeb(mp1); 11945 BUMP_MIB(ill->ill_ip_mib, 11946 ipIfStatsReasmPartDups); 11947 mp1 = mp->b_cont; 11948 if (!mp1) 11949 break; 11950 offset = IP_REASS_START(mp1); 11951 } 11952 ipf->ipf_mp->b_cont = mp; 11953 continue; 11954 } 11955 /* 11956 * The new piece starts somewhere between the start of the head 11957 * and before the end of the tail. 11958 */ 11959 for (; mp1; mp1 = mp1->b_cont) { 11960 offset = IP_REASS_END(mp1); 11961 if (start < offset) { 11962 if (end <= offset) { 11963 /* Nothing new. */ 11964 IP_REASS_SET_START(mp, 0); 11965 IP_REASS_SET_END(mp, 0); 11966 /* Subtract byte count */ 11967 ipf->ipf_count -= mp->b_datap->db_lim - 11968 mp->b_datap->db_base; 11969 if (incr_dups) { 11970 ipf->ipf_num_dups++; 11971 incr_dups = B_FALSE; 11972 } 11973 freeb(mp); 11974 BUMP_MIB(ill->ill_ip_mib, 11975 ipIfStatsReasmDuplicates); 11976 break; 11977 } 11978 /* 11979 * Trim redundant stuff off beginning of new 11980 * piece. 11981 */ 11982 IP_REASS_SET_START(mp, offset); 11983 mp->b_rptr += offset - start; 11984 BUMP_MIB(ill->ill_ip_mib, 11985 ipIfStatsReasmPartDups); 11986 start = offset; 11987 if (!mp1->b_cont) { 11988 /* 11989 * After trimming, this guy is now 11990 * hanging off the end. 11991 */ 11992 mp1->b_cont = mp; 11993 ipf->ipf_tail_mp = mp; 11994 if (!more) { 11995 ipf->ipf_hole_cnt--; 11996 } 11997 break; 11998 } 11999 } 12000 if (start >= IP_REASS_START(mp1->b_cont)) 12001 continue; 12002 /* Fill a hole */ 12003 if (start > offset) 12004 ipf->ipf_hole_cnt++; 12005 mp->b_cont = mp1->b_cont; 12006 mp1->b_cont = mp; 12007 mp1 = mp->b_cont; 12008 offset = IP_REASS_START(mp1); 12009 if (end >= offset) { 12010 ipf->ipf_hole_cnt--; 12011 /* Check for overlap. */ 12012 while (end > offset) { 12013 if (end < IP_REASS_END(mp1)) { 12014 mp->b_wptr -= end - offset; 12015 IP_REASS_SET_END(mp, offset); 12016 /* 12017 * TODO we might bump 12018 * this up twice if there is 12019 * overlap at both ends. 12020 */ 12021 BUMP_MIB(ill->ill_ip_mib, 12022 ipIfStatsReasmPartDups); 12023 break; 12024 } 12025 /* Did we cover another hole? */ 12026 if ((mp1->b_cont && 12027 IP_REASS_END(mp1) 12028 != IP_REASS_START(mp1->b_cont) && 12029 end >= 12030 IP_REASS_START(mp1->b_cont)) || 12031 (!ipf->ipf_last_frag_seen && 12032 !more)) { 12033 ipf->ipf_hole_cnt--; 12034 } 12035 /* Clip out mp1. */ 12036 if ((mp->b_cont = mp1->b_cont) == 12037 NULL) { 12038 /* 12039 * After clipping out mp1, 12040 * this guy is now hanging 12041 * off the end. 12042 */ 12043 ipf->ipf_tail_mp = mp; 12044 } 12045 IP_REASS_SET_START(mp1, 0); 12046 IP_REASS_SET_END(mp1, 0); 12047 /* Subtract byte count */ 12048 ipf->ipf_count -= 12049 mp1->b_datap->db_lim - 12050 mp1->b_datap->db_base; 12051 freeb(mp1); 12052 BUMP_MIB(ill->ill_ip_mib, 12053 ipIfStatsReasmPartDups); 12054 mp1 = mp->b_cont; 12055 if (!mp1) 12056 break; 12057 offset = IP_REASS_START(mp1); 12058 } 12059 } 12060 break; 12061 } 12062 } while (start = end, mp = next_mp); 12063 12064 /* Fragment just processed could be the last one. Remember this fact */ 12065 if (!more) 12066 ipf->ipf_last_frag_seen = B_TRUE; 12067 12068 /* Still got holes? */ 12069 if (ipf->ipf_hole_cnt) 12070 return (IP_REASS_PARTIAL); 12071 /* Clean up overloaded fields to avoid upstream disasters. */ 12072 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12073 IP_REASS_SET_START(mp1, 0); 12074 IP_REASS_SET_END(mp1, 0); 12075 } 12076 return (IP_REASS_COMPLETE); 12077 } 12078 12079 /* 12080 * ipsec processing for the fast path, used for input UDP Packets 12081 * Returns true if ready for passup to UDP. 12082 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12083 * was an ESP-in-UDP packet, etc.). 12084 */ 12085 static boolean_t 12086 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12087 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12088 { 12089 uint32_t ill_index; 12090 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12091 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12092 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12093 udp_t *udp = connp->conn_udp; 12094 12095 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12096 /* The ill_index of the incoming ILL */ 12097 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12098 12099 /* pass packet up to the transport */ 12100 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12101 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12102 NULL, mctl_present); 12103 if (*first_mpp == NULL) { 12104 return (B_FALSE); 12105 } 12106 } 12107 12108 /* Initiate IPPF processing for fastpath UDP */ 12109 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12110 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12111 if (*mpp == NULL) { 12112 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12113 "deferred/dropped during IPPF processing\n")); 12114 return (B_FALSE); 12115 } 12116 } 12117 /* 12118 * Remove 0-spi if it's 0, or move everything behind 12119 * the UDP header over it and forward to ESP via 12120 * ip_proto_input(). 12121 */ 12122 if (udp->udp_nat_t_endpoint) { 12123 if (mctl_present) { 12124 /* mctl_present *shouldn't* happen. */ 12125 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12126 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12127 &ipss->ipsec_dropper); 12128 *first_mpp = NULL; 12129 return (B_FALSE); 12130 } 12131 12132 /* "ill" is "recv_ill" in actuality. */ 12133 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12134 return (B_FALSE); 12135 12136 /* Else continue like a normal UDP packet. */ 12137 } 12138 12139 /* 12140 * We make the checks as below since we are in the fast path 12141 * and want to minimize the number of checks if the IP_RECVIF and/or 12142 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12143 */ 12144 if (connp->conn_recvif || connp->conn_recvslla || 12145 connp->conn_ip_recvpktinfo) { 12146 if (connp->conn_recvif) { 12147 in_flags = IPF_RECVIF; 12148 } 12149 /* 12150 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12151 * so the flag passed to ip_add_info is based on IP version 12152 * of connp. 12153 */ 12154 if (connp->conn_ip_recvpktinfo) { 12155 if (connp->conn_af_isv6) { 12156 /* 12157 * V6 only needs index 12158 */ 12159 in_flags |= IPF_RECVIF; 12160 } else { 12161 /* 12162 * V4 needs index + matching address. 12163 */ 12164 in_flags |= IPF_RECVADDR; 12165 } 12166 } 12167 if (connp->conn_recvslla) { 12168 in_flags |= IPF_RECVSLLA; 12169 } 12170 /* 12171 * since in_flags are being set ill will be 12172 * referenced in ip_add_info, so it better not 12173 * be NULL. 12174 */ 12175 /* 12176 * the actual data will be contained in b_cont 12177 * upon successful return of the following call. 12178 * If the call fails then the original mblk is 12179 * returned. 12180 */ 12181 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12182 ipst); 12183 } 12184 12185 return (B_TRUE); 12186 } 12187 12188 /* 12189 * Fragmentation reassembly. Each ILL has a hash table for 12190 * queuing packets undergoing reassembly for all IPIFs 12191 * associated with the ILL. The hash is based on the packet 12192 * IP ident field. The ILL frag hash table was allocated 12193 * as a timer block at the time the ILL was created. Whenever 12194 * there is anything on the reassembly queue, the timer will 12195 * be running. Returns B_TRUE if successful else B_FALSE; 12196 * frees mp on failure. 12197 */ 12198 static boolean_t 12199 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12200 uint32_t *cksum_val, uint16_t *cksum_flags) 12201 { 12202 uint32_t frag_offset_flags; 12203 ill_t *ill = (ill_t *)q->q_ptr; 12204 mblk_t *mp = *mpp; 12205 mblk_t *t_mp; 12206 ipaddr_t dst; 12207 uint8_t proto = ipha->ipha_protocol; 12208 uint32_t sum_val; 12209 uint16_t sum_flags; 12210 ipf_t *ipf; 12211 ipf_t **ipfp; 12212 ipfb_t *ipfb; 12213 uint16_t ident; 12214 uint32_t offset; 12215 ipaddr_t src; 12216 uint_t hdr_length; 12217 uint32_t end; 12218 mblk_t *mp1; 12219 mblk_t *tail_mp; 12220 size_t count; 12221 size_t msg_len; 12222 uint8_t ecn_info = 0; 12223 uint32_t packet_size; 12224 boolean_t pruned = B_FALSE; 12225 ip_stack_t *ipst = ill->ill_ipst; 12226 12227 if (cksum_val != NULL) 12228 *cksum_val = 0; 12229 if (cksum_flags != NULL) 12230 *cksum_flags = 0; 12231 12232 /* 12233 * Drop the fragmented as early as possible, if 12234 * we don't have resource(s) to re-assemble. 12235 */ 12236 if (ipst->ips_ip_reass_queue_bytes == 0) { 12237 freemsg(mp); 12238 return (B_FALSE); 12239 } 12240 12241 /* Check for fragmentation offset; return if there's none */ 12242 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12243 (IPH_MF | IPH_OFFSET)) == 0) 12244 return (B_TRUE); 12245 12246 /* 12247 * We utilize hardware computed checksum info only for UDP since 12248 * IP fragmentation is a normal occurence for the protocol. In 12249 * addition, checksum offload support for IP fragments carrying 12250 * UDP payload is commonly implemented across network adapters. 12251 */ 12252 ASSERT(ill != NULL); 12253 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12254 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12255 mblk_t *mp1 = mp->b_cont; 12256 int32_t len; 12257 12258 /* Record checksum information from the packet */ 12259 sum_val = (uint32_t)DB_CKSUM16(mp); 12260 sum_flags = DB_CKSUMFLAGS(mp); 12261 12262 /* IP payload offset from beginning of mblk */ 12263 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12264 12265 if ((sum_flags & HCK_PARTIALCKSUM) && 12266 (mp1 == NULL || mp1->b_cont == NULL) && 12267 offset >= DB_CKSUMSTART(mp) && 12268 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12269 uint32_t adj; 12270 /* 12271 * Partial checksum has been calculated by hardware 12272 * and attached to the packet; in addition, any 12273 * prepended extraneous data is even byte aligned. 12274 * If any such data exists, we adjust the checksum; 12275 * this would also handle any postpended data. 12276 */ 12277 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12278 mp, mp1, len, adj); 12279 12280 /* One's complement subtract extraneous checksum */ 12281 if (adj >= sum_val) 12282 sum_val = ~(adj - sum_val) & 0xFFFF; 12283 else 12284 sum_val -= adj; 12285 } 12286 } else { 12287 sum_val = 0; 12288 sum_flags = 0; 12289 } 12290 12291 /* Clear hardware checksumming flag */ 12292 DB_CKSUMFLAGS(mp) = 0; 12293 12294 ident = ipha->ipha_ident; 12295 offset = (frag_offset_flags << 3) & 0xFFFF; 12296 src = ipha->ipha_src; 12297 dst = ipha->ipha_dst; 12298 hdr_length = IPH_HDR_LENGTH(ipha); 12299 end = ntohs(ipha->ipha_length) - hdr_length; 12300 12301 /* If end == 0 then we have a packet with no data, so just free it */ 12302 if (end == 0) { 12303 freemsg(mp); 12304 return (B_FALSE); 12305 } 12306 12307 /* Record the ECN field info. */ 12308 ecn_info = (ipha->ipha_type_of_service & 0x3); 12309 if (offset != 0) { 12310 /* 12311 * If this isn't the first piece, strip the header, and 12312 * add the offset to the end value. 12313 */ 12314 mp->b_rptr += hdr_length; 12315 end += offset; 12316 } 12317 12318 msg_len = MBLKSIZE(mp); 12319 tail_mp = mp; 12320 while (tail_mp->b_cont != NULL) { 12321 tail_mp = tail_mp->b_cont; 12322 msg_len += MBLKSIZE(tail_mp); 12323 } 12324 12325 /* If the reassembly list for this ILL will get too big, prune it */ 12326 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12327 ipst->ips_ip_reass_queue_bytes) { 12328 ill_frag_prune(ill, 12329 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12330 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12331 pruned = B_TRUE; 12332 } 12333 12334 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12335 mutex_enter(&ipfb->ipfb_lock); 12336 12337 ipfp = &ipfb->ipfb_ipf; 12338 /* Try to find an existing fragment queue for this packet. */ 12339 for (;;) { 12340 ipf = ipfp[0]; 12341 if (ipf != NULL) { 12342 /* 12343 * It has to match on ident and src/dst address. 12344 */ 12345 if (ipf->ipf_ident == ident && 12346 ipf->ipf_src == src && 12347 ipf->ipf_dst == dst && 12348 ipf->ipf_protocol == proto) { 12349 /* 12350 * If we have received too many 12351 * duplicate fragments for this packet 12352 * free it. 12353 */ 12354 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12355 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12356 freemsg(mp); 12357 mutex_exit(&ipfb->ipfb_lock); 12358 return (B_FALSE); 12359 } 12360 /* Found it. */ 12361 break; 12362 } 12363 ipfp = &ipf->ipf_hash_next; 12364 continue; 12365 } 12366 12367 /* 12368 * If we pruned the list, do we want to store this new 12369 * fragment?. We apply an optimization here based on the 12370 * fact that most fragments will be received in order. 12371 * So if the offset of this incoming fragment is zero, 12372 * it is the first fragment of a new packet. We will 12373 * keep it. Otherwise drop the fragment, as we have 12374 * probably pruned the packet already (since the 12375 * packet cannot be found). 12376 */ 12377 if (pruned && offset != 0) { 12378 mutex_exit(&ipfb->ipfb_lock); 12379 freemsg(mp); 12380 return (B_FALSE); 12381 } 12382 12383 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12384 /* 12385 * Too many fragmented packets in this hash 12386 * bucket. Free the oldest. 12387 */ 12388 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12389 } 12390 12391 /* New guy. Allocate a frag message. */ 12392 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12393 if (mp1 == NULL) { 12394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12395 freemsg(mp); 12396 reass_done: 12397 mutex_exit(&ipfb->ipfb_lock); 12398 return (B_FALSE); 12399 } 12400 12401 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12402 mp1->b_cont = mp; 12403 12404 /* Initialize the fragment header. */ 12405 ipf = (ipf_t *)mp1->b_rptr; 12406 ipf->ipf_mp = mp1; 12407 ipf->ipf_ptphn = ipfp; 12408 ipfp[0] = ipf; 12409 ipf->ipf_hash_next = NULL; 12410 ipf->ipf_ident = ident; 12411 ipf->ipf_protocol = proto; 12412 ipf->ipf_src = src; 12413 ipf->ipf_dst = dst; 12414 ipf->ipf_nf_hdr_len = 0; 12415 /* Record reassembly start time. */ 12416 ipf->ipf_timestamp = gethrestime_sec(); 12417 /* Record ipf generation and account for frag header */ 12418 ipf->ipf_gen = ill->ill_ipf_gen++; 12419 ipf->ipf_count = MBLKSIZE(mp1); 12420 ipf->ipf_last_frag_seen = B_FALSE; 12421 ipf->ipf_ecn = ecn_info; 12422 ipf->ipf_num_dups = 0; 12423 ipfb->ipfb_frag_pkts++; 12424 ipf->ipf_checksum = 0; 12425 ipf->ipf_checksum_flags = 0; 12426 12427 /* Store checksum value in fragment header */ 12428 if (sum_flags != 0) { 12429 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12430 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12431 ipf->ipf_checksum = sum_val; 12432 ipf->ipf_checksum_flags = sum_flags; 12433 } 12434 12435 /* 12436 * We handle reassembly two ways. In the easy case, 12437 * where all the fragments show up in order, we do 12438 * minimal bookkeeping, and just clip new pieces on 12439 * the end. If we ever see a hole, then we go off 12440 * to ip_reassemble which has to mark the pieces and 12441 * keep track of the number of holes, etc. Obviously, 12442 * the point of having both mechanisms is so we can 12443 * handle the easy case as efficiently as possible. 12444 */ 12445 if (offset == 0) { 12446 /* Easy case, in-order reassembly so far. */ 12447 ipf->ipf_count += msg_len; 12448 ipf->ipf_tail_mp = tail_mp; 12449 /* 12450 * Keep track of next expected offset in 12451 * ipf_end. 12452 */ 12453 ipf->ipf_end = end; 12454 ipf->ipf_nf_hdr_len = hdr_length; 12455 } else { 12456 /* Hard case, hole at the beginning. */ 12457 ipf->ipf_tail_mp = NULL; 12458 /* 12459 * ipf_end == 0 means that we have given up 12460 * on easy reassembly. 12461 */ 12462 ipf->ipf_end = 0; 12463 12464 /* Forget checksum offload from now on */ 12465 ipf->ipf_checksum_flags = 0; 12466 12467 /* 12468 * ipf_hole_cnt is set by ip_reassemble. 12469 * ipf_count is updated by ip_reassemble. 12470 * No need to check for return value here 12471 * as we don't expect reassembly to complete 12472 * or fail for the first fragment itself. 12473 */ 12474 (void) ip_reassemble(mp, ipf, 12475 (frag_offset_flags & IPH_OFFSET) << 3, 12476 (frag_offset_flags & IPH_MF), ill, msg_len); 12477 } 12478 /* Update per ipfb and ill byte counts */ 12479 ipfb->ipfb_count += ipf->ipf_count; 12480 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12481 ill->ill_frag_count += ipf->ipf_count; 12482 /* If the frag timer wasn't already going, start it. */ 12483 mutex_enter(&ill->ill_lock); 12484 ill_frag_timer_start(ill); 12485 mutex_exit(&ill->ill_lock); 12486 goto reass_done; 12487 } 12488 12489 /* 12490 * If the packet's flag has changed (it could be coming up 12491 * from an interface different than the previous, therefore 12492 * possibly different checksum capability), then forget about 12493 * any stored checksum states. Otherwise add the value to 12494 * the existing one stored in the fragment header. 12495 */ 12496 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12497 sum_val += ipf->ipf_checksum; 12498 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12499 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12500 ipf->ipf_checksum = sum_val; 12501 } else if (ipf->ipf_checksum_flags != 0) { 12502 /* Forget checksum offload from now on */ 12503 ipf->ipf_checksum_flags = 0; 12504 } 12505 12506 /* 12507 * We have a new piece of a datagram which is already being 12508 * reassembled. Update the ECN info if all IP fragments 12509 * are ECN capable. If there is one which is not, clear 12510 * all the info. If there is at least one which has CE 12511 * code point, IP needs to report that up to transport. 12512 */ 12513 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12514 if (ecn_info == IPH_ECN_CE) 12515 ipf->ipf_ecn = IPH_ECN_CE; 12516 } else { 12517 ipf->ipf_ecn = IPH_ECN_NECT; 12518 } 12519 if (offset && ipf->ipf_end == offset) { 12520 /* The new fragment fits at the end */ 12521 ipf->ipf_tail_mp->b_cont = mp; 12522 /* Update the byte count */ 12523 ipf->ipf_count += msg_len; 12524 /* Update per ipfb and ill byte counts */ 12525 ipfb->ipfb_count += msg_len; 12526 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12527 ill->ill_frag_count += msg_len; 12528 if (frag_offset_flags & IPH_MF) { 12529 /* More to come. */ 12530 ipf->ipf_end = end; 12531 ipf->ipf_tail_mp = tail_mp; 12532 goto reass_done; 12533 } 12534 } else { 12535 /* Go do the hard cases. */ 12536 int ret; 12537 12538 if (offset == 0) 12539 ipf->ipf_nf_hdr_len = hdr_length; 12540 12541 /* Save current byte count */ 12542 count = ipf->ipf_count; 12543 ret = ip_reassemble(mp, ipf, 12544 (frag_offset_flags & IPH_OFFSET) << 3, 12545 (frag_offset_flags & IPH_MF), ill, msg_len); 12546 /* Count of bytes added and subtracted (freeb()ed) */ 12547 count = ipf->ipf_count - count; 12548 if (count) { 12549 /* Update per ipfb and ill byte counts */ 12550 ipfb->ipfb_count += count; 12551 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12552 ill->ill_frag_count += count; 12553 } 12554 if (ret == IP_REASS_PARTIAL) { 12555 goto reass_done; 12556 } else if (ret == IP_REASS_FAILED) { 12557 /* Reassembly failed. Free up all resources */ 12558 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12559 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12560 IP_REASS_SET_START(t_mp, 0); 12561 IP_REASS_SET_END(t_mp, 0); 12562 } 12563 freemsg(mp); 12564 goto reass_done; 12565 } 12566 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12567 } 12568 /* 12569 * We have completed reassembly. Unhook the frag header from 12570 * the reassembly list. 12571 * 12572 * Before we free the frag header, record the ECN info 12573 * to report back to the transport. 12574 */ 12575 ecn_info = ipf->ipf_ecn; 12576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12577 ipfp = ipf->ipf_ptphn; 12578 12579 /* We need to supply these to caller */ 12580 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12581 sum_val = ipf->ipf_checksum; 12582 else 12583 sum_val = 0; 12584 12585 mp1 = ipf->ipf_mp; 12586 count = ipf->ipf_count; 12587 ipf = ipf->ipf_hash_next; 12588 if (ipf != NULL) 12589 ipf->ipf_ptphn = ipfp; 12590 ipfp[0] = ipf; 12591 ill->ill_frag_count -= count; 12592 ASSERT(ipfb->ipfb_count >= count); 12593 ipfb->ipfb_count -= count; 12594 ipfb->ipfb_frag_pkts--; 12595 mutex_exit(&ipfb->ipfb_lock); 12596 /* Ditch the frag header. */ 12597 mp = mp1->b_cont; 12598 12599 freeb(mp1); 12600 12601 /* Restore original IP length in header. */ 12602 packet_size = (uint32_t)msgdsize(mp); 12603 if (packet_size > IP_MAXPACKET) { 12604 freemsg(mp); 12605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12606 return (B_FALSE); 12607 } 12608 12609 if (DB_REF(mp) > 1) { 12610 mblk_t *mp2 = copymsg(mp); 12611 12612 freemsg(mp); 12613 if (mp2 == NULL) { 12614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12615 return (B_FALSE); 12616 } 12617 mp = mp2; 12618 } 12619 ipha = (ipha_t *)mp->b_rptr; 12620 12621 ipha->ipha_length = htons((uint16_t)packet_size); 12622 /* We're now complete, zip the frag state */ 12623 ipha->ipha_fragment_offset_and_flags = 0; 12624 /* Record the ECN info. */ 12625 ipha->ipha_type_of_service &= 0xFC; 12626 ipha->ipha_type_of_service |= ecn_info; 12627 *mpp = mp; 12628 12629 /* Reassembly is successful; return checksum information if needed */ 12630 if (cksum_val != NULL) 12631 *cksum_val = sum_val; 12632 if (cksum_flags != NULL) 12633 *cksum_flags = sum_flags; 12634 12635 return (B_TRUE); 12636 } 12637 12638 /* 12639 * Perform ip header check sum update local options. 12640 * return B_TRUE if all is well, else return B_FALSE and release 12641 * the mp. caller is responsible for decrementing ire ref cnt. 12642 */ 12643 static boolean_t 12644 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12645 ip_stack_t *ipst) 12646 { 12647 mblk_t *first_mp; 12648 boolean_t mctl_present; 12649 uint16_t sum; 12650 12651 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12652 /* 12653 * Don't do the checksum if it has gone through AH/ESP 12654 * processing. 12655 */ 12656 if (!mctl_present) { 12657 sum = ip_csum_hdr(ipha); 12658 if (sum != 0) { 12659 if (ill != NULL) { 12660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12661 } else { 12662 BUMP_MIB(&ipst->ips_ip_mib, 12663 ipIfStatsInCksumErrs); 12664 } 12665 freemsg(first_mp); 12666 return (B_FALSE); 12667 } 12668 } 12669 12670 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12671 if (mctl_present) 12672 freeb(first_mp); 12673 return (B_FALSE); 12674 } 12675 12676 return (B_TRUE); 12677 } 12678 12679 /* 12680 * All udp packet are delivered to the local host via this routine. 12681 */ 12682 void 12683 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12684 ill_t *recv_ill) 12685 { 12686 uint32_t sum; 12687 uint32_t u1; 12688 boolean_t mctl_present; 12689 conn_t *connp; 12690 mblk_t *first_mp; 12691 uint16_t *up; 12692 ill_t *ill = (ill_t *)q->q_ptr; 12693 uint16_t reass_hck_flags = 0; 12694 ip_stack_t *ipst; 12695 12696 ASSERT(recv_ill != NULL); 12697 ipst = recv_ill->ill_ipst; 12698 12699 #define rptr ((uchar_t *)ipha) 12700 12701 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12702 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12703 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12704 ASSERT(ill != NULL); 12705 12706 /* 12707 * FAST PATH for udp packets 12708 */ 12709 12710 /* u1 is # words of IP options */ 12711 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12712 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12713 12714 /* IP options present */ 12715 if (u1 != 0) 12716 goto ipoptions; 12717 12718 /* Check the IP header checksum. */ 12719 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12720 /* Clear the IP header h/w cksum flag */ 12721 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12722 } else if (!mctl_present) { 12723 /* 12724 * Don't verify header checksum if this packet is coming 12725 * back from AH/ESP as we already did it. 12726 */ 12727 #define uph ((uint16_t *)ipha) 12728 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12729 uph[6] + uph[7] + uph[8] + uph[9]; 12730 #undef uph 12731 /* finish doing IP checksum */ 12732 sum = (sum & 0xFFFF) + (sum >> 16); 12733 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12734 if (sum != 0 && sum != 0xFFFF) { 12735 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12736 freemsg(first_mp); 12737 return; 12738 } 12739 } 12740 12741 /* 12742 * Count for SNMP of inbound packets for ire. 12743 * if mctl is present this might be a secure packet and 12744 * has already been counted for in ip_proto_input(). 12745 */ 12746 if (!mctl_present) { 12747 UPDATE_IB_PKT_COUNT(ire); 12748 ire->ire_last_used_time = lbolt; 12749 } 12750 12751 /* packet part of fragmented IP packet? */ 12752 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12753 if (u1 & (IPH_MF | IPH_OFFSET)) { 12754 goto fragmented; 12755 } 12756 12757 /* u1 = IP header length (20 bytes) */ 12758 u1 = IP_SIMPLE_HDR_LENGTH; 12759 12760 /* packet does not contain complete IP & UDP headers */ 12761 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12762 goto udppullup; 12763 12764 /* up points to UDP header */ 12765 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12766 #define iphs ((uint16_t *)ipha) 12767 12768 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12769 if (up[3] != 0) { 12770 mblk_t *mp1 = mp->b_cont; 12771 boolean_t cksum_err; 12772 uint16_t hck_flags = 0; 12773 12774 /* Pseudo-header checksum */ 12775 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12776 iphs[9] + up[2]; 12777 12778 /* 12779 * Revert to software checksum calculation if the interface 12780 * isn't capable of checksum offload or if IPsec is present. 12781 */ 12782 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12783 hck_flags = DB_CKSUMFLAGS(mp); 12784 12785 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12786 IP_STAT(ipst, ip_in_sw_cksum); 12787 12788 IP_CKSUM_RECV(hck_flags, u1, 12789 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12790 (int32_t)((uchar_t *)up - rptr), 12791 mp, mp1, cksum_err); 12792 12793 if (cksum_err) { 12794 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12795 if (hck_flags & HCK_FULLCKSUM) 12796 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12797 else if (hck_flags & HCK_PARTIALCKSUM) 12798 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12799 else 12800 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12801 12802 freemsg(first_mp); 12803 return; 12804 } 12805 } 12806 12807 /* Non-fragmented broadcast or multicast packet? */ 12808 if (ire->ire_type == IRE_BROADCAST) 12809 goto udpslowpath; 12810 12811 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12812 ire->ire_zoneid, ipst)) != NULL) { 12813 ASSERT(connp->conn_upq != NULL); 12814 IP_STAT(ipst, ip_udp_fast_path); 12815 12816 if (CONN_UDP_FLOWCTLD(connp)) { 12817 freemsg(mp); 12818 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12819 } else { 12820 if (!mctl_present) { 12821 BUMP_MIB(ill->ill_ip_mib, 12822 ipIfStatsHCInDelivers); 12823 } 12824 /* 12825 * mp and first_mp can change. 12826 */ 12827 if (ip_udp_check(q, connp, recv_ill, 12828 ipha, &mp, &first_mp, mctl_present, ire)) { 12829 /* Send it upstream */ 12830 (connp->conn_recv)(connp, mp, NULL); 12831 } 12832 } 12833 /* 12834 * freeb() cannot deal with null mblk being passed 12835 * in and first_mp can be set to null in the call 12836 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12837 */ 12838 if (mctl_present && first_mp != NULL) { 12839 freeb(first_mp); 12840 } 12841 CONN_DEC_REF(connp); 12842 return; 12843 } 12844 12845 /* 12846 * if we got here we know the packet is not fragmented and 12847 * has no options. The classifier could not find a conn_t and 12848 * most likely its an icmp packet so send it through slow path. 12849 */ 12850 12851 goto udpslowpath; 12852 12853 ipoptions: 12854 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12855 goto slow_done; 12856 } 12857 12858 UPDATE_IB_PKT_COUNT(ire); 12859 ire->ire_last_used_time = lbolt; 12860 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12861 if (u1 & (IPH_MF | IPH_OFFSET)) { 12862 fragmented: 12863 /* 12864 * "sum" and "reass_hck_flags" are non-zero if the 12865 * reassembled packet has a valid hardware computed 12866 * checksum information associated with it. 12867 */ 12868 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12869 goto slow_done; 12870 /* 12871 * Make sure that first_mp points back to mp as 12872 * the mp we came in with could have changed in 12873 * ip_rput_fragment(). 12874 */ 12875 ASSERT(!mctl_present); 12876 ipha = (ipha_t *)mp->b_rptr; 12877 first_mp = mp; 12878 } 12879 12880 /* Now we have a complete datagram, destined for this machine. */ 12881 u1 = IPH_HDR_LENGTH(ipha); 12882 /* Pull up the UDP header, if necessary. */ 12883 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12884 udppullup: 12885 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12887 freemsg(first_mp); 12888 goto slow_done; 12889 } 12890 ipha = (ipha_t *)mp->b_rptr; 12891 } 12892 12893 /* 12894 * Validate the checksum for the reassembled packet; for the 12895 * pullup case we calculate the payload checksum in software. 12896 */ 12897 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12898 if (up[3] != 0) { 12899 boolean_t cksum_err; 12900 12901 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12902 IP_STAT(ipst, ip_in_sw_cksum); 12903 12904 IP_CKSUM_RECV_REASS(reass_hck_flags, 12905 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12906 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12907 iphs[9] + up[2], sum, cksum_err); 12908 12909 if (cksum_err) { 12910 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12911 12912 if (reass_hck_flags & HCK_FULLCKSUM) 12913 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12914 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12915 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12916 else 12917 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12918 12919 freemsg(first_mp); 12920 goto slow_done; 12921 } 12922 } 12923 udpslowpath: 12924 12925 /* Clear hardware checksum flag to be safe */ 12926 DB_CKSUMFLAGS(mp) = 0; 12927 12928 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12929 (ire->ire_type == IRE_BROADCAST), 12930 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12931 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12932 12933 slow_done: 12934 IP_STAT(ipst, ip_udp_slow_path); 12935 return; 12936 12937 #undef iphs 12938 #undef rptr 12939 } 12940 12941 /* ARGSUSED */ 12942 static mblk_t * 12943 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12944 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12945 ill_rx_ring_t *ill_ring) 12946 { 12947 conn_t *connp; 12948 uint32_t sum; 12949 uint32_t u1; 12950 uint16_t *up; 12951 int offset; 12952 ssize_t len; 12953 mblk_t *mp1; 12954 boolean_t syn_present = B_FALSE; 12955 tcph_t *tcph; 12956 uint_t ip_hdr_len; 12957 ill_t *ill = (ill_t *)q->q_ptr; 12958 zoneid_t zoneid = ire->ire_zoneid; 12959 boolean_t cksum_err; 12960 uint16_t hck_flags = 0; 12961 ip_stack_t *ipst = recv_ill->ill_ipst; 12962 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12963 12964 #define rptr ((uchar_t *)ipha) 12965 12966 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12967 ASSERT(ill != NULL); 12968 12969 /* 12970 * FAST PATH for tcp packets 12971 */ 12972 12973 /* u1 is # words of IP options */ 12974 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12975 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12976 12977 /* IP options present */ 12978 if (u1) { 12979 goto ipoptions; 12980 } else if (!mctl_present) { 12981 /* Check the IP header checksum. */ 12982 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12983 /* Clear the IP header h/w cksum flag */ 12984 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12985 } else if (!mctl_present) { 12986 /* 12987 * Don't verify header checksum if this packet 12988 * is coming back from AH/ESP as we already did it. 12989 */ 12990 #define uph ((uint16_t *)ipha) 12991 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12992 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12993 #undef uph 12994 /* finish doing IP checksum */ 12995 sum = (sum & 0xFFFF) + (sum >> 16); 12996 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12997 if (sum != 0 && sum != 0xFFFF) { 12998 BUMP_MIB(ill->ill_ip_mib, 12999 ipIfStatsInCksumErrs); 13000 goto error; 13001 } 13002 } 13003 } 13004 13005 if (!mctl_present) { 13006 UPDATE_IB_PKT_COUNT(ire); 13007 ire->ire_last_used_time = lbolt; 13008 } 13009 13010 /* packet part of fragmented IP packet? */ 13011 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13012 if (u1 & (IPH_MF | IPH_OFFSET)) { 13013 goto fragmented; 13014 } 13015 13016 /* u1 = IP header length (20 bytes) */ 13017 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13018 13019 /* does packet contain IP+TCP headers? */ 13020 len = mp->b_wptr - rptr; 13021 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13022 IP_STAT(ipst, ip_tcppullup); 13023 goto tcppullup; 13024 } 13025 13026 /* TCP options present? */ 13027 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13028 13029 /* 13030 * If options need to be pulled up, then goto tcpoptions. 13031 * otherwise we are still in the fast path 13032 */ 13033 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13034 IP_STAT(ipst, ip_tcpoptions); 13035 goto tcpoptions; 13036 } 13037 13038 /* multiple mblks of tcp data? */ 13039 if ((mp1 = mp->b_cont) != NULL) { 13040 /* more then two? */ 13041 if (mp1->b_cont != NULL) { 13042 IP_STAT(ipst, ip_multipkttcp); 13043 goto multipkttcp; 13044 } 13045 len += mp1->b_wptr - mp1->b_rptr; 13046 } 13047 13048 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13049 13050 /* part of pseudo checksum */ 13051 13052 /* TCP datagram length */ 13053 u1 = len - IP_SIMPLE_HDR_LENGTH; 13054 13055 #define iphs ((uint16_t *)ipha) 13056 13057 #ifdef _BIG_ENDIAN 13058 u1 += IPPROTO_TCP; 13059 #else 13060 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13061 #endif 13062 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13063 13064 /* 13065 * Revert to software checksum calculation if the interface 13066 * isn't capable of checksum offload or if IPsec is present. 13067 */ 13068 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13069 hck_flags = DB_CKSUMFLAGS(mp); 13070 13071 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13072 IP_STAT(ipst, ip_in_sw_cksum); 13073 13074 IP_CKSUM_RECV(hck_flags, u1, 13075 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13076 (int32_t)((uchar_t *)up - rptr), 13077 mp, mp1, cksum_err); 13078 13079 if (cksum_err) { 13080 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13081 13082 if (hck_flags & HCK_FULLCKSUM) 13083 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13084 else if (hck_flags & HCK_PARTIALCKSUM) 13085 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13086 else 13087 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13088 13089 goto error; 13090 } 13091 13092 try_again: 13093 13094 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13095 zoneid, ipst)) == NULL) { 13096 /* Send the TH_RST */ 13097 goto no_conn; 13098 } 13099 13100 /* 13101 * TCP FAST PATH for AF_INET socket. 13102 * 13103 * TCP fast path to avoid extra work. An AF_INET socket type 13104 * does not have facility to receive extra information via 13105 * ip_process or ip_add_info. Also, when the connection was 13106 * established, we made a check if this connection is impacted 13107 * by any global IPsec policy or per connection policy (a 13108 * policy that comes in effect later will not apply to this 13109 * connection). Since all this can be determined at the 13110 * connection establishment time, a quick check of flags 13111 * can avoid extra work. 13112 */ 13113 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13114 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13115 ASSERT(first_mp == mp); 13116 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13117 SET_SQUEUE(mp, tcp_rput_data, connp); 13118 return (mp); 13119 } 13120 13121 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13122 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13123 if (IPCL_IS_TCP(connp)) { 13124 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13125 DB_CKSUMSTART(mp) = 13126 (intptr_t)ip_squeue_get(ill_ring); 13127 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13128 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13129 BUMP_MIB(ill->ill_ip_mib, 13130 ipIfStatsHCInDelivers); 13131 SET_SQUEUE(mp, connp->conn_recv, connp); 13132 return (mp); 13133 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13134 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13135 BUMP_MIB(ill->ill_ip_mib, 13136 ipIfStatsHCInDelivers); 13137 ip_squeue_enter_unbound++; 13138 SET_SQUEUE(mp, tcp_conn_request_unbound, 13139 connp); 13140 return (mp); 13141 } 13142 syn_present = B_TRUE; 13143 } 13144 13145 } 13146 13147 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13148 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13149 13150 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13151 /* No need to send this packet to TCP */ 13152 if ((flags & TH_RST) || (flags & TH_URG)) { 13153 CONN_DEC_REF(connp); 13154 freemsg(first_mp); 13155 return (NULL); 13156 } 13157 if (flags & TH_ACK) { 13158 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13159 ipst->ips_netstack->netstack_tcp, connp); 13160 CONN_DEC_REF(connp); 13161 return (NULL); 13162 } 13163 13164 CONN_DEC_REF(connp); 13165 freemsg(first_mp); 13166 return (NULL); 13167 } 13168 13169 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13170 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13171 ipha, NULL, mctl_present); 13172 if (first_mp == NULL) { 13173 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13174 CONN_DEC_REF(connp); 13175 return (NULL); 13176 } 13177 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13178 ASSERT(syn_present); 13179 if (mctl_present) { 13180 ASSERT(first_mp != mp); 13181 first_mp->b_datap->db_struioflag |= 13182 STRUIO_POLICY; 13183 } else { 13184 ASSERT(first_mp == mp); 13185 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13186 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13187 } 13188 } else { 13189 /* 13190 * Discard first_mp early since we're dealing with a 13191 * fully-connected conn_t and tcp doesn't do policy in 13192 * this case. 13193 */ 13194 if (mctl_present) { 13195 freeb(first_mp); 13196 mctl_present = B_FALSE; 13197 } 13198 first_mp = mp; 13199 } 13200 } 13201 13202 /* Initiate IPPF processing for fastpath */ 13203 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13204 uint32_t ill_index; 13205 13206 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13207 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13208 if (mp == NULL) { 13209 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13210 "deferred/dropped during IPPF processing\n")); 13211 CONN_DEC_REF(connp); 13212 if (mctl_present) 13213 freeb(first_mp); 13214 return (NULL); 13215 } else if (mctl_present) { 13216 /* 13217 * ip_process might return a new mp. 13218 */ 13219 ASSERT(first_mp != mp); 13220 first_mp->b_cont = mp; 13221 } else { 13222 first_mp = mp; 13223 } 13224 13225 } 13226 13227 if (!syn_present && connp->conn_ip_recvpktinfo) { 13228 /* 13229 * TCP does not support IP_RECVPKTINFO for v4 so lets 13230 * make sure IPF_RECVIF is passed to ip_add_info. 13231 */ 13232 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13233 IPCL_ZONEID(connp), ipst); 13234 if (mp == NULL) { 13235 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13236 CONN_DEC_REF(connp); 13237 if (mctl_present) 13238 freeb(first_mp); 13239 return (NULL); 13240 } else if (mctl_present) { 13241 /* 13242 * ip_add_info might return a new mp. 13243 */ 13244 ASSERT(first_mp != mp); 13245 first_mp->b_cont = mp; 13246 } else { 13247 first_mp = mp; 13248 } 13249 } 13250 13251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13252 if (IPCL_IS_TCP(connp)) { 13253 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13254 return (first_mp); 13255 } else { 13256 /* SOCK_RAW, IPPROTO_TCP case */ 13257 (connp->conn_recv)(connp, first_mp, NULL); 13258 CONN_DEC_REF(connp); 13259 return (NULL); 13260 } 13261 13262 no_conn: 13263 /* Initiate IPPf processing, if needed. */ 13264 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13265 uint32_t ill_index; 13266 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13267 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13268 if (first_mp == NULL) { 13269 return (NULL); 13270 } 13271 } 13272 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13273 13274 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13275 ipst->ips_netstack->netstack_tcp, NULL); 13276 return (NULL); 13277 ipoptions: 13278 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13279 goto slow_done; 13280 } 13281 13282 UPDATE_IB_PKT_COUNT(ire); 13283 ire->ire_last_used_time = lbolt; 13284 13285 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13286 if (u1 & (IPH_MF | IPH_OFFSET)) { 13287 fragmented: 13288 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13289 if (mctl_present) 13290 freeb(first_mp); 13291 goto slow_done; 13292 } 13293 /* 13294 * Make sure that first_mp points back to mp as 13295 * the mp we came in with could have changed in 13296 * ip_rput_fragment(). 13297 */ 13298 ASSERT(!mctl_present); 13299 ipha = (ipha_t *)mp->b_rptr; 13300 first_mp = mp; 13301 } 13302 13303 /* Now we have a complete datagram, destined for this machine. */ 13304 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13305 13306 len = mp->b_wptr - mp->b_rptr; 13307 /* Pull up a minimal TCP header, if necessary. */ 13308 if (len < (u1 + 20)) { 13309 tcppullup: 13310 if (!pullupmsg(mp, u1 + 20)) { 13311 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13312 goto error; 13313 } 13314 ipha = (ipha_t *)mp->b_rptr; 13315 len = mp->b_wptr - mp->b_rptr; 13316 } 13317 13318 /* 13319 * Extract the offset field from the TCP header. As usual, we 13320 * try to help the compiler more than the reader. 13321 */ 13322 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13323 if (offset != 5) { 13324 tcpoptions: 13325 if (offset < 5) { 13326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13327 goto error; 13328 } 13329 /* 13330 * There must be TCP options. 13331 * Make sure we can grab them. 13332 */ 13333 offset <<= 2; 13334 offset += u1; 13335 if (len < offset) { 13336 if (!pullupmsg(mp, offset)) { 13337 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13338 goto error; 13339 } 13340 ipha = (ipha_t *)mp->b_rptr; 13341 len = mp->b_wptr - rptr; 13342 } 13343 } 13344 13345 /* Get the total packet length in len, including headers. */ 13346 if (mp->b_cont) { 13347 multipkttcp: 13348 len = msgdsize(mp); 13349 } 13350 13351 /* 13352 * Check the TCP checksum by pulling together the pseudo- 13353 * header checksum, and passing it to ip_csum to be added in 13354 * with the TCP datagram. 13355 * 13356 * Since we are not using the hwcksum if available we must 13357 * clear the flag. We may come here via tcppullup or tcpoptions. 13358 * If either of these fails along the way the mblk is freed. 13359 * If this logic ever changes and mblk is reused to say send 13360 * ICMP's back, then this flag may need to be cleared in 13361 * other places as well. 13362 */ 13363 DB_CKSUMFLAGS(mp) = 0; 13364 13365 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13366 13367 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13368 #ifdef _BIG_ENDIAN 13369 u1 += IPPROTO_TCP; 13370 #else 13371 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13372 #endif 13373 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13374 /* 13375 * Not M_DATA mblk or its a dup, so do the checksum now. 13376 */ 13377 IP_STAT(ipst, ip_in_sw_cksum); 13378 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13379 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13380 goto error; 13381 } 13382 13383 IP_STAT(ipst, ip_tcp_slow_path); 13384 goto try_again; 13385 #undef iphs 13386 #undef rptr 13387 13388 error: 13389 freemsg(first_mp); 13390 slow_done: 13391 return (NULL); 13392 } 13393 13394 /* ARGSUSED */ 13395 static void 13396 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13397 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13398 { 13399 conn_t *connp; 13400 uint32_t sum; 13401 uint32_t u1; 13402 ssize_t len; 13403 sctp_hdr_t *sctph; 13404 zoneid_t zoneid = ire->ire_zoneid; 13405 uint32_t pktsum; 13406 uint32_t calcsum; 13407 uint32_t ports; 13408 in6_addr_t map_src, map_dst; 13409 ill_t *ill = (ill_t *)q->q_ptr; 13410 ip_stack_t *ipst; 13411 sctp_stack_t *sctps; 13412 13413 ASSERT(recv_ill != NULL); 13414 ipst = recv_ill->ill_ipst; 13415 sctps = ipst->ips_netstack->netstack_sctp; 13416 13417 #define rptr ((uchar_t *)ipha) 13418 13419 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13420 ASSERT(ill != NULL); 13421 13422 /* u1 is # words of IP options */ 13423 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13424 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13425 13426 /* IP options present */ 13427 if (u1 > 0) { 13428 goto ipoptions; 13429 } else { 13430 /* Check the IP header checksum. */ 13431 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13432 !mctl_present) { 13433 #define uph ((uint16_t *)ipha) 13434 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13435 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13436 #undef uph 13437 /* finish doing IP checksum */ 13438 sum = (sum & 0xFFFF) + (sum >> 16); 13439 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13440 /* 13441 * Don't verify header checksum if this packet 13442 * is coming back from AH/ESP as we already did it. 13443 */ 13444 if (sum != 0 && sum != 0xFFFF) { 13445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13446 goto error; 13447 } 13448 } 13449 /* 13450 * Since there is no SCTP h/w cksum support yet, just 13451 * clear the flag. 13452 */ 13453 DB_CKSUMFLAGS(mp) = 0; 13454 } 13455 13456 /* 13457 * Don't verify header checksum if this packet is coming 13458 * back from AH/ESP as we already did it. 13459 */ 13460 if (!mctl_present) { 13461 UPDATE_IB_PKT_COUNT(ire); 13462 ire->ire_last_used_time = lbolt; 13463 } 13464 13465 /* packet part of fragmented IP packet? */ 13466 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13467 if (u1 & (IPH_MF | IPH_OFFSET)) 13468 goto fragmented; 13469 13470 /* u1 = IP header length (20 bytes) */ 13471 u1 = IP_SIMPLE_HDR_LENGTH; 13472 13473 find_sctp_client: 13474 /* Pullup if we don't have the sctp common header. */ 13475 len = MBLKL(mp); 13476 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13477 if (mp->b_cont == NULL || 13478 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13479 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13480 goto error; 13481 } 13482 ipha = (ipha_t *)mp->b_rptr; 13483 len = MBLKL(mp); 13484 } 13485 13486 sctph = (sctp_hdr_t *)(rptr + u1); 13487 #ifdef DEBUG 13488 if (!skip_sctp_cksum) { 13489 #endif 13490 pktsum = sctph->sh_chksum; 13491 sctph->sh_chksum = 0; 13492 calcsum = sctp_cksum(mp, u1); 13493 if (calcsum != pktsum) { 13494 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13495 goto error; 13496 } 13497 sctph->sh_chksum = pktsum; 13498 #ifdef DEBUG /* skip_sctp_cksum */ 13499 } 13500 #endif 13501 /* get the ports */ 13502 ports = *(uint32_t *)&sctph->sh_sport; 13503 13504 IRE_REFRELE(ire); 13505 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13506 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13507 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13508 sctps)) == NULL) { 13509 /* Check for raw socket or OOTB handling */ 13510 goto no_conn; 13511 } 13512 13513 /* Found a client; up it goes */ 13514 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13515 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13516 return; 13517 13518 no_conn: 13519 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13520 ports, mctl_present, flags, B_TRUE, zoneid); 13521 return; 13522 13523 ipoptions: 13524 DB_CKSUMFLAGS(mp) = 0; 13525 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13526 goto slow_done; 13527 13528 UPDATE_IB_PKT_COUNT(ire); 13529 ire->ire_last_used_time = lbolt; 13530 13531 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13532 if (u1 & (IPH_MF | IPH_OFFSET)) { 13533 fragmented: 13534 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13535 goto slow_done; 13536 /* 13537 * Make sure that first_mp points back to mp as 13538 * the mp we came in with could have changed in 13539 * ip_rput_fragment(). 13540 */ 13541 ASSERT(!mctl_present); 13542 ipha = (ipha_t *)mp->b_rptr; 13543 first_mp = mp; 13544 } 13545 13546 /* Now we have a complete datagram, destined for this machine. */ 13547 u1 = IPH_HDR_LENGTH(ipha); 13548 goto find_sctp_client; 13549 #undef iphs 13550 #undef rptr 13551 13552 error: 13553 freemsg(first_mp); 13554 slow_done: 13555 IRE_REFRELE(ire); 13556 } 13557 13558 #define VER_BITS 0xF0 13559 #define VERSION_6 0x60 13560 13561 static boolean_t 13562 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13563 ipaddr_t *dstp, ip_stack_t *ipst) 13564 { 13565 uint_t opt_len; 13566 ipha_t *ipha; 13567 ssize_t len; 13568 uint_t pkt_len; 13569 13570 ASSERT(ill != NULL); 13571 IP_STAT(ipst, ip_ipoptions); 13572 ipha = *iphapp; 13573 13574 #define rptr ((uchar_t *)ipha) 13575 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13576 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13577 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13578 freemsg(mp); 13579 return (B_FALSE); 13580 } 13581 13582 /* multiple mblk or too short */ 13583 pkt_len = ntohs(ipha->ipha_length); 13584 13585 /* Get the number of words of IP options in the IP header. */ 13586 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13587 if (opt_len) { 13588 /* IP Options present! Validate and process. */ 13589 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13591 goto done; 13592 } 13593 /* 13594 * Recompute complete header length and make sure we 13595 * have access to all of it. 13596 */ 13597 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13598 if (len > (mp->b_wptr - rptr)) { 13599 if (len > pkt_len) { 13600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13601 goto done; 13602 } 13603 if (!pullupmsg(mp, len)) { 13604 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13605 goto done; 13606 } 13607 ipha = (ipha_t *)mp->b_rptr; 13608 } 13609 /* 13610 * Go off to ip_rput_options which returns the next hop 13611 * destination address, which may have been affected 13612 * by source routing. 13613 */ 13614 IP_STAT(ipst, ip_opt); 13615 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13617 return (B_FALSE); 13618 } 13619 } 13620 *iphapp = ipha; 13621 return (B_TRUE); 13622 done: 13623 /* clear b_prev - used by ip_mroute_decap */ 13624 mp->b_prev = NULL; 13625 freemsg(mp); 13626 return (B_FALSE); 13627 #undef rptr 13628 } 13629 13630 /* 13631 * Deal with the fact that there is no ire for the destination. 13632 */ 13633 static ire_t * 13634 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13635 { 13636 ipha_t *ipha; 13637 ill_t *ill; 13638 ire_t *ire; 13639 boolean_t check_multirt = B_FALSE; 13640 ip_stack_t *ipst; 13641 13642 ipha = (ipha_t *)mp->b_rptr; 13643 ill = (ill_t *)q->q_ptr; 13644 13645 ASSERT(ill != NULL); 13646 ipst = ill->ill_ipst; 13647 13648 /* 13649 * No IRE for this destination, so it can't be for us. 13650 * Unless we are forwarding, drop the packet. 13651 * We have to let source routed packets through 13652 * since we don't yet know if they are 'ping -l' 13653 * packets i.e. if they will go out over the 13654 * same interface as they came in on. 13655 */ 13656 if (ll_multicast) { 13657 freemsg(mp); 13658 return (NULL); 13659 } 13660 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13661 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13662 freemsg(mp); 13663 return (NULL); 13664 } 13665 13666 /* 13667 * Mark this packet as having originated externally. 13668 * 13669 * For non-forwarding code path, ire_send later double 13670 * checks this interface to see if it is still exists 13671 * post-ARP resolution. 13672 * 13673 * Also, IPQOS uses this to differentiate between 13674 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13675 * QOS packet processing in ip_wput_attach_llhdr(). 13676 * The QoS module can mark the b_band for a fastpath message 13677 * or the dl_priority field in a unitdata_req header for 13678 * CoS marking. This info can only be found in 13679 * ip_wput_attach_llhdr(). 13680 */ 13681 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13682 /* 13683 * Clear the indication that this may have a hardware checksum 13684 * as we are not using it 13685 */ 13686 DB_CKSUMFLAGS(mp) = 0; 13687 13688 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13689 MBLK_GETLABEL(mp), ipst); 13690 13691 if (ire == NULL && check_multirt) { 13692 /* Let ip_newroute handle CGTP */ 13693 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13694 return (NULL); 13695 } 13696 13697 if (ire != NULL) 13698 return (ire); 13699 13700 mp->b_prev = mp->b_next = 0; 13701 /* send icmp unreachable */ 13702 q = WR(q); 13703 /* Sent by forwarding path, and router is global zone */ 13704 if (ip_source_routed(ipha, ipst)) { 13705 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13706 GLOBAL_ZONEID, ipst); 13707 } else { 13708 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13709 ipst); 13710 } 13711 13712 return (NULL); 13713 13714 } 13715 13716 /* 13717 * check ip header length and align it. 13718 */ 13719 static boolean_t 13720 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13721 { 13722 ssize_t len; 13723 ill_t *ill; 13724 ipha_t *ipha; 13725 13726 len = MBLKL(mp); 13727 13728 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13729 ill = (ill_t *)q->q_ptr; 13730 13731 if (!OK_32PTR(mp->b_rptr)) 13732 IP_STAT(ipst, ip_notaligned1); 13733 else 13734 IP_STAT(ipst, ip_notaligned2); 13735 /* Guard against bogus device drivers */ 13736 if (len < 0) { 13737 /* clear b_prev - used by ip_mroute_decap */ 13738 mp->b_prev = NULL; 13739 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13740 freemsg(mp); 13741 return (B_FALSE); 13742 } 13743 13744 if (ip_rput_pullups++ == 0) { 13745 ipha = (ipha_t *)mp->b_rptr; 13746 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13747 "ip_check_and_align_header: %s forced us to " 13748 " pullup pkt, hdr len %ld, hdr addr %p", 13749 ill->ill_name, len, ipha); 13750 } 13751 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13752 /* clear b_prev - used by ip_mroute_decap */ 13753 mp->b_prev = NULL; 13754 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13755 freemsg(mp); 13756 return (B_FALSE); 13757 } 13758 } 13759 return (B_TRUE); 13760 } 13761 13762 ire_t * 13763 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13764 { 13765 ire_t *new_ire; 13766 ill_t *ire_ill; 13767 uint_t ifindex; 13768 ip_stack_t *ipst = ill->ill_ipst; 13769 boolean_t strict_check = B_FALSE; 13770 13771 /* 13772 * This packet came in on an interface other than the one associated 13773 * with the first ire we found for the destination address. We do 13774 * another ire lookup here, using the ingress ill, to see if the 13775 * interface is in an interface group. 13776 * As long as the ills belong to the same group, we don't consider 13777 * them to be arriving on the wrong interface. Thus, if the switch 13778 * is doing inbound load spreading, we won't drop packets when the 13779 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13780 * for 'usesrc groups' where the destination address may belong to 13781 * another interface to allow multipathing to happen. 13782 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13783 * where the local address may not be unique. In this case we were 13784 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13785 * actually returned. The new lookup, which is more specific, should 13786 * only find the IRE_LOCAL associated with the ingress ill if one 13787 * exists. 13788 */ 13789 13790 if (ire->ire_ipversion == IPV4_VERSION) { 13791 if (ipst->ips_ip_strict_dst_multihoming) 13792 strict_check = B_TRUE; 13793 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13794 ill->ill_ipif, ALL_ZONES, NULL, 13795 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13796 } else { 13797 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13798 if (ipst->ips_ipv6_strict_dst_multihoming) 13799 strict_check = B_TRUE; 13800 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13801 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13802 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13803 } 13804 /* 13805 * If the same ire that was returned in ip_input() is found then this 13806 * is an indication that interface groups are in use. The packet 13807 * arrived on a different ill in the group than the one associated with 13808 * the destination address. If a different ire was found then the same 13809 * IP address must be hosted on multiple ills. This is possible with 13810 * unnumbered point2point interfaces. We switch to use this new ire in 13811 * order to have accurate interface statistics. 13812 */ 13813 if (new_ire != NULL) { 13814 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13815 ire_refrele(ire); 13816 ire = new_ire; 13817 } else { 13818 ire_refrele(new_ire); 13819 } 13820 return (ire); 13821 } else if ((ire->ire_rfq == NULL) && 13822 (ire->ire_ipversion == IPV4_VERSION)) { 13823 /* 13824 * The best match could have been the original ire which 13825 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13826 * the strict multihoming checks are irrelevant as we consider 13827 * local addresses hosted on lo0 to be interface agnostic. We 13828 * only expect a null ire_rfq on IREs which are associated with 13829 * lo0 hence we can return now. 13830 */ 13831 return (ire); 13832 } 13833 13834 /* 13835 * Chase pointers once and store locally. 13836 */ 13837 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13838 (ill_t *)(ire->ire_rfq->q_ptr); 13839 ifindex = ill->ill_usesrc_ifindex; 13840 13841 /* 13842 * Check if it's a legal address on the 'usesrc' interface. 13843 */ 13844 if ((ifindex != 0) && (ire_ill != NULL) && 13845 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13846 return (ire); 13847 } 13848 13849 /* 13850 * If the ip*_strict_dst_multihoming switch is on then we can 13851 * only accept this packet if the interface is marked as routing. 13852 */ 13853 if (!(strict_check)) 13854 return (ire); 13855 13856 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13857 ILLF_ROUTER) != 0) { 13858 return (ire); 13859 } 13860 13861 ire_refrele(ire); 13862 return (NULL); 13863 } 13864 13865 ire_t * 13866 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13867 { 13868 ipha_t *ipha; 13869 ipaddr_t ip_dst, ip_src; 13870 ire_t *src_ire = NULL; 13871 ill_t *stq_ill; 13872 uint_t hlen; 13873 uint_t pkt_len; 13874 uint32_t sum; 13875 queue_t *dev_q; 13876 boolean_t check_multirt = B_FALSE; 13877 ip_stack_t *ipst = ill->ill_ipst; 13878 13879 ipha = (ipha_t *)mp->b_rptr; 13880 13881 /* 13882 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13883 * The loopback address check for both src and dst has already 13884 * been checked in ip_input 13885 */ 13886 ip_dst = ntohl(dst); 13887 ip_src = ntohl(ipha->ipha_src); 13888 13889 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13890 IN_CLASSD(ip_src)) { 13891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13892 goto drop; 13893 } 13894 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13895 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13896 13897 if (src_ire != NULL) { 13898 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13899 goto drop; 13900 } 13901 13902 13903 /* No ire cache of nexthop. So first create one */ 13904 if (ire == NULL) { 13905 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13906 /* 13907 * We only come to ip_fast_forward if ip_cgtp_filter is 13908 * is not set. So upon return from ire_forward 13909 * check_multirt should remain as false. 13910 */ 13911 ASSERT(!check_multirt); 13912 if (ire == NULL) { 13913 /* An attempt was made to forward the packet */ 13914 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13915 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13916 mp->b_prev = mp->b_next = 0; 13917 /* send icmp unreachable */ 13918 /* Sent by forwarding path, and router is global zone */ 13919 if (ip_source_routed(ipha, ipst)) { 13920 icmp_unreachable(ill->ill_wq, mp, 13921 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13922 ipst); 13923 } else { 13924 icmp_unreachable(ill->ill_wq, mp, 13925 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13926 ipst); 13927 } 13928 return (ire); 13929 } 13930 } 13931 13932 /* 13933 * Forwarding fastpath exception case: 13934 * If either of the follwoing case is true, we take 13935 * the slowpath 13936 * o forwarding is not enabled 13937 * o incoming and outgoing interface are the same, or the same 13938 * IPMP group 13939 * o corresponding ire is in incomplete state 13940 * o packet needs fragmentation 13941 * 13942 * The codeflow from here on is thus: 13943 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13944 */ 13945 pkt_len = ntohs(ipha->ipha_length); 13946 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13947 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13948 !(ill->ill_flags & ILLF_ROUTER) || 13949 (ill == stq_ill) || 13950 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13951 (ire->ire_nce == NULL) || 13952 (ire->ire_nce->nce_state != ND_REACHABLE) || 13953 (pkt_len > ire->ire_max_frag) || 13954 ipha->ipha_ttl <= 1) { 13955 ip_rput_process_forward(ill->ill_rq, mp, ire, 13956 ipha, ill, B_FALSE); 13957 return (ire); 13958 } 13959 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13960 13961 DTRACE_PROBE4(ip4__forwarding__start, 13962 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13963 13964 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13965 ipst->ips_ipv4firewall_forwarding, 13966 ill, stq_ill, ipha, mp, mp, ipst); 13967 13968 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13969 13970 if (mp == NULL) 13971 goto drop; 13972 13973 mp->b_datap->db_struioun.cksum.flags = 0; 13974 /* Adjust the checksum to reflect the ttl decrement. */ 13975 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13976 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13977 ipha->ipha_ttl--; 13978 13979 dev_q = ire->ire_stq->q_next; 13980 if ((dev_q->q_next != NULL || 13981 dev_q->q_first != NULL) && !canput(dev_q)) { 13982 goto indiscard; 13983 } 13984 13985 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13986 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13987 13988 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13989 mblk_t *mpip = mp; 13990 13991 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13992 if (mp != NULL) { 13993 DTRACE_PROBE4(ip4__physical__out__start, 13994 ill_t *, NULL, ill_t *, stq_ill, 13995 ipha_t *, ipha, mblk_t *, mp); 13996 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13997 ipst->ips_ipv4firewall_physical_out, 13998 NULL, stq_ill, ipha, mp, mpip, ipst); 13999 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14000 mp); 14001 if (mp == NULL) 14002 goto drop; 14003 14004 UPDATE_IB_PKT_COUNT(ire); 14005 ire->ire_last_used_time = lbolt; 14006 BUMP_MIB(stq_ill->ill_ip_mib, 14007 ipIfStatsHCOutForwDatagrams); 14008 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14009 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14010 pkt_len); 14011 putnext(ire->ire_stq, mp); 14012 return (ire); 14013 } 14014 } 14015 14016 indiscard: 14017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14018 drop: 14019 if (mp != NULL) 14020 freemsg(mp); 14021 if (src_ire != NULL) 14022 ire_refrele(src_ire); 14023 return (ire); 14024 14025 } 14026 14027 /* 14028 * This function is called in the forwarding slowpath, when 14029 * either the ire lacks the link-layer address, or the packet needs 14030 * further processing(eg. fragmentation), before transmission. 14031 */ 14032 14033 static void 14034 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14035 ill_t *ill, boolean_t ll_multicast) 14036 { 14037 ill_group_t *ill_group; 14038 ill_group_t *ire_group; 14039 queue_t *dev_q; 14040 ire_t *src_ire; 14041 ip_stack_t *ipst = ill->ill_ipst; 14042 14043 ASSERT(ire->ire_stq != NULL); 14044 14045 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14046 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14047 14048 if (ll_multicast != 0) { 14049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14050 goto drop_pkt; 14051 } 14052 14053 /* 14054 * check if ipha_src is a broadcast address. Note that this 14055 * check is redundant when we get here from ip_fast_forward() 14056 * which has already done this check. However, since we can 14057 * also get here from ip_rput_process_broadcast() or, for 14058 * for the slow path through ip_fast_forward(), we perform 14059 * the check again for code-reusability 14060 */ 14061 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14062 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14063 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14064 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14065 if (src_ire != NULL) 14066 ire_refrele(src_ire); 14067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14068 ip2dbg(("ip_rput_process_forward: Received packet with" 14069 " bad src/dst address on %s\n", ill->ill_name)); 14070 goto drop_pkt; 14071 } 14072 14073 ill_group = ill->ill_group; 14074 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14075 /* 14076 * Check if we want to forward this one at this time. 14077 * We allow source routed packets on a host provided that 14078 * they go out the same interface or same interface group 14079 * as they came in on. 14080 * 14081 * XXX To be quicker, we may wish to not chase pointers to 14082 * get the ILLF_ROUTER flag and instead store the 14083 * forwarding policy in the ire. An unfortunate 14084 * side-effect of that would be requiring an ire flush 14085 * whenever the ILLF_ROUTER flag changes. 14086 */ 14087 if (((ill->ill_flags & 14088 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14089 ILLF_ROUTER) == 0) && 14090 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14091 (ill_group != NULL && ill_group == ire_group)))) { 14092 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14093 if (ip_source_routed(ipha, ipst)) { 14094 q = WR(q); 14095 /* 14096 * Clear the indication that this may have 14097 * hardware checksum as we are not using it. 14098 */ 14099 DB_CKSUMFLAGS(mp) = 0; 14100 /* Sent by forwarding path, and router is global zone */ 14101 icmp_unreachable(q, mp, 14102 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14103 return; 14104 } 14105 goto drop_pkt; 14106 } 14107 14108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14109 14110 /* Packet is being forwarded. Turning off hwcksum flag. */ 14111 DB_CKSUMFLAGS(mp) = 0; 14112 if (ipst->ips_ip_g_send_redirects) { 14113 /* 14114 * Check whether the incoming interface and outgoing 14115 * interface is part of the same group. If so, 14116 * send redirects. 14117 * 14118 * Check the source address to see if it originated 14119 * on the same logical subnet it is going back out on. 14120 * If so, we should be able to send it a redirect. 14121 * Avoid sending a redirect if the destination 14122 * is directly connected (i.e., ipha_dst is the same 14123 * as ire_gateway_addr or the ire_addr of the 14124 * nexthop IRE_CACHE ), or if the packet was source 14125 * routed out this interface. 14126 */ 14127 ipaddr_t src, nhop; 14128 mblk_t *mp1; 14129 ire_t *nhop_ire = NULL; 14130 14131 /* 14132 * Check whether ire_rfq and q are from the same ill 14133 * or if they are not same, they at least belong 14134 * to the same group. If so, send redirects. 14135 */ 14136 if ((ire->ire_rfq == q || 14137 (ill_group != NULL && ill_group == ire_group)) && 14138 !ip_source_routed(ipha, ipst)) { 14139 14140 nhop = (ire->ire_gateway_addr != 0 ? 14141 ire->ire_gateway_addr : ire->ire_addr); 14142 14143 if (ipha->ipha_dst == nhop) { 14144 /* 14145 * We avoid sending a redirect if the 14146 * destination is directly connected 14147 * because it is possible that multiple 14148 * IP subnets may have been configured on 14149 * the link, and the source may not 14150 * be on the same subnet as ip destination, 14151 * even though they are on the same 14152 * physical link. 14153 */ 14154 goto sendit; 14155 } 14156 14157 src = ipha->ipha_src; 14158 14159 /* 14160 * We look up the interface ire for the nexthop, 14161 * to see if ipha_src is in the same subnet 14162 * as the nexthop. 14163 * 14164 * Note that, if, in the future, IRE_CACHE entries 14165 * are obsoleted, this lookup will not be needed, 14166 * as the ire passed to this function will be the 14167 * same as the nhop_ire computed below. 14168 */ 14169 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14170 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14171 0, NULL, MATCH_IRE_TYPE, ipst); 14172 14173 if (nhop_ire != NULL) { 14174 if ((src & nhop_ire->ire_mask) == 14175 (nhop & nhop_ire->ire_mask)) { 14176 /* 14177 * The source is directly connected. 14178 * Just copy the ip header (which is 14179 * in the first mblk) 14180 */ 14181 mp1 = copyb(mp); 14182 if (mp1 != NULL) { 14183 icmp_send_redirect(WR(q), mp1, 14184 nhop, ipst); 14185 } 14186 } 14187 ire_refrele(nhop_ire); 14188 } 14189 } 14190 } 14191 sendit: 14192 dev_q = ire->ire_stq->q_next; 14193 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14194 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14195 freemsg(mp); 14196 return; 14197 } 14198 14199 ip_rput_forward(ire, ipha, mp, ill); 14200 return; 14201 14202 drop_pkt: 14203 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14204 freemsg(mp); 14205 } 14206 14207 ire_t * 14208 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14209 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14210 { 14211 queue_t *q; 14212 uint16_t hcksumflags; 14213 ip_stack_t *ipst = ill->ill_ipst; 14214 14215 q = *qp; 14216 14217 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14218 14219 /* 14220 * Clear the indication that this may have hardware 14221 * checksum as we are not using it for forwarding. 14222 */ 14223 hcksumflags = DB_CKSUMFLAGS(mp); 14224 DB_CKSUMFLAGS(mp) = 0; 14225 14226 /* 14227 * Directed broadcast forwarding: if the packet came in over a 14228 * different interface then it is routed out over we can forward it. 14229 */ 14230 if (ipha->ipha_protocol == IPPROTO_TCP) { 14231 ire_refrele(ire); 14232 freemsg(mp); 14233 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14234 return (NULL); 14235 } 14236 /* 14237 * For multicast we have set dst to be INADDR_BROADCAST 14238 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14239 * only for broadcast packets. 14240 */ 14241 if (!CLASSD(ipha->ipha_dst)) { 14242 ire_t *new_ire; 14243 ipif_t *ipif; 14244 /* 14245 * For ill groups, as the switch duplicates broadcasts 14246 * across all the ports, we need to filter out and 14247 * send up only one copy. There is one copy for every 14248 * broadcast address on each ill. Thus, we look for a 14249 * specific IRE on this ill and look at IRE_MARK_NORECV 14250 * later to see whether this ill is eligible to receive 14251 * them or not. ill_nominate_bcast_rcv() nominates only 14252 * one set of IREs for receiving. 