1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 #include <sys/sunddi.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <rpc/pmap_prot.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 132 * IP_SQUEUE_ENTER: squeue_enter 133 * IP_SQUEUE_FILL: squeue_fill 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 squeue_func_t ip_input_proc; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * IPsec scenarios 357 * 358 * ipsa_lock -> ill_g_lock -> ill_lock 359 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ipsa_lock 361 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 362 * 363 * Trusted Solaris scenarios 364 * 365 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 366 * igsa_lock -> gcdb_lock 367 * gcgrp_rwlock -> ire_lock 368 * gcgrp_rwlock -> gcdb_lock 369 * 370 * 371 * Routing/forwarding table locking notes: 372 * 373 * Lock acquisition order: Radix tree lock, irb_lock. 374 * Requirements: 375 * i. Walker must not hold any locks during the walker callback. 376 * ii Walker must not see a truncated tree during the walk because of any node 377 * deletion. 378 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 379 * in many places in the code to walk the irb list. Thus even if all the 380 * ires in a bucket have been deleted, we still can't free the radix node 381 * until the ires have actually been inactive'd (freed). 382 * 383 * Tree traversal - Need to hold the global tree lock in read mode. 384 * Before dropping the global tree lock, need to either increment the ire_refcnt 385 * to ensure that the radix node can't be deleted. 386 * 387 * Tree add - Need to hold the global tree lock in write mode to add a 388 * radix node. To prevent the node from being deleted, increment the 389 * irb_refcnt, after the node is added to the tree. The ire itself is 390 * added later while holding the irb_lock, but not the tree lock. 391 * 392 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 393 * All associated ires must be inactive (i.e. freed), and irb_refcnt 394 * must be zero. 395 * 396 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 397 * global tree lock (read mode) for traversal. 398 * 399 * IPsec notes : 400 * 401 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 402 * in front of the actual packet. For outbound datagrams, the M_CTL 403 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 404 * information used by the IPsec code for applying the right level of 405 * protection. The information initialized by IP in the ipsec_out_t 406 * is determined by the per-socket policy or global policy in the system. 407 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 408 * ipsec_info.h) which starts out with nothing in it. It gets filled 409 * with the right information if it goes through the AH/ESP code, which 410 * happens if the incoming packet is secure. The information initialized 411 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 412 * the policy requirements needed by per-socket policy or global policy 413 * is met or not. 414 * 415 * If there is both per-socket policy (set using setsockopt) and there 416 * is also global policy match for the 5 tuples of the socket, 417 * ipsec_override_policy() makes the decision of which one to use. 418 * 419 * For fully connected sockets i.e dst, src [addr, port] is known, 420 * conn_policy_cached is set indicating that policy has been cached. 421 * conn_in_enforce_policy may or may not be set depending on whether 422 * there is a global policy match or per-socket policy match. 423 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 424 * Once the right policy is set on the conn_t, policy cannot change for 425 * this socket. This makes life simpler for TCP (UDP ?) where 426 * re-transmissions go out with the same policy. For symmetry, policy 427 * is cached for fully connected UDP sockets also. Thus if policy is cached, 428 * it also implies that policy is latched i.e policy cannot change 429 * on these sockets. As we have the right policy on the conn, we don't 430 * have to lookup global policy for every outbound and inbound datagram 431 * and thus serving as an optimization. Note that a global policy change 432 * does not affect fully connected sockets if they have policy. If fully 433 * connected sockets did not have any policy associated with it, global 434 * policy change may affect them. 435 * 436 * IP Flow control notes: 437 * 438 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 439 * cannot be sent down to the driver by IP, because of a canput failure, IP 440 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 441 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 442 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 443 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 444 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 445 * the queued messages, and removes the conn from the drain list, if all 446 * messages were drained. It also qenables the next conn in the drain list to 447 * continue the drain process. 448 * 449 * In reality the drain list is not a single list, but a configurable number 450 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 451 * list. If the ip_wsrv of the next qenabled conn does not run, because the 452 * stream closes, ip_close takes responsibility to qenable the next conn in 453 * the drain list. The directly called ip_wput path always does a putq, if 454 * it cannot putnext. Thus synchronization problems are handled between 455 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 456 * functions that manipulate this drain list. Furthermore conn_drain_insert 457 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 458 * running on a queue at any time. conn_drain_tail can be simultaneously called 459 * from both ip_wsrv and ip_close. 460 * 461 * IPQOS notes: 462 * 463 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 464 * and IPQoS modules. IPPF includes hooks in IP at different control points 465 * (callout positions) which direct packets to IPQoS modules for policy 466 * processing. Policies, if present, are global. 467 * 468 * The callout positions are located in the following paths: 469 * o local_in (packets destined for this host) 470 * o local_out (packets orginating from this host ) 471 * o fwd_in (packets forwarded by this m/c - inbound) 472 * o fwd_out (packets forwarded by this m/c - outbound) 473 * Hooks at these callout points can be enabled/disabled using the ndd variable 474 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 475 * By default all the callout positions are enabled. 476 * 477 * Outbound (local_out) 478 * Hooks are placed in ip_wput_ire and ipsec_out_process. 479 * 480 * Inbound (local_in) 481 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 482 * TCP and UDP fanout routines. 483 * 484 * Forwarding (in and out) 485 * Hooks are placed in ip_rput_forward. 486 * 487 * IP Policy Framework processing (IPPF processing) 488 * Policy processing for a packet is initiated by ip_process, which ascertains 489 * that the classifier (ipgpc) is loaded and configured, failing which the 490 * packet resumes normal processing in IP. If the clasifier is present, the 491 * packet is acted upon by one or more IPQoS modules (action instances), per 492 * filters configured in ipgpc and resumes normal IP processing thereafter. 493 * An action instance can drop a packet in course of its processing. 494 * 495 * A boolean variable, ip_policy, is used in all the fanout routines that can 496 * invoke ip_process for a packet. This variable indicates if the packet should 497 * to be sent for policy processing. The variable is set to B_TRUE by default, 498 * i.e. when the routines are invoked in the normal ip procesing path for a 499 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 500 * ip_policy is set to B_FALSE for all the routines called in these two 501 * functions because, in the former case, we don't process loopback traffic 502 * currently while in the latter, the packets have already been processed in 503 * icmp_inbound. 504 * 505 * Zones notes: 506 * 507 * The partitioning rules for networking are as follows: 508 * 1) Packets coming from a zone must have a source address belonging to that 509 * zone. 510 * 2) Packets coming from a zone can only be sent on a physical interface on 511 * which the zone has an IP address. 512 * 3) Between two zones on the same machine, packet delivery is only allowed if 513 * there's a matching route for the destination and zone in the forwarding 514 * table. 515 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 516 * different zones can bind to the same port with the wildcard address 517 * (INADDR_ANY). 518 * 519 * The granularity of interface partitioning is at the logical interface level. 520 * Therefore, every zone has its own IP addresses, and incoming packets can be 521 * attributed to a zone unambiguously. A logical interface is placed into a zone 522 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 523 * structure. Rule (1) is implemented by modifying the source address selection 524 * algorithm so that the list of eligible addresses is filtered based on the 525 * sending process zone. 526 * 527 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 528 * across all zones, depending on their type. Here is the break-up: 529 * 530 * IRE type Shared/exclusive 531 * -------- ---------------- 532 * IRE_BROADCAST Exclusive 533 * IRE_DEFAULT (default routes) Shared (*) 534 * IRE_LOCAL Exclusive (x) 535 * IRE_LOOPBACK Exclusive 536 * IRE_PREFIX (net routes) Shared (*) 537 * IRE_CACHE Exclusive 538 * IRE_IF_NORESOLVER (interface routes) Exclusive 539 * IRE_IF_RESOLVER (interface routes) Exclusive 540 * IRE_HOST (host routes) Shared (*) 541 * 542 * (*) A zone can only use a default or off-subnet route if the gateway is 543 * directly reachable from the zone, that is, if the gateway's address matches 544 * one of the zone's logical interfaces. 545 * 546 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 547 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 548 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 549 * address of the zone itself (the destination). Since IRE_LOCAL is used 550 * for communication between zones, ip_wput_ire has special logic to set 551 * the right source address when sending using an IRE_LOCAL. 552 * 553 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 554 * ire_cache_lookup restricts loopback using an IRE_LOCAL 555 * between zone to the case when L2 would have conceptually looped the packet 556 * back, i.e. the loopback which is required since neither Ethernet drivers 557 * nor Ethernet hardware loops them back. This is the case when the normal 558 * routes (ignoring IREs with different zoneids) would send out the packet on 559 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 560 * associated. 561 * 562 * Multiple zones can share a common broadcast address; typically all zones 563 * share the 255.255.255.255 address. Incoming as well as locally originated 564 * broadcast packets must be dispatched to all the zones on the broadcast 565 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 566 * since some zones may not be on the 10.16.72/24 network. To handle this, each 567 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 568 * sent to every zone that has an IRE_BROADCAST entry for the destination 569 * address on the input ill, see conn_wantpacket(). 570 * 571 * Applications in different zones can join the same multicast group address. 572 * For IPv4, group memberships are per-logical interface, so they're already 573 * inherently part of a zone. For IPv6, group memberships are per-physical 574 * interface, so we distinguish IPv6 group memberships based on group address, 575 * interface and zoneid. In both cases, received multicast packets are sent to 576 * every zone for which a group membership entry exists. On IPv6 we need to 577 * check that the target zone still has an address on the receiving physical 578 * interface; it could have been removed since the application issued the 579 * IPV6_JOIN_GROUP. 580 */ 581 582 /* 583 * Squeue Fanout flags: 584 * 0: No fanout. 585 * 1: Fanout across all squeues 586 */ 587 boolean_t ip_squeue_fanout = 0; 588 589 /* 590 * Maximum dups allowed per packet. 591 */ 592 uint_t ip_max_frag_dups = 10; 593 594 #define IS_SIMPLE_IPH(ipha) \ 595 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 596 597 /* RFC1122 Conformance */ 598 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 599 600 #define ILL_MAX_NAMELEN LIFNAMSIZ 601 602 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 603 604 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 605 cred_t *credp, boolean_t isv6); 606 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 607 ipha_t **); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 789 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 790 791 int ip_debug; 792 793 #ifdef DEBUG 794 uint32_t ipsechw_debug = 0; 795 #endif 796 797 /* 798 * Multirouting/CGTP stuff 799 */ 800 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 801 802 /* 803 * XXX following really should only be in a header. Would need more 804 * header and .c clean up first. 805 */ 806 extern optdb_obj_t ip_opt_obj; 807 808 ulong_t ip_squeue_enter_unbound = 0; 809 810 /* 811 * Named Dispatch Parameter Table. 812 * All of these are alterable, within the min/max values given, at run time. 813 */ 814 static ipparam_t lcl_param_arr[] = { 815 /* min max value name */ 816 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 818 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 819 { 0, 1, 0, "ip_respond_to_timestamp"}, 820 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 821 { 0, 1, 1, "ip_send_redirects"}, 822 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 823 { 0, 10, 0, "ip_mrtdebug"}, 824 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 825 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 826 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 827 { 1, 255, 255, "ip_def_ttl" }, 828 { 0, 1, 0, "ip_forward_src_routed"}, 829 { 0, 256, 32, "ip_wroff_extra" }, 830 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 831 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 832 { 0, 1, 1, "ip_path_mtu_discovery" }, 833 { 0, 240, 30, "ip_ignore_delete_time" }, 834 { 0, 1, 0, "ip_ignore_redirect" }, 835 { 0, 1, 1, "ip_output_queue" }, 836 { 1, 254, 1, "ip_broadcast_ttl" }, 837 { 0, 99999, 100, "ip_icmp_err_interval" }, 838 { 1, 99999, 10, "ip_icmp_err_burst" }, 839 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 840 { 0, 1, 0, "ip_strict_dst_multihoming" }, 841 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 842 { 0, 1, 0, "ipsec_override_persocket_policy" }, 843 { 0, 1, 1, "icmp_accept_clear_messages" }, 844 { 0, 1, 1, "igmp_accept_clear_messages" }, 845 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 846 "ip_ndp_delay_first_probe_time"}, 847 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 848 "ip_ndp_max_unicast_solicit"}, 849 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 850 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 851 { 0, 1, 0, "ip6_forward_src_routed"}, 852 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 853 { 0, 1, 1, "ip6_send_redirects"}, 854 { 0, 1, 0, "ip6_ignore_redirect" }, 855 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 856 857 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 858 859 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 860 861 { 0, 1, 1, "pim_accept_clear_messages" }, 862 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 863 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 864 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 865 { 0, 15, 0, "ip_policy_mask" }, 866 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 867 { 0, 255, 1, "ip_multirt_ttl" }, 868 { 0, 1, 1, "ip_multidata_outbound" }, 869 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 870 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 871 { 0, 1000, 1, "ip_max_temp_defend" }, 872 { 0, 1000, 3, "ip_max_defend" }, 873 { 0, 999999, 30, "ip_defend_interval" }, 874 { 0, 3600000, 300000, "ip_dup_recovery" }, 875 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 876 { 0, 1, 1, "ip_lso_outbound" }, 877 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 878 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 879 #ifdef DEBUG 880 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 881 #else 882 { 0, 0, 0, "" }, 883 #endif 884 }; 885 886 /* 887 * Extended NDP table 888 * The addresses for the first two are filled in to be ips_ip_g_forward 889 * and ips_ipv6_forward at init time. 890 */ 891 static ipndp_t lcl_ndp_arr[] = { 892 /* getf setf data name */ 893 #define IPNDP_IP_FORWARDING_OFFSET 0 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip_forwarding" }, 896 #define IPNDP_IP6_FORWARDING_OFFSET 1 897 { ip_param_generic_get, ip_forward_set, NULL, 898 "ip6_forwarding" }, 899 { ip_ill_report, NULL, NULL, 900 "ip_ill_status" }, 901 { ip_ipif_report, NULL, NULL, 902 "ip_ipif_status" }, 903 { ip_conn_report, NULL, NULL, 904 "ip_conn_status" }, 905 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 906 "ip_rput_pullups" }, 907 { ip_srcid_report, NULL, NULL, 908 "ip_srcid_status" }, 909 { ip_param_generic_get, ip_squeue_profile_set, 910 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 911 { ip_param_generic_get, ip_squeue_bind_set, 912 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 913 { ip_param_generic_get, ip_input_proc_set, 914 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 915 { ip_param_generic_get, ip_int_set, 916 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 917 #define IPNDP_CGTP_FILTER_OFFSET 11 918 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 919 "ip_cgtp_filter" }, 920 { ip_param_generic_get, ip_int_set, 921 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 922 #define IPNDP_IPMP_HOOK_OFFSET 13 923 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 924 "ipmp_hook_emulation" }, 925 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 926 "ip_debug" }, 927 }; 928 929 /* 930 * Table of IP ioctls encoding the various properties of the ioctl and 931 * indexed based on the last byte of the ioctl command. Occasionally there 932 * is a clash, and there is more than 1 ioctl with the same last byte. 933 * In such a case 1 ioctl is encoded in the ndx table and the remaining 934 * ioctls are encoded in the misc table. An entry in the ndx table is 935 * retrieved by indexing on the last byte of the ioctl command and comparing 936 * the ioctl command with the value in the ndx table. In the event of a 937 * mismatch the misc table is then searched sequentially for the desired 938 * ioctl command. 939 * 940 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 941 */ 942 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 943 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 954 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 955 MISC_CMD, ip_siocaddrt, NULL }, 956 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 957 MISC_CMD, ip_siocdelrt, NULL }, 958 959 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 960 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 961 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 962 IF_CMD, ip_sioctl_get_addr, NULL }, 963 964 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 965 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 966 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 967 IPI_GET_CMD | IPI_REPL, 968 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 969 970 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 971 IPI_PRIV | IPI_WR | IPI_REPL, 972 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 973 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 974 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 975 IF_CMD, ip_sioctl_get_flags, NULL }, 976 977 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 978 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 980 /* copyin size cannot be coded for SIOCGIFCONF */ 981 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 982 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 983 984 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 985 IF_CMD, ip_sioctl_mtu, NULL }, 986 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_mtu, NULL }, 988 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 989 IPI_GET_CMD | IPI_REPL, 990 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 991 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 992 IF_CMD, ip_sioctl_brdaddr, NULL }, 993 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 994 IPI_GET_CMD | IPI_REPL, 995 IF_CMD, ip_sioctl_get_netmask, NULL }, 996 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 998 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 999 IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_metric, NULL }, 1001 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1002 IF_CMD, ip_sioctl_metric, NULL }, 1003 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1004 1005 /* See 166-168 below for extended SIOC*XARP ioctls */ 1006 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1007 ARP_CMD, ip_sioctl_arp, NULL }, 1008 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1009 ARP_CMD, ip_sioctl_arp, NULL }, 1010 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 1013 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1014 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1015 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 1035 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1036 MISC_CMD, if_unitsel, if_unitsel_restart }, 1037 1038 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1058 IPI_PRIV | IPI_WR | IPI_MODOK, 1059 IF_CMD, ip_sioctl_sifname, NULL }, 1060 1061 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 1075 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1076 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1077 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1078 IF_CMD, ip_sioctl_get_muxid, NULL }, 1079 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1080 IPI_PRIV | IPI_WR | IPI_REPL, 1081 IF_CMD, ip_sioctl_muxid, NULL }, 1082 1083 /* Both if and lif variants share same func */ 1084 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1085 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1086 /* Both if and lif variants share same func */ 1087 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1088 IPI_PRIV | IPI_WR | IPI_REPL, 1089 IF_CMD, ip_sioctl_slifindex, NULL }, 1090 1091 /* copyin size cannot be coded for SIOCGIFCONF */ 1092 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1093 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1094 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 1112 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1113 IPI_PRIV | IPI_WR | IPI_REPL, 1114 LIF_CMD, ip_sioctl_removeif, 1115 ip_sioctl_removeif_restart }, 1116 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1117 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1118 LIF_CMD, ip_sioctl_addif, NULL }, 1119 #define SIOCLIFADDR_NDX 112 1120 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1121 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1122 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1123 IPI_GET_CMD | IPI_REPL, 1124 LIF_CMD, ip_sioctl_get_addr, NULL }, 1125 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1126 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1127 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1130 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1131 IPI_PRIV | IPI_WR | IPI_REPL, 1132 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1133 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1134 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1135 LIF_CMD, ip_sioctl_get_flags, NULL }, 1136 1137 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 1140 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1141 ip_sioctl_get_lifconf, NULL }, 1142 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1143 LIF_CMD, ip_sioctl_mtu, NULL }, 1144 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1145 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1146 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1147 IPI_GET_CMD | IPI_REPL, 1148 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1149 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1150 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1151 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1152 IPI_GET_CMD | IPI_REPL, 1153 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1154 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1156 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1157 IPI_GET_CMD | IPI_REPL, 1158 LIF_CMD, ip_sioctl_get_metric, NULL }, 1159 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1160 LIF_CMD, ip_sioctl_metric, NULL }, 1161 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1162 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1163 LIF_CMD, ip_sioctl_slifname, 1164 ip_sioctl_slifname_restart }, 1165 1166 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1167 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1168 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1171 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1172 IPI_PRIV | IPI_WR | IPI_REPL, 1173 LIF_CMD, ip_sioctl_muxid, NULL }, 1174 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1175 IPI_GET_CMD | IPI_REPL, 1176 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1177 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1178 IPI_PRIV | IPI_WR | IPI_REPL, 1179 LIF_CMD, ip_sioctl_slifindex, 0 }, 1180 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1181 LIF_CMD, ip_sioctl_token, NULL }, 1182 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1183 IPI_GET_CMD | IPI_REPL, 1184 LIF_CMD, ip_sioctl_get_token, NULL }, 1185 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1186 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1187 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1188 IPI_GET_CMD | IPI_REPL, 1189 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1190 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1192 1193 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1194 IPI_GET_CMD | IPI_REPL, 1195 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1196 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1197 LIF_CMD, ip_siocdelndp_v6, NULL }, 1198 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1199 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1200 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1201 LIF_CMD, ip_siocsetndp_v6, NULL }, 1202 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1203 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1204 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1205 MISC_CMD, ip_sioctl_tonlink, NULL }, 1206 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1207 MISC_CMD, ip_sioctl_tmysite, NULL }, 1208 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1209 TUN_CMD, ip_sioctl_tunparam, NULL }, 1210 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1211 IPI_PRIV | IPI_WR, 1212 TUN_CMD, ip_sioctl_tunparam, NULL }, 1213 1214 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1215 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1216 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1217 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 1220 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1221 IPI_PRIV | IPI_WR | IPI_REPL, 1222 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1223 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1224 IPI_PRIV | IPI_WR | IPI_REPL, 1225 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1226 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1227 IPI_PRIV | IPI_WR | IPI_REPL, 1228 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1229 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1230 IPI_GET_CMD | IPI_REPL, 1231 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1232 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1233 IPI_GET_CMD | IPI_REPL, 1234 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1235 1236 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1237 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 1241 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1242 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1243 1244 /* These are handled in ip_sioctl_copyin_setup itself */ 1245 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1246 MISC_CMD, NULL, NULL }, 1247 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1248 MISC_CMD, NULL, NULL }, 1249 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1250 1251 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1252 ip_sioctl_get_lifconf, NULL }, 1253 1254 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1255 XARP_CMD, ip_sioctl_arp, NULL }, 1256 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1257 XARP_CMD, ip_sioctl_arp, NULL }, 1258 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 1261 /* SIOCPOPSOCKFS is not handled by IP */ 1262 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1263 1264 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1265 IPI_GET_CMD | IPI_REPL, 1266 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1267 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1268 IPI_PRIV | IPI_WR | IPI_REPL, 1269 LIF_CMD, ip_sioctl_slifzone, 1270 ip_sioctl_slifzone_restart }, 1271 /* 172-174 are SCTP ioctls and not handled by IP */ 1272 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1276 IPI_GET_CMD, LIF_CMD, 1277 ip_sioctl_get_lifusesrc, 0 }, 1278 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1279 IPI_PRIV | IPI_WR, 1280 LIF_CMD, ip_sioctl_slifusesrc, 1281 NULL }, 1282 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1283 ip_sioctl_get_lifsrcof, NULL }, 1284 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1285 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1286 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1287 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1288 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1293 ip_sioctl_set_ipmpfailback, NULL }, 1294 /* SIOCSENABLESDP is handled by SDP */ 1295 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1296 }; 1297 1298 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1299 1300 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1301 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1302 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1303 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1304 TUN_CMD, ip_sioctl_tunparam, NULL }, 1305 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1306 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1307 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1312 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1313 MISC_CMD, mrt_ioctl}, 1314 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1315 MISC_CMD, mrt_ioctl}, 1316 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl} 1318 }; 1319 1320 int ip_misc_ioctl_count = 1321 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1322 1323 int conn_drain_nthreads; /* Number of drainers reqd. */ 1324 /* Settable in /etc/system */ 1325 /* Defined in ip_ire.c */ 1326 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1327 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1328 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1329 1330 static nv_t ire_nv_arr[] = { 1331 { IRE_BROADCAST, "BROADCAST" }, 1332 { IRE_LOCAL, "LOCAL" }, 1333 { IRE_LOOPBACK, "LOOPBACK" }, 1334 { IRE_CACHE, "CACHE" }, 1335 { IRE_DEFAULT, "DEFAULT" }, 1336 { IRE_PREFIX, "PREFIX" }, 1337 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1338 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1339 { IRE_HOST, "HOST" }, 1340 { 0 } 1341 }; 1342 1343 nv_t *ire_nv_tbl = ire_nv_arr; 1344 1345 /* Simple ICMP IP Header Template */ 1346 static ipha_t icmp_ipha = { 1347 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1348 }; 1349 1350 struct module_info ip_mod_info = { 1351 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1352 }; 1353 1354 /* 1355 * Duplicate static symbols within a module confuses mdb; so we avoid the 1356 * problem by making the symbols here distinct from those in udp.c. 1357 */ 1358 1359 /* 1360 * Entry points for IP as a device and as a module. 1361 * FIXME: down the road we might want a separate module and driver qinit. 1362 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1363 */ 1364 static struct qinit iprinitv4 = { 1365 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1366 &ip_mod_info 1367 }; 1368 1369 struct qinit iprinitv6 = { 1370 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1371 &ip_mod_info 1372 }; 1373 1374 static struct qinit ipwinitv4 = { 1375 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1376 &ip_mod_info 1377 }; 1378 1379 struct qinit ipwinitv6 = { 1380 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1381 &ip_mod_info 1382 }; 1383 1384 static struct qinit iplrinit = { 1385 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1386 &ip_mod_info 1387 }; 1388 1389 static struct qinit iplwinit = { 1390 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 /* For AF_INET aka /dev/ip */ 1395 struct streamtab ipinfov4 = { 1396 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1397 }; 1398 1399 /* For AF_INET6 aka /dev/ip6 */ 1400 struct streamtab ipinfov6 = { 1401 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1402 }; 1403 1404 #ifdef DEBUG 1405 static boolean_t skip_sctp_cksum = B_FALSE; 1406 #endif 1407 1408 /* 1409 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1410 * ip_rput_v6(), ip_output(), etc. If the message 1411 * block already has a M_CTL at the front of it, then simply set the zoneid 1412 * appropriately. 1413 */ 1414 mblk_t * 1415 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1416 { 1417 mblk_t *first_mp; 1418 ipsec_out_t *io; 1419 1420 ASSERT(zoneid != ALL_ZONES); 1421 if (mp->b_datap->db_type == M_CTL) { 1422 io = (ipsec_out_t *)mp->b_rptr; 1423 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1424 io->ipsec_out_zoneid = zoneid; 1425 return (mp); 1426 } 1427 1428 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1429 if (first_mp == NULL) 1430 return (NULL); 1431 io = (ipsec_out_t *)first_mp->b_rptr; 1432 /* This is not a secure packet */ 1433 io->ipsec_out_secure = B_FALSE; 1434 io->ipsec_out_zoneid = zoneid; 1435 first_mp->b_cont = mp; 1436 return (first_mp); 1437 } 1438 1439 /* 1440 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1441 */ 1442 mblk_t * 1443 ip_copymsg(mblk_t *mp) 1444 { 1445 mblk_t *nmp; 1446 ipsec_info_t *in; 1447 1448 if (mp->b_datap->db_type != M_CTL) 1449 return (copymsg(mp)); 1450 1451 in = (ipsec_info_t *)mp->b_rptr; 1452 1453 /* 1454 * Note that M_CTL is also used for delivering ICMP error messages 1455 * upstream to transport layers. 1456 */ 1457 if (in->ipsec_info_type != IPSEC_OUT && 1458 in->ipsec_info_type != IPSEC_IN) 1459 return (copymsg(mp)); 1460 1461 nmp = copymsg(mp->b_cont); 1462 1463 if (in->ipsec_info_type == IPSEC_OUT) { 1464 return (ipsec_out_tag(mp, nmp, 1465 ((ipsec_out_t *)in)->ipsec_out_ns)); 1466 } else { 1467 return (ipsec_in_tag(mp, nmp, 1468 ((ipsec_in_t *)in)->ipsec_in_ns)); 1469 } 1470 } 1471 1472 /* Generate an ICMP fragmentation needed message. */ 1473 static void 1474 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1475 ip_stack_t *ipst) 1476 { 1477 icmph_t icmph; 1478 mblk_t *first_mp; 1479 boolean_t mctl_present; 1480 1481 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1482 1483 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1484 if (mctl_present) 1485 freeb(first_mp); 1486 return; 1487 } 1488 1489 bzero(&icmph, sizeof (icmph_t)); 1490 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1491 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1492 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1493 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1494 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1495 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1496 ipst); 1497 } 1498 1499 /* 1500 * icmp_inbound deals with ICMP messages in the following ways. 1501 * 1502 * 1) It needs to send a reply back and possibly delivering it 1503 * to the "interested" upper clients. 1504 * 2) It needs to send it to the upper clients only. 1505 * 3) It needs to change some values in IP only. 1506 * 4) It needs to change some values in IP and upper layers e.g TCP. 1507 * 1508 * We need to accomodate icmp messages coming in clear until we get 1509 * everything secure from the wire. If icmp_accept_clear_messages 1510 * is zero we check with the global policy and act accordingly. If 1511 * it is non-zero, we accept the message without any checks. But 1512 * *this does not mean* that this will be delivered to the upper 1513 * clients. By accepting we might send replies back, change our MTU 1514 * value etc. but delivery to the ULP/clients depends on their policy 1515 * dispositions. 1516 * 1517 * We handle the above 4 cases in the context of IPsec in the 1518 * following way : 1519 * 1520 * 1) Send the reply back in the same way as the request came in. 1521 * If it came in encrypted, it goes out encrypted. If it came in 1522 * clear, it goes out in clear. Thus, this will prevent chosen 1523 * plain text attack. 1524 * 2) The client may or may not expect things to come in secure. 1525 * If it comes in secure, the policy constraints are checked 1526 * before delivering it to the upper layers. If it comes in 1527 * clear, ipsec_inbound_accept_clear will decide whether to 1528 * accept this in clear or not. In both the cases, if the returned 1529 * message (IP header + 8 bytes) that caused the icmp message has 1530 * AH/ESP headers, it is sent up to AH/ESP for validation before 1531 * sending up. If there are only 8 bytes of returned message, then 1532 * upper client will not be notified. 1533 * 3) Check with global policy to see whether it matches the constaints. 1534 * But this will be done only if icmp_accept_messages_in_clear is 1535 * zero. 1536 * 4) If we need to change both in IP and ULP, then the decision taken 1537 * while affecting the values in IP and while delivering up to TCP 1538 * should be the same. 1539 * 1540 * There are two cases. 1541 * 1542 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1543 * failed), we will not deliver it to the ULP, even though they 1544 * are *willing* to accept in *clear*. This is fine as our global 1545 * disposition to icmp messages asks us reject the datagram. 1546 * 1547 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1548 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1549 * to deliver it to ULP (policy failed), it can lead to 1550 * consistency problems. The cases known at this time are 1551 * ICMP_DESTINATION_UNREACHABLE messages with following code 1552 * values : 1553 * 1554 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1555 * and Upper layer rejects. Then the communication will 1556 * come to a stop. This is solved by making similar decisions 1557 * at both levels. Currently, when we are unable to deliver 1558 * to the Upper Layer (due to policy failures) while IP has 1559 * adjusted ire_max_frag, the next outbound datagram would 1560 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1561 * will be with the right level of protection. Thus the right 1562 * value will be communicated even if we are not able to 1563 * communicate when we get from the wire initially. But this 1564 * assumes there would be at least one outbound datagram after 1565 * IP has adjusted its ire_max_frag value. To make things 1566 * simpler, we accept in clear after the validation of 1567 * AH/ESP headers. 1568 * 1569 * - Other ICMP ERRORS : We may not be able to deliver it to the 1570 * upper layer depending on the level of protection the upper 1571 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1572 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1573 * should be accepted in clear when the Upper layer expects secure. 1574 * Thus the communication may get aborted by some bad ICMP 1575 * packets. 1576 * 1577 * IPQoS Notes: 1578 * The only instance when a packet is sent for processing is when there 1579 * isn't an ICMP client and if we are interested in it. 1580 * If there is a client, IPPF processing will take place in the 1581 * ip_fanout_proto routine. 1582 * 1583 * Zones notes: 1584 * The packet is only processed in the context of the specified zone: typically 1585 * only this zone will reply to an echo request, and only interested clients in 1586 * this zone will receive a copy of the packet. This means that the caller must 1587 * call icmp_inbound() for each relevant zone. 1588 */ 1589 static void 1590 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1591 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1592 ill_t *recv_ill, zoneid_t zoneid) 1593 { 1594 icmph_t *icmph; 1595 ipha_t *ipha; 1596 int iph_hdr_length; 1597 int hdr_length; 1598 boolean_t interested; 1599 uint32_t ts; 1600 uchar_t *wptr; 1601 ipif_t *ipif; 1602 mblk_t *first_mp; 1603 ipsec_in_t *ii; 1604 ire_t *src_ire; 1605 boolean_t onlink; 1606 timestruc_t now; 1607 uint32_t ill_index; 1608 ip_stack_t *ipst; 1609 1610 ASSERT(ill != NULL); 1611 ipst = ill->ill_ipst; 1612 1613 first_mp = mp; 1614 if (mctl_present) { 1615 mp = first_mp->b_cont; 1616 ASSERT(mp != NULL); 1617 } 1618 1619 ipha = (ipha_t *)mp->b_rptr; 1620 if (ipst->ips_icmp_accept_clear_messages == 0) { 1621 first_mp = ipsec_check_global_policy(first_mp, NULL, 1622 ipha, NULL, mctl_present, ipst->ips_netstack); 1623 if (first_mp == NULL) 1624 return; 1625 } 1626 1627 /* 1628 * On a labeled system, we have to check whether the zone itself is 1629 * permitted to receive raw traffic. 1630 */ 1631 if (is_system_labeled()) { 1632 if (zoneid == ALL_ZONES) 1633 zoneid = tsol_packet_to_zoneid(mp); 1634 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1635 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1636 zoneid)); 1637 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1638 freemsg(first_mp); 1639 return; 1640 } 1641 } 1642 1643 /* 1644 * We have accepted the ICMP message. It means that we will 1645 * respond to the packet if needed. It may not be delivered 1646 * to the upper client depending on the policy constraints 1647 * and the disposition in ipsec_inbound_accept_clear. 1648 */ 1649 1650 ASSERT(ill != NULL); 1651 1652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1653 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1654 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1655 /* Last chance to get real. */ 1656 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1657 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1658 freemsg(first_mp); 1659 return; 1660 } 1661 /* Refresh iph following the pullup. */ 1662 ipha = (ipha_t *)mp->b_rptr; 1663 } 1664 /* ICMP header checksum, including checksum field, should be zero. */ 1665 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1666 IP_CSUM(mp, iph_hdr_length, 0)) { 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1668 freemsg(first_mp); 1669 return; 1670 } 1671 /* The IP header will always be a multiple of four bytes */ 1672 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1673 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1674 icmph->icmph_code)); 1675 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1676 /* We will set "interested" to "true" if we want a copy */ 1677 interested = B_FALSE; 1678 switch (icmph->icmph_type) { 1679 case ICMP_ECHO_REPLY: 1680 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1681 break; 1682 case ICMP_DEST_UNREACHABLE: 1683 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1685 interested = B_TRUE; /* Pass up to transport */ 1686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1687 break; 1688 case ICMP_SOURCE_QUENCH: 1689 interested = B_TRUE; /* Pass up to transport */ 1690 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1691 break; 1692 case ICMP_REDIRECT: 1693 if (!ipst->ips_ip_ignore_redirect) 1694 interested = B_TRUE; 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1696 break; 1697 case ICMP_ECHO_REQUEST: 1698 /* 1699 * Whether to respond to echo requests that come in as IP 1700 * broadcasts or as IP multicast is subject to debate 1701 * (what isn't?). We aim to please, you pick it. 1702 * Default is do it. 1703 */ 1704 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1705 /* unicast: always respond */ 1706 interested = B_TRUE; 1707 } else if (CLASSD(ipha->ipha_dst)) { 1708 /* multicast: respond based on tunable */ 1709 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1710 } else if (broadcast) { 1711 /* broadcast: respond based on tunable */ 1712 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1713 } 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1715 break; 1716 case ICMP_ROUTER_ADVERTISEMENT: 1717 case ICMP_ROUTER_SOLICITATION: 1718 break; 1719 case ICMP_TIME_EXCEEDED: 1720 interested = B_TRUE; /* Pass up to transport */ 1721 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1722 break; 1723 case ICMP_PARAM_PROBLEM: 1724 interested = B_TRUE; /* Pass up to transport */ 1725 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1726 break; 1727 case ICMP_TIME_STAMP_REQUEST: 1728 /* Response to Time Stamp Requests is local policy. */ 1729 if (ipst->ips_ip_g_resp_to_timestamp && 1730 /* So is whether to respond if it was an IP broadcast. */ 1731 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1732 int tstamp_len = 3 * sizeof (uint32_t); 1733 1734 if (wptr + tstamp_len > mp->b_wptr) { 1735 if (!pullupmsg(mp, wptr + tstamp_len - 1736 mp->b_rptr)) { 1737 BUMP_MIB(ill->ill_ip_mib, 1738 ipIfStatsInDiscards); 1739 freemsg(first_mp); 1740 return; 1741 } 1742 /* Refresh ipha following the pullup. */ 1743 ipha = (ipha_t *)mp->b_rptr; 1744 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1745 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1746 } 1747 interested = B_TRUE; 1748 } 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1750 break; 1751 case ICMP_TIME_STAMP_REPLY: 1752 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1753 break; 1754 case ICMP_INFO_REQUEST: 1755 /* Per RFC 1122 3.2.2.7, ignore this. */ 1756 case ICMP_INFO_REPLY: 1757 break; 1758 case ICMP_ADDRESS_MASK_REQUEST: 1759 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1760 !broadcast) && 1761 /* TODO m_pullup of complete header? */ 1762 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1763 interested = B_TRUE; 1764 } 1765 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1766 break; 1767 case ICMP_ADDRESS_MASK_REPLY: 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1769 break; 1770 default: 1771 interested = B_TRUE; /* Pass up to transport */ 1772 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1773 break; 1774 } 1775 /* See if there is an ICMP client. */ 1776 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1777 /* If there is an ICMP client and we want one too, copy it. */ 1778 mblk_t *first_mp1; 1779 1780 if (!interested) { 1781 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1782 ip_policy, recv_ill, zoneid); 1783 return; 1784 } 1785 first_mp1 = ip_copymsg(first_mp); 1786 if (first_mp1 != NULL) { 1787 ip_fanout_proto(q, first_mp1, ill, ipha, 1788 0, mctl_present, ip_policy, recv_ill, zoneid); 1789 } 1790 } else if (!interested) { 1791 freemsg(first_mp); 1792 return; 1793 } else { 1794 /* 1795 * Initiate policy processing for this packet if ip_policy 1796 * is true. 1797 */ 1798 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1799 ill_index = ill->ill_phyint->phyint_ifindex; 1800 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1801 if (mp == NULL) { 1802 if (mctl_present) { 1803 freeb(first_mp); 1804 } 1805 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1806 return; 1807 } 1808 } 1809 } 1810 /* We want to do something with it. */ 1811 /* Check db_ref to make sure we can modify the packet. */ 1812 if (mp->b_datap->db_ref > 1) { 1813 mblk_t *first_mp1; 1814 1815 first_mp1 = ip_copymsg(first_mp); 1816 freemsg(first_mp); 1817 if (!first_mp1) { 1818 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1819 return; 1820 } 1821 first_mp = first_mp1; 1822 if (mctl_present) { 1823 mp = first_mp->b_cont; 1824 ASSERT(mp != NULL); 1825 } else { 1826 mp = first_mp; 1827 } 1828 ipha = (ipha_t *)mp->b_rptr; 1829 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1830 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1831 } 1832 switch (icmph->icmph_type) { 1833 case ICMP_ADDRESS_MASK_REQUEST: 1834 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1835 if (ipif == NULL) { 1836 freemsg(first_mp); 1837 return; 1838 } 1839 /* 1840 * outging interface must be IPv4 1841 */ 1842 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1843 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1844 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1845 ipif_refrele(ipif); 1846 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1847 break; 1848 case ICMP_ECHO_REQUEST: 1849 icmph->icmph_type = ICMP_ECHO_REPLY; 1850 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1851 break; 1852 case ICMP_TIME_STAMP_REQUEST: { 1853 uint32_t *tsp; 1854 1855 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1856 tsp = (uint32_t *)wptr; 1857 tsp++; /* Skip past 'originate time' */ 1858 /* Compute # of milliseconds since midnight */ 1859 gethrestime(&now); 1860 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1861 now.tv_nsec / (NANOSEC / MILLISEC); 1862 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1863 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1864 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1865 break; 1866 } 1867 default: 1868 ipha = (ipha_t *)&icmph[1]; 1869 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1870 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1872 freemsg(first_mp); 1873 return; 1874 } 1875 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1876 ipha = (ipha_t *)&icmph[1]; 1877 } 1878 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 hdr_length = IPH_HDR_LENGTH(ipha); 1884 if (hdr_length < sizeof (ipha_t)) { 1885 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1886 freemsg(first_mp); 1887 return; 1888 } 1889 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1890 if (!pullupmsg(mp, 1891 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1892 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1893 freemsg(first_mp); 1894 return; 1895 } 1896 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1897 ipha = (ipha_t *)&icmph[1]; 1898 } 1899 switch (icmph->icmph_type) { 1900 case ICMP_REDIRECT: 1901 /* 1902 * As there is no upper client to deliver, we don't 1903 * need the first_mp any more. 1904 */ 1905 if (mctl_present) { 1906 freeb(first_mp); 1907 } 1908 icmp_redirect(ill, mp); 1909 return; 1910 case ICMP_DEST_UNREACHABLE: 1911 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1912 if (!icmp_inbound_too_big(icmph, ipha, ill, 1913 zoneid, mp, iph_hdr_length, ipst)) { 1914 freemsg(first_mp); 1915 return; 1916 } 1917 /* 1918 * icmp_inbound_too_big() may alter mp. 1919 * Resynch ipha and icmph accordingly. 1920 */ 1921 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1922 ipha = (ipha_t *)&icmph[1]; 1923 } 1924 /* FALLTHRU */ 1925 default : 1926 /* 1927 * IPQoS notes: Since we have already done IPQoS 1928 * processing we don't want to do it again in 1929 * the fanout routines called by 1930 * icmp_inbound_error_fanout, hence the last 1931 * argument, ip_policy, is B_FALSE. 1932 */ 1933 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1934 ipha, iph_hdr_length, hdr_length, mctl_present, 1935 B_FALSE, recv_ill, zoneid); 1936 } 1937 return; 1938 } 1939 /* Send out an ICMP packet */ 1940 icmph->icmph_checksum = 0; 1941 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1942 if (broadcast || CLASSD(ipha->ipha_dst)) { 1943 ipif_t *ipif_chosen; 1944 /* 1945 * Make it look like it was directed to us, so we don't look 1946 * like a fool with a broadcast or multicast source address. 1947 */ 1948 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1949 /* 1950 * Make sure that we haven't grabbed an interface that's DOWN. 1951 */ 1952 if (ipif != NULL) { 1953 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1954 ipha->ipha_src, zoneid); 1955 if (ipif_chosen != NULL) { 1956 ipif_refrele(ipif); 1957 ipif = ipif_chosen; 1958 } 1959 } 1960 if (ipif == NULL) { 1961 ip0dbg(("icmp_inbound: " 1962 "No source for broadcast/multicast:\n" 1963 "\tsrc 0x%x dst 0x%x ill %p " 1964 "ipif_lcl_addr 0x%x\n", 1965 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1966 (void *)ill, 1967 ill->ill_ipif->ipif_lcl_addr)); 1968 freemsg(first_mp); 1969 return; 1970 } 1971 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1972 ipha->ipha_dst = ipif->ipif_src_addr; 1973 ipif_refrele(ipif); 1974 } 1975 /* Reset time to live. */ 1976 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1977 { 1978 /* Swap source and destination addresses */ 1979 ipaddr_t tmp; 1980 1981 tmp = ipha->ipha_src; 1982 ipha->ipha_src = ipha->ipha_dst; 1983 ipha->ipha_dst = tmp; 1984 } 1985 ipha->ipha_ident = 0; 1986 if (!IS_SIMPLE_IPH(ipha)) 1987 icmp_options_update(ipha); 1988 1989 /* 1990 * ICMP echo replies should go out on the same interface 1991 * the request came on as probes used by in.mpathd for detecting 1992 * NIC failures are ECHO packets. We turn-off load spreading 1993 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1994 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1995 * function. This is in turn handled by ip_wput and ip_newroute 1996 * to make sure that the packet goes out on the interface it came 1997 * in on. If we don't turnoff load spreading, the packets might get 1998 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1999 * to go out and in.mpathd would wrongly detect a failure or 2000 * mis-detect a NIC failure for link failure. As load spreading 2001 * can happen only if ill_group is not NULL, we do only for 2002 * that case and this does not affect the normal case. 2003 * 2004 * We turn off load spreading only on echo packets that came from 2005 * on-link hosts. If the interface route has been deleted, this will 2006 * not be enforced as we can't do much. For off-link hosts, as the 2007 * default routes in IPv4 does not typically have an ire_ipif 2008 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2009 * Moreover, expecting a default route through this interface may 2010 * not be correct. We use ipha_dst because of the swap above. 2011 */ 2012 onlink = B_FALSE; 2013 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2014 /* 2015 * First, we need to make sure that it is not one of our 2016 * local addresses. If we set onlink when it is one of 2017 * our local addresses, we will end up creating IRE_CACHES 2018 * for one of our local addresses. Then, we will never 2019 * accept packets for them afterwards. 2020 */ 2021 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2022 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2023 if (src_ire == NULL) { 2024 ipif = ipif_get_next_ipif(NULL, ill); 2025 if (ipif == NULL) { 2026 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2027 freemsg(mp); 2028 return; 2029 } 2030 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2031 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2032 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2033 ipif_refrele(ipif); 2034 if (src_ire != NULL) { 2035 onlink = B_TRUE; 2036 ire_refrele(src_ire); 2037 } 2038 } else { 2039 ire_refrele(src_ire); 2040 } 2041 } 2042 if (!mctl_present) { 2043 /* 2044 * This packet should go out the same way as it 2045 * came in i.e in clear. To make sure that global 2046 * policy will not be applied to this in ip_wput_ire, 2047 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2048 */ 2049 ASSERT(first_mp == mp); 2050 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2051 if (first_mp == NULL) { 2052 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2053 freemsg(mp); 2054 return; 2055 } 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 2058 /* This is not a secure packet */ 2059 ii->ipsec_in_secure = B_FALSE; 2060 if (onlink) { 2061 ii->ipsec_in_attach_if = B_TRUE; 2062 ii->ipsec_in_ill_index = 2063 ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_rill_index = 2065 recv_ill->ill_phyint->phyint_ifindex; 2066 } 2067 first_mp->b_cont = mp; 2068 } else if (onlink) { 2069 ii = (ipsec_in_t *)first_mp->b_rptr; 2070 ii->ipsec_in_attach_if = B_TRUE; 2071 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2072 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2073 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2074 } else { 2075 ii = (ipsec_in_t *)first_mp->b_rptr; 2076 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2077 } 2078 ii->ipsec_in_zoneid = zoneid; 2079 ASSERT(zoneid != ALL_ZONES); 2080 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2082 return; 2083 } 2084 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2085 put(WR(q), first_mp); 2086 } 2087 2088 static ipaddr_t 2089 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2090 { 2091 conn_t *connp; 2092 connf_t *connfp; 2093 ipaddr_t nexthop_addr = INADDR_ANY; 2094 int hdr_length = IPH_HDR_LENGTH(ipha); 2095 uint16_t *up; 2096 uint32_t ports; 2097 ip_stack_t *ipst = ill->ill_ipst; 2098 2099 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2100 switch (ipha->ipha_protocol) { 2101 case IPPROTO_TCP: 2102 { 2103 tcph_t *tcph; 2104 2105 /* do a reverse lookup */ 2106 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2107 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2108 TCPS_LISTEN, ipst); 2109 break; 2110 } 2111 case IPPROTO_UDP: 2112 { 2113 uint32_t dstport, srcport; 2114 2115 ((uint16_t *)&ports)[0] = up[1]; 2116 ((uint16_t *)&ports)[1] = up[0]; 2117 2118 /* Extract ports in net byte order */ 2119 dstport = htons(ntohl(ports) & 0xFFFF); 2120 srcport = htons(ntohl(ports) >> 16); 2121 2122 connfp = &ipst->ips_ipcl_udp_fanout[ 2123 IPCL_UDP_HASH(dstport, ipst)]; 2124 mutex_enter(&connfp->connf_lock); 2125 connp = connfp->connf_head; 2126 2127 /* do a reverse lookup */ 2128 while ((connp != NULL) && 2129 (!IPCL_UDP_MATCH(connp, dstport, 2130 ipha->ipha_src, srcport, ipha->ipha_dst) || 2131 !IPCL_ZONE_MATCH(connp, zoneid))) { 2132 connp = connp->conn_next; 2133 } 2134 if (connp != NULL) 2135 CONN_INC_REF(connp); 2136 mutex_exit(&connfp->connf_lock); 2137 break; 2138 } 2139 case IPPROTO_SCTP: 2140 { 2141 in6_addr_t map_src, map_dst; 2142 2143 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2144 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2145 ((uint16_t *)&ports)[0] = up[1]; 2146 ((uint16_t *)&ports)[1] = up[0]; 2147 2148 connp = sctp_find_conn(&map_src, &map_dst, ports, 2149 zoneid, ipst->ips_netstack->netstack_sctp); 2150 if (connp == NULL) { 2151 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2152 zoneid, ports, ipha, ipst); 2153 } else { 2154 CONN_INC_REF(connp); 2155 SCTP_REFRELE(CONN2SCTP(connp)); 2156 } 2157 break; 2158 } 2159 default: 2160 { 2161 ipha_t ripha; 2162 2163 ripha.ipha_src = ipha->ipha_dst; 2164 ripha.ipha_dst = ipha->ipha_src; 2165 ripha.ipha_protocol = ipha->ipha_protocol; 2166 2167 connfp = &ipst->ips_ipcl_proto_fanout[ 2168 ipha->ipha_protocol]; 2169 mutex_enter(&connfp->connf_lock); 2170 connp = connfp->connf_head; 2171 for (connp = connfp->connf_head; connp != NULL; 2172 connp = connp->conn_next) { 2173 if (IPCL_PROTO_MATCH(connp, 2174 ipha->ipha_protocol, &ripha, ill, 2175 0, zoneid)) { 2176 CONN_INC_REF(connp); 2177 break; 2178 } 2179 } 2180 mutex_exit(&connfp->connf_lock); 2181 } 2182 } 2183 if (connp != NULL) { 2184 if (connp->conn_nexthop_set) 2185 nexthop_addr = connp->conn_nexthop_v4; 2186 CONN_DEC_REF(connp); 2187 } 2188 return (nexthop_addr); 2189 } 2190 2191 /* Table from RFC 1191 */ 2192 static int icmp_frag_size_table[] = 2193 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2194 2195 /* 2196 * Process received ICMP Packet too big. 2197 * After updating any IRE it does the fanout to any matching transport streams. 2198 * Assumes the message has been pulled up till the IP header that caused 2199 * the error. 2200 * 2201 * Returns B_FALSE on failure and B_TRUE on success. 2202 */ 2203 static boolean_t 2204 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2205 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2206 ip_stack_t *ipst) 2207 { 2208 ire_t *ire, *first_ire; 2209 int mtu; 2210 int hdr_length; 2211 ipaddr_t nexthop_addr; 2212 2213 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2214 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2215 ASSERT(ill != NULL); 2216 2217 hdr_length = IPH_HDR_LENGTH(ipha); 2218 2219 /* Drop if the original packet contained a source route */ 2220 if (ip_source_route_included(ipha)) { 2221 return (B_FALSE); 2222 } 2223 /* 2224 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2225 * header. 2226 */ 2227 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2228 mp->b_wptr) { 2229 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2230 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2231 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2232 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2233 return (B_FALSE); 2234 } 2235 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2236 ipha = (ipha_t *)&icmph[1]; 2237 } 2238 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2239 if (nexthop_addr != INADDR_ANY) { 2240 /* nexthop set */ 2241 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2242 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2243 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2244 } else { 2245 /* nexthop not set */ 2246 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2247 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2248 } 2249 2250 if (!first_ire) { 2251 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2252 ntohl(ipha->ipha_dst))); 2253 return (B_FALSE); 2254 } 2255 /* Check for MTU discovery advice as described in RFC 1191 */ 2256 mtu = ntohs(icmph->icmph_du_mtu); 2257 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2258 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2259 ire = ire->ire_next) { 2260 /* 2261 * Look for the connection to which this ICMP message is 2262 * directed. If it has the IP_NEXTHOP option set, then the 2263 * search is limited to IREs with the MATCH_IRE_PRIVATE 2264 * option. Else the search is limited to regular IREs. 2265 */ 2266 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2267 (nexthop_addr != ire->ire_gateway_addr)) || 2268 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2269 (nexthop_addr != INADDR_ANY))) 2270 continue; 2271 2272 mutex_enter(&ire->ire_lock); 2273 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2274 /* Reduce the IRE max frag value as advised. */ 2275 ip1dbg(("Received mtu from router: %d (was %d)\n", 2276 mtu, ire->ire_max_frag)); 2277 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2278 } else { 2279 uint32_t length; 2280 int i; 2281 2282 /* 2283 * Use the table from RFC 1191 to figure out 2284 * the next "plateau" based on the length in 2285 * the original IP packet. 2286 */ 2287 length = ntohs(ipha->ipha_length); 2288 if (ire->ire_max_frag <= length && 2289 ire->ire_max_frag >= length - hdr_length) { 2290 /* 2291 * Handle broken BSD 4.2 systems that 2292 * return the wrong iph_length in ICMP 2293 * errors. 2294 */ 2295 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2296 length, ire->ire_max_frag)); 2297 length -= hdr_length; 2298 } 2299 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2300 if (length > icmp_frag_size_table[i]) 2301 break; 2302 } 2303 if (i == A_CNT(icmp_frag_size_table)) { 2304 /* Smaller than 68! */ 2305 ip1dbg(("Too big for packet size %d\n", 2306 length)); 2307 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2308 ire->ire_frag_flag = 0; 2309 } else { 2310 mtu = icmp_frag_size_table[i]; 2311 ip1dbg(("Calculated mtu %d, packet size %d, " 2312 "before %d", mtu, length, 2313 ire->ire_max_frag)); 2314 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2315 ip1dbg((", after %d\n", ire->ire_max_frag)); 2316 } 2317 /* Record the new max frag size for the ULP. */ 2318 icmph->icmph_du_zero = 0; 2319 icmph->icmph_du_mtu = 2320 htons((uint16_t)ire->ire_max_frag); 2321 } 2322 mutex_exit(&ire->ire_lock); 2323 } 2324 rw_exit(&first_ire->ire_bucket->irb_lock); 2325 ire_refrele(first_ire); 2326 return (B_TRUE); 2327 } 2328 2329 /* 2330 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2331 * calls this function. 2332 */ 2333 static mblk_t * 2334 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2335 { 2336 ipha_t *ipha; 2337 icmph_t *icmph; 2338 ipha_t *in_ipha; 2339 int length; 2340 2341 ASSERT(mp->b_datap->db_type == M_DATA); 2342 2343 /* 2344 * For Self-encapsulated packets, we added an extra IP header 2345 * without the options. Inner IP header is the one from which 2346 * the outer IP header was formed. Thus, we need to remove the 2347 * outer IP header. To do this, we pullup the whole message 2348 * and overlay whatever follows the outer IP header over the 2349 * outer IP header. 2350 */ 2351 2352 if (!pullupmsg(mp, -1)) 2353 return (NULL); 2354 2355 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2356 ipha = (ipha_t *)&icmph[1]; 2357 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2358 2359 /* 2360 * The length that we want to overlay is following the inner 2361 * IP header. Subtracting the IP header + icmp header + outer 2362 * IP header's length should give us the length that we want to 2363 * overlay. 2364 */ 2365 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2366 hdr_length; 2367 /* 2368 * Overlay whatever follows the inner header over the 2369 * outer header. 2370 */ 2371 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2372 2373 /* Set the wptr to account for the outer header */ 2374 mp->b_wptr -= hdr_length; 2375 return (mp); 2376 } 2377 2378 /* 2379 * Try to pass the ICMP message upstream in case the ULP cares. 2380 * 2381 * If the packet that caused the ICMP error is secure, we send 2382 * it to AH/ESP to make sure that the attached packet has a 2383 * valid association. ipha in the code below points to the 2384 * IP header of the packet that caused the error. 2385 * 2386 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2387 * in the context of IPsec. Normally we tell the upper layer 2388 * whenever we send the ire (including ip_bind), the IPsec header 2389 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2390 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2391 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2392 * same thing. As TCP has the IPsec options size that needs to be 2393 * adjusted, we just pass the MTU unchanged. 2394 * 2395 * IFN could have been generated locally or by some router. 2396 * 2397 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2398 * This happens because IP adjusted its value of MTU on an 2399 * earlier IFN message and could not tell the upper layer, 2400 * the new adjusted value of MTU e.g. Packet was encrypted 2401 * or there was not enough information to fanout to upper 2402 * layers. Thus on the next outbound datagram, ip_wput_ire 2403 * generates the IFN, where IPsec processing has *not* been 2404 * done. 2405 * 2406 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2407 * could have generated this. This happens because ire_max_frag 2408 * value in IP was set to a new value, while the IPsec processing 2409 * was being done and after we made the fragmentation check in 2410 * ip_wput_ire. Thus on return from IPsec processing, 2411 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2412 * and generates the IFN. As IPsec processing is over, we fanout 2413 * to AH/ESP to remove the header. 2414 * 2415 * In both these cases, ipsec_in_loopback will be set indicating 2416 * that IFN was generated locally. 2417 * 2418 * ROUTER : IFN could be secure or non-secure. 2419 * 2420 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2421 * packet in error has AH/ESP headers to validate the AH/ESP 2422 * headers. AH/ESP will verify whether there is a valid SA or 2423 * not and send it back. We will fanout again if we have more 2424 * data in the packet. 2425 * 2426 * If the packet in error does not have AH/ESP, we handle it 2427 * like any other case. 2428 * 2429 * * NON_SECURE : If the packet in error has AH/ESP headers, 2430 * we attach a dummy ipsec_in and send it up to AH/ESP 2431 * for validation. AH/ESP will verify whether there is a 2432 * valid SA or not and send it back. We will fanout again if 2433 * we have more data in the packet. 2434 * 2435 * If the packet in error does not have AH/ESP, we handle it 2436 * like any other case. 2437 */ 2438 static void 2439 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2440 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2441 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2442 zoneid_t zoneid) 2443 { 2444 uint16_t *up; /* Pointer to ports in ULP header */ 2445 uint32_t ports; /* reversed ports for fanout */ 2446 ipha_t ripha; /* With reversed addresses */ 2447 mblk_t *first_mp; 2448 ipsec_in_t *ii; 2449 tcph_t *tcph; 2450 conn_t *connp; 2451 ip_stack_t *ipst; 2452 2453 ASSERT(ill != NULL); 2454 2455 ASSERT(recv_ill != NULL); 2456 ipst = recv_ill->ill_ipst; 2457 2458 first_mp = mp; 2459 if (mctl_present) { 2460 mp = first_mp->b_cont; 2461 ASSERT(mp != NULL); 2462 2463 ii = (ipsec_in_t *)first_mp->b_rptr; 2464 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2465 } else { 2466 ii = NULL; 2467 } 2468 2469 switch (ipha->ipha_protocol) { 2470 case IPPROTO_UDP: 2471 /* 2472 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2473 * transport header. 2474 */ 2475 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2476 mp->b_wptr) { 2477 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2478 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2479 goto discard_pkt; 2480 } 2481 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2482 ipha = (ipha_t *)&icmph[1]; 2483 } 2484 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2485 2486 /* 2487 * Attempt to find a client stream based on port. 2488 * Note that we do a reverse lookup since the header is 2489 * in the form we sent it out. 2490 * The ripha header is only used for the IP_UDP_MATCH and we 2491 * only set the src and dst addresses and protocol. 2492 */ 2493 ripha.ipha_src = ipha->ipha_dst; 2494 ripha.ipha_dst = ipha->ipha_src; 2495 ripha.ipha_protocol = ipha->ipha_protocol; 2496 ((uint16_t *)&ports)[0] = up[1]; 2497 ((uint16_t *)&ports)[1] = up[0]; 2498 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2499 ntohl(ipha->ipha_src), ntohs(up[0]), 2500 ntohl(ipha->ipha_dst), ntohs(up[1]), 2501 icmph->icmph_type, icmph->icmph_code)); 2502 2503 /* Have to change db_type after any pullupmsg */ 2504 DB_TYPE(mp) = M_CTL; 2505 2506 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2507 mctl_present, ip_policy, recv_ill, zoneid); 2508 return; 2509 2510 case IPPROTO_TCP: 2511 /* 2512 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2513 * transport header. 2514 */ 2515 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2516 mp->b_wptr) { 2517 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2518 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2519 goto discard_pkt; 2520 } 2521 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2522 ipha = (ipha_t *)&icmph[1]; 2523 } 2524 /* 2525 * Find a TCP client stream for this packet. 2526 * Note that we do a reverse lookup since the header is 2527 * in the form we sent it out. 2528 */ 2529 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2530 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2531 ipst); 2532 if (connp == NULL) 2533 goto discard_pkt; 2534 2535 /* Have to change db_type after any pullupmsg */ 2536 DB_TYPE(mp) = M_CTL; 2537 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2538 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2539 return; 2540 2541 case IPPROTO_SCTP: 2542 /* 2543 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2544 * transport header. 2545 */ 2546 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2547 mp->b_wptr) { 2548 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2549 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2550 goto discard_pkt; 2551 } 2552 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2553 ipha = (ipha_t *)&icmph[1]; 2554 } 2555 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2556 /* 2557 * Find a SCTP client stream for this packet. 2558 * Note that we do a reverse lookup since the header is 2559 * in the form we sent it out. 2560 * The ripha header is only used for the matching and we 2561 * only set the src and dst addresses, protocol, and version. 2562 */ 2563 ripha.ipha_src = ipha->ipha_dst; 2564 ripha.ipha_dst = ipha->ipha_src; 2565 ripha.ipha_protocol = ipha->ipha_protocol; 2566 ripha.ipha_version_and_hdr_length = 2567 ipha->ipha_version_and_hdr_length; 2568 ((uint16_t *)&ports)[0] = up[1]; 2569 ((uint16_t *)&ports)[1] = up[0]; 2570 2571 /* Have to change db_type after any pullupmsg */ 2572 DB_TYPE(mp) = M_CTL; 2573 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2574 mctl_present, ip_policy, zoneid); 2575 return; 2576 2577 case IPPROTO_ESP: 2578 case IPPROTO_AH: { 2579 int ipsec_rc; 2580 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2581 2582 /* 2583 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2584 * We will re-use the IPSEC_IN if it is already present as 2585 * AH/ESP will not affect any fields in the IPSEC_IN for 2586 * ICMP errors. If there is no IPSEC_IN, allocate a new 2587 * one and attach it in the front. 2588 */ 2589 if (ii != NULL) { 2590 /* 2591 * ip_fanout_proto_again converts the ICMP errors 2592 * that come back from AH/ESP to M_DATA so that 2593 * if it is non-AH/ESP and we do a pullupmsg in 2594 * this function, it would work. Convert it back 2595 * to M_CTL before we send up as this is a ICMP 2596 * error. This could have been generated locally or 2597 * by some router. Validate the inner IPsec 2598 * headers. 2599 * 2600 * NOTE : ill_index is used by ip_fanout_proto_again 2601 * to locate the ill. 2602 */ 2603 ASSERT(ill != NULL); 2604 ii->ipsec_in_ill_index = 2605 ill->ill_phyint->phyint_ifindex; 2606 ii->ipsec_in_rill_index = 2607 recv_ill->ill_phyint->phyint_ifindex; 2608 DB_TYPE(first_mp->b_cont) = M_CTL; 2609 } else { 2610 /* 2611 * IPSEC_IN is not present. We attach a ipsec_in 2612 * message and send up to IPsec for validating 2613 * and removing the IPsec headers. Clear 2614 * ipsec_in_secure so that when we return 2615 * from IPsec, we don't mistakenly think that this 2616 * is a secure packet came from the network. 2617 * 2618 * NOTE : ill_index is used by ip_fanout_proto_again 2619 * to locate the ill. 2620 */ 2621 ASSERT(first_mp == mp); 2622 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2623 if (first_mp == NULL) { 2624 freemsg(mp); 2625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2626 return; 2627 } 2628 ii = (ipsec_in_t *)first_mp->b_rptr; 2629 2630 /* This is not a secure packet */ 2631 ii->ipsec_in_secure = B_FALSE; 2632 first_mp->b_cont = mp; 2633 DB_TYPE(mp) = M_CTL; 2634 ASSERT(ill != NULL); 2635 ii->ipsec_in_ill_index = 2636 ill->ill_phyint->phyint_ifindex; 2637 ii->ipsec_in_rill_index = 2638 recv_ill->ill_phyint->phyint_ifindex; 2639 } 2640 ip2dbg(("icmp_inbound_error: ipsec\n")); 2641 2642 if (!ipsec_loaded(ipss)) { 2643 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2644 return; 2645 } 2646 2647 if (ipha->ipha_protocol == IPPROTO_ESP) 2648 ipsec_rc = ipsecesp_icmp_error(first_mp); 2649 else 2650 ipsec_rc = ipsecah_icmp_error(first_mp); 2651 if (ipsec_rc == IPSEC_STATUS_FAILED) 2652 return; 2653 2654 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2655 return; 2656 } 2657 default: 2658 /* 2659 * The ripha header is only used for the lookup and we 2660 * only set the src and dst addresses and protocol. 2661 */ 2662 ripha.ipha_src = ipha->ipha_dst; 2663 ripha.ipha_dst = ipha->ipha_src; 2664 ripha.ipha_protocol = ipha->ipha_protocol; 2665 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2666 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2667 ntohl(ipha->ipha_dst), 2668 icmph->icmph_type, icmph->icmph_code)); 2669 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2670 ipha_t *in_ipha; 2671 2672 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2673 mp->b_wptr) { 2674 if (!pullupmsg(mp, (uchar_t *)ipha + 2675 hdr_length + sizeof (ipha_t) - 2676 mp->b_rptr)) { 2677 goto discard_pkt; 2678 } 2679 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2680 ipha = (ipha_t *)&icmph[1]; 2681 } 2682 /* 2683 * Caller has verified that length has to be 2684 * at least the size of IP header. 2685 */ 2686 ASSERT(hdr_length >= sizeof (ipha_t)); 2687 /* 2688 * Check the sanity of the inner IP header like 2689 * we did for the outer header. 2690 */ 2691 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2692 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2693 goto discard_pkt; 2694 } 2695 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2696 goto discard_pkt; 2697 } 2698 /* Check for Self-encapsulated tunnels */ 2699 if (in_ipha->ipha_src == ipha->ipha_src && 2700 in_ipha->ipha_dst == ipha->ipha_dst) { 2701 2702 mp = icmp_inbound_self_encap_error(mp, 2703 iph_hdr_length, hdr_length); 2704 if (mp == NULL) 2705 goto discard_pkt; 2706 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2707 ipha = (ipha_t *)&icmph[1]; 2708 hdr_length = IPH_HDR_LENGTH(ipha); 2709 /* 2710 * The packet in error is self-encapsualted. 2711 * And we are finding it further encapsulated 2712 * which we could not have possibly generated. 2713 */ 2714 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2715 goto discard_pkt; 2716 } 2717 icmp_inbound_error_fanout(q, ill, first_mp, 2718 icmph, ipha, iph_hdr_length, hdr_length, 2719 mctl_present, ip_policy, recv_ill, zoneid); 2720 return; 2721 } 2722 } 2723 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2724 ipha->ipha_protocol == IPPROTO_IPV6) && 2725 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2726 ii != NULL && 2727 ii->ipsec_in_loopback && 2728 ii->ipsec_in_secure) { 2729 /* 2730 * For IP tunnels that get a looped-back 2731 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2732 * reported new MTU to take into account the IPsec 2733 * headers protecting this configured tunnel. 2734 * 2735 * This allows the tunnel module (tun.c) to blindly 2736 * accept the MTU reported in an ICMP "too big" 2737 * message. 2738 * 2739 * Non-looped back ICMP messages will just be 2740 * handled by the security protocols (if needed), 2741 * and the first subsequent packet will hit this 2742 * path. 2743 */ 2744 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2745 ipsec_in_extra_length(first_mp)); 2746 } 2747 /* Have to change db_type after any pullupmsg */ 2748 DB_TYPE(mp) = M_CTL; 2749 2750 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2751 ip_policy, recv_ill, zoneid); 2752 return; 2753 } 2754 /* NOTREACHED */ 2755 discard_pkt: 2756 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2757 drop_pkt:; 2758 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2759 freemsg(first_mp); 2760 } 2761 2762 /* 2763 * Common IP options parser. 2764 * 2765 * Setup routine: fill in *optp with options-parsing state, then 2766 * tail-call ipoptp_next to return the first option. 2767 */ 2768 uint8_t 2769 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2770 { 2771 uint32_t totallen; /* total length of all options */ 2772 2773 totallen = ipha->ipha_version_and_hdr_length - 2774 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2775 totallen <<= 2; 2776 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2777 optp->ipoptp_end = optp->ipoptp_next + totallen; 2778 optp->ipoptp_flags = 0; 2779 return (ipoptp_next(optp)); 2780 } 2781 2782 /* 2783 * Common IP options parser: extract next option. 2784 */ 2785 uint8_t 2786 ipoptp_next(ipoptp_t *optp) 2787 { 2788 uint8_t *end = optp->ipoptp_end; 2789 uint8_t *cur = optp->ipoptp_next; 2790 uint8_t opt, len, pointer; 2791 2792 /* 2793 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2794 * has been corrupted. 2795 */ 2796 ASSERT(cur <= end); 2797 2798 if (cur == end) 2799 return (IPOPT_EOL); 2800 2801 opt = cur[IPOPT_OPTVAL]; 2802 2803 /* 2804 * Skip any NOP options. 2805 */ 2806 while (opt == IPOPT_NOP) { 2807 cur++; 2808 if (cur == end) 2809 return (IPOPT_EOL); 2810 opt = cur[IPOPT_OPTVAL]; 2811 } 2812 2813 if (opt == IPOPT_EOL) 2814 return (IPOPT_EOL); 2815 2816 /* 2817 * Option requiring a length. 2818 */ 2819 if ((cur + 1) >= end) { 2820 optp->ipoptp_flags |= IPOPTP_ERROR; 2821 return (IPOPT_EOL); 2822 } 2823 len = cur[IPOPT_OLEN]; 2824 if (len < 2) { 2825 optp->ipoptp_flags |= IPOPTP_ERROR; 2826 return (IPOPT_EOL); 2827 } 2828 optp->ipoptp_cur = cur; 2829 optp->ipoptp_len = len; 2830 optp->ipoptp_next = cur + len; 2831 if (cur + len > end) { 2832 optp->ipoptp_flags |= IPOPTP_ERROR; 2833 return (IPOPT_EOL); 2834 } 2835 2836 /* 2837 * For the options which require a pointer field, make sure 2838 * its there, and make sure it points to either something 2839 * inside this option, or the end of the option. 2840 */ 2841 switch (opt) { 2842 case IPOPT_RR: 2843 case IPOPT_TS: 2844 case IPOPT_LSRR: 2845 case IPOPT_SSRR: 2846 if (len <= IPOPT_OFFSET) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (opt); 2849 } 2850 pointer = cur[IPOPT_OFFSET]; 2851 if (pointer - 1 > len) { 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 return (opt); 2854 } 2855 break; 2856 } 2857 2858 /* 2859 * Sanity check the pointer field based on the type of the 2860 * option. 2861 */ 2862 switch (opt) { 2863 case IPOPT_RR: 2864 case IPOPT_SSRR: 2865 case IPOPT_LSRR: 2866 if (pointer < IPOPT_MINOFF_SR) 2867 optp->ipoptp_flags |= IPOPTP_ERROR; 2868 break; 2869 case IPOPT_TS: 2870 if (pointer < IPOPT_MINOFF_IT) 2871 optp->ipoptp_flags |= IPOPTP_ERROR; 2872 /* 2873 * Note that the Internet Timestamp option also 2874 * contains two four bit fields (the Overflow field, 2875 * and the Flag field), which follow the pointer 2876 * field. We don't need to check that these fields 2877 * fall within the length of the option because this 2878 * was implicitely done above. We've checked that the 2879 * pointer value is at least IPOPT_MINOFF_IT, and that 2880 * it falls within the option. Since IPOPT_MINOFF_IT > 2881 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2882 */ 2883 ASSERT(len > IPOPT_POS_OV_FLG); 2884 break; 2885 } 2886 2887 return (opt); 2888 } 2889 2890 /* 2891 * Use the outgoing IP header to create an IP_OPTIONS option the way 2892 * it was passed down from the application. 2893 */ 2894 int 2895 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2896 { 2897 ipoptp_t opts; 2898 const uchar_t *opt; 2899 uint8_t optval; 2900 uint8_t optlen; 2901 uint32_t len = 0; 2902 uchar_t *buf1 = buf; 2903 2904 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2905 len += IP_ADDR_LEN; 2906 bzero(buf1, IP_ADDR_LEN); 2907 2908 /* 2909 * OK to cast away const here, as we don't store through the returned 2910 * opts.ipoptp_cur pointer. 2911 */ 2912 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2913 optval != IPOPT_EOL; 2914 optval = ipoptp_next(&opts)) { 2915 int off; 2916 2917 opt = opts.ipoptp_cur; 2918 optlen = opts.ipoptp_len; 2919 switch (optval) { 2920 case IPOPT_SSRR: 2921 case IPOPT_LSRR: 2922 2923 /* 2924 * Insert ipha_dst as the first entry in the source 2925 * route and move down the entries on step. 2926 * The last entry gets placed at buf1. 2927 */ 2928 buf[IPOPT_OPTVAL] = optval; 2929 buf[IPOPT_OLEN] = optlen; 2930 buf[IPOPT_OFFSET] = optlen; 2931 2932 off = optlen - IP_ADDR_LEN; 2933 if (off < 0) { 2934 /* No entries in source route */ 2935 break; 2936 } 2937 /* Last entry in source route */ 2938 bcopy(opt + off, buf1, IP_ADDR_LEN); 2939 off -= IP_ADDR_LEN; 2940 2941 while (off > 0) { 2942 bcopy(opt + off, 2943 buf + off + IP_ADDR_LEN, 2944 IP_ADDR_LEN); 2945 off -= IP_ADDR_LEN; 2946 } 2947 /* ipha_dst into first slot */ 2948 bcopy(&ipha->ipha_dst, 2949 buf + off + IP_ADDR_LEN, 2950 IP_ADDR_LEN); 2951 buf += optlen; 2952 len += optlen; 2953 break; 2954 2955 case IPOPT_COMSEC: 2956 case IPOPT_SECURITY: 2957 /* if passing up a label is not ok, then remove */ 2958 if (is_system_labeled()) 2959 break; 2960 /* FALLTHROUGH */ 2961 default: 2962 bcopy(opt, buf, optlen); 2963 buf += optlen; 2964 len += optlen; 2965 break; 2966 } 2967 } 2968 done: 2969 /* Pad the resulting options */ 2970 while (len & 0x3) { 2971 *buf++ = IPOPT_EOL; 2972 len++; 2973 } 2974 return (len); 2975 } 2976 2977 /* 2978 * Update any record route or timestamp options to include this host. 2979 * Reverse any source route option. 2980 * This routine assumes that the options are well formed i.e. that they 2981 * have already been checked. 2982 */ 2983 static void 2984 icmp_options_update(ipha_t *ipha) 2985 { 2986 ipoptp_t opts; 2987 uchar_t *opt; 2988 uint8_t optval; 2989 ipaddr_t src; /* Our local address */ 2990 ipaddr_t dst; 2991 2992 ip2dbg(("icmp_options_update\n")); 2993 src = ipha->ipha_src; 2994 dst = ipha->ipha_dst; 2995 2996 for (optval = ipoptp_first(&opts, ipha); 2997 optval != IPOPT_EOL; 2998 optval = ipoptp_next(&opts)) { 2999 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3000 opt = opts.ipoptp_cur; 3001 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3002 optval, opts.ipoptp_len)); 3003 switch (optval) { 3004 int off1, off2; 3005 case IPOPT_SSRR: 3006 case IPOPT_LSRR: 3007 /* 3008 * Reverse the source route. The first entry 3009 * should be the next to last one in the current 3010 * source route (the last entry is our address). 3011 * The last entry should be the final destination. 3012 */ 3013 off1 = IPOPT_MINOFF_SR - 1; 3014 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3015 if (off2 < 0) { 3016 /* No entries in source route */ 3017 ip1dbg(( 3018 "icmp_options_update: bad src route\n")); 3019 break; 3020 } 3021 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3022 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3023 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3024 off2 -= IP_ADDR_LEN; 3025 3026 while (off1 < off2) { 3027 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3028 bcopy((char *)opt + off2, (char *)opt + off1, 3029 IP_ADDR_LEN); 3030 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3031 off1 += IP_ADDR_LEN; 3032 off2 -= IP_ADDR_LEN; 3033 } 3034 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3035 break; 3036 } 3037 } 3038 } 3039 3040 /* 3041 * Process received ICMP Redirect messages. 3042 */ 3043 static void 3044 icmp_redirect(ill_t *ill, mblk_t *mp) 3045 { 3046 ipha_t *ipha; 3047 int iph_hdr_length; 3048 icmph_t *icmph; 3049 ipha_t *ipha_err; 3050 ire_t *ire; 3051 ire_t *prev_ire; 3052 ire_t *save_ire; 3053 ipaddr_t src, dst, gateway; 3054 iulp_t ulp_info = { 0 }; 3055 int error; 3056 ip_stack_t *ipst; 3057 3058 ASSERT(ill != NULL); 3059 ipst = ill->ill_ipst; 3060 3061 ipha = (ipha_t *)mp->b_rptr; 3062 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3063 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3064 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3065 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3066 freemsg(mp); 3067 return; 3068 } 3069 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3070 ipha_err = (ipha_t *)&icmph[1]; 3071 src = ipha->ipha_src; 3072 dst = ipha_err->ipha_dst; 3073 gateway = icmph->icmph_rd_gateway; 3074 /* Make sure the new gateway is reachable somehow. */ 3075 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3076 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3077 /* 3078 * Make sure we had a route for the dest in question and that 3079 * that route was pointing to the old gateway (the source of the 3080 * redirect packet.) 3081 */ 3082 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3083 NULL, MATCH_IRE_GW, ipst); 3084 /* 3085 * Check that 3086 * the redirect was not from ourselves 3087 * the new gateway and the old gateway are directly reachable 3088 */ 3089 if (!prev_ire || 3090 !ire || 3091 ire->ire_type == IRE_LOCAL) { 3092 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3093 freemsg(mp); 3094 if (ire != NULL) 3095 ire_refrele(ire); 3096 if (prev_ire != NULL) 3097 ire_refrele(prev_ire); 3098 return; 3099 } 3100 3101 /* 3102 * Should we use the old ULP info to create the new gateway? From 3103 * a user's perspective, we should inherit the info so that it 3104 * is a "smooth" transition. If we do not do that, then new 3105 * connections going thru the new gateway will have no route metrics, 3106 * which is counter-intuitive to user. From a network point of 3107 * view, this may or may not make sense even though the new gateway 3108 * is still directly connected to us so the route metrics should not 3109 * change much. 3110 * 3111 * But if the old ire_uinfo is not initialized, we do another 3112 * recursive lookup on the dest using the new gateway. There may 3113 * be a route to that. If so, use it to initialize the redirect 3114 * route. 3115 */ 3116 if (prev_ire->ire_uinfo.iulp_set) { 3117 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3118 } else { 3119 ire_t *tmp_ire; 3120 ire_t *sire; 3121 3122 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3123 ALL_ZONES, 0, NULL, 3124 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3125 ipst); 3126 if (sire != NULL) { 3127 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3128 /* 3129 * If sire != NULL, ire_ftable_lookup() should not 3130 * return a NULL value. 3131 */ 3132 ASSERT(tmp_ire != NULL); 3133 ire_refrele(tmp_ire); 3134 ire_refrele(sire); 3135 } else if (tmp_ire != NULL) { 3136 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3137 sizeof (iulp_t)); 3138 ire_refrele(tmp_ire); 3139 } 3140 } 3141 if (prev_ire->ire_type == IRE_CACHE) 3142 ire_delete(prev_ire); 3143 ire_refrele(prev_ire); 3144 /* 3145 * TODO: more precise handling for cases 0, 2, 3, the latter two 3146 * require TOS routing 3147 */ 3148 switch (icmph->icmph_code) { 3149 case 0: 3150 case 1: 3151 /* TODO: TOS specificity for cases 2 and 3 */ 3152 case 2: 3153 case 3: 3154 break; 3155 default: 3156 freemsg(mp); 3157 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3158 ire_refrele(ire); 3159 return; 3160 } 3161 /* 3162 * Create a Route Association. This will allow us to remember that 3163 * someone we believe told us to use the particular gateway. 3164 */ 3165 save_ire = ire; 3166 ire = ire_create( 3167 (uchar_t *)&dst, /* dest addr */ 3168 (uchar_t *)&ip_g_all_ones, /* mask */ 3169 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3170 (uchar_t *)&gateway, /* gateway addr */ 3171 &save_ire->ire_max_frag, /* max frag */ 3172 NULL, /* no src nce */ 3173 NULL, /* no rfq */ 3174 NULL, /* no stq */ 3175 IRE_HOST, 3176 NULL, /* ipif */ 3177 0, /* cmask */ 3178 0, /* phandle */ 3179 0, /* ihandle */ 3180 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3181 &ulp_info, 3182 NULL, /* tsol_gc_t */ 3183 NULL, /* gcgrp */ 3184 ipst); 3185 3186 if (ire == NULL) { 3187 freemsg(mp); 3188 ire_refrele(save_ire); 3189 return; 3190 } 3191 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3192 ire_refrele(save_ire); 3193 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3194 3195 if (error == 0) { 3196 ire_refrele(ire); /* Held in ire_add_v4 */ 3197 /* tell routing sockets that we received a redirect */ 3198 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3199 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3200 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3201 } 3202 3203 /* 3204 * Delete any existing IRE_HOST type redirect ires for this destination. 3205 * This together with the added IRE has the effect of 3206 * modifying an existing redirect. 3207 */ 3208 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3209 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3210 if (prev_ire != NULL) { 3211 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3212 ire_delete(prev_ire); 3213 ire_refrele(prev_ire); 3214 } 3215 3216 freemsg(mp); 3217 } 3218 3219 /* 3220 * Generate an ICMP parameter problem message. 3221 */ 3222 static void 3223 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3224 ip_stack_t *ipst) 3225 { 3226 icmph_t icmph; 3227 boolean_t mctl_present; 3228 mblk_t *first_mp; 3229 3230 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3231 3232 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3233 if (mctl_present) 3234 freeb(first_mp); 3235 return; 3236 } 3237 3238 bzero(&icmph, sizeof (icmph_t)); 3239 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3240 icmph.icmph_pp_ptr = ptr; 3241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3242 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3243 ipst); 3244 } 3245 3246 /* 3247 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3248 * the ICMP header pointed to by "stuff". (May be called as writer.) 3249 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3250 * an icmp error packet can be sent. 3251 * Assigns an appropriate source address to the packet. If ipha_dst is 3252 * one of our addresses use it for source. Otherwise pick a source based 3253 * on a route lookup back to ipha_src. 3254 * Note that ipha_src must be set here since the 3255 * packet is likely to arrive on an ill queue in ip_wput() which will 3256 * not set a source address. 3257 */ 3258 static void 3259 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3260 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3261 { 3262 ipaddr_t dst; 3263 icmph_t *icmph; 3264 ipha_t *ipha; 3265 uint_t len_needed; 3266 size_t msg_len; 3267 mblk_t *mp1; 3268 ipaddr_t src; 3269 ire_t *ire; 3270 mblk_t *ipsec_mp; 3271 ipsec_out_t *io = NULL; 3272 3273 if (mctl_present) { 3274 /* 3275 * If it is : 3276 * 3277 * 1) a IPSEC_OUT, then this is caused by outbound 3278 * datagram originating on this host. IPsec processing 3279 * may or may not have been done. Refer to comments above 3280 * icmp_inbound_error_fanout for details. 3281 * 3282 * 2) a IPSEC_IN if we are generating a icmp_message 3283 * for an incoming datagram destined for us i.e called 3284 * from ip_fanout_send_icmp. 3285 */ 3286 ipsec_info_t *in; 3287 ipsec_mp = mp; 3288 mp = ipsec_mp->b_cont; 3289 3290 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3291 ipha = (ipha_t *)mp->b_rptr; 3292 3293 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3294 in->ipsec_info_type == IPSEC_IN); 3295 3296 if (in->ipsec_info_type == IPSEC_IN) { 3297 /* 3298 * Convert the IPSEC_IN to IPSEC_OUT. 3299 */ 3300 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3301 BUMP_MIB(&ipst->ips_ip_mib, 3302 ipIfStatsOutDiscards); 3303 return; 3304 } 3305 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3306 } else { 3307 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3308 io = (ipsec_out_t *)in; 3309 /* 3310 * Clear out ipsec_out_proc_begin, so we do a fresh 3311 * ire lookup. 3312 */ 3313 io->ipsec_out_proc_begin = B_FALSE; 3314 } 3315 ASSERT(zoneid == io->ipsec_out_zoneid); 3316 ASSERT(zoneid != ALL_ZONES); 3317 } else { 3318 /* 3319 * This is in clear. The icmp message we are building 3320 * here should go out in clear. 3321 * 3322 * Pardon the convolution of it all, but it's easier to 3323 * allocate a "use cleartext" IPSEC_IN message and convert 3324 * it than it is to allocate a new one. 3325 */ 3326 ipsec_in_t *ii; 3327 ASSERT(DB_TYPE(mp) == M_DATA); 3328 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3329 if (ipsec_mp == NULL) { 3330 freemsg(mp); 3331 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3332 return; 3333 } 3334 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3335 3336 /* This is not a secure packet */ 3337 ii->ipsec_in_secure = B_FALSE; 3338 /* 3339 * For trusted extensions using a shared IP address we can 3340 * send using any zoneid. 3341 */ 3342 if (zoneid == ALL_ZONES) 3343 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3344 else 3345 ii->ipsec_in_zoneid = zoneid; 3346 ipsec_mp->b_cont = mp; 3347 ipha = (ipha_t *)mp->b_rptr; 3348 /* 3349 * Convert the IPSEC_IN to IPSEC_OUT. 3350 */ 3351 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3352 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3353 return; 3354 } 3355 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3356 } 3357 3358 /* Remember our eventual destination */ 3359 dst = ipha->ipha_src; 3360 3361 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3362 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3363 if (ire != NULL && 3364 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3365 src = ipha->ipha_dst; 3366 } else { 3367 if (ire != NULL) 3368 ire_refrele(ire); 3369 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3370 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3371 ipst); 3372 if (ire == NULL) { 3373 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3374 freemsg(ipsec_mp); 3375 return; 3376 } 3377 src = ire->ire_src_addr; 3378 } 3379 3380 if (ire != NULL) 3381 ire_refrele(ire); 3382 3383 /* 3384 * Check if we can send back more then 8 bytes in addition to 3385 * the IP header. We try to send 64 bytes of data and the internal 3386 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3387 */ 3388 len_needed = IPH_HDR_LENGTH(ipha); 3389 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3390 ipha->ipha_protocol == IPPROTO_IPV6) { 3391 3392 if (!pullupmsg(mp, -1)) { 3393 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3394 freemsg(ipsec_mp); 3395 return; 3396 } 3397 ipha = (ipha_t *)mp->b_rptr; 3398 3399 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3400 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3401 len_needed)); 3402 } else { 3403 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3404 3405 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3406 len_needed += ip_hdr_length_v6(mp, ip6h); 3407 } 3408 } 3409 len_needed += ipst->ips_ip_icmp_return; 3410 msg_len = msgdsize(mp); 3411 if (msg_len > len_needed) { 3412 (void) adjmsg(mp, len_needed - msg_len); 3413 msg_len = len_needed; 3414 } 3415 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3416 if (mp1 == NULL) { 3417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3418 freemsg(ipsec_mp); 3419 return; 3420 } 3421 mp1->b_cont = mp; 3422 mp = mp1; 3423 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3424 ipsec_mp->b_rptr == (uint8_t *)io && 3425 io->ipsec_out_type == IPSEC_OUT); 3426 ipsec_mp->b_cont = mp; 3427 3428 /* 3429 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3430 * node generates be accepted in peace by all on-host destinations. 3431 * If we do NOT assume that all on-host destinations trust 3432 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3433 * (Look for ipsec_out_icmp_loopback). 3434 */ 3435 io->ipsec_out_icmp_loopback = B_TRUE; 3436 3437 ipha = (ipha_t *)mp->b_rptr; 3438 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3439 *ipha = icmp_ipha; 3440 ipha->ipha_src = src; 3441 ipha->ipha_dst = dst; 3442 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3443 msg_len += sizeof (icmp_ipha) + len; 3444 if (msg_len > IP_MAXPACKET) { 3445 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3446 msg_len = IP_MAXPACKET; 3447 } 3448 ipha->ipha_length = htons((uint16_t)msg_len); 3449 icmph = (icmph_t *)&ipha[1]; 3450 bcopy(stuff, icmph, len); 3451 icmph->icmph_checksum = 0; 3452 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3453 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3454 put(q, ipsec_mp); 3455 } 3456 3457 /* 3458 * Determine if an ICMP error packet can be sent given the rate limit. 3459 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3460 * in milliseconds) and a burst size. Burst size number of packets can 3461 * be sent arbitrarely closely spaced. 3462 * The state is tracked using two variables to implement an approximate 3463 * token bucket filter: 3464 * icmp_pkt_err_last - lbolt value when the last burst started 3465 * icmp_pkt_err_sent - number of packets sent in current burst 3466 */ 3467 boolean_t 3468 icmp_err_rate_limit(ip_stack_t *ipst) 3469 { 3470 clock_t now = TICK_TO_MSEC(lbolt); 3471 uint_t refilled; /* Number of packets refilled in tbf since last */ 3472 /* Guard against changes by loading into local variable */ 3473 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3474 3475 if (err_interval == 0) 3476 return (B_FALSE); 3477 3478 if (ipst->ips_icmp_pkt_err_last > now) { 3479 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3480 ipst->ips_icmp_pkt_err_last = 0; 3481 ipst->ips_icmp_pkt_err_sent = 0; 3482 } 3483 /* 3484 * If we are in a burst update the token bucket filter. 3485 * Update the "last" time to be close to "now" but make sure 3486 * we don't loose precision. 3487 */ 3488 if (ipst->ips_icmp_pkt_err_sent != 0) { 3489 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3490 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } else { 3493 ipst->ips_icmp_pkt_err_sent -= refilled; 3494 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3495 } 3496 } 3497 if (ipst->ips_icmp_pkt_err_sent == 0) { 3498 /* Start of new burst */ 3499 ipst->ips_icmp_pkt_err_last = now; 3500 } 3501 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3502 ipst->ips_icmp_pkt_err_sent++; 3503 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3504 ipst->ips_icmp_pkt_err_sent)); 3505 return (B_FALSE); 3506 } 3507 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3508 return (B_TRUE); 3509 } 3510 3511 /* 3512 * Check if it is ok to send an IPv4 ICMP error packet in 3513 * response to the IPv4 packet in mp. 3514 * Free the message and return null if no 3515 * ICMP error packet should be sent. 3516 */ 3517 static mblk_t * 3518 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3519 { 3520 icmph_t *icmph; 3521 ipha_t *ipha; 3522 uint_t len_needed; 3523 ire_t *src_ire; 3524 ire_t *dst_ire; 3525 3526 if (!mp) 3527 return (NULL); 3528 ipha = (ipha_t *)mp->b_rptr; 3529 if (ip_csum_hdr(ipha)) { 3530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3531 freemsg(mp); 3532 return (NULL); 3533 } 3534 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3535 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3536 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 if (src_ire != NULL || dst_ire != NULL || 3539 CLASSD(ipha->ipha_dst) || 3540 CLASSD(ipha->ipha_src) || 3541 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3542 /* Note: only errors to the fragment with offset 0 */ 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 if (src_ire != NULL) 3546 ire_refrele(src_ire); 3547 if (dst_ire != NULL) 3548 ire_refrele(dst_ire); 3549 return (NULL); 3550 } 3551 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3552 /* 3553 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3554 * errors in response to any ICMP errors. 3555 */ 3556 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3557 if (mp->b_wptr - mp->b_rptr < len_needed) { 3558 if (!pullupmsg(mp, len_needed)) { 3559 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3560 freemsg(mp); 3561 return (NULL); 3562 } 3563 ipha = (ipha_t *)mp->b_rptr; 3564 } 3565 icmph = (icmph_t *) 3566 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3567 switch (icmph->icmph_type) { 3568 case ICMP_DEST_UNREACHABLE: 3569 case ICMP_SOURCE_QUENCH: 3570 case ICMP_TIME_EXCEEDED: 3571 case ICMP_PARAM_PROBLEM: 3572 case ICMP_REDIRECT: 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 return (NULL); 3576 default: 3577 break; 3578 } 3579 } 3580 /* 3581 * If this is a labeled system, then check to see if we're allowed to 3582 * send a response to this particular sender. If not, then just drop. 3583 */ 3584 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3585 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 if (icmp_err_rate_limit(ipst)) { 3591 /* 3592 * Only send ICMP error packets every so often. 3593 * This should be done on a per port/source basis, 3594 * but for now this will suffice. 