14253 */ 14254 14255 ipif = ipif_get_next_ipif(NULL, ill); 14256 if (ipif == NULL) { 14257 ire_refrele(ire); 14258 freemsg(mp); 14259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14260 return (NULL); 14261 } 14262 new_ire = ire_ctable_lookup(dst, 0, 0, 14263 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14264 ipif_refrele(ipif); 14265 14266 if (new_ire != NULL) { 14267 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14268 ire_refrele(ire); 14269 ire_refrele(new_ire); 14270 freemsg(mp); 14271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14272 return (NULL); 14273 } 14274 /* 14275 * In the special case of multirouted broadcast 14276 * packets, we unconditionally need to "gateway" 14277 * them to the appropriate interface here. 14278 * In the normal case, this cannot happen, because 14279 * there is no broadcast IRE tagged with the 14280 * RTF_MULTIRT flag. 14281 */ 14282 if (new_ire->ire_flags & RTF_MULTIRT) { 14283 ire_refrele(new_ire); 14284 if (ire->ire_rfq != NULL) { 14285 q = ire->ire_rfq; 14286 *qp = q; 14287 } 14288 } else { 14289 ire_refrele(ire); 14290 ire = new_ire; 14291 } 14292 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14293 if (!ipst->ips_ip_g_forward_directed_bcast) { 14294 /* 14295 * Free the message if 14296 * ip_g_forward_directed_bcast is turned 14297 * off for non-local broadcast. 14298 */ 14299 ire_refrele(ire); 14300 freemsg(mp); 14301 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14302 return (NULL); 14303 } 14304 } else { 14305 /* 14306 * This CGTP packet successfully passed the 14307 * CGTP filter, but the related CGTP 14308 * broadcast IRE has not been found, 14309 * meaning that the redundant ipif is 14310 * probably down. However, if we discarded 14311 * this packet, its duplicate would be 14312 * filtered out by the CGTP filter so none 14313 * of them would get through. So we keep 14314 * going with this one. 14315 */ 14316 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14317 if (ire->ire_rfq != NULL) { 14318 q = ire->ire_rfq; 14319 *qp = q; 14320 } 14321 } 14322 } 14323 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14324 /* 14325 * Verify that there are not more then one 14326 * IRE_BROADCAST with this broadcast address which 14327 * has ire_stq set. 14328 * TODO: simplify, loop over all IRE's 14329 */ 14330 ire_t *ire1; 14331 int num_stq = 0; 14332 mblk_t *mp1; 14333 14334 /* Find the first one with ire_stq set */ 14335 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14336 for (ire1 = ire; ire1 && 14337 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14338 ire1 = ire1->ire_next) 14339 ; 14340 if (ire1) { 14341 ire_refrele(ire); 14342 ire = ire1; 14343 IRE_REFHOLD(ire); 14344 } 14345 14346 /* Check if there are additional ones with stq set */ 14347 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14348 if (ire->ire_addr != ire1->ire_addr) 14349 break; 14350 if (ire1->ire_stq) { 14351 num_stq++; 14352 break; 14353 } 14354 } 14355 rw_exit(&ire->ire_bucket->irb_lock); 14356 if (num_stq == 1 && ire->ire_stq != NULL) { 14357 ip1dbg(("ip_rput_process_broadcast: directed " 14358 "broadcast to 0x%x\n", 14359 ntohl(ire->ire_addr))); 14360 mp1 = copymsg(mp); 14361 if (mp1) { 14362 switch (ipha->ipha_protocol) { 14363 case IPPROTO_UDP: 14364 ip_udp_input(q, mp1, ipha, ire, ill); 14365 break; 14366 default: 14367 ip_proto_input(q, mp1, ipha, ire, ill, 14368 B_FALSE); 14369 break; 14370 } 14371 } 14372 /* 14373 * Adjust ttl to 2 (1+1 - the forward engine 14374 * will decrement it by one. 14375 */ 14376 if (ip_csum_hdr(ipha)) { 14377 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14378 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14379 freemsg(mp); 14380 ire_refrele(ire); 14381 return (NULL); 14382 } 14383 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14384 ipha->ipha_hdr_checksum = 0; 14385 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14386 ip_rput_process_forward(q, mp, ire, ipha, 14387 ill, ll_multicast); 14388 ire_refrele(ire); 14389 return (NULL); 14390 } 14391 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14392 ntohl(ire->ire_addr))); 14393 } 14394 14395 14396 /* Restore any hardware checksum flags */ 14397 DB_CKSUMFLAGS(mp) = hcksumflags; 14398 return (ire); 14399 } 14400 14401 /* ARGSUSED */ 14402 static boolean_t 14403 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14404 int *ll_multicast, ipaddr_t *dstp) 14405 { 14406 ip_stack_t *ipst = ill->ill_ipst; 14407 14408 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14409 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14410 ntohs(ipha->ipha_length)); 14411 14412 /* 14413 * Forward packets only if we have joined the allmulti 14414 * group on this interface. 14415 */ 14416 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14417 int retval; 14418 14419 /* 14420 * Clear the indication that this may have hardware 14421 * checksum as we are not using it. 14422 */ 14423 DB_CKSUMFLAGS(mp) = 0; 14424 retval = ip_mforward(ill, ipha, mp); 14425 /* ip_mforward updates mib variables if needed */ 14426 /* clear b_prev - used by ip_mroute_decap */ 14427 mp->b_prev = NULL; 14428 14429 switch (retval) { 14430 case 0: 14431 /* 14432 * pkt is okay and arrived on phyint. 14433 * 14434 * If we are running as a multicast router 14435 * we need to see all IGMP and/or PIM packets. 14436 */ 14437 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14438 (ipha->ipha_protocol == IPPROTO_PIM)) { 14439 goto done; 14440 } 14441 break; 14442 case -1: 14443 /* pkt is mal-formed, toss it */ 14444 goto drop_pkt; 14445 case 1: 14446 /* pkt is okay and arrived on a tunnel */ 14447 /* 14448 * If we are running a multicast router 14449 * we need to see all igmp packets. 14450 */ 14451 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14452 *dstp = INADDR_BROADCAST; 14453 *ll_multicast = 1; 14454 return (B_FALSE); 14455 } 14456 14457 goto drop_pkt; 14458 } 14459 } 14460 14461 ILM_WALKER_HOLD(ill); 14462 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14463 /* 14464 * This might just be caused by the fact that 14465 * multiple IP Multicast addresses map to the same 14466 * link layer multicast - no need to increment counter! 14467 */ 14468 ILM_WALKER_RELE(ill); 14469 freemsg(mp); 14470 return (B_TRUE); 14471 } 14472 ILM_WALKER_RELE(ill); 14473 done: 14474 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14475 /* 14476 * This assumes the we deliver to all streams for multicast 14477 * and broadcast packets. 14478 */ 14479 *dstp = INADDR_BROADCAST; 14480 *ll_multicast = 1; 14481 return (B_FALSE); 14482 drop_pkt: 14483 ip2dbg(("ip_rput: drop pkt\n")); 14484 freemsg(mp); 14485 return (B_TRUE); 14486 } 14487 14488 static boolean_t 14489 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14490 int *ll_multicast, mblk_t **mpp) 14491 { 14492 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14493 boolean_t must_copy = B_FALSE; 14494 struct iocblk *iocp; 14495 ipha_t *ipha; 14496 ip_stack_t *ipst = ill->ill_ipst; 14497 14498 #define rptr ((uchar_t *)ipha) 14499 14500 first_mp = *first_mpp; 14501 mp = *mpp; 14502 14503 ASSERT(first_mp == mp); 14504 14505 /* 14506 * if db_ref > 1 then copymsg and free original. Packet may be 14507 * changed and do not want other entity who has a reference to this 14508 * message to trip over the changes. This is a blind change because 14509 * trying to catch all places that might change packet is too 14510 * difficult (since it may be a module above this one) 14511 * 14512 * This corresponds to the non-fast path case. We walk down the full 14513 * chain in this case, and check the db_ref count of all the dblks, 14514 * and do a copymsg if required. It is possible that the db_ref counts 14515 * of the data blocks in the mblk chain can be different. 14516 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14517 * count of 1, followed by a M_DATA block with a ref count of 2, if 14518 * 'snoop' is running. 14519 */ 14520 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14521 if (mp1->b_datap->db_ref > 1) { 14522 must_copy = B_TRUE; 14523 break; 14524 } 14525 } 14526 14527 if (must_copy) { 14528 mp1 = copymsg(mp); 14529 if (mp1 == NULL) { 14530 for (mp1 = mp; mp1 != NULL; 14531 mp1 = mp1->b_cont) { 14532 mp1->b_next = NULL; 14533 mp1->b_prev = NULL; 14534 } 14535 freemsg(mp); 14536 if (ill != NULL) { 14537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14538 } else { 14539 BUMP_MIB(&ipst->ips_ip_mib, 14540 ipIfStatsInDiscards); 14541 } 14542 return (B_TRUE); 14543 } 14544 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14545 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14546 /* Copy b_prev - used by ip_mroute_decap */ 14547 to_mp->b_prev = from_mp->b_prev; 14548 from_mp->b_prev = NULL; 14549 } 14550 *first_mpp = first_mp = mp1; 14551 freemsg(mp); 14552 mp = mp1; 14553 *mpp = mp1; 14554 } 14555 14556 ipha = (ipha_t *)mp->b_rptr; 14557 14558 /* 14559 * previous code has a case for M_DATA. 14560 * We want to check how that happens. 14561 */ 14562 ASSERT(first_mp->b_datap->db_type != M_DATA); 14563 switch (first_mp->b_datap->db_type) { 14564 case M_PROTO: 14565 case M_PCPROTO: 14566 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14567 DL_UNITDATA_IND) { 14568 /* Go handle anything other than data elsewhere. */ 14569 ip_rput_dlpi(q, mp); 14570 return (B_TRUE); 14571 } 14572 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14573 /* Ditch the DLPI header. */ 14574 mp1 = mp->b_cont; 14575 ASSERT(first_mp == mp); 14576 *first_mpp = mp1; 14577 freeb(mp); 14578 *mpp = mp1; 14579 return (B_FALSE); 14580 case M_IOCACK: 14581 ip1dbg(("got iocack ")); 14582 iocp = (struct iocblk *)mp->b_rptr; 14583 switch (iocp->ioc_cmd) { 14584 case DL_IOC_HDR_INFO: 14585 ill = (ill_t *)q->q_ptr; 14586 ill_fastpath_ack(ill, mp); 14587 return (B_TRUE); 14588 case SIOCSTUNPARAM: 14589 case OSIOCSTUNPARAM: 14590 /* Go through qwriter_ip */ 14591 break; 14592 case SIOCGTUNPARAM: 14593 case OSIOCGTUNPARAM: 14594 ip_rput_other(NULL, q, mp, NULL); 14595 return (B_TRUE); 14596 default: 14597 putnext(q, mp); 14598 return (B_TRUE); 14599 } 14600 /* FALLTHRU */ 14601 case M_ERROR: 14602 case M_HANGUP: 14603 /* 14604 * Since this is on the ill stream we unconditionally 14605 * bump up the refcount 14606 */ 14607 ill_refhold(ill); 14608 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14609 return (B_TRUE); 14610 case M_CTL: 14611 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14612 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14613 IPHADA_M_CTL)) { 14614 /* 14615 * It's an IPsec accelerated packet. 14616 * Make sure that the ill from which we received the 14617 * packet has enabled IPsec hardware acceleration. 14618 */ 14619 if (!(ill->ill_capabilities & 14620 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14621 /* IPsec kstats: bean counter */ 14622 freemsg(mp); 14623 return (B_TRUE); 14624 } 14625 14626 /* 14627 * Make mp point to the mblk following the M_CTL, 14628 * then process according to type of mp. 14629 * After this processing, first_mp will point to 14630 * the data-attributes and mp to the pkt following 14631 * the M_CTL. 14632 */ 14633 mp = first_mp->b_cont; 14634 if (mp == NULL) { 14635 freemsg(first_mp); 14636 return (B_TRUE); 14637 } 14638 /* 14639 * A Hardware Accelerated packet can only be M_DATA 14640 * ESP or AH packet. 14641 */ 14642 if (mp->b_datap->db_type != M_DATA) { 14643 /* non-M_DATA IPsec accelerated packet */ 14644 IPSECHW_DEBUG(IPSECHW_PKT, 14645 ("non-M_DATA IPsec accelerated pkt\n")); 14646 freemsg(first_mp); 14647 return (B_TRUE); 14648 } 14649 ipha = (ipha_t *)mp->b_rptr; 14650 if (ipha->ipha_protocol != IPPROTO_AH && 14651 ipha->ipha_protocol != IPPROTO_ESP) { 14652 IPSECHW_DEBUG(IPSECHW_PKT, 14653 ("non-M_DATA IPsec accelerated pkt\n")); 14654 freemsg(first_mp); 14655 return (B_TRUE); 14656 } 14657 *mpp = mp; 14658 return (B_FALSE); 14659 } 14660 putnext(q, mp); 14661 return (B_TRUE); 14662 case M_IOCNAK: 14663 ip1dbg(("got iocnak ")); 14664 iocp = (struct iocblk *)mp->b_rptr; 14665 switch (iocp->ioc_cmd) { 14666 case SIOCSTUNPARAM: 14667 case OSIOCSTUNPARAM: 14668 /* 14669 * Since this is on the ill stream we unconditionally 14670 * bump up the refcount 14671 */ 14672 ill_refhold(ill); 14673 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14674 return (B_TRUE); 14675 case DL_IOC_HDR_INFO: 14676 case SIOCGTUNPARAM: 14677 case OSIOCGTUNPARAM: 14678 ip_rput_other(NULL, q, mp, NULL); 14679 return (B_TRUE); 14680 default: 14681 break; 14682 } 14683 /* FALLTHRU */ 14684 default: 14685 putnext(q, mp); 14686 return (B_TRUE); 14687 } 14688 } 14689 14690 /* Read side put procedure. Packets coming from the wire arrive here. */ 14691 void 14692 ip_rput(queue_t *q, mblk_t *mp) 14693 { 14694 ill_t *ill; 14695 union DL_primitives *dl; 14696 14697 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14698 14699 ill = (ill_t *)q->q_ptr; 14700 14701 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14702 /* 14703 * If things are opening or closing, only accept high-priority 14704 * DLPI messages. (On open ill->ill_ipif has not yet been 14705 * created; on close, things hanging off the ill may have been 14706 * freed already.) 14707 */ 14708 dl = (union DL_primitives *)mp->b_rptr; 14709 if (DB_TYPE(mp) != M_PCPROTO || 14710 dl->dl_primitive == DL_UNITDATA_IND) { 14711 /* 14712 * SIOC[GS]TUNPARAM ioctls can come here. 14713 */ 14714 inet_freemsg(mp); 14715 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14716 "ip_rput_end: q %p (%S)", q, "uninit"); 14717 return; 14718 } 14719 } 14720 14721 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14722 "ip_rput_end: q %p (%S)", q, "end"); 14723 14724 ip_input(ill, NULL, mp, NULL); 14725 } 14726 14727 static mblk_t * 14728 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14729 { 14730 mblk_t *mp1; 14731 boolean_t adjusted = B_FALSE; 14732 ip_stack_t *ipst = ill->ill_ipst; 14733 14734 IP_STAT(ipst, ip_db_ref); 14735 /* 14736 * The IP_RECVSLLA option depends on having the 14737 * link layer header. First check that: 14738 * a> the underlying device is of type ether, 14739 * since this option is currently supported only 14740 * over ethernet. 14741 * b> there is enough room to copy over the link 14742 * layer header. 14743 * 14744 * Once the checks are done, adjust rptr so that 14745 * the link layer header will be copied via 14746 * copymsg. Note that, IFT_ETHER may be returned 14747 * by some non-ethernet drivers but in this case 14748 * the second check will fail. 14749 */ 14750 if (ill->ill_type == IFT_ETHER && 14751 (mp->b_rptr - mp->b_datap->db_base) >= 14752 sizeof (struct ether_header)) { 14753 mp->b_rptr -= sizeof (struct ether_header); 14754 adjusted = B_TRUE; 14755 } 14756 mp1 = copymsg(mp); 14757 14758 if (mp1 == NULL) { 14759 mp->b_next = NULL; 14760 /* clear b_prev - used by ip_mroute_decap */ 14761 mp->b_prev = NULL; 14762 freemsg(mp); 14763 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14764 return (NULL); 14765 } 14766 14767 if (adjusted) { 14768 /* 14769 * Copy is done. Restore the pointer in 14770 * the _new_ mblk 14771 */ 14772 mp1->b_rptr += sizeof (struct ether_header); 14773 } 14774 14775 /* Copy b_prev - used by ip_mroute_decap */ 14776 mp1->b_prev = mp->b_prev; 14777 mp->b_prev = NULL; 14778 14779 /* preserve the hardware checksum flags and data, if present */ 14780 if (DB_CKSUMFLAGS(mp) != 0) { 14781 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14782 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14783 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14784 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14785 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14786 } 14787 14788 freemsg(mp); 14789 return (mp1); 14790 } 14791 14792 /* 14793 * Direct read side procedure capable of dealing with chains. GLDv3 based 14794 * drivers call this function directly with mblk chains while STREAMS 14795 * read side procedure ip_rput() calls this for single packet with ip_ring 14796 * set to NULL to process one packet at a time. 14797 * 14798 * The ill will always be valid if this function is called directly from 14799 * the driver. 14800 * 14801 * If ip_input() is called from GLDv3: 14802 * 14803 * - This must be a non-VLAN IP stream. 14804 * - 'mp' is either an untagged or a special priority-tagged packet. 14805 * - Any VLAN tag that was in the MAC header has been stripped. 14806 * 14807 * If the IP header in packet is not 32-bit aligned, every message in the 14808 * chain will be aligned before further operations. This is required on SPARC 14809 * platform. 14810 */ 14811 /* ARGSUSED */ 14812 void 14813 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14814 struct mac_header_info_s *mhip) 14815 { 14816 ipaddr_t dst = NULL; 14817 ipaddr_t prev_dst; 14818 ire_t *ire = NULL; 14819 ipha_t *ipha; 14820 uint_t pkt_len; 14821 ssize_t len; 14822 uint_t opt_len; 14823 int ll_multicast; 14824 int cgtp_flt_pkt; 14825 queue_t *q = ill->ill_rq; 14826 squeue_t *curr_sqp = NULL; 14827 mblk_t *head = NULL; 14828 mblk_t *tail = NULL; 14829 mblk_t *first_mp; 14830 mblk_t *mp; 14831 mblk_t *dmp; 14832 int cnt = 0; 14833 ip_stack_t *ipst = ill->ill_ipst; 14834 14835 ASSERT(mp_chain != NULL); 14836 ASSERT(ill != NULL); 14837 14838 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14839 14840 #define rptr ((uchar_t *)ipha) 14841 14842 while (mp_chain != NULL) { 14843 first_mp = mp = mp_chain; 14844 mp_chain = mp_chain->b_next; 14845 mp->b_next = NULL; 14846 ll_multicast = 0; 14847 14848 /* 14849 * We do ire caching from one iteration to 14850 * another. In the event the packet chain contains 14851 * all packets from the same dst, this caching saves 14852 * an ire_cache_lookup for each of the succeeding 14853 * packets in a packet chain. 14854 */ 14855 prev_dst = dst; 14856 14857 /* 14858 * if db_ref > 1 then copymsg and free original. Packet 14859 * may be changed and we do not want the other entity 14860 * who has a reference to this message to trip over the 14861 * changes. This is a blind change because trying to 14862 * catch all places that might change the packet is too 14863 * difficult. 14864 * 14865 * This corresponds to the fast path case, where we have 14866 * a chain of M_DATA mblks. We check the db_ref count 14867 * of only the 1st data block in the mblk chain. There 14868 * doesn't seem to be a reason why a device driver would 14869 * send up data with varying db_ref counts in the mblk 14870 * chain. In any case the Fast path is a private 14871 * interface, and our drivers don't do such a thing. 14872 * Given the above assumption, there is no need to walk 14873 * down the entire mblk chain (which could have a 14874 * potential performance problem) 14875 */ 14876 14877 if (DB_REF(mp) > 1) { 14878 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14879 continue; 14880 } 14881 14882 /* 14883 * Check and align the IP header. 14884 */ 14885 first_mp = mp; 14886 if (DB_TYPE(mp) == M_DATA) { 14887 dmp = mp; 14888 } else if (DB_TYPE(mp) == M_PROTO && 14889 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14890 dmp = mp->b_cont; 14891 } else { 14892 dmp = NULL; 14893 } 14894 if (dmp != NULL) { 14895 /* 14896 * IP header ptr not aligned? 14897 * OR IP header not complete in first mblk 14898 */ 14899 if (!OK_32PTR(dmp->b_rptr) || 14900 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14901 if (!ip_check_and_align_header(q, dmp, ipst)) 14902 continue; 14903 } 14904 } 14905 14906 /* 14907 * ip_input fast path 14908 */ 14909 14910 /* mblk type is not M_DATA */ 14911 if (DB_TYPE(mp) != M_DATA) { 14912 if (ip_rput_process_notdata(q, &first_mp, ill, 14913 &ll_multicast, &mp)) 14914 continue; 14915 } 14916 14917 /* Make sure its an M_DATA and that its aligned */ 14918 ASSERT(DB_TYPE(mp) == M_DATA); 14919 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14920 14921 ipha = (ipha_t *)mp->b_rptr; 14922 len = mp->b_wptr - rptr; 14923 pkt_len = ntohs(ipha->ipha_length); 14924 14925 /* 14926 * We must count all incoming packets, even if they end 14927 * up being dropped later on. 14928 */ 14929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14930 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14931 14932 /* multiple mblk or too short */ 14933 len -= pkt_len; 14934 if (len != 0) { 14935 /* 14936 * Make sure we have data length consistent 14937 * with the IP header. 14938 */ 14939 if (mp->b_cont == NULL) { 14940 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14941 BUMP_MIB(ill->ill_ip_mib, 14942 ipIfStatsInHdrErrors); 14943 ip2dbg(("ip_input: drop pkt\n")); 14944 freemsg(mp); 14945 continue; 14946 } 14947 mp->b_wptr = rptr + pkt_len; 14948 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14949 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14950 BUMP_MIB(ill->ill_ip_mib, 14951 ipIfStatsInHdrErrors); 14952 ip2dbg(("ip_input: drop pkt\n")); 14953 freemsg(mp); 14954 continue; 14955 } 14956 (void) adjmsg(mp, -len); 14957 IP_STAT(ipst, ip_multimblk3); 14958 } 14959 } 14960 14961 /* Obtain the dst of the current packet */ 14962 dst = ipha->ipha_dst; 14963 14964 if (IP_LOOPBACK_ADDR(dst) || 14965 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14966 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14967 cmn_err(CE_CONT, "dst %X src %X\n", 14968 dst, ipha->ipha_src); 14969 freemsg(mp); 14970 continue; 14971 } 14972 14973 /* 14974 * The event for packets being received from a 'physical' 14975 * interface is placed after validation of the source and/or 14976 * destination address as being local so that packets can be 14977 * redirected to loopback addresses using ipnat. 14978 */ 14979 DTRACE_PROBE4(ip4__physical__in__start, 14980 ill_t *, ill, ill_t *, NULL, 14981 ipha_t *, ipha, mblk_t *, first_mp); 14982 14983 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14984 ipst->ips_ipv4firewall_physical_in, 14985 ill, NULL, ipha, first_mp, mp, ipst); 14986 14987 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14988 14989 if (first_mp == NULL) { 14990 continue; 14991 } 14992 dst = ipha->ipha_dst; 14993 14994 /* 14995 * Attach any necessary label information to 14996 * this packet 14997 */ 14998 if (is_system_labeled() && 14999 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15000 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15001 freemsg(mp); 15002 continue; 15003 } 15004 15005 /* 15006 * Reuse the cached ire only if the ipha_dst of the previous 15007 * packet is the same as the current packet AND it is not 15008 * INADDR_ANY. 15009 */ 15010 if (!(dst == prev_dst && dst != INADDR_ANY) && 15011 (ire != NULL)) { 15012 ire_refrele(ire); 15013 ire = NULL; 15014 } 15015 opt_len = ipha->ipha_version_and_hdr_length - 15016 IP_SIMPLE_HDR_VERSION; 15017 15018 /* 15019 * Check to see if we can take the fastpath. 15020 * That is possible if the following conditions are met 15021 * o Tsol disabled 15022 * o CGTP disabled 15023 * o ipp_action_count is 0 15024 * o no options in the packet 15025 * o not a RSVP packet 15026 * o not a multicast packet 15027 * o ill not in IP_DHCPINIT_IF mode 15028 */ 15029 if (!is_system_labeled() && 15030 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15031 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15032 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15033 if (ire == NULL) 15034 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15035 ipst); 15036 15037 /* incoming packet is for forwarding */ 15038 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15039 ire = ip_fast_forward(ire, dst, ill, mp); 15040 continue; 15041 } 15042 /* incoming packet is for local consumption */ 15043 if (ire->ire_type & IRE_LOCAL) 15044 goto local; 15045 } 15046 15047 /* 15048 * Disable ire caching for anything more complex 15049 * than the simple fast path case we checked for above. 15050 */ 15051 if (ire != NULL) { 15052 ire_refrele(ire); 15053 ire = NULL; 15054 } 15055 15056 /* 15057 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15058 * server to unicast DHCP packets to a DHCP client using the 15059 * IP address it is offering to the client. This can be 15060 * disabled through the "broadcast bit", but not all DHCP 15061 * servers honor that bit. Therefore, to interoperate with as 15062 * many DHCP servers as possible, the DHCP client allows the 15063 * server to unicast, but we treat those packets as broadcast 15064 * here. Note that we don't rewrite the packet itself since 15065 * (a) that would mess up the checksums and (b) the DHCP 15066 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15067 * hand it the packet regardless. 15068 */ 15069 if (ill->ill_dhcpinit != 0 && 15070 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15071 MBLKL(mp) > sizeof (ipha_t) + sizeof (udpha_t)) { 15072 udpha_t *udpha = (udpha_t *)&ipha[1]; 15073 15074 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15075 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15076 mblk_t *, mp); 15077 dst = INADDR_BROADCAST; 15078 } 15079 } 15080 15081 /* Full-blown slow path */ 15082 if (opt_len != 0) { 15083 if (len != 0) 15084 IP_STAT(ipst, ip_multimblk4); 15085 else 15086 IP_STAT(ipst, ip_ipoptions); 15087 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15088 &dst, ipst)) 15089 continue; 15090 } 15091 15092 /* 15093 * Invoke the CGTP (multirouting) filtering module to process 15094 * the incoming packet. Packets identified as duplicates 15095 * must be discarded. Filtering is active only if the 15096 * the ip_cgtp_filter ndd variable is non-zero. 15097 */ 15098 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15099 if (ipst->ips_ip_cgtp_filter && 15100 ipst->ips_ip_cgtp_filter_ops != NULL) { 15101 netstackid_t stackid; 15102 15103 stackid = ipst->ips_netstack->netstack_stackid; 15104 cgtp_flt_pkt = 15105 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15106 ill->ill_phyint->phyint_ifindex, mp); 15107 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15108 freemsg(first_mp); 15109 continue; 15110 } 15111 } 15112 15113 /* 15114 * If rsvpd is running, let RSVP daemon handle its processing 15115 * and forwarding of RSVP multicast/unicast packets. 15116 * If rsvpd is not running but mrouted is running, RSVP 15117 * multicast packets are forwarded as multicast traffic 15118 * and RSVP unicast packets are forwarded by unicast router. 15119 * If neither rsvpd nor mrouted is running, RSVP multicast 15120 * packets are not forwarded, but the unicast packets are 15121 * forwarded like unicast traffic. 15122 */ 15123 if (ipha->ipha_protocol == IPPROTO_RSVP && 15124 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15125 NULL) { 15126 /* RSVP packet and rsvpd running. Treat as ours */ 15127 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15128 /* 15129 * This assumes that we deliver to all streams for 15130 * multicast and broadcast packets. 15131 * We have to force ll_multicast to 1 to handle the 15132 * M_DATA messages passed in from ip_mroute_decap. 15133 */ 15134 dst = INADDR_BROADCAST; 15135 ll_multicast = 1; 15136 } else if (CLASSD(dst)) { 15137 /* packet is multicast */ 15138 mp->b_next = NULL; 15139 if (ip_rput_process_multicast(q, mp, ill, ipha, 15140 &ll_multicast, &dst)) 15141 continue; 15142 } 15143 15144 if (ire == NULL) { 15145 ire = ire_cache_lookup(dst, ALL_ZONES, 15146 MBLK_GETLABEL(mp), ipst); 15147 } 15148 15149 if (ire == NULL) { 15150 /* 15151 * No IRE for this destination, so it can't be for us. 15152 * Unless we are forwarding, drop the packet. 15153 * We have to let source routed packets through 15154 * since we don't yet know if they are 'ping -l' 15155 * packets i.e. if they will go out over the 15156 * same interface as they came in on. 15157 */ 15158 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15159 if (ire == NULL) 15160 continue; 15161 } 15162 15163 /* 15164 * Broadcast IRE may indicate either broadcast or 15165 * multicast packet 15166 */ 15167 if (ire->ire_type == IRE_BROADCAST) { 15168 /* 15169 * Skip broadcast checks if packet is UDP multicast; 15170 * we'd rather not enter ip_rput_process_broadcast() 15171 * unless the packet is broadcast for real, since 15172 * that routine is a no-op for multicast. 15173 */ 15174 if (ipha->ipha_protocol != IPPROTO_UDP || 15175 !CLASSD(ipha->ipha_dst)) { 15176 ire = ip_rput_process_broadcast(&q, mp, 15177 ire, ipha, ill, dst, cgtp_flt_pkt, 15178 ll_multicast); 15179 if (ire == NULL) 15180 continue; 15181 } 15182 } else if (ire->ire_stq != NULL) { 15183 /* fowarding? */ 15184 ip_rput_process_forward(q, mp, ire, ipha, ill, 15185 ll_multicast); 15186 /* ip_rput_process_forward consumed the packet */ 15187 continue; 15188 } 15189 15190 local: 15191 /* 15192 * If the queue in the ire is different to the ingress queue 15193 * then we need to check to see if we can accept the packet. 15194 * Note that for multicast packets and broadcast packets sent 15195 * to a broadcast address which is shared between multiple 15196 * interfaces we should not do this since we just got a random 15197 * broadcast ire. 15198 */ 15199 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15200 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15201 ill)) == NULL) { 15202 /* Drop packet */ 15203 BUMP_MIB(ill->ill_ip_mib, 15204 ipIfStatsForwProhibits); 15205 freemsg(mp); 15206 continue; 15207 } 15208 if (ire->ire_rfq != NULL) 15209 q = ire->ire_rfq; 15210 } 15211 15212 switch (ipha->ipha_protocol) { 15213 case IPPROTO_TCP: 15214 ASSERT(first_mp == mp); 15215 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15216 mp, 0, q, ip_ring)) != NULL) { 15217 if (curr_sqp == NULL) { 15218 curr_sqp = GET_SQUEUE(mp); 15219 ASSERT(cnt == 0); 15220 cnt++; 15221 head = tail = mp; 15222 } else if (curr_sqp == GET_SQUEUE(mp)) { 15223 ASSERT(tail != NULL); 15224 cnt++; 15225 tail->b_next = mp; 15226 tail = mp; 15227 } else { 15228 /* 15229 * A different squeue. Send the 15230 * chain for the previous squeue on 15231 * its way. This shouldn't happen 15232 * often unless interrupt binding 15233 * changes. 15234 */ 15235 IP_STAT(ipst, ip_input_multi_squeue); 15236 squeue_enter_chain(curr_sqp, head, 15237 tail, cnt, SQTAG_IP_INPUT); 15238 curr_sqp = GET_SQUEUE(mp); 15239 head = mp; 15240 tail = mp; 15241 cnt = 1; 15242 } 15243 } 15244 continue; 15245 case IPPROTO_UDP: 15246 ASSERT(first_mp == mp); 15247 ip_udp_input(q, mp, ipha, ire, ill); 15248 continue; 15249 case IPPROTO_SCTP: 15250 ASSERT(first_mp == mp); 15251 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15252 q, dst); 15253 /* ire has been released by ip_sctp_input */ 15254 ire = NULL; 15255 continue; 15256 default: 15257 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15258 continue; 15259 } 15260 } 15261 15262 if (ire != NULL) 15263 ire_refrele(ire); 15264 15265 if (head != NULL) 15266 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15267 15268 /* 15269 * This code is there just to make netperf/ttcp look good. 15270 * 15271 * Its possible that after being in polling mode (and having cleared 15272 * the backlog), squeues have turned the interrupt frequency higher 15273 * to improve latency at the expense of more CPU utilization (less 15274 * packets per interrupts or more number of interrupts). Workloads 15275 * like ttcp/netperf do manage to tickle polling once in a while 15276 * but for the remaining time, stay in higher interrupt mode since 15277 * their packet arrival rate is pretty uniform and this shows up 15278 * as higher CPU utilization. Since people care about CPU utilization 15279 * while running netperf/ttcp, turn the interrupt frequency back to 15280 * normal/default if polling has not been used in ip_poll_normal_ticks. 15281 */ 15282 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15283 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15284 ip_ring->rr_poll_state &= ~ILL_POLLING; 15285 ip_ring->rr_blank(ip_ring->rr_handle, 15286 ip_ring->rr_normal_blank_time, 15287 ip_ring->rr_normal_pkt_cnt); 15288 } 15289 } 15290 15291 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15292 "ip_input_end: q %p (%S)", q, "end"); 15293 #undef rptr 15294 } 15295 15296 static void 15297 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15298 t_uscalar_t err) 15299 { 15300 if (dl_err == DL_SYSERR) { 15301 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15302 "%s: %s failed: DL_SYSERR (errno %u)\n", 15303 ill->ill_name, dlpi_prim_str(prim), err); 15304 return; 15305 } 15306 15307 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15308 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15309 dlpi_err_str(dl_err)); 15310 } 15311 15312 /* 15313 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15314 * than DL_UNITDATA_IND messages. If we need to process this message 15315 * exclusively, we call qwriter_ip, in which case we also need to call 15316 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15317 */ 15318 void 15319 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15320 { 15321 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15322 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15323 ill_t *ill = (ill_t *)q->q_ptr; 15324 boolean_t pending; 15325 15326 ip1dbg(("ip_rput_dlpi")); 15327 if (dloa->dl_primitive == DL_ERROR_ACK) { 15328 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15329 "%s (0x%x), unix %u\n", ill->ill_name, 15330 dlpi_prim_str(dlea->dl_error_primitive), 15331 dlea->dl_error_primitive, 15332 dlpi_err_str(dlea->dl_errno), 15333 dlea->dl_errno, 15334 dlea->dl_unix_errno)); 15335 } 15336 15337 /* 15338 * If we received an ACK but didn't send a request for it, then it 15339 * can't be part of any pending operation; discard up-front. 15340 */ 15341 switch (dloa->dl_primitive) { 15342 case DL_NOTIFY_IND: 15343 pending = B_TRUE; 15344 break; 15345 case DL_ERROR_ACK: 15346 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15347 break; 15348 case DL_OK_ACK: 15349 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15350 break; 15351 case DL_INFO_ACK: 15352 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15353 break; 15354 case DL_BIND_ACK: 15355 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15356 break; 15357 case DL_PHYS_ADDR_ACK: 15358 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15359 break; 15360 case DL_NOTIFY_ACK: 15361 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15362 break; 15363 case DL_CONTROL_ACK: 15364 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15365 break; 15366 case DL_CAPABILITY_ACK: 15367 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15368 break; 15369 default: 15370 /* Not a DLPI message we support or were expecting */ 15371 freemsg(mp); 15372 return; 15373 } 15374 15375 if (!pending) { 15376 freemsg(mp); 15377 return; 15378 } 15379 15380 switch (dloa->dl_primitive) { 15381 case DL_ERROR_ACK: 15382 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15383 mutex_enter(&ill->ill_lock); 15384 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15385 cv_signal(&ill->ill_cv); 15386 mutex_exit(&ill->ill_lock); 15387 } 15388 break; 15389 15390 case DL_OK_ACK: 15391 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15392 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15393 switch (dloa->dl_correct_primitive) { 15394 case DL_UNBIND_REQ: 15395 mutex_enter(&ill->ill_lock); 15396 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15397 cv_signal(&ill->ill_cv); 15398 mutex_exit(&ill->ill_lock); 15399 break; 15400 15401 case DL_ENABMULTI_REQ: 15402 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15403 ill->ill_dlpi_multicast_state = IDS_OK; 15404 break; 15405 } 15406 break; 15407 default: 15408 break; 15409 } 15410 15411 /* 15412 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15413 * and we need to become writer to continue to process it. If it's not 15414 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15415 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15416 * some work as part of the current exclusive operation that actually 15417 * is not part of it -- which is wrong, but better than the 15418 * alternative of deadlock (if NEW_OP is always used). Someday, we 15419 * should track which DLPI requests have ACKs that we wait on 15420 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15421 * 15422 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15423 * Since this is on the ill stream we unconditionally bump up the 15424 * refcount without doing ILL_CAN_LOOKUP(). 15425 */ 15426 ill_refhold(ill); 15427 if (dloa->dl_primitive == DL_NOTIFY_IND) 15428 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15429 else 15430 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15431 } 15432 15433 /* 15434 * Handling of DLPI messages that require exclusive access to the ipsq. 15435 * 15436 * Need to do ill_pending_mp_release on ioctl completion, which could 15437 * happen here. (along with mi_copy_done) 15438 */ 15439 /* ARGSUSED */ 15440 static void 15441 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15442 { 15443 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15444 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15445 int err = 0; 15446 ill_t *ill; 15447 ipif_t *ipif = NULL; 15448 mblk_t *mp1 = NULL; 15449 conn_t *connp = NULL; 15450 t_uscalar_t paddrreq; 15451 mblk_t *mp_hw; 15452 boolean_t success; 15453 boolean_t ioctl_aborted = B_FALSE; 15454 boolean_t log = B_TRUE; 15455 hook_nic_event_t *info; 15456 ip_stack_t *ipst; 15457 15458 ip1dbg(("ip_rput_dlpi_writer ..")); 15459 ill = (ill_t *)q->q_ptr; 15460 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15461 15462 ASSERT(IAM_WRITER_ILL(ill)); 15463 15464 ipst = ill->ill_ipst; 15465 15466 /* 15467 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15468 * both are null or non-null. However we can assert that only 15469 * after grabbing the ipsq_lock. So we don't make any assertion 15470 * here and in other places in the code. 15471 */ 15472 ipif = ipsq->ipsq_pending_ipif; 15473 /* 15474 * The current ioctl could have been aborted by the user and a new 15475 * ioctl to bring up another ill could have started. We could still 15476 * get a response from the driver later. 15477 */ 15478 if (ipif != NULL && ipif->ipif_ill != ill) 15479 ioctl_aborted = B_TRUE; 15480 15481 switch (dloa->dl_primitive) { 15482 case DL_ERROR_ACK: 15483 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15484 dlpi_prim_str(dlea->dl_error_primitive))); 15485 15486 switch (dlea->dl_error_primitive) { 15487 case DL_PROMISCON_REQ: 15488 case DL_PROMISCOFF_REQ: 15489 case DL_DISABMULTI_REQ: 15490 case DL_UNBIND_REQ: 15491 case DL_ATTACH_REQ: 15492 case DL_INFO_REQ: 15493 ill_dlpi_done(ill, dlea->dl_error_primitive); 15494 break; 15495 case DL_NOTIFY_REQ: 15496 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15497 log = B_FALSE; 15498 break; 15499 case DL_PHYS_ADDR_REQ: 15500 /* 15501 * For IPv6 only, there are two additional 15502 * phys_addr_req's sent to the driver to get the 15503 * IPv6 token and lla. This allows IP to acquire 15504 * the hardware address format for a given interface 15505 * without having built in knowledge of the hardware 15506 * address. ill_phys_addr_pend keeps track of the last 15507 * DL_PAR sent so we know which response we are 15508 * dealing with. ill_dlpi_done will update 15509 * ill_phys_addr_pend when it sends the next req. 15510 * We don't complete the IOCTL until all three DL_PARs 15511 * have been attempted, so set *_len to 0 and break. 15512 */ 15513 paddrreq = ill->ill_phys_addr_pend; 15514 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15515 if (paddrreq == DL_IPV6_TOKEN) { 15516 ill->ill_token_length = 0; 15517 log = B_FALSE; 15518 break; 15519 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15520 ill->ill_nd_lla_len = 0; 15521 log = B_FALSE; 15522 break; 15523 } 15524 /* 15525 * Something went wrong with the DL_PHYS_ADDR_REQ. 15526 * We presumably have an IOCTL hanging out waiting 15527 * for completion. Find it and complete the IOCTL 15528 * with the error noted. 15529 * However, ill_dl_phys was called on an ill queue 15530 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15531 * set. But the ioctl is known to be pending on ill_wq. 15532 */ 15533 if (!ill->ill_ifname_pending) 15534 break; 15535 ill->ill_ifname_pending = 0; 15536 if (!ioctl_aborted) 15537 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15538 if (mp1 != NULL) { 15539 /* 15540 * This operation (SIOCSLIFNAME) must have 15541 * happened on the ill. Assert there is no conn 15542 */ 15543 ASSERT(connp == NULL); 15544 q = ill->ill_wq; 15545 } 15546 break; 15547 case DL_BIND_REQ: 15548 ill_dlpi_done(ill, DL_BIND_REQ); 15549 if (ill->ill_ifname_pending) 15550 break; 15551 /* 15552 * Something went wrong with the bind. We presumably 15553 * have an IOCTL hanging out waiting for completion. 15554 * Find it, take down the interface that was coming 15555 * up, and complete the IOCTL with the error noted. 15556 */ 15557 if (!ioctl_aborted) 15558 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15559 if (mp1 != NULL) { 15560 /* 15561 * This operation (SIOCSLIFFLAGS) must have 15562 * happened from a conn. 15563 */ 15564 ASSERT(connp != NULL); 15565 q = CONNP_TO_WQ(connp); 15566 if (ill->ill_move_in_progress) { 15567 ILL_CLEAR_MOVE(ill); 15568 } 15569 (void) ipif_down(ipif, NULL, NULL); 15570 /* error is set below the switch */ 15571 } 15572 break; 15573 case DL_ENABMULTI_REQ: 15574 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15575 15576 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15577 ill->ill_dlpi_multicast_state = IDS_FAILED; 15578 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15579 ipif_t *ipif; 15580 15581 printf("ip: joining multicasts failed (%d)" 15582 " on %s - will use link layer " 15583 "broadcasts for multicast\n", 15584 dlea->dl_errno, ill->ill_name); 15585 15586 /* 15587 * Set up the multicast mapping alone. 15588 * writer, so ok to access ill->ill_ipif 15589 * without any lock. 15590 */ 15591 ipif = ill->ill_ipif; 15592 mutex_enter(&ill->ill_phyint->phyint_lock); 15593 ill->ill_phyint->phyint_flags |= 15594 PHYI_MULTI_BCAST; 15595 mutex_exit(&ill->ill_phyint->phyint_lock); 15596 15597 if (!ill->ill_isv6) { 15598 (void) ipif_arp_setup_multicast(ipif, 15599 NULL); 15600 } else { 15601 (void) ipif_ndp_setup_multicast(ipif, 15602 NULL); 15603 } 15604 } 15605 freemsg(mp); /* Don't want to pass this up */ 15606 return; 15607 15608 case DL_CAPABILITY_REQ: 15609 case DL_CONTROL_REQ: 15610 ill_dlpi_done(ill, dlea->dl_error_primitive); 15611 ill->ill_dlpi_capab_state = IDS_FAILED; 15612 freemsg(mp); 15613 return; 15614 } 15615 /* 15616 * Note the error for IOCTL completion (mp1 is set when 15617 * ready to complete ioctl). If ill_ifname_pending_err is 15618 * set, an error occured during plumbing (ill_ifname_pending), 15619 * so we want to report that error. 15620 * 15621 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15622 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15623 * expected to get errack'd if the driver doesn't support 15624 * these flags (e.g. ethernet). log will be set to B_FALSE 15625 * if these error conditions are encountered. 15626 */ 15627 if (mp1 != NULL) { 15628 if (ill->ill_ifname_pending_err != 0) { 15629 err = ill->ill_ifname_pending_err; 15630 ill->ill_ifname_pending_err = 0; 15631 } else { 15632 err = dlea->dl_unix_errno ? 15633 dlea->dl_unix_errno : ENXIO; 15634 } 15635 /* 15636 * If we're plumbing an interface and an error hasn't already 15637 * been saved, set ill_ifname_pending_err to the error passed 15638 * up. Ignore the error if log is B_FALSE (see comment above). 15639 */ 15640 } else if (log && ill->ill_ifname_pending && 15641 ill->ill_ifname_pending_err == 0) { 15642 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15643 dlea->dl_unix_errno : ENXIO; 15644 } 15645 15646 if (log) 15647 ip_dlpi_error(ill, dlea->dl_error_primitive, 15648 dlea->dl_errno, dlea->dl_unix_errno); 15649 break; 15650 case DL_CAPABILITY_ACK: 15651 /* Call a routine to handle this one. */ 15652 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15653 ill_capability_ack(ill, mp); 15654 15655 /* 15656 * If the ack is due to renegotiation, we will need to send 15657 * a new CAPABILITY_REQ to start the renegotiation. 15658 */ 15659 if (ill->ill_capab_reneg) { 15660 ill->ill_capab_reneg = B_FALSE; 15661 ill_capability_probe(ill); 15662 } 15663 break; 15664 case DL_CONTROL_ACK: 15665 /* We treat all of these as "fire and forget" */ 15666 ill_dlpi_done(ill, DL_CONTROL_REQ); 15667 break; 15668 case DL_INFO_ACK: 15669 /* Call a routine to handle this one. */ 15670 ill_dlpi_done(ill, DL_INFO_REQ); 15671 ip_ll_subnet_defaults(ill, mp); 15672 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15673 return; 15674 case DL_BIND_ACK: 15675 /* 15676 * We should have an IOCTL waiting on this unless 15677 * sent by ill_dl_phys, in which case just return 15678 */ 15679 ill_dlpi_done(ill, DL_BIND_REQ); 15680 if (ill->ill_ifname_pending) 15681 break; 15682 15683 if (!ioctl_aborted) 15684 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15685 if (mp1 == NULL) 15686 break; 15687 /* 15688 * Because mp1 was added by ill_dl_up(), and it always 15689 * passes a valid connp, connp must be valid here. 15690 */ 15691 ASSERT(connp != NULL); 15692 q = CONNP_TO_WQ(connp); 15693 15694 /* 15695 * We are exclusive. So nothing can change even after 15696 * we get the pending mp. If need be we can put it back 15697 * and restart, as in calling ipif_arp_up() below. 15698 */ 15699 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15700 15701 mutex_enter(&ill->ill_lock); 15702 15703 ill->ill_dl_up = 1; 15704 15705 if ((info = ill->ill_nic_event_info) != NULL) { 15706 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15707 "attached for %s\n", info->hne_event, 15708 ill->ill_name)); 15709 if (info->hne_data != NULL) 15710 kmem_free(info->hne_data, info->hne_datalen); 15711 kmem_free(info, sizeof (hook_nic_event_t)); 15712 } 15713 15714 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15715 if (info != NULL) { 15716 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15717 info->hne_lif = 0; 15718 info->hne_event = NE_UP; 15719 info->hne_data = NULL; 15720 info->hne_datalen = 0; 15721 info->hne_family = ill->ill_isv6 ? 15722 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15723 } else 15724 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15725 "event information for %s (ENOMEM)\n", 15726 ill->ill_name)); 15727 15728 ill->ill_nic_event_info = info; 15729 15730 mutex_exit(&ill->ill_lock); 15731 15732 /* 15733 * Now bring up the resolver; when that is complete, we'll 15734 * create IREs. Note that we intentionally mirror what 15735 * ipif_up() would have done, because we got here by way of 15736 * ill_dl_up(), which stopped ipif_up()'s processing. 15737 */ 15738 if (ill->ill_isv6) { 15739 /* 15740 * v6 interfaces. 15741 * Unlike ARP which has to do another bind 15742 * and attach, once we get here we are 15743 * done with NDP. Except in the case of 15744 * ILLF_XRESOLV, in which case we send an 15745 * AR_INTERFACE_UP to the external resolver. 15746 * If all goes well, the ioctl will complete 15747 * in ip_rput(). If there's an error, we 15748 * complete it here. 15749 */ 15750 if ((err = ipif_ndp_up(ipif)) == 0) { 15751 if (ill->ill_flags & ILLF_XRESOLV) { 15752 mutex_enter(&connp->conn_lock); 15753 mutex_enter(&ill->ill_lock); 15754 success = ipsq_pending_mp_add( 15755 connp, ipif, q, mp1, 0); 15756 mutex_exit(&ill->ill_lock); 15757 mutex_exit(&connp->conn_lock); 15758 if (success) { 15759 err = ipif_resolver_up(ipif, 15760 Res_act_initial); 15761 if (err == EINPROGRESS) { 15762 freemsg(mp); 15763 return; 15764 } 15765 ASSERT(err != 0); 15766 mp1 = ipsq_pending_mp_get(ipsq, 15767 &connp); 15768 ASSERT(mp1 != NULL); 15769 } else { 15770 /* conn has started closing */ 15771 err = EINTR; 15772 } 15773 } else { /* Non XRESOLV interface */ 15774 (void) ipif_resolver_up(ipif, 15775 Res_act_initial); 15776 err = ipif_up_done_v6(ipif); 15777 } 15778 } 15779 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15780 /* 15781 * ARP and other v4 external resolvers. 15782 * Leave the pending mblk intact so that 15783 * the ioctl completes in ip_rput(). 15784 */ 15785 mutex_enter(&connp->conn_lock); 15786 mutex_enter(&ill->ill_lock); 15787 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15788 mutex_exit(&ill->ill_lock); 15789 mutex_exit(&connp->conn_lock); 15790 if (success) { 15791 err = ipif_resolver_up(ipif, Res_act_initial); 15792 if (err == EINPROGRESS) { 15793 freemsg(mp); 15794 return; 15795 } 15796 ASSERT(err != 0); 15797 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15798 } else { 15799 /* The conn has started closing */ 15800 err = EINTR; 15801 } 15802 } else { 15803 /* 15804 * This one is complete. Reply to pending ioctl. 15805 */ 15806 (void) ipif_resolver_up(ipif, Res_act_initial); 15807 err = ipif_up_done(ipif); 15808 } 15809 15810 if ((err == 0) && (ill->ill_up_ipifs)) { 15811 err = ill_up_ipifs(ill, q, mp1); 15812 if (err == EINPROGRESS) { 15813 freemsg(mp); 15814 return; 15815 } 15816 } 15817 15818 if (ill->ill_up_ipifs) { 15819 ill_group_cleanup(ill); 15820 } 15821 15822 break; 15823 case DL_NOTIFY_IND: { 15824 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15825 ire_t *ire; 15826 boolean_t need_ire_walk_v4 = B_FALSE; 15827 boolean_t need_ire_walk_v6 = B_FALSE; 15828 15829 switch (notify->dl_notification) { 15830 case DL_NOTE_PHYS_ADDR: 15831 err = ill_set_phys_addr(ill, mp); 15832 break; 15833 15834 case DL_NOTE_FASTPATH_FLUSH: 15835 ill_fastpath_flush(ill); 15836 break; 15837 15838 case DL_NOTE_SDU_SIZE: 15839 /* 15840 * Change the MTU size of the interface, of all 15841 * attached ipif's, and of all relevant ire's. The 15842 * new value's a uint32_t at notify->dl_data. 15843 * Mtu change Vs. new ire creation - protocol below. 15844 * 15845 * a Mark the ipif as IPIF_CHANGING. 15846 * b Set the new mtu in the ipif. 15847 * c Change the ire_max_frag on all affected ires 15848 * d Unmark the IPIF_CHANGING 15849 * 15850 * To see how the protocol works, assume an interface 15851 * route is also being added simultaneously by 15852 * ip_rt_add and let 'ipif' be the ipif referenced by 15853 * the ire. If the ire is created before step a, 15854 * it will be cleaned up by step c. If the ire is 15855 * created after step d, it will see the new value of 15856 * ipif_mtu. Any attempt to create the ire between 15857 * steps a to d will fail because of the IPIF_CHANGING 15858 * flag. Note that ire_create() is passed a pointer to 15859 * the ipif_mtu, and not the value. During ire_add 15860 * under the bucket lock, the ire_max_frag of the 15861 * new ire being created is set from the ipif/ire from 15862 * which it is being derived. 15863 */ 15864 mutex_enter(&ill->ill_lock); 15865 ill->ill_max_frag = (uint_t)notify->dl_data; 15866 15867 /* 15868 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15869 * leave it alone 15870 */ 15871 if (ill->ill_mtu_userspecified) { 15872 mutex_exit(&ill->ill_lock); 15873 break; 15874 } 15875 ill->ill_max_mtu = ill->ill_max_frag; 15876 if (ill->ill_isv6) { 15877 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15878 ill->ill_max_mtu = IPV6_MIN_MTU; 15879 } else { 15880 if (ill->ill_max_mtu < IP_MIN_MTU) 15881 ill->ill_max_mtu = IP_MIN_MTU; 15882 } 15883 for (ipif = ill->ill_ipif; ipif != NULL; 15884 ipif = ipif->ipif_next) { 15885 /* 15886 * Don't override the mtu if the user 15887 * has explicitly set it. 15888 */ 15889 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15890 continue; 15891 ipif->ipif_mtu = (uint_t)notify->dl_data; 15892 if (ipif->ipif_isv6) 15893 ire = ipif_to_ire_v6(ipif); 15894 else 15895 ire = ipif_to_ire(ipif); 15896 if (ire != NULL) { 15897 ire->ire_max_frag = ipif->ipif_mtu; 15898 ire_refrele(ire); 15899 } 15900 if (ipif->ipif_flags & IPIF_UP) { 15901 if (ill->ill_isv6) 15902 need_ire_walk_v6 = B_TRUE; 15903 else 15904 need_ire_walk_v4 = B_TRUE; 15905 } 15906 } 15907 mutex_exit(&ill->ill_lock); 15908 if (need_ire_walk_v4) 15909 ire_walk_v4(ill_mtu_change, (char *)ill, 15910 ALL_ZONES, ipst); 15911 if (need_ire_walk_v6) 15912 ire_walk_v6(ill_mtu_change, (char *)ill, 15913 ALL_ZONES, ipst); 15914 break; 15915 case DL_NOTE_LINK_UP: 15916 case DL_NOTE_LINK_DOWN: { 15917 /* 15918 * We are writer. ill / phyint / ipsq assocs stable. 15919 * The RUNNING flag reflects the state of the link. 15920 */ 15921 phyint_t *phyint = ill->ill_phyint; 15922 uint64_t new_phyint_flags; 15923 boolean_t changed = B_FALSE; 15924 boolean_t went_up; 15925 15926 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15927 mutex_enter(&phyint->phyint_lock); 15928 new_phyint_flags = went_up ? 15929 phyint->phyint_flags | PHYI_RUNNING : 15930 phyint->phyint_flags & ~PHYI_RUNNING; 15931 if (new_phyint_flags != phyint->phyint_flags) { 15932 phyint->phyint_flags = new_phyint_flags; 15933 changed = B_TRUE; 15934 } 15935 mutex_exit(&phyint->phyint_lock); 15936 /* 15937 * ill_restart_dad handles the DAD restart and routing 15938 * socket notification logic. 15939 */ 15940 if (changed) { 15941 ill_restart_dad(phyint->phyint_illv4, went_up); 15942 ill_restart_dad(phyint->phyint_illv6, went_up); 15943 } 15944 break; 15945 } 15946 case DL_NOTE_PROMISC_ON_PHYS: 15947 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15948 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15949 mutex_enter(&ill->ill_lock); 15950 ill->ill_promisc_on_phys = B_TRUE; 15951 mutex_exit(&ill->ill_lock); 15952 break; 15953 case DL_NOTE_PROMISC_OFF_PHYS: 15954 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15955 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15956 mutex_enter(&ill->ill_lock); 15957 ill->ill_promisc_on_phys = B_FALSE; 15958 mutex_exit(&ill->ill_lock); 15959 break; 15960 case DL_NOTE_CAPAB_RENEG: 15961 /* 15962 * Something changed on the driver side. 15963 * It wants us to renegotiate the capabilities 15964 * on this ill. One possible cause is the aggregation 15965 * interface under us where a port got added or 15966 * went away. 15967 * 15968 * If the capability negotiation is already done 15969 * or is in progress, reset the capabilities and 15970 * mark the ill's ill_capab_reneg to be B_TRUE, 15971 * so that when the ack comes back, we can start 15972 * the renegotiation process. 15973 * 15974 * Note that if ill_capab_reneg is already B_TRUE 15975 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 15976 * the capability resetting request has been sent 15977 * and the renegotiation has not been started yet; 15978 * nothing needs to be done in this case. 15979 */ 15980 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 15981 ill_capability_reset(ill); 15982 ill->ill_capab_reneg = B_TRUE; 15983 } 15984 break; 15985 default: 15986 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15987 "type 0x%x for DL_NOTIFY_IND\n", 15988 notify->dl_notification)); 15989 break; 15990 } 15991 15992 /* 15993 * As this is an asynchronous operation, we 15994 * should not call ill_dlpi_done 15995 */ 15996 break; 15997 } 15998 case DL_NOTIFY_ACK: { 15999 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16000 16001 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16002 ill->ill_note_link = 1; 16003 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16004 break; 16005 } 16006 case DL_PHYS_ADDR_ACK: { 16007 /* 16008 * As part of plumbing the interface via SIOCSLIFNAME, 16009 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16010 * whose answers we receive here. As each answer is received, 16011 * we call ill_dlpi_done() to dispatch the next request as 16012 * we're processing the current one. Once all answers have 16013 * been received, we use ipsq_pending_mp_get() to dequeue the 16014 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16015 * is invoked from an ill queue, conn_oper_pending_ill is not 16016 * available, but we know the ioctl is pending on ill_wq.) 16017 */ 16018 uint_t paddrlen, paddroff; 16019 16020 paddrreq = ill->ill_phys_addr_pend; 16021 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16022 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16023 16024 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16025 if (paddrreq == DL_IPV6_TOKEN) { 16026 /* 16027 * bcopy to low-order bits of ill_token 16028 * 16029 * XXX Temporary hack - currently, all known tokens 16030 * are 64 bits, so I'll cheat for the moment. 16031 */ 16032 bcopy(mp->b_rptr + paddroff, 16033 &ill->ill_token.s6_addr32[2], paddrlen); 16034 ill->ill_token_length = paddrlen; 16035 break; 16036 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16037 ASSERT(ill->ill_nd_lla_mp == NULL); 16038 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16039 mp = NULL; 16040 break; 16041 } 16042 16043 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16044 ASSERT(ill->ill_phys_addr_mp == NULL); 16045 if (!ill->ill_ifname_pending) 16046 break; 16047 ill->ill_ifname_pending = 0; 16048 if (!ioctl_aborted) 16049 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16050 if (mp1 != NULL) { 16051 ASSERT(connp == NULL); 16052 q = ill->ill_wq; 16053 } 16054 /* 16055 * If any error acks received during the plumbing sequence, 16056 * ill_ifname_pending_err will be set. Break out and send up 16057 * the error to the pending ioctl. 16058 */ 16059 if (ill->ill_ifname_pending_err != 0) { 16060 err = ill->ill_ifname_pending_err; 16061 ill->ill_ifname_pending_err = 0; 16062 break; 16063 } 16064 16065 ill->ill_phys_addr_mp = mp; 16066 ill->ill_phys_addr = mp->b_rptr + paddroff; 16067 mp = NULL; 16068 16069 /* 16070 * If paddrlen is zero, the DLPI provider doesn't support 16071 * physical addresses. The other two tests were historical 16072 * workarounds for bugs in our former PPP implementation, but 16073 * now other things have grown dependencies on them -- e.g., 16074 * the tun module specifies a dl_addr_length of zero in its 16075 * DL_BIND_ACK, but then specifies an incorrect value in its 16076 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16077 * but only after careful testing ensures that all dependent 16078 * broken DLPI providers have been fixed. 16079 */ 16080 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16081 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16082 ill->ill_phys_addr = NULL; 16083 } else if (paddrlen != ill->ill_phys_addr_length) { 16084 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16085 paddrlen, ill->ill_phys_addr_length)); 16086 err = EINVAL; 16087 break; 16088 } 16089 16090 if (ill->ill_nd_lla_mp == NULL) { 16091 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16092 err = ENOMEM; 16093 break; 16094 } 16095 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16096 } 16097 16098 /* 16099 * Set the interface token. If the zeroth interface address 16100 * is unspecified, then set it to the link local address. 16101 */ 16102 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16103 (void) ill_setdefaulttoken(ill); 16104 16105 ASSERT(ill->ill_ipif->ipif_id == 0); 16106 if (ipif != NULL && 16107 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16108 (void) ipif_setlinklocal(ipif); 16109 } 16110 break; 16111 } 16112 case DL_OK_ACK: 16113 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16114 dlpi_prim_str((int)dloa->dl_correct_primitive), 16115 dloa->dl_correct_primitive)); 16116 switch (dloa->dl_correct_primitive) { 16117 case DL_PROMISCON_REQ: 16118 case DL_PROMISCOFF_REQ: 16119 case DL_ENABMULTI_REQ: 16120 case DL_DISABMULTI_REQ: 16121 case DL_UNBIND_REQ: 16122 case DL_ATTACH_REQ: 16123 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16124 break; 16125 } 16126 break; 16127 default: 16128 break; 16129 } 16130 16131 freemsg(mp); 16132 if (mp1 != NULL) { 16133 /* 16134 * The operation must complete without EINPROGRESS 16135 * since ipsq_pending_mp_get() has removed the mblk 16136 * from ipsq_pending_mp. Otherwise, the operation 16137 * will be stuck forever in the ipsq. 16138 */ 16139 ASSERT(err != EINPROGRESS); 16140 16141 switch (ipsq->ipsq_current_ioctl) { 16142 case 0: 16143 ipsq_current_finish(ipsq); 16144 break; 16145 16146 case SIOCLIFADDIF: 16147 case SIOCSLIFNAME: 16148 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16149 break; 16150 16151 default: 16152 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16153 break; 16154 } 16155 } 16156 } 16157 16158 /* 16159 * ip_rput_other is called by ip_rput to handle messages modifying the global 16160 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16161 */ 16162 /* ARGSUSED */ 16163 void 16164 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16165 { 16166 ill_t *ill; 16167 struct iocblk *iocp; 16168 mblk_t *mp1; 16169 conn_t *connp = NULL; 16170 16171 ip1dbg(("ip_rput_other ")); 16172 ill = (ill_t *)q->q_ptr; 16173 /* 16174 * This routine is not a writer in the case of SIOCGTUNPARAM 16175 * in which case ipsq is NULL. 16176 */ 16177 if (ipsq != NULL) { 16178 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16179 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16180 } 16181 16182 switch (mp->b_datap->db_type) { 16183 case M_ERROR: 16184 case M_HANGUP: 16185 /* 16186 * The device has a problem. We force the ILL down. It can 16187 * be brought up again manually using SIOCSIFFLAGS (via 16188 * ifconfig or equivalent). 16189 */ 16190 ASSERT(ipsq != NULL); 16191 if (mp->b_rptr < mp->b_wptr) 16192 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16193 if (ill->ill_error == 0) 16194 ill->ill_error = ENXIO; 16195 if (!ill_down_start(q, mp)) 16196 return; 16197 ipif_all_down_tail(ipsq, q, mp, NULL); 16198 break; 16199 case M_IOCACK: 16200 iocp = (struct iocblk *)mp->b_rptr; 16201 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16202 switch (iocp->ioc_cmd) { 16203 case SIOCSTUNPARAM: 16204 case OSIOCSTUNPARAM: 16205 ASSERT(ipsq != NULL); 16206 /* 16207 * Finish socket ioctl passed through to tun. 16208 * We should have an IOCTL waiting on this. 16209 */ 16210 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16211 if (ill->ill_isv6) { 16212 struct iftun_req *ta; 16213 16214 /* 16215 * if a source or destination is 16216 * being set, try and set the link 16217 * local address for the tunnel 16218 */ 16219 ta = (struct iftun_req *)mp->b_cont-> 16220 b_cont->b_rptr; 16221 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16222 ipif_set_tun_llink(ill, ta); 16223 } 16224 16225 } 16226 if (mp1 != NULL) { 16227 /* 16228 * Now copy back the b_next/b_prev used by 16229 * mi code for the mi_copy* functions. 16230 * See ip_sioctl_tunparam() for the reason. 16231 * Also protect against missing b_cont. 16232 */ 16233 if (mp->b_cont != NULL) { 16234 mp->b_cont->b_next = 16235 mp1->b_cont->b_next; 16236 mp->b_cont->b_prev = 16237 mp1->b_cont->b_prev; 16238 } 16239 inet_freemsg(mp1); 16240 ASSERT(connp != NULL); 16241 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16242 iocp->ioc_error, NO_COPYOUT, ipsq); 16243 } else { 16244 ASSERT(connp == NULL); 16245 putnext(q, mp); 16246 } 16247 break; 16248 case SIOCGTUNPARAM: 16249 case OSIOCGTUNPARAM: 16250 /* 16251 * This is really M_IOCDATA from the tunnel driver. 16252 * convert back and complete the ioctl. 16253 * We should have an IOCTL waiting on this. 16254 */ 16255 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16256 if (mp1) { 16257 /* 16258 * Now copy back the b_next/b_prev used by 16259 * mi code for the mi_copy* functions. 16260 * See ip_sioctl_tunparam() for the reason. 16261 * Also protect against missing b_cont. 16262 */ 16263 if (mp->b_cont != NULL) { 16264 mp->b_cont->b_next = 16265 mp1->b_cont->b_next; 16266 mp->b_cont->b_prev = 16267 mp1->b_cont->b_prev; 16268 } 16269 inet_freemsg(mp1); 16270 if (iocp->ioc_error == 0) 16271 mp->b_datap->db_type = M_IOCDATA; 16272 ASSERT(connp != NULL); 16273 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16274 iocp->ioc_error, COPYOUT, NULL); 16275 } else { 16276 ASSERT(connp == NULL); 16277 putnext(q, mp); 16278 } 16279 break; 16280 default: 16281 break; 16282 } 16283 break; 16284 case M_IOCNAK: 16285 iocp = (struct iocblk *)mp->b_rptr; 16286 16287 switch (iocp->ioc_cmd) { 16288 int mode; 16289 16290 case DL_IOC_HDR_INFO: 16291 /* 16292 * If this was the first attempt turn of the 16293 * fastpath probing. 16294 */ 16295 mutex_enter(&ill->ill_lock); 16296 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16297 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16298 mutex_exit(&ill->ill_lock); 16299 ill_fastpath_nack(ill); 16300 ip1dbg(("ip_rput: DLPI fastpath off on " 16301 "interface %s\n", 16302 ill->ill_name)); 16303 } else { 16304 mutex_exit(&ill->ill_lock); 16305 } 16306 freemsg(mp); 16307 break; 16308 case SIOCSTUNPARAM: 16309 case OSIOCSTUNPARAM: 16310 ASSERT(ipsq != NULL); 16311 /* 16312 * Finish socket ioctl passed through to tun 16313 * We should have an IOCTL waiting on this. 16314 */ 16315 /* FALLTHRU */ 16316 case SIOCGTUNPARAM: 16317 case OSIOCGTUNPARAM: 16318 /* 16319 * This is really M_IOCDATA from the tunnel driver. 16320 * convert back and complete the ioctl. 16321 * We should have an IOCTL waiting on this. 16322 */ 16323 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16324 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16325 mp1 = ill_pending_mp_get(ill, &connp, 16326 iocp->ioc_id); 16327 mode = COPYOUT; 16328 ipsq = NULL; 16329 } else { 16330 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16331 mode = NO_COPYOUT; 16332 } 16333 if (mp1 != NULL) { 16334 /* 16335 * Now copy back the b_next/b_prev used by 16336 * mi code for the mi_copy* functions. 16337 * See ip_sioctl_tunparam() for the reason. 16338 * Also protect against missing b_cont. 16339 */ 16340 if (mp->b_cont != NULL) { 16341 mp->b_cont->b_next = 16342 mp1->b_cont->b_next; 16343 mp->b_cont->b_prev = 16344 mp1->b_cont->b_prev; 16345 } 16346 inet_freemsg(mp1); 16347 if (iocp->ioc_error == 0) 16348 iocp->ioc_error = EINVAL; 16349 ASSERT(connp != NULL); 16350 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16351 iocp->ioc_error, mode, ipsq); 16352 } else { 16353 ASSERT(connp == NULL); 16354 putnext(q, mp); 16355 } 16356 break; 16357 default: 16358 break; 16359 } 16360 default: 16361 break; 16362 } 16363 } 16364 16365 /* 16366 * NOTE : This function does not ire_refrele the ire argument passed in. 16367 * 16368 * IPQoS notes 16369 * IP policy is invoked twice for a forwarded packet, once on the read side 16370 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16371 * enabled. An additional parameter, in_ill, has been added for this purpose. 16372 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16373 * because ip_mroute drops this information. 16374 * 16375 */ 16376 void 16377 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16378 { 16379 uint32_t old_pkt_len; 16380 uint32_t pkt_len; 16381 queue_t *q; 16382 uint32_t sum; 16383 #define rptr ((uchar_t *)ipha) 16384 uint32_t max_frag; 16385 uint32_t ill_index; 16386 ill_t *out_ill; 16387 mib2_ipIfStatsEntry_t *mibptr; 16388 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16389 16390 /* Get the ill_index of the incoming ILL */ 16391 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16392 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16393 16394 /* Initiate Read side IPPF processing */ 16395 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16396 ip_process(IPP_FWD_IN, &mp, ill_index); 16397 if (mp == NULL) { 16398 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16399 "during IPPF processing\n")); 16400 return; 16401 } 16402 } 16403 16404 /* Adjust the checksum to reflect the ttl decrement. */ 16405 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16406 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16407 16408 if (ipha->ipha_ttl-- <= 1) { 16409 if (ip_csum_hdr(ipha)) { 16410 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16411 goto drop_pkt; 16412 } 16413 /* 16414 * Note: ire_stq this will be NULL for multicast 16415 * datagrams using the long path through arp (the IRE 16416 * is not an IRE_CACHE). This should not cause 16417 * problems since we don't generate ICMP errors for 16418 * multicast packets. 16419 */ 16420 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16421 q = ire->ire_stq; 16422 if (q != NULL) { 16423 /* Sent by forwarding path, and router is global zone */ 16424 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16425 GLOBAL_ZONEID, ipst); 16426 } else 16427 freemsg(mp); 16428 return; 16429 } 16430 16431 /* 16432 * Don't forward if the interface is down 16433 */ 16434 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16435 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16436 ip2dbg(("ip_rput_forward:interface is down\n")); 16437 goto drop_pkt; 16438 } 16439 16440 /* Get the ill_index of the outgoing ILL */ 16441 out_ill = ire_to_ill(ire); 16442 ill_index = out_ill->ill_phyint->phyint_ifindex; 16443 16444 DTRACE_PROBE4(ip4__forwarding__start, 16445 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16446 16447 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16448 ipst->ips_ipv4firewall_forwarding, 16449 in_ill, out_ill, ipha, mp, mp, ipst); 16450 16451 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16452 16453 if (mp == NULL) 16454 return; 16455 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16456 16457 if (is_system_labeled()) { 16458 mblk_t *mp1; 16459 16460 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16461 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16462 goto drop_pkt; 16463 } 16464 /* Size may have changed */ 16465 mp = mp1; 16466 ipha = (ipha_t *)mp->b_rptr; 16467 pkt_len = ntohs(ipha->ipha_length); 16468 } 16469 16470 /* Check if there are options to update */ 16471 if (!IS_SIMPLE_IPH(ipha)) { 16472 if (ip_csum_hdr(ipha)) { 16473 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16474 goto drop_pkt; 16475 } 16476 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16477 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16478 return; 16479 } 16480 16481 ipha->ipha_hdr_checksum = 0; 16482 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16483 } 16484 max_frag = ire->ire_max_frag; 16485 if (pkt_len > max_frag) { 16486 /* 16487 * It needs fragging on its way out. We haven't 16488 * verified the header checksum yet. Since we 16489 * are going to put a surely good checksum in the 16490 * outgoing header, we have to make sure that it 16491 * was good coming in. 16492 */ 16493 if (ip_csum_hdr(ipha)) { 16494 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16495 goto drop_pkt; 16496 } 16497 /* Initiate Write side IPPF processing */ 16498 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16499 ip_process(IPP_FWD_OUT, &mp, ill_index); 16500 if (mp == NULL) { 16501 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16502 " during IPPF processing\n")); 16503 return; 16504 } 16505 } 16506 /* 16507 * Handle labeled packet resizing. 16508 * 16509 * If we have added a label, inform ip_wput_frag() of its 16510 * effect on the MTU for ICMP messages. 16511 */ 16512 if (pkt_len > old_pkt_len) { 16513 uint32_t secopt_size; 16514 16515 secopt_size = pkt_len - old_pkt_len; 16516 if (secopt_size < max_frag) 16517 max_frag -= secopt_size; 16518 } 16519 16520 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16521 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16522 return; 16523 } 16524 16525 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16526 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16527 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16528 ipst->ips_ipv4firewall_physical_out, 16529 NULL, out_ill, ipha, mp, mp, ipst); 16530 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16531 if (mp == NULL) 16532 return; 16533 16534 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16535 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16536 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16537 /* ip_xmit_v4 always consumes the packet */ 16538 return; 16539 16540 drop_pkt:; 16541 ip1dbg(("ip_rput_forward: drop pkt\n")); 16542 freemsg(mp); 16543 #undef rptr 16544 } 16545 16546 void 16547 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16548 { 16549 ire_t *ire; 16550 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16551 16552 ASSERT(!ipif->ipif_isv6); 16553 /* 16554 * Find an IRE which matches the destination and the outgoing 16555 * queue in the cache table. All we need is an IRE_CACHE which 16556 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16557 * then it is enough to have some IRE_CACHE in the group. 16558 */ 16559 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16560 dst = ipif->ipif_pp_dst_addr; 16561 16562 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16563 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16564 if (ire == NULL) { 16565 /* 16566 * Mark this packet to make it be delivered to 16567 * ip_rput_forward after the new ire has been 16568 * created. 16569 */ 16570 mp->b_prev = NULL; 16571 mp->b_next = mp; 16572 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16573 NULL, 0, GLOBAL_ZONEID, &zero_info); 16574 } else { 16575 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16576 IRE_REFRELE(ire); 16577 } 16578 } 16579 16580 /* Update any source route, record route or timestamp options */ 16581 static int 16582 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16583 { 16584 ipoptp_t opts; 16585 uchar_t *opt; 16586 uint8_t optval; 16587 uint8_t optlen; 16588 ipaddr_t dst; 16589 uint32_t ts; 16590 ire_t *dst_ire = NULL; 16591 ire_t *tmp_ire = NULL; 16592 timestruc_t now; 16593 16594 ip2dbg(("ip_rput_forward_options\n")); 16595 dst = ipha->ipha_dst; 16596 for (optval = ipoptp_first(&opts, ipha); 16597 optval != IPOPT_EOL; 16598 optval = ipoptp_next(&opts)) { 16599 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16600 opt = opts.ipoptp_cur; 16601 optlen = opts.ipoptp_len; 16602 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16603 optval, opts.ipoptp_len)); 16604 switch (optval) { 16605 uint32_t off; 16606 case IPOPT_SSRR: 16607 case IPOPT_LSRR: 16608 /* Check if adminstratively disabled */ 16609 if (!ipst->ips_ip_forward_src_routed) { 16610 if (ire->ire_stq != NULL) { 16611 /* 16612 * Sent by forwarding path, and router 16613 * is global zone 16614 */ 16615 icmp_unreachable(ire->ire_stq, mp, 16616 ICMP_SOURCE_ROUTE_FAILED, 16617 GLOBAL_ZONEID, ipst); 16618 } else { 16619 ip0dbg(("ip_rput_forward_options: " 16620 "unable to send unreach\n")); 16621 freemsg(mp); 16622 } 16623 return (-1); 16624 } 16625 16626 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16627 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16628 if (dst_ire == NULL) { 16629 /* 16630 * Must be partial since ip_rput_options 16631 * checked for strict. 16632 */ 16633 break; 16634 } 16635 off = opt[IPOPT_OFFSET]; 16636 off--; 16637 redo_srr: 16638 if (optlen < IP_ADDR_LEN || 16639 off > optlen - IP_ADDR_LEN) { 16640 /* End of source route */ 16641 ip1dbg(( 16642 "ip_rput_forward_options: end of SR\n")); 16643 ire_refrele(dst_ire); 16644 break; 16645 } 16646 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16647 bcopy(&ire->ire_src_addr, (char *)opt + off, 16648 IP_ADDR_LEN); 16649 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16650 ntohl(dst))); 16651 16652 /* 16653 * Check if our address is present more than 16654 * once as consecutive hops in source route. 16655 */ 16656 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16657 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16658 if (tmp_ire != NULL) { 16659 ire_refrele(tmp_ire); 16660 off += IP_ADDR_LEN; 16661 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16662 goto redo_srr; 16663 } 16664 ipha->ipha_dst = dst; 16665 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16666 ire_refrele(dst_ire); 16667 break; 16668 case IPOPT_RR: 16669 off = opt[IPOPT_OFFSET]; 16670 off--; 16671 if (optlen < IP_ADDR_LEN || 16672 off > optlen - IP_ADDR_LEN) { 16673 /* No more room - ignore */ 16674 ip1dbg(( 16675 "ip_rput_forward_options: end of RR\n")); 16676 break; 16677 } 16678 bcopy(&ire->ire_src_addr, (char *)opt + off, 16679 IP_ADDR_LEN); 16680 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16681 break; 16682 case IPOPT_TS: 16683 /* Insert timestamp if there is room */ 16684 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16685 case IPOPT_TS_TSONLY: 16686 off = IPOPT_TS_TIMELEN; 16687 break; 16688 case IPOPT_TS_PRESPEC: 16689 case IPOPT_TS_PRESPEC_RFC791: 16690 /* Verify that the address matched */ 16691 off = opt[IPOPT_OFFSET] - 1; 16692 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16693 dst_ire = ire_ctable_lookup(dst, 0, 16694 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16695 MATCH_IRE_TYPE, ipst); 16696 if (dst_ire == NULL) { 16697 /* Not for us */ 16698 break; 16699 } 16700 ire_refrele(dst_ire); 16701 /* FALLTHRU */ 16702 case IPOPT_TS_TSANDADDR: 16703 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16704 break; 16705 default: 16706 /* 16707 * ip_*put_options should have already 16708 * dropped this packet. 16709 */ 16710 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16711 "unknown IT - bug in ip_rput_options?\n"); 16712 return (0); /* Keep "lint" happy */ 16713 } 16714 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16715 /* Increase overflow counter */ 16716 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16717 opt[IPOPT_POS_OV_FLG] = 16718 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16719 (off << 4)); 16720 break; 16721 } 16722 off = opt[IPOPT_OFFSET] - 1; 16723 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16724 case IPOPT_TS_PRESPEC: 16725 case IPOPT_TS_PRESPEC_RFC791: 16726 case IPOPT_TS_TSANDADDR: 16727 bcopy(&ire->ire_src_addr, 16728 (char *)opt + off, IP_ADDR_LEN); 16729 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16730 /* FALLTHRU */ 16731 case IPOPT_TS_TSONLY: 16732 off = opt[IPOPT_OFFSET] - 1; 16733 /* Compute # of milliseconds since midnight */ 16734 gethrestime(&now); 16735 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16736 now.tv_nsec / (NANOSEC / MILLISEC); 16737 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16738 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16739 break; 16740 } 16741 break; 16742 } 16743 } 16744 return (0); 16745 } 16746 16747 /* 16748 * This is called after processing at least one of AH/ESP headers. 16749 * 16750 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16751 * the actual, physical interface on which the packet was received, 16752 * but, when ip_strict_dst_multihoming is set to 1, could be the 16753 * interface which had the ipha_dst configured when the packet went 16754 * through ip_rput. The ill_index corresponding to the recv_ill 16755 * is saved in ipsec_in_rill_index 16756 * 16757 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16758 * cannot assume "ire" points to valid data for any IPv6 cases. 16759 */ 16760 void 16761 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16762 { 16763 mblk_t *mp; 16764 ipaddr_t dst; 16765 in6_addr_t *v6dstp; 16766 ipha_t *ipha; 16767 ip6_t *ip6h; 16768 ipsec_in_t *ii; 16769 boolean_t ill_need_rele = B_FALSE; 16770 boolean_t rill_need_rele = B_FALSE; 16771 boolean_t ire_need_rele = B_FALSE; 16772 netstack_t *ns; 16773 ip_stack_t *ipst; 16774 16775 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16776 ASSERT(ii->ipsec_in_ill_index != 0); 16777 ns = ii->ipsec_in_ns; 16778 ASSERT(ii->ipsec_in_ns != NULL); 16779 ipst = ns->netstack_ip; 16780 16781 mp = ipsec_mp->b_cont; 16782 ASSERT(mp != NULL); 16783 16784 16785 if (ill == NULL) { 16786 ASSERT(recv_ill == NULL); 16787 /* 16788 * We need to get the original queue on which ip_rput_local 16789 * or ip_rput_data_v6 was called. 16790 */ 16791 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16792 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16793 ill_need_rele = B_TRUE; 16794 16795 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16796 recv_ill = ill_lookup_on_ifindex( 16797 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16798 NULL, NULL, NULL, NULL, ipst); 16799 rill_need_rele = B_TRUE; 16800 } else { 16801 recv_ill = ill; 16802 } 16803 16804 if ((ill == NULL) || (recv_ill == NULL)) { 16805 ip0dbg(("ip_fanout_proto_again: interface " 16806 "disappeared\n")); 16807 if (ill != NULL) 16808 ill_refrele(ill); 16809 if (recv_ill != NULL) 16810 ill_refrele(recv_ill); 16811 freemsg(ipsec_mp); 16812 return; 16813 } 16814 } 16815 16816 ASSERT(ill != NULL && recv_ill != NULL); 16817 16818 if (mp->b_datap->db_type == M_CTL) { 16819 /* 16820 * AH/ESP is returning the ICMP message after 16821 * removing their headers. Fanout again till 16822 * it gets to the right protocol. 16823 */ 16824 if (ii->ipsec_in_v4) { 16825 icmph_t *icmph; 16826 int iph_hdr_length; 16827 int hdr_length; 16828 16829 ipha = (ipha_t *)mp->b_rptr; 16830 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16831 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16832 ipha = (ipha_t *)&icmph[1]; 16833 hdr_length = IPH_HDR_LENGTH(ipha); 16834 /* 16835 * icmp_inbound_error_fanout may need to do pullupmsg. 16836 * Reset the type to M_DATA. 16837 */ 16838 mp->b_datap->db_type = M_DATA; 16839 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16840 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16841 B_FALSE, ill, ii->ipsec_in_zoneid); 16842 } else { 16843 icmp6_t *icmp6; 16844 int hdr_length; 16845 16846 ip6h = (ip6_t *)mp->b_rptr; 16847 /* Don't call hdr_length_v6() unless you have to. */ 16848 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16849 hdr_length = ip_hdr_length_v6(mp, ip6h); 16850 else 16851 hdr_length = IPV6_HDR_LEN; 16852 16853 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16854 /* 16855 * icmp_inbound_error_fanout_v6 may need to do 16856 * pullupmsg. Reset the type to M_DATA. 16857 */ 16858 mp->b_datap->db_type = M_DATA; 16859 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16860 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16861 } 16862 if (ill_need_rele) 16863 ill_refrele(ill); 16864 if (rill_need_rele) 16865 ill_refrele(recv_ill); 16866 return; 16867 } 16868 16869 if (ii->ipsec_in_v4) { 16870 ipha = (ipha_t *)mp->b_rptr; 16871 dst = ipha->ipha_dst; 16872 if (CLASSD(dst)) { 16873 /* 16874 * Multicast has to be delivered to all streams. 16875 */ 16876 dst = INADDR_BROADCAST; 16877 } 16878 16879 if (ire == NULL) { 16880 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16881 MBLK_GETLABEL(mp), ipst); 16882 if (ire == NULL) { 16883 if (ill_need_rele) 16884 ill_refrele(ill); 16885 if (rill_need_rele) 16886 ill_refrele(recv_ill); 16887 ip1dbg(("ip_fanout_proto_again: " 16888 "IRE not found")); 16889 freemsg(ipsec_mp); 16890 return; 16891 } 16892 ire_need_rele = B_TRUE; 16893 } 16894 16895 switch (ipha->ipha_protocol) { 16896 case IPPROTO_UDP: 16897 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16898 recv_ill); 16899 if (ire_need_rele) 16900 ire_refrele(ire); 16901 break; 16902 case IPPROTO_TCP: 16903 if (!ire_need_rele) 16904 IRE_REFHOLD(ire); 16905 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16906 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16907 IRE_REFRELE(ire); 16908 if (mp != NULL) 16909 squeue_enter_chain(GET_SQUEUE(mp), mp, 16910 mp, 1, SQTAG_IP_PROTO_AGAIN); 16911 break; 16912 case IPPROTO_SCTP: 16913 if (!ire_need_rele) 16914 IRE_REFHOLD(ire); 16915 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16916 ipsec_mp, 0, ill->ill_rq, dst); 16917 break; 16918 default: 16919 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16920 recv_ill, B_FALSE); 16921 if (ire_need_rele) 16922 ire_refrele(ire); 16923 break; 16924 } 16925 } else { 16926 uint32_t rput_flags = 0; 16927 16928 ip6h = (ip6_t *)mp->b_rptr; 16929 v6dstp = &ip6h->ip6_dst; 16930 /* 16931 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16932 * address. 16933 * 16934 * Currently, we don't store that state in the IPSEC_IN 16935 * message, and we may need to. 16936 */ 16937 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16938 IP6_IN_LLMCAST : 0); 16939 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16940 NULL, NULL); 16941 } 16942 if (ill_need_rele) 16943 ill_refrele(ill); 16944 if (rill_need_rele) 16945 ill_refrele(recv_ill); 16946 } 16947 16948 /* 16949 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16950 * returns 'true' if there are still fragments left on the queue, in 16951 * which case we restart the timer. 16952 */ 16953 void 16954 ill_frag_timer(void *arg) 16955 { 16956 ill_t *ill = (ill_t *)arg; 16957 boolean_t frag_pending; 16958 ip_stack_t *ipst = ill->ill_ipst; 16959 16960 mutex_enter(&ill->ill_lock); 16961 ASSERT(!ill->ill_fragtimer_executing); 16962 if (ill->ill_state_flags & ILL_CONDEMNED) { 16963 ill->ill_frag_timer_id = 0; 16964 mutex_exit(&ill->ill_lock); 16965 return; 16966 } 16967 ill->ill_fragtimer_executing = 1; 16968 mutex_exit(&ill->ill_lock); 16969 16970 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16971 16972 /* 16973 * Restart the timer, if we have fragments pending or if someone 16974 * wanted us to be scheduled again. 16975 */ 16976 mutex_enter(&ill->ill_lock); 16977 ill->ill_fragtimer_executing = 0; 16978 ill->ill_frag_timer_id = 0; 16979 if (frag_pending || ill->ill_fragtimer_needrestart) 16980 ill_frag_timer_start(ill); 16981 mutex_exit(&ill->ill_lock); 16982 } 16983 16984 void 16985 ill_frag_timer_start(ill_t *ill) 16986 { 16987 ip_stack_t *ipst = ill->ill_ipst; 16988 16989 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16990 16991 /* If the ill is closing or opening don't proceed */ 16992 if (ill->ill_state_flags & ILL_CONDEMNED) 16993 return; 16994 16995 if (ill->ill_fragtimer_executing) { 16996 /* 16997 * ill_frag_timer is currently executing. Just record the 16998 * the fact that we want the timer to be restarted. 16999 * ill_frag_timer will post a timeout before it returns, 17000 * ensuring it will be called again. 17001 */ 17002 ill->ill_fragtimer_needrestart = 1; 17003 return; 17004 } 17005 17006 if (ill->ill_frag_timer_id == 0) { 17007 /* 17008 * The timer is neither running nor is the timeout handler 17009 * executing. Post a timeout so that ill_frag_timer will be 17010 * called 17011 */ 17012 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17013 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17014 ill->ill_fragtimer_needrestart = 0; 17015 } 17016 } 17017 17018 /* 17019 * This routine is needed for loopback when forwarding multicasts. 17020 * 17021 * IPQoS Notes: 17022 * IPPF processing is done in fanout routines. 17023 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17024 * processing for IPsec packets is done when it comes back in clear. 17025 * NOTE : The callers of this function need to do the ire_refrele for the 17026 * ire that is being passed in. 17027 */ 17028 void 17029 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17030 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17031 { 17032 ill_t *ill = (ill_t *)q->q_ptr; 17033 uint32_t sum; 17034 uint32_t u1; 17035 uint32_t u2; 17036 int hdr_length; 17037 boolean_t mctl_present; 17038 mblk_t *first_mp = mp; 17039 mblk_t *hada_mp = NULL; 17040 ipha_t *inner_ipha; 17041 ip_stack_t *ipst; 17042 17043 ASSERT(recv_ill != NULL); 17044 ipst = recv_ill->ill_ipst; 17045 17046 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17047 "ip_rput_locl_start: q %p", q); 17048 17049 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17050 ASSERT(ill != NULL); 17051 17052 17053 #define rptr ((uchar_t *)ipha) 17054 #define iphs ((uint16_t *)ipha) 17055 17056 /* 17057 * no UDP or TCP packet should come here anymore. 17058 */ 17059 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17060 ipha->ipha_protocol != IPPROTO_UDP); 17061 17062 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17063 if (mctl_present && 17064 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17065 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17066 17067 /* 17068 * It's an IPsec accelerated packet. 17069 * Keep a pointer to the data attributes around until 17070 * we allocate the ipsec_info_t. 17071 */ 17072 IPSECHW_DEBUG(IPSECHW_PKT, 17073 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17074 hada_mp = first_mp; 17075 hada_mp->b_cont = NULL; 17076 /* 17077 * Since it is accelerated, it comes directly from 17078 * the ill and the data attributes is followed by 17079 * the packet data. 17080 */ 17081 ASSERT(mp->b_datap->db_type != M_CTL); 17082 first_mp = mp; 17083 mctl_present = B_FALSE; 17084 } 17085 17086 /* 17087 * IF M_CTL is not present, then ipsec_in_is_secure 17088 * should return B_TRUE. There is a case where loopback 17089 * packets has an M_CTL in the front with all the 17090 * IPsec options set to IPSEC_PREF_NEVER - which means 17091 * ipsec_in_is_secure will return B_FALSE. As loopback 17092 * packets never comes here, it is safe to ASSERT the 17093 * following. 17094 */ 17095 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17096 17097 /* 17098 * Also, we should never have an mctl_present if this is an 17099 * ESP-in-UDP packet. 17100 */ 17101 ASSERT(!mctl_present || !esp_in_udp_packet); 17102 17103 17104 /* u1 is # words of IP options */ 17105 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17106 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17107 17108 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17109 if (u1) { 17110 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17111 if (hada_mp != NULL) 17112 freemsg(hada_mp); 17113 return; 17114 } 17115 } else { 17116 /* Check the IP header checksum. */ 17117 #define uph ((uint16_t *)ipha) 17118 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17119 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17120 #undef uph 17121 /* finish doing IP checksum */ 17122 sum = (sum & 0xFFFF) + (sum >> 16); 17123 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17124 if (sum && sum != 0xFFFF) { 17125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17126 goto drop_pkt; 17127 } 17128 } 17129 } 17130 17131 /* 17132 * Count for SNMP of inbound packets for ire. As ip_proto_input 17133 * might be called more than once for secure packets, count only 17134 * the first time. 17135 */ 17136 if (!mctl_present) { 17137 UPDATE_IB_PKT_COUNT(ire); 17138 ire->ire_last_used_time = lbolt; 17139 } 17140 17141 /* Check for fragmentation offset. */ 17142 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17143 u1 = u2 & (IPH_MF | IPH_OFFSET); 17144 if (u1) { 17145 /* 17146 * We re-assemble fragments before we do the AH/ESP 17147 * processing. Thus, M_CTL should not be present 17148 * while we are re-assembling. 17149 */ 17150 ASSERT(!mctl_present); 17151 ASSERT(first_mp == mp); 17152 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17153 return; 17154 } 17155 /* 17156 * Make sure that first_mp points back to mp as 17157 * the mp we came in with could have changed in 17158 * ip_rput_fragment(). 17159 */ 17160 ipha = (ipha_t *)mp->b_rptr; 17161 first_mp = mp; 17162 } 17163 17164 /* 17165 * Clear hardware checksumming flag as it is currently only 17166 * used by TCP and UDP. 17167 */ 17168 DB_CKSUMFLAGS(mp) = 0; 17169 17170 /* Now we have a complete datagram, destined for this machine. */ 17171 u1 = IPH_HDR_LENGTH(ipha); 17172 switch (ipha->ipha_protocol) { 17173 case IPPROTO_ICMP: { 17174 ire_t *ire_zone; 17175 ilm_t *ilm; 17176 mblk_t *mp1; 17177 zoneid_t last_zoneid; 17178 17179 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17180 ASSERT(ire->ire_type == IRE_BROADCAST); 17181 /* 17182 * In the multicast case, applications may have joined 17183 * the group from different zones, so we need to deliver 17184 * the packet to each of them. Loop through the 17185 * multicast memberships structures (ilm) on the receive 17186 * ill and send a copy of the packet up each matching 17187 * one. However, we don't do this for multicasts sent on 17188 * the loopback interface (PHYI_LOOPBACK flag set) as 17189 * they must stay in the sender's zone. 17190 * 17191 * ilm_add_v6() ensures that ilms in the same zone are 17192 * contiguous in the ill_ilm list. We use this property 17193 * to avoid sending duplicates needed when two 17194 * applications in the same zone join the same group on 17195 * different logical interfaces: we ignore the ilm if 17196 * its zoneid is the same as the last matching one. 17197 * In addition, the sending of the packet for 17198 * ire_zoneid is delayed until all of the other ilms 17199 * have been exhausted. 17200 */ 17201 last_zoneid = -1; 17202 ILM_WALKER_HOLD(recv_ill); 17203 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17204 ilm = ilm->ilm_next) { 17205 if ((ilm->ilm_flags & ILM_DELETED) || 17206 ipha->ipha_dst != ilm->ilm_addr || 17207 ilm->ilm_zoneid == last_zoneid || 17208 ilm->ilm_zoneid == ire->ire_zoneid || 17209 ilm->ilm_zoneid == ALL_ZONES || 17210 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17211 continue; 17212 mp1 = ip_copymsg(first_mp); 17213 if (mp1 == NULL) 17214 continue; 17215 icmp_inbound(q, mp1, B_TRUE, ill, 17216 0, sum, mctl_present, B_TRUE, 17217 recv_ill, ilm->ilm_zoneid); 17218 last_zoneid = ilm->ilm_zoneid; 17219 } 17220 ILM_WALKER_RELE(recv_ill); 17221 } else if (ire->ire_type == IRE_BROADCAST) { 17222 /* 17223 * In the broadcast case, there may be many zones 17224 * which need a copy of the packet delivered to them. 17225 * There is one IRE_BROADCAST per broadcast address 17226 * and per zone; we walk those using a helper function. 17227 * In addition, the sending of the packet for ire is 17228 * delayed until all of the other ires have been 17229 * processed. 17230 */ 17231 IRB_REFHOLD(ire->ire_bucket); 17232 ire_zone = NULL; 17233 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17234 ire)) != NULL) { 17235 mp1 = ip_copymsg(first_mp); 17236 if (mp1 == NULL) 17237 continue; 17238 17239 UPDATE_IB_PKT_COUNT(ire_zone); 17240 ire_zone->ire_last_used_time = lbolt; 17241 icmp_inbound(q, mp1, B_TRUE, ill, 17242 0, sum, mctl_present, B_TRUE, 17243 recv_ill, ire_zone->ire_zoneid); 17244 } 17245 IRB_REFRELE(ire->ire_bucket); 17246 } 17247 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17248 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17249 ire->ire_zoneid); 17250 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17251 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17252 return; 17253 } 17254 case IPPROTO_IGMP: 17255 /* 17256 * If we are not willing to accept IGMP packets in clear, 17257 * then check with global policy. 17258 */ 17259 if (ipst->ips_igmp_accept_clear_messages == 0) { 17260 first_mp = ipsec_check_global_policy(first_mp, NULL, 17261 ipha, NULL, mctl_present, ipst->ips_netstack); 17262 if (first_mp == NULL) 17263 return; 17264 } 17265 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17266 freemsg(first_mp); 17267 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17268 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17269 return; 17270 } 17271 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17272 /* Bad packet - discarded by igmp_input */ 17273 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17274 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17275 if (mctl_present) 17276 freeb(first_mp); 17277 return; 17278 } 17279 /* 17280 * igmp_input() may have returned the pulled up message. 17281 * So first_mp and ipha need to be reinitialized. 17282 */ 17283 ipha = (ipha_t *)mp->b_rptr; 17284 if (mctl_present) 17285 first_mp->b_cont = mp; 17286 else 17287 first_mp = mp; 17288 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17289 connf_head != NULL) { 17290 /* No user-level listener for IGMP packets */ 17291 goto drop_pkt; 17292 } 17293 /* deliver to local raw users */ 17294 break; 17295 case IPPROTO_PIM: 17296 /* 17297 * If we are not willing to accept PIM packets in clear, 17298 * then check with global policy. 17299 */ 17300 if (ipst->ips_pim_accept_clear_messages == 0) { 17301 first_mp = ipsec_check_global_policy(first_mp, NULL, 17302 ipha, NULL, mctl_present, ipst->ips_netstack); 17303 if (first_mp == NULL) 17304 return; 17305 } 17306 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17307 freemsg(first_mp); 17308 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17310 return; 17311 } 17312 if (pim_input(q, mp, ill) != 0) { 17313 /* Bad packet - discarded by pim_input */ 17314 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17315 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17316 if (mctl_present) 17317 freeb(first_mp); 17318 return; 17319 } 17320 17321 /* 17322 * pim_input() may have pulled up the message so ipha needs to 17323 * be reinitialized. 17324 */ 17325 ipha = (ipha_t *)mp->b_rptr; 17326 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17327 connf_head != NULL) { 17328 /* No user-level listener for PIM packets */ 17329 goto drop_pkt; 17330 } 17331 /* deliver to local raw users */ 17332 break; 17333 case IPPROTO_ENCAP: 17334 /* 17335 * Handle self-encapsulated packets (IP-in-IP where 17336 * the inner addresses == the outer addresses). 17337 */ 17338 hdr_length = IPH_HDR_LENGTH(ipha); 17339 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17340 mp->b_wptr) { 17341 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17342 sizeof (ipha_t) - mp->b_rptr)) { 17343 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17344 freemsg(first_mp); 17345 return; 17346 } 17347 ipha = (ipha_t *)mp->b_rptr; 17348 } 17349 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17350 /* 17351 * Check the sanity of the inner IP header. 17352 */ 17353 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17354 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17355 freemsg(first_mp); 17356 return; 17357 } 17358 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17359 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17360 freemsg(first_mp); 17361 return; 17362 } 17363 if (inner_ipha->ipha_src == ipha->ipha_src && 17364 inner_ipha->ipha_dst == ipha->ipha_dst) { 17365 ipsec_in_t *ii; 17366 17367 /* 17368 * Self-encapsulated tunnel packet. Remove 17369 * the outer IP header and fanout again. 17370 * We also need to make sure that the inner 17371 * header is pulled up until options. 17372 */ 17373 mp->b_rptr = (uchar_t *)inner_ipha; 17374 ipha = inner_ipha; 17375 hdr_length = IPH_HDR_LENGTH(ipha); 17376 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17377 if (!pullupmsg(mp, (uchar_t *)ipha + 17378 + hdr_length - mp->b_rptr)) { 17379 freemsg(first_mp); 17380 return; 17381 } 17382 ipha = (ipha_t *)mp->b_rptr; 17383 } 17384 if (!mctl_present) { 17385 ASSERT(first_mp == mp); 17386 /* 17387 * This means that somebody is sending 17388 * Self-encapsualted packets without AH/ESP. 17389 * If AH/ESP was present, we would have already 17390 * allocated the first_mp. 17391 */ 17392 first_mp = ipsec_in_alloc(B_TRUE, 17393 ipst->ips_netstack); 17394 if (first_mp == NULL) { 17395 ip1dbg(("ip_proto_input: IPSEC_IN " 17396 "allocation failure.\n")); 17397 BUMP_MIB(ill->ill_ip_mib, 17398 ipIfStatsInDiscards); 17399 freemsg(mp); 17400 return; 17401 } 17402 first_mp->b_cont = mp; 17403 } 17404 /* 17405 * We generally store the ill_index if we need to 17406 * do IPsec processing as we lose the ill queue when 17407 * we come back. But in this case, we never should 17408 * have to store the ill_index here as it should have 17409 * been stored previously when we processed the 17410 * AH/ESP header in this routine or for non-ipsec 17411 * cases, we still have the queue. But for some bad 17412 * packets from the wire, we can get to IPsec after 17413 * this and we better store the index for that case. 17414 */ 17415 ill = (ill_t *)q->q_ptr; 17416 ii = (ipsec_in_t *)first_mp->b_rptr; 17417 ii->ipsec_in_ill_index = 17418 ill->ill_phyint->phyint_ifindex; 17419 ii->ipsec_in_rill_index = 17420 recv_ill->ill_phyint->phyint_ifindex; 17421 if (ii->ipsec_in_decaps) { 17422 /* 17423 * This packet is self-encapsulated multiple 17424 * times. We don't want to recurse infinitely. 17425 * To keep it simple, drop the packet. 17426 */ 17427 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17428 freemsg(first_mp); 17429 return; 17430 } 17431 ii->ipsec_in_decaps = B_TRUE; 17432 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17433 ire); 17434 return; 17435 } 17436 break; 17437 case IPPROTO_AH: 17438 case IPPROTO_ESP: { 17439 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17440 17441 /* 17442 * Fast path for AH/ESP. If this is the first time 17443 * we are sending a datagram to AH/ESP, allocate 17444 * a IPSEC_IN message and prepend it. Otherwise, 17445 * just fanout. 17446 */ 17447 17448 int ipsec_rc; 17449 ipsec_in_t *ii; 17450 netstack_t *ns = ipst->ips_netstack; 17451 17452 IP_STAT(ipst, ipsec_proto_ahesp); 17453 if (!mctl_present) { 17454 ASSERT(first_mp == mp); 17455 first_mp = ipsec_in_alloc(B_TRUE, ns); 17456 if (first_mp == NULL) { 17457 ip1dbg(("ip_proto_input: IPSEC_IN " 17458 "allocation failure.\n")); 17459 freemsg(hada_mp); /* okay ifnull */ 17460 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17461 freemsg(mp); 17462 return; 17463 } 17464 /* 17465 * Store the ill_index so that when we come back 17466 * from IPsec we ride on the same queue. 17467 */ 17468 ill = (ill_t *)q->q_ptr; 17469 ii = (ipsec_in_t *)first_mp->b_rptr; 17470 ii->ipsec_in_ill_index = 17471 ill->ill_phyint->phyint_ifindex; 17472 ii->ipsec_in_rill_index = 17473 recv_ill->ill_phyint->phyint_ifindex; 17474 first_mp->b_cont = mp; 17475 /* 17476 * Cache hardware acceleration info. 17477 */ 17478 if (hada_mp != NULL) { 17479 IPSECHW_DEBUG(IPSECHW_PKT, 17480 ("ip_rput_local: caching data attr.\n")); 17481 ii->ipsec_in_accelerated = B_TRUE; 17482 ii->ipsec_in_da = hada_mp; 17483 hada_mp = NULL; 17484 } 17485 } else { 17486 ii = (ipsec_in_t *)first_mp->b_rptr; 17487 } 17488 17489 if (!ipsec_loaded(ipss)) { 17490 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17491 ire->ire_zoneid, ipst); 17492 return; 17493 } 17494 17495 ns = ipst->ips_netstack; 17496 /* select inbound SA and have IPsec process the pkt */ 17497 if (ipha->ipha_protocol == IPPROTO_ESP) { 17498 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17499 boolean_t esp_in_udp_sa; 17500 if (esph == NULL) 17501 return; 17502 ASSERT(ii->ipsec_in_esp_sa != NULL); 17503 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17504 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17505 IPSA_F_NATT) != 0); 17506 /* 17507 * The following is a fancy, but quick, way of saying: 17508 * ESP-in-UDP SA and Raw ESP packet --> drop 17509 * OR 17510 * ESP SA and ESP-in-UDP packet --> drop 17511 */ 17512 if (esp_in_udp_sa != esp_in_udp_packet) { 17513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17514 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17515 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17516 &ns->netstack_ipsec->ipsec_dropper); 17517 return; 17518 } 17519 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17520 first_mp, esph); 17521 } else { 17522 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17523 if (ah == NULL) 17524 return; 17525 ASSERT(ii->ipsec_in_ah_sa != NULL); 17526 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17527 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17528 first_mp, ah); 17529 } 17530 17531 switch (ipsec_rc) { 17532 case IPSEC_STATUS_SUCCESS: 17533 break; 17534 case IPSEC_STATUS_FAILED: 17535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17536 /* FALLTHRU */ 17537 case IPSEC_STATUS_PENDING: 17538 return; 17539 } 17540 /* we're done with IPsec processing, send it up */ 17541 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17542 return; 17543 } 17544 default: 17545 break; 17546 } 17547 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17548 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17549 ire->ire_zoneid)); 17550 goto drop_pkt; 17551 } 17552 /* 17553 * Handle protocols with which IP is less intimate. There 17554 * can be more than one stream bound to a particular 17555 * protocol. When this is the case, each one gets a copy 17556 * of any incoming packets. 17557 */ 17558 ip_fanout_proto(q, first_mp, ill, ipha, 17559 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17560 B_TRUE, recv_ill, ire->ire_zoneid); 17561 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17562 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17563 return; 17564 17565 drop_pkt: 17566 freemsg(first_mp); 17567 if (hada_mp != NULL) 17568 freeb(hada_mp); 17569 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17570 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17571 #undef rptr 17572 #undef iphs 17573 17574 } 17575 17576 /* 17577 * Update any source route, record route or timestamp options. 17578 * Check that we are at end of strict source route. 17579 * The options have already been checked for sanity in ip_rput_options(). 17580 */ 17581 static boolean_t 17582 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17583 ip_stack_t *ipst) 17584 { 17585 ipoptp_t opts; 17586 uchar_t *opt; 17587 uint8_t optval; 17588 uint8_t optlen; 17589 ipaddr_t dst; 17590 uint32_t ts; 17591 ire_t *dst_ire; 17592 timestruc_t now; 17593 zoneid_t zoneid; 17594 ill_t *ill; 17595 17596 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17597 17598 ip2dbg(("ip_rput_local_options\n")); 17599 17600 for (optval = ipoptp_first(&opts, ipha); 17601 optval != IPOPT_EOL; 17602 optval = ipoptp_next(&opts)) { 17603 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17604 opt = opts.ipoptp_cur; 17605 optlen = opts.ipoptp_len; 17606 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17607 optval, optlen)); 17608 switch (optval) { 17609 uint32_t off; 17610 case IPOPT_SSRR: 17611 case IPOPT_LSRR: 17612 off = opt[IPOPT_OFFSET]; 17613 off--; 17614 if (optlen < IP_ADDR_LEN || 17615 off > optlen - IP_ADDR_LEN) { 17616 /* End of source route */ 17617 ip1dbg(("ip_rput_local_options: end of SR\n")); 17618 break; 17619 } 17620 /* 17621 * This will only happen if two consecutive entries 17622 * in the source route contains our address or if 17623 * it is a packet with a loose source route which 17624 * reaches us before consuming the whole source route 17625 */ 17626 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17627 if (optval == IPOPT_SSRR) { 17628 goto bad_src_route; 17629 } 17630 /* 17631 * Hack: instead of dropping the packet truncate the 17632 * source route to what has been used by filling the 17633 * rest with IPOPT_NOP. 17634 */ 17635 opt[IPOPT_OLEN] = (uint8_t)off; 17636 while (off < optlen) { 17637 opt[off++] = IPOPT_NOP; 17638 } 17639 break; 17640 case IPOPT_RR: 17641 off = opt[IPOPT_OFFSET]; 17642 off--; 17643 if (optlen < IP_ADDR_LEN || 17644 off > optlen - IP_ADDR_LEN) { 17645 /* No more room - ignore */ 17646 ip1dbg(( 17647 "ip_rput_local_options: end of RR\n")); 17648 break; 17649 } 17650 bcopy(&ire->ire_src_addr, (char *)opt + off, 17651 IP_ADDR_LEN); 17652 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17653 break; 17654 case IPOPT_TS: 17655 /* Insert timestamp if there is romm */ 17656 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17657 case IPOPT_TS_TSONLY: 17658 off = IPOPT_TS_TIMELEN; 17659 break; 17660 case IPOPT_TS_PRESPEC: 17661 case IPOPT_TS_PRESPEC_RFC791: 17662 /* Verify that the address matched */ 17663 off = opt[IPOPT_OFFSET] - 1; 17664 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17665 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17666 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17667 ipst); 17668 if (dst_ire == NULL) { 17669 /* Not for us */ 17670 break; 17671 } 17672 ire_refrele(dst_ire); 17673 /* FALLTHRU */ 17674 case IPOPT_TS_TSANDADDR: 17675 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17676 break; 17677 default: 17678 /* 17679 * ip_*put_options should have already 17680 * dropped this packet. 17681 */ 17682 cmn_err(CE_PANIC, "ip_rput_local_options: " 17683 "unknown IT - bug in ip_rput_options?\n"); 17684 return (B_TRUE); /* Keep "lint" happy */ 17685 } 17686 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17687 /* Increase overflow counter */ 17688 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17689 opt[IPOPT_POS_OV_FLG] = 17690 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17691 (off << 4)); 17692 break; 17693 } 17694 off = opt[IPOPT_OFFSET] - 1; 17695 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17696 case IPOPT_TS_PRESPEC: 17697 case IPOPT_TS_PRESPEC_RFC791: 17698 case IPOPT_TS_TSANDADDR: 17699 bcopy(&ire->ire_src_addr, (char *)opt + off, 17700 IP_ADDR_LEN); 17701 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17702 /* FALLTHRU */ 17703 case IPOPT_TS_TSONLY: 17704 off = opt[IPOPT_OFFSET] - 1; 17705 /* Compute # of milliseconds since midnight */ 17706 gethrestime(&now); 17707 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17708 now.tv_nsec / (NANOSEC / MILLISEC); 17709 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17710 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17711 break; 17712 } 17713 break; 17714 } 17715 } 17716 return (B_TRUE); 17717 17718 bad_src_route: 17719 q = WR(q); 17720 if (q->q_next != NULL) 17721 ill = q->q_ptr; 17722 else 17723 ill = NULL; 17724 17725 /* make sure we clear any indication of a hardware checksum */ 17726 DB_CKSUMFLAGS(mp) = 0; 17727 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17728 if (zoneid == ALL_ZONES) 17729 freemsg(mp); 17730 else 17731 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17732 return (B_FALSE); 17733 17734 } 17735 17736 /* 17737 * Process IP options in an inbound packet. If an option affects the 17738 * effective destination address, return the next hop address via dstp. 17739 * Returns -1 if something fails in which case an ICMP error has been sent 17740 * and mp freed. 17741 */ 17742 static int 17743 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17744 ip_stack_t *ipst) 17745 { 17746 ipoptp_t opts; 17747 uchar_t *opt; 17748 uint8_t optval; 17749 uint8_t optlen; 17750 ipaddr_t dst; 17751 intptr_t code = 0; 17752 ire_t *ire = NULL; 17753 zoneid_t zoneid; 17754 ill_t *ill; 17755 17756 ip2dbg(("ip_rput_options\n")); 17757 dst = ipha->ipha_dst; 17758 for (optval = ipoptp_first(&opts, ipha); 17759 optval != IPOPT_EOL; 17760 optval = ipoptp_next(&opts)) { 17761 opt = opts.ipoptp_cur; 17762 optlen = opts.ipoptp_len; 17763 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17764 optval, optlen)); 17765 /* 17766 * Note: we need to verify the checksum before we 17767 * modify anything thus this routine only extracts the next 17768 * hop dst from any source route. 17769 */ 17770 switch (optval) { 17771 uint32_t off; 17772 case IPOPT_SSRR: 17773 case IPOPT_LSRR: 17774 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17775 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17776 if (ire == NULL) { 17777 if (optval == IPOPT_SSRR) { 17778 ip1dbg(("ip_rput_options: not next" 17779 " strict source route 0x%x\n", 17780 ntohl(dst))); 17781 code = (char *)&ipha->ipha_dst - 17782 (char *)ipha; 17783 goto param_prob; /* RouterReq's */ 17784 } 17785 ip2dbg(("ip_rput_options: " 17786 "not next source route 0x%x\n", 17787 ntohl(dst))); 17788 break; 17789 } 17790 ire_refrele(ire); 17791 17792 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17793 ip1dbg(( 17794 "ip_rput_options: bad option offset\n")); 17795 code = (char *)&opt[IPOPT_OLEN] - 17796 (char *)ipha; 17797 goto param_prob; 17798 } 17799 off = opt[IPOPT_OFFSET]; 17800 off--; 17801 redo_srr: 17802 if (optlen < IP_ADDR_LEN || 17803 off > optlen - IP_ADDR_LEN) { 17804 /* End of source route */ 17805 ip1dbg(("ip_rput_options: end of SR\n")); 17806 break; 17807 } 17808 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17809 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17810 ntohl(dst))); 17811 17812 /* 17813 * Check if our address is present more than 17814 * once as consecutive hops in source route. 17815 * XXX verify per-interface ip_forwarding 17816 * for source route? 17817 */ 17818 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17819 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17820 17821 if (ire != NULL) { 17822 ire_refrele(ire); 17823 off += IP_ADDR_LEN; 17824 goto redo_srr; 17825 } 17826 17827 if (dst == htonl(INADDR_LOOPBACK)) { 17828 ip1dbg(("ip_rput_options: loopback addr in " 17829 "source route!\n")); 17830 goto bad_src_route; 17831 } 17832 /* 17833 * For strict: verify that dst is directly 17834 * reachable. 17835 */ 17836 if (optval == IPOPT_SSRR) { 17837 ire = ire_ftable_lookup(dst, 0, 0, 17838 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17839 MBLK_GETLABEL(mp), 17840 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17841 if (ire == NULL) { 17842 ip1dbg(("ip_rput_options: SSRR not " 17843 "directly reachable: 0x%x\n", 17844 ntohl(dst))); 17845 goto bad_src_route; 17846 } 17847 ire_refrele(ire); 17848 } 17849 /* 17850 * Defer update of the offset and the record route 17851 * until the packet is forwarded. 17852 */ 17853 break; 17854 case IPOPT_RR: 17855 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17856 ip1dbg(( 17857 "ip_rput_options: bad option offset\n")); 17858 code = (char *)&opt[IPOPT_OLEN] - 17859 (char *)ipha; 17860 goto param_prob; 17861 } 17862 break; 17863 case IPOPT_TS: 17864 /* 17865 * Verify that length >= 5 and that there is either 17866 * room for another timestamp or that the overflow 17867 * counter is not maxed out. 17868 */ 17869 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17870 if (optlen < IPOPT_MINLEN_IT) { 17871 goto param_prob; 17872 } 17873 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17874 ip1dbg(( 17875 "ip_rput_options: bad option offset\n")); 17876 code = (char *)&opt[IPOPT_OFFSET] - 17877 (char *)ipha; 17878 goto param_prob; 17879 } 17880 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17881 case IPOPT_TS_TSONLY: 17882 off = IPOPT_TS_TIMELEN; 17883 break; 17884 case IPOPT_TS_TSANDADDR: 17885 case IPOPT_TS_PRESPEC: 17886 case IPOPT_TS_PRESPEC_RFC791: 17887 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17888 break; 17889 default: 17890 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17891 (char *)ipha; 17892 goto param_prob; 17893 } 17894 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17895 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17896 /* 17897 * No room and the overflow counter is 15 17898 * already. 17899 */ 17900 goto param_prob; 17901 } 17902 break; 17903 } 17904 } 17905 17906 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17907 *dstp = dst; 17908 return (0); 17909 } 17910 17911 ip1dbg(("ip_rput_options: error processing IP options.")); 17912 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17913 17914 param_prob: 17915 q = WR(q); 17916 if (q->q_next != NULL) 17917 ill = q->q_ptr; 17918 else 17919 ill = NULL; 17920 17921 /* make sure we clear any indication of a hardware checksum */ 17922 DB_CKSUMFLAGS(mp) = 0; 17923 /* Don't know whether this is for non-global or global/forwarding */ 17924 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17925 if (zoneid == ALL_ZONES) 17926 freemsg(mp); 17927 else 17928 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17929 return (-1); 17930 17931 bad_src_route: 17932 q = WR(q); 17933 if (q->q_next != NULL) 17934 ill = q->q_ptr; 17935 else 17936 ill = NULL; 17937 17938 /* make sure we clear any indication of a hardware checksum */ 17939 DB_CKSUMFLAGS(mp) = 0; 17940 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17941 if (zoneid == ALL_ZONES) 17942 freemsg(mp); 17943 else 17944 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17945 return (-1); 17946 } 17947 17948 /* 17949 * IP & ICMP info in >=14 msg's ... 17950 * - ip fixed part (mib2_ip_t) 17951 * - icmp fixed part (mib2_icmp_t) 17952 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17953 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17954 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17955 * - ipRouteAttributeTable (ip 102) labeled routes 17956 * - ip multicast membership (ip_member_t) 17957 * - ip multicast source filtering (ip_grpsrc_t) 17958 * - igmp fixed part (struct igmpstat) 17959 * - multicast routing stats (struct mrtstat) 17960 * - multicast routing vifs (array of struct vifctl) 17961 * - multicast routing routes (array of struct mfcctl) 17962 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17963 * One per ill plus one generic 17964 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17965 * One per ill plus one generic 17966 * - ipv6RouteEntry all IPv6 IREs 17967 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17968 * - ipv6NetToMediaEntry all Neighbor Cache entries 17969 * - ipv6AddrEntry all IPv6 ipifs 17970 * - ipv6 multicast membership (ipv6_member_t) 17971 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17972 * 17973 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17974 * 17975 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17976 * already filled in by the caller. 17977 * Return value of 0 indicates that no messages were sent and caller 17978 * should free mpctl. 17979 */ 17980 int 17981 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 17982 { 17983 ip_stack_t *ipst; 17984 sctp_stack_t *sctps; 17985 17986 if (q->q_next != NULL) { 17987 ipst = ILLQ_TO_IPST(q); 17988 } else { 17989 ipst = CONNQ_TO_IPST(q); 17990 } 17991 ASSERT(ipst != NULL); 17992 sctps = ipst->ips_netstack->netstack_sctp; 17993 17994 if (mpctl == NULL || mpctl->b_cont == NULL) { 17995 return (0); 17996 } 17997 17998 /* 17999 * For the purposes of the (broken) packet shell use 18000 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18001 * to make TCP and UDP appear first in the list of mib items. 18002 * TBD: We could expand this and use it in netstat so that 18003 * the kernel doesn't have to produce large tables (connections, 18004 * routes, etc) when netstat only wants the statistics or a particular 18005 * table. 18006 */ 18007 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18008 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18009 return (1); 18010 } 18011 } 18012 18013 if (level != MIB2_TCP) { 18014 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18015 return (1); 18016 } 18017 } 18018 18019 if (level != MIB2_UDP) { 18020 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18021 return (1); 18022 } 18023 } 18024 18025 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18026 ipst)) == NULL) { 18027 return (1); 18028 } 18029 18030 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18031 return (1); 18032 } 18033 18034 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18035 return (1); 18036 } 18037 18038 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18039 return (1); 18040 } 18041 18042 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18043 return (1); 18044 } 18045 18046 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18047 return (1); 18048 } 18049 18050 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18051 return (1); 18052 } 18053 18054 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18055 return (1); 18056 } 18057 18058 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18059 return (1); 18060 } 18061 18062 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18063 return (1); 18064 } 18065 18066 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18067 return (1); 18068 } 18069 18070 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18071 return (1); 18072 } 18073 18074 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18075 return (1); 18076 } 18077 18078 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18079 return (1); 18080 } 18081 18082 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18083 return (1); 18084 } 18085 18086 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18087 if (mpctl == NULL) { 18088 return (1); 18089 } 18090 18091 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18092 return (1); 18093 } 18094 freemsg(mpctl); 18095 return (1); 18096 } 18097 18098 18099 /* Get global (legacy) IPv4 statistics */ 18100 static mblk_t * 18101 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18102 ip_stack_t *ipst) 18103 { 18104 mib2_ip_t old_ip_mib; 18105 struct opthdr *optp; 18106 mblk_t *mp2ctl; 18107 18108 /* 18109 * make a copy of the original message 18110 */ 18111 mp2ctl = copymsg(mpctl); 18112 18113 /* fixed length IP structure... */ 18114 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18115 optp->level = MIB2_IP; 18116 optp->name = 0; 18117 SET_MIB(old_ip_mib.ipForwarding, 18118 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18119 SET_MIB(old_ip_mib.ipDefaultTTL, 18120 (uint32_t)ipst->ips_ip_def_ttl); 18121 SET_MIB(old_ip_mib.ipReasmTimeout, 18122 ipst->ips_ip_g_frag_timeout); 18123 SET_MIB(old_ip_mib.ipAddrEntrySize, 18124 sizeof (mib2_ipAddrEntry_t)); 18125 SET_MIB(old_ip_mib.ipRouteEntrySize, 18126 sizeof (mib2_ipRouteEntry_t)); 18127 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18128 sizeof (mib2_ipNetToMediaEntry_t)); 18129 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18130 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18131 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18132 sizeof (mib2_ipAttributeEntry_t)); 18133 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18134 18135 /* 18136 * Grab the statistics from the new IP MIB 18137 */ 18138 SET_MIB(old_ip_mib.ipInReceives, 18139 (uint32_t)ipmib->ipIfStatsHCInReceives); 18140 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18141 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18142 SET_MIB(old_ip_mib.ipForwDatagrams, 18143 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18144 SET_MIB(old_ip_mib.ipInUnknownProtos, 18145 ipmib->ipIfStatsInUnknownProtos); 18146 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18147 SET_MIB(old_ip_mib.ipInDelivers, 18148 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18149 SET_MIB(old_ip_mib.ipOutRequests, 18150 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18151 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18152 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18153 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18154 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18155 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18156 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18157 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18158 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18159 18160 /* ipRoutingDiscards is not being used */ 18161 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18162 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18163 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18164 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18165 SET_MIB(old_ip_mib.ipReasmDuplicates, 18166 ipmib->ipIfStatsReasmDuplicates); 18167 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18168 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18169 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18170 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18171 SET_MIB(old_ip_mib.rawipInOverflows, 18172 ipmib->rawipIfStatsInOverflows); 18173 18174 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18175 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18176 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18177 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18178 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18179 ipmib->ipIfStatsOutSwitchIPVersion); 18180 18181 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18182 (int)sizeof (old_ip_mib))) { 18183 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18184 (uint_t)sizeof (old_ip_mib))); 18185 } 18186 18187 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18188 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18189 (int)optp->level, (int)optp->name, (int)optp->len)); 18190 qreply(q, mpctl); 18191 return (mp2ctl); 18192 } 18193 18194 /* Per interface IPv4 statistics */ 18195 static mblk_t * 18196 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18197 { 18198 struct opthdr *optp; 18199 mblk_t *mp2ctl; 18200 ill_t *ill; 18201 ill_walk_context_t ctx; 18202 mblk_t *mp_tail = NULL; 18203 mib2_ipIfStatsEntry_t global_ip_mib; 18204 18205 /* 18206 * Make a copy of the original message 18207 */ 18208 mp2ctl = copymsg(mpctl); 18209 18210 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18211 optp->level = MIB2_IP; 18212 optp->name = MIB2_IP_TRAFFIC_STATS; 18213 /* Include "unknown interface" ip_mib */ 18214 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18215 ipst->ips_ip_mib.ipIfStatsIfIndex = 18216 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18217 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18218 (ipst->ips_ip_g_forward ? 1 : 2)); 18219 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18220 (uint32_t)ipst->ips_ip_def_ttl); 18221 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18222 sizeof (mib2_ipIfStatsEntry_t)); 18223 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18224 sizeof (mib2_ipAddrEntry_t)); 18225 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18226 sizeof (mib2_ipRouteEntry_t)); 18227 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18228 sizeof (mib2_ipNetToMediaEntry_t)); 18229 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18230 sizeof (ip_member_t)); 18231 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18232 sizeof (ip_grpsrc_t)); 18233 18234 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18235 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18236 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18237 "failed to allocate %u bytes\n", 18238 (uint_t)sizeof (ipst->ips_ip_mib))); 18239 } 18240 18241 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18242 18243 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18244 ill = ILL_START_WALK_V4(&ctx, ipst); 18245 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18246 ill->ill_ip_mib->ipIfStatsIfIndex = 18247 ill->ill_phyint->phyint_ifindex; 18248 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18249 (ipst->ips_ip_g_forward ? 1 : 2)); 18250 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18251 (uint32_t)ipst->ips_ip_def_ttl); 18252 18253 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18254 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18255 (char *)ill->ill_ip_mib, 18256 (int)sizeof (*ill->ill_ip_mib))) { 18257 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18258 "failed to allocate %u bytes\n", 18259 (uint_t)sizeof (*ill->ill_ip_mib))); 18260 } 18261 } 18262 rw_exit(&ipst->ips_ill_g_lock); 18263 18264 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18265 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18266 "level %d, name %d, len %d\n", 18267 (int)optp->level, (int)optp->name, (int)optp->len)); 18268 qreply(q, mpctl); 18269 18270 if (mp2ctl == NULL) 18271 return (NULL); 18272 18273 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18274 } 18275 18276 /* Global IPv4 ICMP statistics */ 18277 static mblk_t * 18278 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18279 { 18280 struct opthdr *optp; 18281 mblk_t *mp2ctl; 18282 18283 /* 18284 * Make a copy of the original message 18285 */ 18286 mp2ctl = copymsg(mpctl); 18287 18288 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18289 optp->level = MIB2_ICMP; 18290 optp->name = 0; 18291 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18292 (int)sizeof (ipst->ips_icmp_mib))) { 18293 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18294 (uint_t)sizeof (ipst->ips_icmp_mib))); 18295 } 18296 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18297 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18298 (int)optp->level, (int)optp->name, (int)optp->len)); 18299 qreply(q, mpctl); 18300 return (mp2ctl); 18301 } 18302 18303 /* Global IPv4 IGMP statistics */ 18304 static mblk_t * 18305 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18306 { 18307 struct opthdr *optp; 18308 mblk_t *mp2ctl; 18309 18310 /* 18311 * make a copy of the original message 18312 */ 18313 mp2ctl = copymsg(mpctl); 18314 18315 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18316 optp->level = EXPER_IGMP; 18317 optp->name = 0; 18318 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18319 (int)sizeof (ipst->ips_igmpstat))) { 18320 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18321 (uint_t)sizeof (ipst->ips_igmpstat))); 18322 } 18323 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18324 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18325 (int)optp->level, (int)optp->name, (int)optp->len)); 18326 qreply(q, mpctl); 18327 return (mp2ctl); 18328 } 18329 18330 /* Global IPv4 Multicast Routing statistics */ 18331 static mblk_t * 18332 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18333 { 18334 struct opthdr *optp; 18335 mblk_t *mp2ctl; 18336 18337 /* 18338 * make a copy of the original message 18339 */ 18340 mp2ctl = copymsg(mpctl); 18341 18342 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18343 optp->level = EXPER_DVMRP; 18344 optp->name = 0; 18345 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18346 ip0dbg(("ip_mroute_stats: failed\n")); 18347 } 18348 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18349 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18350 (int)optp->level, (int)optp->name, (int)optp->len)); 18351 qreply(q, mpctl); 18352 return (mp2ctl); 18353 } 18354 18355 /* IPv4 address information */ 18356 static mblk_t * 18357 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18358 { 18359 struct opthdr *optp; 18360 mblk_t *mp2ctl; 18361 mblk_t *mp_tail = NULL; 18362 ill_t *ill; 18363 ipif_t *ipif; 18364 uint_t bitval; 18365 mib2_ipAddrEntry_t mae; 18366 zoneid_t zoneid; 18367 ill_walk_context_t ctx; 18368 18369 /* 18370 * make a copy of the original message 18371 */ 18372 mp2ctl = copymsg(mpctl); 18373 18374 /* ipAddrEntryTable */ 18375 18376 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18377 optp->level = MIB2_IP; 18378 optp->name = MIB2_IP_ADDR; 18379 zoneid = Q_TO_CONN(q)->conn_zoneid; 18380 18381 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18382 ill = ILL_START_WALK_V4(&ctx, ipst); 18383 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18384 for (ipif = ill->ill_ipif; ipif != NULL; 18385 ipif = ipif->ipif_next) { 18386 if (ipif->ipif_zoneid != zoneid && 18387 ipif->ipif_zoneid != ALL_ZONES) 18388 continue; 18389 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18390 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18391 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18392 18393 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18394 OCTET_LENGTH); 18395 mae.ipAdEntIfIndex.o_length = 18396 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18397 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18398 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18399 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18400 mae.ipAdEntInfo.ae_subnet_len = 18401 ip_mask_to_plen(ipif->ipif_net_mask); 18402 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18403 for (bitval = 1; 18404 bitval && 18405 !(bitval & ipif->ipif_brd_addr); 18406 bitval <<= 1) 18407 noop; 18408 mae.ipAdEntBcastAddr = bitval; 18409 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18410 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18411 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18412 mae.ipAdEntInfo.ae_broadcast_addr = 18413 ipif->ipif_brd_addr; 18414 mae.ipAdEntInfo.ae_pp_dst_addr = 18415 ipif->ipif_pp_dst_addr; 18416 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18417 ill->ill_flags | ill->ill_phyint->phyint_flags; 18418 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18419 18420 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18421 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18422 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18423 "allocate %u bytes\n", 18424 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18425 } 18426 } 18427 } 18428 rw_exit(&ipst->ips_ill_g_lock); 18429 18430 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18431 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18432 (int)optp->level, (int)optp->name, (int)optp->len)); 18433 qreply(q, mpctl); 18434 return (mp2ctl); 18435 } 18436 18437 /* IPv6 address information */ 18438 static mblk_t * 18439 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18440 { 18441 struct opthdr *optp; 18442 mblk_t *mp2ctl; 18443 mblk_t *mp_tail = NULL; 18444 ill_t *ill; 18445 ipif_t *ipif; 18446 mib2_ipv6AddrEntry_t mae6; 18447 zoneid_t zoneid; 18448 ill_walk_context_t ctx; 18449 18450 /* 18451 * make a copy of the original message 18452 */ 18453 mp2ctl = copymsg(mpctl); 18454 18455 /* ipv6AddrEntryTable */ 18456 18457 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18458 optp->level = MIB2_IP6; 18459 optp->name = MIB2_IP6_ADDR; 18460 zoneid = Q_TO_CONN(q)->conn_zoneid; 18461 18462 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18463 ill = ILL_START_WALK_V6(&ctx, ipst); 18464 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18465 for (ipif = ill->ill_ipif; ipif != NULL; 18466 ipif = ipif->ipif_next) { 18467 if (ipif->ipif_zoneid != zoneid && 18468 ipif->ipif_zoneid != ALL_ZONES) 18469 continue; 18470 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18471 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18472 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18473 18474 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18475 OCTET_LENGTH); 18476 mae6.ipv6AddrIfIndex.o_length = 18477 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18478 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18479 mae6.ipv6AddrPfxLength = 18480 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18481 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18482 mae6.ipv6AddrInfo.ae_subnet_len = 18483 mae6.ipv6AddrPfxLength; 18484 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18485 18486 /* Type: stateless(1), stateful(2), unknown(3) */ 18487 if (ipif->ipif_flags & IPIF_ADDRCONF) 18488 mae6.ipv6AddrType = 1; 18489 else 18490 mae6.ipv6AddrType = 2; 18491 /* Anycast: true(1), false(2) */ 18492 if (ipif->ipif_flags & IPIF_ANYCAST) 18493 mae6.ipv6AddrAnycastFlag = 1; 18494 else 18495 mae6.ipv6AddrAnycastFlag = 2; 18496 18497 /* 18498 * Address status: preferred(1), deprecated(2), 18499 * invalid(3), inaccessible(4), unknown(5) 18500 */ 18501 if (ipif->ipif_flags & IPIF_NOLOCAL) 18502 mae6.ipv6AddrStatus = 3; 18503 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18504 mae6.ipv6AddrStatus = 2; 18505 else 18506 mae6.ipv6AddrStatus = 1; 18507 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18508 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18509 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18510 ipif->ipif_v6pp_dst_addr; 18511 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18512 ill->ill_flags | ill->ill_phyint->phyint_flags; 18513 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18514 mae6.ipv6AddrIdentifier = ill->ill_token; 18515 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18516 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18517 mae6.ipv6AddrRetransmitTime = 18518 ill->ill_reachable_retrans_time; 18519 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18520 (char *)&mae6, 18521 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18522 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18523 "allocate %u bytes\n", 18524 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18525 } 18526 } 18527 } 18528 rw_exit(&ipst->ips_ill_g_lock); 18529 18530 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18531 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18532 (int)optp->level, (int)optp->name, (int)optp->len)); 18533 qreply(q, mpctl); 18534 return (mp2ctl); 18535 } 18536 18537 /* IPv4 multicast group membership. */ 18538 static mblk_t * 18539 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18540 { 18541 struct opthdr *optp; 18542 mblk_t *mp2ctl; 18543 ill_t *ill; 18544 ipif_t *ipif; 18545 ilm_t *ilm; 18546 ip_member_t ipm; 18547 mblk_t *mp_tail = NULL; 18548 ill_walk_context_t ctx; 18549 zoneid_t zoneid; 18550 18551 /* 18552 * make a copy of the original message 18553 */ 18554 mp2ctl = copymsg(mpctl); 18555 zoneid = Q_TO_CONN(q)->conn_zoneid; 18556 18557 /* ipGroupMember table */ 18558 optp = (struct opthdr *)&mpctl->b_rptr[ 18559 sizeof (struct T_optmgmt_ack)]; 18560 optp->level = MIB2_IP; 18561 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18562 18563 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18564 ill = ILL_START_WALK_V4(&ctx, ipst); 18565 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18566 ILM_WALKER_HOLD(ill); 18567 for (ipif = ill->ill_ipif; ipif != NULL; 18568 ipif = ipif->ipif_next) { 18569 if (ipif->ipif_zoneid != zoneid && 18570 ipif->ipif_zoneid != ALL_ZONES) 18571 continue; /* not this zone */ 18572 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18573 OCTET_LENGTH); 18574 ipm.ipGroupMemberIfIndex.o_length = 18575 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18576 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18577 ASSERT(ilm->ilm_ipif != NULL); 18578 ASSERT(ilm->ilm_ill == NULL); 18579 if (ilm->ilm_ipif != ipif) 18580 continue; 18581 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18582 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18583 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18584 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18585 (char *)&ipm, (int)sizeof (ipm))) { 18586 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18587 "failed to allocate %u bytes\n", 18588 (uint_t)sizeof (ipm))); 18589 } 18590 } 18591 } 18592 ILM_WALKER_RELE(ill); 18593 } 18594 rw_exit(&ipst->ips_ill_g_lock); 18595 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18596 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18597 (int)optp->level, (int)optp->name, (int)optp->len)); 18598 qreply(q, mpctl); 18599 return (mp2ctl); 18600 } 18601 18602 /* IPv6 multicast group membership. */ 18603 static mblk_t * 18604 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18605 { 18606 struct opthdr *optp; 18607 mblk_t *mp2ctl; 18608 ill_t *ill; 18609 ilm_t *ilm; 18610 ipv6_member_t ipm6; 18611 mblk_t *mp_tail = NULL; 18612 ill_walk_context_t ctx; 18613 zoneid_t zoneid; 18614 18615 /* 18616 * make a copy of the original message 18617 */ 18618 mp2ctl = copymsg(mpctl); 18619 zoneid = Q_TO_CONN(q)->conn_zoneid; 18620 18621 /* ip6GroupMember table */ 18622 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18623 optp->level = MIB2_IP6; 18624 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18625 18626 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18627 ill = ILL_START_WALK_V6(&ctx, ipst); 18628 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18629 ILM_WALKER_HOLD(ill); 18630 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18631 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18632 ASSERT(ilm->ilm_ipif == NULL); 18633 ASSERT(ilm->ilm_ill != NULL); 18634 if (ilm->ilm_zoneid != zoneid) 18635 continue; /* not this zone */ 18636 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18637 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18638 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18639 if (!snmp_append_data2(mpctl->b_cont, 18640 &mp_tail, 18641 (char *)&ipm6, (int)sizeof (ipm6))) { 18642 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18643 "failed to allocate %u bytes\n", 18644 (uint_t)sizeof (ipm6))); 18645 } 18646 } 18647 ILM_WALKER_RELE(ill); 18648 } 18649 rw_exit(&ipst->ips_ill_g_lock); 18650 18651 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18652 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18653 (int)optp->level, (int)optp->name, (int)optp->len)); 18654 qreply(q, mpctl); 18655 return (mp2ctl); 18656 } 18657 18658 /* IP multicast filtered sources */ 18659 static mblk_t * 18660 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18661 { 18662 struct opthdr *optp; 18663 mblk_t *mp2ctl; 18664 ill_t *ill; 18665 ipif_t *ipif; 18666 ilm_t *ilm; 18667 ip_grpsrc_t ips; 18668 mblk_t *mp_tail = NULL; 18669 ill_walk_context_t ctx; 18670 zoneid_t zoneid; 18671 int i; 18672 slist_t *sl; 18673 18674 /* 18675 * make a copy of the original message 18676 */ 18677 mp2ctl = copymsg(mpctl); 18678 zoneid = Q_TO_CONN(q)->conn_zoneid; 18679 18680 /* ipGroupSource table */ 18681 optp = (struct opthdr *)&mpctl->b_rptr[ 18682 sizeof (struct T_optmgmt_ack)]; 18683 optp->level = MIB2_IP; 18684 optp->name = EXPER_IP_GROUP_SOURCES; 18685 18686 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18687 ill = ILL_START_WALK_V4(&ctx, ipst); 18688 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18689 ILM_WALKER_HOLD(ill); 18690 for (ipif = ill->ill_ipif; ipif != NULL; 18691 ipif = ipif->ipif_next) { 18692 if (ipif->ipif_zoneid != zoneid) 18693 continue; /* not this zone */ 18694 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18695 OCTET_LENGTH); 18696 ips.ipGroupSourceIfIndex.o_length = 18697 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18698 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18699 ASSERT(ilm->ilm_ipif != NULL); 18700 ASSERT(ilm->ilm_ill == NULL); 18701 sl = ilm->ilm_filter; 18702 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18703 continue; 18704 ips.ipGroupSourceGroup = ilm->ilm_addr; 18705 for (i = 0; i < sl->sl_numsrc; i++) { 18706 if (!IN6_IS_ADDR_V4MAPPED( 18707 &sl->sl_addr[i])) 18708 continue; 18709 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18710 ips.ipGroupSourceAddress); 18711 if (snmp_append_data2(mpctl->b_cont, 18712 &mp_tail, (char *)&ips, 18713 (int)sizeof (ips)) == 0) { 18714 ip1dbg(("ip_snmp_get_mib2_" 18715 "ip_group_src: failed to " 18716 "allocate %u bytes\n", 18717 (uint_t)sizeof (ips))); 18718 } 18719 } 18720 } 18721 } 18722 ILM_WALKER_RELE(ill); 18723 } 18724 rw_exit(&ipst->ips_ill_g_lock); 18725 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18726 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18727 (int)optp->level, (int)optp->name, (int)optp->len)); 18728 qreply(q, mpctl); 18729 return (mp2ctl); 18730 } 18731 18732 /* IPv6 multicast filtered sources. */ 18733 static mblk_t * 18734 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18735 { 18736 struct opthdr *optp; 18737 mblk_t *mp2ctl; 18738 ill_t *ill; 18739 ilm_t *ilm; 18740 ipv6_grpsrc_t ips6; 18741 mblk_t *mp_tail = NULL; 18742 ill_walk_context_t ctx; 18743 zoneid_t zoneid; 18744 int i; 18745 slist_t *sl; 18746 18747 /* 18748 * make a copy of the original message 18749 */ 18750 mp2ctl = copymsg(mpctl); 18751 zoneid = Q_TO_CONN(q)->conn_zoneid; 18752 18753 /* ip6GroupMember table */ 18754 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18755 optp->level = MIB2_IP6; 18756 optp->name = EXPER_IP6_GROUP_SOURCES; 18757 18758 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18759 ill = ILL_START_WALK_V6(&ctx, ipst); 18760 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18761 ILM_WALKER_HOLD(ill); 18762 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18763 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18764 ASSERT(ilm->ilm_ipif == NULL); 18765 ASSERT(ilm->ilm_ill != NULL); 18766 sl = ilm->ilm_filter; 18767 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18768 continue; 18769 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18770 for (i = 0; i < sl->sl_numsrc; i++) { 18771 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18772 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18773 (char *)&ips6, (int)sizeof (ips6))) { 18774 ip1dbg(("ip_snmp_get_mib2_ip6_" 18775 "group_src: failed to allocate " 18776 "%u bytes\n", 18777 (uint_t)sizeof (ips6))); 18778 } 18779 } 18780 } 18781 ILM_WALKER_RELE(ill); 18782 } 18783 rw_exit(&ipst->ips_ill_g_lock); 18784 18785 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18786 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18787 (int)optp->level, (int)optp->name, (int)optp->len)); 18788 qreply(q, mpctl); 18789 return (mp2ctl); 18790 } 18791 18792 /* Multicast routing virtual interface table. */ 18793 static mblk_t * 18794 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18795 { 18796 struct opthdr *optp; 18797 mblk_t *mp2ctl; 18798 18799 /* 18800 * make a copy of the original message 18801 */ 18802 mp2ctl = copymsg(mpctl); 18803 18804 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18805 optp->level = EXPER_DVMRP; 18806 optp->name = EXPER_DVMRP_VIF; 18807 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18808 ip0dbg(("ip_mroute_vif: failed\n")); 18809 } 18810 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18811 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18812 (int)optp->level, (int)optp->name, (int)optp->len)); 18813 qreply(q, mpctl); 18814 return (mp2ctl); 18815 } 18816 18817 /* Multicast routing table. */ 18818 static mblk_t * 18819 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18820 { 18821 struct opthdr *optp; 18822 mblk_t *mp2ctl; 18823 18824 /* 18825 * make a copy of the original message 18826 */ 18827 mp2ctl = copymsg(mpctl); 18828 18829 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18830 optp->level = EXPER_DVMRP; 18831 optp->name = EXPER_DVMRP_MRT; 18832 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18833 ip0dbg(("ip_mroute_mrt: failed\n")); 18834 } 18835 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18836 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18837 (int)optp->level, (int)optp->name, (int)optp->len)); 18838 qreply(q, mpctl); 18839 return (mp2ctl); 18840 } 18841 18842 /* 18843 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18844 * in one IRE walk. 18845 */ 18846 static mblk_t * 18847 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18848 { 18849 struct opthdr *optp; 18850 mblk_t *mp2ctl; /* Returned */ 18851 mblk_t *mp3ctl; /* nettomedia */ 18852 mblk_t *mp4ctl; /* routeattrs */ 18853 iproutedata_t ird; 18854 zoneid_t zoneid; 18855 18856 /* 18857 * make copies of the original message 18858 * - mp2ctl is returned unchanged to the caller for his use 18859 * - mpctl is sent upstream as ipRouteEntryTable 18860 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18861 * - mp4ctl is sent upstream as ipRouteAttributeTable 18862 */ 18863 mp2ctl = copymsg(mpctl); 18864 mp3ctl = copymsg(mpctl); 18865 mp4ctl = copymsg(mpctl); 18866 if (mp3ctl == NULL || mp4ctl == NULL) { 18867 freemsg(mp4ctl); 18868 freemsg(mp3ctl); 18869 freemsg(mp2ctl); 18870 freemsg(mpctl); 18871 return (NULL); 18872 } 18873 18874 bzero(&ird, sizeof (ird)); 18875 18876 ird.ird_route.lp_head = mpctl->b_cont; 18877 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18878 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18879 18880 zoneid = Q_TO_CONN(q)->conn_zoneid; 18881 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18882 18883 /* ipRouteEntryTable in mpctl */ 18884 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18885 optp->level = MIB2_IP; 18886 optp->name = MIB2_IP_ROUTE; 18887 optp->len = msgdsize(ird.ird_route.lp_head); 18888 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18889 (int)optp->level, (int)optp->name, (int)optp->len)); 18890 qreply(q, mpctl); 18891 18892 /* ipNetToMediaEntryTable in mp3ctl */ 18893 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18894 optp->level = MIB2_IP; 18895 optp->name = MIB2_IP_MEDIA; 18896 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18897 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18898 (int)optp->level, (int)optp->name, (int)optp->len)); 18899 qreply(q, mp3ctl); 18900 18901 /* ipRouteAttributeTable in mp4ctl */ 18902 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18903 optp->level = MIB2_IP; 18904 optp->name = EXPER_IP_RTATTR; 18905 optp->len = msgdsize(ird.ird_attrs.lp_head); 18906 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18907 (int)optp->level, (int)optp->name, (int)optp->len)); 18908 if (optp->len == 0) 18909 freemsg(mp4ctl); 18910 else 18911 qreply(q, mp4ctl); 18912 18913 return (mp2ctl); 18914 } 18915 18916 /* 18917 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18918 * ipv6NetToMediaEntryTable in an NDP walk. 18919 */ 18920 static mblk_t * 18921 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18922 { 18923 struct opthdr *optp; 18924 mblk_t *mp2ctl; /* Returned */ 18925 mblk_t *mp3ctl; /* nettomedia */ 18926 mblk_t *mp4ctl; /* routeattrs */ 18927 iproutedata_t ird; 18928 zoneid_t zoneid; 18929 18930 /* 18931 * make copies of the original message 18932 * - mp2ctl is returned unchanged to the caller for his use 18933 * - mpctl is sent upstream as ipv6RouteEntryTable 18934 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18935 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18936 */ 18937 mp2ctl = copymsg(mpctl); 18938 mp3ctl = copymsg(mpctl); 18939 mp4ctl = copymsg(mpctl); 18940 if (mp3ctl == NULL || mp4ctl == NULL) { 18941 freemsg(mp4ctl); 18942 freemsg(mp3ctl); 18943 freemsg(mp2ctl); 18944 freemsg(mpctl); 18945 return (NULL); 18946 } 18947 18948 bzero(&ird, sizeof (ird)); 18949 18950 ird.ird_route.lp_head = mpctl->b_cont; 18951 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18952 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18953 18954 zoneid = Q_TO_CONN(q)->conn_zoneid; 18955 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18956 18957 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18958 optp->level = MIB2_IP6; 18959 optp->name = MIB2_IP6_ROUTE; 18960 optp->len = msgdsize(ird.ird_route.lp_head); 18961 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18962 (int)optp->level, (int)optp->name, (int)optp->len)); 18963 qreply(q, mpctl); 18964 18965 /* ipv6NetToMediaEntryTable in mp3ctl */ 18966 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18967 18968 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18969 optp->level = MIB2_IP6; 18970 optp->name = MIB2_IP6_MEDIA; 18971 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18972 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18973 (int)optp->level, (int)optp->name, (int)optp->len)); 18974 qreply(q, mp3ctl); 18975 18976 /* ipv6RouteAttributeTable in mp4ctl */ 18977 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18978 optp->level = MIB2_IP6; 18979 optp->name = EXPER_IP_RTATTR; 18980 optp->len = msgdsize(ird.ird_attrs.lp_head); 18981 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18982 (int)optp->level, (int)optp->name, (int)optp->len)); 18983 if (optp->len == 0) 18984 freemsg(mp4ctl); 18985 else 18986 qreply(q, mp4ctl); 18987 18988 return (mp2ctl); 18989 } 18990 18991 /* 18992 * IPv6 mib: One per ill 18993 */ 18994 static mblk_t * 18995 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18996 { 18997 struct opthdr *optp; 18998 mblk_t *mp2ctl; 18999 ill_t *ill; 19000 ill_walk_context_t ctx; 19001 mblk_t *mp_tail = NULL; 19002 19003 /* 19004 * Make a copy of the original message 19005 */ 19006 mp2ctl = copymsg(mpctl); 19007 19008 /* fixed length IPv6 structure ... */ 19009 19010 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19011 optp->level = MIB2_IP6; 19012 optp->name = 0; 19013 /* Include "unknown interface" ip6_mib */ 19014 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19015 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19016 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19017 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19018 ipst->ips_ipv6_forward ? 