3595 */ 3596 freemsg(mp); 3597 return (NULL); 3598 } 3599 return (mp); 3600 } 3601 3602 /* 3603 * Generate an ICMP redirect message. 3604 */ 3605 static void 3606 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3607 { 3608 icmph_t icmph; 3609 3610 /* 3611 * We are called from ip_rput where we could 3612 * not have attached an IPSEC_IN. 3613 */ 3614 ASSERT(mp->b_datap->db_type == M_DATA); 3615 3616 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3617 return; 3618 } 3619 3620 bzero(&icmph, sizeof (icmph_t)); 3621 icmph.icmph_type = ICMP_REDIRECT; 3622 icmph.icmph_code = 1; 3623 icmph.icmph_rd_gateway = gateway; 3624 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3625 /* Redirects sent by router, and router is global zone */ 3626 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3627 } 3628 3629 /* 3630 * Generate an ICMP time exceeded message. 3631 */ 3632 void 3633 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3634 ip_stack_t *ipst) 3635 { 3636 icmph_t icmph; 3637 boolean_t mctl_present; 3638 mblk_t *first_mp; 3639 3640 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3641 3642 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3643 if (mctl_present) 3644 freeb(first_mp); 3645 return; 3646 } 3647 3648 bzero(&icmph, sizeof (icmph_t)); 3649 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3650 icmph.icmph_code = code; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3652 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3653 ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP unreachable message. 3658 */ 3659 void 3660 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 mblk_t *first_mp; 3665 boolean_t mctl_present; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3679 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3680 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3681 zoneid, ipst); 3682 } 3683 3684 /* 3685 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3686 * duplicate. As long as someone else holds the address, the interface will 3687 * stay down. When that conflict goes away, the interface is brought back up. 3688 * This is done so that accidental shutdowns of addresses aren't made 3689 * permanent. Your server will recover from a failure. 3690 * 3691 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3692 * user space process (dhcpagent). 3693 * 3694 * Recovery completes if ARP reports that the address is now ours (via 3695 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3696 * 3697 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3698 */ 3699 static void 3700 ipif_dup_recovery(void *arg) 3701 { 3702 ipif_t *ipif = arg; 3703 ill_t *ill = ipif->ipif_ill; 3704 mblk_t *arp_add_mp; 3705 mblk_t *arp_del_mp; 3706 area_t *area; 3707 ip_stack_t *ipst = ill->ill_ipst; 3708 3709 ipif->ipif_recovery_id = 0; 3710 3711 /* 3712 * No lock needed for moving or condemned check, as this is just an 3713 * optimization. 3714 */ 3715 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3716 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3717 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3718 /* No reason to try to bring this address back. */ 3719 return; 3720 } 3721 3722 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3723 goto alloc_fail; 3724 3725 if (ipif->ipif_arp_del_mp == NULL) { 3726 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3727 goto alloc_fail; 3728 ipif->ipif_arp_del_mp = arp_del_mp; 3729 } 3730 3731 /* Setting the 'unverified' flag restarts DAD */ 3732 area = (area_t *)arp_add_mp->b_rptr; 3733 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3734 ACE_F_UNVERIFIED; 3735 putnext(ill->ill_rq, arp_add_mp); 3736 return; 3737 3738 alloc_fail: 3739 /* 3740 * On allocation failure, just restart the timer. Note that the ipif 3741 * is down here, so no other thread could be trying to start a recovery 3742 * timer. The ill_lock protects the condemned flag and the recovery 3743 * timer ID. 3744 */ 3745 freemsg(arp_add_mp); 3746 mutex_enter(&ill->ill_lock); 3747 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3748 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3749 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3750 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3751 } 3752 mutex_exit(&ill->ill_lock); 3753 } 3754 3755 /* 3756 * This is for exclusive changes due to ARP. Either tear down an interface due 3757 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3758 */ 3759 /* ARGSUSED */ 3760 static void 3761 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3762 { 3763 ill_t *ill = rq->q_ptr; 3764 arh_t *arh; 3765 ipaddr_t src; 3766 ipif_t *ipif; 3767 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3768 char hbuf[MAC_STR_LEN]; 3769 char sbuf[INET_ADDRSTRLEN]; 3770 const char *failtype; 3771 boolean_t bring_up; 3772 ip_stack_t *ipst = ill->ill_ipst; 3773 3774 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3775 case AR_CN_READY: 3776 failtype = NULL; 3777 bring_up = B_TRUE; 3778 break; 3779 case AR_CN_FAILED: 3780 failtype = "in use"; 3781 bring_up = B_FALSE; 3782 break; 3783 default: 3784 failtype = "claimed"; 3785 bring_up = B_FALSE; 3786 break; 3787 } 3788 3789 arh = (arh_t *)mp->b_cont->b_rptr; 3790 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3791 3792 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3793 sizeof (hbuf)); 3794 (void) ip_dot_addr(src, sbuf); 3795 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3796 3797 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3798 ipif->ipif_lcl_addr != src) { 3799 continue; 3800 } 3801 3802 /* 3803 * If we failed on a recovery probe, then restart the timer to 3804 * try again later. 3805 */ 3806 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3807 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3808 ill->ill_net_type == IRE_IF_RESOLVER && 3809 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3810 ipst->ips_ip_dup_recovery > 0 && 3811 ipif->ipif_recovery_id == 0) { 3812 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3813 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3814 continue; 3815 } 3816 3817 /* 3818 * If what we're trying to do has already been done, then do 3819 * nothing. 3820 */ 3821 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3822 continue; 3823 3824 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3825 3826 if (failtype == NULL) { 3827 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3828 ibuf); 3829 } else { 3830 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3831 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3832 } 3833 3834 if (bring_up) { 3835 ASSERT(ill->ill_dl_up); 3836 /* 3837 * Free up the ARP delete message so we can allocate 3838 * a fresh one through the normal path. 3839 */ 3840 freemsg(ipif->ipif_arp_del_mp); 3841 ipif->ipif_arp_del_mp = NULL; 3842 if (ipif_resolver_up(ipif, Res_act_initial) != 3843 EINPROGRESS) { 3844 ipif->ipif_addr_ready = 1; 3845 (void) ipif_up_done(ipif); 3846 } 3847 continue; 3848 } 3849 3850 mutex_enter(&ill->ill_lock); 3851 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3852 ipif->ipif_flags |= IPIF_DUPLICATE; 3853 ill->ill_ipif_dup_count++; 3854 mutex_exit(&ill->ill_lock); 3855 /* 3856 * Already exclusive on the ill; no need to handle deferred 3857 * processing here. 3858 */ 3859 (void) ipif_down(ipif, NULL, NULL); 3860 ipif_down_tail(ipif); 3861 mutex_enter(&ill->ill_lock); 3862 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3863 ill->ill_net_type == IRE_IF_RESOLVER && 3864 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3865 ipst->ips_ip_dup_recovery > 0) { 3866 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3867 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3868 } 3869 mutex_exit(&ill->ill_lock); 3870 } 3871 freemsg(mp); 3872 } 3873 3874 /* ARGSUSED */ 3875 static void 3876 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3877 { 3878 ill_t *ill = rq->q_ptr; 3879 arh_t *arh; 3880 ipaddr_t src; 3881 ipif_t *ipif; 3882 3883 arh = (arh_t *)mp->b_cont->b_rptr; 3884 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3885 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3886 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3887 (void) ipif_resolver_up(ipif, Res_act_defend); 3888 } 3889 freemsg(mp); 3890 } 3891 3892 /* 3893 * News from ARP. ARP sends notification of interesting events down 3894 * to its clients using M_CTL messages with the interesting ARP packet 3895 * attached via b_cont. 3896 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3897 * queue as opposed to ARP sending the message to all the clients, i.e. all 3898 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3899 * table if a cache IRE is found to delete all the entries for the address in 3900 * the packet. 3901 */ 3902 static void 3903 ip_arp_news(queue_t *q, mblk_t *mp) 3904 { 3905 arcn_t *arcn; 3906 arh_t *arh; 3907 ire_t *ire = NULL; 3908 char hbuf[MAC_STR_LEN]; 3909 char sbuf[INET_ADDRSTRLEN]; 3910 ipaddr_t src; 3911 in6_addr_t v6src; 3912 boolean_t isv6 = B_FALSE; 3913 ipif_t *ipif; 3914 ill_t *ill; 3915 ip_stack_t *ipst; 3916 3917 if (CONN_Q(q)) { 3918 conn_t *connp = Q_TO_CONN(q); 3919 3920 ipst = connp->conn_netstack->netstack_ip; 3921 } else { 3922 ill_t *ill = (ill_t *)q->q_ptr; 3923 3924 ipst = ill->ill_ipst; 3925 } 3926 3927 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3928 if (q->q_next) { 3929 putnext(q, mp); 3930 } else 3931 freemsg(mp); 3932 return; 3933 } 3934 arh = (arh_t *)mp->b_cont->b_rptr; 3935 /* Is it one we are interested in? */ 3936 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3937 isv6 = B_TRUE; 3938 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3939 IPV6_ADDR_LEN); 3940 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3941 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3942 IP_ADDR_LEN); 3943 } else { 3944 freemsg(mp); 3945 return; 3946 } 3947 3948 ill = q->q_ptr; 3949 3950 arcn = (arcn_t *)mp->b_rptr; 3951 switch (arcn->arcn_code) { 3952 case AR_CN_BOGON: 3953 /* 3954 * Someone is sending ARP packets with a source protocol 3955 * address that we have published and for which we believe our 3956 * entry is authoritative and (when ill_arp_extend is set) 3957 * verified to be unique on the network. 3958 * 3959 * The ARP module internally handles the cases where the sender 3960 * is just probing (for DAD) and where the hardware address of 3961 * a non-authoritative entry has changed. Thus, these are the 3962 * real conflicts, and we have to do resolution. 3963 * 3964 * We back away quickly from the address if it's from DHCP or 3965 * otherwise temporary and hasn't been used recently (or at 3966 * all). We'd like to include "deprecated" addresses here as 3967 * well (as there's no real reason to defend something we're 3968 * discarding), but IPMP "reuses" this flag to mean something 3969 * other than the standard meaning. 3970 * 3971 * If the ARP module above is not extended (meaning that it 3972 * doesn't know how to defend the address), then we just log 3973 * the problem as we always did and continue on. It's not 3974 * right, but there's little else we can do, and those old ATM 3975 * users are going away anyway. 3976 */ 3977 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3978 hbuf, sizeof (hbuf)); 3979 (void) ip_dot_addr(src, sbuf); 3980 if (isv6) { 3981 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3982 ipst); 3983 } else { 3984 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3985 } 3986 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3987 uint32_t now; 3988 uint32_t maxage; 3989 clock_t lused; 3990 uint_t maxdefense; 3991 uint_t defs; 3992 3993 /* 3994 * First, figure out if this address hasn't been used 3995 * in a while. If it hasn't, then it's a better 3996 * candidate for abandoning. 3997 */ 3998 ipif = ire->ire_ipif; 3999 ASSERT(ipif != NULL); 4000 now = gethrestime_sec(); 4001 maxage = now - ire->ire_create_time; 4002 if (maxage > ipst->ips_ip_max_temp_idle) 4003 maxage = ipst->ips_ip_max_temp_idle; 4004 lused = drv_hztousec(ddi_get_lbolt() - 4005 ire->ire_last_used_time) / MICROSEC + 1; 4006 if (lused >= maxage && (ipif->ipif_flags & 4007 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4008 maxdefense = ipst->ips_ip_max_temp_defend; 4009 else 4010 maxdefense = ipst->ips_ip_max_defend; 4011 4012 /* 4013 * Now figure out how many times we've defended 4014 * ourselves. Ignore defenses that happened long in 4015 * the past. 4016 */ 4017 mutex_enter(&ire->ire_lock); 4018 if ((defs = ire->ire_defense_count) > 0 && 4019 now - ire->ire_defense_time > 4020 ipst->ips_ip_defend_interval) { 4021 ire->ire_defense_count = defs = 0; 4022 } 4023 ire->ire_defense_count++; 4024 ire->ire_defense_time = now; 4025 mutex_exit(&ire->ire_lock); 4026 ill_refhold(ill); 4027 ire_refrele(ire); 4028 4029 /* 4030 * If we've defended ourselves too many times already, 4031 * then give up and tear down the interface(s) using 4032 * this address. Otherwise, defend by sending out a 4033 * gratuitous ARP. 4034 */ 4035 if (defs >= maxdefense && ill->ill_arp_extend) { 4036 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4037 B_FALSE); 4038 } else { 4039 cmn_err(CE_WARN, 4040 "node %s is using our IP address %s on %s", 4041 hbuf, sbuf, ill->ill_name); 4042 /* 4043 * If this is an old (ATM) ARP module, then 4044 * don't try to defend the address. Remain 4045 * compatible with the old behavior. Defend 4046 * only with new ARP. 4047 */ 4048 if (ill->ill_arp_extend) { 4049 qwriter_ip(ill, q, mp, ip_arp_defend, 4050 NEW_OP, B_FALSE); 4051 } else { 4052 ill_refrele(ill); 4053 } 4054 } 4055 return; 4056 } 4057 cmn_err(CE_WARN, 4058 "proxy ARP problem? Node '%s' is using %s on %s", 4059 hbuf, sbuf, ill->ill_name); 4060 if (ire != NULL) 4061 ire_refrele(ire); 4062 break; 4063 case AR_CN_ANNOUNCE: 4064 if (isv6) { 4065 /* 4066 * For XRESOLV interfaces. 4067 * Delete the IRE cache entry and NCE for this 4068 * v6 address 4069 */ 4070 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4071 /* 4072 * If v6src is a non-zero, it's a router address 4073 * as below. Do the same sort of thing to clean 4074 * out off-net IRE_CACHE entries that go through 4075 * the router. 4076 */ 4077 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4078 ire_walk_v6(ire_delete_cache_gw_v6, 4079 (char *)&v6src, ALL_ZONES, ipst); 4080 } 4081 } else { 4082 nce_hw_map_t hwm; 4083 4084 /* 4085 * ARP gives us a copy of any packet where it thinks 4086 * the address has changed, so that we can update our 4087 * caches. We're responsible for caching known answers 4088 * in the current design. We check whether the 4089 * hardware address really has changed in all of our 4090 * entries that have cached this mapping, and if so, we 4091 * blow them away. This way we will immediately pick 4092 * up the rare case of a host changing hardware 4093 * address. 4094 */ 4095 if (src == 0) 4096 break; 4097 hwm.hwm_addr = src; 4098 hwm.hwm_hwlen = arh->arh_hlen; 4099 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4100 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4101 ndp_walk_common(ipst->ips_ndp4, NULL, 4102 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4103 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4104 } 4105 break; 4106 case AR_CN_READY: 4107 /* No external v6 resolver has a contract to use this */ 4108 if (isv6) 4109 break; 4110 /* If the link is down, we'll retry this later */ 4111 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4112 break; 4113 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4114 NULL, NULL, ipst); 4115 if (ipif != NULL) { 4116 /* 4117 * If this is a duplicate recovery, then we now need to 4118 * go exclusive to bring this thing back up. 4119 */ 4120 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4121 IPIF_DUPLICATE) { 4122 ipif_refrele(ipif); 4123 ill_refhold(ill); 4124 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4125 B_FALSE); 4126 return; 4127 } 4128 /* 4129 * If this is the first notice that this address is 4130 * ready, then let the user know now. 4131 */ 4132 if ((ipif->ipif_flags & IPIF_UP) && 4133 !ipif->ipif_addr_ready) { 4134 ipif_mask_reply(ipif); 4135 ip_rts_ifmsg(ipif); 4136 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4137 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4138 } 4139 ipif->ipif_addr_ready = 1; 4140 ipif_refrele(ipif); 4141 } 4142 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4143 if (ire != NULL) { 4144 ire->ire_defense_count = 0; 4145 ire_refrele(ire); 4146 } 4147 break; 4148 case AR_CN_FAILED: 4149 /* No external v6 resolver has a contract to use this */ 4150 if (isv6) 4151 break; 4152 ill_refhold(ill); 4153 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4154 return; 4155 } 4156 freemsg(mp); 4157 } 4158 4159 /* 4160 * Create a mblk suitable for carrying the interface index and/or source link 4161 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4162 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4163 * application. 4164 */ 4165 mblk_t * 4166 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4167 ip_stack_t *ipst) 4168 { 4169 mblk_t *mp; 4170 ip_pktinfo_t *pinfo; 4171 ipha_t *ipha; 4172 struct ether_header *pether; 4173 4174 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4175 if (mp == NULL) { 4176 ip1dbg(("ip_add_info: allocation failure.\n")); 4177 return (data_mp); 4178 } 4179 4180 ipha = (ipha_t *)data_mp->b_rptr; 4181 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4182 bzero(pinfo, sizeof (ip_pktinfo_t)); 4183 pinfo->ip_pkt_flags = (uchar_t)flags; 4184 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4185 4186 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4187 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4188 if (flags & IPF_RECVADDR) { 4189 ipif_t *ipif; 4190 ire_t *ire; 4191 4192 /* 4193 * Only valid for V4 4194 */ 4195 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4196 (IPV4_VERSION << 4)); 4197 4198 ipif = ipif_get_next_ipif(NULL, ill); 4199 if (ipif != NULL) { 4200 /* 4201 * Since a decision has already been made to deliver the 4202 * packet, there is no need to test for SECATTR and 4203 * ZONEONLY. 4204 * When a multicast packet is transmitted 4205 * a cache entry is created for the multicast address. 4206 * When delivering a copy of the packet or when new 4207 * packets are received we do not want to match on the 4208 * cached entry so explicitly match on 4209 * IRE_LOCAL and IRE_LOOPBACK 4210 */ 4211 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4212 IRE_LOCAL | IRE_LOOPBACK, 4213 ipif, zoneid, NULL, 4214 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4215 if (ire == NULL) { 4216 /* 4217 * packet must have come on a different 4218 * interface. 4219 * Since a decision has already been made to 4220 * deliver the packet, there is no need to test 4221 * for SECATTR and ZONEONLY. 4222 * Only match on local and broadcast ire's. 4223 * See detailed comment above. 4224 */ 4225 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4226 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4227 NULL, MATCH_IRE_TYPE, ipst); 4228 } 4229 4230 if (ire == NULL) { 4231 /* 4232 * This is either a multicast packet or 4233 * the address has been removed since 4234 * the packet was received. 4235 * Return INADDR_ANY so that normal source 4236 * selection occurs for the response. 4237 */ 4238 4239 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4240 } else { 4241 pinfo->ip_pkt_match_addr.s_addr = 4242 ire->ire_src_addr; 4243 ire_refrele(ire); 4244 } 4245 ipif_refrele(ipif); 4246 } else { 4247 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4248 } 4249 } 4250 4251 pether = (struct ether_header *)((char *)ipha 4252 - sizeof (struct ether_header)); 4253 /* 4254 * Make sure the interface is an ethernet type, since this option 4255 * is currently supported only on this type of interface. Also make 4256 * sure we are pointing correctly above db_base. 4257 */ 4258 4259 if ((flags & IPF_RECVSLLA) && 4260 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4261 (ill->ill_type == IFT_ETHER) && 4262 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4263 4264 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4265 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4266 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4267 } else { 4268 /* 4269 * Clear the bit. Indicate to upper layer that IP is not 4270 * sending this ancillary info. 4271 */ 4272 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4273 } 4274 4275 mp->b_datap->db_type = M_CTL; 4276 mp->b_wptr += sizeof (ip_pktinfo_t); 4277 mp->b_cont = data_mp; 4278 4279 return (mp); 4280 } 4281 4282 /* 4283 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4284 * part of the bind request. 4285 */ 4286 4287 boolean_t 4288 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4289 { 4290 ipsec_in_t *ii; 4291 4292 ASSERT(policy_mp != NULL); 4293 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4294 4295 ii = (ipsec_in_t *)policy_mp->b_rptr; 4296 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4297 4298 connp->conn_policy = ii->ipsec_in_policy; 4299 ii->ipsec_in_policy = NULL; 4300 4301 if (ii->ipsec_in_action != NULL) { 4302 if (connp->conn_latch == NULL) { 4303 connp->conn_latch = iplatch_create(); 4304 if (connp->conn_latch == NULL) 4305 return (B_FALSE); 4306 } 4307 ipsec_latch_inbound(connp->conn_latch, ii); 4308 } 4309 return (B_TRUE); 4310 } 4311 4312 /* 4313 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4314 * and to arrange for power-fanout assist. The ULP is identified by 4315 * adding a single byte at the end of the original bind message. 4316 * A ULP other than UDP or TCP that wishes to be recognized passes 4317 * down a bind with a zero length address. 4318 * 4319 * The binding works as follows: 4320 * - A zero byte address means just bind to the protocol. 4321 * - A four byte address is treated as a request to validate 4322 * that the address is a valid local address, appropriate for 4323 * an application to bind to. This does not affect any fanout 4324 * information in IP. 4325 * - A sizeof sin_t byte address is used to bind to only the local address 4326 * and port. 4327 * - A sizeof ipa_conn_t byte address contains complete fanout information 4328 * consisting of local and remote addresses and ports. In 4329 * this case, the addresses are both validated as appropriate 4330 * for this operation, and, if so, the information is retained 4331 * for use in the inbound fanout. 4332 * 4333 * The ULP (except in the zero-length bind) can append an 4334 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4335 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4336 * a copy of the source or destination IRE (source for local bind; 4337 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4338 * policy information contained should be copied on to the conn. 4339 * 4340 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4341 */ 4342 mblk_t * 4343 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4344 { 4345 ssize_t len; 4346 struct T_bind_req *tbr; 4347 sin_t *sin; 4348 ipa_conn_t *ac; 4349 uchar_t *ucp; 4350 mblk_t *mp1; 4351 boolean_t ire_requested; 4352 boolean_t ipsec_policy_set = B_FALSE; 4353 int error = 0; 4354 int protocol; 4355 ipa_conn_x_t *acx; 4356 4357 ASSERT(!connp->conn_af_isv6); 4358 connp->conn_pkt_isv6 = B_FALSE; 4359 4360 len = MBLKL(mp); 4361 if (len < (sizeof (*tbr) + 1)) { 4362 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4363 "ip_bind: bogus msg, len %ld", len); 4364 /* XXX: Need to return something better */ 4365 goto bad_addr; 4366 } 4367 /* Back up and extract the protocol identifier. */ 4368 mp->b_wptr--; 4369 protocol = *mp->b_wptr & 0xFF; 4370 tbr = (struct T_bind_req *)mp->b_rptr; 4371 /* Reset the message type in preparation for shipping it back. */ 4372 DB_TYPE(mp) = M_PCPROTO; 4373 4374 connp->conn_ulp = (uint8_t)protocol; 4375 4376 /* 4377 * Check for a zero length address. This is from a protocol that 4378 * wants to register to receive all packets of its type. 4379 */ 4380 if (tbr->ADDR_length == 0) { 4381 /* 4382 * These protocols are now intercepted in ip_bind_v6(). 4383 * Reject protocol-level binds here for now. 4384 * 4385 * For SCTP raw socket, ICMP sends down a bind with sin_t 4386 * so that the protocol type cannot be SCTP. 4387 */ 4388 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4389 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4390 goto bad_addr; 4391 } 4392 4393 /* 4394 * 4395 * The udp module never sends down a zero-length address, 4396 * and allowing this on a labeled system will break MLP 4397 * functionality. 4398 */ 4399 if (is_system_labeled() && protocol == IPPROTO_UDP) 4400 goto bad_addr; 4401 4402 if (connp->conn_mac_exempt) 4403 goto bad_addr; 4404 4405 /* No hash here really. The table is big enough. */ 4406 connp->conn_srcv6 = ipv6_all_zeros; 4407 4408 ipcl_proto_insert(connp, protocol); 4409 4410 tbr->PRIM_type = T_BIND_ACK; 4411 return (mp); 4412 } 4413 4414 /* Extract the address pointer from the message. */ 4415 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4416 tbr->ADDR_length); 4417 if (ucp == NULL) { 4418 ip1dbg(("ip_bind: no address\n")); 4419 goto bad_addr; 4420 } 4421 if (!OK_32PTR(ucp)) { 4422 ip1dbg(("ip_bind: unaligned address\n")); 4423 goto bad_addr; 4424 } 4425 /* 4426 * Check for trailing mps. 4427 */ 4428 4429 mp1 = mp->b_cont; 4430 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4431 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4432 4433 switch (tbr->ADDR_length) { 4434 default: 4435 ip1dbg(("ip_bind: bad address length %d\n", 4436 (int)tbr->ADDR_length)); 4437 goto bad_addr; 4438 4439 case IP_ADDR_LEN: 4440 /* Verification of local address only */ 4441 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4442 ire_requested, ipsec_policy_set, B_FALSE); 4443 break; 4444 4445 case sizeof (sin_t): 4446 sin = (sin_t *)ucp; 4447 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4448 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4449 break; 4450 4451 case sizeof (ipa_conn_t): 4452 ac = (ipa_conn_t *)ucp; 4453 /* For raw socket, the local port is not set. */ 4454 if (ac->ac_lport == 0) 4455 ac->ac_lport = connp->conn_lport; 4456 /* Always verify destination reachability. */ 4457 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4458 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4459 ipsec_policy_set, B_TRUE, B_TRUE); 4460 break; 4461 4462 case sizeof (ipa_conn_x_t): 4463 acx = (ipa_conn_x_t *)ucp; 4464 /* 4465 * Whether or not to verify destination reachability depends 4466 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4467 */ 4468 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4469 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4470 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4471 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4472 break; 4473 } 4474 if (error == EINPROGRESS) 4475 return (NULL); 4476 else if (error != 0) 4477 goto bad_addr; 4478 /* 4479 * Pass the IPsec headers size in ire_ipsec_overhead. 4480 * We can't do this in ip_bind_insert_ire because the policy 4481 * may not have been inherited at that point in time and hence 4482 * conn_out_enforce_policy may not be set. 4483 */ 4484 mp1 = mp->b_cont; 4485 if (ire_requested && connp->conn_out_enforce_policy && 4486 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4487 ire_t *ire = (ire_t *)mp1->b_rptr; 4488 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4489 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4490 } 4491 4492 /* Send it home. */ 4493 mp->b_datap->db_type = M_PCPROTO; 4494 tbr->PRIM_type = T_BIND_ACK; 4495 return (mp); 4496 4497 bad_addr: 4498 /* 4499 * If error = -1 then we generate a TBADADDR - otherwise error is 4500 * a unix errno. 4501 */ 4502 if (error > 0) 4503 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4504 else 4505 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4506 return (mp); 4507 } 4508 4509 /* 4510 * Here address is verified to be a valid local address. 4511 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4512 * address is also considered a valid local address. 4513 * In the case of a broadcast/multicast address, however, the 4514 * upper protocol is expected to reset the src address 4515 * to 0 if it sees a IRE_BROADCAST type returned so that 4516 * no packets are emitted with broadcast/multicast address as 4517 * source address (that violates hosts requirements RFC1122) 4518 * The addresses valid for bind are: 4519 * (1) - INADDR_ANY (0) 4520 * (2) - IP address of an UP interface 4521 * (3) - IP address of a DOWN interface 4522 * (4) - valid local IP broadcast addresses. In this case 4523 * the conn will only receive packets destined to 4524 * the specified broadcast address. 4525 * (5) - a multicast address. In this case 4526 * the conn will only receive packets destined to 4527 * the specified multicast address. Note: the 4528 * application still has to issue an 4529 * IP_ADD_MEMBERSHIP socket option. 4530 * 4531 * On error, return -1 for TBADADDR otherwise pass the 4532 * errno with TSYSERR reply. 4533 * 4534 * In all the above cases, the bound address must be valid in the current zone. 4535 * When the address is loopback, multicast or broadcast, there might be many 4536 * matching IREs so bind has to look up based on the zone. 4537 * 4538 * Note: lport is in network byte order. 4539 */ 4540 int 4541 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4542 boolean_t ire_requested, boolean_t ipsec_policy_set, 4543 boolean_t fanout_insert) 4544 { 4545 int error = 0; 4546 ire_t *src_ire; 4547 mblk_t *policy_mp; 4548 ipif_t *ipif; 4549 zoneid_t zoneid; 4550 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4551 4552 if (ipsec_policy_set) { 4553 policy_mp = mp->b_cont; 4554 } 4555 4556 /* 4557 * If it was previously connected, conn_fully_bound would have 4558 * been set. 4559 */ 4560 connp->conn_fully_bound = B_FALSE; 4561 4562 src_ire = NULL; 4563 ipif = NULL; 4564 4565 zoneid = IPCL_ZONEID(connp); 4566 4567 if (src_addr) { 4568 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4569 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4570 /* 4571 * If an address other than 0.0.0.0 is requested, 4572 * we verify that it is a valid address for bind 4573 * Note: Following code is in if-else-if form for 4574 * readability compared to a condition check. 4575 */ 4576 /* LINTED - statement has no consequent */ 4577 if (IRE_IS_LOCAL(src_ire)) { 4578 /* 4579 * (2) Bind to address of local UP interface 4580 */ 4581 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4582 /* 4583 * (4) Bind to broadcast address 4584 * Note: permitted only from transports that 4585 * request IRE 4586 */ 4587 if (!ire_requested) 4588 error = EADDRNOTAVAIL; 4589 } else { 4590 /* 4591 * (3) Bind to address of local DOWN interface 4592 * (ipif_lookup_addr() looks up all interfaces 4593 * but we do not get here for UP interfaces 4594 * - case (2) above) 4595 * We put the protocol byte back into the mblk 4596 * since we may come back via ip_wput_nondata() 4597 * later with this mblk if ipif_lookup_addr chooses 4598 * to defer processing. 4599 */ 4600 *mp->b_wptr++ = (char)connp->conn_ulp; 4601 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4602 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4603 &error, ipst)) != NULL) { 4604 ipif_refrele(ipif); 4605 } else if (error == EINPROGRESS) { 4606 if (src_ire != NULL) 4607 ire_refrele(src_ire); 4608 return (EINPROGRESS); 4609 } else if (CLASSD(src_addr)) { 4610 error = 0; 4611 if (src_ire != NULL) 4612 ire_refrele(src_ire); 4613 /* 4614 * (5) bind to multicast address. 4615 * Fake out the IRE returned to upper 4616 * layer to be a broadcast IRE. 4617 */ 4618 src_ire = ire_ctable_lookup( 4619 INADDR_BROADCAST, INADDR_ANY, 4620 IRE_BROADCAST, NULL, zoneid, NULL, 4621 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4622 ipst); 4623 if (src_ire == NULL || !ire_requested) 4624 error = EADDRNOTAVAIL; 4625 } else { 4626 /* 4627 * Not a valid address for bind 4628 */ 4629 error = EADDRNOTAVAIL; 4630 } 4631 /* 4632 * Just to keep it consistent with the processing in 4633 * ip_bind_v4() 4634 */ 4635 mp->b_wptr--; 4636 } 4637 if (error) { 4638 /* Red Alert! Attempting to be a bogon! */ 4639 ip1dbg(("ip_bind: bad src address 0x%x\n", 4640 ntohl(src_addr))); 4641 goto bad_addr; 4642 } 4643 } 4644 4645 /* 4646 * Allow setting new policies. For example, disconnects come 4647 * down as ipa_t bind. As we would have set conn_policy_cached 4648 * to B_TRUE before, we should set it to B_FALSE, so that policy 4649 * can change after the disconnect. 4650 */ 4651 connp->conn_policy_cached = B_FALSE; 4652 4653 /* 4654 * If not fanout_insert this was just an address verification 4655 */ 4656 if (fanout_insert) { 4657 /* 4658 * The addresses have been verified. Time to insert in 4659 * the correct fanout list. 4660 */ 4661 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4662 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4663 connp->conn_lport = lport; 4664 connp->conn_fport = 0; 4665 /* 4666 * Do we need to add a check to reject Multicast packets 4667 */ 4668 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4669 } 4670 4671 if (error == 0) { 4672 if (ire_requested) { 4673 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4674 error = -1; 4675 /* Falls through to bad_addr */ 4676 } 4677 } else if (ipsec_policy_set) { 4678 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4679 error = -1; 4680 /* Falls through to bad_addr */ 4681 } 4682 } 4683 } 4684 bad_addr: 4685 if (error != 0) { 4686 if (connp->conn_anon_port) { 4687 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4688 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4689 B_FALSE); 4690 } 4691 connp->conn_mlp_type = mlptSingle; 4692 } 4693 if (src_ire != NULL) 4694 IRE_REFRELE(src_ire); 4695 if (ipsec_policy_set) { 4696 ASSERT(policy_mp == mp->b_cont); 4697 ASSERT(policy_mp != NULL); 4698 freeb(policy_mp); 4699 /* 4700 * As of now assume that nothing else accompanies 4701 * IPSEC_POLICY_SET. 4702 */ 4703 mp->b_cont = NULL; 4704 } 4705 return (error); 4706 } 4707 4708 /* 4709 * Verify that both the source and destination addresses 4710 * are valid. If verify_dst is false, then the destination address may be 4711 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4712 * destination reachability, while tunnels do not. 4713 * Note that we allow connect to broadcast and multicast 4714 * addresses when ire_requested is set. Thus the ULP 4715 * has to check for IRE_BROADCAST and multicast. 4716 * 4717 * Returns zero if ok. 4718 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4719 * (for use with TSYSERR reply). 4720 * 4721 * Note: lport and fport are in network byte order. 4722 */ 4723 int 4724 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4725 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4726 boolean_t ire_requested, boolean_t ipsec_policy_set, 4727 boolean_t fanout_insert, boolean_t verify_dst) 4728 { 4729 ire_t *src_ire; 4730 ire_t *dst_ire; 4731 int error = 0; 4732 int protocol; 4733 mblk_t *policy_mp; 4734 ire_t *sire = NULL; 4735 ire_t *md_dst_ire = NULL; 4736 ire_t *lso_dst_ire = NULL; 4737 ill_t *ill = NULL; 4738 zoneid_t zoneid; 4739 ipaddr_t src_addr = *src_addrp; 4740 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4741 4742 src_ire = dst_ire = NULL; 4743 protocol = *mp->b_wptr & 0xFF; 4744 4745 /* 4746 * If we never got a disconnect before, clear it now. 4747 */ 4748 connp->conn_fully_bound = B_FALSE; 4749 4750 if (ipsec_policy_set) { 4751 policy_mp = mp->b_cont; 4752 } 4753 4754 zoneid = IPCL_ZONEID(connp); 4755 4756 if (CLASSD(dst_addr)) { 4757 /* Pick up an IRE_BROADCAST */ 4758 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4759 NULL, zoneid, MBLK_GETLABEL(mp), 4760 (MATCH_IRE_RECURSIVE | 4761 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4762 MATCH_IRE_SECATTR), ipst); 4763 } else { 4764 /* 4765 * If conn_dontroute is set or if conn_nexthop_set is set, 4766 * and onlink ipif is not found set ENETUNREACH error. 4767 */ 4768 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4769 ipif_t *ipif; 4770 4771 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4772 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4773 if (ipif == NULL) { 4774 error = ENETUNREACH; 4775 goto bad_addr; 4776 } 4777 ipif_refrele(ipif); 4778 } 4779 4780 if (connp->conn_nexthop_set) { 4781 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4782 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4783 MATCH_IRE_SECATTR, ipst); 4784 } else { 4785 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4786 &sire, zoneid, MBLK_GETLABEL(mp), 4787 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4788 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4789 MATCH_IRE_SECATTR), ipst); 4790 } 4791 } 4792 /* 4793 * dst_ire can't be a broadcast when not ire_requested. 4794 * We also prevent ire's with src address INADDR_ANY to 4795 * be used, which are created temporarily for 4796 * sending out packets from endpoints that have 4797 * conn_unspec_src set. If verify_dst is true, the destination must be 4798 * reachable. If verify_dst is false, the destination needn't be 4799 * reachable. 4800 * 4801 * If we match on a reject or black hole, then we've got a 4802 * local failure. May as well fail out the connect() attempt, 4803 * since it's never going to succeed. 4804 */ 4805 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4806 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4807 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4808 /* 4809 * If we're verifying destination reachability, we always want 4810 * to complain here. 4811 * 4812 * If we're not verifying destination reachability but the 4813 * destination has a route, we still want to fail on the 4814 * temporary address and broadcast address tests. 4815 */ 4816 if (verify_dst || (dst_ire != NULL)) { 4817 if (ip_debug > 2) { 4818 pr_addr_dbg("ip_bind_connected: bad connected " 4819 "dst %s\n", AF_INET, &dst_addr); 4820 } 4821 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4822 error = ENETUNREACH; 4823 else 4824 error = EHOSTUNREACH; 4825 goto bad_addr; 4826 } 4827 } 4828 4829 /* 4830 * We now know that routing will allow us to reach the destination. 4831 * Check whether Trusted Solaris policy allows communication with this 4832 * host, and pretend that the destination is unreachable if not. 4833 * 4834 * This is never a problem for TCP, since that transport is known to 4835 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4836 * handling. If the remote is unreachable, it will be detected at that 4837 * point, so there's no reason to check it here. 4838 * 4839 * Note that for sendto (and other datagram-oriented friends), this 4840 * check is done as part of the data path label computation instead. 4841 * The check here is just to make non-TCP connect() report the right 4842 * error. 4843 */ 4844 if (dst_ire != NULL && is_system_labeled() && 4845 !IPCL_IS_TCP(connp) && 4846 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4847 connp->conn_mac_exempt, ipst) != 0) { 4848 error = EHOSTUNREACH; 4849 if (ip_debug > 2) { 4850 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4851 AF_INET, &dst_addr); 4852 } 4853 goto bad_addr; 4854 } 4855 4856 /* 4857 * If the app does a connect(), it means that it will most likely 4858 * send more than 1 packet to the destination. It makes sense 4859 * to clear the temporary flag. 4860 */ 4861 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4862 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4863 irb_t *irb = dst_ire->ire_bucket; 4864 4865 rw_enter(&irb->irb_lock, RW_WRITER); 4866 /* 4867 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4868 * the lock to guarantee irb_tmp_ire_cnt. 4869 */ 4870 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4871 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4872 irb->irb_tmp_ire_cnt--; 4873 } 4874 rw_exit(&irb->irb_lock); 4875 } 4876 4877 /* 4878 * See if we should notify ULP about LSO/MDT; we do this whether or not 4879 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4880 * eligibility tests for passive connects are handled separately 4881 * through tcp_adapt_ire(). We do this before the source address 4882 * selection, because dst_ire may change after a call to 4883 * ipif_select_source(). This is a best-effort check, as the 4884 * packet for this connection may not actually go through 4885 * dst_ire->ire_stq, and the exact IRE can only be known after 4886 * calling ip_newroute(). This is why we further check on the 4887 * IRE during LSO/Multidata packet transmission in 4888 * tcp_lsosend()/tcp_multisend(). 4889 */ 4890 if (!ipsec_policy_set && dst_ire != NULL && 4891 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4892 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4893 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4894 lso_dst_ire = dst_ire; 4895 IRE_REFHOLD(lso_dst_ire); 4896 } else if (ipst->ips_ip_multidata_outbound && 4897 ILL_MDT_CAPABLE(ill)) { 4898 md_dst_ire = dst_ire; 4899 IRE_REFHOLD(md_dst_ire); 4900 } 4901 } 4902 4903 if (dst_ire != NULL && 4904 dst_ire->ire_type == IRE_LOCAL && 4905 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4906 /* 4907 * If the IRE belongs to a different zone, look for a matching 4908 * route in the forwarding table and use the source address from 4909 * that route. 4910 */ 4911 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4912 zoneid, 0, NULL, 4913 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4914 MATCH_IRE_RJ_BHOLE, ipst); 4915 if (src_ire == NULL) { 4916 error = EHOSTUNREACH; 4917 goto bad_addr; 4918 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4919 if (!(src_ire->ire_type & IRE_HOST)) 4920 error = ENETUNREACH; 4921 else 4922 error = EHOSTUNREACH; 4923 goto bad_addr; 4924 } 4925 if (src_addr == INADDR_ANY) 4926 src_addr = src_ire->ire_src_addr; 4927 ire_refrele(src_ire); 4928 src_ire = NULL; 4929 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4930 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4931 src_addr = sire->ire_src_addr; 4932 ire_refrele(dst_ire); 4933 dst_ire = sire; 4934 sire = NULL; 4935 } else { 4936 /* 4937 * Pick a source address so that a proper inbound 4938 * load spreading would happen. 4939 */ 4940 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4941 ipif_t *src_ipif = NULL; 4942 ire_t *ipif_ire; 4943 4944 /* 4945 * Supply a local source address such that inbound 4946 * load spreading happens. 4947 * 4948 * Determine the best source address on this ill for 4949 * the destination. 4950 * 4951 * 1) For broadcast, we should return a broadcast ire 4952 * found above so that upper layers know that the 4953 * destination address is a broadcast address. 4954 * 4955 * 2) If this is part of a group, select a better 4956 * source address so that better inbound load 4957 * balancing happens. Do the same if the ipif 4958 * is DEPRECATED. 4959 * 4960 * 3) If the outgoing interface is part of a usesrc 4961 * group, then try selecting a source address from 4962 * the usesrc ILL. 4963 */ 4964 if ((dst_ire->ire_zoneid != zoneid && 4965 dst_ire->ire_zoneid != ALL_ZONES) || 4966 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4967 (!(dst_ire->ire_type & IRE_BROADCAST) && 4968 ((dst_ill->ill_group != NULL) || 4969 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4970 (dst_ill->ill_usesrc_ifindex != 0)))) { 4971 /* 4972 * If the destination is reachable via a 4973 * given gateway, the selected source address 4974 * should be in the same subnet as the gateway. 4975 * Otherwise, the destination is not reachable. 4976 * 4977 * If there are no interfaces on the same subnet 4978 * as the destination, ipif_select_source gives 4979 * first non-deprecated interface which might be 4980 * on a different subnet than the gateway. 4981 * This is not desirable. Hence pass the dst_ire 4982 * source address to ipif_select_source. 4983 * It is sure that the destination is reachable 4984 * with the dst_ire source address subnet. 4985 * So passing dst_ire source address to 4986 * ipif_select_source will make sure that the 4987 * selected source will be on the same subnet 4988 * as dst_ire source address. 4989 */ 4990 ipaddr_t saddr = 4991 dst_ire->ire_ipif->ipif_src_addr; 4992 src_ipif = ipif_select_source(dst_ill, 4993 saddr, zoneid); 4994 if (src_ipif != NULL) { 4995 if (IS_VNI(src_ipif->ipif_ill)) { 4996 /* 4997 * For VNI there is no 4998 * interface route 4999 */ 5000 src_addr = 5001 src_ipif->ipif_src_addr; 5002 } else { 5003 ipif_ire = 5004 ipif_to_ire(src_ipif); 5005 if (ipif_ire != NULL) { 5006 IRE_REFRELE(dst_ire); 5007 dst_ire = ipif_ire; 5008 } 5009 src_addr = 5010 dst_ire->ire_src_addr; 5011 } 5012 ipif_refrele(src_ipif); 5013 } else { 5014 src_addr = dst_ire->ire_src_addr; 5015 } 5016 } else { 5017 src_addr = dst_ire->ire_src_addr; 5018 } 5019 } 5020 } 5021 5022 /* 5023 * We do ire_route_lookup() here (and not 5024 * interface lookup as we assert that 5025 * src_addr should only come from an 5026 * UP interface for hard binding. 5027 */ 5028 ASSERT(src_ire == NULL); 5029 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5030 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5031 /* src_ire must be a local|loopback */ 5032 if (!IRE_IS_LOCAL(src_ire)) { 5033 if (ip_debug > 2) { 5034 pr_addr_dbg("ip_bind_connected: bad connected " 5035 "src %s\n", AF_INET, &src_addr); 5036 } 5037 error = EADDRNOTAVAIL; 5038 goto bad_addr; 5039 } 5040 5041 /* 5042 * If the source address is a loopback address, the 5043 * destination had best be local or multicast. 5044 * The transports that can't handle multicast will reject 5045 * those addresses. 5046 */ 5047 if (src_ire->ire_type == IRE_LOOPBACK && 5048 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5049 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5050 error = -1; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * Allow setting new policies. For example, disconnects come 5056 * down as ipa_t bind. As we would have set conn_policy_cached 5057 * to B_TRUE before, we should set it to B_FALSE, so that policy 5058 * can change after the disconnect. 5059 */ 5060 connp->conn_policy_cached = B_FALSE; 5061 5062 /* 5063 * Set the conn addresses/ports immediately, so the IPsec policy calls 5064 * can handle their passed-in conn's. 5065 */ 5066 5067 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5068 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5069 connp->conn_lport = lport; 5070 connp->conn_fport = fport; 5071 *src_addrp = src_addr; 5072 5073 ASSERT(!(ipsec_policy_set && ire_requested)); 5074 if (ire_requested) { 5075 iulp_t *ulp_info = NULL; 5076 5077 /* 5078 * Note that sire will not be NULL if this is an off-link 5079 * connection and there is not cache for that dest yet. 5080 * 5081 * XXX Because of an existing bug, if there are multiple 5082 * default routes, the IRE returned now may not be the actual 5083 * default route used (default routes are chosen in a 5084 * round robin fashion). So if the metrics for different 5085 * default routes are different, we may return the wrong 5086 * metrics. This will not be a problem if the existing 5087 * bug is fixed. 5088 */ 5089 if (sire != NULL) { 5090 ulp_info = &(sire->ire_uinfo); 5091 } 5092 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5093 error = -1; 5094 goto bad_addr; 5095 } 5096 } else if (ipsec_policy_set) { 5097 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5098 error = -1; 5099 goto bad_addr; 5100 } 5101 } 5102 5103 /* 5104 * Cache IPsec policy in this conn. If we have per-socket policy, 5105 * we'll cache that. If we don't, we'll inherit global policy. 5106 * 5107 * We can't insert until the conn reflects the policy. Note that 5108 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5109 * connections where we don't have a policy. This is to prevent 5110 * global policy lookups in the inbound path. 5111 * 5112 * If we insert before we set conn_policy_cached, 5113 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5114 * because global policy cound be non-empty. We normally call 5115 * ipsec_check_policy() for conn_policy_cached connections only if 5116 * ipc_in_enforce_policy is set. But in this case, 5117 * conn_policy_cached can get set anytime since we made the 5118 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5119 * called, which will make the above assumption false. Thus, we 5120 * need to insert after we set conn_policy_cached. 5121 */ 5122 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5123 goto bad_addr; 5124 5125 if (fanout_insert) { 5126 /* 5127 * The addresses have been verified. Time to insert in 5128 * the correct fanout list. 5129 */ 5130 error = ipcl_conn_insert(connp, protocol, src_addr, 5131 dst_addr, connp->conn_ports); 5132 } 5133 5134 if (error == 0) { 5135 connp->conn_fully_bound = B_TRUE; 5136 /* 5137 * Our initial checks for LSO/MDT have passed; the IRE is not 5138 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5139 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5140 * ip_xxinfo_return(), which performs further checks 5141 * against them and upon success, returns the LSO/MDT info 5142 * mblk which we will attach to the bind acknowledgment. 5143 */ 5144 if (lso_dst_ire != NULL) { 5145 mblk_t *lsoinfo_mp; 5146 5147 ASSERT(ill->ill_lso_capab != NULL); 5148 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5149 ill->ill_name, ill->ill_lso_capab)) != NULL) 5150 linkb(mp, lsoinfo_mp); 5151 } else if (md_dst_ire != NULL) { 5152 mblk_t *mdinfo_mp; 5153 5154 ASSERT(ill->ill_mdt_capab != NULL); 5155 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5156 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5157 linkb(mp, mdinfo_mp); 5158 } 5159 } 5160 bad_addr: 5161 if (ipsec_policy_set) { 5162 ASSERT(policy_mp == mp->b_cont); 5163 ASSERT(policy_mp != NULL); 5164 freeb(policy_mp); 5165 /* 5166 * As of now assume that nothing else accompanies 5167 * IPSEC_POLICY_SET. 5168 */ 5169 mp->b_cont = NULL; 5170 } 5171 if (src_ire != NULL) 5172 IRE_REFRELE(src_ire); 5173 if (dst_ire != NULL) 5174 IRE_REFRELE(dst_ire); 5175 if (sire != NULL) 5176 IRE_REFRELE(sire); 5177 if (md_dst_ire != NULL) 5178 IRE_REFRELE(md_dst_ire); 5179 if (lso_dst_ire != NULL) 5180 IRE_REFRELE(lso_dst_ire); 5181 return (error); 5182 } 5183 5184 /* 5185 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5186 * Prefers dst_ire over src_ire. 5187 */ 5188 static boolean_t 5189 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5190 { 5191 mblk_t *mp1; 5192 ire_t *ret_ire = NULL; 5193 5194 mp1 = mp->b_cont; 5195 ASSERT(mp1 != NULL); 5196 5197 if (ire != NULL) { 5198 /* 5199 * mp1 initialized above to IRE_DB_REQ_TYPE 5200 * appended mblk. Its <upper protocol>'s 5201 * job to make sure there is room. 5202 */ 5203 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5204 return (0); 5205 5206 mp1->b_datap->db_type = IRE_DB_TYPE; 5207 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5208 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5209 ret_ire = (ire_t *)mp1->b_rptr; 5210 /* 5211 * Pass the latest setting of the ip_path_mtu_discovery and 5212 * copy the ulp info if any. 5213 */ 5214 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5215 IPH_DF : 0; 5216 if (ulp_info != NULL) { 5217 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5218 sizeof (iulp_t)); 5219 } 5220 ret_ire->ire_mp = mp1; 5221 } else { 5222 /* 5223 * No IRE was found. Remove IRE mblk. 5224 */ 5225 mp->b_cont = mp1->b_cont; 5226 freeb(mp1); 5227 } 5228 5229 return (1); 5230 } 5231 5232 /* 5233 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5234 * the final piece where we don't. Return a pointer to the first mblk in the 5235 * result, and update the pointer to the next mblk to chew on. If anything 5236 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5237 * NULL pointer. 5238 */ 5239 mblk_t * 5240 ip_carve_mp(mblk_t **mpp, ssize_t len) 5241 { 5242 mblk_t *mp0; 5243 mblk_t *mp1; 5244 mblk_t *mp2; 5245 5246 if (!len || !mpp || !(mp0 = *mpp)) 5247 return (NULL); 5248 /* If we aren't going to consume the first mblk, we need a dup. */ 5249 if (mp0->b_wptr - mp0->b_rptr > len) { 5250 mp1 = dupb(mp0); 5251 if (mp1) { 5252 /* Partition the data between the two mblks. */ 5253 mp1->b_wptr = mp1->b_rptr + len; 5254 mp0->b_rptr = mp1->b_wptr; 5255 /* 5256 * after adjustments if mblk not consumed is now 5257 * unaligned, try to align it. If this fails free 5258 * all messages and let upper layer recover. 5259 */ 5260 if (!OK_32PTR(mp0->b_rptr)) { 5261 if (!pullupmsg(mp0, -1)) { 5262 freemsg(mp0); 5263 freemsg(mp1); 5264 *mpp = NULL; 5265 return (NULL); 5266 } 5267 } 5268 } 5269 return (mp1); 5270 } 5271 /* Eat through as many mblks as we need to get len bytes. */ 5272 len -= mp0->b_wptr - mp0->b_rptr; 5273 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5274 if (mp2->b_wptr - mp2->b_rptr > len) { 5275 /* 5276 * We won't consume the entire last mblk. Like 5277 * above, dup and partition it. 5278 */ 5279 mp1->b_cont = dupb(mp2); 5280 mp1 = mp1->b_cont; 5281 if (!mp1) { 5282 /* 5283 * Trouble. Rather than go to a lot of 5284 * trouble to clean up, we free the messages. 5285 * This won't be any worse than losing it on 5286 * the wire. 5287 */ 5288 freemsg(mp0); 5289 freemsg(mp2); 5290 *mpp = NULL; 5291 return (NULL); 5292 } 5293 mp1->b_wptr = mp1->b_rptr + len; 5294 mp2->b_rptr = mp1->b_wptr; 5295 /* 5296 * after adjustments if mblk not consumed is now 5297 * unaligned, try to align it. If this fails free 5298 * all messages and let upper layer recover. 5299 */ 5300 if (!OK_32PTR(mp2->b_rptr)) { 5301 if (!pullupmsg(mp2, -1)) { 5302 freemsg(mp0); 5303 freemsg(mp2); 5304 *mpp = NULL; 5305 return (NULL); 5306 } 5307 } 5308 *mpp = mp2; 5309 return (mp0); 5310 } 5311 /* Decrement len by the amount we just got. */ 5312 len -= mp2->b_wptr - mp2->b_rptr; 5313 } 5314 /* 5315 * len should be reduced to zero now. If not our caller has 5316 * screwed up. 5317 */ 5318 if (len) { 5319 /* Shouldn't happen! */ 5320 freemsg(mp0); 5321 *mpp = NULL; 5322 return (NULL); 5323 } 5324 /* 5325 * We consumed up to exactly the end of an mblk. Detach the part 5326 * we are returning from the rest of the chain. 5327 */ 5328 mp1->b_cont = NULL; 5329 *mpp = mp2; 5330 return (mp0); 5331 } 5332 5333 /* The ill stream is being unplumbed. Called from ip_close */ 5334 int 5335 ip_modclose(ill_t *ill) 5336 { 5337 boolean_t success; 5338 ipsq_t *ipsq; 5339 ipif_t *ipif; 5340 queue_t *q = ill->ill_rq; 5341 ip_stack_t *ipst = ill->ill_ipst; 5342 clock_t timeout; 5343 5344 /* 5345 * Wait for the ACKs of all deferred control messages to be processed. 5346 * In particular, we wait for a potential capability reset initiated 5347 * in ip_sioctl_plink() to complete before proceeding. 5348 * 5349 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5350 * in case the driver never replies. 5351 */ 5352 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5353 mutex_enter(&ill->ill_lock); 5354 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5355 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5356 /* Timeout */ 5357 break; 5358 } 5359 } 5360 mutex_exit(&ill->ill_lock); 5361 5362 /* 5363 * Forcibly enter the ipsq after some delay. This is to take 5364 * care of the case when some ioctl does not complete because 5365 * we sent a control message to the driver and it did not 5366 * send us a reply. We want to be able to at least unplumb 5367 * and replumb rather than force the user to reboot the system. 5368 */ 5369 success = ipsq_enter(ill, B_FALSE); 5370 5371 /* 5372 * Open/close/push/pop is guaranteed to be single threaded 5373 * per stream by STREAMS. FS guarantees that all references 5374 * from top are gone before close is called. So there can't 5375 * be another close thread that has set CONDEMNED on this ill. 5376 * and cause ipsq_enter to return failure. 5377 */ 5378 ASSERT(success); 5379 ipsq = ill->ill_phyint->phyint_ipsq; 5380 5381 /* 5382 * Mark it condemned. No new reference will be made to this ill. 5383 * Lookup functions will return an error. Threads that try to 5384 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5385 * that the refcnt will drop down to zero. 5386 */ 5387 mutex_enter(&ill->ill_lock); 5388 ill->ill_state_flags |= ILL_CONDEMNED; 5389 for (ipif = ill->ill_ipif; ipif != NULL; 5390 ipif = ipif->ipif_next) { 5391 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5392 } 5393 /* 5394 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5395 * returns error if ILL_CONDEMNED is set 5396 */ 5397 cv_broadcast(&ill->ill_cv); 5398 mutex_exit(&ill->ill_lock); 5399 5400 /* 5401 * Send all the deferred DLPI messages downstream which came in 5402 * during the small window right before ipsq_enter(). We do this 5403 * without waiting for the ACKs because all the ACKs for M_PROTO 5404 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5405 */ 5406 ill_dlpi_send_deferred(ill); 5407 5408 /* 5409 * Shut down fragmentation reassembly. 5410 * ill_frag_timer won't start a timer again. 5411 * Now cancel any existing timer 5412 */ 5413 (void) untimeout(ill->ill_frag_timer_id); 5414 (void) ill_frag_timeout(ill, 0); 5415 5416 /* 5417 * If MOVE was in progress, clear the 5418 * move_in_progress fields also. 5419 */ 5420 if (ill->ill_move_in_progress) { 5421 ILL_CLEAR_MOVE(ill); 5422 } 5423 5424 /* 5425 * Call ill_delete to bring down the ipifs, ilms and ill on 5426 * this ill. Then wait for the refcnts to drop to zero. 5427 * ill_is_freeable checks whether the ill is really quiescent. 5428 * Then make sure that threads that are waiting to enter the 5429 * ipsq have seen the error returned by ipsq_enter and have 5430 * gone away. Then we call ill_delete_tail which does the 5431 * DL_UNBIND_REQ with the driver and then qprocsoff. 5432 */ 5433 ill_delete(ill); 5434 mutex_enter(&ill->ill_lock); 5435 while (!ill_is_freeable(ill)) 5436 cv_wait(&ill->ill_cv, &ill->ill_lock); 5437 while (ill->ill_waiters) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 5440 mutex_exit(&ill->ill_lock); 5441 5442 /* 5443 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5444 * it held until the end of the function since the cleanup 5445 * below needs to be able to use the ip_stack_t. 5446 */ 5447 netstack_hold(ipst->ips_netstack); 5448 5449 /* qprocsoff is called in ill_delete_tail */ 5450 ill_delete_tail(ill); 5451 ASSERT(ill->ill_ipst == NULL); 5452 5453 /* 5454 * Walk through all upper (conn) streams and qenable 5455 * those that have queued data. 5456 * close synchronization needs this to 5457 * be done to ensure that all upper layers blocked 5458 * due to flow control to the closing device 5459 * get unblocked. 5460 */ 5461 ip1dbg(("ip_wsrv: walking\n")); 5462 conn_walk_drain(ipst); 5463 5464 mutex_enter(&ipst->ips_ip_mi_lock); 5465 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5466 mutex_exit(&ipst->ips_ip_mi_lock); 5467 5468 /* 5469 * credp could be null if the open didn't succeed and ip_modopen 5470 * itself calls ip_close. 5471 */ 5472 if (ill->ill_credp != NULL) 5473 crfree(ill->ill_credp); 5474 5475 mutex_enter(&ill->ill_lock); 5476 ill_nic_info_dispatch(ill); 5477 mutex_exit(&ill->ill_lock); 5478 5479 /* 5480 * Now we are done with the module close pieces that 5481 * need the netstack_t. 5482 */ 5483 netstack_rele(ipst->ips_netstack); 5484 5485 mi_close_free((IDP)ill); 5486 q->q_ptr = WR(q)->q_ptr = NULL; 5487 5488 ipsq_exit(ipsq); 5489 5490 return (0); 5491 } 5492 5493 /* 5494 * This is called as part of close() for IP, UDP, ICMP, and RTS 5495 * in order to quiesce the conn. 5496 */ 5497 void 5498 ip_quiesce_conn(conn_t *connp) 5499 { 5500 boolean_t drain_cleanup_reqd = B_FALSE; 5501 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5502 boolean_t ilg_cleanup_reqd = B_FALSE; 5503 ip_stack_t *ipst; 5504 5505 ASSERT(!IPCL_IS_TCP(connp)); 5506 ipst = connp->conn_netstack->netstack_ip; 5507 5508 /* 5509 * Mark the conn as closing, and this conn must not be 5510 * inserted in future into any list. Eg. conn_drain_insert(), 5511 * won't insert this conn into the conn_drain_list. 5512 * Similarly ill_pending_mp_add() will not add any mp to 5513 * the pending mp list, after this conn has started closing. 5514 * 5515 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5516 * cannot get set henceforth. 5517 */ 5518 mutex_enter(&connp->conn_lock); 5519 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5520 connp->conn_state_flags |= CONN_CLOSING; 5521 if (connp->conn_idl != NULL) 5522 drain_cleanup_reqd = B_TRUE; 5523 if (connp->conn_oper_pending_ill != NULL) 5524 conn_ioctl_cleanup_reqd = B_TRUE; 5525 if (connp->conn_dhcpinit_ill != NULL) { 5526 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5527 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5528 connp->conn_dhcpinit_ill = NULL; 5529 } 5530 if (connp->conn_ilg_inuse != 0) 5531 ilg_cleanup_reqd = B_TRUE; 5532 mutex_exit(&connp->conn_lock); 5533 5534 if (conn_ioctl_cleanup_reqd) 5535 conn_ioctl_cleanup(connp); 5536 5537 if (is_system_labeled() && connp->conn_anon_port) { 5538 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5539 connp->conn_mlp_type, connp->conn_ulp, 5540 ntohs(connp->conn_lport), B_FALSE); 5541 connp->conn_anon_port = 0; 5542 } 5543 connp->conn_mlp_type = mlptSingle; 5544 5545 /* 5546 * Remove this conn from any fanout list it is on. 5547 * and then wait for any threads currently operating 5548 * on this endpoint to finish 5549 */ 5550 ipcl_hash_remove(connp); 5551 5552 /* 5553 * Remove this conn from the drain list, and do 5554 * any other cleanup that may be required. 5555 * (Only non-tcp streams may have a non-null conn_idl. 5556 * TCP streams are never flow controlled, and 5557 * conn_idl will be null) 5558 */ 5559 if (drain_cleanup_reqd) 5560 conn_drain_tail(connp, B_TRUE); 5561 5562 if (connp == ipst->ips_ip_g_mrouter) 5563 (void) ip_mrouter_done(NULL, ipst); 5564 5565 if (ilg_cleanup_reqd) 5566 ilg_delete_all(connp); 5567 5568 conn_delete_ire(connp, NULL); 5569 5570 /* 5571 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5572 * callers from write side can't be there now because close 5573 * is in progress. The only other caller is ipcl_walk 5574 * which checks for the condemned flag. 5575 */ 5576 mutex_enter(&connp->conn_lock); 5577 connp->conn_state_flags |= CONN_CONDEMNED; 5578 while (connp->conn_ref != 1) 5579 cv_wait(&connp->conn_cv, &connp->conn_lock); 5580 connp->conn_state_flags |= CONN_QUIESCED; 5581 mutex_exit(&connp->conn_lock); 5582 } 5583 5584 /* ARGSUSED */ 5585 int 5586 ip_close(queue_t *q, int flags) 5587 { 5588 conn_t *connp; 5589 5590 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5591 5592 /* 5593 * Call the appropriate delete routine depending on whether this is 5594 * a module or device. 5595 */ 5596 if (WR(q)->q_next != NULL) { 5597 /* This is a module close */ 5598 return (ip_modclose((ill_t *)q->q_ptr)); 5599 } 5600 5601 connp = q->q_ptr; 5602 ip_quiesce_conn(connp); 5603 5604 qprocsoff(q); 5605 5606 /* 5607 * Now we are truly single threaded on this stream, and can 5608 * delete the things hanging off the connp, and finally the connp. 5609 * We removed this connp from the fanout list, it cannot be 5610 * accessed thru the fanouts, and we already waited for the 5611 * conn_ref to drop to 0. We are already in close, so 5612 * there cannot be any other thread from the top. qprocsoff 5613 * has completed, and service has completed or won't run in 5614 * future. 5615 */ 5616 ASSERT(connp->conn_ref == 1); 5617 5618 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5619 5620 connp->conn_ref--; 5621 ipcl_conn_destroy(connp); 5622 5623 q->q_ptr = WR(q)->q_ptr = NULL; 5624 return (0); 5625 } 5626 5627 /* 5628 * Wapper around putnext() so that ip_rts_request can merely use 5629 * conn_recv. 5630 */ 5631 /*ARGSUSED2*/ 5632 static void 5633 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5634 { 5635 conn_t *connp = (conn_t *)arg1; 5636 5637 putnext(connp->conn_rq, mp); 5638 } 5639 5640 /* Return the IP checksum for the IP header at "iph". */ 5641 uint16_t 5642 ip_csum_hdr(ipha_t *ipha) 5643 { 5644 uint16_t *uph; 5645 uint32_t sum; 5646 int opt_len; 5647 5648 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5649 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5650 uph = (uint16_t *)ipha; 5651 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5652 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5653 if (opt_len > 0) { 5654 do { 5655 sum += uph[10]; 5656 sum += uph[11]; 5657 uph += 2; 5658 } while (--opt_len); 5659 } 5660 sum = (sum & 0xFFFF) + (sum >> 16); 5661 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5662 if (sum == 0xffff) 5663 sum = 0; 5664 return ((uint16_t)sum); 5665 } 5666 5667 /* 5668 * Called when the module is about to be unloaded 5669 */ 5670 void 5671 ip_ddi_destroy(void) 5672 { 5673 tnet_fini(); 5674 5675 icmp_ddi_destroy(); 5676 rts_ddi_destroy(); 5677 udp_ddi_destroy(); 5678 sctp_ddi_g_destroy(); 5679 tcp_ddi_g_destroy(); 5680 ipsec_policy_g_destroy(); 5681 ipcl_g_destroy(); 5682 ip_net_g_destroy(); 5683 ip_ire_g_fini(); 5684 inet_minor_destroy(ip_minor_arena_sa); 5685 #if defined(_LP64) 5686 inet_minor_destroy(ip_minor_arena_la); 5687 #endif 5688 5689 #ifdef DEBUG 5690 list_destroy(&ip_thread_list); 5691 rw_destroy(&ip_thread_rwlock); 5692 tsd_destroy(&ip_thread_data); 5693 #endif 5694 5695 netstack_unregister(NS_IP); 5696 } 5697 5698 /* 5699 * First step in cleanup. 5700 */ 5701 /* ARGSUSED */ 5702 static void 5703 ip_stack_shutdown(netstackid_t stackid, void *arg) 5704 { 5705 ip_stack_t *ipst = (ip_stack_t *)arg; 5706 5707 #ifdef NS_DEBUG 5708 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5709 #endif 5710 5711 /* Get rid of loopback interfaces and their IREs */ 5712 ip_loopback_cleanup(ipst); 5713 5714 /* 5715 * The destroy functions here will end up causing notify callbacks 5716 * in the hook framework and these need to be run before the shtudown 5717 * of the hook framework is begun - that happens from netstack after 5718 * IP shutdown has completed. If we leave doing these actions until 5719 * ip_stack_fini then the notify callbacks for the net_*_unregister 5720 * are happening against a backdrop of shattered terain. 5721 */ 5722 ipv4_hook_destroy(ipst); 5723 ipv6_hook_destroy(ipst); 5724 ip_net_destroy(ipst); 5725 } 5726 5727 /* 5728 * Free the IP stack instance. 5729 */ 5730 static void 5731 ip_stack_fini(netstackid_t stackid, void *arg) 5732 { 5733 ip_stack_t *ipst = (ip_stack_t *)arg; 5734 int ret; 5735 5736 #ifdef NS_DEBUG 5737 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5738 #endif 5739 rw_destroy(&ipst->ips_srcid_lock); 5740 5741 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5742 ipst->ips_ip_mibkp = NULL; 5743 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5744 ipst->ips_icmp_mibkp = NULL; 5745 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5746 ipst->ips_ip_kstat = NULL; 5747 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5748 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5749 ipst->ips_ip6_kstat = NULL; 5750 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5751 5752 nd_free(&ipst->ips_ip_g_nd); 5753 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5754 ipst->ips_param_arr = NULL; 5755 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5756 ipst->ips_ndp_arr = NULL; 5757 5758 ip_mrouter_stack_destroy(ipst); 5759 5760 mutex_destroy(&ipst->ips_ip_mi_lock); 5761 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5762 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5763 rw_destroy(&ipst->ips_ip_g_nd_lock); 5764 5765 ret = untimeout(ipst->ips_igmp_timeout_id); 5766 if (ret == -1) { 5767 ASSERT(ipst->ips_igmp_timeout_id == 0); 5768 } else { 5769 ASSERT(ipst->ips_igmp_timeout_id != 0); 5770 ipst->ips_igmp_timeout_id = 0; 5771 } 5772 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5773 if (ret == -1) { 5774 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5775 } else { 5776 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5777 ipst->ips_igmp_slowtimeout_id = 0; 5778 } 5779 ret = untimeout(ipst->ips_mld_timeout_id); 5780 if (ret == -1) { 5781 ASSERT(ipst->ips_mld_timeout_id == 0); 5782 } else { 5783 ASSERT(ipst->ips_mld_timeout_id != 0); 5784 ipst->ips_mld_timeout_id = 0; 5785 } 5786 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5787 if (ret == -1) { 5788 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5789 } else { 5790 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5791 ipst->ips_mld_slowtimeout_id = 0; 5792 } 5793 ret = untimeout(ipst->ips_ip_ire_expire_id); 5794 if (ret == -1) { 5795 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5796 } else { 5797 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5798 ipst->ips_ip_ire_expire_id = 0; 5799 } 5800 5801 mutex_destroy(&ipst->ips_igmp_timer_lock); 5802 mutex_destroy(&ipst->ips_mld_timer_lock); 5803 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5804 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5805 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5806 rw_destroy(&ipst->ips_ill_g_lock); 5807 5808 ip_ire_fini(ipst); 5809 ip6_asp_free(ipst); 5810 conn_drain_fini(ipst); 5811 ipcl_destroy(ipst); 5812 5813 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5814 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5815 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5816 ipst->ips_ndp4 = NULL; 5817 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5818 ipst->ips_ndp6 = NULL; 5819 5820 if (ipst->ips_loopback_ksp != NULL) { 5821 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5822 ipst->ips_loopback_ksp = NULL; 5823 } 5824 5825 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5826 ipst->ips_phyint_g_list = NULL; 5827 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5828 ipst->ips_ill_g_heads = NULL; 5829 5830 kmem_free(ipst, sizeof (*ipst)); 5831 } 5832 5833 /* 5834 * This function is called from the TSD destructor, and is used to debug 5835 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5836 * details. 5837 */ 5838 static void 5839 ip_thread_exit(void *phash) 5840 { 5841 th_hash_t *thh = phash; 5842 5843 rw_enter(&ip_thread_rwlock, RW_WRITER); 5844 list_remove(&ip_thread_list, thh); 5845 rw_exit(&ip_thread_rwlock); 5846 mod_hash_destroy_hash(thh->thh_hash); 5847 kmem_free(thh, sizeof (*thh)); 5848 } 5849 5850 /* 5851 * Called when the IP kernel module is loaded into the kernel 5852 */ 5853 void 5854 ip_ddi_init(void) 5855 { 5856 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5857 5858 /* 5859 * For IP and TCP the minor numbers should start from 2 since we have 4 5860 * initial devices: ip, ip6, tcp, tcp6. 5861 */ 5862 /* 5863 * If this is a 64-bit kernel, then create two separate arenas - 5864 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5865 * other for socket apps in the range 2^^18 through 2^^32-1. 5866 */ 5867 ip_minor_arena_la = NULL; 5868 ip_minor_arena_sa = NULL; 5869 #if defined(_LP64) 5870 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5871 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5872 cmn_err(CE_PANIC, 5873 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5874 } 5875 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5876 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5877 cmn_err(CE_PANIC, 5878 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5879 } 5880 #else 5881 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5882 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5883 cmn_err(CE_PANIC, 5884 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5885 } 5886 #endif 5887 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5888 5889 ipcl_g_init(); 5890 ip_ire_g_init(); 5891 ip_net_g_init(); 5892 5893 #ifdef DEBUG 5894 tsd_create(&ip_thread_data, ip_thread_exit); 5895 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5896 list_create(&ip_thread_list, sizeof (th_hash_t), 5897 offsetof(th_hash_t, thh_link)); 5898 #endif 5899 5900 /* 5901 * We want to be informed each time a stack is created or 5902 * destroyed in the kernel, so we can maintain the 5903 * set of udp_stack_t's. 5904 */ 5905 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5906 ip_stack_fini); 5907 5908 ipsec_policy_g_init(); 5909 tcp_ddi_g_init(); 5910 sctp_ddi_g_init(); 5911 5912 tnet_init(); 5913 5914 udp_ddi_init(); 5915 rts_ddi_init(); 5916 icmp_ddi_init(); 5917 } 5918 5919 /* 5920 * Initialize the IP stack instance. 5921 */ 5922 static void * 5923 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5924 { 5925 ip_stack_t *ipst; 5926 ipparam_t *pa; 5927 ipndp_t *na; 5928 5929 #ifdef NS_DEBUG 5930 printf("ip_stack_init(stack %d)\n", stackid); 5931 #endif 5932 5933 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5934 ipst->ips_netstack = ns; 5935 5936 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5937 KM_SLEEP); 5938 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5939 KM_SLEEP); 5940 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5941 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5942 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5943 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5944 5945 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5946 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5947 ipst->ips_igmp_deferred_next = INFINITY; 5948 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5949 ipst->ips_mld_deferred_next = INFINITY; 5950 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5951 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5952 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5953 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5954 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5955 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5956 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5957 5958 ipcl_init(ipst); 5959 ip_ire_init(ipst); 5960 ip6_asp_init(ipst); 5961 ipif_init(ipst); 5962 conn_drain_init(ipst); 5963 ip_mrouter_stack_init(ipst); 5964 5965 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5966 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5967 5968 ipst->ips_ip_multirt_log_interval = 1000; 5969 5970 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5971 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5972 ipst->ips_ill_index = 1; 5973 5974 ipst->ips_saved_ip_g_forward = -1; 5975 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5976 5977 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5978 ipst->ips_param_arr = pa; 5979 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5980 5981 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5982 ipst->ips_ndp_arr = na; 5983 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5984 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5985 (caddr_t)&ipst->ips_ip_g_forward; 5986 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5987 (caddr_t)&ipst->ips_ipv6_forward; 5988 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5989 "ip_cgtp_filter") == 0); 5990 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5991 (caddr_t)&ipst->ips_ip_cgtp_filter; 5992 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5993 "ipmp_hook_emulation") == 0); 5994 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5995 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5996 5997 (void) ip_param_register(&ipst->ips_ip_g_nd, 5998 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5999 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6000 6001 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6002 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6003 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6004 ipst->ips_ip6_kstat = 6005 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6006 6007 ipst->ips_ipmp_enable_failback = B_TRUE; 6008 6009 ipst->ips_ip_src_id = 1; 6010 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6011 6012 ip_net_init(ipst, ns); 6013 ipv4_hook_init(ipst); 6014 ipv6_hook_init(ipst); 6015 6016 return (ipst); 6017 } 6018 6019 /* 6020 * Allocate and initialize a DLPI template of the specified length. (May be 6021 * called as writer.) 6022 */ 6023 mblk_t * 6024 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6025 { 6026 mblk_t *mp; 6027 6028 mp = allocb(len, BPRI_MED); 6029 if (!mp) 6030 return (NULL); 6031 6032 /* 6033 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6034 * of which we don't seem to use) are sent with M_PCPROTO, and 6035 * that other DLPI are M_PROTO. 6036 */ 6037 if (prim == DL_INFO_REQ) { 6038 mp->b_datap->db_type = M_PCPROTO; 6039 } else { 6040 mp->b_datap->db_type = M_PROTO; 6041 } 6042 6043 mp->b_wptr = mp->b_rptr + len; 6044 bzero(mp->b_rptr, len); 6045 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6046 return (mp); 6047 } 6048 6049 /* 6050 * Debug formatting routine. Returns a character string representation of the 6051 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6052 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6053 * 6054 * Once the ndd table-printing interfaces are removed, this can be changed to 6055 * standard dotted-decimal form. 6056 */ 6057 char * 6058 ip_dot_addr(ipaddr_t addr, char *buf) 6059 { 6060 uint8_t *ap = (uint8_t *)&addr; 6061 6062 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6063 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6064 return (buf); 6065 } 6066 6067 /* 6068 * Write the given MAC address as a printable string in the usual colon- 6069 * separated format. 6070 */ 6071 const char * 6072 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6073 { 6074 char *bp; 6075 6076 if (alen == 0 || buflen < 4) 6077 return ("?"); 6078 bp = buf; 6079 for (;;) { 6080 /* 6081 * If there are more MAC address bytes available, but we won't 6082 * have any room to print them, then add "..." to the string 6083 * instead. See below for the 'magic number' explanation. 6084 */ 6085 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6086 (void) strcpy(bp, "..."); 6087 break; 6088 } 6089 (void) sprintf(bp, "%02x", *addr++); 6090 bp += 2; 6091 if (--alen == 0) 6092 break; 6093 *bp++ = ':'; 6094 buflen -= 3; 6095 /* 6096 * At this point, based on the first 'if' statement above, 6097 * either alen == 1 and buflen >= 3, or alen > 1 and 6098 * buflen >= 4. The first case leaves room for the final "xx" 6099 * number and trailing NUL byte. The second leaves room for at 6100 * least "...". Thus the apparently 'magic' numbers chosen for 6101 * that statement. 6102 */ 6103 } 6104 return (buf); 6105 } 6106 6107 /* 6108 * Send an ICMP error after patching up the packet appropriately. Returns 6109 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6110 */ 6111 static boolean_t 6112 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6113 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6114 zoneid_t zoneid, ip_stack_t *ipst) 6115 { 6116 ipha_t *ipha; 6117 mblk_t *first_mp; 6118 boolean_t secure; 6119 unsigned char db_type; 6120 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6121 6122 first_mp = mp; 6123 if (mctl_present) { 6124 mp = mp->b_cont; 6125 secure = ipsec_in_is_secure(first_mp); 6126 ASSERT(mp != NULL); 6127 } else { 6128 /* 6129 * If this is an ICMP error being reported - which goes 6130 * up as M_CTLs, we need to convert them to M_DATA till 6131 * we finish checking with global policy because 6132 * ipsec_check_global_policy() assumes M_DATA as clear 6133 * and M_CTL as secure. 6134 */ 6135 db_type = DB_TYPE(mp); 6136 DB_TYPE(mp) = M_DATA; 6137 secure = B_FALSE; 6138 } 6139 /* 6140 * We are generating an icmp error for some inbound packet. 6141 * Called from all ip_fanout_(udp, tcp, proto) functions. 6142 * Before we generate an error, check with global policy 6143 * to see whether this is allowed to enter the system. As 6144 * there is no "conn", we are checking with global policy. 6145 */ 6146 ipha = (ipha_t *)mp->b_rptr; 6147 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6148 first_mp = ipsec_check_global_policy(first_mp, NULL, 6149 ipha, NULL, mctl_present, ipst->ips_netstack); 6150 if (first_mp == NULL) 6151 return (B_FALSE); 6152 } 6153 6154 if (!mctl_present) 6155 DB_TYPE(mp) = db_type; 6156 6157 if (flags & IP_FF_SEND_ICMP) { 6158 if (flags & IP_FF_HDR_COMPLETE) { 6159 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6160 freemsg(first_mp); 6161 return (B_TRUE); 6162 } 6163 } 6164 if (flags & IP_FF_CKSUM) { 6165 /* 6166 * Have to correct checksum since 6167 * the packet might have been 6168 * fragmented and the reassembly code in ip_rput 6169 * does not restore the IP checksum. 6170 */ 6171 ipha->ipha_hdr_checksum = 0; 6172 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6173 } 6174 switch (icmp_type) { 6175 case ICMP_DEST_UNREACHABLE: 6176 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6177 ipst); 6178 break; 6179 default: 6180 freemsg(first_mp); 6181 break; 6182 } 6183 } else { 6184 freemsg(first_mp); 6185 return (B_FALSE); 6186 } 6187 6188 return (B_TRUE); 6189 } 6190 6191 /* 6192 * Used to send an ICMP error message when a packet is received for 6193 * a protocol that is not supported. The mblk passed as argument 6194 * is consumed by this function. 6195 */ 6196 void 6197 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6198 ip_stack_t *ipst) 6199 { 6200 mblk_t *mp; 6201 ipha_t *ipha; 6202 ill_t *ill; 6203 ipsec_in_t *ii; 6204 6205 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6206 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6207 6208 mp = ipsec_mp->b_cont; 6209 ipsec_mp->b_cont = NULL; 6210 ipha = (ipha_t *)mp->b_rptr; 6211 /* Get ill from index in ipsec_in_t. */ 6212 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6213 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6214 ipst); 6215 if (ill != NULL) { 6216 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6217 if (ip_fanout_send_icmp(q, mp, flags, 6218 ICMP_DEST_UNREACHABLE, 6219 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6220 BUMP_MIB(ill->ill_ip_mib, 6221 ipIfStatsInUnknownProtos); 6222 } 6223 } else { 6224 if (ip_fanout_send_icmp_v6(q, mp, flags, 6225 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6226 0, B_FALSE, zoneid, ipst)) { 6227 BUMP_MIB(ill->ill_ip_mib, 6228 ipIfStatsInUnknownProtos); 6229 } 6230 } 6231 ill_refrele(ill); 6232 } else { /* re-link for the freemsg() below. */ 6233 ipsec_mp->b_cont = mp; 6234 } 6235 6236 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6237 freemsg(ipsec_mp); 6238 } 6239 6240 /* 6241 * See if the inbound datagram has had IPsec processing applied to it. 6242 */ 6243 boolean_t 6244 ipsec_in_is_secure(mblk_t *ipsec_mp) 6245 { 6246 ipsec_in_t *ii; 6247 6248 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6249 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6250 6251 if (ii->ipsec_in_loopback) { 6252 return (ii->ipsec_in_secure); 6253 } else { 6254 return (ii->ipsec_in_ah_sa != NULL || 6255 ii->ipsec_in_esp_sa != NULL || 6256 ii->ipsec_in_decaps); 6257 } 6258 } 6259 6260 /* 6261 * Handle protocols with which IP is less intimate. There 6262 * can be more than one stream bound to a particular 6263 * protocol. When this is the case, normally each one gets a copy 6264 * of any incoming packets. 6265 * 6266 * IPsec NOTE : 6267 * 6268 * Don't allow a secure packet going up a non-secure connection. 6269 * We don't allow this because 6270 * 6271 * 1) Reply might go out in clear which will be dropped at 6272 * the sending side. 6273 * 2) If the reply goes out in clear it will give the 6274 * adversary enough information for getting the key in 6275 * most of the cases. 6276 * 6277 * Moreover getting a secure packet when we expect clear 6278 * implies that SA's were added without checking for 6279 * policy on both ends. This should not happen once ISAKMP 6280 * is used to negotiate SAs as SAs will be added only after 6281 * verifying the policy. 6282 * 6283 * NOTE : If the packet was tunneled and not multicast we only send 6284 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6285 * back to delivering packets to AF_INET6 raw sockets. 6286 * 6287 * IPQoS Notes: 6288 * Once we have determined the client, invoke IPPF processing. 6289 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6290 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6291 * ip_policy will be false. 6292 * 6293 * Zones notes: 6294 * Currently only applications in the global zone can create raw sockets for 6295 * protocols other than ICMP. So unlike the broadcast / multicast case of 6296 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6297 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6298 */ 6299 static void 6300 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6301 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6302 zoneid_t zoneid) 6303 { 6304 queue_t *rq; 6305 mblk_t *mp1, *first_mp1; 6306 uint_t protocol = ipha->ipha_protocol; 6307 ipaddr_t dst; 6308 boolean_t one_only; 6309 mblk_t *first_mp = mp; 6310 boolean_t secure; 6311 uint32_t ill_index; 6312 conn_t *connp, *first_connp, *next_connp; 6313 connf_t *connfp; 6314 boolean_t shared_addr; 6315 mib2_ipIfStatsEntry_t *mibptr; 6316 ip_stack_t *ipst = recv_ill->ill_ipst; 6317 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6318 6319 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6320 if (mctl_present) { 6321 mp = first_mp->b_cont; 6322 secure = ipsec_in_is_secure(first_mp); 6323 ASSERT(mp != NULL); 6324 } else { 6325 secure = B_FALSE; 6326 } 6327 dst = ipha->ipha_dst; 6328 /* 6329 * If the packet was tunneled and not multicast we only send to it 6330 * the first match. 6331 */ 6332 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6333 !CLASSD(dst)); 6334 6335 shared_addr = (zoneid == ALL_ZONES); 6336 if (shared_addr) { 6337 /* 6338 * We don't allow multilevel ports for raw IP, so no need to 6339 * check for that here. 6340 */ 6341 zoneid = tsol_packet_to_zoneid(mp); 6342 } 6343 6344 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6345 mutex_enter(&connfp->connf_lock); 6346 connp = connfp->connf_head; 6347 for (connp = connfp->connf_head; connp != NULL; 6348 connp = connp->conn_next) { 6349 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6350 zoneid) && 6351 (!is_system_labeled() || 6352 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6353 connp))) { 6354 break; 6355 } 6356 } 6357 6358 if (connp == NULL || connp->conn_upq == NULL) { 6359 /* 6360 * No one bound to these addresses. Is 6361 * there a client that wants all 6362 * unclaimed datagrams? 6363 */ 6364 mutex_exit(&connfp->connf_lock); 6365 /* 6366 * Check for IPPROTO_ENCAP... 6367 */ 6368 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6369 /* 6370 * If an IPsec mblk is here on a multicast 6371 * tunnel (using ip_mroute stuff), check policy here, 6372 * THEN ship off to ip_mroute_decap(). 6373 * 6374 * BTW, If I match a configured IP-in-IP 6375 * tunnel, this path will not be reached, and 6376 * ip_mroute_decap will never be called. 6377 */ 6378 first_mp = ipsec_check_global_policy(first_mp, connp, 6379 ipha, NULL, mctl_present, ipst->ips_netstack); 6380 if (first_mp != NULL) { 6381 if (mctl_present) 6382 freeb(first_mp); 6383 ip_mroute_decap(q, mp, ill); 6384 } /* Else we already freed everything! */ 6385 } else { 6386 /* 6387 * Otherwise send an ICMP protocol unreachable. 6388 */ 6389 if (ip_fanout_send_icmp(q, first_mp, flags, 6390 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6391 mctl_present, zoneid, ipst)) { 6392 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6393 } 6394 } 6395 return; 6396 } 6397 CONN_INC_REF(connp); 6398 first_connp = connp; 6399 6400 /* 6401 * Only send message to one tunnel driver by immediately 6402 * terminating the loop. 6403 */ 6404 connp = one_only ? NULL : connp->conn_next; 6405 6406 for (;;) { 6407 while (connp != NULL) { 6408 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6409 flags, zoneid) && 6410 (!is_system_labeled() || 6411 tsol_receive_local(mp, &dst, IPV4_VERSION, 6412 shared_addr, connp))) 6413 break; 6414 connp = connp->conn_next; 6415 } 6416 6417 /* 6418 * Copy the packet. 6419 */ 6420 if (connp == NULL || connp->conn_upq == NULL || 6421 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6422 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6423 /* 6424 * No more interested clients or memory 6425 * allocation failed 6426 */ 6427 connp = first_connp; 6428 break; 6429 } 6430 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6431 CONN_INC_REF(connp); 6432 mutex_exit(&connfp->connf_lock); 6433 rq = connp->conn_rq; 6434 if (!canputnext(rq)) { 6435 if (flags & IP_FF_RAWIP) { 6436 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6437 } else { 6438 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6439 } 6440 6441 freemsg(first_mp1); 6442 } else { 6443 /* 6444 * Don't enforce here if we're an actual tunnel - 6445 * let "tun" do it instead. 6446 */ 6447 if (!IPCL_IS_IPTUN(connp) && 6448 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6449 secure)) { 6450 first_mp1 = ipsec_check_inbound_policy 6451 (first_mp1, connp, ipha, NULL, 6452 mctl_present); 6453 } 6454 if (first_mp1 != NULL) { 6455 int in_flags = 0; 6456 /* 6457 * ip_fanout_proto also gets called from 6458 * icmp_inbound_error_fanout, in which case 6459 * the msg type is M_CTL. Don't add info 6460 * in this case for the time being. In future 6461 * when there is a need for knowing the 6462 * inbound iface index for ICMP error msgs, 6463 * then this can be changed. 6464 */ 6465 if (connp->conn_recvif) 6466 in_flags = IPF_RECVIF; 6467 /* 6468 * The ULP may support IP_RECVPKTINFO for both 6469 * IP v4 and v6 so pass the appropriate argument 6470 * based on conn IP version. 6471 */ 6472 if (connp->conn_ip_recvpktinfo) { 6473 if (connp->conn_af_isv6) { 6474 /* 6475 * V6 only needs index 6476 */ 6477 in_flags |= IPF_RECVIF; 6478 } else { 6479 /* 6480 * V4 needs index + 6481 * matching address. 6482 */ 6483 in_flags |= IPF_RECVADDR; 6484 } 6485 } 6486 if ((in_flags != 0) && 6487 (mp->b_datap->db_type != M_CTL)) { 6488 /* 6489 * the actual data will be 6490 * contained in b_cont upon 6491 * successful return of the 6492 * following call else 6493 * original mblk is returned 6494 */ 6495 ASSERT(recv_ill != NULL); 6496 mp1 = ip_add_info(mp1, recv_ill, 6497 in_flags, IPCL_ZONEID(connp), ipst); 6498 } 6499 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6500 if (mctl_present) 6501 freeb(first_mp1); 6502 (connp->conn_recv)(connp, mp1, NULL); 6503 } 6504 } 6505 mutex_enter(&connfp->connf_lock); 6506 /* Follow the next pointer before releasing the conn. */ 6507 next_connp = connp->conn_next; 6508 CONN_DEC_REF(connp); 6509 connp = next_connp; 6510 } 6511 6512 /* Last one. Send it upstream. */ 6513 mutex_exit(&connfp->connf_lock); 6514 6515 /* 6516 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6517 * will be set to false. 6518 */ 6519 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6520 ill_index = ill->ill_phyint->phyint_ifindex; 6521 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6522 if (mp == NULL) { 6523 CONN_DEC_REF(connp); 6524 if (mctl_present) { 6525 freeb(first_mp); 6526 } 6527 return; 6528 } 6529 } 6530 6531 rq = connp->conn_rq; 6532 if (!canputnext(rq)) { 6533 if (flags & IP_FF_RAWIP) { 6534 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6535 } else { 6536 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6537 } 6538 6539 freemsg(first_mp); 6540 } else { 6541 if (IPCL_IS_IPTUN(connp)) { 6542 /* 6543 * Tunneled packet. We enforce policy in the tunnel 6544 * module itself. 6545 * 6546 * Send the WHOLE packet up (incl. IPSEC_IN) without 6547 * a policy check. 6548 * FIXME to use conn_recv for tun later. 6549 */ 6550 putnext(rq, first_mp); 6551 CONN_DEC_REF(connp); 6552 return; 6553 } 6554 6555 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6556 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6557 ipha, NULL, mctl_present); 6558 } 6559 6560 if (first_mp != NULL) { 6561 int in_flags = 0; 6562 6563 /* 6564 * ip_fanout_proto also gets called 6565 * from icmp_inbound_error_fanout, in 6566 * which case the msg type is M_CTL. 6567 * Don't add info in this case for time 6568 * being. In future when there is a 6569 * need for knowing the inbound iface 6570 * index for ICMP error msgs, then this 6571 * can be changed 6572 */ 6573 if (connp->conn_recvif) 6574 in_flags = IPF_RECVIF; 6575 if (connp->conn_ip_recvpktinfo) { 6576 if (connp->conn_af_isv6) { 6577 /* 6578 * V6 only needs index 6579 */ 6580 in_flags |= IPF_RECVIF; 6581 } else { 6582 /* 6583 * V4 needs index + 6584 * matching address. 6585 */ 6586 in_flags |= IPF_RECVADDR; 6587 } 6588 } 6589 if ((in_flags != 0) && 6590 (mp->b_datap->db_type != M_CTL)) { 6591 6592 /* 6593 * the actual data will be contained in 6594 * b_cont upon successful return 6595 * of the following call else original 6596 * mblk is returned 6597 */ 6598 ASSERT(recv_ill != NULL); 6599 mp = ip_add_info(mp, recv_ill, 6600 in_flags, IPCL_ZONEID(connp), ipst); 6601 } 6602 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6603 (connp->conn_recv)(connp, mp, NULL); 6604 if (mctl_present) 6605 freeb(first_mp); 6606 } 6607 } 6608 CONN_DEC_REF(connp); 6609 } 6610 6611 /* 6612 * Fanout for TCP packets 6613 * The caller puts <fport, lport> in the ports parameter. 6614 * 6615 * IPQoS Notes 6616 * Before sending it to the client, invoke IPPF processing. 6617 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6618 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6619 * ip_policy is false. 6620 */ 6621 static void 6622 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6623 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6624 { 6625 mblk_t *first_mp; 6626 boolean_t secure; 6627 uint32_t ill_index; 6628 int ip_hdr_len; 6629 tcph_t *tcph; 6630 boolean_t syn_present = B_FALSE; 6631 conn_t *connp; 6632 ip_stack_t *ipst = recv_ill->ill_ipst; 6633 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6634 6635 ASSERT(recv_ill != NULL); 6636 6637 first_mp = mp; 6638 if (mctl_present) { 6639 ASSERT(first_mp->b_datap->db_type == M_CTL); 6640 mp = first_mp->b_cont; 6641 secure = ipsec_in_is_secure(first_mp); 6642 ASSERT(mp != NULL); 6643 } else { 6644 secure = B_FALSE; 6645 } 6646 6647 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6648 6649 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6650 zoneid, ipst)) == NULL) { 6651 /* 6652 * No connected connection or listener. Send a 6653 * TH_RST via tcp_xmit_listeners_reset. 6654 */ 6655 6656 /* Initiate IPPf processing, if needed. */ 6657 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6658 uint32_t ill_index; 6659 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6660 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6661 if (first_mp == NULL) 6662 return; 6663 } 6664 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6665 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6666 zoneid)); 6667 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6668 ipst->ips_netstack->netstack_tcp, NULL); 6669 return; 6670 } 6671 6672 /* 6673 * Allocate the SYN for the TCP connection here itself 6674 */ 6675 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6676 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6677 if (IPCL_IS_TCP(connp)) { 6678 squeue_t *sqp; 6679 6680 /* 6681 * For fused tcp loopback, assign the eager's 6682 * squeue to be that of the active connect's. 6683 * Note that we don't check for IP_FF_LOOPBACK 6684 * here since this routine gets called only 6685 * for loopback (unlike the IPv6 counterpart). 6686 */ 6687 ASSERT(Q_TO_CONN(q) != NULL); 6688 if (do_tcp_fusion && 6689 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6690 !secure && 6691 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6692 IPCL_IS_TCP(Q_TO_CONN(q))) { 6693 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6694 sqp = Q_TO_CONN(q)->conn_sqp; 6695 } else { 6696 sqp = IP_SQUEUE_GET(lbolt); 6697 } 6698 6699 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6700 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6701 syn_present = B_TRUE; 6702 } 6703 } 6704 6705 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6706 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6707 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6708 if ((flags & TH_RST) || (flags & TH_URG)) { 6709 CONN_DEC_REF(connp); 6710 freemsg(first_mp); 6711 return; 6712 } 6713 if (flags & TH_ACK) { 6714 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6715 ipst->ips_netstack->netstack_tcp, connp); 6716 CONN_DEC_REF(connp); 6717 return; 6718 } 6719 6720 CONN_DEC_REF(connp); 6721 freemsg(first_mp); 6722 return; 6723 } 6724 6725 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6726 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6727 NULL, mctl_present); 6728 if (first_mp == NULL) { 6729 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6730 CONN_DEC_REF(connp); 6731 return; 6732 } 6733 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6734 ASSERT(syn_present); 6735 if (mctl_present) { 6736 ASSERT(first_mp != mp); 6737 first_mp->b_datap->db_struioflag |= 6738 STRUIO_POLICY; 6739 } else { 6740 ASSERT(first_mp == mp); 6741 mp->b_datap->db_struioflag &= 6742 ~STRUIO_EAGER; 6743 mp->b_datap->db_struioflag |= 6744 STRUIO_POLICY; 6745 } 6746 } else { 6747 /* 6748 * Discard first_mp early since we're dealing with a 6749 * fully-connected conn_t and tcp doesn't do policy in 6750 * this case. 6751 */ 6752 if (mctl_present) { 6753 freeb(first_mp); 6754 mctl_present = B_FALSE; 6755 } 6756 first_mp = mp; 6757 } 6758 } 6759 6760 /* 6761 * Initiate policy processing here if needed. If we get here from 6762 * icmp_inbound_error_fanout, ip_policy is false. 6763 */ 6764 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6765 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6766 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6767 if (mp == NULL) { 6768 CONN_DEC_REF(connp); 6769 if (mctl_present) 6770 freeb(first_mp); 6771 return; 6772 } else if (mctl_present) { 6773 ASSERT(first_mp != mp); 6774 first_mp->b_cont = mp; 6775 } else { 6776 first_mp = mp; 6777 } 6778 } 6779 6780 6781 6782 /* Handle socket options. */ 6783 if (!syn_present && 6784 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6785 /* Add header */ 6786 ASSERT(recv_ill != NULL); 6787 /* 6788 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6789 * IPF_RECVIF. 6790 */ 6791 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6792 ipst); 6793 if (mp == NULL) { 6794 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6795 CONN_DEC_REF(connp); 6796 if (mctl_present) 6797 freeb(first_mp); 6798 return; 6799 } else if (mctl_present) { 6800 /* 6801 * ip_add_info might return a new mp. 6802 */ 6803 ASSERT(first_mp != mp); 6804 first_mp->b_cont = mp; 6805 } else { 6806 first_mp = mp; 6807 } 6808 } 6809 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6810 if (IPCL_IS_TCP(connp)) { 6811 /* do not drain, certain use cases can blow the stack */ 6812 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6813 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6814 } else { 6815 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6816 (connp->conn_recv)(connp, first_mp, NULL); 6817 CONN_DEC_REF(connp); 6818 } 6819 } 6820 6821 /* 6822 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6823 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6824 * is not consumed. 6825 * 6826 * One of four things can happen, all of which affect the passed-in mblk: 6827 * 6828 * 1.) ICMP messages that go through here just get returned TRUE. 6829 * 6830 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6831 * 6832 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6833 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6834 * 6835 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6836 */ 6837 static boolean_t 6838 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6839 ipsec_stack_t *ipss) 6840 { 6841 int shift, plen, iph_len; 6842 ipha_t *ipha; 6843 udpha_t *udpha; 6844 uint32_t *spi; 6845 uint32_t esp_ports; 6846 uint8_t *orptr; 6847 boolean_t free_ire; 6848 6849 if (DB_TYPE(mp) == M_CTL) { 6850 /* 6851 * ICMP message with UDP inside. Don't bother stripping, just 6852 * send it up. 6853 * 6854 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6855 * to ignore errors set by ICMP anyway ('cause they might be 6856 * forged), but that's the app's decision, not ours. 6857 */ 6858 6859 /* Bunch of reality checks for DEBUG kernels... */ 6860 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6861 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6862 6863 return (B_TRUE); 6864 } 6865 6866 ipha = (ipha_t *)mp->b_rptr; 6867 iph_len = IPH_HDR_LENGTH(ipha); 6868 plen = ntohs(ipha->ipha_length); 6869 6870 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6871 /* 6872 * Most likely a keepalive for the benefit of an intervening 6873 * NAT. These aren't for us, per se, so drop it. 6874 * 6875 * RFC 3947/8 doesn't say for sure what to do for 2-3 6876 * byte packets (keepalives are 1-byte), but we'll drop them 6877 * also. 6878 */ 6879 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6880 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6881 return (B_FALSE); 6882 } 6883 6884 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6885 /* might as well pull it all up - it might be ESP. */ 6886 if (!pullupmsg(mp, -1)) { 6887 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6888 DROPPER(ipss, ipds_esp_nomem), 6889 &ipss->ipsec_dropper); 6890 return (B_FALSE); 6891 } 6892 6893 ipha = (ipha_t *)mp->b_rptr; 6894 } 6895 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6896 if (*spi == 0) { 6897 /* UDP packet - remove 0-spi. */ 6898 shift = sizeof (uint32_t); 6899 } else { 6900 /* ESP-in-UDP packet - reduce to ESP. */ 6901 ipha->ipha_protocol = IPPROTO_ESP; 6902 shift = sizeof (udpha_t); 6903 } 6904 6905 /* Fix IP header */ 6906 ipha->ipha_length = htons(plen - shift); 6907 ipha->ipha_hdr_checksum = 0; 6908 6909 orptr = mp->b_rptr; 6910 mp->b_rptr += shift; 6911 6912 udpha = (udpha_t *)(orptr + iph_len); 6913 if (*spi == 0) { 6914 ASSERT((uint8_t *)ipha == orptr); 6915 udpha->uha_length = htons(plen - shift - iph_len); 6916 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6917 esp_ports = 0; 6918 } else { 6919 esp_ports = *((uint32_t *)udpha); 6920 ASSERT(esp_ports != 0); 6921 } 6922 ovbcopy(orptr, orptr + shift, iph_len); 6923 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6924 ipha = (ipha_t *)(orptr + shift); 6925 6926 free_ire = (ire == NULL); 6927 if (free_ire) { 6928 /* Re-acquire ire. */ 6929 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6930 ipss->ipsec_netstack->netstack_ip); 6931 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6932 if (ire != NULL) 6933 ire_refrele(ire); 6934 /* 6935 * Do a regular freemsg(), as this is an IP 6936 * error (no local route) not an IPsec one. 6937 */ 6938 freemsg(mp); 6939 } 6940 } 6941 6942 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6943 if (free_ire) 6944 ire_refrele(ire); 6945 } 6946 6947 return (esp_ports == 0); 6948 } 6949 6950 /* 6951 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6952 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6953 * Caller is responsible for dropping references to the conn, and freeing 6954 * first_mp. 6955 * 6956 * IPQoS Notes 6957 * Before sending it to the client, invoke IPPF processing. Policy processing 6958 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6959 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6960 * ip_wput_local, ip_policy is false. 