1 : 2); 19019 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19020 ipst->ips_ipv6_def_hops); 19021 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19022 sizeof (mib2_ipIfStatsEntry_t)); 19023 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19024 sizeof (mib2_ipv6AddrEntry_t)); 19025 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19026 sizeof (mib2_ipv6RouteEntry_t)); 19027 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19028 sizeof (mib2_ipv6NetToMediaEntry_t)); 19029 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19030 sizeof (ipv6_member_t)); 19031 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19032 sizeof (ipv6_grpsrc_t)); 19033 19034 /* 19035 * Synchronize 64- and 32-bit counters 19036 */ 19037 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19038 ipIfStatsHCInReceives); 19039 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19040 ipIfStatsHCInDelivers); 19041 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19042 ipIfStatsHCOutRequests); 19043 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19044 ipIfStatsHCOutForwDatagrams); 19045 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19046 ipIfStatsHCOutMcastPkts); 19047 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19048 ipIfStatsHCInMcastPkts); 19049 19050 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19051 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19052 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19053 (uint_t)sizeof (ipst->ips_ip6_mib))); 19054 } 19055 19056 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19057 ill = ILL_START_WALK_V6(&ctx, ipst); 19058 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19059 ill->ill_ip_mib->ipIfStatsIfIndex = 19060 ill->ill_phyint->phyint_ifindex; 19061 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19062 ipst->ips_ipv6_forward ? 1 : 2); 19063 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19064 ill->ill_max_hops); 19065 19066 /* 19067 * Synchronize 64- and 32-bit counters 19068 */ 19069 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19070 ipIfStatsHCInReceives); 19071 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19072 ipIfStatsHCInDelivers); 19073 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19074 ipIfStatsHCOutRequests); 19075 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19076 ipIfStatsHCOutForwDatagrams); 19077 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19078 ipIfStatsHCOutMcastPkts); 19079 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19080 ipIfStatsHCInMcastPkts); 19081 19082 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19083 (char *)ill->ill_ip_mib, 19084 (int)sizeof (*ill->ill_ip_mib))) { 19085 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19086 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19087 } 19088 } 19089 rw_exit(&ipst->ips_ill_g_lock); 19090 19091 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19092 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19093 (int)optp->level, (int)optp->name, (int)optp->len)); 19094 qreply(q, mpctl); 19095 return (mp2ctl); 19096 } 19097 19098 /* 19099 * ICMPv6 mib: One per ill 19100 */ 19101 static mblk_t * 19102 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19103 { 19104 struct opthdr *optp; 19105 mblk_t *mp2ctl; 19106 ill_t *ill; 19107 ill_walk_context_t ctx; 19108 mblk_t *mp_tail = NULL; 19109 /* 19110 * Make a copy of the original message 19111 */ 19112 mp2ctl = copymsg(mpctl); 19113 19114 /* fixed length ICMPv6 structure ... */ 19115 19116 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19117 optp->level = MIB2_ICMP6; 19118 optp->name = 0; 19119 /* Include "unknown interface" icmp6_mib */ 19120 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19121 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19122 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19123 sizeof (mib2_ipv6IfIcmpEntry_t); 19124 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19125 (char *)&ipst->ips_icmp6_mib, 19126 (int)sizeof (ipst->ips_icmp6_mib))) { 19127 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19128 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19129 } 19130 19131 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19132 ill = ILL_START_WALK_V6(&ctx, ipst); 19133 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19134 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19135 ill->ill_phyint->phyint_ifindex; 19136 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19137 (char *)ill->ill_icmp6_mib, 19138 (int)sizeof (*ill->ill_icmp6_mib))) { 19139 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19140 "%u bytes\n", 19141 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19142 } 19143 } 19144 rw_exit(&ipst->ips_ill_g_lock); 19145 19146 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19147 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19148 (int)optp->level, (int)optp->name, (int)optp->len)); 19149 qreply(q, mpctl); 19150 return (mp2ctl); 19151 } 19152 19153 /* 19154 * ire_walk routine to create both ipRouteEntryTable and 19155 * ipRouteAttributeTable in one IRE walk 19156 */ 19157 static void 19158 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19159 { 19160 ill_t *ill; 19161 ipif_t *ipif; 19162 mib2_ipRouteEntry_t *re; 19163 mib2_ipAttributeEntry_t *iae, *iaeptr; 19164 ipaddr_t gw_addr; 19165 tsol_ire_gw_secattr_t *attrp; 19166 tsol_gc_t *gc = NULL; 19167 tsol_gcgrp_t *gcgrp = NULL; 19168 uint_t sacnt = 0; 19169 int i; 19170 19171 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19172 19173 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19174 return; 19175 19176 if ((attrp = ire->ire_gw_secattr) != NULL) { 19177 mutex_enter(&attrp->igsa_lock); 19178 if ((gc = attrp->igsa_gc) != NULL) { 19179 gcgrp = gc->gc_grp; 19180 ASSERT(gcgrp != NULL); 19181 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19182 sacnt = 1; 19183 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19184 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19185 gc = gcgrp->gcgrp_head; 19186 sacnt = gcgrp->gcgrp_count; 19187 } 19188 mutex_exit(&attrp->igsa_lock); 19189 19190 /* do nothing if there's no gc to report */ 19191 if (gc == NULL) { 19192 ASSERT(sacnt == 0); 19193 if (gcgrp != NULL) { 19194 /* we might as well drop the lock now */ 19195 rw_exit(&gcgrp->gcgrp_rwlock); 19196 gcgrp = NULL; 19197 } 19198 attrp = NULL; 19199 } 19200 19201 ASSERT(gc == NULL || (gcgrp != NULL && 19202 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19203 } 19204 ASSERT(sacnt == 0 || gc != NULL); 19205 19206 if (sacnt != 0 && 19207 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19208 kmem_free(re, sizeof (*re)); 19209 rw_exit(&gcgrp->gcgrp_rwlock); 19210 return; 19211 } 19212 19213 /* 19214 * Return all IRE types for route table... let caller pick and choose 19215 */ 19216 re->ipRouteDest = ire->ire_addr; 19217 ipif = ire->ire_ipif; 19218 re->ipRouteIfIndex.o_length = 0; 19219 if (ire->ire_type == IRE_CACHE) { 19220 ill = (ill_t *)ire->ire_stq->q_ptr; 19221 re->ipRouteIfIndex.o_length = 19222 ill->ill_name_length == 0 ? 0 : 19223 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19224 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19225 re->ipRouteIfIndex.o_length); 19226 } else if (ipif != NULL) { 19227 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19228 re->ipRouteIfIndex.o_length = 19229 mi_strlen(re->ipRouteIfIndex.o_bytes); 19230 } 19231 re->ipRouteMetric1 = -1; 19232 re->ipRouteMetric2 = -1; 19233 re->ipRouteMetric3 = -1; 19234 re->ipRouteMetric4 = -1; 19235 19236 gw_addr = ire->ire_gateway_addr; 19237 19238 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19239 re->ipRouteNextHop = ire->ire_src_addr; 19240 else 19241 re->ipRouteNextHop = gw_addr; 19242 /* indirect(4), direct(3), or invalid(2) */ 19243 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19244 re->ipRouteType = 2; 19245 else 19246 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19247 re->ipRouteProto = -1; 19248 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19249 re->ipRouteMask = ire->ire_mask; 19250 re->ipRouteMetric5 = -1; 19251 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19252 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19253 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19254 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19255 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19256 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19257 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19258 re->ipRouteInfo.re_flags = ire->ire_flags; 19259 19260 if (ire->ire_flags & RTF_DYNAMIC) { 19261 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19262 } else { 19263 re->ipRouteInfo.re_ire_type = ire->ire_type; 19264 } 19265 19266 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19267 (char *)re, (int)sizeof (*re))) { 19268 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19269 (uint_t)sizeof (*re))); 19270 } 19271 19272 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19273 iaeptr->iae_routeidx = ird->ird_idx; 19274 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19275 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19276 } 19277 19278 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19279 (char *)iae, sacnt * sizeof (*iae))) { 19280 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19281 (unsigned)(sacnt * sizeof (*iae)))); 19282 } 19283 19284 /* bump route index for next pass */ 19285 ird->ird_idx++; 19286 19287 kmem_free(re, sizeof (*re)); 19288 if (sacnt != 0) 19289 kmem_free(iae, sacnt * sizeof (*iae)); 19290 19291 if (gcgrp != NULL) 19292 rw_exit(&gcgrp->gcgrp_rwlock); 19293 } 19294 19295 /* 19296 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19297 */ 19298 static void 19299 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19300 { 19301 ill_t *ill; 19302 ipif_t *ipif; 19303 mib2_ipv6RouteEntry_t *re; 19304 mib2_ipAttributeEntry_t *iae, *iaeptr; 19305 in6_addr_t gw_addr_v6; 19306 tsol_ire_gw_secattr_t *attrp; 19307 tsol_gc_t *gc = NULL; 19308 tsol_gcgrp_t *gcgrp = NULL; 19309 uint_t sacnt = 0; 19310 int i; 19311 19312 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19313 19314 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19315 return; 19316 19317 if ((attrp = ire->ire_gw_secattr) != NULL) { 19318 mutex_enter(&attrp->igsa_lock); 19319 if ((gc = attrp->igsa_gc) != NULL) { 19320 gcgrp = gc->gc_grp; 19321 ASSERT(gcgrp != NULL); 19322 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19323 sacnt = 1; 19324 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19325 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19326 gc = gcgrp->gcgrp_head; 19327 sacnt = gcgrp->gcgrp_count; 19328 } 19329 mutex_exit(&attrp->igsa_lock); 19330 19331 /* do nothing if there's no gc to report */ 19332 if (gc == NULL) { 19333 ASSERT(sacnt == 0); 19334 if (gcgrp != NULL) { 19335 /* we might as well drop the lock now */ 19336 rw_exit(&gcgrp->gcgrp_rwlock); 19337 gcgrp = NULL; 19338 } 19339 attrp = NULL; 19340 } 19341 19342 ASSERT(gc == NULL || (gcgrp != NULL && 19343 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19344 } 19345 ASSERT(sacnt == 0 || gc != NULL); 19346 19347 if (sacnt != 0 && 19348 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19349 kmem_free(re, sizeof (*re)); 19350 rw_exit(&gcgrp->gcgrp_rwlock); 19351 return; 19352 } 19353 19354 /* 19355 * Return all IRE types for route table... let caller pick and choose 19356 */ 19357 re->ipv6RouteDest = ire->ire_addr_v6; 19358 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19359 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19360 re->ipv6RouteIfIndex.o_length = 0; 19361 ipif = ire->ire_ipif; 19362 if (ire->ire_type == IRE_CACHE) { 19363 ill = (ill_t *)ire->ire_stq->q_ptr; 19364 re->ipv6RouteIfIndex.o_length = 19365 ill->ill_name_length == 0 ? 0 : 19366 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19367 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19368 re->ipv6RouteIfIndex.o_length); 19369 } else if (ipif != NULL) { 19370 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19371 re->ipv6RouteIfIndex.o_length = 19372 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19373 } 19374 19375 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19376 19377 mutex_enter(&ire->ire_lock); 19378 gw_addr_v6 = ire->ire_gateway_addr_v6; 19379 mutex_exit(&ire->ire_lock); 19380 19381 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19382 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19383 else 19384 re->ipv6RouteNextHop = gw_addr_v6; 19385 19386 /* remote(4), local(3), or discard(2) */ 19387 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19388 re->ipv6RouteType = 2; 19389 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19390 re->ipv6RouteType = 3; 19391 else 19392 re->ipv6RouteType = 4; 19393 19394 re->ipv6RouteProtocol = -1; 19395 re->ipv6RoutePolicy = 0; 19396 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19397 re->ipv6RouteNextHopRDI = 0; 19398 re->ipv6RouteWeight = 0; 19399 re->ipv6RouteMetric = 0; 19400 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19401 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19402 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19403 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19404 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19405 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19406 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19407 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19408 19409 if (ire->ire_flags & RTF_DYNAMIC) { 19410 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19411 } else { 19412 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19413 } 19414 19415 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19416 (char *)re, (int)sizeof (*re))) { 19417 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19418 (uint_t)sizeof (*re))); 19419 } 19420 19421 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19422 iaeptr->iae_routeidx = ird->ird_idx; 19423 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19424 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19425 } 19426 19427 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19428 (char *)iae, sacnt * sizeof (*iae))) { 19429 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19430 (unsigned)(sacnt * sizeof (*iae)))); 19431 } 19432 19433 /* bump route index for next pass */ 19434 ird->ird_idx++; 19435 19436 kmem_free(re, sizeof (*re)); 19437 if (sacnt != 0) 19438 kmem_free(iae, sacnt * sizeof (*iae)); 19439 19440 if (gcgrp != NULL) 19441 rw_exit(&gcgrp->gcgrp_rwlock); 19442 } 19443 19444 /* 19445 * ndp_walk routine to create ipv6NetToMediaEntryTable 19446 */ 19447 static int 19448 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19449 { 19450 ill_t *ill; 19451 mib2_ipv6NetToMediaEntry_t ntme; 19452 dl_unitdata_req_t *dl; 19453 19454 ill = nce->nce_ill; 19455 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19456 return (0); 19457 19458 /* 19459 * Neighbor cache entry attached to IRE with on-link 19460 * destination. 19461 */ 19462 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19463 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19464 if ((ill->ill_flags & ILLF_XRESOLV) && 19465 (nce->nce_res_mp != NULL)) { 19466 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19467 ntme.ipv6NetToMediaPhysAddress.o_length = 19468 dl->dl_dest_addr_length; 19469 } else { 19470 ntme.ipv6NetToMediaPhysAddress.o_length = 19471 ill->ill_phys_addr_length; 19472 } 19473 if (nce->nce_res_mp != NULL) { 19474 bcopy((char *)nce->nce_res_mp->b_rptr + 19475 NCE_LL_ADDR_OFFSET(ill), 19476 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19477 ntme.ipv6NetToMediaPhysAddress.o_length); 19478 } else { 19479 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19480 ill->ill_phys_addr_length); 19481 } 19482 /* 19483 * Note: Returns ND_* states. Should be: 19484 * reachable(1), stale(2), delay(3), probe(4), 19485 * invalid(5), unknown(6) 19486 */ 19487 ntme.ipv6NetToMediaState = nce->nce_state; 19488 ntme.ipv6NetToMediaLastUpdated = 0; 19489 19490 /* other(1), dynamic(2), static(3), local(4) */ 19491 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19492 ntme.ipv6NetToMediaType = 4; 19493 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19494 ntme.ipv6NetToMediaType = 1; 19495 } else { 19496 ntme.ipv6NetToMediaType = 2; 19497 } 19498 19499 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19500 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19501 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19502 (uint_t)sizeof (ntme))); 19503 } 19504 return (0); 19505 } 19506 19507 /* 19508 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19509 */ 19510 /* ARGSUSED */ 19511 int 19512 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19513 { 19514 switch (level) { 19515 case MIB2_IP: 19516 case MIB2_ICMP: 19517 switch (name) { 19518 default: 19519 break; 19520 } 19521 return (1); 19522 default: 19523 return (1); 19524 } 19525 } 19526 19527 /* 19528 * When there exists both a 64- and 32-bit counter of a particular type 19529 * (i.e., InReceives), only the 64-bit counters are added. 19530 */ 19531 void 19532 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19533 { 19534 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19535 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19536 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19537 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19538 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19539 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19540 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19541 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19542 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19543 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19544 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19545 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19546 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19547 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19548 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19549 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19550 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19551 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19552 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19553 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19554 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19555 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19556 o2->ipIfStatsInWrongIPVersion); 19557 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19558 o2->ipIfStatsInWrongIPVersion); 19559 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19560 o2->ipIfStatsOutSwitchIPVersion); 19561 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19562 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19563 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19564 o2->ipIfStatsHCInForwDatagrams); 19565 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19566 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19567 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19568 o2->ipIfStatsHCOutForwDatagrams); 19569 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19570 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19571 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19572 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19573 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19574 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19575 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19576 o2->ipIfStatsHCOutMcastOctets); 19577 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19578 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19579 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19580 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19581 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19582 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19583 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19584 } 19585 19586 void 19587 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19588 { 19589 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19590 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19591 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19592 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19593 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19594 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19595 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19596 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19597 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19598 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19599 o2->ipv6IfIcmpInRouterSolicits); 19600 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19601 o2->ipv6IfIcmpInRouterAdvertisements); 19602 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19603 o2->ipv6IfIcmpInNeighborSolicits); 19604 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19605 o2->ipv6IfIcmpInNeighborAdvertisements); 19606 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19607 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19608 o2->ipv6IfIcmpInGroupMembQueries); 19609 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19610 o2->ipv6IfIcmpInGroupMembResponses); 19611 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19612 o2->ipv6IfIcmpInGroupMembReductions); 19613 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19614 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19615 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19616 o2->ipv6IfIcmpOutDestUnreachs); 19617 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19618 o2->ipv6IfIcmpOutAdminProhibs); 19619 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19620 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19621 o2->ipv6IfIcmpOutParmProblems); 19622 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19623 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19624 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19625 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19626 o2->ipv6IfIcmpOutRouterSolicits); 19627 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19628 o2->ipv6IfIcmpOutRouterAdvertisements); 19629 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19630 o2->ipv6IfIcmpOutNeighborSolicits); 19631 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19632 o2->ipv6IfIcmpOutNeighborAdvertisements); 19633 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19634 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19635 o2->ipv6IfIcmpOutGroupMembQueries); 19636 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19637 o2->ipv6IfIcmpOutGroupMembResponses); 19638 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19639 o2->ipv6IfIcmpOutGroupMembReductions); 19640 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19641 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19642 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19643 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19644 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19645 o2->ipv6IfIcmpInBadNeighborSolicitations); 19646 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19647 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19648 o2->ipv6IfIcmpInGroupMembTotal); 19649 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19650 o2->ipv6IfIcmpInGroupMembBadQueries); 19651 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19652 o2->ipv6IfIcmpInGroupMembBadReports); 19653 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19654 o2->ipv6IfIcmpInGroupMembOurReports); 19655 } 19656 19657 /* 19658 * Called before the options are updated to check if this packet will 19659 * be source routed from here. 19660 * This routine assumes that the options are well formed i.e. that they 19661 * have already been checked. 19662 */ 19663 static boolean_t 19664 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19665 { 19666 ipoptp_t opts; 19667 uchar_t *opt; 19668 uint8_t optval; 19669 uint8_t optlen; 19670 ipaddr_t dst; 19671 ire_t *ire; 19672 19673 if (IS_SIMPLE_IPH(ipha)) { 19674 ip2dbg(("not source routed\n")); 19675 return (B_FALSE); 19676 } 19677 dst = ipha->ipha_dst; 19678 for (optval = ipoptp_first(&opts, ipha); 19679 optval != IPOPT_EOL; 19680 optval = ipoptp_next(&opts)) { 19681 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19682 opt = opts.ipoptp_cur; 19683 optlen = opts.ipoptp_len; 19684 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19685 optval, optlen)); 19686 switch (optval) { 19687 uint32_t off; 19688 case IPOPT_SSRR: 19689 case IPOPT_LSRR: 19690 /* 19691 * If dst is one of our addresses and there are some 19692 * entries left in the source route return (true). 19693 */ 19694 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19695 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19696 if (ire == NULL) { 19697 ip2dbg(("ip_source_routed: not next" 19698 " source route 0x%x\n", 19699 ntohl(dst))); 19700 return (B_FALSE); 19701 } 19702 ire_refrele(ire); 19703 off = opt[IPOPT_OFFSET]; 19704 off--; 19705 if (optlen < IP_ADDR_LEN || 19706 off > optlen - IP_ADDR_LEN) { 19707 /* End of source route */ 19708 ip1dbg(("ip_source_routed: end of SR\n")); 19709 return (B_FALSE); 19710 } 19711 return (B_TRUE); 19712 } 19713 } 19714 ip2dbg(("not source routed\n")); 19715 return (B_FALSE); 19716 } 19717 19718 /* 19719 * Check if the packet contains any source route. 19720 */ 19721 static boolean_t 19722 ip_source_route_included(ipha_t *ipha) 19723 { 19724 ipoptp_t opts; 19725 uint8_t optval; 19726 19727 if (IS_SIMPLE_IPH(ipha)) 19728 return (B_FALSE); 19729 for (optval = ipoptp_first(&opts, ipha); 19730 optval != IPOPT_EOL; 19731 optval = ipoptp_next(&opts)) { 19732 switch (optval) { 19733 case IPOPT_SSRR: 19734 case IPOPT_LSRR: 19735 return (B_TRUE); 19736 } 19737 } 19738 return (B_FALSE); 19739 } 19740 19741 /* 19742 * Called when the IRE expiration timer fires. 19743 */ 19744 void 19745 ip_trash_timer_expire(void *args) 19746 { 19747 int flush_flag = 0; 19748 ire_expire_arg_t iea; 19749 ip_stack_t *ipst = (ip_stack_t *)args; 19750 19751 iea.iea_ipst = ipst; /* No netstack_hold */ 19752 19753 /* 19754 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19755 * This lock makes sure that a new invocation of this function 19756 * that occurs due to an almost immediate timer firing will not 19757 * progress beyond this point until the current invocation is done 19758 */ 19759 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19760 ipst->ips_ip_ire_expire_id = 0; 19761 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19762 19763 /* Periodic timer */ 19764 if (ipst->ips_ip_ire_arp_time_elapsed >= 19765 ipst->ips_ip_ire_arp_interval) { 19766 /* 19767 * Remove all IRE_CACHE entries since they might 19768 * contain arp information. 19769 */ 19770 flush_flag |= FLUSH_ARP_TIME; 19771 ipst->ips_ip_ire_arp_time_elapsed = 0; 19772 IP_STAT(ipst, ip_ire_arp_timer_expired); 19773 } 19774 if (ipst->ips_ip_ire_rd_time_elapsed >= 19775 ipst->ips_ip_ire_redir_interval) { 19776 /* Remove all redirects */ 19777 flush_flag |= FLUSH_REDIRECT_TIME; 19778 ipst->ips_ip_ire_rd_time_elapsed = 0; 19779 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19780 } 19781 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19782 ipst->ips_ip_ire_pathmtu_interval) { 19783 /* Increase path mtu */ 19784 flush_flag |= FLUSH_MTU_TIME; 19785 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19786 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19787 } 19788 19789 /* 19790 * Optimize for the case when there are no redirects in the 19791 * ftable, that is, no need to walk the ftable in that case. 19792 */ 19793 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19794 iea.iea_flush_flag = flush_flag; 19795 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19796 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19797 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19798 NULL, ALL_ZONES, ipst); 19799 } 19800 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19801 ipst->ips_ip_redirect_cnt > 0) { 19802 iea.iea_flush_flag = flush_flag; 19803 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19804 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19805 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19806 } 19807 if (flush_flag & FLUSH_MTU_TIME) { 19808 /* 19809 * Walk all IPv6 IRE's and update them 19810 * Note that ARP and redirect timers are not 19811 * needed since NUD handles stale entries. 19812 */ 19813 flush_flag = FLUSH_MTU_TIME; 19814 iea.iea_flush_flag = flush_flag; 19815 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19816 ALL_ZONES, ipst); 19817 } 19818 19819 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19820 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19821 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19822 19823 /* 19824 * Hold the lock to serialize timeout calls and prevent 19825 * stale values in ip_ire_expire_id. Otherwise it is possible 19826 * for the timer to fire and a new invocation of this function 19827 * to start before the return value of timeout has been stored 19828 * in ip_ire_expire_id by the current invocation. 19829 */ 19830 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19831 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19832 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19833 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19834 } 19835 19836 /* 19837 * Called by the memory allocator subsystem directly, when the system 19838 * is running low on memory. 19839 */ 19840 /* ARGSUSED */ 19841 void 19842 ip_trash_ire_reclaim(void *args) 19843 { 19844 netstack_handle_t nh; 19845 netstack_t *ns; 19846 19847 netstack_next_init(&nh); 19848 while ((ns = netstack_next(&nh)) != NULL) { 19849 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19850 netstack_rele(ns); 19851 } 19852 netstack_next_fini(&nh); 19853 } 19854 19855 static void 19856 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19857 { 19858 ire_cache_count_t icc; 19859 ire_cache_reclaim_t icr; 19860 ncc_cache_count_t ncc; 19861 nce_cache_reclaim_t ncr; 19862 uint_t delete_cnt; 19863 /* 19864 * Memory reclaim call back. 19865 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19866 * Then, with a target of freeing 1/Nth of IRE_CACHE 19867 * entries, determine what fraction to free for 19868 * each category of IRE_CACHE entries giving absolute priority 19869 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19870 * entry will be freed unless all offlink entries are freed). 19871 */ 19872 icc.icc_total = 0; 19873 icc.icc_unused = 0; 19874 icc.icc_offlink = 0; 19875 icc.icc_pmtu = 0; 19876 icc.icc_onlink = 0; 19877 ire_walk(ire_cache_count, (char *)&icc, ipst); 19878 19879 /* 19880 * Free NCEs for IPv6 like the onlink ires. 19881 */ 19882 ncc.ncc_total = 0; 19883 ncc.ncc_host = 0; 19884 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19885 19886 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19887 icc.icc_pmtu + icc.icc_onlink); 19888 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19889 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19890 if (delete_cnt == 0) 19891 return; 19892 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19893 /* Always delete all unused offlink entries */ 19894 icr.icr_ipst = ipst; 19895 icr.icr_unused = 1; 19896 if (delete_cnt <= icc.icc_unused) { 19897 /* 19898 * Only need to free unused entries. In other words, 19899 * there are enough unused entries to free to meet our 19900 * target number of freed ire cache entries. 19901 */ 19902 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19903 ncr.ncr_host = 0; 19904 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19905 /* 19906 * Only need to free unused entries, plus a fraction of offlink 19907 * entries. It follows from the first if statement that 19908 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19909 */ 19910 delete_cnt -= icc.icc_unused; 19911 /* Round up # deleted by truncating fraction */ 19912 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19913 icr.icr_pmtu = icr.icr_onlink = 0; 19914 ncr.ncr_host = 0; 19915 } else if (delete_cnt <= 19916 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19917 /* 19918 * Free all unused and offlink entries, plus a fraction of 19919 * pmtu entries. It follows from the previous if statement 19920 * that icc_pmtu is non-zero, and that 19921 * delete_cnt != icc_unused + icc_offlink. 19922 */ 19923 icr.icr_offlink = 1; 19924 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19925 /* Round up # deleted by truncating fraction */ 19926 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19927 icr.icr_onlink = 0; 19928 ncr.ncr_host = 0; 19929 } else { 19930 /* 19931 * Free all unused, offlink, and pmtu entries, plus a fraction 19932 * of onlink entries. If we're here, then we know that 19933 * icc_onlink is non-zero, and that 19934 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19935 */ 19936 icr.icr_offlink = icr.icr_pmtu = 1; 19937 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19938 icc.icc_pmtu; 19939 /* Round up # deleted by truncating fraction */ 19940 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19941 /* Using the same delete fraction as for onlink IREs */ 19942 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19943 } 19944 #ifdef DEBUG 19945 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19946 "fractions %d/%d/%d/%d\n", 19947 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19948 icc.icc_unused, icc.icc_offlink, 19949 icc.icc_pmtu, icc.icc_onlink, 19950 icr.icr_unused, icr.icr_offlink, 19951 icr.icr_pmtu, icr.icr_onlink)); 19952 #endif 19953 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19954 if (ncr.ncr_host != 0) 19955 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19956 (uchar_t *)&ncr, ipst); 19957 #ifdef DEBUG 19958 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19959 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19960 ire_walk(ire_cache_count, (char *)&icc, ipst); 19961 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19962 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19963 icc.icc_pmtu, icc.icc_onlink)); 19964 #endif 19965 } 19966 19967 /* 19968 * ip_unbind is called when a copy of an unbind request is received from the 19969 * upper level protocol. We remove this conn from any fanout hash list it is 19970 * on, and zero out the bind information. No reply is expected up above. 19971 */ 19972 mblk_t * 19973 ip_unbind(queue_t *q, mblk_t *mp) 19974 { 19975 conn_t *connp = Q_TO_CONN(q); 19976 19977 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19978 19979 if (is_system_labeled() && connp->conn_anon_port) { 19980 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19981 connp->conn_mlp_type, connp->conn_ulp, 19982 ntohs(connp->conn_lport), B_FALSE); 19983 connp->conn_anon_port = 0; 19984 } 19985 connp->conn_mlp_type = mlptSingle; 19986 19987 ipcl_hash_remove(connp); 19988 19989 ASSERT(mp->b_cont == NULL); 19990 /* 19991 * Convert mp into a T_OK_ACK 19992 */ 19993 mp = mi_tpi_ok_ack_alloc(mp); 19994 19995 /* 19996 * should not happen in practice... T_OK_ACK is smaller than the 19997 * original message. 19998 */ 19999 if (mp == NULL) 20000 return (NULL); 20001 20002 return (mp); 20003 } 20004 20005 /* 20006 * Write side put procedure. Outbound data, IOCTLs, responses from 20007 * resolvers, etc, come down through here. 20008 * 20009 * arg2 is always a queue_t *. 20010 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20011 * the zoneid. 20012 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20013 */ 20014 void 20015 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20016 { 20017 ip_output_options(arg, mp, arg2, caller, &zero_info); 20018 } 20019 20020 void 20021 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20022 ip_opt_info_t *infop) 20023 { 20024 conn_t *connp = NULL; 20025 queue_t *q = (queue_t *)arg2; 20026 ipha_t *ipha; 20027 #define rptr ((uchar_t *)ipha) 20028 ire_t *ire = NULL; 20029 ire_t *sctp_ire = NULL; 20030 uint32_t v_hlen_tos_len; 20031 ipaddr_t dst; 20032 mblk_t *first_mp = NULL; 20033 boolean_t mctl_present; 20034 ipsec_out_t *io; 20035 int match_flags; 20036 ill_t *attach_ill = NULL; 20037 /* Bind to IPIF_NOFAILOVER ill etc. */ 20038 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20039 ipif_t *dst_ipif; 20040 boolean_t multirt_need_resolve = B_FALSE; 20041 mblk_t *copy_mp = NULL; 20042 int err; 20043 zoneid_t zoneid; 20044 int adjust; 20045 uint16_t iplen; 20046 boolean_t need_decref = B_FALSE; 20047 boolean_t ignore_dontroute = B_FALSE; 20048 boolean_t ignore_nexthop = B_FALSE; 20049 boolean_t ip_nexthop = B_FALSE; 20050 ipaddr_t nexthop_addr; 20051 ip_stack_t *ipst; 20052 20053 #ifdef _BIG_ENDIAN 20054 #define V_HLEN (v_hlen_tos_len >> 24) 20055 #else 20056 #define V_HLEN (v_hlen_tos_len & 0xFF) 20057 #endif 20058 20059 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20060 "ip_wput_start: q %p", q); 20061 20062 /* 20063 * ip_wput fast path 20064 */ 20065 20066 /* is packet from ARP ? */ 20067 if (q->q_next != NULL) { 20068 zoneid = (zoneid_t)(uintptr_t)arg; 20069 goto qnext; 20070 } 20071 20072 connp = (conn_t *)arg; 20073 ASSERT(connp != NULL); 20074 zoneid = connp->conn_zoneid; 20075 ipst = connp->conn_netstack->netstack_ip; 20076 20077 /* is queue flow controlled? */ 20078 if ((q->q_first != NULL || connp->conn_draining) && 20079 (caller == IP_WPUT)) { 20080 ASSERT(!need_decref); 20081 (void) putq(q, mp); 20082 return; 20083 } 20084 20085 /* Multidata transmit? */ 20086 if (DB_TYPE(mp) == M_MULTIDATA) { 20087 /* 20088 * We should never get here, since all Multidata messages 20089 * originating from tcp should have been directed over to 20090 * tcp_multisend() in the first place. 20091 */ 20092 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20093 freemsg(mp); 20094 return; 20095 } else if (DB_TYPE(mp) != M_DATA) 20096 goto notdata; 20097 20098 if (mp->b_flag & MSGHASREF) { 20099 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20100 mp->b_flag &= ~MSGHASREF; 20101 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20102 need_decref = B_TRUE; 20103 } 20104 ipha = (ipha_t *)mp->b_rptr; 20105 20106 /* is IP header non-aligned or mblk smaller than basic IP header */ 20107 #ifndef SAFETY_BEFORE_SPEED 20108 if (!OK_32PTR(rptr) || 20109 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20110 goto hdrtoosmall; 20111 #endif 20112 20113 ASSERT(OK_32PTR(ipha)); 20114 20115 /* 20116 * This function assumes that mp points to an IPv4 packet. If it's the 20117 * wrong version, we'll catch it again in ip_output_v6. 20118 * 20119 * Note that this is *only* locally-generated output here, and never 20120 * forwarded data, and that we need to deal only with transports that 20121 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20122 * label.) 20123 */ 20124 if (is_system_labeled() && 20125 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20126 !connp->conn_ulp_labeled) { 20127 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20128 connp->conn_mac_exempt, ipst); 20129 ipha = (ipha_t *)mp->b_rptr; 20130 if (err != 0) { 20131 first_mp = mp; 20132 if (err == EINVAL) 20133 goto icmp_parameter_problem; 20134 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20135 goto discard_pkt; 20136 } 20137 iplen = ntohs(ipha->ipha_length) + adjust; 20138 ipha->ipha_length = htons(iplen); 20139 } 20140 20141 ASSERT(infop != NULL); 20142 20143 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20144 /* 20145 * IP_PKTINFO ancillary option is present. 20146 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20147 * allows using address of any zone as the source address. 20148 */ 20149 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20150 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20151 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20152 if (ire == NULL) 20153 goto drop_pkt; 20154 ire_refrele(ire); 20155 ire = NULL; 20156 } 20157 20158 /* 20159 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20160 * passed in IP_PKTINFO. 20161 */ 20162 if (infop->ip_opt_ill_index != 0 && 20163 connp->conn_outgoing_ill == NULL && 20164 connp->conn_nofailover_ill == NULL) { 20165 20166 xmit_ill = ill_lookup_on_ifindex( 20167 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20168 ipst); 20169 20170 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20171 goto drop_pkt; 20172 /* 20173 * check that there is an ipif belonging 20174 * to our zone. IPCL_ZONEID is not used because 20175 * IP_ALLZONES option is valid only when the ill is 20176 * accessible from all zones i.e has a valid ipif in 20177 * all zones. 20178 */ 20179 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20180 goto drop_pkt; 20181 } 20182 } 20183 20184 /* 20185 * If there is a policy, try to attach an ipsec_out in 20186 * the front. At the end, first_mp either points to a 20187 * M_DATA message or IPSEC_OUT message linked to a 20188 * M_DATA message. We have to do it now as we might 20189 * lose the "conn" if we go through ip_newroute. 20190 */ 20191 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20192 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20193 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20194 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20195 if (need_decref) 20196 CONN_DEC_REF(connp); 20197 return; 20198 } else { 20199 ASSERT(mp->b_datap->db_type == M_CTL); 20200 first_mp = mp; 20201 mp = mp->b_cont; 20202 mctl_present = B_TRUE; 20203 } 20204 } else { 20205 first_mp = mp; 20206 mctl_present = B_FALSE; 20207 } 20208 20209 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20210 20211 /* is wrong version or IP options present */ 20212 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20213 goto version_hdrlen_check; 20214 dst = ipha->ipha_dst; 20215 20216 if (connp->conn_nofailover_ill != NULL) { 20217 attach_ill = conn_get_held_ill(connp, 20218 &connp->conn_nofailover_ill, &err); 20219 if (err == ILL_LOOKUP_FAILED) { 20220 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20221 if (need_decref) 20222 CONN_DEC_REF(connp); 20223 freemsg(first_mp); 20224 return; 20225 } 20226 } 20227 20228 /* If IP_BOUND_IF has been set, use that ill. */ 20229 if (connp->conn_outgoing_ill != NULL) { 20230 xmit_ill = conn_get_held_ill(connp, 20231 &connp->conn_outgoing_ill, &err); 20232 if (err == ILL_LOOKUP_FAILED) 20233 goto drop_pkt; 20234 20235 goto send_from_ill; 20236 } 20237 20238 /* is packet multicast? */ 20239 if (CLASSD(dst)) 20240 goto multicast; 20241 20242 /* 20243 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20244 * takes precedence over conn_dontroute and conn_nexthop_set 20245 */ 20246 if (xmit_ill != NULL) 20247 goto send_from_ill; 20248 20249 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20250 /* 20251 * If the destination is a broadcast, local, or loopback 20252 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20253 * standard path. 20254 */ 20255 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20256 if ((ire == NULL) || (ire->ire_type & 20257 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20258 if (ire != NULL) { 20259 ire_refrele(ire); 20260 /* No more access to ire */ 20261 ire = NULL; 20262 } 20263 /* 20264 * bypass routing checks and go directly to interface. 20265 */ 20266 if (connp->conn_dontroute) 20267 goto dontroute; 20268 20269 ASSERT(connp->conn_nexthop_set); 20270 ip_nexthop = B_TRUE; 20271 nexthop_addr = connp->conn_nexthop_v4; 20272 goto send_from_ill; 20273 } 20274 20275 /* Must be a broadcast, a loopback or a local ire */ 20276 ire_refrele(ire); 20277 /* No more access to ire */ 20278 ire = NULL; 20279 } 20280 20281 if (attach_ill != NULL) 20282 goto send_from_ill; 20283 20284 /* 20285 * We cache IRE_CACHEs to avoid lookups. We don't do 20286 * this for the tcp global queue and listen end point 20287 * as it does not really have a real destination to 20288 * talk to. This is also true for SCTP. 20289 */ 20290 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20291 !connp->conn_fully_bound) { 20292 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20293 if (ire == NULL) 20294 goto noirefound; 20295 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20296 "ip_wput_end: q %p (%S)", q, "end"); 20297 20298 /* 20299 * Check if the ire has the RTF_MULTIRT flag, inherited 20300 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20301 */ 20302 if (ire->ire_flags & RTF_MULTIRT) { 20303 20304 /* 20305 * Force the TTL of multirouted packets if required. 20306 * The TTL of such packets is bounded by the 20307 * ip_multirt_ttl ndd variable. 20308 */ 20309 if ((ipst->ips_ip_multirt_ttl > 0) && 20310 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20311 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20312 "(was %d), dst 0x%08x\n", 20313 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20314 ntohl(ire->ire_addr))); 20315 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20316 } 20317 /* 20318 * We look at this point if there are pending 20319 * unresolved routes. ire_multirt_resolvable() 20320 * checks in O(n) that all IRE_OFFSUBNET ire 20321 * entries for the packet's destination and 20322 * flagged RTF_MULTIRT are currently resolved. 20323 * If some remain unresolved, we make a copy 20324 * of the current message. It will be used 20325 * to initiate additional route resolutions. 20326 */ 20327 multirt_need_resolve = 20328 ire_multirt_need_resolve(ire->ire_addr, 20329 MBLK_GETLABEL(first_mp), ipst); 20330 ip2dbg(("ip_wput[TCP]: ire %p, " 20331 "multirt_need_resolve %d, first_mp %p\n", 20332 (void *)ire, multirt_need_resolve, 20333 (void *)first_mp)); 20334 if (multirt_need_resolve) { 20335 copy_mp = copymsg(first_mp); 20336 if (copy_mp != NULL) { 20337 MULTIRT_DEBUG_TAG(copy_mp); 20338 } 20339 } 20340 } 20341 20342 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20343 20344 /* 20345 * Try to resolve another multiroute if 20346 * ire_multirt_need_resolve() deemed it necessary. 20347 */ 20348 if (copy_mp != NULL) 20349 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20350 if (need_decref) 20351 CONN_DEC_REF(connp); 20352 return; 20353 } 20354 20355 /* 20356 * Access to conn_ire_cache. (protected by conn_lock) 20357 * 20358 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20359 * the ire bucket lock here to check for CONDEMNED as it is okay to 20360 * send a packet or two with the IRE_CACHE that is going away. 20361 * Access to the ire requires an ire refhold on the ire prior to 20362 * its use since an interface unplumb thread may delete the cached 20363 * ire and release the refhold at any time. 20364 * 20365 * Caching an ire in the conn_ire_cache 20366 * 20367 * o Caching an ire pointer in the conn requires a strict check for 20368 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20369 * ires before cleaning up the conns. So the caching of an ire pointer 20370 * in the conn is done after making sure under the bucket lock that the 20371 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20372 * caching an ire after the unplumb thread has cleaned up the conn. 20373 * If the conn does not send a packet subsequently the unplumb thread 20374 * will be hanging waiting for the ire count to drop to zero. 20375 * 20376 * o We also need to atomically test for a null conn_ire_cache and 20377 * set the conn_ire_cache under the the protection of the conn_lock 20378 * to avoid races among concurrent threads trying to simultaneously 20379 * cache an ire in the conn_ire_cache. 20380 */ 20381 mutex_enter(&connp->conn_lock); 20382 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20383 20384 if (ire != NULL && ire->ire_addr == dst && 20385 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20386 20387 IRE_REFHOLD(ire); 20388 mutex_exit(&connp->conn_lock); 20389 20390 } else { 20391 boolean_t cached = B_FALSE; 20392 connp->conn_ire_cache = NULL; 20393 mutex_exit(&connp->conn_lock); 20394 /* Release the old ire */ 20395 if (ire != NULL && sctp_ire == NULL) 20396 IRE_REFRELE_NOTR(ire); 20397 20398 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20399 if (ire == NULL) 20400 goto noirefound; 20401 IRE_REFHOLD_NOTR(ire); 20402 20403 mutex_enter(&connp->conn_lock); 20404 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20405 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20406 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20407 if (connp->conn_ulp == IPPROTO_TCP) 20408 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20409 connp->conn_ire_cache = ire; 20410 cached = B_TRUE; 20411 } 20412 rw_exit(&ire->ire_bucket->irb_lock); 20413 } 20414 mutex_exit(&connp->conn_lock); 20415 20416 /* 20417 * We can continue to use the ire but since it was 20418 * not cached, we should drop the extra reference. 20419 */ 20420 if (!cached) 20421 IRE_REFRELE_NOTR(ire); 20422 } 20423 20424 20425 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20426 "ip_wput_end: q %p (%S)", q, "end"); 20427 20428 /* 20429 * Check if the ire has the RTF_MULTIRT flag, inherited 20430 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20431 */ 20432 if (ire->ire_flags & RTF_MULTIRT) { 20433 20434 /* 20435 * Force the TTL of multirouted packets if required. 20436 * The TTL of such packets is bounded by the 20437 * ip_multirt_ttl ndd variable. 20438 */ 20439 if ((ipst->ips_ip_multirt_ttl > 0) && 20440 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20441 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20442 "(was %d), dst 0x%08x\n", 20443 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20444 ntohl(ire->ire_addr))); 20445 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20446 } 20447 20448 /* 20449 * At this point, we check to see if there are any pending 20450 * unresolved routes. ire_multirt_resolvable() 20451 * checks in O(n) that all IRE_OFFSUBNET ire 20452 * entries for the packet's destination and 20453 * flagged RTF_MULTIRT are currently resolved. 20454 * If some remain unresolved, we make a copy 20455 * of the current message. It will be used 20456 * to initiate additional route resolutions. 20457 */ 20458 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20459 MBLK_GETLABEL(first_mp), ipst); 20460 ip2dbg(("ip_wput[not TCP]: ire %p, " 20461 "multirt_need_resolve %d, first_mp %p\n", 20462 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20463 if (multirt_need_resolve) { 20464 copy_mp = copymsg(first_mp); 20465 if (copy_mp != NULL) { 20466 MULTIRT_DEBUG_TAG(copy_mp); 20467 } 20468 } 20469 } 20470 20471 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20472 20473 /* 20474 * Try to resolve another multiroute if 20475 * ire_multirt_resolvable() deemed it necessary 20476 */ 20477 if (copy_mp != NULL) 20478 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20479 if (need_decref) 20480 CONN_DEC_REF(connp); 20481 return; 20482 20483 qnext: 20484 /* 20485 * Upper Level Protocols pass down complete IP datagrams 20486 * as M_DATA messages. Everything else is a sideshow. 20487 * 20488 * 1) We could be re-entering ip_wput because of ip_neworute 20489 * in which case we could have a IPSEC_OUT message. We 20490 * need to pass through ip_wput like other datagrams and 20491 * hence cannot branch to ip_wput_nondata. 20492 * 20493 * 2) ARP, AH, ESP, and other clients who are on the module 20494 * instance of IP stream, give us something to deal with. 20495 * We will handle AH and ESP here and rest in ip_wput_nondata. 20496 * 20497 * 3) ICMP replies also could come here. 20498 */ 20499 ipst = ILLQ_TO_IPST(q); 20500 20501 if (DB_TYPE(mp) != M_DATA) { 20502 notdata: 20503 if (DB_TYPE(mp) == M_CTL) { 20504 /* 20505 * M_CTL messages are used by ARP, AH and ESP to 20506 * communicate with IP. We deal with IPSEC_IN and 20507 * IPSEC_OUT here. ip_wput_nondata handles other 20508 * cases. 20509 */ 20510 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20511 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20512 first_mp = mp->b_cont; 20513 first_mp->b_flag &= ~MSGHASREF; 20514 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20515 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20516 CONN_DEC_REF(connp); 20517 connp = NULL; 20518 } 20519 if (ii->ipsec_info_type == IPSEC_IN) { 20520 /* 20521 * Either this message goes back to 20522 * IPsec for further processing or to 20523 * ULP after policy checks. 20524 */ 20525 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20526 return; 20527 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20528 io = (ipsec_out_t *)ii; 20529 if (io->ipsec_out_proc_begin) { 20530 /* 20531 * IPsec processing has already started. 20532 * Complete it. 20533 * IPQoS notes: We don't care what is 20534 * in ipsec_out_ill_index since this 20535 * won't be processed for IPQoS policies 20536 * in ipsec_out_process. 20537 */ 20538 ipsec_out_process(q, mp, NULL, 20539 io->ipsec_out_ill_index); 20540 return; 20541 } else { 20542 connp = (q->q_next != NULL) ? 20543 NULL : Q_TO_CONN(q); 20544 first_mp = mp; 20545 mp = mp->b_cont; 20546 mctl_present = B_TRUE; 20547 } 20548 zoneid = io->ipsec_out_zoneid; 20549 ASSERT(zoneid != ALL_ZONES); 20550 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20551 /* 20552 * It's an IPsec control message requesting 20553 * an SADB update to be sent to the IPsec 20554 * hardware acceleration capable ills. 20555 */ 20556 ipsec_ctl_t *ipsec_ctl = 20557 (ipsec_ctl_t *)mp->b_rptr; 20558 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20559 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20560 mblk_t *cmp = mp->b_cont; 20561 20562 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20563 ASSERT(cmp != NULL); 20564 20565 freeb(mp); 20566 ill_ipsec_capab_send_all(satype, cmp, sa, 20567 ipst->ips_netstack); 20568 return; 20569 } else { 20570 /* 20571 * This must be ARP or special TSOL signaling. 20572 */ 20573 ip_wput_nondata(NULL, q, mp, NULL); 20574 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20575 "ip_wput_end: q %p (%S)", q, "nondata"); 20576 return; 20577 } 20578 } else { 20579 /* 20580 * This must be non-(ARP/AH/ESP) messages. 20581 */ 20582 ASSERT(!need_decref); 20583 ip_wput_nondata(NULL, q, mp, NULL); 20584 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20585 "ip_wput_end: q %p (%S)", q, "nondata"); 20586 return; 20587 } 20588 } else { 20589 first_mp = mp; 20590 mctl_present = B_FALSE; 20591 } 20592 20593 ASSERT(first_mp != NULL); 20594 /* 20595 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20596 * to make sure that this packet goes out on the same interface it 20597 * came in. We handle that here. 20598 */ 20599 if (mctl_present) { 20600 uint_t ifindex; 20601 20602 io = (ipsec_out_t *)first_mp->b_rptr; 20603 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20604 /* 20605 * We may have lost the conn context if we are 20606 * coming here from ip_newroute(). Copy the 20607 * nexthop information. 20608 */ 20609 if (io->ipsec_out_ip_nexthop) { 20610 ip_nexthop = B_TRUE; 20611 nexthop_addr = io->ipsec_out_nexthop_addr; 20612 20613 ipha = (ipha_t *)mp->b_rptr; 20614 dst = ipha->ipha_dst; 20615 goto send_from_ill; 20616 } else { 20617 ASSERT(io->ipsec_out_ill_index != 0); 20618 ifindex = io->ipsec_out_ill_index; 20619 attach_ill = ill_lookup_on_ifindex(ifindex, 20620 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20621 if (attach_ill == NULL) { 20622 ASSERT(xmit_ill == NULL); 20623 ip1dbg(("ip_output: bad ifindex for " 20624 "(BIND TO IPIF_NOFAILOVER) %d\n", 20625 ifindex)); 20626 freemsg(first_mp); 20627 BUMP_MIB(&ipst->ips_ip_mib, 20628 ipIfStatsOutDiscards); 20629 ASSERT(!need_decref); 20630 return; 20631 } 20632 } 20633 } 20634 } 20635 20636 ASSERT(xmit_ill == NULL); 20637 20638 /* We have a complete IP datagram heading outbound. */ 20639 ipha = (ipha_t *)mp->b_rptr; 20640 20641 #ifndef SPEED_BEFORE_SAFETY 20642 /* 20643 * Make sure we have a full-word aligned message and that at least 20644 * a simple IP header is accessible in the first message. If not, 20645 * try a pullup. 20646 */ 20647 if (!OK_32PTR(rptr) || 20648 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20649 hdrtoosmall: 20650 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20651 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20652 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20653 if (first_mp == NULL) 20654 first_mp = mp; 20655 goto discard_pkt; 20656 } 20657 20658 /* This function assumes that mp points to an IPv4 packet. */ 20659 if (is_system_labeled() && q->q_next == NULL && 20660 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20661 !connp->conn_ulp_labeled) { 20662 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20663 &adjust, connp->conn_mac_exempt, ipst); 20664 ipha = (ipha_t *)mp->b_rptr; 20665 if (first_mp != NULL) 20666 first_mp->b_cont = mp; 20667 if (err != 0) { 20668 if (first_mp == NULL) 20669 first_mp = mp; 20670 if (err == EINVAL) 20671 goto icmp_parameter_problem; 20672 ip2dbg(("ip_wput: label check failed (%d)\n", 20673 err)); 20674 goto discard_pkt; 20675 } 20676 iplen = ntohs(ipha->ipha_length) + adjust; 20677 ipha->ipha_length = htons(iplen); 20678 } 20679 20680 ipha = (ipha_t *)mp->b_rptr; 20681 if (first_mp == NULL) { 20682 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20683 /* 20684 * If we got here because of "goto hdrtoosmall" 20685 * We need to attach a IPSEC_OUT. 20686 */ 20687 if (connp->conn_out_enforce_policy) { 20688 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20689 NULL, ipha->ipha_protocol, 20690 ipst->ips_netstack)) == NULL)) { 20691 BUMP_MIB(&ipst->ips_ip_mib, 20692 ipIfStatsOutDiscards); 20693 if (need_decref) 20694 CONN_DEC_REF(connp); 20695 return; 20696 } else { 20697 ASSERT(mp->b_datap->db_type == M_CTL); 20698 first_mp = mp; 20699 mp = mp->b_cont; 20700 mctl_present = B_TRUE; 20701 } 20702 } else { 20703 first_mp = mp; 20704 mctl_present = B_FALSE; 20705 } 20706 } 20707 } 20708 #endif 20709 20710 /* Most of the code below is written for speed, not readability */ 20711 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20712 20713 /* 20714 * If ip_newroute() fails, we're going to need a full 20715 * header for the icmp wraparound. 20716 */ 20717 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20718 uint_t v_hlen; 20719 version_hdrlen_check: 20720 ASSERT(first_mp != NULL); 20721 v_hlen = V_HLEN; 20722 /* 20723 * siphon off IPv6 packets coming down from transport 20724 * layer modules here. 20725 * Note: high-order bit carries NUD reachability confirmation 20726 */ 20727 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20728 /* 20729 * FIXME: assume that callers of ip_output* call 20730 * the right version? 20731 */ 20732 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20733 ASSERT(xmit_ill == NULL); 20734 if (attach_ill != NULL) 20735 ill_refrele(attach_ill); 20736 if (need_decref) 20737 mp->b_flag |= MSGHASREF; 20738 (void) ip_output_v6(arg, first_mp, arg2, caller); 20739 return; 20740 } 20741 20742 if ((v_hlen >> 4) != IP_VERSION) { 20743 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20744 "ip_wput_end: q %p (%S)", q, "badvers"); 20745 goto discard_pkt; 20746 } 20747 /* 20748 * Is the header length at least 20 bytes? 20749 * 20750 * Are there enough bytes accessible in the header? If 20751 * not, try a pullup. 20752 */ 20753 v_hlen &= 0xF; 20754 v_hlen <<= 2; 20755 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20756 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20757 "ip_wput_end: q %p (%S)", q, "badlen"); 20758 goto discard_pkt; 20759 } 20760 if (v_hlen > (mp->b_wptr - rptr)) { 20761 if (!pullupmsg(mp, v_hlen)) { 20762 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20763 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20764 goto discard_pkt; 20765 } 20766 ipha = (ipha_t *)mp->b_rptr; 20767 } 20768 /* 20769 * Move first entry from any source route into ipha_dst and 20770 * verify the options 20771 */ 20772 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20773 zoneid, ipst)) { 20774 ASSERT(xmit_ill == NULL); 20775 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20776 if (attach_ill != NULL) 20777 ill_refrele(attach_ill); 20778 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20779 "ip_wput_end: q %p (%S)", q, "badopts"); 20780 if (need_decref) 20781 CONN_DEC_REF(connp); 20782 return; 20783 } 20784 } 20785 dst = ipha->ipha_dst; 20786 20787 /* 20788 * Try to get an IRE_CACHE for the destination address. If we can't, 20789 * we have to run the packet through ip_newroute which will take 20790 * the appropriate action to arrange for an IRE_CACHE, such as querying 20791 * a resolver, or assigning a default gateway, etc. 20792 */ 20793 if (CLASSD(dst)) { 20794 ipif_t *ipif; 20795 uint32_t setsrc = 0; 20796 20797 multicast: 20798 ASSERT(first_mp != NULL); 20799 ip2dbg(("ip_wput: CLASSD\n")); 20800 if (connp == NULL) { 20801 /* 20802 * Use the first good ipif on the ill. 20803 * XXX Should this ever happen? (Appears 20804 * to show up with just ppp and no ethernet due 20805 * to in.rdisc.) 20806 * However, ire_send should be able to 20807 * call ip_wput_ire directly. 20808 * 20809 * XXX Also, this can happen for ICMP and other packets 20810 * with multicast source addresses. Perhaps we should 20811 * fix things so that we drop the packet in question, 20812 * but for now, just run with it. 20813 */ 20814 ill_t *ill = (ill_t *)q->q_ptr; 20815 20816 /* 20817 * Don't honor attach_if for this case. If ill 20818 * is part of the group, ipif could belong to 20819 * any ill and we cannot maintain attach_ill 20820 * and ipif_ill same anymore and the assert 20821 * below would fail. 20822 */ 20823 if (mctl_present && io->ipsec_out_attach_if) { 20824 io->ipsec_out_ill_index = 0; 20825 io->ipsec_out_attach_if = B_FALSE; 20826 ASSERT(attach_ill != NULL); 20827 ill_refrele(attach_ill); 20828 attach_ill = NULL; 20829 } 20830 20831 ASSERT(attach_ill == NULL); 20832 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20833 if (ipif == NULL) { 20834 if (need_decref) 20835 CONN_DEC_REF(connp); 20836 freemsg(first_mp); 20837 return; 20838 } 20839 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20840 ntohl(dst), ill->ill_name)); 20841 } else { 20842 /* 20843 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20844 * and IP_MULTICAST_IF. The block comment above this 20845 * function explains the locking mechanism used here. 20846 */ 20847 if (xmit_ill == NULL) { 20848 xmit_ill = conn_get_held_ill(connp, 20849 &connp->conn_outgoing_ill, &err); 20850 if (err == ILL_LOOKUP_FAILED) { 20851 ip1dbg(("ip_wput: No ill for " 20852 "IP_BOUND_IF\n")); 20853 BUMP_MIB(&ipst->ips_ip_mib, 20854 ipIfStatsOutNoRoutes); 20855 goto drop_pkt; 20856 } 20857 } 20858 20859 if (xmit_ill == NULL) { 20860 ipif = conn_get_held_ipif(connp, 20861 &connp->conn_multicast_ipif, &err); 20862 if (err == IPIF_LOOKUP_FAILED) { 20863 ip1dbg(("ip_wput: No ipif for " 20864 "multicast\n")); 20865 BUMP_MIB(&ipst->ips_ip_mib, 20866 ipIfStatsOutNoRoutes); 20867 goto drop_pkt; 20868 } 20869 } 20870 if (xmit_ill != NULL) { 20871 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20872 if (ipif == NULL) { 20873 ip1dbg(("ip_wput: No ipif for " 20874 "xmit_ill\n")); 20875 BUMP_MIB(&ipst->ips_ip_mib, 20876 ipIfStatsOutNoRoutes); 20877 goto drop_pkt; 20878 } 20879 } else if (ipif == NULL || ipif->ipif_isv6) { 20880 /* 20881 * We must do this ipif determination here 20882 * else we could pass through ip_newroute 20883 * and come back here without the conn context. 20884 * 20885 * Note: we do late binding i.e. we bind to 20886 * the interface when the first packet is sent. 20887 * For performance reasons we do not rebind on 20888 * each packet but keep the binding until the 20889 * next IP_MULTICAST_IF option. 20890 * 20891 * conn_multicast_{ipif,ill} are shared between 20892 * IPv4 and IPv6 and AF_INET6 sockets can 20893 * send both IPv4 and IPv6 packets. Hence 20894 * we have to check that "isv6" matches above. 20895 */ 20896 if (ipif != NULL) 20897 ipif_refrele(ipif); 20898 ipif = ipif_lookup_group(dst, zoneid, ipst); 20899 if (ipif == NULL) { 20900 ip1dbg(("ip_wput: No ipif for " 20901 "multicast\n")); 20902 BUMP_MIB(&ipst->ips_ip_mib, 20903 ipIfStatsOutNoRoutes); 20904 goto drop_pkt; 20905 } 20906 err = conn_set_held_ipif(connp, 20907 &connp->conn_multicast_ipif, ipif); 20908 if (err == IPIF_LOOKUP_FAILED) { 20909 ipif_refrele(ipif); 20910 ip1dbg(("ip_wput: No ipif for " 20911 "multicast\n")); 20912 BUMP_MIB(&ipst->ips_ip_mib, 20913 ipIfStatsOutNoRoutes); 20914 goto drop_pkt; 20915 } 20916 } 20917 } 20918 ASSERT(!ipif->ipif_isv6); 20919 /* 20920 * As we may lose the conn by the time we reach ip_wput_ire, 20921 * we copy conn_multicast_loop and conn_dontroute on to an 20922 * ipsec_out. In case if this datagram goes out secure, 20923 * we need the ill_index also. Copy that also into the 20924 * ipsec_out. 20925 */ 20926 if (mctl_present) { 20927 io = (ipsec_out_t *)first_mp->b_rptr; 20928 ASSERT(first_mp->b_datap->db_type == M_CTL); 20929 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20930 } else { 20931 ASSERT(mp == first_mp); 20932 if ((first_mp = allocb(sizeof (ipsec_info_t), 20933 BPRI_HI)) == NULL) { 20934 ipif_refrele(ipif); 20935 first_mp = mp; 20936 goto discard_pkt; 20937 } 20938 first_mp->b_datap->db_type = M_CTL; 20939 first_mp->b_wptr += sizeof (ipsec_info_t); 20940 /* ipsec_out_secure is B_FALSE now */ 20941 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20942 io = (ipsec_out_t *)first_mp->b_rptr; 20943 io->ipsec_out_type = IPSEC_OUT; 20944 io->ipsec_out_len = sizeof (ipsec_out_t); 20945 io->ipsec_out_use_global_policy = B_TRUE; 20946 io->ipsec_out_ns = ipst->ips_netstack; 20947 first_mp->b_cont = mp; 20948 mctl_present = B_TRUE; 20949 } 20950 if (attach_ill != NULL) { 20951 ASSERT(attach_ill == ipif->ipif_ill); 20952 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20953 20954 /* 20955 * Check if we need an ire that will not be 20956 * looked up by anybody else i.e. HIDDEN. 20957 */ 20958 if (ill_is_probeonly(attach_ill)) { 20959 match_flags |= MATCH_IRE_MARK_HIDDEN; 20960 } 20961 io->ipsec_out_ill_index = 20962 attach_ill->ill_phyint->phyint_ifindex; 20963 io->ipsec_out_attach_if = B_TRUE; 20964 } else { 20965 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20966 io->ipsec_out_ill_index = 20967 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20968 } 20969 if (connp != NULL) { 20970 io->ipsec_out_multicast_loop = 20971 connp->conn_multicast_loop; 20972 io->ipsec_out_dontroute = connp->conn_dontroute; 20973 io->ipsec_out_zoneid = connp->conn_zoneid; 20974 } 20975 /* 20976 * If the application uses IP_MULTICAST_IF with 20977 * different logical addresses of the same ILL, we 20978 * need to make sure that the soruce address of 20979 * the packet matches the logical IP address used 20980 * in the option. We do it by initializing ipha_src 20981 * here. This should keep IPsec also happy as 20982 * when we return from IPsec processing, we don't 20983 * have to worry about getting the right address on 20984 * the packet. Thus it is sufficient to look for 20985 * IRE_CACHE using MATCH_IRE_ILL rathen than 20986 * MATCH_IRE_IPIF. 20987 * 20988 * NOTE : We need to do it for non-secure case also as 20989 * this might go out secure if there is a global policy 20990 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20991 * address, the source should be initialized already and 20992 * hence we won't be initializing here. 20993 * 20994 * As we do not have the ire yet, it is possible that 20995 * we set the source address here and then later discover 20996 * that the ire implies the source address to be assigned 20997 * through the RTF_SETSRC flag. 20998 * In that case, the setsrc variable will remind us 20999 * that overwritting the source address by the one 21000 * of the RTF_SETSRC-flagged ire is allowed. 21001 */ 21002 if (ipha->ipha_src == INADDR_ANY && 21003 (connp == NULL || !connp->conn_unspec_src)) { 21004 ipha->ipha_src = ipif->ipif_src_addr; 21005 setsrc = RTF_SETSRC; 21006 } 21007 /* 21008 * Find an IRE which matches the destination and the outgoing 21009 * queue (i.e. the outgoing interface.) 21010 * For loopback use a unicast IP address for 21011 * the ire lookup. 21012 */ 21013 if (IS_LOOPBACK(ipif->ipif_ill)) 21014 dst = ipif->ipif_lcl_addr; 21015 21016 /* 21017 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21018 * We don't need to lookup ire in ctable as the packet 21019 * needs to be sent to the destination through the specified 21020 * ill irrespective of ires in the cache table. 21021 */ 21022 ire = NULL; 21023 if (xmit_ill == NULL) { 21024 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21025 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21026 } 21027 21028 /* 21029 * refrele attach_ill as its not needed anymore. 21030 */ 21031 if (attach_ill != NULL) { 21032 ill_refrele(attach_ill); 21033 attach_ill = NULL; 21034 } 21035 21036 if (ire == NULL) { 21037 /* 21038 * Multicast loopback and multicast forwarding is 21039 * done in ip_wput_ire. 21040 * 21041 * Mark this packet to make it be delivered to 21042 * ip_wput_ire after the new ire has been 21043 * created. 21044 * 21045 * The call to ip_newroute_ipif takes into account 21046 * the setsrc reminder. In any case, we take care 21047 * of the RTF_MULTIRT flag. 21048 */ 21049 mp->b_prev = mp->b_next = NULL; 21050 if (xmit_ill == NULL || 21051 xmit_ill->ill_ipif_up_count > 0) { 21052 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21053 setsrc | RTF_MULTIRT, zoneid, infop); 21054 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21055 "ip_wput_end: q %p (%S)", q, "noire"); 21056 } else { 21057 freemsg(first_mp); 21058 } 21059 ipif_refrele(ipif); 21060 if (xmit_ill != NULL) 21061 ill_refrele(xmit_ill); 21062 if (need_decref) 21063 CONN_DEC_REF(connp); 21064 return; 21065 } 21066 21067 ipif_refrele(ipif); 21068 ipif = NULL; 21069 ASSERT(xmit_ill == NULL); 21070 21071 /* 21072 * Honor the RTF_SETSRC flag for multicast packets, 21073 * if allowed by the setsrc reminder. 21074 */ 21075 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21076 ipha->ipha_src = ire->ire_src_addr; 21077 } 21078 21079 /* 21080 * Unconditionally force the TTL to 1 for 21081 * multirouted multicast packets: 21082 * multirouted multicast should not cross 21083 * multicast routers. 21084 */ 21085 if (ire->ire_flags & RTF_MULTIRT) { 21086 if (ipha->ipha_ttl > 1) { 21087 ip2dbg(("ip_wput: forcing multicast " 21088 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21089 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21090 ipha->ipha_ttl = 1; 21091 } 21092 } 21093 } else { 21094 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21095 if ((ire != NULL) && (ire->ire_type & 21096 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21097 ignore_dontroute = B_TRUE; 21098 ignore_nexthop = B_TRUE; 21099 } 21100 if (ire != NULL) { 21101 ire_refrele(ire); 21102 ire = NULL; 21103 } 21104 /* 21105 * Guard against coming in from arp in which case conn is NULL. 21106 * Also guard against non M_DATA with dontroute set but 21107 * destined to local, loopback or broadcast addresses. 21108 */ 21109 if (connp != NULL && connp->conn_dontroute && 21110 !ignore_dontroute) { 21111 dontroute: 21112 /* 21113 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21114 * routing protocols from seeing false direct 21115 * connectivity. 21116 */ 21117 ipha->ipha_ttl = 1; 21118 21119 /* If suitable ipif not found, drop packet */ 21120 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21121 if (dst_ipif == NULL) { 21122 noroute: 21123 ip1dbg(("ip_wput: no route for dst using" 21124 " SO_DONTROUTE\n")); 21125 BUMP_MIB(&ipst->ips_ip_mib, 21126 ipIfStatsOutNoRoutes); 21127 mp->b_prev = mp->b_next = NULL; 21128 if (first_mp == NULL) 21129 first_mp = mp; 21130 goto drop_pkt; 21131 } else { 21132 /* 21133 * If suitable ipif has been found, set 21134 * xmit_ill to the corresponding 21135 * ipif_ill because we'll be using the 21136 * send_from_ill logic below. 21137 */ 21138 ASSERT(xmit_ill == NULL); 21139 xmit_ill = dst_ipif->ipif_ill; 21140 mutex_enter(&xmit_ill->ill_lock); 21141 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21142 mutex_exit(&xmit_ill->ill_lock); 21143 xmit_ill = NULL; 21144 ipif_refrele(dst_ipif); 21145 goto noroute; 21146 } 21147 ill_refhold_locked(xmit_ill); 21148 mutex_exit(&xmit_ill->ill_lock); 21149 ipif_refrele(dst_ipif); 21150 } 21151 } 21152 /* 21153 * If we are bound to IPIF_NOFAILOVER address, look for 21154 * an IRE_CACHE matching the ill. 21155 */ 21156 send_from_ill: 21157 if (attach_ill != NULL) { 21158 ipif_t *attach_ipif; 21159 21160 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21161 21162 /* 21163 * Check if we need an ire that will not be 21164 * looked up by anybody else i.e. HIDDEN. 21165 */ 21166 if (ill_is_probeonly(attach_ill)) { 21167 match_flags |= MATCH_IRE_MARK_HIDDEN; 21168 } 21169 21170 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21171 if (attach_ipif == NULL) { 21172 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21173 goto discard_pkt; 21174 } 21175 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21176 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21177 ipif_refrele(attach_ipif); 21178 } else if (xmit_ill != NULL) { 21179 ipif_t *ipif; 21180 21181 /* 21182 * Mark this packet as originated locally 21183 */ 21184 mp->b_prev = mp->b_next = NULL; 21185 21186 /* 21187 * Could be SO_DONTROUTE case also. 21188 * Verify that at least one ipif is up on the ill. 21189 */ 21190 if (xmit_ill->ill_ipif_up_count == 0) { 21191 ip1dbg(("ip_output: xmit_ill %s is down\n", 21192 xmit_ill->ill_name)); 21193 goto drop_pkt; 21194 } 21195 21196 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21197 if (ipif == NULL) { 21198 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21199 xmit_ill->ill_name)); 21200 goto drop_pkt; 21201 } 21202 21203 /* 21204 * Look for a ire that is part of the group, 21205 * if found use it else call ip_newroute_ipif. 21206 * IPCL_ZONEID is not used for matching because 21207 * IP_ALLZONES option is valid only when the 21208 * ill is accessible from all zones i.e has a 21209 * valid ipif in all zones. 21210 */ 21211 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21212 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21213 MBLK_GETLABEL(mp), match_flags, ipst); 21214 /* 21215 * If an ire exists use it or else create 21216 * an ire but don't add it to the cache. 21217 * Adding an ire may cause issues with 21218 * asymmetric routing. 21219 * In case of multiroute always act as if 21220 * ire does not exist. 21221 */ 21222 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21223 if (ire != NULL) 21224 ire_refrele(ire); 21225 ip_newroute_ipif(q, first_mp, ipif, 21226 dst, connp, 0, zoneid, infop); 21227 ipif_refrele(ipif); 21228 ip1dbg(("ip_output: xmit_ill via %s\n", 21229 xmit_ill->ill_name)); 21230 ill_refrele(xmit_ill); 21231 if (need_decref) 21232 CONN_DEC_REF(connp); 21233 return; 21234 } 21235 ipif_refrele(ipif); 21236 } else if (ip_nexthop || (connp != NULL && 21237 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21238 if (!ip_nexthop) { 21239 ip_nexthop = B_TRUE; 21240 nexthop_addr = connp->conn_nexthop_v4; 21241 } 21242 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21243 MATCH_IRE_GW; 21244 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21245 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21246 } else { 21247 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21248 ipst); 21249 } 21250 if (!ire) { 21251 /* 21252 * Make sure we don't load spread if this 21253 * is IPIF_NOFAILOVER case. 21254 */ 21255 if ((attach_ill != NULL) || 21256 (ip_nexthop && !ignore_nexthop)) { 21257 if (mctl_present) { 21258 io = (ipsec_out_t *)first_mp->b_rptr; 21259 ASSERT(first_mp->b_datap->db_type == 21260 M_CTL); 21261 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21262 } else { 21263 ASSERT(mp == first_mp); 21264 first_mp = allocb( 21265 sizeof (ipsec_info_t), BPRI_HI); 21266 if (first_mp == NULL) { 21267 first_mp = mp; 21268 goto discard_pkt; 21269 } 21270 first_mp->b_datap->db_type = M_CTL; 21271 first_mp->b_wptr += 21272 sizeof (ipsec_info_t); 21273 /* ipsec_out_secure is B_FALSE now */ 21274 bzero(first_mp->b_rptr, 21275 sizeof (ipsec_info_t)); 21276 io = (ipsec_out_t *)first_mp->b_rptr; 21277 io->ipsec_out_type = IPSEC_OUT; 21278 io->ipsec_out_len = 21279 sizeof (ipsec_out_t); 21280 io->ipsec_out_use_global_policy = 21281 B_TRUE; 21282 io->ipsec_out_ns = ipst->ips_netstack; 21283 first_mp->b_cont = mp; 21284 mctl_present = B_TRUE; 21285 } 21286 if (attach_ill != NULL) { 21287 io->ipsec_out_ill_index = attach_ill-> 21288 ill_phyint->phyint_ifindex; 21289 io->ipsec_out_attach_if = B_TRUE; 21290 } else { 21291 io->ipsec_out_ip_nexthop = ip_nexthop; 21292 io->ipsec_out_nexthop_addr = 21293 nexthop_addr; 21294 } 21295 } 21296 noirefound: 21297 /* 21298 * Mark this packet as having originated on 21299 * this machine. This will be noted in 21300 * ire_add_then_send, which needs to know 21301 * whether to run it back through ip_wput or 21302 * ip_rput following successful resolution. 21303 */ 21304 mp->b_prev = NULL; 21305 mp->b_next = NULL; 21306 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21307 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21308 "ip_wput_end: q %p (%S)", q, "newroute"); 21309 if (attach_ill != NULL) 21310 ill_refrele(attach_ill); 21311 if (xmit_ill != NULL) 21312 ill_refrele(xmit_ill); 21313 if (need_decref) 21314 CONN_DEC_REF(connp); 21315 return; 21316 } 21317 } 21318 21319 /* We now know where we are going with it. */ 21320 21321 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21322 "ip_wput_end: q %p (%S)", q, "end"); 21323 21324 /* 21325 * Check if the ire has the RTF_MULTIRT flag, inherited 21326 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21327 */ 21328 if (ire->ire_flags & RTF_MULTIRT) { 21329 /* 21330 * Force the TTL of multirouted packets if required. 21331 * The TTL of such packets is bounded by the 21332 * ip_multirt_ttl ndd variable. 21333 */ 21334 if ((ipst->ips_ip_multirt_ttl > 0) && 21335 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21336 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21337 "(was %d), dst 0x%08x\n", 21338 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21339 ntohl(ire->ire_addr))); 21340 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21341 } 21342 /* 21343 * At this point, we check to see if there are any pending 21344 * unresolved routes. ire_multirt_resolvable() 21345 * checks in O(n) that all IRE_OFFSUBNET ire 21346 * entries for the packet's destination and 21347 * flagged RTF_MULTIRT are currently resolved. 21348 * If some remain unresolved, we make a copy 21349 * of the current message. It will be used 21350 * to initiate additional route resolutions. 21351 */ 21352 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21353 MBLK_GETLABEL(first_mp), ipst); 21354 ip2dbg(("ip_wput[noirefound]: ire %p, " 21355 "multirt_need_resolve %d, first_mp %p\n", 21356 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21357 if (multirt_need_resolve) { 21358 copy_mp = copymsg(first_mp); 21359 if (copy_mp != NULL) { 21360 MULTIRT_DEBUG_TAG(copy_mp); 21361 } 21362 } 21363 } 21364 21365 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21366 /* 21367 * Try to resolve another multiroute if 21368 * ire_multirt_resolvable() deemed it necessary. 21369 * At this point, we need to distinguish 21370 * multicasts from other packets. For multicasts, 21371 * we call ip_newroute_ipif() and request that both 21372 * multirouting and setsrc flags are checked. 21373 */ 21374 if (copy_mp != NULL) { 21375 if (CLASSD(dst)) { 21376 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21377 if (ipif) { 21378 ASSERT(infop->ip_opt_ill_index == 0); 21379 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21380 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21381 ipif_refrele(ipif); 21382 } else { 21383 MULTIRT_DEBUG_UNTAG(copy_mp); 21384 freemsg(copy_mp); 21385 copy_mp = NULL; 21386 } 21387 } else { 21388 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21389 } 21390 } 21391 if (attach_ill != NULL) 21392 ill_refrele(attach_ill); 21393 if (xmit_ill != NULL) 21394 ill_refrele(xmit_ill); 21395 if (need_decref) 21396 CONN_DEC_REF(connp); 21397 return; 21398 21399 icmp_parameter_problem: 21400 /* could not have originated externally */ 21401 ASSERT(mp->b_prev == NULL); 21402 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21403 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21404 /* it's the IP header length that's in trouble */ 21405 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21406 first_mp = NULL; 21407 } 21408 21409 discard_pkt: 21410 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21411 drop_pkt: 21412 ip1dbg(("ip_wput: dropped packet\n")); 21413 if (ire != NULL) 21414 ire_refrele(ire); 21415 if (need_decref) 21416 CONN_DEC_REF(connp); 21417 freemsg(first_mp); 21418 if (attach_ill != NULL) 21419 ill_refrele(attach_ill); 21420 if (xmit_ill != NULL) 21421 ill_refrele(xmit_ill); 21422 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21423 "ip_wput_end: q %p (%S)", q, "droppkt"); 21424 } 21425 21426 /* 21427 * If this is a conn_t queue, then we pass in the conn. This includes the 21428 * zoneid. 21429 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21430 * in which case we use the global zoneid since those are all part of 21431 * the global zone. 21432 */ 21433 void 21434 ip_wput(queue_t *q, mblk_t *mp) 21435 { 21436 if (CONN_Q(q)) 21437 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21438 else 21439 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21440 } 21441 21442 /* 21443 * 21444 * The following rules must be observed when accessing any ipif or ill 21445 * that has been cached in the conn. Typically conn_nofailover_ill, 21446 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21447 * 21448 * Access: The ipif or ill pointed to from the conn can be accessed under 21449 * the protection of the conn_lock or after it has been refheld under the 21450 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21451 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21452 * The reason for this is that a concurrent unplumb could actually be 21453 * cleaning up these cached pointers by walking the conns and might have 21454 * finished cleaning up the conn in question. The macros check that an 21455 * unplumb has not yet started on the ipif or ill. 21456 * 21457 * Caching: An ipif or ill pointer may be cached in the conn only after 21458 * making sure that an unplumb has not started. So the caching is done 21459 * while holding both the conn_lock and the ill_lock and after using the 21460 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21461 * flag before starting the cleanup of conns. 21462 * 21463 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21464 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21465 * or a reference to the ipif or a reference to an ire that references the 21466 * ipif. An ipif does not change its ill except for failover/failback. Since 21467 * failover/failback happens only after bringing down the ipif and making sure 21468 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21469 * the above holds. 21470 */ 21471 ipif_t * 21472 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21473 { 21474 ipif_t *ipif; 21475 ill_t *ill; 21476 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21477 21478 *err = 0; 21479 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21480 mutex_enter(&connp->conn_lock); 21481 ipif = *ipifp; 21482 if (ipif != NULL) { 21483 ill = ipif->ipif_ill; 21484 mutex_enter(&ill->ill_lock); 21485 if (IPIF_CAN_LOOKUP(ipif)) { 21486 ipif_refhold_locked(ipif); 21487 mutex_exit(&ill->ill_lock); 21488 mutex_exit(&connp->conn_lock); 21489 rw_exit(&ipst->ips_ill_g_lock); 21490 return (ipif); 21491 } else { 21492 *err = IPIF_LOOKUP_FAILED; 21493 } 21494 mutex_exit(&ill->ill_lock); 21495 } 21496 mutex_exit(&connp->conn_lock); 21497 rw_exit(&ipst->ips_ill_g_lock); 21498 return (NULL); 21499 } 21500 21501 ill_t * 21502 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21503 { 21504 ill_t *ill; 21505 21506 *err = 0; 21507 mutex_enter(&connp->conn_lock); 21508 ill = *illp; 21509 if (ill != NULL) { 21510 mutex_enter(&ill->ill_lock); 21511 if (ILL_CAN_LOOKUP(ill)) { 21512 ill_refhold_locked(ill); 21513 mutex_exit(&ill->ill_lock); 21514 mutex_exit(&connp->conn_lock); 21515 return (ill); 21516 } else { 21517 *err = ILL_LOOKUP_FAILED; 21518 } 21519 mutex_exit(&ill->ill_lock); 21520 } 21521 mutex_exit(&connp->conn_lock); 21522 return (NULL); 21523 } 21524 21525 static int 21526 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21527 { 21528 ill_t *ill; 21529 21530 ill = ipif->ipif_ill; 21531 mutex_enter(&connp->conn_lock); 21532 mutex_enter(&ill->ill_lock); 21533 if (IPIF_CAN_LOOKUP(ipif)) { 21534 *ipifp = ipif; 21535 mutex_exit(&ill->ill_lock); 21536 mutex_exit(&connp->conn_lock); 21537 return (0); 21538 } 21539 mutex_exit(&ill->ill_lock); 21540 mutex_exit(&connp->conn_lock); 21541 return (IPIF_LOOKUP_FAILED); 21542 } 21543 21544 /* 21545 * This is called if the outbound datagram needs fragmentation. 21546 * 21547 * NOTE : This function does not ire_refrele the ire argument passed in. 21548 */ 21549 static void 21550 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21551 ip_stack_t *ipst) 21552 { 21553 ipha_t *ipha; 21554 mblk_t *mp; 21555 uint32_t v_hlen_tos_len; 21556 uint32_t max_frag; 21557 uint32_t frag_flag; 21558 boolean_t dont_use; 21559 21560 if (ipsec_mp->b_datap->db_type == M_CTL) { 21561 mp = ipsec_mp->b_cont; 21562 } else { 21563 mp = ipsec_mp; 21564 } 21565 21566 ipha = (ipha_t *)mp->b_rptr; 21567 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21568 21569 #ifdef _BIG_ENDIAN 21570 #define V_HLEN (v_hlen_tos_len >> 24) 21571 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21572 #else 21573 #define V_HLEN (v_hlen_tos_len & 0xFF) 21574 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21575 #endif 21576 21577 #ifndef SPEED_BEFORE_SAFETY 21578 /* 21579 * Check that ipha_length is consistent with 21580 * the mblk length 21581 */ 21582 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21583 ip0dbg(("Packet length mismatch: %d, %ld\n", 21584 LENGTH, msgdsize(mp))); 21585 freemsg(ipsec_mp); 21586 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21587 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21588 "packet length mismatch"); 21589 return; 21590 } 21591 #endif 21592 /* 21593 * Don't use frag_flag if pre-built packet or source 21594 * routed or if multicast (since multicast packets do not solicit 21595 * ICMP "packet too big" messages). Get the values of 21596 * max_frag and frag_flag atomically by acquiring the 21597 * ire_lock. 21598 */ 21599 mutex_enter(&ire->ire_lock); 21600 max_frag = ire->ire_max_frag; 21601 frag_flag = ire->ire_frag_flag; 21602 mutex_exit(&ire->ire_lock); 21603 21604 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21605 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21606 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21607 21608 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21609 (dont_use ? 0 : frag_flag), zoneid, ipst); 21610 } 21611 21612 /* 21613 * Used for deciding the MSS size for the upper layer. Thus 21614 * we need to check the outbound policy values in the conn. 21615 */ 21616 int 21617 conn_ipsec_length(conn_t *connp) 21618 { 21619 ipsec_latch_t *ipl; 21620 21621 ipl = connp->conn_latch; 21622 if (ipl == NULL) 21623 return (0); 21624 21625 if (ipl->ipl_out_policy == NULL) 21626 return (0); 21627 21628 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21629 } 21630 21631 /* 21632 * Returns an estimate of the IPsec headers size. This is used if 21633 * we don't want to call into IPsec to get the exact size. 21634 */ 21635 int 21636 ipsec_out_extra_length(mblk_t *ipsec_mp) 21637 { 21638 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21639 ipsec_action_t *a; 21640 21641 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21642 if (!io->ipsec_out_secure) 21643 return (0); 21644 21645 a = io->ipsec_out_act; 21646 21647 if (a == NULL) { 21648 ASSERT(io->ipsec_out_policy != NULL); 21649 a = io->ipsec_out_policy->ipsp_act; 21650 } 21651 ASSERT(a != NULL); 21652 21653 return (a->ipa_ovhd); 21654 } 21655 21656 /* 21657 * Returns an estimate of the IPsec headers size. This is used if 21658 * we don't want to call into IPsec to get the exact size. 21659 */ 21660 int 21661 ipsec_in_extra_length(mblk_t *ipsec_mp) 21662 { 21663 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21664 ipsec_action_t *a; 21665 21666 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21667 21668 a = ii->ipsec_in_action; 21669 return (a == NULL ? 0 : a->ipa_ovhd); 21670 } 21671 21672 /* 21673 * If there are any source route options, return the true final 21674 * destination. Otherwise, return the destination. 21675 */ 21676 ipaddr_t 21677 ip_get_dst(ipha_t *ipha) 21678 { 21679 ipoptp_t opts; 21680 uchar_t *opt; 21681 uint8_t optval; 21682 uint8_t optlen; 21683 ipaddr_t dst; 21684 uint32_t off; 21685 21686 dst = ipha->ipha_dst; 21687 21688 if (IS_SIMPLE_IPH(ipha)) 21689 return (dst); 21690 21691 for (optval = ipoptp_first(&opts, ipha); 21692 optval != IPOPT_EOL; 21693 optval = ipoptp_next(&opts)) { 21694 opt = opts.ipoptp_cur; 21695 optlen = opts.ipoptp_len; 21696 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21697 switch (optval) { 21698 case IPOPT_SSRR: 21699 case IPOPT_LSRR: 21700 off = opt[IPOPT_OFFSET]; 21701 /* 21702 * If one of the conditions is true, it means 21703 * end of options and dst already has the right 21704 * value. 21705 */ 21706 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21707 off = optlen - IP_ADDR_LEN; 21708 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21709 } 21710 return (dst); 21711 default: 21712 break; 21713 } 21714 } 21715 21716 return (dst); 21717 } 21718 21719 mblk_t * 21720 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21721 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21722 { 21723 ipsec_out_t *io; 21724 mblk_t *first_mp; 21725 boolean_t policy_present; 21726 ip_stack_t *ipst; 21727 ipsec_stack_t *ipss; 21728 21729 ASSERT(ire != NULL); 21730 ipst = ire->ire_ipst; 21731 ipss = ipst->ips_netstack->netstack_ipsec; 21732 21733 first_mp = mp; 21734 if (mp->b_datap->db_type == M_CTL) { 21735 io = (ipsec_out_t *)first_mp->b_rptr; 21736 /* 21737 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21738 * 21739 * 1) There is per-socket policy (including cached global 21740 * policy) or a policy on the IP-in-IP tunnel. 21741 * 2) There is no per-socket policy, but it is 21742 * a multicast packet that needs to go out 21743 * on a specific interface. This is the case 21744 * where (ip_wput and ip_wput_multicast) attaches 21745 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21746 * 21747 * In case (2) we check with global policy to 21748 * see if there is a match and set the ill_index 21749 * appropriately so that we can lookup the ire 21750 * properly in ip_wput_ipsec_out. 21751 */ 21752 21753 /* 21754 * ipsec_out_use_global_policy is set to B_FALSE 21755 * in ipsec_in_to_out(). Refer to that function for 21756 * details. 21757 */ 21758 if ((io->ipsec_out_latch == NULL) && 21759 (io->ipsec_out_use_global_policy)) { 21760 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21761 ire, connp, unspec_src, zoneid)); 21762 } 21763 if (!io->ipsec_out_secure) { 21764 /* 21765 * If this is not a secure packet, drop 21766 * the IPSEC_OUT mp and treat it as a clear 21767 * packet. This happens when we are sending 21768 * a ICMP reply back to a clear packet. See 21769 * ipsec_in_to_out() for details. 21770 */ 21771 mp = first_mp->b_cont; 21772 freeb(first_mp); 21773 } 21774 return (mp); 21775 } 21776 /* 21777 * See whether we need to attach a global policy here. We 21778 * don't depend on the conn (as it could be null) for deciding 21779 * what policy this datagram should go through because it 21780 * should have happened in ip_wput if there was some 21781 * policy. This normally happens for connections which are not 21782 * fully bound preventing us from caching policies in 21783 * ip_bind. Packets coming from the TCP listener/global queue 21784 * - which are non-hard_bound - could also be affected by 21785 * applying policy here. 21786 * 21787 * If this packet is coming from tcp global queue or listener, 21788 * we will be applying policy here. This may not be *right* 21789 * if these packets are coming from the detached connection as 21790 * it could have gone in clear before. This happens only if a 21791 * TCP connection started when there is no policy and somebody 21792 * added policy before it became detached. Thus packets of the 21793 * detached connection could go out secure and the other end 21794 * would drop it because it will be expecting in clear. The 21795 * converse is not true i.e if somebody starts a TCP 21796 * connection and deletes the policy, all the packets will 21797 * still go out with the policy that existed before deleting 21798 * because ip_unbind sends up policy information which is used 21799 * by TCP on subsequent ip_wputs. The right solution is to fix 21800 * TCP to attach a dummy IPSEC_OUT and set 21801 * ipsec_out_use_global_policy to B_FALSE. As this might 21802 * affect performance for normal cases, we are not doing it. 21803 * Thus, set policy before starting any TCP connections. 21804 * 21805 * NOTE - We might apply policy even for a hard bound connection 21806 * - for which we cached policy in ip_bind - if somebody added 21807 * global policy after we inherited the policy in ip_bind. 21808 * This means that the packets that were going out in clear 21809 * previously would start going secure and hence get dropped 21810 * on the other side. To fix this, TCP attaches a dummy 21811 * ipsec_out and make sure that we don't apply global policy. 21812 */ 21813 if (ipha != NULL) 21814 policy_present = ipss->ipsec_outbound_v4_policy_present; 21815 else 21816 policy_present = ipss->ipsec_outbound_v6_policy_present; 21817 if (!policy_present) 21818 return (mp); 21819 21820 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21821 zoneid)); 21822 } 21823 21824 ire_t * 21825 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21826 { 21827 ipaddr_t addr; 21828 ire_t *save_ire; 21829 irb_t *irb; 21830 ill_group_t *illgrp; 21831 int err; 21832 21833 save_ire = ire; 21834 addr = ire->ire_addr; 21835 21836 ASSERT(ire->ire_type == IRE_BROADCAST); 21837 21838 illgrp = connp->conn_outgoing_ill->ill_group; 21839 if (illgrp == NULL) { 21840 *conn_outgoing_ill = conn_get_held_ill(connp, 21841 &connp->conn_outgoing_ill, &err); 21842 if (err == ILL_LOOKUP_FAILED) { 21843 ire_refrele(save_ire); 21844 return (NULL); 21845 } 21846 return (save_ire); 21847 } 21848 /* 21849 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21850 * If it is part of the group, we need to send on the ire 21851 * that has been cleared of IRE_MARK_NORECV and that belongs 21852 * to this group. This is okay as IP_BOUND_IF really means 21853 * any ill in the group. We depend on the fact that the 21854 * first ire in the group is always cleared of IRE_MARK_NORECV 21855 * if such an ire exists. This is possible only if you have 21856 * at least one ill in the group that has not failed. 21857 * 21858 * First get to the ire that matches the address and group. 21859 * 21860 * We don't look for an ire with a matching zoneid because a given zone 21861 * won't always have broadcast ires on all ills in the group. 21862 */ 21863 irb = ire->ire_bucket; 21864 rw_enter(&irb->irb_lock, RW_READER); 21865 if (ire->ire_marks & IRE_MARK_NORECV) { 21866 /* 21867 * If the current zone only has an ire broadcast for this 21868 * address marked NORECV, the ire we want is ahead in the 21869 * bucket, so we look it up deliberately ignoring the zoneid. 21870 */ 21871 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21872 if (ire->ire_addr != addr) 21873 continue; 21874 /* skip over deleted ires */ 21875 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21876 continue; 21877 } 21878 } 21879 while (ire != NULL) { 21880 /* 21881 * If a new interface is coming up, we could end up 21882 * seeing the loopback ire and the non-loopback ire 21883 * may not have been added yet. So check for ire_stq 21884 */ 21885 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21886 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21887 break; 21888 } 21889 ire = ire->ire_next; 21890 } 21891 if (ire != NULL && ire->ire_addr == addr && 21892 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21893 IRE_REFHOLD(ire); 21894 rw_exit(&irb->irb_lock); 21895 ire_refrele(save_ire); 21896 *conn_outgoing_ill = ire_to_ill(ire); 21897 /* 21898 * Refhold the ill to make the conn_outgoing_ill 21899 * independent of the ire. ip_wput_ire goes in a loop 21900 * and may refrele the ire. Since we have an ire at this 21901 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21902 */ 21903 ill_refhold(*conn_outgoing_ill); 21904 return (ire); 21905 } 21906 rw_exit(&irb->irb_lock); 21907 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21908 /* 21909 * If we can't find a suitable ire, return the original ire. 21910 */ 21911 return (save_ire); 21912 } 21913 21914 /* 21915 * This function does the ire_refrele of the ire passed in as the 21916 * argument. As this function looks up more ires i.e broadcast ires, 21917 * it needs to REFRELE them. Currently, for simplicity we don't 21918 * differentiate the one passed in and looked up here. We always 21919 * REFRELE. 21920 * IPQoS Notes: 21921 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21922 * IPsec packets are done in ipsec_out_process. 21923 * 21924 */ 21925 void 21926 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21927 zoneid_t zoneid) 21928 { 21929 ipha_t *ipha; 21930 #define rptr ((uchar_t *)ipha) 21931 queue_t *stq; 21932 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21933 uint32_t v_hlen_tos_len; 21934 uint32_t ttl_protocol; 21935 ipaddr_t src; 21936 ipaddr_t dst; 21937 uint32_t cksum; 21938 ipaddr_t orig_src; 21939 ire_t *ire1; 21940 mblk_t *next_mp; 21941 uint_t hlen; 21942 uint16_t *up; 21943 uint32_t max_frag = ire->ire_max_frag; 21944 ill_t *ill = ire_to_ill(ire); 21945 int clusterwide; 21946 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21947 int ipsec_len; 21948 mblk_t *first_mp; 21949 ipsec_out_t *io; 21950 boolean_t conn_dontroute; /* conn value for multicast */ 21951 boolean_t conn_multicast_loop; /* conn value for multicast */ 21952 boolean_t multicast_forward; /* Should we forward ? */ 21953 boolean_t unspec_src; 21954 ill_t *conn_outgoing_ill = NULL; 21955 ill_t *ire_ill; 21956 ill_t *ire1_ill; 21957 ill_t *out_ill; 21958 uint32_t ill_index = 0; 21959 boolean_t multirt_send = B_FALSE; 21960 int err; 21961 ipxmit_state_t pktxmit_state; 21962 ip_stack_t *ipst = ire->ire_ipst; 21963 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21964 21965 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21966 "ip_wput_ire_start: q %p", q); 21967 21968 multicast_forward = B_FALSE; 21969 unspec_src = (connp != NULL && connp->conn_unspec_src); 21970 21971 if (ire->ire_flags & RTF_MULTIRT) { 21972 /* 21973 * Multirouting case. The bucket where ire is stored 21974 * probably holds other RTF_MULTIRT flagged ire 21975 * to the destination. In this call to ip_wput_ire, 21976 * we attempt to send the packet through all 21977 * those ires. Thus, we first ensure that ire is the 21978 * first RTF_MULTIRT ire in the bucket, 21979 * before walking the ire list. 21980 */ 21981 ire_t *first_ire; 21982 irb_t *irb = ire->ire_bucket; 21983 ASSERT(irb != NULL); 21984 21985 /* Make sure we do not omit any multiroute ire. */ 21986 IRB_REFHOLD(irb); 21987 for (first_ire = irb->irb_ire; 21988 first_ire != NULL; 21989 first_ire = first_ire->ire_next) { 21990 if ((first_ire->ire_flags & RTF_MULTIRT) && 21991 (first_ire->ire_addr == ire->ire_addr) && 21992 !(first_ire->ire_marks & 21993 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 21994 break; 21995 } 21996 } 21997 21998 if ((first_ire != NULL) && (first_ire != ire)) { 21999 IRE_REFHOLD(first_ire); 22000 ire_refrele(ire); 22001 ire = first_ire; 22002 ill = ire_to_ill(ire); 22003 } 22004 IRB_REFRELE(irb); 22005 } 22006 22007 /* 22008 * conn_outgoing_ill variable is used only in the broadcast loop. 22009 * for performance we don't grab the mutexs in the fastpath 22010 */ 22011 if ((connp != NULL) && 22012 (ire->ire_type == IRE_BROADCAST) && 22013 ((connp->conn_nofailover_ill != NULL) || 22014 (connp->conn_outgoing_ill != NULL))) { 22015 /* 22016 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22017 * option. So, see if this endpoint is bound to a 22018 * IPIF_NOFAILOVER address. If so, honor it. This implies 22019 * that if the interface is failed, we will still send 22020 * the packet on the same ill which is what we want. 22021 */ 22022 conn_outgoing_ill = conn_get_held_ill(connp, 22023 &connp->conn_nofailover_ill, &err); 22024 if (err == ILL_LOOKUP_FAILED) { 22025 ire_refrele(ire); 22026 freemsg(mp); 22027 return; 22028 } 22029 if (conn_outgoing_ill == NULL) { 22030 /* 22031 * Choose a good ill in the group to send the 22032 * packets on. 22033 */ 22034 ire = conn_set_outgoing_ill(connp, ire, 22035 &conn_outgoing_ill); 22036 if (ire == NULL) { 22037 freemsg(mp); 22038 return; 22039 } 22040 } 22041 } 22042 22043 if (mp->b_datap->db_type != M_CTL) { 22044 ipha = (ipha_t *)mp->b_rptr; 22045 } else { 22046 io = (ipsec_out_t *)mp->b_rptr; 22047 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22048 ASSERT(zoneid == io->ipsec_out_zoneid); 22049 ASSERT(zoneid != ALL_ZONES); 22050 ipha = (ipha_t *)mp->b_cont->b_rptr; 22051 dst = ipha->ipha_dst; 22052 /* 22053 * For the multicast case, ipsec_out carries conn_dontroute and 22054 * conn_multicast_loop as conn may not be available here. We 22055 * need this for multicast loopback and forwarding which is done 22056 * later in the code. 22057 */ 22058 if (CLASSD(dst)) { 22059 conn_dontroute = io->ipsec_out_dontroute; 22060 conn_multicast_loop = io->ipsec_out_multicast_loop; 22061 /* 22062 * If conn_dontroute is not set or conn_multicast_loop 22063 * is set, we need to do forwarding/loopback. For 22064 * datagrams from ip_wput_multicast, conn_dontroute is 22065 * set to B_TRUE and conn_multicast_loop is set to 22066 * B_FALSE so that we neither do forwarding nor 22067 * loopback. 22068 */ 22069 if (!conn_dontroute || conn_multicast_loop) 22070 multicast_forward = B_TRUE; 22071 } 22072 } 22073 22074 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22075 ire->ire_zoneid != ALL_ZONES) { 22076 /* 22077 * When a zone sends a packet to another zone, we try to deliver 22078 * the packet under the same conditions as if the destination 22079 * was a real node on the network. To do so, we look for a 22080 * matching route in the forwarding table. 22081 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22082 * ip_newroute() does. 22083 * Note that IRE_LOCAL are special, since they are used 22084 * when the zoneid doesn't match in some cases. This means that 22085 * we need to handle ipha_src differently since ire_src_addr 22086 * belongs to the receiving zone instead of the sending zone. 22087 * When ip_restrict_interzone_loopback is set, then 22088 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22089 * for loopback between zones when the logical "Ethernet" would 22090 * have looped them back. 22091 */ 22092 ire_t *src_ire; 22093 22094 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22095 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22096 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22097 if (src_ire != NULL && 22098 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22099 (!ipst->ips_ip_restrict_interzone_loopback || 22100 ire_local_same_ill_group(ire, src_ire))) { 22101 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22102 ipha->ipha_src = src_ire->ire_src_addr; 22103 ire_refrele(src_ire); 22104 } else { 22105 ire_refrele(ire); 22106 if (conn_outgoing_ill != NULL) 22107 ill_refrele(conn_outgoing_ill); 22108 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22109 if (src_ire != NULL) { 22110 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22111 ire_refrele(src_ire); 22112 freemsg(mp); 22113 return; 22114 } 22115 ire_refrele(src_ire); 22116 } 22117 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22118 /* Failed */ 22119 freemsg(mp); 22120 return; 22121 } 22122 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22123 ipst); 22124 return; 22125 } 22126 } 22127 22128 if (mp->b_datap->db_type == M_CTL || 22129 ipss->ipsec_outbound_v4_policy_present) { 22130 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22131 unspec_src, zoneid); 22132 if (mp == NULL) { 22133 ire_refrele(ire); 22134 if (conn_outgoing_ill != NULL) 22135 ill_refrele(conn_outgoing_ill); 22136 return; 22137 } 22138 } 22139 22140 first_mp = mp; 22141 ipsec_len = 0; 22142 22143 if (first_mp->b_datap->db_type == M_CTL) { 22144 io = (ipsec_out_t *)first_mp->b_rptr; 22145 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22146 mp = first_mp->b_cont; 22147 ipsec_len = ipsec_out_extra_length(first_mp); 22148 ASSERT(ipsec_len >= 0); 22149 /* We already picked up the zoneid from the M_CTL above */ 22150 ASSERT(zoneid == io->ipsec_out_zoneid); 22151 ASSERT(zoneid != ALL_ZONES); 22152 22153 /* 22154 * Drop M_CTL here if IPsec processing is not needed. 22155 * (Non-IPsec use of M_CTL extracted any information it 22156 * needed above). 22157 */ 22158 if (ipsec_len == 0) { 22159 freeb(first_mp); 22160 first_mp = mp; 22161 } 22162 } 22163 22164 /* 22165 * Fast path for ip_wput_ire 22166 */ 22167 22168 ipha = (ipha_t *)mp->b_rptr; 22169 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22170 dst = ipha->ipha_dst; 22171 22172 /* 22173 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22174 * if the socket is a SOCK_RAW type. The transport checksum should 22175 * be provided in the pre-built packet, so we don't need to compute it. 22176 * Also, other application set flags, like DF, should not be altered. 22177 * Other transport MUST pass down zero. 22178 */ 22179 ip_hdr_included = ipha->ipha_ident; 22180 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22181 22182 if (CLASSD(dst)) { 22183 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22184 ntohl(dst), 22185 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22186 ntohl(ire->ire_addr))); 22187 } 22188 22189 /* Macros to extract header fields from data already in registers */ 22190 #ifdef _BIG_ENDIAN 22191 #define V_HLEN (v_hlen_tos_len >> 24) 22192 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22193 #define PROTO (ttl_protocol & 0xFF) 22194 #else 22195 #define V_HLEN (v_hlen_tos_len & 0xFF) 22196 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22197 #define PROTO (ttl_protocol >> 8) 22198 #endif 22199 22200 22201 orig_src = src = ipha->ipha_src; 22202 /* (The loop back to "another" is explained down below.) */ 22203 another:; 22204 /* 22205 * Assign an ident value for this packet. We assign idents on 22206 * a per destination basis out of the IRE. There could be 22207 * other threads targeting the same destination, so we have to 22208 * arrange for a atomic increment. Note that we use a 32-bit 22209 * atomic add because it has better performance than its 22210 * 16-bit sibling. 22211 * 22212 * If running in cluster mode and if the source address 22213 * belongs to a replicated service then vector through 22214 * cl_inet_ipident vector to allocate ip identifier 22215 * NOTE: This is a contract private interface with the 22216 * clustering group. 22217 */ 22218 clusterwide = 0; 22219 if (cl_inet_ipident) { 22220 ASSERT(cl_inet_isclusterwide); 22221 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22222 AF_INET, (uint8_t *)(uintptr_t)src)) { 22223 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22224 AF_INET, (uint8_t *)(uintptr_t)src, 22225 (uint8_t *)(uintptr_t)dst); 22226 clusterwide = 1; 22227 } 22228 } 22229 if (!clusterwide) { 22230 ipha->ipha_ident = 22231 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22232 } 22233 22234 #ifndef _BIG_ENDIAN 22235 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22236 #endif 22237 22238 /* 22239 * Set source address unless sent on an ill or conn_unspec_src is set. 22240 * This is needed to obey conn_unspec_src when packets go through 22241 * ip_newroute + arp. 22242 * Assumes ip_newroute{,_multi} sets the source address as well. 22243 */ 22244 if (src == INADDR_ANY && !unspec_src) { 22245 /* 22246 * Assign the appropriate source address from the IRE if none 22247 * was specified. 22248 */ 22249 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22250 22251 /* 22252 * With IP multipathing, broadcast packets are sent on the ire 22253 * that has been cleared of IRE_MARK_NORECV and that belongs to 22254 * the group. However, this ire might not be in the same zone so 22255 * we can't always use its source address. We look for a 22256 * broadcast ire in the same group and in the right zone. 22257 */ 22258 if (ire->ire_type == IRE_BROADCAST && 22259 ire->ire_zoneid != zoneid) { 22260 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22261 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22262 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22263 if (src_ire != NULL) { 22264 src = src_ire->ire_src_addr; 22265 ire_refrele(src_ire); 22266 } else { 22267 ire_refrele(ire); 22268 if (conn_outgoing_ill != NULL) 22269 ill_refrele(conn_outgoing_ill); 22270 freemsg(first_mp); 22271 if (ill != NULL) { 22272 BUMP_MIB(ill->ill_ip_mib, 22273 ipIfStatsOutDiscards); 22274 } else { 22275 BUMP_MIB(&ipst->ips_ip_mib, 22276 ipIfStatsOutDiscards); 22277 } 22278 return; 22279 } 22280 } else { 22281 src = ire->ire_src_addr; 22282 } 22283 22284 if (connp == NULL) { 22285 ip1dbg(("ip_wput_ire: no connp and no src " 22286 "address for dst 0x%x, using src 0x%x\n", 22287 ntohl(dst), 22288 ntohl(src))); 22289 } 22290 ipha->ipha_src = src; 22291 } 22292 stq = ire->ire_stq; 22293 22294 /* 22295 * We only allow ire chains for broadcasts since there will 22296 * be multiple IRE_CACHE entries for the same multicast 22297 * address (one per ipif). 22298 */ 22299 next_mp = NULL; 22300 22301 /* broadcast packet */ 22302 if (ire->ire_type == IRE_BROADCAST) 22303 goto broadcast; 22304 22305 /* loopback ? */ 22306 if (stq == NULL) 22307 goto nullstq; 22308 22309 /* The ill_index for outbound ILL */ 22310 ill_index = Q_TO_INDEX(stq); 22311 22312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22313 ttl_protocol = ((uint16_t *)ipha)[4]; 22314 22315 /* pseudo checksum (do it in parts for IP header checksum) */ 22316 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22317 22318 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22319 queue_t *dev_q = stq->q_next; 22320 22321 /* flow controlled */ 22322 if ((dev_q->q_next || dev_q->q_first) && 22323 !canput(dev_q)) 22324 goto blocked; 22325 if ((PROTO == IPPROTO_UDP) && 22326 (ip_hdr_included != IP_HDR_INCLUDED)) { 22327 hlen = (V_HLEN & 0xF) << 2; 22328 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22329 if (*up != 0) { 22330 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22331 hlen, LENGTH, max_frag, ipsec_len, cksum); 22332 /* Software checksum? */ 22333 if (DB_CKSUMFLAGS(mp) == 0) { 22334 IP_STAT(ipst, ip_out_sw_cksum); 22335 IP_STAT_UPDATE(ipst, 22336 ip_udp_out_sw_cksum_bytes, 22337 LENGTH - hlen); 22338 } 22339 } 22340 } 22341 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22342 hlen = (V_HLEN & 0xF) << 2; 22343 if (PROTO == IPPROTO_TCP) { 22344 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22345 /* 22346 * The packet header is processed once and for all, even 22347 * in the multirouting case. We disable hardware 22348 * checksum if the packet is multirouted, as it will be 22349 * replicated via several interfaces, and not all of 22350 * them may have this capability. 22351 */ 22352 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22353 LENGTH, max_frag, ipsec_len, cksum); 22354 /* Software checksum? */ 22355 if (DB_CKSUMFLAGS(mp) == 0) { 22356 IP_STAT(ipst, ip_out_sw_cksum); 22357 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22358 LENGTH - hlen); 22359 } 22360 } else { 22361 sctp_hdr_t *sctph; 22362 22363 ASSERT(PROTO == IPPROTO_SCTP); 22364 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22365 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22366 /* 22367 * Zero out the checksum field to ensure proper 22368 * checksum calculation. 22369 */ 22370 sctph->sh_chksum = 0; 22371 #ifdef DEBUG 22372 if (!skip_sctp_cksum) 22373 #endif 22374 sctph->sh_chksum = sctp_cksum(mp, hlen); 22375 } 22376 } 22377 22378 /* 22379 * If this is a multicast packet and originated from ip_wput 22380 * we need to do loopback and forwarding checks. If it comes 22381 * from ip_wput_multicast, we SHOULD not do this. 22382 */ 22383 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22384 22385 /* checksum */ 22386 cksum += ttl_protocol; 22387 22388 /* fragment the packet */ 22389 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22390 goto fragmentit; 22391 /* 22392 * Don't use frag_flag if packet is pre-built or source 22393 * routed or if multicast (since multicast packets do 22394 * not solicit ICMP "packet too big" messages). 22395 */ 22396 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22397 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22398 !ip_source_route_included(ipha)) && 22399 !CLASSD(ipha->ipha_dst)) 22400 ipha->ipha_fragment_offset_and_flags |= 22401 htons(ire->ire_frag_flag); 22402 22403 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22404 /* calculate IP header checksum */ 22405 cksum += ipha->ipha_ident; 22406 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22407 cksum += ipha->ipha_fragment_offset_and_flags; 22408 22409 /* IP options present */ 22410 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22411 if (hlen) 22412 goto checksumoptions; 22413 22414 /* calculate hdr checksum */ 22415 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22416 cksum = ~(cksum + (cksum >> 16)); 22417 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22418 } 22419 if (ipsec_len != 0) { 22420 /* 22421 * We will do the rest of the processing after 22422 * we come back from IPsec in ip_wput_ipsec_out(). 22423 */ 22424 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22425 22426 io = (ipsec_out_t *)first_mp->b_rptr; 22427 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22428 ill_phyint->phyint_ifindex; 22429 22430 ipsec_out_process(q, first_mp, ire, ill_index); 22431 ire_refrele(ire); 22432 if (conn_outgoing_ill != NULL) 22433 ill_refrele(conn_outgoing_ill); 22434 return; 22435 } 22436 22437 /* 22438 * In most cases, the emission loop below is entered only 22439 * once. Only in the case where the ire holds the 22440 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22441 * flagged ires in the bucket, and send the packet 22442 * through all crossed RTF_MULTIRT routes. 22443 */ 22444 if (ire->ire_flags & RTF_MULTIRT) { 22445 multirt_send = B_TRUE; 22446 } 22447 do { 22448 if (multirt_send) { 22449 irb_t *irb; 22450 /* 22451 * We are in a multiple send case, need to get 22452 * the next ire and make a duplicate of the packet. 22453 * ire1 holds here the next ire to process in the 22454 * bucket. If multirouting is expected, 22455 * any non-RTF_MULTIRT ire that has the 22456 * right destination address is ignored. 22457 */ 22458 irb = ire->ire_bucket; 22459 ASSERT(irb != NULL); 22460 22461 IRB_REFHOLD(irb); 22462 for (ire1 = ire->ire_next; 22463 ire1 != NULL; 22464 ire1 = ire1->ire_next) { 22465 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22466 continue; 22467 if (ire1->ire_addr != ire->ire_addr) 22468 continue; 22469 if (ire1->ire_marks & 22470 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22471 continue; 22472 22473 /* Got one */ 22474 IRE_REFHOLD(ire1); 22475 break; 22476 } 22477 IRB_REFRELE(irb); 22478 22479 if (ire1 != NULL) { 22480 next_mp = copyb(mp); 22481 if ((next_mp == NULL) || 22482 ((mp->b_cont != NULL) && 22483 ((next_mp->b_cont = 22484 dupmsg(mp->b_cont)) == NULL))) { 22485 freemsg(next_mp); 22486 next_mp = NULL; 22487 ire_refrele(ire1); 22488 ire1 = NULL; 22489 } 22490 } 22491 22492 /* Last multiroute ire; don't loop anymore. */ 22493 if (ire1 == NULL) { 22494 multirt_send = B_FALSE; 22495 } 22496 } 22497 22498 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22499 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22500 mblk_t *, mp); 22501 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22502 ipst->ips_ipv4firewall_physical_out, 22503 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22504 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22505 if (mp == NULL) 22506 goto release_ire_and_ill; 22507 22508 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22509 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22510 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22511 if ((pktxmit_state == SEND_FAILED) || 22512 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22513 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22514 "- packet dropped\n")); 22515 release_ire_and_ill: 22516 ire_refrele(ire); 22517 if (next_mp != NULL) { 22518 freemsg(next_mp); 22519 ire_refrele(ire1); 22520 } 22521 if (conn_outgoing_ill != NULL) 22522 ill_refrele(conn_outgoing_ill); 22523 return; 22524 } 22525 22526 if (CLASSD(dst)) { 22527 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22528 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22529 LENGTH); 22530 } 22531 22532 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22533 "ip_wput_ire_end: q %p (%S)", 22534 q, "last copy out"); 22535 IRE_REFRELE(ire); 22536 22537 if (multirt_send) { 22538 ASSERT(ire1); 22539 /* 22540 * Proceed with the next RTF_MULTIRT ire, 22541 * Also set up the send-to queue accordingly. 22542 */ 22543 ire = ire1; 22544 ire1 = NULL; 22545 stq = ire->ire_stq; 22546 mp = next_mp; 22547 next_mp = NULL; 22548 ipha = (ipha_t *)mp->b_rptr; 22549 ill_index = Q_TO_INDEX(stq); 22550 ill = (ill_t *)stq->q_ptr; 22551 } 22552 } while (multirt_send); 22553 if (conn_outgoing_ill != NULL) 22554 ill_refrele(conn_outgoing_ill); 22555 return; 22556 22557 /* 22558 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22559 */ 22560 broadcast: 22561 { 22562 /* 22563 * Avoid broadcast storms by setting the ttl to 1 22564 * for broadcasts. This parameter can be set 22565 * via ndd, so make sure that for the SO_DONTROUTE 22566 * case that ipha_ttl is always set to 1. 22567 * In the event that we are replying to incoming 22568 * ICMP packets, conn could be NULL. 22569 */ 22570 if ((connp != NULL) && connp->conn_dontroute) 22571 ipha->ipha_ttl = 1; 22572 else 22573 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22574 22575 /* 22576 * Note that we are not doing a IRB_REFHOLD here. 22577 * Actually we don't care if the list changes i.e 22578 * if somebody deletes an IRE from the list while 22579 * we drop the lock, the next time we come around 22580 * ire_next will be NULL and hence we won't send 22581 * out multiple copies which is fine. 22582 */ 22583 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22584 ire1 = ire->ire_next; 22585 if (conn_outgoing_ill != NULL) { 22586 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22587 ASSERT(ire1 == ire->ire_next); 22588 if (ire1 != NULL && ire1->ire_addr == dst) { 22589 ire_refrele(ire); 22590 ire = ire1; 22591 IRE_REFHOLD(ire); 22592 ire1 = ire->ire_next; 22593 continue; 22594 } 22595 rw_exit(&ire->ire_bucket->irb_lock); 22596 /* Did not find a matching ill */ 22597 ip1dbg(("ip_wput_ire: broadcast with no " 22598 "matching IP_BOUND_IF ill %s dst %x\n", 22599 conn_outgoing_ill->ill_name, dst)); 22600 freemsg(first_mp); 22601 if (ire != NULL) 22602 ire_refrele(ire); 22603 ill_refrele(conn_outgoing_ill); 22604 return; 22605 } 22606 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22607 /* 22608 * If the next IRE has the same address and is not one 22609 * of the two copies that we need to send, try to see 22610 * whether this copy should be sent at all. This 22611 * assumes that we insert loopbacks first and then 22612 * non-loopbacks. This is acheived by inserting the 22613 * loopback always before non-loopback. 22614 * This is used to send a single copy of a broadcast 22615 * packet out all physical interfaces that have an 22616 * matching IRE_BROADCAST while also looping 22617 * back one copy (to ip_wput_local) for each 22618 * matching physical interface. However, we avoid 22619 * sending packets out different logical that match by 22620 * having ipif_up/ipif_down supress duplicate 22621 * IRE_BROADCASTS. 22622 * 22623 * This feature is currently used to get broadcasts 22624 * sent to multiple interfaces, when the broadcast 22625 * address being used applies to multiple interfaces. 22626 * For example, a whole net broadcast will be 22627 * replicated on every connected subnet of 22628 * the target net. 22629 * 22630 * Each zone has its own set of IRE_BROADCASTs, so that 22631 * we're able to distribute inbound packets to multiple 22632 * zones who share a broadcast address. We avoid looping 22633 * back outbound packets in different zones but on the 22634 * same ill, as the application would see duplicates. 22635 * 22636 * If the interfaces are part of the same group, 22637 * we would want to send only one copy out for 22638 * whole group. 22639 * 22640 * This logic assumes that ire_add_v4() groups the 22641 * IRE_BROADCAST entries so that those with the same 22642 * ire_addr and ill_group are kept together. 22643 */ 22644 ire_ill = ire->ire_ipif->ipif_ill; 22645 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22646 if (ire_ill->ill_group != NULL && 22647 (ire->ire_marks & IRE_MARK_NORECV)) { 22648 /* 22649 * If the current zone only has an ire 22650 * broadcast for this address marked 22651 * NORECV, the ire we want is ahead in 22652 * the bucket, so we look it up 22653 * deliberately ignoring the zoneid. 22654 */ 22655 for (ire1 = ire->ire_bucket->irb_ire; 22656 ire1 != NULL; 22657 ire1 = ire1->ire_next) { 22658 ire1_ill = 22659 ire1->ire_ipif->ipif_ill; 22660 if (ire1->ire_addr != dst) 22661 continue; 22662 /* skip over the current ire */ 22663 if (ire1 == ire) 22664 continue; 22665 /* skip over deleted ires */ 22666 if (ire1->ire_marks & 22667 IRE_MARK_CONDEMNED) 22668 continue; 22669 /* 22670 * non-loopback ire in our 22671 * group: use it for the next 22672 * pass in the loop 22673 */ 22674 if (ire1->ire_stq != NULL && 22675 ire1_ill->ill_group == 22676 ire_ill->ill_group) 22677 break; 22678 } 22679 } 22680 } else { 22681 while (ire1 != NULL && ire1->ire_addr == dst) { 22682 ire1_ill = ire1->ire_ipif->ipif_ill; 22683 /* 22684 * We can have two broadcast ires on the 22685 * same ill in different zones; here 22686 * we'll send a copy of the packet on 22687 * each ill and the fanout code will 22688 * call conn_wantpacket() to check that 22689 * the zone has the broadcast address 22690 * configured on the ill. If the two 22691 * ires are in the same group we only 22692 * send one copy up. 22693 */ 22694 if (ire1_ill != ire_ill && 22695 (ire1_ill->ill_group == NULL || 22696 ire_ill->ill_group == NULL || 22697 ire1_ill->ill_group != 22698 ire_ill->ill_group)) { 22699 break; 22700 } 22701 ire1 = ire1->ire_next; 22702 } 22703 } 22704 } 22705 ASSERT(multirt_send == B_FALSE); 22706 if (ire1 != NULL && ire1->ire_addr == dst) { 22707 if ((ire->ire_flags & RTF_MULTIRT) && 22708 (ire1->ire_flags & RTF_MULTIRT)) { 22709 /* 22710 * We are in the multirouting case. 22711 * The message must be sent at least 22712 * on both ires. These ires have been 22713 * inserted AFTER the standard ones 22714 * in ip_rt_add(). There are thus no 22715 * other ire entries for the destination 22716 * address in the rest of the bucket 22717 * that do not have the RTF_MULTIRT 22718 * flag. We don't process a copy 22719 * of the message here. This will be 22720 * done in the final sending loop. 22721 */ 22722 multirt_send = B_TRUE; 22723 } else { 22724 next_mp = ip_copymsg(first_mp); 22725 if (next_mp != NULL) 22726 IRE_REFHOLD(ire1); 22727 } 22728 } 22729 rw_exit(&ire->ire_bucket->irb_lock); 22730 } 22731 22732 if (stq) { 22733 /* 22734 * A non-NULL send-to queue means this packet is going 22735 * out of this machine. 22736 */ 22737 out_ill = (ill_t *)stq->q_ptr; 22738 22739 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22740 ttl_protocol = ((uint16_t *)ipha)[4]; 22741 /* 22742 * We accumulate the pseudo header checksum in cksum. 22743 * This is pretty hairy code, so watch close. One 22744 * thing to keep in mind is that UDP and TCP have 22745 * stored their respective datagram lengths in their 22746 * checksum fields. This lines things up real nice. 22747 */ 22748 cksum = (dst >> 16) + (dst & 0xFFFF) + 22749 (src >> 16) + (src & 0xFFFF); 22750 /* 22751 * We assume the udp checksum field contains the 22752 * length, so to compute the pseudo header checksum, 22753 * all we need is the protocol number and src/dst. 22754 */ 22755 /* Provide the checksums for UDP and TCP. */ 22756 if ((PROTO == IPPROTO_TCP) && 22757 (ip_hdr_included != IP_HDR_INCLUDED)) { 22758 /* hlen gets the number of uchar_ts in the IP header */ 22759 hlen = (V_HLEN & 0xF) << 2; 22760 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22761 IP_STAT(ipst, ip_out_sw_cksum); 22762 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22763 LENGTH - hlen); 22764 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22765 } else if (PROTO == IPPROTO_SCTP && 22766 (ip_hdr_included != IP_HDR_INCLUDED)) { 22767 sctp_hdr_t *sctph; 22768 22769 hlen = (V_HLEN & 0xF) << 2; 22770 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22771 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22772 sctph->sh_chksum = 0; 22773 #ifdef DEBUG 22774 if (!skip_sctp_cksum) 22775 #endif 22776 sctph->sh_chksum = sctp_cksum(mp, hlen); 22777 } else { 22778 queue_t *dev_q = stq->q_next; 22779 22780 if ((dev_q->q_next || dev_q->q_first) && 22781 !canput(dev_q)) { 22782 blocked: 22783 ipha->ipha_ident = ip_hdr_included; 22784 /* 22785 * If we don't have a conn to apply 22786 * backpressure, free the message. 22787 * In the ire_send path, we don't know 22788 * the position to requeue the packet. Rather 22789 * than reorder packets, we just drop this 22790 * packet. 22791 */ 22792 if (ipst->ips_ip_output_queue && 22793 connp != NULL && 22794 caller != IRE_SEND) { 22795 if (caller == IP_WSRV) { 22796 connp->conn_did_putbq = 1; 22797 (void) putbq(connp->conn_wq, 22798 first_mp); 22799 conn_drain_insert(connp); 22800 /* 22801 * This is the service thread, 22802 * and the queue is already 22803 * noenabled. The check for 22804 * canput and the putbq is not 22805 * atomic. So we need to check 22806 * again. 22807 */ 22808 if (canput(stq->q_next)) 22809 connp->conn_did_putbq 22810 = 0; 22811 IP_STAT(ipst, ip_conn_flputbq); 22812 } else { 22813 /* 22814 * We are not the service proc. 22815 * ip_wsrv will be scheduled or 22816 * is already running. 22817 */ 22818 (void) putq(connp->conn_wq, 22819 first_mp); 22820 } 22821 } else { 22822 out_ill = (ill_t *)stq->q_ptr; 22823 BUMP_MIB(out_ill->ill_ip_mib, 22824 ipIfStatsOutDiscards); 22825 freemsg(first_mp); 22826 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22827 "ip_wput_ire_end: q %p (%S)", 22828 q, "discard"); 22829 } 22830 ire_refrele(ire); 22831 if (next_mp) { 22832 ire_refrele(ire1); 22833 freemsg(next_mp); 22834 } 22835 if (conn_outgoing_ill != NULL) 22836 ill_refrele(conn_outgoing_ill); 22837 return; 22838 } 22839 if ((PROTO == IPPROTO_UDP) && 22840 (ip_hdr_included != IP_HDR_INCLUDED)) { 22841 /* 22842 * hlen gets the number of uchar_ts in the 22843 * IP header 22844 */ 22845 hlen = (V_HLEN & 0xF) << 2; 22846 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22847 max_frag = ire->ire_max_frag; 22848 if (*up != 0) { 22849 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22850 up, PROTO, hlen, LENGTH, max_frag, 22851 ipsec_len, cksum); 22852 /* Software checksum? */ 22853 if (DB_CKSUMFLAGS(mp) == 0) { 22854 IP_STAT(ipst, ip_out_sw_cksum); 22855 IP_STAT_UPDATE(ipst, 22856 ip_udp_out_sw_cksum_bytes, 22857 LENGTH - hlen); 22858 } 22859 } 22860 } 22861 } 22862 /* 22863 * Need to do this even when fragmenting. The local 22864 * loopback can be done without computing checksums 22865 * but forwarding out other interface must be done 22866 * after the IP checksum (and ULP checksums) have been 22867 * computed. 22868 * 22869 * NOTE : multicast_forward is set only if this packet 22870 * originated from ip_wput. For packets originating from 22871 * ip_wput_multicast, it is not set. 22872 */ 22873 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22874 multi_loopback: 22875 ip2dbg(("ip_wput: multicast, loop %d\n", 22876 conn_multicast_loop)); 22877 22878 /* Forget header checksum offload */ 22879 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22880 22881 /* 22882 * Local loopback of multicasts? Check the 22883 * ill. 22884 * 22885 * Note that the loopback function will not come 22886 * in through ip_rput - it will only do the 22887 * client fanout thus we need to do an mforward 22888 * as well. The is different from the BSD 22889 * logic. 22890 */ 22891 if (ill != NULL) { 22892 ilm_t *ilm; 22893 22894 ILM_WALKER_HOLD(ill); 22895 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22896 ALL_ZONES); 22897 ILM_WALKER_RELE(ill); 22898 if (ilm != NULL) { 22899 /* 22900 * Pass along the virtual output q. 22901 * ip_wput_local() will distribute the 22902 * packet to all the matching zones, 22903 * except the sending zone when 22904 * IP_MULTICAST_LOOP is false. 22905 */ 22906 ip_multicast_loopback(q, ill, first_mp, 22907 conn_multicast_loop ? 0 : 22908 IP_FF_NO_MCAST_LOOP, zoneid); 22909 } 22910 } 22911 if (ipha->ipha_ttl == 0) { 22912 /* 22913 * 0 => only to this host i.e. we are 22914 * done. We are also done if this was the 22915 * loopback interface since it is sufficient 22916 * to loopback one copy of a multicast packet. 22917 */ 22918 freemsg(first_mp); 22919 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22920 "ip_wput_ire_end: q %p (%S)", 22921 q, "loopback"); 22922 ire_refrele(ire); 22923 if (conn_outgoing_ill != NULL) 22924 ill_refrele(conn_outgoing_ill); 22925 return; 22926 } 22927 /* 22928 * ILLF_MULTICAST is checked in ip_newroute 22929 * i.e. we don't need to check it here since 22930 * all IRE_CACHEs come from ip_newroute. 22931 * For multicast traffic, SO_DONTROUTE is interpreted 22932 * to mean only send the packet out the interface 22933 * (optionally specified with IP_MULTICAST_IF) 22934 * and do not forward it out additional interfaces. 22935 * RSVP and the rsvp daemon is an example of a 22936 * protocol and user level process that 22937 * handles it's own routing. Hence, it uses the 22938 * SO_DONTROUTE option to accomplish this. 22939 */ 22940 22941 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22942 ill != NULL) { 22943 /* Unconditionally redo the checksum */ 22944 ipha->ipha_hdr_checksum = 0; 22945 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22946 22947 /* 22948 * If this needs to go out secure, we need 22949 * to wait till we finish the IPsec 22950 * processing. 22951 */ 22952 if (ipsec_len == 0 && 22953 ip_mforward(ill, ipha, mp)) { 22954 freemsg(first_mp); 22955 ip1dbg(("ip_wput: mforward failed\n")); 22956 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22957 "ip_wput_ire_end: q %p (%S)", 22958 q, "mforward failed"); 22959 ire_refrele(ire); 22960 if (conn_outgoing_ill != NULL) 22961 ill_refrele(conn_outgoing_ill); 22962 return; 22963 } 22964 } 22965 } 22966 max_frag = ire->ire_max_frag; 22967 cksum += ttl_protocol; 22968 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22969 /* No fragmentation required for this one. */ 22970 /* 22971 * Don't use frag_flag if packet is pre-built or source 22972 * routed or if multicast (since multicast packets do 22973 * not solicit ICMP "packet too big" messages). 22974 */ 22975 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22976 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22977 !ip_source_route_included(ipha)) && 22978 !CLASSD(ipha->ipha_dst)) 22979 ipha->ipha_fragment_offset_and_flags |= 22980 htons(ire->ire_frag_flag); 22981 22982 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22983 /* Complete the IP header checksum. */ 22984 cksum += ipha->ipha_ident; 22985 cksum += (v_hlen_tos_len >> 16)+ 22986 (v_hlen_tos_len & 0xFFFF); 22987 cksum += ipha->ipha_fragment_offset_and_flags; 22988 hlen = (V_HLEN & 0xF) - 22989 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22990 if (hlen) { 22991 checksumoptions: 22992 /* 22993 * Account for the IP Options in the IP 22994 * header checksum. 22995 */ 22996 up = (uint16_t *)(rptr+ 22997 IP_SIMPLE_HDR_LENGTH); 22998 do { 22999 cksum += up[0]; 23000 cksum += up[1]; 23001 up += 2; 23002 } while (--hlen); 23003 } 23004 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23005 cksum = ~(cksum + (cksum >> 16)); 23006 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23007 } 23008 if (ipsec_len != 0) { 23009 ipsec_out_process(q, first_mp, ire, ill_index); 23010 if (!next_mp) { 23011 ire_refrele(ire); 23012 if (conn_outgoing_ill != NULL) 23013 ill_refrele(conn_outgoing_ill); 23014 return; 23015 } 23016 goto next; 23017 } 23018 23019 /* 23020 * multirt_send has already been handled 23021 * for broadcast, but not yet for multicast 23022 * or IP options. 23023 */ 23024 if (next_mp == NULL) { 23025 if (ire->ire_flags & RTF_MULTIRT) { 23026 multirt_send = B_TRUE; 23027 } 23028 } 23029 23030 /* 23031 * In most cases, the emission loop below is 23032 * entered only once. Only in the case where 23033 * the ire holds the RTF_MULTIRT flag, do we loop 23034 * to process all RTF_MULTIRT ires in the bucket, 23035 * and send the packet through all crossed 23036 * RTF_MULTIRT routes. 23037 */ 23038 do { 23039 if (multirt_send) { 23040 irb_t *irb; 23041 23042 irb = ire->ire_bucket; 23043 ASSERT(irb != NULL); 23044 /* 23045 * We are in a multiple send case, 23046 * need to get the next IRE and make 23047 * a duplicate of the packet. 23048 */ 23049 IRB_REFHOLD(irb); 23050 for (ire1 = ire->ire_next; 23051 ire1 != NULL; 23052 ire1 = ire1->ire_next) { 23053 if (!