6961 */ 6962 static void 6963 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6964 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6965 boolean_t ip_policy) 6966 { 6967 boolean_t mctl_present = (first_mp != NULL); 6968 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6969 uint32_t ill_index; 6970 ip_stack_t *ipst = recv_ill->ill_ipst; 6971 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6972 6973 ASSERT(ill != NULL); 6974 6975 if (mctl_present) 6976 first_mp->b_cont = mp; 6977 else 6978 first_mp = mp; 6979 6980 if (CONN_UDP_FLOWCTLD(connp)) { 6981 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6982 freemsg(first_mp); 6983 return; 6984 } 6985 6986 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6987 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6988 NULL, mctl_present); 6989 if (first_mp == NULL) { 6990 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6991 return; /* Freed by ipsec_check_inbound_policy(). */ 6992 } 6993 } 6994 if (mctl_present) 6995 freeb(first_mp); 6996 6997 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6998 if (connp->conn_udp->udp_nat_t_endpoint) { 6999 if (mctl_present) { 7000 /* mctl_present *shouldn't* happen. */ 7001 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7002 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7003 &ipss->ipsec_dropper); 7004 return; 7005 } 7006 7007 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7008 return; 7009 } 7010 7011 /* Handle options. */ 7012 if (connp->conn_recvif) 7013 in_flags = IPF_RECVIF; 7014 /* 7015 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7016 * passed to ip_add_info is based on IP version of connp. 7017 */ 7018 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7019 if (connp->conn_af_isv6) { 7020 /* 7021 * V6 only needs index 7022 */ 7023 in_flags |= IPF_RECVIF; 7024 } else { 7025 /* 7026 * V4 needs index + matching address. 7027 */ 7028 in_flags |= IPF_RECVADDR; 7029 } 7030 } 7031 7032 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7033 in_flags |= IPF_RECVSLLA; 7034 7035 /* 7036 * Initiate IPPF processing here, if needed. Note first_mp won't be 7037 * freed if the packet is dropped. The caller will do so. 7038 */ 7039 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7040 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7041 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7042 if (mp == NULL) { 7043 return; 7044 } 7045 } 7046 if ((in_flags != 0) && 7047 (mp->b_datap->db_type != M_CTL)) { 7048 /* 7049 * The actual data will be contained in b_cont 7050 * upon successful return of the following call 7051 * else original mblk is returned 7052 */ 7053 ASSERT(recv_ill != NULL); 7054 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7055 ipst); 7056 } 7057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7058 /* Send it upstream */ 7059 (connp->conn_recv)(connp, mp, NULL); 7060 } 7061 7062 /* 7063 * Fanout for UDP packets. 7064 * The caller puts <fport, lport> in the ports parameter. 7065 * 7066 * If SO_REUSEADDR is set all multicast and broadcast packets 7067 * will be delivered to all streams bound to the same port. 7068 * 7069 * Zones notes: 7070 * Multicast and broadcast packets will be distributed to streams in all zones. 7071 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7072 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7073 * packets. To maintain this behavior with multiple zones, the conns are grouped 7074 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7075 * each zone. If unset, all the following conns in the same zone are skipped. 7076 */ 7077 static void 7078 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7079 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7080 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7081 { 7082 uint32_t dstport, srcport; 7083 ipaddr_t dst; 7084 mblk_t *first_mp; 7085 boolean_t secure; 7086 in6_addr_t v6src; 7087 conn_t *connp; 7088 connf_t *connfp; 7089 conn_t *first_connp; 7090 conn_t *next_connp; 7091 mblk_t *mp1, *first_mp1; 7092 ipaddr_t src; 7093 zoneid_t last_zoneid; 7094 boolean_t reuseaddr; 7095 boolean_t shared_addr; 7096 boolean_t unlabeled; 7097 ip_stack_t *ipst; 7098 7099 ASSERT(recv_ill != NULL); 7100 ipst = recv_ill->ill_ipst; 7101 7102 first_mp = mp; 7103 if (mctl_present) { 7104 mp = first_mp->b_cont; 7105 first_mp->b_cont = NULL; 7106 secure = ipsec_in_is_secure(first_mp); 7107 ASSERT(mp != NULL); 7108 } else { 7109 first_mp = NULL; 7110 secure = B_FALSE; 7111 } 7112 7113 /* Extract ports in net byte order */ 7114 dstport = htons(ntohl(ports) & 0xFFFF); 7115 srcport = htons(ntohl(ports) >> 16); 7116 dst = ipha->ipha_dst; 7117 src = ipha->ipha_src; 7118 7119 unlabeled = B_FALSE; 7120 if (is_system_labeled()) 7121 /* Cred cannot be null on IPv4 */ 7122 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7123 TSLF_UNLABELED) != 0; 7124 shared_addr = (zoneid == ALL_ZONES); 7125 if (shared_addr) { 7126 /* 7127 * No need to handle exclusive-stack zones since ALL_ZONES 7128 * only applies to the shared stack. 7129 */ 7130 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7131 /* 7132 * If no shared MLP is found, tsol_mlp_findzone returns 7133 * ALL_ZONES. In that case, we assume it's SLP, and 7134 * search for the zone based on the packet label. 7135 * 7136 * If there is such a zone, we prefer to find a 7137 * connection in it. Otherwise, we look for a 7138 * MAC-exempt connection in any zone whose label 7139 * dominates the default label on the packet. 7140 */ 7141 if (zoneid == ALL_ZONES) 7142 zoneid = tsol_packet_to_zoneid(mp); 7143 else 7144 unlabeled = B_FALSE; 7145 } 7146 7147 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7148 mutex_enter(&connfp->connf_lock); 7149 connp = connfp->connf_head; 7150 if (!broadcast && !CLASSD(dst)) { 7151 /* 7152 * Not broadcast or multicast. Send to the one (first) 7153 * client we find. No need to check conn_wantpacket() 7154 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7155 * IPv4 unicast packets. 7156 */ 7157 while ((connp != NULL) && 7158 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7159 (!IPCL_ZONE_MATCH(connp, zoneid) && 7160 !(unlabeled && connp->conn_mac_exempt)))) { 7161 /* 7162 * We keep searching since the conn did not match, 7163 * or its zone did not match and it is not either 7164 * an allzones conn or a mac exempt conn (if the 7165 * sender is unlabeled.) 7166 */ 7167 connp = connp->conn_next; 7168 } 7169 7170 if (connp == NULL || connp->conn_upq == NULL) 7171 goto notfound; 7172 7173 if (is_system_labeled() && 7174 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7175 connp)) 7176 goto notfound; 7177 7178 CONN_INC_REF(connp); 7179 mutex_exit(&connfp->connf_lock); 7180 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7181 flags, recv_ill, ip_policy); 7182 IP_STAT(ipst, ip_udp_fannorm); 7183 CONN_DEC_REF(connp); 7184 return; 7185 } 7186 7187 /* 7188 * Broadcast and multicast case 7189 * 7190 * Need to check conn_wantpacket(). 7191 * If SO_REUSEADDR has been set on the first we send the 7192 * packet to all clients that have joined the group and 7193 * match the port. 7194 */ 7195 7196 while (connp != NULL) { 7197 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7198 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7199 (!is_system_labeled() || 7200 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7201 connp))) 7202 break; 7203 connp = connp->conn_next; 7204 } 7205 7206 if (connp == NULL || connp->conn_upq == NULL) 7207 goto notfound; 7208 7209 first_connp = connp; 7210 /* 7211 * When SO_REUSEADDR is not set, send the packet only to the first 7212 * matching connection in its zone by keeping track of the zoneid. 7213 */ 7214 reuseaddr = first_connp->conn_reuseaddr; 7215 last_zoneid = first_connp->conn_zoneid; 7216 7217 CONN_INC_REF(connp); 7218 connp = connp->conn_next; 7219 for (;;) { 7220 while (connp != NULL) { 7221 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7222 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7223 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7224 (!is_system_labeled() || 7225 tsol_receive_local(mp, &dst, IPV4_VERSION, 7226 shared_addr, connp))) 7227 break; 7228 connp = connp->conn_next; 7229 } 7230 /* 7231 * Just copy the data part alone. The mctl part is 7232 * needed just for verifying policy and it is never 7233 * sent up. 7234 */ 7235 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7236 ((mp1 = copymsg(mp)) == NULL))) { 7237 /* 7238 * No more interested clients or memory 7239 * allocation failed 7240 */ 7241 connp = first_connp; 7242 break; 7243 } 7244 if (connp->conn_zoneid != last_zoneid) { 7245 /* 7246 * Update the zoneid so that the packet isn't sent to 7247 * any more conns in the same zone unless SO_REUSEADDR 7248 * is set. 7249 */ 7250 reuseaddr = connp->conn_reuseaddr; 7251 last_zoneid = connp->conn_zoneid; 7252 } 7253 if (first_mp != NULL) { 7254 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7255 ipsec_info_type == IPSEC_IN); 7256 first_mp1 = ipsec_in_tag(first_mp, NULL, 7257 ipst->ips_netstack); 7258 if (first_mp1 == NULL) { 7259 freemsg(mp1); 7260 connp = first_connp; 7261 break; 7262 } 7263 } else { 7264 first_mp1 = NULL; 7265 } 7266 CONN_INC_REF(connp); 7267 mutex_exit(&connfp->connf_lock); 7268 /* 7269 * IPQoS notes: We don't send the packet for policy 7270 * processing here, will do it for the last one (below). 7271 * i.e. we do it per-packet now, but if we do policy 7272 * processing per-conn, then we would need to do it 7273 * here too. 7274 */ 7275 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7276 ipha, flags, recv_ill, B_FALSE); 7277 mutex_enter(&connfp->connf_lock); 7278 /* Follow the next pointer before releasing the conn. */ 7279 next_connp = connp->conn_next; 7280 IP_STAT(ipst, ip_udp_fanmb); 7281 CONN_DEC_REF(connp); 7282 connp = next_connp; 7283 } 7284 7285 /* Last one. Send it upstream. */ 7286 mutex_exit(&connfp->connf_lock); 7287 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7288 recv_ill, ip_policy); 7289 IP_STAT(ipst, ip_udp_fanmb); 7290 CONN_DEC_REF(connp); 7291 return; 7292 7293 notfound: 7294 7295 mutex_exit(&connfp->connf_lock); 7296 IP_STAT(ipst, ip_udp_fanothers); 7297 /* 7298 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7299 * have already been matched above, since they live in the IPv4 7300 * fanout tables. This implies we only need to 7301 * check for IPv6 in6addr_any endpoints here. 7302 * Thus we compare using ipv6_all_zeros instead of the destination 7303 * address, except for the multicast group membership lookup which 7304 * uses the IPv4 destination. 7305 */ 7306 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7307 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7308 mutex_enter(&connfp->connf_lock); 7309 connp = connfp->connf_head; 7310 if (!broadcast && !CLASSD(dst)) { 7311 while (connp != NULL) { 7312 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7313 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7314 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7315 !connp->conn_ipv6_v6only) 7316 break; 7317 connp = connp->conn_next; 7318 } 7319 7320 if (connp != NULL && is_system_labeled() && 7321 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7322 connp)) 7323 connp = NULL; 7324 7325 if (connp == NULL || connp->conn_upq == NULL) { 7326 /* 7327 * No one bound to this port. Is 7328 * there a client that wants all 7329 * unclaimed datagrams? 7330 */ 7331 mutex_exit(&connfp->connf_lock); 7332 7333 if (mctl_present) 7334 first_mp->b_cont = mp; 7335 else 7336 first_mp = mp; 7337 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7338 connf_head != NULL) { 7339 ip_fanout_proto(q, first_mp, ill, ipha, 7340 flags | IP_FF_RAWIP, mctl_present, 7341 ip_policy, recv_ill, zoneid); 7342 } else { 7343 if (ip_fanout_send_icmp(q, first_mp, flags, 7344 ICMP_DEST_UNREACHABLE, 7345 ICMP_PORT_UNREACHABLE, 7346 mctl_present, zoneid, ipst)) { 7347 BUMP_MIB(ill->ill_ip_mib, 7348 udpIfStatsNoPorts); 7349 } 7350 } 7351 return; 7352 } 7353 7354 CONN_INC_REF(connp); 7355 mutex_exit(&connfp->connf_lock); 7356 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7357 flags, recv_ill, ip_policy); 7358 CONN_DEC_REF(connp); 7359 return; 7360 } 7361 /* 7362 * IPv4 multicast packet being delivered to an AF_INET6 7363 * in6addr_any endpoint. 7364 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7365 * and not conn_wantpacket_v6() since any multicast membership is 7366 * for an IPv4-mapped multicast address. 7367 * The packet is sent to all clients in all zones that have joined the 7368 * group and match the port. 7369 */ 7370 while (connp != NULL) { 7371 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7372 srcport, v6src) && 7373 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7374 (!is_system_labeled() || 7375 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7376 connp))) 7377 break; 7378 connp = connp->conn_next; 7379 } 7380 7381 if (connp == NULL || connp->conn_upq == NULL) { 7382 /* 7383 * No one bound to this port. Is 7384 * there a client that wants all 7385 * unclaimed datagrams? 7386 */ 7387 mutex_exit(&connfp->connf_lock); 7388 7389 if (mctl_present) 7390 first_mp->b_cont = mp; 7391 else 7392 first_mp = mp; 7393 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7394 NULL) { 7395 ip_fanout_proto(q, first_mp, ill, ipha, 7396 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7397 recv_ill, zoneid); 7398 } else { 7399 /* 7400 * We used to attempt to send an icmp error here, but 7401 * since this is known to be a multicast packet 7402 * and we don't send icmp errors in response to 7403 * multicast, just drop the packet and give up sooner. 7404 */ 7405 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7406 freemsg(first_mp); 7407 } 7408 return; 7409 } 7410 7411 first_connp = connp; 7412 7413 CONN_INC_REF(connp); 7414 connp = connp->conn_next; 7415 for (;;) { 7416 while (connp != NULL) { 7417 if (IPCL_UDP_MATCH_V6(connp, dstport, 7418 ipv6_all_zeros, srcport, v6src) && 7419 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7420 (!is_system_labeled() || 7421 tsol_receive_local(mp, &dst, IPV4_VERSION, 7422 shared_addr, connp))) 7423 break; 7424 connp = connp->conn_next; 7425 } 7426 /* 7427 * Just copy the data part alone. The mctl part is 7428 * needed just for verifying policy and it is never 7429 * sent up. 7430 */ 7431 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7432 ((mp1 = copymsg(mp)) == NULL))) { 7433 /* 7434 * No more intested clients or memory 7435 * allocation failed 7436 */ 7437 connp = first_connp; 7438 break; 7439 } 7440 if (first_mp != NULL) { 7441 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7442 ipsec_info_type == IPSEC_IN); 7443 first_mp1 = ipsec_in_tag(first_mp, NULL, 7444 ipst->ips_netstack); 7445 if (first_mp1 == NULL) { 7446 freemsg(mp1); 7447 connp = first_connp; 7448 break; 7449 } 7450 } else { 7451 first_mp1 = NULL; 7452 } 7453 CONN_INC_REF(connp); 7454 mutex_exit(&connfp->connf_lock); 7455 /* 7456 * IPQoS notes: We don't send the packet for policy 7457 * processing here, will do it for the last one (below). 7458 * i.e. we do it per-packet now, but if we do policy 7459 * processing per-conn, then we would need to do it 7460 * here too. 7461 */ 7462 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7463 ipha, flags, recv_ill, B_FALSE); 7464 mutex_enter(&connfp->connf_lock); 7465 /* Follow the next pointer before releasing the conn. */ 7466 next_connp = connp->conn_next; 7467 CONN_DEC_REF(connp); 7468 connp = next_connp; 7469 } 7470 7471 /* Last one. Send it upstream. */ 7472 mutex_exit(&connfp->connf_lock); 7473 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7474 recv_ill, ip_policy); 7475 CONN_DEC_REF(connp); 7476 } 7477 7478 /* 7479 * Complete the ip_wput header so that it 7480 * is possible to generate ICMP 7481 * errors. 7482 */ 7483 int 7484 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7485 { 7486 ire_t *ire; 7487 7488 if (ipha->ipha_src == INADDR_ANY) { 7489 ire = ire_lookup_local(zoneid, ipst); 7490 if (ire == NULL) { 7491 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7492 return (1); 7493 } 7494 ipha->ipha_src = ire->ire_addr; 7495 ire_refrele(ire); 7496 } 7497 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7498 ipha->ipha_hdr_checksum = 0; 7499 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7500 return (0); 7501 } 7502 7503 /* 7504 * Nobody should be sending 7505 * packets up this stream 7506 */ 7507 static void 7508 ip_lrput(queue_t *q, mblk_t *mp) 7509 { 7510 mblk_t *mp1; 7511 7512 switch (mp->b_datap->db_type) { 7513 case M_FLUSH: 7514 /* Turn around */ 7515 if (*mp->b_rptr & FLUSHW) { 7516 *mp->b_rptr &= ~FLUSHR; 7517 qreply(q, mp); 7518 return; 7519 } 7520 break; 7521 } 7522 /* Could receive messages that passed through ar_rput */ 7523 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7524 mp1->b_prev = mp1->b_next = NULL; 7525 freemsg(mp); 7526 } 7527 7528 /* Nobody should be sending packets down this stream */ 7529 /* ARGSUSED */ 7530 void 7531 ip_lwput(queue_t *q, mblk_t *mp) 7532 { 7533 freemsg(mp); 7534 } 7535 7536 /* 7537 * Move the first hop in any source route to ipha_dst and remove that part of 7538 * the source route. Called by other protocols. Errors in option formatting 7539 * are ignored - will be handled by ip_wput_options Return the final 7540 * destination (either ipha_dst or the last entry in a source route.) 7541 */ 7542 ipaddr_t 7543 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7544 { 7545 ipoptp_t opts; 7546 uchar_t *opt; 7547 uint8_t optval; 7548 uint8_t optlen; 7549 ipaddr_t dst; 7550 int i; 7551 ire_t *ire; 7552 ip_stack_t *ipst = ns->netstack_ip; 7553 7554 ip2dbg(("ip_massage_options\n")); 7555 dst = ipha->ipha_dst; 7556 for (optval = ipoptp_first(&opts, ipha); 7557 optval != IPOPT_EOL; 7558 optval = ipoptp_next(&opts)) { 7559 opt = opts.ipoptp_cur; 7560 switch (optval) { 7561 uint8_t off; 7562 case IPOPT_SSRR: 7563 case IPOPT_LSRR: 7564 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7565 ip1dbg(("ip_massage_options: bad src route\n")); 7566 break; 7567 } 7568 optlen = opts.ipoptp_len; 7569 off = opt[IPOPT_OFFSET]; 7570 off--; 7571 redo_srr: 7572 if (optlen < IP_ADDR_LEN || 7573 off > optlen - IP_ADDR_LEN) { 7574 /* End of source route */ 7575 ip1dbg(("ip_massage_options: end of SR\n")); 7576 break; 7577 } 7578 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7579 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7580 ntohl(dst))); 7581 /* 7582 * Check if our address is present more than 7583 * once as consecutive hops in source route. 7584 * XXX verify per-interface ip_forwarding 7585 * for source route? 7586 */ 7587 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7588 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7589 if (ire != NULL) { 7590 ire_refrele(ire); 7591 off += IP_ADDR_LEN; 7592 goto redo_srr; 7593 } 7594 if (dst == htonl(INADDR_LOOPBACK)) { 7595 ip1dbg(("ip_massage_options: loopback addr in " 7596 "source route!\n")); 7597 break; 7598 } 7599 /* 7600 * Update ipha_dst to be the first hop and remove the 7601 * first hop from the source route (by overwriting 7602 * part of the option with NOP options). 7603 */ 7604 ipha->ipha_dst = dst; 7605 /* Put the last entry in dst */ 7606 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7607 3; 7608 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7609 7610 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7611 ntohl(dst))); 7612 /* Move down and overwrite */ 7613 opt[IP_ADDR_LEN] = opt[0]; 7614 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7615 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7616 for (i = 0; i < IP_ADDR_LEN; i++) 7617 opt[i] = IPOPT_NOP; 7618 break; 7619 } 7620 } 7621 return (dst); 7622 } 7623 7624 /* 7625 * Return the network mask 7626 * associated with the specified address. 7627 */ 7628 ipaddr_t 7629 ip_net_mask(ipaddr_t addr) 7630 { 7631 uchar_t *up = (uchar_t *)&addr; 7632 ipaddr_t mask = 0; 7633 uchar_t *maskp = (uchar_t *)&mask; 7634 7635 #if defined(__i386) || defined(__amd64) 7636 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7637 #endif 7638 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7639 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7640 #endif 7641 if (CLASSD(addr)) { 7642 maskp[0] = 0xF0; 7643 return (mask); 7644 } 7645 7646 /* We assume Class E default netmask to be 32 */ 7647 if (CLASSE(addr)) 7648 return (0xffffffffU); 7649 7650 if (addr == 0) 7651 return (0); 7652 maskp[0] = 0xFF; 7653 if ((up[0] & 0x80) == 0) 7654 return (mask); 7655 7656 maskp[1] = 0xFF; 7657 if ((up[0] & 0xC0) == 0x80) 7658 return (mask); 7659 7660 maskp[2] = 0xFF; 7661 if ((up[0] & 0xE0) == 0xC0) 7662 return (mask); 7663 7664 /* Otherwise return no mask */ 7665 return ((ipaddr_t)0); 7666 } 7667 7668 /* 7669 * Select an ill for the packet by considering load spreading across 7670 * a different ill in the group if dst_ill is part of some group. 7671 */ 7672 ill_t * 7673 ip_newroute_get_dst_ill(ill_t *dst_ill) 7674 { 7675 ill_t *ill; 7676 7677 /* 7678 * We schedule irrespective of whether the source address is 7679 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7680 */ 7681 ill = illgrp_scheduler(dst_ill); 7682 if (ill == NULL) 7683 return (NULL); 7684 7685 /* 7686 * For groups with names ip_sioctl_groupname ensures that all 7687 * ills are of same type. For groups without names, ifgrp_insert 7688 * ensures this. 7689 */ 7690 ASSERT(dst_ill->ill_type == ill->ill_type); 7691 7692 return (ill); 7693 } 7694 7695 /* 7696 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7697 */ 7698 ill_t * 7699 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7700 ip_stack_t *ipst) 7701 { 7702 ill_t *ret_ill; 7703 7704 ASSERT(ifindex != 0); 7705 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7706 ipst); 7707 if (ret_ill == NULL || 7708 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7709 if (isv6) { 7710 if (ill != NULL) { 7711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7712 } else { 7713 BUMP_MIB(&ipst->ips_ip6_mib, 7714 ipIfStatsOutDiscards); 7715 } 7716 ip1dbg(("ip_grab_attach_ill (IPv6): " 7717 "bad ifindex %d.\n", ifindex)); 7718 } else { 7719 if (ill != NULL) { 7720 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7721 } else { 7722 BUMP_MIB(&ipst->ips_ip_mib, 7723 ipIfStatsOutDiscards); 7724 } 7725 ip1dbg(("ip_grab_attach_ill (IPv4): " 7726 "bad ifindex %d.\n", ifindex)); 7727 } 7728 if (ret_ill != NULL) 7729 ill_refrele(ret_ill); 7730 freemsg(first_mp); 7731 return (NULL); 7732 } 7733 7734 return (ret_ill); 7735 } 7736 7737 /* 7738 * IPv4 - 7739 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7740 * out a packet to a destination address for which we do not have specific 7741 * (or sufficient) routing information. 7742 * 7743 * NOTE : These are the scopes of some of the variables that point at IRE, 7744 * which needs to be followed while making any future modifications 7745 * to avoid memory leaks. 7746 * 7747 * - ire and sire are the entries looked up initially by 7748 * ire_ftable_lookup. 7749 * - ipif_ire is used to hold the interface ire associated with 7750 * the new cache ire. But it's scope is limited, so we always REFRELE 7751 * it before branching out to error paths. 7752 * - save_ire is initialized before ire_create, so that ire returned 7753 * by ire_create will not over-write the ire. We REFRELE save_ire 7754 * before breaking out of the switch. 7755 * 7756 * Thus on failures, we have to REFRELE only ire and sire, if they 7757 * are not NULL. 7758 */ 7759 void 7760 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7761 zoneid_t zoneid, ip_stack_t *ipst) 7762 { 7763 areq_t *areq; 7764 ipaddr_t gw = 0; 7765 ire_t *ire = NULL; 7766 mblk_t *res_mp; 7767 ipaddr_t *addrp; 7768 ipaddr_t nexthop_addr; 7769 ipif_t *src_ipif = NULL; 7770 ill_t *dst_ill = NULL; 7771 ipha_t *ipha; 7772 ire_t *sire = NULL; 7773 mblk_t *first_mp; 7774 ire_t *save_ire; 7775 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7776 ushort_t ire_marks = 0; 7777 boolean_t mctl_present; 7778 ipsec_out_t *io; 7779 mblk_t *saved_mp; 7780 ire_t *first_sire = NULL; 7781 mblk_t *copy_mp = NULL; 7782 mblk_t *xmit_mp = NULL; 7783 ipaddr_t save_dst; 7784 uint32_t multirt_flags = 7785 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7786 boolean_t multirt_is_resolvable; 7787 boolean_t multirt_resolve_next; 7788 boolean_t unspec_src; 7789 boolean_t do_attach_ill = B_FALSE; 7790 boolean_t ip_nexthop = B_FALSE; 7791 tsol_ire_gw_secattr_t *attrp = NULL; 7792 tsol_gcgrp_t *gcgrp = NULL; 7793 tsol_gcgrp_addr_t ga; 7794 7795 if (ip_debug > 2) { 7796 /* ip1dbg */ 7797 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7798 } 7799 7800 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7801 if (mctl_present) { 7802 io = (ipsec_out_t *)first_mp->b_rptr; 7803 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7804 ASSERT(zoneid == io->ipsec_out_zoneid); 7805 ASSERT(zoneid != ALL_ZONES); 7806 } 7807 7808 ipha = (ipha_t *)mp->b_rptr; 7809 7810 /* All multicast lookups come through ip_newroute_ipif() */ 7811 if (CLASSD(dst)) { 7812 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7813 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7814 freemsg(first_mp); 7815 return; 7816 } 7817 7818 if (mctl_present && io->ipsec_out_attach_if) { 7819 /* ip_grab_attach_ill returns a held ill */ 7820 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7821 io->ipsec_out_ill_index, B_FALSE, ipst); 7822 7823 /* Failure case frees things for us. */ 7824 if (attach_ill == NULL) 7825 return; 7826 7827 /* 7828 * Check if we need an ire that will not be 7829 * looked up by anybody else i.e. HIDDEN. 7830 */ 7831 if (ill_is_probeonly(attach_ill)) 7832 ire_marks = IRE_MARK_HIDDEN; 7833 } 7834 if (mctl_present && io->ipsec_out_ip_nexthop) { 7835 ip_nexthop = B_TRUE; 7836 nexthop_addr = io->ipsec_out_nexthop_addr; 7837 } 7838 /* 7839 * If this IRE is created for forwarding or it is not for 7840 * traffic for congestion controlled protocols, mark it as temporary. 7841 */ 7842 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7843 ire_marks |= IRE_MARK_TEMPORARY; 7844 7845 /* 7846 * Get what we can from ire_ftable_lookup which will follow an IRE 7847 * chain until it gets the most specific information available. 7848 * For example, we know that there is no IRE_CACHE for this dest, 7849 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7850 * ire_ftable_lookup will look up the gateway, etc. 7851 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7852 * to the destination, of equal netmask length in the forward table, 7853 * will be recursively explored. If no information is available 7854 * for the final gateway of that route, we force the returned ire 7855 * to be equal to sire using MATCH_IRE_PARENT. 7856 * At least, in this case we have a starting point (in the buckets) 7857 * to look for other routes to the destination in the forward table. 7858 * This is actually used only for multirouting, where a list 7859 * of routes has to be processed in sequence. 7860 * 7861 * In the process of coming up with the most specific information, 7862 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7863 * for the gateway (i.e., one for which the ire_nce->nce_state is 7864 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7865 * Two caveats when handling incomplete ire's in ip_newroute: 7866 * - we should be careful when accessing its ire_nce (specifically 7867 * the nce_res_mp) ast it might change underneath our feet, and, 7868 * - not all legacy code path callers are prepared to handle 7869 * incomplete ire's, so we should not create/add incomplete 7870 * ire_cache entries here. (See discussion about temporary solution 7871 * further below). 7872 * 7873 * In order to minimize packet dropping, and to preserve existing 7874 * behavior, we treat this case as if there were no IRE_CACHE for the 7875 * gateway, and instead use the IF_RESOLVER ire to send out 7876 * another request to ARP (this is achieved by passing the 7877 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7878 * arp response comes back in ip_wput_nondata, we will create 7879 * a per-dst ire_cache that has an ND_COMPLETE ire. 7880 * 7881 * Note that this is a temporary solution; the correct solution is 7882 * to create an incomplete per-dst ire_cache entry, and send the 7883 * packet out when the gw's nce is resolved. In order to achieve this, 7884 * all packet processing must have been completed prior to calling 7885 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7886 * to be modified to accomodate this solution. 7887 */ 7888 if (ip_nexthop) { 7889 /* 7890 * The first time we come here, we look for an IRE_INTERFACE 7891 * entry for the specified nexthop, set the dst to be the 7892 * nexthop address and create an IRE_CACHE entry for the 7893 * nexthop. The next time around, we are able to find an 7894 * IRE_CACHE entry for the nexthop, set the gateway to be the 7895 * nexthop address and create an IRE_CACHE entry for the 7896 * destination address via the specified nexthop. 7897 */ 7898 ire = ire_cache_lookup(nexthop_addr, zoneid, 7899 MBLK_GETLABEL(mp), ipst); 7900 if (ire != NULL) { 7901 gw = nexthop_addr; 7902 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7903 } else { 7904 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7905 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7906 MBLK_GETLABEL(mp), 7907 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7908 ipst); 7909 if (ire != NULL) { 7910 dst = nexthop_addr; 7911 } 7912 } 7913 } else if (attach_ill == NULL) { 7914 ire = ire_ftable_lookup(dst, 0, 0, 0, 7915 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7916 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7917 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7918 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7919 ipst); 7920 } else { 7921 /* 7922 * attach_ill is set only for communicating with 7923 * on-link hosts. So, don't look for DEFAULT. 7924 */ 7925 ipif_t *attach_ipif; 7926 7927 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7928 if (attach_ipif == NULL) { 7929 ill_refrele(attach_ill); 7930 goto icmp_err_ret; 7931 } 7932 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7933 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7934 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7935 MATCH_IRE_SECATTR, ipst); 7936 ipif_refrele(attach_ipif); 7937 } 7938 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7939 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7940 7941 /* 7942 * This loop is run only once in most cases. 7943 * We loop to resolve further routes only when the destination 7944 * can be reached through multiple RTF_MULTIRT-flagged ires. 7945 */ 7946 do { 7947 /* Clear the previous iteration's values */ 7948 if (src_ipif != NULL) { 7949 ipif_refrele(src_ipif); 7950 src_ipif = NULL; 7951 } 7952 if (dst_ill != NULL) { 7953 ill_refrele(dst_ill); 7954 dst_ill = NULL; 7955 } 7956 7957 multirt_resolve_next = B_FALSE; 7958 /* 7959 * We check if packets have to be multirouted. 7960 * In this case, given the current <ire, sire> couple, 7961 * we look for the next suitable <ire, sire>. 7962 * This check is done in ire_multirt_lookup(), 7963 * which applies various criteria to find the next route 7964 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7965 * unchanged if it detects it has not been tried yet. 7966 */ 7967 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7968 ip3dbg(("ip_newroute: starting next_resolution " 7969 "with first_mp %p, tag %d\n", 7970 (void *)first_mp, 7971 MULTIRT_DEBUG_TAGGED(first_mp))); 7972 7973 ASSERT(sire != NULL); 7974 multirt_is_resolvable = 7975 ire_multirt_lookup(&ire, &sire, multirt_flags, 7976 MBLK_GETLABEL(mp), ipst); 7977 7978 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7979 "ire %p, sire %p\n", 7980 multirt_is_resolvable, 7981 (void *)ire, (void *)sire)); 7982 7983 if (!multirt_is_resolvable) { 7984 /* 7985 * No more multirt route to resolve; give up 7986 * (all routes resolved or no more 7987 * resolvable routes). 7988 */ 7989 if (ire != NULL) { 7990 ire_refrele(ire); 7991 ire = NULL; 7992 } 7993 } else { 7994 ASSERT(sire != NULL); 7995 ASSERT(ire != NULL); 7996 /* 7997 * We simply use first_sire as a flag that 7998 * indicates if a resolvable multirt route 7999 * has already been found. 8000 * If it is not the case, we may have to send 8001 * an ICMP error to report that the 8002 * destination is unreachable. 8003 * We do not IRE_REFHOLD first_sire. 8004 */ 8005 if (first_sire == NULL) { 8006 first_sire = sire; 8007 } 8008 } 8009 } 8010 if (ire == NULL) { 8011 if (ip_debug > 3) { 8012 /* ip2dbg */ 8013 pr_addr_dbg("ip_newroute: " 8014 "can't resolve %s\n", AF_INET, &dst); 8015 } 8016 ip3dbg(("ip_newroute: " 8017 "ire %p, sire %p, first_sire %p\n", 8018 (void *)ire, (void *)sire, (void *)first_sire)); 8019 8020 if (sire != NULL) { 8021 ire_refrele(sire); 8022 sire = NULL; 8023 } 8024 8025 if (first_sire != NULL) { 8026 /* 8027 * At least one multirt route has been found 8028 * in the same call to ip_newroute(); 8029 * there is no need to report an ICMP error. 8030 * first_sire was not IRE_REFHOLDed. 8031 */ 8032 MULTIRT_DEBUG_UNTAG(first_mp); 8033 freemsg(first_mp); 8034 return; 8035 } 8036 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8037 RTA_DST, ipst); 8038 if (attach_ill != NULL) 8039 ill_refrele(attach_ill); 8040 goto icmp_err_ret; 8041 } 8042 8043 /* 8044 * Verify that the returned IRE does not have either 8045 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8046 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8047 */ 8048 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8049 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8050 if (attach_ill != NULL) 8051 ill_refrele(attach_ill); 8052 goto icmp_err_ret; 8053 } 8054 /* 8055 * Increment the ire_ob_pkt_count field for ire if it is an 8056 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8057 * increment the same for the parent IRE, sire, if it is some 8058 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8059 */ 8060 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8061 UPDATE_OB_PKT_COUNT(ire); 8062 ire->ire_last_used_time = lbolt; 8063 } 8064 8065 if (sire != NULL) { 8066 gw = sire->ire_gateway_addr; 8067 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8068 IRE_INTERFACE)) == 0); 8069 UPDATE_OB_PKT_COUNT(sire); 8070 sire->ire_last_used_time = lbolt; 8071 } 8072 /* 8073 * We have a route to reach the destination. 8074 * 8075 * 1) If the interface is part of ill group, try to get a new 8076 * ill taking load spreading into account. 8077 * 8078 * 2) After selecting the ill, get a source address that 8079 * might create good inbound load spreading. 8080 * ipif_select_source does this for us. 8081 * 8082 * If the application specified the ill (ifindex), we still 8083 * load spread. Only if the packets needs to go out 8084 * specifically on a given ill e.g. binding to 8085 * IPIF_NOFAILOVER address, then we don't try to use a 8086 * different ill for load spreading. 8087 */ 8088 if (attach_ill == NULL) { 8089 /* 8090 * Don't perform outbound load spreading in the 8091 * case of an RTF_MULTIRT route, as we actually 8092 * typically want to replicate outgoing packets 8093 * through particular interfaces. 8094 */ 8095 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8096 dst_ill = ire->ire_ipif->ipif_ill; 8097 /* for uniformity */ 8098 ill_refhold(dst_ill); 8099 } else { 8100 /* 8101 * If we are here trying to create an IRE_CACHE 8102 * for an offlink destination and have the 8103 * IRE_CACHE for the next hop and the latter is 8104 * using virtual IP source address selection i.e 8105 * it's ire->ire_ipif is pointing to a virtual 8106 * network interface (vni) then 8107 * ip_newroute_get_dst_ll() will return the vni 8108 * interface as the dst_ill. Since the vni is 8109 * virtual i.e not associated with any physical 8110 * interface, it cannot be the dst_ill, hence 8111 * in such a case call ip_newroute_get_dst_ll() 8112 * with the stq_ill instead of the ire_ipif ILL. 8113 * The function returns a refheld ill. 8114 */ 8115 if ((ire->ire_type == IRE_CACHE) && 8116 IS_VNI(ire->ire_ipif->ipif_ill)) 8117 dst_ill = ip_newroute_get_dst_ill( 8118 ire->ire_stq->q_ptr); 8119 else 8120 dst_ill = ip_newroute_get_dst_ill( 8121 ire->ire_ipif->ipif_ill); 8122 } 8123 if (dst_ill == NULL) { 8124 if (ip_debug > 2) { 8125 pr_addr_dbg("ip_newroute: " 8126 "no dst ill for dst" 8127 " %s\n", AF_INET, &dst); 8128 } 8129 goto icmp_err_ret; 8130 } 8131 } else { 8132 dst_ill = ire->ire_ipif->ipif_ill; 8133 /* for uniformity */ 8134 ill_refhold(dst_ill); 8135 /* 8136 * We should have found a route matching ill as we 8137 * called ire_ftable_lookup with MATCH_IRE_ILL. 8138 * Rather than asserting, when there is a mismatch, 8139 * we just drop the packet. 8140 */ 8141 if (dst_ill != attach_ill) { 8142 ip0dbg(("ip_newroute: Packet dropped as " 8143 "IPIF_NOFAILOVER ill is %s, " 8144 "ire->ire_ipif->ipif_ill is %s\n", 8145 attach_ill->ill_name, 8146 dst_ill->ill_name)); 8147 ill_refrele(attach_ill); 8148 goto icmp_err_ret; 8149 } 8150 } 8151 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8152 if (attach_ill != NULL) { 8153 ill_refrele(attach_ill); 8154 attach_ill = NULL; 8155 do_attach_ill = B_TRUE; 8156 } 8157 ASSERT(dst_ill != NULL); 8158 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8159 8160 /* 8161 * Pick the best source address from dst_ill. 8162 * 8163 * 1) If it is part of a multipathing group, we would 8164 * like to spread the inbound packets across different 8165 * interfaces. ipif_select_source picks a random source 8166 * across the different ills in the group. 8167 * 8168 * 2) If it is not part of a multipathing group, we try 8169 * to pick the source address from the destination 8170 * route. Clustering assumes that when we have multiple 8171 * prefixes hosted on an interface, the prefix of the 8172 * source address matches the prefix of the destination 8173 * route. We do this only if the address is not 8174 * DEPRECATED. 8175 * 8176 * 3) If the conn is in a different zone than the ire, we 8177 * need to pick a source address from the right zone. 8178 * 8179 * NOTE : If we hit case (1) above, the prefix of the source 8180 * address picked may not match the prefix of the 8181 * destination routes prefix as ipif_select_source 8182 * does not look at "dst" while picking a source 8183 * address. 8184 * If we want the same behavior as (2), we will need 8185 * to change the behavior of ipif_select_source. 8186 */ 8187 ASSERT(src_ipif == NULL); 8188 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8189 /* 8190 * The RTF_SETSRC flag is set in the parent ire (sire). 8191 * Check that the ipif matching the requested source 8192 * address still exists. 8193 */ 8194 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8195 zoneid, NULL, NULL, NULL, NULL, ipst); 8196 } 8197 8198 unspec_src = (connp != NULL && connp->conn_unspec_src); 8199 8200 if (src_ipif == NULL && 8201 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8202 ire_marks |= IRE_MARK_USESRC_CHECK; 8203 if ((dst_ill->ill_group != NULL) || 8204 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8205 (connp != NULL && ire->ire_zoneid != zoneid && 8206 ire->ire_zoneid != ALL_ZONES) || 8207 (dst_ill->ill_usesrc_ifindex != 0)) { 8208 /* 8209 * If the destination is reachable via a 8210 * given gateway, the selected source address 8211 * should be in the same subnet as the gateway. 8212 * Otherwise, the destination is not reachable. 8213 * 8214 * If there are no interfaces on the same subnet 8215 * as the destination, ipif_select_source gives 8216 * first non-deprecated interface which might be 8217 * on a different subnet than the gateway. 8218 * This is not desirable. Hence pass the dst_ire 8219 * source address to ipif_select_source. 8220 * It is sure that the destination is reachable 8221 * with the dst_ire source address subnet. 8222 * So passing dst_ire source address to 8223 * ipif_select_source will make sure that the 8224 * selected source will be on the same subnet 8225 * as dst_ire source address. 8226 */ 8227 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8228 src_ipif = ipif_select_source(dst_ill, saddr, 8229 zoneid); 8230 if (src_ipif == NULL) { 8231 if (ip_debug > 2) { 8232 pr_addr_dbg("ip_newroute: " 8233 "no src for dst %s ", 8234 AF_INET, &dst); 8235 printf("through interface %s\n", 8236 dst_ill->ill_name); 8237 } 8238 goto icmp_err_ret; 8239 } 8240 } else { 8241 src_ipif = ire->ire_ipif; 8242 ASSERT(src_ipif != NULL); 8243 /* hold src_ipif for uniformity */ 8244 ipif_refhold(src_ipif); 8245 } 8246 } 8247 8248 /* 8249 * Assign a source address while we have the conn. 8250 * We can't have ip_wput_ire pick a source address when the 8251 * packet returns from arp since we need to look at 8252 * conn_unspec_src and conn_zoneid, and we lose the conn when 8253 * going through arp. 8254 * 8255 * NOTE : ip_newroute_v6 does not have this piece of code as 8256 * it uses ip6i to store this information. 8257 */ 8258 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8259 ipha->ipha_src = src_ipif->ipif_src_addr; 8260 8261 if (ip_debug > 3) { 8262 /* ip2dbg */ 8263 pr_addr_dbg("ip_newroute: first hop %s\n", 8264 AF_INET, &gw); 8265 } 8266 ip2dbg(("\tire type %s (%d)\n", 8267 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8268 8269 /* 8270 * The TTL of multirouted packets is bounded by the 8271 * ip_multirt_ttl ndd variable. 8272 */ 8273 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8274 /* Force TTL of multirouted packets */ 8275 if ((ipst->ips_ip_multirt_ttl > 0) && 8276 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8277 ip2dbg(("ip_newroute: forcing multirt TTL " 8278 "to %d (was %d), dst 0x%08x\n", 8279 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8280 ntohl(sire->ire_addr))); 8281 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8282 } 8283 } 8284 /* 8285 * At this point in ip_newroute(), ire is either the 8286 * IRE_CACHE of the next-hop gateway for an off-subnet 8287 * destination or an IRE_INTERFACE type that should be used 8288 * to resolve an on-subnet destination or an on-subnet 8289 * next-hop gateway. 8290 * 8291 * In the IRE_CACHE case, we have the following : 8292 * 8293 * 1) src_ipif - used for getting a source address. 8294 * 8295 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8296 * means packets using this IRE_CACHE will go out on 8297 * dst_ill. 8298 * 8299 * 3) The IRE sire will point to the prefix that is the 8300 * longest matching route for the destination. These 8301 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8302 * 8303 * The newly created IRE_CACHE entry for the off-subnet 8304 * destination is tied to both the prefix route and the 8305 * interface route used to resolve the next-hop gateway 8306 * via the ire_phandle and ire_ihandle fields, 8307 * respectively. 8308 * 8309 * In the IRE_INTERFACE case, we have the following : 8310 * 8311 * 1) src_ipif - used for getting a source address. 8312 * 8313 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8314 * means packets using the IRE_CACHE that we will build 8315 * here will go out on dst_ill. 8316 * 8317 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8318 * to be created will only be tied to the IRE_INTERFACE 8319 * that was derived from the ire_ihandle field. 8320 * 8321 * If sire is non-NULL, it means the destination is 8322 * off-link and we will first create the IRE_CACHE for the 8323 * gateway. Next time through ip_newroute, we will create 8324 * the IRE_CACHE for the final destination as described 8325 * above. 8326 * 8327 * In both cases, after the current resolution has been 8328 * completed (or possibly initialised, in the IRE_INTERFACE 8329 * case), the loop may be re-entered to attempt the resolution 8330 * of another RTF_MULTIRT route. 8331 * 8332 * When an IRE_CACHE entry for the off-subnet destination is 8333 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8334 * for further processing in emission loops. 8335 */ 8336 save_ire = ire; 8337 switch (ire->ire_type) { 8338 case IRE_CACHE: { 8339 ire_t *ipif_ire; 8340 8341 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8342 if (gw == 0) 8343 gw = ire->ire_gateway_addr; 8344 /* 8345 * We need 3 ire's to create a new cache ire for an 8346 * off-link destination from the cache ire of the 8347 * gateway. 8348 * 8349 * 1. The prefix ire 'sire' (Note that this does 8350 * not apply to the conn_nexthop_set case) 8351 * 2. The cache ire of the gateway 'ire' 8352 * 3. The interface ire 'ipif_ire' 8353 * 8354 * We have (1) and (2). We lookup (3) below. 8355 * 8356 * If there is no interface route to the gateway, 8357 * it is a race condition, where we found the cache 8358 * but the interface route has been deleted. 8359 */ 8360 if (ip_nexthop) { 8361 ipif_ire = ire_ihandle_lookup_onlink(ire); 8362 } else { 8363 ipif_ire = 8364 ire_ihandle_lookup_offlink(ire, sire); 8365 } 8366 if (ipif_ire == NULL) { 8367 ip1dbg(("ip_newroute: " 8368 "ire_ihandle_lookup_offlink failed\n")); 8369 goto icmp_err_ret; 8370 } 8371 8372 /* 8373 * Check cached gateway IRE for any security 8374 * attributes; if found, associate the gateway 8375 * credentials group to the destination IRE. 8376 */ 8377 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8378 mutex_enter(&attrp->igsa_lock); 8379 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8380 GCGRP_REFHOLD(gcgrp); 8381 mutex_exit(&attrp->igsa_lock); 8382 } 8383 8384 /* 8385 * XXX For the source of the resolver mp, 8386 * we are using the same DL_UNITDATA_REQ 8387 * (from save_ire->ire_nce->nce_res_mp) 8388 * though the save_ire is not pointing at the same ill. 8389 * This is incorrect. We need to send it up to the 8390 * resolver to get the right res_mp. For ethernets 8391 * this may be okay (ill_type == DL_ETHER). 8392 */ 8393 8394 ire = ire_create( 8395 (uchar_t *)&dst, /* dest address */ 8396 (uchar_t *)&ip_g_all_ones, /* mask */ 8397 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8398 (uchar_t *)&gw, /* gateway address */ 8399 &save_ire->ire_max_frag, 8400 save_ire->ire_nce, /* src nce */ 8401 dst_ill->ill_rq, /* recv-from queue */ 8402 dst_ill->ill_wq, /* send-to queue */ 8403 IRE_CACHE, /* IRE type */ 8404 src_ipif, 8405 (sire != NULL) ? 8406 sire->ire_mask : 0, /* Parent mask */ 8407 (sire != NULL) ? 8408 sire->ire_phandle : 0, /* Parent handle */ 8409 ipif_ire->ire_ihandle, /* Interface handle */ 8410 (sire != NULL) ? (sire->ire_flags & 8411 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8412 (sire != NULL) ? 8413 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8414 NULL, 8415 gcgrp, 8416 ipst); 8417 8418 if (ire == NULL) { 8419 if (gcgrp != NULL) { 8420 GCGRP_REFRELE(gcgrp); 8421 gcgrp = NULL; 8422 } 8423 ire_refrele(ipif_ire); 8424 ire_refrele(save_ire); 8425 break; 8426 } 8427 8428 /* reference now held by IRE */ 8429 gcgrp = NULL; 8430 8431 ire->ire_marks |= ire_marks; 8432 8433 /* 8434 * Prevent sire and ipif_ire from getting deleted. 8435 * The newly created ire is tied to both of them via 8436 * the phandle and ihandle respectively. 8437 */ 8438 if (sire != NULL) { 8439 IRB_REFHOLD(sire->ire_bucket); 8440 /* Has it been removed already ? */ 8441 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8442 IRB_REFRELE(sire->ire_bucket); 8443 ire_refrele(ipif_ire); 8444 ire_refrele(save_ire); 8445 break; 8446 } 8447 } 8448 8449 IRB_REFHOLD(ipif_ire->ire_bucket); 8450 /* Has it been removed already ? */ 8451 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8452 IRB_REFRELE(ipif_ire->ire_bucket); 8453 if (sire != NULL) 8454 IRB_REFRELE(sire->ire_bucket); 8455 ire_refrele(ipif_ire); 8456 ire_refrele(save_ire); 8457 break; 8458 } 8459 8460 xmit_mp = first_mp; 8461 /* 8462 * In the case of multirouting, a copy 8463 * of the packet is done before its sending. 8464 * The copy is used to attempt another 8465 * route resolution, in a next loop. 8466 */ 8467 if (ire->ire_flags & RTF_MULTIRT) { 8468 copy_mp = copymsg(first_mp); 8469 if (copy_mp != NULL) { 8470 xmit_mp = copy_mp; 8471 MULTIRT_DEBUG_TAG(first_mp); 8472 } 8473 } 8474 ire_add_then_send(q, ire, xmit_mp); 8475 ire_refrele(save_ire); 8476 8477 /* Assert that sire is not deleted yet. */ 8478 if (sire != NULL) { 8479 ASSERT(sire->ire_ptpn != NULL); 8480 IRB_REFRELE(sire->ire_bucket); 8481 } 8482 8483 /* Assert that ipif_ire is not deleted yet. */ 8484 ASSERT(ipif_ire->ire_ptpn != NULL); 8485 IRB_REFRELE(ipif_ire->ire_bucket); 8486 ire_refrele(ipif_ire); 8487 8488 /* 8489 * If copy_mp is not NULL, multirouting was 8490 * requested. We loop to initiate a next 8491 * route resolution attempt, starting from sire. 8492 */ 8493 if (copy_mp != NULL) { 8494 /* 8495 * Search for the next unresolved 8496 * multirt route. 8497 */ 8498 copy_mp = NULL; 8499 ipif_ire = NULL; 8500 ire = NULL; 8501 multirt_resolve_next = B_TRUE; 8502 continue; 8503 } 8504 if (sire != NULL) 8505 ire_refrele(sire); 8506 ipif_refrele(src_ipif); 8507 ill_refrele(dst_ill); 8508 return; 8509 } 8510 case IRE_IF_NORESOLVER: { 8511 8512 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8513 dst_ill->ill_resolver_mp == NULL) { 8514 ip1dbg(("ip_newroute: dst_ill %p " 8515 "for IRE_IF_NORESOLVER ire %p has " 8516 "no ill_resolver_mp\n", 8517 (void *)dst_ill, (void *)ire)); 8518 break; 8519 } 8520 8521 /* 8522 * TSol note: We are creating the ire cache for the 8523 * destination 'dst'. If 'dst' is offlink, going 8524 * through the first hop 'gw', the security attributes 8525 * of 'dst' must be set to point to the gateway 8526 * credentials of gateway 'gw'. If 'dst' is onlink, it 8527 * is possible that 'dst' is a potential gateway that is 8528 * referenced by some route that has some security 8529 * attributes. Thus in the former case, we need to do a 8530 * gcgrp_lookup of 'gw' while in the latter case we 8531 * need to do gcgrp_lookup of 'dst' itself. 8532 */ 8533 ga.ga_af = AF_INET; 8534 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8535 &ga.ga_addr); 8536 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8537 8538 ire = ire_create( 8539 (uchar_t *)&dst, /* dest address */ 8540 (uchar_t *)&ip_g_all_ones, /* mask */ 8541 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8542 (uchar_t *)&gw, /* gateway address */ 8543 &save_ire->ire_max_frag, 8544 NULL, /* no src nce */ 8545 dst_ill->ill_rq, /* recv-from queue */ 8546 dst_ill->ill_wq, /* send-to queue */ 8547 IRE_CACHE, 8548 src_ipif, 8549 save_ire->ire_mask, /* Parent mask */ 8550 (sire != NULL) ? /* Parent handle */ 8551 sire->ire_phandle : 0, 8552 save_ire->ire_ihandle, /* Interface handle */ 8553 (sire != NULL) ? sire->ire_flags & 8554 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8555 &(save_ire->ire_uinfo), 8556 NULL, 8557 gcgrp, 8558 ipst); 8559 8560 if (ire == NULL) { 8561 if (gcgrp != NULL) { 8562 GCGRP_REFRELE(gcgrp); 8563 gcgrp = NULL; 8564 } 8565 ire_refrele(save_ire); 8566 break; 8567 } 8568 8569 /* reference now held by IRE */ 8570 gcgrp = NULL; 8571 8572 ire->ire_marks |= ire_marks; 8573 8574 /* Prevent save_ire from getting deleted */ 8575 IRB_REFHOLD(save_ire->ire_bucket); 8576 /* Has it been removed already ? */ 8577 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8578 IRB_REFRELE(save_ire->ire_bucket); 8579 ire_refrele(save_ire); 8580 break; 8581 } 8582 8583 /* 8584 * In the case of multirouting, a copy 8585 * of the packet is made before it is sent. 8586 * The copy is used in the next 8587 * loop to attempt another resolution. 8588 */ 8589 xmit_mp = first_mp; 8590 if ((sire != NULL) && 8591 (sire->ire_flags & RTF_MULTIRT)) { 8592 copy_mp = copymsg(first_mp); 8593 if (copy_mp != NULL) { 8594 xmit_mp = copy_mp; 8595 MULTIRT_DEBUG_TAG(first_mp); 8596 } 8597 } 8598 ire_add_then_send(q, ire, xmit_mp); 8599 8600 /* Assert that it is not deleted yet. */ 8601 ASSERT(save_ire->ire_ptpn != NULL); 8602 IRB_REFRELE(save_ire->ire_bucket); 8603 ire_refrele(save_ire); 8604 8605 if (copy_mp != NULL) { 8606 /* 8607 * If we found a (no)resolver, we ignore any 8608 * trailing top priority IRE_CACHE in further 8609 * loops. This ensures that we do not omit any 8610 * (no)resolver. 8611 * This IRE_CACHE, if any, will be processed 8612 * by another thread entering ip_newroute(). 8613 * IRE_CACHE entries, if any, will be processed 8614 * by another thread entering ip_newroute(), 8615 * (upon resolver response, for instance). 8616 * This aims to force parallel multirt 8617 * resolutions as soon as a packet must be sent. 8618 * In the best case, after the tx of only one 8619 * packet, all reachable routes are resolved. 8620 * Otherwise, the resolution of all RTF_MULTIRT 8621 * routes would require several emissions. 8622 */ 8623 multirt_flags &= ~MULTIRT_CACHEGW; 8624 8625 /* 8626 * Search for the next unresolved multirt 8627 * route. 8628 */ 8629 copy_mp = NULL; 8630 save_ire = NULL; 8631 ire = NULL; 8632 multirt_resolve_next = B_TRUE; 8633 continue; 8634 } 8635 8636 /* 8637 * Don't need sire anymore 8638 */ 8639 if (sire != NULL) 8640 ire_refrele(sire); 8641 8642 ipif_refrele(src_ipif); 8643 ill_refrele(dst_ill); 8644 return; 8645 } 8646 case IRE_IF_RESOLVER: 8647 /* 8648 * We can't build an IRE_CACHE yet, but at least we 8649 * found a resolver that can help. 8650 */ 8651 res_mp = dst_ill->ill_resolver_mp; 8652 if (!OK_RESOLVER_MP(res_mp)) 8653 break; 8654 8655 /* 8656 * To be at this point in the code with a non-zero gw 8657 * means that dst is reachable through a gateway that 8658 * we have never resolved. By changing dst to the gw 8659 * addr we resolve the gateway first. 8660 * When ire_add_then_send() tries to put the IP dg 8661 * to dst, it will reenter ip_newroute() at which 8662 * time we will find the IRE_CACHE for the gw and 8663 * create another IRE_CACHE in case IRE_CACHE above. 8664 */ 8665 if (gw != INADDR_ANY) { 8666 /* 8667 * The source ipif that was determined above was 8668 * relative to the destination address, not the 8669 * gateway's. If src_ipif was not taken out of 8670 * the IRE_IF_RESOLVER entry, we'll need to call 8671 * ipif_select_source() again. 8672 */ 8673 if (src_ipif != ire->ire_ipif) { 8674 ipif_refrele(src_ipif); 8675 src_ipif = ipif_select_source(dst_ill, 8676 gw, zoneid); 8677 if (src_ipif == NULL) { 8678 if (ip_debug > 2) { 8679 pr_addr_dbg( 8680 "ip_newroute: no " 8681 "src for gw %s ", 8682 AF_INET, &gw); 8683 printf("through " 8684 "interface %s\n", 8685 dst_ill->ill_name); 8686 } 8687 goto icmp_err_ret; 8688 } 8689 } 8690 save_dst = dst; 8691 dst = gw; 8692 gw = INADDR_ANY; 8693 } 8694 8695 /* 8696 * We obtain a partial IRE_CACHE which we will pass 8697 * along with the resolver query. When the response 8698 * comes back it will be there ready for us to add. 8699 * The ire_max_frag is atomically set under the 8700 * irebucket lock in ire_add_v[46]. 8701 */ 8702 8703 ire = ire_create_mp( 8704 (uchar_t *)&dst, /* dest address */ 8705 (uchar_t *)&ip_g_all_ones, /* mask */ 8706 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8707 (uchar_t *)&gw, /* gateway address */ 8708 NULL, /* ire_max_frag */ 8709 NULL, /* no src nce */ 8710 dst_ill->ill_rq, /* recv-from queue */ 8711 dst_ill->ill_wq, /* send-to queue */ 8712 IRE_CACHE, 8713 src_ipif, /* Interface ipif */ 8714 save_ire->ire_mask, /* Parent mask */ 8715 0, 8716 save_ire->ire_ihandle, /* Interface handle */ 8717 0, /* flags if any */ 8718 &(save_ire->ire_uinfo), 8719 NULL, 8720 NULL, 8721 ipst); 8722 8723 if (ire == NULL) { 8724 ire_refrele(save_ire); 8725 break; 8726 } 8727 8728 if ((sire != NULL) && 8729 (sire->ire_flags & RTF_MULTIRT)) { 8730 copy_mp = copymsg(first_mp); 8731 if (copy_mp != NULL) 8732 MULTIRT_DEBUG_TAG(copy_mp); 8733 } 8734 8735 ire->ire_marks |= ire_marks; 8736 8737 /* 8738 * Construct message chain for the resolver 8739 * of the form: 8740 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8741 * Packet could contain a IPSEC_OUT mp. 8742 * 8743 * NOTE : ire will be added later when the response 8744 * comes back from ARP. If the response does not 8745 * come back, ARP frees the packet. For this reason, 8746 * we can't REFHOLD the bucket of save_ire to prevent 8747 * deletions. We may not be able to REFRELE the bucket 8748 * if the response never comes back. Thus, before 8749 * adding the ire, ire_add_v4 will make sure that the 8750 * interface route does not get deleted. This is the 8751 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8752 * where we can always prevent deletions because of 8753 * the synchronous nature of adding IRES i.e 8754 * ire_add_then_send is called after creating the IRE. 8755 */ 8756 ASSERT(ire->ire_mp != NULL); 8757 ire->ire_mp->b_cont = first_mp; 8758 /* Have saved_mp handy, for cleanup if canput fails */ 8759 saved_mp = mp; 8760 mp = copyb(res_mp); 8761 if (mp == NULL) { 8762 /* Prepare for cleanup */ 8763 mp = saved_mp; /* pkt */ 8764 ire_delete(ire); /* ire_mp */ 8765 ire = NULL; 8766 ire_refrele(save_ire); 8767 if (copy_mp != NULL) { 8768 MULTIRT_DEBUG_UNTAG(copy_mp); 8769 freemsg(copy_mp); 8770 copy_mp = NULL; 8771 } 8772 break; 8773 } 8774 linkb(mp, ire->ire_mp); 8775 8776 /* 8777 * Fill in the source and dest addrs for the resolver. 8778 * NOTE: this depends on memory layouts imposed by 8779 * ill_init(). 8780 */ 8781 areq = (areq_t *)mp->b_rptr; 8782 addrp = (ipaddr_t *)((char *)areq + 8783 areq->areq_sender_addr_offset); 8784 if (do_attach_ill) { 8785 /* 8786 * This is bind to no failover case. 8787 * arp packet also must go out on attach_ill. 8788 */ 8789 ASSERT(ipha->ipha_src != NULL); 8790 *addrp = ipha->ipha_src; 8791 } else { 8792 *addrp = save_ire->ire_src_addr; 8793 } 8794 8795 ire_refrele(save_ire); 8796 addrp = (ipaddr_t *)((char *)areq + 8797 areq->areq_target_addr_offset); 8798 *addrp = dst; 8799 /* Up to the resolver. */ 8800 if (canputnext(dst_ill->ill_rq) && 8801 !(dst_ill->ill_arp_closing)) { 8802 putnext(dst_ill->ill_rq, mp); 8803 ire = NULL; 8804 if (copy_mp != NULL) { 8805 /* 8806 * If we found a resolver, we ignore 8807 * any trailing top priority IRE_CACHE 8808 * in the further loops. This ensures 8809 * that we do not omit any resolver. 8810 * IRE_CACHE entries, if any, will be 8811 * processed next time we enter 8812 * ip_newroute(). 8813 */ 8814 multirt_flags &= ~MULTIRT_CACHEGW; 8815 /* 8816 * Search for the next unresolved 8817 * multirt route. 8818 */ 8819 first_mp = copy_mp; 8820 copy_mp = NULL; 8821 /* Prepare the next resolution loop. */ 8822 mp = first_mp; 8823 EXTRACT_PKT_MP(mp, first_mp, 8824 mctl_present); 8825 if (mctl_present) 8826 io = (ipsec_out_t *) 8827 first_mp->b_rptr; 8828 ipha = (ipha_t *)mp->b_rptr; 8829 8830 ASSERT(sire != NULL); 8831 8832 dst = save_dst; 8833 multirt_resolve_next = B_TRUE; 8834 continue; 8835 } 8836 8837 if (sire != NULL) 8838 ire_refrele(sire); 8839 8840 /* 8841 * The response will come back in ip_wput 8842 * with db_type IRE_DB_TYPE. 8843 */ 8844 ipif_refrele(src_ipif); 8845 ill_refrele(dst_ill); 8846 return; 8847 } else { 8848 /* Prepare for cleanup */ 8849 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8850 mp); 8851 mp->b_cont = NULL; 8852 freeb(mp); /* areq */ 8853 /* 8854 * this is an ire that is not added to the 8855 * cache. ire_freemblk will handle the release 8856 * of any resources associated with the ire. 8857 */ 8858 ire_delete(ire); /* ire_mp */ 8859 mp = saved_mp; /* pkt */ 8860 ire = NULL; 8861 if (copy_mp != NULL) { 8862 MULTIRT_DEBUG_UNTAG(copy_mp); 8863 freemsg(copy_mp); 8864 copy_mp = NULL; 8865 } 8866 break; 8867 } 8868 default: 8869 break; 8870 } 8871 } while (multirt_resolve_next); 8872 8873 ip1dbg(("ip_newroute: dropped\n")); 8874 /* Did this packet originate externally? */ 8875 if (mp->b_prev) { 8876 mp->b_next = NULL; 8877 mp->b_prev = NULL; 8878 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8879 } else { 8880 if (dst_ill != NULL) { 8881 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8882 } else { 8883 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8884 } 8885 } 8886 ASSERT(copy_mp == NULL); 8887 MULTIRT_DEBUG_UNTAG(first_mp); 8888 freemsg(first_mp); 8889 if (ire != NULL) 8890 ire_refrele(ire); 8891 if (sire != NULL) 8892 ire_refrele(sire); 8893 if (src_ipif != NULL) 8894 ipif_refrele(src_ipif); 8895 if (dst_ill != NULL) 8896 ill_refrele(dst_ill); 8897 return; 8898 8899 icmp_err_ret: 8900 ip1dbg(("ip_newroute: no route\n")); 8901 if (src_ipif != NULL) 8902 ipif_refrele(src_ipif); 8903 if (dst_ill != NULL) 8904 ill_refrele(dst_ill); 8905 if (sire != NULL) 8906 ire_refrele(sire); 8907 /* Did this packet originate externally? */ 8908 if (mp->b_prev) { 8909 mp->b_next = NULL; 8910 mp->b_prev = NULL; 8911 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8912 q = WR(q); 8913 } else { 8914 /* 8915 * There is no outgoing ill, so just increment the 8916 * system MIB. 8917 */ 8918 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8919 /* 8920 * Since ip_wput() isn't close to finished, we fill 8921 * in enough of the header for credible error reporting. 8922 */ 8923 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8924 /* Failed */ 8925 MULTIRT_DEBUG_UNTAG(first_mp); 8926 freemsg(first_mp); 8927 if (ire != NULL) 8928 ire_refrele(ire); 8929 return; 8930 } 8931 } 8932 8933 /* 8934 * At this point we will have ire only if RTF_BLACKHOLE 8935 * or RTF_REJECT flags are set on the IRE. It will not 8936 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8937 */ 8938 if (ire != NULL) { 8939 if (ire->ire_flags & RTF_BLACKHOLE) { 8940 ire_refrele(ire); 8941 MULTIRT_DEBUG_UNTAG(first_mp); 8942 freemsg(first_mp); 8943 return; 8944 } 8945 ire_refrele(ire); 8946 } 8947 if (ip_source_routed(ipha, ipst)) { 8948 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8949 zoneid, ipst); 8950 return; 8951 } 8952 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8953 } 8954 8955 ip_opt_info_t zero_info; 8956 8957 /* 8958 * IPv4 - 8959 * ip_newroute_ipif is called by ip_wput_multicast and 8960 * ip_rput_forward_multicast whenever we need to send 8961 * out a packet to a destination address for which we do not have specific 8962 * routing information. It is used when the packet will be sent out 8963 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8964 * socket option is set or icmp error message wants to go out on a particular 8965 * interface for a unicast packet. 8966 * 8967 * In most cases, the destination address is resolved thanks to the ipif 8968 * intrinsic resolver. However, there are some cases where the call to 8969 * ip_newroute_ipif must take into account the potential presence of 8970 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8971 * that uses the interface. This is specified through flags, 8972 * which can be a combination of: 8973 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8974 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8975 * and flags. Additionally, the packet source address has to be set to 8976 * the specified address. The caller is thus expected to set this flag 8977 * if the packet has no specific source address yet. 8978 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8979 * flag, the resulting ire will inherit the flag. All unresolved routes 8980 * to the destination must be explored in the same call to 8981 * ip_newroute_ipif(). 8982 */ 8983 static void 8984 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8985 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8986 { 8987 areq_t *areq; 8988 ire_t *ire = NULL; 8989 mblk_t *res_mp; 8990 ipaddr_t *addrp; 8991 mblk_t *first_mp; 8992 ire_t *save_ire = NULL; 8993 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8994 ipif_t *src_ipif = NULL; 8995 ushort_t ire_marks = 0; 8996 ill_t *dst_ill = NULL; 8997 boolean_t mctl_present; 8998 ipsec_out_t *io; 8999 ipha_t *ipha; 9000 int ihandle = 0; 9001 mblk_t *saved_mp; 9002 ire_t *fire = NULL; 9003 mblk_t *copy_mp = NULL; 9004 boolean_t multirt_resolve_next; 9005 boolean_t unspec_src; 9006 ipaddr_t ipha_dst; 9007 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9008 9009 /* 9010 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9011 * here for uniformity 9012 */ 9013 ipif_refhold(ipif); 9014 9015 /* 9016 * This loop is run only once in most cases. 9017 * We loop to resolve further routes only when the destination 9018 * can be reached through multiple RTF_MULTIRT-flagged ires. 9019 */ 9020 do { 9021 if (dst_ill != NULL) { 9022 ill_refrele(dst_ill); 9023 dst_ill = NULL; 9024 } 9025 if (src_ipif != NULL) { 9026 ipif_refrele(src_ipif); 9027 src_ipif = NULL; 9028 } 9029 multirt_resolve_next = B_FALSE; 9030 9031 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9032 ipif->ipif_ill->ill_name)); 9033 9034 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9035 if (mctl_present) 9036 io = (ipsec_out_t *)first_mp->b_rptr; 9037 9038 ipha = (ipha_t *)mp->b_rptr; 9039 9040 /* 9041 * Save the packet destination address, we may need it after 9042 * the packet has been consumed. 9043 */ 9044 ipha_dst = ipha->ipha_dst; 9045 9046 /* 9047 * If the interface is a pt-pt interface we look for an 9048 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9049 * local_address and the pt-pt destination address. Otherwise 9050 * we just match the local address. 9051 * NOTE: dst could be different than ipha->ipha_dst in case 9052 * of sending igmp multicast packets over a point-to-point 9053 * connection. 9054 * Thus we must be careful enough to check ipha_dst to be a 9055 * multicast address, otherwise it will take xmit_if path for 9056 * multicast packets resulting into kernel stack overflow by 9057 * repeated calls to ip_newroute_ipif from ire_send(). 9058 */ 9059 if (CLASSD(ipha_dst) && 9060 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9061 goto err_ret; 9062 } 9063 9064 /* 9065 * We check if an IRE_OFFSUBNET for the addr that goes through 9066 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9067 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9068 * propagate its flags to the new ire. 9069 */ 9070 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9071 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9072 ip2dbg(("ip_newroute_ipif: " 9073 "ipif_lookup_multi_ire(" 9074 "ipif %p, dst %08x) = fire %p\n", 9075 (void *)ipif, ntohl(dst), (void *)fire)); 9076 } 9077 9078 if (mctl_present && io->ipsec_out_attach_if) { 9079 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9080 io->ipsec_out_ill_index, B_FALSE, ipst); 9081 9082 /* Failure case frees things for us. */ 9083 if (attach_ill == NULL) { 9084 ipif_refrele(ipif); 9085 if (fire != NULL) 9086 ire_refrele(fire); 9087 return; 9088 } 9089 9090 /* 9091 * Check if we need an ire that will not be 9092 * looked up by anybody else i.e. HIDDEN. 9093 */ 9094 if (ill_is_probeonly(attach_ill)) { 9095 ire_marks = IRE_MARK_HIDDEN; 9096 } 9097 /* 9098 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9099 * case. 9100 */ 9101 dst_ill = ipif->ipif_ill; 9102 /* attach_ill has been refheld by ip_grab_attach_ill */ 9103 ASSERT(dst_ill == attach_ill); 9104 } else { 9105 /* 9106 * If the interface belongs to an interface group, 9107 * make sure the next possible interface in the group 9108 * is used. This encourages load spreading among 9109 * peers in an interface group. 9110 * Note: load spreading is disabled for RTF_MULTIRT 9111 * routes. 9112 */ 9113 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9114 (fire->ire_flags & RTF_MULTIRT)) { 9115 /* 9116 * Don't perform outbound load spreading 9117 * in the case of an RTF_MULTIRT issued route, 9118 * we actually typically want to replicate 9119 * outgoing packets through particular 9120 * interfaces. 9121 */ 9122 dst_ill = ipif->ipif_ill; 9123 ill_refhold(dst_ill); 9124 } else { 9125 dst_ill = ip_newroute_get_dst_ill( 9126 ipif->ipif_ill); 9127 } 9128 if (dst_ill == NULL) { 9129 if (ip_debug > 2) { 9130 pr_addr_dbg("ip_newroute_ipif: " 9131 "no dst ill for dst %s\n", 9132 AF_INET, &dst); 9133 } 9134 goto err_ret; 9135 } 9136 } 9137 9138 /* 9139 * Pick a source address preferring non-deprecated ones. 9140 * Unlike ip_newroute, we don't do any source address 9141 * selection here since for multicast it really does not help 9142 * in inbound load spreading as in the unicast case. 9143 */ 9144 if ((flags & RTF_SETSRC) && (fire != NULL) && 9145 (fire->ire_flags & RTF_SETSRC)) { 9146 /* 9147 * As requested by flags, an IRE_OFFSUBNET was looked up 9148 * on that interface. This ire has RTF_SETSRC flag, so 9149 * the source address of the packet must be changed. 9150 * Check that the ipif matching the requested source 9151 * address still exists. 9152 */ 9153 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9154 zoneid, NULL, NULL, NULL, NULL, ipst); 9155 } 9156 9157 unspec_src = (connp != NULL && connp->conn_unspec_src); 9158 9159 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9160 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9161 (connp != NULL && ipif->ipif_zoneid != zoneid && 9162 ipif->ipif_zoneid != ALL_ZONES)) && 9163 (src_ipif == NULL) && 9164 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9165 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9166 if (src_ipif == NULL) { 9167 if (ip_debug > 2) { 9168 /* ip1dbg */ 9169 pr_addr_dbg("ip_newroute_ipif: " 9170 "no src for dst %s", 9171 AF_INET, &dst); 9172 } 9173 ip1dbg((" through interface %s\n", 9174 dst_ill->ill_name)); 9175 goto err_ret; 9176 } 9177 ipif_refrele(ipif); 9178 ipif = src_ipif; 9179 ipif_refhold(ipif); 9180 } 9181 if (src_ipif == NULL) { 9182 src_ipif = ipif; 9183 ipif_refhold(src_ipif); 9184 } 9185 9186 /* 9187 * Assign a source address while we have the conn. 9188 * We can't have ip_wput_ire pick a source address when the 9189 * packet returns from arp since conn_unspec_src might be set 9190 * and we lose the conn when going through arp. 9191 */ 9192 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9193 ipha->ipha_src = src_ipif->ipif_src_addr; 9194 9195 /* 9196 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9197 * that the outgoing interface does not have an interface ire. 9198 */ 9199 if (CLASSD(ipha_dst) && (connp == NULL || 9200 connp->conn_outgoing_ill == NULL) && 9201 infop->ip_opt_ill_index == 0) { 9202 /* ipif_to_ire returns an held ire */ 9203 ire = ipif_to_ire(ipif); 9204 if (ire == NULL) 9205 goto err_ret; 9206 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9207 goto err_ret; 9208 /* 9209 * ihandle is needed when the ire is added to 9210 * cache table. 9211 */ 9212 save_ire = ire; 9213 ihandle = save_ire->ire_ihandle; 9214 9215 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9216 "flags %04x\n", 9217 (void *)ire, (void *)ipif, flags)); 9218 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9219 (fire->ire_flags & RTF_MULTIRT)) { 9220 /* 9221 * As requested by flags, an IRE_OFFSUBNET was 9222 * looked up on that interface. This ire has 9223 * RTF_MULTIRT flag, so the resolution loop will 9224 * be re-entered to resolve additional routes on 9225 * other interfaces. For that purpose, a copy of 9226 * the packet is performed at this point. 9227 */ 9228 fire->ire_last_used_time = lbolt; 9229 copy_mp = copymsg(first_mp); 9230 if (copy_mp) { 9231 MULTIRT_DEBUG_TAG(copy_mp); 9232 } 9233 } 9234 if ((flags & RTF_SETSRC) && (fire != NULL) && 9235 (fire->ire_flags & RTF_SETSRC)) { 9236 /* 9237 * As requested by flags, an IRE_OFFSUBET was 9238 * looked up on that interface. This ire has 9239 * RTF_SETSRC flag, so the source address of the 9240 * packet must be changed. 9241 */ 9242 ipha->ipha_src = fire->ire_src_addr; 9243 } 9244 } else { 9245 ASSERT((connp == NULL) || 9246 (connp->conn_outgoing_ill != NULL) || 9247 (connp->conn_dontroute) || 9248 infop->ip_opt_ill_index != 0); 9249 /* 9250 * The only ways we can come here are: 9251 * 1) IP_BOUND_IF socket option is set 9252 * 2) SO_DONTROUTE socket option is set 9253 * 3) IP_PKTINFO option is passed in as ancillary data. 9254 * In all cases, the new ire will not be added 9255 * into cache table. 9256 */ 9257 ire_marks |= IRE_MARK_NOADD; 9258 } 9259 9260 switch (ipif->ipif_net_type) { 9261 case IRE_IF_NORESOLVER: { 9262 /* We have what we need to build an IRE_CACHE. */ 9263 9264 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9265 (dst_ill->ill_resolver_mp == NULL)) { 9266 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9267 "for IRE_IF_NORESOLVER ire %p has " 9268 "no ill_resolver_mp\n", 9269 (void *)dst_ill, (void *)ire)); 9270 break; 9271 } 9272 9273 /* 9274 * The new ire inherits the IRE_OFFSUBNET flags 9275 * and source address, if this was requested. 9276 */ 9277 ire = ire_create( 9278 (uchar_t *)&dst, /* dest address */ 9279 (uchar_t *)&ip_g_all_ones, /* mask */ 9280 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9281 NULL, /* gateway address */ 9282 &ipif->ipif_mtu, 9283 NULL, /* no src nce */ 9284 dst_ill->ill_rq, /* recv-from queue */ 9285 dst_ill->ill_wq, /* send-to queue */ 9286 IRE_CACHE, 9287 src_ipif, 9288 (save_ire != NULL ? save_ire->ire_mask : 0), 9289 (fire != NULL) ? /* Parent handle */ 9290 fire->ire_phandle : 0, 9291 ihandle, /* Interface handle */ 9292 (fire != NULL) ? 9293 (fire->ire_flags & 9294 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9295 (save_ire == NULL ? &ire_uinfo_null : 9296 &save_ire->ire_uinfo), 9297 NULL, 9298 NULL, 9299 ipst); 9300 9301 if (ire == NULL) { 9302 if (save_ire != NULL) 9303 ire_refrele(save_ire); 9304 break; 9305 } 9306 9307 ire->ire_marks |= ire_marks; 9308 9309 /* 9310 * If IRE_MARK_NOADD is set then we need to convert 9311 * the max_fragp to a useable value now. This is 9312 * normally done in ire_add_v[46]. We also need to 9313 * associate the ire with an nce (normally would be 9314 * done in ip_wput_nondata()). 9315 * 9316 * Note that IRE_MARK_NOADD packets created here 9317 * do not have a non-null ire_mp pointer. The null 9318 * value of ire_bucket indicates that they were 9319 * never added. 9320 */ 9321 if (ire->ire_marks & IRE_MARK_NOADD) { 9322 uint_t max_frag; 9323 9324 max_frag = *ire->ire_max_fragp; 9325 ire->ire_max_fragp = NULL; 9326 ire->ire_max_frag = max_frag; 9327 9328 if ((ire->ire_nce = ndp_lookup_v4( 9329 ire_to_ill(ire), 9330 (ire->ire_gateway_addr != INADDR_ANY ? 9331 &ire->ire_gateway_addr : &ire->ire_addr), 9332 B_FALSE)) == NULL) { 9333 if (save_ire != NULL) 9334 ire_refrele(save_ire); 9335 break; 9336 } 9337 ASSERT(ire->ire_nce->nce_state == 9338 ND_REACHABLE); 9339 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9340 } 9341 9342 /* Prevent save_ire from getting deleted */ 9343 if (save_ire != NULL) { 9344 IRB_REFHOLD(save_ire->ire_bucket); 9345 /* Has it been removed already ? */ 9346 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9347 IRB_REFRELE(save_ire->ire_bucket); 9348 ire_refrele(save_ire); 9349 break; 9350 } 9351 } 9352 9353 ire_add_then_send(q, ire, first_mp); 9354 9355 /* Assert that save_ire is not deleted yet. */ 9356 if (save_ire != NULL) { 9357 ASSERT(save_ire->ire_ptpn != NULL); 9358 IRB_REFRELE(save_ire->ire_bucket); 9359 ire_refrele(save_ire); 9360 save_ire = NULL; 9361 } 9362 if (fire != NULL) { 9363 ire_refrele(fire); 9364 fire = NULL; 9365 } 9366 9367 /* 9368 * the resolution loop is re-entered if this 9369 * was requested through flags and if we 9370 * actually are in a multirouting case. 9371 */ 9372 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9373 boolean_t need_resolve = 9374 ire_multirt_need_resolve(ipha_dst, 9375 MBLK_GETLABEL(copy_mp), ipst); 9376 if (!need_resolve) { 9377 MULTIRT_DEBUG_UNTAG(copy_mp); 9378 freemsg(copy_mp); 9379 copy_mp = NULL; 9380 } else { 9381 /* 9382 * ipif_lookup_group() calls 9383 * ire_lookup_multi() that uses 9384 * ire_ftable_lookup() to find 9385 * an IRE_INTERFACE for the group. 9386 * In the multirt case, 9387 * ire_lookup_multi() then invokes 9388 * ire_multirt_lookup() to find 9389 * the next resolvable ire. 9390 * As a result, we obtain an new 9391 * interface, derived from the 9392 * next ire. 9393 */ 9394 ipif_refrele(ipif); 9395 ipif = ipif_lookup_group(ipha_dst, 9396 zoneid, ipst); 9397 ip2dbg(("ip_newroute_ipif: " 9398 "multirt dst %08x, ipif %p\n", 9399 htonl(dst), (void *)ipif)); 9400 if (ipif != NULL) { 9401 mp = copy_mp; 9402 copy_mp = NULL; 9403 multirt_resolve_next = B_TRUE; 9404 continue; 9405 } else { 9406 freemsg(copy_mp); 9407 } 9408 } 9409 } 9410 if (ipif != NULL) 9411 ipif_refrele(ipif); 9412 ill_refrele(dst_ill); 9413 ipif_refrele(src_ipif); 9414 return; 9415 } 9416 case IRE_IF_RESOLVER: 9417 /* 9418 * We can't build an IRE_CACHE yet, but at least 9419 * we found a resolver that can help. 9420 */ 9421 res_mp = dst_ill->ill_resolver_mp; 9422 if (!OK_RESOLVER_MP(res_mp)) 9423 break; 9424 9425 /* 9426 * We obtain a partial IRE_CACHE which we will pass 9427 * along with the resolver query. When the response 9428 * comes back it will be there ready for us to add. 9429 * The new ire inherits the IRE_OFFSUBNET flags 9430 * and source address, if this was requested. 9431 * The ire_max_frag is atomically set under the 9432 * irebucket lock in ire_add_v[46]. Only in the 9433 * case of IRE_MARK_NOADD, we set it here itself. 9434 */ 9435 ire = ire_create_mp( 9436 (uchar_t *)&dst, /* dest address */ 9437 (uchar_t *)&ip_g_all_ones, /* mask */ 9438 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9439 NULL, /* gateway address */ 9440 (ire_marks & IRE_MARK_NOADD) ? 9441 ipif->ipif_mtu : 0, /* max_frag */ 9442 NULL, /* no src nce */ 9443 dst_ill->ill_rq, /* recv-from queue */ 9444 dst_ill->ill_wq, /* send-to queue */ 9445 IRE_CACHE, 9446 src_ipif, 9447 (save_ire != NULL ? save_ire->ire_mask : 0), 9448 (fire != NULL) ? /* Parent handle */ 9449 fire->ire_phandle : 0, 9450 ihandle, /* Interface handle */ 9451 (fire != NULL) ? /* flags if any */ 9452 (fire->ire_flags & 9453 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9454 (save_ire == NULL ? &ire_uinfo_null : 9455 &save_ire->ire_uinfo), 9456 NULL, 9457 NULL, 9458 ipst); 9459 9460 if (save_ire != NULL) { 9461 ire_refrele(save_ire); 9462 save_ire = NULL; 9463 } 9464 if (ire == NULL) 9465 break; 9466 9467 ire->ire_marks |= ire_marks; 9468 /* 9469 * Construct message chain for the resolver of the 9470 * form: 9471 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9472 * 9473 * NOTE : ire will be added later when the response 9474 * comes back from ARP. If the response does not 9475 * come back, ARP frees the packet. For this reason, 9476 * we can't REFHOLD the bucket of save_ire to prevent 9477 * deletions. We may not be able to REFRELE the 9478 * bucket if the response never comes back. 9479 * Thus, before adding the ire, ire_add_v4 will make 9480 * sure that the interface route does not get deleted. 9481 * This is the only case unlike ip_newroute_v6, 9482 * ip_newroute_ipif_v6 where we can always prevent 9483 * deletions because ire_add_then_send is called after 9484 * creating the IRE. 9485 * If IRE_MARK_NOADD is set, then ire_add_then_send 9486 * does not add this IRE into the IRE CACHE. 9487 */ 9488 ASSERT(ire->ire_mp != NULL); 9489 ire->ire_mp->b_cont = first_mp; 9490 /* Have saved_mp handy, for cleanup if canput fails */ 9491 saved_mp = mp; 9492 mp = copyb(res_mp); 9493 if (mp == NULL) { 9494 /* Prepare for cleanup */ 9495 mp = saved_mp; /* pkt */ 9496 ire_delete(ire); /* ire_mp */ 9497 ire = NULL; 9498 if (copy_mp != NULL) { 9499 MULTIRT_DEBUG_UNTAG(copy_mp); 9500 freemsg(copy_mp); 9501 copy_mp = NULL; 9502 } 9503 break; 9504 } 9505 linkb(mp, ire->ire_mp); 9506 9507 /* 9508 * Fill in the source and dest addrs for the resolver. 9509 * NOTE: this depends on memory layouts imposed by 9510 * ill_init(). 9511 */ 9512 areq = (areq_t *)mp->b_rptr; 9513 addrp = (ipaddr_t *)((char *)areq + 9514 areq->areq_sender_addr_offset); 9515 *addrp = ire->ire_src_addr; 9516 addrp = (ipaddr_t *)((char *)areq + 9517 areq->areq_target_addr_offset); 9518 *addrp = dst; 9519 /* Up to the resolver. */ 9520 if (canputnext(dst_ill->ill_rq) && 9521 !(dst_ill->ill_arp_closing)) { 9522 putnext(dst_ill->ill_rq, mp); 9523 /* 9524 * The response will come back in ip_wput 9525 * with db_type IRE_DB_TYPE. 9526 */ 9527 } else { 9528 mp->b_cont = NULL; 9529 freeb(mp); /* areq */ 9530 ire_delete(ire); /* ire_mp */ 9531 saved_mp->b_next = NULL; 9532 saved_mp->b_prev = NULL; 9533 freemsg(first_mp); /* pkt */ 9534 ip2dbg(("ip_newroute_ipif: dropped\n")); 9535 } 9536 9537 if (fire != NULL) { 9538 ire_refrele(fire); 9539 fire = NULL; 9540 } 9541 9542 9543 /* 9544 * The resolution loop is re-entered if this was 9545 * requested through flags and we actually are 9546 * in a multirouting case. 9547 */ 9548 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9549 boolean_t need_resolve = 9550 ire_multirt_need_resolve(ipha_dst, 9551 MBLK_GETLABEL(copy_mp), ipst); 9552 if (!need_resolve) { 9553 MULTIRT_DEBUG_UNTAG(copy_mp); 9554 freemsg(copy_mp); 9555 copy_mp = NULL; 9556 } else { 9557 /* 9558 * ipif_lookup_group() calls 9559 * ire_lookup_multi() that uses 9560 * ire_ftable_lookup() to find 9561 * an IRE_INTERFACE for the group. 9562 * In the multirt case, 9563 * ire_lookup_multi() then invokes 9564 * ire_multirt_lookup() to find 9565 * the next resolvable ire. 9566 * As a result, we obtain an new 9567 * interface, derived from the 9568 * next ire. 9569 */ 9570 ipif_refrele(ipif); 9571 ipif = ipif_lookup_group(ipha_dst, 9572 zoneid, ipst); 9573 if (ipif != NULL) { 9574 mp = copy_mp; 9575 copy_mp = NULL; 9576 multirt_resolve_next = B_TRUE; 9577 continue; 9578 } else { 9579 freemsg(copy_mp); 9580 } 9581 } 9582 } 9583 if (ipif != NULL) 9584 ipif_refrele(ipif); 9585 ill_refrele(dst_ill); 9586 ipif_refrele(src_ipif); 9587 return; 9588 default: 9589 break; 9590 } 9591 } while (multirt_resolve_next); 9592 9593 err_ret: 9594 ip2dbg(("ip_newroute_ipif: dropped\n")); 9595 if (fire != NULL) 9596 ire_refrele(fire); 9597 ipif_refrele(ipif); 9598 /* Did this packet originate externally? */ 9599 if (dst_ill != NULL) 9600 ill_refrele(dst_ill); 9601 if (src_ipif != NULL) 9602 ipif_refrele(src_ipif); 9603 if (mp->b_prev || mp->b_next) { 9604 mp->b_next = NULL; 9605 mp->b_prev = NULL; 9606 } else { 9607 /* 9608 * Since ip_wput() isn't close to finished, we fill 9609 * in enough of the header for credible error reporting. 9610 */ 9611 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9612 /* Failed */ 9613 freemsg(first_mp); 9614 if (ire != NULL) 9615 ire_refrele(ire); 9616 return; 9617 } 9618 } 9619 /* 9620 * At this point we will have ire only if RTF_BLACKHOLE 9621 * or RTF_REJECT flags are set on the IRE. It will not 9622 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9623 */ 9624 if (ire != NULL) { 9625 if (ire->ire_flags & RTF_BLACKHOLE) { 9626 ire_refrele(ire); 9627 freemsg(first_mp); 9628 return; 9629 } 9630 ire_refrele(ire); 9631 } 9632 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9633 } 9634 9635 /* Name/Value Table Lookup Routine */ 9636 char * 9637 ip_nv_lookup(nv_t *nv, int value) 9638 { 9639 if (!nv) 9640 return (NULL); 9641 for (; nv->nv_name; nv++) { 9642 if (nv->nv_value == value) 9643 return (nv->nv_name); 9644 } 9645 return ("unknown"); 9646 } 9647 9648 /* 9649 * This is a module open, i.e. this is a control stream for access 9650 * to a DLPI device. We allocate an ill_t as the instance data in 9651 * this case. 9652 */ 9653 int 9654 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9655 { 9656 ill_t *ill; 9657 int err; 9658 zoneid_t zoneid; 9659 netstack_t *ns; 9660 ip_stack_t *ipst; 9661 9662 /* 9663 * Prevent unprivileged processes from pushing IP so that 9664 * they can't send raw IP. 9665 */ 9666 if (secpolicy_net_rawaccess(credp) != 0) 9667 return (EPERM); 9668 9669 ns = netstack_find_by_cred(credp); 9670 ASSERT(ns != NULL); 9671 ipst = ns->netstack_ip; 9672 ASSERT(ipst != NULL); 9673 9674 /* 9675 * For exclusive stacks we set the zoneid to zero 9676 * to make IP operate as if in the global zone. 9677 */ 9678 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9679 zoneid = GLOBAL_ZONEID; 9680 else 9681 zoneid = crgetzoneid(credp); 9682 9683 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9684 q->q_ptr = WR(q)->q_ptr = ill; 9685 ill->ill_ipst = ipst; 9686 ill->ill_zoneid = zoneid; 9687 9688 /* 9689 * ill_init initializes the ill fields and then sends down 9690 * down a DL_INFO_REQ after calling qprocson. 9691 */ 9692 err = ill_init(q, ill); 9693 if (err != 0) { 9694 mi_free(ill); 9695 netstack_rele(ipst->ips_netstack); 9696 q->q_ptr = NULL; 9697 WR(q)->q_ptr = NULL; 9698 return (err); 9699 } 9700 9701 /* ill_init initializes the ipsq marking this thread as writer */ 9702 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9703 /* Wait for the DL_INFO_ACK */ 9704 mutex_enter(&ill->ill_lock); 9705 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9706 /* 9707 * Return value of 0 indicates a pending signal. 9708 */ 9709 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9710 if (err == 0) { 9711 mutex_exit(&ill->ill_lock); 9712 (void) ip_close(q, 0); 9713 return (EINTR); 9714 } 9715 } 9716 mutex_exit(&ill->ill_lock); 9717 9718 /* 9719 * ip_rput_other could have set an error in ill_error on 9720 * receipt of M_ERROR. 9721 */ 9722 9723 err = ill->ill_error; 9724 if (err != 0) { 9725 (void) ip_close(q, 0); 9726 return (err); 9727 } 9728 9729 ill->ill_credp = credp; 9730 crhold(credp); 9731 9732 mutex_enter(&ipst->ips_ip_mi_lock); 9733 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9734 credp); 9735 mutex_exit(&ipst->ips_ip_mi_lock); 9736 if (err) { 9737 (void) ip_close(q, 0); 9738 return (err); 9739 } 9740 return (0); 9741 } 9742 9743 /* For /dev/ip aka AF_INET open */ 9744 int 9745 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9746 { 9747 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9748 } 9749 9750 /* For /dev/ip6 aka AF_INET6 open */ 9751 int 9752 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9753 { 9754 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9755 } 9756 9757 /* IP open routine. */ 9758 int 9759 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9760 boolean_t isv6) 9761 { 9762 conn_t *connp; 9763 major_t maj; 9764 zoneid_t zoneid; 9765 netstack_t *ns; 9766 ip_stack_t *ipst; 9767 9768 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9769 9770 /* Allow reopen. */ 9771 if (q->q_ptr != NULL) 9772 return (0); 9773 9774 if (sflag & MODOPEN) { 9775 /* This is a module open */ 9776 return (ip_modopen(q, devp, flag, sflag, credp)); 9777 } 9778 9779 ns = netstack_find_by_cred(credp); 9780 ASSERT(ns != NULL); 9781 ipst = ns->netstack_ip; 9782 ASSERT(ipst != NULL); 9783 9784 /* 9785 * For exclusive stacks we set the zoneid to zero 9786 * to make IP operate as if in the global zone. 9787 */ 9788 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9789 zoneid = GLOBAL_ZONEID; 9790 else 9791 zoneid = crgetzoneid(credp); 9792 9793 /* 9794 * We are opening as a device. This is an IP client stream, and we 9795 * allocate an conn_t as the instance data. 9796 */ 9797 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9798 9799 /* 9800 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9801 * done by netstack_find_by_cred() 9802 */ 9803 netstack_rele(ipst->ips_netstack); 9804 9805 connp->conn_zoneid = zoneid; 9806 9807 connp->conn_upq = q; 9808 q->q_ptr = WR(q)->q_ptr = connp; 9809 9810 if (flag & SO_SOCKSTR) 9811 connp->conn_flags |= IPCL_SOCKET; 9812 9813 /* Minor tells us which /dev entry was opened */ 9814 if (isv6) { 9815 connp->conn_flags |= IPCL_ISV6; 9816 connp->conn_af_isv6 = B_TRUE; 9817 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9818 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9819 } else { 9820 connp->conn_af_isv6 = B_FALSE; 9821 connp->conn_pkt_isv6 = B_FALSE; 9822 } 9823 9824 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9825 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9826 connp->conn_minor_arena = ip_minor_arena_la; 9827 } else { 9828 /* 9829 * Either minor numbers in the large arena were exhausted 9830 * or a non socket application is doing the open. 9831 * Try to allocate from the small arena. 9832 */ 9833 if ((connp->conn_dev = 9834 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9835 /* CONN_DEC_REF takes care of netstack_rele() */ 9836 q->q_ptr = WR(q)->q_ptr = NULL; 9837 CONN_DEC_REF(connp); 9838 return (EBUSY); 9839 } 9840 connp->conn_minor_arena = ip_minor_arena_sa; 9841 } 9842 9843 maj = getemajor(*devp); 9844 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9845 9846 /* 9847 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9848 */ 9849 connp->conn_cred = credp; 9850 9851 /* 9852 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9853 */ 9854 connp->conn_recv = ip_conn_input; 9855 9856 crhold(connp->conn_cred); 9857 9858 /* 9859 * If the caller has the process-wide flag set, then default to MAC 9860 * exempt mode. This allows read-down to unlabeled hosts. 9861 */ 9862 if (getpflags(NET_MAC_AWARE, credp) != 0) 9863 connp->conn_mac_exempt = B_TRUE; 9864 9865 connp->conn_rq = q; 9866 connp->conn_wq = WR(q); 9867 9868 /* Non-zero default values */ 9869 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9870 9871 /* 9872 * Make the conn globally visible to walkers 9873 */ 9874 ASSERT(connp->conn_ref == 1); 9875 mutex_enter(&connp->conn_lock); 9876 connp->conn_state_flags &= ~CONN_INCIPIENT; 9877 mutex_exit(&connp->conn_lock); 9878 9879 qprocson(q); 9880 9881 return (0); 9882 } 9883 9884 /* 9885 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9886 * Note that there is no race since either ip_output function works - it 9887 * is just an optimization to enter the best ip_output routine directly. 9888 */ 9889 void 9890 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9891 ip_stack_t *ipst) 9892 { 9893 if (isv6) { 9894 if (bump_mib) { 9895 BUMP_MIB(&ipst->ips_ip6_mib, 9896 ipIfStatsOutSwitchIPVersion); 9897 } 9898 connp->conn_send = ip_output_v6; 9899 connp->conn_pkt_isv6 = B_TRUE; 9900 } else { 9901 if (bump_mib) { 9902 BUMP_MIB(&ipst->ips_ip_mib, 9903 ipIfStatsOutSwitchIPVersion); 9904 } 9905 connp->conn_send = ip_output; 9906 connp->conn_pkt_isv6 = B_FALSE; 9907 } 9908 9909 } 9910 9911 /* 9912 * See if IPsec needs loading because of the options in mp. 9913 */ 9914 static boolean_t 9915 ipsec_opt_present(mblk_t *mp) 9916 { 9917 uint8_t *optcp, *next_optcp, *opt_endcp; 9918 struct opthdr *opt; 9919 struct T_opthdr *topt; 9920 int opthdr_len; 9921 t_uscalar_t optname, optlevel; 9922 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9923 ipsec_req_t *ipsr; 9924 9925 /* 9926 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9927 * return TRUE. 9928 */ 9929 9930 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9931 opt_endcp = optcp + tor->OPT_length; 9932 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9933 opthdr_len = sizeof (struct T_opthdr); 9934 } else { /* O_OPTMGMT_REQ */ 9935 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9936 opthdr_len = sizeof (struct opthdr); 9937 } 9938 for (; optcp < opt_endcp; optcp = next_optcp) { 9939 if (optcp + opthdr_len > opt_endcp) 9940 return (B_FALSE); /* Not enough option header. */ 9941 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9942 topt = (struct T_opthdr *)optcp; 9943 optlevel = topt->level; 9944 optname = topt->name; 9945 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9946 } else { 9947 opt = (struct opthdr *)optcp; 9948 optlevel = opt->level; 9949 optname = opt->name; 9950 next_optcp = optcp + opthdr_len + 9951 _TPI_ALIGN_OPT(opt->len); 9952 } 9953 if ((next_optcp < optcp) || /* wraparound pointer space */ 9954 ((next_optcp >= opt_endcp) && /* last option bad len */ 9955 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9956 return (B_FALSE); /* bad option buffer */ 9957 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9958 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9959 /* 9960 * Check to see if it's an all-bypass or all-zeroes 9961 * IPsec request. Don't bother loading IPsec if 9962 * the socket doesn't want to use it. (A good example 9963 * is a bypass request.) 9964 * 9965 * Basically, if any of the non-NEVER bits are set, 9966 * load IPsec. 9967 */ 9968 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9969 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9970 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9971 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9972 != 0) 9973 return (B_TRUE); 9974 } 9975 } 9976 return (B_FALSE); 9977 } 9978 9979 /* 9980 * If conn is is waiting for ipsec to finish loading, kick it. 9981 */ 9982 /* ARGSUSED */ 9983 static void 9984 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9985 { 9986 t_scalar_t optreq_prim; 9987 mblk_t *mp; 9988 cred_t *cr; 9989 int err = 0; 9990 9991 /* 9992 * This function is called, after ipsec loading is complete. 9993 * Since IP checks exclusively and atomically (i.e it prevents 9994 * ipsec load from completing until ip_optcom_req completes) 9995 * whether ipsec load is complete, there cannot be a race with IP 9996 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9997 */ 9998 mutex_enter(&connp->conn_lock); 9999 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10000 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10001 mp = connp->conn_ipsec_opt_mp; 10002 connp->conn_ipsec_opt_mp = NULL; 10003 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10004 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10005 mutex_exit(&connp->conn_lock); 10006 10007 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10008 10009 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10010 if (optreq_prim == T_OPTMGMT_REQ) { 10011 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10012 &ip_opt_obj, B_FALSE); 10013 } else { 10014 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10015 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10016 &ip_opt_obj, B_FALSE); 10017 } 10018 if (err != EINPROGRESS) 10019 CONN_OPER_PENDING_DONE(connp); 10020 return; 10021 } 10022 mutex_exit(&connp->conn_lock); 10023 } 10024 10025 /* 10026 * Called from the ipsec_loader thread, outside any perimeter, to tell 10027 * ip qenable any of the queues waiting for the ipsec loader to 10028 * complete. 10029 */ 10030 void 10031 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10032 { 10033 netstack_t *ns = ipss->ipsec_netstack; 10034 10035 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10036 } 10037 10038 /* 10039 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10040 * determines the grp on which it has to become exclusive, queues the mp 10041 * and sq draining restarts the optmgmt 10042 */ 10043 static boolean_t 10044 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10045 { 10046 conn_t *connp = Q_TO_CONN(q); 10047 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10048 10049 /* 10050 * Take IPsec requests and treat them special. 10051 */ 10052 if (ipsec_opt_present(mp)) { 10053 /* First check if IPsec is loaded. */ 10054 mutex_enter(&ipss->ipsec_loader_lock); 10055 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10056 mutex_exit(&ipss->ipsec_loader_lock); 10057 return (B_FALSE); 10058 } 10059 mutex_enter(&connp->conn_lock); 10060 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10061 10062 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10063 connp->conn_ipsec_opt_mp = mp; 10064 mutex_exit(&connp->conn_lock); 10065 mutex_exit(&ipss->ipsec_loader_lock); 10066 10067 ipsec_loader_loadnow(ipss); 10068 return (B_TRUE); 10069 } 10070 return (B_FALSE); 10071 } 10072 10073 /* 10074 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10075 * all of them are copied to the conn_t. If the req is "zero", the policy is 10076 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10077 * fields. 10078 * We keep only the latest setting of the policy and thus policy setting 10079 * is not incremental/cumulative. 10080 * 10081 * Requests to set policies with multiple alternative actions will 10082 * go through a different API. 10083 */ 10084 int 10085 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10086 { 10087 uint_t ah_req = 0; 10088 uint_t esp_req = 0; 10089 uint_t se_req = 0; 10090 ipsec_selkey_t sel; 10091 ipsec_act_t *actp = NULL; 10092 uint_t nact; 10093 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10094 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10095 ipsec_policy_root_t *pr; 10096 ipsec_policy_head_t *ph; 10097 int fam; 10098 boolean_t is_pol_reset; 10099 int error = 0; 10100 netstack_t *ns = connp->conn_netstack; 10101 ip_stack_t *ipst = ns->netstack_ip; 10102 ipsec_stack_t *ipss = ns->netstack_ipsec; 10103 10104 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10105 10106 /* 10107 * The IP_SEC_OPT option does not allow variable length parameters, 10108 * hence a request cannot be NULL. 10109 */ 10110 if (req == NULL) 10111 return (EINVAL); 10112 10113 ah_req = req->ipsr_ah_req; 10114 esp_req = req->ipsr_esp_req; 10115 se_req = req->ipsr_self_encap_req; 10116 10117 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10118 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10119 return (EINVAL); 10120 10121 /* 10122 * Are we dealing with a request to reset the policy (i.e. 10123 * zero requests). 10124 */ 10125 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10126 (esp_req & REQ_MASK) == 0 && 10127 (se_req & REQ_MASK) == 0); 10128 10129 if (!is_pol_reset) { 10130 /* 10131 * If we couldn't load IPsec, fail with "protocol 10132 * not supported". 10133 * IPsec may not have been loaded for a request with zero 10134 * policies, so we don't fail in this case. 10135 */ 10136 mutex_enter(&ipss->ipsec_loader_lock); 10137 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10138 mutex_exit(&ipss->ipsec_loader_lock); 10139 return (EPROTONOSUPPORT); 10140 } 10141 mutex_exit(&ipss->ipsec_loader_lock); 10142 10143 /* 10144 * Test for valid requests. Invalid algorithms 10145 * need to be tested by IPsec code because new 10146 * algorithms can be added dynamically. 10147 */ 10148 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10149 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10150 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10151 return (EINVAL); 10152 } 10153 10154 /* 10155 * Only privileged users can issue these 10156 * requests. 10157 */ 10158 if (((ah_req & IPSEC_PREF_NEVER) || 10159 (esp_req & IPSEC_PREF_NEVER) || 10160 (se_req & IPSEC_PREF_NEVER)) && 10161 secpolicy_ip_config(cr, B_FALSE) != 0) { 10162 return (EPERM); 10163 } 10164 10165 /* 10166 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10167 * are mutually exclusive. 10168 */ 10169 if (((ah_req & REQ_MASK) == REQ_MASK) || 10170 ((esp_req & REQ_MASK) == REQ_MASK) || 10171 ((se_req & REQ_MASK) == REQ_MASK)) { 10172 /* Both of them are set */ 10173 return (EINVAL); 10174 } 10175 } 10176 10177 mutex_enter(&connp->conn_lock); 10178 10179 /* 10180 * If we have already cached policies in ip_bind_connected*(), don't 10181 * let them change now. We cache policies for connections 10182 * whose src,dst [addr, port] is known. 10183 */ 10184 if (connp->conn_policy_cached) { 10185 mutex_exit(&connp->conn_lock); 10186 return (EINVAL); 10187 } 10188 10189 /* 10190 * We have a zero policies, reset the connection policy if already 10191 * set. This will cause the connection to inherit the 10192 * global policy, if any. 10193 */ 10194 if (is_pol_reset) { 10195 if (connp->conn_policy != NULL) { 10196 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10197 connp->conn_policy = NULL; 10198 } 10199 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10200 connp->conn_in_enforce_policy = B_FALSE; 10201 connp->conn_out_enforce_policy = B_FALSE; 10202 mutex_exit(&connp->conn_lock); 10203 return (0); 10204 } 10205 10206 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10207 ipst->ips_netstack); 10208 if (ph == NULL) 10209 goto enomem; 10210 10211 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10212 if (actp == NULL) 10213 goto enomem; 10214 10215 /* 10216 * Always allocate IPv4 policy entries, since they can also 10217 * apply to ipv6 sockets being used in ipv4-compat mode. 10218 */ 10219 bzero(&sel, sizeof (sel)); 10220 sel.ipsl_valid = IPSL_IPV4; 10221 10222 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10223 ipst->ips_netstack); 10224 if (pin4 == NULL) 10225 goto enomem; 10226 10227 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10228 ipst->ips_netstack); 10229 if (pout4 == NULL) 10230 goto enomem; 10231 10232 if (connp->conn_af_isv6) { 10233 /* 10234 * We're looking at a v6 socket, also allocate the 10235 * v6-specific entries... 10236 */ 10237 sel.ipsl_valid = IPSL_IPV6; 10238 pin6 = ipsec_policy_create(&sel, actp, nact, 10239 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10240 if (pin6 == NULL) 10241 goto enomem; 10242 10243 pout6 = ipsec_policy_create(&sel, actp, nact, 10244 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10245 if (pout6 == NULL) 10246 goto enomem; 10247 10248 /* 10249 * .. and file them away in the right place. 10250 */ 10251 fam = IPSEC_AF_V6; 10252 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10253 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10254 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10255 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10256 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10257 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10258 } 10259 10260 ipsec_actvec_free(actp, nact); 10261 10262 /* 10263 * File the v4 policies. 10264 */ 10265 fam = IPSEC_AF_V4; 10266 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10267 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10268 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10269 10270 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10271 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10272 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10273 10274 /* 10275 * If the requests need security, set enforce_policy. 10276 * If the requests are IPSEC_PREF_NEVER, one should 10277 * still set conn_out_enforce_policy so that an ipsec_out 10278 * gets attached in ip_wput. This is needed so that 10279 * for connections that we don't cache policy in ip_bind, 10280 * if global policy matches in ip_wput_attach_policy, we 10281 * don't wrongly inherit global policy. Similarly, we need 10282 * to set conn_in_enforce_policy also so that we don't verify 10283 * policy wrongly. 10284 */ 10285 if ((ah_req & REQ_MASK) != 0 || 10286 (esp_req & REQ_MASK) != 0 || 10287 (se_req & REQ_MASK) != 0) { 10288 connp->conn_in_enforce_policy = B_TRUE; 10289 connp->conn_out_enforce_policy = B_TRUE; 10290 connp->conn_flags |= IPCL_CHECK_POLICY; 10291 } 10292 10293 mutex_exit(&connp->conn_lock); 10294 return (error); 10295 #undef REQ_MASK 10296 10297 /* 10298 * Common memory-allocation-failure exit path. 10299 */ 10300 enomem: 10301 mutex_exit(&connp->conn_lock); 10302 if (actp != NULL) 10303 ipsec_actvec_free(actp, nact); 10304 if (pin4 != NULL) 10305 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10306 if (pout4 != NULL) 10307 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10308 if (pin6 != NULL) 10309 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10310 if (pout6 != NULL) 10311 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10312 return (ENOMEM); 10313 } 10314 10315 /* 10316 * Only for options that pass in an IP addr. Currently only V4 options 10317 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10318 * So this function assumes level is IPPROTO_IP 10319 */ 10320 int 10321 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10322 mblk_t *first_mp) 10323 { 10324 ipif_t *ipif = NULL; 10325 int error; 10326 ill_t *ill; 10327 int zoneid; 10328 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10329 10330 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10331 10332 if (addr != INADDR_ANY || checkonly) { 10333 ASSERT(connp != NULL); 10334 zoneid = IPCL_ZONEID(connp); 10335 if (option == IP_NEXTHOP) { 10336 ipif = ipif_lookup_onlink_addr(addr, 10337 connp->conn_zoneid, ipst); 10338 } else { 10339 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10340 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10341 &error, ipst); 10342 } 10343 if (ipif == NULL) { 10344 if (error == EINPROGRESS) 10345 return (error); 10346 else if ((option == IP_MULTICAST_IF) || 10347 (option == IP_NEXTHOP)) 10348 return (EHOSTUNREACH); 10349 else 10350 return (EINVAL); 10351 } else if (checkonly) { 10352 if (option == IP_MULTICAST_IF) { 10353 ill = ipif->ipif_ill; 10354 /* not supported by the virtual network iface */ 10355 if (IS_VNI(ill)) { 10356 ipif_refrele(ipif); 10357 return (EINVAL); 10358 } 10359 } 10360 ipif_refrele(ipif); 10361 return (0); 10362 } 10363 ill = ipif->ipif_ill; 10364 mutex_enter(&connp->conn_lock); 10365 mutex_enter(&ill->ill_lock); 10366 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10367 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10368 mutex_exit(&ill->ill_lock); 10369 mutex_exit(&connp->conn_lock); 10370 ipif_refrele(ipif); 10371 return (option == IP_MULTICAST_IF ? 10372 EHOSTUNREACH : EINVAL); 10373 } 10374 } else { 10375 mutex_enter(&connp->conn_lock); 10376 } 10377 10378 /* None of the options below are supported on the VNI */ 10379 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10380 mutex_exit(&ill->ill_lock); 10381 mutex_exit(&connp->conn_lock); 10382 ipif_refrele(ipif); 10383 return (EINVAL); 10384 } 10385 10386 switch (option) { 10387 case IP_DONTFAILOVER_IF: 10388 /* 10389 * This option is used by in.mpathd to ensure 10390 * that IPMP probe packets only go out on the 10391 * test interfaces. in.mpathd sets this option 10392 * on the non-failover interfaces. 10393 * For backward compatibility, this option 10394 * implicitly sets IP_MULTICAST_IF, as used 10395 * be done in bind(), so that ip_wput gets 10396 * this ipif to send mcast packets. 10397 */ 10398 if (ipif != NULL) { 10399 ASSERT(addr != INADDR_ANY); 10400 connp->conn_nofailover_ill = ipif->ipif_ill; 10401 connp->conn_multicast_ipif = ipif; 10402 } else { 10403 ASSERT(addr == INADDR_ANY); 10404 connp->conn_nofailover_ill = NULL; 10405 connp->conn_multicast_ipif = NULL; 10406 } 10407 break; 10408 10409 case IP_MULTICAST_IF: 10410 connp->conn_multicast_ipif = ipif; 10411 break; 10412 case IP_NEXTHOP: 10413 connp->conn_nexthop_v4 = addr; 10414 connp->conn_nexthop_set = B_TRUE; 10415 break; 10416 } 10417 10418 if (ipif != NULL) { 10419 mutex_exit(&ill->ill_lock); 10420 mutex_exit(&connp->conn_lock); 10421 ipif_refrele(ipif); 10422 return (0); 10423 } 10424 mutex_exit(&connp->conn_lock); 10425 /* We succeded in cleared the option */ 10426 return (0); 10427 } 10428 10429 /* 10430 * For options that pass in an ifindex specifying the ill. V6 options always 10431 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10432 */ 10433 int 10434 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10435 int level, int option, mblk_t *first_mp) 10436 { 10437 ill_t *ill = NULL; 10438 int error = 0; 10439 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10440 10441 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10442 if (ifindex != 0) { 10443 ASSERT(connp != NULL); 10444 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10445 first_mp, ip_restart_optmgmt, &error, ipst); 10446 if (ill != NULL) { 10447 if (checkonly) { 10448 /* not supported by the virtual network iface */ 10449 if (IS_VNI(ill)) { 10450 ill_refrele(ill); 10451 return (EINVAL); 10452 } 10453 ill_refrele(ill); 10454 return (0); 10455 } 10456 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10457 0, NULL)) { 10458 ill_refrele(ill); 10459 ill = NULL; 10460 mutex_enter(&connp->conn_lock); 10461 goto setit; 10462 } 10463 mutex_enter(&connp->conn_lock); 10464 mutex_enter(&ill->ill_lock); 10465 if (ill->ill_state_flags & ILL_CONDEMNED) { 10466 mutex_exit(&ill->ill_lock); 10467 mutex_exit(&connp->conn_lock); 10468 ill_refrele(ill); 10469 ill = NULL; 10470 mutex_enter(&connp->conn_lock); 10471 } 10472 goto setit; 10473 } else if (error == EINPROGRESS) { 10474 return (error); 10475 } else { 10476 error = 0; 10477 } 10478 } 10479 mutex_enter(&connp->conn_lock); 10480 setit: 10481 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10482 10483 /* 10484 * The options below assume that the ILL (if any) transmits and/or 10485 * receives traffic. Neither of which is true for the virtual network 10486 * interface, so fail setting these on a VNI. 10487 */ 10488 if (IS_VNI(ill)) { 10489 ASSERT(ill != NULL); 10490 mutex_exit(&ill->ill_lock); 10491 mutex_exit(&connp->conn_lock); 10492 ill_refrele(ill); 10493 return (EINVAL); 10494 } 10495 10496 if (level == IPPROTO_IP) { 10497 switch (option) { 10498 case IP_BOUND_IF: 10499 connp->conn_incoming_ill = ill; 10500 connp->conn_outgoing_ill = ill; 10501 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10502 0 : ifindex; 10503 break; 10504 10505 case IP_MULTICAST_IF: 10506 /* 10507 * This option is an internal special. The socket 10508 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10509 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10510 * specifies an ifindex and we try first on V6 ill's. 10511 * If we don't find one, we they try using on v4 ill's 10512 * intenally and we come here. 10513 */ 10514 if (!checkonly && ill != NULL) { 10515 ipif_t *ipif; 10516 ipif = ill->ill_ipif; 10517 10518 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10519 mutex_exit(&ill->ill_lock); 10520 mutex_exit(&connp->conn_lock); 10521 ill_refrele(ill); 10522 ill = NULL; 10523 mutex_enter(&connp->conn_lock); 10524 } else { 10525 connp->conn_multicast_ipif = ipif; 10526 } 10527 } 10528 break; 10529 10530 case IP_DHCPINIT_IF: 10531 if (connp->conn_dhcpinit_ill != NULL) { 10532 /* 10533 * We've locked the conn so conn_cleanup_ill() 10534 * cannot clear conn_dhcpinit_ill -- so it's 10535 * safe to access the ill. 10536 */ 10537 ill_t *oill = connp->conn_dhcpinit_ill; 10538 10539 ASSERT(oill->ill_dhcpinit != 0); 10540 atomic_dec_32(&oill->ill_dhcpinit); 10541 connp->conn_dhcpinit_ill = NULL; 10542 } 10543 10544 if (ill != NULL) { 10545 connp->conn_dhcpinit_ill = ill; 10546 atomic_inc_32(&ill->ill_dhcpinit); 10547 } 10548 break; 10549 } 10550 } else { 10551 switch (option) { 10552 case IPV6_BOUND_IF: 10553 connp->conn_incoming_ill = ill; 10554 connp->conn_outgoing_ill = ill; 10555 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10556 0 : ifindex; 10557 break; 10558 10559 case IPV6_BOUND_PIF: 10560 /* 10561 * Limit all transmit to this ill. 10562 * Unlike IPV6_BOUND_IF, using this option 10563 * prevents load spreading and failover from 10564 * happening when the interface is part of the 10565 * group. That's why we don't need to remember 10566 * the ifindex in orig_bound_ifindex as in 10567 * IPV6_BOUND_IF. 10568 */ 10569 connp->conn_outgoing_pill = ill; 10570 break; 10571 10572 case IPV6_DONTFAILOVER_IF: 10573 /* 10574 * This option is used by in.mpathd to ensure 10575 * that IPMP probe packets only go out on the 10576 * test interfaces. in.mpathd sets this option 10577 * on the non-failover interfaces. 10578 */ 10579 connp->conn_nofailover_ill = ill; 10580 /* 10581 * For backward compatibility, this option 10582 * implicitly sets ip_multicast_ill as used in 10583 * IPV6_MULTICAST_IF so that ip_wput gets 10584 * this ill to send mcast packets. 10585 */ 10586 connp->conn_multicast_ill = ill; 10587 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10588 0 : ifindex; 10589 break; 10590 10591 case IPV6_MULTICAST_IF: 10592 /* 10593 * Set conn_multicast_ill to be the IPv6 ill. 10594 * Set conn_multicast_ipif to be an IPv4 ipif 10595 * for ifindex to make IPv4 mapped addresses 10596 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10597 * Even if no IPv6 ill exists for the ifindex 10598 * we need to check for an IPv4 ifindex in order 10599 * for this to work with mapped addresses. In that 10600 * case only set conn_multicast_ipif. 10601 */ 10602 if (!checkonly) { 10603 if (ifindex == 0) { 10604 connp->conn_multicast_ill = NULL; 10605 connp->conn_orig_multicast_ifindex = 0; 10606 connp->conn_multicast_ipif = NULL; 10607 } else if (ill != NULL) { 10608 connp->conn_multicast_ill = ill; 10609 connp->conn_orig_multicast_ifindex = 10610 ifindex; 10611 } 10612 } 10613 break; 10614 } 10615 } 10616 10617 if (ill != NULL) { 10618 mutex_exit(&ill->ill_lock); 10619 mutex_exit(&connp->conn_lock); 10620 ill_refrele(ill); 10621 return (0); 10622 } 10623 mutex_exit(&connp->conn_lock); 10624 /* 10625 * We succeeded in clearing the option (ifindex == 0) or failed to 10626 * locate the ill and could not set the option (ifindex != 0) 10627 */ 10628 return (ifindex == 0 ? 0 : EINVAL); 10629 } 10630 10631 /* This routine sets socket options. */ 10632 /* ARGSUSED */ 10633 int 10634 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10635 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10636 void *dummy, cred_t *cr, mblk_t *first_mp) 10637 { 10638 int *i1 = (int *)invalp; 10639 conn_t *connp = Q_TO_CONN(q); 10640 int error = 0; 10641 boolean_t checkonly; 10642 ire_t *ire; 10643 boolean_t found; 10644 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10645 10646 switch (optset_context) { 10647 10648 case SETFN_OPTCOM_CHECKONLY: 10649 checkonly = B_TRUE; 10650 /* 10651 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10652 * inlen != 0 implies value supplied and 10653 * we have to "pretend" to set it. 10654 * inlen == 0 implies that there is no 10655 * value part in T_CHECK request and just validation 10656 * done elsewhere should be enough, we just return here. 10657 */ 10658 if (inlen == 0) { 10659 *outlenp = 0; 10660 return (0); 10661 } 10662 break; 10663 case SETFN_OPTCOM_NEGOTIATE: 10664 case SETFN_UD_NEGOTIATE: 10665 case SETFN_CONN_NEGOTIATE: 10666 checkonly = B_FALSE; 10667 break; 10668 default: 10669 /* 10670 * We should never get here 10671 */ 10672 *outlenp = 0; 10673 return (EINVAL); 10674 } 10675 10676 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10677 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10678 10679 /* 10680 * For fixed length options, no sanity check 10681 * of passed in length is done. It is assumed *_optcom_req() 10682 * routines do the right thing. 10683 */ 10684 10685 switch (level) { 10686 case SOL_SOCKET: 10687 /* 10688 * conn_lock protects the bitfields, and is used to 10689 * set the fields atomically. 10690 */ 10691 switch (name) { 10692 case SO_BROADCAST: 10693 if (!checkonly) { 10694 /* TODO: use value someplace? */ 10695 mutex_enter(&connp->conn_lock); 10696 connp->conn_broadcast = *i1 ? 1 : 0; 10697 mutex_exit(&connp->conn_lock); 10698 } 10699 break; /* goto sizeof (int) option return */ 10700 case SO_USELOOPBACK: 10701 if (!checkonly) { 10702 /* TODO: use value someplace? */ 10703 mutex_enter(&connp->conn_lock); 10704 connp->conn_loopback = *i1 ? 1 : 0; 10705 mutex_exit(&connp->conn_lock); 10706 } 10707 break; /* goto sizeof (int) option return */ 10708 case SO_DONTROUTE: 10709 if (!checkonly) { 10710 mutex_enter(&connp->conn_lock); 10711 connp->conn_dontroute = *i1 ? 1 : 0; 10712 mutex_exit(&connp->conn_lock); 10713 } 10714 break; /* goto sizeof (int) option return */ 10715 case SO_REUSEADDR: 10716 if (!checkonly) { 10717 mutex_enter(&connp->conn_lock); 10718 connp->conn_reuseaddr = *i1 ? 1 : 0; 10719 mutex_exit(&connp->conn_lock); 10720 } 10721 break; /* goto sizeof (int) option return */ 10722 case SO_PROTOTYPE: 10723 if (!checkonly) { 10724 mutex_enter(&connp->conn_lock); 10725 connp->conn_proto = *i1; 10726 mutex_exit(&connp->conn_lock); 10727 } 10728 break; /* goto sizeof (int) option return */ 10729 case SO_ALLZONES: 10730 if (!checkonly) { 10731 mutex_enter(&connp->conn_lock); 10732 if (IPCL_IS_BOUND(connp)) { 10733 mutex_exit(&connp->conn_lock); 10734 return (EINVAL); 10735 } 10736 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10737 mutex_exit(&connp->conn_lock); 10738 } 10739 break; /* goto sizeof (int) option return */ 10740 case SO_ANON_MLP: 10741 if (!checkonly) { 10742 mutex_enter(&connp->conn_lock); 10743 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10744 mutex_exit(&connp->conn_lock); 10745 } 10746 break; /* goto sizeof (int) option return */ 10747 case SO_MAC_EXEMPT: 10748 if (secpolicy_net_mac_aware(cr) != 0 || 10749 IPCL_IS_BOUND(connp)) 10750 return (EACCES); 10751 if (!checkonly) { 10752 mutex_enter(&connp->conn_lock); 10753 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10754 mutex_exit(&connp->conn_lock); 10755 } 10756 break; /* goto sizeof (int) option return */ 10757 default: 10758 /* 10759 * "soft" error (negative) 10760 * option not handled at this level 10761 * Note: Do not modify *outlenp 10762 */ 10763 return (-EINVAL); 10764 } 10765 break; 10766 case IPPROTO_IP: 10767 switch (name) { 10768 case IP_NEXTHOP: 10769 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10770 return (EPERM); 10771 /* FALLTHRU */ 10772 case IP_MULTICAST_IF: 10773 case IP_DONTFAILOVER_IF: { 10774 ipaddr_t addr = *i1; 10775 10776 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10777 first_mp); 10778 if (error != 0) 10779 return (error); 10780 break; /* goto sizeof (int) option return */ 10781 } 10782 10783 case IP_MULTICAST_TTL: 10784 /* Recorded in transport above IP */ 10785 *outvalp = *invalp; 10786 *outlenp = sizeof (uchar_t); 10787 return (0); 10788 case IP_MULTICAST_LOOP: 10789 if (!checkonly) { 10790 mutex_enter(&connp->conn_lock); 10791 connp->conn_multicast_loop = *invalp ? 1 : 0; 10792 mutex_exit(&connp->conn_lock); 10793 } 10794 *outvalp = *invalp; 10795 *outlenp = sizeof (uchar_t); 10796 return (0); 10797 case IP_ADD_MEMBERSHIP: 10798 case MCAST_JOIN_GROUP: 10799 case IP_DROP_MEMBERSHIP: 10800 case MCAST_LEAVE_GROUP: { 10801 struct ip_mreq *mreqp; 10802 struct group_req *greqp; 10803 ire_t *ire; 10804 boolean_t done = B_FALSE; 10805 ipaddr_t group, ifaddr; 10806 struct sockaddr_in *sin; 10807 uint32_t *ifindexp; 10808 boolean_t mcast_opt = B_TRUE; 10809 mcast_record_t fmode; 10810 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10811 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10812 10813 switch (name) { 10814 case IP_ADD_MEMBERSHIP: 10815 mcast_opt = B_FALSE; 10816 /* FALLTHRU */ 10817 case MCAST_JOIN_GROUP: 10818 fmode = MODE_IS_EXCLUDE; 10819 optfn = ip_opt_add_group; 10820 break; 10821 10822 case IP_DROP_MEMBERSHIP: 10823 mcast_opt = B_FALSE; 10824 /* FALLTHRU */ 10825 case MCAST_LEAVE_GROUP: 10826 fmode = MODE_IS_INCLUDE; 10827 optfn = ip_opt_delete_group; 10828 break; 10829 } 10830 10831 if (mcast_opt) { 10832 greqp = (struct group_req *)i1; 10833 sin = (struct sockaddr_in *)&greqp->gr_group; 10834 if (sin->sin_family != AF_INET) { 10835 *outlenp = 0; 10836 return (ENOPROTOOPT); 10837 } 10838 group = (ipaddr_t)sin->sin_addr.s_addr; 10839 ifaddr = INADDR_ANY; 10840 ifindexp = &greqp->gr_interface; 10841 } else { 10842 mreqp = (struct ip_mreq *)i1; 10843 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10844 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10845 ifindexp = NULL; 10846 } 10847 10848 /* 10849 * In the multirouting case, we need to replicate 10850 * the request on all interfaces that will take part 10851 * in replication. We do so because multirouting is 10852 * reflective, thus we will probably receive multi- 10853 * casts on those interfaces. 10854 * The ip_multirt_apply_membership() succeeds if the 10855 * operation succeeds on at least one interface. 10856 */ 10857 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10858 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10859 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10860 if (ire != NULL) { 10861 if (ire->ire_flags & RTF_MULTIRT) { 10862 error = ip_multirt_apply_membership( 10863 optfn, ire, connp, checkonly, group, 10864 fmode, INADDR_ANY, first_mp); 10865 done = B_TRUE; 10866 } 10867 ire_refrele(ire); 10868 } 10869 if (!done) { 10870 error = optfn(connp, checkonly, group, ifaddr, 10871 ifindexp, fmode, INADDR_ANY, first_mp); 10872 } 10873 if (error) { 10874 /* 10875 * EINPROGRESS is a soft error, needs retry 10876 * so don't make *outlenp zero. 10877 */ 10878 if (error != EINPROGRESS) 10879 *outlenp = 0; 10880 return (error); 10881 } 10882 /* OK return - copy input buffer into output buffer */ 10883 if (invalp != outvalp) { 10884 /* don't trust bcopy for identical src/dst */ 10885 bcopy(invalp, outvalp, inlen); 10886 } 10887 *outlenp = inlen; 10888 return (0); 10889 } 10890 case IP_BLOCK_SOURCE: 10891 case IP_UNBLOCK_SOURCE: 10892 case IP_ADD_SOURCE_MEMBERSHIP: 10893 case IP_DROP_SOURCE_MEMBERSHIP: 10894 case MCAST_BLOCK_SOURCE: 10895 case MCAST_UNBLOCK_SOURCE: 10896 case MCAST_JOIN_SOURCE_GROUP: 10897 case MCAST_LEAVE_SOURCE_GROUP: { 10898 struct ip_mreq_source *imreqp; 10899 struct group_source_req *gsreqp; 10900 in_addr_t grp, src, ifaddr = INADDR_ANY; 10901 uint32_t ifindex = 0; 10902 mcast_record_t fmode; 10903 struct sockaddr_in *sin; 10904 ire_t *ire; 10905 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10906 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10907 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10908 10909 switch (name) { 10910 case IP_BLOCK_SOURCE: 10911 mcast_opt = B_FALSE; 10912 /* FALLTHRU */ 10913 case MCAST_BLOCK_SOURCE: 10914 fmode = MODE_IS_EXCLUDE; 10915 optfn = ip_opt_add_group; 10916 break; 10917 10918 case IP_UNBLOCK_SOURCE: 10919 mcast_opt = B_FALSE; 10920 /* FALLTHRU */ 10921 case MCAST_UNBLOCK_SOURCE: 10922 fmode = MODE_IS_EXCLUDE; 10923 optfn = ip_opt_delete_group; 10924 break; 10925 10926 case IP_ADD_SOURCE_MEMBERSHIP: 10927 mcast_opt = B_FALSE; 10928 /* FALLTHRU */ 10929 case MCAST_JOIN_SOURCE_GROUP: 10930 fmode = MODE_IS_INCLUDE; 10931 optfn = ip_opt_add_group; 10932 break; 10933 10934 case IP_DROP_SOURCE_MEMBERSHIP: 10935 mcast_opt = B_FALSE; 10936 /* FALLTHRU */ 10937 case MCAST_LEAVE_SOURCE_GROUP: 10938 fmode = MODE_IS_INCLUDE; 10939 optfn = ip_opt_delete_group; 10940 break; 10941 } 10942 10943 if (mcast_opt) { 10944 gsreqp = (struct group_source_req *)i1; 10945 if (gsreqp->gsr_group.ss_family != AF_INET) { 10946 *outlenp = 0; 10947 return (ENOPROTOOPT); 10948 } 10949 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10950 grp = (ipaddr_t)sin->sin_addr.s_addr; 10951 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10952 src = (ipaddr_t)sin->sin_addr.s_addr; 10953 ifindex = gsreqp->gsr_interface; 10954 } else { 10955 imreqp = (struct ip_mreq_source *)i1; 10956 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10957 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10958 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10959 } 10960 10961 /* 10962 * In the multirouting case, we need to replicate 10963 * the request as noted in the mcast cases above. 10964 */ 10965 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10966 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10967 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10968 if (ire != NULL) { 10969 if (ire->ire_flags & RTF_MULTIRT) { 10970 error = ip_multirt_apply_membership( 10971 optfn, ire, connp, checkonly, grp, 10972 fmode, src, first_mp); 10973 done = B_TRUE; 10974 } 10975 ire_refrele(ire); 10976 } 10977 if (!done) { 10978 error = optfn(connp, checkonly, grp, ifaddr, 10979 &ifindex, fmode, src, first_mp); 10980 } 10981 if (error != 0) { 10982 /* 10983 * EINPROGRESS is a soft error, needs retry 10984 * so don't make *outlenp zero. 10985 */ 10986 if (error != EINPROGRESS) 10987 *outlenp = 0; 10988 return (error); 10989 } 10990 /* OK return - copy input buffer into output buffer */ 10991 if (invalp != outvalp) { 10992 bcopy(invalp, outvalp, inlen); 10993 } 10994 *outlenp = inlen; 10995 return (0); 10996 } 10997 case IP_SEC_OPT: 10998 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10999 if (error != 0) { 11000 *outlenp = 0; 11001 return (error); 11002 } 11003 break; 11004 case IP_HDRINCL: 11005 case IP_OPTIONS: 11006 case T_IP_OPTIONS: 11007 case IP_TOS: 11008 case T_IP_TOS: 11009 case IP_TTL: 11010 case IP_RECVDSTADDR: 11011 case IP_RECVOPTS: 11012 /* OK return - copy input buffer into output buffer */ 11013 if (invalp != outvalp) { 11014 /* don't trust bcopy for identical src/dst */ 11015 bcopy(invalp, outvalp, inlen); 11016 } 11017 *outlenp = inlen; 11018 return (0); 11019 case IP_RECVIF: 11020 /* Retrieve the inbound interface index */ 11021 if (!checkonly) { 11022 mutex_enter(&connp->conn_lock); 11023 connp->conn_recvif = *i1 ? 1 : 0; 11024 mutex_exit(&connp->conn_lock); 11025 } 11026 break; /* goto sizeof (int) option return */ 11027 case IP_RECVPKTINFO: 11028 if (!checkonly) { 11029 mutex_enter(&connp->conn_lock); 11030 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11031 mutex_exit(&connp->conn_lock); 11032 } 11033 break; /* goto sizeof (int) option return */ 11034 case IP_RECVSLLA: 11035 /* Retrieve the source link layer address */ 11036 if (!checkonly) { 11037 mutex_enter(&connp->conn_lock); 11038 connp->conn_recvslla = *i1 ? 1 : 0; 11039 mutex_exit(&connp->conn_lock); 11040 } 11041 break; /* goto sizeof (int) option return */ 11042 case MRT_INIT: 11043 case MRT_DONE: 11044 case MRT_ADD_VIF: 11045 case MRT_DEL_VIF: 11046 case MRT_ADD_MFC: 11047 case MRT_DEL_MFC: 11048 case MRT_ASSERT: 11049 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11050 *outlenp = 0; 11051 return (error); 11052 } 11053 error = ip_mrouter_set((int)name, q, checkonly, 11054 (uchar_t *)invalp, inlen, first_mp); 11055 if (error) { 11056 *outlenp = 0; 11057 return (error); 11058 } 11059 /* OK return - copy input buffer into output buffer */ 11060 if (invalp != outvalp) { 11061 /* don't trust bcopy for identical src/dst */ 11062 bcopy(invalp, outvalp, inlen); 11063 } 11064 *outlenp = inlen; 11065 return (0); 11066 case IP_BOUND_IF: 11067 case IP_DHCPINIT_IF: 11068 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11069 level, name, first_mp); 11070 if (error != 0) 11071 return (error); 11072 break; /* goto sizeof (int) option return */ 11073 11074 case IP_UNSPEC_SRC: 11075 /* Allow sending with a zero source address */ 11076 if (!checkonly) { 11077 mutex_enter(&connp->conn_lock); 11078 connp->conn_unspec_src = *i1 ? 1 : 0; 11079 mutex_exit(&connp->conn_lock); 11080 } 11081 break; /* goto sizeof (int) option return */ 11082 default: 11083 /* 11084 * "soft" error (negative) 11085 * option not handled at this level 11086 * Note: Do not modify *outlenp 11087 */ 11088 return (-EINVAL); 11089 } 11090 break; 11091 case IPPROTO_IPV6: 11092 switch (name) { 11093 case IPV6_BOUND_IF: 11094 case IPV6_BOUND_PIF: 11095 case IPV6_DONTFAILOVER_IF: 11096 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11097 level, name, first_mp); 11098 if (error != 0) 11099 return (error); 11100 break; /* goto sizeof (int) option return */ 11101 11102 case IPV6_MULTICAST_IF: 11103 /* 11104 * The only possible errors are EINPROGRESS and 11105 * EINVAL. EINPROGRESS will be restarted and is not 11106 * a hard error. We call this option on both V4 and V6 11107 * If both return EINVAL, then this call returns 11108 * EINVAL. If at least one of them succeeds we 11109 * return success. 11110 */ 11111 found = B_FALSE; 11112 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11113 level, name, first_mp); 11114 if (error == EINPROGRESS) 11115 return (error); 11116 if (error == 0) 11117 found = B_TRUE; 11118 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11119 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11120 if (error == 0) 11121 found = B_TRUE; 11122 if (!found) 11123 return (error); 11124 break; /* goto sizeof (int) option return */ 11125 11126 case IPV6_MULTICAST_HOPS: 11127 /* Recorded in transport above IP */ 11128 break; /* goto sizeof (int) option return */ 11129 case IPV6_MULTICAST_LOOP: 11130 if (!checkonly) { 11131 mutex_enter(&connp->conn_lock); 11132 connp->conn_multicast_loop = *i1; 11133 mutex_exit(&connp->conn_lock); 11134 } 11135 break; /* goto sizeof (int) option return */ 11136 case IPV6_JOIN_GROUP: 11137 case MCAST_JOIN_GROUP: 11138 case IPV6_LEAVE_GROUP: 11139 case MCAST_LEAVE_GROUP: { 11140 struct ipv6_mreq *ip_mreqp; 11141 struct group_req *greqp; 11142 ire_t *ire; 11143 boolean_t done = B_FALSE; 11144 in6_addr_t groupv6; 11145 uint32_t ifindex; 11146 boolean_t mcast_opt = B_TRUE; 11147 mcast_record_t fmode; 11148 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11149 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11150 11151 switch (name) { 11152 case IPV6_JOIN_GROUP: 11153 mcast_opt = B_FALSE; 11154 /* FALLTHRU */ 11155 case MCAST_JOIN_GROUP: 11156 fmode = MODE_IS_EXCLUDE; 11157 optfn = ip_opt_add_group_v6; 11158 break; 11159 11160 case IPV6_LEAVE_GROUP: 11161 mcast_opt = B_FALSE; 11162 /* FALLTHRU */ 11163 case MCAST_LEAVE_GROUP: 11164 fmode = MODE_IS_INCLUDE; 11165 optfn = ip_opt_delete_group_v6; 11166 break; 11167 } 11168 11169 if (mcast_opt) { 11170 struct sockaddr_in *sin; 11171 struct sockaddr_in6 *sin6; 11172 greqp = (struct group_req *)i1; 11173 if (greqp->gr_group.ss_family == AF_INET) { 11174 sin = (struct sockaddr_in *) 11175 &(greqp->gr_group); 11176 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11177 &groupv6); 11178 } else { 11179 sin6 = (struct sockaddr_in6 *) 11180 &(greqp->gr_group); 11181 groupv6 = sin6->sin6_addr; 11182 } 11183 ifindex = greqp->gr_interface; 11184 } else { 11185 ip_mreqp = (struct ipv6_mreq *)i1; 11186 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11187 ifindex = ip_mreqp->ipv6mr_interface; 11188 } 11189 /* 11190 * In the multirouting case, we need to replicate 11191 * the request on all interfaces that will take part 11192 * in replication. We do so because multirouting is 11193 * reflective, thus we will probably receive multi- 11194 * casts on those interfaces. 11195 * The ip_multirt_apply_membership_v6() succeeds if 11196 * the operation succeeds on at least one interface. 11197 */ 11198 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11199 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11200 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11201 if (ire != NULL) { 11202 if (ire->ire_flags & RTF_MULTIRT) { 11203 error = ip_multirt_apply_membership_v6( 11204 optfn, ire, connp, checkonly, 11205 &groupv6, fmode, &ipv6_all_zeros, 11206 first_mp); 11207 done = B_TRUE; 11208 } 11209 ire_refrele(ire); 11210 } 11211 if (!done) { 11212 error = optfn(connp, checkonly, &groupv6, 11213 ifindex, fmode, &ipv6_all_zeros, first_mp); 11214 } 11215 if (error) { 11216 /* 11217 * EINPROGRESS is a soft error, needs retry 11218 * so don't make *outlenp zero. 11219 */ 11220 if (error != EINPROGRESS) 11221 *outlenp = 0; 11222 return (error); 11223 } 11224 /* OK return - copy input buffer into output buffer */ 11225 if (invalp != outvalp) { 11226 /* don't trust bcopy for identical src/dst */ 11227 bcopy(invalp, outvalp, inlen); 11228 } 11229 *outlenp = inlen; 11230 return (0); 11231 } 11232 case MCAST_BLOCK_SOURCE: 11233 case MCAST_UNBLOCK_SOURCE: 11234 case MCAST_JOIN_SOURCE_GROUP: 11235 case MCAST_LEAVE_SOURCE_GROUP: { 11236 struct group_source_req *gsreqp; 11237 in6_addr_t v6grp, v6src; 11238 uint32_t ifindex; 11239 mcast_record_t fmode; 11240 ire_t *ire; 11241 boolean_t done = B_FALSE; 11242 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11243 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11244 11245 switch (name) { 11246 case MCAST_BLOCK_SOURCE: 11247 fmode = MODE_IS_EXCLUDE; 11248 optfn = ip_opt_add_group_v6; 11249 break; 11250 case MCAST_UNBLOCK_SOURCE: 11251 fmode = MODE_IS_EXCLUDE; 11252 optfn = ip_opt_delete_group_v6; 11253 break; 11254 case MCAST_JOIN_SOURCE_GROUP: 11255 fmode = MODE_IS_INCLUDE; 11256 optfn = ip_opt_add_group_v6; 11257 break; 11258 case MCAST_LEAVE_SOURCE_GROUP: 11259 fmode = MODE_IS_INCLUDE; 11260 optfn = ip_opt_delete_group_v6; 11261 break; 11262 } 11263 11264 gsreqp = (struct group_source_req *)i1; 11265 ifindex = gsreqp->gsr_interface; 11266 if (gsreqp->gsr_group.ss_family == AF_INET) { 11267 struct sockaddr_in *s; 11268 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11269 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11270 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11271 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11272 } else { 11273 struct sockaddr_in6 *s6; 11274 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11275 v6grp = s6->sin6_addr; 11276 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11277 v6src = s6->sin6_addr; 11278 } 11279 11280 /* 11281 * In the multirouting case, we need to replicate 11282 * the request as noted in the mcast cases above. 11283 */ 11284 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11285 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11286 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11287 if (ire != NULL) { 11288 if (ire->ire_flags & RTF_MULTIRT) { 11289 error = ip_multirt_apply_membership_v6( 11290 optfn, ire, connp, checkonly, 11291 &v6grp, fmode, &v6src, first_mp); 11292 done = B_TRUE; 11293 } 11294 ire_refrele(ire); 11295 } 11296 if (!done) { 11297 error = optfn(connp, checkonly, &v6grp, 11298 ifindex, fmode, &v6src, first_mp); 11299 } 11300 if (error != 0) { 11301 /* 11302 * EINPROGRESS is a soft error, needs retry 11303 * so don't make *outlenp zero. 11304 */ 11305 if (error != EINPROGRESS) 11306 *outlenp = 0; 11307 return (error); 11308 } 11309 /* OK return - copy input buffer into output buffer */ 11310 if (invalp != outvalp) { 11311 bcopy(invalp, outvalp, inlen); 11312 } 11313 *outlenp = inlen; 11314 return (0); 11315 } 11316 case IPV6_UNICAST_HOPS: 11317 /* Recorded in transport above IP */ 11318 break; /* goto sizeof (int) option return */ 11319 case IPV6_UNSPEC_SRC: 11320 /* Allow sending with a zero source address */ 11321 if (!checkonly) { 11322 mutex_enter(&connp->conn_lock); 11323 connp->conn_unspec_src = *i1 ? 1 : 0; 11324 mutex_exit(&connp->conn_lock); 11325 } 11326 break; /* goto sizeof (int) option return */ 11327 case IPV6_RECVPKTINFO: 11328 if (!checkonly) { 11329 mutex_enter(&connp->conn_lock); 11330 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11331 mutex_exit(&connp->conn_lock); 11332 } 11333 break; /* goto sizeof (int) option return */ 11334 case IPV6_RECVTCLASS: 11335 if (!checkonly) { 11336 if (*i1 < 0 || *i1 > 1) { 11337 return (EINVAL); 11338 } 11339 mutex_enter(&connp->conn_lock); 11340 connp->conn_ipv6_recvtclass = *i1; 11341 mutex_exit(&connp->conn_lock); 11342 } 11343 break; 11344 case IPV6_RECVPATHMTU: 11345 if (!checkonly) { 11346 if (*i1 < 0 || *i1 > 1) { 11347 return (EINVAL); 11348 } 11349 mutex_enter(&connp->conn_lock); 11350 connp->conn_ipv6_recvpathmtu = *i1; 11351 mutex_exit(&connp->conn_lock); 11352 } 11353 break; 11354 case IPV6_RECVHOPLIMIT: 11355 if (!checkonly) { 11356 mutex_enter(&connp->conn_lock); 11357 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11358 mutex_exit(&connp->conn_lock); 11359 } 11360 break; /* goto sizeof (int) option return */ 11361 case IPV6_RECVHOPOPTS: 11362 if (!checkonly) { 11363 mutex_enter(&connp->conn_lock); 11364 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11365 mutex_exit(&connp->conn_lock); 11366 } 11367 break; /* goto sizeof (int) option return */ 11368 case IPV6_RECVDSTOPTS: 11369 if (!checkonly) { 11370 mutex_enter(&connp->conn_lock); 11371 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11372 mutex_exit(&connp->conn_lock); 11373 } 11374 break; /* goto sizeof (int) option return */ 11375 case IPV6_RECVRTHDR: 11376 if (!checkonly) { 11377 mutex_enter(&connp->conn_lock); 11378 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11379 mutex_exit(&connp->conn_lock); 11380 } 11381 break; /* goto sizeof (int) option return */ 11382 case IPV6_RECVRTHDRDSTOPTS: 11383 if (!checkonly) { 11384 mutex_enter(&connp->conn_lock); 11385 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11386 mutex_exit(&connp->conn_lock); 11387 } 11388 break; /* goto sizeof (int) option return */ 11389 case IPV6_PKTINFO: 11390 if (inlen == 0) 11391 return (-EINVAL); /* clearing option */ 11392 error = ip6_set_pktinfo(cr, connp, 11393 (struct in6_pktinfo *)invalp, first_mp); 11394 if (error != 0) 11395 *outlenp = 0; 11396 else 11397 *outlenp = inlen; 11398 return (error); 11399 case IPV6_NEXTHOP: { 11400 struct sockaddr_in6 *sin6; 11401 11402 /* Verify that the nexthop is reachable */ 11403 if (inlen == 0) 11404 return (-EINVAL); /* clearing option */ 11405 11406 sin6 = (struct sockaddr_in6 *)invalp; 11407 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11408 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11409 NULL, MATCH_IRE_DEFAULT, ipst); 11410 11411 if (ire == NULL) { 11412 *outlenp = 0; 11413 return (EHOSTUNREACH); 11414 } 11415 ire_refrele(ire); 11416 return (-EINVAL); 11417 } 11418 case IPV6_SEC_OPT: 11419 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11420 if (error != 0) { 11421 *outlenp = 0; 11422 return (error); 11423 } 11424 break; 11425 case IPV6_SRC_PREFERENCES: { 11426 /* 11427 * This is implemented strictly in the ip module 11428 * (here and in tcp_opt_*() to accomodate tcp 11429 * sockets). Modules above ip pass this option 11430 * down here since ip is the only one that needs to 11431 * be aware of source address preferences. 11432 * 11433 * This socket option only affects connected 11434 * sockets that haven't already bound to a specific 11435 * IPv6 address. In other words, sockets that 11436 * don't call bind() with an address other than the 11437 * unspecified address and that call connect(). 11438 * ip_bind_connected_v6() passes these preferences 11439 * to the ipif_select_source_v6() function. 11440 */ 11441 if (inlen != sizeof (uint32_t)) 11442 return (EINVAL); 11443 error = ip6_set_src_preferences(connp, 11444 *(uint32_t *)invalp); 11445 if (error != 0) { 11446 *outlenp = 0; 11447 return (error); 11448 } else { 11449 *outlenp = sizeof (uint32_t); 11450 } 11451 break; 11452 } 11453 case IPV6_V6ONLY: 11454 if (*i1 < 0 || *i1 > 1) { 11455 return (EINVAL); 11456 } 11457 mutex_enter(&connp->conn_lock); 11458 connp->conn_ipv6_v6only = *i1; 11459 mutex_exit(&connp->conn_lock); 11460 break; 11461 default: 11462 return (-EINVAL); 11463 } 11464 break; 11465 default: 11466 /* 11467 * "soft" error (negative) 11468 * option not handled at this level 11469 * Note: Do not modify *outlenp 11470 */ 11471 return (-EINVAL); 11472 } 11473 /* 11474 * Common case of return from an option that is sizeof (int) 11475 */ 11476 *(int *)outvalp = *i1; 11477 *outlenp = sizeof (int); 11478 return (0); 11479 } 11480 11481 /* 11482 * This routine gets default values of certain options whose default 11483 * values are maintained by protocol specific code 11484 */ 11485 /* ARGSUSED */ 11486 int 11487 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11488 { 11489 int *i1 = (int *)ptr; 11490 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11491 11492 switch (level) { 11493 case IPPROTO_IP: 11494 switch (name) { 11495 case IP_MULTICAST_TTL: 11496 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11497 return (sizeof (uchar_t)); 11498 case IP_MULTICAST_LOOP: 11499 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11500 return (sizeof (uchar_t)); 11501 default: 11502 return (-1); 11503 } 11504 case IPPROTO_IPV6: 11505 switch (name) { 11506 case IPV6_UNICAST_HOPS: 11507 *i1 = ipst->ips_ipv6_def_hops; 11508 return (sizeof (int)); 11509 case IPV6_MULTICAST_HOPS: 11510 *i1 = IP_DEFAULT_MULTICAST_TTL; 11511 return (sizeof (int)); 11512 case IPV6_MULTICAST_LOOP: 11513 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11514 return (sizeof (int)); 11515 case IPV6_V6ONLY: 11516 *i1 = 1; 11517 return (sizeof (int)); 11518 default: 11519 return (-1); 11520 } 11521 default: 11522 return (-1); 11523 } 11524 /* NOTREACHED */ 11525 } 11526 11527 /* 11528 * Given a destination address and a pointer to where to put the information 11529 * this routine fills in the mtuinfo. 11530 */ 11531 int 11532 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11533 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11534 { 11535 ire_t *ire; 11536 ip_stack_t *ipst = ns->netstack_ip; 11537 11538 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11539 return (-1); 11540 11541 bzero(mtuinfo, sizeof (*mtuinfo)); 11542 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11543 mtuinfo->ip6m_addr.sin6_port = port; 11544 mtuinfo->ip6m_addr.sin6_addr = *in6; 11545 11546 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11547 if (ire != NULL) { 11548 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11549 ire_refrele(ire); 11550 } else { 11551 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11552 } 11553 return (sizeof (struct ip6_mtuinfo)); 11554 } 11555 11556 /* 11557 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11558 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11559 * isn't. This doesn't matter as the error checking is done properly for the 11560 * other MRT options coming in through ip_opt_set. 11561 */ 11562 int 11563 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11564 { 11565 conn_t *connp = Q_TO_CONN(q); 11566 ipsec_req_t *req = (ipsec_req_t *)ptr; 11567 11568 switch (level) { 11569 case IPPROTO_IP: 11570 switch (name) { 11571 case MRT_VERSION: 11572 case MRT_ASSERT: 11573 (void) ip_mrouter_get(name, q, ptr); 11574 return (sizeof (int)); 11575 case IP_SEC_OPT: 11576 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11577 case IP_NEXTHOP: 11578 if (connp->conn_nexthop_set) { 11579 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11580 return (sizeof (ipaddr_t)); 11581 } else 11582 return (0); 11583 case IP_RECVPKTINFO: 11584 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11585 return (sizeof (int)); 11586 default: 11587 break; 11588 } 11589 break; 11590 case IPPROTO_IPV6: 11591 switch (name) { 11592 case IPV6_SEC_OPT: 11593 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11594 case IPV6_SRC_PREFERENCES: { 11595 return (ip6_get_src_preferences(connp, 11596 (uint32_t *)ptr)); 11597 } 11598 case IPV6_V6ONLY: 11599 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11600 return (sizeof (int)); 11601 case IPV6_PATHMTU: 11602 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11603 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11604 default: 11605 break; 11606 } 11607 break; 11608 default: 11609 break; 11610 } 11611 return (-1); 11612 } 11613 11614 /* Named Dispatch routine to get a current value out of our parameter table. */ 11615 /* ARGSUSED */ 11616 static int 11617 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11618 { 11619 ipparam_t *ippa = (ipparam_t *)cp; 11620 11621 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11622 return (0); 11623 } 11624 11625 /* ARGSUSED */ 11626 static int 11627 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11628 { 11629 11630 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11631 return (0); 11632 } 11633 11634 /* 11635 * Set ip{,6}_forwarding values. This means walking through all of the 11636 * ill's and toggling their forwarding values. 11637 */ 11638 /* ARGSUSED */ 11639 static int 11640 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11641 { 11642 long new_value; 11643 int *forwarding_value = (int *)cp; 11644 ill_t *ill; 11645 boolean_t isv6; 11646 ill_walk_context_t ctx; 11647 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11648 11649 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11650 11651 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11652 new_value < 0 || new_value > 1) { 11653 return (EINVAL); 11654 } 11655 11656 *forwarding_value = new_value; 11657 11658 /* 11659 * Regardless of the current value of ip_forwarding, set all per-ill 11660 * values of ip_forwarding to the value being set. 11661 * 11662 * Bring all the ill's up to date with the new global value. 11663 */ 11664 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11665 11666 if (isv6) 11667 ill = ILL_START_WALK_V6(&ctx, ipst); 11668 else 11669 ill = ILL_START_WALK_V4(&ctx, ipst); 11670 11671 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11672 (void) ill_forward_set(ill, new_value != 0); 11673 11674 rw_exit(&ipst->ips_ill_g_lock); 11675 return (0); 11676 } 11677 11678 /* 11679 * Walk through the param array specified registering each element with the 11680 * Named Dispatch handler. This is called only during init. So it is ok 11681 * not to acquire any locks 11682 */ 11683 static boolean_t 11684 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11685 ipndp_t *ipnd, size_t ipnd_cnt) 11686 { 11687 for (; ippa_cnt-- > 0; ippa++) { 11688 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11689 if (!nd_load(ndp, ippa->ip_param_name, 11690 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11691 nd_free(ndp); 11692 return (B_FALSE); 11693 } 11694 } 11695 } 11696 11697 for (; ipnd_cnt-- > 0; ipnd++) { 11698 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11699 if (!nd_load(ndp, ipnd->ip_ndp_name, 11700 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11701 ipnd->ip_ndp_data)) { 11702 nd_free(ndp); 11703 return (B_FALSE); 11704 } 11705 } 11706 } 11707 11708 return (B_TRUE); 11709 } 11710 11711 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11712 /* ARGSUSED */ 11713 static int 11714 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11715 { 11716 long new_value; 11717 ipparam_t *ippa = (ipparam_t *)cp; 11718 11719 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11720 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11721 return (EINVAL); 11722 } 11723 ippa->ip_param_value = new_value; 11724 return (0); 11725 } 11726 11727 /* 11728 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11729 * When an ipf is passed here for the first time, if 11730 * we already have in-order fragments on the queue, we convert from the fast- 11731 * path reassembly scheme to the hard-case scheme. From then on, additional 11732 * fragments are reassembled here. We keep track of the start and end offsets 11733 * of each piece, and the number of holes in the chain. When the hole count 11734 * goes to zero, we are done! 11735 * 11736 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11737 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11738 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11739 * after the call to ip_reassemble(). 11740 */ 11741 int 11742 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11743 size_t msg_len) 11744 { 11745 uint_t end; 11746 mblk_t *next_mp; 11747 mblk_t *mp1; 11748 uint_t offset; 11749 boolean_t incr_dups = B_TRUE; 11750 boolean_t offset_zero_seen = B_FALSE; 11751 boolean_t pkt_boundary_checked = B_FALSE; 11752 11753 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11754 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11755 11756 /* Add in byte count */ 11757 ipf->ipf_count += msg_len; 11758 if (ipf->ipf_end) { 11759 /* 11760 * We were part way through in-order reassembly, but now there 11761 * is a hole. We walk through messages already queued, and 11762 * mark them for hard case reassembly. We know that up till 11763 * now they were in order starting from offset zero. 11764 */ 11765 offset = 0; 11766 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11767 IP_REASS_SET_START(mp1, offset); 11768 if (offset == 0) { 11769 ASSERT(ipf->ipf_nf_hdr_len != 0); 11770 offset = -ipf->ipf_nf_hdr_len; 11771 } 11772 offset += mp1->b_wptr - mp1->b_rptr; 11773 IP_REASS_SET_END(mp1, offset); 11774 } 11775 /* One hole at the end. */ 11776 ipf->ipf_hole_cnt = 1; 11777 /* Brand it as a hard case, forever. */ 11778 ipf->ipf_end = 0; 11779 } 11780 /* Walk through all the new pieces. */ 11781 do { 11782 end = start + (mp->b_wptr - mp->b_rptr); 11783 /* 11784 * If start is 0, decrease 'end' only for the first mblk of 11785 * the fragment. Otherwise 'end' can get wrong value in the 11786 * second pass of the loop if first mblk is exactly the 11787 * size of ipf_nf_hdr_len. 11788 */ 11789 if (start == 0 && !offset_zero_seen) { 11790 /* First segment */ 11791 ASSERT(ipf->ipf_nf_hdr_len != 0); 11792 end -= ipf->ipf_nf_hdr_len; 11793 offset_zero_seen = B_TRUE; 11794 } 11795 next_mp = mp->b_cont; 11796 /* 11797 * We are checking to see if there is any interesing data 11798 * to process. If there isn't and the mblk isn't the 11799 * one which carries the unfragmentable header then we 11800 * drop it. It's possible to have just the unfragmentable 11801 * header come through without any data. That needs to be 11802 * saved. 11803 * 11804 * If the assert at the top of this function holds then the 11805 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11806 * is infrequently traveled enough that the test is left in 11807 * to protect against future code changes which break that 11808 * invariant. 11809 */ 11810 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11811 /* Empty. Blast it. */ 11812 IP_REASS_SET_START(mp, 0); 11813 IP_REASS_SET_END(mp, 0); 11814 /* 11815 * If the ipf points to the mblk we are about to free, 11816 * update ipf to point to the next mblk (or NULL 11817 * if none). 11818 */ 11819 if (ipf->ipf_mp->b_cont == mp) 11820 ipf->ipf_mp->b_cont = next_mp; 11821 freeb(mp); 11822 continue; 11823 } 11824 mp->b_cont = NULL; 11825 IP_REASS_SET_START(mp, start); 11826 IP_REASS_SET_END(mp, end); 11827 if (!ipf->ipf_tail_mp) { 11828 ipf->ipf_tail_mp = mp; 11829 ipf->ipf_mp->b_cont = mp; 11830 if (start == 0 || !more) { 11831 ipf->ipf_hole_cnt = 1; 11832 /* 11833 * if the first fragment comes in more than one 11834 * mblk, this loop will be executed for each 11835 * mblk. Need to adjust hole count so exiting 11836 * this routine will leave hole count at 1. 11837 */ 11838 if (next_mp) 11839 ipf->ipf_hole_cnt++; 11840 } else 11841 ipf->ipf_hole_cnt = 2; 11842 continue; 11843 } else if (ipf->ipf_last_frag_seen && !more && 11844 !pkt_boundary_checked) { 11845 /* 11846 * We check datagram boundary only if this fragment 11847 * claims to be the last fragment and we have seen a 11848 * last fragment in the past too. We do this only 11849 * once for a given fragment. 11850 * 11851 * start cannot be 0 here as fragments with start=0 11852 * and MF=0 gets handled as a complete packet. These 11853 * fragments should not reach here. 11854 */ 11855 11856 if (start + msgdsize(mp) != 11857 IP_REASS_END(ipf->ipf_tail_mp)) { 11858 /* 11859 * We have two fragments both of which claim 11860 * to be the last fragment but gives conflicting 11861 * information about the whole datagram size. 11862 * Something fishy is going on. Drop the 11863 * fragment and free up the reassembly list. 11864 */ 11865 return (IP_REASS_FAILED); 11866 } 11867 11868 /* 11869 * We shouldn't come to this code block again for this 11870 * particular fragment. 11871 */ 11872 pkt_boundary_checked = B_TRUE; 11873 } 11874 11875 /* New stuff at or beyond tail? */ 11876 offset = IP_REASS_END(ipf->ipf_tail_mp); 11877 if (start >= offset) { 11878 if (ipf->ipf_last_frag_seen) { 11879 /* current fragment is beyond last fragment */ 11880 return (IP_REASS_FAILED); 11881 } 11882 /* Link it on end. */ 11883 ipf->ipf_tail_mp->b_cont = mp; 11884 ipf->ipf_tail_mp = mp; 11885 if (more) { 11886 if (start != offset) 11887 ipf->ipf_hole_cnt++; 11888 } else if (start == offset && next_mp == NULL) 11889 ipf->ipf_hole_cnt--; 11890 continue; 11891 } 11892 mp1 = ipf->ipf_mp->b_cont; 11893 offset = IP_REASS_START(mp1); 11894 /* New stuff at the front? */ 11895 if (start < offset) { 11896 if (start == 0) { 11897 if (end >= offset) { 11898 /* Nailed the hole at the begining. */ 11899 ipf->ipf_hole_cnt--; 11900 } 11901 } else if (end < offset) { 11902 /* 11903 * A hole, stuff, and a hole where there used 11904 * to be just a hole. 11905 */ 11906 ipf->ipf_hole_cnt++; 11907 } 11908 mp->b_cont = mp1; 11909 /* Check for overlap. */ 11910 while (end > offset) { 11911 if (end < IP_REASS_END(mp1)) { 11912 mp->b_wptr -= end - offset; 11913 IP_REASS_SET_END(mp, offset); 11914 BUMP_MIB(ill->ill_ip_mib, 11915 ipIfStatsReasmPartDups); 11916 break; 11917 } 11918 /* Did we cover another hole? */ 11919 if ((mp1->b_cont && 11920 IP_REASS_END(mp1) != 11921 IP_REASS_START(mp1->b_cont) && 11922 end >= IP_REASS_START(mp1->b_cont)) || 11923 (!ipf->ipf_last_frag_seen && !more)) { 11924 ipf->ipf_hole_cnt--; 11925 } 11926 /* Clip out mp1. */ 11927 if ((mp->b_cont = mp1->b_cont) == NULL) { 11928 /* 11929 * After clipping out mp1, this guy 11930 * is now hanging off the end. 11931 */ 11932 ipf->ipf_tail_mp = mp; 11933 } 11934 IP_REASS_SET_START(mp1, 0); 11935 IP_REASS_SET_END(mp1, 0); 11936 /* Subtract byte count */ 11937 ipf->ipf_count -= mp1->b_datap->db_lim - 11938 mp1->b_datap->db_base; 11939 freeb(mp1); 11940 BUMP_MIB(ill->ill_ip_mib, 11941 ipIfStatsReasmPartDups); 11942 mp1 = mp->b_cont; 11943 if (!mp1) 11944 break; 11945 offset = IP_REASS_START(mp1); 11946 } 11947 ipf->ipf_mp->b_cont = mp; 11948 continue; 11949 } 11950 /* 11951 * The new piece starts somewhere between the start of the head 11952 * and before the end of the tail. 11953 */ 11954 for (; mp1; mp1 = mp1->b_cont) { 11955 offset = IP_REASS_END(mp1); 11956 if (start < offset) { 11957 if (end <= offset) { 11958 /* Nothing new. */ 11959 IP_REASS_SET_START(mp, 0); 11960 IP_REASS_SET_END(mp, 0); 11961 /* Subtract byte count */ 11962 ipf->ipf_count -= mp->b_datap->db_lim - 11963 mp->b_datap->db_base; 11964 if (incr_dups) { 11965 ipf->ipf_num_dups++; 11966 incr_dups = B_FALSE; 11967 } 11968 freeb(mp); 11969 BUMP_MIB(ill->ill_ip_mib, 11970 ipIfStatsReasmDuplicates); 11971 break; 11972 } 11973 /* 11974 * Trim redundant stuff off beginning of new 11975 * piece. 11976 */ 11977 IP_REASS_SET_START(mp, offset); 11978 mp->b_rptr += offset - start; 11979 BUMP_MIB(ill->ill_ip_mib, 11980 ipIfStatsReasmPartDups); 11981 start = offset; 11982 if (!mp1->b_cont) { 11983 /* 11984 * After trimming, this guy is now 11985 * hanging off the end. 11986 */ 11987 mp1->b_cont = mp; 11988 ipf->ipf_tail_mp = mp; 11989 if (!more) { 11990 ipf->ipf_hole_cnt--; 11991 } 11992 break; 11993 } 11994 } 11995 if (start >= IP_REASS_START(mp1->b_cont)) 11996 continue; 11997 /* Fill a hole */ 11998 if (start > offset) 11999 ipf->ipf_hole_cnt++; 12000 mp->b_cont = mp1->b_cont; 12001 mp1->b_cont = mp; 12002 mp1 = mp->b_cont; 12003 offset = IP_REASS_START(mp1); 12004 if (end >= offset) { 12005 ipf->ipf_hole_cnt--; 12006 /* Check for overlap. */ 12007 while (end > offset) { 12008 if (end < IP_REASS_END(mp1)) { 12009 mp->b_wptr -= end - offset; 12010 IP_REASS_SET_END(mp, offset); 12011 /* 12012 * TODO we might bump 12013 * this up twice if there is 12014 * overlap at both ends. 12015 */ 12016 BUMP_MIB(ill->ill_ip_mib, 12017 ipIfStatsReasmPartDups); 12018 break; 12019 } 12020 /* Did we cover another hole? */ 12021 if ((mp1->b_cont && 12022 IP_REASS_END(mp1) 12023 != IP_REASS_START(mp1->b_cont) && 12024 end >= 12025 IP_REASS_START(mp1->b_cont)) || 12026 (!ipf->ipf_last_frag_seen && 12027 !more)) { 12028 ipf->ipf_hole_cnt--; 12029 } 12030 /* Clip out mp1. */ 12031 if ((mp->b_cont = mp1->b_cont) == 12032 NULL) { 12033 /* 12034 * After clipping out mp1, 12035 * this guy is now hanging 12036 * off the end. 12037 */ 12038 ipf->ipf_tail_mp = mp; 12039 } 12040 IP_REASS_SET_START(mp1, 0); 12041 IP_REASS_SET_END(mp1, 0); 12042 /* Subtract byte count */ 12043 ipf->ipf_count -= 12044 mp1->b_datap->db_lim - 12045 mp1->b_datap->db_base; 12046 freeb(mp1); 12047 BUMP_MIB(ill->ill_ip_mib, 12048 ipIfStatsReasmPartDups); 12049 mp1 = mp->b_cont; 12050 if (!mp1) 12051 break; 12052 offset = IP_REASS_START(mp1); 12053 } 12054 } 12055 break; 12056 } 12057 } while (start = end, mp = next_mp); 12058 12059 /* Fragment just processed could be the last one. Remember this fact */ 12060 if (!more) 12061 ipf->ipf_last_frag_seen = B_TRUE; 12062 12063 /* Still got holes? */ 12064 if (ipf->ipf_hole_cnt) 12065 return (IP_REASS_PARTIAL); 12066 /* Clean up overloaded fields to avoid upstream disasters. */ 12067 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12068 IP_REASS_SET_START(mp1, 0); 12069 IP_REASS_SET_END(mp1, 0); 12070 } 12071 return (IP_REASS_COMPLETE); 12072 } 12073 12074 /* 12075 * ipsec processing for the fast path, used for input UDP Packets 12076 * Returns true if ready for passup to UDP. 12077 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12078 * was an ESP-in-UDP packet, etc.). 12079 */ 12080 static boolean_t 12081 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12082 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12083 { 12084 uint32_t ill_index; 12085 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12086 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12087 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12088 udp_t *udp = connp->conn_udp; 12089 12090 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12091 /* The ill_index of the incoming ILL */ 12092 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12093 12094 /* pass packet up to the transport */ 12095 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12096 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12097 NULL, mctl_present); 12098 if (*first_mpp == NULL) { 12099 return (B_FALSE); 12100 } 12101 } 12102 12103 /* Initiate IPPF processing for fastpath UDP */ 12104 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12105 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12106 if (*mpp == NULL) { 12107 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12108 "deferred/dropped during IPPF processing\n")); 12109 return (B_FALSE); 12110 } 12111 } 12112 /* 12113 * Remove 0-spi if it's 0, or move everything behind 12114 * the UDP header over it and forward to ESP via 12115 * ip_proto_input(). 12116 */ 12117 if (udp->udp_nat_t_endpoint) { 12118 if (mctl_present) { 12119 /* mctl_present *shouldn't* happen. */ 12120 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12121 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12122 &ipss->ipsec_dropper); 12123 *first_mpp = NULL; 12124 return (B_FALSE); 12125 } 12126 12127 /* "ill" is "recv_ill" in actuality. */ 12128 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12129 return (B_FALSE); 12130 12131 /* Else continue like a normal UDP packet. */ 12132 } 12133 12134 /* 12135 * We make the checks as below since we are in the fast path 12136 * and want to minimize the number of checks if the IP_RECVIF and/or 12137 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12138 */ 12139 if (connp->conn_recvif || connp->conn_recvslla || 12140 connp->conn_ip_recvpktinfo) { 12141 if (connp->conn_recvif) { 12142 in_flags = IPF_RECVIF; 12143 } 12144 /* 12145 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12146 * so the flag passed to ip_add_info is based on IP version 12147 * of connp. 12148 */ 12149 if (connp->conn_ip_recvpktinfo) { 12150 if (connp->conn_af_isv6) { 12151 /* 12152 * V6 only needs index 12153 */ 12154 in_flags |= IPF_RECVIF; 12155 } else { 12156 /* 12157 * V4 needs index + matching address. 12158 */ 12159 in_flags |= IPF_RECVADDR; 12160 } 12161 } 12162 if (connp->conn_recvslla) { 12163 in_flags |= IPF_RECVSLLA; 12164 } 12165 /* 12166 * since in_flags are being set ill will be 12167 * referenced in ip_add_info, so it better not 12168 * be NULL. 12169 */ 12170 /* 12171 * the actual data will be contained in b_cont 12172 * upon successful return of the following call. 12173 * If the call fails then the original mblk is 12174 * returned. 12175 */ 12176 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12177 ipst); 12178 } 12179 12180 return (B_TRUE); 12181 } 12182 12183 /* 12184 * Fragmentation reassembly. Each ILL has a hash table for 12185 * queuing packets undergoing reassembly for all IPIFs 12186 * associated with the ILL. The hash is based on the packet 12187 * IP ident field. The ILL frag hash table was allocated 12188 * as a timer block at the time the ILL was created. Whenever 12189 * there is anything on the reassembly queue, the timer will 12190 * be running. Returns B_TRUE if successful else B_FALSE; 12191 * frees mp on failure. 12192 */ 12193 static boolean_t 12194 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12195 uint32_t *cksum_val, uint16_t *cksum_flags) 12196 { 12197 uint32_t frag_offset_flags; 12198 ill_t *ill = (ill_t *)q->q_ptr; 12199 mblk_t *mp = *mpp; 12200 mblk_t *t_mp; 12201 ipaddr_t dst; 12202 uint8_t proto = ipha->ipha_protocol; 12203 uint32_t sum_val; 12204 uint16_t sum_flags; 12205 ipf_t *ipf; 12206 ipf_t **ipfp; 12207 ipfb_t *ipfb; 12208 uint16_t ident; 12209 uint32_t offset; 12210 ipaddr_t src; 12211 uint_t hdr_length; 12212 uint32_t end; 12213 mblk_t *mp1; 12214 mblk_t *tail_mp; 12215 size_t count; 12216 size_t msg_len; 12217 uint8_t ecn_info = 0; 12218 uint32_t packet_size; 12219 boolean_t pruned = B_FALSE; 12220 ip_stack_t *ipst = ill->ill_ipst; 12221 12222 if (cksum_val != NULL) 12223 *cksum_val = 0; 12224 if (cksum_flags != NULL) 12225 *cksum_flags = 0; 12226 12227 /* 12228 * Drop the fragmented as early as possible, if 12229 * we don't have resource(s) to re-assemble. 12230 */ 12231 if (ipst->ips_ip_reass_queue_bytes == 0) { 12232 freemsg(mp); 12233 return (B_FALSE); 12234 } 12235 12236 /* Check for fragmentation offset; return if there's none */ 12237 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12238 (IPH_MF | IPH_OFFSET)) == 0) 12239 return (B_TRUE); 12240 12241 /* 12242 * We utilize hardware computed checksum info only for UDP since 12243 * IP fragmentation is a normal occurence for the protocol. In 12244 * addition, checksum offload support for IP fragments carrying 12245 * UDP payload is commonly implemented across network adapters. 12246 */ 12247 ASSERT(ill != NULL); 12248 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12249 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12250 mblk_t *mp1 = mp->b_cont; 12251 int32_t len; 12252 12253 /* Record checksum information from the packet */ 12254 sum_val = (uint32_t)DB_CKSUM16(mp); 12255 sum_flags = DB_CKSUMFLAGS(mp); 12256 12257 /* IP payload offset from beginning of mblk */ 12258 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12259 12260 if ((sum_flags & HCK_PARTIALCKSUM) && 12261 (mp1 == NULL || mp1->b_cont == NULL) && 12262 offset >= DB_CKSUMSTART(mp) && 12263 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12264 uint32_t adj; 12265 /* 12266 * Partial checksum has been calculated by hardware 12267 * and attached to the packet; in addition, any 12268 * prepended extraneous data is even byte aligned. 12269 * If any such data exists, we adjust the checksum; 12270 * this would also handle any postpended data. 12271 */ 12272 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12273 mp, mp1, len, adj); 12274 12275 /* One's complement subtract extraneous checksum */ 12276 if (adj >= sum_val) 12277 sum_val = ~(adj - sum_val) & 0xFFFF; 12278 else 12279 sum_val -= adj; 12280 } 12281 } else { 12282 sum_val = 0; 12283 sum_flags = 0; 12284 } 12285 12286 /* Clear hardware checksumming flag */ 12287 DB_CKSUMFLAGS(mp) = 0; 12288 12289 ident = ipha->ipha_ident; 12290 offset = (frag_offset_flags << 3) & 0xFFFF; 12291 src = ipha->ipha_src; 12292 dst = ipha->ipha_dst; 12293 hdr_length = IPH_HDR_LENGTH(ipha); 12294 end = ntohs(ipha->ipha_length) - hdr_length; 12295 12296 /* If end == 0 then we have a packet with no data, so just free it */ 12297 if (end == 0) { 12298 freemsg(mp); 12299 return (B_FALSE); 12300 } 12301 12302 /* Record the ECN field info. */ 12303 ecn_info = (ipha->ipha_type_of_service & 0x3); 12304 if (offset != 0) { 12305 /* 12306 * If this isn't the first piece, strip the header, and 12307 * add the offset to the end value. 12308 */ 12309 mp->b_rptr += hdr_length; 12310 end += offset; 12311 } 12312 12313 msg_len = MBLKSIZE(mp); 12314 tail_mp = mp; 12315 while (tail_mp->b_cont != NULL) { 12316 tail_mp = tail_mp->b_cont; 12317 msg_len += MBLKSIZE(tail_mp); 12318 } 12319 12320 /* If the reassembly list for this ILL will get too big, prune it */ 12321 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12322 ipst->ips_ip_reass_queue_bytes) { 12323 ill_frag_prune(ill, 12324 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12325 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12326 pruned = B_TRUE; 12327 } 12328 12329 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12330 mutex_enter(&ipfb->ipfb_lock); 12331 12332 ipfp = &ipfb->ipfb_ipf; 12333 /* Try to find an existing fragment queue for this packet. */ 12334 for (;;) { 12335 ipf = ipfp[0]; 12336 if (ipf != NULL) { 12337 /* 12338 * It has to match on ident and src/dst address. 12339 */ 12340 if (ipf->ipf_ident == ident && 12341 ipf->ipf_src == src && 12342 ipf->ipf_dst == dst && 12343 ipf->ipf_protocol == proto) { 12344 /* 12345 * If we have received too many 12346 * duplicate fragments for this packet 12347 * free it. 12348 */ 12349 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12350 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12351 freemsg(mp); 12352 mutex_exit(&ipfb->ipfb_lock); 12353 return (B_FALSE); 12354 } 12355 /* Found it. */ 12356 break; 12357 } 12358 ipfp = &ipf->ipf_hash_next; 12359 continue; 12360 } 12361 12362 /* 12363 * If we pruned the list, do we want to store this new 12364 * fragment?. We apply an optimization here based on the 12365 * fact that most fragments will be received in order. 12366 * So if the offset of this incoming fragment is zero, 12367 * it is the first fragment of a new packet. We will 12368 * keep it. Otherwise drop the fragment, as we have 12369 * probably pruned the packet already (since the 12370 * packet cannot be found). 12371 */ 12372 if (pruned && offset != 0) { 12373 mutex_exit(&ipfb->ipfb_lock); 12374 freemsg(mp); 12375 return (B_FALSE); 12376 } 12377 12378 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12379 /* 12380 * Too many fragmented packets in this hash 12381 * bucket. Free the oldest. 12382 */ 12383 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12384 } 12385 12386 /* New guy. Allocate a frag message. */ 12387 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12388 if (mp1 == NULL) { 12389 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12390 freemsg(mp); 12391 reass_done: 12392 mutex_exit(&ipfb->ipfb_lock); 12393 return (B_FALSE); 12394 } 12395 12396 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12397 mp1->b_cont = mp; 12398 12399 /* Initialize the fragment header. */ 12400 ipf = (ipf_t *)mp1->b_rptr; 12401 ipf->ipf_mp = mp1; 12402 ipf->ipf_ptphn = ipfp; 12403 ipfp[0] = ipf; 12404 ipf->ipf_hash_next = NULL; 12405 ipf->ipf_ident = ident; 12406 ipf->ipf_protocol = proto; 12407 ipf->ipf_src = src; 12408 ipf->ipf_dst = dst; 12409 ipf->ipf_nf_hdr_len = 0; 12410 /* Record reassembly start time. */ 12411 ipf->ipf_timestamp = gethrestime_sec(); 12412 /* Record ipf generation and account for frag header */ 12413 ipf->ipf_gen = ill->ill_ipf_gen++; 12414 ipf->ipf_count = MBLKSIZE(mp1); 12415 ipf->ipf_last_frag_seen = B_FALSE; 12416 ipf->ipf_ecn = ecn_info; 12417 ipf->ipf_num_dups = 0; 12418 ipfb->ipfb_frag_pkts++; 12419 ipf->ipf_checksum = 0; 12420 ipf->ipf_checksum_flags = 0; 12421 12422 /* Store checksum value in fragment header */ 12423 if (sum_flags != 0) { 12424 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12425 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12426 ipf->ipf_checksum = sum_val; 12427 ipf->ipf_checksum_flags = sum_flags; 12428 } 12429 12430 /* 12431 * We handle reassembly two ways. In the easy case, 12432 * where all the fragments show up in order, we do 12433 * minimal bookkeeping, and just clip new pieces on 12434 * the end. If we ever see a hole, then we go off 12435 * to ip_reassemble which has to mark the pieces and 12436 * keep track of the number of holes, etc. Obviously, 12437 * the point of having both mechanisms is so we can 12438 * handle the easy case as efficiently as possible. 12439 */ 12440 if (offset == 0) { 12441 /* Easy case, in-order reassembly so far. */ 12442 ipf->ipf_count += msg_len; 12443 ipf->ipf_tail_mp = tail_mp; 12444 /* 12445 * Keep track of next expected offset in 12446 * ipf_end. 12447 */ 12448 ipf->ipf_end = end; 12449 ipf->ipf_nf_hdr_len = hdr_length; 12450 } else { 12451 /* Hard case, hole at the beginning. */ 12452 ipf->ipf_tail_mp = NULL; 12453 /* 12454 * ipf_end == 0 means that we have given up 12455 * on easy reassembly. 12456 */ 12457 ipf->ipf_end = 0; 12458 12459 /* Forget checksum offload from now on */ 12460 ipf->ipf_checksum_flags = 0; 12461 12462 /* 12463 * ipf_hole_cnt is set by ip_reassemble. 12464 * ipf_count is updated by ip_reassemble. 12465 * No need to check for return value here 12466 * as we don't expect reassembly to complete 12467 * or fail for the first fragment itself. 12468 */ 12469 (void) ip_reassemble(mp, ipf, 12470 (frag_offset_flags & IPH_OFFSET) << 3, 12471 (frag_offset_flags & IPH_MF), ill, msg_len); 12472 } 12473 /* Update per ipfb and ill byte counts */ 12474 ipfb->ipfb_count += ipf->ipf_count; 12475 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12476 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12477 /* If the frag timer wasn't already going, start it. */ 12478 mutex_enter(&ill->ill_lock); 12479 ill_frag_timer_start(ill); 12480 mutex_exit(&ill->ill_lock); 12481 goto reass_done; 12482 } 12483 12484 /* 12485 * If the packet's flag has changed (it could be coming up 12486 * from an interface different than the previous, therefore 12487 * possibly different checksum capability), then forget about 12488 * any stored checksum states. Otherwise add the value to 12489 * the existing one stored in the fragment header. 12490 */ 12491 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12492 sum_val += ipf->ipf_checksum; 12493 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12494 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12495 ipf->ipf_checksum = sum_val; 12496 } else if (ipf->ipf_checksum_flags != 0) { 12497 /* Forget checksum offload from now on */ 12498 ipf->ipf_checksum_flags = 0; 12499 } 12500 12501 /* 12502 * We have a new piece of a datagram which is already being 12503 * reassembled. Update the ECN info if all IP fragments 12504 * are ECN capable. If there is one which is not, clear 12505 * all the info. If there is at least one which has CE 12506 * code point, IP needs to report that up to transport. 12507 */ 12508 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12509 if (ecn_info == IPH_ECN_CE) 12510 ipf->ipf_ecn = IPH_ECN_CE; 12511 } else { 12512 ipf->ipf_ecn = IPH_ECN_NECT; 12513 } 12514 if (offset && ipf->ipf_end == offset) { 12515 /* The new fragment fits at the end */ 12516 ipf->ipf_tail_mp->b_cont = mp; 12517 /* Update the byte count */ 12518 ipf->ipf_count += msg_len; 12519 /* Update per ipfb and ill byte counts */ 12520 ipfb->ipfb_count += msg_len; 12521 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12522 atomic_add_32(&ill->ill_frag_count, msg_len); 12523 if (frag_offset_flags & IPH_MF) { 12524 /* More to come. */ 12525 ipf->ipf_end = end; 12526 ipf->ipf_tail_mp = tail_mp; 12527 goto reass_done; 12528 } 12529 } else { 12530 /* Go do the hard cases. */ 12531 int ret; 12532 12533 if (offset == 0) 12534 ipf->ipf_nf_hdr_len = hdr_length; 12535 12536 /* Save current byte count */ 12537 count = ipf->ipf_count; 12538 ret = ip_reassemble(mp, ipf, 12539 (frag_offset_flags & IPH_OFFSET) << 3, 12540 (frag_offset_flags & IPH_MF), ill, msg_len); 12541 /* Count of bytes added and subtracted (freeb()ed) */ 12542 count = ipf->ipf_count - count; 12543 if (count) { 12544 /* Update per ipfb and ill byte counts */ 12545 ipfb->ipfb_count += count; 12546 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12547 atomic_add_32(&ill->ill_frag_count, count); 12548 } 12549 if (ret == IP_REASS_PARTIAL) { 12550 goto reass_done; 12551 } else if (ret == IP_REASS_FAILED) { 12552 /* Reassembly failed. Free up all resources */ 12553 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12554 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12555 IP_REASS_SET_START(t_mp, 0); 12556 IP_REASS_SET_END(t_mp, 0); 12557 } 12558 freemsg(mp); 12559 goto reass_done; 12560 } 12561 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12562 } 12563 /* 12564 * We have completed reassembly. Unhook the frag header from 12565 * the reassembly list. 12566 * 12567 * Before we free the frag header, record the ECN info 12568 * to report back to the transport. 12569 */ 12570 ecn_info = ipf->ipf_ecn; 12571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12572 ipfp = ipf->ipf_ptphn; 12573 12574 /* We need to supply these to caller */ 12575 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12576 sum_val = ipf->ipf_checksum; 12577 else 12578 sum_val = 0; 12579 12580 mp1 = ipf->ipf_mp; 12581 count = ipf->ipf_count; 12582 ipf = ipf->ipf_hash_next; 12583 if (ipf != NULL) 12584 ipf->ipf_ptphn = ipfp; 12585 ipfp[0] = ipf; 12586 atomic_add_32(&ill->ill_frag_count, -count); 12587 ASSERT(ipfb->ipfb_count >= count); 12588 ipfb->ipfb_count -= count; 12589 ipfb->ipfb_frag_pkts--; 12590 mutex_exit(&ipfb->ipfb_lock); 12591 /* Ditch the frag header. */ 12592 mp = mp1->b_cont; 12593 12594 freeb(mp1); 12595 12596 /* Restore original IP length in header. */ 12597 packet_size = (uint32_t)msgdsize(mp); 12598 if (packet_size > IP_MAXPACKET) { 12599 freemsg(mp); 12600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12601 return (B_FALSE); 12602 } 12603 12604 if (DB_REF(mp) > 1) { 12605 mblk_t *mp2 = copymsg(mp); 12606 12607 freemsg(mp); 12608 if (mp2 == NULL) { 12609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12610 return (B_FALSE); 12611 } 12612 mp = mp2; 12613 } 12614 ipha = (ipha_t *)mp->b_rptr; 12615 12616 ipha->ipha_length = htons((uint16_t)packet_size); 12617 /* We're now complete, zip the frag state */ 12618 ipha->ipha_fragment_offset_and_flags = 0; 12619 /* Record the ECN info. */ 12620 ipha->ipha_type_of_service &= 0xFC; 12621 ipha->ipha_type_of_service |= ecn_info; 12622 *mpp = mp; 12623 12624 /* Reassembly is successful; return checksum information if needed */ 12625 if (cksum_val != NULL) 12626 *cksum_val = sum_val; 12627 if (cksum_flags != NULL) 12628 *cksum_flags = sum_flags; 12629 12630 return (B_TRUE); 12631 } 12632 12633 /* 12634 * Perform ip header check sum update local options. 12635 * return B_TRUE if all is well, else return B_FALSE and release 12636 * the mp. caller is responsible for decrementing ire ref cnt. 12637 */ 12638 static boolean_t 12639 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12640 ip_stack_t *ipst) 12641 { 12642 mblk_t *first_mp; 12643 boolean_t mctl_present; 12644 uint16_t sum; 12645 12646 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12647 /* 12648 * Don't do the checksum if it has gone through AH/ESP 12649 * processing. 12650 */ 12651 if (!mctl_present) { 12652 sum = ip_csum_hdr(ipha); 12653 if (sum != 0) { 12654 if (ill != NULL) { 12655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12656 } else { 12657 BUMP_MIB(&ipst->ips_ip_mib, 12658 ipIfStatsInCksumErrs); 12659 } 12660 freemsg(first_mp); 12661 return (B_FALSE); 12662 } 12663 } 12664 12665 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12666 if (mctl_present) 12667 freeb(first_mp); 12668 return (B_FALSE); 12669 } 12670 12671 return (B_TRUE); 12672 } 12673 12674 /* 12675 * All udp packet are delivered to the local host via this routine. 12676 */ 12677 void 12678 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12679 ill_t *recv_ill) 12680 { 12681 uint32_t sum; 12682 uint32_t u1; 12683 boolean_t mctl_present; 12684 conn_t *connp; 12685 mblk_t *first_mp; 12686 uint16_t *up; 12687 ill_t *ill = (ill_t *)q->q_ptr; 12688 uint16_t reass_hck_flags = 0; 12689 ip_stack_t *ipst; 12690 12691 ASSERT(recv_ill != NULL); 12692 ipst = recv_ill->ill_ipst; 12693 12694 #define rptr ((uchar_t *)ipha) 12695 12696 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12697 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12698 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12699 ASSERT(ill != NULL); 12700 12701 /* 12702 * FAST PATH for udp packets 12703 */ 12704 12705 /* u1 is # words of IP options */ 12706 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12707 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12708 12709 /* IP options present */ 12710 if (u1 != 0) 12711 goto ipoptions; 12712 12713 /* Check the IP header checksum. */ 12714 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12715 /* Clear the IP header h/w cksum flag */ 12716 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12717 } else if (!mctl_present) { 12718 /* 12719 * Don't verify header checksum if this packet is coming 12720 * back from AH/ESP as we already did it. 12721 */ 12722 #define uph ((uint16_t *)ipha) 12723 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12724 uph[6] + uph[7] + uph[8] + uph[9]; 12725 #undef uph 12726 /* finish doing IP checksum */ 12727 sum = (sum & 0xFFFF) + (sum >> 16); 12728 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12729 if (sum != 0 && sum != 0xFFFF) { 12730 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12731 freemsg(first_mp); 12732 return; 12733 } 12734 } 12735 12736 /* 12737 * Count for SNMP of inbound packets for ire. 12738 * if mctl is present this might be a secure packet and 12739 * has already been counted for in ip_proto_input(). 12740 */ 12741 if (!mctl_present) { 12742 UPDATE_IB_PKT_COUNT(ire); 12743 ire->ire_last_used_time = lbolt; 12744 } 12745 12746 /* packet part of fragmented IP packet? */ 12747 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12748 if (u1 & (IPH_MF | IPH_OFFSET)) { 12749 goto fragmented; 12750 } 12751 12752 /* u1 = IP header length (20 bytes) */ 12753 u1 = IP_SIMPLE_HDR_LENGTH; 12754 12755 /* packet does not contain complete IP & UDP headers */ 12756 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12757 goto udppullup; 12758 12759 /* up points to UDP header */ 12760 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12761 #define iphs ((uint16_t *)ipha) 12762 12763 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12764 if (up[3] != 0) { 12765 mblk_t *mp1 = mp->b_cont; 12766 boolean_t cksum_err; 12767 uint16_t hck_flags = 0; 12768 12769 /* Pseudo-header checksum */ 12770 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12771 iphs[9] + up[2]; 12772 12773 /* 12774 * Revert to software checksum calculation if the interface 12775 * isn't capable of checksum offload or if IPsec is present. 12776 */ 12777 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12778 hck_flags = DB_CKSUMFLAGS(mp); 12779 12780 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12781 IP_STAT(ipst, ip_in_sw_cksum); 12782 12783 IP_CKSUM_RECV(hck_flags, u1, 12784 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12785 (int32_t)((uchar_t *)up - rptr), 12786 mp, mp1, cksum_err); 12787 12788 if (cksum_err) { 12789 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12790 if (hck_flags & HCK_FULLCKSUM) 12791 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12792 else if (hck_flags & HCK_PARTIALCKSUM) 12793 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12794 else 12795 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12796 12797 freemsg(first_mp); 12798 return; 12799 } 12800 } 12801 12802 /* Non-fragmented broadcast or multicast packet? */ 12803 if (ire->ire_type == IRE_BROADCAST) 12804 goto udpslowpath; 12805 12806 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12807 ire->ire_zoneid, ipst)) != NULL) { 12808 ASSERT(connp->conn_upq != NULL); 12809 IP_STAT(ipst, ip_udp_fast_path); 12810 12811 if (CONN_UDP_FLOWCTLD(connp)) { 12812 freemsg(mp); 12813 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12814 } else { 12815 if (!mctl_present) { 12816 BUMP_MIB(ill->ill_ip_mib, 12817 ipIfStatsHCInDelivers); 12818 } 12819 /* 12820 * mp and first_mp can change. 12821 */ 12822 if (ip_udp_check(q, connp, recv_ill, 12823 ipha, &mp, &first_mp, mctl_present, ire)) { 12824 /* Send it upstream */ 12825 (connp->conn_recv)(connp, mp, NULL); 12826 } 12827 } 12828 /* 12829 * freeb() cannot deal with null mblk being passed 12830 * in and first_mp can be set to null in the call 12831 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12832 */ 12833 if (mctl_present && first_mp != NULL) { 12834 freeb(first_mp); 12835 } 12836 CONN_DEC_REF(connp); 12837 return; 12838 } 12839 12840 /* 12841 * if we got here we know the packet is not fragmented and 12842 * has no options. The classifier could not find a conn_t and 12843 * most likely its an icmp packet so send it through slow path. 12844 */ 12845 12846 goto udpslowpath; 12847 12848 ipoptions: 12849 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12850 goto slow_done; 12851 } 12852 12853 UPDATE_IB_PKT_COUNT(ire); 12854 ire->ire_last_used_time = lbolt; 12855 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12856 if (u1 & (IPH_MF | IPH_OFFSET)) { 12857 fragmented: 12858 /* 12859 * "sum" and "reass_hck_flags" are non-zero if the 12860 * reassembled packet has a valid hardware computed 12861 * checksum information associated with it. 12862 */ 12863 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12864 goto slow_done; 12865 /* 12866 * Make sure that first_mp points back to mp as 12867 * the mp we came in with could have changed in 12868 * ip_rput_fragment(). 12869 */ 12870 ASSERT(!mctl_present); 12871 ipha = (ipha_t *)mp->b_rptr; 12872 first_mp = mp; 12873 } 12874 12875 /* Now we have a complete datagram, destined for this machine. */ 12876 u1 = IPH_HDR_LENGTH(ipha); 12877 /* Pull up the UDP header, if necessary. */ 12878 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12879 udppullup: 12880 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12882 freemsg(first_mp); 12883 goto slow_done; 12884 } 12885 ipha = (ipha_t *)mp->b_rptr; 12886 } 12887 12888 /* 12889 * Validate the checksum for the reassembled packet; for the 12890 * pullup case we calculate the payload checksum in software. 12891 */ 12892 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12893 if (up[3] != 0) { 12894 boolean_t cksum_err; 12895 12896 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12897 IP_STAT(ipst, ip_in_sw_cksum); 12898 12899 IP_CKSUM_RECV_REASS(reass_hck_flags, 12900 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12901 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12902 iphs[9] + up[2], sum, cksum_err); 12903 12904 if (cksum_err) { 12905 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12906 12907 if (reass_hck_flags & HCK_FULLCKSUM) 12908 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12909 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12910 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12911 else 12912 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12913 12914 freemsg(first_mp); 12915 goto slow_done; 12916 } 12917 } 12918 udpslowpath: 12919 12920 /* Clear hardware checksum flag to be safe */ 12921 DB_CKSUMFLAGS(mp) = 0; 12922 12923 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12924 (ire->ire_type == IRE_BROADCAST), 12925 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12926 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12927 12928 slow_done: 12929 IP_STAT(ipst, ip_udp_slow_path); 12930 return; 12931 12932 #undef iphs 12933 #undef rptr 12934 } 12935 12936 /* ARGSUSED */ 12937 static mblk_t * 12938 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12939 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12940 ill_rx_ring_t *ill_ring) 12941 { 12942 conn_t *connp; 12943 uint32_t sum; 12944 uint32_t u1; 12945 uint16_t *up; 12946 int offset; 12947 ssize_t len; 12948 mblk_t *mp1; 12949 boolean_t syn_present = B_FALSE; 12950 tcph_t *tcph; 12951 uint_t ip_hdr_len; 12952 ill_t *ill = (ill_t *)q->q_ptr; 12953 zoneid_t zoneid = ire->ire_zoneid; 12954 boolean_t cksum_err; 12955 uint16_t hck_flags = 0; 12956 ip_stack_t *ipst = recv_ill->ill_ipst; 12957 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12958 12959 #define rptr ((uchar_t *)ipha) 12960 12961 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12962 ASSERT(ill != NULL); 12963 12964 /* 12965 * FAST PATH for tcp packets 12966 */ 12967 12968 /* u1 is # words of IP options */ 12969 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12970 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12971 12972 /* IP options present */ 12973 if (u1) { 12974 goto ipoptions; 12975 } else if (!mctl_present) { 12976 /* Check the IP header checksum. */ 12977 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12978 /* Clear the IP header h/w cksum flag */ 12979 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12980 } else if (!mctl_present) { 12981 /* 12982 * Don't verify header checksum if this packet 12983 * is coming back from AH/ESP as we already did it. 12984 */ 12985 #define uph ((uint16_t *)ipha) 12986 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12987 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12988 #undef uph 12989 /* finish doing IP checksum */ 12990 sum = (sum & 0xFFFF) + (sum >> 16); 12991 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12992 if (sum != 0 && sum != 0xFFFF) { 12993 BUMP_MIB(ill->ill_ip_mib, 12994 ipIfStatsInCksumErrs); 12995 goto error; 12996 } 12997 } 12998 } 12999 13000 if (!mctl_present) { 13001 UPDATE_IB_PKT_COUNT(ire); 13002 ire->ire_last_used_time = lbolt; 13003 } 13004 13005 /* packet part of fragmented IP packet? */ 13006 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13007 if (u1 & (IPH_MF | IPH_OFFSET)) { 13008 goto fragmented; 13009 } 13010 13011 /* u1 = IP header length (20 bytes) */ 13012 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13013 13014 /* does packet contain IP+TCP headers? */ 13015 len = mp->b_wptr - rptr; 13016 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13017 IP_STAT(ipst, ip_tcppullup); 13018 goto tcppullup; 13019 } 13020 13021 /* TCP options present? */ 13022 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13023 13024 /* 13025 * If options need to be pulled up, then goto tcpoptions. 13026 * otherwise we are still in the fast path 13027 */ 13028 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13029 IP_STAT(ipst, ip_tcpoptions); 13030 goto tcpoptions; 13031 } 13032 13033 /* multiple mblks of tcp data? */ 13034 if ((mp1 = mp->b_cont) != NULL) { 13035 /* more then two? */ 13036 if (mp1->b_cont != NULL) { 13037 IP_STAT(ipst, ip_multipkttcp); 13038 goto multipkttcp; 13039 } 13040 len += mp1->b_wptr - mp1->b_rptr; 13041 } 13042 13043 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13044 13045 /* part of pseudo checksum */ 13046 13047 /* TCP datagram length */ 13048 u1 = len - IP_SIMPLE_HDR_LENGTH; 13049 13050 #define iphs ((uint16_t *)ipha) 13051 13052 #ifdef _BIG_ENDIAN 13053 u1 += IPPROTO_TCP; 13054 #else 13055 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13056 #endif 13057 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13058 13059 /* 13060 * Revert to software checksum calculation if the interface 13061 * isn't capable of checksum offload or if IPsec is present. 13062 */ 13063 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13064 hck_flags = DB_CKSUMFLAGS(mp); 13065 13066 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13067 IP_STAT(ipst, ip_in_sw_cksum); 13068 13069 IP_CKSUM_RECV(hck_flags, u1, 13070 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13071 (int32_t)((uchar_t *)up - rptr), 13072 mp, mp1, cksum_err); 13073 13074 if (cksum_err) { 13075 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13076 13077 if (hck_flags & HCK_FULLCKSUM) 13078 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13079 else if (hck_flags & HCK_PARTIALCKSUM) 13080 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13081 else 13082 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13083 13084 goto error; 13085 } 13086 13087 try_again: 13088 13089 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13090 zoneid, ipst)) == NULL) { 13091 /* Send the TH_RST */ 13092 goto no_conn; 13093 } 13094 13095 /* 13096 * TCP FAST PATH for AF_INET socket. 13097 * 13098 * TCP fast path to avoid extra work. An AF_INET socket type 13099 * does not have facility to receive extra information via 13100 * ip_process or ip_add_info. Also, when the connection was 13101 * established, we made a check if this connection is impacted 13102 * by any global IPsec policy or per connection policy (a 13103 * policy that comes in effect later will not apply to this 13104 * connection). Since all this can be determined at the 13105 * connection establishment time, a quick check of flags 13106 * can avoid extra work. 13107 */ 13108 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13109 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13110 ASSERT(first_mp == mp); 13111 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13112 SET_SQUEUE(mp, tcp_rput_data, connp); 13113 return (mp); 13114 } 13115 13116 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13117 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13118 if (IPCL_IS_TCP(connp)) { 13119 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13120 DB_CKSUMSTART(mp) = 13121 (intptr_t)ip_squeue_get(ill_ring); 13122 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13123 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13124 BUMP_MIB(ill->ill_ip_mib, 13125 ipIfStatsHCInDelivers); 13126 SET_SQUEUE(mp, connp->conn_recv, connp); 13127 return (mp); 13128 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13129 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13130 BUMP_MIB(ill->ill_ip_mib, 13131 ipIfStatsHCInDelivers); 13132 ip_squeue_enter_unbound++; 13133 SET_SQUEUE(mp, tcp_conn_request_unbound, 13134 connp); 13135 return (mp); 13136 } 13137 syn_present = B_TRUE; 13138 } 13139 13140 } 13141 13142 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13143 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13144 13145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13146 /* No need to send this packet to TCP */ 13147 if ((flags & TH_RST) || (flags & TH_URG)) { 13148 CONN_DEC_REF(connp); 13149 freemsg(first_mp); 13150 return (NULL); 13151 } 13152 if (flags & TH_ACK) { 13153 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13154 ipst->ips_netstack->netstack_tcp, connp); 13155 CONN_DEC_REF(connp); 13156 return (NULL); 13157 } 13158 13159 CONN_DEC_REF(connp); 13160 freemsg(first_mp); 13161 return (NULL); 13162 } 13163 13164 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13165 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13166 ipha, NULL, mctl_present); 13167 if (first_mp == NULL) { 13168 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13169 CONN_DEC_REF(connp); 13170 return (NULL); 13171 } 13172 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13173 ASSERT(syn_present); 13174 if (mctl_present) { 13175 ASSERT(first_mp != mp); 13176 first_mp->b_datap->db_struioflag |= 13177 STRUIO_POLICY; 13178 } else { 13179 ASSERT(first_mp == mp); 13180 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13181 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13182 } 13183 } else { 13184 /* 13185 * Discard first_mp early since we're dealing with a 13186 * fully-connected conn_t and tcp doesn't do policy in 13187 * this case. 13188 */ 13189 if (mctl_present) { 13190 freeb(first_mp); 13191 mctl_present = B_FALSE; 13192 } 13193 first_mp = mp; 13194 } 13195 } 13196 13197 /* Initiate IPPF processing for fastpath */ 13198 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13199 uint32_t ill_index; 13200 13201 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13202 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13203 if (mp == NULL) { 13204 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13205 "deferred/dropped during IPPF processing\n")); 13206 CONN_DEC_REF(connp); 13207 if (mctl_present) 13208 freeb(first_mp); 13209 return (NULL); 13210 } else if (mctl_present) { 13211 /* 13212 * ip_process might return a new mp. 13213 */ 13214 ASSERT(first_mp != mp); 13215 first_mp->b_cont = mp; 13216 } else { 13217 first_mp = mp; 13218 } 13219 13220 } 13221 13222 if (!syn_present && connp->conn_ip_recvpktinfo) { 13223 /* 13224 * TCP does not support IP_RECVPKTINFO for v4 so lets 13225 * make sure IPF_RECVIF is passed to ip_add_info. 13226 */ 13227 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13228 IPCL_ZONEID(connp), ipst); 13229 if (mp == NULL) { 13230 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13231 CONN_DEC_REF(connp); 13232 if (mctl_present) 13233 freeb(first_mp); 13234 return (NULL); 13235 } else if (mctl_present) { 13236 /* 13237 * ip_add_info might return a new mp. 13238 */ 13239 ASSERT(first_mp != mp); 13240 first_mp->b_cont = mp; 13241 } else { 13242 first_mp = mp; 13243 } 13244 } 13245 13246 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13247 if (IPCL_IS_TCP(connp)) { 13248 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13249 return (first_mp); 13250 } else { 13251 /* SOCK_RAW, IPPROTO_TCP case */ 13252 (connp->conn_recv)(connp, first_mp, NULL); 13253 CONN_DEC_REF(connp); 13254 return (NULL); 13255 } 13256 13257 no_conn: 13258 /* Initiate IPPf processing, if needed. */ 13259 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13260 uint32_t ill_index; 13261 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13262 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13263 if (first_mp == NULL) { 13264 return (NULL); 13265 } 13266 } 13267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13268 13269 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13270 ipst->ips_netstack->netstack_tcp, NULL); 13271 return (NULL); 13272 ipoptions: 13273 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13274 goto slow_done; 13275 } 13276 13277 UPDATE_IB_PKT_COUNT(ire); 13278 ire->ire_last_used_time = lbolt; 13279 13280 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13281 if (u1 & (IPH_MF | IPH_OFFSET)) { 13282 fragmented: 13283 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13284 if (mctl_present) 13285 freeb(first_mp); 13286 goto slow_done; 13287 } 13288 /* 13289 * Make sure that first_mp points back to mp as 13290 * the mp we came in with could have changed in 13291 * ip_rput_fragment(). 13292 */ 13293 ASSERT(!mctl_present); 13294 ipha = (ipha_t *)mp->b_rptr; 13295 first_mp = mp; 13296 } 13297 13298 /* Now we have a complete datagram, destined for this machine. */ 13299 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13300 13301 len = mp->b_wptr - mp->b_rptr; 13302 /* Pull up a minimal TCP header, if necessary. */ 13303 if (len < (u1 + 20)) { 13304 tcppullup: 13305 if (!pullupmsg(mp, u1 + 20)) { 13306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13307 goto error; 13308 } 13309 ipha = (ipha_t *)mp->b_rptr; 13310 len = mp->b_wptr - mp->b_rptr; 13311 } 13312 13313 /* 13314 * Extract the offset field from the TCP header. As usual, we 13315 * try to help the compiler more than the reader. 13316 */ 13317 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13318 if (offset != 5) { 13319 tcpoptions: 13320 if (offset < 5) { 13321 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13322 goto error; 13323 } 13324 /* 13325 * There must be TCP options. 13326 * Make sure we can grab them. 13327 */ 13328 offset <<= 2; 13329 offset += u1; 13330 if (len < offset) { 13331 if (!pullupmsg(mp, offset)) { 13332 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13333 goto error; 13334 } 13335 ipha = (ipha_t *)mp->b_rptr; 13336 len = mp->b_wptr - rptr; 13337 } 13338 } 13339 13340 /* Get the total packet length in len, including headers. */ 13341 if (mp->b_cont) { 13342 multipkttcp: 13343 len = msgdsize(mp); 13344 } 13345 13346 /* 13347 * Check the TCP checksum by pulling together the pseudo- 13348 * header checksum, and passing it to ip_csum to be added in 13349 * with the TCP datagram. 13350 * 13351 * Since we are not using the hwcksum if available we must 13352 * clear the flag. We may come here via tcppullup or tcpoptions. 13353 * If either of these fails along the way the mblk is freed. 13354 * If this logic ever changes and mblk is reused to say send 13355 * ICMP's back, then this flag may need to be cleared in 13356 * other places as well. 13357 */ 13358 DB_CKSUMFLAGS(mp) = 0; 13359 13360 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13361 13362 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13363 #ifdef _BIG_ENDIAN 13364 u1 += IPPROTO_TCP; 13365 #else 13366 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13367 #endif 13368 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13369 /* 13370 * Not M_DATA mblk or its a dup, so do the checksum now. 13371 */ 13372 IP_STAT(ipst, ip_in_sw_cksum); 13373 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13374 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13375 goto error; 13376 } 13377 13378 IP_STAT(ipst, ip_tcp_slow_path); 13379 goto try_again; 13380 #undef iphs 13381 #undef rptr 13382 13383 error: 13384 freemsg(first_mp); 13385 slow_done: 13386 return (NULL); 13387 } 13388 13389 /* ARGSUSED */ 13390 static void 13391 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13392 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13393 { 13394 conn_t *connp; 13395 uint32_t sum; 13396 uint32_t u1; 13397 ssize_t len; 13398 sctp_hdr_t *sctph; 13399 zoneid_t zoneid = ire->ire_zoneid; 13400 uint32_t pktsum; 13401 uint32_t calcsum; 13402 uint32_t ports; 13403 in6_addr_t map_src, map_dst; 13404 ill_t *ill = (ill_t *)q->q_ptr; 13405 ip_stack_t *ipst; 13406 sctp_stack_t *sctps; 13407 boolean_t sctp_csum_err = B_FALSE; 13408 13409 ASSERT(recv_ill != NULL); 13410 ipst = recv_ill->ill_ipst; 13411 sctps = ipst->ips_netstack->netstack_sctp; 13412 13413 #define rptr ((uchar_t *)ipha) 13414 13415 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13416 ASSERT(ill != NULL); 13417 13418 /* u1 is # words of IP options */ 13419 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13420 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13421 13422 /* IP options present */ 13423 if (u1 > 0) { 13424 goto ipoptions; 13425 } else { 13426 /* Check the IP header checksum. */ 13427 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13428 !mctl_present) { 13429 #define uph ((uint16_t *)ipha) 13430 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13431 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13432 #undef uph 13433 /* finish doing IP checksum */ 13434 sum = (sum & 0xFFFF) + (sum >> 16); 13435 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13436 /* 13437 * Don't verify header checksum if this packet 13438 * is coming back from AH/ESP as we already did it. 13439 */ 13440 if (sum != 0 && sum != 0xFFFF) { 13441 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13442 goto error; 13443 } 13444 } 13445 /* 13446 * Since there is no SCTP h/w cksum support yet, just 13447 * clear the flag. 13448 */ 13449 DB_CKSUMFLAGS(mp) = 0; 13450 } 13451 13452 /* 13453 * Don't verify header checksum if this packet is coming 13454 * back from AH/ESP as we already did it. 13455 */ 13456 if (!mctl_present) { 13457 UPDATE_IB_PKT_COUNT(ire); 13458 ire->ire_last_used_time = lbolt; 13459 } 13460 13461 /* packet part of fragmented IP packet? */ 13462 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13463 if (u1 & (IPH_MF | IPH_OFFSET)) 13464 goto fragmented; 13465 13466 /* u1 = IP header length (20 bytes) */ 13467 u1 = IP_SIMPLE_HDR_LENGTH; 13468 13469 find_sctp_client: 13470 /* Pullup if we don't have the sctp common header. */ 13471 len = MBLKL(mp); 13472 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13473 if (mp->b_cont == NULL || 13474 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13475 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13476 goto error; 13477 } 13478 ipha = (ipha_t *)mp->b_rptr; 13479 len = MBLKL(mp); 13480 } 13481 13482 sctph = (sctp_hdr_t *)(rptr + u1); 13483 #ifdef DEBUG 13484 if (!skip_sctp_cksum) { 13485 #endif 13486 pktsum = sctph->sh_chksum; 13487 sctph->sh_chksum = 0; 13488 calcsum = sctp_cksum(mp, u1); 13489 sctph->sh_chksum = pktsum; 13490 if (calcsum != pktsum) 13491 sctp_csum_err = B_TRUE; 13492 #ifdef DEBUG /* skip_sctp_cksum */ 13493 } 13494 #endif 13495 /* get the ports */ 13496 ports = *(uint32_t *)&sctph->sh_sport; 13497 13498 IRE_REFRELE(ire); 13499 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13500 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13501 if (sctp_csum_err) { 13502 /* 13503 * No potential sctp checksum errors go to the Sun 13504 * sctp stack however they might be Adler-32 summed 13505 * packets a userland stack bound to a raw IP socket 13506 * could reasonably use. Note though that Adler-32 is 13507 * a long deprecated algorithm and customer sctp 13508 * networks should eventually migrate to CRC-32 at 13509 * which time this facility should be removed. 13510 */ 13511 flags |= IP_FF_SCTP_CSUM_ERR; 13512 goto no_conn; 13513 } 13514 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13515 sctps)) == NULL) { 13516 /* Check for raw socket or OOTB handling */ 13517 goto no_conn; 13518 } 13519 13520 /* Found a client; up it goes */ 13521 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13522 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13523 return; 13524 13525 no_conn: 13526 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13527 ports, mctl_present, flags, B_TRUE, zoneid); 13528 return; 13529 13530 ipoptions: 13531 DB_CKSUMFLAGS(mp) = 0; 13532 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13533 goto slow_done; 13534 13535 UPDATE_IB_PKT_COUNT(ire); 13536 ire->ire_last_used_time = lbolt; 13537 13538 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13539 if (u1 & (IPH_MF | IPH_OFFSET)) { 13540 fragmented: 13541 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13542 goto slow_done; 13543 /* 13544 * Make sure that first_mp points back to mp as 13545 * the mp we came in with could have changed in 13546 * ip_rput_fragment(). 13547 */ 13548 ASSERT(!mctl_present); 13549 ipha = (ipha_t *)mp->b_rptr; 13550 first_mp = mp; 13551 } 13552 13553 /* Now we have a complete datagram, destined for this machine. */ 13554 u1 = IPH_HDR_LENGTH(ipha); 13555 goto find_sctp_client; 13556 #undef iphs 13557 #undef rptr 13558 13559 error: 13560 freemsg(first_mp); 13561 slow_done: 13562 IRE_REFRELE(ire); 13563 } 13564 13565 #define VER_BITS 0xF0 13566 #define VERSION_6 0x60 13567 13568 static boolean_t 13569 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13570 ipaddr_t *dstp, ip_stack_t *ipst) 13571 { 13572 uint_t opt_len; 13573 ipha_t *ipha; 13574 ssize_t len; 13575 uint_t pkt_len; 13576 13577 ASSERT(ill != NULL); 13578 IP_STAT(ipst, ip_ipoptions); 13579 ipha = *iphapp; 13580 13581 #define rptr ((uchar_t *)ipha) 13582 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13583 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13585 freemsg(mp); 13586 return (B_FALSE); 13587 } 13588 13589 /* multiple mblk or too short */ 13590 pkt_len = ntohs(ipha->ipha_length); 13591 13592 /* Get the number of words of IP options in the IP header. */ 13593 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13594 if (opt_len) { 13595 /* IP Options present! Validate and process. */ 13596 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13598 goto done; 13599 } 13600 /* 13601 * Recompute complete header length and make sure we 13602 * have access to all of it. 13603 */ 13604 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13605 if (len > (mp->b_wptr - rptr)) { 13606 if (len > pkt_len) { 13607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13608 goto done; 13609 } 13610 if (!pullupmsg(mp, len)) { 13611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13612 goto done; 13613 } 13614 ipha = (ipha_t *)mp->b_rptr; 13615 } 13616 /* 13617 * Go off to ip_rput_options which returns the next hop 13618 * destination address, which may have been affected 13619 * by source routing. 13620 */ 13621 IP_STAT(ipst, ip_opt); 13622 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13623 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13624 return (B_FALSE); 13625 } 13626 } 13627 *iphapp = ipha; 13628 return (B_TRUE); 13629 done: 13630 /* clear b_prev - used by ip_mroute_decap */ 13631 mp->b_prev = NULL; 13632 freemsg(mp); 13633 return (B_FALSE); 13634 #undef rptr 13635 } 13636 13637 /* 13638 * Deal with the fact that there is no ire for the destination. 13639 */ 13640 static ire_t * 13641 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13642 { 13643 ipha_t *ipha; 13644 ill_t *ill; 13645 ire_t *ire; 13646 ip_stack_t *ipst; 13647 enum ire_forward_action ret_action; 13648 13649 ipha = (ipha_t *)mp->b_rptr; 13650 ill = (ill_t *)q->q_ptr; 13651 13652 ASSERT(ill != NULL); 13653 ipst = ill->ill_ipst; 13654 13655 /* 13656 * No IRE for this destination, so it can't be for us. 13657 * Unless we are forwarding, drop the packet. 13658 * We have to let source routed packets through 13659 * since we don't yet know if they are 'ping -l' 13660 * packets i.e. if they will go out over the 13661 * same interface as they came in on. 13662 */ 13663 if (ll_multicast) { 13664 freemsg(mp); 13665 return (NULL); 13666 } 13667 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13669 freemsg(mp); 13670 return (NULL); 13671 } 13672 13673 /* 13674 * Mark this packet as having originated externally. 13675 * 13676 * For non-forwarding code path, ire_send later double 13677 * checks this interface to see if it is still exists 13678 * post-ARP resolution. 13679 * 13680 * Also, IPQOS uses this to differentiate between 13681 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13682 * QOS packet processing in ip_wput_attach_llhdr(). 13683 * The QoS module can mark the b_band for a fastpath message 13684 * or the dl_priority field in a unitdata_req header for 13685 * CoS marking. This info can only be found in 13686 * ip_wput_attach_llhdr(). 13687 */ 13688 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13689 /* 13690 * Clear the indication that this may have a hardware checksum 13691 * as we are not using it 13692 */ 13693 DB_CKSUMFLAGS(mp) = 0; 13694 13695 ire = ire_forward(dst, &ret_action, NULL, NULL, 13696 MBLK_GETLABEL(mp), ipst); 13697 13698 if (ire == NULL && ret_action == Forward_check_multirt) { 13699 /* Let ip_newroute handle CGTP */ 13700 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13701 return (NULL); 13702 } 13703 13704 if (ire != NULL) 13705 return (ire); 13706 13707 mp->b_prev = mp->b_next = 0; 13708 13709 if (ret_action == Forward_blackhole) { 13710 freemsg(mp); 13711 return (NULL); 13712 } 13713 /* send icmp unreachable */ 13714 q = WR(q); 13715 /* Sent by forwarding path, and router is global zone */ 13716 if (ip_source_routed(ipha, ipst)) { 13717 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13718 GLOBAL_ZONEID, ipst); 13719 } else { 13720 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13721 ipst); 13722 } 13723 13724 return (NULL); 13725 13726 } 13727 13728 /* 13729 * check ip header length and align it. 13730 */ 13731 static boolean_t 13732 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13733 { 13734 ssize_t len; 13735 ill_t *ill; 13736 ipha_t *ipha; 13737 13738 len = MBLKL(mp); 13739 13740 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13741 ill = (ill_t *)q->q_ptr; 13742 13743 if (!OK_32PTR(mp->b_rptr)) 13744 IP_STAT(ipst, ip_notaligned1); 13745 else 13746 IP_STAT(ipst, ip_notaligned2); 13747 /* Guard against bogus device drivers */ 13748 if (len < 0) { 13749 /* clear b_prev - used by ip_mroute_decap */ 13750 mp->b_prev = NULL; 13751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13752 freemsg(mp); 13753 return (B_FALSE); 13754 } 13755 13756 if (ip_rput_pullups++ == 0) { 13757 ipha = (ipha_t *)mp->b_rptr; 13758 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13759 "ip_check_and_align_header: %s forced us to " 13760 " pullup pkt, hdr len %ld, hdr addr %p", 13761 ill->ill_name, len, (void *)ipha); 13762 } 13763 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13764 /* clear b_prev - used by ip_mroute_decap */ 13765 mp->b_prev = NULL; 13766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13767 freemsg(mp); 13768 return (B_FALSE); 13769 } 13770 } 13771 return (B_TRUE); 13772 } 13773 13774 ire_t * 13775 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13776 { 13777 ire_t *new_ire; 13778 ill_t *ire_ill; 13779 uint_t ifindex; 13780 ip_stack_t *ipst = ill->ill_ipst; 13781 boolean_t strict_check = B_FALSE; 13782 13783 /* 13784 * This packet came in on an interface other than the one associated 13785 * with the first ire we found for the destination address. We do 13786 * another ire lookup here, using the ingress ill, to see if the 13787 * interface is in an interface group. 13788 * As long as the ills belong to the same group, we don't consider 13789 * them to be arriving on the wrong interface. Thus, if the switch 13790 * is doing inbound load spreading, we won't drop packets when the 13791 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13792 * for 'usesrc groups' where the destination address may belong to 13793 * another interface to allow multipathing to happen. 13794 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13795 * where the local address may not be unique. In this case we were 13796 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13797 * actually returned. The new lookup, which is more specific, should 13798 * only find the IRE_LOCAL associated with the ingress ill if one 13799 * exists. 