(ire1->ire_flags & 23054 RTF_MULTIRT)) { 23055 continue; 23056 } 23057 if (ire1->ire_addr != 23058 ire->ire_addr) { 23059 continue; 23060 } 23061 if (ire1->ire_marks & 23062 (IRE_MARK_CONDEMNED| 23063 IRE_MARK_HIDDEN)) { 23064 continue; 23065 } 23066 23067 /* Got one */ 23068 IRE_REFHOLD(ire1); 23069 break; 23070 } 23071 IRB_REFRELE(irb); 23072 23073 if (ire1 != NULL) { 23074 next_mp = copyb(mp); 23075 if ((next_mp == NULL) || 23076 ((mp->b_cont != NULL) && 23077 ((next_mp->b_cont = 23078 dupmsg(mp->b_cont)) 23079 == NULL))) { 23080 freemsg(next_mp); 23081 next_mp = NULL; 23082 ire_refrele(ire1); 23083 ire1 = NULL; 23084 } 23085 } 23086 23087 /* 23088 * Last multiroute ire; don't loop 23089 * anymore. The emission is over 23090 * and next_mp is NULL. 23091 */ 23092 if (ire1 == NULL) { 23093 multirt_send = B_FALSE; 23094 } 23095 } 23096 23097 out_ill = ire_to_ill(ire); 23098 DTRACE_PROBE4(ip4__physical__out__start, 23099 ill_t *, NULL, 23100 ill_t *, out_ill, 23101 ipha_t *, ipha, mblk_t *, mp); 23102 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23103 ipst->ips_ipv4firewall_physical_out, 23104 NULL, out_ill, ipha, mp, mp, ipst); 23105 DTRACE_PROBE1(ip4__physical__out__end, 23106 mblk_t *, mp); 23107 if (mp == NULL) 23108 goto release_ire_and_ill_2; 23109 23110 ASSERT(ipsec_len == 0); 23111 mp->b_prev = 23112 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23113 DTRACE_PROBE2(ip__xmit__2, 23114 mblk_t *, mp, ire_t *, ire); 23115 pktxmit_state = ip_xmit_v4(mp, ire, 23116 NULL, B_TRUE); 23117 if ((pktxmit_state == SEND_FAILED) || 23118 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23119 release_ire_and_ill_2: 23120 if (next_mp) { 23121 freemsg(next_mp); 23122 ire_refrele(ire1); 23123 } 23124 ire_refrele(ire); 23125 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23126 "ip_wput_ire_end: q %p (%S)", 23127 q, "discard MDATA"); 23128 if (conn_outgoing_ill != NULL) 23129 ill_refrele(conn_outgoing_ill); 23130 return; 23131 } 23132 23133 if (CLASSD(dst)) { 23134 BUMP_MIB(out_ill->ill_ip_mib, 23135 ipIfStatsHCOutMcastPkts); 23136 UPDATE_MIB(out_ill->ill_ip_mib, 23137 ipIfStatsHCOutMcastOctets, 23138 LENGTH); 23139 } else if (ire->ire_type == IRE_BROADCAST) { 23140 BUMP_MIB(out_ill->ill_ip_mib, 23141 ipIfStatsHCOutBcastPkts); 23142 } 23143 23144 if (multirt_send) { 23145 /* 23146 * We are in a multiple send case, 23147 * need to re-enter the sending loop 23148 * using the next ire. 23149 */ 23150 ire_refrele(ire); 23151 ire = ire1; 23152 stq = ire->ire_stq; 23153 mp = next_mp; 23154 next_mp = NULL; 23155 ipha = (ipha_t *)mp->b_rptr; 23156 ill_index = Q_TO_INDEX(stq); 23157 } 23158 } while (multirt_send); 23159 23160 if (!next_mp) { 23161 /* 23162 * Last copy going out (the ultra-common 23163 * case). Note that we intentionally replicate 23164 * the putnext rather than calling it before 23165 * the next_mp check in hopes of a little 23166 * tail-call action out of the compiler. 23167 */ 23168 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23169 "ip_wput_ire_end: q %p (%S)", 23170 q, "last copy out(1)"); 23171 ire_refrele(ire); 23172 if (conn_outgoing_ill != NULL) 23173 ill_refrele(conn_outgoing_ill); 23174 return; 23175 } 23176 /* More copies going out below. */ 23177 } else { 23178 int offset; 23179 fragmentit: 23180 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23181 /* 23182 * If this would generate a icmp_frag_needed message, 23183 * we need to handle it before we do the IPsec 23184 * processing. Otherwise, we need to strip the IPsec 23185 * headers before we send up the message to the ULPs 23186 * which becomes messy and difficult. 23187 */ 23188 if (ipsec_len != 0) { 23189 if ((max_frag < (unsigned int)(LENGTH + 23190 ipsec_len)) && (offset & IPH_DF)) { 23191 out_ill = (ill_t *)stq->q_ptr; 23192 BUMP_MIB(out_ill->ill_ip_mib, 23193 ipIfStatsOutFragFails); 23194 BUMP_MIB(out_ill->ill_ip_mib, 23195 ipIfStatsOutFragReqds); 23196 ipha->ipha_hdr_checksum = 0; 23197 ipha->ipha_hdr_checksum = 23198 (uint16_t)ip_csum_hdr(ipha); 23199 icmp_frag_needed(ire->ire_stq, first_mp, 23200 max_frag, zoneid, ipst); 23201 if (!next_mp) { 23202 ire_refrele(ire); 23203 if (conn_outgoing_ill != NULL) { 23204 ill_refrele( 23205 conn_outgoing_ill); 23206 } 23207 return; 23208 } 23209 } else { 23210 /* 23211 * This won't cause a icmp_frag_needed 23212 * message. to be generated. Send it on 23213 * the wire. Note that this could still 23214 * cause fragmentation and all we 23215 * do is the generation of the message 23216 * to the ULP if needed before IPsec. 23217 */ 23218 if (!next_mp) { 23219 ipsec_out_process(q, first_mp, 23220 ire, ill_index); 23221 TRACE_2(TR_FAC_IP, 23222 TR_IP_WPUT_IRE_END, 23223 "ip_wput_ire_end: q %p " 23224 "(%S)", q, 23225 "last ipsec_out_process"); 23226 ire_refrele(ire); 23227 if (conn_outgoing_ill != NULL) { 23228 ill_refrele( 23229 conn_outgoing_ill); 23230 } 23231 return; 23232 } 23233 ipsec_out_process(q, first_mp, 23234 ire, ill_index); 23235 } 23236 } else { 23237 /* 23238 * Initiate IPPF processing. For 23239 * fragmentable packets we finish 23240 * all QOS packet processing before 23241 * calling: 23242 * ip_wput_ire_fragmentit->ip_wput_frag 23243 */ 23244 23245 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23246 ip_process(IPP_LOCAL_OUT, &mp, 23247 ill_index); 23248 if (mp == NULL) { 23249 out_ill = (ill_t *)stq->q_ptr; 23250 BUMP_MIB(out_ill->ill_ip_mib, 23251 ipIfStatsOutDiscards); 23252 if (next_mp != NULL) { 23253 freemsg(next_mp); 23254 ire_refrele(ire1); 23255 } 23256 ire_refrele(ire); 23257 TRACE_2(TR_FAC_IP, 23258 TR_IP_WPUT_IRE_END, 23259 "ip_wput_ire: q %p (%S)", 23260 q, "discard MDATA"); 23261 if (conn_outgoing_ill != NULL) { 23262 ill_refrele( 23263 conn_outgoing_ill); 23264 } 23265 return; 23266 } 23267 } 23268 if (!next_mp) { 23269 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23270 "ip_wput_ire_end: q %p (%S)", 23271 q, "last fragmentation"); 23272 ip_wput_ire_fragmentit(mp, ire, 23273 zoneid, ipst); 23274 ire_refrele(ire); 23275 if (conn_outgoing_ill != NULL) 23276 ill_refrele(conn_outgoing_ill); 23277 return; 23278 } 23279 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23280 } 23281 } 23282 } else { 23283 nullstq: 23284 /* A NULL stq means the destination address is local. */ 23285 UPDATE_OB_PKT_COUNT(ire); 23286 ire->ire_last_used_time = lbolt; 23287 ASSERT(ire->ire_ipif != NULL); 23288 if (!next_mp) { 23289 /* 23290 * Is there an "in" and "out" for traffic local 23291 * to a host (loopback)? The code in Solaris doesn't 23292 * explicitly draw a line in its code for in vs out, 23293 * so we've had to draw a line in the sand: ip_wput_ire 23294 * is considered to be the "output" side and 23295 * ip_wput_local to be the "input" side. 23296 */ 23297 out_ill = ire_to_ill(ire); 23298 23299 DTRACE_PROBE4(ip4__loopback__out__start, 23300 ill_t *, NULL, ill_t *, out_ill, 23301 ipha_t *, ipha, mblk_t *, first_mp); 23302 23303 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23304 ipst->ips_ipv4firewall_loopback_out, 23305 NULL, out_ill, ipha, first_mp, mp, ipst); 23306 23307 DTRACE_PROBE1(ip4__loopback__out_end, 23308 mblk_t *, first_mp); 23309 23310 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23311 "ip_wput_ire_end: q %p (%S)", 23312 q, "local address"); 23313 23314 if (first_mp != NULL) 23315 ip_wput_local(q, out_ill, ipha, 23316 first_mp, ire, 0, ire->ire_zoneid); 23317 ire_refrele(ire); 23318 if (conn_outgoing_ill != NULL) 23319 ill_refrele(conn_outgoing_ill); 23320 return; 23321 } 23322 23323 out_ill = ire_to_ill(ire); 23324 23325 DTRACE_PROBE4(ip4__loopback__out__start, 23326 ill_t *, NULL, ill_t *, out_ill, 23327 ipha_t *, ipha, mblk_t *, first_mp); 23328 23329 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23330 ipst->ips_ipv4firewall_loopback_out, 23331 NULL, out_ill, ipha, first_mp, mp, ipst); 23332 23333 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23334 23335 if (first_mp != NULL) 23336 ip_wput_local(q, out_ill, ipha, 23337 first_mp, ire, 0, ire->ire_zoneid); 23338 } 23339 next: 23340 /* 23341 * More copies going out to additional interfaces. 23342 * ire1 has already been held. We don't need the 23343 * "ire" anymore. 23344 */ 23345 ire_refrele(ire); 23346 ire = ire1; 23347 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23348 mp = next_mp; 23349 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23350 ill = ire_to_ill(ire); 23351 first_mp = mp; 23352 if (ipsec_len != 0) { 23353 ASSERT(first_mp->b_datap->db_type == M_CTL); 23354 mp = mp->b_cont; 23355 } 23356 dst = ire->ire_addr; 23357 ipha = (ipha_t *)mp->b_rptr; 23358 /* 23359 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23360 * Restore ipha_ident "no checksum" flag. 23361 */ 23362 src = orig_src; 23363 ipha->ipha_ident = ip_hdr_included; 23364 goto another; 23365 23366 #undef rptr 23367 #undef Q_TO_INDEX 23368 } 23369 23370 /* 23371 * Routine to allocate a message that is used to notify the ULP about MDT. 23372 * The caller may provide a pointer to the link-layer MDT capabilities, 23373 * or NULL if MDT is to be disabled on the stream. 23374 */ 23375 mblk_t * 23376 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23377 { 23378 mblk_t *mp; 23379 ip_mdt_info_t *mdti; 23380 ill_mdt_capab_t *idst; 23381 23382 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23383 DB_TYPE(mp) = M_CTL; 23384 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23385 mdti = (ip_mdt_info_t *)mp->b_rptr; 23386 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23387 idst = &(mdti->mdt_capab); 23388 23389 /* 23390 * If the caller provides us with the capability, copy 23391 * it over into our notification message; otherwise 23392 * we zero out the capability portion. 23393 */ 23394 if (isrc != NULL) 23395 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23396 else 23397 bzero((caddr_t)idst, sizeof (*idst)); 23398 } 23399 return (mp); 23400 } 23401 23402 /* 23403 * Routine which determines whether MDT can be enabled on the destination 23404 * IRE and IPC combination, and if so, allocates and returns the MDT 23405 * notification mblk that may be used by ULP. We also check if we need to 23406 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23407 * MDT usage in the past have been lifted. This gets called during IP 23408 * and ULP binding. 23409 */ 23410 mblk_t * 23411 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23412 ill_mdt_capab_t *mdt_cap) 23413 { 23414 mblk_t *mp; 23415 boolean_t rc = B_FALSE; 23416 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23417 23418 ASSERT(dst_ire != NULL); 23419 ASSERT(connp != NULL); 23420 ASSERT(mdt_cap != NULL); 23421 23422 /* 23423 * Currently, we only support simple TCP/{IPv4,IPv6} with 23424 * Multidata, which is handled in tcp_multisend(). This 23425 * is the reason why we do all these checks here, to ensure 23426 * that we don't enable Multidata for the cases which we 23427 * can't handle at the moment. 23428 */ 23429 do { 23430 /* Only do TCP at the moment */ 23431 if (connp->conn_ulp != IPPROTO_TCP) 23432 break; 23433 23434 /* 23435 * IPsec outbound policy present? Note that we get here 23436 * after calling ipsec_conn_cache_policy() where the global 23437 * policy checking is performed. conn_latch will be 23438 * non-NULL as long as there's a policy defined, 23439 * i.e. conn_out_enforce_policy may be NULL in such case 23440 * when the connection is non-secure, and hence we check 23441 * further if the latch refers to an outbound policy. 23442 */ 23443 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23444 break; 23445 23446 /* CGTP (multiroute) is enabled? */ 23447 if (dst_ire->ire_flags & RTF_MULTIRT) 23448 break; 23449 23450 /* Outbound IPQoS enabled? */ 23451 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23452 /* 23453 * In this case, we disable MDT for this and all 23454 * future connections going over the interface. 23455 */ 23456 mdt_cap->ill_mdt_on = 0; 23457 break; 23458 } 23459 23460 /* socket option(s) present? */ 23461 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23462 break; 23463 23464 rc = B_TRUE; 23465 /* CONSTCOND */ 23466 } while (0); 23467 23468 /* Remember the result */ 23469 connp->conn_mdt_ok = rc; 23470 23471 if (!rc) 23472 return (NULL); 23473 else if (!mdt_cap->ill_mdt_on) { 23474 /* 23475 * If MDT has been previously turned off in the past, and we 23476 * currently can do MDT (due to IPQoS policy removal, etc.) 23477 * then enable it for this interface. 23478 */ 23479 mdt_cap->ill_mdt_on = 1; 23480 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23481 "interface %s\n", ill_name)); 23482 } 23483 23484 /* Allocate the MDT info mblk */ 23485 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23486 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23487 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23488 return (NULL); 23489 } 23490 return (mp); 23491 } 23492 23493 /* 23494 * Routine to allocate a message that is used to notify the ULP about LSO. 23495 * The caller may provide a pointer to the link-layer LSO capabilities, 23496 * or NULL if LSO is to be disabled on the stream. 23497 */ 23498 mblk_t * 23499 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23500 { 23501 mblk_t *mp; 23502 ip_lso_info_t *lsoi; 23503 ill_lso_capab_t *idst; 23504 23505 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23506 DB_TYPE(mp) = M_CTL; 23507 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23508 lsoi = (ip_lso_info_t *)mp->b_rptr; 23509 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23510 idst = &(lsoi->lso_capab); 23511 23512 /* 23513 * If the caller provides us with the capability, copy 23514 * it over into our notification message; otherwise 23515 * we zero out the capability portion. 23516 */ 23517 if (isrc != NULL) 23518 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23519 else 23520 bzero((caddr_t)idst, sizeof (*idst)); 23521 } 23522 return (mp); 23523 } 23524 23525 /* 23526 * Routine which determines whether LSO can be enabled on the destination 23527 * IRE and IPC combination, and if so, allocates and returns the LSO 23528 * notification mblk that may be used by ULP. We also check if we need to 23529 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23530 * LSO usage in the past have been lifted. This gets called during IP 23531 * and ULP binding. 23532 */ 23533 mblk_t * 23534 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23535 ill_lso_capab_t *lso_cap) 23536 { 23537 mblk_t *mp; 23538 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23539 23540 ASSERT(dst_ire != NULL); 23541 ASSERT(connp != NULL); 23542 ASSERT(lso_cap != NULL); 23543 23544 connp->conn_lso_ok = B_TRUE; 23545 23546 if ((connp->conn_ulp != IPPROTO_TCP) || 23547 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23548 (dst_ire->ire_flags & RTF_MULTIRT) || 23549 !CONN_IS_LSO_MD_FASTPATH(connp) || 23550 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23551 connp->conn_lso_ok = B_FALSE; 23552 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23553 /* 23554 * Disable LSO for this and all future connections going 23555 * over the interface. 23556 */ 23557 lso_cap->ill_lso_on = 0; 23558 } 23559 } 23560 23561 if (!connp->conn_lso_ok) 23562 return (NULL); 23563 else if (!lso_cap->ill_lso_on) { 23564 /* 23565 * If LSO has been previously turned off in the past, and we 23566 * currently can do LSO (due to IPQoS policy removal, etc.) 23567 * then enable it for this interface. 23568 */ 23569 lso_cap->ill_lso_on = 1; 23570 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23571 ill_name)); 23572 } 23573 23574 /* Allocate the LSO info mblk */ 23575 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23576 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23577 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23578 23579 return (mp); 23580 } 23581 23582 /* 23583 * Create destination address attribute, and fill it with the physical 23584 * destination address and SAP taken from the template DL_UNITDATA_REQ 23585 * message block. 23586 */ 23587 boolean_t 23588 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23589 { 23590 dl_unitdata_req_t *dlurp; 23591 pattr_t *pa; 23592 pattrinfo_t pa_info; 23593 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23594 uint_t das_len, das_off; 23595 23596 ASSERT(dlmp != NULL); 23597 23598 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23599 das_len = dlurp->dl_dest_addr_length; 23600 das_off = dlurp->dl_dest_addr_offset; 23601 23602 pa_info.type = PATTR_DSTADDRSAP; 23603 pa_info.len = sizeof (**das) + das_len - 1; 23604 23605 /* create and associate the attribute */ 23606 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23607 if (pa != NULL) { 23608 ASSERT(*das != NULL); 23609 (*das)->addr_is_group = 0; 23610 (*das)->addr_len = (uint8_t)das_len; 23611 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23612 } 23613 23614 return (pa != NULL); 23615 } 23616 23617 /* 23618 * Create hardware checksum attribute and fill it with the values passed. 23619 */ 23620 boolean_t 23621 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23622 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23623 { 23624 pattr_t *pa; 23625 pattrinfo_t pa_info; 23626 23627 ASSERT(mmd != NULL); 23628 23629 pa_info.type = PATTR_HCKSUM; 23630 pa_info.len = sizeof (pattr_hcksum_t); 23631 23632 /* create and associate the attribute */ 23633 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23634 if (pa != NULL) { 23635 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23636 23637 hck->hcksum_start_offset = start_offset; 23638 hck->hcksum_stuff_offset = stuff_offset; 23639 hck->hcksum_end_offset = end_offset; 23640 hck->hcksum_flags = flags; 23641 } 23642 return (pa != NULL); 23643 } 23644 23645 /* 23646 * Create zerocopy attribute and fill it with the specified flags 23647 */ 23648 boolean_t 23649 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23650 { 23651 pattr_t *pa; 23652 pattrinfo_t pa_info; 23653 23654 ASSERT(mmd != NULL); 23655 pa_info.type = PATTR_ZCOPY; 23656 pa_info.len = sizeof (pattr_zcopy_t); 23657 23658 /* create and associate the attribute */ 23659 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23660 if (pa != NULL) { 23661 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23662 23663 zcopy->zcopy_flags = flags; 23664 } 23665 return (pa != NULL); 23666 } 23667 23668 /* 23669 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23670 * block chain. We could rewrite to handle arbitrary message block chains but 23671 * that would make the code complicated and slow. Right now there three 23672 * restrictions: 23673 * 23674 * 1. The first message block must contain the complete IP header and 23675 * at least 1 byte of payload data. 23676 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23677 * so that we can use a single Multidata message. 23678 * 3. No frag must be distributed over two or more message blocks so 23679 * that we don't need more than two packet descriptors per frag. 23680 * 23681 * The above restrictions allow us to support userland applications (which 23682 * will send down a single message block) and NFS over UDP (which will 23683 * send down a chain of at most three message blocks). 23684 * 23685 * We also don't use MDT for payloads with less than or equal to 23686 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23687 */ 23688 boolean_t 23689 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23690 { 23691 int blocks; 23692 ssize_t total, missing, size; 23693 23694 ASSERT(mp != NULL); 23695 ASSERT(hdr_len > 0); 23696 23697 size = MBLKL(mp) - hdr_len; 23698 if (size <= 0) 23699 return (B_FALSE); 23700 23701 /* The first mblk contains the header and some payload. */ 23702 blocks = 1; 23703 total = size; 23704 size %= len; 23705 missing = (size == 0) ? 0 : (len - size); 23706 mp = mp->b_cont; 23707 23708 while (mp != NULL) { 23709 /* 23710 * Give up if we encounter a zero length message block. 23711 * In practice, this should rarely happen and therefore 23712 * not worth the trouble of freeing and re-linking the 23713 * mblk from the chain to handle such case. 23714 */ 23715 if ((size = MBLKL(mp)) == 0) 23716 return (B_FALSE); 23717 23718 /* Too many payload buffers for a single Multidata message? */ 23719 if (++blocks > MULTIDATA_MAX_PBUFS) 23720 return (B_FALSE); 23721 23722 total += size; 23723 /* Is a frag distributed over two or more message blocks? */ 23724 if (missing > size) 23725 return (B_FALSE); 23726 size -= missing; 23727 23728 size %= len; 23729 missing = (size == 0) ? 0 : (len - size); 23730 23731 mp = mp->b_cont; 23732 } 23733 23734 return (total > ip_wput_frag_mdt_min); 23735 } 23736 23737 /* 23738 * Outbound IPv4 fragmentation routine using MDT. 23739 */ 23740 static void 23741 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23742 uint32_t frag_flag, int offset) 23743 { 23744 ipha_t *ipha_orig; 23745 int i1, ip_data_end; 23746 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23747 mblk_t *hdr_mp, *md_mp = NULL; 23748 unsigned char *hdr_ptr, *pld_ptr; 23749 multidata_t *mmd; 23750 ip_pdescinfo_t pdi; 23751 ill_t *ill; 23752 ip_stack_t *ipst = ire->ire_ipst; 23753 23754 ASSERT(DB_TYPE(mp) == M_DATA); 23755 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23756 23757 ill = ire_to_ill(ire); 23758 ASSERT(ill != NULL); 23759 23760 ipha_orig = (ipha_t *)mp->b_rptr; 23761 mp->b_rptr += sizeof (ipha_t); 23762 23763 /* Calculate how many packets we will send out */ 23764 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23765 pkts = (i1 + len - 1) / len; 23766 ASSERT(pkts > 1); 23767 23768 /* Allocate a message block which will hold all the IP Headers. */ 23769 wroff = ipst->ips_ip_wroff_extra; 23770 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23771 23772 i1 = pkts * hdr_chunk_len; 23773 /* 23774 * Create the header buffer, Multidata and destination address 23775 * and SAP attribute that should be associated with it. 23776 */ 23777 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23778 ((hdr_mp->b_wptr += i1), 23779 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23780 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23781 freemsg(mp); 23782 if (md_mp == NULL) { 23783 freemsg(hdr_mp); 23784 } else { 23785 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23786 freemsg(md_mp); 23787 } 23788 IP_STAT(ipst, ip_frag_mdt_allocfail); 23789 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23790 return; 23791 } 23792 IP_STAT(ipst, ip_frag_mdt_allocd); 23793 23794 /* 23795 * Add a payload buffer to the Multidata; this operation must not 23796 * fail, or otherwise our logic in this routine is broken. There 23797 * is no memory allocation done by the routine, so any returned 23798 * failure simply tells us that we've done something wrong. 23799 * 23800 * A failure tells us that either we're adding the same payload 23801 * buffer more than once, or we're trying to add more buffers than 23802 * allowed. None of the above cases should happen, and we panic 23803 * because either there's horrible heap corruption, and/or 23804 * programming mistake. 23805 */ 23806 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23807 goto pbuf_panic; 23808 23809 hdr_ptr = hdr_mp->b_rptr; 23810 pld_ptr = mp->b_rptr; 23811 23812 /* Establish the ending byte offset, based on the starting offset. */ 23813 offset <<= 3; 23814 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23815 IP_SIMPLE_HDR_LENGTH; 23816 23817 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23818 23819 while (pld_ptr < mp->b_wptr) { 23820 ipha_t *ipha; 23821 uint16_t offset_and_flags; 23822 uint16_t ip_len; 23823 int error; 23824 23825 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23826 ipha = (ipha_t *)(hdr_ptr + wroff); 23827 ASSERT(OK_32PTR(ipha)); 23828 *ipha = *ipha_orig; 23829 23830 if (ip_data_end - offset > len) { 23831 offset_and_flags = IPH_MF; 23832 } else { 23833 /* 23834 * Last frag. Set len to the length of this last piece. 23835 */ 23836 len = ip_data_end - offset; 23837 /* A frag of a frag might have IPH_MF non-zero */ 23838 offset_and_flags = 23839 ntohs(ipha->ipha_fragment_offset_and_flags) & 23840 IPH_MF; 23841 } 23842 offset_and_flags |= (uint16_t)(offset >> 3); 23843 offset_and_flags |= (uint16_t)frag_flag; 23844 /* Store the offset and flags in the IP header. */ 23845 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23846 23847 /* Store the length in the IP header. */ 23848 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23849 ipha->ipha_length = htons(ip_len); 23850 23851 /* 23852 * Set the IP header checksum. Note that mp is just 23853 * the header, so this is easy to pass to ip_csum. 23854 */ 23855 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23856 23857 /* 23858 * Record offset and size of header and data of the next packet 23859 * in the multidata message. 23860 */ 23861 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23862 PDESC_PLD_INIT(&pdi); 23863 i1 = MIN(mp->b_wptr - pld_ptr, len); 23864 ASSERT(i1 > 0); 23865 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23866 if (i1 == len) { 23867 pld_ptr += len; 23868 } else { 23869 i1 = len - i1; 23870 mp = mp->b_cont; 23871 ASSERT(mp != NULL); 23872 ASSERT(MBLKL(mp) >= i1); 23873 /* 23874 * Attach the next payload message block to the 23875 * multidata message. 23876 */ 23877 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23878 goto pbuf_panic; 23879 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23880 pld_ptr = mp->b_rptr + i1; 23881 } 23882 23883 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23884 KM_NOSLEEP)) == NULL) { 23885 /* 23886 * Any failure other than ENOMEM indicates that we 23887 * have passed in invalid pdesc info or parameters 23888 * to mmd_addpdesc, which must not happen. 23889 * 23890 * EINVAL is a result of failure on boundary checks 23891 * against the pdesc info contents. It should not 23892 * happen, and we panic because either there's 23893 * horrible heap corruption, and/or programming 23894 * mistake. 23895 */ 23896 if (error != ENOMEM) { 23897 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23898 "pdesc logic error detected for " 23899 "mmd %p pinfo %p (%d)\n", 23900 (void *)mmd, (void *)&pdi, error); 23901 /* NOTREACHED */ 23902 } 23903 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23904 /* Free unattached payload message blocks as well */ 23905 md_mp->b_cont = mp->b_cont; 23906 goto free_mmd; 23907 } 23908 23909 /* Advance fragment offset. */ 23910 offset += len; 23911 23912 /* Advance to location for next header in the buffer. */ 23913 hdr_ptr += hdr_chunk_len; 23914 23915 /* Did we reach the next payload message block? */ 23916 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23917 mp = mp->b_cont; 23918 /* 23919 * Attach the next message block with payload 23920 * data to the multidata message. 23921 */ 23922 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23923 goto pbuf_panic; 23924 pld_ptr = mp->b_rptr; 23925 } 23926 } 23927 23928 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23929 ASSERT(mp->b_wptr == pld_ptr); 23930 23931 /* Update IP statistics */ 23932 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23933 23934 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23935 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23936 23937 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23938 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23939 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23940 23941 if (pkt_type == OB_PKT) { 23942 ire->ire_ob_pkt_count += pkts; 23943 if (ire->ire_ipif != NULL) 23944 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23945 } else { 23946 /* The type is IB_PKT in the forwarding path. */ 23947 ire->ire_ib_pkt_count += pkts; 23948 ASSERT(!IRE_IS_LOCAL(ire)); 23949 if (ire->ire_type & IRE_BROADCAST) { 23950 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23951 } else { 23952 UPDATE_MIB(ill->ill_ip_mib, 23953 ipIfStatsHCOutForwDatagrams, pkts); 23954 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23955 } 23956 } 23957 ire->ire_last_used_time = lbolt; 23958 /* Send it down */ 23959 putnext(ire->ire_stq, md_mp); 23960 return; 23961 23962 pbuf_panic: 23963 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23964 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23965 pbuf_idx); 23966 /* NOTREACHED */ 23967 } 23968 23969 /* 23970 * Outbound IP fragmentation routine. 23971 * 23972 * NOTE : This routine does not ire_refrele the ire that is passed in 23973 * as the argument. 23974 */ 23975 static void 23976 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23977 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 23978 { 23979 int i1; 23980 mblk_t *ll_hdr_mp; 23981 int ll_hdr_len; 23982 int hdr_len; 23983 mblk_t *hdr_mp; 23984 ipha_t *ipha; 23985 int ip_data_end; 23986 int len; 23987 mblk_t *mp = mp_orig, *mp1; 23988 int offset; 23989 queue_t *q; 23990 uint32_t v_hlen_tos_len; 23991 mblk_t *first_mp; 23992 boolean_t mctl_present; 23993 ill_t *ill; 23994 ill_t *out_ill; 23995 mblk_t *xmit_mp; 23996 mblk_t *carve_mp; 23997 ire_t *ire1 = NULL; 23998 ire_t *save_ire = NULL; 23999 mblk_t *next_mp = NULL; 24000 boolean_t last_frag = B_FALSE; 24001 boolean_t multirt_send = B_FALSE; 24002 ire_t *first_ire = NULL; 24003 irb_t *irb = NULL; 24004 mib2_ipIfStatsEntry_t *mibptr = NULL; 24005 24006 ill = ire_to_ill(ire); 24007 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24008 24009 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24010 24011 if (max_frag == 0) { 24012 ip1dbg(("ip_wput_frag: ire frag size is 0" 24013 " - dropping packet\n")); 24014 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24015 freemsg(mp); 24016 return; 24017 } 24018 24019 /* 24020 * IPsec does not allow hw accelerated packets to be fragmented 24021 * This check is made in ip_wput_ipsec_out prior to coming here 24022 * via ip_wput_ire_fragmentit. 24023 * 24024 * If at this point we have an ire whose ARP request has not 24025 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24026 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24027 * This packet and all fragmentable packets for this ire will 24028 * continue to get dropped while ire_nce->nce_state remains in 24029 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24030 * ND_REACHABLE, all subsquent large packets for this ire will 24031 * get fragemented and sent out by this function. 24032 */ 24033 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24034 /* If nce_state is ND_INITIAL, trigger ARP query */ 24035 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24036 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24037 " - dropping packet\n")); 24038 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24039 freemsg(mp); 24040 return; 24041 } 24042 24043 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24044 "ip_wput_frag_start:"); 24045 24046 if (mp->b_datap->db_type == M_CTL) { 24047 first_mp = mp; 24048 mp_orig = mp = mp->b_cont; 24049 mctl_present = B_TRUE; 24050 } else { 24051 first_mp = mp; 24052 mctl_present = B_FALSE; 24053 } 24054 24055 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24056 ipha = (ipha_t *)mp->b_rptr; 24057 24058 /* 24059 * If the Don't Fragment flag is on, generate an ICMP destination 24060 * unreachable, fragmentation needed. 24061 */ 24062 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24063 if (offset & IPH_DF) { 24064 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24065 if (is_system_labeled()) { 24066 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24067 ire->ire_max_frag - max_frag, AF_INET); 24068 } 24069 /* 24070 * Need to compute hdr checksum if called from ip_wput_ire. 24071 * Note that ip_rput_forward verifies the checksum before 24072 * calling this routine so in that case this is a noop. 24073 */ 24074 ipha->ipha_hdr_checksum = 0; 24075 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24076 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24077 ipst); 24078 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24079 "ip_wput_frag_end:(%S)", 24080 "don't fragment"); 24081 return; 24082 } 24083 /* 24084 * Labeled systems adjust max_frag if they add a label 24085 * to send the correct path mtu. We need the real mtu since we 24086 * are fragmenting the packet after label adjustment. 24087 */ 24088 if (is_system_labeled()) 24089 max_frag = ire->ire_max_frag; 24090 if (mctl_present) 24091 freeb(first_mp); 24092 /* 24093 * Establish the starting offset. May not be zero if we are fragging 24094 * a fragment that is being forwarded. 24095 */ 24096 offset = offset & IPH_OFFSET; 24097 24098 /* TODO why is this test needed? */ 24099 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24100 if (((max_frag - LENGTH) & ~7) < 8) { 24101 /* TODO: notify ulp somehow */ 24102 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24103 freemsg(mp); 24104 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24105 "ip_wput_frag_end:(%S)", 24106 "len < 8"); 24107 return; 24108 } 24109 24110 hdr_len = (V_HLEN & 0xF) << 2; 24111 24112 ipha->ipha_hdr_checksum = 0; 24113 24114 /* 24115 * Establish the number of bytes maximum per frag, after putting 24116 * in the header. 24117 */ 24118 len = (max_frag - hdr_len) & ~7; 24119 24120 /* Check if we can use MDT to send out the frags. */ 24121 ASSERT(!IRE_IS_LOCAL(ire)); 24122 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24123 ipst->ips_ip_multidata_outbound && 24124 !(ire->ire_flags & RTF_MULTIRT) && 24125 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24126 ill != NULL && ILL_MDT_CAPABLE(ill) && 24127 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24128 ASSERT(ill->ill_mdt_capab != NULL); 24129 if (!ill->ill_mdt_capab->ill_mdt_on) { 24130 /* 24131 * If MDT has been previously turned off in the past, 24132 * and we currently can do MDT (due to IPQoS policy 24133 * removal, etc.) then enable it for this interface. 24134 */ 24135 ill->ill_mdt_capab->ill_mdt_on = 1; 24136 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24137 ill->ill_name)); 24138 } 24139 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24140 offset); 24141 return; 24142 } 24143 24144 /* Get a copy of the header for the trailing frags */ 24145 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24146 if (!hdr_mp) { 24147 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24148 freemsg(mp); 24149 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24150 "ip_wput_frag_end:(%S)", 24151 "couldn't copy hdr"); 24152 return; 24153 } 24154 if (DB_CRED(mp) != NULL) 24155 mblk_setcred(hdr_mp, DB_CRED(mp)); 24156 24157 /* Store the starting offset, with the MoreFrags flag. */ 24158 i1 = offset | IPH_MF | frag_flag; 24159 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24160 24161 /* Establish the ending byte offset, based on the starting offset. */ 24162 offset <<= 3; 24163 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24164 24165 /* Store the length of the first fragment in the IP header. */ 24166 i1 = len + hdr_len; 24167 ASSERT(i1 <= IP_MAXPACKET); 24168 ipha->ipha_length = htons((uint16_t)i1); 24169 24170 /* 24171 * Compute the IP header checksum for the first frag. We have to 24172 * watch out that we stop at the end of the header. 24173 */ 24174 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24175 24176 /* 24177 * Now carve off the first frag. Note that this will include the 24178 * original IP header. 24179 */ 24180 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24181 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24182 freeb(hdr_mp); 24183 freemsg(mp_orig); 24184 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24185 "ip_wput_frag_end:(%S)", 24186 "couldn't carve first"); 24187 return; 24188 } 24189 24190 /* 24191 * Multirouting case. Each fragment is replicated 24192 * via all non-condemned RTF_MULTIRT routes 24193 * currently resolved. 24194 * We ensure that first_ire is the first RTF_MULTIRT 24195 * ire in the bucket. 24196 */ 24197 if (ire->ire_flags & RTF_MULTIRT) { 24198 irb = ire->ire_bucket; 24199 ASSERT(irb != NULL); 24200 24201 multirt_send = B_TRUE; 24202 24203 /* Make sure we do not omit any multiroute ire. */ 24204 IRB_REFHOLD(irb); 24205 for (first_ire = irb->irb_ire; 24206 first_ire != NULL; 24207 first_ire = first_ire->ire_next) { 24208 if ((first_ire->ire_flags & RTF_MULTIRT) && 24209 (first_ire->ire_addr == ire->ire_addr) && 24210 !(first_ire->ire_marks & 24211 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24212 break; 24213 } 24214 } 24215 24216 if (first_ire != NULL) { 24217 if (first_ire != ire) { 24218 IRE_REFHOLD(first_ire); 24219 /* 24220 * Do not release the ire passed in 24221 * as the argument. 24222 */ 24223 ire = first_ire; 24224 } else { 24225 first_ire = NULL; 24226 } 24227 } 24228 IRB_REFRELE(irb); 24229 24230 /* 24231 * Save the first ire; we will need to restore it 24232 * for the trailing frags. 24233 * We REFHOLD save_ire, as each iterated ire will be 24234 * REFRELEd. 24235 */ 24236 save_ire = ire; 24237 IRE_REFHOLD(save_ire); 24238 } 24239 24240 /* 24241 * First fragment emission loop. 24242 * In most cases, the emission loop below is entered only 24243 * once. Only in the case where the ire holds the RTF_MULTIRT 24244 * flag, do we loop to process all RTF_MULTIRT ires in the 24245 * bucket, and send the fragment through all crossed 24246 * RTF_MULTIRT routes. 24247 */ 24248 do { 24249 if (ire->ire_flags & RTF_MULTIRT) { 24250 /* 24251 * We are in a multiple send case, need to get 24252 * the next ire and make a copy of the packet. 24253 * ire1 holds here the next ire to process in the 24254 * bucket. If multirouting is expected, 24255 * any non-RTF_MULTIRT ire that has the 24256 * right destination address is ignored. 24257 * 24258 * We have to take into account the MTU of 24259 * each walked ire. max_frag is set by the 24260 * the caller and generally refers to 24261 * the primary ire entry. Here we ensure that 24262 * no route with a lower MTU will be used, as 24263 * fragments are carved once for all ires, 24264 * then replicated. 24265 */ 24266 ASSERT(irb != NULL); 24267 IRB_REFHOLD(irb); 24268 for (ire1 = ire->ire_next; 24269 ire1 != NULL; 24270 ire1 = ire1->ire_next) { 24271 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24272 continue; 24273 if (ire1->ire_addr != ire->ire_addr) 24274 continue; 24275 if (ire1->ire_marks & 24276 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24277 continue; 24278 /* 24279 * Ensure we do not exceed the MTU 24280 * of the next route. 24281 */ 24282 if (ire1->ire_max_frag < max_frag) { 24283 ip_multirt_bad_mtu(ire1, max_frag); 24284 continue; 24285 } 24286 24287 /* Got one. */ 24288 IRE_REFHOLD(ire1); 24289 break; 24290 } 24291 IRB_REFRELE(irb); 24292 24293 if (ire1 != NULL) { 24294 next_mp = copyb(mp); 24295 if ((next_mp == NULL) || 24296 ((mp->b_cont != NULL) && 24297 ((next_mp->b_cont = 24298 dupmsg(mp->b_cont)) == NULL))) { 24299 freemsg(next_mp); 24300 next_mp = NULL; 24301 ire_refrele(ire1); 24302 ire1 = NULL; 24303 } 24304 } 24305 24306 /* Last multiroute ire; don't loop anymore. */ 24307 if (ire1 == NULL) { 24308 multirt_send = B_FALSE; 24309 } 24310 } 24311 24312 ll_hdr_len = 0; 24313 LOCK_IRE_FP_MP(ire); 24314 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24315 if (ll_hdr_mp != NULL) { 24316 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24317 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24318 } else { 24319 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24320 } 24321 24322 /* If there is a transmit header, get a copy for this frag. */ 24323 /* 24324 * TODO: should check db_ref before calling ip_carve_mp since 24325 * it might give us a dup. 24326 */ 24327 if (!ll_hdr_mp) { 24328 /* No xmit header. */ 24329 xmit_mp = mp; 24330 24331 /* We have a link-layer header that can fit in our mblk. */ 24332 } else if (mp->b_datap->db_ref == 1 && 24333 ll_hdr_len != 0 && 24334 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24335 /* M_DATA fastpath */ 24336 mp->b_rptr -= ll_hdr_len; 24337 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24338 xmit_mp = mp; 24339 24340 /* Corner case if copyb has failed */ 24341 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24342 UNLOCK_IRE_FP_MP(ire); 24343 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24344 freeb(hdr_mp); 24345 freemsg(mp); 24346 freemsg(mp_orig); 24347 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24348 "ip_wput_frag_end:(%S)", 24349 "discard"); 24350 24351 if (multirt_send) { 24352 ASSERT(ire1); 24353 ASSERT(next_mp); 24354 24355 freemsg(next_mp); 24356 ire_refrele(ire1); 24357 } 24358 if (save_ire != NULL) 24359 IRE_REFRELE(save_ire); 24360 24361 if (first_ire != NULL) 24362 ire_refrele(first_ire); 24363 return; 24364 24365 /* 24366 * Case of res_mp OR the fastpath mp can't fit 24367 * in the mblk 24368 */ 24369 } else { 24370 xmit_mp->b_cont = mp; 24371 if (DB_CRED(mp) != NULL) 24372 mblk_setcred(xmit_mp, DB_CRED(mp)); 24373 /* 24374 * Get priority marking, if any. 24375 * We propagate the CoS marking from the 24376 * original packet that went to QoS processing 24377 * in ip_wput_ire to the newly carved mp. 24378 */ 24379 if (DB_TYPE(xmit_mp) == M_DATA) 24380 xmit_mp->b_band = mp->b_band; 24381 } 24382 UNLOCK_IRE_FP_MP(ire); 24383 24384 q = ire->ire_stq; 24385 out_ill = (ill_t *)q->q_ptr; 24386 24387 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24388 24389 DTRACE_PROBE4(ip4__physical__out__start, 24390 ill_t *, NULL, ill_t *, out_ill, 24391 ipha_t *, ipha, mblk_t *, xmit_mp); 24392 24393 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24394 ipst->ips_ipv4firewall_physical_out, 24395 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24396 24397 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24398 24399 if (xmit_mp != NULL) { 24400 putnext(q, xmit_mp); 24401 24402 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24403 UPDATE_MIB(out_ill->ill_ip_mib, 24404 ipIfStatsHCOutOctets, i1); 24405 24406 if (pkt_type != OB_PKT) { 24407 /* 24408 * Update the packet count and MIB stats 24409 * of trailing RTF_MULTIRT ires. 24410 */ 24411 UPDATE_OB_PKT_COUNT(ire); 24412 BUMP_MIB(out_ill->ill_ip_mib, 24413 ipIfStatsOutFragReqds); 24414 } 24415 } 24416 24417 if (multirt_send) { 24418 /* 24419 * We are in a multiple send case; look for 24420 * the next ire and re-enter the loop. 24421 */ 24422 ASSERT(ire1); 24423 ASSERT(next_mp); 24424 /* REFRELE the current ire before looping */ 24425 ire_refrele(ire); 24426 ire = ire1; 24427 ire1 = NULL; 24428 mp = next_mp; 24429 next_mp = NULL; 24430 } 24431 } while (multirt_send); 24432 24433 ASSERT(ire1 == NULL); 24434 24435 /* Restore the original ire; we need it for the trailing frags */ 24436 if (save_ire != NULL) { 24437 /* REFRELE the last iterated ire */ 24438 ire_refrele(ire); 24439 /* save_ire has been REFHOLDed */ 24440 ire = save_ire; 24441 save_ire = NULL; 24442 q = ire->ire_stq; 24443 } 24444 24445 if (pkt_type == OB_PKT) { 24446 UPDATE_OB_PKT_COUNT(ire); 24447 } else { 24448 out_ill = (ill_t *)q->q_ptr; 24449 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24450 UPDATE_IB_PKT_COUNT(ire); 24451 } 24452 24453 /* Advance the offset to the second frag starting point. */ 24454 offset += len; 24455 /* 24456 * Update hdr_len from the copied header - there might be less options 24457 * in the later fragments. 24458 */ 24459 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24460 /* Loop until done. */ 24461 for (;;) { 24462 uint16_t offset_and_flags; 24463 uint16_t ip_len; 24464 24465 if (ip_data_end - offset > len) { 24466 /* 24467 * Carve off the appropriate amount from the original 24468 * datagram. 24469 */ 24470 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24471 mp = NULL; 24472 break; 24473 } 24474 /* 24475 * More frags after this one. Get another copy 24476 * of the header. 24477 */ 24478 if (carve_mp->b_datap->db_ref == 1 && 24479 hdr_mp->b_wptr - hdr_mp->b_rptr < 24480 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24481 /* Inline IP header */ 24482 carve_mp->b_rptr -= hdr_mp->b_wptr - 24483 hdr_mp->b_rptr; 24484 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24485 hdr_mp->b_wptr - hdr_mp->b_rptr); 24486 mp = carve_mp; 24487 } else { 24488 if (!(mp = copyb(hdr_mp))) { 24489 freemsg(carve_mp); 24490 break; 24491 } 24492 /* Get priority marking, if any. */ 24493 mp->b_band = carve_mp->b_band; 24494 mp->b_cont = carve_mp; 24495 } 24496 ipha = (ipha_t *)mp->b_rptr; 24497 offset_and_flags = IPH_MF; 24498 } else { 24499 /* 24500 * Last frag. Consume the header. Set len to 24501 * the length of this last piece. 24502 */ 24503 len = ip_data_end - offset; 24504 24505 /* 24506 * Carve off the appropriate amount from the original 24507 * datagram. 24508 */ 24509 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24510 mp = NULL; 24511 break; 24512 } 24513 if (carve_mp->b_datap->db_ref == 1 && 24514 hdr_mp->b_wptr - hdr_mp->b_rptr < 24515 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24516 /* Inline IP header */ 24517 carve_mp->b_rptr -= hdr_mp->b_wptr - 24518 hdr_mp->b_rptr; 24519 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24520 hdr_mp->b_wptr - hdr_mp->b_rptr); 24521 mp = carve_mp; 24522 freeb(hdr_mp); 24523 hdr_mp = mp; 24524 } else { 24525 mp = hdr_mp; 24526 /* Get priority marking, if any. */ 24527 mp->b_band = carve_mp->b_band; 24528 mp->b_cont = carve_mp; 24529 } 24530 ipha = (ipha_t *)mp->b_rptr; 24531 /* A frag of a frag might have IPH_MF non-zero */ 24532 offset_and_flags = 24533 ntohs(ipha->ipha_fragment_offset_and_flags) & 24534 IPH_MF; 24535 } 24536 offset_and_flags |= (uint16_t)(offset >> 3); 24537 offset_and_flags |= (uint16_t)frag_flag; 24538 /* Store the offset and flags in the IP header. */ 24539 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24540 24541 /* Store the length in the IP header. */ 24542 ip_len = (uint16_t)(len + hdr_len); 24543 ipha->ipha_length = htons(ip_len); 24544 24545 /* 24546 * Set the IP header checksum. Note that mp is just 24547 * the header, so this is easy to pass to ip_csum. 24548 */ 24549 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24550 24551 /* Attach a transmit header, if any, and ship it. */ 24552 if (pkt_type == OB_PKT) { 24553 UPDATE_OB_PKT_COUNT(ire); 24554 } else { 24555 out_ill = (ill_t *)q->q_ptr; 24556 BUMP_MIB(out_ill->ill_ip_mib, 24557 ipIfStatsHCOutForwDatagrams); 24558 UPDATE_IB_PKT_COUNT(ire); 24559 } 24560 24561 if (ire->ire_flags & RTF_MULTIRT) { 24562 irb = ire->ire_bucket; 24563 ASSERT(irb != NULL); 24564 24565 multirt_send = B_TRUE; 24566 24567 /* 24568 * Save the original ire; we will need to restore it 24569 * for the tailing frags. 24570 */ 24571 save_ire = ire; 24572 IRE_REFHOLD(save_ire); 24573 } 24574 /* 24575 * Emission loop for this fragment, similar 24576 * to what is done for the first fragment. 24577 */ 24578 do { 24579 if (multirt_send) { 24580 /* 24581 * We are in a multiple send case, need to get 24582 * the next ire and make a copy of the packet. 24583 */ 24584 ASSERT(irb != NULL); 24585 IRB_REFHOLD(irb); 24586 for (ire1 = ire->ire_next; 24587 ire1 != NULL; 24588 ire1 = ire1->ire_next) { 24589 if (!(ire1->ire_flags & RTF_MULTIRT)) 24590 continue; 24591 if (ire1->ire_addr != ire->ire_addr) 24592 continue; 24593 if (ire1->ire_marks & 24594 (IRE_MARK_CONDEMNED| 24595 IRE_MARK_HIDDEN)) { 24596 continue; 24597 } 24598 /* 24599 * Ensure we do not exceed the MTU 24600 * of the next route. 24601 */ 24602 if (ire1->ire_max_frag < max_frag) { 24603 ip_multirt_bad_mtu(ire1, 24604 max_frag); 24605 continue; 24606 } 24607 24608 /* Got one. */ 24609 IRE_REFHOLD(ire1); 24610 break; 24611 } 24612 IRB_REFRELE(irb); 24613 24614 if (ire1 != NULL) { 24615 next_mp = copyb(mp); 24616 if ((next_mp == NULL) || 24617 ((mp->b_cont != NULL) && 24618 ((next_mp->b_cont = 24619 dupmsg(mp->b_cont)) == NULL))) { 24620 freemsg(next_mp); 24621 next_mp = NULL; 24622 ire_refrele(ire1); 24623 ire1 = NULL; 24624 } 24625 } 24626 24627 /* Last multiroute ire; don't loop anymore. */ 24628 if (ire1 == NULL) { 24629 multirt_send = B_FALSE; 24630 } 24631 } 24632 24633 /* Update transmit header */ 24634 ll_hdr_len = 0; 24635 LOCK_IRE_FP_MP(ire); 24636 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24637 if (ll_hdr_mp != NULL) { 24638 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24639 ll_hdr_len = MBLKL(ll_hdr_mp); 24640 } else { 24641 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24642 } 24643 24644 if (!ll_hdr_mp) { 24645 xmit_mp = mp; 24646 24647 /* 24648 * We have link-layer header that can fit in 24649 * our mblk. 24650 */ 24651 } else if (mp->b_datap->db_ref == 1 && 24652 ll_hdr_len != 0 && 24653 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24654 /* M_DATA fastpath */ 24655 mp->b_rptr -= ll_hdr_len; 24656 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24657 ll_hdr_len); 24658 xmit_mp = mp; 24659 24660 /* 24661 * Case of res_mp OR the fastpath mp can't fit 24662 * in the mblk 24663 */ 24664 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24665 xmit_mp->b_cont = mp; 24666 if (DB_CRED(mp) != NULL) 24667 mblk_setcred(xmit_mp, DB_CRED(mp)); 24668 /* Get priority marking, if any. */ 24669 if (DB_TYPE(xmit_mp) == M_DATA) 24670 xmit_mp->b_band = mp->b_band; 24671 24672 /* Corner case if copyb failed */ 24673 } else { 24674 /* 24675 * Exit both the replication and 24676 * fragmentation loops. 24677 */ 24678 UNLOCK_IRE_FP_MP(ire); 24679 goto drop_pkt; 24680 } 24681 UNLOCK_IRE_FP_MP(ire); 24682 24683 mp1 = mp; 24684 out_ill = (ill_t *)q->q_ptr; 24685 24686 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24687 24688 DTRACE_PROBE4(ip4__physical__out__start, 24689 ill_t *, NULL, ill_t *, out_ill, 24690 ipha_t *, ipha, mblk_t *, xmit_mp); 24691 24692 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24693 ipst->ips_ipv4firewall_physical_out, 24694 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24695 24696 DTRACE_PROBE1(ip4__physical__out__end, 24697 mblk_t *, xmit_mp); 24698 24699 if (mp != mp1 && hdr_mp == mp1) 24700 hdr_mp = mp; 24701 if (mp != mp1 && mp_orig == mp1) 24702 mp_orig = mp; 24703 24704 if (xmit_mp != NULL) { 24705 putnext(q, xmit_mp); 24706 24707 BUMP_MIB(out_ill->ill_ip_mib, 24708 ipIfStatsHCOutTransmits); 24709 UPDATE_MIB(out_ill->ill_ip_mib, 24710 ipIfStatsHCOutOctets, ip_len); 24711 24712 if (pkt_type != OB_PKT) { 24713 /* 24714 * Update the packet count of trailing 24715 * RTF_MULTIRT ires. 24716 */ 24717 UPDATE_OB_PKT_COUNT(ire); 24718 } 24719 } 24720 24721 /* All done if we just consumed the hdr_mp. */ 24722 if (mp == hdr_mp) { 24723 last_frag = B_TRUE; 24724 BUMP_MIB(out_ill->ill_ip_mib, 24725 ipIfStatsOutFragOKs); 24726 } 24727 24728 if (multirt_send) { 24729 /* 24730 * We are in a multiple send case; look for 24731 * the next ire and re-enter the loop. 24732 */ 24733 ASSERT(ire1); 24734 ASSERT(next_mp); 24735 /* REFRELE the current ire before looping */ 24736 ire_refrele(ire); 24737 ire = ire1; 24738 ire1 = NULL; 24739 q = ire->ire_stq; 24740 mp = next_mp; 24741 next_mp = NULL; 24742 } 24743 } while (multirt_send); 24744 /* 24745 * Restore the original ire; we need it for the 24746 * trailing frags 24747 */ 24748 if (save_ire != NULL) { 24749 ASSERT(ire1 == NULL); 24750 /* REFRELE the last iterated ire */ 24751 ire_refrele(ire); 24752 /* save_ire has been REFHOLDed */ 24753 ire = save_ire; 24754 q = ire->ire_stq; 24755 save_ire = NULL; 24756 } 24757 24758 if (last_frag) { 24759 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24760 "ip_wput_frag_end:(%S)", 24761 "consumed hdr_mp"); 24762 24763 if (first_ire != NULL) 24764 ire_refrele(first_ire); 24765 return; 24766 } 24767 /* Otherwise, advance and loop. */ 24768 offset += len; 24769 } 24770 24771 drop_pkt: 24772 /* Clean up following allocation failure. */ 24773 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24774 freemsg(mp); 24775 if (mp != hdr_mp) 24776 freeb(hdr_mp); 24777 if (mp != mp_orig) 24778 freemsg(mp_orig); 24779 24780 if (save_ire != NULL) 24781 IRE_REFRELE(save_ire); 24782 if (first_ire != NULL) 24783 ire_refrele(first_ire); 24784 24785 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24786 "ip_wput_frag_end:(%S)", 24787 "end--alloc failure"); 24788 } 24789 24790 /* 24791 * Copy the header plus those options which have the copy bit set 24792 */ 24793 static mblk_t * 24794 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24795 { 24796 mblk_t *mp; 24797 uchar_t *up; 24798 24799 /* 24800 * Quick check if we need to look for options without the copy bit 24801 * set 24802 */ 24803 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24804 if (!mp) 24805 return (mp); 24806 mp->b_rptr += ipst->ips_ip_wroff_extra; 24807 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24808 bcopy(rptr, mp->b_rptr, hdr_len); 24809 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24810 return (mp); 24811 } 24812 up = mp->b_rptr; 24813 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24814 up += IP_SIMPLE_HDR_LENGTH; 24815 rptr += IP_SIMPLE_HDR_LENGTH; 24816 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24817 while (hdr_len > 0) { 24818 uint32_t optval; 24819 uint32_t optlen; 24820 24821 optval = *rptr; 24822 if (optval == IPOPT_EOL) 24823 break; 24824 if (optval == IPOPT_NOP) 24825 optlen = 1; 24826 else 24827 optlen = rptr[1]; 24828 if (optval & IPOPT_COPY) { 24829 bcopy(rptr, up, optlen); 24830 up += optlen; 24831 } 24832 rptr += optlen; 24833 hdr_len -= optlen; 24834 } 24835 /* 24836 * Make sure that we drop an even number of words by filling 24837 * with EOL to the next word boundary. 24838 */ 24839 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24840 hdr_len & 0x3; hdr_len++) 24841 *up++ = IPOPT_EOL; 24842 mp->b_wptr = up; 24843 /* Update header length */ 24844 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24845 return (mp); 24846 } 24847 24848 /* 24849 * Delivery to local recipients including fanout to multiple recipients. 24850 * Does not do checksumming of UDP/TCP. 24851 * Note: q should be the read side queue for either the ill or conn. 24852 * Note: rq should be the read side q for the lower (ill) stream. 24853 * We don't send packets to IPPF processing, thus the last argument 24854 * to all the fanout calls are B_FALSE. 24855 */ 24856 void 24857 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24858 int fanout_flags, zoneid_t zoneid) 24859 { 24860 uint32_t protocol; 24861 mblk_t *first_mp; 24862 boolean_t mctl_present; 24863 int ire_type; 24864 #define rptr ((uchar_t *)ipha) 24865 ip_stack_t *ipst = ill->ill_ipst; 24866 24867 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24868 "ip_wput_local_start: q %p", q); 24869 24870 if (ire != NULL) { 24871 ire_type = ire->ire_type; 24872 } else { 24873 /* 24874 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24875 * packet is not multicast, we can't tell the ire type. 24876 */ 24877 ASSERT(CLASSD(ipha->ipha_dst)); 24878 ire_type = IRE_BROADCAST; 24879 } 24880 24881 first_mp = mp; 24882 if (first_mp->b_datap->db_type == M_CTL) { 24883 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24884 if (!io->ipsec_out_secure) { 24885 /* 24886 * This ipsec_out_t was allocated in ip_wput 24887 * for multicast packets to store the ill_index. 24888 * As this is being delivered locally, we don't 24889 * need this anymore. 24890 */ 24891 mp = first_mp->b_cont; 24892 freeb(first_mp); 24893 first_mp = mp; 24894 mctl_present = B_FALSE; 24895 } else { 24896 /* 24897 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24898 * security properties for the looped-back packet. 24899 */ 24900 mctl_present = B_TRUE; 24901 mp = first_mp->b_cont; 24902 ASSERT(mp != NULL); 24903 ipsec_out_to_in(first_mp); 24904 } 24905 } else { 24906 mctl_present = B_FALSE; 24907 } 24908 24909 DTRACE_PROBE4(ip4__loopback__in__start, 24910 ill_t *, ill, ill_t *, NULL, 24911 ipha_t *, ipha, mblk_t *, first_mp); 24912 24913 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24914 ipst->ips_ipv4firewall_loopback_in, 24915 ill, NULL, ipha, first_mp, mp, ipst); 24916 24917 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24918 24919 if (first_mp == NULL) 24920 return; 24921 24922 ipst->ips_loopback_packets++; 24923 24924 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24925 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24926 if (!IS_SIMPLE_IPH(ipha)) { 24927 ip_wput_local_options(ipha, ipst); 24928 } 24929 24930 protocol = ipha->ipha_protocol; 24931 switch (protocol) { 24932 case IPPROTO_ICMP: { 24933 ire_t *ire_zone; 24934 ilm_t *ilm; 24935 mblk_t *mp1; 24936 zoneid_t last_zoneid; 24937 24938 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24939 ASSERT(ire_type == IRE_BROADCAST); 24940 /* 24941 * In the multicast case, applications may have joined 24942 * the group from different zones, so we need to deliver 24943 * the packet to each of them. Loop through the 24944 * multicast memberships structures (ilm) on the receive 24945 * ill and send a copy of the packet up each matching 24946 * one. However, we don't do this for multicasts sent on 24947 * the loopback interface (PHYI_LOOPBACK flag set) as 24948 * they must stay in the sender's zone. 24949 * 24950 * ilm_add_v6() ensures that ilms in the same zone are 24951 * contiguous in the ill_ilm list. We use this property 24952 * to avoid sending duplicates needed when two 24953 * applications in the same zone join the same group on 24954 * different logical interfaces: we ignore the ilm if 24955 * it's zoneid is the same as the last matching one. 24956 * In addition, the sending of the packet for 24957 * ire_zoneid is delayed until all of the other ilms 24958 * have been exhausted. 24959 */ 24960 last_zoneid = -1; 24961 ILM_WALKER_HOLD(ill); 24962 for (ilm = ill->ill_ilm; ilm != NULL; 24963 ilm = ilm->ilm_next) { 24964 if ((ilm->ilm_flags & ILM_DELETED) || 24965 ipha->ipha_dst != ilm->ilm_addr || 24966 ilm->ilm_zoneid == last_zoneid || 24967 ilm->ilm_zoneid == zoneid || 24968 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24969 continue; 24970 mp1 = ip_copymsg(first_mp); 24971 if (mp1 == NULL) 24972 continue; 24973 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24974 mctl_present, B_FALSE, ill, 24975 ilm->ilm_zoneid); 24976 last_zoneid = ilm->ilm_zoneid; 24977 } 24978 ILM_WALKER_RELE(ill); 24979 /* 24980 * Loopback case: the sending endpoint has 24981 * IP_MULTICAST_LOOP disabled, therefore we don't 24982 * dispatch the multicast packet to the sending zone. 24983 */ 24984 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24985 freemsg(first_mp); 24986 return; 24987 } 24988 } else if (ire_type == IRE_BROADCAST) { 24989 /* 24990 * In the broadcast case, there may be many zones 24991 * which need a copy of the packet delivered to them. 24992 * There is one IRE_BROADCAST per broadcast address 24993 * and per zone; we walk those using a helper function. 24994 * In addition, the sending of the packet for zoneid is 24995 * delayed until all of the other ires have been 24996 * processed. 24997 */ 24998 IRB_REFHOLD(ire->ire_bucket); 24999 ire_zone = NULL; 25000 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25001 ire)) != NULL) { 25002 mp1 = ip_copymsg(first_mp); 25003 if (mp1 == NULL) 25004 continue; 25005 25006 UPDATE_IB_PKT_COUNT(ire_zone); 25007 ire_zone->ire_last_used_time = lbolt; 25008 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25009 mctl_present, B_FALSE, ill, 25010 ire_zone->ire_zoneid); 25011 } 25012 IRB_REFRELE(ire->ire_bucket); 25013 } 25014 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25015 0, mctl_present, B_FALSE, ill, zoneid); 25016 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25017 "ip_wput_local_end: q %p (%S)", 25018 q, "icmp"); 25019 return; 25020 } 25021 case IPPROTO_IGMP: 25022 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25023 /* Bad packet - discarded by igmp_input */ 25024 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25025 "ip_wput_local_end: q %p (%S)", 25026 q, "igmp_input--bad packet"); 25027 if (mctl_present) 25028 freeb(first_mp); 25029 return; 25030 } 25031 /* 25032 * igmp_input() may have returned the pulled up message. 25033 * So first_mp and ipha need to be reinitialized. 25034 */ 25035 ipha = (ipha_t *)mp->b_rptr; 25036 if (mctl_present) 25037 first_mp->b_cont = mp; 25038 else 25039 first_mp = mp; 25040 /* deliver to local raw users */ 25041 break; 25042 case IPPROTO_ENCAP: 25043 /* 25044 * This case is covered by either ip_fanout_proto, or by 25045 * the above security processing for self-tunneled packets. 25046 */ 25047 break; 25048 case IPPROTO_UDP: { 25049 uint16_t *up; 25050 uint32_t ports; 25051 25052 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25053 UDP_PORTS_OFFSET); 25054 /* Force a 'valid' checksum. */ 25055 up[3] = 0; 25056 25057 ports = *(uint32_t *)up; 25058 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25059 (ire_type == IRE_BROADCAST), 25060 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25061 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25062 ill, zoneid); 25063 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25064 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25065 return; 25066 } 25067 case IPPROTO_TCP: { 25068 25069 /* 25070 * For TCP, discard broadcast packets. 25071 */ 25072 if ((ushort_t)ire_type == IRE_BROADCAST) { 25073 freemsg(first_mp); 25074 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25075 ip2dbg(("ip_wput_local: discard broadcast\n")); 25076 return; 25077 } 25078 25079 if (mp->b_datap->db_type == M_DATA) { 25080 /* 25081 * M_DATA mblk, so init mblk (chain) for no struio(). 25082 */ 25083 mblk_t *mp1 = mp; 25084 25085 do { 25086 mp1->b_datap->db_struioflag = 0; 25087 } while ((mp1 = mp1->b_cont) != NULL); 25088 } 25089 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25090 <= mp->b_wptr); 25091 ip_fanout_tcp(q, first_mp, ill, ipha, 25092 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25093 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25094 mctl_present, B_FALSE, zoneid); 25095 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25096 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25097 return; 25098 } 25099 case IPPROTO_SCTP: 25100 { 25101 uint32_t ports; 25102 25103 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25104 ip_fanout_sctp(first_mp, ill, ipha, ports, 25105 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25106 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25107 return; 25108 } 25109 25110 default: 25111 break; 25112 } 25113 /* 25114 * Find a client for some other protocol. We give 25115 * copies to multiple clients, if more than one is 25116 * bound. 25117 */ 25118 ip_fanout_proto(q, first_mp, ill, ipha, 25119 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25120 mctl_present, B_FALSE, ill, zoneid); 25121 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25122 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25123 #undef rptr 25124 } 25125 25126 /* 25127 * Update any source route, record route, or timestamp options. 25128 * Check that we are at end of strict source route. 25129 * The options have been sanity checked by ip_wput_options(). 25130 */ 25131 static void 25132 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25133 { 25134 ipoptp_t opts; 25135 uchar_t *opt; 25136 uint8_t optval; 25137 uint8_t optlen; 25138 ipaddr_t dst; 25139 uint32_t ts; 25140 ire_t *ire; 25141 timestruc_t now; 25142 25143 ip2dbg(("ip_wput_local_options\n")); 25144 for (optval = ipoptp_first(&opts, ipha); 25145 optval != IPOPT_EOL; 25146 optval = ipoptp_next(&opts)) { 25147 opt = opts.ipoptp_cur; 25148 optlen = opts.ipoptp_len; 25149 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25150 switch (optval) { 25151 uint32_t off; 25152 case IPOPT_SSRR: 25153 case IPOPT_LSRR: 25154 off = opt[IPOPT_OFFSET]; 25155 off--; 25156 if (optlen < IP_ADDR_LEN || 25157 off > optlen - IP_ADDR_LEN) { 25158 /* End of source route */ 25159 break; 25160 } 25161 /* 25162 * This will only happen if two consecutive entries 25163 * in the source route contains our address or if 25164 * it is a packet with a loose source route which 25165 * reaches us before consuming the whole source route 25166 */ 25167 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25168 if (optval == IPOPT_SSRR) { 25169 return; 25170 } 25171 /* 25172 * Hack: instead of dropping the packet truncate the 25173 * source route to what has been used by filling the 25174 * rest with IPOPT_NOP. 25175 */ 25176 opt[IPOPT_OLEN] = (uint8_t)off; 25177 while (off < optlen) { 25178 opt[off++] = IPOPT_NOP; 25179 } 25180 break; 25181 case IPOPT_RR: 25182 off = opt[IPOPT_OFFSET]; 25183 off--; 25184 if (optlen < IP_ADDR_LEN || 25185 off > optlen - IP_ADDR_LEN) { 25186 /* No more room - ignore */ 25187 ip1dbg(( 25188 "ip_wput_forward_options: end of RR\n")); 25189 break; 25190 } 25191 dst = htonl(INADDR_LOOPBACK); 25192 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25193 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25194 break; 25195 case IPOPT_TS: 25196 /* Insert timestamp if there is romm */ 25197 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25198 case IPOPT_TS_TSONLY: 25199 off = IPOPT_TS_TIMELEN; 25200 break; 25201 case IPOPT_TS_PRESPEC: 25202 case IPOPT_TS_PRESPEC_RFC791: 25203 /* Verify that the address matched */ 25204 off = opt[IPOPT_OFFSET] - 1; 25205 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25206 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25207 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25208 ipst); 25209 if (ire == NULL) { 25210 /* Not for us */ 25211 break; 25212 } 25213 ire_refrele(ire); 25214 /* FALLTHRU */ 25215 case IPOPT_TS_TSANDADDR: 25216 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25217 break; 25218 default: 25219 /* 25220 * ip_*put_options should have already 25221 * dropped this packet. 25222 */ 25223 cmn_err(CE_PANIC, "ip_wput_local_options: " 25224 "unknown IT - bug in ip_wput_options?\n"); 25225 return; /* Keep "lint" happy */ 25226 } 25227 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25228 /* Increase overflow counter */ 25229 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25230 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25231 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25232 (off << 4); 25233 break; 25234 } 25235 off = opt[IPOPT_OFFSET] - 1; 25236 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25237 case IPOPT_TS_PRESPEC: 25238 case IPOPT_TS_PRESPEC_RFC791: 25239 case IPOPT_TS_TSANDADDR: 25240 dst = htonl(INADDR_LOOPBACK); 25241 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25242 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25243 /* FALLTHRU */ 25244 case IPOPT_TS_TSONLY: 25245 off = opt[IPOPT_OFFSET] - 1; 25246 /* Compute # of milliseconds since midnight */ 25247 gethrestime(&now); 25248 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25249 now.tv_nsec / (NANOSEC / MILLISEC); 25250 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25251 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25252 break; 25253 } 25254 break; 25255 } 25256 } 25257 } 25258 25259 /* 25260 * Send out a multicast packet on interface ipif. 25261 * The sender does not have an conn. 25262 * Caller verifies that this isn't a PHYI_LOOPBACK. 25263 */ 25264 void 25265 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25266 { 25267 ipha_t *ipha; 25268 ire_t *ire; 25269 ipaddr_t dst; 25270 mblk_t *first_mp; 25271 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25272 25273 /* igmp_sendpkt always allocates a ipsec_out_t */ 25274 ASSERT(mp->b_datap->db_type == M_CTL); 25275 ASSERT(!ipif->ipif_isv6); 25276 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25277 25278 first_mp = mp; 25279 mp = first_mp->b_cont; 25280 ASSERT(mp->b_datap->db_type == M_DATA); 25281 ipha = (ipha_t *)mp->b_rptr; 25282 25283 /* 25284 * Find an IRE which matches the destination and the outgoing 25285 * queue (i.e. the outgoing interface.) 25286 */ 25287 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25288 dst = ipif->ipif_pp_dst_addr; 25289 else 25290 dst = ipha->ipha_dst; 25291 /* 25292 * The source address has already been initialized by the 25293 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25294 * be sufficient rather than MATCH_IRE_IPIF. 25295 * 25296 * This function is used for sending IGMP packets. We need 25297 * to make sure that we send the packet out of the interface 25298 * (ipif->ipif_ill) where we joined the group. This is to 25299 * prevent from switches doing IGMP snooping to send us multicast 25300 * packets for a given group on the interface we have joined. 25301 * If we can't find an ire, igmp_sendpkt has already initialized 25302 * ipsec_out_attach_if so that this will not be load spread in 25303 * ip_newroute_ipif. 25304 */ 25305 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25306 MATCH_IRE_ILL, ipst); 25307 if (!ire) { 25308 /* 25309 * Mark this packet to make it be delivered to 25310 * ip_wput_ire after the new ire has been 25311 * created. 25312 */ 25313 mp->b_prev = NULL; 25314 mp->b_next = NULL; 25315 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25316 zoneid, &zero_info); 25317 return; 25318 } 25319 25320 /* 25321 * Honor the RTF_SETSRC flag; this is the only case 25322 * where we force this addr whatever the current src addr is, 25323 * because this address is set by igmp_sendpkt(), and 25324 * cannot be specified by any user. 25325 */ 25326 if (ire->ire_flags & RTF_SETSRC) { 25327 ipha->ipha_src = ire->ire_src_addr; 25328 } 25329 25330 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25331 } 25332 25333 /* 25334 * NOTE : This function does not ire_refrele the ire argument passed in. 25335 * 25336 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25337 * failure. The nce_fp_mp can vanish any time in the case of 25338 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25339 * the ire_lock to access the nce_fp_mp in this case. 25340 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25341 * prepending a fastpath message IPQoS processing must precede it, we also set 25342 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25343 * (IPQoS might have set the b_band for CoS marking). 25344 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25345 * must follow it so that IPQoS can mark the dl_priority field for CoS 25346 * marking, if needed. 25347 */ 25348 static mblk_t * 25349 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25350 { 25351 uint_t hlen; 25352 ipha_t *ipha; 25353 mblk_t *mp1; 25354 boolean_t qos_done = B_FALSE; 25355 uchar_t *ll_hdr; 25356 ip_stack_t *ipst = ire->ire_ipst; 25357 25358 #define rptr ((uchar_t *)ipha) 25359 25360 ipha = (ipha_t *)mp->b_rptr; 25361 hlen = 0; 25362 LOCK_IRE_FP_MP(ire); 25363 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25364 ASSERT(DB_TYPE(mp1) == M_DATA); 25365 /* Initiate IPPF processing */ 25366 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25367 UNLOCK_IRE_FP_MP(ire); 25368 ip_process(proc, &mp, ill_index); 25369 if (mp == NULL) 25370 return (NULL); 25371 25372 ipha = (ipha_t *)mp->b_rptr; 25373 LOCK_IRE_FP_MP(ire); 25374 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25375 qos_done = B_TRUE; 25376 goto no_fp_mp; 25377 } 25378 ASSERT(DB_TYPE(mp1) == M_DATA); 25379 } 25380 hlen = MBLKL(mp1); 25381 /* 25382 * Check if we have enough room to prepend fastpath 25383 * header 25384 */ 25385 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25386 ll_hdr = rptr - hlen; 25387 bcopy(mp1->b_rptr, ll_hdr, hlen); 25388 /* 25389 * Set the b_rptr to the start of the link layer 25390 * header 25391 */ 25392 mp->b_rptr = ll_hdr; 25393 mp1 = mp; 25394 } else { 25395 mp1 = copyb(mp1); 25396 if (mp1 == NULL) 25397 goto unlock_err; 25398 mp1->b_band = mp->b_band; 25399 mp1->b_cont = mp; 25400 /* 25401 * certain system generated traffic may not 25402 * have cred/label in ip header block. This 25403 * is true even for a labeled system. But for 25404 * labeled traffic, inherit the label in the 25405 * new header. 25406 */ 25407 if (DB_CRED(mp) != NULL) 25408 mblk_setcred(mp1, DB_CRED(mp)); 25409 /* 25410 * XXX disable ICK_VALID and compute checksum 25411 * here; can happen if nce_fp_mp changes and 25412 * it can't be copied now due to insufficient 25413 * space. (unlikely, fp mp can change, but it 25414 * does not increase in length) 25415 */ 25416 } 25417 UNLOCK_IRE_FP_MP(ire); 25418 } else { 25419 no_fp_mp: 25420 mp1 = copyb(ire->ire_nce->nce_res_mp); 25421 if (mp1 == NULL) { 25422 unlock_err: 25423 UNLOCK_IRE_FP_MP(ire); 25424 freemsg(mp); 25425 return (NULL); 25426 } 25427 UNLOCK_IRE_FP_MP(ire); 25428 mp1->b_cont = mp; 25429 /* 25430 * certain system generated traffic may not 25431 * have cred/label in ip header block. This 25432 * is true even for a labeled system. But for 25433 * labeled traffic, inherit the label in the 25434 * new header. 