13800 */ 13801 13802 if (ire->ire_ipversion == IPV4_VERSION) { 13803 if (ipst->ips_ip_strict_dst_multihoming) 13804 strict_check = B_TRUE; 13805 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13806 ill->ill_ipif, ALL_ZONES, NULL, 13807 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13808 } else { 13809 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13810 if (ipst->ips_ipv6_strict_dst_multihoming) 13811 strict_check = B_TRUE; 13812 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13813 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13814 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13815 } 13816 /* 13817 * If the same ire that was returned in ip_input() is found then this 13818 * is an indication that interface groups are in use. The packet 13819 * arrived on a different ill in the group than the one associated with 13820 * the destination address. If a different ire was found then the same 13821 * IP address must be hosted on multiple ills. This is possible with 13822 * unnumbered point2point interfaces. We switch to use this new ire in 13823 * order to have accurate interface statistics. 13824 */ 13825 if (new_ire != NULL) { 13826 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13827 ire_refrele(ire); 13828 ire = new_ire; 13829 } else { 13830 ire_refrele(new_ire); 13831 } 13832 return (ire); 13833 } else if ((ire->ire_rfq == NULL) && 13834 (ire->ire_ipversion == IPV4_VERSION)) { 13835 /* 13836 * The best match could have been the original ire which 13837 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13838 * the strict multihoming checks are irrelevant as we consider 13839 * local addresses hosted on lo0 to be interface agnostic. We 13840 * only expect a null ire_rfq on IREs which are associated with 13841 * lo0 hence we can return now. 13842 */ 13843 return (ire); 13844 } 13845 13846 /* 13847 * Chase pointers once and store locally. 13848 */ 13849 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13850 (ill_t *)(ire->ire_rfq->q_ptr); 13851 ifindex = ill->ill_usesrc_ifindex; 13852 13853 /* 13854 * Check if it's a legal address on the 'usesrc' interface. 13855 */ 13856 if ((ifindex != 0) && (ire_ill != NULL) && 13857 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13858 return (ire); 13859 } 13860 13861 /* 13862 * If the ip*_strict_dst_multihoming switch is on then we can 13863 * only accept this packet if the interface is marked as routing. 13864 */ 13865 if (!(strict_check)) 13866 return (ire); 13867 13868 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13869 ILLF_ROUTER) != 0) { 13870 return (ire); 13871 } 13872 13873 ire_refrele(ire); 13874 return (NULL); 13875 } 13876 13877 ire_t * 13878 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13879 { 13880 ipha_t *ipha; 13881 ire_t *src_ire; 13882 ill_t *stq_ill; 13883 uint_t hlen; 13884 uint_t pkt_len; 13885 uint32_t sum; 13886 queue_t *dev_q; 13887 ip_stack_t *ipst = ill->ill_ipst; 13888 mblk_t *fpmp; 13889 enum ire_forward_action ret_action; 13890 13891 ipha = (ipha_t *)mp->b_rptr; 13892 13893 if (ire != NULL && 13894 ire->ire_zoneid != GLOBAL_ZONEID && 13895 ire->ire_zoneid != ALL_ZONES) { 13896 /* 13897 * Should only use IREs that are visible to the global 13898 * zone for forwarding. 13899 */ 13900 ire_refrele(ire); 13901 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13902 } 13903 13904 /* 13905 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13906 * The loopback address check for both src and dst has already 13907 * been checked in ip_input 13908 */ 13909 13910 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13911 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13912 goto drop; 13913 } 13914 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13915 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13916 13917 if (src_ire != NULL) { 13918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13919 ire_refrele(src_ire); 13920 goto drop; 13921 } 13922 13923 /* No ire cache of nexthop. So first create one */ 13924 if (ire == NULL) { 13925 13926 ire = ire_forward(dst, &ret_action, NULL, NULL, 13927 NULL, ipst); 13928 /* 13929 * We only come to ip_fast_forward if ip_cgtp_filter 13930 * is not set. So ire_forward() should not return with 13931 * Forward_check_multirt as the next action. 13932 */ 13933 ASSERT(ret_action != Forward_check_multirt); 13934 if (ire == NULL) { 13935 /* An attempt was made to forward the packet */ 13936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13937 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13938 mp->b_prev = mp->b_next = 0; 13939 /* send icmp unreachable */ 13940 /* Sent by forwarding path, and router is global zone */ 13941 if (ret_action == Forward_ret_icmp_err) { 13942 if (ip_source_routed(ipha, ipst)) { 13943 icmp_unreachable(ill->ill_wq, mp, 13944 ICMP_SOURCE_ROUTE_FAILED, 13945 GLOBAL_ZONEID, ipst); 13946 } else { 13947 icmp_unreachable(ill->ill_wq, mp, 13948 ICMP_HOST_UNREACHABLE, 13949 GLOBAL_ZONEID, ipst); 13950 } 13951 } else { 13952 freemsg(mp); 13953 } 13954 return (NULL); 13955 } 13956 } 13957 13958 /* 13959 * Forwarding fastpath exception case: 13960 * If either of the follwoing case is true, we take 13961 * the slowpath 13962 * o forwarding is not enabled 13963 * o incoming and outgoing interface are the same, or the same 13964 * IPMP group 13965 * o corresponding ire is in incomplete state 13966 * o packet needs fragmentation 13967 * o ARP cache is not resolved 13968 * 13969 * The codeflow from here on is thus: 13970 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13971 */ 13972 pkt_len = ntohs(ipha->ipha_length); 13973 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13974 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13975 !(ill->ill_flags & ILLF_ROUTER) || 13976 (ill == stq_ill) || 13977 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13978 (ire->ire_nce == NULL) || 13979 (pkt_len > ire->ire_max_frag) || 13980 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13981 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13982 ipha->ipha_ttl <= 1) { 13983 ip_rput_process_forward(ill->ill_rq, mp, ire, 13984 ipha, ill, B_FALSE); 13985 return (ire); 13986 } 13987 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13988 13989 DTRACE_PROBE4(ip4__forwarding__start, 13990 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13991 13992 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13993 ipst->ips_ipv4firewall_forwarding, 13994 ill, stq_ill, ipha, mp, mp, 0, ipst); 13995 13996 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13997 13998 if (mp == NULL) 13999 goto drop; 14000 14001 mp->b_datap->db_struioun.cksum.flags = 0; 14002 /* Adjust the checksum to reflect the ttl decrement. */ 14003 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14004 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14005 ipha->ipha_ttl--; 14006 14007 /* 14008 * Write the link layer header. We can do this safely here, 14009 * because we have already tested to make sure that the IP 14010 * policy is not set, and that we have a fast path destination 14011 * header. 14012 */ 14013 mp->b_rptr -= hlen; 14014 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14015 14016 UPDATE_IB_PKT_COUNT(ire); 14017 ire->ire_last_used_time = lbolt; 14018 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14019 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14020 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14021 14022 dev_q = ire->ire_stq->q_next; 14023 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14024 !canputnext(ire->ire_stq)) { 14025 goto indiscard; 14026 } 14027 if (ILL_DLS_CAPABLE(stq_ill)) { 14028 /* 14029 * Send the packet directly to DLD, where it 14030 * may be queued depending on the availability 14031 * of transmit resources at the media layer. 14032 */ 14033 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14034 } else { 14035 DTRACE_PROBE4(ip4__physical__out__start, 14036 ill_t *, NULL, ill_t *, stq_ill, 14037 ipha_t *, ipha, mblk_t *, mp); 14038 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14039 ipst->ips_ipv4firewall_physical_out, 14040 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14041 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14042 if (mp == NULL) 14043 goto drop; 14044 14045 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14046 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14047 ip6_t *, NULL, int, 0); 14048 14049 putnext(ire->ire_stq, mp); 14050 } 14051 return (ire); 14052 14053 indiscard: 14054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14055 drop: 14056 if (mp != NULL) 14057 freemsg(mp); 14058 return (ire); 14059 14060 } 14061 14062 /* 14063 * This function is called in the forwarding slowpath, when 14064 * either the ire lacks the link-layer address, or the packet needs 14065 * further processing(eg. fragmentation), before transmission. 14066 */ 14067 14068 static void 14069 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14070 ill_t *ill, boolean_t ll_multicast) 14071 { 14072 ill_group_t *ill_group; 14073 ill_group_t *ire_group; 14074 queue_t *dev_q; 14075 ire_t *src_ire; 14076 ip_stack_t *ipst = ill->ill_ipst; 14077 14078 ASSERT(ire->ire_stq != NULL); 14079 14080 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14081 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14082 14083 if (ll_multicast != 0) { 14084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14085 goto drop_pkt; 14086 } 14087 14088 /* 14089 * check if ipha_src is a broadcast address. Note that this 14090 * check is redundant when we get here from ip_fast_forward() 14091 * which has already done this check. However, since we can 14092 * also get here from ip_rput_process_broadcast() or, for 14093 * for the slow path through ip_fast_forward(), we perform 14094 * the check again for code-reusability 14095 */ 14096 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14097 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14098 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14099 if (src_ire != NULL) 14100 ire_refrele(src_ire); 14101 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14102 ip2dbg(("ip_rput_process_forward: Received packet with" 14103 " bad src/dst address on %s\n", ill->ill_name)); 14104 goto drop_pkt; 14105 } 14106 14107 ill_group = ill->ill_group; 14108 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14109 /* 14110 * Check if we want to forward this one at this time. 14111 * We allow source routed packets on a host provided that 14112 * they go out the same interface or same interface group 14113 * as they came in on. 14114 * 14115 * XXX To be quicker, we may wish to not chase pointers to 14116 * get the ILLF_ROUTER flag and instead store the 14117 * forwarding policy in the ire. An unfortunate 14118 * side-effect of that would be requiring an ire flush 14119 * whenever the ILLF_ROUTER flag changes. 14120 */ 14121 if (((ill->ill_flags & 14122 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14123 ILLF_ROUTER) == 0) && 14124 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14125 (ill_group != NULL && ill_group == ire_group)))) { 14126 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14127 if (ip_source_routed(ipha, ipst)) { 14128 q = WR(q); 14129 /* 14130 * Clear the indication that this may have 14131 * hardware checksum as we are not using it. 14132 */ 14133 DB_CKSUMFLAGS(mp) = 0; 14134 /* Sent by forwarding path, and router is global zone */ 14135 icmp_unreachable(q, mp, 14136 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14137 return; 14138 } 14139 goto drop_pkt; 14140 } 14141 14142 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14143 14144 /* Packet is being forwarded. Turning off hwcksum flag. */ 14145 DB_CKSUMFLAGS(mp) = 0; 14146 if (ipst->ips_ip_g_send_redirects) { 14147 /* 14148 * Check whether the incoming interface and outgoing 14149 * interface is part of the same group. If so, 14150 * send redirects. 14151 * 14152 * Check the source address to see if it originated 14153 * on the same logical subnet it is going back out on. 14154 * If so, we should be able to send it a redirect. 14155 * Avoid sending a redirect if the destination 14156 * is directly connected (i.e., ipha_dst is the same 14157 * as ire_gateway_addr or the ire_addr of the 14158 * nexthop IRE_CACHE ), or if the packet was source 14159 * routed out this interface. 14160 */ 14161 ipaddr_t src, nhop; 14162 mblk_t *mp1; 14163 ire_t *nhop_ire = NULL; 14164 14165 /* 14166 * Check whether ire_rfq and q are from the same ill 14167 * or if they are not same, they at least belong 14168 * to the same group. If so, send redirects. 14169 */ 14170 if ((ire->ire_rfq == q || 14171 (ill_group != NULL && ill_group == ire_group)) && 14172 !ip_source_routed(ipha, ipst)) { 14173 14174 nhop = (ire->ire_gateway_addr != 0 ? 14175 ire->ire_gateway_addr : ire->ire_addr); 14176 14177 if (ipha->ipha_dst == nhop) { 14178 /* 14179 * We avoid sending a redirect if the 14180 * destination is directly connected 14181 * because it is possible that multiple 14182 * IP subnets may have been configured on 14183 * the link, and the source may not 14184 * be on the same subnet as ip destination, 14185 * even though they are on the same 14186 * physical link. 14187 */ 14188 goto sendit; 14189 } 14190 14191 src = ipha->ipha_src; 14192 14193 /* 14194 * We look up the interface ire for the nexthop, 14195 * to see if ipha_src is in the same subnet 14196 * as the nexthop. 14197 * 14198 * Note that, if, in the future, IRE_CACHE entries 14199 * are obsoleted, this lookup will not be needed, 14200 * as the ire passed to this function will be the 14201 * same as the nhop_ire computed below. 14202 */ 14203 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14204 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14205 0, NULL, MATCH_IRE_TYPE, ipst); 14206 14207 if (nhop_ire != NULL) { 14208 if ((src & nhop_ire->ire_mask) == 14209 (nhop & nhop_ire->ire_mask)) { 14210 /* 14211 * The source is directly connected. 14212 * Just copy the ip header (which is 14213 * in the first mblk) 14214 */ 14215 mp1 = copyb(mp); 14216 if (mp1 != NULL) { 14217 icmp_send_redirect(WR(q), mp1, 14218 nhop, ipst); 14219 } 14220 } 14221 ire_refrele(nhop_ire); 14222 } 14223 } 14224 } 14225 sendit: 14226 dev_q = ire->ire_stq->q_next; 14227 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14228 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14229 freemsg(mp); 14230 return; 14231 } 14232 14233 ip_rput_forward(ire, ipha, mp, ill); 14234 return; 14235 14236 drop_pkt: 14237 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14238 freemsg(mp); 14239 } 14240 14241 ire_t * 14242 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14243 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14244 { 14245 queue_t *q; 14246 uint16_t hcksumflags; 14247 ip_stack_t *ipst = ill->ill_ipst; 14248 14249 q = *qp; 14250 14251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14252 14253 /* 14254 * Clear the indication that this may have hardware 14255 * checksum as we are not using it for forwarding. 14256 */ 14257 hcksumflags = DB_CKSUMFLAGS(mp); 14258 DB_CKSUMFLAGS(mp) = 0; 14259 14260 /* 14261 * Directed broadcast forwarding: if the packet came in over a 14262 * different interface then it is routed out over we can forward it. 14263 */ 14264 if (ipha->ipha_protocol == IPPROTO_TCP) { 14265 ire_refrele(ire); 14266 freemsg(mp); 14267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14268 return (NULL); 14269 } 14270 /* 14271 * For multicast we have set dst to be INADDR_BROADCAST 14272 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14273 * only for broadcast packets. 14274 */ 14275 if (!CLASSD(ipha->ipha_dst)) { 14276 ire_t *new_ire; 14277 ipif_t *ipif; 14278 /* 14279 * For ill groups, as the switch duplicates broadcasts 14280 * across all the ports, we need to filter out and 14281 * send up only one copy. There is one copy for every 14282 * broadcast address on each ill. Thus, we look for a 14283 * specific IRE on this ill and look at IRE_MARK_NORECV 14284 * later to see whether this ill is eligible to receive 14285 * them or not. ill_nominate_bcast_rcv() nominates only 14286 * one set of IREs for receiving. 14287 */ 14288 14289 ipif = ipif_get_next_ipif(NULL, ill); 14290 if (ipif == NULL) { 14291 ire_refrele(ire); 14292 freemsg(mp); 14293 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14294 return (NULL); 14295 } 14296 new_ire = ire_ctable_lookup(dst, 0, 0, 14297 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14298 ipif_refrele(ipif); 14299 14300 if (new_ire != NULL) { 14301 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14302 ire_refrele(ire); 14303 ire_refrele(new_ire); 14304 freemsg(mp); 14305 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14306 return (NULL); 14307 } 14308 /* 14309 * In the special case of multirouted broadcast 14310 * packets, we unconditionally need to "gateway" 14311 * them to the appropriate interface here. 14312 * In the normal case, this cannot happen, because 14313 * there is no broadcast IRE tagged with the 14314 * RTF_MULTIRT flag. 14315 */ 14316 if (new_ire->ire_flags & RTF_MULTIRT) { 14317 ire_refrele(new_ire); 14318 if (ire->ire_rfq != NULL) { 14319 q = ire->ire_rfq; 14320 *qp = q; 14321 } 14322 } else { 14323 ire_refrele(ire); 14324 ire = new_ire; 14325 } 14326 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14327 if (!ipst->ips_ip_g_forward_directed_bcast) { 14328 /* 14329 * Free the message if 14330 * ip_g_forward_directed_bcast is turned 14331 * off for non-local broadcast. 14332 */ 14333 ire_refrele(ire); 14334 freemsg(mp); 14335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14336 return (NULL); 14337 } 14338 } else { 14339 /* 14340 * This CGTP packet successfully passed the 14341 * CGTP filter, but the related CGTP 14342 * broadcast IRE has not been found, 14343 * meaning that the redundant ipif is 14344 * probably down. However, if we discarded 14345 * this packet, its duplicate would be 14346 * filtered out by the CGTP filter so none 14347 * of them would get through. So we keep 14348 * going with this one. 14349 */ 14350 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14351 if (ire->ire_rfq != NULL) { 14352 q = ire->ire_rfq; 14353 *qp = q; 14354 } 14355 } 14356 } 14357 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14358 /* 14359 * Verify that there are not more then one 14360 * IRE_BROADCAST with this broadcast address which 14361 * has ire_stq set. 14362 * TODO: simplify, loop over all IRE's 14363 */ 14364 ire_t *ire1; 14365 int num_stq = 0; 14366 mblk_t *mp1; 14367 14368 /* Find the first one with ire_stq set */ 14369 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14370 for (ire1 = ire; ire1 && 14371 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14372 ire1 = ire1->ire_next) 14373 ; 14374 if (ire1) { 14375 ire_refrele(ire); 14376 ire = ire1; 14377 IRE_REFHOLD(ire); 14378 } 14379 14380 /* Check if there are additional ones with stq set */ 14381 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14382 if (ire->ire_addr != ire1->ire_addr) 14383 break; 14384 if (ire1->ire_stq) { 14385 num_stq++; 14386 break; 14387 } 14388 } 14389 rw_exit(&ire->ire_bucket->irb_lock); 14390 if (num_stq == 1 && ire->ire_stq != NULL) { 14391 ip1dbg(("ip_rput_process_broadcast: directed " 14392 "broadcast to 0x%x\n", 14393 ntohl(ire->ire_addr))); 14394 mp1 = copymsg(mp); 14395 if (mp1) { 14396 switch (ipha->ipha_protocol) { 14397 case IPPROTO_UDP: 14398 ip_udp_input(q, mp1, ipha, ire, ill); 14399 break; 14400 default: 14401 ip_proto_input(q, mp1, ipha, ire, ill, 14402 0); 14403 break; 14404 } 14405 } 14406 /* 14407 * Adjust ttl to 2 (1+1 - the forward engine 14408 * will decrement it by one. 14409 */ 14410 if (ip_csum_hdr(ipha)) { 14411 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14412 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14413 freemsg(mp); 14414 ire_refrele(ire); 14415 return (NULL); 14416 } 14417 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14418 ipha->ipha_hdr_checksum = 0; 14419 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14420 ip_rput_process_forward(q, mp, ire, ipha, 14421 ill, ll_multicast); 14422 ire_refrele(ire); 14423 return (NULL); 14424 } 14425 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14426 ntohl(ire->ire_addr))); 14427 } 14428 14429 14430 /* Restore any hardware checksum flags */ 14431 DB_CKSUMFLAGS(mp) = hcksumflags; 14432 return (ire); 14433 } 14434 14435 /* ARGSUSED */ 14436 static boolean_t 14437 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14438 int *ll_multicast, ipaddr_t *dstp) 14439 { 14440 ip_stack_t *ipst = ill->ill_ipst; 14441 14442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14443 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14444 ntohs(ipha->ipha_length)); 14445 14446 /* 14447 * Forward packets only if we have joined the allmulti 14448 * group on this interface. 14449 */ 14450 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14451 int retval; 14452 14453 /* 14454 * Clear the indication that this may have hardware 14455 * checksum as we are not using it. 14456 */ 14457 DB_CKSUMFLAGS(mp) = 0; 14458 retval = ip_mforward(ill, ipha, mp); 14459 /* ip_mforward updates mib variables if needed */ 14460 /* clear b_prev - used by ip_mroute_decap */ 14461 mp->b_prev = NULL; 14462 14463 switch (retval) { 14464 case 0: 14465 /* 14466 * pkt is okay and arrived on phyint. 14467 * 14468 * If we are running as a multicast router 14469 * we need to see all IGMP and/or PIM packets. 14470 */ 14471 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14472 (ipha->ipha_protocol == IPPROTO_PIM)) { 14473 goto done; 14474 } 14475 break; 14476 case -1: 14477 /* pkt is mal-formed, toss it */ 14478 goto drop_pkt; 14479 case 1: 14480 /* pkt is okay and arrived on a tunnel */ 14481 /* 14482 * If we are running a multicast router 14483 * we need to see all igmp packets. 14484 */ 14485 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14486 *dstp = INADDR_BROADCAST; 14487 *ll_multicast = 1; 14488 return (B_FALSE); 14489 } 14490 14491 goto drop_pkt; 14492 } 14493 } 14494 14495 ILM_WALKER_HOLD(ill); 14496 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14497 /* 14498 * This might just be caused by the fact that 14499 * multiple IP Multicast addresses map to the same 14500 * link layer multicast - no need to increment counter! 14501 */ 14502 ILM_WALKER_RELE(ill); 14503 freemsg(mp); 14504 return (B_TRUE); 14505 } 14506 ILM_WALKER_RELE(ill); 14507 done: 14508 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14509 /* 14510 * This assumes the we deliver to all streams for multicast 14511 * and broadcast packets. 14512 */ 14513 *dstp = INADDR_BROADCAST; 14514 *ll_multicast = 1; 14515 return (B_FALSE); 14516 drop_pkt: 14517 ip2dbg(("ip_rput: drop pkt\n")); 14518 freemsg(mp); 14519 return (B_TRUE); 14520 } 14521 14522 /* 14523 * This function is used to both return an indication of whether or not 14524 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14525 * and in doing so, determine whether or not it is broadcast vs multicast. 14526 * For it to be a broadcast packet, we must have the appropriate mblk_t 14527 * hanging off the ill_t. If this is either not present or doesn't match 14528 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14529 * to be multicast. Thus NICs that have no broadcast address (or no 14530 * capability for one, such as point to point links) cannot return as 14531 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14532 * the return values simplifies the current use of the return value of this 14533 * function, which is to pass through the multicast/broadcast characteristic 14534 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14535 * changing the return value to some other symbol demands the appropriate 14536 * "translation" when hpe_flags is set prior to calling hook_run() for 14537 * packet events. 14538 */ 14539 int 14540 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14541 { 14542 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14543 mblk_t *bmp; 14544 14545 if (ind->dl_group_address) { 14546 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14547 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14548 MBLKL(mb) && 14549 (bmp = ill->ill_bcast_mp) != NULL) { 14550 dl_unitdata_req_t *dlur; 14551 uint8_t *bphys_addr; 14552 14553 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14554 if (ill->ill_sap_length < 0) 14555 bphys_addr = (uchar_t *)dlur + 14556 dlur->dl_dest_addr_offset; 14557 else 14558 bphys_addr = (uchar_t *)dlur + 14559 dlur->dl_dest_addr_offset + 14560 ill->ill_sap_length; 14561 14562 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14563 bphys_addr, ind->dl_dest_addr_length) == 0) { 14564 return (HPE_BROADCAST); 14565 } 14566 return (HPE_MULTICAST); 14567 } 14568 return (HPE_MULTICAST); 14569 } 14570 return (0); 14571 } 14572 14573 static boolean_t 14574 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14575 int *ll_multicast, mblk_t **mpp) 14576 { 14577 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14578 boolean_t must_copy = B_FALSE; 14579 struct iocblk *iocp; 14580 ipha_t *ipha; 14581 ip_stack_t *ipst = ill->ill_ipst; 14582 14583 #define rptr ((uchar_t *)ipha) 14584 14585 first_mp = *first_mpp; 14586 mp = *mpp; 14587 14588 ASSERT(first_mp == mp); 14589 14590 /* 14591 * if db_ref > 1 then copymsg and free original. Packet may be 14592 * changed and do not want other entity who has a reference to this 14593 * message to trip over the changes. This is a blind change because 14594 * trying to catch all places that might change packet is too 14595 * difficult (since it may be a module above this one) 14596 * 14597 * This corresponds to the non-fast path case. We walk down the full 14598 * chain in this case, and check the db_ref count of all the dblks, 14599 * and do a copymsg if required. It is possible that the db_ref counts 14600 * of the data blocks in the mblk chain can be different. 14601 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14602 * count of 1, followed by a M_DATA block with a ref count of 2, if 14603 * 'snoop' is running. 14604 */ 14605 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14606 if (mp1->b_datap->db_ref > 1) { 14607 must_copy = B_TRUE; 14608 break; 14609 } 14610 } 14611 14612 if (must_copy) { 14613 mp1 = copymsg(mp); 14614 if (mp1 == NULL) { 14615 for (mp1 = mp; mp1 != NULL; 14616 mp1 = mp1->b_cont) { 14617 mp1->b_next = NULL; 14618 mp1->b_prev = NULL; 14619 } 14620 freemsg(mp); 14621 if (ill != NULL) { 14622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14623 } else { 14624 BUMP_MIB(&ipst->ips_ip_mib, 14625 ipIfStatsInDiscards); 14626 } 14627 return (B_TRUE); 14628 } 14629 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14630 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14631 /* Copy b_prev - used by ip_mroute_decap */ 14632 to_mp->b_prev = from_mp->b_prev; 14633 from_mp->b_prev = NULL; 14634 } 14635 *first_mpp = first_mp = mp1; 14636 freemsg(mp); 14637 mp = mp1; 14638 *mpp = mp1; 14639 } 14640 14641 ipha = (ipha_t *)mp->b_rptr; 14642 14643 /* 14644 * previous code has a case for M_DATA. 14645 * We want to check how that happens. 14646 */ 14647 ASSERT(first_mp->b_datap->db_type != M_DATA); 14648 switch (first_mp->b_datap->db_type) { 14649 case M_PROTO: 14650 case M_PCPROTO: 14651 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14652 DL_UNITDATA_IND) { 14653 /* Go handle anything other than data elsewhere. */ 14654 ip_rput_dlpi(q, mp); 14655 return (B_TRUE); 14656 } 14657 14658 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14659 /* Ditch the DLPI header. */ 14660 mp1 = mp->b_cont; 14661 ASSERT(first_mp == mp); 14662 *first_mpp = mp1; 14663 freeb(mp); 14664 *mpp = mp1; 14665 return (B_FALSE); 14666 case M_IOCACK: 14667 ip1dbg(("got iocack ")); 14668 iocp = (struct iocblk *)mp->b_rptr; 14669 switch (iocp->ioc_cmd) { 14670 case DL_IOC_HDR_INFO: 14671 ill = (ill_t *)q->q_ptr; 14672 ill_fastpath_ack(ill, mp); 14673 return (B_TRUE); 14674 case SIOCSTUNPARAM: 14675 case OSIOCSTUNPARAM: 14676 /* Go through qwriter_ip */ 14677 break; 14678 case SIOCGTUNPARAM: 14679 case OSIOCGTUNPARAM: 14680 ip_rput_other(NULL, q, mp, NULL); 14681 return (B_TRUE); 14682 default: 14683 putnext(q, mp); 14684 return (B_TRUE); 14685 } 14686 /* FALLTHRU */ 14687 case M_ERROR: 14688 case M_HANGUP: 14689 /* 14690 * Since this is on the ill stream we unconditionally 14691 * bump up the refcount 14692 */ 14693 ill_refhold(ill); 14694 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14695 return (B_TRUE); 14696 case M_CTL: 14697 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14698 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14699 IPHADA_M_CTL)) { 14700 /* 14701 * It's an IPsec accelerated packet. 14702 * Make sure that the ill from which we received the 14703 * packet has enabled IPsec hardware acceleration. 14704 */ 14705 if (!(ill->ill_capabilities & 14706 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14707 /* IPsec kstats: bean counter */ 14708 freemsg(mp); 14709 return (B_TRUE); 14710 } 14711 14712 /* 14713 * Make mp point to the mblk following the M_CTL, 14714 * then process according to type of mp. 14715 * After this processing, first_mp will point to 14716 * the data-attributes and mp to the pkt following 14717 * the M_CTL. 14718 */ 14719 mp = first_mp->b_cont; 14720 if (mp == NULL) { 14721 freemsg(first_mp); 14722 return (B_TRUE); 14723 } 14724 /* 14725 * A Hardware Accelerated packet can only be M_DATA 14726 * ESP or AH packet. 14727 */ 14728 if (mp->b_datap->db_type != M_DATA) { 14729 /* non-M_DATA IPsec accelerated packet */ 14730 IPSECHW_DEBUG(IPSECHW_PKT, 14731 ("non-M_DATA IPsec accelerated pkt\n")); 14732 freemsg(first_mp); 14733 return (B_TRUE); 14734 } 14735 ipha = (ipha_t *)mp->b_rptr; 14736 if (ipha->ipha_protocol != IPPROTO_AH && 14737 ipha->ipha_protocol != IPPROTO_ESP) { 14738 IPSECHW_DEBUG(IPSECHW_PKT, 14739 ("non-M_DATA IPsec accelerated pkt\n")); 14740 freemsg(first_mp); 14741 return (B_TRUE); 14742 } 14743 *mpp = mp; 14744 return (B_FALSE); 14745 } 14746 putnext(q, mp); 14747 return (B_TRUE); 14748 case M_IOCNAK: 14749 ip1dbg(("got iocnak ")); 14750 iocp = (struct iocblk *)mp->b_rptr; 14751 switch (iocp->ioc_cmd) { 14752 case SIOCSTUNPARAM: 14753 case OSIOCSTUNPARAM: 14754 /* 14755 * Since this is on the ill stream we unconditionally 14756 * bump up the refcount 14757 */ 14758 ill_refhold(ill); 14759 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14760 return (B_TRUE); 14761 case DL_IOC_HDR_INFO: 14762 case SIOCGTUNPARAM: 14763 case OSIOCGTUNPARAM: 14764 ip_rput_other(NULL, q, mp, NULL); 14765 return (B_TRUE); 14766 default: 14767 break; 14768 } 14769 /* FALLTHRU */ 14770 default: 14771 putnext(q, mp); 14772 return (B_TRUE); 14773 } 14774 } 14775 14776 /* Read side put procedure. Packets coming from the wire arrive here. */ 14777 void 14778 ip_rput(queue_t *q, mblk_t *mp) 14779 { 14780 ill_t *ill; 14781 union DL_primitives *dl; 14782 14783 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14784 14785 ill = (ill_t *)q->q_ptr; 14786 14787 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14788 /* 14789 * If things are opening or closing, only accept high-priority 14790 * DLPI messages. (On open ill->ill_ipif has not yet been 14791 * created; on close, things hanging off the ill may have been 14792 * freed already.) 14793 */ 14794 dl = (union DL_primitives *)mp->b_rptr; 14795 if (DB_TYPE(mp) != M_PCPROTO || 14796 dl->dl_primitive == DL_UNITDATA_IND) { 14797 /* 14798 * SIOC[GS]TUNPARAM ioctls can come here. 14799 */ 14800 inet_freemsg(mp); 14801 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14802 "ip_rput_end: q %p (%S)", q, "uninit"); 14803 return; 14804 } 14805 } 14806 14807 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14808 "ip_rput_end: q %p (%S)", q, "end"); 14809 14810 ip_input(ill, NULL, mp, NULL); 14811 } 14812 14813 static mblk_t * 14814 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14815 { 14816 mblk_t *mp1; 14817 boolean_t adjusted = B_FALSE; 14818 ip_stack_t *ipst = ill->ill_ipst; 14819 14820 IP_STAT(ipst, ip_db_ref); 14821 /* 14822 * The IP_RECVSLLA option depends on having the 14823 * link layer header. First check that: 14824 * a> the underlying device is of type ether, 14825 * since this option is currently supported only 14826 * over ethernet. 14827 * b> there is enough room to copy over the link 14828 * layer header. 14829 * 14830 * Once the checks are done, adjust rptr so that 14831 * the link layer header will be copied via 14832 * copymsg. Note that, IFT_ETHER may be returned 14833 * by some non-ethernet drivers but in this case 14834 * the second check will fail. 14835 */ 14836 if (ill->ill_type == IFT_ETHER && 14837 (mp->b_rptr - mp->b_datap->db_base) >= 14838 sizeof (struct ether_header)) { 14839 mp->b_rptr -= sizeof (struct ether_header); 14840 adjusted = B_TRUE; 14841 } 14842 mp1 = copymsg(mp); 14843 14844 if (mp1 == NULL) { 14845 mp->b_next = NULL; 14846 /* clear b_prev - used by ip_mroute_decap */ 14847 mp->b_prev = NULL; 14848 freemsg(mp); 14849 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14850 return (NULL); 14851 } 14852 14853 if (adjusted) { 14854 /* 14855 * Copy is done. Restore the pointer in 14856 * the _new_ mblk 14857 */ 14858 mp1->b_rptr += sizeof (struct ether_header); 14859 } 14860 14861 /* Copy b_prev - used by ip_mroute_decap */ 14862 mp1->b_prev = mp->b_prev; 14863 mp->b_prev = NULL; 14864 14865 /* preserve the hardware checksum flags and data, if present */ 14866 if (DB_CKSUMFLAGS(mp) != 0) { 14867 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14868 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14869 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14870 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14871 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14872 } 14873 14874 freemsg(mp); 14875 return (mp1); 14876 } 14877 14878 /* 14879 * Direct read side procedure capable of dealing with chains. GLDv3 based 14880 * drivers call this function directly with mblk chains while STREAMS 14881 * read side procedure ip_rput() calls this for single packet with ip_ring 14882 * set to NULL to process one packet at a time. 14883 * 14884 * The ill will always be valid if this function is called directly from 14885 * the driver. 14886 * 14887 * If ip_input() is called from GLDv3: 14888 * 14889 * - This must be a non-VLAN IP stream. 14890 * - 'mp' is either an untagged or a special priority-tagged packet. 14891 * - Any VLAN tag that was in the MAC header has been stripped. 14892 * 14893 * If the IP header in packet is not 32-bit aligned, every message in the 14894 * chain will be aligned before further operations. This is required on SPARC 14895 * platform. 14896 */ 14897 /* ARGSUSED */ 14898 void 14899 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14900 struct mac_header_info_s *mhip) 14901 { 14902 ipaddr_t dst = NULL; 14903 ipaddr_t prev_dst; 14904 ire_t *ire = NULL; 14905 ipha_t *ipha; 14906 uint_t pkt_len; 14907 ssize_t len; 14908 uint_t opt_len; 14909 int ll_multicast; 14910 int cgtp_flt_pkt; 14911 queue_t *q = ill->ill_rq; 14912 squeue_t *curr_sqp = NULL; 14913 mblk_t *head = NULL; 14914 mblk_t *tail = NULL; 14915 mblk_t *first_mp; 14916 mblk_t *mp; 14917 mblk_t *dmp; 14918 int cnt = 0; 14919 ip_stack_t *ipst = ill->ill_ipst; 14920 14921 ASSERT(mp_chain != NULL); 14922 ASSERT(ill != NULL); 14923 14924 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14925 14926 #define rptr ((uchar_t *)ipha) 14927 14928 while (mp_chain != NULL) { 14929 first_mp = mp = mp_chain; 14930 mp_chain = mp_chain->b_next; 14931 mp->b_next = NULL; 14932 ll_multicast = 0; 14933 14934 /* 14935 * We do ire caching from one iteration to 14936 * another. In the event the packet chain contains 14937 * all packets from the same dst, this caching saves 14938 * an ire_cache_lookup for each of the succeeding 14939 * packets in a packet chain. 14940 */ 14941 prev_dst = dst; 14942 14943 /* 14944 * if db_ref > 1 then copymsg and free original. Packet 14945 * may be changed and we do not want the other entity 14946 * who has a reference to this message to trip over the 14947 * changes. This is a blind change because trying to 14948 * catch all places that might change the packet is too 14949 * difficult. 14950 * 14951 * This corresponds to the fast path case, where we have 14952 * a chain of M_DATA mblks. We check the db_ref count 14953 * of only the 1st data block in the mblk chain. There 14954 * doesn't seem to be a reason why a device driver would 14955 * send up data with varying db_ref counts in the mblk 14956 * chain. In any case the Fast path is a private 14957 * interface, and our drivers don't do such a thing. 14958 * Given the above assumption, there is no need to walk 14959 * down the entire mblk chain (which could have a 14960 * potential performance problem) 14961 */ 14962 14963 if (DB_REF(mp) > 1) { 14964 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14965 continue; 14966 } 14967 14968 /* 14969 * Check and align the IP header. 14970 */ 14971 first_mp = mp; 14972 if (DB_TYPE(mp) == M_DATA) { 14973 dmp = mp; 14974 } else if (DB_TYPE(mp) == M_PROTO && 14975 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14976 dmp = mp->b_cont; 14977 } else { 14978 dmp = NULL; 14979 } 14980 if (dmp != NULL) { 14981 /* 14982 * IP header ptr not aligned? 14983 * OR IP header not complete in first mblk 14984 */ 14985 if (!OK_32PTR(dmp->b_rptr) || 14986 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14987 if (!ip_check_and_align_header(q, dmp, ipst)) 14988 continue; 14989 } 14990 } 14991 14992 /* 14993 * ip_input fast path 14994 */ 14995 14996 /* mblk type is not M_DATA */ 14997 if (DB_TYPE(mp) != M_DATA) { 14998 if (ip_rput_process_notdata(q, &first_mp, ill, 14999 &ll_multicast, &mp)) 15000 continue; 15001 15002 /* 15003 * The only way we can get here is if we had a 15004 * packet that was either a DL_UNITDATA_IND or 15005 * an M_CTL for an IPsec accelerated packet. 15006 * 15007 * In either case, the first_mp will point to 15008 * the leading M_PROTO or M_CTL. 15009 */ 15010 ASSERT(first_mp != NULL); 15011 } else if (mhip != NULL) { 15012 /* 15013 * ll_multicast is set here so that it is ready 15014 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15015 * manipulates ll_multicast in the same fashion when 15016 * called from ip_rput_process_notdata. 15017 */ 15018 switch (mhip->mhi_dsttype) { 15019 case MAC_ADDRTYPE_MULTICAST : 15020 ll_multicast = HPE_MULTICAST; 15021 break; 15022 case MAC_ADDRTYPE_BROADCAST : 15023 ll_multicast = HPE_BROADCAST; 15024 break; 15025 default : 15026 break; 15027 } 15028 } 15029 15030 /* Make sure its an M_DATA and that its aligned */ 15031 ASSERT(DB_TYPE(mp) == M_DATA); 15032 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15033 15034 ipha = (ipha_t *)mp->b_rptr; 15035 len = mp->b_wptr - rptr; 15036 pkt_len = ntohs(ipha->ipha_length); 15037 15038 /* 15039 * We must count all incoming packets, even if they end 15040 * up being dropped later on. 15041 */ 15042 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15043 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15044 15045 /* multiple mblk or too short */ 15046 len -= pkt_len; 15047 if (len != 0) { 15048 /* 15049 * Make sure we have data length consistent 15050 * with the IP header. 15051 */ 15052 if (mp->b_cont == NULL) { 15053 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15054 BUMP_MIB(ill->ill_ip_mib, 15055 ipIfStatsInHdrErrors); 15056 ip2dbg(("ip_input: drop pkt\n")); 15057 freemsg(mp); 15058 continue; 15059 } 15060 mp->b_wptr = rptr + pkt_len; 15061 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15062 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15063 BUMP_MIB(ill->ill_ip_mib, 15064 ipIfStatsInHdrErrors); 15065 ip2dbg(("ip_input: drop pkt\n")); 15066 freemsg(mp); 15067 continue; 15068 } 15069 (void) adjmsg(mp, -len); 15070 IP_STAT(ipst, ip_multimblk3); 15071 } 15072 } 15073 15074 /* Obtain the dst of the current packet */ 15075 dst = ipha->ipha_dst; 15076 15077 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15078 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15079 ipha, ip6_t *, NULL, int, 0); 15080 15081 /* 15082 * The following test for loopback is faster than 15083 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15084 * operations. 15085 * Note that these addresses are always in network byte order 15086 */ 15087 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15088 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15090 freemsg(mp); 15091 continue; 15092 } 15093 15094 /* 15095 * The event for packets being received from a 'physical' 15096 * interface is placed after validation of the source and/or 15097 * destination address as being local so that packets can be 15098 * redirected to loopback addresses using ipnat. 15099 */ 15100 DTRACE_PROBE4(ip4__physical__in__start, 15101 ill_t *, ill, ill_t *, NULL, 15102 ipha_t *, ipha, mblk_t *, first_mp); 15103 15104 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15105 ipst->ips_ipv4firewall_physical_in, 15106 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15107 15108 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15109 15110 if (first_mp == NULL) { 15111 continue; 15112 } 15113 dst = ipha->ipha_dst; 15114 15115 /* 15116 * Attach any necessary label information to 15117 * this packet 15118 */ 15119 if (is_system_labeled() && 15120 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15122 freemsg(mp); 15123 continue; 15124 } 15125 15126 /* 15127 * Reuse the cached ire only if the ipha_dst of the previous 15128 * packet is the same as the current packet AND it is not 15129 * INADDR_ANY. 15130 */ 15131 if (!(dst == prev_dst && dst != INADDR_ANY) && 15132 (ire != NULL)) { 15133 ire_refrele(ire); 15134 ire = NULL; 15135 } 15136 opt_len = ipha->ipha_version_and_hdr_length - 15137 IP_SIMPLE_HDR_VERSION; 15138 15139 /* 15140 * Check to see if we can take the fastpath. 15141 * That is possible if the following conditions are met 15142 * o Tsol disabled 15143 * o CGTP disabled 15144 * o ipp_action_count is 0 15145 * o no options in the packet 15146 * o not a RSVP packet 15147 * o not a multicast packet 15148 * o ill not in IP_DHCPINIT_IF mode 15149 */ 15150 if (!is_system_labeled() && 15151 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15152 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15153 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15154 if (ire == NULL) 15155 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15156 ipst); 15157 15158 /* incoming packet is for forwarding */ 15159 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15160 ire = ip_fast_forward(ire, dst, ill, mp); 15161 continue; 15162 } 15163 /* incoming packet is for local consumption */ 15164 if (ire->ire_type & IRE_LOCAL) 15165 goto local; 15166 } 15167 15168 /* 15169 * Disable ire caching for anything more complex 15170 * than the simple fast path case we checked for above. 15171 */ 15172 if (ire != NULL) { 15173 ire_refrele(ire); 15174 ire = NULL; 15175 } 15176 15177 /* 15178 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15179 * server to unicast DHCP packets to a DHCP client using the 15180 * IP address it is offering to the client. This can be 15181 * disabled through the "broadcast bit", but not all DHCP 15182 * servers honor that bit. Therefore, to interoperate with as 15183 * many DHCP servers as possible, the DHCP client allows the 15184 * server to unicast, but we treat those packets as broadcast 15185 * here. Note that we don't rewrite the packet itself since 15186 * (a) that would mess up the checksums and (b) the DHCP 15187 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15188 * hand it the packet regardless. 15189 */ 15190 if (ill->ill_dhcpinit != 0 && 15191 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15192 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15193 udpha_t *udpha; 15194 15195 /* 15196 * Reload ipha since pullupmsg() can change b_rptr. 15197 */ 15198 ipha = (ipha_t *)mp->b_rptr; 15199 udpha = (udpha_t *)&ipha[1]; 15200 15201 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15202 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15203 mblk_t *, mp); 15204 dst = INADDR_BROADCAST; 15205 } 15206 } 15207 15208 /* Full-blown slow path */ 15209 if (opt_len != 0) { 15210 if (len != 0) 15211 IP_STAT(ipst, ip_multimblk4); 15212 else 15213 IP_STAT(ipst, ip_ipoptions); 15214 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15215 &dst, ipst)) 15216 continue; 15217 } 15218 15219 /* 15220 * Invoke the CGTP (multirouting) filtering module to process 15221 * the incoming packet. Packets identified as duplicates 15222 * must be discarded. Filtering is active only if the 15223 * the ip_cgtp_filter ndd variable is non-zero. 15224 */ 15225 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15226 if (ipst->ips_ip_cgtp_filter && 15227 ipst->ips_ip_cgtp_filter_ops != NULL) { 15228 netstackid_t stackid; 15229 15230 stackid = ipst->ips_netstack->netstack_stackid; 15231 cgtp_flt_pkt = 15232 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15233 ill->ill_phyint->phyint_ifindex, mp); 15234 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15235 freemsg(first_mp); 15236 continue; 15237 } 15238 } 15239 15240 /* 15241 * If rsvpd is running, let RSVP daemon handle its processing 15242 * and forwarding of RSVP multicast/unicast packets. 15243 * If rsvpd is not running but mrouted is running, RSVP 15244 * multicast packets are forwarded as multicast traffic 15245 * and RSVP unicast packets are forwarded by unicast router. 15246 * If neither rsvpd nor mrouted is running, RSVP multicast 15247 * packets are not forwarded, but the unicast packets are 15248 * forwarded like unicast traffic. 15249 */ 15250 if (ipha->ipha_protocol == IPPROTO_RSVP && 15251 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15252 NULL) { 15253 /* RSVP packet and rsvpd running. Treat as ours */ 15254 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15255 /* 15256 * This assumes that we deliver to all streams for 15257 * multicast and broadcast packets. 15258 * We have to force ll_multicast to 1 to handle the 15259 * M_DATA messages passed in from ip_mroute_decap. 15260 */ 15261 dst = INADDR_BROADCAST; 15262 ll_multicast = 1; 15263 } else if (CLASSD(dst)) { 15264 /* packet is multicast */ 15265 mp->b_next = NULL; 15266 if (ip_rput_process_multicast(q, mp, ill, ipha, 15267 &ll_multicast, &dst)) 15268 continue; 15269 } 15270 15271 if (ire == NULL) { 15272 ire = ire_cache_lookup(dst, ALL_ZONES, 15273 MBLK_GETLABEL(mp), ipst); 15274 } 15275 15276 if (ire != NULL && ire->ire_stq != NULL && 15277 ire->ire_zoneid != GLOBAL_ZONEID && 15278 ire->ire_zoneid != ALL_ZONES) { 15279 /* 15280 * Should only use IREs that are visible from the 15281 * global zone for forwarding. 15282 */ 15283 ire_refrele(ire); 15284 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15285 MBLK_GETLABEL(mp), ipst); 15286 } 15287 15288 if (ire == NULL) { 15289 /* 15290 * No IRE for this destination, so it can't be for us. 15291 * Unless we are forwarding, drop the packet. 15292 * We have to let source routed packets through 15293 * since we don't yet know if they are 'ping -l' 15294 * packets i.e. if they will go out over the 15295 * same interface as they came in on. 15296 */ 15297 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15298 if (ire == NULL) 15299 continue; 15300 } 15301 15302 /* 15303 * Broadcast IRE may indicate either broadcast or 15304 * multicast packet 15305 */ 15306 if (ire->ire_type == IRE_BROADCAST) { 15307 /* 15308 * Skip broadcast checks if packet is UDP multicast; 15309 * we'd rather not enter ip_rput_process_broadcast() 15310 * unless the packet is broadcast for real, since 15311 * that routine is a no-op for multicast. 15312 */ 15313 if (ipha->ipha_protocol != IPPROTO_UDP || 15314 !CLASSD(ipha->ipha_dst)) { 15315 ire = ip_rput_process_broadcast(&q, mp, 15316 ire, ipha, ill, dst, cgtp_flt_pkt, 15317 ll_multicast); 15318 if (ire == NULL) 15319 continue; 15320 } 15321 } else if (ire->ire_stq != NULL) { 15322 /* fowarding? */ 15323 ip_rput_process_forward(q, mp, ire, ipha, ill, 15324 ll_multicast); 15325 /* ip_rput_process_forward consumed the packet */ 15326 continue; 15327 } 15328 15329 local: 15330 /* 15331 * If the queue in the ire is different to the ingress queue 15332 * then we need to check to see if we can accept the packet. 15333 * Note that for multicast packets and broadcast packets sent 15334 * to a broadcast address which is shared between multiple 15335 * interfaces we should not do this since we just got a random 15336 * broadcast ire. 15337 */ 15338 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15339 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15340 ill)) == NULL) { 15341 /* Drop packet */ 15342 BUMP_MIB(ill->ill_ip_mib, 15343 ipIfStatsForwProhibits); 15344 freemsg(mp); 15345 continue; 15346 } 15347 if (ire->ire_rfq != NULL) 15348 q = ire->ire_rfq; 15349 } 15350 15351 switch (ipha->ipha_protocol) { 15352 case IPPROTO_TCP: 15353 ASSERT(first_mp == mp); 15354 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15355 mp, 0, q, ip_ring)) != NULL) { 15356 if (curr_sqp == NULL) { 15357 curr_sqp = GET_SQUEUE(mp); 15358 ASSERT(cnt == 0); 15359 cnt++; 15360 head = tail = mp; 15361 } else if (curr_sqp == GET_SQUEUE(mp)) { 15362 ASSERT(tail != NULL); 15363 cnt++; 15364 tail->b_next = mp; 15365 tail = mp; 15366 } else { 15367 /* 15368 * A different squeue. Send the 15369 * chain for the previous squeue on 15370 * its way. This shouldn't happen 15371 * often unless interrupt binding 15372 * changes. 15373 */ 15374 IP_STAT(ipst, ip_input_multi_squeue); 15375 squeue_enter_chain(curr_sqp, head, 15376 tail, cnt, SQTAG_IP_INPUT); 15377 curr_sqp = GET_SQUEUE(mp); 15378 head = mp; 15379 tail = mp; 15380 cnt = 1; 15381 } 15382 } 15383 continue; 15384 case IPPROTO_UDP: 15385 ASSERT(first_mp == mp); 15386 ip_udp_input(q, mp, ipha, ire, ill); 15387 continue; 15388 case IPPROTO_SCTP: 15389 ASSERT(first_mp == mp); 15390 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15391 q, dst); 15392 /* ire has been released by ip_sctp_input */ 15393 ire = NULL; 15394 continue; 15395 default: 15396 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15397 continue; 15398 } 15399 } 15400 15401 if (ire != NULL) 15402 ire_refrele(ire); 15403 15404 if (head != NULL) 15405 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15406 15407 /* 15408 * This code is there just to make netperf/ttcp look good. 15409 * 15410 * Its possible that after being in polling mode (and having cleared 15411 * the backlog), squeues have turned the interrupt frequency higher 15412 * to improve latency at the expense of more CPU utilization (less 15413 * packets per interrupts or more number of interrupts). Workloads 15414 * like ttcp/netperf do manage to tickle polling once in a while 15415 * but for the remaining time, stay in higher interrupt mode since 15416 * their packet arrival rate is pretty uniform and this shows up 15417 * as higher CPU utilization. Since people care about CPU utilization 15418 * while running netperf/ttcp, turn the interrupt frequency back to 15419 * normal/default if polling has not been used in ip_poll_normal_ticks. 15420 */ 15421 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15422 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15423 ip_ring->rr_poll_state &= ~ILL_POLLING; 15424 ip_ring->rr_blank(ip_ring->rr_handle, 15425 ip_ring->rr_normal_blank_time, 15426 ip_ring->rr_normal_pkt_cnt); 15427 } 15428 } 15429 15430 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15431 "ip_input_end: q %p (%S)", q, "end"); 15432 #undef rptr 15433 } 15434 15435 static void 15436 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15437 t_uscalar_t err) 15438 { 15439 if (dl_err == DL_SYSERR) { 15440 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15441 "%s: %s failed: DL_SYSERR (errno %u)\n", 15442 ill->ill_name, dl_primstr(prim), err); 15443 return; 15444 } 15445 15446 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15447 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15448 dl_errstr(dl_err)); 15449 } 15450 15451 /* 15452 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15453 * than DL_UNITDATA_IND messages. If we need to process this message 15454 * exclusively, we call qwriter_ip, in which case we also need to call 15455 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15456 */ 15457 void 15458 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15459 { 15460 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15461 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15462 ill_t *ill = q->q_ptr; 15463 t_uscalar_t prim = dloa->dl_primitive; 15464 t_uscalar_t reqprim = DL_PRIM_INVAL; 15465 15466 ip1dbg(("ip_rput_dlpi")); 15467 15468 /* 15469 * If we received an ACK but didn't send a request for it, then it 15470 * can't be part of any pending operation; discard up-front. 15471 */ 15472 switch (prim) { 15473 case DL_ERROR_ACK: 15474 reqprim = dlea->dl_error_primitive; 15475 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15476 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15477 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15478 dlea->dl_unix_errno)); 15479 break; 15480 case DL_OK_ACK: 15481 reqprim = dloa->dl_correct_primitive; 15482 break; 15483 case DL_INFO_ACK: 15484 reqprim = DL_INFO_REQ; 15485 break; 15486 case DL_BIND_ACK: 15487 reqprim = DL_BIND_REQ; 15488 break; 15489 case DL_PHYS_ADDR_ACK: 15490 reqprim = DL_PHYS_ADDR_REQ; 15491 break; 15492 case DL_NOTIFY_ACK: 15493 reqprim = DL_NOTIFY_REQ; 15494 break; 15495 case DL_CONTROL_ACK: 15496 reqprim = DL_CONTROL_REQ; 15497 break; 15498 case DL_CAPABILITY_ACK: 15499 reqprim = DL_CAPABILITY_REQ; 15500 break; 15501 } 15502 15503 if (prim != DL_NOTIFY_IND) { 15504 if (reqprim == DL_PRIM_INVAL || 15505 !ill_dlpi_pending(ill, reqprim)) { 15506 /* Not a DLPI message we support or expected */ 15507 freemsg(mp); 15508 return; 15509 } 15510 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15511 dl_primstr(reqprim))); 15512 } 15513 15514 switch (reqprim) { 15515 case DL_UNBIND_REQ: 15516 /* 15517 * NOTE: we mark the unbind as complete even if we got a 15518 * DL_ERROR_ACK, since there's not much else we can do. 15519 */ 15520 mutex_enter(&ill->ill_lock); 15521 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15522 cv_signal(&ill->ill_cv); 15523 mutex_exit(&ill->ill_lock); 15524 break; 15525 15526 case DL_ENABMULTI_REQ: 15527 if (prim == DL_OK_ACK) { 15528 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15529 ill->ill_dlpi_multicast_state = IDS_OK; 15530 } 15531 break; 15532 } 15533 15534 /* 15535 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15536 * need to become writer to continue to process it. Because an 15537 * exclusive operation doesn't complete until replies to all queued 15538 * DLPI messages have been received, we know we're in the middle of an 15539 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15540 * 15541 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15542 * Since this is on the ill stream we unconditionally bump up the 15543 * refcount without doing ILL_CAN_LOOKUP(). 15544 */ 15545 ill_refhold(ill); 15546 if (prim == DL_NOTIFY_IND) 15547 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15548 else 15549 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15550 } 15551 15552 /* 15553 * Handling of DLPI messages that require exclusive access to the ipsq. 15554 * 15555 * Need to do ill_pending_mp_release on ioctl completion, which could 15556 * happen here. (along with mi_copy_done) 15557 */ 15558 /* ARGSUSED */ 15559 static void 15560 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15561 { 15562 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15563 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15564 int err = 0; 15565 ill_t *ill; 15566 ipif_t *ipif = NULL; 15567 mblk_t *mp1 = NULL; 15568 conn_t *connp = NULL; 15569 t_uscalar_t paddrreq; 15570 mblk_t *mp_hw; 15571 boolean_t success; 15572 boolean_t ioctl_aborted = B_FALSE; 15573 boolean_t log = B_TRUE; 15574 ip_stack_t *ipst; 15575 15576 ip1dbg(("ip_rput_dlpi_writer ..")); 15577 ill = (ill_t *)q->q_ptr; 15578 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15579 15580 ASSERT(IAM_WRITER_ILL(ill)); 15581 15582 ipst = ill->ill_ipst; 15583 15584 /* 15585 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15586 * both are null or non-null. However we can assert that only 15587 * after grabbing the ipsq_lock. So we don't make any assertion 15588 * here and in other places in the code. 15589 */ 15590 ipif = ipsq->ipsq_pending_ipif; 15591 /* 15592 * The current ioctl could have been aborted by the user and a new 15593 * ioctl to bring up another ill could have started. We could still 15594 * get a response from the driver later. 15595 */ 15596 if (ipif != NULL && ipif->ipif_ill != ill) 15597 ioctl_aborted = B_TRUE; 15598 15599 switch (dloa->dl_primitive) { 15600 case DL_ERROR_ACK: 15601 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15602 dl_primstr(dlea->dl_error_primitive))); 15603 15604 switch (dlea->dl_error_primitive) { 15605 case DL_DISABMULTI_REQ: 15606 if (!ill->ill_isv6) 15607 ipsq_current_finish(ipsq); 15608 ill_dlpi_done(ill, dlea->dl_error_primitive); 15609 break; 15610 case DL_PROMISCON_REQ: 15611 case DL_PROMISCOFF_REQ: 15612 case DL_UNBIND_REQ: 15613 case DL_ATTACH_REQ: 15614 case DL_INFO_REQ: 15615 ill_dlpi_done(ill, dlea->dl_error_primitive); 15616 break; 15617 case DL_NOTIFY_REQ: 15618 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15619 log = B_FALSE; 15620 break; 15621 case DL_PHYS_ADDR_REQ: 15622 /* 15623 * For IPv6 only, there are two additional 15624 * phys_addr_req's sent to the driver to get the 15625 * IPv6 token and lla. This allows IP to acquire 15626 * the hardware address format for a given interface 15627 * without having built in knowledge of the hardware 15628 * address. ill_phys_addr_pend keeps track of the last 15629 * DL_PAR sent so we know which response we are 15630 * dealing with. ill_dlpi_done will update 15631 * ill_phys_addr_pend when it sends the next req. 15632 * We don't complete the IOCTL until all three DL_PARs 15633 * have been attempted, so set *_len to 0 and break. 15634 */ 15635 paddrreq = ill->ill_phys_addr_pend; 15636 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15637 if (paddrreq == DL_IPV6_TOKEN) { 15638 ill->ill_token_length = 0; 15639 log = B_FALSE; 15640 break; 15641 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15642 ill->ill_nd_lla_len = 0; 15643 log = B_FALSE; 15644 break; 15645 } 15646 /* 15647 * Something went wrong with the DL_PHYS_ADDR_REQ. 15648 * We presumably have an IOCTL hanging out waiting 15649 * for completion. Find it and complete the IOCTL 15650 * with the error noted. 15651 * However, ill_dl_phys was called on an ill queue 15652 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15653 * set. But the ioctl is known to be pending on ill_wq. 15654 */ 15655 if (!ill->ill_ifname_pending) 15656 break; 15657 ill->ill_ifname_pending = 0; 15658 if (!ioctl_aborted) 15659 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15660 if (mp1 != NULL) { 15661 /* 15662 * This operation (SIOCSLIFNAME) must have 15663 * happened on the ill. Assert there is no conn 15664 */ 15665 ASSERT(connp == NULL); 15666 q = ill->ill_wq; 15667 } 15668 break; 15669 case DL_BIND_REQ: 15670 ill_dlpi_done(ill, DL_BIND_REQ); 15671 if (ill->ill_ifname_pending) 15672 break; 15673 /* 15674 * Something went wrong with the bind. We presumably 15675 * have an IOCTL hanging out waiting for completion. 15676 * Find it, take down the interface that was coming 15677 * up, and complete the IOCTL with the error noted. 15678 */ 15679 if (!ioctl_aborted) 15680 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15681 if (mp1 != NULL) { 15682 /* 15683 * This operation (SIOCSLIFFLAGS) must have 15684 * happened from a conn. 15685 */ 15686 ASSERT(connp != NULL); 15687 q = CONNP_TO_WQ(connp); 15688 if (ill->ill_move_in_progress) { 15689 ILL_CLEAR_MOVE(ill); 15690 } 15691 (void) ipif_down(ipif, NULL, NULL); 15692 /* error is set below the switch */ 15693 } 15694 break; 15695 case DL_ENABMULTI_REQ: 15696 if (!ill->ill_isv6) 15697 ipsq_current_finish(ipsq); 15698 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15699 15700 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15701 ill->ill_dlpi_multicast_state = IDS_FAILED; 15702 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15703 ipif_t *ipif; 15704 15705 printf("ip: joining multicasts failed (%d)" 15706 " on %s - will use link layer " 15707 "broadcasts for multicast\n", 15708 dlea->dl_errno, ill->ill_name); 15709 15710 /* 15711 * Set up the multicast mapping alone. 15712 * writer, so ok to access ill->ill_ipif 15713 * without any lock. 15714 */ 15715 ipif = ill->ill_ipif; 15716 mutex_enter(&ill->ill_phyint->phyint_lock); 15717 ill->ill_phyint->phyint_flags |= 15718 PHYI_MULTI_BCAST; 15719 mutex_exit(&ill->ill_phyint->phyint_lock); 15720 15721 if (!ill->ill_isv6) { 15722 (void) ipif_arp_setup_multicast(ipif, 15723 NULL); 15724 } else { 15725 (void) ipif_ndp_setup_multicast(ipif, 15726 NULL); 15727 } 15728 } 15729 freemsg(mp); /* Don't want to pass this up */ 15730 return; 15731 15732 case DL_CAPABILITY_REQ: 15733 case DL_CONTROL_REQ: 15734 ill_dlpi_done(ill, dlea->dl_error_primitive); 15735 ill->ill_dlpi_capab_state = IDS_FAILED; 15736 freemsg(mp); 15737 return; 15738 } 15739 /* 15740 * Note the error for IOCTL completion (mp1 is set when 15741 * ready to complete ioctl). If ill_ifname_pending_err is 15742 * set, an error occured during plumbing (ill_ifname_pending), 15743 * so we want to report that error. 15744 * 15745 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15746 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15747 * expected to get errack'd if the driver doesn't support 15748 * these flags (e.g. ethernet). log will be set to B_FALSE 15749 * if these error conditions are encountered. 15750 */ 15751 if (mp1 != NULL) { 15752 if (ill->ill_ifname_pending_err != 0) { 15753 err = ill->ill_ifname_pending_err; 15754 ill->ill_ifname_pending_err = 0; 15755 } else { 15756 err = dlea->dl_unix_errno ? 15757 dlea->dl_unix_errno : ENXIO; 15758 } 15759 /* 15760 * If we're plumbing an interface and an error hasn't already 15761 * been saved, set ill_ifname_pending_err to the error passed 15762 * up. Ignore the error if log is B_FALSE (see comment above). 15763 */ 15764 } else if (log && ill->ill_ifname_pending && 15765 ill->ill_ifname_pending_err == 0) { 15766 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15767 dlea->dl_unix_errno : ENXIO; 15768 } 15769 15770 if (log) 15771 ip_dlpi_error(ill, dlea->dl_error_primitive, 15772 dlea->dl_errno, dlea->dl_unix_errno); 15773 break; 15774 case DL_CAPABILITY_ACK: 15775 /* Call a routine to handle this one. */ 15776 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15777 ill_capability_ack(ill, mp); 15778 15779 /* 15780 * If the ack is due to renegotiation, we will need to send 15781 * a new CAPABILITY_REQ to start the renegotiation. 15782 */ 15783 if (ill->ill_capab_reneg) { 15784 ill->ill_capab_reneg = B_FALSE; 15785 ill_capability_probe(ill); 15786 } 15787 break; 15788 case DL_CONTROL_ACK: 15789 /* We treat all of these as "fire and forget" */ 15790 ill_dlpi_done(ill, DL_CONTROL_REQ); 15791 break; 15792 case DL_INFO_ACK: 15793 /* Call a routine to handle this one. */ 15794 ill_dlpi_done(ill, DL_INFO_REQ); 15795 ip_ll_subnet_defaults(ill, mp); 15796 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15797 return; 15798 case DL_BIND_ACK: 15799 /* 15800 * We should have an IOCTL waiting on this unless 15801 * sent by ill_dl_phys, in which case just return 15802 */ 15803 ill_dlpi_done(ill, DL_BIND_REQ); 15804 if (ill->ill_ifname_pending) 15805 break; 15806 15807 if (!ioctl_aborted) 15808 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15809 if (mp1 == NULL) 15810 break; 15811 /* 15812 * Because mp1 was added by ill_dl_up(), and it always 15813 * passes a valid connp, connp must be valid here. 15814 */ 15815 ASSERT(connp != NULL); 15816 q = CONNP_TO_WQ(connp); 15817 15818 /* 15819 * We are exclusive. So nothing can change even after 15820 * we get the pending mp. If need be we can put it back 15821 * and restart, as in calling ipif_arp_up() below. 15822 */ 15823 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15824 15825 mutex_enter(&ill->ill_lock); 15826 ill->ill_dl_up = 1; 15827 (void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0); 15828 mutex_exit(&ill->ill_lock); 15829 15830 /* 15831 * Now bring up the resolver; when that is complete, we'll 15832 * create IREs. Note that we intentionally mirror what 15833 * ipif_up() would have done, because we got here by way of 15834 * ill_dl_up(), which stopped ipif_up()'s processing. 15835 */ 15836 if (ill->ill_isv6) { 15837 /* 15838 * v6 interfaces. 15839 * Unlike ARP which has to do another bind 15840 * and attach, once we get here we are 15841 * done with NDP. Except in the case of 15842 * ILLF_XRESOLV, in which case we send an 15843 * AR_INTERFACE_UP to the external resolver. 15844 * If all goes well, the ioctl will complete 15845 * in ip_rput(). If there's an error, we 15846 * complete it here. 15847 */ 15848 if ((err = ipif_ndp_up(ipif)) == 0) { 15849 if (ill->ill_flags & ILLF_XRESOLV) { 15850 mutex_enter(&connp->conn_lock); 15851 mutex_enter(&ill->ill_lock); 15852 success = ipsq_pending_mp_add( 15853 connp, ipif, q, mp1, 0); 15854 mutex_exit(&ill->ill_lock); 15855 mutex_exit(&connp->conn_lock); 15856 if (success) { 15857 err = ipif_resolver_up(ipif, 15858 Res_act_initial); 15859 if (err == EINPROGRESS) { 15860 freemsg(mp); 15861 return; 15862 } 15863 ASSERT(err != 0); 15864 mp1 = ipsq_pending_mp_get(ipsq, 15865 &connp); 15866 ASSERT(mp1 != NULL); 15867 } else { 15868 /* conn has started closing */ 15869 err = EINTR; 15870 } 15871 } else { /* Non XRESOLV interface */ 15872 (void) ipif_resolver_up(ipif, 15873 Res_act_initial); 15874 err = ipif_up_done_v6(ipif); 15875 } 15876 } 15877 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15878 /* 15879 * ARP and other v4 external resolvers. 15880 * Leave the pending mblk intact so that 15881 * the ioctl completes in ip_rput(). 15882 */ 15883 mutex_enter(&connp->conn_lock); 15884 mutex_enter(&ill->ill_lock); 15885 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15886 mutex_exit(&ill->ill_lock); 15887 mutex_exit(&connp->conn_lock); 15888 if (success) { 15889 err = ipif_resolver_up(ipif, Res_act_initial); 15890 if (err == EINPROGRESS) { 15891 freemsg(mp); 15892 return; 15893 } 15894 ASSERT(err != 0); 15895 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15896 } else { 15897 /* The conn has started closing */ 15898 err = EINTR; 15899 } 15900 } else { 15901 /* 15902 * This one is complete. Reply to pending ioctl. 15903 */ 15904 (void) ipif_resolver_up(ipif, Res_act_initial); 15905 err = ipif_up_done(ipif); 15906 } 15907 15908 if ((err == 0) && (ill->ill_up_ipifs)) { 15909 err = ill_up_ipifs(ill, q, mp1); 15910 if (err == EINPROGRESS) { 15911 freemsg(mp); 15912 return; 15913 } 15914 } 15915 15916 if (ill->ill_up_ipifs) { 15917 ill_group_cleanup(ill); 15918 } 15919 15920 break; 15921 case DL_NOTIFY_IND: { 15922 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15923 ire_t *ire; 15924 boolean_t need_ire_walk_v4 = B_FALSE; 15925 boolean_t need_ire_walk_v6 = B_FALSE; 15926 15927 switch (notify->dl_notification) { 15928 case DL_NOTE_PHYS_ADDR: 15929 err = ill_set_phys_addr(ill, mp); 15930 break; 15931 15932 case DL_NOTE_FASTPATH_FLUSH: 15933 ill_fastpath_flush(ill); 15934 break; 15935 15936 case DL_NOTE_SDU_SIZE: 15937 /* 15938 * Change the MTU size of the interface, of all 15939 * attached ipif's, and of all relevant ire's. The 15940 * new value's a uint32_t at notify->dl_data. 15941 * Mtu change Vs. new ire creation - protocol below. 15942 * 15943 * a Mark the ipif as IPIF_CHANGING. 15944 * b Set the new mtu in the ipif. 15945 * c Change the ire_max_frag on all affected ires 15946 * d Unmark the IPIF_CHANGING 15947 * 15948 * To see how the protocol works, assume an interface 15949 * route is also being added simultaneously by 15950 * ip_rt_add and let 'ipif' be the ipif referenced by 15951 * the ire. If the ire is created before step a, 15952 * it will be cleaned up by step c. If the ire is 15953 * created after step d, it will see the new value of 15954 * ipif_mtu. Any attempt to create the ire between 15955 * steps a to d will fail because of the IPIF_CHANGING 15956 * flag. Note that ire_create() is passed a pointer to 15957 * the ipif_mtu, and not the value. During ire_add 15958 * under the bucket lock, the ire_max_frag of the 15959 * new ire being created is set from the ipif/ire from 15960 * which it is being derived. 15961 */ 15962 mutex_enter(&ill->ill_lock); 15963 ill->ill_max_frag = (uint_t)notify->dl_data; 15964 15965 /* 15966 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15967 * leave it alone 15968 */ 15969 if (ill->ill_mtu_userspecified) { 15970 mutex_exit(&ill->ill_lock); 15971 break; 15972 } 15973 ill->ill_max_mtu = ill->ill_max_frag; 15974 if (ill->ill_isv6) { 15975 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15976 ill->ill_max_mtu = IPV6_MIN_MTU; 15977 } else { 15978 if (ill->ill_max_mtu < IP_MIN_MTU) 15979 ill->ill_max_mtu = IP_MIN_MTU; 15980 } 15981 for (ipif = ill->ill_ipif; ipif != NULL; 15982 ipif = ipif->ipif_next) { 15983 /* 15984 * Don't override the mtu if the user 15985 * has explicitly set it. 15986 */ 15987 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15988 continue; 15989 ipif->ipif_mtu = (uint_t)notify->dl_data; 15990 if (ipif->ipif_isv6) 15991 ire = ipif_to_ire_v6(ipif); 15992 else 15993 ire = ipif_to_ire(ipif); 15994 if (ire != NULL) { 15995 ire->ire_max_frag = ipif->ipif_mtu; 15996 ire_refrele(ire); 15997 } 15998 if (ipif->ipif_flags & IPIF_UP) { 15999 if (ill->ill_isv6) 16000 need_ire_walk_v6 = B_TRUE; 16001 else 16002 need_ire_walk_v4 = B_TRUE; 16003 } 16004 } 16005 mutex_exit(&ill->ill_lock); 16006 if (need_ire_walk_v4) 16007 ire_walk_v4(ill_mtu_change, (char *)ill, 16008 ALL_ZONES, ipst); 16009 if (need_ire_walk_v6) 16010 ire_walk_v6(ill_mtu_change, (char *)ill, 16011 ALL_ZONES, ipst); 16012 break; 16013 case DL_NOTE_LINK_UP: 16014 case DL_NOTE_LINK_DOWN: { 16015 /* 16016 * We are writer. ill / phyint / ipsq assocs stable. 16017 * The RUNNING flag reflects the state of the link. 16018 */ 16019 phyint_t *phyint = ill->ill_phyint; 16020 uint64_t new_phyint_flags; 16021 boolean_t changed = B_FALSE; 16022 boolean_t went_up; 16023 16024 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16025 mutex_enter(&phyint->phyint_lock); 16026 new_phyint_flags = went_up ? 16027 phyint->phyint_flags | PHYI_RUNNING : 16028 phyint->phyint_flags & ~PHYI_RUNNING; 16029 if (new_phyint_flags != phyint->phyint_flags) { 16030 phyint->phyint_flags = new_phyint_flags; 16031 changed = B_TRUE; 16032 } 16033 mutex_exit(&phyint->phyint_lock); 16034 /* 16035 * ill_restart_dad handles the DAD restart and routing 16036 * socket notification logic. 16037 */ 16038 if (changed) { 16039 ill_restart_dad(phyint->phyint_illv4, went_up); 16040 ill_restart_dad(phyint->phyint_illv6, went_up); 16041 } 16042 break; 16043 } 16044 case DL_NOTE_PROMISC_ON_PHYS: 16045 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16046 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16047 mutex_enter(&ill->ill_lock); 16048 ill->ill_promisc_on_phys = B_TRUE; 16049 mutex_exit(&ill->ill_lock); 16050 break; 16051 case DL_NOTE_PROMISC_OFF_PHYS: 16052 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16053 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16054 mutex_enter(&ill->ill_lock); 16055 ill->ill_promisc_on_phys = B_FALSE; 16056 mutex_exit(&ill->ill_lock); 16057 break; 16058 case DL_NOTE_CAPAB_RENEG: 16059 /* 16060 * Something changed on the driver side. 16061 * It wants us to renegotiate the capabilities 16062 * on this ill. One possible cause is the aggregation 16063 * interface under us where a port got added or 16064 * went away. 16065 * 16066 * If the capability negotiation is already done 16067 * or is in progress, reset the capabilities and 16068 * mark the ill's ill_capab_reneg to be B_TRUE, 16069 * so that when the ack comes back, we can start 16070 * the renegotiation process. 16071 * 16072 * Note that if ill_capab_reneg is already B_TRUE 16073 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16074 * the capability resetting request has been sent 16075 * and the renegotiation has not been started yet; 16076 * nothing needs to be done in this case. 16077 */ 16078 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16079 ill_capability_reset(ill); 16080 ill->ill_capab_reneg = B_TRUE; 16081 } 16082 break; 16083 default: 16084 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16085 "type 0x%x for DL_NOTIFY_IND\n", 16086 notify->dl_notification)); 16087 break; 16088 } 16089 16090 /* 16091 * As this is an asynchronous operation, we 16092 * should not call ill_dlpi_done 16093 */ 16094 break; 16095 } 16096 case DL_NOTIFY_ACK: { 16097 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16098 16099 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16100 ill->ill_note_link = 1; 16101 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16102 break; 16103 } 16104 case DL_PHYS_ADDR_ACK: { 16105 /* 16106 * As part of plumbing the interface via SIOCSLIFNAME, 16107 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16108 * whose answers we receive here. As each answer is received, 16109 * we call ill_dlpi_done() to dispatch the next request as 16110 * we're processing the current one. Once all answers have 16111 * been received, we use ipsq_pending_mp_get() to dequeue the 16112 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16113 * is invoked from an ill queue, conn_oper_pending_ill is not 16114 * available, but we know the ioctl is pending on ill_wq.) 16115 */ 16116 uint_t paddrlen, paddroff; 16117 16118 paddrreq = ill->ill_phys_addr_pend; 16119 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16120 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16121 16122 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16123 if (paddrreq == DL_IPV6_TOKEN) { 16124 /* 16125 * bcopy to low-order bits of ill_token 16126 * 16127 * XXX Temporary hack - currently, all known tokens 16128 * are 64 bits, so I'll cheat for the moment. 16129 */ 16130 bcopy(mp->b_rptr + paddroff, 16131 &ill->ill_token.s6_addr32[2], paddrlen); 16132 ill->ill_token_length = paddrlen; 16133 break; 16134 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16135 ASSERT(ill->ill_nd_lla_mp == NULL); 16136 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16137 mp = NULL; 16138 break; 16139 } 16140 16141 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16142 ASSERT(ill->ill_phys_addr_mp == NULL); 16143 if (!ill->ill_ifname_pending) 16144 break; 16145 ill->ill_ifname_pending = 0; 16146 if (!ioctl_aborted) 16147 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16148 if (mp1 != NULL) { 16149 ASSERT(connp == NULL); 16150 q = ill->ill_wq; 16151 } 16152 /* 16153 * If any error acks received during the plumbing sequence, 16154 * ill_ifname_pending_err will be set. Break out and send up 16155 * the error to the pending ioctl. 16156 */ 16157 if (ill->ill_ifname_pending_err != 0) { 16158 err = ill->ill_ifname_pending_err; 16159 ill->ill_ifname_pending_err = 0; 16160 break; 16161 } 16162 16163 ill->ill_phys_addr_mp = mp; 16164 ill->ill_phys_addr = mp->b_rptr + paddroff; 16165 mp = NULL; 16166 16167 /* 16168 * If paddrlen is zero, the DLPI provider doesn't support 16169 * physical addresses. The other two tests were historical 16170 * workarounds for bugs in our former PPP implementation, but 16171 * now other things have grown dependencies on them -- e.g., 16172 * the tun module specifies a dl_addr_length of zero in its 16173 * DL_BIND_ACK, but then specifies an incorrect value in its 16174 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16175 * but only after careful testing ensures that all dependent 16176 * broken DLPI providers have been fixed. 16177 */ 16178 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16179 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16180 ill->ill_phys_addr = NULL; 16181 } else if (paddrlen != ill->ill_phys_addr_length) { 16182 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16183 paddrlen, ill->ill_phys_addr_length)); 16184 err = EINVAL; 16185 break; 16186 } 16187 16188 if (ill->ill_nd_lla_mp == NULL) { 16189 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16190 err = ENOMEM; 16191 break; 16192 } 16193 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16194 } 16195 16196 /* 16197 * Set the interface token. If the zeroth interface address 16198 * is unspecified, then set it to the link local address. 16199 */ 16200 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16201 (void) ill_setdefaulttoken(ill); 16202 16203 ASSERT(ill->ill_ipif->ipif_id == 0); 16204 if (ipif != NULL && 16205 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16206 (void) ipif_setlinklocal(ipif); 16207 } 16208 break; 16209 } 16210 case DL_OK_ACK: 16211 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16212 dl_primstr((int)dloa->dl_correct_primitive), 16213 dloa->dl_correct_primitive)); 16214 switch (dloa->dl_correct_primitive) { 16215 case DL_ENABMULTI_REQ: 16216 case DL_DISABMULTI_REQ: 16217 if (!ill->ill_isv6) 16218 ipsq_current_finish(ipsq); 16219 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16220 break; 16221 case DL_PROMISCON_REQ: 16222 case DL_PROMISCOFF_REQ: 16223 case DL_UNBIND_REQ: 16224 case DL_ATTACH_REQ: 16225 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16226 break; 16227 } 16228 break; 16229 default: 16230 break; 16231 } 16232 16233 freemsg(mp); 16234 if (mp1 != NULL) { 16235 /* 16236 * The operation must complete without EINPROGRESS 16237 * since ipsq_pending_mp_get() has removed the mblk 16238 * from ipsq_pending_mp. Otherwise, the operation 16239 * will be stuck forever in the ipsq. 16240 */ 16241 ASSERT(err != EINPROGRESS); 16242 16243 switch (ipsq->ipsq_current_ioctl) { 16244 case 0: 16245 ipsq_current_finish(ipsq); 16246 break; 16247 16248 case SIOCLIFADDIF: 16249 case SIOCSLIFNAME: 16250 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16251 break; 16252 16253 default: 16254 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16255 break; 16256 } 16257 } 16258 } 16259 16260 /* 16261 * ip_rput_other is called by ip_rput to handle messages modifying the global 16262 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16263 */ 16264 /* ARGSUSED */ 16265 void 16266 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16267 { 16268 ill_t *ill; 16269 struct iocblk *iocp; 16270 mblk_t *mp1; 16271 conn_t *connp = NULL; 16272 16273 ip1dbg(("ip_rput_other ")); 16274 ill = (ill_t *)q->q_ptr; 16275 /* 16276 * This routine is not a writer in the case of SIOCGTUNPARAM 16277 * in which case ipsq is NULL. 16278 */ 16279 if (ipsq != NULL) { 16280 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16281 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16282 } 16283 16284 switch (mp->b_datap->db_type) { 16285 case M_ERROR: 16286 case M_HANGUP: 16287 /* 16288 * The device has a problem. We force the ILL down. It can 16289 * be brought up again manually using SIOCSIFFLAGS (via 16290 * ifconfig or equivalent). 16291 */ 16292 ASSERT(ipsq != NULL); 16293 if (mp->b_rptr < mp->b_wptr) 16294 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16295 if (ill->ill_error == 0) 16296 ill->ill_error = ENXIO; 16297 if (!ill_down_start(q, mp)) 16298 return; 16299 ipif_all_down_tail(ipsq, q, mp, NULL); 16300 break; 16301 case M_IOCACK: 16302 iocp = (struct iocblk *)mp->b_rptr; 16303 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16304 switch (iocp->ioc_cmd) { 16305 case SIOCSTUNPARAM: 16306 case OSIOCSTUNPARAM: 16307 ASSERT(ipsq != NULL); 16308 /* 16309 * Finish socket ioctl passed through to tun. 16310 * We should have an IOCTL waiting on this. 16311 */ 16312 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16313 if (ill->ill_isv6) { 16314 struct iftun_req *ta; 16315 16316 /* 16317 * if a source or destination is 16318 * being set, try and set the link 16319 * local address for the tunnel 16320 */ 16321 ta = (struct iftun_req *)mp->b_cont-> 16322 b_cont->b_rptr; 16323 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16324 ipif_set_tun_llink(ill, ta); 16325 } 16326 16327 } 16328 if (mp1 != NULL) { 16329 /* 16330 * Now copy back the b_next/b_prev used by 16331 * mi code for the mi_copy* functions. 16332 * See ip_sioctl_tunparam() for the reason. 16333 * Also protect against missing b_cont. 16334 */ 16335 if (mp->b_cont != NULL) { 16336 mp->b_cont->b_next = 16337 mp1->b_cont->b_next; 16338 mp->b_cont->b_prev = 16339 mp1->b_cont->b_prev; 16340 } 16341 inet_freemsg(mp1); 16342 ASSERT(connp != NULL); 16343 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16344 iocp->ioc_error, NO_COPYOUT, ipsq); 16345 } else { 16346 ASSERT(connp == NULL); 16347 putnext(q, mp); 16348 } 16349 break; 16350 case SIOCGTUNPARAM: 16351 case OSIOCGTUNPARAM: 16352 /* 16353 * This is really M_IOCDATA from the tunnel driver. 16354 * convert back and complete the ioctl. 16355 * We should have an IOCTL waiting on this. 16356 */ 16357 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16358 if (mp1) { 16359 /* 16360 * Now copy back the b_next/b_prev used by 16361 * mi code for the mi_copy* functions. 16362 * See ip_sioctl_tunparam() for the reason. 16363 * Also protect against missing b_cont. 16364 */ 16365 if (mp->b_cont != NULL) { 16366 mp->b_cont->b_next = 16367 mp1->b_cont->b_next; 16368 mp->b_cont->b_prev = 16369 mp1->b_cont->b_prev; 16370 } 16371 inet_freemsg(mp1); 16372 if (iocp->ioc_error == 0) 16373 mp->b_datap->db_type = M_IOCDATA; 16374 ASSERT(connp != NULL); 16375 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16376 iocp->ioc_error, COPYOUT, NULL); 16377 } else { 16378 ASSERT(connp == NULL); 16379 putnext(q, mp); 16380 } 16381 break; 16382 default: 16383 break; 16384 } 16385 break; 16386 case M_IOCNAK: 16387 iocp = (struct iocblk *)mp->b_rptr; 16388 16389 switch (iocp->ioc_cmd) { 16390 int mode; 16391 16392 case DL_IOC_HDR_INFO: 16393 /* 16394 * If this was the first attempt turn of the 16395 * fastpath probing. 16396 */ 16397 mutex_enter(&ill->ill_lock); 16398 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16399 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16400 mutex_exit(&ill->ill_lock); 16401 ill_fastpath_nack(ill); 16402 ip1dbg(("ip_rput: DLPI fastpath off on " 16403 "interface %s\n", 16404 ill->ill_name)); 16405 } else { 16406 mutex_exit(&ill->ill_lock); 16407 } 16408 freemsg(mp); 16409 break; 16410 case SIOCSTUNPARAM: 16411 case OSIOCSTUNPARAM: 16412 ASSERT(ipsq != NULL); 16413 /* 16414 * Finish socket ioctl passed through to tun 16415 * We should have an IOCTL waiting on this. 16416 */ 16417 /* FALLTHRU */ 16418 case SIOCGTUNPARAM: 16419 case OSIOCGTUNPARAM: 16420 /* 16421 * This is really M_IOCDATA from the tunnel driver. 16422 * convert back and complete the ioctl. 16423 * We should have an IOCTL waiting on this. 16424 */ 16425 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16426 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16427 mp1 = ill_pending_mp_get(ill, &connp, 16428 iocp->ioc_id); 16429 mode = COPYOUT; 16430 ipsq = NULL; 16431 } else { 16432 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16433 mode = NO_COPYOUT; 16434 } 16435 if (mp1 != NULL) { 16436 /* 16437 * Now copy back the b_next/b_prev used by 16438 * mi code for the mi_copy* functions. 16439 * See ip_sioctl_tunparam() for the reason. 16440 * Also protect against missing b_cont. 16441 */ 16442 if (mp->b_cont != NULL) { 16443 mp->b_cont->b_next = 16444 mp1->b_cont->b_next; 16445 mp->b_cont->b_prev = 16446 mp1->b_cont->b_prev; 16447 } 16448 inet_freemsg(mp1); 16449 if (iocp->ioc_error == 0) 16450 iocp->ioc_error = EINVAL; 16451 ASSERT(connp != NULL); 16452 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16453 iocp->ioc_error, mode, ipsq); 16454 } else { 16455 ASSERT(connp == NULL); 16456 putnext(q, mp); 16457 } 16458 break; 16459 default: 16460 break; 16461 } 16462 default: 16463 break; 16464 } 16465 } 16466 16467 /* 16468 * NOTE : This function does not ire_refrele the ire argument passed in. 16469 * 16470 * IPQoS notes 16471 * IP policy is invoked twice for a forwarded packet, once on the read side 16472 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16473 * enabled. An additional parameter, in_ill, has been added for this purpose. 16474 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16475 * because ip_mroute drops this information. 16476 * 16477 */ 16478 void 16479 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16480 { 16481 uint32_t old_pkt_len; 16482 uint32_t pkt_len; 16483 queue_t *q; 16484 uint32_t sum; 16485 #define rptr ((uchar_t *)ipha) 16486 uint32_t max_frag; 16487 uint32_t ill_index; 16488 ill_t *out_ill; 16489 mib2_ipIfStatsEntry_t *mibptr; 16490 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16491 16492 /* Get the ill_index of the incoming ILL */ 16493 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16494 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16495 16496 /* Initiate Read side IPPF processing */ 16497 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16498 ip_process(IPP_FWD_IN, &mp, ill_index); 16499 if (mp == NULL) { 16500 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16501 "during IPPF processing\n")); 16502 return; 16503 } 16504 } 16505 16506 /* Adjust the checksum to reflect the ttl decrement. */ 16507 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16508 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16509 16510 if (ipha->ipha_ttl-- <= 1) { 16511 if (ip_csum_hdr(ipha)) { 16512 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16513 goto drop_pkt; 16514 } 16515 /* 16516 * Note: ire_stq this will be NULL for multicast 16517 * datagrams using the long path through arp (the IRE 16518 * is not an IRE_CACHE). This should not cause 16519 * problems since we don't generate ICMP errors for 16520 * multicast packets. 16521 */ 16522 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16523 q = ire->ire_stq; 16524 if (q != NULL) { 16525 /* Sent by forwarding path, and router is global zone */ 16526 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16527 GLOBAL_ZONEID, ipst); 16528 } else 16529 freemsg(mp); 16530 return; 16531 } 16532 16533 /* 16534 * Don't forward if the interface is down 16535 */ 16536 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16537 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16538 ip2dbg(("ip_rput_forward:interface is down\n")); 16539 goto drop_pkt; 16540 } 16541 16542 /* Get the ill_index of the outgoing ILL */ 16543 out_ill = ire_to_ill(ire); 16544 ill_index = out_ill->ill_phyint->phyint_ifindex; 16545 16546 DTRACE_PROBE4(ip4__forwarding__start, 16547 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16548 16549 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16550 ipst->ips_ipv4firewall_forwarding, 16551 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16552 16553 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16554 16555 if (mp == NULL) 16556 return; 16557 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16558 16559 if (is_system_labeled()) { 16560 mblk_t *mp1; 16561 16562 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16563 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16564 goto drop_pkt; 16565 } 16566 /* Size may have changed */ 16567 mp = mp1; 16568 ipha = (ipha_t *)mp->b_rptr; 16569 pkt_len = ntohs(ipha->ipha_length); 16570 } 16571 16572 /* Check if there are options to update */ 16573 if (!IS_SIMPLE_IPH(ipha)) { 16574 if (ip_csum_hdr(ipha)) { 16575 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16576 goto drop_pkt; 16577 } 16578 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16579 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16580 return; 16581 } 16582 16583 ipha->ipha_hdr_checksum = 0; 16584 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16585 } 16586 max_frag = ire->ire_max_frag; 16587 if (pkt_len > max_frag) { 16588 /* 16589 * It needs fragging on its way out. We haven't 16590 * verified the header checksum yet. Since we 16591 * are going to put a surely good checksum in the 16592 * outgoing header, we have to make sure that it 16593 * was good coming in. 16594 */ 16595 if (ip_csum_hdr(ipha)) { 16596 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16597 goto drop_pkt; 16598 } 16599 /* Initiate Write side IPPF processing */ 16600 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16601 ip_process(IPP_FWD_OUT, &mp, ill_index); 16602 if (mp == NULL) { 16603 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16604 " during IPPF processing\n")); 16605 return; 16606 } 16607 } 16608 /* 16609 * Handle labeled packet resizing. 16610 * 16611 * If we have added a label, inform ip_wput_frag() of its 16612 * effect on the MTU for ICMP messages. 16613 */ 16614 if (pkt_len > old_pkt_len) { 16615 uint32_t secopt_size; 16616 16617 secopt_size = pkt_len - old_pkt_len; 16618 if (secopt_size < max_frag) 16619 max_frag -= secopt_size; 16620 } 16621 16622 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16623 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16624 return; 16625 } 16626 16627 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16628 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16629 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16630 ipst->ips_ipv4firewall_physical_out, 16631 NULL, out_ill, ipha, mp, mp, 0, ipst); 16632 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16633 if (mp == NULL) 16634 return; 16635 16636 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16637 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16638 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16639 /* ip_xmit_v4 always consumes the packet */ 16640 return; 16641 16642 drop_pkt:; 16643 ip1dbg(("ip_rput_forward: drop pkt\n")); 16644 freemsg(mp); 16645 #undef rptr 16646 } 16647 16648 void 16649 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16650 { 16651 ire_t *ire; 16652 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16653 16654 ASSERT(!ipif->ipif_isv6); 16655 /* 16656 * Find an IRE which matches the destination and the outgoing 16657 * queue in the cache table. All we need is an IRE_CACHE which 16658 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16659 * then it is enough to have some IRE_CACHE in the group. 16660 */ 16661 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16662 dst = ipif->ipif_pp_dst_addr; 16663 16664 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16665 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16666 if (ire == NULL) { 16667 /* 16668 * Mark this packet to make it be delivered to 16669 * ip_rput_forward after the new ire has been 16670 * created. 16671 */ 16672 mp->b_prev = NULL; 16673 mp->b_next = mp; 16674 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16675 NULL, 0, GLOBAL_ZONEID, &zero_info); 16676 } else { 16677 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16678 IRE_REFRELE(ire); 16679 } 16680 } 16681 16682 /* Update any source route, record route or timestamp options */ 16683 static int 16684 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16685 { 16686 ipoptp_t opts; 16687 uchar_t *opt; 16688 uint8_t optval; 16689 uint8_t optlen; 16690 ipaddr_t dst; 16691 uint32_t ts; 16692 ire_t *dst_ire = NULL; 16693 ire_t *tmp_ire = NULL; 16694 timestruc_t now; 16695 16696 ip2dbg(("ip_rput_forward_options\n")); 16697 dst = ipha->ipha_dst; 16698 for (optval = ipoptp_first(&opts, ipha); 16699 optval != IPOPT_EOL; 16700 optval = ipoptp_next(&opts)) { 16701 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16702 opt = opts.ipoptp_cur; 16703 optlen = opts.ipoptp_len; 16704 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16705 optval, opts.ipoptp_len)); 16706 switch (optval) { 16707 uint32_t off; 16708 case IPOPT_SSRR: 16709 case IPOPT_LSRR: 16710 /* Check if adminstratively disabled */ 16711 if (!ipst->ips_ip_forward_src_routed) { 16712 if (ire->ire_stq != NULL) { 16713 /* 16714 * Sent by forwarding path, and router 16715 * is global zone 16716 */ 16717 icmp_unreachable(ire->ire_stq, mp, 16718 ICMP_SOURCE_ROUTE_FAILED, 16719 GLOBAL_ZONEID, ipst); 16720 } else { 16721 ip0dbg(("ip_rput_forward_options: " 16722 "unable to send unreach\n")); 16723 freemsg(mp); 16724 } 16725 return (-1); 16726 } 16727 16728 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16729 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16730 if (dst_ire == NULL) { 16731 /* 16732 * Must be partial since ip_rput_options 16733 * checked for strict. 16734 */ 16735 break; 16736 } 16737 off = opt[IPOPT_OFFSET]; 16738 off--; 16739 redo_srr: 16740 if (optlen < IP_ADDR_LEN || 16741 off > optlen - IP_ADDR_LEN) { 16742 /* End of source route */ 16743 ip1dbg(( 16744 "ip_rput_forward_options: end of SR\n")); 16745 ire_refrele(dst_ire); 16746 break; 16747 } 16748 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16749 bcopy(&ire->ire_src_addr, (char *)opt + off, 16750 IP_ADDR_LEN); 16751 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16752 ntohl(dst))); 16753 16754 /* 16755 * Check if our address is present more than 16756 * once as consecutive hops in source route. 16757 */ 16758 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16759 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16760 if (tmp_ire != NULL) { 16761 ire_refrele(tmp_ire); 16762 off += IP_ADDR_LEN; 16763 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16764 goto redo_srr; 16765 } 16766 ipha->ipha_dst = dst; 16767 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16768 ire_refrele(dst_ire); 16769 break; 16770 case IPOPT_RR: 16771 off = opt[IPOPT_OFFSET]; 16772 off--; 16773 if (optlen < IP_ADDR_LEN || 16774 off > optlen - IP_ADDR_LEN) { 16775 /* No more room - ignore */ 16776 ip1dbg(( 16777 "ip_rput_forward_options: end of RR\n")); 16778 break; 16779 } 16780 bcopy(&ire->ire_src_addr, (char *)opt + off, 16781 IP_ADDR_LEN); 16782 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16783 break; 16784 case IPOPT_TS: 16785 /* Insert timestamp if there is room */ 16786 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16787 case IPOPT_TS_TSONLY: 16788 off = IPOPT_TS_TIMELEN; 16789 break; 16790 case IPOPT_TS_PRESPEC: 16791 case IPOPT_TS_PRESPEC_RFC791: 16792 /* Verify that the address matched */ 16793 off = opt[IPOPT_OFFSET] - 1; 16794 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16795 dst_ire = ire_ctable_lookup(dst, 0, 16796 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16797 MATCH_IRE_TYPE, ipst); 16798 if (dst_ire == NULL) { 16799 /* Not for us */ 16800 break; 16801 } 16802 ire_refrele(dst_ire); 16803 /* FALLTHRU */ 16804 case IPOPT_TS_TSANDADDR: 16805 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16806 break; 16807 default: 16808 /* 16809 * ip_*put_options should have already 16810 * dropped this packet. 16811 */ 16812 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16813 "unknown IT - bug in ip_rput_options?\n"); 16814 return (0); /* Keep "lint" happy */ 16815 } 16816 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16817 /* Increase overflow counter */ 16818 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16819 opt[IPOPT_POS_OV_FLG] = 16820 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16821 (off << 4)); 16822 break; 16823 } 16824 off = opt[IPOPT_OFFSET] - 1; 16825 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16826 case IPOPT_TS_PRESPEC: 16827 case IPOPT_TS_PRESPEC_RFC791: 16828 case IPOPT_TS_TSANDADDR: 16829 bcopy(&ire->ire_src_addr, 16830 (char *)opt + off, IP_ADDR_LEN); 16831 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16832 /* FALLTHRU */ 16833 case IPOPT_TS_TSONLY: 16834 off = opt[IPOPT_OFFSET] - 1; 16835 /* Compute # of milliseconds since midnight */ 16836 gethrestime(&now); 16837 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16838 now.tv_nsec / (NANOSEC / MILLISEC); 16839 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16840 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16841 break; 16842 } 16843 break; 16844 } 16845 } 16846 return (0); 16847 } 16848 16849 /* 16850 * This is called after processing at least one of AH/ESP headers. 16851 * 16852 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16853 * the actual, physical interface on which the packet was received, 16854 * but, when ip_strict_dst_multihoming is set to 1, could be the 16855 * interface which had the ipha_dst configured when the packet went 16856 * through ip_rput. The ill_index corresponding to the recv_ill 16857 * is saved in ipsec_in_rill_index 16858 * 16859 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16860 * cannot assume "ire" points to valid data for any IPv6 cases. 16861 */ 16862 void 16863 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16864 { 16865 mblk_t *mp; 16866 ipaddr_t dst; 16867 in6_addr_t *v6dstp; 16868 ipha_t *ipha; 16869 ip6_t *ip6h; 16870 ipsec_in_t *ii; 16871 boolean_t ill_need_rele = B_FALSE; 16872 boolean_t rill_need_rele = B_FALSE; 16873 boolean_t ire_need_rele = B_FALSE; 16874 netstack_t *ns; 16875 ip_stack_t *ipst; 16876 16877 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16878 ASSERT(ii->ipsec_in_ill_index != 0); 16879 ns = ii->ipsec_in_ns; 16880 ASSERT(ii->ipsec_in_ns != NULL); 16881 ipst = ns->netstack_ip; 16882 16883 mp = ipsec_mp->b_cont; 16884 ASSERT(mp != NULL); 16885 16886 16887 if (ill == NULL) { 16888 ASSERT(recv_ill == NULL); 16889 /* 16890 * We need to get the original queue on which ip_rput_local 16891 * or ip_rput_data_v6 was called. 16892 */ 16893 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16894 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16895 ill_need_rele = B_TRUE; 16896 16897 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16898 recv_ill = ill_lookup_on_ifindex( 16899 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16900 NULL, NULL, NULL, NULL, ipst); 16901 rill_need_rele = B_TRUE; 16902 } else { 16903 recv_ill = ill; 16904 } 16905 16906 if ((ill == NULL) || (recv_ill == NULL)) { 16907 ip0dbg(("ip_fanout_proto_again: interface " 16908 "disappeared\n")); 16909 if (ill != NULL) 16910 ill_refrele(ill); 16911 if (recv_ill != NULL) 16912 ill_refrele(recv_ill); 16913 freemsg(ipsec_mp); 16914 return; 16915 } 16916 } 16917 16918 ASSERT(ill != NULL && recv_ill != NULL); 16919 16920 if (mp->b_datap->db_type == M_CTL) { 16921 /* 16922 * AH/ESP is returning the ICMP message after 16923 * removing their headers. Fanout again till 16924 * it gets to the right protocol. 16925 */ 16926 if (ii->ipsec_in_v4) { 16927 icmph_t *icmph; 16928 int iph_hdr_length; 16929 int hdr_length; 16930 16931 ipha = (ipha_t *)mp->b_rptr; 16932 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16933 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16934 ipha = (ipha_t *)&icmph[1]; 16935 hdr_length = IPH_HDR_LENGTH(ipha); 16936 /* 16937 * icmp_inbound_error_fanout may need to do pullupmsg. 16938 * Reset the type to M_DATA. 16939 */ 16940 mp->b_datap->db_type = M_DATA; 16941 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16942 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16943 B_FALSE, ill, ii->ipsec_in_zoneid); 16944 } else { 16945 icmp6_t *icmp6; 16946 int hdr_length; 16947 16948 ip6h = (ip6_t *)mp->b_rptr; 16949 /* Don't call hdr_length_v6() unless you have to. */ 16950 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16951 hdr_length = ip_hdr_length_v6(mp, ip6h); 16952 else 16953 hdr_length = IPV6_HDR_LEN; 16954 16955 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16956 /* 16957 * icmp_inbound_error_fanout_v6 may need to do 16958 * pullupmsg. Reset the type to M_DATA. 16959 */ 16960 mp->b_datap->db_type = M_DATA; 16961 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16962 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16963 } 16964 if (ill_need_rele) 16965 ill_refrele(ill); 16966 if (rill_need_rele) 16967 ill_refrele(recv_ill); 16968 return; 16969 } 16970 16971 if (ii->ipsec_in_v4) { 16972 ipha = (ipha_t *)mp->b_rptr; 16973 dst = ipha->ipha_dst; 16974 if (CLASSD(dst)) { 16975 /* 16976 * Multicast has to be delivered to all streams. 16977 */ 16978 dst = INADDR_BROADCAST; 16979 } 16980 16981 if (ire == NULL) { 16982 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16983 MBLK_GETLABEL(mp), ipst); 16984 if (ire == NULL) { 16985 if (ill_need_rele) 16986 ill_refrele(ill); 16987 if (rill_need_rele) 16988 ill_refrele(recv_ill); 16989 ip1dbg(("ip_fanout_proto_again: " 16990 "IRE not found")); 16991 freemsg(ipsec_mp); 16992 return; 16993 } 16994 ire_need_rele = B_TRUE; 16995 } 16996 16997 switch (ipha->ipha_protocol) { 16998 case IPPROTO_UDP: 16999 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17000 recv_ill); 17001 if (ire_need_rele) 17002 ire_refrele(ire); 17003 break; 17004 case IPPROTO_TCP: 17005 if (!ire_need_rele) 17006 IRE_REFHOLD(ire); 17007 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17008 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17009 IRE_REFRELE(ire); 17010 if (mp != NULL) 17011 squeue_enter_chain(GET_SQUEUE(mp), mp, 17012 mp, 1, SQTAG_IP_PROTO_AGAIN); 17013 break; 17014 case IPPROTO_SCTP: 17015 if (!ire_need_rele) 17016 IRE_REFHOLD(ire); 17017 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17018 ipsec_mp, 0, ill->ill_rq, dst); 17019 break; 17020 default: 17021 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17022 recv_ill, 0); 17023 if (ire_need_rele) 17024 ire_refrele(ire); 17025 break; 17026 } 17027 } else { 17028 uint32_t rput_flags = 0; 17029 17030 ip6h = (ip6_t *)mp->b_rptr; 17031 v6dstp = &ip6h->ip6_dst; 17032 /* 17033 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17034 * address. 17035 * 17036 * Currently, we don't store that state in the IPSEC_IN 17037 * message, and we may need to. 17038 */ 17039 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17040 IP6_IN_LLMCAST : 0); 17041 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17042 NULL, NULL); 17043 } 17044 if (ill_need_rele) 17045 ill_refrele(ill); 17046 if (rill_need_rele) 17047 ill_refrele(recv_ill); 17048 } 17049 17050 /* 17051 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17052 * returns 'true' if there are still fragments left on the queue, in 17053 * which case we restart the timer. 17054 */ 17055 void 17056 ill_frag_timer(void *arg) 17057 { 17058 ill_t *ill = (ill_t *)arg; 17059 boolean_t frag_pending; 17060 ip_stack_t *ipst = ill->ill_ipst; 17061 17062 mutex_enter(&ill->ill_lock); 17063 ASSERT(!ill->ill_fragtimer_executing); 17064 if (ill->ill_state_flags & ILL_CONDEMNED) { 17065 ill->ill_frag_timer_id = 0; 17066 mutex_exit(&ill->ill_lock); 17067 return; 17068 } 17069 ill->ill_fragtimer_executing = 1; 17070 mutex_exit(&ill->ill_lock); 17071 17072 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17073 17074 /* 17075 * Restart the timer, if we have fragments pending or if someone 17076 * wanted us to be scheduled again. 17077 */ 17078 mutex_enter(&ill->ill_lock); 17079 ill->ill_fragtimer_executing = 0; 17080 ill->ill_frag_timer_id = 0; 17081 if (frag_pending || ill->ill_fragtimer_needrestart) 17082 ill_frag_timer_start(ill); 17083 mutex_exit(&ill->ill_lock); 17084 } 17085 17086 void 17087 ill_frag_timer_start(ill_t *ill) 17088 { 17089 ip_stack_t *ipst = ill->ill_ipst; 17090 17091 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17092 17093 /* If the ill is closing or opening don't proceed */ 17094 if (ill->ill_state_flags & ILL_CONDEMNED) 17095 return; 17096 17097 if (ill->ill_fragtimer_executing) { 17098 /* 17099 * ill_frag_timer is currently executing. Just record the 17100 * the fact that we want the timer to be restarted. 17101 * ill_frag_timer will post a timeout before it returns, 17102 * ensuring it will be called again. 17103 */ 17104 ill->ill_fragtimer_needrestart = 1; 17105 return; 17106 } 17107 17108 if (ill->ill_frag_timer_id == 0) { 17109 /* 17110 * The timer is neither running nor is the timeout handler 17111 * executing. Post a timeout so that ill_frag_timer will be 17112 * called 17113 */ 17114 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17115 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17116 ill->ill_fragtimer_needrestart = 0; 17117 } 17118 } 17119 17120 /* 17121 * This routine is needed for loopback when forwarding multicasts. 17122 * 17123 * IPQoS Notes: 17124 * IPPF processing is done in fanout routines. 17125 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17126 * processing for IPsec packets is done when it comes back in clear. 17127 * NOTE : The callers of this function need to do the ire_refrele for the 17128 * ire that is being passed in. 17129 */ 17130 void 17131 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17132 ill_t *recv_ill, uint32_t esp_udp_ports) 17133 { 17134 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17135 ill_t *ill = (ill_t *)q->q_ptr; 17136 uint32_t sum; 17137 uint32_t u1; 17138 uint32_t u2; 17139 int hdr_length; 17140 boolean_t mctl_present; 17141 mblk_t *first_mp = mp; 17142 mblk_t *hada_mp = NULL; 17143 ipha_t *inner_ipha; 17144 ip_stack_t *ipst; 17145 17146 ASSERT(recv_ill != NULL); 17147 ipst = recv_ill->ill_ipst; 17148 17149 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17150 "ip_rput_locl_start: q %p", q); 17151 17152 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17153 ASSERT(ill != NULL); 17154 17155 17156 #define rptr ((uchar_t *)ipha) 17157 #define iphs ((uint16_t *)ipha) 17158 17159 /* 17160 * no UDP or TCP packet should come here anymore. 17161 */ 17162 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17163 ipha->ipha_protocol != IPPROTO_UDP); 17164 17165 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17166 if (mctl_present && 17167 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17168 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17169 17170 /* 17171 * It's an IPsec accelerated packet. 17172 * Keep a pointer to the data attributes around until 17173 * we allocate the ipsec_info_t. 17174 */ 17175 IPSECHW_DEBUG(IPSECHW_PKT, 17176 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17177 hada_mp = first_mp; 17178 hada_mp->b_cont = NULL; 17179 /* 17180 * Since it is accelerated, it comes directly from 17181 * the ill and the data attributes is followed by 17182 * the packet data. 17183 */ 17184 ASSERT(mp->b_datap->db_type != M_CTL); 17185 first_mp = mp; 17186 mctl_present = B_FALSE; 17187 } 17188 17189 /* 17190 * IF M_CTL is not present, then ipsec_in_is_secure 17191 * should return B_TRUE. There is a case where loopback 17192 * packets has an M_CTL in the front with all the 17193 * IPsec options set to IPSEC_PREF_NEVER - which means 17194 * ipsec_in_is_secure will return B_FALSE. As loopback 17195 * packets never comes here, it is safe to ASSERT the 17196 * following. 17197 */ 17198 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17199 17200 /* 17201 * Also, we should never have an mctl_present if this is an 17202 * ESP-in-UDP packet. 17203 */ 17204 ASSERT(!mctl_present || !esp_in_udp_packet); 17205 17206 17207 /* u1 is # words of IP options */ 17208 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17209 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17210 17211 /* 17212 * Don't verify header checksum if we just removed UDP header or 17213 * packet is coming back from AH/ESP. 17214 */ 17215 if (!esp_in_udp_packet && !mctl_present) { 17216 if (u1) { 17217 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17218 if (hada_mp != NULL) 17219 freemsg(hada_mp); 17220 return; 17221 } 17222 } else { 17223 /* Check the IP header checksum. */ 17224 #define uph ((uint16_t *)ipha) 17225 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17226 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17227 #undef uph 17228 /* finish doing IP checksum */ 17229 sum = (sum & 0xFFFF) + (sum >> 16); 17230 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17231 if (sum && sum != 0xFFFF) { 17232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17233 goto drop_pkt; 17234 } 17235 } 17236 } 17237 17238 /* 17239 * Count for SNMP of inbound packets for ire. As ip_proto_input 17240 * might be called more than once for secure packets, count only 17241 * the first time. 17242 */ 17243 if (!mctl_present) { 17244 UPDATE_IB_PKT_COUNT(ire); 17245 ire->ire_last_used_time = lbolt; 17246 } 17247 17248 /* Check for fragmentation offset. */ 17249 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17250 u1 = u2 & (IPH_MF | IPH_OFFSET); 17251 if (u1) { 17252 /* 17253 * We re-assemble fragments before we do the AH/ESP 17254 * processing. Thus, M_CTL should not be present 17255 * while we are re-assembling. 17256 */ 17257 ASSERT(!mctl_present); 17258 ASSERT(first_mp == mp); 17259 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17260 return; 17261 } 17262 /* 17263 * Make sure that first_mp points back to mp as 17264 * the mp we came in with could have changed in 17265 * ip_rput_fragment(). 17266 */ 17267 ipha = (ipha_t *)mp->b_rptr; 17268 first_mp = mp; 17269 } 17270 17271 /* 17272 * Clear hardware checksumming flag as it is currently only 17273 * used by TCP and UDP. 17274 */ 17275 DB_CKSUMFLAGS(mp) = 0; 17276 17277 /* Now we have a complete datagram, destined for this machine. */ 17278 u1 = IPH_HDR_LENGTH(ipha); 17279 switch (ipha->ipha_protocol) { 17280 case IPPROTO_ICMP: { 17281 ire_t *ire_zone; 17282 ilm_t *ilm; 17283 mblk_t *mp1; 17284 zoneid_t last_zoneid; 17285 17286 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17287 ASSERT(ire->ire_type == IRE_BROADCAST); 17288 /* 17289 * Inactive/Failed interfaces are not supposed to 17290 * respond to the multicast packets. 17291 */ 17292 if (ill_is_probeonly(ill)) { 17293 freemsg(first_mp); 17294 return; 17295 } 17296 17297 /* 17298 * In the multicast case, applications may have joined 17299 * the group from different zones, so we need to deliver 17300 * the packet to each of them. Loop through the 17301 * multicast memberships structures (ilm) on the receive 17302 * ill and send a copy of the packet up each matching 17303 * one. However, we don't do this for multicasts sent on 17304 * the loopback interface (PHYI_LOOPBACK flag set) as 17305 * they must stay in the sender's zone. 17306 * 17307 * ilm_add_v6() ensures that ilms in the same zone are 17308 * contiguous in the ill_ilm list. We use this property 17309 * to avoid sending duplicates needed when two 17310 * applications in the same zone join the same group on 17311 * different logical interfaces: we ignore the ilm if 17312 * its zoneid is the same as the last matching one. 17313 * In addition, the sending of the packet for 17314 * ire_zoneid is delayed until all of the other ilms 17315 * have been exhausted. 17316 */ 17317 last_zoneid = -1; 17318 ILM_WALKER_HOLD(recv_ill); 17319 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17320 ilm = ilm->ilm_next) { 17321 if ((ilm->ilm_flags & ILM_DELETED) || 17322 ipha->ipha_dst != ilm->ilm_addr || 17323 ilm->ilm_zoneid == last_zoneid || 17324 ilm->ilm_zoneid == ire->ire_zoneid || 17325 ilm->ilm_zoneid == ALL_ZONES || 17326 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17327 continue; 17328 mp1 = ip_copymsg(first_mp); 17329 if (mp1 == NULL) 17330 continue; 17331 icmp_inbound(q, mp1, B_TRUE, ill, 17332 0, sum, mctl_present, B_TRUE, 17333 recv_ill, ilm->ilm_zoneid); 17334 last_zoneid = ilm->ilm_zoneid; 17335 } 17336 ILM_WALKER_RELE(recv_ill); 17337 } else if (ire->ire_type == IRE_BROADCAST) { 17338 /* 17339 * In the broadcast case, there may be many zones 17340 * which need a copy of the packet delivered to them. 17341 * There is one IRE_BROADCAST per broadcast address 17342 * and per zone; we walk those using a helper function. 17343 * In addition, the sending of the packet for ire is 17344 * delayed until all of the other ires have been 17345 * processed. 17346 */ 17347 IRB_REFHOLD(ire->ire_bucket); 17348 ire_zone = NULL; 17349 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17350 ire)) != NULL) { 17351 mp1 = ip_copymsg(first_mp); 17352 if (mp1 == NULL) 17353 continue; 17354 17355 UPDATE_IB_PKT_COUNT(ire_zone); 17356 ire_zone->ire_last_used_time = lbolt; 17357 icmp_inbound(q, mp1, B_TRUE, ill, 17358 0, sum, mctl_present, B_TRUE, 17359 recv_ill, ire_zone->ire_zoneid); 17360 } 17361 IRB_REFRELE(ire->ire_bucket); 17362 } 17363 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17364 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17365 ire->ire_zoneid); 17366 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17367 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17368 return; 17369 } 17370 case IPPROTO_IGMP: 17371 /* 17372 * If we are not willing to accept IGMP packets in clear, 17373 * then check with global policy. 17374 */ 17375 if (ipst->ips_igmp_accept_clear_messages == 0) { 17376 first_mp = ipsec_check_global_policy(first_mp, NULL, 17377 ipha, NULL, mctl_present, ipst->ips_netstack); 17378 if (first_mp == NULL) 17379 return; 17380 } 17381 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17382 freemsg(first_mp); 17383 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17384 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17385 return; 17386 } 17387 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17388 /* Bad packet - discarded by igmp_input */ 17389 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17390 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17391 if (mctl_present) 17392 freeb(first_mp); 17393 return; 17394 } 17395 /* 17396 * igmp_input() may have returned the pulled up message. 17397 * So first_mp and ipha need to be reinitialized. 17398 */ 17399 ipha = (ipha_t *)mp->b_rptr; 17400 if (mctl_present) 17401 first_mp->b_cont = mp; 17402 else 17403 first_mp = mp; 17404 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17405 connf_head != NULL) { 17406 /* No user-level listener for IGMP packets */ 17407 goto drop_pkt; 17408 } 17409 /* deliver to local raw users */ 17410 break; 17411 case IPPROTO_PIM: 17412 /* 17413 * If we are not willing to accept PIM packets in clear, 17414 * then check with global policy. 17415 */ 17416 if (ipst->ips_pim_accept_clear_messages == 0) { 17417 first_mp = ipsec_check_global_policy(first_mp, NULL, 17418 ipha, NULL, mctl_present, ipst->ips_netstack); 17419 if (first_mp == NULL) 17420 return; 17421 } 17422 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17423 freemsg(first_mp); 17424 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17426 return; 17427 } 17428 if (pim_input(q, mp, ill) != 0) { 17429 /* Bad packet - discarded by pim_input */ 17430 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17431 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17432 if (mctl_present) 17433 freeb(first_mp); 17434 return; 17435 } 17436 17437 /* 17438 * pim_input() may have pulled up the message so ipha needs to 17439 * be reinitialized. 17440 */ 17441 ipha = (ipha_t *)mp->b_rptr; 17442 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17443 connf_head != NULL) { 17444 /* No user-level listener for PIM packets */ 17445 goto drop_pkt; 17446 } 17447 /* deliver to local raw users */ 17448 break; 17449 case IPPROTO_ENCAP: 17450 /* 17451 * Handle self-encapsulated packets (IP-in-IP where 17452 * the inner addresses == the outer addresses). 17453 */ 17454 hdr_length = IPH_HDR_LENGTH(ipha); 17455 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17456 mp->b_wptr) { 17457 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17458 sizeof (ipha_t) - mp->b_rptr)) { 17459 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17460 freemsg(first_mp); 17461 return; 17462 } 17463 ipha = (ipha_t *)mp->b_rptr; 17464 } 17465 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17466 /* 17467 * Check the sanity of the inner IP header. 17468 */ 17469 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17470 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17471 freemsg(first_mp); 17472 return; 17473 } 17474 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17475 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17476 freemsg(first_mp); 17477 return; 17478 } 17479 if (inner_ipha->ipha_src == ipha->ipha_src && 17480 inner_ipha->ipha_dst == ipha->ipha_dst) { 17481 ipsec_in_t *ii; 17482 17483 /* 17484 * Self-encapsulated tunnel packet. Remove 17485 * the outer IP header and fanout again. 17486 * We also need to make sure that the inner 17487 * header is pulled up until options. 17488 */ 17489 mp->b_rptr = (uchar_t *)inner_ipha; 17490 ipha = inner_ipha; 17491 hdr_length = IPH_HDR_LENGTH(ipha); 17492 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17493 if (!pullupmsg(mp, (uchar_t *)ipha + 17494 + hdr_length - mp->b_rptr)) { 17495 freemsg(first_mp); 17496 return; 17497 } 17498 ipha = (ipha_t *)mp->b_rptr; 17499 } 17500 if (hdr_length > sizeof (ipha_t)) { 17501 /* We got options on the inner packet. */ 17502 ipaddr_t dst = ipha->ipha_dst; 17503 17504 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17505 -1) { 17506 /* Bad options! */ 17507 return; 17508 } 17509 if (dst != ipha->ipha_dst) { 17510 /* 17511 * Someone put a source-route in 17512 * the inside header of a self- 17513 * encapsulated packet. Drop it 17514 * with extreme prejudice and let 17515 * the sender know. 17516 */ 17517 icmp_unreachable(q, first_mp, 17518 ICMP_SOURCE_ROUTE_FAILED, 17519 recv_ill->ill_zoneid, ipst); 17520 return; 17521 } 17522 } 17523 if (!mctl_present) { 17524 ASSERT(first_mp == mp); 17525 /* 17526 * This means that somebody is sending 17527 * Self-encapsualted packets without AH/ESP. 17528 * If AH/ESP was present, we would have already 17529 * allocated the first_mp. 17530 * 17531 * Send this packet to find a tunnel endpoint. 17532 * if I can't find one, an ICMP 17533 * PROTOCOL_UNREACHABLE will get sent. 17534 */ 17535 goto fanout; 17536 } 17537 /* 17538 * We generally store the ill_index if we need to 17539 * do IPsec processing as we lose the ill queue when 17540 * we come back. But in this case, we never should 17541 * have to store the ill_index here as it should have 17542 * been stored previously when we processed the 17543 * AH/ESP header in this routine or for non-ipsec 17544 * cases, we still have the queue. But for some bad 17545 * packets from the wire, we can get to IPsec after 17546 * this and we better store the index for that case. 17547 */ 17548 ill = (ill_t *)q->q_ptr; 17549 ii = (ipsec_in_t *)first_mp->b_rptr; 17550 ii->ipsec_in_ill_index = 17551 ill->ill_phyint->phyint_ifindex; 17552 ii->ipsec_in_rill_index = 17553 recv_ill->ill_phyint->phyint_ifindex; 17554 if (ii->ipsec_in_decaps) { 17555 /* 17556 * This packet is self-encapsulated multiple 17557 * times. We don't want to recurse infinitely. 17558 * To keep it simple, drop the packet. 17559 */ 17560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17561 freemsg(first_mp); 17562 return; 17563 } 17564 ii->ipsec_in_decaps = B_TRUE; 17565 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17566 ire); 17567 return; 17568 } 17569 break; 17570 case IPPROTO_AH: 17571 case IPPROTO_ESP: { 17572 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17573 17574 /* 17575 * Fast path for AH/ESP. If this is the first time 17576 * we are sending a datagram to AH/ESP, allocate 17577 * a IPSEC_IN message and prepend it. Otherwise, 17578 * just fanout. 17579 */ 17580 17581 int ipsec_rc; 17582 ipsec_in_t *ii; 17583 netstack_t *ns = ipst->ips_netstack; 17584 17585 IP_STAT(ipst, ipsec_proto_ahesp); 17586 if (!mctl_present) { 17587 ASSERT(first_mp == mp); 17588 first_mp = ipsec_in_alloc(B_TRUE, ns); 17589 if (first_mp == NULL) { 17590 ip1dbg(("ip_proto_input: IPSEC_IN " 17591 "allocation failure.\n")); 17592 freemsg(hada_mp); /* okay ifnull */ 17593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17594 freemsg(mp); 17595 return; 17596 } 17597 /* 17598 * Store the ill_index so that when we come back 17599 * from IPsec we ride on the same queue. 17600 */ 17601 ill = (ill_t *)q->q_ptr; 17602 ii = (ipsec_in_t *)first_mp->b_rptr; 17603 ii->ipsec_in_ill_index = 17604 ill->ill_phyint->phyint_ifindex; 17605 ii->ipsec_in_rill_index = 17606 recv_ill->ill_phyint->phyint_ifindex; 17607 first_mp->b_cont = mp; 17608 /* 17609 * Cache hardware acceleration info. 17610 */ 17611 if (hada_mp != NULL) { 17612 IPSECHW_DEBUG(IPSECHW_PKT, 17613 ("ip_rput_local: caching data attr.\n")); 17614 ii->ipsec_in_accelerated = B_TRUE; 17615 ii->ipsec_in_da = hada_mp; 17616 hada_mp = NULL; 17617 } 17618 } else { 17619 ii = (ipsec_in_t *)first_mp->b_rptr; 17620 } 17621 17622 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17623 17624 if (!ipsec_loaded(ipss)) { 17625 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17626 ire->ire_zoneid, ipst); 17627 return; 17628 } 17629 17630 ns = ipst->ips_netstack; 17631 /* select inbound SA and have IPsec process the pkt */ 17632 if (ipha->ipha_protocol == IPPROTO_ESP) { 17633 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17634 boolean_t esp_in_udp_sa; 17635 if (esph == NULL) 17636 return; 17637 ASSERT(ii->ipsec_in_esp_sa != NULL); 17638 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17639 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17640 IPSA_F_NATT) != 0); 17641 /* 17642 * The following is a fancy, but quick, way of saying: 17643 * ESP-in-UDP SA and Raw ESP packet --> drop 17644 * OR 17645 * ESP SA and ESP-in-UDP packet --> drop 17646 */ 17647 if (esp_in_udp_sa != esp_in_udp_packet) { 17648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17649 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17650 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17651 &ns->netstack_ipsec->ipsec_dropper); 17652 return; 17653 } 17654 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17655 first_mp, esph); 17656 } else { 17657 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17658 if (ah == NULL) 17659 return; 17660 ASSERT(ii->ipsec_in_ah_sa != NULL); 17661 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17662 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17663 first_mp, ah); 17664 } 17665 17666 switch (ipsec_rc) { 17667 case IPSEC_STATUS_SUCCESS: 17668 break; 17669 case IPSEC_STATUS_FAILED: 17670 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17671 /* FALLTHRU */ 17672 case IPSEC_STATUS_PENDING: 17673 return; 17674 } 17675 /* we're done with IPsec processing, send it up */ 17676 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17677 return; 17678 } 17679 default: 17680 break; 17681 } 17682 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17683 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17684 ire->ire_zoneid)); 17685 goto drop_pkt; 17686 } 17687 /* 17688 * Handle protocols with which IP is less intimate. There 17689 * can be more than one stream bound to a particular 17690 * protocol. When this is the case, each one gets a copy 17691 * of any incoming packets. 17692 */ 17693 fanout: 17694 ip_fanout_proto(q, first_mp, ill, ipha, 17695 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17696 B_TRUE, recv_ill, ire->ire_zoneid); 17697 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17698 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17699 return; 17700 17701 drop_pkt: 17702 freemsg(first_mp); 17703 if (hada_mp != NULL) 17704 freeb(hada_mp); 17705 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17706 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17707 #undef rptr 17708 #undef iphs 17709 17710 } 17711 17712 /* 17713 * Update any source route, record route or timestamp options. 17714 * Check that we are at end of strict source route. 17715 * The options have already been checked for sanity in ip_rput_options(). 17716 */ 17717 static boolean_t 17718 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17719 ip_stack_t *ipst) 17720 { 17721 ipoptp_t opts; 17722 uchar_t *opt; 17723 uint8_t optval; 17724 uint8_t optlen; 17725 ipaddr_t dst; 17726 uint32_t ts; 17727 ire_t *dst_ire; 17728 timestruc_t now; 17729 zoneid_t zoneid; 17730 ill_t *ill; 17731 17732 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17733 17734 ip2dbg(("ip_rput_local_options\n")); 17735 17736 for (optval = ipoptp_first(&opts, ipha); 17737 optval != IPOPT_EOL; 17738 optval = ipoptp_next(&opts)) { 17739 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17740 opt = opts.ipoptp_cur; 17741 optlen = opts.ipoptp_len; 17742 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17743 optval, optlen)); 17744 switch (optval) { 17745 uint32_t off; 17746 case IPOPT_SSRR: 17747 case IPOPT_LSRR: 17748 off = opt[IPOPT_OFFSET]; 17749 off--; 17750 if (optlen < IP_ADDR_LEN || 17751 off > optlen - IP_ADDR_LEN) { 17752 /* End of source route */ 17753 ip1dbg(("ip_rput_local_options: end of SR\n")); 17754 break; 17755 } 17756 /* 17757 * This will only happen if two consecutive entries 17758 * in the source route contains our address or if 17759 * it is a packet with a loose source route which 17760 * reaches us before consuming the whole source route 17761 */ 17762 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17763 if (optval == IPOPT_SSRR) { 17764 goto bad_src_route; 17765 } 17766 /* 17767 * Hack: instead of dropping the packet truncate the 17768 * source route to what has been used by filling the 17769 * rest with IPOPT_NOP. 17770 */ 17771 opt[IPOPT_OLEN] = (uint8_t)off; 17772 while (off < optlen) { 17773 opt[off++] = IPOPT_NOP; 17774 } 17775 break; 17776 case IPOPT_RR: 17777 off = opt[IPOPT_OFFSET]; 17778 off--; 17779 if (optlen < IP_ADDR_LEN || 17780 off > optlen - IP_ADDR_LEN) { 17781 /* No more room - ignore */ 17782 ip1dbg(( 17783 "ip_rput_local_options: end of RR\n")); 17784 break; 17785 } 17786 bcopy(&ire->ire_src_addr, (char *)opt + off, 17787 IP_ADDR_LEN); 17788 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17789 break; 17790 case IPOPT_TS: 17791 /* Insert timestamp if there is romm */ 17792 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17793 case IPOPT_TS_TSONLY: 17794 off = IPOPT_TS_TIMELEN; 17795 break; 17796 case IPOPT_TS_PRESPEC: 17797 case IPOPT_TS_PRESPEC_RFC791: 17798 /* Verify that the address matched */ 17799 off = opt[IPOPT_OFFSET] - 1; 17800 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17801 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17802 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17803 ipst); 17804 if (dst_ire == NULL) { 17805 /* Not for us */ 17806 break; 17807 } 17808 ire_refrele(dst_ire); 17809 /* FALLTHRU */ 17810 case IPOPT_TS_TSANDADDR: 17811 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17812 break; 17813 default: 17814 /* 17815 * ip_*put_options should have already 17816 * dropped this packet. 17817 */ 17818 cmn_err(CE_PANIC, "ip_rput_local_options: " 17819 "unknown IT - bug in ip_rput_options?\n"); 17820 return (B_TRUE); /* Keep "lint" happy */ 17821 } 17822 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17823 /* Increase overflow counter */ 17824 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17825 opt[IPOPT_POS_OV_FLG] = 17826 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17827 (off << 4)); 17828 break; 17829 } 17830 off = opt[IPOPT_OFFSET] - 1; 17831 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17832 case IPOPT_TS_PRESPEC: 17833 case IPOPT_TS_PRESPEC_RFC791: 17834 case IPOPT_TS_TSANDADDR: 17835 bcopy(&ire->ire_src_addr, (char *)opt + off, 17836 IP_ADDR_LEN); 17837 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17838 /* FALLTHRU */ 17839 case IPOPT_TS_TSONLY: 17840 off = opt[IPOPT_OFFSET] - 1; 17841 /* Compute # of milliseconds since midnight */ 17842 gethrestime(&now); 17843 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17844 now.tv_nsec / (NANOSEC / MILLISEC); 17845 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17846 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17847 break; 17848 } 17849 break; 17850 } 17851 } 17852 return (B_TRUE); 17853 17854 bad_src_route: 17855 q = WR(q); 17856 if (q->q_next != NULL) 17857 ill = q->q_ptr; 17858 else 17859 ill = NULL; 17860 17861 /* make sure we clear any indication of a hardware checksum */ 17862 DB_CKSUMFLAGS(mp) = 0; 17863 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17864 if (zoneid == ALL_ZONES) 17865 freemsg(mp); 17866 else 17867 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17868 return (B_FALSE); 17869 17870 } 17871 17872 /* 17873 * Process IP options in an inbound packet. If an option affects the 17874 * effective destination address, return the next hop address via dstp. 17875 * Returns -1 if something fails in which case an ICMP error has been sent 17876 * and mp freed. 17877 */ 17878 static int 17879 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17880 ip_stack_t *ipst) 17881 { 17882 ipoptp_t opts; 17883 uchar_t *opt; 17884 uint8_t optval; 17885 uint8_t optlen; 17886 ipaddr_t dst; 17887 intptr_t code = 0; 17888 ire_t *ire = NULL; 17889 zoneid_t zoneid; 17890 ill_t *ill; 17891 17892 ip2dbg(("ip_rput_options\n")); 17893 dst = ipha->ipha_dst; 17894 for (optval = ipoptp_first(&opts, ipha); 17895 optval != IPOPT_EOL; 17896 optval = ipoptp_next(&opts)) { 17897 opt = opts.ipoptp_cur; 17898 optlen = opts.ipoptp_len; 17899 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17900 optval, optlen)); 17901 /* 17902 * Note: we need to verify the checksum before we 17903 * modify anything thus this routine only extracts the next 17904 * hop dst from any source route. 17905 */ 17906 switch (optval) { 17907 uint32_t off; 17908 case IPOPT_SSRR: 17909 case IPOPT_LSRR: 17910 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17911 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17912 if (ire == NULL) { 17913 if (optval == IPOPT_SSRR) { 17914 ip1dbg(("ip_rput_options: not next" 17915 " strict source route 0x%x\n", 17916 ntohl(dst))); 17917 code = (char *)&ipha->ipha_dst - 17918 (char *)ipha; 17919 goto param_prob; /* RouterReq's */ 17920 } 17921 ip2dbg(("ip_rput_options: " 17922 "not next source route 0x%x\n", 17923 ntohl(dst))); 17924 break; 17925 } 17926 ire_refrele(ire); 17927 17928 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17929 ip1dbg(( 17930 "ip_rput_options: bad option offset\n")); 17931 code = (char *)&opt[IPOPT_OLEN] - 17932 (char *)ipha; 17933 goto param_prob; 17934 } 17935 off = opt[IPOPT_OFFSET]; 17936 off--; 17937 redo_srr: 17938 if (optlen < IP_ADDR_LEN || 17939 off > optlen - IP_ADDR_LEN) { 17940 /* End of source route */ 17941 ip1dbg(("ip_rput_options: end of SR\n")); 17942 break; 17943 } 17944 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17945 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17946 ntohl(dst))); 17947 17948 /* 17949 * Check if our address is present more than 17950 * once as consecutive hops in source route. 17951 * XXX verify per-interface ip_forwarding 17952 * for source route? 17953 */ 17954 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17955 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17956 17957 if (ire != NULL) { 17958 ire_refrele(ire); 17959 off += IP_ADDR_LEN; 17960 goto redo_srr; 17961 } 17962 17963 if (dst == htonl(INADDR_LOOPBACK)) { 17964 ip1dbg(("ip_rput_options: loopback addr in " 17965 "source route!\n")); 17966 goto bad_src_route; 17967 } 17968 /* 17969 * For strict: verify that dst is directly 17970 * reachable. 17971 */ 17972 if (optval == IPOPT_SSRR) { 17973 ire = ire_ftable_lookup(dst, 0, 0, 17974 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17975 MBLK_GETLABEL(mp), 17976 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17977 if (ire == NULL) { 17978 ip1dbg(("ip_rput_options: SSRR not " 17979 "directly reachable: 0x%x\n", 17980 ntohl(dst))); 17981 goto bad_src_route; 17982 } 17983 ire_refrele(ire); 17984 } 17985 /* 17986 * Defer update of the offset and the record route 17987 * until the packet is forwarded. 17988 */ 17989 break; 17990 case IPOPT_RR: 17991 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17992 ip1dbg(( 17993 "ip_rput_options: bad option offset\n")); 17994 code = (char *)&opt[IPOPT_OLEN] - 17995 (char *)ipha; 17996 goto param_prob; 17997 } 17998 break; 17999 case IPOPT_TS: 18000 /* 18001 * Verify that length >= 5 and that there is either 18002 * room for another timestamp or that the overflow 18003 * counter is not maxed out. 18004 */ 18005 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18006 if (optlen < IPOPT_MINLEN_IT) { 18007 goto param_prob; 18008 } 18009 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18010 ip1dbg(( 18011 "ip_rput_options: bad option offset\n")); 18012 code = (char *)&opt[IPOPT_OFFSET] - 18013 (char *)ipha; 18014 goto param_prob; 18015 } 18016 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18017 case IPOPT_TS_TSONLY: 18018 off = IPOPT_TS_TIMELEN; 18019 break; 18020 case IPOPT_TS_TSANDADDR: 18021 case IPOPT_TS_PRESPEC: 18022 case IPOPT_TS_PRESPEC_RFC791: 18023 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18024 break; 18025 default: 18026 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18027 (char *)ipha; 18028 goto param_prob; 18029 } 18030 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18031 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18032 /* 18033 * No room and the overflow counter is 15 18034 * already. 18035 */ 18036 goto param_prob; 18037 } 18038 break; 18039 } 18040 } 18041 18042 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18043 *dstp = dst; 18044 return (0); 18045 } 18046 18047 ip1dbg(("ip_rput_options: error processing IP options.")); 18048 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18049 18050 param_prob: 18051 q = WR(q); 18052 if (q->q_next != NULL) 18053 ill = q->q_ptr; 18054 else 18055 ill = NULL; 18056 18057 /* make sure we clear any indication of a hardware checksum */ 18058 DB_CKSUMFLAGS(mp) = 0; 18059 /* Don't know whether this is for non-global or global/forwarding */ 18060 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18061 if (zoneid == ALL_ZONES) 18062 freemsg(mp); 18063 else 18064 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18065 return (-1); 18066 18067 bad_src_route: 18068 q = WR(q); 18069 if (q->q_next != NULL) 18070 ill = q->q_ptr; 18071 else 18072 ill = NULL; 18073 18074 /* make sure we clear any indication of a hardware checksum */ 18075 DB_CKSUMFLAGS(mp) = 0; 18076 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18077 if (zoneid == ALL_ZONES) 18078 freemsg(mp); 18079 else 18080 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18081 return (-1); 18082 } 18083 18084 /* 18085 * IP & ICMP info in >=14 msg's ... 18086 * - ip fixed part (mib2_ip_t) 18087 * - icmp fixed part (mib2_icmp_t) 18088 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18089 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18090 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18091 * - ipRouteAttributeTable (ip 102) labeled routes 18092 * - ip multicast membership (ip_member_t) 18093 * - ip multicast source filtering (ip_grpsrc_t) 18094 * - igmp fixed part (struct igmpstat) 18095 * - multicast routing stats (struct mrtstat) 18096 * - multicast routing vifs (array of struct vifctl) 18097 * - multicast routing routes (array of struct mfcctl) 18098 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18099 * One per ill plus one generic 18100 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18101 * One per ill plus one generic 18102 * - ipv6RouteEntry all IPv6 IREs 18103 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18104 * - ipv6NetToMediaEntry all Neighbor Cache entries 18105 * - ipv6AddrEntry all IPv6 ipifs 18106 * - ipv6 multicast membership (ipv6_member_t) 18107 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18108 * 18109 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18110 * 18111 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18112 * already filled in by the caller. 18113 * Return value of 0 indicates that no messages were sent and caller 18114 * should free mpctl. 18115 */ 18116 int 18117 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18118 { 18119 ip_stack_t *ipst; 18120 sctp_stack_t *sctps; 18121 18122 if (q->q_next != NULL) { 18123 ipst = ILLQ_TO_IPST(q); 18124 } else { 18125 ipst = CONNQ_TO_IPST(q); 18126 } 18127 ASSERT(ipst != NULL); 18128 sctps = ipst->ips_netstack->netstack_sctp; 18129 18130 if (mpctl == NULL || mpctl->b_cont == NULL) { 18131 return (0); 18132 } 18133 18134 /* 18135 * For the purposes of the (broken) packet shell use 18136 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18137 * to make TCP and UDP appear first in the list of mib items. 18138 * TBD: We could expand this and use it in netstat so that 18139 * the kernel doesn't have to produce large tables (connections, 18140 * routes, etc) when netstat only wants the statistics or a particular 18141 * table. 18142 */ 18143 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18144 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18145 return (1); 18146 } 18147 } 18148 18149 if (level != MIB2_TCP) { 18150 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18151 return (1); 18152 } 18153 } 18154 18155 if (level != MIB2_UDP) { 18156 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18157 return (1); 18158 } 18159 } 18160 18161 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18162 ipst)) == NULL) { 18163 return (1); 18164 } 18165 18166 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18167 return (1); 18168 } 18169 18170 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18171 return (1); 18172 } 18173 18174 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18175 return (1); 18176 } 18177 18178 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18179 return (1); 18180 } 18181 18182 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18183 return (1); 18184 } 18185 18186 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18187 return (1); 18188 } 18189 18190 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18191 return (1); 18192 } 18193 18194 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18195 return (1); 18196 } 18197 18198 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18199 return (1); 18200 } 18201 18202 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18203 return (1); 18204 } 18205 18206 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18207 return (1); 18208 } 18209 18210 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18211 return (1); 18212 } 18213 18214 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18215 return (1); 18216 } 18217 18218 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18219 return (1); 18220 } 18221 18222 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18223 if (mpctl == NULL) { 18224 return (1); 18225 } 18226 18227 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18228 return (1); 18229 } 18230 freemsg(mpctl); 18231 return (1); 18232 } 18233 18234 18235 /* Get global (legacy) IPv4 statistics */ 18236 static mblk_t * 18237 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18238 ip_stack_t *ipst) 18239 { 18240 mib2_ip_t old_ip_mib; 18241 struct opthdr *optp; 18242 mblk_t *mp2ctl; 18243 18244 /* 18245 * make a copy of the original message 18246 */ 18247 mp2ctl = copymsg(mpctl); 18248 18249 /* fixed length IP structure... */ 18250 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18251 optp->level = MIB2_IP; 18252 optp->name = 0; 18253 SET_MIB(old_ip_mib.ipForwarding, 18254 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18255 SET_MIB(old_ip_mib.ipDefaultTTL, 18256 (uint32_t)ipst->ips_ip_def_ttl); 18257 SET_MIB(old_ip_mib.ipReasmTimeout, 18258 ipst->ips_ip_g_frag_timeout); 18259 SET_MIB(old_ip_mib.ipAddrEntrySize, 18260 sizeof (mib2_ipAddrEntry_t)); 18261 SET_MIB(old_ip_mib.ipRouteEntrySize, 18262 sizeof (mib2_ipRouteEntry_t)); 18263 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18264 sizeof (mib2_ipNetToMediaEntry_t)); 18265 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18266 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18267 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18268 sizeof (mib2_ipAttributeEntry_t)); 18269 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18270 18271 /* 18272 * Grab the statistics from the new IP MIB 18273 */ 18274 SET_MIB(old_ip_mib.ipInReceives, 18275 (uint32_t)ipmib->ipIfStatsHCInReceives); 18276 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18277 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18278 SET_MIB(old_ip_mib.ipForwDatagrams, 18279 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18280 SET_MIB(old_ip_mib.ipInUnknownProtos, 18281 ipmib->ipIfStatsInUnknownProtos); 18282 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18283 SET_MIB(old_ip_mib.ipInDelivers, 18284 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18285 SET_MIB(old_ip_mib.ipOutRequests, 18286 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18287 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18288 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18289 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18290 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18291 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18292 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18293 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18294 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18295 18296 /* ipRoutingDiscards is not being used */ 18297 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18298 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18299 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18300 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18301 SET_MIB(old_ip_mib.ipReasmDuplicates, 18302 ipmib->ipIfStatsReasmDuplicates); 18303 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18304 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18305 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18306 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18307 SET_MIB(old_ip_mib.rawipInOverflows, 18308 ipmib->rawipIfStatsInOverflows); 18309 18310 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18311 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18312 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18313 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18314 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18315 ipmib->ipIfStatsOutSwitchIPVersion); 18316 18317 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18318 (int)sizeof (old_ip_mib))) { 18319 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18320 (uint_t)sizeof (old_ip_mib))); 18321 } 18322 18323 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18324 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18325 (int)optp->level, (int)optp->name, (int)optp->len)); 18326 qreply(q, mpctl); 18327 return (mp2ctl); 18328 } 18329 18330 /* Per interface IPv4 statistics */ 18331 static mblk_t * 18332 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18333 { 18334 struct opthdr *optp; 18335 mblk_t *mp2ctl; 18336 ill_t *ill; 18337 ill_walk_context_t ctx; 18338 mblk_t *mp_tail = NULL; 18339 mib2_ipIfStatsEntry_t global_ip_mib; 18340 18341 /* 18342 * Make a copy of the original message 18343 */ 18344 mp2ctl = copymsg(mpctl); 18345 18346 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18347 optp->level = MIB2_IP; 18348 optp->name = MIB2_IP_TRAFFIC_STATS; 18349 /* Include "unknown interface" ip_mib */ 18350 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18351 ipst->ips_ip_mib.ipIfStatsIfIndex = 18352 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18353 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18354 (ipst->ips_ip_g_forward ? 1 : 2)); 18355 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18356 (uint32_t)ipst->ips_ip_def_ttl); 18357 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18358 sizeof (mib2_ipIfStatsEntry_t)); 18359 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18360 sizeof (mib2_ipAddrEntry_t)); 18361 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18362 sizeof (mib2_ipRouteEntry_t)); 18363 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18364 sizeof (mib2_ipNetToMediaEntry_t)); 18365 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18366 sizeof (ip_member_t)); 18367 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18368 sizeof (ip_grpsrc_t)); 18369 18370 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18371 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18372 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18373 "failed to allocate %u bytes\n", 18374 (uint_t)sizeof (ipst->ips_ip_mib))); 18375 } 18376 18377 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18378 18379 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18380 ill = ILL_START_WALK_V4(&ctx, ipst); 18381 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18382 ill->ill_ip_mib->ipIfStatsIfIndex = 18383 ill->ill_phyint->phyint_ifindex; 18384 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18385 (ipst->ips_ip_g_forward ? 1 : 2)); 18386 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18387 (uint32_t)ipst->ips_ip_def_ttl); 18388 18389 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18390 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18391 (char *)ill->ill_ip_mib, 18392 (int)sizeof (*ill->ill_ip_mib))) { 18393 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18394 "failed to allocate %u bytes\n", 18395 (uint_t)sizeof (*ill->ill_ip_mib))); 18396 } 18397 } 18398 rw_exit(&ipst->ips_ill_g_lock); 18399 18400 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18401 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18402 "level %d, name %d, len %d\n", 18403 (int)optp->level, (int)optp->name, (int)optp->len)); 18404 qreply(q, mpctl); 18405 18406 if (mp2ctl == NULL) 18407 return (NULL); 18408 18409 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18410 } 18411 18412 /* Global IPv4 ICMP statistics */ 18413 static mblk_t * 18414 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18415 { 18416 struct opthdr *optp; 18417 mblk_t *mp2ctl; 18418 18419 /* 18420 * Make a copy of the original message 18421 */ 18422 mp2ctl = copymsg(mpctl); 18423 18424 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18425 optp->level = MIB2_ICMP; 18426 optp->name = 0; 18427 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18428 (int)sizeof (ipst->ips_icmp_mib))) { 18429 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18430 (uint_t)sizeof (ipst->ips_icmp_mib))); 18431 } 18432 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18433 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18434 (int)optp->level, (int)optp->name, (int)optp->len)); 18435 qreply(q, mpctl); 18436 return (mp2ctl); 18437 } 18438 18439 /* Global IPv4 IGMP statistics */ 18440 static mblk_t * 18441 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18442 { 18443 struct opthdr *optp; 18444 mblk_t *mp2ctl; 18445 18446 /* 18447 * make a copy of the original message 18448 */ 18449 mp2ctl = copymsg(mpctl); 18450 18451 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18452 optp->level = EXPER_IGMP; 18453 optp->name = 0; 18454 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18455 (int)sizeof (ipst->ips_igmpstat))) { 18456 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18457 (uint_t)sizeof (ipst->ips_igmpstat))); 18458 } 18459 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18460 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18461 (int)optp->level, (int)optp->name, (int)optp->len)); 18462 qreply(q, mpctl); 18463 return (mp2ctl); 18464 } 18465 18466 /* Global IPv4 Multicast Routing statistics */ 18467 static mblk_t * 18468 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18469 { 18470 struct opthdr *optp; 18471 mblk_t *mp2ctl; 18472 18473 /* 18474 * make a copy of the original message 18475 */ 18476 mp2ctl = copymsg(mpctl); 18477 18478 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18479 optp->level = EXPER_DVMRP; 18480 optp->name = 0; 18481 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18482 ip0dbg(("ip_mroute_stats: failed\n")); 18483 } 18484 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18485 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18486 (int)optp->level, (int)optp->name, (int)optp->len)); 18487 qreply(q, mpctl); 18488 return (mp2ctl); 18489 } 18490 18491 /* IPv4 address information */ 18492 static mblk_t * 18493 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18494 { 18495 struct opthdr *optp; 18496 mblk_t *mp2ctl; 18497 mblk_t *mp_tail = NULL; 18498 ill_t *ill; 18499 ipif_t *ipif; 18500 uint_t bitval; 18501 mib2_ipAddrEntry_t mae; 18502 zoneid_t zoneid; 18503 ill_walk_context_t ctx; 18504 18505 /* 18506 * make a copy of the original message 18507 */ 18508 mp2ctl = copymsg(mpctl); 18509 18510 /* ipAddrEntryTable */ 18511 18512 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18513 optp->level = MIB2_IP; 18514 optp->name = MIB2_IP_ADDR; 18515 zoneid = Q_TO_CONN(q)->conn_zoneid; 18516 18517 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18518 ill = ILL_START_WALK_V4(&ctx, ipst); 18519 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18520 for (ipif = ill->ill_ipif; ipif != NULL; 18521 ipif = ipif->ipif_next) { 18522 if (ipif->ipif_zoneid != zoneid && 18523 ipif->ipif_zoneid != ALL_ZONES) 18524 continue; 18525 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18526 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18527 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18528 18529 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18530 OCTET_LENGTH); 18531 mae.ipAdEntIfIndex.o_length = 18532 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18533 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18534 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18535 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18536 mae.ipAdEntInfo.ae_subnet_len = 18537 ip_mask_to_plen(ipif->ipif_net_mask); 18538 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18539 for (bitval = 1; 18540 bitval && 18541 !(bitval & ipif->ipif_brd_addr); 18542 bitval <<= 1) 18543 noop; 18544 mae.ipAdEntBcastAddr = bitval; 18545 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18546 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18547 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18548 mae.ipAdEntInfo.ae_broadcast_addr = 18549 ipif->ipif_brd_addr; 18550 mae.ipAdEntInfo.ae_pp_dst_addr = 18551 ipif->ipif_pp_dst_addr; 18552 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18553 ill->ill_flags | ill->ill_phyint->phyint_flags; 18554 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18555 18556 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18557 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18558 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18559 "allocate %u bytes\n", 18560 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18561 } 18562 } 18563 } 18564 rw_exit(&ipst->ips_ill_g_lock); 18565 18566 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18567 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18568 (int)optp->level, (int)optp->name, (int)optp->len)); 18569 qreply(q, mpctl); 18570 return (mp2ctl); 18571 } 18572 18573 /* IPv6 address information */ 18574 static mblk_t * 18575 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18576 { 18577 struct opthdr *optp; 18578 mblk_t *mp2ctl; 18579 mblk_t *mp_tail = NULL; 18580 ill_t *ill; 18581 ipif_t *ipif; 18582 mib2_ipv6AddrEntry_t mae6; 18583 zoneid_t zoneid; 18584 ill_walk_context_t ctx; 18585 18586 /* 18587 * make a copy of the original message 18588 */ 18589 mp2ctl = copymsg(mpctl); 18590 18591 /* ipv6AddrEntryTable */ 18592 18593 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18594 optp->level = MIB2_IP6; 18595 optp->name = MIB2_IP6_ADDR; 18596 zoneid = Q_TO_CONN(q)->conn_zoneid; 18597 18598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18599 ill = ILL_START_WALK_V6(&ctx, ipst); 18600 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18601 for (ipif = ill->ill_ipif; ipif != NULL; 18602 ipif = ipif->ipif_next) { 18603 if (ipif->ipif_zoneid != zoneid && 18604 ipif->ipif_zoneid != ALL_ZONES) 18605 continue; 18606 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18607 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18608 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18609 18610 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18611 OCTET_LENGTH); 18612 mae6.ipv6AddrIfIndex.o_length = 18613 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18614 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18615 mae6.ipv6AddrPfxLength = 18616 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18617 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18618 mae6.ipv6AddrInfo.ae_subnet_len = 18619 mae6.ipv6AddrPfxLength; 18620 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18621 18622 /* Type: stateless(1), stateful(2), unknown(3) */ 18623 if (ipif->ipif_flags & IPIF_ADDRCONF) 18624 mae6.ipv6AddrType = 1; 18625 else 18626 mae6.ipv6AddrType = 2; 18627 /* Anycast: true(1), false(2) */ 18628 if (ipif->ipif_flags & IPIF_ANYCAST) 18629 mae6.ipv6AddrAnycastFlag = 1; 18630 else 18631 mae6.ipv6AddrAnycastFlag = 2; 18632 18633 /* 18634 * Address status: preferred(1), deprecated(2), 18635 * invalid(3), inaccessible(4), unknown(5) 18636 */ 18637 if (ipif->ipif_flags & IPIF_NOLOCAL) 18638 mae6.ipv6AddrStatus = 3; 18639 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18640 mae6.ipv6AddrStatus = 2; 18641 else 18642 mae6.ipv6AddrStatus = 1; 18643 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18644 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18645 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18646 ipif->ipif_v6pp_dst_addr; 18647 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18648 ill->ill_flags | ill->ill_phyint->phyint_flags; 18649 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18650 mae6.ipv6AddrIdentifier = ill->ill_token; 18651 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18652 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18653 mae6.ipv6AddrRetransmitTime = 18654 ill->ill_reachable_retrans_time; 18655 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18656 (char *)&mae6, 18657 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18658 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18659 "allocate %u bytes\n", 18660 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18661 } 18662 } 18663 } 18664 rw_exit(&ipst->ips_ill_g_lock); 18665 18666 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18667 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18668 (int)optp->level, (int)optp->name, (int)optp->len)); 18669 qreply(q, mpctl); 18670 return (mp2ctl); 18671 } 18672 18673 /* IPv4 multicast group membership. */ 18674 static mblk_t * 18675 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18676 { 18677 struct opthdr *optp; 18678 mblk_t *mp2ctl; 18679 ill_t *ill; 18680 ipif_t *ipif; 18681 ilm_t *ilm; 18682 ip_member_t ipm; 18683 mblk_t *mp_tail = NULL; 18684 ill_walk_context_t ctx; 18685 zoneid_t zoneid; 18686 18687 /* 18688 * make a copy of the original message 18689 */ 18690 mp2ctl = copymsg(mpctl); 18691 zoneid = Q_TO_CONN(q)->conn_zoneid; 18692 18693 /* ipGroupMember table */ 18694 optp = (struct opthdr *)&mpctl->b_rptr[ 18695 sizeof (struct T_optmgmt_ack)]; 18696 optp->level = MIB2_IP; 18697 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18698 18699 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18700 ill = ILL_START_WALK_V4(&ctx, ipst); 18701 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18702 ILM_WALKER_HOLD(ill); 18703 for (ipif = ill->ill_ipif; ipif != NULL; 18704 ipif = ipif->ipif_next) { 18705 if (ipif->ipif_zoneid != zoneid && 18706 ipif->ipif_zoneid != ALL_ZONES) 18707 continue; /* not this zone */ 18708 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18709 OCTET_LENGTH); 18710 ipm.ipGroupMemberIfIndex.o_length = 18711 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18712 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18713 ASSERT(ilm->ilm_ipif != NULL); 18714 ASSERT(ilm->ilm_ill == NULL); 18715 if (ilm->ilm_ipif != ipif) 18716 continue; 18717 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18718 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18719 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18720 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18721 (char *)&ipm, (int)sizeof (ipm))) { 18722 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18723 "failed to allocate %u bytes\n", 18724 (uint_t)sizeof (ipm))); 18725 } 18726 } 18727 } 18728 ILM_WALKER_RELE(ill); 18729 } 18730 rw_exit(&ipst->ips_ill_g_lock); 18731 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18732 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18733 (int)optp->level, (int)optp->name, (int)optp->len)); 18734 qreply(q, mpctl); 18735 return (mp2ctl); 18736 } 18737 18738 /* IPv6 multicast group membership. */ 18739 static mblk_t * 18740 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18741 { 18742 struct opthdr *optp; 18743 mblk_t *mp2ctl; 18744 ill_t *ill; 18745 ilm_t *ilm; 18746 ipv6_member_t ipm6; 18747 mblk_t *mp_tail = NULL; 18748 ill_walk_context_t ctx; 18749 zoneid_t zoneid; 18750 18751 /* 18752 * make a copy of the original message 18753 */ 18754 mp2ctl = copymsg(mpctl); 18755 zoneid = Q_TO_CONN(q)->conn_zoneid; 18756 18757 /* ip6GroupMember table */ 18758 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18759 optp->level = MIB2_IP6; 18760 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18761 18762 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18763 ill = ILL_START_WALK_V6(&ctx, ipst); 18764 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18765 ILM_WALKER_HOLD(ill); 18766 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18767 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18768 ASSERT(ilm->ilm_ipif == NULL); 18769 ASSERT(ilm->ilm_ill != NULL); 18770 if (ilm->ilm_zoneid != zoneid) 18771 continue; /* not this zone */ 18772 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18773 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18774 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18775 if (!snmp_append_data2(mpctl->b_cont, 18776 &mp_tail, 18777 (char *)&ipm6, (int)sizeof (ipm6))) { 18778 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18779 "failed to allocate %u bytes\n", 18780 (uint_t)sizeof (ipm6))); 18781 } 18782 } 18783 ILM_WALKER_RELE(ill); 18784 } 18785 rw_exit(&ipst->ips_ill_g_lock); 18786 18787 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18788 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18789 (int)optp->level, (int)optp->name, (int)optp->len)); 18790 qreply(q, mpctl); 18791 return (mp2ctl); 18792 } 18793 18794 /* IP multicast filtered sources */ 18795 static mblk_t * 18796 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18797 { 18798 struct opthdr *optp; 18799 mblk_t *mp2ctl; 18800 ill_t *ill; 18801 ipif_t *ipif; 18802 ilm_t *ilm; 18803 ip_grpsrc_t ips; 18804 mblk_t *mp_tail = NULL; 18805 ill_walk_context_t ctx; 18806 zoneid_t zoneid; 18807 int i; 18808 slist_t *sl; 18809 18810 /* 18811 * make a copy of the original message 18812 */ 18813 mp2ctl = copymsg(mpctl); 18814 zoneid = Q_TO_CONN(q)->conn_zoneid; 18815 18816 /* ipGroupSource table */ 18817 optp = (struct opthdr *)&mpctl->b_rptr[ 18818 sizeof (struct T_optmgmt_ack)]; 18819 optp->level = MIB2_IP; 18820 optp->name = EXPER_IP_GROUP_SOURCES; 18821 18822 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18823 ill = ILL_START_WALK_V4(&ctx, ipst); 18824 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18825 ILM_WALKER_HOLD(ill); 18826 for (ipif = ill->ill_ipif; ipif != NULL; 18827 ipif = ipif->ipif_next) { 18828 if (ipif->ipif_zoneid != zoneid) 18829 continue; /* not this zone */ 18830 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18831 OCTET_LENGTH); 18832 ips.ipGroupSourceIfIndex.o_length = 18833 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18834 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18835 ASSERT(ilm->ilm_ipif != NULL); 18836 ASSERT(ilm->ilm_ill == NULL); 18837 sl = ilm->ilm_filter; 18838 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18839 continue; 18840 ips.ipGroupSourceGroup = ilm->ilm_addr; 18841 for (i = 0; i < sl->sl_numsrc; i++) { 18842 if (!IN6_IS_ADDR_V4MAPPED( 18843 &sl->sl_addr[i])) 18844 continue; 18845 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18846 ips.ipGroupSourceAddress); 18847 if (snmp_append_data2(mpctl->b_cont, 18848 &mp_tail, (char *)&ips, 18849 (int)sizeof (ips)) == 0) { 18850 ip1dbg(("ip_snmp_get_mib2_" 18851 "ip_group_src: failed to " 18852 "allocate %u bytes\n", 18853 (uint_t)sizeof (ips))); 18854 } 18855 } 18856 } 18857 } 18858 ILM_WALKER_RELE(ill); 18859 } 18860 rw_exit(&ipst->ips_ill_g_lock); 18861 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18862 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18863 (int)optp->level, (int)optp->name, (int)optp->len)); 18864 qreply(q, mpctl); 18865 return (mp2ctl); 18866 } 18867 18868 /* IPv6 multicast filtered sources. */ 18869 static mblk_t * 18870 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18871 { 18872 struct opthdr *optp; 18873 mblk_t *mp2ctl; 18874 ill_t *ill; 18875 ilm_t *ilm; 18876 ipv6_grpsrc_t ips6; 18877 mblk_t *mp_tail = NULL; 18878 ill_walk_context_t ctx; 18879 zoneid_t zoneid; 18880 int i; 18881 slist_t *sl; 18882 18883 /* 18884 * make a copy of the original message 18885 */ 18886 mp2ctl = copymsg(mpctl); 18887 zoneid = Q_TO_CONN(q)->conn_zoneid; 18888 18889 /* ip6GroupMember table */ 18890 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18891 optp->level = MIB2_IP6; 18892 optp->name = EXPER_IP6_GROUP_SOURCES; 18893 18894 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18895 ill = ILL_START_WALK_V6(&ctx, ipst); 18896 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18897 ILM_WALKER_HOLD(ill); 18898 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18899 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18900 ASSERT(ilm->ilm_ipif == NULL); 18901 ASSERT(ilm->ilm_ill != NULL); 18902 sl = ilm->ilm_filter; 18903 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18904 continue; 18905 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18906 for (i = 0; i < sl->sl_numsrc; i++) { 18907 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18908 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18909 (char *)&ips6, (int)sizeof (ips6))) { 18910 ip1dbg(("ip_snmp_get_mib2_ip6_" 18911 "group_src: failed to allocate " 18912 "%u bytes\n", 18913 (uint_t)sizeof (ips6))); 18914 } 18915 } 18916 } 18917 ILM_WALKER_RELE(ill); 18918 } 18919 rw_exit(&ipst->ips_ill_g_lock); 18920 18921 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18922 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18923 (int)optp->level, (int)optp->name, (int)optp->len)); 18924 qreply(q, mpctl); 18925 return (mp2ctl); 18926 } 18927 18928 /* Multicast routing virtual interface table. */ 18929 static mblk_t * 18930 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18931 { 18932 struct opthdr *optp; 18933 mblk_t *mp2ctl; 18934 18935 /* 18936 * make a copy of the original message 18937 */ 18938 mp2ctl = copymsg(mpctl); 18939 18940 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18941 optp->level = EXPER_DVMRP; 18942 optp->name = EXPER_DVMRP_VIF; 18943 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18944 ip0dbg(("ip_mroute_vif: failed\n")); 18945 } 18946 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18947 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18948 (int)optp->level, (int)optp->name, (int)optp->len)); 18949 qreply(q, mpctl); 18950 return (mp2ctl); 18951 } 18952 18953 /* Multicast routing table. */ 18954 static mblk_t * 18955 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18956 { 18957 struct opthdr *optp; 18958 mblk_t *mp2ctl; 18959 18960 /* 18961 * make a copy of the original message 18962 */ 18963 mp2ctl = copymsg(mpctl); 18964 18965 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18966 optp->level = EXPER_DVMRP; 18967 optp->name = EXPER_DVMRP_MRT; 18968 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18969 ip0dbg(("ip_mroute_mrt: failed\n")); 18970 } 18971 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18972 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18973 (int)optp->level, (int)optp->name, (int)optp->len)); 18974 qreply(q, mpctl); 18975 return (mp2ctl); 18976 } 18977 18978 /* 18979 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18980 * in one IRE walk. 18981 */ 18982 static mblk_t * 18983 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18984 { 18985 struct opthdr *optp; 18986 mblk_t *mp2ctl; /* Returned */ 18987 mblk_t *mp3ctl; /* nettomedia */ 18988 mblk_t *mp4ctl; /* routeattrs */ 18989 iproutedata_t ird; 18990 zoneid_t zoneid; 18991 18992 /* 18993 * make copies of the original message 18994 * - mp2ctl is returned unchanged to the caller for his use 18995 * - mpctl is sent upstream as ipRouteEntryTable 18996 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18997 * - mp4ctl is sent upstream as ipRouteAttributeTable 18998 */ 18999 mp2ctl = copymsg(mpctl); 19000 mp3ctl = copymsg(mpctl); 19001 mp4ctl = copymsg(mpctl); 19002 if (mp3ctl == NULL || mp4ctl == NULL) { 19003 freemsg(mp4ctl); 19004 freemsg(mp3ctl); 19005 freemsg(mp2ctl); 19006 freemsg(mpctl); 19007 return (NULL); 19008 } 19009 19010 bzero(&ird, sizeof (ird)); 19011 19012 ird.ird_route.lp_head = mpctl->b_cont; 19013 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19014 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19015 19016 zoneid = Q_TO_CONN(q)->conn_zoneid; 19017 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19018 19019 /* ipRouteEntryTable in mpctl */ 19020 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19021 optp->level = MIB2_IP; 19022 optp->name = MIB2_IP_ROUTE; 19023 optp->len = msgdsize(ird.ird_route.lp_head); 19024 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19025 (int)optp->level, (int)optp->name, (int)optp->len)); 19026 qreply(q, mpctl); 19027 19028 /* ipNetToMediaEntryTable in mp3ctl */ 19029 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19030 optp->level = MIB2_IP; 19031 optp->name = MIB2_IP_MEDIA; 19032 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19033 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19034 (int)optp->level, (int)optp->name, (int)optp->len)); 19035 qreply(q, mp3ctl); 19036 19037 /* ipRouteAttributeTable in mp4ctl */ 19038 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19039 optp->level = MIB2_IP; 19040 optp->name = EXPER_IP_RTATTR; 19041 optp->len = msgdsize(ird.ird_attrs.lp_head); 19042 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19043 (int)optp->level, (int)optp->name, (int)optp->len)); 19044 if (optp->len == 0) 19045 freemsg(mp4ctl); 19046 else 19047 qreply(q, mp4ctl); 19048 19049 return (mp2ctl); 19050 } 19051 19052 /* 19053 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19054 * ipv6NetToMediaEntryTable in an NDP walk. 19055 */ 19056 static mblk_t * 19057 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19058 { 19059 struct opthdr *optp; 19060 mblk_t *mp2ctl; /* Returned */ 19061 mblk_t *mp3ctl; /* nettomedia */ 19062 mblk_t *mp4ctl; /* routeattrs */ 19063 iproutedata_t ird; 19064 zoneid_t zoneid; 19065 19066 /* 19067 * make copies of the original message 19068 * - mp2ctl is returned unchanged to the caller for his use 19069 * - mpctl is sent upstream as ipv6RouteEntryTable 19070 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19071 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19072 */ 19073 mp2ctl = copymsg(mpctl); 19074 mp3ctl = copymsg(mpctl); 19075 mp4ctl = copymsg(mpctl); 19076 if (mp3ctl == NULL || mp4ctl == NULL) { 19077 freemsg(mp4ctl); 19078 freemsg(mp3ctl); 19079 freemsg(mp2ctl); 19080 freemsg(mpctl); 19081 return (NULL); 19082 } 19083 19084 bzero(&ird, sizeof (ird)); 19085 19086 ird.ird_route.lp_head = mpctl->b_cont; 19087 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19088 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19089 19090 zoneid = Q_TO_CONN(q)->conn_zoneid; 19091 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19092 19093 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19094 optp->level = MIB2_IP6; 19095 optp->name = MIB2_IP6_ROUTE; 19096 optp->len = msgdsize(ird.ird_route.lp_head); 19097 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19098 (int)optp->level, (int)optp->name, (int)optp->len)); 19099 qreply(q, mpctl); 19100 19101 /* ipv6NetToMediaEntryTable in mp3ctl */ 19102 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19103 19104 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19105 optp->level = MIB2_IP6; 19106 optp->name = MIB2_IP6_MEDIA; 19107 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19108 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19109 (int)optp->level, (int)optp->name, (int)optp->len)); 19110 qreply(q, mp3ctl); 19111 19112 /* ipv6RouteAttributeTable in mp4ctl */ 19113 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19114 optp->level = MIB2_IP6; 19115 optp->name = EXPER_IP_RTATTR; 19116 optp->len = msgdsize(ird.ird_attrs.lp_head); 19117 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19118 (int)optp->level, (int)optp->name, (int)optp->len)); 19119 if (optp->len == 0) 19120 freemsg(mp4ctl); 19121 else 19122 qreply(q, mp4ctl); 19123 19124 return (mp2ctl); 19125 } 19126 19127 /* 19128 * IPv6 mib: One per ill 19129 */ 19130 static mblk_t * 19131 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19132 { 19133 struct opthdr *optp; 19134 mblk_t *mp2ctl; 19135 ill_t *ill; 19136 ill_walk_context_t ctx; 19137 mblk_t *mp_tail = NULL; 19138 19139 /* 19140 * Make a copy of the original message 19141 */ 19142 mp2ctl = copymsg(mpctl); 19143 19144 /* fixed length IPv6 structure ... */ 19145 19146 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19147 optp->level = MIB2_IP6; 19148 optp->name = 0; 19149 /* Include "unknown interface" ip6_mib */ 19150 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19151 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19152 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19153 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19154 ipst->ips_ipv6_forward ? 1 : 2); 19155 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19156 ipst->ips_ipv6_def_hops); 19157 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19158 sizeof (mib2_ipIfStatsEntry_t)); 19159 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19160 sizeof (mib2_ipv6AddrEntry_t)); 19161 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19162 sizeof (mib2_ipv6RouteEntry_t)); 19163 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19164 sizeof (mib2_ipv6NetToMediaEntry_t)); 19165 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19166 sizeof (ipv6_member_t)); 19167 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19168 sizeof (ipv6_grpsrc_t)); 19169 19170 /* 19171 * Synchronize 64- and 32-bit counters 19172 */ 19173 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19174 ipIfStatsHCInReceives); 19175 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19176 ipIfStatsHCInDelivers); 19177 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19178 ipIfStatsHCOutRequests); 19179 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19180 ipIfStatsHCOutForwDatagrams); 19181 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19182 ipIfStatsHCOutMcastPkts); 19183 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19184 ipIfStatsHCInMcastPkts); 19185 19186 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19187 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19188 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19189 (uint_t)sizeof (ipst->ips_ip6_mib))); 19190 } 19191 19192 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19193 ill = ILL_START_WALK_V6(&ctx, ipst); 19194 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19195 ill->ill_ip_mib->ipIfStatsIfIndex = 19196 ill->ill_phyint->phyint_ifindex; 19197 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19198 ipst->ips_ipv6_forward ? 1 : 2); 19199 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19200 ill->ill_max_hops); 19201 19202 /* 19203 * Synchronize 64- and 32-bit counters 19204 */ 19205 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19206 ipIfStatsHCInReceives); 19207 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19208 ipIfStatsHCInDelivers); 19209 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19210 ipIfStatsHCOutRequests); 19211 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19212 ipIfStatsHCOutForwDatagrams); 19213 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19214 ipIfStatsHCOutMcastPkts); 19215 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19216 ipIfStatsHCInMcastPkts); 19217 19218 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19219 (char *)ill->ill_ip_mib, 19220 (int)sizeof (*ill->ill_ip_mib))) { 19221 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19222 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19223 } 19224 } 19225 rw_exit(&ipst->ips_ill_g_lock); 19226 19227 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19228 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19229 (int)optp->level, (int)optp->name, (int)optp->len)); 19230 qreply(q, mpctl); 19231 return (mp2ctl); 19232 } 19233 19234 /* 19235 * ICMPv6 mib: One per ill 19236 */ 19237 static mblk_t * 19238 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19239 { 19240 struct opthdr *optp; 19241 mblk_t *mp2ctl; 19242 ill_t *ill; 19243 ill_walk_context_t ctx; 19244 mblk_t *mp_tail = NULL; 19245 /* 19246 * Make a copy of the original message 19247 */ 19248 mp2ctl = copymsg(mpctl); 19249 19250 /* fixed length ICMPv6 structure ... */ 19251 19252 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19253 optp->level = MIB2_ICMP6; 19254 optp->name = 0; 19255 /* Include "unknown interface" icmp6_mib */ 19256 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19257 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19258 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19259 sizeof (mib2_ipv6IfIcmpEntry_t); 19260 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19261 (char *)&ipst->ips_icmp6_mib, 19262 (int)sizeof (ipst->ips_icmp6_mib))) { 19263 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19264 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19265 } 19266 19267 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19268 ill = ILL_START_WALK_V6(&ctx, ipst); 19269 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19270 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19271 ill->ill_phyint->phyint_ifindex; 19272 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19273 (char *)ill->ill_icmp6_mib, 19274 (int)sizeof (*ill->ill_icmp6_mib))) { 19275 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19276 "%u bytes\n", 19277 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19278 } 19279 } 19280 rw_exit(&ipst->ips_ill_g_lock); 19281 19282 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19283 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19284 (int)optp->level, (int)optp->name, (int)optp->len)); 19285 qreply(q, mpctl); 19286 return (mp2ctl); 19287 } 19288 19289 /* 19290 * ire_walk routine to create both ipRouteEntryTable and 19291 * ipRouteAttributeTable in one IRE walk 19292 */ 19293 static void 19294 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19295 { 19296 ill_t *ill; 19297 ipif_t *ipif; 19298 mib2_ipRouteEntry_t *re; 19299 mib2_ipAttributeEntry_t *iae, *iaeptr; 19300 ipaddr_t gw_addr; 19301 tsol_ire_gw_secattr_t *attrp; 19302 tsol_gc_t *gc = NULL; 19303 tsol_gcgrp_t *gcgrp = NULL; 19304 uint_t sacnt = 0; 19305 int i; 19306 19307 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19308 19309 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19310 return; 19311 19312 if ((attrp = ire->ire_gw_secattr) != NULL) { 19313 mutex_enter(&attrp->igsa_lock); 19314 if ((gc = attrp->igsa_gc) != NULL) { 19315 gcgrp = gc->gc_grp; 19316 ASSERT(gcgrp != NULL); 19317 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19318 sacnt = 1; 19319 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19320 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19321 gc = gcgrp->gcgrp_head; 19322 sacnt = gcgrp->gcgrp_count; 19323 } 19324 mutex_exit(&attrp->igsa_lock); 19325 19326 /* do nothing if there's no gc to report */ 19327 if (gc == NULL) { 19328 ASSERT(sacnt == 0); 19329 if (gcgrp != NULL) { 19330 /* we might as well drop the lock now */ 19331 rw_exit(&gcgrp->gcgrp_rwlock); 19332 gcgrp = NULL; 19333 } 19334 attrp = NULL; 19335 } 19336 19337 ASSERT(gc == NULL || (gcgrp != NULL && 19338 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19339 } 19340 ASSERT(sacnt == 0 || gc != NULL); 19341 19342 if (sacnt != 0 && 19343 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19344 kmem_free(re, sizeof (*re)); 19345 rw_exit(&gcgrp->gcgrp_rwlock); 19346 return; 19347 } 19348 19349 /* 19350 * Return all IRE types for route table... let caller pick and choose 19351 */ 19352 re->ipRouteDest = ire->ire_addr; 19353 ipif = ire->ire_ipif; 19354 re->ipRouteIfIndex.o_length = 0; 19355 if (ire->ire_type == IRE_CACHE) { 19356 ill = (ill_t *)ire->ire_stq->q_ptr; 19357 re->ipRouteIfIndex.o_length = 19358 ill->ill_name_length == 0 ? 0 : 19359 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19360 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19361 re->ipRouteIfIndex.o_length); 19362 } else if (ipif != NULL) { 19363 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19364 re->ipRouteIfIndex.o_length = 19365 mi_strlen(re->ipRouteIfIndex.o_bytes); 19366 } 19367 re->ipRouteMetric1 = -1; 19368 re->ipRouteMetric2 = -1; 19369 re->ipRouteMetric3 = -1; 19370 re->ipRouteMetric4 = -1; 19371 19372 gw_addr = ire->ire_gateway_addr; 19373 19374 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19375 re->ipRouteNextHop = ire->ire_src_addr; 19376 else 19377 re->ipRouteNextHop = gw_addr; 19378 /* indirect(4), direct(3), or invalid(2) */ 19379 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19380 re->ipRouteType = 2; 19381 else 19382 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19383 re->ipRouteProto = -1; 19384 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19385 re->ipRouteMask = ire->ire_mask; 19386 re->ipRouteMetric5 = -1; 19387 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19388 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19389 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19390 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19391 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19392 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19393 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19394 re->ipRouteInfo.re_flags = ire->ire_flags; 19395 19396 if (ire->ire_flags & RTF_DYNAMIC) { 19397 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19398 } else { 19399 re->ipRouteInfo.re_ire_type = ire->ire_type; 19400 } 19401 19402 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19403 (char *)re, (int)sizeof (*re))) { 19404 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19405 (uint_t)sizeof (*re))); 19406 } 19407 19408 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19409 iaeptr->iae_routeidx = ird->ird_idx; 19410 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19411 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19412 } 19413 19414 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19415 (char *)iae, sacnt * sizeof (*iae))) { 19416 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19417 (unsigned)(sacnt * sizeof (*iae)))); 19418 } 19419 19420 /* bump route index for next pass */ 19421 ird->ird_idx++; 19422 19423 kmem_free(re, sizeof (*re)); 19424 if (sacnt != 0) 19425 kmem_free(iae, sacnt * sizeof (*iae)); 19426 19427 if (gcgrp != NULL) 19428 rw_exit(&gcgrp->gcgrp_rwlock); 19429 } 19430 19431 /* 19432 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19433 */ 19434 static void 19435 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19436 { 19437 ill_t *ill; 19438 ipif_t *ipif; 19439 mib2_ipv6RouteEntry_t *re; 19440 mib2_ipAttributeEntry_t *iae, *iaeptr; 19441 in6_addr_t gw_addr_v6; 19442 tsol_ire_gw_secattr_t *attrp; 19443 tsol_gc_t *gc = NULL; 19444 tsol_gcgrp_t *gcgrp = NULL; 19445 uint_t sacnt = 0; 19446 int i; 19447 19448 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19449 19450 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19451 return; 19452 19453 if ((attrp = ire->ire_gw_secattr) != NULL) { 19454 mutex_enter(&attrp->igsa_lock); 19455 if ((gc = attrp->igsa_gc) != NULL) { 19456 gcgrp = gc->gc_grp; 19457 ASSERT(gcgrp != NULL); 19458 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19459 sacnt = 1; 19460 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19461 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19462 gc = gcgrp->gcgrp_head; 19463 sacnt = gcgrp->gcgrp_count; 19464 } 19465 mutex_exit(&attrp->igsa_lock); 19466 19467 /* do nothing if there's no gc to report */ 19468 if (gc == NULL) { 19469 ASSERT(sacnt == 0); 19470 if (gcgrp != NULL) { 19471 /* we might as well drop the lock now */ 19472 rw_exit(&gcgrp->gcgrp_rwlock); 19473 gcgrp = NULL; 19474 } 19475 attrp = NULL; 19476 } 19477 19478 ASSERT(gc == NULL || (gcgrp != NULL && 19479 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19480 } 19481 ASSERT(sacnt == 0 || gc != NULL); 19482 19483 if (sacnt != 0 && 19484 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19485 kmem_free(re, sizeof (*re)); 19486 rw_exit(&gcgrp->gcgrp_rwlock); 19487 return; 19488 } 19489 19490 /* 19491 * Return all IRE types for route table... let caller pick and choose 19492 */ 19493 re->ipv6RouteDest = ire->ire_addr_v6; 19494 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19495 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19496 re->ipv6RouteIfIndex.o_length = 0; 19497 ipif = ire->ire_ipif; 19498 if (ire->ire_type == IRE_CACHE) { 19499 ill = (ill_t *)ire->ire_stq->q_ptr; 19500 re->ipv6RouteIfIndex.o_length = 19501 ill->ill_name_length == 0 ? 0 : 19502 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19503 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19504 re->ipv6RouteIfIndex.o_length); 19505 } else if (ipif != NULL) { 19506 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19507 re->ipv6RouteIfIndex.o_length = 19508 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19509 } 19510 19511 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19512 19513 mutex_enter(&ire->ire_lock); 19514 gw_addr_v6 = ire->ire_gateway_addr_v6; 19515 mutex_exit(&ire->ire_lock); 19516 19517 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19518 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19519 else 19520 re->ipv6RouteNextHop = gw_addr_v6; 19521 19522 /* remote(4), local(3), or discard(2) */ 19523 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19524 re->ipv6RouteType = 2; 19525 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19526 re->ipv6RouteType = 3; 19527 else 19528 re->ipv6RouteType = 4; 19529 19530 re->ipv6RouteProtocol = -1; 19531 re->ipv6RoutePolicy = 0; 19532 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19533 re->ipv6RouteNextHopRDI = 0; 19534 re->ipv6RouteWeight = 0; 19535 re->ipv6RouteMetric = 0; 19536 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19537 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19538 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19539 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19540 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19541 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19542 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19543 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19544 19545 if (ire->ire_flags & RTF_DYNAMIC) { 19546 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19547 } else { 19548 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19549 } 19550 19551 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19552 (char *)re, (int)sizeof (*re))) { 19553 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19554 (uint_t)sizeof (*re))); 19555 } 19556 19557 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19558 iaeptr->iae_routeidx = ird->ird_idx; 19559 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19560 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19561 } 19562 19563 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19564 (char *)iae, sacnt * sizeof (*iae))) { 19565 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19566 (unsigned)(sacnt * sizeof (*iae)))); 19567 } 19568 19569 /* bump route index for next pass */ 19570 ird->ird_idx++; 19571 19572 kmem_free(re, sizeof (*re)); 19573 if (sacnt != 0) 19574 kmem_free(iae, sacnt * sizeof (*iae)); 19575 19576 if (gcgrp != NULL) 19577 rw_exit(&gcgrp->gcgrp_rwlock); 19578 } 19579 19580 /* 19581 * ndp_walk routine to create ipv6NetToMediaEntryTable 19582 */ 19583 static int 19584 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19585 { 19586 ill_t *ill; 19587 mib2_ipv6NetToMediaEntry_t ntme; 19588 dl_unitdata_req_t *dl; 19589 19590 ill = nce->nce_ill; 19591 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19592 return (0); 19593 19594 /* 19595 * Neighbor cache entry attached to IRE with on-link 19596 * destination. 19597 */ 19598 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19599 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19600 if ((ill->ill_flags & ILLF_XRESOLV) && 19601 (nce->nce_res_mp != NULL)) { 19602 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19603 ntme.ipv6NetToMediaPhysAddress.o_length = 19604 dl->dl_dest_addr_length; 19605 } else { 19606 ntme.ipv6NetToMediaPhysAddress.o_length = 19607 ill->ill_phys_addr_length; 19608 } 19609 if (nce->nce_res_mp != NULL) { 19610 bcopy((char *)nce->nce_res_mp->b_rptr + 19611 NCE_LL_ADDR_OFFSET(ill), 19612 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19613 ntme.ipv6NetToMediaPhysAddress.o_length); 19614 } else { 19615 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19616 ill->ill_phys_addr_length); 19617 } 19618 /* 19619 * Note: Returns ND_* states. Should be: 19620 * reachable(1), stale(2), delay(3), probe(4), 19621 * invalid(5), unknown(6) 19622 */ 19623 ntme.ipv6NetToMediaState = nce->nce_state; 19624 ntme.ipv6NetToMediaLastUpdated = 0; 19625 19626 /* other(1), dynamic(2), static(3), local(4) */ 19627 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19628 ntme.ipv6NetToMediaType = 4; 19629 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19630 ntme.ipv6NetToMediaType = 1; 19631 } else { 19632 ntme.ipv6NetToMediaType = 2; 19633 } 19634 19635 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19636 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19637 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19638 (uint_t)sizeof (ntme))); 19639 } 19640 return (0); 19641 } 19642 19643 /* 19644 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19645 */ 19646 /* ARGSUSED */ 19647 int 19648 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19649 { 19650 switch (level) { 19651 case MIB2_IP: 19652 case MIB2_ICMP: 19653 switch (name) { 19654 default: 19655 break; 19656 } 19657 return (1); 19658 default: 19659 return (1); 19660 } 19661 } 19662 19663 /* 19664 * When there exists both a 64- and 32-bit counter of a particular type 19665 * (i.e., InReceives), only the 64-bit counters are added. 19666 */ 19667 void 19668 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19669 { 19670 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19671 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19672 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19673 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19674 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19675 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19676 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19677 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19678 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19679 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19680 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19681 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19682 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19683 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19684 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19685 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19686 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19687 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19688 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19689 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19690 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19691 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19692 o2->ipIfStatsInWrongIPVersion); 19693 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19694 o2->ipIfStatsInWrongIPVersion); 19695 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19696 o2->ipIfStatsOutSwitchIPVersion); 19697 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19698 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19699 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19700 o2->ipIfStatsHCInForwDatagrams); 19701 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19702 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19703 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19704 o2->ipIfStatsHCOutForwDatagrams); 19705 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19706 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19707 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19708 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19709 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19710 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19711 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19712 o2->ipIfStatsHCOutMcastOctets); 19713 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19714 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19715 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19716 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19717 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19718 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19719 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19720 } 19721 19722 void 19723 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19724 { 19725 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19726 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19727 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19728 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19729 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19730 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19731 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19732 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19733 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19734 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19735 o2->ipv6IfIcmpInRouterSolicits); 19736 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19737 o2->ipv6IfIcmpInRouterAdvertisements); 19738 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19739 o2->ipv6IfIcmpInNeighborSolicits); 19740 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19741 o2->ipv6IfIcmpInNeighborAdvertisements); 19742 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19743 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19744 o2->ipv6IfIcmpInGroupMembQueries); 19745 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19746 o2->ipv6IfIcmpInGroupMembResponses); 19747 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19748 o2->ipv6IfIcmpInGroupMembReductions); 19749 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19750 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19751 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19752 o2->ipv6IfIcmpOutDestUnreachs); 19753 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19754 o2->ipv6IfIcmpOutAdminProhibs); 19755 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19756 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19757 o2->ipv6IfIcmpOutParmProblems); 19758 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19759 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19760 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19761 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19762 o2->ipv6IfIcmpOutRouterSolicits); 19763 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19764 o2->ipv6IfIcmpOutRouterAdvertisements); 19765 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19766 o2->ipv6IfIcmpOutNeighborSolicits); 19767 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19768 o2->ipv6IfIcmpOutNeighborAdvertisements); 19769 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19770 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19771 o2->ipv6IfIcmpOutGroupMembQueries); 19772 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19773 o2->ipv6IfIcmpOutGroupMembResponses); 19774 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19775 o2->ipv6IfIcmpOutGroupMembReductions); 19776 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19777 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19778 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19779 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19780 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19781 o2->ipv6IfIcmpInBadNeighborSolicitations); 19782 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19783 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19784 o2->ipv6IfIcmpInGroupMembTotal); 19785 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19786 o2->ipv6IfIcmpInGroupMembBadQueries); 19787 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19788 o2->ipv6IfIcmpInGroupMembBadReports); 19789 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19790 o2->ipv6IfIcmpInGroupMembOurReports); 19791 } 19792 19793 /* 19794 * Called before the options are updated to check if this packet will 19795 * be source routed from here. 19796 * This routine assumes that the options are well formed i.e. that they 19797 * have already been checked. 19798 */ 19799 static boolean_t 19800 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19801 { 19802 ipoptp_t opts; 19803 uchar_t *opt; 19804 uint8_t optval; 19805 uint8_t optlen; 19806 ipaddr_t dst; 19807 ire_t *ire; 19808 19809 if (IS_SIMPLE_IPH(ipha)) { 19810 ip2dbg(("not source routed\n")); 19811 return (B_FALSE); 19812 } 19813 dst = ipha->ipha_dst; 19814 for (optval = ipoptp_first(&opts, ipha); 19815 optval != IPOPT_EOL; 19816 optval = ipoptp_next(&opts)) { 19817 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19818 opt = opts.ipoptp_cur; 19819 optlen = opts.ipoptp_len; 19820 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19821 optval, optlen)); 19822 switch (optval) { 19823 uint32_t off; 19824 case IPOPT_SSRR: 19825 case IPOPT_LSRR: 19826 /* 19827 * If dst is one of our addresses and there are some 19828 * entries left in the source route return (true). 19829 */ 19830 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19831 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19832 if (ire == NULL) { 19833 ip2dbg(("ip_source_routed: not next" 19834 " source route 0x%x\n", 19835 ntohl(dst))); 19836 return (B_FALSE); 19837 } 19838 ire_refrele(ire); 19839 off = opt[IPOPT_OFFSET]; 19840 off--; 19841 if (optlen < IP_ADDR_LEN || 19842 off > optlen - IP_ADDR_LEN) { 19843 /* End of source route */ 19844 ip1dbg(("ip_source_routed: end of SR\n")); 19845 return (B_FALSE); 19846 } 19847 return (B_TRUE); 19848 } 19849 } 19850 ip2dbg(("not source routed\n")); 19851 return (B_FALSE); 19852 } 19853 19854 /* 19855 * Check if the packet contains any source route. 19856 */ 19857 static boolean_t 19858 ip_source_route_included(ipha_t *ipha) 19859 { 19860 ipoptp_t opts; 19861 uint8_t optval; 19862 19863 if (IS_SIMPLE_IPH(ipha)) 19864 return (B_FALSE); 19865 for (optval = ipoptp_first(&opts, ipha); 19866 optval != IPOPT_EOL; 19867 optval = ipoptp_next(&opts)) { 19868 switch (optval) { 19869 case IPOPT_SSRR: 19870 case IPOPT_LSRR: 19871 return (B_TRUE); 19872 } 19873 } 19874 return (B_FALSE); 19875 } 19876 19877 /* 19878 * Called when the IRE expiration timer fires. 19879 */ 19880 void 19881 ip_trash_timer_expire(void *args) 19882 { 19883 int flush_flag = 0; 19884 ire_expire_arg_t iea; 19885 ip_stack_t *ipst = (ip_stack_t *)args; 19886 19887 iea.iea_ipst = ipst; /* No netstack_hold */ 19888 19889 /* 19890 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19891 * This lock makes sure that a new invocation of this function 19892 * that occurs due to an almost immediate timer firing will not 19893 * progress beyond this point until the current invocation is done 19894 */ 19895 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19896 ipst->ips_ip_ire_expire_id = 0; 19897 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19898 19899 /* Periodic timer */ 19900 if (ipst->ips_ip_ire_arp_time_elapsed >= 19901 ipst->ips_ip_ire_arp_interval) { 19902 /* 19903 * Remove all IRE_CACHE entries since they might 19904 * contain arp information. 19905 */ 19906 flush_flag |= FLUSH_ARP_TIME; 19907 ipst->ips_ip_ire_arp_time_elapsed = 0; 19908 IP_STAT(ipst, ip_ire_arp_timer_expired); 19909 } 19910 if (ipst->ips_ip_ire_rd_time_elapsed >= 19911 ipst->ips_ip_ire_redir_interval) { 19912 /* Remove all redirects */ 19913 flush_flag |= FLUSH_REDIRECT_TIME; 19914 ipst->ips_ip_ire_rd_time_elapsed = 0; 19915 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19916 } 19917 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19918 ipst->ips_ip_ire_pathmtu_interval) { 19919 /* Increase path mtu */ 19920 flush_flag |= FLUSH_MTU_TIME; 19921 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19922 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19923 } 19924 19925 /* 19926 * Optimize for the case when there are no redirects in the 19927 * ftable, that is, no need to walk the ftable in that case. 19928 */ 19929 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19930 iea.iea_flush_flag = flush_flag; 19931 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19932 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19933 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19934 NULL, ALL_ZONES, ipst); 19935 } 19936 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19937 ipst->ips_ip_redirect_cnt > 0) { 19938 iea.iea_flush_flag = flush_flag; 19939 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19940 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19941 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19942 } 19943 if (flush_flag & FLUSH_MTU_TIME) { 19944 /* 19945 * Walk all IPv6 IRE's and update them 19946 * Note that ARP and redirect timers are not 19947 * needed since NUD handles stale entries. 19948 */ 19949 flush_flag = FLUSH_MTU_TIME; 19950 iea.iea_flush_flag = flush_flag; 19951 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19952 ALL_ZONES, ipst); 19953 } 19954 19955 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19956 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19957 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19958 19959 /* 19960 * Hold the lock to serialize timeout calls and prevent 19961 * stale values in ip_ire_expire_id. Otherwise it is possible 19962 * for the timer to fire and a new invocation of this function 19963 * to start before the return value of timeout has been stored 19964 * in ip_ire_expire_id by the current invocation. 19965 */ 19966 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19967 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19968 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19969 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19970 } 19971 19972 /* 19973 * Called by the memory allocator subsystem directly, when the system 19974 * is running low on memory. 19975 */ 19976 /* ARGSUSED */ 19977 void 19978 ip_trash_ire_reclaim(void *args) 19979 { 19980 netstack_handle_t nh; 19981 netstack_t *ns; 19982 19983 netstack_next_init(&nh); 19984 while ((ns = netstack_next(&nh)) != NULL) { 19985 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19986 netstack_rele(ns); 19987 } 19988 netstack_next_fini(&nh); 19989 } 19990 19991 static void 19992 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19993 { 19994 ire_cache_count_t icc; 19995 ire_cache_reclaim_t icr; 19996 ncc_cache_count_t ncc; 19997 nce_cache_reclaim_t ncr; 19998 uint_t delete_cnt; 19999 /* 20000 * Memory reclaim call back. 20001 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20002 * Then, with a target of freeing 1/Nth of IRE_CACHE 20003 * entries, determine what fraction to free for 20004 * each category of IRE_CACHE entries giving absolute priority 20005 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20006 * entry will be freed unless all offlink entries are freed). 20007 */ 20008 icc.icc_total = 0; 20009 icc.icc_unused = 0; 20010 icc.icc_offlink = 0; 20011 icc.icc_pmtu = 0; 20012 icc.icc_onlink = 0; 20013 ire_walk(ire_cache_count, (char *)&icc, ipst); 20014 20015 /* 20016 * Free NCEs for IPv6 like the onlink ires. 20017 */ 20018 ncc.ncc_total = 0; 20019 ncc.ncc_host = 0; 20020 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20021 20022 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20023 icc.icc_pmtu + icc.icc_onlink); 20024 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20025 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20026 if (delete_cnt == 0) 20027 return; 20028 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20029 /* Always delete all unused offlink entries */ 20030 icr.icr_ipst = ipst; 20031 icr.icr_unused = 1; 20032 if (delete_cnt <= icc.icc_unused) { 20033 /* 20034 * Only need to free unused entries. In other words, 20035 * there are enough unused entries to free to meet our 20036 * target number of freed ire cache entries. 20037 */ 20038 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20039 ncr.ncr_host = 0; 20040 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20041 /* 20042 * Only need to free unused entries, plus a fraction of offlink 20043 * entries. It follows from the first if statement that 20044 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20045 */ 20046 delete_cnt -= icc.icc_unused; 20047 /* Round up # deleted by truncating fraction */ 20048 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20049 icr.icr_pmtu = icr.icr_onlink = 0; 20050 ncr.ncr_host = 0; 20051 } else if (delete_cnt <= 20052 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20053 /* 20054 * Free all unused and offlink entries, plus a fraction of 20055 * pmtu entries. It follows from the previous if statement 20056 * that icc_pmtu is non-zero, and that 20057 * delete_cnt != icc_unused + icc_offlink. 20058 */ 20059 icr.icr_offlink = 1; 20060 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20061 /* Round up # deleted by truncating fraction */ 20062 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20063 icr.icr_onlink = 0; 20064 ncr.ncr_host = 0; 20065 } else { 20066 /* 20067 * Free all unused, offlink, and pmtu entries, plus a fraction 20068 * of onlink entries. If we're here, then we know that 20069 * icc_onlink is non-zero, and that 20070 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20071 */ 20072 icr.icr_offlink = icr.icr_pmtu = 1; 20073 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20074 icc.icc_pmtu; 20075 /* Round up # deleted by truncating fraction */ 20076 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20077 /* Using the same delete fraction as for onlink IREs */ 20078 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20079 } 20080 #ifdef DEBUG 20081 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20082 "fractions %d/%d/%d/%d\n", 20083 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20084 icc.icc_unused, icc.icc_offlink, 20085 icc.icc_pmtu, icc.icc_onlink, 20086 icr.icr_unused, icr.icr_offlink, 20087 icr.icr_pmtu, icr.icr_onlink)); 20088 #endif 20089 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20090 if (ncr.ncr_host != 0) 20091 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20092 (uchar_t *)&ncr, ipst); 20093 #ifdef DEBUG 20094 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20095 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20096 ire_walk(ire_cache_count, (char *)&icc, ipst); 20097 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20098 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20099 icc.icc_pmtu, icc.icc_onlink)); 20100 #endif 20101 } 20102 20103 /* 20104 * ip_unbind is called when a copy of an unbind request is received from the 20105 * upper level protocol. We remove this conn from any fanout hash list it is 20106 * on, and zero out the bind information. No reply is expected up above. 20107 */ 20108 mblk_t * 20109 ip_unbind(queue_t *q, mblk_t *mp) 20110 { 20111 conn_t *connp = Q_TO_CONN(q); 20112 20113 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20114 20115 if (is_system_labeled() && connp->conn_anon_port) { 20116 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20117 connp->conn_mlp_type, connp->conn_ulp, 20118 ntohs(connp->conn_lport), B_FALSE); 20119 connp->conn_anon_port = 0; 20120 } 20121 connp->conn_mlp_type = mlptSingle; 20122 20123 ipcl_hash_remove(connp); 20124 20125 ASSERT(mp->b_cont == NULL); 20126 /* 20127 * Convert mp into a T_OK_ACK 20128 */ 20129 mp = mi_tpi_ok_ack_alloc(mp); 20130 20131 /* 20132 * should not happen in practice... T_OK_ACK is smaller than the 20133 * original message. 20134 */ 20135 if (mp == NULL) 20136 return (NULL); 20137 20138 return (mp); 20139 } 20140 20141 /* 20142 * Write side put procedure. Outbound data, IOCTLs, responses from 20143 * resolvers, etc, come down through here. 20144 * 20145 * arg2 is always a queue_t *. 20146 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20147 * the zoneid. 20148 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20149 */ 20150 void 20151 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20152 { 20153 ip_output_options(arg, mp, arg2, caller, &zero_info); 20154 } 20155 20156 void 20157 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20158 ip_opt_info_t *infop) 20159 { 20160 conn_t *connp = NULL; 20161 queue_t *q = (queue_t *)arg2; 20162 ipha_t *ipha; 20163 #define rptr ((uchar_t *)ipha) 20164 ire_t *ire = NULL; 20165 ire_t *sctp_ire = NULL; 20166 uint32_t v_hlen_tos_len; 20167 ipaddr_t dst; 20168 mblk_t *first_mp = NULL; 20169 boolean_t mctl_present; 20170 ipsec_out_t *io; 20171 int match_flags; 20172 ill_t *attach_ill = NULL; 20173 /* Bind to IPIF_NOFAILOVER ill etc. */ 20174 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20175 ipif_t *dst_ipif; 20176 boolean_t multirt_need_resolve = B_FALSE; 20177 mblk_t *copy_mp = NULL; 20178 int err; 20179 zoneid_t zoneid; 20180 boolean_t need_decref = B_FALSE; 20181 boolean_t ignore_dontroute = B_FALSE; 20182 boolean_t ignore_nexthop = B_FALSE; 20183 boolean_t ip_nexthop = B_FALSE; 20184 ipaddr_t nexthop_addr; 20185 ip_stack_t *ipst; 20186 20187 #ifdef _BIG_ENDIAN 20188 #define V_HLEN (v_hlen_tos_len >> 24) 20189 #else 20190 #define V_HLEN (v_hlen_tos_len & 0xFF) 20191 #endif 20192 20193 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20194 "ip_wput_start: q %p", q); 20195 20196 /* 20197 * ip_wput fast path 20198 */ 20199 20200 /* is packet from ARP ? */ 20201 if (q->q_next != NULL) { 20202 zoneid = (zoneid_t)(uintptr_t)arg; 20203 goto qnext; 20204 } 20205 20206 connp = (conn_t *)arg; 20207 ASSERT(connp != NULL); 20208 zoneid = connp->conn_zoneid; 20209 ipst = connp->conn_netstack->netstack_ip; 20210 20211 /* is queue flow controlled? */ 20212 if ((q->q_first != NULL || connp->conn_draining) && 20213 (caller == IP_WPUT)) { 20214 ASSERT(!need_decref); 20215 (void) putq(q, mp); 20216 return; 20217 } 20218 20219 /* Multidata transmit? */ 20220 if (DB_TYPE(mp) == M_MULTIDATA) { 20221 /* 20222 * We should never get here, since all Multidata messages 20223 * originating from tcp should have been directed over to 20224 * tcp_multisend() in the first place. 