25435 */ 25436 if (DB_CRED(mp) != NULL) 25437 mblk_setcred(mp1, DB_CRED(mp)); 25438 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25439 ip_process(proc, &mp1, ill_index); 25440 if (mp1 == NULL) 25441 return (NULL); 25442 } 25443 } 25444 return (mp1); 25445 #undef rptr 25446 } 25447 25448 /* 25449 * Finish the outbound IPsec processing for an IPv6 packet. This function 25450 * is called from ipsec_out_process() if the IPsec packet was processed 25451 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25452 * asynchronously. 25453 */ 25454 void 25455 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25456 ire_t *ire_arg) 25457 { 25458 in6_addr_t *v6dstp; 25459 ire_t *ire; 25460 mblk_t *mp; 25461 ip6_t *ip6h1; 25462 uint_t ill_index; 25463 ipsec_out_t *io; 25464 boolean_t attach_if, hwaccel; 25465 uint32_t flags = IP6_NO_IPPOLICY; 25466 int match_flags; 25467 zoneid_t zoneid; 25468 boolean_t ill_need_rele = B_FALSE; 25469 boolean_t ire_need_rele = B_FALSE; 25470 ip_stack_t *ipst; 25471 25472 mp = ipsec_mp->b_cont; 25473 ip6h1 = (ip6_t *)mp->b_rptr; 25474 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25475 ASSERT(io->ipsec_out_ns != NULL); 25476 ipst = io->ipsec_out_ns->netstack_ip; 25477 ill_index = io->ipsec_out_ill_index; 25478 if (io->ipsec_out_reachable) { 25479 flags |= IPV6_REACHABILITY_CONFIRMATION; 25480 } 25481 attach_if = io->ipsec_out_attach_if; 25482 hwaccel = io->ipsec_out_accelerated; 25483 zoneid = io->ipsec_out_zoneid; 25484 ASSERT(zoneid != ALL_ZONES); 25485 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25486 /* Multicast addresses should have non-zero ill_index. */ 25487 v6dstp = &ip6h->ip6_dst; 25488 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25489 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25490 ASSERT(!attach_if || ill_index != 0); 25491 if (ill_index != 0) { 25492 if (ill == NULL) { 25493 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25494 B_TRUE, ipst); 25495 25496 /* Failure case frees things for us. */ 25497 if (ill == NULL) 25498 return; 25499 25500 ill_need_rele = B_TRUE; 25501 } 25502 /* 25503 * If this packet needs to go out on a particular interface 25504 * honor it. 25505 */ 25506 if (attach_if) { 25507 match_flags = MATCH_IRE_ILL; 25508 25509 /* 25510 * Check if we need an ire that will not be 25511 * looked up by anybody else i.e. HIDDEN. 25512 */ 25513 if (ill_is_probeonly(ill)) { 25514 match_flags |= MATCH_IRE_MARK_HIDDEN; 25515 } 25516 } 25517 } 25518 ASSERT(mp != NULL); 25519 25520 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25521 boolean_t unspec_src; 25522 ipif_t *ipif; 25523 25524 /* 25525 * Use the ill_index to get the right ill. 25526 */ 25527 unspec_src = io->ipsec_out_unspec_src; 25528 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25529 if (ipif == NULL) { 25530 if (ill_need_rele) 25531 ill_refrele(ill); 25532 freemsg(ipsec_mp); 25533 return; 25534 } 25535 25536 if (ire_arg != NULL) { 25537 ire = ire_arg; 25538 } else { 25539 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25540 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25541 ire_need_rele = B_TRUE; 25542 } 25543 if (ire != NULL) { 25544 ipif_refrele(ipif); 25545 /* 25546 * XXX Do the multicast forwarding now, as the IPsec 25547 * processing has been done. 25548 */ 25549 goto send; 25550 } 25551 25552 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25553 mp->b_prev = NULL; 25554 mp->b_next = NULL; 25555 25556 /* 25557 * If the IPsec packet was processed asynchronously, 25558 * drop it now. 25559 */ 25560 if (q == NULL) { 25561 if (ill_need_rele) 25562 ill_refrele(ill); 25563 freemsg(ipsec_mp); 25564 return; 25565 } 25566 25567 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25568 unspec_src, zoneid); 25569 ipif_refrele(ipif); 25570 } else { 25571 if (attach_if) { 25572 ipif_t *ipif; 25573 25574 ipif = ipif_get_next_ipif(NULL, ill); 25575 if (ipif == NULL) { 25576 if (ill_need_rele) 25577 ill_refrele(ill); 25578 freemsg(ipsec_mp); 25579 return; 25580 } 25581 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25582 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25583 ire_need_rele = B_TRUE; 25584 ipif_refrele(ipif); 25585 } else { 25586 if (ire_arg != NULL) { 25587 ire = ire_arg; 25588 } else { 25589 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25590 ipst); 25591 ire_need_rele = B_TRUE; 25592 } 25593 } 25594 if (ire != NULL) 25595 goto send; 25596 /* 25597 * ire disappeared underneath. 25598 * 25599 * What we need to do here is the ip_newroute 25600 * logic to get the ire without doing the IPsec 25601 * processing. Follow the same old path. But this 25602 * time, ip_wput or ire_add_then_send will call us 25603 * directly as all the IPsec operations are done. 25604 */ 25605 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25606 mp->b_prev = NULL; 25607 mp->b_next = NULL; 25608 25609 /* 25610 * If the IPsec packet was processed asynchronously, 25611 * drop it now. 25612 */ 25613 if (q == NULL) { 25614 if (ill_need_rele) 25615 ill_refrele(ill); 25616 freemsg(ipsec_mp); 25617 return; 25618 } 25619 25620 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25621 zoneid, ipst); 25622 } 25623 if (ill != NULL && ill_need_rele) 25624 ill_refrele(ill); 25625 return; 25626 send: 25627 if (ill != NULL && ill_need_rele) 25628 ill_refrele(ill); 25629 25630 /* Local delivery */ 25631 if (ire->ire_stq == NULL) { 25632 ill_t *out_ill; 25633 ASSERT(q != NULL); 25634 25635 /* PFHooks: LOOPBACK_OUT */ 25636 out_ill = ire_to_ill(ire); 25637 25638 DTRACE_PROBE4(ip6__loopback__out__start, 25639 ill_t *, NULL, ill_t *, out_ill, 25640 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25641 25642 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25643 ipst->ips_ipv6firewall_loopback_out, 25644 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25645 25646 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25647 25648 if (ipsec_mp != NULL) 25649 ip_wput_local_v6(RD(q), out_ill, 25650 ip6h, ipsec_mp, ire, 0); 25651 if (ire_need_rele) 25652 ire_refrele(ire); 25653 return; 25654 } 25655 /* 25656 * Everything is done. Send it out on the wire. 25657 * We force the insertion of a fragment header using the 25658 * IPH_FRAG_HDR flag in two cases: 25659 * - after reception of an ICMPv6 "packet too big" message 25660 * with a MTU < 1280 (cf. RFC 2460 section 5) 25661 * - for multirouted IPv6 packets, so that the receiver can 25662 * discard duplicates according to their fragment identifier 25663 */ 25664 /* XXX fix flow control problems. */ 25665 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25666 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25667 if (hwaccel) { 25668 /* 25669 * hardware acceleration does not handle these 25670 * "slow path" cases. 25671 */ 25672 /* IPsec KSTATS: should bump bean counter here. */ 25673 if (ire_need_rele) 25674 ire_refrele(ire); 25675 freemsg(ipsec_mp); 25676 return; 25677 } 25678 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25679 (mp->b_cont ? msgdsize(mp) : 25680 mp->b_wptr - (uchar_t *)ip6h)) { 25681 /* IPsec KSTATS: should bump bean counter here. */ 25682 ip0dbg(("Packet length mismatch: %d, %ld\n", 25683 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25684 msgdsize(mp))); 25685 if (ire_need_rele) 25686 ire_refrele(ire); 25687 freemsg(ipsec_mp); 25688 return; 25689 } 25690 ASSERT(mp->b_prev == NULL); 25691 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25692 ntohs(ip6h->ip6_plen) + 25693 IPV6_HDR_LEN, ire->ire_max_frag)); 25694 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25695 ire->ire_max_frag); 25696 } else { 25697 UPDATE_OB_PKT_COUNT(ire); 25698 ire->ire_last_used_time = lbolt; 25699 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25700 } 25701 if (ire_need_rele) 25702 ire_refrele(ire); 25703 freeb(ipsec_mp); 25704 } 25705 25706 void 25707 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25708 { 25709 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25710 da_ipsec_t *hada; /* data attributes */ 25711 ill_t *ill = (ill_t *)q->q_ptr; 25712 25713 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25714 25715 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25716 /* IPsec KSTATS: Bump lose counter here! */ 25717 freemsg(mp); 25718 return; 25719 } 25720 25721 /* 25722 * It's an IPsec packet that must be 25723 * accelerated by the Provider, and the 25724 * outbound ill is IPsec acceleration capable. 25725 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25726 * to the ill. 25727 * IPsec KSTATS: should bump packet counter here. 25728 */ 25729 25730 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25731 if (hada_mp == NULL) { 25732 /* IPsec KSTATS: should bump packet counter here. */ 25733 freemsg(mp); 25734 return; 25735 } 25736 25737 hada_mp->b_datap->db_type = M_CTL; 25738 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25739 hada_mp->b_cont = mp; 25740 25741 hada = (da_ipsec_t *)hada_mp->b_rptr; 25742 bzero(hada, sizeof (da_ipsec_t)); 25743 hada->da_type = IPHADA_M_CTL; 25744 25745 putnext(q, hada_mp); 25746 } 25747 25748 /* 25749 * Finish the outbound IPsec processing. This function is called from 25750 * ipsec_out_process() if the IPsec packet was processed 25751 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25752 * asynchronously. 25753 */ 25754 void 25755 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25756 ire_t *ire_arg) 25757 { 25758 uint32_t v_hlen_tos_len; 25759 ipaddr_t dst; 25760 ipif_t *ipif = NULL; 25761 ire_t *ire; 25762 ire_t *ire1 = NULL; 25763 mblk_t *next_mp = NULL; 25764 uint32_t max_frag; 25765 boolean_t multirt_send = B_FALSE; 25766 mblk_t *mp; 25767 ipha_t *ipha1; 25768 uint_t ill_index; 25769 ipsec_out_t *io; 25770 boolean_t attach_if; 25771 int match_flags; 25772 irb_t *irb = NULL; 25773 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25774 zoneid_t zoneid; 25775 ipxmit_state_t pktxmit_state; 25776 ip_stack_t *ipst; 25777 25778 #ifdef _BIG_ENDIAN 25779 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25780 #else 25781 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25782 #endif 25783 25784 mp = ipsec_mp->b_cont; 25785 ipha1 = (ipha_t *)mp->b_rptr; 25786 ASSERT(mp != NULL); 25787 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25788 dst = ipha->ipha_dst; 25789 25790 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25791 ill_index = io->ipsec_out_ill_index; 25792 attach_if = io->ipsec_out_attach_if; 25793 zoneid = io->ipsec_out_zoneid; 25794 ASSERT(zoneid != ALL_ZONES); 25795 ipst = io->ipsec_out_ns->netstack_ip; 25796 ASSERT(io->ipsec_out_ns != NULL); 25797 25798 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25799 if (ill_index != 0) { 25800 if (ill == NULL) { 25801 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25802 ill_index, B_FALSE, ipst); 25803 25804 /* Failure case frees things for us. */ 25805 if (ill == NULL) 25806 return; 25807 25808 ill_need_rele = B_TRUE; 25809 } 25810 /* 25811 * If this packet needs to go out on a particular interface 25812 * honor it. 25813 */ 25814 if (attach_if) { 25815 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25816 25817 /* 25818 * Check if we need an ire that will not be 25819 * looked up by anybody else i.e. HIDDEN. 25820 */ 25821 if (ill_is_probeonly(ill)) { 25822 match_flags |= MATCH_IRE_MARK_HIDDEN; 25823 } 25824 } 25825 } 25826 25827 if (CLASSD(dst)) { 25828 boolean_t conn_dontroute; 25829 /* 25830 * Use the ill_index to get the right ipif. 25831 */ 25832 conn_dontroute = io->ipsec_out_dontroute; 25833 if (ill_index == 0) 25834 ipif = ipif_lookup_group(dst, zoneid, ipst); 25835 else 25836 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25837 if (ipif == NULL) { 25838 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25839 " multicast\n")); 25840 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25841 freemsg(ipsec_mp); 25842 goto done; 25843 } 25844 /* 25845 * ipha_src has already been intialized with the 25846 * value of the ipif in ip_wput. All we need now is 25847 * an ire to send this downstream. 25848 */ 25849 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25850 MBLK_GETLABEL(mp), match_flags, ipst); 25851 if (ire != NULL) { 25852 ill_t *ill1; 25853 /* 25854 * Do the multicast forwarding now, as the IPsec 25855 * processing has been done. 25856 */ 25857 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25858 (ill1 = ire_to_ill(ire))) { 25859 if (ip_mforward(ill1, ipha, mp)) { 25860 freemsg(ipsec_mp); 25861 ip1dbg(("ip_wput_ipsec_out: mforward " 25862 "failed\n")); 25863 ire_refrele(ire); 25864 goto done; 25865 } 25866 } 25867 goto send; 25868 } 25869 25870 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25871 mp->b_prev = NULL; 25872 mp->b_next = NULL; 25873 25874 /* 25875 * If the IPsec packet was processed asynchronously, 25876 * drop it now. 25877 */ 25878 if (q == NULL) { 25879 freemsg(ipsec_mp); 25880 goto done; 25881 } 25882 25883 /* 25884 * We may be using a wrong ipif to create the ire. 25885 * But it is okay as the source address is assigned 25886 * for the packet already. Next outbound packet would 25887 * create the IRE with the right IPIF in ip_wput. 25888 * 25889 * Also handle RTF_MULTIRT routes. 25890 */ 25891 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25892 zoneid, &zero_info); 25893 } else { 25894 if (attach_if) { 25895 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25896 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25897 } else { 25898 if (ire_arg != NULL) { 25899 ire = ire_arg; 25900 ire_need_rele = B_FALSE; 25901 } else { 25902 ire = ire_cache_lookup(dst, zoneid, 25903 MBLK_GETLABEL(mp), ipst); 25904 } 25905 } 25906 if (ire != NULL) { 25907 goto send; 25908 } 25909 25910 /* 25911 * ire disappeared underneath. 25912 * 25913 * What we need to do here is the ip_newroute 25914 * logic to get the ire without doing the IPsec 25915 * processing. Follow the same old path. But this 25916 * time, ip_wput or ire_add_then_put will call us 25917 * directly as all the IPsec operations are done. 25918 */ 25919 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25920 mp->b_prev = NULL; 25921 mp->b_next = NULL; 25922 25923 /* 25924 * If the IPsec packet was processed asynchronously, 25925 * drop it now. 25926 */ 25927 if (q == NULL) { 25928 freemsg(ipsec_mp); 25929 goto done; 25930 } 25931 25932 /* 25933 * Since we're going through ip_newroute() again, we 25934 * need to make sure we don't: 25935 * 25936 * 1.) Trigger the ASSERT() with the ipha_ident 25937 * overloading. 25938 * 2.) Redo transport-layer checksumming, since we've 25939 * already done all that to get this far. 25940 * 25941 * The easiest way not do either of the above is to set 25942 * the ipha_ident field to IP_HDR_INCLUDED. 25943 */ 25944 ipha->ipha_ident = IP_HDR_INCLUDED; 25945 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25946 zoneid, ipst); 25947 } 25948 goto done; 25949 send: 25950 if (ire->ire_stq == NULL) { 25951 ill_t *out_ill; 25952 /* 25953 * Loopbacks go through ip_wput_local except for one case. 25954 * We come here if we generate a icmp_frag_needed message 25955 * after IPsec processing is over. When this function calls 25956 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25957 * icmp_frag_needed. The message generated comes back here 25958 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25959 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25960 * source address as it is usually set in ip_wput_ire. As 25961 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25962 * and we end up here. We can't enter ip_wput_ire once the 25963 * IPsec processing is over and hence we need to do it here. 25964 */ 25965 ASSERT(q != NULL); 25966 UPDATE_OB_PKT_COUNT(ire); 25967 ire->ire_last_used_time = lbolt; 25968 if (ipha->ipha_src == 0) 25969 ipha->ipha_src = ire->ire_src_addr; 25970 25971 /* PFHooks: LOOPBACK_OUT */ 25972 out_ill = ire_to_ill(ire); 25973 25974 DTRACE_PROBE4(ip4__loopback__out__start, 25975 ill_t *, NULL, ill_t *, out_ill, 25976 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25977 25978 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25979 ipst->ips_ipv4firewall_loopback_out, 25980 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 25981 25982 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25983 25984 if (ipsec_mp != NULL) 25985 ip_wput_local(RD(q), out_ill, 25986 ipha, ipsec_mp, ire, 0, zoneid); 25987 if (ire_need_rele) 25988 ire_refrele(ire); 25989 goto done; 25990 } 25991 25992 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25993 /* 25994 * We are through with IPsec processing. 25995 * Fragment this and send it on the wire. 25996 */ 25997 if (io->ipsec_out_accelerated) { 25998 /* 25999 * The packet has been accelerated but must 26000 * be fragmented. This should not happen 26001 * since AH and ESP must not accelerate 26002 * packets that need fragmentation, however 26003 * the configuration could have changed 26004 * since the AH or ESP processing. 26005 * Drop packet. 26006 * IPsec KSTATS: bump bean counter here. 26007 */ 26008 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26009 "fragmented accelerated packet!\n")); 26010 freemsg(ipsec_mp); 26011 } else { 26012 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26013 } 26014 if (ire_need_rele) 26015 ire_refrele(ire); 26016 goto done; 26017 } 26018 26019 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26020 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26021 (void *)ire->ire_ipif, (void *)ipif)); 26022 26023 /* 26024 * Multiroute the secured packet, unless IPsec really 26025 * requires the packet to go out only through a particular 26026 * interface. 26027 */ 26028 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26029 ire_t *first_ire; 26030 irb = ire->ire_bucket; 26031 ASSERT(irb != NULL); 26032 /* 26033 * This ire has been looked up as the one that 26034 * goes through the given ipif; 26035 * make sure we do not omit any other multiroute ire 26036 * that may be present in the bucket before this one. 26037 */ 26038 IRB_REFHOLD(irb); 26039 for (first_ire = irb->irb_ire; 26040 first_ire != NULL; 26041 first_ire = first_ire->ire_next) { 26042 if ((first_ire->ire_flags & RTF_MULTIRT) && 26043 (first_ire->ire_addr == ire->ire_addr) && 26044 !(first_ire->ire_marks & 26045 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26046 break; 26047 } 26048 } 26049 26050 if ((first_ire != NULL) && (first_ire != ire)) { 26051 /* 26052 * Don't change the ire if the packet must 26053 * be fragmented if sent via this new one. 26054 */ 26055 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26056 IRE_REFHOLD(first_ire); 26057 if (ire_need_rele) 26058 ire_refrele(ire); 26059 else 26060 ire_need_rele = B_TRUE; 26061 ire = first_ire; 26062 } 26063 } 26064 IRB_REFRELE(irb); 26065 26066 multirt_send = B_TRUE; 26067 max_frag = ire->ire_max_frag; 26068 } else { 26069 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26070 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26071 "flag, attach_if %d\n", attach_if)); 26072 } 26073 } 26074 26075 /* 26076 * In most cases, the emission loop below is entered only once. 26077 * Only in the case where the ire holds the RTF_MULTIRT 26078 * flag, we loop to process all RTF_MULTIRT ires in the 26079 * bucket, and send the packet through all crossed 26080 * RTF_MULTIRT routes. 26081 */ 26082 do { 26083 if (multirt_send) { 26084 /* 26085 * ire1 holds here the next ire to process in the 26086 * bucket. If multirouting is expected, 26087 * any non-RTF_MULTIRT ire that has the 26088 * right destination address is ignored. 26089 */ 26090 ASSERT(irb != NULL); 26091 IRB_REFHOLD(irb); 26092 for (ire1 = ire->ire_next; 26093 ire1 != NULL; 26094 ire1 = ire1->ire_next) { 26095 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26096 continue; 26097 if (ire1->ire_addr != ire->ire_addr) 26098 continue; 26099 if (ire1->ire_marks & 26100 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26101 continue; 26102 /* No loopback here */ 26103 if (ire1->ire_stq == NULL) 26104 continue; 26105 /* 26106 * Ensure we do not exceed the MTU 26107 * of the next route. 26108 */ 26109 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26110 ip_multirt_bad_mtu(ire1, max_frag); 26111 continue; 26112 } 26113 26114 IRE_REFHOLD(ire1); 26115 break; 26116 } 26117 IRB_REFRELE(irb); 26118 if (ire1 != NULL) { 26119 /* 26120 * We are in a multiple send case, need to 26121 * make a copy of the packet. 26122 */ 26123 next_mp = copymsg(ipsec_mp); 26124 if (next_mp == NULL) { 26125 ire_refrele(ire1); 26126 ire1 = NULL; 26127 } 26128 } 26129 } 26130 /* 26131 * Everything is done. Send it out on the wire 26132 * 26133 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26134 * either send it on the wire or, in the case of 26135 * HW acceleration, call ipsec_hw_putnext. 26136 */ 26137 if (ire->ire_nce && 26138 ire->ire_nce->nce_state != ND_REACHABLE) { 26139 DTRACE_PROBE2(ip__wput__ipsec__bail, 26140 (ire_t *), ire, (mblk_t *), ipsec_mp); 26141 /* 26142 * If ire's link-layer is unresolved (this 26143 * would only happen if the incomplete ire 26144 * was added to cachetable via forwarding path) 26145 * don't bother going to ip_xmit_v4. Just drop the 26146 * packet. 26147 * There is a slight risk here, in that, if we 26148 * have the forwarding path create an incomplete 26149 * IRE, then until the IRE is completed, any 26150 * transmitted IPsec packets will be dropped 26151 * instead of being queued waiting for resolution. 26152 * 26153 * But the likelihood of a forwarding packet and a wput 26154 * packet sending to the same dst at the same time 26155 * and there not yet be an ARP entry for it is small. 26156 * Furthermore, if this actually happens, it might 26157 * be likely that wput would generate multiple 26158 * packets (and forwarding would also have a train 26159 * of packets) for that destination. If this is 26160 * the case, some of them would have been dropped 26161 * anyway, since ARP only queues a few packets while 26162 * waiting for resolution 26163 * 26164 * NOTE: We should really call ip_xmit_v4, 26165 * and let it queue the packet and send the 26166 * ARP query and have ARP come back thus: 26167 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26168 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26169 * hw accel work. But it's too complex to get 26170 * the IPsec hw acceleration approach to fit 26171 * well with ip_xmit_v4 doing ARP without 26172 * doing IPsec simplification. For now, we just 26173 * poke ip_xmit_v4 to trigger the arp resolve, so 26174 * that we can continue with the send on the next 26175 * attempt. 26176 * 26177 * XXX THis should be revisited, when 26178 * the IPsec/IP interaction is cleaned up 26179 */ 26180 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26181 " - dropping packet\n")); 26182 freemsg(ipsec_mp); 26183 /* 26184 * Call ip_xmit_v4() to trigger ARP query 26185 * in case the nce_state is ND_INITIAL 26186 */ 26187 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26188 goto drop_pkt; 26189 } 26190 26191 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26192 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26193 mblk_t *, ipsec_mp); 26194 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26195 ipst->ips_ipv4firewall_physical_out, 26196 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26197 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26198 if (ipsec_mp == NULL) 26199 goto drop_pkt; 26200 26201 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26202 pktxmit_state = ip_xmit_v4(mp, ire, 26203 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26204 26205 if ((pktxmit_state == SEND_FAILED) || 26206 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26207 26208 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26209 drop_pkt: 26210 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26211 ipIfStatsOutDiscards); 26212 if (ire_need_rele) 26213 ire_refrele(ire); 26214 if (ire1 != NULL) { 26215 ire_refrele(ire1); 26216 freemsg(next_mp); 26217 } 26218 goto done; 26219 } 26220 26221 freeb(ipsec_mp); 26222 if (ire_need_rele) 26223 ire_refrele(ire); 26224 26225 if (ire1 != NULL) { 26226 ire = ire1; 26227 ire_need_rele = B_TRUE; 26228 ASSERT(next_mp); 26229 ipsec_mp = next_mp; 26230 mp = ipsec_mp->b_cont; 26231 ire1 = NULL; 26232 next_mp = NULL; 26233 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26234 } else { 26235 multirt_send = B_FALSE; 26236 } 26237 } while (multirt_send); 26238 done: 26239 if (ill != NULL && ill_need_rele) 26240 ill_refrele(ill); 26241 if (ipif != NULL) 26242 ipif_refrele(ipif); 26243 } 26244 26245 /* 26246 * Get the ill corresponding to the specified ire, and compare its 26247 * capabilities with the protocol and algorithms specified by the 26248 * the SA obtained from ipsec_out. If they match, annotate the 26249 * ipsec_out structure to indicate that the packet needs acceleration. 26250 * 26251 * 26252 * A packet is eligible for outbound hardware acceleration if the 26253 * following conditions are satisfied: 26254 * 26255 * 1. the packet will not be fragmented 26256 * 2. the provider supports the algorithm 26257 * 3. there is no pending control message being exchanged 26258 * 4. snoop is not attached 26259 * 5. the destination address is not a broadcast or multicast address. 26260 * 26261 * Rationale: 26262 * - Hardware drivers do not support fragmentation with 26263 * the current interface. 26264 * - snoop, multicast, and broadcast may result in exposure of 26265 * a cleartext datagram. 26266 * We check all five of these conditions here. 26267 * 26268 * XXX would like to nuke "ire_t *" parameter here; problem is that 26269 * IRE is only way to figure out if a v4 address is a broadcast and 26270 * thus ineligible for acceleration... 26271 */ 26272 static void 26273 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26274 { 26275 ipsec_out_t *io; 26276 mblk_t *data_mp; 26277 uint_t plen, overhead; 26278 ip_stack_t *ipst; 26279 26280 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26281 return; 26282 26283 if (ill == NULL) 26284 return; 26285 ipst = ill->ill_ipst; 26286 /* 26287 * Destination address is a broadcast or multicast. Punt. 26288 */ 26289 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26290 IRE_LOCAL))) 26291 return; 26292 26293 data_mp = ipsec_mp->b_cont; 26294 26295 if (ill->ill_isv6) { 26296 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26297 26298 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26299 return; 26300 26301 plen = ip6h->ip6_plen; 26302 } else { 26303 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26304 26305 if (CLASSD(ipha->ipha_dst)) 26306 return; 26307 26308 plen = ipha->ipha_length; 26309 } 26310 /* 26311 * Is there a pending DLPI control message being exchanged 26312 * between IP/IPsec and the DLS Provider? If there is, it 26313 * could be a SADB update, and the state of the DLS Provider 26314 * SADB might not be in sync with the SADB maintained by 26315 * IPsec. To avoid dropping packets or using the wrong keying 26316 * material, we do not accelerate this packet. 26317 */ 26318 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26319 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26320 "ill_dlpi_pending! don't accelerate packet\n")); 26321 return; 26322 } 26323 26324 /* 26325 * Is the Provider in promiscous mode? If it does, we don't 26326 * accelerate the packet since it will bounce back up to the 26327 * listeners in the clear. 26328 */ 26329 if (ill->ill_promisc_on_phys) { 26330 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26331 "ill in promiscous mode, don't accelerate packet\n")); 26332 return; 26333 } 26334 26335 /* 26336 * Will the packet require fragmentation? 26337 */ 26338 26339 /* 26340 * IPsec ESP note: this is a pessimistic estimate, but the same 26341 * as is used elsewhere. 26342 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26343 * + 2-byte trailer 26344 */ 26345 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26346 IPSEC_BASE_ESP_HDR_SIZE(sa); 26347 26348 if ((plen + overhead) > ill->ill_max_mtu) 26349 return; 26350 26351 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26352 26353 /* 26354 * Can the ill accelerate this IPsec protocol and algorithm 26355 * specified by the SA? 26356 */ 26357 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26358 ill->ill_isv6, sa, ipst->ips_netstack)) { 26359 return; 26360 } 26361 26362 /* 26363 * Tell AH or ESP that the outbound ill is capable of 26364 * accelerating this packet. 26365 */ 26366 io->ipsec_out_is_capab_ill = B_TRUE; 26367 } 26368 26369 /* 26370 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26371 * 26372 * If this function returns B_TRUE, the requested SA's have been filled 26373 * into the ipsec_out_*_sa pointers. 26374 * 26375 * If the function returns B_FALSE, the packet has been "consumed", most 26376 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26377 * 26378 * The SA references created by the protocol-specific "select" 26379 * function will be released when the ipsec_mp is freed, thanks to the 26380 * ipsec_out_free destructor -- see spd.c. 26381 */ 26382 static boolean_t 26383 ipsec_out_select_sa(mblk_t *ipsec_mp) 26384 { 26385 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26386 ipsec_out_t *io; 26387 ipsec_policy_t *pp; 26388 ipsec_action_t *ap; 26389 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26390 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26391 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26392 26393 if (!io->ipsec_out_secure) { 26394 /* 26395 * We came here by mistake. 26396 * Don't bother with ipsec processing 26397 * We should "discourage" this path in the future. 26398 */ 26399 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26400 return (B_FALSE); 26401 } 26402 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26403 ASSERT((io->ipsec_out_policy != NULL) || 26404 (io->ipsec_out_act != NULL)); 26405 26406 ASSERT(io->ipsec_out_failed == B_FALSE); 26407 26408 /* 26409 * IPsec processing has started. 26410 */ 26411 io->ipsec_out_proc_begin = B_TRUE; 26412 ap = io->ipsec_out_act; 26413 if (ap == NULL) { 26414 pp = io->ipsec_out_policy; 26415 ASSERT(pp != NULL); 26416 ap = pp->ipsp_act; 26417 ASSERT(ap != NULL); 26418 } 26419 26420 /* 26421 * We have an action. now, let's select SA's. 26422 * (In the future, we can cache this in the conn_t..) 26423 */ 26424 if (ap->ipa_want_esp) { 26425 if (io->ipsec_out_esp_sa == NULL) { 26426 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26427 IPPROTO_ESP); 26428 } 26429 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26430 } 26431 26432 if (ap->ipa_want_ah) { 26433 if (io->ipsec_out_ah_sa == NULL) { 26434 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26435 IPPROTO_AH); 26436 } 26437 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26438 /* 26439 * The ESP and AH processing order needs to be preserved 26440 * when both protocols are required (ESP should be applied 26441 * before AH for an outbound packet). Force an ESP ACQUIRE 26442 * when both ESP and AH are required, and an AH ACQUIRE 26443 * is needed. 26444 */ 26445 if (ap->ipa_want_esp && need_ah_acquire) 26446 need_esp_acquire = B_TRUE; 26447 } 26448 26449 /* 26450 * Send an ACQUIRE (extended, regular, or both) if we need one. 26451 * Release SAs that got referenced, but will not be used until we 26452 * acquire _all_ of the SAs we need. 26453 */ 26454 if (need_ah_acquire || need_esp_acquire) { 26455 if (io->ipsec_out_ah_sa != NULL) { 26456 IPSA_REFRELE(io->ipsec_out_ah_sa); 26457 io->ipsec_out_ah_sa = NULL; 26458 } 26459 if (io->ipsec_out_esp_sa != NULL) { 26460 IPSA_REFRELE(io->ipsec_out_esp_sa); 26461 io->ipsec_out_esp_sa = NULL; 26462 } 26463 26464 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26465 return (B_FALSE); 26466 } 26467 26468 return (B_TRUE); 26469 } 26470 26471 /* 26472 * Process an IPSEC_OUT message and see what you can 26473 * do with it. 26474 * IPQoS Notes: 26475 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26476 * IPsec. 26477 * XXX would like to nuke ire_t. 26478 * XXX ill_index better be "real" 26479 */ 26480 void 26481 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26482 { 26483 ipsec_out_t *io; 26484 ipsec_policy_t *pp; 26485 ipsec_action_t *ap; 26486 ipha_t *ipha; 26487 ip6_t *ip6h; 26488 mblk_t *mp; 26489 ill_t *ill; 26490 zoneid_t zoneid; 26491 ipsec_status_t ipsec_rc; 26492 boolean_t ill_need_rele = B_FALSE; 26493 ip_stack_t *ipst; 26494 ipsec_stack_t *ipss; 26495 26496 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26497 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26498 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26499 ipst = io->ipsec_out_ns->netstack_ip; 26500 mp = ipsec_mp->b_cont; 26501 26502 /* 26503 * Initiate IPPF processing. We do it here to account for packets 26504 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26505 * We can check for ipsec_out_proc_begin even for such packets, as 26506 * they will always be false (asserted below). 26507 */ 26508 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26509 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26510 io->ipsec_out_ill_index : ill_index); 26511 if (mp == NULL) { 26512 ip2dbg(("ipsec_out_process: packet dropped "\ 26513 "during IPPF processing\n")); 26514 freeb(ipsec_mp); 26515 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26516 return; 26517 } 26518 } 26519 26520 if (!io->ipsec_out_secure) { 26521 /* 26522 * We came here by mistake. 26523 * Don't bother with ipsec processing 26524 * Should "discourage" this path in the future. 26525 */ 26526 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26527 goto done; 26528 } 26529 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26530 ASSERT((io->ipsec_out_policy != NULL) || 26531 (io->ipsec_out_act != NULL)); 26532 ASSERT(io->ipsec_out_failed == B_FALSE); 26533 26534 ipss = ipst->ips_netstack->netstack_ipsec; 26535 if (!ipsec_loaded(ipss)) { 26536 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26537 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26538 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26539 } else { 26540 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26541 } 26542 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26543 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26544 &ipss->ipsec_dropper); 26545 return; 26546 } 26547 26548 /* 26549 * IPsec processing has started. 26550 */ 26551 io->ipsec_out_proc_begin = B_TRUE; 26552 ap = io->ipsec_out_act; 26553 if (ap == NULL) { 26554 pp = io->ipsec_out_policy; 26555 ASSERT(pp != NULL); 26556 ap = pp->ipsp_act; 26557 ASSERT(ap != NULL); 26558 } 26559 26560 /* 26561 * Save the outbound ill index. When the packet comes back 26562 * from IPsec, we make sure the ill hasn't changed or disappeared 26563 * before sending it the accelerated packet. 26564 */ 26565 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26566 int ifindex; 26567 ill = ire_to_ill(ire); 26568 ifindex = ill->ill_phyint->phyint_ifindex; 26569 io->ipsec_out_capab_ill_index = ifindex; 26570 } 26571 26572 /* 26573 * The order of processing is first insert a IP header if needed. 26574 * Then insert the ESP header and then the AH header. 26575 */ 26576 if ((io->ipsec_out_se_done == B_FALSE) && 26577 (ap->ipa_want_se)) { 26578 /* 26579 * First get the outer IP header before sending 26580 * it to ESP. 26581 */ 26582 ipha_t *oipha, *iipha; 26583 mblk_t *outer_mp, *inner_mp; 26584 26585 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26586 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26587 "ipsec_out_process: " 26588 "Self-Encapsulation failed: Out of memory\n"); 26589 freemsg(ipsec_mp); 26590 if (ill != NULL) { 26591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26592 } else { 26593 BUMP_MIB(&ipst->ips_ip_mib, 26594 ipIfStatsOutDiscards); 26595 } 26596 return; 26597 } 26598 inner_mp = ipsec_mp->b_cont; 26599 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26600 oipha = (ipha_t *)outer_mp->b_rptr; 26601 iipha = (ipha_t *)inner_mp->b_rptr; 26602 *oipha = *iipha; 26603 outer_mp->b_wptr += sizeof (ipha_t); 26604 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26605 sizeof (ipha_t)); 26606 oipha->ipha_protocol = IPPROTO_ENCAP; 26607 oipha->ipha_version_and_hdr_length = 26608 IP_SIMPLE_HDR_VERSION; 26609 oipha->ipha_hdr_checksum = 0; 26610 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26611 outer_mp->b_cont = inner_mp; 26612 ipsec_mp->b_cont = outer_mp; 26613 26614 io->ipsec_out_se_done = B_TRUE; 26615 io->ipsec_out_tunnel = B_TRUE; 26616 } 26617 26618 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26619 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26620 !ipsec_out_select_sa(ipsec_mp)) 26621 return; 26622 26623 /* 26624 * By now, we know what SA's to use. Toss over to ESP & AH 26625 * to do the heavy lifting. 26626 */ 26627 zoneid = io->ipsec_out_zoneid; 26628 ASSERT(zoneid != ALL_ZONES); 26629 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26630 ASSERT(io->ipsec_out_esp_sa != NULL); 26631 io->ipsec_out_esp_done = B_TRUE; 26632 /* 26633 * Note that since hw accel can only apply one transform, 26634 * not two, we skip hw accel for ESP if we also have AH 26635 * This is an design limitation of the interface 26636 * which should be revisited. 26637 */ 26638 ASSERT(ire != NULL); 26639 if (io->ipsec_out_ah_sa == NULL) { 26640 ill = (ill_t *)ire->ire_stq->q_ptr; 26641 ipsec_out_is_accelerated(ipsec_mp, 26642 io->ipsec_out_esp_sa, ill, ire); 26643 } 26644 26645 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26646 switch (ipsec_rc) { 26647 case IPSEC_STATUS_SUCCESS: 26648 break; 26649 case IPSEC_STATUS_FAILED: 26650 if (ill != NULL) { 26651 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26652 } else { 26653 BUMP_MIB(&ipst->ips_ip_mib, 26654 ipIfStatsOutDiscards); 26655 } 26656 /* FALLTHRU */ 26657 case IPSEC_STATUS_PENDING: 26658 return; 26659 } 26660 } 26661 26662 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26663 ASSERT(io->ipsec_out_ah_sa != NULL); 26664 io->ipsec_out_ah_done = B_TRUE; 26665 if (ire == NULL) { 26666 int idx = io->ipsec_out_capab_ill_index; 26667 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26668 NULL, NULL, NULL, NULL, ipst); 26669 ill_need_rele = B_TRUE; 26670 } else { 26671 ill = (ill_t *)ire->ire_stq->q_ptr; 26672 } 26673 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26674 ire); 26675 26676 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26677 switch (ipsec_rc) { 26678 case IPSEC_STATUS_SUCCESS: 26679 break; 26680 case IPSEC_STATUS_FAILED: 26681 if (ill != NULL) { 26682 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26683 } else { 26684 BUMP_MIB(&ipst->ips_ip_mib, 26685 ipIfStatsOutDiscards); 26686 } 26687 /* FALLTHRU */ 26688 case IPSEC_STATUS_PENDING: 26689 if (ill != NULL && ill_need_rele) 26690 ill_refrele(ill); 26691 return; 26692 } 26693 } 26694 /* 26695 * We are done with IPsec processing. Send it over 26696 * the wire. 26697 */ 26698 done: 26699 mp = ipsec_mp->b_cont; 26700 ipha = (ipha_t *)mp->b_rptr; 26701 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26702 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26703 } else { 26704 ip6h = (ip6_t *)ipha; 26705 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26706 } 26707 if (ill != NULL && ill_need_rele) 26708 ill_refrele(ill); 26709 } 26710 26711 /* ARGSUSED */ 26712 void 26713 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26714 { 26715 opt_restart_t *or; 26716 int err; 26717 conn_t *connp; 26718 26719 ASSERT(CONN_Q(q)); 26720 connp = Q_TO_CONN(q); 26721 26722 ASSERT(first_mp->b_datap->db_type == M_CTL); 26723 or = (opt_restart_t *)first_mp->b_rptr; 26724 /* 26725 * We don't need to pass any credentials here since this is just 26726 * a restart. The credentials are passed in when svr4_optcom_req 26727 * is called the first time (from ip_wput_nondata). 26728 */ 26729 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26730 err = svr4_optcom_req(q, first_mp, NULL, 26731 &ip_opt_obj, B_FALSE); 26732 } else { 26733 ASSERT(or->or_type == T_OPTMGMT_REQ); 26734 err = tpi_optcom_req(q, first_mp, NULL, 26735 &ip_opt_obj, B_FALSE); 26736 } 26737 if (err != EINPROGRESS) { 26738 /* operation is done */ 26739 CONN_OPER_PENDING_DONE(connp); 26740 } 26741 } 26742 26743 /* 26744 * ioctls that go through a down/up sequence may need to wait for the down 26745 * to complete. This involves waiting for the ire and ipif refcnts to go down 26746 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26747 */ 26748 /* ARGSUSED */ 26749 void 26750 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26751 { 26752 struct iocblk *iocp; 26753 mblk_t *mp1; 26754 ip_ioctl_cmd_t *ipip; 26755 int err; 26756 sin_t *sin; 26757 struct lifreq *lifr; 26758 struct ifreq *ifr; 26759 26760 iocp = (struct iocblk *)mp->b_rptr; 26761 ASSERT(ipsq != NULL); 26762 /* Existence of mp1 verified in ip_wput_nondata */ 26763 mp1 = mp->b_cont->b_cont; 26764 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26765 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26766 /* 26767 * Special case where ipsq_current_ipif is not set: 26768 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26769 * ill could also have become part of a ipmp group in the 26770 * process, we are here as were not able to complete the 26771 * operation in ipif_set_values because we could not become 26772 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26773 * will not be set so we need to set it. 26774 */ 26775 ill_t *ill = q->q_ptr; 26776 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26777 } 26778 ASSERT(ipsq->ipsq_current_ipif != NULL); 26779 26780 if (ipip->ipi_cmd_type == IF_CMD) { 26781 /* This a old style SIOC[GS]IF* command */ 26782 ifr = (struct ifreq *)mp1->b_rptr; 26783 sin = (sin_t *)&ifr->ifr_addr; 26784 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26785 /* This a new style SIOC[GS]LIF* command */ 26786 lifr = (struct lifreq *)mp1->b_rptr; 26787 sin = (sin_t *)&lifr->lifr_addr; 26788 } else { 26789 sin = NULL; 26790 } 26791 26792 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26793 ipip, mp1->b_rptr); 26794 26795 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26796 } 26797 26798 /* 26799 * ioctl processing 26800 * 26801 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26802 * the ioctl command in the ioctl tables, determines the copyin data size 26803 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26804 * 26805 * ioctl processing then continues when the M_IOCDATA makes its way down to 26806 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26807 * associated 'conn' is refheld till the end of the ioctl and the general 26808 * ioctl processing function ip_process_ioctl() is called to extract the 26809 * arguments and process the ioctl. To simplify extraction, ioctl commands 26810 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26811 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26812 * is used to extract the ioctl's arguments. 26813 * 26814 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26815 * so goes thru the serialization primitive ipsq_try_enter. Then the 26816 * appropriate function to handle the ioctl is called based on the entry in 26817 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26818 * which also refreleases the 'conn' that was refheld at the start of the 26819 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26820 * 26821 * Many exclusive ioctls go thru an internal down up sequence as part of 26822 * the operation. For example an attempt to change the IP address of an 26823 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26824 * does all the cleanup such as deleting all ires that use this address. 26825 * Then we need to wait till all references to the interface go away. 26826 */ 26827 void 26828 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26829 { 26830 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26831 ip_ioctl_cmd_t *ipip = arg; 26832 ip_extract_func_t *extract_funcp; 26833 cmd_info_t ci; 26834 int err; 26835 boolean_t entered_ipsq = B_FALSE; 26836 26837 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26838 26839 if (ipip == NULL) 26840 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26841 26842 /* 26843 * SIOCLIFADDIF needs to go thru a special path since the 26844 * ill may not exist yet. This happens in the case of lo0 26845 * which is created using this ioctl. 26846 */ 26847 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26848 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26849 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26850 return; 26851 } 26852 26853 ci.ci_ipif = NULL; 26854 if (ipip->ipi_cmd_type == MISC_CMD) { 26855 /* 26856 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26857 */ 26858 if (ipip->ipi_cmd == IF_UNITSEL) { 26859 /* ioctl comes down the ill */ 26860 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26861 ipif_refhold(ci.ci_ipif); 26862 } 26863 err = 0; 26864 ci.ci_sin = NULL; 26865 ci.ci_sin6 = NULL; 26866 ci.ci_lifr = NULL; 26867 } else { 26868 switch (ipip->ipi_cmd_type) { 26869 case IF_CMD: 26870 case LIF_CMD: 26871 extract_funcp = ip_extract_lifreq; 26872 break; 26873 26874 case ARP_CMD: 26875 case XARP_CMD: 26876 extract_funcp = ip_extract_arpreq; 26877 break; 26878 26879 case TUN_CMD: 26880 extract_funcp = ip_extract_tunreq; 26881 break; 26882 26883 case MSFILT_CMD: 26884 extract_funcp = ip_extract_msfilter; 26885 break; 26886 26887 default: 26888 ASSERT(0); 26889 } 26890 26891 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26892 if (err != 0) { 26893 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26894 return; 26895 } 26896 26897 /* 26898 * All of the extraction functions return a refheld ipif. 26899 */ 26900 ASSERT(ci.ci_ipif != NULL); 26901 } 26902 26903 /* 26904 * If ipsq is non-null, we are already being called exclusively 26905 */ 26906 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26907 if (!(ipip->ipi_flags & IPI_WR)) { 26908 /* 26909 * A return value of EINPROGRESS means the ioctl is 26910 * either queued and waiting for some reason or has 26911 * already completed. 26912 */ 26913 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26914 ci.ci_lifr); 26915 if (ci.ci_ipif != NULL) 26916 ipif_refrele(ci.ci_ipif); 26917 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26918 return; 26919 } 26920 26921 ASSERT(ci.ci_ipif != NULL); 26922 26923 if (ipsq == NULL) { 26924 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26925 ip_process_ioctl, NEW_OP, B_TRUE); 26926 entered_ipsq = B_TRUE; 26927 } 26928 /* 26929 * Release the ipif so that ipif_down and friends that wait for 26930 * references to go away are not misled about the current ipif_refcnt 26931 * values. We are writer so we can access the ipif even after releasing 26932 * the ipif. 26933 */ 26934 ipif_refrele(ci.ci_ipif); 26935 if (ipsq == NULL) 26936 return; 26937 26938 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26939 26940 /* 26941 * For most set ioctls that come here, this serves as a single point 26942 * where we set the IPIF_CHANGING flag. This ensures that there won't 26943 * be any new references to the ipif. This helps functions that go 26944 * through this path and end up trying to wait for the refcnts 26945 * associated with the ipif to go down to zero. Some exceptions are 26946 * Failover, Failback, and Groupname commands that operate on more than 26947 * just the ci.ci_ipif. These commands internally determine the 26948 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26949 * flags on that set. Another exception is the Removeif command that 26950 * sets the IPIF_CONDEMNED flag internally after identifying the right 26951 * ipif to operate on. 26952 */ 26953 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26954 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26955 ipip->ipi_cmd != SIOCLIFFAILOVER && 26956 ipip->ipi_cmd != SIOCLIFFAILBACK && 26957 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26958 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26959 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26960 26961 /* 26962 * A return value of EINPROGRESS means the ioctl is 26963 * either queued and waiting for some reason or has 26964 * already completed. 26965 */ 26966 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26967 26968 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26969 26970 if (entered_ipsq) 26971 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26972 } 26973 26974 /* 26975 * Complete the ioctl. Typically ioctls use the mi package and need to 26976 * do mi_copyout/mi_copy_done. 26977 */ 26978 void 26979 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26980 { 26981 conn_t *connp = NULL; 26982 26983 if (err == EINPROGRESS) 26984 return; 26985 26986 if (CONN_Q(q)) { 26987 connp = Q_TO_CONN(q); 26988 ASSERT(connp->conn_ref >= 2); 26989 } 26990 26991 switch (mode) { 26992 case COPYOUT: 26993 if (err == 0) 26994 mi_copyout(q, mp); 26995 else 26996 mi_copy_done(q, mp, err); 26997 break; 26998 26999 case NO_COPYOUT: 27000 mi_copy_done(q, mp, err); 27001 break; 27002 27003 default: 27004 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27005 break; 27006 } 27007 27008 /* 27009 * The refhold placed at the start of the ioctl is released here. 27010 */ 27011 if (connp != NULL) 27012 CONN_OPER_PENDING_DONE(connp); 27013 27014 if (ipsq != NULL) 27015 ipsq_current_finish(ipsq); 27016 } 27017 27018 /* 27019 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27020 */ 27021 /* ARGSUSED */ 27022 void 27023 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27024 { 27025 conn_t *connp = arg; 27026 tcp_t *tcp; 27027 27028 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27029 tcp = connp->conn_tcp; 27030 27031 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27032 freemsg(mp); 27033 else 27034 tcp_rput_other(tcp, mp); 27035 CONN_OPER_PENDING_DONE(connp); 27036 } 27037 27038 /* Called from ip_wput for all non data messages */ 27039 /* ARGSUSED */ 27040 void 27041 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27042 { 27043 mblk_t *mp1; 27044 ire_t *ire, *fake_ire; 27045 ill_t *ill; 27046 struct iocblk *iocp; 27047 ip_ioctl_cmd_t *ipip; 27048 cred_t *cr; 27049 conn_t *connp; 27050 int err; 27051 nce_t *nce; 27052 ipif_t *ipif; 27053 ip_stack_t *ipst; 27054 char *proto_str; 27055 27056 if (CONN_Q(q)) { 27057 connp = Q_TO_CONN(q); 27058 ipst = connp->conn_netstack->netstack_ip; 27059 } else { 27060 connp = NULL; 27061 ipst = ILLQ_TO_IPST(q); 27062 } 27063 27064 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27065 27066 switch (DB_TYPE(mp)) { 27067 case M_IOCTL: 27068 /* 27069 * IOCTL processing begins in ip_sioctl_copyin_setup which 27070 * will arrange to copy in associated control structures. 27071 */ 27072 ip_sioctl_copyin_setup(q, mp); 27073 return; 27074 case M_IOCDATA: 27075 /* 27076 * Ensure that this is associated with one of our trans- 27077 * parent ioctls. If it's not ours, discard it if we're 27078 * running as a driver, or pass it on if we're a module. 27079 */ 27080 iocp = (struct iocblk *)mp->b_rptr; 27081 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27082 if (ipip == NULL) { 27083 if (q->q_next == NULL) { 27084 goto nak; 27085 } else { 27086 putnext(q, mp); 27087 } 27088 return; 27089 } 27090 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27091 /* 27092 * the ioctl is one we recognise, but is not 27093 * consumed by IP as a module, pass M_IOCDATA 27094 * for processing downstream, but only for 27095 * common Streams ioctls. 27096 */ 27097 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27098 putnext(q, mp); 27099 return; 27100 } else { 27101 goto nak; 27102 } 27103 } 27104 27105 /* IOCTL continuation following copyin or copyout. */ 27106 if (mi_copy_state(q, mp, NULL) == -1) { 27107 /* 27108 * The copy operation failed. mi_copy_state already 27109 * cleaned up, so we're out of here. 27110 */ 27111 return; 27112 } 27113 /* 27114 * If we just completed a copy in, we become writer and 27115 * continue processing in ip_sioctl_copyin_done. If it 27116 * was a copy out, we call mi_copyout again. If there is 27117 * nothing more to copy out, it will complete the IOCTL. 27118 */ 27119 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27120 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27121 mi_copy_done(q, mp, EPROTO); 27122 return; 27123 } 27124 /* 27125 * Check for cases that need more copying. A return 27126 * value of 0 means a second copyin has been started, 27127 * so we return; a return value of 1 means no more 27128 * copying is needed, so we continue. 27129 */ 27130 if (ipip->ipi_cmd_type == MSFILT_CMD && 27131 MI_COPY_COUNT(mp) == 1) { 27132 if (ip_copyin_msfilter(q, mp) == 0) 27133 return; 27134 } 27135 /* 27136 * Refhold the conn, till the ioctl completes. This is 27137 * needed in case the ioctl ends up in the pending mp 27138 * list. Every mp in the ill_pending_mp list and 27139 * the ipsq_pending_mp must have a refhold on the conn 27140 * to resume processing. The refhold is released when 27141 * the ioctl completes. (normally or abnormally) 27142 * In all cases ip_ioctl_finish is called to finish 27143 * the ioctl. 27144 */ 27145 if (connp != NULL) { 27146 /* This is not a reentry */ 27147 ASSERT(ipsq == NULL); 27148 CONN_INC_REF(connp); 27149 } else { 27150 if (!(ipip->ipi_flags & IPI_MODOK)) { 27151 mi_copy_done(q, mp, EINVAL); 27152 return; 27153 } 27154 } 27155 27156 ip_process_ioctl(ipsq, q, mp, ipip); 27157 27158 } else { 27159 mi_copyout(q, mp); 27160 } 27161 return; 27162 nak: 27163 iocp->ioc_error = EINVAL; 27164 mp->b_datap->db_type = M_IOCNAK; 27165 iocp->ioc_count = 0; 27166 qreply(q, mp); 27167 return; 27168 27169 case M_IOCNAK: 27170 /* 27171 * The only way we could get here is if a resolver didn't like 27172 * an IOCTL we sent it. This shouldn't happen. 27173 */ 27174 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27175 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27176 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27177 freemsg(mp); 27178 return; 27179 case M_IOCACK: 27180 /* /dev/ip shouldn't see this */ 27181 if (CONN_Q(q)) 27182 goto nak; 27183 27184 /* Finish socket ioctls passed through to ARP. */ 27185 ip_sioctl_iocack(q, mp); 27186 return; 27187 case M_FLUSH: 27188 if (*mp->b_rptr & FLUSHW) 27189 flushq(q, FLUSHALL); 27190 if (q->q_next) { 27191 putnext(q, mp); 27192 return; 27193 } 27194 if (*mp->b_rptr & FLUSHR) { 27195 *mp->b_rptr &= ~FLUSHW; 27196 qreply(q, mp); 27197 return; 27198 } 27199 freemsg(mp); 27200 return; 27201 case IRE_DB_REQ_TYPE: 27202 if (connp == NULL) { 27203 proto_str = "IRE_DB_REQ_TYPE"; 27204 goto protonak; 27205 } 27206 /* An Upper Level Protocol wants a copy of an IRE. */ 27207 ip_ire_req(q, mp); 27208 return; 27209 case M_CTL: 27210 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27211 break; 27212 27213 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27214 TUN_HELLO) { 27215 ASSERT(connp != NULL); 27216 connp->conn_flags |= IPCL_IPTUN; 27217 freeb(mp); 27218 return; 27219 } 27220 27221 /* M_CTL messages are used by ARP to tell us things. */ 27222 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27223 break; 27224 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27225 case AR_ENTRY_SQUERY: 27226 ip_wput_ctl(q, mp); 27227 return; 27228 case AR_CLIENT_NOTIFY: 27229 ip_arp_news(q, mp); 27230 return; 27231 case AR_DLPIOP_DONE: 27232 ASSERT(q->q_next != NULL); 27233 ill = (ill_t *)q->q_ptr; 27234 /* qwriter_ip releases the refhold */ 27235 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27236 ill_refhold(ill); 27237 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27238 return; 27239 case AR_ARP_CLOSING: 27240 /* 27241 * ARP (above us) is closing. If no ARP bringup is 27242 * currently pending, ack the message so that ARP 27243 * can complete its close. Also mark ill_arp_closing 27244 * so that new ARP bringups will fail. If any 27245 * ARP bringup is currently in progress, we will 27246 * ack this when the current ARP bringup completes. 27247 */ 27248 ASSERT(q->q_next != NULL); 27249 ill = (ill_t *)q->q_ptr; 27250 mutex_enter(&ill->ill_lock); 27251 ill->ill_arp_closing = 1; 27252 if (!ill->ill_arp_bringup_pending) { 27253 mutex_exit(&ill->ill_lock); 27254 qreply(q, mp); 27255 } else { 27256 mutex_exit(&ill->ill_lock); 27257 freemsg(mp); 27258 } 27259 return; 27260 case AR_ARP_EXTEND: 27261 /* 27262 * The ARP module above us is capable of duplicate 27263 * address detection. Old ATM drivers will not send 27264 * this message. 27265 */ 27266 ASSERT(q->q_next != NULL); 27267 ill = (ill_t *)q->q_ptr; 27268 ill->ill_arp_extend = B_TRUE; 27269 freemsg(mp); 27270 return; 27271 default: 27272 break; 27273 } 27274 break; 27275 case M_PROTO: 27276 case M_PCPROTO: 27277 /* 27278 * The only PROTO messages we expect are ULP binds and 27279 * copies of option negotiation acknowledgements. 27280 */ 27281 switch (((union T_primitives *)mp->b_rptr)->type) { 27282 case O_T_BIND_REQ: 27283 case T_BIND_REQ: { 27284 /* Request can get queued in bind */ 27285 if (connp == NULL) { 27286 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27287 goto protonak; 27288 } 27289 /* 27290 * The transports except SCTP call ip_bind_{v4,v6}() 27291 * directly instead of a a putnext. SCTP doesn't 27292 * generate any T_BIND_REQ since it has its own 27293 * fanout data structures. However, ESP and AH 27294 * come in for regular binds; all other cases are 27295 * bind retries. 27296 */ 27297 ASSERT(!IPCL_IS_SCTP(connp)); 27298 27299 /* Don't increment refcnt if this is a re-entry */ 27300 if (ipsq == NULL) 27301 CONN_INC_REF(connp); 27302 27303 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27304 connp, NULL) : ip_bind_v4(q, mp, connp); 27305 if (mp == NULL) 27306 return; 27307 if (IPCL_IS_TCP(connp)) { 27308 /* 27309 * In the case of TCP endpoint we 27310 * come here only for bind retries 27311 */ 27312 ASSERT(ipsq != NULL); 27313 CONN_INC_REF(connp); 27314 squeue_fill(connp->conn_sqp, mp, 27315 ip_resume_tcp_bind, connp, 27316 SQTAG_BIND_RETRY); 27317 } else if (IPCL_IS_UDP(connp)) { 27318 /* 27319 * In the case of UDP endpoint we 27320 * come here only for bind retries 27321 */ 27322 ASSERT(ipsq != NULL); 27323 udp_resume_bind(connp, mp); 27324 } else if (IPCL_IS_RAWIP(connp)) { 27325 /* 27326 * In the case of RAWIP endpoint we 27327 * come here only for bind retries 27328 */ 27329 ASSERT(ipsq != NULL); 27330 rawip_resume_bind(connp, mp); 27331 } else { 27332 /* The case of AH and ESP */ 27333 qreply(q, mp); 27334 CONN_OPER_PENDING_DONE(connp); 27335 } 27336 return; 27337 } 27338 case T_SVR4_OPTMGMT_REQ: 27339 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27340 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27341 27342 if (connp == NULL) { 27343 proto_str = "T_SVR4_OPTMGMT_REQ"; 27344 goto protonak; 27345 } 27346 27347 if (!snmpcom_req(q, mp, ip_snmp_set, 27348 ip_snmp_get, cr)) { 27349 /* 27350 * Call svr4_optcom_req so that it can 27351 * generate the ack. We don't come here 27352 * if this operation is being restarted. 27353 * ip_restart_optmgmt will drop the conn ref. 27354 * In the case of ipsec option after the ipsec 27355 * load is complete conn_restart_ipsec_waiter 27356 * drops the conn ref. 27357 */ 27358 ASSERT(ipsq == NULL); 27359 CONN_INC_REF(connp); 27360 if (ip_check_for_ipsec_opt(q, mp)) 27361 return; 27362 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27363 B_FALSE); 27364 if (err != EINPROGRESS) { 27365 /* Operation is done */ 27366 CONN_OPER_PENDING_DONE(connp); 27367 } 27368 } 27369 return; 27370 case T_OPTMGMT_REQ: 27371 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27372 /* 27373 * Note: No snmpcom_req support through new 27374 * T_OPTMGMT_REQ. 27375 * Call tpi_optcom_req so that it can 27376 * generate the ack. 27377 */ 27378 if (connp == NULL) { 27379 proto_str = "T_OPTMGMT_REQ"; 27380 goto protonak; 27381 } 27382 27383 ASSERT(ipsq == NULL); 27384 /* 27385 * We don't come here for restart. ip_restart_optmgmt 27386 * will drop the conn ref. In the case of ipsec option 27387 * after the ipsec load is complete 27388 * conn_restart_ipsec_waiter drops the conn ref. 27389 */ 27390 CONN_INC_REF(connp); 27391 if (ip_check_for_ipsec_opt(q, mp)) 27392 return; 27393 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27394 if (err != EINPROGRESS) { 27395 /* Operation is done */ 27396 CONN_OPER_PENDING_DONE(connp); 27397 } 27398 return; 27399 case T_UNBIND_REQ: 27400 if (connp == NULL) { 27401 proto_str = "T_UNBIND_REQ"; 27402 goto protonak; 27403 } 27404 mp = ip_unbind(q, mp); 27405 qreply(q, mp); 27406 return; 27407 default: 27408 /* 27409 * Have to drop any DLPI messages coming down from 27410 * arp (such as an info_req which would cause ip 27411 * to receive an extra info_ack if it was passed 27412 * through. 27413 */ 27414 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27415 (int)*(uint_t *)mp->b_rptr)); 27416 freemsg(mp); 27417 return; 27418 } 27419 /* NOTREACHED */ 27420 case IRE_DB_TYPE: { 27421 nce_t *nce; 27422 ill_t *ill; 27423 in6_addr_t gw_addr_v6; 27424 27425 27426 /* 27427 * This is a response back from a resolver. It 27428 * consists of a message chain containing: 27429 * IRE_MBLK-->LL_HDR_MBLK->pkt 27430 * The IRE_MBLK is the one we allocated in ip_newroute. 27431 * The LL_HDR_MBLK is the DLPI header to use to get 27432 * the attached packet, and subsequent ones for the 27433 * same destination, transmitted. 27434 */ 27435 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27436 break; 27437 /* 27438 * First, check to make sure the resolution succeeded. 27439 * If it failed, the second mblk will be empty. 27440 * If it is, free the chain, dropping the packet. 27441 * (We must ire_delete the ire; that frees the ire mblk) 27442 * We're doing this now to support PVCs for ATM; it's 27443 * a partial xresolv implementation. When we fully implement 27444 * xresolv interfaces, instead of freeing everything here 27445 * we'll initiate neighbor discovery. 27446 * 27447 * For v4 (ARP and other external resolvers) the resolver 27448 * frees the message, so no check is needed. This check 27449 * is required, though, for a full xresolve implementation. 27450 * Including this code here now both shows how external 27451 * resolvers can NACK a resolution request using an 27452 * existing design that has no specific provisions for NACKs, 27453 * and also takes into account that the current non-ARP 27454 * external resolver has been coded to use this method of 27455 * NACKing for all IPv6 (xresolv) cases, 27456 * whether our xresolv implementation is complete or not. 27457 * 27458 */ 27459 ire = (ire_t *)mp->b_rptr; 27460 ill = ire_to_ill(ire); 27461 mp1 = mp->b_cont; /* dl_unitdata_req */ 27462 if (mp1->b_rptr == mp1->b_wptr) { 27463 if (ire->ire_ipversion == IPV6_VERSION) { 27464 /* 27465 * XRESOLV interface. 27466 */ 27467 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27468 mutex_enter(&ire->ire_lock); 27469 gw_addr_v6 = ire->ire_gateway_addr_v6; 27470 mutex_exit(&ire->ire_lock); 27471 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27472 nce = ndp_lookup_v6(ill, 27473 &ire->ire_addr_v6, B_FALSE); 27474 } else { 27475 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27476 B_FALSE); 27477 } 27478 if (nce != NULL) { 27479 nce_resolv_failed(nce); 27480 ndp_delete(nce); 27481 NCE_REFRELE(nce); 27482 } 27483 } 27484 mp->b_cont = NULL; 27485 freemsg(mp1); /* frees the pkt as well */ 27486 ASSERT(ire->ire_nce == NULL); 27487 ire_delete((ire_t *)mp->b_rptr); 27488 return; 27489 } 27490 27491 /* 27492 * Split them into IRE_MBLK and pkt and feed it into 27493 * ire_add_then_send. Then in ire_add_then_send 27494 * the IRE will be added, and then the packet will be 27495 * run back through ip_wput. This time it will make 27496 * it to the wire. 27497 */ 27498 mp->b_cont = NULL; 27499 mp = mp1->b_cont; /* now, mp points to pkt */ 27500 mp1->b_cont = NULL; 27501 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27502 if (ire->ire_ipversion == IPV6_VERSION) { 27503 /* 27504 * XRESOLV interface. Find the nce and put a copy 27505 * of the dl_unitdata_req in nce_res_mp 27506 */ 27507 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27508 mutex_enter(&ire->ire_lock); 27509 gw_addr_v6 = ire->ire_gateway_addr_v6; 27510 mutex_exit(&ire->ire_lock); 27511 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27512 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27513 B_FALSE); 27514 } else { 27515 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27516 } 27517 if (nce != NULL) { 27518 /* 27519 * We have to protect nce_res_mp here 27520 * from being accessed by other threads 27521 * while we change the mblk pointer. 27522 * Other functions will also lock the nce when 27523 * accessing nce_res_mp. 27524 * 27525 * The reason we change the mblk pointer 27526 * here rather than copying the resolved address 27527 * into the template is that, unlike with 27528 * ethernet, we have no guarantee that the 27529 * resolved address length will be 27530 * smaller than or equal to the lla length 27531 * with which the template was allocated, 27532 * (for ethernet, they're equal) 27533 * so we have to use the actual resolved 27534 * address mblk - which holds the real 27535 * dl_unitdata_req with the resolved address. 27536 * 27537 * Doing this is the same behavior as was 27538 * previously used in the v4 ARP case. 27539 */ 27540 mutex_enter(&nce->nce_lock); 27541 if (nce->nce_res_mp != NULL) 27542 freemsg(nce->nce_res_mp); 27543 nce->nce_res_mp = mp1; 27544 mutex_exit(&nce->nce_lock); 27545 /* 27546 * We do a fastpath probe here because 27547 * we have resolved the address without 27548 * using Neighbor Discovery. 27549 * In the non-XRESOLV v6 case, the fastpath 27550 * probe is done right after neighbor 27551 * discovery completes. 27552 */ 27553 if (nce->nce_res_mp != NULL) { 27554 int res; 27555 nce_fastpath_list_add(nce); 27556 res = ill_fastpath_probe(ill, 27557 nce->nce_res_mp); 27558 if (res != 0 && res != EAGAIN) 27559 nce_fastpath_list_delete(nce); 27560 } 27561 27562 ire_add_then_send(q, ire, mp); 27563 /* 27564 * Now we have to clean out any packets 27565 * that may have been queued on the nce 27566 * while it was waiting for address resolution 27567 * to complete. 27568 */ 27569 mutex_enter(&nce->nce_lock); 27570 mp1 = nce->nce_qd_mp; 27571 nce->nce_qd_mp = NULL; 27572 mutex_exit(&nce->nce_lock); 27573 while (mp1 != NULL) { 27574 mblk_t *nxt_mp; 27575 queue_t *fwdq = NULL; 27576 ill_t *inbound_ill; 27577 uint_t ifindex; 27578 27579 nxt_mp = mp1->b_next; 27580 mp1->b_next = NULL; 27581 /* 27582 * Retrieve ifindex stored in 27583 * ip_rput_data_v6() 27584 */ 27585 ifindex = 27586 (uint_t)(uintptr_t)mp1->b_prev; 27587 inbound_ill = 27588 ill_lookup_on_ifindex(ifindex, 27589 B_TRUE, NULL, NULL, NULL, 27590 NULL, ipst); 27591 mp1->b_prev = NULL; 27592 if (inbound_ill != NULL) 27593 fwdq = inbound_ill->ill_rq; 27594 27595 if (fwdq != NULL) { 27596 put(fwdq, mp1); 27597 ill_refrele(inbound_ill); 27598 } else 27599 put(WR(ill->ill_rq), mp1); 27600 mp1 = nxt_mp; 27601 } 27602 NCE_REFRELE(nce); 27603 } else { /* nce is NULL; clean up */ 27604 ire_delete(ire); 27605 freemsg(mp); 27606 freemsg(mp1); 27607 return; 27608 } 27609 } else { 27610 nce_t *arpce; 27611 /* 27612 * Link layer resolution succeeded. Recompute the 27613 * ire_nce. 27614 */ 27615 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27616 if ((arpce = ndp_lookup_v4(ill, 27617 (ire->ire_gateway_addr != INADDR_ANY ? 27618 &ire->ire_gateway_addr : &ire->ire_addr), 27619 B_FALSE)) == NULL) { 27620 freeb(ire->ire_mp); 27621 freeb(mp1); 27622 freemsg(mp); 27623 return; 27624 } 27625 mutex_enter(&arpce->nce_lock); 27626 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27627 if (arpce->nce_state == ND_REACHABLE) { 27628 /* 27629 * Someone resolved this before us; 27630 * cleanup the res_mp. Since ire has 27631 * not been added yet, the call to ire_add_v4 27632 * from ire_add_then_send (when a dup is 27633 * detected) will clean up the ire. 27634 */ 27635 freeb(mp1); 27636 } else { 27637 ASSERT(arpce->nce_res_mp == NULL); 27638 arpce->nce_res_mp = mp1; 27639 arpce->nce_state = ND_REACHABLE; 27640 } 27641 mutex_exit(&arpce->nce_lock); 27642 if (ire->ire_marks & IRE_MARK_NOADD) { 27643 /* 27644 * this ire will not be added to the ire 27645 * cache table, so we can set the ire_nce 27646 * here, as there are no atomicity constraints. 27647 */ 27648 ire->ire_nce = arpce; 27649 /* 27650 * We are associating this nce with the ire 27651 * so change the nce ref taken in 27652 * ndp_lookup_v4() from 27653 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27654 */ 27655 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27656 } else { 27657 NCE_REFRELE(arpce); 27658 } 27659 ire_add_then_send(q, ire, mp); 27660 } 27661 return; /* All is well, the packet has been sent. */ 27662 } 27663 case IRE_ARPRESOLVE_TYPE: { 27664 27665 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27666 break; 27667 mp1 = mp->b_cont; /* dl_unitdata_req */ 27668 mp->b_cont = NULL; 27669 /* 27670 * First, check to make sure the resolution succeeded. 27671 * If it failed, the second mblk will be empty. 27672 */ 27673 if (mp1->b_rptr == mp1->b_wptr) { 27674 /* cleanup the incomplete ire, free queued packets */ 27675 freemsg(mp); /* fake ire */ 27676 freeb(mp1); /* dl_unitdata response */ 27677 return; 27678 } 27679 27680 /* 27681 * update any incomplete nce_t found. we lookup the ctable 27682 * and find the nce from the ire->ire_nce because we need 27683 * to pass the ire to ip_xmit_v4 later, and can find both 27684 * ire and nce in one lookup from the ctable. 27685 */ 27686 fake_ire = (ire_t *)mp->b_rptr; 27687 /* 27688 * By the time we come back here from ARP 27689 * the logical outgoing interface of the incomplete ire 27690 * we added in ire_forward could have disappeared, 27691 * causing the incomplete ire to also have 27692 * dissapeared. So we need to retreive the 27693 * proper ipif for the ire before looking 27694 * in ctable; do the ctablelookup based on ire_ipif_seqid 27695 */ 27696 ill = q->q_ptr; 27697 27698 /* Get the outgoing ipif */ 27699 mutex_enter(&ill->ill_lock); 27700 if (ill->ill_state_flags & ILL_CONDEMNED) { 27701 mutex_exit(&ill->ill_lock); 27702 freemsg(mp); /* fake ire */ 27703 freeb(mp1); /* dl_unitdata response */ 27704 return; 27705 } 27706 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27707 27708 if (ipif == NULL) { 27709 mutex_exit(&ill->ill_lock); 27710 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27711 freemsg(mp); 27712 freeb(mp1); 27713 return; 27714 } 27715 ipif_refhold_locked(ipif); 27716 mutex_exit(&ill->ill_lock); 27717 ire = ire_ctable_lookup(fake_ire->ire_addr, 27718 fake_ire->ire_gateway_addr, IRE_CACHE, 27719 ipif, fake_ire->ire_zoneid, NULL, 27720 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27721 ipif_refrele(ipif); 27722 if (ire == NULL) { 27723 /* 27724 * no ire was found; check if there is an nce 27725 * for this lookup; if it has no ire's pointing at it 27726 * cleanup. 