20225 */ 20226 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20227 freemsg(mp); 20228 return; 20229 } else if (DB_TYPE(mp) != M_DATA) 20230 goto notdata; 20231 20232 if (mp->b_flag & MSGHASREF) { 20233 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20234 mp->b_flag &= ~MSGHASREF; 20235 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20236 need_decref = B_TRUE; 20237 } 20238 ipha = (ipha_t *)mp->b_rptr; 20239 20240 /* is IP header non-aligned or mblk smaller than basic IP header */ 20241 #ifndef SAFETY_BEFORE_SPEED 20242 if (!OK_32PTR(rptr) || 20243 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20244 goto hdrtoosmall; 20245 #endif 20246 20247 ASSERT(OK_32PTR(ipha)); 20248 20249 /* 20250 * This function assumes that mp points to an IPv4 packet. If it's the 20251 * wrong version, we'll catch it again in ip_output_v6. 20252 * 20253 * Note that this is *only* locally-generated output here, and never 20254 * forwarded data, and that we need to deal only with transports that 20255 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20256 * label.) 20257 */ 20258 if (is_system_labeled() && 20259 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20260 !connp->conn_ulp_labeled) { 20261 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20262 connp->conn_mac_exempt, ipst); 20263 ipha = (ipha_t *)mp->b_rptr; 20264 if (err != 0) { 20265 first_mp = mp; 20266 if (err == EINVAL) 20267 goto icmp_parameter_problem; 20268 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20269 goto discard_pkt; 20270 } 20271 } 20272 20273 ASSERT(infop != NULL); 20274 20275 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20276 /* 20277 * IP_PKTINFO ancillary option is present. 20278 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20279 * allows using address of any zone as the source address. 20280 */ 20281 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20282 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20283 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20284 if (ire == NULL) 20285 goto drop_pkt; 20286 ire_refrele(ire); 20287 ire = NULL; 20288 } 20289 20290 /* 20291 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20292 * passed in IP_PKTINFO. 20293 */ 20294 if (infop->ip_opt_ill_index != 0 && 20295 connp->conn_outgoing_ill == NULL && 20296 connp->conn_nofailover_ill == NULL) { 20297 20298 xmit_ill = ill_lookup_on_ifindex( 20299 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20300 ipst); 20301 20302 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20303 goto drop_pkt; 20304 /* 20305 * check that there is an ipif belonging 20306 * to our zone. IPCL_ZONEID is not used because 20307 * IP_ALLZONES option is valid only when the ill is 20308 * accessible from all zones i.e has a valid ipif in 20309 * all zones. 20310 */ 20311 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20312 goto drop_pkt; 20313 } 20314 } 20315 20316 /* 20317 * If there is a policy, try to attach an ipsec_out in 20318 * the front. At the end, first_mp either points to a 20319 * M_DATA message or IPSEC_OUT message linked to a 20320 * M_DATA message. We have to do it now as we might 20321 * lose the "conn" if we go through ip_newroute. 20322 */ 20323 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20324 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20325 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20326 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20327 if (need_decref) 20328 CONN_DEC_REF(connp); 20329 return; 20330 } else { 20331 ASSERT(mp->b_datap->db_type == M_CTL); 20332 first_mp = mp; 20333 mp = mp->b_cont; 20334 mctl_present = B_TRUE; 20335 } 20336 } else { 20337 first_mp = mp; 20338 mctl_present = B_FALSE; 20339 } 20340 20341 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20342 20343 /* is wrong version or IP options present */ 20344 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20345 goto version_hdrlen_check; 20346 dst = ipha->ipha_dst; 20347 20348 if (connp->conn_nofailover_ill != NULL) { 20349 attach_ill = conn_get_held_ill(connp, 20350 &connp->conn_nofailover_ill, &err); 20351 if (err == ILL_LOOKUP_FAILED) { 20352 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20353 if (need_decref) 20354 CONN_DEC_REF(connp); 20355 freemsg(first_mp); 20356 return; 20357 } 20358 } 20359 20360 /* If IP_BOUND_IF has been set, use that ill. */ 20361 if (connp->conn_outgoing_ill != NULL) { 20362 xmit_ill = conn_get_held_ill(connp, 20363 &connp->conn_outgoing_ill, &err); 20364 if (err == ILL_LOOKUP_FAILED) 20365 goto drop_pkt; 20366 20367 goto send_from_ill; 20368 } 20369 20370 /* is packet multicast? */ 20371 if (CLASSD(dst)) 20372 goto multicast; 20373 20374 /* 20375 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20376 * takes precedence over conn_dontroute and conn_nexthop_set 20377 */ 20378 if (xmit_ill != NULL) 20379 goto send_from_ill; 20380 20381 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20382 /* 20383 * If the destination is a broadcast, local, or loopback 20384 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20385 * standard path. 20386 */ 20387 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20388 if ((ire == NULL) || (ire->ire_type & 20389 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20390 if (ire != NULL) { 20391 ire_refrele(ire); 20392 /* No more access to ire */ 20393 ire = NULL; 20394 } 20395 /* 20396 * bypass routing checks and go directly to interface. 20397 */ 20398 if (connp->conn_dontroute) 20399 goto dontroute; 20400 20401 ASSERT(connp->conn_nexthop_set); 20402 ip_nexthop = B_TRUE; 20403 nexthop_addr = connp->conn_nexthop_v4; 20404 goto send_from_ill; 20405 } 20406 20407 /* Must be a broadcast, a loopback or a local ire */ 20408 ire_refrele(ire); 20409 /* No more access to ire */ 20410 ire = NULL; 20411 } 20412 20413 if (attach_ill != NULL) 20414 goto send_from_ill; 20415 20416 /* 20417 * We cache IRE_CACHEs to avoid lookups. We don't do 20418 * this for the tcp global queue and listen end point 20419 * as it does not really have a real destination to 20420 * talk to. This is also true for SCTP. 20421 */ 20422 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20423 !connp->conn_fully_bound) { 20424 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20425 if (ire == NULL) 20426 goto noirefound; 20427 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20428 "ip_wput_end: q %p (%S)", q, "end"); 20429 20430 /* 20431 * Check if the ire has the RTF_MULTIRT flag, inherited 20432 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20433 */ 20434 if (ire->ire_flags & RTF_MULTIRT) { 20435 20436 /* 20437 * Force the TTL of multirouted packets if required. 20438 * The TTL of such packets is bounded by the 20439 * ip_multirt_ttl ndd variable. 20440 */ 20441 if ((ipst->ips_ip_multirt_ttl > 0) && 20442 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20443 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20444 "(was %d), dst 0x%08x\n", 20445 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20446 ntohl(ire->ire_addr))); 20447 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20448 } 20449 /* 20450 * We look at this point if there are pending 20451 * unresolved routes. ire_multirt_resolvable() 20452 * checks in O(n) that all IRE_OFFSUBNET ire 20453 * entries for the packet's destination and 20454 * flagged RTF_MULTIRT are currently resolved. 20455 * If some remain unresolved, we make a copy 20456 * of the current message. It will be used 20457 * to initiate additional route resolutions. 20458 */ 20459 multirt_need_resolve = 20460 ire_multirt_need_resolve(ire->ire_addr, 20461 MBLK_GETLABEL(first_mp), ipst); 20462 ip2dbg(("ip_wput[TCP]: ire %p, " 20463 "multirt_need_resolve %d, first_mp %p\n", 20464 (void *)ire, multirt_need_resolve, 20465 (void *)first_mp)); 20466 if (multirt_need_resolve) { 20467 copy_mp = copymsg(first_mp); 20468 if (copy_mp != NULL) { 20469 MULTIRT_DEBUG_TAG(copy_mp); 20470 } 20471 } 20472 } 20473 20474 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20475 20476 /* 20477 * Try to resolve another multiroute if 20478 * ire_multirt_need_resolve() deemed it necessary. 20479 */ 20480 if (copy_mp != NULL) 20481 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20482 if (need_decref) 20483 CONN_DEC_REF(connp); 20484 return; 20485 } 20486 20487 /* 20488 * Access to conn_ire_cache. (protected by conn_lock) 20489 * 20490 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20491 * the ire bucket lock here to check for CONDEMNED as it is okay to 20492 * send a packet or two with the IRE_CACHE that is going away. 20493 * Access to the ire requires an ire refhold on the ire prior to 20494 * its use since an interface unplumb thread may delete the cached 20495 * ire and release the refhold at any time. 20496 * 20497 * Caching an ire in the conn_ire_cache 20498 * 20499 * o Caching an ire pointer in the conn requires a strict check for 20500 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20501 * ires before cleaning up the conns. So the caching of an ire pointer 20502 * in the conn is done after making sure under the bucket lock that the 20503 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20504 * caching an ire after the unplumb thread has cleaned up the conn. 20505 * If the conn does not send a packet subsequently the unplumb thread 20506 * will be hanging waiting for the ire count to drop to zero. 20507 * 20508 * o We also need to atomically test for a null conn_ire_cache and 20509 * set the conn_ire_cache under the the protection of the conn_lock 20510 * to avoid races among concurrent threads trying to simultaneously 20511 * cache an ire in the conn_ire_cache. 20512 */ 20513 mutex_enter(&connp->conn_lock); 20514 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20515 20516 if (ire != NULL && ire->ire_addr == dst && 20517 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20518 20519 IRE_REFHOLD(ire); 20520 mutex_exit(&connp->conn_lock); 20521 20522 } else { 20523 boolean_t cached = B_FALSE; 20524 connp->conn_ire_cache = NULL; 20525 mutex_exit(&connp->conn_lock); 20526 /* Release the old ire */ 20527 if (ire != NULL && sctp_ire == NULL) 20528 IRE_REFRELE_NOTR(ire); 20529 20530 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20531 if (ire == NULL) 20532 goto noirefound; 20533 IRE_REFHOLD_NOTR(ire); 20534 20535 mutex_enter(&connp->conn_lock); 20536 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20537 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20538 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20539 if (connp->conn_ulp == IPPROTO_TCP) 20540 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20541 connp->conn_ire_cache = ire; 20542 cached = B_TRUE; 20543 } 20544 rw_exit(&ire->ire_bucket->irb_lock); 20545 } 20546 mutex_exit(&connp->conn_lock); 20547 20548 /* 20549 * We can continue to use the ire but since it was 20550 * not cached, we should drop the extra reference. 20551 */ 20552 if (!cached) 20553 IRE_REFRELE_NOTR(ire); 20554 } 20555 20556 20557 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20558 "ip_wput_end: q %p (%S)", q, "end"); 20559 20560 /* 20561 * Check if the ire has the RTF_MULTIRT flag, inherited 20562 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20563 */ 20564 if (ire->ire_flags & RTF_MULTIRT) { 20565 20566 /* 20567 * Force the TTL of multirouted packets if required. 20568 * The TTL of such packets is bounded by the 20569 * ip_multirt_ttl ndd variable. 20570 */ 20571 if ((ipst->ips_ip_multirt_ttl > 0) && 20572 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20573 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20574 "(was %d), dst 0x%08x\n", 20575 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20576 ntohl(ire->ire_addr))); 20577 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20578 } 20579 20580 /* 20581 * At this point, we check to see if there are any pending 20582 * unresolved routes. ire_multirt_resolvable() 20583 * checks in O(n) that all IRE_OFFSUBNET ire 20584 * entries for the packet's destination and 20585 * flagged RTF_MULTIRT are currently resolved. 20586 * If some remain unresolved, we make a copy 20587 * of the current message. It will be used 20588 * to initiate additional route resolutions. 20589 */ 20590 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20591 MBLK_GETLABEL(first_mp), ipst); 20592 ip2dbg(("ip_wput[not TCP]: ire %p, " 20593 "multirt_need_resolve %d, first_mp %p\n", 20594 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20595 if (multirt_need_resolve) { 20596 copy_mp = copymsg(first_mp); 20597 if (copy_mp != NULL) { 20598 MULTIRT_DEBUG_TAG(copy_mp); 20599 } 20600 } 20601 } 20602 20603 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20604 20605 /* 20606 * Try to resolve another multiroute if 20607 * ire_multirt_resolvable() deemed it necessary 20608 */ 20609 if (copy_mp != NULL) 20610 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20611 if (need_decref) 20612 CONN_DEC_REF(connp); 20613 return; 20614 20615 qnext: 20616 /* 20617 * Upper Level Protocols pass down complete IP datagrams 20618 * as M_DATA messages. Everything else is a sideshow. 20619 * 20620 * 1) We could be re-entering ip_wput because of ip_neworute 20621 * in which case we could have a IPSEC_OUT message. We 20622 * need to pass through ip_wput like other datagrams and 20623 * hence cannot branch to ip_wput_nondata. 20624 * 20625 * 2) ARP, AH, ESP, and other clients who are on the module 20626 * instance of IP stream, give us something to deal with. 20627 * We will handle AH and ESP here and rest in ip_wput_nondata. 20628 * 20629 * 3) ICMP replies also could come here. 20630 */ 20631 ipst = ILLQ_TO_IPST(q); 20632 20633 if (DB_TYPE(mp) != M_DATA) { 20634 notdata: 20635 if (DB_TYPE(mp) == M_CTL) { 20636 /* 20637 * M_CTL messages are used by ARP, AH and ESP to 20638 * communicate with IP. We deal with IPSEC_IN and 20639 * IPSEC_OUT here. ip_wput_nondata handles other 20640 * cases. 20641 */ 20642 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20643 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20644 first_mp = mp->b_cont; 20645 first_mp->b_flag &= ~MSGHASREF; 20646 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20647 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20648 CONN_DEC_REF(connp); 20649 connp = NULL; 20650 } 20651 if (ii->ipsec_info_type == IPSEC_IN) { 20652 /* 20653 * Either this message goes back to 20654 * IPsec for further processing or to 20655 * ULP after policy checks. 20656 */ 20657 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20658 return; 20659 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20660 io = (ipsec_out_t *)ii; 20661 if (io->ipsec_out_proc_begin) { 20662 /* 20663 * IPsec processing has already started. 20664 * Complete it. 20665 * IPQoS notes: We don't care what is 20666 * in ipsec_out_ill_index since this 20667 * won't be processed for IPQoS policies 20668 * in ipsec_out_process. 20669 */ 20670 ipsec_out_process(q, mp, NULL, 20671 io->ipsec_out_ill_index); 20672 return; 20673 } else { 20674 connp = (q->q_next != NULL) ? 20675 NULL : Q_TO_CONN(q); 20676 first_mp = mp; 20677 mp = mp->b_cont; 20678 mctl_present = B_TRUE; 20679 } 20680 zoneid = io->ipsec_out_zoneid; 20681 ASSERT(zoneid != ALL_ZONES); 20682 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20683 /* 20684 * It's an IPsec control message requesting 20685 * an SADB update to be sent to the IPsec 20686 * hardware acceleration capable ills. 20687 */ 20688 ipsec_ctl_t *ipsec_ctl = 20689 (ipsec_ctl_t *)mp->b_rptr; 20690 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20691 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20692 mblk_t *cmp = mp->b_cont; 20693 20694 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20695 ASSERT(cmp != NULL); 20696 20697 freeb(mp); 20698 ill_ipsec_capab_send_all(satype, cmp, sa, 20699 ipst->ips_netstack); 20700 return; 20701 } else { 20702 /* 20703 * This must be ARP or special TSOL signaling. 20704 */ 20705 ip_wput_nondata(NULL, q, mp, NULL); 20706 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20707 "ip_wput_end: q %p (%S)", q, "nondata"); 20708 return; 20709 } 20710 } else { 20711 /* 20712 * This must be non-(ARP/AH/ESP) messages. 20713 */ 20714 ASSERT(!need_decref); 20715 ip_wput_nondata(NULL, q, mp, NULL); 20716 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20717 "ip_wput_end: q %p (%S)", q, "nondata"); 20718 return; 20719 } 20720 } else { 20721 first_mp = mp; 20722 mctl_present = B_FALSE; 20723 } 20724 20725 ASSERT(first_mp != NULL); 20726 /* 20727 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20728 * to make sure that this packet goes out on the same interface it 20729 * came in. We handle that here. 20730 */ 20731 if (mctl_present) { 20732 uint_t ifindex; 20733 20734 io = (ipsec_out_t *)first_mp->b_rptr; 20735 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20736 /* 20737 * We may have lost the conn context if we are 20738 * coming here from ip_newroute(). Copy the 20739 * nexthop information. 20740 */ 20741 if (io->ipsec_out_ip_nexthop) { 20742 ip_nexthop = B_TRUE; 20743 nexthop_addr = io->ipsec_out_nexthop_addr; 20744 20745 ipha = (ipha_t *)mp->b_rptr; 20746 dst = ipha->ipha_dst; 20747 goto send_from_ill; 20748 } else { 20749 ASSERT(io->ipsec_out_ill_index != 0); 20750 ifindex = io->ipsec_out_ill_index; 20751 attach_ill = ill_lookup_on_ifindex(ifindex, 20752 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20753 if (attach_ill == NULL) { 20754 ASSERT(xmit_ill == NULL); 20755 ip1dbg(("ip_output: bad ifindex for " 20756 "(BIND TO IPIF_NOFAILOVER) %d\n", 20757 ifindex)); 20758 freemsg(first_mp); 20759 BUMP_MIB(&ipst->ips_ip_mib, 20760 ipIfStatsOutDiscards); 20761 ASSERT(!need_decref); 20762 return; 20763 } 20764 } 20765 } 20766 } 20767 20768 ASSERT(xmit_ill == NULL); 20769 20770 /* We have a complete IP datagram heading outbound. */ 20771 ipha = (ipha_t *)mp->b_rptr; 20772 20773 #ifndef SPEED_BEFORE_SAFETY 20774 /* 20775 * Make sure we have a full-word aligned message and that at least 20776 * a simple IP header is accessible in the first message. If not, 20777 * try a pullup. For labeled systems we need to always take this 20778 * path as M_CTLs are "notdata" but have trailing data to process. 20779 */ 20780 if (!OK_32PTR(rptr) || 20781 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20782 hdrtoosmall: 20783 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20784 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20785 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20786 if (first_mp == NULL) 20787 first_mp = mp; 20788 goto discard_pkt; 20789 } 20790 20791 /* This function assumes that mp points to an IPv4 packet. */ 20792 if (is_system_labeled() && q->q_next == NULL && 20793 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20794 !connp->conn_ulp_labeled) { 20795 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20796 connp->conn_mac_exempt, ipst); 20797 ipha = (ipha_t *)mp->b_rptr; 20798 if (first_mp != NULL) 20799 first_mp->b_cont = mp; 20800 if (err != 0) { 20801 if (first_mp == NULL) 20802 first_mp = mp; 20803 if (err == EINVAL) 20804 goto icmp_parameter_problem; 20805 ip2dbg(("ip_wput: label check failed (%d)\n", 20806 err)); 20807 goto discard_pkt; 20808 } 20809 } 20810 20811 ipha = (ipha_t *)mp->b_rptr; 20812 if (first_mp == NULL) { 20813 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20814 /* 20815 * If we got here because of "goto hdrtoosmall" 20816 * We need to attach a IPSEC_OUT. 20817 */ 20818 if (connp->conn_out_enforce_policy) { 20819 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20820 NULL, ipha->ipha_protocol, 20821 ipst->ips_netstack)) == NULL)) { 20822 BUMP_MIB(&ipst->ips_ip_mib, 20823 ipIfStatsOutDiscards); 20824 if (need_decref) 20825 CONN_DEC_REF(connp); 20826 return; 20827 } else { 20828 ASSERT(mp->b_datap->db_type == M_CTL); 20829 first_mp = mp; 20830 mp = mp->b_cont; 20831 mctl_present = B_TRUE; 20832 } 20833 } else { 20834 first_mp = mp; 20835 mctl_present = B_FALSE; 20836 } 20837 } 20838 } 20839 #endif 20840 20841 /* Most of the code below is written for speed, not readability */ 20842 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20843 20844 /* 20845 * If ip_newroute() fails, we're going to need a full 20846 * header for the icmp wraparound. 20847 */ 20848 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20849 uint_t v_hlen; 20850 version_hdrlen_check: 20851 ASSERT(first_mp != NULL); 20852 v_hlen = V_HLEN; 20853 /* 20854 * siphon off IPv6 packets coming down from transport 20855 * layer modules here. 20856 * Note: high-order bit carries NUD reachability confirmation 20857 */ 20858 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20859 /* 20860 * FIXME: assume that callers of ip_output* call 20861 * the right version? 20862 */ 20863 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20864 ASSERT(xmit_ill == NULL); 20865 if (attach_ill != NULL) 20866 ill_refrele(attach_ill); 20867 if (need_decref) 20868 mp->b_flag |= MSGHASREF; 20869 (void) ip_output_v6(arg, first_mp, arg2, caller); 20870 return; 20871 } 20872 20873 if ((v_hlen >> 4) != IP_VERSION) { 20874 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20875 "ip_wput_end: q %p (%S)", q, "badvers"); 20876 goto discard_pkt; 20877 } 20878 /* 20879 * Is the header length at least 20 bytes? 20880 * 20881 * Are there enough bytes accessible in the header? If 20882 * not, try a pullup. 20883 */ 20884 v_hlen &= 0xF; 20885 v_hlen <<= 2; 20886 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20887 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20888 "ip_wput_end: q %p (%S)", q, "badlen"); 20889 goto discard_pkt; 20890 } 20891 if (v_hlen > (mp->b_wptr - rptr)) { 20892 if (!pullupmsg(mp, v_hlen)) { 20893 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20894 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20895 goto discard_pkt; 20896 } 20897 ipha = (ipha_t *)mp->b_rptr; 20898 } 20899 /* 20900 * Move first entry from any source route into ipha_dst and 20901 * verify the options 20902 */ 20903 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20904 zoneid, ipst)) { 20905 ASSERT(xmit_ill == NULL); 20906 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20907 if (attach_ill != NULL) 20908 ill_refrele(attach_ill); 20909 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20910 "ip_wput_end: q %p (%S)", q, "badopts"); 20911 if (need_decref) 20912 CONN_DEC_REF(connp); 20913 return; 20914 } 20915 } 20916 dst = ipha->ipha_dst; 20917 20918 /* 20919 * Try to get an IRE_CACHE for the destination address. If we can't, 20920 * we have to run the packet through ip_newroute which will take 20921 * the appropriate action to arrange for an IRE_CACHE, such as querying 20922 * a resolver, or assigning a default gateway, etc. 20923 */ 20924 if (CLASSD(dst)) { 20925 ipif_t *ipif; 20926 uint32_t setsrc = 0; 20927 20928 multicast: 20929 ASSERT(first_mp != NULL); 20930 ip2dbg(("ip_wput: CLASSD\n")); 20931 if (connp == NULL) { 20932 /* 20933 * Use the first good ipif on the ill. 20934 * XXX Should this ever happen? (Appears 20935 * to show up with just ppp and no ethernet due 20936 * to in.rdisc.) 20937 * However, ire_send should be able to 20938 * call ip_wput_ire directly. 20939 * 20940 * XXX Also, this can happen for ICMP and other packets 20941 * with multicast source addresses. Perhaps we should 20942 * fix things so that we drop the packet in question, 20943 * but for now, just run with it. 20944 */ 20945 ill_t *ill = (ill_t *)q->q_ptr; 20946 20947 /* 20948 * Don't honor attach_if for this case. If ill 20949 * is part of the group, ipif could belong to 20950 * any ill and we cannot maintain attach_ill 20951 * and ipif_ill same anymore and the assert 20952 * below would fail. 20953 */ 20954 if (mctl_present && io->ipsec_out_attach_if) { 20955 io->ipsec_out_ill_index = 0; 20956 io->ipsec_out_attach_if = B_FALSE; 20957 ASSERT(attach_ill != NULL); 20958 ill_refrele(attach_ill); 20959 attach_ill = NULL; 20960 } 20961 20962 ASSERT(attach_ill == NULL); 20963 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20964 if (ipif == NULL) { 20965 if (need_decref) 20966 CONN_DEC_REF(connp); 20967 freemsg(first_mp); 20968 return; 20969 } 20970 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20971 ntohl(dst), ill->ill_name)); 20972 } else { 20973 /* 20974 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20975 * and IP_MULTICAST_IF. The block comment above this 20976 * function explains the locking mechanism used here. 20977 */ 20978 if (xmit_ill == NULL) { 20979 xmit_ill = conn_get_held_ill(connp, 20980 &connp->conn_outgoing_ill, &err); 20981 if (err == ILL_LOOKUP_FAILED) { 20982 ip1dbg(("ip_wput: No ill for " 20983 "IP_BOUND_IF\n")); 20984 BUMP_MIB(&ipst->ips_ip_mib, 20985 ipIfStatsOutNoRoutes); 20986 goto drop_pkt; 20987 } 20988 } 20989 20990 if (xmit_ill == NULL) { 20991 ipif = conn_get_held_ipif(connp, 20992 &connp->conn_multicast_ipif, &err); 20993 if (err == IPIF_LOOKUP_FAILED) { 20994 ip1dbg(("ip_wput: No ipif for " 20995 "multicast\n")); 20996 BUMP_MIB(&ipst->ips_ip_mib, 20997 ipIfStatsOutNoRoutes); 20998 goto drop_pkt; 20999 } 21000 } 21001 if (xmit_ill != NULL) { 21002 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21003 if (ipif == NULL) { 21004 ip1dbg(("ip_wput: No ipif for " 21005 "xmit_ill\n")); 21006 BUMP_MIB(&ipst->ips_ip_mib, 21007 ipIfStatsOutNoRoutes); 21008 goto drop_pkt; 21009 } 21010 } else if (ipif == NULL || ipif->ipif_isv6) { 21011 /* 21012 * We must do this ipif determination here 21013 * else we could pass through ip_newroute 21014 * and come back here without the conn context. 21015 * 21016 * Note: we do late binding i.e. we bind to 21017 * the interface when the first packet is sent. 21018 * For performance reasons we do not rebind on 21019 * each packet but keep the binding until the 21020 * next IP_MULTICAST_IF option. 21021 * 21022 * conn_multicast_{ipif,ill} are shared between 21023 * IPv4 and IPv6 and AF_INET6 sockets can 21024 * send both IPv4 and IPv6 packets. Hence 21025 * we have to check that "isv6" matches above. 21026 */ 21027 if (ipif != NULL) 21028 ipif_refrele(ipif); 21029 ipif = ipif_lookup_group(dst, zoneid, ipst); 21030 if (ipif == NULL) { 21031 ip1dbg(("ip_wput: No ipif for " 21032 "multicast\n")); 21033 BUMP_MIB(&ipst->ips_ip_mib, 21034 ipIfStatsOutNoRoutes); 21035 goto drop_pkt; 21036 } 21037 err = conn_set_held_ipif(connp, 21038 &connp->conn_multicast_ipif, ipif); 21039 if (err == IPIF_LOOKUP_FAILED) { 21040 ipif_refrele(ipif); 21041 ip1dbg(("ip_wput: No ipif for " 21042 "multicast\n")); 21043 BUMP_MIB(&ipst->ips_ip_mib, 21044 ipIfStatsOutNoRoutes); 21045 goto drop_pkt; 21046 } 21047 } 21048 } 21049 ASSERT(!ipif->ipif_isv6); 21050 /* 21051 * As we may lose the conn by the time we reach ip_wput_ire, 21052 * we copy conn_multicast_loop and conn_dontroute on to an 21053 * ipsec_out. In case if this datagram goes out secure, 21054 * we need the ill_index also. Copy that also into the 21055 * ipsec_out. 21056 */ 21057 if (mctl_present) { 21058 io = (ipsec_out_t *)first_mp->b_rptr; 21059 ASSERT(first_mp->b_datap->db_type == M_CTL); 21060 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21061 } else { 21062 ASSERT(mp == first_mp); 21063 if ((first_mp = allocb(sizeof (ipsec_info_t), 21064 BPRI_HI)) == NULL) { 21065 ipif_refrele(ipif); 21066 first_mp = mp; 21067 goto discard_pkt; 21068 } 21069 first_mp->b_datap->db_type = M_CTL; 21070 first_mp->b_wptr += sizeof (ipsec_info_t); 21071 /* ipsec_out_secure is B_FALSE now */ 21072 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21073 io = (ipsec_out_t *)first_mp->b_rptr; 21074 io->ipsec_out_type = IPSEC_OUT; 21075 io->ipsec_out_len = sizeof (ipsec_out_t); 21076 io->ipsec_out_use_global_policy = B_TRUE; 21077 io->ipsec_out_ns = ipst->ips_netstack; 21078 first_mp->b_cont = mp; 21079 mctl_present = B_TRUE; 21080 } 21081 if (attach_ill != NULL) { 21082 ASSERT(attach_ill == ipif->ipif_ill); 21083 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21084 21085 /* 21086 * Check if we need an ire that will not be 21087 * looked up by anybody else i.e. HIDDEN. 21088 */ 21089 if (ill_is_probeonly(attach_ill)) { 21090 match_flags |= MATCH_IRE_MARK_HIDDEN; 21091 } 21092 io->ipsec_out_ill_index = 21093 attach_ill->ill_phyint->phyint_ifindex; 21094 io->ipsec_out_attach_if = B_TRUE; 21095 } else { 21096 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21097 io->ipsec_out_ill_index = 21098 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21099 } 21100 if (connp != NULL) { 21101 io->ipsec_out_multicast_loop = 21102 connp->conn_multicast_loop; 21103 io->ipsec_out_dontroute = connp->conn_dontroute; 21104 io->ipsec_out_zoneid = connp->conn_zoneid; 21105 } 21106 /* 21107 * If the application uses IP_MULTICAST_IF with 21108 * different logical addresses of the same ILL, we 21109 * need to make sure that the soruce address of 21110 * the packet matches the logical IP address used 21111 * in the option. We do it by initializing ipha_src 21112 * here. This should keep IPsec also happy as 21113 * when we return from IPsec processing, we don't 21114 * have to worry about getting the right address on 21115 * the packet. Thus it is sufficient to look for 21116 * IRE_CACHE using MATCH_IRE_ILL rathen than 21117 * MATCH_IRE_IPIF. 21118 * 21119 * NOTE : We need to do it for non-secure case also as 21120 * this might go out secure if there is a global policy 21121 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21122 * address, the source should be initialized already and 21123 * hence we won't be initializing here. 21124 * 21125 * As we do not have the ire yet, it is possible that 21126 * we set the source address here and then later discover 21127 * that the ire implies the source address to be assigned 21128 * through the RTF_SETSRC flag. 21129 * In that case, the setsrc variable will remind us 21130 * that overwritting the source address by the one 21131 * of the RTF_SETSRC-flagged ire is allowed. 21132 */ 21133 if (ipha->ipha_src == INADDR_ANY && 21134 (connp == NULL || !connp->conn_unspec_src)) { 21135 ipha->ipha_src = ipif->ipif_src_addr; 21136 setsrc = RTF_SETSRC; 21137 } 21138 /* 21139 * Find an IRE which matches the destination and the outgoing 21140 * queue (i.e. the outgoing interface.) 21141 * For loopback use a unicast IP address for 21142 * the ire lookup. 21143 */ 21144 if (IS_LOOPBACK(ipif->ipif_ill)) 21145 dst = ipif->ipif_lcl_addr; 21146 21147 /* 21148 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21149 * We don't need to lookup ire in ctable as the packet 21150 * needs to be sent to the destination through the specified 21151 * ill irrespective of ires in the cache table. 21152 */ 21153 ire = NULL; 21154 if (xmit_ill == NULL) { 21155 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21156 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21157 } 21158 21159 /* 21160 * refrele attach_ill as its not needed anymore. 21161 */ 21162 if (attach_ill != NULL) { 21163 ill_refrele(attach_ill); 21164 attach_ill = NULL; 21165 } 21166 21167 if (ire == NULL) { 21168 /* 21169 * Multicast loopback and multicast forwarding is 21170 * done in ip_wput_ire. 21171 * 21172 * Mark this packet to make it be delivered to 21173 * ip_wput_ire after the new ire has been 21174 * created. 21175 * 21176 * The call to ip_newroute_ipif takes into account 21177 * the setsrc reminder. In any case, we take care 21178 * of the RTF_MULTIRT flag. 21179 */ 21180 mp->b_prev = mp->b_next = NULL; 21181 if (xmit_ill == NULL || 21182 xmit_ill->ill_ipif_up_count > 0) { 21183 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21184 setsrc | RTF_MULTIRT, zoneid, infop); 21185 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21186 "ip_wput_end: q %p (%S)", q, "noire"); 21187 } else { 21188 freemsg(first_mp); 21189 } 21190 ipif_refrele(ipif); 21191 if (xmit_ill != NULL) 21192 ill_refrele(xmit_ill); 21193 if (need_decref) 21194 CONN_DEC_REF(connp); 21195 return; 21196 } 21197 21198 ipif_refrele(ipif); 21199 ipif = NULL; 21200 ASSERT(xmit_ill == NULL); 21201 21202 /* 21203 * Honor the RTF_SETSRC flag for multicast packets, 21204 * if allowed by the setsrc reminder. 21205 */ 21206 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21207 ipha->ipha_src = ire->ire_src_addr; 21208 } 21209 21210 /* 21211 * Unconditionally force the TTL to 1 for 21212 * multirouted multicast packets: 21213 * multirouted multicast should not cross 21214 * multicast routers. 21215 */ 21216 if (ire->ire_flags & RTF_MULTIRT) { 21217 if (ipha->ipha_ttl > 1) { 21218 ip2dbg(("ip_wput: forcing multicast " 21219 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21220 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21221 ipha->ipha_ttl = 1; 21222 } 21223 } 21224 } else { 21225 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21226 if ((ire != NULL) && (ire->ire_type & 21227 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21228 ignore_dontroute = B_TRUE; 21229 ignore_nexthop = B_TRUE; 21230 } 21231 if (ire != NULL) { 21232 ire_refrele(ire); 21233 ire = NULL; 21234 } 21235 /* 21236 * Guard against coming in from arp in which case conn is NULL. 21237 * Also guard against non M_DATA with dontroute set but 21238 * destined to local, loopback or broadcast addresses. 21239 */ 21240 if (connp != NULL && connp->conn_dontroute && 21241 !ignore_dontroute) { 21242 dontroute: 21243 /* 21244 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21245 * routing protocols from seeing false direct 21246 * connectivity. 21247 */ 21248 ipha->ipha_ttl = 1; 21249 21250 /* If suitable ipif not found, drop packet */ 21251 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21252 if (dst_ipif == NULL) { 21253 noroute: 21254 ip1dbg(("ip_wput: no route for dst using" 21255 " SO_DONTROUTE\n")); 21256 BUMP_MIB(&ipst->ips_ip_mib, 21257 ipIfStatsOutNoRoutes); 21258 mp->b_prev = mp->b_next = NULL; 21259 if (first_mp == NULL) 21260 first_mp = mp; 21261 goto drop_pkt; 21262 } else { 21263 /* 21264 * If suitable ipif has been found, set 21265 * xmit_ill to the corresponding 21266 * ipif_ill because we'll be using the 21267 * send_from_ill logic below. 21268 */ 21269 ASSERT(xmit_ill == NULL); 21270 xmit_ill = dst_ipif->ipif_ill; 21271 mutex_enter(&xmit_ill->ill_lock); 21272 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21273 mutex_exit(&xmit_ill->ill_lock); 21274 xmit_ill = NULL; 21275 ipif_refrele(dst_ipif); 21276 goto noroute; 21277 } 21278 ill_refhold_locked(xmit_ill); 21279 mutex_exit(&xmit_ill->ill_lock); 21280 ipif_refrele(dst_ipif); 21281 } 21282 } 21283 /* 21284 * If we are bound to IPIF_NOFAILOVER address, look for 21285 * an IRE_CACHE matching the ill. 21286 */ 21287 send_from_ill: 21288 if (attach_ill != NULL) { 21289 ipif_t *attach_ipif; 21290 21291 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21292 21293 /* 21294 * Check if we need an ire that will not be 21295 * looked up by anybody else i.e. HIDDEN. 21296 */ 21297 if (ill_is_probeonly(attach_ill)) { 21298 match_flags |= MATCH_IRE_MARK_HIDDEN; 21299 } 21300 21301 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21302 if (attach_ipif == NULL) { 21303 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21304 goto discard_pkt; 21305 } 21306 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21307 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21308 ipif_refrele(attach_ipif); 21309 } else if (xmit_ill != NULL) { 21310 ipif_t *ipif; 21311 21312 /* 21313 * Mark this packet as originated locally 21314 */ 21315 mp->b_prev = mp->b_next = NULL; 21316 21317 /* 21318 * Could be SO_DONTROUTE case also. 21319 * Verify that at least one ipif is up on the ill. 21320 */ 21321 if (xmit_ill->ill_ipif_up_count == 0) { 21322 ip1dbg(("ip_output: xmit_ill %s is down\n", 21323 xmit_ill->ill_name)); 21324 goto drop_pkt; 21325 } 21326 21327 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21328 if (ipif == NULL) { 21329 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21330 xmit_ill->ill_name)); 21331 goto drop_pkt; 21332 } 21333 21334 /* 21335 * Look for a ire that is part of the group, 21336 * if found use it else call ip_newroute_ipif. 21337 * IPCL_ZONEID is not used for matching because 21338 * IP_ALLZONES option is valid only when the 21339 * ill is accessible from all zones i.e has a 21340 * valid ipif in all zones. 21341 */ 21342 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21343 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21344 MBLK_GETLABEL(mp), match_flags, ipst); 21345 /* 21346 * If an ire exists use it or else create 21347 * an ire but don't add it to the cache. 21348 * Adding an ire may cause issues with 21349 * asymmetric routing. 21350 * In case of multiroute always act as if 21351 * ire does not exist. 21352 */ 21353 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21354 if (ire != NULL) 21355 ire_refrele(ire); 21356 ip_newroute_ipif(q, first_mp, ipif, 21357 dst, connp, 0, zoneid, infop); 21358 ipif_refrele(ipif); 21359 ip1dbg(("ip_output: xmit_ill via %s\n", 21360 xmit_ill->ill_name)); 21361 ill_refrele(xmit_ill); 21362 if (need_decref) 21363 CONN_DEC_REF(connp); 21364 return; 21365 } 21366 ipif_refrele(ipif); 21367 } else if (ip_nexthop || (connp != NULL && 21368 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21369 if (!ip_nexthop) { 21370 ip_nexthop = B_TRUE; 21371 nexthop_addr = connp->conn_nexthop_v4; 21372 } 21373 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21374 MATCH_IRE_GW; 21375 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21376 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21377 } else { 21378 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21379 ipst); 21380 } 21381 if (!ire) { 21382 /* 21383 * Make sure we don't load spread if this 21384 * is IPIF_NOFAILOVER case. 21385 */ 21386 if ((attach_ill != NULL) || 21387 (ip_nexthop && !ignore_nexthop)) { 21388 if (mctl_present) { 21389 io = (ipsec_out_t *)first_mp->b_rptr; 21390 ASSERT(first_mp->b_datap->db_type == 21391 M_CTL); 21392 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21393 } else { 21394 ASSERT(mp == first_mp); 21395 first_mp = allocb( 21396 sizeof (ipsec_info_t), BPRI_HI); 21397 if (first_mp == NULL) { 21398 first_mp = mp; 21399 goto discard_pkt; 21400 } 21401 first_mp->b_datap->db_type = M_CTL; 21402 first_mp->b_wptr += 21403 sizeof (ipsec_info_t); 21404 /* ipsec_out_secure is B_FALSE now */ 21405 bzero(first_mp->b_rptr, 21406 sizeof (ipsec_info_t)); 21407 io = (ipsec_out_t *)first_mp->b_rptr; 21408 io->ipsec_out_type = IPSEC_OUT; 21409 io->ipsec_out_len = 21410 sizeof (ipsec_out_t); 21411 io->ipsec_out_use_global_policy = 21412 B_TRUE; 21413 io->ipsec_out_ns = ipst->ips_netstack; 21414 first_mp->b_cont = mp; 21415 mctl_present = B_TRUE; 21416 } 21417 if (attach_ill != NULL) { 21418 io->ipsec_out_ill_index = attach_ill-> 21419 ill_phyint->phyint_ifindex; 21420 io->ipsec_out_attach_if = B_TRUE; 21421 } else { 21422 io->ipsec_out_ip_nexthop = ip_nexthop; 21423 io->ipsec_out_nexthop_addr = 21424 nexthop_addr; 21425 } 21426 } 21427 noirefound: 21428 /* 21429 * Mark this packet as having originated on 21430 * this machine. This will be noted in 21431 * ire_add_then_send, which needs to know 21432 * whether to run it back through ip_wput or 21433 * ip_rput following successful resolution. 21434 */ 21435 mp->b_prev = NULL; 21436 mp->b_next = NULL; 21437 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21438 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21439 "ip_wput_end: q %p (%S)", q, "newroute"); 21440 if (attach_ill != NULL) 21441 ill_refrele(attach_ill); 21442 if (xmit_ill != NULL) 21443 ill_refrele(xmit_ill); 21444 if (need_decref) 21445 CONN_DEC_REF(connp); 21446 return; 21447 } 21448 } 21449 21450 /* We now know where we are going with it. */ 21451 21452 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21453 "ip_wput_end: q %p (%S)", q, "end"); 21454 21455 /* 21456 * Check if the ire has the RTF_MULTIRT flag, inherited 21457 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21458 */ 21459 if (ire->ire_flags & RTF_MULTIRT) { 21460 /* 21461 * Force the TTL of multirouted packets if required. 21462 * The TTL of such packets is bounded by the 21463 * ip_multirt_ttl ndd variable. 21464 */ 21465 if ((ipst->ips_ip_multirt_ttl > 0) && 21466 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21467 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21468 "(was %d), dst 0x%08x\n", 21469 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21470 ntohl(ire->ire_addr))); 21471 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21472 } 21473 /* 21474 * At this point, we check to see if there are any pending 21475 * unresolved routes. ire_multirt_resolvable() 21476 * checks in O(n) that all IRE_OFFSUBNET ire 21477 * entries for the packet's destination and 21478 * flagged RTF_MULTIRT are currently resolved. 21479 * If some remain unresolved, we make a copy 21480 * of the current message. It will be used 21481 * to initiate additional route resolutions. 21482 */ 21483 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21484 MBLK_GETLABEL(first_mp), ipst); 21485 ip2dbg(("ip_wput[noirefound]: ire %p, " 21486 "multirt_need_resolve %d, first_mp %p\n", 21487 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21488 if (multirt_need_resolve) { 21489 copy_mp = copymsg(first_mp); 21490 if (copy_mp != NULL) { 21491 MULTIRT_DEBUG_TAG(copy_mp); 21492 } 21493 } 21494 } 21495 21496 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21497 /* 21498 * Try to resolve another multiroute if 21499 * ire_multirt_resolvable() deemed it necessary. 21500 * At this point, we need to distinguish 21501 * multicasts from other packets. For multicasts, 21502 * we call ip_newroute_ipif() and request that both 21503 * multirouting and setsrc flags are checked. 21504 */ 21505 if (copy_mp != NULL) { 21506 if (CLASSD(dst)) { 21507 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21508 if (ipif) { 21509 ASSERT(infop->ip_opt_ill_index == 0); 21510 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21511 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21512 ipif_refrele(ipif); 21513 } else { 21514 MULTIRT_DEBUG_UNTAG(copy_mp); 21515 freemsg(copy_mp); 21516 copy_mp = NULL; 21517 } 21518 } else { 21519 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21520 } 21521 } 21522 if (attach_ill != NULL) 21523 ill_refrele(attach_ill); 21524 if (xmit_ill != NULL) 21525 ill_refrele(xmit_ill); 21526 if (need_decref) 21527 CONN_DEC_REF(connp); 21528 return; 21529 21530 icmp_parameter_problem: 21531 /* could not have originated externally */ 21532 ASSERT(mp->b_prev == NULL); 21533 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21534 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21535 /* it's the IP header length that's in trouble */ 21536 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21537 first_mp = NULL; 21538 } 21539 21540 discard_pkt: 21541 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21542 drop_pkt: 21543 ip1dbg(("ip_wput: dropped packet\n")); 21544 if (ire != NULL) 21545 ire_refrele(ire); 21546 if (need_decref) 21547 CONN_DEC_REF(connp); 21548 freemsg(first_mp); 21549 if (attach_ill != NULL) 21550 ill_refrele(attach_ill); 21551 if (xmit_ill != NULL) 21552 ill_refrele(xmit_ill); 21553 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21554 "ip_wput_end: q %p (%S)", q, "droppkt"); 21555 } 21556 21557 /* 21558 * If this is a conn_t queue, then we pass in the conn. This includes the 21559 * zoneid. 21560 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21561 * in which case we use the global zoneid since those are all part of 21562 * the global zone. 21563 */ 21564 void 21565 ip_wput(queue_t *q, mblk_t *mp) 21566 { 21567 if (CONN_Q(q)) 21568 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21569 else 21570 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21571 } 21572 21573 /* 21574 * 21575 * The following rules must be observed when accessing any ipif or ill 21576 * that has been cached in the conn. Typically conn_nofailover_ill, 21577 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21578 * 21579 * Access: The ipif or ill pointed to from the conn can be accessed under 21580 * the protection of the conn_lock or after it has been refheld under the 21581 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21582 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21583 * The reason for this is that a concurrent unplumb could actually be 21584 * cleaning up these cached pointers by walking the conns and might have 21585 * finished cleaning up the conn in question. The macros check that an 21586 * unplumb has not yet started on the ipif or ill. 21587 * 21588 * Caching: An ipif or ill pointer may be cached in the conn only after 21589 * making sure that an unplumb has not started. So the caching is done 21590 * while holding both the conn_lock and the ill_lock and after using the 21591 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21592 * flag before starting the cleanup of conns. 21593 * 21594 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21595 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21596 * or a reference to the ipif or a reference to an ire that references the 21597 * ipif. An ipif does not change its ill except for failover/failback. Since 21598 * failover/failback happens only after bringing down the ipif and making sure 21599 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21600 * the above holds. 21601 */ 21602 ipif_t * 21603 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21604 { 21605 ipif_t *ipif; 21606 ill_t *ill; 21607 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21608 21609 *err = 0; 21610 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21611 mutex_enter(&connp->conn_lock); 21612 ipif = *ipifp; 21613 if (ipif != NULL) { 21614 ill = ipif->ipif_ill; 21615 mutex_enter(&ill->ill_lock); 21616 if (IPIF_CAN_LOOKUP(ipif)) { 21617 ipif_refhold_locked(ipif); 21618 mutex_exit(&ill->ill_lock); 21619 mutex_exit(&connp->conn_lock); 21620 rw_exit(&ipst->ips_ill_g_lock); 21621 return (ipif); 21622 } else { 21623 *err = IPIF_LOOKUP_FAILED; 21624 } 21625 mutex_exit(&ill->ill_lock); 21626 } 21627 mutex_exit(&connp->conn_lock); 21628 rw_exit(&ipst->ips_ill_g_lock); 21629 return (NULL); 21630 } 21631 21632 ill_t * 21633 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21634 { 21635 ill_t *ill; 21636 21637 *err = 0; 21638 mutex_enter(&connp->conn_lock); 21639 ill = *illp; 21640 if (ill != NULL) { 21641 mutex_enter(&ill->ill_lock); 21642 if (ILL_CAN_LOOKUP(ill)) { 21643 ill_refhold_locked(ill); 21644 mutex_exit(&ill->ill_lock); 21645 mutex_exit(&connp->conn_lock); 21646 return (ill); 21647 } else { 21648 *err = ILL_LOOKUP_FAILED; 21649 } 21650 mutex_exit(&ill->ill_lock); 21651 } 21652 mutex_exit(&connp->conn_lock); 21653 return (NULL); 21654 } 21655 21656 static int 21657 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21658 { 21659 ill_t *ill; 21660 21661 ill = ipif->ipif_ill; 21662 mutex_enter(&connp->conn_lock); 21663 mutex_enter(&ill->ill_lock); 21664 if (IPIF_CAN_LOOKUP(ipif)) { 21665 *ipifp = ipif; 21666 mutex_exit(&ill->ill_lock); 21667 mutex_exit(&connp->conn_lock); 21668 return (0); 21669 } 21670 mutex_exit(&ill->ill_lock); 21671 mutex_exit(&connp->conn_lock); 21672 return (IPIF_LOOKUP_FAILED); 21673 } 21674 21675 /* 21676 * This is called if the outbound datagram needs fragmentation. 21677 * 21678 * NOTE : This function does not ire_refrele the ire argument passed in. 21679 */ 21680 static void 21681 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21682 ip_stack_t *ipst) 21683 { 21684 ipha_t *ipha; 21685 mblk_t *mp; 21686 uint32_t v_hlen_tos_len; 21687 uint32_t max_frag; 21688 uint32_t frag_flag; 21689 boolean_t dont_use; 21690 21691 if (ipsec_mp->b_datap->db_type == M_CTL) { 21692 mp = ipsec_mp->b_cont; 21693 } else { 21694 mp = ipsec_mp; 21695 } 21696 21697 ipha = (ipha_t *)mp->b_rptr; 21698 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21699 21700 #ifdef _BIG_ENDIAN 21701 #define V_HLEN (v_hlen_tos_len >> 24) 21702 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21703 #else 21704 #define V_HLEN (v_hlen_tos_len & 0xFF) 21705 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21706 #endif 21707 21708 #ifndef SPEED_BEFORE_SAFETY 21709 /* 21710 * Check that ipha_length is consistent with 21711 * the mblk length 21712 */ 21713 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21714 ip0dbg(("Packet length mismatch: %d, %ld\n", 21715 LENGTH, msgdsize(mp))); 21716 freemsg(ipsec_mp); 21717 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21718 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21719 "packet length mismatch"); 21720 return; 21721 } 21722 #endif 21723 /* 21724 * Don't use frag_flag if pre-built packet or source 21725 * routed or if multicast (since multicast packets do not solicit 21726 * ICMP "packet too big" messages). Get the values of 21727 * max_frag and frag_flag atomically by acquiring the 21728 * ire_lock. 21729 */ 21730 mutex_enter(&ire->ire_lock); 21731 max_frag = ire->ire_max_frag; 21732 frag_flag = ire->ire_frag_flag; 21733 mutex_exit(&ire->ire_lock); 21734 21735 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21736 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21737 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21738 21739 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21740 (dont_use ? 0 : frag_flag), zoneid, ipst); 21741 } 21742 21743 /* 21744 * Used for deciding the MSS size for the upper layer. Thus 21745 * we need to check the outbound policy values in the conn. 21746 */ 21747 int 21748 conn_ipsec_length(conn_t *connp) 21749 { 21750 ipsec_latch_t *ipl; 21751 21752 ipl = connp->conn_latch; 21753 if (ipl == NULL) 21754 return (0); 21755 21756 if (ipl->ipl_out_policy == NULL) 21757 return (0); 21758 21759 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21760 } 21761 21762 /* 21763 * Returns an estimate of the IPsec headers size. This is used if 21764 * we don't want to call into IPsec to get the exact size. 21765 */ 21766 int 21767 ipsec_out_extra_length(mblk_t *ipsec_mp) 21768 { 21769 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21770 ipsec_action_t *a; 21771 21772 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21773 if (!io->ipsec_out_secure) 21774 return (0); 21775 21776 a = io->ipsec_out_act; 21777 21778 if (a == NULL) { 21779 ASSERT(io->ipsec_out_policy != NULL); 21780 a = io->ipsec_out_policy->ipsp_act; 21781 } 21782 ASSERT(a != NULL); 21783 21784 return (a->ipa_ovhd); 21785 } 21786 21787 /* 21788 * Returns an estimate of the IPsec headers size. This is used if 21789 * we don't want to call into IPsec to get the exact size. 21790 */ 21791 int 21792 ipsec_in_extra_length(mblk_t *ipsec_mp) 21793 { 21794 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21795 ipsec_action_t *a; 21796 21797 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21798 21799 a = ii->ipsec_in_action; 21800 return (a == NULL ? 0 : a->ipa_ovhd); 21801 } 21802 21803 /* 21804 * If there are any source route options, return the true final 21805 * destination. Otherwise, return the destination. 21806 */ 21807 ipaddr_t 21808 ip_get_dst(ipha_t *ipha) 21809 { 21810 ipoptp_t opts; 21811 uchar_t *opt; 21812 uint8_t optval; 21813 uint8_t optlen; 21814 ipaddr_t dst; 21815 uint32_t off; 21816 21817 dst = ipha->ipha_dst; 21818 21819 if (IS_SIMPLE_IPH(ipha)) 21820 return (dst); 21821 21822 for (optval = ipoptp_first(&opts, ipha); 21823 optval != IPOPT_EOL; 21824 optval = ipoptp_next(&opts)) { 21825 opt = opts.ipoptp_cur; 21826 optlen = opts.ipoptp_len; 21827 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21828 switch (optval) { 21829 case IPOPT_SSRR: 21830 case IPOPT_LSRR: 21831 off = opt[IPOPT_OFFSET]; 21832 /* 21833 * If one of the conditions is true, it means 21834 * end of options and dst already has the right 21835 * value. 21836 */ 21837 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21838 off = optlen - IP_ADDR_LEN; 21839 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21840 } 21841 return (dst); 21842 default: 21843 break; 21844 } 21845 } 21846 21847 return (dst); 21848 } 21849 21850 mblk_t * 21851 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21852 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21853 { 21854 ipsec_out_t *io; 21855 mblk_t *first_mp; 21856 boolean_t policy_present; 21857 ip_stack_t *ipst; 21858 ipsec_stack_t *ipss; 21859 21860 ASSERT(ire != NULL); 21861 ipst = ire->ire_ipst; 21862 ipss = ipst->ips_netstack->netstack_ipsec; 21863 21864 first_mp = mp; 21865 if (mp->b_datap->db_type == M_CTL) { 21866 io = (ipsec_out_t *)first_mp->b_rptr; 21867 /* 21868 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21869 * 21870 * 1) There is per-socket policy (including cached global 21871 * policy) or a policy on the IP-in-IP tunnel. 21872 * 2) There is no per-socket policy, but it is 21873 * a multicast packet that needs to go out 21874 * on a specific interface. This is the case 21875 * where (ip_wput and ip_wput_multicast) attaches 21876 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21877 * 21878 * In case (2) we check with global policy to 21879 * see if there is a match and set the ill_index 21880 * appropriately so that we can lookup the ire 21881 * properly in ip_wput_ipsec_out. 21882 */ 21883 21884 /* 21885 * ipsec_out_use_global_policy is set to B_FALSE 21886 * in ipsec_in_to_out(). Refer to that function for 21887 * details. 21888 */ 21889 if ((io->ipsec_out_latch == NULL) && 21890 (io->ipsec_out_use_global_policy)) { 21891 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21892 ire, connp, unspec_src, zoneid)); 21893 } 21894 if (!io->ipsec_out_secure) { 21895 /* 21896 * If this is not a secure packet, drop 21897 * the IPSEC_OUT mp and treat it as a clear 21898 * packet. This happens when we are sending 21899 * a ICMP reply back to a clear packet. See 21900 * ipsec_in_to_out() for details. 21901 */ 21902 mp = first_mp->b_cont; 21903 freeb(first_mp); 21904 } 21905 return (mp); 21906 } 21907 /* 21908 * See whether we need to attach a global policy here. We 21909 * don't depend on the conn (as it could be null) for deciding 21910 * what policy this datagram should go through because it 21911 * should have happened in ip_wput if there was some 21912 * policy. This normally happens for connections which are not 21913 * fully bound preventing us from caching policies in 21914 * ip_bind. Packets coming from the TCP listener/global queue 21915 * - which are non-hard_bound - could also be affected by 21916 * applying policy here. 21917 * 21918 * If this packet is coming from tcp global queue or listener, 21919 * we will be applying policy here. This may not be *right* 21920 * if these packets are coming from the detached connection as 21921 * it could have gone in clear before. This happens only if a 21922 * TCP connection started when there is no policy and somebody 21923 * added policy before it became detached. Thus packets of the 21924 * detached connection could go out secure and the other end 21925 * would drop it because it will be expecting in clear. The 21926 * converse is not true i.e if somebody starts a TCP 21927 * connection and deletes the policy, all the packets will 21928 * still go out with the policy that existed before deleting 21929 * because ip_unbind sends up policy information which is used 21930 * by TCP on subsequent ip_wputs. The right solution is to fix 21931 * TCP to attach a dummy IPSEC_OUT and set 21932 * ipsec_out_use_global_policy to B_FALSE. As this might 21933 * affect performance for normal cases, we are not doing it. 21934 * Thus, set policy before starting any TCP connections. 21935 * 21936 * NOTE - We might apply policy even for a hard bound connection 21937 * - for which we cached policy in ip_bind - if somebody added 21938 * global policy after we inherited the policy in ip_bind. 21939 * This means that the packets that were going out in clear 21940 * previously would start going secure and hence get dropped 21941 * on the other side. To fix this, TCP attaches a dummy 21942 * ipsec_out and make sure that we don't apply global policy. 21943 */ 21944 if (ipha != NULL) 21945 policy_present = ipss->ipsec_outbound_v4_policy_present; 21946 else 21947 policy_present = ipss->ipsec_outbound_v6_policy_present; 21948 if (!policy_present) 21949 return (mp); 21950 21951 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21952 zoneid)); 21953 } 21954 21955 ire_t * 21956 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21957 { 21958 ipaddr_t addr; 21959 ire_t *save_ire; 21960 irb_t *irb; 21961 ill_group_t *illgrp; 21962 int err; 21963 21964 save_ire = ire; 21965 addr = ire->ire_addr; 21966 21967 ASSERT(ire->ire_type == IRE_BROADCAST); 21968 21969 illgrp = connp->conn_outgoing_ill->ill_group; 21970 if (illgrp == NULL) { 21971 *conn_outgoing_ill = conn_get_held_ill(connp, 21972 &connp->conn_outgoing_ill, &err); 21973 if (err == ILL_LOOKUP_FAILED) { 21974 ire_refrele(save_ire); 21975 return (NULL); 21976 } 21977 return (save_ire); 21978 } 21979 /* 21980 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21981 * If it is part of the group, we need to send on the ire 21982 * that has been cleared of IRE_MARK_NORECV and that belongs 21983 * to this group. This is okay as IP_BOUND_IF really means 21984 * any ill in the group. We depend on the fact that the 21985 * first ire in the group is always cleared of IRE_MARK_NORECV 21986 * if such an ire exists. This is possible only if you have 21987 * at least one ill in the group that has not failed. 21988 * 21989 * First get to the ire that matches the address and group. 21990 * 21991 * We don't look for an ire with a matching zoneid because a given zone 21992 * won't always have broadcast ires on all ills in the group. 21993 */ 21994 irb = ire->ire_bucket; 21995 rw_enter(&irb->irb_lock, RW_READER); 21996 if (ire->ire_marks & IRE_MARK_NORECV) { 21997 /* 21998 * If the current zone only has an ire broadcast for this 21999 * address marked NORECV, the ire we want is ahead in the 22000 * bucket, so we look it up deliberately ignoring the zoneid. 22001 */ 22002 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22003 if (ire->ire_addr != addr) 22004 continue; 22005 /* skip over deleted ires */ 22006 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22007 continue; 22008 } 22009 } 22010 while (ire != NULL) { 22011 /* 22012 * If a new interface is coming up, we could end up 22013 * seeing the loopback ire and the non-loopback ire 22014 * may not have been added yet. So check for ire_stq 22015 */ 22016 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22017 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22018 break; 22019 } 22020 ire = ire->ire_next; 22021 } 22022 if (ire != NULL && ire->ire_addr == addr && 22023 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22024 IRE_REFHOLD(ire); 22025 rw_exit(&irb->irb_lock); 22026 ire_refrele(save_ire); 22027 *conn_outgoing_ill = ire_to_ill(ire); 22028 /* 22029 * Refhold the ill to make the conn_outgoing_ill 22030 * independent of the ire. ip_wput_ire goes in a loop 22031 * and may refrele the ire. Since we have an ire at this 22032 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22033 */ 22034 ill_refhold(*conn_outgoing_ill); 22035 return (ire); 22036 } 22037 rw_exit(&irb->irb_lock); 22038 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22039 /* 22040 * If we can't find a suitable ire, return the original ire. 22041 */ 22042 return (save_ire); 22043 } 22044 22045 /* 22046 * This function does the ire_refrele of the ire passed in as the 22047 * argument. As this function looks up more ires i.e broadcast ires, 22048 * it needs to REFRELE them. Currently, for simplicity we don't 22049 * differentiate the one passed in and looked up here. We always 22050 * REFRELE. 22051 * IPQoS Notes: 22052 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22053 * IPsec packets are done in ipsec_out_process. 22054 * 22055 */ 22056 void 22057 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22058 zoneid_t zoneid) 22059 { 22060 ipha_t *ipha; 22061 #define rptr ((uchar_t *)ipha) 22062 queue_t *stq; 22063 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22064 uint32_t v_hlen_tos_len; 22065 uint32_t ttl_protocol; 22066 ipaddr_t src; 22067 ipaddr_t dst; 22068 uint32_t cksum; 22069 ipaddr_t orig_src; 22070 ire_t *ire1; 22071 mblk_t *next_mp; 22072 uint_t hlen; 22073 uint16_t *up; 22074 uint32_t max_frag = ire->ire_max_frag; 22075 ill_t *ill = ire_to_ill(ire); 22076 int clusterwide; 22077 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22078 int ipsec_len; 22079 mblk_t *first_mp; 22080 ipsec_out_t *io; 22081 boolean_t conn_dontroute; /* conn value for multicast */ 22082 boolean_t conn_multicast_loop; /* conn value for multicast */ 22083 boolean_t multicast_forward; /* Should we forward ? */ 22084 boolean_t unspec_src; 22085 ill_t *conn_outgoing_ill = NULL; 22086 ill_t *ire_ill; 22087 ill_t *ire1_ill; 22088 ill_t *out_ill; 22089 uint32_t ill_index = 0; 22090 boolean_t multirt_send = B_FALSE; 22091 int err; 22092 ipxmit_state_t pktxmit_state; 22093 ip_stack_t *ipst = ire->ire_ipst; 22094 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22095 22096 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22097 "ip_wput_ire_start: q %p", q); 22098 22099 multicast_forward = B_FALSE; 22100 unspec_src = (connp != NULL && connp->conn_unspec_src); 22101 22102 if (ire->ire_flags & RTF_MULTIRT) { 22103 /* 22104 * Multirouting case. The bucket where ire is stored 22105 * probably holds other RTF_MULTIRT flagged ire 22106 * to the destination. In this call to ip_wput_ire, 22107 * we attempt to send the packet through all 22108 * those ires. Thus, we first ensure that ire is the 22109 * first RTF_MULTIRT ire in the bucket, 22110 * before walking the ire list. 22111 */ 22112 ire_t *first_ire; 22113 irb_t *irb = ire->ire_bucket; 22114 ASSERT(irb != NULL); 22115 22116 /* Make sure we do not omit any multiroute ire. */ 22117 IRB_REFHOLD(irb); 22118 for (first_ire = irb->irb_ire; 22119 first_ire != NULL; 22120 first_ire = first_ire->ire_next) { 22121 if ((first_ire->ire_flags & RTF_MULTIRT) && 22122 (first_ire->ire_addr == ire->ire_addr) && 22123 !(first_ire->ire_marks & 22124 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22125 break; 22126 } 22127 } 22128 22129 if ((first_ire != NULL) && (first_ire != ire)) { 22130 IRE_REFHOLD(first_ire); 22131 ire_refrele(ire); 22132 ire = first_ire; 22133 ill = ire_to_ill(ire); 22134 } 22135 IRB_REFRELE(irb); 22136 } 22137 22138 /* 22139 * conn_outgoing_ill variable is used only in the broadcast loop. 22140 * for performance we don't grab the mutexs in the fastpath 22141 */ 22142 if ((connp != NULL) && 22143 (ire->ire_type == IRE_BROADCAST) && 22144 ((connp->conn_nofailover_ill != NULL) || 22145 (connp->conn_outgoing_ill != NULL))) { 22146 /* 22147 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22148 * option. So, see if this endpoint is bound to a 22149 * IPIF_NOFAILOVER address. If so, honor it. This implies 22150 * that if the interface is failed, we will still send 22151 * the packet on the same ill which is what we want. 22152 */ 22153 conn_outgoing_ill = conn_get_held_ill(connp, 22154 &connp->conn_nofailover_ill, &err); 22155 if (err == ILL_LOOKUP_FAILED) { 22156 ire_refrele(ire); 22157 freemsg(mp); 22158 return; 22159 } 22160 if (conn_outgoing_ill == NULL) { 22161 /* 22162 * Choose a good ill in the group to send the 22163 * packets on. 22164 */ 22165 ire = conn_set_outgoing_ill(connp, ire, 22166 &conn_outgoing_ill); 22167 if (ire == NULL) { 22168 freemsg(mp); 22169 return; 22170 } 22171 } 22172 } 22173 22174 if (mp->b_datap->db_type != M_CTL) { 22175 ipha = (ipha_t *)mp->b_rptr; 22176 } else { 22177 io = (ipsec_out_t *)mp->b_rptr; 22178 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22179 ASSERT(zoneid == io->ipsec_out_zoneid); 22180 ASSERT(zoneid != ALL_ZONES); 22181 ipha = (ipha_t *)mp->b_cont->b_rptr; 22182 dst = ipha->ipha_dst; 22183 /* 22184 * For the multicast case, ipsec_out carries conn_dontroute and 22185 * conn_multicast_loop as conn may not be available here. We 22186 * need this for multicast loopback and forwarding which is done 22187 * later in the code. 22188 */ 22189 if (CLASSD(dst)) { 22190 conn_dontroute = io->ipsec_out_dontroute; 22191 conn_multicast_loop = io->ipsec_out_multicast_loop; 22192 /* 22193 * If conn_dontroute is not set or conn_multicast_loop 22194 * is set, we need to do forwarding/loopback. For 22195 * datagrams from ip_wput_multicast, conn_dontroute is 22196 * set to B_TRUE and conn_multicast_loop is set to 22197 * B_FALSE so that we neither do forwarding nor 22198 * loopback. 22199 */ 22200 if (!conn_dontroute || conn_multicast_loop) 22201 multicast_forward = B_TRUE; 22202 } 22203 } 22204 22205 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22206 ire->ire_zoneid != ALL_ZONES) { 22207 /* 22208 * When a zone sends a packet to another zone, we try to deliver 22209 * the packet under the same conditions as if the destination 22210 * was a real node on the network. To do so, we look for a 22211 * matching route in the forwarding table. 22212 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22213 * ip_newroute() does. 22214 * Note that IRE_LOCAL are special, since they are used 22215 * when the zoneid doesn't match in some cases. This means that 22216 * we need to handle ipha_src differently since ire_src_addr 22217 * belongs to the receiving zone instead of the sending zone. 22218 * When ip_restrict_interzone_loopback is set, then 22219 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22220 * for loopback between zones when the logical "Ethernet" would 22221 * have looped them back. 22222 */ 22223 ire_t *src_ire; 22224 22225 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22226 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22227 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22228 if (src_ire != NULL && 22229 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22230 (!ipst->ips_ip_restrict_interzone_loopback || 22231 ire_local_same_ill_group(ire, src_ire))) { 22232 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22233 ipha->ipha_src = src_ire->ire_src_addr; 22234 ire_refrele(src_ire); 22235 } else { 22236 ire_refrele(ire); 22237 if (conn_outgoing_ill != NULL) 22238 ill_refrele(conn_outgoing_ill); 22239 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22240 if (src_ire != NULL) { 22241 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22242 ire_refrele(src_ire); 22243 freemsg(mp); 22244 return; 22245 } 22246 ire_refrele(src_ire); 22247 } 22248 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22249 /* Failed */ 22250 freemsg(mp); 22251 return; 22252 } 22253 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22254 ipst); 22255 return; 22256 } 22257 } 22258 22259 if (mp->b_datap->db_type == M_CTL || 22260 ipss->ipsec_outbound_v4_policy_present) { 22261 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22262 unspec_src, zoneid); 22263 if (mp == NULL) { 22264 ire_refrele(ire); 22265 if (conn_outgoing_ill != NULL) 22266 ill_refrele(conn_outgoing_ill); 22267 return; 22268 } 22269 /* 22270 * Trusted Extensions supports all-zones interfaces, so 22271 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22272 * the global zone. 22273 */ 22274 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22275 io = (ipsec_out_t *)mp->b_rptr; 22276 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22277 zoneid = io->ipsec_out_zoneid; 22278 } 22279 } 22280 22281 first_mp = mp; 22282 ipsec_len = 0; 22283 22284 if (first_mp->b_datap->db_type == M_CTL) { 22285 io = (ipsec_out_t *)first_mp->b_rptr; 22286 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22287 mp = first_mp->b_cont; 22288 ipsec_len = ipsec_out_extra_length(first_mp); 22289 ASSERT(ipsec_len >= 0); 22290 /* We already picked up the zoneid from the M_CTL above */ 22291 ASSERT(zoneid == io->ipsec_out_zoneid); 22292 ASSERT(zoneid != ALL_ZONES); 22293 22294 /* 22295 * Drop M_CTL here if IPsec processing is not needed. 22296 * (Non-IPsec use of M_CTL extracted any information it 22297 * needed above). 22298 */ 22299 if (ipsec_len == 0) { 22300 freeb(first_mp); 22301 first_mp = mp; 22302 } 22303 } 22304 22305 /* 22306 * Fast path for ip_wput_ire 22307 */ 22308 22309 ipha = (ipha_t *)mp->b_rptr; 22310 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22311 dst = ipha->ipha_dst; 22312 22313 /* 22314 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22315 * if the socket is a SOCK_RAW type. The transport checksum should 22316 * be provided in the pre-built packet, so we don't need to compute it. 22317 * Also, other application set flags, like DF, should not be altered. 22318 * Other transport MUST pass down zero. 22319 */ 22320 ip_hdr_included = ipha->ipha_ident; 22321 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22322 22323 if (CLASSD(dst)) { 22324 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22325 ntohl(dst), 22326 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22327 ntohl(ire->ire_addr))); 22328 } 22329 22330 /* Macros to extract header fields from data already in registers */ 22331 #ifdef _BIG_ENDIAN 22332 #define V_HLEN (v_hlen_tos_len >> 24) 22333 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22334 #define PROTO (ttl_protocol & 0xFF) 22335 #else 22336 #define V_HLEN (v_hlen_tos_len & 0xFF) 22337 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22338 #define PROTO (ttl_protocol >> 8) 22339 #endif 22340 22341 22342 orig_src = src = ipha->ipha_src; 22343 /* (The loop back to "another" is explained down below.) */ 22344 another:; 22345 /* 22346 * Assign an ident value for this packet. We assign idents on 22347 * a per destination basis out of the IRE. There could be 22348 * other threads targeting the same destination, so we have to 22349 * arrange for a atomic increment. Note that we use a 32-bit 22350 * atomic add because it has better performance than its 22351 * 16-bit sibling. 22352 * 22353 * If running in cluster mode and if the source address 22354 * belongs to a replicated service then vector through 22355 * cl_inet_ipident vector to allocate ip identifier 22356 * NOTE: This is a contract private interface with the 22357 * clustering group. 22358 */ 22359 clusterwide = 0; 22360 if (cl_inet_ipident) { 22361 ASSERT(cl_inet_isclusterwide); 22362 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22363 AF_INET, (uint8_t *)(uintptr_t)src)) { 22364 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22365 AF_INET, (uint8_t *)(uintptr_t)src, 22366 (uint8_t *)(uintptr_t)dst); 22367 clusterwide = 1; 22368 } 22369 } 22370 if (!clusterwide) { 22371 ipha->ipha_ident = 22372 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22373 } 22374 22375 #ifndef _BIG_ENDIAN 22376 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22377 #endif 22378 22379 /* 22380 * Set source address unless sent on an ill or conn_unspec_src is set. 22381 * This is needed to obey conn_unspec_src when packets go through 22382 * ip_newroute + arp. 22383 * Assumes ip_newroute{,_multi} sets the source address as well. 22384 */ 22385 if (src == INADDR_ANY && !unspec_src) { 22386 /* 22387 * Assign the appropriate source address from the IRE if none 22388 * was specified. 22389 */ 22390 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22391 22392 /* 22393 * With IP multipathing, broadcast packets are sent on the ire 22394 * that has been cleared of IRE_MARK_NORECV and that belongs to 22395 * the group. However, this ire might not be in the same zone so 22396 * we can't always use its source address. We look for a 22397 * broadcast ire in the same group and in the right zone. 22398 */ 22399 if (ire->ire_type == IRE_BROADCAST && 22400 ire->ire_zoneid != zoneid) { 22401 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22402 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22403 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22404 if (src_ire != NULL) { 22405 src = src_ire->ire_src_addr; 22406 ire_refrele(src_ire); 22407 } else { 22408 ire_refrele(ire); 22409 if (conn_outgoing_ill != NULL) 22410 ill_refrele(conn_outgoing_ill); 22411 freemsg(first_mp); 22412 if (ill != NULL) { 22413 BUMP_MIB(ill->ill_ip_mib, 22414 ipIfStatsOutDiscards); 22415 } else { 22416 BUMP_MIB(&ipst->ips_ip_mib, 22417 ipIfStatsOutDiscards); 22418 } 22419 return; 22420 } 22421 } else { 22422 src = ire->ire_src_addr; 22423 } 22424 22425 if (connp == NULL) { 22426 ip1dbg(("ip_wput_ire: no connp and no src " 22427 "address for dst 0x%x, using src 0x%x\n", 22428 ntohl(dst), 22429 ntohl(src))); 22430 } 22431 ipha->ipha_src = src; 22432 } 22433 stq = ire->ire_stq; 22434 22435 /* 22436 * We only allow ire chains for broadcasts since there will 22437 * be multiple IRE_CACHE entries for the same multicast 22438 * address (one per ipif). 22439 */ 22440 next_mp = NULL; 22441 22442 /* broadcast packet */ 22443 if (ire->ire_type == IRE_BROADCAST) 22444 goto broadcast; 22445 22446 /* loopback ? */ 22447 if (stq == NULL) 22448 goto nullstq; 22449 22450 /* The ill_index for outbound ILL */ 22451 ill_index = Q_TO_INDEX(stq); 22452 22453 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22454 ttl_protocol = ((uint16_t *)ipha)[4]; 22455 22456 /* pseudo checksum (do it in parts for IP header checksum) */ 22457 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22458 22459 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22460 queue_t *dev_q = stq->q_next; 22461 22462 /* flow controlled */ 22463 if ((dev_q->q_next || dev_q->q_first) && 22464 !canput(dev_q)) 22465 goto blocked; 22466 if ((PROTO == IPPROTO_UDP) && 22467 (ip_hdr_included != IP_HDR_INCLUDED)) { 22468 hlen = (V_HLEN & 0xF) << 2; 22469 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22470 if (*up != 0) { 22471 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22472 hlen, LENGTH, max_frag, ipsec_len, cksum); 22473 /* Software checksum? */ 22474 if (DB_CKSUMFLAGS(mp) == 0) { 22475 IP_STAT(ipst, ip_out_sw_cksum); 22476 IP_STAT_UPDATE(ipst, 22477 ip_udp_out_sw_cksum_bytes, 22478 LENGTH - hlen); 22479 } 22480 } 22481 } 22482 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22483 hlen = (V_HLEN & 0xF) << 2; 22484 if (PROTO == IPPROTO_TCP) { 22485 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22486 /* 22487 * The packet header is processed once and for all, even 22488 * in the multirouting case. We disable hardware 22489 * checksum if the packet is multirouted, as it will be 22490 * replicated via several interfaces, and not all of 22491 * them may have this capability. 22492 */ 22493 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22494 LENGTH, max_frag, ipsec_len, cksum); 22495 /* Software checksum? */ 22496 if (DB_CKSUMFLAGS(mp) == 0) { 22497 IP_STAT(ipst, ip_out_sw_cksum); 22498 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22499 LENGTH - hlen); 22500 } 22501 } else { 22502 sctp_hdr_t *sctph; 22503 22504 ASSERT(PROTO == IPPROTO_SCTP); 22505 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22506 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22507 /* 22508 * Zero out the checksum field to ensure proper 22509 * checksum calculation. 22510 */ 22511 sctph->sh_chksum = 0; 22512 #ifdef DEBUG 22513 if (!skip_sctp_cksum) 22514 #endif 22515 sctph->sh_chksum = sctp_cksum(mp, hlen); 22516 } 22517 } 22518 22519 /* 22520 * If this is a multicast packet and originated from ip_wput 22521 * we need to do loopback and forwarding checks. If it comes 22522 * from ip_wput_multicast, we SHOULD not do this. 22523 */ 22524 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22525 22526 /* checksum */ 22527 cksum += ttl_protocol; 22528 22529 /* fragment the packet */ 22530 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22531 goto fragmentit; 22532 /* 22533 * Don't use frag_flag if packet is pre-built or source 22534 * routed or if multicast (since multicast packets do 22535 * not solicit ICMP "packet too big" messages). 22536 */ 22537 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22538 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22539 !ip_source_route_included(ipha)) && 22540 !CLASSD(ipha->ipha_dst)) 22541 ipha->ipha_fragment_offset_and_flags |= 22542 htons(ire->ire_frag_flag); 22543 22544 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22545 /* calculate IP header checksum */ 22546 cksum += ipha->ipha_ident; 22547 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22548 cksum += ipha->ipha_fragment_offset_and_flags; 22549 22550 /* IP options present */ 22551 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22552 if (hlen) 22553 goto checksumoptions; 22554 22555 /* calculate hdr checksum */ 22556 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22557 cksum = ~(cksum + (cksum >> 16)); 22558 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22559 } 22560 if (ipsec_len != 0) { 22561 /* 22562 * We will do the rest of the processing after 22563 * we come back from IPsec in ip_wput_ipsec_out(). 22564 */ 22565 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22566 22567 io = (ipsec_out_t *)first_mp->b_rptr; 22568 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22569 ill_phyint->phyint_ifindex; 22570 22571 ipsec_out_process(q, first_mp, ire, ill_index); 22572 ire_refrele(ire); 22573 if (conn_outgoing_ill != NULL) 22574 ill_refrele(conn_outgoing_ill); 22575 return; 22576 } 22577 22578 /* 22579 * In most cases, the emission loop below is entered only 22580 * once. Only in the case where the ire holds the 22581 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22582 * flagged ires in the bucket, and send the packet 22583 * through all crossed RTF_MULTIRT routes. 22584 */ 22585 if (ire->ire_flags & RTF_MULTIRT) { 22586 multirt_send = B_TRUE; 22587 } 22588 do { 22589 if (multirt_send) { 22590 irb_t *irb; 22591 /* 22592 * We are in a multiple send case, need to get 22593 * the next ire and make a duplicate of the packet. 22594 * ire1 holds here the next ire to process in the 22595 * bucket. If multirouting is expected, 22596 * any non-RTF_MULTIRT ire that has the 22597 * right destination address is ignored. 22598 */ 22599 irb = ire->ire_bucket; 22600 ASSERT(irb != NULL); 22601 22602 IRB_REFHOLD(irb); 22603 for (ire1 = ire->ire_next; 22604 ire1 != NULL; 22605 ire1 = ire1->ire_next) { 22606 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22607 continue; 22608 if (ire1->ire_addr != ire->ire_addr) 22609 continue; 22610 if (ire1->ire_marks & 22611 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22612 continue; 22613 22614 /* Got one */ 22615 IRE_REFHOLD(ire1); 22616 break; 22617 } 22618 IRB_REFRELE(irb); 22619 22620 if (ire1 != NULL) { 22621 next_mp = copyb(mp); 22622 if ((next_mp == NULL) || 22623 ((mp->b_cont != NULL) && 22624 ((next_mp->b_cont = 22625 dupmsg(mp->b_cont)) == NULL))) { 22626 freemsg(next_mp); 22627 next_mp = NULL; 22628 ire_refrele(ire1); 22629 ire1 = NULL; 22630 } 22631 } 22632 22633 /* Last multiroute ire; don't loop anymore. */ 22634 if (ire1 == NULL) { 22635 multirt_send = B_FALSE; 22636 } 22637 } 22638 22639 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22640 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22641 mblk_t *, mp); 22642 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22643 ipst->ips_ipv4firewall_physical_out, 22644 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22645 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22646 if (mp == NULL) 22647 goto release_ire_and_ill; 22648 22649 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22650 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22651 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22652 if ((pktxmit_state == SEND_FAILED) || 22653 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22654 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22655 "- packet dropped\n")); 22656 release_ire_and_ill: 22657 ire_refrele(ire); 22658 if (next_mp != NULL) { 22659 freemsg(next_mp); 22660 ire_refrele(ire1); 22661 } 22662 if (conn_outgoing_ill != NULL) 22663 ill_refrele(conn_outgoing_ill); 22664 return; 22665 } 22666 22667 if (CLASSD(dst)) { 22668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22669 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22670 LENGTH); 22671 } 22672 22673 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22674 "ip_wput_ire_end: q %p (%S)", 22675 q, "last copy out"); 22676 IRE_REFRELE(ire); 22677 22678 if (multirt_send) { 22679 ASSERT(ire1); 22680 /* 22681 * Proceed with the next RTF_MULTIRT ire, 22682 * Also set up the send-to queue accordingly. 22683 */ 22684 ire = ire1; 22685 ire1 = NULL; 22686 stq = ire->ire_stq; 22687 mp = next_mp; 22688 next_mp = NULL; 22689 ipha = (ipha_t *)mp->b_rptr; 22690 ill_index = Q_TO_INDEX(stq); 22691 ill = (ill_t *)stq->q_ptr; 22692 } 22693 } while (multirt_send); 22694 if (conn_outgoing_ill != NULL) 22695 ill_refrele(conn_outgoing_ill); 22696 return; 22697 22698 /* 22699 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22700 */ 22701 broadcast: 22702 { 22703 /* 22704 * To avoid broadcast storms, we usually set the TTL to 1 for 22705 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22706 * can be overridden stack-wide through the ip_broadcast_ttl 22707 * ndd tunable, or on a per-connection basis through the 22708 * IP_BROADCAST_TTL socket option. 22709 * 22710 * In the event that we are replying to incoming ICMP packets, 22711 * connp could be NULL. 22712 */ 22713 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22714 if (connp != NULL) { 22715 if (connp->conn_dontroute) 22716 ipha->ipha_ttl = 1; 22717 else if (connp->conn_broadcast_ttl != 0) 22718 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22719 } 22720 22721 /* 22722 * Note that we are not doing a IRB_REFHOLD here. 22723 * Actually we don't care if the list changes i.e 22724 * if somebody deletes an IRE from the list while 22725 * we drop the lock, the next time we come around 22726 * ire_next will be NULL and hence we won't send 22727 * out multiple copies which is fine. 22728 */ 22729 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22730 ire1 = ire->ire_next; 22731 if (conn_outgoing_ill != NULL) { 22732 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22733 ASSERT(ire1 == ire->ire_next); 22734 if (ire1 != NULL && ire1->ire_addr == dst) { 22735 ire_refrele(ire); 22736 ire = ire1; 22737 IRE_REFHOLD(ire); 22738 ire1 = ire->ire_next; 22739 continue; 22740 } 22741 rw_exit(&ire->ire_bucket->irb_lock); 22742 /* Did not find a matching ill */ 22743 ip1dbg(("ip_wput_ire: broadcast with no " 22744 "matching IP_BOUND_IF ill %s dst %x\n", 22745 conn_outgoing_ill->ill_name, dst)); 22746 freemsg(first_mp); 22747 if (ire != NULL) 22748 ire_refrele(ire); 22749 ill_refrele(conn_outgoing_ill); 22750 return; 22751 } 22752 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22753 /* 22754 * If the next IRE has the same address and is not one 22755 * of the two copies that we need to send, try to see 22756 * whether this copy should be sent at all. This 22757 * assumes that we insert loopbacks first and then 22758 * non-loopbacks. This is acheived by inserting the 22759 * loopback always before non-loopback. 22760 * This is used to send a single copy of a broadcast 22761 * packet out all physical interfaces that have an 22762 * matching IRE_BROADCAST while also looping 22763 * back one copy (to ip_wput_local) for each 22764 * matching physical interface. However, we avoid 22765 * sending packets out different logical that match by 22766 * having ipif_up/ipif_down supress duplicate 22767 * IRE_BROADCASTS. 22768 * 22769 * This feature is currently used to get broadcasts 22770 * sent to multiple interfaces, when the broadcast 22771 * address being used applies to multiple interfaces. 22772 * For example, a whole net broadcast will be 22773 * replicated on every connected subnet of 22774 * the target net. 22775 * 22776 * Each zone has its own set of IRE_BROADCASTs, so that 22777 * we're able to distribute inbound packets to multiple 22778 * zones who share a broadcast address. We avoid looping 22779 * back outbound packets in different zones but on the 22780 * same ill, as the application would see duplicates. 22781 * 22782 * If the interfaces are part of the same group, 22783 * we would want to send only one copy out for 22784 * whole group. 22785 * 22786 * This logic assumes that ire_add_v4() groups the 22787 * IRE_BROADCAST entries so that those with the same 22788 * ire_addr and ill_group are kept together. 22789 */ 22790 ire_ill = ire->ire_ipif->ipif_ill; 22791 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22792 if (ire_ill->ill_group != NULL && 22793 (ire->ire_marks & IRE_MARK_NORECV)) { 22794 /* 22795 * If the current zone only has an ire 22796 * broadcast for this address marked 22797 * NORECV, the ire we want is ahead in 22798 * the bucket, so we look it up 22799 * deliberately ignoring the zoneid. 22800 */ 22801 for (ire1 = ire->ire_bucket->irb_ire; 22802 ire1 != NULL; 22803 ire1 = ire1->ire_next) { 22804 ire1_ill = 22805 ire1->ire_ipif->ipif_ill; 22806 if (ire1->ire_addr != dst) 22807 continue; 22808 /* skip over the current ire */ 22809 if (ire1 == ire) 22810 continue; 22811 /* skip over deleted ires */ 22812 if (ire1->ire_marks & 22813 IRE_MARK_CONDEMNED) 22814 continue; 22815 /* 22816 * non-loopback ire in our 22817 * group: use it for the next 22818 * pass in the loop 22819 */ 22820 if (ire1->ire_stq != NULL && 22821 ire1_ill->ill_group == 22822 ire_ill->ill_group) 22823 break; 22824 } 22825 } 22826 } else { 22827 while (ire1 != NULL && ire1->ire_addr == dst) { 22828 ire1_ill = ire1->ire_ipif->ipif_ill; 22829 /* 22830 * We can have two broadcast ires on the 22831 * same ill in different zones; here 22832 * we'll send a copy of the packet on 22833 * each ill and the fanout code will 22834 * call conn_wantpacket() to check that 22835 * the zone has the broadcast address 22836 * configured on the ill. If the two 22837 * ires are in the same group we only 22838 * send one copy up. 22839 */ 22840 if (ire1_ill != ire_ill && 22841 (ire1_ill->ill_group == NULL || 22842 ire_ill->ill_group == NULL || 22843 ire1_ill->ill_group != 22844 ire_ill->ill_group)) { 22845 break; 22846 } 22847 ire1 = ire1->ire_next; 22848 } 22849 } 22850 } 22851 ASSERT(multirt_send == B_FALSE); 22852 if (ire1 != NULL && ire1->ire_addr == dst) { 22853 if ((ire->ire_flags & RTF_MULTIRT) && 22854 (ire1->ire_flags & RTF_MULTIRT)) { 22855 /* 22856 * We are in the multirouting case. 22857 * The message must be sent at least 22858 * on both ires. These ires have been 22859 * inserted AFTER the standard ones 22860 * in ip_rt_add(). There are thus no 22861 * other ire entries for the destination 22862 * address in the rest of the bucket 22863 * that do not have the RTF_MULTIRT 22864 * flag. We don't process a copy 22865 * of the message here. This will be 22866 * done in the final sending loop. 22867 */ 22868 multirt_send = B_TRUE; 22869 } else { 22870 next_mp = ip_copymsg(first_mp); 22871 if (next_mp != NULL) 22872 IRE_REFHOLD(ire1); 22873 } 22874 } 22875 rw_exit(&ire->ire_bucket->irb_lock); 22876 } 22877 22878 if (stq) { 22879 /* 22880 * A non-NULL send-to queue means this packet is going 22881 * out of this machine. 22882 */ 22883 out_ill = (ill_t *)stq->q_ptr; 22884 22885 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22886 ttl_protocol = ((uint16_t *)ipha)[4]; 22887 /* 22888 * We accumulate the pseudo header checksum in cksum. 22889 * This is pretty hairy code, so watch close. One 22890 * thing to keep in mind is that UDP and TCP have 22891 * stored their respective datagram lengths in their 22892 * checksum fields. This lines things up real nice. 22893 */ 22894 cksum = (dst >> 16) + (dst & 0xFFFF) + 22895 (src >> 16) + (src & 0xFFFF); 22896 /* 22897 * We assume the udp checksum field contains the 22898 * length, so to compute the pseudo header checksum, 22899 * all we need is the protocol number and src/dst. 22900 */ 22901 /* Provide the checksums for UDP and TCP. */ 22902 if ((PROTO == IPPROTO_TCP) && 22903 (ip_hdr_included != IP_HDR_INCLUDED)) { 22904 /* hlen gets the number of uchar_ts in the IP header */ 22905 hlen = (V_HLEN & 0xF) << 2; 22906 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22907 IP_STAT(ipst, ip_out_sw_cksum); 22908 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22909 LENGTH - hlen); 22910 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22911 } else if (PROTO == IPPROTO_SCTP && 22912 (ip_hdr_included != IP_HDR_INCLUDED)) { 22913 sctp_hdr_t *sctph; 22914 22915 hlen = (V_HLEN & 0xF) << 2; 22916 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22917 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22918 sctph->sh_chksum = 0; 22919 #ifdef DEBUG 22920 if (!skip_sctp_cksum) 22921 #endif 22922 sctph->sh_chksum = sctp_cksum(mp, hlen); 22923 } else { 22924 queue_t *dev_q = stq->q_next; 22925 22926 if ((dev_q->q_next || dev_q->q_first) && 22927 !canput(dev_q)) { 22928 blocked: 22929 ipha->ipha_ident = ip_hdr_included; 22930 /* 22931 * If we don't have a conn to apply 22932 * backpressure, free the message. 22933 * In the ire_send path, we don't know 22934 * the position to requeue the packet. Rather 22935 * than reorder packets, we just drop this 22936 * packet. 22937 */ 22938 if (ipst->ips_ip_output_queue && 22939 connp != NULL && 22940 caller != IRE_SEND) { 22941 if (caller == IP_WSRV) { 22942 connp->conn_did_putbq = 1; 22943 (void) putbq(connp->conn_wq, 22944 first_mp); 22945 conn_drain_insert(connp); 22946 /* 22947 * This is the service thread, 22948 * and the queue is already 22949 * noenabled. The check for 22950 * canput and the putbq is not 22951 * atomic. So we need to check 22952 * again. 22953 */ 22954 if (canput(stq->q_next)) 22955 connp->conn_did_putbq 22956 = 0; 22957 IP_STAT(ipst, ip_conn_flputbq); 22958 } else { 22959 /* 22960 * We are not the service proc. 22961 * ip_wsrv will be scheduled or 22962 * is already running. 22963 */ 22964 (void) putq(connp->conn_wq, 22965 first_mp); 22966 } 22967 } else { 22968 out_ill = (ill_t *)stq->q_ptr; 22969 BUMP_MIB(out_ill->ill_ip_mib, 22970 ipIfStatsOutDiscards); 22971 freemsg(first_mp); 22972 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22973 "ip_wput_ire_end: q %p (%S)", 22974 q, "discard"); 22975 } 22976 ire_refrele(ire); 22977 if (next_mp) { 22978 ire_refrele(ire1); 22979 freemsg(next_mp); 22980 } 22981 if (conn_outgoing_ill != NULL) 22982 ill_refrele(conn_outgoing_ill); 22983 return; 22984 } 22985 if ((PROTO == IPPROTO_UDP) && 22986 (ip_hdr_included != IP_HDR_INCLUDED)) { 22987 /* 22988 * hlen gets the number of uchar_ts in the 22989 * IP header 22990 */ 22991 hlen = (V_HLEN & 0xF) << 2; 22992 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22993 max_frag = ire->ire_max_frag; 22994 if (*up != 0) { 22995 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22996 up, PROTO, hlen, LENGTH, max_frag, 22997 ipsec_len, cksum); 22998 /* Software checksum? */ 22999 if (DB_CKSUMFLAGS(mp) == 0) { 23000 IP_STAT(ipst, ip_out_sw_cksum); 23001 IP_STAT_UPDATE(ipst, 23002 ip_udp_out_sw_cksum_bytes, 23003 LENGTH - hlen); 23004 } 23005 } 23006 } 23007 } 23008 /* 23009 * Need to do this even when fragmenting. The local 23010 * loopback can be done without computing checksums 23011 * but forwarding out other interface must be done 23012 * after the IP checksum (and ULP checksums) have been 23013 * computed. 23014 * 23015 * NOTE : multicast_forward is set only if this packet 23016 * originated from ip_wput. For packets originating from 23017 * ip_wput_multicast, it is not set. 23018 */ 23019 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23020 multi_loopback: 23021 ip2dbg(("ip_wput: multicast, loop %d\n", 23022 conn_multicast_loop)); 23023 23024 /* Forget header checksum offload */ 23025 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23026 23027 /* 23028 * Local loopback of multicasts? Check the 23029 * ill. 23030 * 23031 * Note that the loopback function will not come 23032 * in through ip_rput - it will only do the 23033 * client fanout thus we need to do an mforward 23034 * as well. The is different from the BSD 23035 * logic. 23036 */ 23037 if (ill != NULL) { 23038 ilm_t *ilm; 23039 23040 ILM_WALKER_HOLD(ill); 23041 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23042 ALL_ZONES); 23043 ILM_WALKER_RELE(ill); 23044 if (ilm != NULL) { 23045 /* 23046 * Pass along the virtual output q. 23047 * ip_wput_local() will distribute the 23048 * packet to all the matching zones, 23049 * except the sending zone when 23050 * IP_MULTICAST_LOOP is false. 23051 */ 23052 ip_multicast_loopback(q, ill, first_mp, 23053 conn_multicast_loop ? 0 : 23054 IP_FF_NO_MCAST_LOOP, zoneid); 23055 } 23056 } 23057 if (ipha->ipha_ttl == 0) { 23058 /* 23059 * 0 => only to this host i.e. we are 23060 * done. We are also done if this was the 23061 * loopback interface since it is sufficient 23062 * to loopback one copy of a multicast packet. 23063 */ 23064 freemsg(first_mp); 23065 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23066 "ip_wput_ire_end: q %p (%S)", 23067 q, "loopback"); 23068 ire_refrele(ire); 23069 if (conn_outgoing_ill != NULL) 23070 ill_refrele(conn_outgoing_ill); 23071 return; 23072 } 23073 /* 23074 * ILLF_MULTICAST is checked in ip_newroute 23075 * i.e. we don't need to check it here since 23076 * all IRE_CACHEs come from ip_newroute. 23077 * For multicast traffic, SO_DONTROUTE is interpreted 23078 * to mean only send the packet out the interface 23079 * (optionally specified with IP_MULTICAST_IF) 23080 * and do not forward it out additional interfaces. 23081 * RSVP and the rsvp daemon is an example of a 23082 * protocol and user level process that 23083 * handles it's own routing. Hence, it uses the 23084 * SO_DONTROUTE option to accomplish this. 23085 */ 23086 23087 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23088 ill != NULL) { 23089 /* Unconditionally redo the checksum */ 23090 ipha->ipha_hdr_checksum = 0; 23091 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23092 23093 /* 23094 * If this needs to go out secure, we need 23095 * to wait till we finish the IPsec 23096 * processing. 23097 */ 23098 if (ipsec_len == 0 && 23099 ip_mforward(ill, ipha, mp)) { 23100 freemsg(first_mp); 23101 ip1dbg(("ip_wput: mforward failed\n")); 23102 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23103 "ip_wput_ire_end: q %p (%S)", 23104 q, "mforward failed"); 23105 ire_refrele(ire); 23106 if (conn_outgoing_ill != NULL) 23107 ill_refrele(conn_outgoing_ill); 23108 return; 23109 } 23110 } 23111 } 23112 max_frag = ire->ire_max_frag; 23113 cksum += ttl_protocol; 23114 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23115 /* No fragmentation required for this one. */ 23116 /* 23117 * Don't use frag_flag if packet is pre-built or source 23118 * routed or if multicast (since multicast packets do 23119 * not solicit ICMP "packet too big" messages). 23120 */ 23121 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23122 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23123 !ip_source_route_included(ipha)) && 23124 !CLASSD(ipha->ipha_dst)) 23125 ipha->ipha_fragment_offset_and_flags |= 23126 htons(ire->ire_frag_flag); 23127 23128 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23129 /* Complete the IP header checksum. */ 23130 cksum += ipha->ipha_ident; 23131 cksum += (v_hlen_tos_len >> 16)+ 23132 (v_hlen_tos_len & 0xFFFF); 23133 cksum += ipha->ipha_fragment_offset_and_flags; 23134 hlen = (V_HLEN & 0xF) - 23135 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23136 if (hlen) { 23137 checksumoptions: 23138 /* 23139 * Account for the IP Options in the IP 23140 * header checksum. 23141 */ 23142 up = (uint16_t *)(rptr+ 23143 IP_SIMPLE_HDR_LENGTH); 23144 do { 23145 cksum += up[0]; 23146 cksum += up[1]; 23147 up += 2; 23148 } while (--hlen); 23149 } 23150 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23151 cksum = ~(cksum + (cksum >> 16)); 23152 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23153 } 23154 if (ipsec_len != 0) { 23155 ipsec_out_process(q, first_mp, ire, ill_index); 23156 if (!next_mp) { 23157 ire_refrele(ire); 23158 if (conn_outgoing_ill != NULL) 23159 ill_refrele(conn_outgoing_ill); 23160 return; 23161 } 23162 goto next; 23163 } 23164 23165 /* 23166 * multirt_send has already been handled 23167 * for broadcast, but not yet for multicast 23168 * or IP options. 23169 */ 23170 if (next_mp == NULL) { 23171 if (ire->ire_flags & RTF_MULTIRT) { 23172 multirt_send = B_TRUE; 23173 } 23174 } 23175 23176 /* 23177 * In most cases, the emission loop below is 23178 * entered only once. Only in the case where 23179 * the ire holds the RTF_MULTIRT flag, do we loop 23180 * to process all RTF_MULTIRT ires in the bucket, 23181 * and send the packet through all crossed 23182 * RTF_MULTIRT routes. 23183 */ 23184 do { 23185 if (multirt_send) { 23186 irb_t *irb; 23187 23188 irb = ire->ire_bucket; 23189 ASSERT(irb != NULL); 23190 /* 23191 * We are in a multiple send case, 23192 * need to get the next IRE and make 23193 * a duplicate of the packet. 23194 */ 23195 IRB_REFHOLD(irb); 23196 for (ire1 = ire->ire_next; 23197 ire1 != NULL; 23198 ire1 = ire1->ire_next) { 23199 if (!(ire1->ire_flags & 23200 RTF_MULTIRT)) { 23201 continue; 23202 } 23203 if (ire1->ire_addr != 23204 ire->ire_addr) { 23205 continue; 23206 } 23207 if (ire1->ire_marks & 23208 (IRE_MARK_CONDEMNED| 23209 IRE_MARK_HIDDEN)) { 23210 continue; 23211 } 23212 23213 /* Got one */ 23214 IRE_REFHOLD(ire1); 23215 break; 23216 } 23217 IRB_REFRELE(irb); 23218 23219 if (ire1 != NULL) { 23220 next_mp = copyb(mp); 23221 if ((next_mp == NULL) || 23222 ((mp->b_cont != NULL) && 23223 ((next_mp->b_cont = 23224 dupmsg(mp->b_cont)) 23225 == NULL))) { 23226 freemsg(next_mp); 23227 next_mp = NULL; 23228 ire_refrele(ire1); 23229 ire1 = NULL; 23230 } 23231 } 23232 23233 /* 23234 * Last multiroute ire; don't loop 23235 * anymore. The emission is over 23236 * and next_mp is NULL. 23237 */ 23238 if (ire1 == NULL) { 23239 multirt_send = B_FALSE; 23240 } 23241 } 23242 23243 out_ill = ire_to_ill(ire); 23244 DTRACE_PROBE4(ip4__physical__out__start, 23245 ill_t *, NULL, 23246 ill_t *, out_ill, 23247 ipha_t *, ipha, mblk_t *, mp); 23248 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23249 ipst->ips_ipv4firewall_physical_out, 23250 NULL, out_ill, ipha, mp, mp, 0, ipst); 23251 DTRACE_PROBE1(ip4__physical__out__end, 23252 mblk_t *, mp); 23253 if (mp == NULL) 23254 goto release_ire_and_ill_2; 23255 23256 ASSERT(ipsec_len == 0); 23257 mp->b_prev = 23258 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23259 DTRACE_PROBE2(ip__xmit__2, 23260 mblk_t *, mp, ire_t *, ire); 23261 pktxmit_state = ip_xmit_v4(mp, ire, 23262 NULL, B_TRUE); 23263 if ((pktxmit_state == SEND_FAILED) || 23264 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23265 release_ire_and_ill_2: 23266 if (next_mp) { 23267 freemsg(next_mp); 23268 ire_refrele(ire1); 23269 } 23270 ire_refrele(ire); 23271 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23272 "ip_wput_ire_end: q %p (%S)", 23273 q, "discard MDATA"); 23274 if (conn_outgoing_ill != NULL) 23275 ill_refrele(conn_outgoing_ill); 23276 return; 23277 } 23278 23279 if (CLASSD(dst)) { 23280 BUMP_MIB(out_ill->ill_ip_mib, 23281 ipIfStatsHCOutMcastPkts); 23282 UPDATE_MIB(out_ill->ill_ip_mib, 23283 ipIfStatsHCOutMcastOctets, 23284 LENGTH); 23285 } else if (ire->ire_type == IRE_BROADCAST) { 23286 BUMP_MIB(out_ill->ill_ip_mib, 23287 ipIfStatsHCOutBcastPkts); 23288 } 23289 23290 if (multirt_send) { 23291 /* 23292 * We are in a multiple send case, 23293 * need to re-enter the sending loop 23294 * using the next ire. 23295 */ 23296 ire_refrele(ire); 23297 ire = ire1; 23298 stq = ire->ire_stq; 23299 mp = next_mp; 23300 next_mp = NULL; 23301 ipha = (ipha_t *)mp->b_rptr; 23302 ill_index = Q_TO_INDEX(stq); 23303 } 23304 } while (multirt_send); 23305 23306 if (!next_mp) { 23307 /* 23308 * Last copy going out (the ultra-common 23309 * case). Note that we intentionally replicate 23310 * the putnext rather than calling it before 23311 * the next_mp check in hopes of a little 23312 * tail-call action out of the compiler. 23313 */ 23314 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23315 "ip_wput_ire_end: q %p (%S)", 23316 q, "last copy out(1)"); 23317 ire_refrele(ire); 23318 if (conn_outgoing_ill != NULL) 23319 ill_refrele(conn_outgoing_ill); 23320 return; 23321 } 23322 /* More copies going out below. */ 23323 } else { 23324 int offset; 23325 fragmentit: 23326 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23327 /* 23328 * If this would generate a icmp_frag_needed message, 23329 * we need to handle it before we do the IPsec 23330 * processing. Otherwise, we need to strip the IPsec 23331 * headers before we send up the message to the ULPs 23332 * which becomes messy and difficult. 23333 */ 23334 if (ipsec_len != 0) { 23335 if ((max_frag < (unsigned int)(LENGTH + 23336 ipsec_len)) && (offset & IPH_DF)) { 23337 out_ill = (ill_t *)stq->q_ptr; 23338 BUMP_MIB(out_ill->ill_ip_mib, 23339 ipIfStatsOutFragFails); 23340 BUMP_MIB(out_ill->ill_ip_mib, 23341 ipIfStatsOutFragReqds); 23342 ipha->ipha_hdr_checksum = 0; 23343 ipha->ipha_hdr_checksum = 23344 (uint16_t)ip_csum_hdr(ipha); 23345 icmp_frag_needed(ire->ire_stq, first_mp, 23346 max_frag, zoneid, ipst); 23347 if (!next_mp) { 23348 ire_refrele(ire); 23349 if (conn_outgoing_ill != NULL) { 23350 ill_refrele( 23351 conn_outgoing_ill); 23352 } 23353 return; 23354 } 23355 } else { 23356 /* 23357 * This won't cause a icmp_frag_needed 23358 * message. to be generated. Send it on 23359 * the wire. Note that this could still 23360 * cause fragmentation and all we 23361 * do is the generation of the message 23362 * to the ULP if needed before IPsec. 23363 */ 23364 if (!next_mp) { 23365 ipsec_out_process(q, first_mp, 23366 ire, ill_index); 23367 TRACE_2(TR_FAC_IP, 23368 TR_IP_WPUT_IRE_END, 23369 "ip_wput_ire_end: q %p " 23370 "(%S)", q, 23371 "last ipsec_out_process"); 23372 ire_refrele(ire); 23373 if (conn_outgoing_ill != NULL) { 23374 ill_refrele( 23375 conn_outgoing_ill); 23376 } 23377 return; 23378 } 23379 ipsec_out_process(q, first_mp, 23380 ire, ill_index); 23381 } 23382 } else { 23383 /* 23384 * Initiate IPPF processing. For 23385 * fragmentable packets we finish 23386 * all QOS packet processing before 23387 * calling: 23388 * ip_wput_ire_fragmentit->ip_wput_frag 23389 */ 23390 23391 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23392 ip_process(IPP_LOCAL_OUT, &mp, 23393 ill_index); 23394 if (mp == NULL) { 23395 out_ill = (ill_t *)stq->q_ptr; 23396 BUMP_MIB(out_ill->ill_ip_mib, 23397 ipIfStatsOutDiscards); 23398 if (next_mp != NULL) { 23399 freemsg(next_mp); 23400 ire_refrele(ire1); 23401 } 23402 ire_refrele(ire); 23403 TRACE_2(TR_FAC_IP, 23404 TR_IP_WPUT_IRE_END, 23405 "ip_wput_ire: q %p (%S)", 23406 q, "discard MDATA"); 23407 if (conn_outgoing_ill != NULL) { 23408 ill_refrele( 23409 conn_outgoing_ill); 23410 } 23411 return; 23412 } 23413 } 23414 if (!next_mp) { 23415 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23416 "ip_wput_ire_end: q %p (%S)", 23417 q, "last fragmentation"); 23418 ip_wput_ire_fragmentit(mp, ire, 23419 zoneid, ipst); 23420 ire_refrele(ire); 23421 if (conn_outgoing_ill != NULL) 23422 ill_refrele(conn_outgoing_ill); 23423 return; 23424 } 23425 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23426 } 23427 } 23428 } else { 23429 nullstq: 23430 /* A NULL stq means the destination address is local. */ 23431 UPDATE_OB_PKT_COUNT(ire); 23432 ire->ire_last_used_time = lbolt; 23433 ASSERT(ire->ire_ipif != NULL); 23434 if (!next_mp) { 23435 /* 23436 * Is there an "in" and "out" for traffic local 23437 * to a host (loopback)? The code in Solaris doesn't 23438 * explicitly draw a line in its code for in vs out, 23439 * so we've had to draw a line in the sand: ip_wput_ire 23440 * is considered to be the "output" side and 23441 * ip_wput_local to be the "input" side. 23442 */ 23443 out_ill = ire_to_ill(ire); 23444 23445 /* 23446 * DTrace this as ip:::send. A blocked packet will 23447 * fire the send probe, but not the receive probe. 