27727 */ 27728 if ((nce = ndp_lookup_v4(ill, 27729 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27730 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27731 B_FALSE)) != NULL) { 27732 /* 27733 * cleanup: 27734 * We check for refcnt 2 (one for the nce 27735 * hash list + 1 for the ref taken by 27736 * ndp_lookup_v4) to check that there are 27737 * no ire's pointing at the nce. 27738 */ 27739 if (nce->nce_refcnt == 2) 27740 ndp_delete(nce); 27741 NCE_REFRELE(nce); 27742 } 27743 freeb(mp1); /* dl_unitdata response */ 27744 freemsg(mp); /* fake ire */ 27745 return; 27746 } 27747 nce = ire->ire_nce; 27748 DTRACE_PROBE2(ire__arpresolve__type, 27749 ire_t *, ire, nce_t *, nce); 27750 ASSERT(nce->nce_state != ND_INITIAL); 27751 mutex_enter(&nce->nce_lock); 27752 nce->nce_last = TICK_TO_MSEC(lbolt64); 27753 if (nce->nce_state == ND_REACHABLE) { 27754 /* 27755 * Someone resolved this before us; 27756 * our response is not needed any more. 27757 */ 27758 mutex_exit(&nce->nce_lock); 27759 freeb(mp1); /* dl_unitdata response */ 27760 } else { 27761 ASSERT(nce->nce_res_mp == NULL); 27762 nce->nce_res_mp = mp1; 27763 nce->nce_state = ND_REACHABLE; 27764 mutex_exit(&nce->nce_lock); 27765 nce_fastpath(nce); 27766 } 27767 /* 27768 * The cached nce_t has been updated to be reachable; 27769 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27770 */ 27771 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27772 freemsg(mp); 27773 /* 27774 * send out queued packets. 27775 */ 27776 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27777 27778 IRE_REFRELE(ire); 27779 return; 27780 } 27781 default: 27782 break; 27783 } 27784 if (q->q_next) { 27785 putnext(q, mp); 27786 } else 27787 freemsg(mp); 27788 return; 27789 27790 protonak: 27791 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27792 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27793 qreply(q, mp); 27794 } 27795 27796 /* 27797 * Process IP options in an outbound packet. Modify the destination if there 27798 * is a source route option. 27799 * Returns non-zero if something fails in which case an ICMP error has been 27800 * sent and mp freed. 27801 */ 27802 static int 27803 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27804 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27805 { 27806 ipoptp_t opts; 27807 uchar_t *opt; 27808 uint8_t optval; 27809 uint8_t optlen; 27810 ipaddr_t dst; 27811 intptr_t code = 0; 27812 mblk_t *mp; 27813 ire_t *ire = NULL; 27814 27815 ip2dbg(("ip_wput_options\n")); 27816 mp = ipsec_mp; 27817 if (mctl_present) { 27818 mp = ipsec_mp->b_cont; 27819 } 27820 27821 dst = ipha->ipha_dst; 27822 for (optval = ipoptp_first(&opts, ipha); 27823 optval != IPOPT_EOL; 27824 optval = ipoptp_next(&opts)) { 27825 opt = opts.ipoptp_cur; 27826 optlen = opts.ipoptp_len; 27827 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27828 optval, optlen)); 27829 switch (optval) { 27830 uint32_t off; 27831 case IPOPT_SSRR: 27832 case IPOPT_LSRR: 27833 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27834 ip1dbg(( 27835 "ip_wput_options: bad option offset\n")); 27836 code = (char *)&opt[IPOPT_OLEN] - 27837 (char *)ipha; 27838 goto param_prob; 27839 } 27840 off = opt[IPOPT_OFFSET]; 27841 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27842 ntohl(dst))); 27843 /* 27844 * For strict: verify that dst is directly 27845 * reachable. 27846 */ 27847 if (optval == IPOPT_SSRR) { 27848 ire = ire_ftable_lookup(dst, 0, 0, 27849 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27850 MBLK_GETLABEL(mp), 27851 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27852 if (ire == NULL) { 27853 ip1dbg(("ip_wput_options: SSRR not" 27854 " directly reachable: 0x%x\n", 27855 ntohl(dst))); 27856 goto bad_src_route; 27857 } 27858 ire_refrele(ire); 27859 } 27860 break; 27861 case IPOPT_RR: 27862 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27863 ip1dbg(( 27864 "ip_wput_options: bad option offset\n")); 27865 code = (char *)&opt[IPOPT_OLEN] - 27866 (char *)ipha; 27867 goto param_prob; 27868 } 27869 break; 27870 case IPOPT_TS: 27871 /* 27872 * Verify that length >=5 and that there is either 27873 * room for another timestamp or that the overflow 27874 * counter is not maxed out. 27875 */ 27876 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27877 if (optlen < IPOPT_MINLEN_IT) { 27878 goto param_prob; 27879 } 27880 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27881 ip1dbg(( 27882 "ip_wput_options: bad option offset\n")); 27883 code = (char *)&opt[IPOPT_OFFSET] - 27884 (char *)ipha; 27885 goto param_prob; 27886 } 27887 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27888 case IPOPT_TS_TSONLY: 27889 off = IPOPT_TS_TIMELEN; 27890 break; 27891 case IPOPT_TS_TSANDADDR: 27892 case IPOPT_TS_PRESPEC: 27893 case IPOPT_TS_PRESPEC_RFC791: 27894 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27895 break; 27896 default: 27897 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27898 (char *)ipha; 27899 goto param_prob; 27900 } 27901 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27902 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27903 /* 27904 * No room and the overflow counter is 15 27905 * already. 27906 */ 27907 goto param_prob; 27908 } 27909 break; 27910 } 27911 } 27912 27913 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27914 return (0); 27915 27916 ip1dbg(("ip_wput_options: error processing IP options.")); 27917 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27918 27919 param_prob: 27920 /* 27921 * Since ip_wput() isn't close to finished, we fill 27922 * in enough of the header for credible error reporting. 27923 */ 27924 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27925 /* Failed */ 27926 freemsg(ipsec_mp); 27927 return (-1); 27928 } 27929 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27930 return (-1); 27931 27932 bad_src_route: 27933 /* 27934 * Since ip_wput() isn't close to finished, we fill 27935 * in enough of the header for credible error reporting. 27936 */ 27937 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27938 /* Failed */ 27939 freemsg(ipsec_mp); 27940 return (-1); 27941 } 27942 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27943 return (-1); 27944 } 27945 27946 /* 27947 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27948 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27949 * thru /etc/system. 27950 */ 27951 #define CONN_MAXDRAINCNT 64 27952 27953 static void 27954 conn_drain_init(ip_stack_t *ipst) 27955 { 27956 int i; 27957 27958 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27959 27960 if ((ipst->ips_conn_drain_list_cnt == 0) || 27961 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27962 /* 27963 * Default value of the number of drainers is the 27964 * number of cpus, subject to maximum of 8 drainers. 27965 */ 27966 if (boot_max_ncpus != -1) 27967 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27968 else 27969 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27970 } 27971 27972 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27973 sizeof (idl_t), KM_SLEEP); 27974 27975 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27976 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27977 MUTEX_DEFAULT, NULL); 27978 } 27979 } 27980 27981 static void 27982 conn_drain_fini(ip_stack_t *ipst) 27983 { 27984 int i; 27985 27986 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27987 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27988 kmem_free(ipst->ips_conn_drain_list, 27989 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27990 ipst->ips_conn_drain_list = NULL; 27991 } 27992 27993 /* 27994 * Note: For an overview of how flowcontrol is handled in IP please see the 27995 * IP Flowcontrol notes at the top of this file. 27996 * 27997 * Flow control has blocked us from proceeding. Insert the given conn in one 27998 * of the conn drain lists. These conn wq's will be qenabled later on when 27999 * STREAMS flow control does a backenable. conn_walk_drain will enable 28000 * the first conn in each of these drain lists. Each of these qenabled conns 28001 * in turn enables the next in the list, after it runs, or when it closes, 28002 * thus sustaining the drain process. 28003 * 28004 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28005 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28006 * running at any time, on a given conn, since there can be only 1 service proc 28007 * running on a queue at any time. 28008 */ 28009 void 28010 conn_drain_insert(conn_t *connp) 28011 { 28012 idl_t *idl; 28013 uint_t index; 28014 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28015 28016 mutex_enter(&connp->conn_lock); 28017 if (connp->conn_state_flags & CONN_CLOSING) { 28018 /* 28019 * The conn is closing as a result of which CONN_CLOSING 28020 * is set. Return. 28021 */ 28022 mutex_exit(&connp->conn_lock); 28023 return; 28024 } else if (connp->conn_idl == NULL) { 28025 /* 28026 * Assign the next drain list round robin. We dont' use 28027 * a lock, and thus it may not be strictly round robin. 28028 * Atomicity of load/stores is enough to make sure that 28029 * conn_drain_list_index is always within bounds. 28030 */ 28031 index = ipst->ips_conn_drain_list_index; 28032 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28033 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28034 index++; 28035 if (index == ipst->ips_conn_drain_list_cnt) 28036 index = 0; 28037 ipst->ips_conn_drain_list_index = index; 28038 } 28039 mutex_exit(&connp->conn_lock); 28040 28041 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28042 if ((connp->conn_drain_prev != NULL) || 28043 (connp->conn_state_flags & CONN_CLOSING)) { 28044 /* 28045 * The conn is already in the drain list, OR 28046 * the conn is closing. We need to check again for 28047 * the closing case again since close can happen 28048 * after we drop the conn_lock, and before we 28049 * acquire the CONN_DRAIN_LIST_LOCK. 28050 */ 28051 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28052 return; 28053 } else { 28054 idl = connp->conn_idl; 28055 } 28056 28057 /* 28058 * The conn is not in the drain list. Insert it at the 28059 * tail of the drain list. The drain list is circular 28060 * and doubly linked. idl_conn points to the 1st element 28061 * in the list. 28062 */ 28063 if (idl->idl_conn == NULL) { 28064 idl->idl_conn = connp; 28065 connp->conn_drain_next = connp; 28066 connp->conn_drain_prev = connp; 28067 } else { 28068 conn_t *head = idl->idl_conn; 28069 28070 connp->conn_drain_next = head; 28071 connp->conn_drain_prev = head->conn_drain_prev; 28072 head->conn_drain_prev->conn_drain_next = connp; 28073 head->conn_drain_prev = connp; 28074 } 28075 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28076 } 28077 28078 /* 28079 * This conn is closing, and we are called from ip_close. OR 28080 * This conn has been serviced by ip_wsrv, and we need to do the tail 28081 * processing. 28082 * If this conn is part of the drain list, we may need to sustain the drain 28083 * process by qenabling the next conn in the drain list. We may also need to 28084 * remove this conn from the list, if it is done. 28085 */ 28086 static void 28087 conn_drain_tail(conn_t *connp, boolean_t closing) 28088 { 28089 idl_t *idl; 28090 28091 /* 28092 * connp->conn_idl is stable at this point, and no lock is needed 28093 * to check it. If we are called from ip_close, close has already 28094 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28095 * called us only because conn_idl is non-null. If we are called thru 28096 * service, conn_idl could be null, but it cannot change because 28097 * service is single-threaded per queue, and there cannot be another 28098 * instance of service trying to call conn_drain_insert on this conn 28099 * now. 28100 */ 28101 ASSERT(!closing || (connp->conn_idl != NULL)); 28102 28103 /* 28104 * If connp->conn_idl is null, the conn has not been inserted into any 28105 * drain list even once since creation of the conn. Just return. 28106 */ 28107 if (connp->conn_idl == NULL) 28108 return; 28109 28110 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28111 28112 if (connp->conn_drain_prev == NULL) { 28113 /* This conn is currently not in the drain list. */ 28114 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28115 return; 28116 } 28117 idl = connp->conn_idl; 28118 if (idl->idl_conn_draining == connp) { 28119 /* 28120 * This conn is the current drainer. If this is the last conn 28121 * in the drain list, we need to do more checks, in the 'if' 28122 * below. Otherwwise we need to just qenable the next conn, 28123 * to sustain the draining, and is handled in the 'else' 28124 * below. 28125 */ 28126 if (connp->conn_drain_next == idl->idl_conn) { 28127 /* 28128 * This conn is the last in this list. This round 28129 * of draining is complete. If idl_repeat is set, 28130 * it means another flow enabling has happened from 28131 * the driver/streams and we need to another round 28132 * of draining. 28133 * If there are more than 2 conns in the drain list, 28134 * do a left rotate by 1, so that all conns except the 28135 * conn at the head move towards the head by 1, and the 28136 * the conn at the head goes to the tail. This attempts 28137 * a more even share for all queues that are being 28138 * drained. 28139 */ 28140 if ((connp->conn_drain_next != connp) && 28141 (idl->idl_conn->conn_drain_next != connp)) { 28142 idl->idl_conn = idl->idl_conn->conn_drain_next; 28143 } 28144 if (idl->idl_repeat) { 28145 qenable(idl->idl_conn->conn_wq); 28146 idl->idl_conn_draining = idl->idl_conn; 28147 idl->idl_repeat = 0; 28148 } else { 28149 idl->idl_conn_draining = NULL; 28150 } 28151 } else { 28152 /* 28153 * If the next queue that we are now qenable'ing, 28154 * is closing, it will remove itself from this list 28155 * and qenable the subsequent queue in ip_close(). 28156 * Serialization is acheived thru idl_lock. 28157 */ 28158 qenable(connp->conn_drain_next->conn_wq); 28159 idl->idl_conn_draining = connp->conn_drain_next; 28160 } 28161 } 28162 if (!connp->conn_did_putbq || closing) { 28163 /* 28164 * Remove ourself from the drain list, if we did not do 28165 * a putbq, or if the conn is closing. 28166 * Note: It is possible that q->q_first is non-null. It means 28167 * that these messages landed after we did a enableok() in 28168 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28169 * service them. 28170 */ 28171 if (connp->conn_drain_next == connp) { 28172 /* Singleton in the list */ 28173 ASSERT(connp->conn_drain_prev == connp); 28174 idl->idl_conn = NULL; 28175 idl->idl_conn_draining = NULL; 28176 } else { 28177 connp->conn_drain_prev->conn_drain_next = 28178 connp->conn_drain_next; 28179 connp->conn_drain_next->conn_drain_prev = 28180 connp->conn_drain_prev; 28181 if (idl->idl_conn == connp) 28182 idl->idl_conn = connp->conn_drain_next; 28183 ASSERT(idl->idl_conn_draining != connp); 28184 28185 } 28186 connp->conn_drain_next = NULL; 28187 connp->conn_drain_prev = NULL; 28188 } 28189 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28190 } 28191 28192 /* 28193 * Write service routine. Shared perimeter entry point. 28194 * ip_wsrv can be called in any of the following ways. 28195 * 1. The device queue's messages has fallen below the low water mark 28196 * and STREAMS has backenabled the ill_wq. We walk thru all the 28197 * the drain lists and backenable the first conn in each list. 28198 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28199 * qenabled non-tcp upper layers. We start dequeing messages and call 28200 * ip_wput for each message. 28201 */ 28202 28203 void 28204 ip_wsrv(queue_t *q) 28205 { 28206 conn_t *connp; 28207 ill_t *ill; 28208 mblk_t *mp; 28209 28210 if (q->q_next) { 28211 ill = (ill_t *)q->q_ptr; 28212 if (ill->ill_state_flags == 0) { 28213 /* 28214 * The device flow control has opened up. 28215 * Walk through conn drain lists and qenable the 28216 * first conn in each list. This makes sense only 28217 * if the stream is fully plumbed and setup. 28218 * Hence the if check above. 28219 */ 28220 ip1dbg(("ip_wsrv: walking\n")); 28221 conn_walk_drain(ill->ill_ipst); 28222 } 28223 return; 28224 } 28225 28226 connp = Q_TO_CONN(q); 28227 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28228 28229 /* 28230 * 1. Set conn_draining flag to signal that service is active. 28231 * 28232 * 2. ip_output determines whether it has been called from service, 28233 * based on the last parameter. If it is IP_WSRV it concludes it 28234 * has been called from service. 28235 * 28236 * 3. Message ordering is preserved by the following logic. 28237 * i. A directly called ip_output (i.e. not thru service) will queue 28238 * the message at the tail, if conn_draining is set (i.e. service 28239 * is running) or if q->q_first is non-null. 28240 * 28241 * ii. If ip_output is called from service, and if ip_output cannot 28242 * putnext due to flow control, it does a putbq. 28243 * 28244 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28245 * (causing an infinite loop). 28246 */ 28247 ASSERT(!connp->conn_did_putbq); 28248 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28249 connp->conn_draining = 1; 28250 noenable(q); 28251 while ((mp = getq(q)) != NULL) { 28252 ASSERT(CONN_Q(q)); 28253 28254 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28255 if (connp->conn_did_putbq) { 28256 /* ip_wput did a putbq */ 28257 break; 28258 } 28259 } 28260 /* 28261 * At this point, a thread coming down from top, calling 28262 * ip_wput, may end up queueing the message. We have not yet 28263 * enabled the queue, so ip_wsrv won't be called again. 28264 * To avoid this race, check q->q_first again (in the loop) 28265 * If the other thread queued the message before we call 28266 * enableok(), we will catch it in the q->q_first check. 28267 * If the other thread queues the message after we call 28268 * enableok(), ip_wsrv will be called again by STREAMS. 28269 */ 28270 connp->conn_draining = 0; 28271 enableok(q); 28272 } 28273 28274 /* Enable the next conn for draining */ 28275 conn_drain_tail(connp, B_FALSE); 28276 28277 connp->conn_did_putbq = 0; 28278 } 28279 28280 /* 28281 * Walk the list of all conn's calling the function provided with the 28282 * specified argument for each. Note that this only walks conn's that 28283 * have been bound. 28284 * Applies to both IPv4 and IPv6. 28285 */ 28286 static void 28287 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28288 { 28289 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28290 ipst->ips_ipcl_udp_fanout_size, 28291 func, arg, zoneid); 28292 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28293 ipst->ips_ipcl_conn_fanout_size, 28294 func, arg, zoneid); 28295 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28296 ipst->ips_ipcl_bind_fanout_size, 28297 func, arg, zoneid); 28298 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28299 IPPROTO_MAX, func, arg, zoneid); 28300 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28301 IPPROTO_MAX, func, arg, zoneid); 28302 } 28303 28304 /* 28305 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28306 * of conns that need to be drained, check if drain is already in progress. 28307 * If so set the idl_repeat bit, indicating that the last conn in the list 28308 * needs to reinitiate the drain once again, for the list. If drain is not 28309 * in progress for the list, initiate the draining, by qenabling the 1st 28310 * conn in the list. The drain is self-sustaining, each qenabled conn will 28311 * in turn qenable the next conn, when it is done/blocked/closing. 28312 */ 28313 static void 28314 conn_walk_drain(ip_stack_t *ipst) 28315 { 28316 int i; 28317 idl_t *idl; 28318 28319 IP_STAT(ipst, ip_conn_walk_drain); 28320 28321 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28322 idl = &ipst->ips_conn_drain_list[i]; 28323 mutex_enter(&idl->idl_lock); 28324 if (idl->idl_conn == NULL) { 28325 mutex_exit(&idl->idl_lock); 28326 continue; 28327 } 28328 /* 28329 * If this list is not being drained currently by 28330 * an ip_wsrv thread, start the process. 28331 */ 28332 if (idl->idl_conn_draining == NULL) { 28333 ASSERT(idl->idl_repeat == 0); 28334 qenable(idl->idl_conn->conn_wq); 28335 idl->idl_conn_draining = idl->idl_conn; 28336 } else { 28337 idl->idl_repeat = 1; 28338 } 28339 mutex_exit(&idl->idl_lock); 28340 } 28341 } 28342 28343 /* 28344 * Walk an conn hash table of `count' buckets, calling func for each entry. 28345 */ 28346 static void 28347 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28348 zoneid_t zoneid) 28349 { 28350 conn_t *connp; 28351 28352 while (count-- > 0) { 28353 mutex_enter(&connfp->connf_lock); 28354 for (connp = connfp->connf_head; connp != NULL; 28355 connp = connp->conn_next) { 28356 if (zoneid == GLOBAL_ZONEID || 28357 zoneid == connp->conn_zoneid) { 28358 CONN_INC_REF(connp); 28359 mutex_exit(&connfp->connf_lock); 28360 (*func)(connp, arg); 28361 mutex_enter(&connfp->connf_lock); 28362 CONN_DEC_REF(connp); 28363 } 28364 } 28365 mutex_exit(&connfp->connf_lock); 28366 connfp++; 28367 } 28368 } 28369 28370 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28371 static void 28372 conn_report1(conn_t *connp, void *mp) 28373 { 28374 char buf1[INET6_ADDRSTRLEN]; 28375 char buf2[INET6_ADDRSTRLEN]; 28376 uint_t print_len, buf_len; 28377 28378 ASSERT(connp != NULL); 28379 28380 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28381 if (buf_len <= 0) 28382 return; 28383 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28384 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28385 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28386 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28387 "%5d %s/%05d %s/%05d\n", 28388 (void *)connp, (void *)CONNP_TO_RQ(connp), 28389 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28390 buf1, connp->conn_lport, 28391 buf2, connp->conn_fport); 28392 if (print_len < buf_len) { 28393 ((mblk_t *)mp)->b_wptr += print_len; 28394 } else { 28395 ((mblk_t *)mp)->b_wptr += buf_len; 28396 } 28397 } 28398 28399 /* 28400 * Named Dispatch routine to produce a formatted report on all conns 28401 * that are listed in one of the fanout tables. 28402 * This report is accessed by using the ndd utility to "get" ND variable 28403 * "ip_conn_status". 28404 */ 28405 /* ARGSUSED */ 28406 static int 28407 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28408 { 28409 conn_t *connp = Q_TO_CONN(q); 28410 28411 (void) mi_mpprintf(mp, 28412 "CONN " MI_COL_HDRPAD_STR 28413 "rfq " MI_COL_HDRPAD_STR 28414 "stq " MI_COL_HDRPAD_STR 28415 " zone local remote"); 28416 28417 /* 28418 * Because of the ndd constraint, at most we can have 64K buffer 28419 * to put in all conn info. So to be more efficient, just 28420 * allocate a 64K buffer here, assuming we need that large buffer. 28421 * This should be OK as only privileged processes can do ndd /dev/ip. 28422 */ 28423 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28424 /* The following may work even if we cannot get a large buf. */ 28425 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28426 return (0); 28427 } 28428 28429 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28430 connp->conn_netstack->netstack_ip); 28431 return (0); 28432 } 28433 28434 /* 28435 * Determine if the ill and multicast aspects of that packets 28436 * "matches" the conn. 28437 */ 28438 boolean_t 28439 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28440 zoneid_t zoneid) 28441 { 28442 ill_t *in_ill; 28443 boolean_t found; 28444 ipif_t *ipif; 28445 ire_t *ire; 28446 ipaddr_t dst, src; 28447 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28448 28449 dst = ipha->ipha_dst; 28450 src = ipha->ipha_src; 28451 28452 /* 28453 * conn_incoming_ill is set by IP_BOUND_IF which limits 28454 * unicast, broadcast and multicast reception to 28455 * conn_incoming_ill. conn_wantpacket itself is called 28456 * only for BROADCAST and multicast. 28457 * 28458 * 1) ip_rput supresses duplicate broadcasts if the ill 28459 * is part of a group. Hence, we should be receiving 28460 * just one copy of broadcast for the whole group. 28461 * Thus, if it is part of the group the packet could 28462 * come on any ill of the group and hence we need a 28463 * match on the group. Otherwise, match on ill should 28464 * be sufficient. 28465 * 28466 * 2) ip_rput does not suppress duplicate multicast packets. 28467 * If there are two interfaces in a ill group and we have 28468 * 2 applications (conns) joined a multicast group G on 28469 * both the interfaces, ilm_lookup_ill filter in ip_rput 28470 * will give us two packets because we join G on both the 28471 * interfaces rather than nominating just one interface 28472 * for receiving multicast like broadcast above. So, 28473 * we have to call ilg_lookup_ill to filter out duplicate 28474 * copies, if ill is part of a group. 28475 */ 28476 in_ill = connp->conn_incoming_ill; 28477 if (in_ill != NULL) { 28478 if (in_ill->ill_group == NULL) { 28479 if (in_ill != ill) 28480 return (B_FALSE); 28481 } else if (in_ill->ill_group != ill->ill_group) { 28482 return (B_FALSE); 28483 } 28484 } 28485 28486 if (!CLASSD(dst)) { 28487 if (IPCL_ZONE_MATCH(connp, zoneid)) 28488 return (B_TRUE); 28489 /* 28490 * The conn is in a different zone; we need to check that this 28491 * broadcast address is configured in the application's zone and 28492 * on one ill in the group. 28493 */ 28494 ipif = ipif_get_next_ipif(NULL, ill); 28495 if (ipif == NULL) 28496 return (B_FALSE); 28497 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28498 connp->conn_zoneid, NULL, 28499 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28500 ipif_refrele(ipif); 28501 if (ire != NULL) { 28502 ire_refrele(ire); 28503 return (B_TRUE); 28504 } else { 28505 return (B_FALSE); 28506 } 28507 } 28508 28509 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28510 connp->conn_zoneid == zoneid) { 28511 /* 28512 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28513 * disabled, therefore we don't dispatch the multicast packet to 28514 * the sending zone. 28515 */ 28516 return (B_FALSE); 28517 } 28518 28519 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28520 /* 28521 * Multicast packet on the loopback interface: we only match 28522 * conns who joined the group in the specified zone. 28523 */ 28524 return (B_FALSE); 28525 } 28526 28527 if (connp->conn_multi_router) { 28528 /* multicast packet and multicast router socket: send up */ 28529 return (B_TRUE); 28530 } 28531 28532 mutex_enter(&connp->conn_lock); 28533 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28534 mutex_exit(&connp->conn_lock); 28535 return (found); 28536 } 28537 28538 /* 28539 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28540 */ 28541 /* ARGSUSED */ 28542 static void 28543 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28544 { 28545 ill_t *ill = (ill_t *)q->q_ptr; 28546 mblk_t *mp1, *mp2; 28547 ipif_t *ipif; 28548 int err = 0; 28549 conn_t *connp = NULL; 28550 ipsq_t *ipsq; 28551 arc_t *arc; 28552 28553 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28554 28555 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28556 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28557 28558 ASSERT(IAM_WRITER_ILL(ill)); 28559 mp2 = mp->b_cont; 28560 mp->b_cont = NULL; 28561 28562 /* 28563 * We have now received the arp bringup completion message 28564 * from ARP. Mark the arp bringup as done. Also if the arp 28565 * stream has already started closing, send up the AR_ARP_CLOSING 28566 * ack now since ARP is waiting in close for this ack. 28567 */ 28568 mutex_enter(&ill->ill_lock); 28569 ill->ill_arp_bringup_pending = 0; 28570 if (ill->ill_arp_closing) { 28571 mutex_exit(&ill->ill_lock); 28572 /* Let's reuse the mp for sending the ack */ 28573 arc = (arc_t *)mp->b_rptr; 28574 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28575 arc->arc_cmd = AR_ARP_CLOSING; 28576 qreply(q, mp); 28577 } else { 28578 mutex_exit(&ill->ill_lock); 28579 freeb(mp); 28580 } 28581 28582 ipsq = ill->ill_phyint->phyint_ipsq; 28583 ipif = ipsq->ipsq_pending_ipif; 28584 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28585 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28586 if (mp1 == NULL) { 28587 /* bringup was aborted by the user */ 28588 freemsg(mp2); 28589 return; 28590 } 28591 28592 /* 28593 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28594 * must have an associated conn_t. Otherwise, we're bringing this 28595 * interface back up as part of handling an asynchronous event (e.g., 28596 * physical address change). 28597 */ 28598 if (ipsq->ipsq_current_ioctl != 0) { 28599 ASSERT(connp != NULL); 28600 q = CONNP_TO_WQ(connp); 28601 } else { 28602 ASSERT(connp == NULL); 28603 q = ill->ill_rq; 28604 } 28605 28606 /* 28607 * If the DL_BIND_REQ fails, it is noted 28608 * in arc_name_offset. 28609 */ 28610 err = *((int *)mp2->b_rptr); 28611 if (err == 0) { 28612 if (ipif->ipif_isv6) { 28613 if ((err = ipif_up_done_v6(ipif)) != 0) 28614 ip0dbg(("ip_arp_done: init failed\n")); 28615 } else { 28616 if ((err = ipif_up_done(ipif)) != 0) 28617 ip0dbg(("ip_arp_done: init failed\n")); 28618 } 28619 } else { 28620 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28621 } 28622 28623 freemsg(mp2); 28624 28625 if ((err == 0) && (ill->ill_up_ipifs)) { 28626 err = ill_up_ipifs(ill, q, mp1); 28627 if (err == EINPROGRESS) 28628 return; 28629 } 28630 28631 if (ill->ill_up_ipifs) 28632 ill_group_cleanup(ill); 28633 28634 /* 28635 * The operation must complete without EINPROGRESS since 28636 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28637 * Otherwise, the operation will be stuck forever in the ipsq. 28638 */ 28639 ASSERT(err != EINPROGRESS); 28640 if (ipsq->ipsq_current_ioctl != 0) 28641 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28642 else 28643 ipsq_current_finish(ipsq); 28644 } 28645 28646 /* Allocate the private structure */ 28647 static int 28648 ip_priv_alloc(void **bufp) 28649 { 28650 void *buf; 28651 28652 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28653 return (ENOMEM); 28654 28655 *bufp = buf; 28656 return (0); 28657 } 28658 28659 /* Function to delete the private structure */ 28660 void 28661 ip_priv_free(void *buf) 28662 { 28663 ASSERT(buf != NULL); 28664 kmem_free(buf, sizeof (ip_priv_t)); 28665 } 28666 28667 /* 28668 * The entry point for IPPF processing. 28669 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28670 * routine just returns. 28671 * 28672 * When called, ip_process generates an ipp_packet_t structure 28673 * which holds the state information for this packet and invokes the 28674 * the classifier (via ipp_packet_process). The classification, depending on 28675 * configured filters, results in a list of actions for this packet. Invoking 28676 * an action may cause the packet to be dropped, in which case the resulting 28677 * mblk (*mpp) is NULL. proc indicates the callout position for 28678 * this packet and ill_index is the interface this packet on or will leave 28679 * on (inbound and outbound resp.). 28680 */ 28681 void 28682 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28683 { 28684 mblk_t *mp; 28685 ip_priv_t *priv; 28686 ipp_action_id_t aid; 28687 int rc = 0; 28688 ipp_packet_t *pp; 28689 #define IP_CLASS "ip" 28690 28691 /* If the classifier is not loaded, return */ 28692 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28693 return; 28694 } 28695 28696 mp = *mpp; 28697 ASSERT(mp != NULL); 28698 28699 /* Allocate the packet structure */ 28700 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28701 if (rc != 0) { 28702 *mpp = NULL; 28703 freemsg(mp); 28704 return; 28705 } 28706 28707 /* Allocate the private structure */ 28708 rc = ip_priv_alloc((void **)&priv); 28709 if (rc != 0) { 28710 *mpp = NULL; 28711 freemsg(mp); 28712 ipp_packet_free(pp); 28713 return; 28714 } 28715 priv->proc = proc; 28716 priv->ill_index = ill_index; 28717 ipp_packet_set_private(pp, priv, ip_priv_free); 28718 ipp_packet_set_data(pp, mp); 28719 28720 /* Invoke the classifier */ 28721 rc = ipp_packet_process(&pp); 28722 if (pp != NULL) { 28723 mp = ipp_packet_get_data(pp); 28724 ipp_packet_free(pp); 28725 if (rc != 0) { 28726 freemsg(mp); 28727 *mpp = NULL; 28728 } 28729 } else { 28730 *mpp = NULL; 28731 } 28732 #undef IP_CLASS 28733 } 28734 28735 /* 28736 * Propagate a multicast group membership operation (add/drop) on 28737 * all the interfaces crossed by the related multirt routes. 28738 * The call is considered successful if the operation succeeds 28739 * on at least one interface. 28740 */ 28741 static int 28742 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28743 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28744 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28745 mblk_t *first_mp) 28746 { 28747 ire_t *ire_gw; 28748 irb_t *irb; 28749 int error = 0; 28750 opt_restart_t *or; 28751 ip_stack_t *ipst = ire->ire_ipst; 28752 28753 irb = ire->ire_bucket; 28754 ASSERT(irb != NULL); 28755 28756 ASSERT(DB_TYPE(first_mp) == M_CTL); 28757 28758 or = (opt_restart_t *)first_mp->b_rptr; 28759 IRB_REFHOLD(irb); 28760 for (; ire != NULL; ire = ire->ire_next) { 28761 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28762 continue; 28763 if (ire->ire_addr != group) 28764 continue; 28765 28766 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28767 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28768 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28769 /* No resolver exists for the gateway; skip this ire. */ 28770 if (ire_gw == NULL) 28771 continue; 28772 28773 /* 28774 * This function can return EINPROGRESS. If so the operation 28775 * will be restarted from ip_restart_optmgmt which will 28776 * call ip_opt_set and option processing will restart for 28777 * this option. So we may end up calling 'fn' more than once. 28778 * This requires that 'fn' is idempotent except for the 28779 * return value. The operation is considered a success if 28780 * it succeeds at least once on any one interface. 28781 */ 28782 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28783 NULL, fmode, src, first_mp); 28784 if (error == 0) 28785 or->or_private = CGTP_MCAST_SUCCESS; 28786 28787 if (ip_debug > 0) { 28788 ulong_t off; 28789 char *ksym; 28790 ksym = kobj_getsymname((uintptr_t)fn, &off); 28791 ip2dbg(("ip_multirt_apply_membership: " 28792 "called %s, multirt group 0x%08x via itf 0x%08x, " 28793 "error %d [success %u]\n", 28794 ksym ? ksym : "?", 28795 ntohl(group), ntohl(ire_gw->ire_src_addr), 28796 error, or->or_private)); 28797 } 28798 28799 ire_refrele(ire_gw); 28800 if (error == EINPROGRESS) { 28801 IRB_REFRELE(irb); 28802 return (error); 28803 } 28804 } 28805 IRB_REFRELE(irb); 28806 /* 28807 * Consider the call as successful if we succeeded on at least 28808 * one interface. Otherwise, return the last encountered error. 28809 */ 28810 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28811 } 28812 28813 28814 /* 28815 * Issue a warning regarding a route crossing an interface with an 28816 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28817 * amount of time is logged. 28818 */ 28819 static void 28820 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28821 { 28822 hrtime_t current = gethrtime(); 28823 char buf[INET_ADDRSTRLEN]; 28824 ip_stack_t *ipst = ire->ire_ipst; 28825 28826 /* Convert interval in ms to hrtime in ns */ 28827 if (ipst->ips_multirt_bad_mtu_last_time + 28828 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28829 current) { 28830 cmn_err(CE_WARN, "ip: ignoring multiroute " 28831 "to %s, incorrect MTU %u (expected %u)\n", 28832 ip_dot_addr(ire->ire_addr, buf), 28833 ire->ire_max_frag, max_frag); 28834 28835 ipst->ips_multirt_bad_mtu_last_time = current; 28836 } 28837 } 28838 28839 28840 /* 28841 * Get the CGTP (multirouting) filtering status. 28842 * If 0, the CGTP hooks are transparent. 28843 */ 28844 /* ARGSUSED */ 28845 static int 28846 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28847 { 28848 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28849 28850 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28851 return (0); 28852 } 28853 28854 28855 /* 28856 * Set the CGTP (multirouting) filtering status. 28857 * If the status is changed from active to transparent 28858 * or from transparent to active, forward the new status 28859 * to the filtering module (if loaded). 28860 */ 28861 /* ARGSUSED */ 28862 static int 28863 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28864 cred_t *ioc_cr) 28865 { 28866 long new_value; 28867 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28868 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28869 28870 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28871 return (EPERM); 28872 28873 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28874 new_value < 0 || new_value > 1) { 28875 return (EINVAL); 28876 } 28877 28878 if ((!*ip_cgtp_filter_value) && new_value) { 28879 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28880 ipst->ips_ip_cgtp_filter_ops == NULL ? 28881 " (module not loaded)" : ""); 28882 } 28883 if (*ip_cgtp_filter_value && (!new_value)) { 28884 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28885 ipst->ips_ip_cgtp_filter_ops == NULL ? 28886 " (module not loaded)" : ""); 28887 } 28888 28889 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28890 int res; 28891 netstackid_t stackid; 28892 28893 stackid = ipst->ips_netstack->netstack_stackid; 28894 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28895 new_value); 28896 if (res) 28897 return (res); 28898 } 28899 28900 *ip_cgtp_filter_value = (boolean_t)new_value; 28901 28902 return (0); 28903 } 28904 28905 28906 /* 28907 * Return the expected CGTP hooks version number. 28908 */ 28909 int 28910 ip_cgtp_filter_supported(void) 28911 { 28912 return (ip_cgtp_filter_rev); 28913 } 28914 28915 28916 /* 28917 * CGTP hooks can be registered by invoking this function. 28918 * Checks that the version number matches. 28919 */ 28920 int 28921 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28922 { 28923 netstack_t *ns; 28924 ip_stack_t *ipst; 28925 28926 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28927 return (ENOTSUP); 28928 28929 ns = netstack_find_by_stackid(stackid); 28930 if (ns == NULL) 28931 return (EINVAL); 28932 ipst = ns->netstack_ip; 28933 ASSERT(ipst != NULL); 28934 28935 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28936 netstack_rele(ns); 28937 return (EALREADY); 28938 } 28939 28940 ipst->ips_ip_cgtp_filter_ops = ops; 28941 netstack_rele(ns); 28942 return (0); 28943 } 28944 28945 /* 28946 * CGTP hooks can be unregistered by invoking this function. 28947 * Returns ENXIO if there was no registration. 28948 * Returns EBUSY if the ndd variable has not been turned off. 28949 */ 28950 int 28951 ip_cgtp_filter_unregister(netstackid_t stackid) 28952 { 28953 netstack_t *ns; 28954 ip_stack_t *ipst; 28955 28956 ns = netstack_find_by_stackid(stackid); 28957 if (ns == NULL) 28958 return (EINVAL); 28959 ipst = ns->netstack_ip; 28960 ASSERT(ipst != NULL); 28961 28962 if (ipst->ips_ip_cgtp_filter) { 28963 netstack_rele(ns); 28964 return (EBUSY); 28965 } 28966 28967 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28968 netstack_rele(ns); 28969 return (ENXIO); 28970 } 28971 ipst->ips_ip_cgtp_filter_ops = NULL; 28972 netstack_rele(ns); 28973 return (0); 28974 } 28975 28976 /* 28977 * Check whether there is a CGTP filter registration. 28978 * Returns non-zero if there is a registration, otherwise returns zero. 28979 * Note: returns zero if bad stackid. 28980 */ 28981 int 28982 ip_cgtp_filter_is_registered(netstackid_t stackid) 28983 { 28984 netstack_t *ns; 28985 ip_stack_t *ipst; 28986 int ret; 28987 28988 ns = netstack_find_by_stackid(stackid); 28989 if (ns == NULL) 28990 return (0); 28991 ipst = ns->netstack_ip; 28992 ASSERT(ipst != NULL); 28993 28994 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28995 ret = 1; 28996 else 28997 ret = 0; 28998 28999 netstack_rele(ns); 29000 return (ret); 29001 } 29002 29003 static squeue_func_t 29004 ip_squeue_switch(int val) 29005 { 29006 squeue_func_t rval = squeue_fill; 29007 29008 switch (val) { 29009 case IP_SQUEUE_ENTER_NODRAIN: 29010 rval = squeue_enter_nodrain; 29011 break; 29012 case IP_SQUEUE_ENTER: 29013 rval = squeue_enter; 29014 break; 29015 default: 29016 break; 29017 } 29018 return (rval); 29019 } 29020 29021 /* ARGSUSED */ 29022 static int 29023 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29024 caddr_t addr, cred_t *cr) 29025 { 29026 int *v = (int *)addr; 29027 long new_value; 29028 29029 if (secpolicy_net_config(cr, B_FALSE) != 0) 29030 return (EPERM); 29031 29032 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29033 return (EINVAL); 29034 29035 ip_input_proc = ip_squeue_switch(new_value); 29036 *v = new_value; 29037 return (0); 29038 } 29039 29040 /* 29041 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29042 * ip_debug. 29043 */ 29044 /* ARGSUSED */ 29045 static int 29046 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29047 caddr_t addr, cred_t *cr) 29048 { 29049 int *v = (int *)addr; 29050 long new_value; 29051 29052 if (secpolicy_net_config(cr, B_FALSE) != 0) 29053 return (EPERM); 29054 29055 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29056 return (EINVAL); 29057 29058 *v = new_value; 29059 return (0); 29060 } 29061 29062 /* 29063 * Handle changes to ipmp_hook_emulation ndd variable. 29064 * Need to update phyint_hook_ifindex. 29065 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29066 */ 29067 static void 29068 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29069 { 29070 phyint_t *phyi; 29071 phyint_t *phyi_tmp; 29072 char *groupname; 29073 int namelen; 29074 ill_t *ill; 29075 boolean_t new_group; 29076 29077 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29078 /* 29079 * Group indicies are stored in the phyint - a common structure 29080 * to both IPv4 and IPv6. 29081 */ 29082 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29083 for (; phyi != NULL; 29084 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29085 phyi, AVL_AFTER)) { 29086 /* Ignore the ones that do not have a group */ 29087 if (phyi->phyint_groupname_len == 0) 29088 continue; 29089 29090 /* 29091 * Look for other phyint in group. 29092 * Clear name/namelen so the lookup doesn't find ourselves. 29093 */ 29094 namelen = phyi->phyint_groupname_len; 29095 groupname = phyi->phyint_groupname; 29096 phyi->phyint_groupname_len = 0; 29097 phyi->phyint_groupname = NULL; 29098 29099 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29100 /* Restore */ 29101 phyi->phyint_groupname_len = namelen; 29102 phyi->phyint_groupname = groupname; 29103 29104 new_group = B_FALSE; 29105 if (ipst->ips_ipmp_hook_emulation) { 29106 /* 29107 * If the group already exists and has already 29108 * been assigned a group ifindex, we use the existing 29109 * group_ifindex, otherwise we pick a new group_ifindex 29110 * here. 29111 */ 29112 if (phyi_tmp != NULL && 29113 phyi_tmp->phyint_group_ifindex != 0) { 29114 phyi->phyint_group_ifindex = 29115 phyi_tmp->phyint_group_ifindex; 29116 } else { 29117 /* XXX We need a recovery strategy here. */ 29118 if (!ip_assign_ifindex( 29119 &phyi->phyint_group_ifindex, ipst)) 29120 cmn_err(CE_PANIC, 29121 "ip_assign_ifindex() failed"); 29122 new_group = B_TRUE; 29123 } 29124 } else { 29125 phyi->phyint_group_ifindex = 0; 29126 } 29127 if (ipst->ips_ipmp_hook_emulation) 29128 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29129 else 29130 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29131 29132 /* 29133 * For IP Filter to find out the relationship between 29134 * names and interface indicies, we need to generate 29135 * a NE_PLUMB event when a new group can appear. 29136 * We always generate events when a new interface appears 29137 * (even when ipmp_hook_emulation is set) so there 29138 * is no need to generate NE_PLUMB events when 29139 * ipmp_hook_emulation is turned off. 29140 * And since it isn't critical for IP Filter to get 29141 * the NE_UNPLUMB events we skip those here. 29142 */ 29143 if (new_group) { 29144 /* 29145 * First phyint in group - generate group PLUMB event. 29146 * Since we are not running inside the ipsq we do 29147 * the dispatch immediately. 29148 */ 29149 if (phyi->phyint_illv4 != NULL) 29150 ill = phyi->phyint_illv4; 29151 else 29152 ill = phyi->phyint_illv6; 29153 29154 if (ill != NULL) { 29155 mutex_enter(&ill->ill_lock); 29156 ill_nic_info_plumb(ill, B_TRUE); 29157 ill_nic_info_dispatch(ill); 29158 mutex_exit(&ill->ill_lock); 29159 } 29160 } 29161 } 29162 rw_exit(&ipst->ips_ill_g_lock); 29163 } 29164 29165 /* ARGSUSED */ 29166 static int 29167 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29168 caddr_t addr, cred_t *cr) 29169 { 29170 int *v = (int *)addr; 29171 long new_value; 29172 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29173 29174 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29175 return (EINVAL); 29176 29177 if (*v != new_value) { 29178 *v = new_value; 29179 ipmp_hook_emulation_changed(ipst); 29180 } 29181 return (0); 29182 } 29183 29184 static void * 29185 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29186 { 29187 kstat_t *ksp; 29188 29189 ip_stat_t template = { 29190 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29191 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29192 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29193 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29194 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29195 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29196 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29197 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29198 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29199 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29200 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29201 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29202 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29203 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29204 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29205 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29206 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29207 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29208 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29209 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29210 { "ip_opt", KSTAT_DATA_UINT64 }, 29211 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29212 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29213 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29214 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29215 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29216 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29217 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29218 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29219 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29220 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29221 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29222 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29223 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29224 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29225 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29226 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29227 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29228 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29229 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29230 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29231 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29232 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29233 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29234 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29235 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29236 }; 29237 29238 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29239 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29240 KSTAT_FLAG_VIRTUAL, stackid); 29241 29242 if (ksp == NULL) 29243 return (NULL); 29244 29245 bcopy(&template, ip_statisticsp, sizeof (template)); 29246 ksp->ks_data = (void *)ip_statisticsp; 29247 ksp->ks_private = (void *)(uintptr_t)stackid; 29248 29249 kstat_install(ksp); 29250 return (ksp); 29251 } 29252 29253 static void 29254 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29255 { 29256 if (ksp != NULL) { 29257 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29258 kstat_delete_netstack(ksp, stackid); 29259 } 29260 } 29261 29262 static void * 29263 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29264 { 29265 kstat_t *ksp; 29266 29267 ip_named_kstat_t template = { 29268 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29269 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29270 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29271 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29272 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29273 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29274 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29275 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29276 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29277 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29278 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29279 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29280 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29281 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29282 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29283 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29284 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29285 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29286 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29287 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29288 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29289 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29290 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29291 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29292 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29293 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29294 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29295 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29296 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29297 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29298 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29299 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29300 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29301 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29302 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29303 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29304 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29305 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29306 }; 29307 29308 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29309 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29310 if (ksp == NULL || ksp->ks_data == NULL) 29311 return (NULL); 29312 29313 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29314 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29315 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29316 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29317 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29318 29319 template.netToMediaEntrySize.value.i32 = 29320 sizeof (mib2_ipNetToMediaEntry_t); 29321 29322 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29323 29324 bcopy(&template, ksp->ks_data, sizeof (template)); 29325 ksp->ks_update = ip_kstat_update; 29326 ksp->ks_private = (void *)(uintptr_t)stackid; 29327 29328 kstat_install(ksp); 29329 return (ksp); 29330 } 29331 29332 static void 29333 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29334 { 29335 if (ksp != NULL) { 29336 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29337 kstat_delete_netstack(ksp, stackid); 29338 } 29339 } 29340 29341 static int 29342 ip_kstat_update(kstat_t *kp, int rw) 29343 { 29344 ip_named_kstat_t *ipkp; 29345 mib2_ipIfStatsEntry_t ipmib; 29346 ill_walk_context_t ctx; 29347 ill_t *ill; 29348 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29349 netstack_t *ns; 29350 ip_stack_t *ipst; 29351 29352 if (kp == NULL || kp->ks_data == NULL) 29353 return (EIO); 29354 29355 if (rw == KSTAT_WRITE) 29356 return (EACCES); 29357 29358 ns = netstack_find_by_stackid(stackid); 29359 if (ns == NULL) 29360 return (-1); 29361 ipst = ns->netstack_ip; 29362 if (ipst == NULL) { 29363 netstack_rele(ns); 29364 return (-1); 29365 } 29366 ipkp = (ip_named_kstat_t *)kp->ks_data; 29367 29368 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29369 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29370 ill = ILL_START_WALK_V4(&ctx, ipst); 29371 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29372 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29373 rw_exit(&ipst->ips_ill_g_lock); 29374 29375 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29376 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29377 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29378 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29379 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29380 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29381 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29382 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29383 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29384 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29385 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29386 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29387 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29388 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29389 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29390 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29391 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29392 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29393 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29394 29395 ipkp->routingDiscards.value.ui32 = 0; 29396 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29397 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29398 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29399 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29400 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29401 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29402 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29403 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29404 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29405 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29406 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29407 29408 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29409 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29410 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29411 29412 netstack_rele(ns); 29413 29414 return (0); 29415 } 29416 29417 static void * 29418 icmp_kstat_init(netstackid_t stackid) 29419 { 29420 kstat_t *ksp; 29421 29422 icmp_named_kstat_t template = { 29423 { "inMsgs", KSTAT_DATA_UINT32 }, 29424 { "inErrors", KSTAT_DATA_UINT32 }, 29425 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29426 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29427 { "inParmProbs", KSTAT_DATA_UINT32 }, 29428 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29429 { "inRedirects", KSTAT_DATA_UINT32 }, 29430 { "inEchos", KSTAT_DATA_UINT32 }, 29431 { "inEchoReps", KSTAT_DATA_UINT32 }, 29432 { "inTimestamps", KSTAT_DATA_UINT32 }, 29433 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29434 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29435 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29436 { "outMsgs", KSTAT_DATA_UINT32 }, 29437 { "outErrors", KSTAT_DATA_UINT32 }, 29438 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29439 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29440 { "outParmProbs", KSTAT_DATA_UINT32 }, 29441 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29442 { "outRedirects", KSTAT_DATA_UINT32 }, 29443 { "outEchos", KSTAT_DATA_UINT32 }, 29444 { "outEchoReps", KSTAT_DATA_UINT32 }, 29445 { "outTimestamps", KSTAT_DATA_UINT32 }, 29446 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29447 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29448 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29449 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29450 { "inUnknowns", KSTAT_DATA_UINT32 }, 29451 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29452 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29453 { "outDrops", KSTAT_DATA_UINT32 }, 29454 { "inOverFlows", KSTAT_DATA_UINT32 }, 29455 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29456 }; 29457 29458 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29459 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29460 if (ksp == NULL || ksp->ks_data == NULL) 29461 return (NULL); 29462 29463 bcopy(&template, ksp->ks_data, sizeof (template)); 29464 29465 ksp->ks_update = icmp_kstat_update; 29466 ksp->ks_private = (void *)(uintptr_t)stackid; 29467 29468 kstat_install(ksp); 29469 return (ksp); 29470 } 29471 29472 static void 29473 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29474 { 29475 if (ksp != NULL) { 29476 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29477 kstat_delete_netstack(ksp, stackid); 29478 } 29479 } 29480 29481 static int 29482 icmp_kstat_update(kstat_t *kp, int rw) 29483 { 29484 icmp_named_kstat_t *icmpkp; 29485 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29486 netstack_t *ns; 29487 ip_stack_t *ipst; 29488 29489 if ((kp == NULL) || (kp->ks_data == NULL)) 29490 return (EIO); 29491 29492 if (rw == KSTAT_WRITE) 29493 return (EACCES); 29494 29495 ns = netstack_find_by_stackid(stackid); 29496 if (ns == NULL) 29497 return (-1); 29498 ipst = ns->netstack_ip; 29499 if (ipst == NULL) { 29500 netstack_rele(ns); 29501 return (-1); 29502 } 29503 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29504 29505 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29506 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29507 icmpkp->inDestUnreachs.value.ui32 = 29508 ipst->ips_icmp_mib.icmpInDestUnreachs; 29509 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29510 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29511 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29512 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29513 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29514 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29515 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29516 icmpkp->inTimestampReps.value.ui32 = 29517 ipst->ips_icmp_mib.icmpInTimestampReps; 29518 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29519 icmpkp->inAddrMaskReps.value.ui32 = 29520 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29521 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29522 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29523 icmpkp->outDestUnreachs.value.ui32 = 29524 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29525 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29526 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29527 icmpkp->outSrcQuenchs.value.ui32 = 29528 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29529 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29530 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29531 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29532 icmpkp->outTimestamps.value.ui32 = 29533 ipst->ips_icmp_mib.icmpOutTimestamps; 29534 icmpkp->outTimestampReps.value.ui32 = 29535 ipst->ips_icmp_mib.icmpOutTimestampReps; 29536 icmpkp->outAddrMasks.value.ui32 = 29537 ipst->ips_icmp_mib.icmpOutAddrMasks; 29538 icmpkp->outAddrMaskReps.value.ui32 = 29539 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29540 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29541 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29542 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29543 icmpkp->outFragNeeded.value.ui32 = 29544 ipst->ips_icmp_mib.icmpOutFragNeeded; 29545 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29546 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29547 icmpkp->inBadRedirects.value.ui32 = 29548 ipst->ips_icmp_mib.icmpInBadRedirects; 29549 29550 netstack_rele(ns); 29551 return (0); 29552 } 29553 29554 /* 29555 * This is the fanout function for raw socket opened for SCTP. Note 29556 * that it is called after SCTP checks that there is no socket which 29557 * wants a packet. Then before SCTP handles this out of the blue packet, 29558 * this function is called to see if there is any raw socket for SCTP. 29559 * If there is and it is bound to the correct address, the packet will 29560 * be sent to that socket. Note that only one raw socket can be bound to 29561 * a port. This is assured in ipcl_sctp_hash_insert(); 29562 */ 29563 void 29564 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29565 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29566 zoneid_t zoneid) 29567 { 29568 conn_t *connp; 29569 queue_t *rq; 29570 mblk_t *first_mp; 29571 boolean_t secure; 29572 ip6_t *ip6h; 29573 ip_stack_t *ipst = recv_ill->ill_ipst; 29574 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29575 29576 first_mp = mp; 29577 if (mctl_present) { 29578 mp = first_mp->b_cont; 29579 secure = ipsec_in_is_secure(first_mp); 29580 ASSERT(mp != NULL); 29581 } else { 29582 secure = B_FALSE; 29583 } 29584 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29585 29586 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29587 if (connp == NULL) { 29588 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29589 return; 29590 } 29591 rq = connp->conn_rq; 29592 if (!canputnext(rq)) { 29593 CONN_DEC_REF(connp); 29594 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29595 freemsg(first_mp); 29596 return; 29597 } 29598 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29599 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29600 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29601 (isv4 ? ipha : NULL), ip6h, mctl_present); 29602 if (first_mp == NULL) { 29603 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29604 CONN_DEC_REF(connp); 29605 return; 29606 } 29607 } 29608 /* 29609 * We probably should not send M_CTL message up to 29610 * raw socket. 29611 */ 29612 if (mctl_present) 29613 freeb(first_mp); 29614 29615 /* Initiate IPPF processing here if needed. */ 29616 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29617 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29618 ip_process(IPP_LOCAL_IN, &mp, 29619 recv_ill->ill_phyint->phyint_ifindex); 29620 if (mp == NULL) { 29621 CONN_DEC_REF(connp); 29622 return; 29623 } 29624 } 29625 29626 if (connp->conn_recvif || connp->conn_recvslla || 29627 ((connp->conn_ip_recvpktinfo || 29628 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29629 (flags & IP_FF_IPINFO))) { 29630 int in_flags = 0; 29631 29632 /* 29633 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29634 * IPF_RECVIF. 29635 */ 29636 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29637 in_flags = IPF_RECVIF; 29638 } 29639 if (connp->conn_recvslla) { 29640 in_flags |= IPF_RECVSLLA; 29641 } 29642 if (isv4) { 29643 mp = ip_add_info(mp, recv_ill, in_flags, 29644 IPCL_ZONEID(connp), ipst); 29645 } else { 29646 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29647 if (mp == NULL) { 29648 BUMP_MIB(recv_ill->ill_ip_mib, 29649 ipIfStatsInDiscards); 29650 CONN_DEC_REF(connp); 29651 return; 29652 } 29653 } 29654 } 29655 29656 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29657 /* 29658 * We are sending the IPSEC_IN message also up. Refer 29659 * to comments above this function. 29660 * This is the SOCK_RAW, IPPROTO_SCTP case. 29661 */ 29662 (connp->conn_recv)(connp, mp, NULL); 29663 CONN_DEC_REF(connp); 29664 } 29665 29666 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29667 { \ 29668 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29669 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29670 } 29671 /* 29672 * This function should be called only if all packet processing 29673 * including fragmentation is complete. Callers of this function 29674 * must set mp->b_prev to one of these values: 29675 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29676 * prior to handing over the mp as first argument to this function. 29677 * 29678 * If the ire passed by caller is incomplete, this function 29679 * queues the packet and if necessary, sends ARP request and bails. 29680 * If the ire passed is fully resolved, we simply prepend 29681 * the link-layer header to the packet, do ipsec hw acceleration 29682 * work if necessary, and send the packet out on the wire. 29683 * 29684 * NOTE: IPsec will only call this function with fully resolved 29685 * ires if hw acceleration is involved. 29686 * TODO list : 29687 * a Handle M_MULTIDATA so that 29688 * tcp_multisend->tcp_multisend_data can 29689 * call ip_xmit_v4 directly 29690 * b Handle post-ARP work for fragments so that 29691 * ip_wput_frag can call this function. 29692 */ 29693 ipxmit_state_t 29694 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29695 { 29696 nce_t *arpce; 29697 queue_t *q; 29698 int ill_index; 29699 mblk_t *nxt_mp, *first_mp; 29700 boolean_t xmit_drop = B_FALSE; 29701 ip_proc_t proc; 29702 ill_t *out_ill; 29703 int pkt_len; 29704 29705 arpce = ire->ire_nce; 29706 ASSERT(arpce != NULL); 29707 29708 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29709 29710 mutex_enter(&arpce->nce_lock); 29711 switch (arpce->nce_state) { 29712 case ND_REACHABLE: 29713 /* If there are other queued packets, queue this packet */ 29714 if (arpce->nce_qd_mp != NULL) { 29715 if (mp != NULL) 29716 nce_queue_mp_common(arpce, mp, B_FALSE); 29717 mp = arpce->nce_qd_mp; 29718 } 29719 arpce->nce_qd_mp = NULL; 29720 mutex_exit(&arpce->nce_lock); 29721 29722 /* 29723 * Flush the queue. In the common case, where the 29724 * ARP is already resolved, it will go through the 29725 * while loop only once. 29726 */ 29727 while (mp != NULL) { 29728 29729 nxt_mp = mp->b_next; 29730 mp->b_next = NULL; 29731 ASSERT(mp->b_datap->db_type != M_CTL); 29732 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29733 /* 29734 * This info is needed for IPQOS to do COS marking 29735 * in ip_wput_attach_llhdr->ip_process. 29736 */ 29737 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29738 mp->b_prev = NULL; 29739 29740 /* set up ill index for outbound qos processing */ 29741 out_ill = ire_to_ill(ire); 29742 ill_index = out_ill->ill_phyint->phyint_ifindex; 29743 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29744 ill_index); 29745 if (first_mp == NULL) { 29746 xmit_drop = B_TRUE; 29747 BUMP_MIB(out_ill->ill_ip_mib, 29748 ipIfStatsOutDiscards); 29749 goto next_mp; 29750 } 29751 /* non-ipsec hw accel case */ 29752 if (io == NULL || !io->ipsec_out_accelerated) { 29753 /* send it */ 29754 q = ire->ire_stq; 29755 if (proc == IPP_FWD_OUT) { 29756 UPDATE_IB_PKT_COUNT(ire); 29757 } else { 29758 UPDATE_OB_PKT_COUNT(ire); 29759 } 29760 ire->ire_last_used_time = lbolt; 29761 29762 if (flow_ctl_enabled || canputnext(q)) { 29763 if (proc == IPP_FWD_OUT) { 29764 29765 BUMP_MIB(out_ill->ill_ip_mib, 29766 ipIfStatsHCOutForwDatagrams); 29767 29768 } 29769 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29770 pkt_len); 29771 29772 putnext(q, first_mp); 29773 } else { 29774 BUMP_MIB(out_ill->ill_ip_mib, 29775 ipIfStatsOutDiscards); 29776 xmit_drop = B_TRUE; 29777 freemsg(first_mp); 29778 } 29779 } else { 29780 /* 29781 * Safety Pup says: make sure this 29782 * is going to the right interface! 29783 */ 29784 ill_t *ill1 = 29785 (ill_t *)ire->ire_stq->q_ptr; 29786 int ifindex = 29787 ill1->ill_phyint->phyint_ifindex; 29788 if (ifindex != 29789 io->ipsec_out_capab_ill_index) { 29790 xmit_drop = B_TRUE; 29791 freemsg(mp); 29792 } else { 29793 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29794 pkt_len); 29795 ipsec_hw_putnext(ire->ire_stq, mp); 29796 } 29797 } 29798 next_mp: 29799 mp = nxt_mp; 29800 } /* while (mp != NULL) */ 29801 if (xmit_drop) 29802 return (SEND_FAILED); 29803 else 29804 return (SEND_PASSED); 29805 29806 case ND_INITIAL: 29807 case ND_INCOMPLETE: 29808 29809 /* 29810 * While we do send off packets to dests that 29811 * use fully-resolved CGTP routes, we do not 29812 * handle unresolved CGTP routes. 29813 */ 29814 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29815 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29816 29817 if (mp != NULL) { 29818 /* queue the packet */ 29819 nce_queue_mp_common(arpce, mp, B_FALSE); 29820 } 29821 29822 if (arpce->nce_state == ND_INCOMPLETE) { 29823 mutex_exit(&arpce->nce_lock); 29824 DTRACE_PROBE3(ip__xmit__incomplete, 29825 (ire_t *), ire, (mblk_t *), mp, 29826 (ipsec_out_t *), io); 29827 return (LOOKUP_IN_PROGRESS); 29828 } 29829 29830 arpce->nce_state = ND_INCOMPLETE; 29831 mutex_exit(&arpce->nce_lock); 29832 /* 29833 * Note that ire_add() (called from ire_forward()) 29834 * holds a ref on the ire until ARP is completed. 29835 */ 29836 29837 ire_arpresolve(ire, ire_to_ill(ire)); 29838 return (LOOKUP_IN_PROGRESS); 29839 default: 29840 ASSERT(0); 29841 mutex_exit(&arpce->nce_lock); 29842 return (LLHDR_RESLV_FAILED); 29843 } 29844 } 29845 29846 #undef UPDATE_IP_MIB_OB_COUNTERS 29847 29848 /* 29849 * Return B_TRUE if the buffers differ in length or content. 29850 * This is used for comparing extension header buffers. 29851 * Note that an extension header would be declared different 29852 * even if all that changed was the next header value in that header i.e. 29853 * what really changed is the next extension header. 29854 */ 29855 boolean_t 29856 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29857 uint_t blen) 29858 { 29859 if (!b_valid) 29860 blen = 0; 29861 29862 if (alen != blen) 29863 return (B_TRUE); 29864 if (alen == 0) 29865 return (B_FALSE); /* Both zero length */ 29866 return (bcmp(abuf, bbuf, alen)); 29867 } 29868 29869 /* 29870 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29871 * Return B_FALSE if memory allocation fails - don't change any state! 29872 */ 29873 boolean_t 29874 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29875 const void *src, uint_t srclen) 29876 { 29877 void *dst; 29878 29879 if (!src_valid) 29880 srclen = 0; 29881 29882 ASSERT(*dstlenp == 0); 29883 if (src != NULL && srclen != 0) { 29884 dst = mi_alloc(srclen, BPRI_MED); 29885 if (dst == NULL) 29886 return (B_FALSE); 29887 } else { 29888 dst = NULL; 29889 } 29890 if (*dstp != NULL) 29891 mi_free(*dstp); 29892 *dstp = dst; 29893 *dstlenp = dst == NULL ? 0 : srclen; 29894 return (B_TRUE); 29895 } 29896 29897 /* 29898 * Replace what is in *dst, *dstlen with the source. 29899 * Assumes ip_allocbuf has already been called. 29900 */ 29901 void 29902 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29903 const void *src, uint_t srclen) 29904 { 29905 if (!src_valid) 29906 srclen = 0; 29907 29908 ASSERT(*dstlenp == srclen); 29909 if (src != NULL && srclen != 0) 29910 bcopy(src, *dstp, srclen); 29911 } 29912 29913 /* 29914 * Free the storage pointed to by the members of an ip6_pkt_t. 29915 */ 29916 void 29917 ip6_pkt_free(ip6_pkt_t *ipp) 29918 { 29919 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29920 29921 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29922 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29923 ipp->ipp_hopopts = NULL; 29924 ipp->ipp_hopoptslen = 0; 29925 } 29926 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29927 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29928 ipp->ipp_rtdstopts = NULL; 29929 ipp->ipp_rtdstoptslen = 0; 29930 } 29931 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29932 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29933 ipp->ipp_dstopts = NULL; 29934 ipp->ipp_dstoptslen = 0; 29935 } 29936 if (ipp->ipp_fields & IPPF_RTHDR) { 29937 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29938 ipp->ipp_rthdr = NULL; 29939 ipp->ipp_rthdrlen = 0; 29940 } 29941 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29942 IPPF_RTHDR); 29943 } 29944