23448 */ 23449 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23450 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23451 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23452 23453 DTRACE_PROBE4(ip4__loopback__out__start, 23454 ill_t *, NULL, ill_t *, out_ill, 23455 ipha_t *, ipha, mblk_t *, first_mp); 23456 23457 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23458 ipst->ips_ipv4firewall_loopback_out, 23459 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23460 23461 DTRACE_PROBE1(ip4__loopback__out_end, 23462 mblk_t *, first_mp); 23463 23464 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23465 "ip_wput_ire_end: q %p (%S)", 23466 q, "local address"); 23467 23468 if (first_mp != NULL) 23469 ip_wput_local(q, out_ill, ipha, 23470 first_mp, ire, 0, ire->ire_zoneid); 23471 ire_refrele(ire); 23472 if (conn_outgoing_ill != NULL) 23473 ill_refrele(conn_outgoing_ill); 23474 return; 23475 } 23476 23477 out_ill = ire_to_ill(ire); 23478 23479 /* 23480 * DTrace this as ip:::send. A blocked packet will fire the 23481 * send probe, but not the receive probe. 23482 */ 23483 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23484 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23485 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23486 23487 DTRACE_PROBE4(ip4__loopback__out__start, 23488 ill_t *, NULL, ill_t *, out_ill, 23489 ipha_t *, ipha, mblk_t *, first_mp); 23490 23491 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23492 ipst->ips_ipv4firewall_loopback_out, 23493 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23494 23495 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23496 23497 if (first_mp != NULL) 23498 ip_wput_local(q, out_ill, ipha, 23499 first_mp, ire, 0, ire->ire_zoneid); 23500 } 23501 next: 23502 /* 23503 * More copies going out to additional interfaces. 23504 * ire1 has already been held. We don't need the 23505 * "ire" anymore. 23506 */ 23507 ire_refrele(ire); 23508 ire = ire1; 23509 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23510 mp = next_mp; 23511 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23512 ill = ire_to_ill(ire); 23513 first_mp = mp; 23514 if (ipsec_len != 0) { 23515 ASSERT(first_mp->b_datap->db_type == M_CTL); 23516 mp = mp->b_cont; 23517 } 23518 dst = ire->ire_addr; 23519 ipha = (ipha_t *)mp->b_rptr; 23520 /* 23521 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23522 * Restore ipha_ident "no checksum" flag. 23523 */ 23524 src = orig_src; 23525 ipha->ipha_ident = ip_hdr_included; 23526 goto another; 23527 23528 #undef rptr 23529 #undef Q_TO_INDEX 23530 } 23531 23532 /* 23533 * Routine to allocate a message that is used to notify the ULP about MDT. 23534 * The caller may provide a pointer to the link-layer MDT capabilities, 23535 * or NULL if MDT is to be disabled on the stream. 23536 */ 23537 mblk_t * 23538 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23539 { 23540 mblk_t *mp; 23541 ip_mdt_info_t *mdti; 23542 ill_mdt_capab_t *idst; 23543 23544 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23545 DB_TYPE(mp) = M_CTL; 23546 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23547 mdti = (ip_mdt_info_t *)mp->b_rptr; 23548 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23549 idst = &(mdti->mdt_capab); 23550 23551 /* 23552 * If the caller provides us with the capability, copy 23553 * it over into our notification message; otherwise 23554 * we zero out the capability portion. 23555 */ 23556 if (isrc != NULL) 23557 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23558 else 23559 bzero((caddr_t)idst, sizeof (*idst)); 23560 } 23561 return (mp); 23562 } 23563 23564 /* 23565 * Routine which determines whether MDT can be enabled on the destination 23566 * IRE and IPC combination, and if so, allocates and returns the MDT 23567 * notification mblk that may be used by ULP. We also check if we need to 23568 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23569 * MDT usage in the past have been lifted. This gets called during IP 23570 * and ULP binding. 23571 */ 23572 mblk_t * 23573 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23574 ill_mdt_capab_t *mdt_cap) 23575 { 23576 mblk_t *mp; 23577 boolean_t rc = B_FALSE; 23578 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23579 23580 ASSERT(dst_ire != NULL); 23581 ASSERT(connp != NULL); 23582 ASSERT(mdt_cap != NULL); 23583 23584 /* 23585 * Currently, we only support simple TCP/{IPv4,IPv6} with 23586 * Multidata, which is handled in tcp_multisend(). This 23587 * is the reason why we do all these checks here, to ensure 23588 * that we don't enable Multidata for the cases which we 23589 * can't handle at the moment. 23590 */ 23591 do { 23592 /* Only do TCP at the moment */ 23593 if (connp->conn_ulp != IPPROTO_TCP) 23594 break; 23595 23596 /* 23597 * IPsec outbound policy present? Note that we get here 23598 * after calling ipsec_conn_cache_policy() where the global 23599 * policy checking is performed. conn_latch will be 23600 * non-NULL as long as there's a policy defined, 23601 * i.e. conn_out_enforce_policy may be NULL in such case 23602 * when the connection is non-secure, and hence we check 23603 * further if the latch refers to an outbound policy. 23604 */ 23605 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23606 break; 23607 23608 /* CGTP (multiroute) is enabled? */ 23609 if (dst_ire->ire_flags & RTF_MULTIRT) 23610 break; 23611 23612 /* Outbound IPQoS enabled? */ 23613 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23614 /* 23615 * In this case, we disable MDT for this and all 23616 * future connections going over the interface. 23617 */ 23618 mdt_cap->ill_mdt_on = 0; 23619 break; 23620 } 23621 23622 /* socket option(s) present? */ 23623 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23624 break; 23625 23626 rc = B_TRUE; 23627 /* CONSTCOND */ 23628 } while (0); 23629 23630 /* Remember the result */ 23631 connp->conn_mdt_ok = rc; 23632 23633 if (!rc) 23634 return (NULL); 23635 else if (!mdt_cap->ill_mdt_on) { 23636 /* 23637 * If MDT has been previously turned off in the past, and we 23638 * currently can do MDT (due to IPQoS policy removal, etc.) 23639 * then enable it for this interface. 23640 */ 23641 mdt_cap->ill_mdt_on = 1; 23642 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23643 "interface %s\n", ill_name)); 23644 } 23645 23646 /* Allocate the MDT info mblk */ 23647 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23648 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23649 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23650 return (NULL); 23651 } 23652 return (mp); 23653 } 23654 23655 /* 23656 * Routine to allocate a message that is used to notify the ULP about LSO. 23657 * The caller may provide a pointer to the link-layer LSO capabilities, 23658 * or NULL if LSO is to be disabled on the stream. 23659 */ 23660 mblk_t * 23661 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23662 { 23663 mblk_t *mp; 23664 ip_lso_info_t *lsoi; 23665 ill_lso_capab_t *idst; 23666 23667 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23668 DB_TYPE(mp) = M_CTL; 23669 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23670 lsoi = (ip_lso_info_t *)mp->b_rptr; 23671 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23672 idst = &(lsoi->lso_capab); 23673 23674 /* 23675 * If the caller provides us with the capability, copy 23676 * it over into our notification message; otherwise 23677 * we zero out the capability portion. 23678 */ 23679 if (isrc != NULL) 23680 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23681 else 23682 bzero((caddr_t)idst, sizeof (*idst)); 23683 } 23684 return (mp); 23685 } 23686 23687 /* 23688 * Routine which determines whether LSO can be enabled on the destination 23689 * IRE and IPC combination, and if so, allocates and returns the LSO 23690 * notification mblk that may be used by ULP. We also check if we need to 23691 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23692 * LSO usage in the past have been lifted. This gets called during IP 23693 * and ULP binding. 23694 */ 23695 mblk_t * 23696 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23697 ill_lso_capab_t *lso_cap) 23698 { 23699 mblk_t *mp; 23700 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23701 23702 ASSERT(dst_ire != NULL); 23703 ASSERT(connp != NULL); 23704 ASSERT(lso_cap != NULL); 23705 23706 connp->conn_lso_ok = B_TRUE; 23707 23708 if ((connp->conn_ulp != IPPROTO_TCP) || 23709 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23710 (dst_ire->ire_flags & RTF_MULTIRT) || 23711 !CONN_IS_LSO_MD_FASTPATH(connp) || 23712 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23713 connp->conn_lso_ok = B_FALSE; 23714 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23715 /* 23716 * Disable LSO for this and all future connections going 23717 * over the interface. 23718 */ 23719 lso_cap->ill_lso_on = 0; 23720 } 23721 } 23722 23723 if (!connp->conn_lso_ok) 23724 return (NULL); 23725 else if (!lso_cap->ill_lso_on) { 23726 /* 23727 * If LSO has been previously turned off in the past, and we 23728 * currently can do LSO (due to IPQoS policy removal, etc.) 23729 * then enable it for this interface. 23730 */ 23731 lso_cap->ill_lso_on = 1; 23732 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23733 ill_name)); 23734 } 23735 23736 /* Allocate the LSO info mblk */ 23737 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23738 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23739 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23740 23741 return (mp); 23742 } 23743 23744 /* 23745 * Create destination address attribute, and fill it with the physical 23746 * destination address and SAP taken from the template DL_UNITDATA_REQ 23747 * message block. 23748 */ 23749 boolean_t 23750 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23751 { 23752 dl_unitdata_req_t *dlurp; 23753 pattr_t *pa; 23754 pattrinfo_t pa_info; 23755 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23756 uint_t das_len, das_off; 23757 23758 ASSERT(dlmp != NULL); 23759 23760 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23761 das_len = dlurp->dl_dest_addr_length; 23762 das_off = dlurp->dl_dest_addr_offset; 23763 23764 pa_info.type = PATTR_DSTADDRSAP; 23765 pa_info.len = sizeof (**das) + das_len - 1; 23766 23767 /* create and associate the attribute */ 23768 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23769 if (pa != NULL) { 23770 ASSERT(*das != NULL); 23771 (*das)->addr_is_group = 0; 23772 (*das)->addr_len = (uint8_t)das_len; 23773 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23774 } 23775 23776 return (pa != NULL); 23777 } 23778 23779 /* 23780 * Create hardware checksum attribute and fill it with the values passed. 23781 */ 23782 boolean_t 23783 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23784 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23785 { 23786 pattr_t *pa; 23787 pattrinfo_t pa_info; 23788 23789 ASSERT(mmd != NULL); 23790 23791 pa_info.type = PATTR_HCKSUM; 23792 pa_info.len = sizeof (pattr_hcksum_t); 23793 23794 /* create and associate the attribute */ 23795 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23796 if (pa != NULL) { 23797 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23798 23799 hck->hcksum_start_offset = start_offset; 23800 hck->hcksum_stuff_offset = stuff_offset; 23801 hck->hcksum_end_offset = end_offset; 23802 hck->hcksum_flags = flags; 23803 } 23804 return (pa != NULL); 23805 } 23806 23807 /* 23808 * Create zerocopy attribute and fill it with the specified flags 23809 */ 23810 boolean_t 23811 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23812 { 23813 pattr_t *pa; 23814 pattrinfo_t pa_info; 23815 23816 ASSERT(mmd != NULL); 23817 pa_info.type = PATTR_ZCOPY; 23818 pa_info.len = sizeof (pattr_zcopy_t); 23819 23820 /* create and associate the attribute */ 23821 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23822 if (pa != NULL) { 23823 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23824 23825 zcopy->zcopy_flags = flags; 23826 } 23827 return (pa != NULL); 23828 } 23829 23830 /* 23831 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23832 * block chain. We could rewrite to handle arbitrary message block chains but 23833 * that would make the code complicated and slow. Right now there three 23834 * restrictions: 23835 * 23836 * 1. The first message block must contain the complete IP header and 23837 * at least 1 byte of payload data. 23838 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23839 * so that we can use a single Multidata message. 23840 * 3. No frag must be distributed over two or more message blocks so 23841 * that we don't need more than two packet descriptors per frag. 23842 * 23843 * The above restrictions allow us to support userland applications (which 23844 * will send down a single message block) and NFS over UDP (which will 23845 * send down a chain of at most three message blocks). 23846 * 23847 * We also don't use MDT for payloads with less than or equal to 23848 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23849 */ 23850 boolean_t 23851 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23852 { 23853 int blocks; 23854 ssize_t total, missing, size; 23855 23856 ASSERT(mp != NULL); 23857 ASSERT(hdr_len > 0); 23858 23859 size = MBLKL(mp) - hdr_len; 23860 if (size <= 0) 23861 return (B_FALSE); 23862 23863 /* The first mblk contains the header and some payload. */ 23864 blocks = 1; 23865 total = size; 23866 size %= len; 23867 missing = (size == 0) ? 0 : (len - size); 23868 mp = mp->b_cont; 23869 23870 while (mp != NULL) { 23871 /* 23872 * Give up if we encounter a zero length message block. 23873 * In practice, this should rarely happen and therefore 23874 * not worth the trouble of freeing and re-linking the 23875 * mblk from the chain to handle such case. 23876 */ 23877 if ((size = MBLKL(mp)) == 0) 23878 return (B_FALSE); 23879 23880 /* Too many payload buffers for a single Multidata message? */ 23881 if (++blocks > MULTIDATA_MAX_PBUFS) 23882 return (B_FALSE); 23883 23884 total += size; 23885 /* Is a frag distributed over two or more message blocks? */ 23886 if (missing > size) 23887 return (B_FALSE); 23888 size -= missing; 23889 23890 size %= len; 23891 missing = (size == 0) ? 0 : (len - size); 23892 23893 mp = mp->b_cont; 23894 } 23895 23896 return (total > ip_wput_frag_mdt_min); 23897 } 23898 23899 /* 23900 * Outbound IPv4 fragmentation routine using MDT. 23901 */ 23902 static void 23903 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23904 uint32_t frag_flag, int offset) 23905 { 23906 ipha_t *ipha_orig; 23907 int i1, ip_data_end; 23908 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23909 mblk_t *hdr_mp, *md_mp = NULL; 23910 unsigned char *hdr_ptr, *pld_ptr; 23911 multidata_t *mmd; 23912 ip_pdescinfo_t pdi; 23913 ill_t *ill; 23914 ip_stack_t *ipst = ire->ire_ipst; 23915 23916 ASSERT(DB_TYPE(mp) == M_DATA); 23917 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23918 23919 ill = ire_to_ill(ire); 23920 ASSERT(ill != NULL); 23921 23922 ipha_orig = (ipha_t *)mp->b_rptr; 23923 mp->b_rptr += sizeof (ipha_t); 23924 23925 /* Calculate how many packets we will send out */ 23926 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23927 pkts = (i1 + len - 1) / len; 23928 ASSERT(pkts > 1); 23929 23930 /* Allocate a message block which will hold all the IP Headers. */ 23931 wroff = ipst->ips_ip_wroff_extra; 23932 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23933 23934 i1 = pkts * hdr_chunk_len; 23935 /* 23936 * Create the header buffer, Multidata and destination address 23937 * and SAP attribute that should be associated with it. 23938 */ 23939 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23940 ((hdr_mp->b_wptr += i1), 23941 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23942 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23943 freemsg(mp); 23944 if (md_mp == NULL) { 23945 freemsg(hdr_mp); 23946 } else { 23947 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23948 freemsg(md_mp); 23949 } 23950 IP_STAT(ipst, ip_frag_mdt_allocfail); 23951 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23952 return; 23953 } 23954 IP_STAT(ipst, ip_frag_mdt_allocd); 23955 23956 /* 23957 * Add a payload buffer to the Multidata; this operation must not 23958 * fail, or otherwise our logic in this routine is broken. There 23959 * is no memory allocation done by the routine, so any returned 23960 * failure simply tells us that we've done something wrong. 23961 * 23962 * A failure tells us that either we're adding the same payload 23963 * buffer more than once, or we're trying to add more buffers than 23964 * allowed. None of the above cases should happen, and we panic 23965 * because either there's horrible heap corruption, and/or 23966 * programming mistake. 23967 */ 23968 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23969 goto pbuf_panic; 23970 23971 hdr_ptr = hdr_mp->b_rptr; 23972 pld_ptr = mp->b_rptr; 23973 23974 /* Establish the ending byte offset, based on the starting offset. */ 23975 offset <<= 3; 23976 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23977 IP_SIMPLE_HDR_LENGTH; 23978 23979 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23980 23981 while (pld_ptr < mp->b_wptr) { 23982 ipha_t *ipha; 23983 uint16_t offset_and_flags; 23984 uint16_t ip_len; 23985 int error; 23986 23987 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23988 ipha = (ipha_t *)(hdr_ptr + wroff); 23989 ASSERT(OK_32PTR(ipha)); 23990 *ipha = *ipha_orig; 23991 23992 if (ip_data_end - offset > len) { 23993 offset_and_flags = IPH_MF; 23994 } else { 23995 /* 23996 * Last frag. Set len to the length of this last piece. 23997 */ 23998 len = ip_data_end - offset; 23999 /* A frag of a frag might have IPH_MF non-zero */ 24000 offset_and_flags = 24001 ntohs(ipha->ipha_fragment_offset_and_flags) & 24002 IPH_MF; 24003 } 24004 offset_and_flags |= (uint16_t)(offset >> 3); 24005 offset_and_flags |= (uint16_t)frag_flag; 24006 /* Store the offset and flags in the IP header. */ 24007 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24008 24009 /* Store the length in the IP header. */ 24010 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24011 ipha->ipha_length = htons(ip_len); 24012 24013 /* 24014 * Set the IP header checksum. Note that mp is just 24015 * the header, so this is easy to pass to ip_csum. 24016 */ 24017 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24018 24019 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24020 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24021 NULL, int, 0); 24022 24023 /* 24024 * Record offset and size of header and data of the next packet 24025 * in the multidata message. 24026 */ 24027 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24028 PDESC_PLD_INIT(&pdi); 24029 i1 = MIN(mp->b_wptr - pld_ptr, len); 24030 ASSERT(i1 > 0); 24031 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24032 if (i1 == len) { 24033 pld_ptr += len; 24034 } else { 24035 i1 = len - i1; 24036 mp = mp->b_cont; 24037 ASSERT(mp != NULL); 24038 ASSERT(MBLKL(mp) >= i1); 24039 /* 24040 * Attach the next payload message block to the 24041 * multidata message. 24042 */ 24043 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24044 goto pbuf_panic; 24045 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24046 pld_ptr = mp->b_rptr + i1; 24047 } 24048 24049 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24050 KM_NOSLEEP)) == NULL) { 24051 /* 24052 * Any failure other than ENOMEM indicates that we 24053 * have passed in invalid pdesc info or parameters 24054 * to mmd_addpdesc, which must not happen. 24055 * 24056 * EINVAL is a result of failure on boundary checks 24057 * against the pdesc info contents. It should not 24058 * happen, and we panic because either there's 24059 * horrible heap corruption, and/or programming 24060 * mistake. 24061 */ 24062 if (error != ENOMEM) { 24063 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24064 "pdesc logic error detected for " 24065 "mmd %p pinfo %p (%d)\n", 24066 (void *)mmd, (void *)&pdi, error); 24067 /* NOTREACHED */ 24068 } 24069 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24070 /* Free unattached payload message blocks as well */ 24071 md_mp->b_cont = mp->b_cont; 24072 goto free_mmd; 24073 } 24074 24075 /* Advance fragment offset. */ 24076 offset += len; 24077 24078 /* Advance to location for next header in the buffer. */ 24079 hdr_ptr += hdr_chunk_len; 24080 24081 /* Did we reach the next payload message block? */ 24082 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24083 mp = mp->b_cont; 24084 /* 24085 * Attach the next message block with payload 24086 * data to the multidata message. 24087 */ 24088 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24089 goto pbuf_panic; 24090 pld_ptr = mp->b_rptr; 24091 } 24092 } 24093 24094 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24095 ASSERT(mp->b_wptr == pld_ptr); 24096 24097 /* Update IP statistics */ 24098 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24099 24100 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24101 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24102 24103 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24104 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24105 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24106 24107 if (pkt_type == OB_PKT) { 24108 ire->ire_ob_pkt_count += pkts; 24109 if (ire->ire_ipif != NULL) 24110 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24111 } else { 24112 /* The type is IB_PKT in the forwarding path. */ 24113 ire->ire_ib_pkt_count += pkts; 24114 ASSERT(!IRE_IS_LOCAL(ire)); 24115 if (ire->ire_type & IRE_BROADCAST) { 24116 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24117 } else { 24118 UPDATE_MIB(ill->ill_ip_mib, 24119 ipIfStatsHCOutForwDatagrams, pkts); 24120 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24121 } 24122 } 24123 ire->ire_last_used_time = lbolt; 24124 /* Send it down */ 24125 putnext(ire->ire_stq, md_mp); 24126 return; 24127 24128 pbuf_panic: 24129 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24130 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24131 pbuf_idx); 24132 /* NOTREACHED */ 24133 } 24134 24135 /* 24136 * Outbound IP fragmentation routine. 24137 * 24138 * NOTE : This routine does not ire_refrele the ire that is passed in 24139 * as the argument. 24140 */ 24141 static void 24142 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24143 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24144 { 24145 int i1; 24146 mblk_t *ll_hdr_mp; 24147 int ll_hdr_len; 24148 int hdr_len; 24149 mblk_t *hdr_mp; 24150 ipha_t *ipha; 24151 int ip_data_end; 24152 int len; 24153 mblk_t *mp = mp_orig, *mp1; 24154 int offset; 24155 queue_t *q; 24156 uint32_t v_hlen_tos_len; 24157 mblk_t *first_mp; 24158 boolean_t mctl_present; 24159 ill_t *ill; 24160 ill_t *out_ill; 24161 mblk_t *xmit_mp; 24162 mblk_t *carve_mp; 24163 ire_t *ire1 = NULL; 24164 ire_t *save_ire = NULL; 24165 mblk_t *next_mp = NULL; 24166 boolean_t last_frag = B_FALSE; 24167 boolean_t multirt_send = B_FALSE; 24168 ire_t *first_ire = NULL; 24169 irb_t *irb = NULL; 24170 mib2_ipIfStatsEntry_t *mibptr = NULL; 24171 24172 ill = ire_to_ill(ire); 24173 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24174 24175 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24176 24177 if (max_frag == 0) { 24178 ip1dbg(("ip_wput_frag: ire frag size is 0" 24179 " - dropping packet\n")); 24180 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24181 freemsg(mp); 24182 return; 24183 } 24184 24185 /* 24186 * IPsec does not allow hw accelerated packets to be fragmented 24187 * This check is made in ip_wput_ipsec_out prior to coming here 24188 * via ip_wput_ire_fragmentit. 24189 * 24190 * If at this point we have an ire whose ARP request has not 24191 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24192 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24193 * This packet and all fragmentable packets for this ire will 24194 * continue to get dropped while ire_nce->nce_state remains in 24195 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24196 * ND_REACHABLE, all subsquent large packets for this ire will 24197 * get fragemented and sent out by this function. 24198 */ 24199 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24200 /* If nce_state is ND_INITIAL, trigger ARP query */ 24201 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24202 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24203 " - dropping packet\n")); 24204 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24205 freemsg(mp); 24206 return; 24207 } 24208 24209 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24210 "ip_wput_frag_start:"); 24211 24212 if (mp->b_datap->db_type == M_CTL) { 24213 first_mp = mp; 24214 mp_orig = mp = mp->b_cont; 24215 mctl_present = B_TRUE; 24216 } else { 24217 first_mp = mp; 24218 mctl_present = B_FALSE; 24219 } 24220 24221 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24222 ipha = (ipha_t *)mp->b_rptr; 24223 24224 /* 24225 * If the Don't Fragment flag is on, generate an ICMP destination 24226 * unreachable, fragmentation needed. 24227 */ 24228 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24229 if (offset & IPH_DF) { 24230 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24231 if (is_system_labeled()) { 24232 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24233 ire->ire_max_frag - max_frag, AF_INET); 24234 } 24235 /* 24236 * Need to compute hdr checksum if called from ip_wput_ire. 24237 * Note that ip_rput_forward verifies the checksum before 24238 * calling this routine so in that case this is a noop. 24239 */ 24240 ipha->ipha_hdr_checksum = 0; 24241 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24242 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24243 ipst); 24244 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24245 "ip_wput_frag_end:(%S)", 24246 "don't fragment"); 24247 return; 24248 } 24249 /* 24250 * Labeled systems adjust max_frag if they add a label 24251 * to send the correct path mtu. We need the real mtu since we 24252 * are fragmenting the packet after label adjustment. 24253 */ 24254 if (is_system_labeled()) 24255 max_frag = ire->ire_max_frag; 24256 if (mctl_present) 24257 freeb(first_mp); 24258 /* 24259 * Establish the starting offset. May not be zero if we are fragging 24260 * a fragment that is being forwarded. 24261 */ 24262 offset = offset & IPH_OFFSET; 24263 24264 /* TODO why is this test needed? */ 24265 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24266 if (((max_frag - LENGTH) & ~7) < 8) { 24267 /* TODO: notify ulp somehow */ 24268 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24269 freemsg(mp); 24270 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24271 "ip_wput_frag_end:(%S)", 24272 "len < 8"); 24273 return; 24274 } 24275 24276 hdr_len = (V_HLEN & 0xF) << 2; 24277 24278 ipha->ipha_hdr_checksum = 0; 24279 24280 /* 24281 * Establish the number of bytes maximum per frag, after putting 24282 * in the header. 24283 */ 24284 len = (max_frag - hdr_len) & ~7; 24285 24286 /* Check if we can use MDT to send out the frags. */ 24287 ASSERT(!IRE_IS_LOCAL(ire)); 24288 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24289 ipst->ips_ip_multidata_outbound && 24290 !(ire->ire_flags & RTF_MULTIRT) && 24291 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24292 ill != NULL && ILL_MDT_CAPABLE(ill) && 24293 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24294 ASSERT(ill->ill_mdt_capab != NULL); 24295 if (!ill->ill_mdt_capab->ill_mdt_on) { 24296 /* 24297 * If MDT has been previously turned off in the past, 24298 * and we currently can do MDT (due to IPQoS policy 24299 * removal, etc.) then enable it for this interface. 24300 */ 24301 ill->ill_mdt_capab->ill_mdt_on = 1; 24302 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24303 ill->ill_name)); 24304 } 24305 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24306 offset); 24307 return; 24308 } 24309 24310 /* Get a copy of the header for the trailing frags */ 24311 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24312 if (!hdr_mp) { 24313 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24314 freemsg(mp); 24315 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24316 "ip_wput_frag_end:(%S)", 24317 "couldn't copy hdr"); 24318 return; 24319 } 24320 if (DB_CRED(mp) != NULL) 24321 mblk_setcred(hdr_mp, DB_CRED(mp)); 24322 24323 /* Store the starting offset, with the MoreFrags flag. */ 24324 i1 = offset | IPH_MF | frag_flag; 24325 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24326 24327 /* Establish the ending byte offset, based on the starting offset. */ 24328 offset <<= 3; 24329 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24330 24331 /* Store the length of the first fragment in the IP header. */ 24332 i1 = len + hdr_len; 24333 ASSERT(i1 <= IP_MAXPACKET); 24334 ipha->ipha_length = htons((uint16_t)i1); 24335 24336 /* 24337 * Compute the IP header checksum for the first frag. We have to 24338 * watch out that we stop at the end of the header. 24339 */ 24340 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24341 24342 /* 24343 * Now carve off the first frag. Note that this will include the 24344 * original IP header. 24345 */ 24346 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24347 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24348 freeb(hdr_mp); 24349 freemsg(mp_orig); 24350 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24351 "ip_wput_frag_end:(%S)", 24352 "couldn't carve first"); 24353 return; 24354 } 24355 24356 /* 24357 * Multirouting case. Each fragment is replicated 24358 * via all non-condemned RTF_MULTIRT routes 24359 * currently resolved. 24360 * We ensure that first_ire is the first RTF_MULTIRT 24361 * ire in the bucket. 24362 */ 24363 if (ire->ire_flags & RTF_MULTIRT) { 24364 irb = ire->ire_bucket; 24365 ASSERT(irb != NULL); 24366 24367 multirt_send = B_TRUE; 24368 24369 /* Make sure we do not omit any multiroute ire. */ 24370 IRB_REFHOLD(irb); 24371 for (first_ire = irb->irb_ire; 24372 first_ire != NULL; 24373 first_ire = first_ire->ire_next) { 24374 if ((first_ire->ire_flags & RTF_MULTIRT) && 24375 (first_ire->ire_addr == ire->ire_addr) && 24376 !(first_ire->ire_marks & 24377 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24378 break; 24379 } 24380 } 24381 24382 if (first_ire != NULL) { 24383 if (first_ire != ire) { 24384 IRE_REFHOLD(first_ire); 24385 /* 24386 * Do not release the ire passed in 24387 * as the argument. 24388 */ 24389 ire = first_ire; 24390 } else { 24391 first_ire = NULL; 24392 } 24393 } 24394 IRB_REFRELE(irb); 24395 24396 /* 24397 * Save the first ire; we will need to restore it 24398 * for the trailing frags. 24399 * We REFHOLD save_ire, as each iterated ire will be 24400 * REFRELEd. 24401 */ 24402 save_ire = ire; 24403 IRE_REFHOLD(save_ire); 24404 } 24405 24406 /* 24407 * First fragment emission loop. 24408 * In most cases, the emission loop below is entered only 24409 * once. Only in the case where the ire holds the RTF_MULTIRT 24410 * flag, do we loop to process all RTF_MULTIRT ires in the 24411 * bucket, and send the fragment through all crossed 24412 * RTF_MULTIRT routes. 24413 */ 24414 do { 24415 if (ire->ire_flags & RTF_MULTIRT) { 24416 /* 24417 * We are in a multiple send case, need to get 24418 * the next ire and make a copy of the packet. 24419 * ire1 holds here the next ire to process in the 24420 * bucket. If multirouting is expected, 24421 * any non-RTF_MULTIRT ire that has the 24422 * right destination address is ignored. 24423 * 24424 * We have to take into account the MTU of 24425 * each walked ire. max_frag is set by the 24426 * the caller and generally refers to 24427 * the primary ire entry. Here we ensure that 24428 * no route with a lower MTU will be used, as 24429 * fragments are carved once for all ires, 24430 * then replicated. 24431 */ 24432 ASSERT(irb != NULL); 24433 IRB_REFHOLD(irb); 24434 for (ire1 = ire->ire_next; 24435 ire1 != NULL; 24436 ire1 = ire1->ire_next) { 24437 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24438 continue; 24439 if (ire1->ire_addr != ire->ire_addr) 24440 continue; 24441 if (ire1->ire_marks & 24442 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24443 continue; 24444 /* 24445 * Ensure we do not exceed the MTU 24446 * of the next route. 24447 */ 24448 if (ire1->ire_max_frag < max_frag) { 24449 ip_multirt_bad_mtu(ire1, max_frag); 24450 continue; 24451 } 24452 24453 /* Got one. */ 24454 IRE_REFHOLD(ire1); 24455 break; 24456 } 24457 IRB_REFRELE(irb); 24458 24459 if (ire1 != NULL) { 24460 next_mp = copyb(mp); 24461 if ((next_mp == NULL) || 24462 ((mp->b_cont != NULL) && 24463 ((next_mp->b_cont = 24464 dupmsg(mp->b_cont)) == NULL))) { 24465 freemsg(next_mp); 24466 next_mp = NULL; 24467 ire_refrele(ire1); 24468 ire1 = NULL; 24469 } 24470 } 24471 24472 /* Last multiroute ire; don't loop anymore. */ 24473 if (ire1 == NULL) { 24474 multirt_send = B_FALSE; 24475 } 24476 } 24477 24478 ll_hdr_len = 0; 24479 LOCK_IRE_FP_MP(ire); 24480 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24481 if (ll_hdr_mp != NULL) { 24482 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24483 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24484 } else { 24485 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24486 } 24487 24488 /* If there is a transmit header, get a copy for this frag. */ 24489 /* 24490 * TODO: should check db_ref before calling ip_carve_mp since 24491 * it might give us a dup. 24492 */ 24493 if (!ll_hdr_mp) { 24494 /* No xmit header. */ 24495 xmit_mp = mp; 24496 24497 /* We have a link-layer header that can fit in our mblk. */ 24498 } else if (mp->b_datap->db_ref == 1 && 24499 ll_hdr_len != 0 && 24500 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24501 /* M_DATA fastpath */ 24502 mp->b_rptr -= ll_hdr_len; 24503 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24504 xmit_mp = mp; 24505 24506 /* Corner case if copyb has failed */ 24507 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24508 UNLOCK_IRE_FP_MP(ire); 24509 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24510 freeb(hdr_mp); 24511 freemsg(mp); 24512 freemsg(mp_orig); 24513 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24514 "ip_wput_frag_end:(%S)", 24515 "discard"); 24516 24517 if (multirt_send) { 24518 ASSERT(ire1); 24519 ASSERT(next_mp); 24520 24521 freemsg(next_mp); 24522 ire_refrele(ire1); 24523 } 24524 if (save_ire != NULL) 24525 IRE_REFRELE(save_ire); 24526 24527 if (first_ire != NULL) 24528 ire_refrele(first_ire); 24529 return; 24530 24531 /* 24532 * Case of res_mp OR the fastpath mp can't fit 24533 * in the mblk 24534 */ 24535 } else { 24536 xmit_mp->b_cont = mp; 24537 if (DB_CRED(mp) != NULL) 24538 mblk_setcred(xmit_mp, DB_CRED(mp)); 24539 /* 24540 * Get priority marking, if any. 24541 * We propagate the CoS marking from the 24542 * original packet that went to QoS processing 24543 * in ip_wput_ire to the newly carved mp. 24544 */ 24545 if (DB_TYPE(xmit_mp) == M_DATA) 24546 xmit_mp->b_band = mp->b_band; 24547 } 24548 UNLOCK_IRE_FP_MP(ire); 24549 24550 q = ire->ire_stq; 24551 out_ill = (ill_t *)q->q_ptr; 24552 24553 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24554 24555 DTRACE_PROBE4(ip4__physical__out__start, 24556 ill_t *, NULL, ill_t *, out_ill, 24557 ipha_t *, ipha, mblk_t *, xmit_mp); 24558 24559 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24560 ipst->ips_ipv4firewall_physical_out, 24561 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24562 24563 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24564 24565 if (xmit_mp != NULL) { 24566 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24567 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24568 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24569 24570 putnext(q, xmit_mp); 24571 24572 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24573 UPDATE_MIB(out_ill->ill_ip_mib, 24574 ipIfStatsHCOutOctets, i1); 24575 24576 if (pkt_type != OB_PKT) { 24577 /* 24578 * Update the packet count and MIB stats 24579 * of trailing RTF_MULTIRT ires. 24580 */ 24581 UPDATE_OB_PKT_COUNT(ire); 24582 BUMP_MIB(out_ill->ill_ip_mib, 24583 ipIfStatsOutFragReqds); 24584 } 24585 } 24586 24587 if (multirt_send) { 24588 /* 24589 * We are in a multiple send case; look for 24590 * the next ire and re-enter the loop. 24591 */ 24592 ASSERT(ire1); 24593 ASSERT(next_mp); 24594 /* REFRELE the current ire before looping */ 24595 ire_refrele(ire); 24596 ire = ire1; 24597 ire1 = NULL; 24598 mp = next_mp; 24599 next_mp = NULL; 24600 } 24601 } while (multirt_send); 24602 24603 ASSERT(ire1 == NULL); 24604 24605 /* Restore the original ire; we need it for the trailing frags */ 24606 if (save_ire != NULL) { 24607 /* REFRELE the last iterated ire */ 24608 ire_refrele(ire); 24609 /* save_ire has been REFHOLDed */ 24610 ire = save_ire; 24611 save_ire = NULL; 24612 q = ire->ire_stq; 24613 } 24614 24615 if (pkt_type == OB_PKT) { 24616 UPDATE_OB_PKT_COUNT(ire); 24617 } else { 24618 out_ill = (ill_t *)q->q_ptr; 24619 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24620 UPDATE_IB_PKT_COUNT(ire); 24621 } 24622 24623 /* Advance the offset to the second frag starting point. */ 24624 offset += len; 24625 /* 24626 * Update hdr_len from the copied header - there might be less options 24627 * in the later fragments. 24628 */ 24629 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24630 /* Loop until done. */ 24631 for (;;) { 24632 uint16_t offset_and_flags; 24633 uint16_t ip_len; 24634 24635 if (ip_data_end - offset > len) { 24636 /* 24637 * Carve off the appropriate amount from the original 24638 * datagram. 24639 */ 24640 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24641 mp = NULL; 24642 break; 24643 } 24644 /* 24645 * More frags after this one. Get another copy 24646 * of the header. 24647 */ 24648 if (carve_mp->b_datap->db_ref == 1 && 24649 hdr_mp->b_wptr - hdr_mp->b_rptr < 24650 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24651 /* Inline IP header */ 24652 carve_mp->b_rptr -= hdr_mp->b_wptr - 24653 hdr_mp->b_rptr; 24654 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24655 hdr_mp->b_wptr - hdr_mp->b_rptr); 24656 mp = carve_mp; 24657 } else { 24658 if (!(mp = copyb(hdr_mp))) { 24659 freemsg(carve_mp); 24660 break; 24661 } 24662 /* Get priority marking, if any. */ 24663 mp->b_band = carve_mp->b_band; 24664 mp->b_cont = carve_mp; 24665 } 24666 ipha = (ipha_t *)mp->b_rptr; 24667 offset_and_flags = IPH_MF; 24668 } else { 24669 /* 24670 * Last frag. Consume the header. Set len to 24671 * the length of this last piece. 24672 */ 24673 len = ip_data_end - offset; 24674 24675 /* 24676 * Carve off the appropriate amount from the original 24677 * datagram. 24678 */ 24679 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24680 mp = NULL; 24681 break; 24682 } 24683 if (carve_mp->b_datap->db_ref == 1 && 24684 hdr_mp->b_wptr - hdr_mp->b_rptr < 24685 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24686 /* Inline IP header */ 24687 carve_mp->b_rptr -= hdr_mp->b_wptr - 24688 hdr_mp->b_rptr; 24689 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24690 hdr_mp->b_wptr - hdr_mp->b_rptr); 24691 mp = carve_mp; 24692 freeb(hdr_mp); 24693 hdr_mp = mp; 24694 } else { 24695 mp = hdr_mp; 24696 /* Get priority marking, if any. */ 24697 mp->b_band = carve_mp->b_band; 24698 mp->b_cont = carve_mp; 24699 } 24700 ipha = (ipha_t *)mp->b_rptr; 24701 /* A frag of a frag might have IPH_MF non-zero */ 24702 offset_and_flags = 24703 ntohs(ipha->ipha_fragment_offset_and_flags) & 24704 IPH_MF; 24705 } 24706 offset_and_flags |= (uint16_t)(offset >> 3); 24707 offset_and_flags |= (uint16_t)frag_flag; 24708 /* Store the offset and flags in the IP header. */ 24709 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24710 24711 /* Store the length in the IP header. */ 24712 ip_len = (uint16_t)(len + hdr_len); 24713 ipha->ipha_length = htons(ip_len); 24714 24715 /* 24716 * Set the IP header checksum. Note that mp is just 24717 * the header, so this is easy to pass to ip_csum. 24718 */ 24719 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24720 24721 /* Attach a transmit header, if any, and ship it. */ 24722 if (pkt_type == OB_PKT) { 24723 UPDATE_OB_PKT_COUNT(ire); 24724 } else { 24725 out_ill = (ill_t *)q->q_ptr; 24726 BUMP_MIB(out_ill->ill_ip_mib, 24727 ipIfStatsHCOutForwDatagrams); 24728 UPDATE_IB_PKT_COUNT(ire); 24729 } 24730 24731 if (ire->ire_flags & RTF_MULTIRT) { 24732 irb = ire->ire_bucket; 24733 ASSERT(irb != NULL); 24734 24735 multirt_send = B_TRUE; 24736 24737 /* 24738 * Save the original ire; we will need to restore it 24739 * for the tailing frags. 24740 */ 24741 save_ire = ire; 24742 IRE_REFHOLD(save_ire); 24743 } 24744 /* 24745 * Emission loop for this fragment, similar 24746 * to what is done for the first fragment. 24747 */ 24748 do { 24749 if (multirt_send) { 24750 /* 24751 * We are in a multiple send case, need to get 24752 * the next ire and make a copy of the packet. 24753 */ 24754 ASSERT(irb != NULL); 24755 IRB_REFHOLD(irb); 24756 for (ire1 = ire->ire_next; 24757 ire1 != NULL; 24758 ire1 = ire1->ire_next) { 24759 if (!(ire1->ire_flags & RTF_MULTIRT)) 24760 continue; 24761 if (ire1->ire_addr != ire->ire_addr) 24762 continue; 24763 if (ire1->ire_marks & 24764 (IRE_MARK_CONDEMNED| 24765 IRE_MARK_HIDDEN)) { 24766 continue; 24767 } 24768 /* 24769 * Ensure we do not exceed the MTU 24770 * of the next route. 24771 */ 24772 if (ire1->ire_max_frag < max_frag) { 24773 ip_multirt_bad_mtu(ire1, 24774 max_frag); 24775 continue; 24776 } 24777 24778 /* Got one. */ 24779 IRE_REFHOLD(ire1); 24780 break; 24781 } 24782 IRB_REFRELE(irb); 24783 24784 if (ire1 != NULL) { 24785 next_mp = copyb(mp); 24786 if ((next_mp == NULL) || 24787 ((mp->b_cont != NULL) && 24788 ((next_mp->b_cont = 24789 dupmsg(mp->b_cont)) == NULL))) { 24790 freemsg(next_mp); 24791 next_mp = NULL; 24792 ire_refrele(ire1); 24793 ire1 = NULL; 24794 } 24795 } 24796 24797 /* Last multiroute ire; don't loop anymore. */ 24798 if (ire1 == NULL) { 24799 multirt_send = B_FALSE; 24800 } 24801 } 24802 24803 /* Update transmit header */ 24804 ll_hdr_len = 0; 24805 LOCK_IRE_FP_MP(ire); 24806 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24807 if (ll_hdr_mp != NULL) { 24808 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24809 ll_hdr_len = MBLKL(ll_hdr_mp); 24810 } else { 24811 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24812 } 24813 24814 if (!ll_hdr_mp) { 24815 xmit_mp = mp; 24816 24817 /* 24818 * We have link-layer header that can fit in 24819 * our mblk. 24820 */ 24821 } else if (mp->b_datap->db_ref == 1 && 24822 ll_hdr_len != 0 && 24823 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24824 /* M_DATA fastpath */ 24825 mp->b_rptr -= ll_hdr_len; 24826 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24827 ll_hdr_len); 24828 xmit_mp = mp; 24829 24830 /* 24831 * Case of res_mp OR the fastpath mp can't fit 24832 * in the mblk 24833 */ 24834 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24835 xmit_mp->b_cont = mp; 24836 if (DB_CRED(mp) != NULL) 24837 mblk_setcred(xmit_mp, DB_CRED(mp)); 24838 /* Get priority marking, if any. */ 24839 if (DB_TYPE(xmit_mp) == M_DATA) 24840 xmit_mp->b_band = mp->b_band; 24841 24842 /* Corner case if copyb failed */ 24843 } else { 24844 /* 24845 * Exit both the replication and 24846 * fragmentation loops. 24847 */ 24848 UNLOCK_IRE_FP_MP(ire); 24849 goto drop_pkt; 24850 } 24851 UNLOCK_IRE_FP_MP(ire); 24852 24853 mp1 = mp; 24854 out_ill = (ill_t *)q->q_ptr; 24855 24856 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24857 24858 DTRACE_PROBE4(ip4__physical__out__start, 24859 ill_t *, NULL, ill_t *, out_ill, 24860 ipha_t *, ipha, mblk_t *, xmit_mp); 24861 24862 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24863 ipst->ips_ipv4firewall_physical_out, 24864 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24865 24866 DTRACE_PROBE1(ip4__physical__out__end, 24867 mblk_t *, xmit_mp); 24868 24869 if (mp != mp1 && hdr_mp == mp1) 24870 hdr_mp = mp; 24871 if (mp != mp1 && mp_orig == mp1) 24872 mp_orig = mp; 24873 24874 if (xmit_mp != NULL) { 24875 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24876 NULL, void_ip_t *, ipha, 24877 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24878 ipha, ip6_t *, NULL, int, 0); 24879 24880 putnext(q, xmit_mp); 24881 24882 BUMP_MIB(out_ill->ill_ip_mib, 24883 ipIfStatsHCOutTransmits); 24884 UPDATE_MIB(out_ill->ill_ip_mib, 24885 ipIfStatsHCOutOctets, ip_len); 24886 24887 if (pkt_type != OB_PKT) { 24888 /* 24889 * Update the packet count of trailing 24890 * RTF_MULTIRT ires. 24891 */ 24892 UPDATE_OB_PKT_COUNT(ire); 24893 } 24894 } 24895 24896 /* All done if we just consumed the hdr_mp. */ 24897 if (mp == hdr_mp) { 24898 last_frag = B_TRUE; 24899 BUMP_MIB(out_ill->ill_ip_mib, 24900 ipIfStatsOutFragOKs); 24901 } 24902 24903 if (multirt_send) { 24904 /* 24905 * We are in a multiple send case; look for 24906 * the next ire and re-enter the loop. 24907 */ 24908 ASSERT(ire1); 24909 ASSERT(next_mp); 24910 /* REFRELE the current ire before looping */ 24911 ire_refrele(ire); 24912 ire = ire1; 24913 ire1 = NULL; 24914 q = ire->ire_stq; 24915 mp = next_mp; 24916 next_mp = NULL; 24917 } 24918 } while (multirt_send); 24919 /* 24920 * Restore the original ire; we need it for the 24921 * trailing frags 24922 */ 24923 if (save_ire != NULL) { 24924 ASSERT(ire1 == NULL); 24925 /* REFRELE the last iterated ire */ 24926 ire_refrele(ire); 24927 /* save_ire has been REFHOLDed */ 24928 ire = save_ire; 24929 q = ire->ire_stq; 24930 save_ire = NULL; 24931 } 24932 24933 if (last_frag) { 24934 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24935 "ip_wput_frag_end:(%S)", 24936 "consumed hdr_mp"); 24937 24938 if (first_ire != NULL) 24939 ire_refrele(first_ire); 24940 return; 24941 } 24942 /* Otherwise, advance and loop. */ 24943 offset += len; 24944 } 24945 24946 drop_pkt: 24947 /* Clean up following allocation failure. */ 24948 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24949 freemsg(mp); 24950 if (mp != hdr_mp) 24951 freeb(hdr_mp); 24952 if (mp != mp_orig) 24953 freemsg(mp_orig); 24954 24955 if (save_ire != NULL) 24956 IRE_REFRELE(save_ire); 24957 if (first_ire != NULL) 24958 ire_refrele(first_ire); 24959 24960 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24961 "ip_wput_frag_end:(%S)", 24962 "end--alloc failure"); 24963 } 24964 24965 /* 24966 * Copy the header plus those options which have the copy bit set 24967 */ 24968 static mblk_t * 24969 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24970 { 24971 mblk_t *mp; 24972 uchar_t *up; 24973 24974 /* 24975 * Quick check if we need to look for options without the copy bit 24976 * set 24977 */ 24978 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24979 if (!mp) 24980 return (mp); 24981 mp->b_rptr += ipst->ips_ip_wroff_extra; 24982 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24983 bcopy(rptr, mp->b_rptr, hdr_len); 24984 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24985 return (mp); 24986 } 24987 up = mp->b_rptr; 24988 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24989 up += IP_SIMPLE_HDR_LENGTH; 24990 rptr += IP_SIMPLE_HDR_LENGTH; 24991 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24992 while (hdr_len > 0) { 24993 uint32_t optval; 24994 uint32_t optlen; 24995 24996 optval = *rptr; 24997 if (optval == IPOPT_EOL) 24998 break; 24999 if (optval == IPOPT_NOP) 25000 optlen = 1; 25001 else 25002 optlen = rptr[1]; 25003 if (optval & IPOPT_COPY) { 25004 bcopy(rptr, up, optlen); 25005 up += optlen; 25006 } 25007 rptr += optlen; 25008 hdr_len -= optlen; 25009 } 25010 /* 25011 * Make sure that we drop an even number of words by filling 25012 * with EOL to the next word boundary. 25013 */ 25014 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25015 hdr_len & 0x3; hdr_len++) 25016 *up++ = IPOPT_EOL; 25017 mp->b_wptr = up; 25018 /* Update header length */ 25019 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25020 return (mp); 25021 } 25022 25023 /* 25024 * Delivery to local recipients including fanout to multiple recipients. 25025 * Does not do checksumming of UDP/TCP. 25026 * Note: q should be the read side queue for either the ill or conn. 25027 * Note: rq should be the read side q for the lower (ill) stream. 25028 * We don't send packets to IPPF processing, thus the last argument 25029 * to all the fanout calls are B_FALSE. 25030 */ 25031 void 25032 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25033 int fanout_flags, zoneid_t zoneid) 25034 { 25035 uint32_t protocol; 25036 mblk_t *first_mp; 25037 boolean_t mctl_present; 25038 int ire_type; 25039 #define rptr ((uchar_t *)ipha) 25040 ip_stack_t *ipst = ill->ill_ipst; 25041 25042 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25043 "ip_wput_local_start: q %p", q); 25044 25045 if (ire != NULL) { 25046 ire_type = ire->ire_type; 25047 } else { 25048 /* 25049 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25050 * packet is not multicast, we can't tell the ire type. 25051 */ 25052 ASSERT(CLASSD(ipha->ipha_dst)); 25053 ire_type = IRE_BROADCAST; 25054 } 25055 25056 first_mp = mp; 25057 if (first_mp->b_datap->db_type == M_CTL) { 25058 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25059 if (!io->ipsec_out_secure) { 25060 /* 25061 * This ipsec_out_t was allocated in ip_wput 25062 * for multicast packets to store the ill_index. 25063 * As this is being delivered locally, we don't 25064 * need this anymore. 25065 */ 25066 mp = first_mp->b_cont; 25067 freeb(first_mp); 25068 first_mp = mp; 25069 mctl_present = B_FALSE; 25070 } else { 25071 /* 25072 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25073 * security properties for the looped-back packet. 25074 */ 25075 mctl_present = B_TRUE; 25076 mp = first_mp->b_cont; 25077 ASSERT(mp != NULL); 25078 ipsec_out_to_in(first_mp); 25079 } 25080 } else { 25081 mctl_present = B_FALSE; 25082 } 25083 25084 DTRACE_PROBE4(ip4__loopback__in__start, 25085 ill_t *, ill, ill_t *, NULL, 25086 ipha_t *, ipha, mblk_t *, first_mp); 25087 25088 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25089 ipst->ips_ipv4firewall_loopback_in, 25090 ill, NULL, ipha, first_mp, mp, 0, ipst); 25091 25092 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25093 25094 if (first_mp == NULL) 25095 return; 25096 25097 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25098 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25099 int, 1); 25100 25101 ipst->ips_loopback_packets++; 25102 25103 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25104 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25105 if (!IS_SIMPLE_IPH(ipha)) { 25106 ip_wput_local_options(ipha, ipst); 25107 } 25108 25109 protocol = ipha->ipha_protocol; 25110 switch (protocol) { 25111 case IPPROTO_ICMP: { 25112 ire_t *ire_zone; 25113 ilm_t *ilm; 25114 mblk_t *mp1; 25115 zoneid_t last_zoneid; 25116 25117 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25118 ASSERT(ire_type == IRE_BROADCAST); 25119 /* 25120 * In the multicast case, applications may have joined 25121 * the group from different zones, so we need to deliver 25122 * the packet to each of them. Loop through the 25123 * multicast memberships structures (ilm) on the receive 25124 * ill and send a copy of the packet up each matching 25125 * one. However, we don't do this for multicasts sent on 25126 * the loopback interface (PHYI_LOOPBACK flag set) as 25127 * they must stay in the sender's zone. 25128 * 25129 * ilm_add_v6() ensures that ilms in the same zone are 25130 * contiguous in the ill_ilm list. We use this property 25131 * to avoid sending duplicates needed when two 25132 * applications in the same zone join the same group on 25133 * different logical interfaces: we ignore the ilm if 25134 * it's zoneid is the same as the last matching one. 25135 * In addition, the sending of the packet for 25136 * ire_zoneid is delayed until all of the other ilms 25137 * have been exhausted. 25138 */ 25139 last_zoneid = -1; 25140 ILM_WALKER_HOLD(ill); 25141 for (ilm = ill->ill_ilm; ilm != NULL; 25142 ilm = ilm->ilm_next) { 25143 if ((ilm->ilm_flags & ILM_DELETED) || 25144 ipha->ipha_dst != ilm->ilm_addr || 25145 ilm->ilm_zoneid == last_zoneid || 25146 ilm->ilm_zoneid == zoneid || 25147 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25148 continue; 25149 mp1 = ip_copymsg(first_mp); 25150 if (mp1 == NULL) 25151 continue; 25152 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25153 mctl_present, B_FALSE, ill, 25154 ilm->ilm_zoneid); 25155 last_zoneid = ilm->ilm_zoneid; 25156 } 25157 ILM_WALKER_RELE(ill); 25158 /* 25159 * Loopback case: the sending endpoint has 25160 * IP_MULTICAST_LOOP disabled, therefore we don't 25161 * dispatch the multicast packet to the sending zone. 25162 */ 25163 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25164 freemsg(first_mp); 25165 return; 25166 } 25167 } else if (ire_type == IRE_BROADCAST) { 25168 /* 25169 * In the broadcast case, there may be many zones 25170 * which need a copy of the packet delivered to them. 25171 * There is one IRE_BROADCAST per broadcast address 25172 * and per zone; we walk those using a helper function. 25173 * In addition, the sending of the packet for zoneid is 25174 * delayed until all of the other ires have been 25175 * processed. 25176 */ 25177 IRB_REFHOLD(ire->ire_bucket); 25178 ire_zone = NULL; 25179 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25180 ire)) != NULL) { 25181 mp1 = ip_copymsg(first_mp); 25182 if (mp1 == NULL) 25183 continue; 25184 25185 UPDATE_IB_PKT_COUNT(ire_zone); 25186 ire_zone->ire_last_used_time = lbolt; 25187 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25188 mctl_present, B_FALSE, ill, 25189 ire_zone->ire_zoneid); 25190 } 25191 IRB_REFRELE(ire->ire_bucket); 25192 } 25193 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25194 0, mctl_present, B_FALSE, ill, zoneid); 25195 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25196 "ip_wput_local_end: q %p (%S)", 25197 q, "icmp"); 25198 return; 25199 } 25200 case IPPROTO_IGMP: 25201 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25202 /* Bad packet - discarded by igmp_input */ 25203 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25204 "ip_wput_local_end: q %p (%S)", 25205 q, "igmp_input--bad packet"); 25206 if (mctl_present) 25207 freeb(first_mp); 25208 return; 25209 } 25210 /* 25211 * igmp_input() may have returned the pulled up message. 25212 * So first_mp and ipha need to be reinitialized. 25213 */ 25214 ipha = (ipha_t *)mp->b_rptr; 25215 if (mctl_present) 25216 first_mp->b_cont = mp; 25217 else 25218 first_mp = mp; 25219 /* deliver to local raw users */ 25220 break; 25221 case IPPROTO_ENCAP: 25222 /* 25223 * This case is covered by either ip_fanout_proto, or by 25224 * the above security processing for self-tunneled packets. 25225 */ 25226 break; 25227 case IPPROTO_UDP: { 25228 uint16_t *up; 25229 uint32_t ports; 25230 25231 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25232 UDP_PORTS_OFFSET); 25233 /* Force a 'valid' checksum. */ 25234 up[3] = 0; 25235 25236 ports = *(uint32_t *)up; 25237 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25238 (ire_type == IRE_BROADCAST), 25239 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25240 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25241 ill, zoneid); 25242 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25243 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25244 return; 25245 } 25246 case IPPROTO_TCP: { 25247 25248 /* 25249 * For TCP, discard broadcast packets. 25250 */ 25251 if ((ushort_t)ire_type == IRE_BROADCAST) { 25252 freemsg(first_mp); 25253 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25254 ip2dbg(("ip_wput_local: discard broadcast\n")); 25255 return; 25256 } 25257 25258 if (mp->b_datap->db_type == M_DATA) { 25259 /* 25260 * M_DATA mblk, so init mblk (chain) for no struio(). 25261 */ 25262 mblk_t *mp1 = mp; 25263 25264 do { 25265 mp1->b_datap->db_struioflag = 0; 25266 } while ((mp1 = mp1->b_cont) != NULL); 25267 } 25268 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25269 <= mp->b_wptr); 25270 ip_fanout_tcp(q, first_mp, ill, ipha, 25271 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25272 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25273 mctl_present, B_FALSE, zoneid); 25274 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25275 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25276 return; 25277 } 25278 case IPPROTO_SCTP: 25279 { 25280 uint32_t ports; 25281 25282 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25283 ip_fanout_sctp(first_mp, ill, ipha, ports, 25284 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25285 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25286 return; 25287 } 25288 25289 default: 25290 break; 25291 } 25292 /* 25293 * Find a client for some other protocol. We give 25294 * copies to multiple clients, if more than one is 25295 * bound. 25296 */ 25297 ip_fanout_proto(q, first_mp, ill, ipha, 25298 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25299 mctl_present, B_FALSE, ill, zoneid); 25300 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25301 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25302 #undef rptr 25303 } 25304 25305 /* 25306 * Update any source route, record route, or timestamp options. 25307 * Check that we are at end of strict source route. 25308 * The options have been sanity checked by ip_wput_options(). 25309 */ 25310 static void 25311 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25312 { 25313 ipoptp_t opts; 25314 uchar_t *opt; 25315 uint8_t optval; 25316 uint8_t optlen; 25317 ipaddr_t dst; 25318 uint32_t ts; 25319 ire_t *ire; 25320 timestruc_t now; 25321 25322 ip2dbg(("ip_wput_local_options\n")); 25323 for (optval = ipoptp_first(&opts, ipha); 25324 optval != IPOPT_EOL; 25325 optval = ipoptp_next(&opts)) { 25326 opt = opts.ipoptp_cur; 25327 optlen = opts.ipoptp_len; 25328 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25329 switch (optval) { 25330 uint32_t off; 25331 case IPOPT_SSRR: 25332 case IPOPT_LSRR: 25333 off = opt[IPOPT_OFFSET]; 25334 off--; 25335 if (optlen < IP_ADDR_LEN || 25336 off > optlen - IP_ADDR_LEN) { 25337 /* End of source route */ 25338 break; 25339 } 25340 /* 25341 * This will only happen if two consecutive entries 25342 * in the source route contains our address or if 25343 * it is a packet with a loose source route which 25344 * reaches us before consuming the whole source route 25345 */ 25346 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25347 if (optval == IPOPT_SSRR) { 25348 return; 25349 } 25350 /* 25351 * Hack: instead of dropping the packet truncate the 25352 * source route to what has been used by filling the 25353 * rest with IPOPT_NOP. 25354 */ 25355 opt[IPOPT_OLEN] = (uint8_t)off; 25356 while (off < optlen) { 25357 opt[off++] = IPOPT_NOP; 25358 } 25359 break; 25360 case IPOPT_RR: 25361 off = opt[IPOPT_OFFSET]; 25362 off--; 25363 if (optlen < IP_ADDR_LEN || 25364 off > optlen - IP_ADDR_LEN) { 25365 /* No more room - ignore */ 25366 ip1dbg(( 25367 "ip_wput_forward_options: end of RR\n")); 25368 break; 25369 } 25370 dst = htonl(INADDR_LOOPBACK); 25371 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25372 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25373 break; 25374 case IPOPT_TS: 25375 /* Insert timestamp if there is romm */ 25376 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25377 case IPOPT_TS_TSONLY: 25378 off = IPOPT_TS_TIMELEN; 25379 break; 25380 case IPOPT_TS_PRESPEC: 25381 case IPOPT_TS_PRESPEC_RFC791: 25382 /* Verify that the address matched */ 25383 off = opt[IPOPT_OFFSET] - 1; 25384 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25385 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25386 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25387 ipst); 25388 if (ire == NULL) { 25389 /* Not for us */ 25390 break; 25391 } 25392 ire_refrele(ire); 25393 /* FALLTHRU */ 25394 case IPOPT_TS_TSANDADDR: 25395 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25396 break; 25397 default: 25398 /* 25399 * ip_*put_options should have already 25400 * dropped this packet. 25401 */ 25402 cmn_err(CE_PANIC, "ip_wput_local_options: " 25403 "unknown IT - bug in ip_wput_options?\n"); 25404 return; /* Keep "lint" happy */ 25405 } 25406 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25407 /* Increase overflow counter */ 25408 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25409 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25410 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25411 (off << 4); 25412 break; 25413 } 25414 off = opt[IPOPT_OFFSET] - 1; 25415 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25416 case IPOPT_TS_PRESPEC: 25417 case IPOPT_TS_PRESPEC_RFC791: 25418 case IPOPT_TS_TSANDADDR: 25419 dst = htonl(INADDR_LOOPBACK); 25420 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25421 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25422 /* FALLTHRU */ 25423 case IPOPT_TS_TSONLY: 25424 off = opt[IPOPT_OFFSET] - 1; 25425 /* Compute # of milliseconds since midnight */ 25426 gethrestime(&now); 25427 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25428 now.tv_nsec / (NANOSEC / MILLISEC); 25429 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25430 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25431 break; 25432 } 25433 break; 25434 } 25435 } 25436 } 25437 25438 /* 25439 * Send out a multicast packet on interface ipif. 25440 * The sender does not have an conn. 25441 * Caller verifies that this isn't a PHYI_LOOPBACK. 25442 */ 25443 void 25444 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25445 { 25446 ipha_t *ipha; 25447 ire_t *ire; 25448 ipaddr_t dst; 25449 mblk_t *first_mp; 25450 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25451 25452 /* igmp_sendpkt always allocates a ipsec_out_t */ 25453 ASSERT(mp->b_datap->db_type == M_CTL); 25454 ASSERT(!ipif->ipif_isv6); 25455 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25456 25457 first_mp = mp; 25458 mp = first_mp->b_cont; 25459 ASSERT(mp->b_datap->db_type == M_DATA); 25460 ipha = (ipha_t *)mp->b_rptr; 25461 25462 /* 25463 * Find an IRE which matches the destination and the outgoing 25464 * queue (i.e. the outgoing interface.) 25465 */ 25466 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25467 dst = ipif->ipif_pp_dst_addr; 25468 else 25469 dst = ipha->ipha_dst; 25470 /* 25471 * The source address has already been initialized by the 25472 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25473 * be sufficient rather than MATCH_IRE_IPIF. 25474 * 25475 * This function is used for sending IGMP packets. We need 25476 * to make sure that we send the packet out of the interface 25477 * (ipif->ipif_ill) where we joined the group. This is to 25478 * prevent from switches doing IGMP snooping to send us multicast 25479 * packets for a given group on the interface we have joined. 25480 * If we can't find an ire, igmp_sendpkt has already initialized 25481 * ipsec_out_attach_if so that this will not be load spread in 25482 * ip_newroute_ipif. 25483 */ 25484 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25485 MATCH_IRE_ILL, ipst); 25486 if (!ire) { 25487 /* 25488 * Mark this packet to make it be delivered to 25489 * ip_wput_ire after the new ire has been 25490 * created. 25491 */ 25492 mp->b_prev = NULL; 25493 mp->b_next = NULL; 25494 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25495 zoneid, &zero_info); 25496 return; 25497 } 25498 25499 /* 25500 * Honor the RTF_SETSRC flag; this is the only case 25501 * where we force this addr whatever the current src addr is, 25502 * because this address is set by igmp_sendpkt(), and 25503 * cannot be specified by any user. 25504 */ 25505 if (ire->ire_flags & RTF_SETSRC) { 25506 ipha->ipha_src = ire->ire_src_addr; 25507 } 25508 25509 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25510 } 25511 25512 /* 25513 * NOTE : This function does not ire_refrele the ire argument passed in. 25514 * 25515 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25516 * failure. The nce_fp_mp can vanish any time in the case of 25517 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25518 * the ire_lock to access the nce_fp_mp in this case. 25519 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25520 * prepending a fastpath message IPQoS processing must precede it, we also set 25521 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25522 * (IPQoS might have set the b_band for CoS marking). 25523 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25524 * must follow it so that IPQoS can mark the dl_priority field for CoS 25525 * marking, if needed. 25526 */ 25527 static mblk_t * 25528 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25529 uint32_t ill_index, ipha_t **iphap) 25530 { 25531 uint_t hlen; 25532 ipha_t *ipha; 25533 mblk_t *mp1; 25534 boolean_t qos_done = B_FALSE; 25535 uchar_t *ll_hdr; 25536 ip_stack_t *ipst = ire->ire_ipst; 25537 25538 #define rptr ((uchar_t *)ipha) 25539 25540 ipha = (ipha_t *)mp->b_rptr; 25541 hlen = 0; 25542 LOCK_IRE_FP_MP(ire); 25543 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25544 ASSERT(DB_TYPE(mp1) == M_DATA); 25545 /* Initiate IPPF processing */ 25546 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25547 UNLOCK_IRE_FP_MP(ire); 25548 ip_process(proc, &mp, ill_index); 25549 if (mp == NULL) 25550 return (NULL); 25551 25552 ipha = (ipha_t *)mp->b_rptr; 25553 LOCK_IRE_FP_MP(ire); 25554 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25555 qos_done = B_TRUE; 25556 goto no_fp_mp; 25557 } 25558 ASSERT(DB_TYPE(mp1) == M_DATA); 25559 } 25560 hlen = MBLKL(mp1); 25561 /* 25562 * Check if we have enough room to prepend fastpath 25563 * header 25564 */ 25565 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25566 ll_hdr = rptr - hlen; 25567 bcopy(mp1->b_rptr, ll_hdr, hlen); 25568 /* 25569 * Set the b_rptr to the start of the link layer 25570 * header 25571 */ 25572 mp->b_rptr = ll_hdr; 25573 mp1 = mp; 25574 } else { 25575 mp1 = copyb(mp1); 25576 if (mp1 == NULL) 25577 goto unlock_err; 25578 mp1->b_band = mp->b_band; 25579 mp1->b_cont = mp; 25580 /* 25581 * certain system generated traffic may not 25582 * have cred/label in ip header block. This 25583 * is true even for a labeled system. But for 25584 * labeled traffic, inherit the label in the 25585 * new header. 25586 */ 25587 if (DB_CRED(mp) != NULL) 25588 mblk_setcred(mp1, DB_CRED(mp)); 25589 /* 25590 * XXX disable ICK_VALID and compute checksum 25591 * here; can happen if nce_fp_mp changes and 25592 * it can't be copied now due to insufficient 25593 * space. (unlikely, fp mp can change, but it 25594 * does not increase in length) 25595 */ 25596 } 25597 UNLOCK_IRE_FP_MP(ire); 25598 } else { 25599 no_fp_mp: 25600 mp1 = copyb(ire->ire_nce->nce_res_mp); 25601 if (mp1 == NULL) { 25602 unlock_err: 25603 UNLOCK_IRE_FP_MP(ire); 25604 freemsg(mp); 25605 return (NULL); 25606 } 25607 UNLOCK_IRE_FP_MP(ire); 25608 mp1->b_cont = mp; 25609 /* 25610 * certain system generated traffic may not 25611 * have cred/label in ip header block. This 25612 * is true even for a labeled system. But for 25613 * labeled traffic, inherit the label in the 25614 * new header. 25615 */ 25616 if (DB_CRED(mp) != NULL) 25617 mblk_setcred(mp1, DB_CRED(mp)); 25618 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25619 ip_process(proc, &mp1, ill_index); 25620 if (mp1 == NULL) 25621 return (NULL); 25622 25623 if (mp1->b_cont == NULL) 25624 ipha = NULL; 25625 else 25626 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25627 } 25628 } 25629 25630 *iphap = ipha; 25631 return (mp1); 25632 #undef rptr 25633 } 25634 25635 /* 25636 * Finish the outbound IPsec processing for an IPv6 packet. This function 25637 * is called from ipsec_out_process() if the IPsec packet was processed 25638 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25639 * asynchronously. 25640 */ 25641 void 25642 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25643 ire_t *ire_arg) 25644 { 25645 in6_addr_t *v6dstp; 25646 ire_t *ire; 25647 mblk_t *mp; 25648 ip6_t *ip6h1; 25649 uint_t ill_index; 25650 ipsec_out_t *io; 25651 boolean_t attach_if, hwaccel; 25652 uint32_t flags = IP6_NO_IPPOLICY; 25653 int match_flags; 25654 zoneid_t zoneid; 25655 boolean_t ill_need_rele = B_FALSE; 25656 boolean_t ire_need_rele = B_FALSE; 25657 ip_stack_t *ipst; 25658 25659 mp = ipsec_mp->b_cont; 25660 ip6h1 = (ip6_t *)mp->b_rptr; 25661 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25662 ASSERT(io->ipsec_out_ns != NULL); 25663 ipst = io->ipsec_out_ns->netstack_ip; 25664 ill_index = io->ipsec_out_ill_index; 25665 if (io->ipsec_out_reachable) { 25666 flags |= IPV6_REACHABILITY_CONFIRMATION; 25667 } 25668 attach_if = io->ipsec_out_attach_if; 25669 hwaccel = io->ipsec_out_accelerated; 25670 zoneid = io->ipsec_out_zoneid; 25671 ASSERT(zoneid != ALL_ZONES); 25672 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25673 /* Multicast addresses should have non-zero ill_index. */ 25674 v6dstp = &ip6h->ip6_dst; 25675 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25676 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25677 ASSERT(!attach_if || ill_index != 0); 25678 if (ill_index != 0) { 25679 if (ill == NULL) { 25680 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25681 B_TRUE, ipst); 25682 25683 /* Failure case frees things for us. */ 25684 if (ill == NULL) 25685 return; 25686 25687 ill_need_rele = B_TRUE; 25688 } 25689 /* 25690 * If this packet needs to go out on a particular interface 25691 * honor it. 25692 */ 25693 if (attach_if) { 25694 match_flags = MATCH_IRE_ILL; 25695 25696 /* 25697 * Check if we need an ire that will not be 25698 * looked up by anybody else i.e. HIDDEN. 25699 */ 25700 if (ill_is_probeonly(ill)) { 25701 match_flags |= MATCH_IRE_MARK_HIDDEN; 25702 } 25703 } 25704 } 25705 ASSERT(mp != NULL); 25706 25707 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25708 boolean_t unspec_src; 25709 ipif_t *ipif; 25710 25711 /* 25712 * Use the ill_index to get the right ill. 25713 */ 25714 unspec_src = io->ipsec_out_unspec_src; 25715 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25716 if (ipif == NULL) { 25717 if (ill_need_rele) 25718 ill_refrele(ill); 25719 freemsg(ipsec_mp); 25720 return; 25721 } 25722 25723 if (ire_arg != NULL) { 25724 ire = ire_arg; 25725 } else { 25726 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25727 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25728 ire_need_rele = B_TRUE; 25729 } 25730 if (ire != NULL) { 25731 ipif_refrele(ipif); 25732 /* 25733 * XXX Do the multicast forwarding now, as the IPsec 25734 * processing has been done. 25735 */ 25736 goto send; 25737 } 25738 25739 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25740 mp->b_prev = NULL; 25741 mp->b_next = NULL; 25742 25743 /* 25744 * If the IPsec packet was processed asynchronously, 25745 * drop it now. 25746 */ 25747 if (q == NULL) { 25748 if (ill_need_rele) 25749 ill_refrele(ill); 25750 freemsg(ipsec_mp); 25751 return; 25752 } 25753 25754 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25755 unspec_src, zoneid); 25756 ipif_refrele(ipif); 25757 } else { 25758 if (attach_if) { 25759 ipif_t *ipif; 25760 25761 ipif = ipif_get_next_ipif(NULL, ill); 25762 if (ipif == NULL) { 25763 if (ill_need_rele) 25764 ill_refrele(ill); 25765 freemsg(ipsec_mp); 25766 return; 25767 } 25768 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25769 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25770 ire_need_rele = B_TRUE; 25771 ipif_refrele(ipif); 25772 } else { 25773 if (ire_arg != NULL) { 25774 ire = ire_arg; 25775 } else { 25776 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25777 ipst); 25778 ire_need_rele = B_TRUE; 25779 } 25780 } 25781 if (ire != NULL) 25782 goto send; 25783 /* 25784 * ire disappeared underneath. 25785 * 25786 * What we need to do here is the ip_newroute 25787 * logic to get the ire without doing the IPsec 25788 * processing. Follow the same old path. But this 25789 * time, ip_wput or ire_add_then_send will call us 25790 * directly as all the IPsec operations are done. 25791 */ 25792 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25793 mp->b_prev = NULL; 25794 mp->b_next = NULL; 25795 25796 /* 25797 * If the IPsec packet was processed asynchronously, 25798 * drop it now. 25799 */ 25800 if (q == NULL) { 25801 if (ill_need_rele) 25802 ill_refrele(ill); 25803 freemsg(ipsec_mp); 25804 return; 25805 } 25806 25807 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25808 zoneid, ipst); 25809 } 25810 if (ill != NULL && ill_need_rele) 25811 ill_refrele(ill); 25812 return; 25813 send: 25814 if (ill != NULL && ill_need_rele) 25815 ill_refrele(ill); 25816 25817 /* Local delivery */ 25818 if (ire->ire_stq == NULL) { 25819 ill_t *out_ill; 25820 ASSERT(q != NULL); 25821 25822 /* PFHooks: LOOPBACK_OUT */ 25823 out_ill = ire_to_ill(ire); 25824 25825 /* 25826 * DTrace this as ip:::send. A blocked packet will fire the 25827 * send probe, but not the receive probe. 25828 */ 25829 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25830 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25831 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25832 25833 DTRACE_PROBE4(ip6__loopback__out__start, 25834 ill_t *, NULL, ill_t *, out_ill, 25835 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25836 25837 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25838 ipst->ips_ipv6firewall_loopback_out, 25839 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25840 25841 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25842 25843 if (ipsec_mp != NULL) 25844 ip_wput_local_v6(RD(q), out_ill, 25845 ip6h, ipsec_mp, ire, 0); 25846 if (ire_need_rele) 25847 ire_refrele(ire); 25848 return; 25849 } 25850 /* 25851 * Everything is done. Send it out on the wire. 25852 * We force the insertion of a fragment header using the 25853 * IPH_FRAG_HDR flag in two cases: 25854 * - after reception of an ICMPv6 "packet too big" message 25855 * with a MTU < 1280 (cf. RFC 2460 section 5) 25856 * - for multirouted IPv6 packets, so that the receiver can 25857 * discard duplicates according to their fragment identifier 25858 */ 25859 /* XXX fix flow control problems. */ 25860 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25861 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25862 if (hwaccel) { 25863 /* 25864 * hardware acceleration does not handle these 25865 * "slow path" cases. 25866 */ 25867 /* IPsec KSTATS: should bump bean counter here. */ 25868 if (ire_need_rele) 25869 ire_refrele(ire); 25870 freemsg(ipsec_mp); 25871 return; 25872 } 25873 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25874 (mp->b_cont ? msgdsize(mp) : 25875 mp->b_wptr - (uchar_t *)ip6h)) { 25876 /* IPsec KSTATS: should bump bean counter here. */ 25877 ip0dbg(("Packet length mismatch: %d, %ld\n", 25878 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25879 msgdsize(mp))); 25880 if (ire_need_rele) 25881 ire_refrele(ire); 25882 freemsg(ipsec_mp); 25883 return; 25884 } 25885 ASSERT(mp->b_prev == NULL); 25886 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25887 ntohs(ip6h->ip6_plen) + 25888 IPV6_HDR_LEN, ire->ire_max_frag)); 25889 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25890 ire->ire_max_frag); 25891 } else { 25892 UPDATE_OB_PKT_COUNT(ire); 25893 ire->ire_last_used_time = lbolt; 25894 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25895 } 25896 if (ire_need_rele) 25897 ire_refrele(ire); 25898 freeb(ipsec_mp); 25899 } 25900 25901 void 25902 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25903 { 25904 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25905 da_ipsec_t *hada; /* data attributes */ 25906 ill_t *ill = (ill_t *)q->q_ptr; 25907 25908 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25909 25910 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25911 /* IPsec KSTATS: Bump lose counter here! */ 25912 freemsg(mp); 25913 return; 25914 } 25915 25916 /* 25917 * It's an IPsec packet that must be 25918 * accelerated by the Provider, and the 25919 * outbound ill is IPsec acceleration capable. 25920 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25921 * to the ill. 25922 * IPsec KSTATS: should bump packet counter here. 25923 */ 25924 25925 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25926 if (hada_mp == NULL) { 25927 /* IPsec KSTATS: should bump packet counter here. */ 25928 freemsg(mp); 25929 return; 25930 } 25931 25932 hada_mp->b_datap->db_type = M_CTL; 25933 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25934 hada_mp->b_cont = mp; 25935 25936 hada = (da_ipsec_t *)hada_mp->b_rptr; 25937 bzero(hada, sizeof (da_ipsec_t)); 25938 hada->da_type = IPHADA_M_CTL; 25939 25940 putnext(q, hada_mp); 25941 } 25942 25943 /* 25944 * Finish the outbound IPsec processing. This function is called from 25945 * ipsec_out_process() if the IPsec packet was processed 25946 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25947 * asynchronously. 25948 */ 25949 void 25950 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25951 ire_t *ire_arg) 25952 { 25953 uint32_t v_hlen_tos_len; 25954 ipaddr_t dst; 25955 ipif_t *ipif = NULL; 25956 ire_t *ire; 25957 ire_t *ire1 = NULL; 25958 mblk_t *next_mp = NULL; 25959 uint32_t max_frag; 25960 boolean_t multirt_send = B_FALSE; 25961 mblk_t *mp; 25962 ipha_t *ipha1; 25963 uint_t ill_index; 25964 ipsec_out_t *io; 25965 boolean_t attach_if; 25966 int match_flags; 25967 irb_t *irb = NULL; 25968 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25969 zoneid_t zoneid; 25970 ipxmit_state_t pktxmit_state; 25971 ip_stack_t *ipst; 25972 25973 #ifdef _BIG_ENDIAN 25974 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25975 #else 25976 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25977 #endif 25978 25979 mp = ipsec_mp->b_cont; 25980 ipha1 = (ipha_t *)mp->b_rptr; 25981 ASSERT(mp != NULL); 25982 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25983 dst = ipha->ipha_dst; 25984 25985 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25986 ill_index = io->ipsec_out_ill_index; 25987 attach_if = io->ipsec_out_attach_if; 25988 zoneid = io->ipsec_out_zoneid; 25989 ASSERT(zoneid != ALL_ZONES); 25990 ipst = io->ipsec_out_ns->netstack_ip; 25991 ASSERT(io->ipsec_out_ns != NULL); 25992 25993 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25994 if (ill_index != 0) { 25995 if (ill == NULL) { 25996 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25997 ill_index, B_FALSE, ipst); 25998 25999 /* Failure case frees things for us. */ 26000 if (ill == NULL) 26001 return; 26002 26003 ill_need_rele = B_TRUE; 26004 } 26005 /* 26006 * If this packet needs to go out on a particular interface 26007 * honor it. 26008 */ 26009 if (attach_if) { 26010 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26011 26012 /* 26013 * Check if we need an ire that will not be 26014 * looked up by anybody else i.e. HIDDEN. 26015 */ 26016 if (ill_is_probeonly(ill)) { 26017 match_flags |= MATCH_IRE_MARK_HIDDEN; 26018 } 26019 } 26020 } 26021 26022 if (CLASSD(dst)) { 26023 boolean_t conn_dontroute; 26024 /* 26025 * Use the ill_index to get the right ipif. 26026 */ 26027 conn_dontroute = io->ipsec_out_dontroute; 26028 if (ill_index == 0) 26029 ipif = ipif_lookup_group(dst, zoneid, ipst); 26030 else 26031 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26032 if (ipif == NULL) { 26033 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26034 " multicast\n")); 26035 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26036 freemsg(ipsec_mp); 26037 goto done; 26038 } 26039 /* 26040 * ipha_src has already been intialized with the 26041 * value of the ipif in ip_wput. All we need now is 26042 * an ire to send this downstream. 26043 */ 26044 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26045 MBLK_GETLABEL(mp), match_flags, ipst); 26046 if (ire != NULL) { 26047 ill_t *ill1; 26048 /* 26049 * Do the multicast forwarding now, as the IPsec 26050 * processing has been done. 26051 */ 26052 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26053 (ill1 = ire_to_ill(ire))) { 26054 if (ip_mforward(ill1, ipha, mp)) { 26055 freemsg(ipsec_mp); 26056 ip1dbg(("ip_wput_ipsec_out: mforward " 26057 "failed\n")); 26058 ire_refrele(ire); 26059 goto done; 26060 } 26061 } 26062 goto send; 26063 } 26064 26065 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26066 mp->b_prev = NULL; 26067 mp->b_next = NULL; 26068 26069 /* 26070 * If the IPsec packet was processed asynchronously, 26071 * drop it now. 26072 */ 26073 if (q == NULL) { 26074 freemsg(ipsec_mp); 26075 goto done; 26076 } 26077 26078 /* 26079 * We may be using a wrong ipif to create the ire. 26080 * But it is okay as the source address is assigned 26081 * for the packet already. Next outbound packet would 26082 * create the IRE with the right IPIF in ip_wput. 26083 * 26084 * Also handle RTF_MULTIRT routes. 26085 */ 26086 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26087 zoneid, &zero_info); 26088 } else { 26089 if (attach_if) { 26090 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26091 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26092 } else { 26093 if (ire_arg != NULL) { 26094 ire = ire_arg; 26095 ire_need_rele = B_FALSE; 26096 } else { 26097 ire = ire_cache_lookup(dst, zoneid, 26098 MBLK_GETLABEL(mp), ipst); 26099 } 26100 } 26101 if (ire != NULL) { 26102 goto send; 26103 } 26104 26105 /* 26106 * ire disappeared underneath. 26107 * 26108 * What we need to do here is the ip_newroute 26109 * logic to get the ire without doing the IPsec 26110 * processing. Follow the same old path. But this 26111 * time, ip_wput or ire_add_then_put will call us 26112 * directly as all the IPsec operations are done. 26113 */ 26114 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26115 mp->b_prev = NULL; 26116 mp->b_next = NULL; 26117 26118 /* 26119 * If the IPsec packet was processed asynchronously, 26120 * drop it now. 26121 */ 26122 if (q == NULL) { 26123 freemsg(ipsec_mp); 26124 goto done; 26125 } 26126 26127 /* 26128 * Since we're going through ip_newroute() again, we 26129 * need to make sure we don't: 26130 * 26131 * 1.) Trigger the ASSERT() with the ipha_ident 26132 * overloading. 26133 * 2.) Redo transport-layer checksumming, since we've 26134 * already done all that to get this far. 26135 * 26136 * The easiest way not do either of the above is to set 26137 * the ipha_ident field to IP_HDR_INCLUDED. 26138 */ 26139 ipha->ipha_ident = IP_HDR_INCLUDED; 26140 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26141 zoneid, ipst); 26142 } 26143 goto done; 26144 send: 26145 if (ire->ire_stq == NULL) { 26146 ill_t *out_ill; 26147 /* 26148 * Loopbacks go through ip_wput_local except for one case. 26149 * We come here if we generate a icmp_frag_needed message 26150 * after IPsec processing is over. When this function calls 26151 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26152 * icmp_frag_needed. The message generated comes back here 26153 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26154 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26155 * source address as it is usually set in ip_wput_ire. As 26156 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26157 * and we end up here. We can't enter ip_wput_ire once the 26158 * IPsec processing is over and hence we need to do it here. 26159 */ 26160 ASSERT(q != NULL); 26161 UPDATE_OB_PKT_COUNT(ire); 26162 ire->ire_last_used_time = lbolt; 26163 if (ipha->ipha_src == 0) 26164 ipha->ipha_src = ire->ire_src_addr; 26165 26166 /* PFHooks: LOOPBACK_OUT */ 26167 out_ill = ire_to_ill(ire); 26168 26169 /* 26170 * DTrace this as ip:::send. A blocked packet will fire the 26171 * send probe, but not the receive probe. 26172 */ 26173 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26174 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26175 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26176 26177 DTRACE_PROBE4(ip4__loopback__out__start, 26178 ill_t *, NULL, ill_t *, out_ill, 26179 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26180 26181 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26182 ipst->ips_ipv4firewall_loopback_out, 26183 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26184 26185 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26186 26187 if (ipsec_mp != NULL) 26188 ip_wput_local(RD(q), out_ill, 26189 ipha, ipsec_mp, ire, 0, zoneid); 26190 if (ire_need_rele) 26191 ire_refrele(ire); 26192 goto done; 26193 } 26194 26195 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26196 /* 26197 * We are through with IPsec processing. 26198 * Fragment this and send it on the wire. 26199 */ 26200 if (io->ipsec_out_accelerated) { 26201 /* 26202 * The packet has been accelerated but must 26203 * be fragmented. This should not happen 26204 * since AH and ESP must not accelerate 26205 * packets that need fragmentation, however 26206 * the configuration could have changed 26207 * since the AH or ESP processing. 26208 * Drop packet. 26209 * IPsec KSTATS: bump bean counter here. 26210 */ 26211 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26212 "fragmented accelerated packet!\n")); 26213 freemsg(ipsec_mp); 26214 } else { 26215 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26216 } 26217 if (ire_need_rele) 26218 ire_refrele(ire); 26219 goto done; 26220 } 26221 26222 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26223 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26224 (void *)ire->ire_ipif, (void *)ipif)); 26225 26226 /* 26227 * Multiroute the secured packet, unless IPsec really 26228 * requires the packet to go out only through a particular 26229 * interface. 26230 */ 26231 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26232 ire_t *first_ire; 26233 irb = ire->ire_bucket; 26234 ASSERT(irb != NULL); 26235 /* 26236 * This ire has been looked up as the one that 26237 * goes through the given ipif; 26238 * make sure we do not omit any other multiroute ire 26239 * that may be present in the bucket before this one. 26240 */ 26241 IRB_REFHOLD(irb); 26242 for (first_ire = irb->irb_ire; 26243 first_ire != NULL; 26244 first_ire = first_ire->ire_next) { 26245 if ((first_ire->ire_flags & RTF_MULTIRT) && 26246 (first_ire->ire_addr == ire->ire_addr) && 26247 !(first_ire->ire_marks & 26248 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26249 break; 26250 } 26251 } 26252 26253 if ((first_ire != NULL) && (first_ire != ire)) { 26254 /* 26255 * Don't change the ire if the packet must 26256 * be fragmented if sent via this new one. 26257 */ 26258 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26259 IRE_REFHOLD(first_ire); 26260 if (ire_need_rele) 26261 ire_refrele(ire); 26262 else 26263 ire_need_rele = B_TRUE; 26264 ire = first_ire; 26265 } 26266 } 26267 IRB_REFRELE(irb); 26268 26269 multirt_send = B_TRUE; 26270 max_frag = ire->ire_max_frag; 26271 } else { 26272 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26273 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26274 "flag, attach_if %d\n", attach_if)); 26275 } 26276 } 26277 26278 /* 26279 * In most cases, the emission loop below is entered only once. 26280 * Only in the case where the ire holds the RTF_MULTIRT 26281 * flag, we loop to process all RTF_MULTIRT ires in the 26282 * bucket, and send the packet through all crossed 26283 * RTF_MULTIRT routes. 26284 */ 26285 do { 26286 if (multirt_send) { 26287 /* 26288 * ire1 holds here the next ire to process in the 26289 * bucket. If multirouting is expected, 26290 * any non-RTF_MULTIRT ire that has the 26291 * right destination address is ignored. 26292 */ 26293 ASSERT(irb != NULL); 26294 IRB_REFHOLD(irb); 26295 for (ire1 = ire->ire_next; 26296 ire1 != NULL; 26297 ire1 = ire1->ire_next) { 26298 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26299 continue; 26300 if (ire1->ire_addr != ire->ire_addr) 26301 continue; 26302 if (ire1->ire_marks & 26303 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26304 continue; 26305 /* No loopback here */ 26306 if (ire1->ire_stq == NULL) 26307 continue; 26308 /* 26309 * Ensure we do not exceed the MTU 26310 * of the next route. 26311 */ 26312 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26313 ip_multirt_bad_mtu(ire1, max_frag); 26314 continue; 26315 } 26316 26317 IRE_REFHOLD(ire1); 26318 break; 26319 } 26320 IRB_REFRELE(irb); 26321 if (ire1 != NULL) { 26322 /* 26323 * We are in a multiple send case, need to 26324 * make a copy of the packet. 26325 */ 26326 next_mp = copymsg(ipsec_mp); 26327 if (next_mp == NULL) { 26328 ire_refrele(ire1); 26329 ire1 = NULL; 26330 } 26331 } 26332 } 26333 /* 26334 * Everything is done. Send it out on the wire 26335 * 26336 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26337 * either send it on the wire or, in the case of 26338 * HW acceleration, call ipsec_hw_putnext. 26339 */ 26340 if (ire->ire_nce && 26341 ire->ire_nce->nce_state != ND_REACHABLE) { 26342 DTRACE_PROBE2(ip__wput__ipsec__bail, 26343 (ire_t *), ire, (mblk_t *), ipsec_mp); 26344 /* 26345 * If ire's link-layer is unresolved (this 26346 * would only happen if the incomplete ire 26347 * was added to cachetable via forwarding path) 26348 * don't bother going to ip_xmit_v4. Just drop the 26349 * packet. 26350 * There is a slight risk here, in that, if we 26351 * have the forwarding path create an incomplete 26352 * IRE, then until the IRE is completed, any 26353 * transmitted IPsec packets will be dropped 26354 * instead of being queued waiting for resolution. 26355 * 26356 * But the likelihood of a forwarding packet and a wput 26357 * packet sending to the same dst at the same time 26358 * and there not yet be an ARP entry for it is small. 26359 * Furthermore, if this actually happens, it might 26360 * be likely that wput would generate multiple 26361 * packets (and forwarding would also have a train 26362 * of packets) for that destination. If this is 26363 * the case, some of them would have been dropped 26364 * anyway, since ARP only queues a few packets while 26365 * waiting for resolution 26366 * 26367 * NOTE: We should really call ip_xmit_v4, 26368 * and let it queue the packet and send the 26369 * ARP query and have ARP come back thus: 26370 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26371 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26372 * hw accel work. But it's too complex to get 26373 * the IPsec hw acceleration approach to fit 26374 * well with ip_xmit_v4 doing ARP without 26375 * doing IPsec simplification. For now, we just 26376 * poke ip_xmit_v4 to trigger the arp resolve, so 26377 * that we can continue with the send on the next 26378 * attempt. 26379 * 26380 * XXX THis should be revisited, when 26381 * the IPsec/IP interaction is cleaned up 26382 */ 26383 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26384 " - dropping packet\n")); 26385 freemsg(ipsec_mp); 26386 /* 26387 * Call ip_xmit_v4() to trigger ARP query 26388 * in case the nce_state is ND_INITIAL 26389 */ 26390 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26391 goto drop_pkt; 26392 } 26393 26394 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26395 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26396 mblk_t *, ipsec_mp); 26397 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26398 ipst->ips_ipv4firewall_physical_out, NULL, 26399 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26400 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26401 if (ipsec_mp == NULL) 26402 goto drop_pkt; 26403 26404 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26405 pktxmit_state = ip_xmit_v4(mp, ire, 26406 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26407 26408 if ((pktxmit_state == SEND_FAILED) || 26409 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26410 26411 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26412 drop_pkt: 26413 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26414 ipIfStatsOutDiscards); 26415 if (ire_need_rele) 26416 ire_refrele(ire); 26417 if (ire1 != NULL) { 26418 ire_refrele(ire1); 26419 freemsg(next_mp); 26420 } 26421 goto done; 26422 } 26423 26424 freeb(ipsec_mp); 26425 if (ire_need_rele) 26426 ire_refrele(ire); 26427 26428 if (ire1 != NULL) { 26429 ire = ire1; 26430 ire_need_rele = B_TRUE; 26431 ASSERT(next_mp); 26432 ipsec_mp = next_mp; 26433 mp = ipsec_mp->b_cont; 26434 ire1 = NULL; 26435 next_mp = NULL; 26436 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26437 } else { 26438 multirt_send = B_FALSE; 26439 } 26440 } while (multirt_send); 26441 done: 26442 if (ill != NULL && ill_need_rele) 26443 ill_refrele(ill); 26444 if (ipif != NULL) 26445 ipif_refrele(ipif); 26446 } 26447 26448 /* 26449 * Get the ill corresponding to the specified ire, and compare its 26450 * capabilities with the protocol and algorithms specified by the 26451 * the SA obtained from ipsec_out. If they match, annotate the 26452 * ipsec_out structure to indicate that the packet needs acceleration. 26453 * 26454 * 26455 * A packet is eligible for outbound hardware acceleration if the 26456 * following conditions are satisfied: 26457 * 26458 * 1. the packet will not be fragmented 26459 * 2. the provider supports the algorithm 26460 * 3. there is no pending control message being exchanged 26461 * 4. snoop is not attached 26462 * 5. the destination address is not a broadcast or multicast address. 26463 * 26464 * Rationale: 26465 * - Hardware drivers do not support fragmentation with 26466 * the current interface. 26467 * - snoop, multicast, and broadcast may result in exposure of 26468 * a cleartext datagram. 26469 * We check all five of these conditions here. 26470 * 26471 * XXX would like to nuke "ire_t *" parameter here; problem is that 26472 * IRE is only way to figure out if a v4 address is a broadcast and 26473 * thus ineligible for acceleration... 26474 */ 26475 static void 26476 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26477 { 26478 ipsec_out_t *io; 26479 mblk_t *data_mp; 26480 uint_t plen, overhead; 26481 ip_stack_t *ipst; 26482 26483 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26484 return; 26485 26486 if (ill == NULL) 26487 return; 26488 ipst = ill->ill_ipst; 26489 /* 26490 * Destination address is a broadcast or multicast. Punt. 26491 */ 26492 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26493 IRE_LOCAL))) 26494 return; 26495 26496 data_mp = ipsec_mp->b_cont; 26497 26498 if (ill->ill_isv6) { 26499 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26500 26501 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26502 return; 26503 26504 plen = ip6h->ip6_plen; 26505 } else { 26506 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26507 26508 if (CLASSD(ipha->ipha_dst)) 26509 return; 26510 26511 plen = ipha->ipha_length; 26512 } 26513 /* 26514 * Is there a pending DLPI control message being exchanged 26515 * between IP/IPsec and the DLS Provider? If there is, it 26516 * could be a SADB update, and the state of the DLS Provider 26517 * SADB might not be in sync with the SADB maintained by 26518 * IPsec. To avoid dropping packets or using the wrong keying 26519 * material, we do not accelerate this packet. 26520 */ 26521 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26522 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26523 "ill_dlpi_pending! don't accelerate packet\n")); 26524 return; 26525 } 26526 26527 /* 26528 * Is the Provider in promiscous mode? If it does, we don't 26529 * accelerate the packet since it will bounce back up to the 26530 * listeners in the clear. 26531 */ 26532 if (ill->ill_promisc_on_phys) { 26533 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26534 "ill in promiscous mode, don't accelerate packet\n")); 26535 return; 26536 } 26537 26538 /* 26539 * Will the packet require fragmentation? 26540 */ 26541 26542 /* 26543 * IPsec ESP note: this is a pessimistic estimate, but the same 26544 * as is used elsewhere. 26545 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26546 * + 2-byte trailer 26547 */ 26548 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26549 IPSEC_BASE_ESP_HDR_SIZE(sa); 26550 26551 if ((plen + overhead) > ill->ill_max_mtu) 26552 return; 26553 26554 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26555 26556 /* 26557 * Can the ill accelerate this IPsec protocol and algorithm 26558 * specified by the SA? 26559 */ 26560 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26561 ill->ill_isv6, sa, ipst->ips_netstack)) { 26562 return; 26563 } 26564 26565 /* 26566 * Tell AH or ESP that the outbound ill is capable of 26567 * accelerating this packet. 26568 */ 26569 io->ipsec_out_is_capab_ill = B_TRUE; 26570 } 26571 26572 /* 26573 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26574 * 26575 * If this function returns B_TRUE, the requested SA's have been filled 26576 * into the ipsec_out_*_sa pointers. 26577 * 26578 * If the function returns B_FALSE, the packet has been "consumed", most 26579 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26580 * 26581 * The SA references created by the protocol-specific "select" 26582 * function will be released when the ipsec_mp is freed, thanks to the 26583 * ipsec_out_free destructor -- see spd.c. 26584 */ 26585 static boolean_t 26586 ipsec_out_select_sa(mblk_t *ipsec_mp) 26587 { 26588 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26589 ipsec_out_t *io; 26590 ipsec_policy_t *pp; 26591 ipsec_action_t *ap; 26592 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26593 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26594 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26595 26596 if (!io->ipsec_out_secure) { 26597 /* 26598 * We came here by mistake. 26599 * Don't bother with ipsec processing 26600 * We should "discourage" this path in the future. 26601 */ 26602 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26603 return (B_FALSE); 26604 } 26605 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26606 ASSERT((io->ipsec_out_policy != NULL) || 26607 (io->ipsec_out_act != NULL)); 26608 26609 ASSERT(io->ipsec_out_failed == B_FALSE); 26610 26611 /* 26612 * IPsec processing has started. 26613 */ 26614 io->ipsec_out_proc_begin = B_TRUE; 26615 ap = io->ipsec_out_act; 26616 if (ap == NULL) { 26617 pp = io->ipsec_out_policy; 26618 ASSERT(pp != NULL); 26619 ap = pp->ipsp_act; 26620 ASSERT(ap != NULL); 26621 } 26622 26623 /* 26624 * We have an action. now, let's select SA's. 26625 * (In the future, we can cache this in the conn_t..) 26626 */ 26627 if (ap->ipa_want_esp) { 26628 if (io->ipsec_out_esp_sa == NULL) { 26629 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26630 IPPROTO_ESP); 26631 } 26632 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26633 } 26634 26635 if (ap->ipa_want_ah) { 26636 if (io->ipsec_out_ah_sa == NULL) { 26637 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26638 IPPROTO_AH); 26639 } 26640 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26641 /* 26642 * The ESP and AH processing order needs to be preserved 26643 * when both protocols are required (ESP should be applied 26644 * before AH for an outbound packet). Force an ESP ACQUIRE 26645 * when both ESP and AH are required, and an AH ACQUIRE 26646 * is needed. 26647 */ 26648 if (ap->ipa_want_esp && need_ah_acquire) 26649 need_esp_acquire = B_TRUE; 26650 } 26651 26652 /* 26653 * Send an ACQUIRE (extended, regular, or both) if we need one. 26654 * Release SAs that got referenced, but will not be used until we 26655 * acquire _all_ of the SAs we need. 26656 */ 26657 if (need_ah_acquire || need_esp_acquire) { 26658 if (io->ipsec_out_ah_sa != NULL) { 26659 IPSA_REFRELE(io->ipsec_out_ah_sa); 26660 io->ipsec_out_ah_sa = NULL; 26661 } 26662 if (io->ipsec_out_esp_sa != NULL) { 26663 IPSA_REFRELE(io->ipsec_out_esp_sa); 26664 io->ipsec_out_esp_sa = NULL; 26665 } 26666 26667 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26668 return (B_FALSE); 26669 } 26670 26671 return (B_TRUE); 26672 } 26673 26674 /* 26675 * Process an IPSEC_OUT message and see what you can 26676 * do with it. 26677 * IPQoS Notes: 26678 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26679 * IPsec. 26680 * XXX would like to nuke ire_t. 26681 * XXX ill_index better be "real" 26682 */ 26683 void 26684 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26685 { 26686 ipsec_out_t *io; 26687 ipsec_policy_t *pp; 26688 ipsec_action_t *ap; 26689 ipha_t *ipha; 26690 ip6_t *ip6h; 26691 mblk_t *mp; 26692 ill_t *ill; 26693 zoneid_t zoneid; 26694 ipsec_status_t ipsec_rc; 26695 boolean_t ill_need_rele = B_FALSE; 26696 ip_stack_t *ipst; 26697 ipsec_stack_t *ipss; 26698 26699 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26700 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26701 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26702 ipst = io->ipsec_out_ns->netstack_ip; 26703 mp = ipsec_mp->b_cont; 26704 26705 /* 26706 * Initiate IPPF processing. We do it here to account for packets 26707 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26708 * We can check for ipsec_out_proc_begin even for such packets, as 26709 * they will always be false (asserted below). 26710 */ 26711 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26712 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26713 io->ipsec_out_ill_index : ill_index); 26714 if (mp == NULL) { 26715 ip2dbg(("ipsec_out_process: packet dropped "\ 26716 "during IPPF processing\n")); 26717 freeb(ipsec_mp); 26718 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26719 return; 26720 } 26721 } 26722 26723 if (!io->ipsec_out_secure) { 26724 /* 26725 * We came here by mistake. 26726 * Don't bother with ipsec processing 26727 * Should "discourage" this path in the future. 26728 */ 26729 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26730 goto done; 26731 } 26732 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26733 ASSERT((io->ipsec_out_policy != NULL) || 26734 (io->ipsec_out_act != NULL)); 26735 ASSERT(io->ipsec_out_failed == B_FALSE); 26736 26737 ipss = ipst->ips_netstack->netstack_ipsec; 26738 if (!ipsec_loaded(ipss)) { 26739 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26740 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26741 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26742 } else { 26743 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26744 } 26745 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26746 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26747 &ipss->ipsec_dropper); 26748 return; 26749 } 26750 26751 /* 26752 * IPsec processing has started. 26753 */ 26754 io->ipsec_out_proc_begin = B_TRUE; 26755 ap = io->ipsec_out_act; 26756 if (ap == NULL) { 26757 pp = io->ipsec_out_policy; 26758 ASSERT(pp != NULL); 26759 ap = pp->ipsp_act; 26760 ASSERT(ap != NULL); 26761 } 26762 26763 /* 26764 * Save the outbound ill index. When the packet comes back 26765 * from IPsec, we make sure the ill hasn't changed or disappeared 26766 * before sending it the accelerated packet. 26767 */ 26768 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26769 int ifindex; 26770 ill = ire_to_ill(ire); 26771 ifindex = ill->ill_phyint->phyint_ifindex; 26772 io->ipsec_out_capab_ill_index = ifindex; 26773 } 26774 26775 /* 26776 * The order of processing is first insert a IP header if needed. 26777 * Then insert the ESP header and then the AH header. 26778 */ 26779 if ((io->ipsec_out_se_done == B_FALSE) && 26780 (ap->ipa_want_se)) { 26781 /* 26782 * First get the outer IP header before sending 26783 * it to ESP. 26784 */ 26785 ipha_t *oipha, *iipha; 26786 mblk_t *outer_mp, *inner_mp; 26787 26788 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26789 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26790 "ipsec_out_process: " 26791 "Self-Encapsulation failed: Out of memory\n"); 26792 freemsg(ipsec_mp); 26793 if (ill != NULL) { 26794 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26795 } else { 26796 BUMP_MIB(&ipst->ips_ip_mib, 26797 ipIfStatsOutDiscards); 26798 } 26799 return; 26800 } 26801 inner_mp = ipsec_mp->b_cont; 26802 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26803 oipha = (ipha_t *)outer_mp->b_rptr; 26804 iipha = (ipha_t *)inner_mp->b_rptr; 26805 *oipha = *iipha; 26806 outer_mp->b_wptr += sizeof (ipha_t); 26807 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26808 sizeof (ipha_t)); 26809 oipha->ipha_protocol = IPPROTO_ENCAP; 26810 oipha->ipha_version_and_hdr_length = 26811 IP_SIMPLE_HDR_VERSION; 26812 oipha->ipha_hdr_checksum = 0; 26813 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26814 outer_mp->b_cont = inner_mp; 26815 ipsec_mp->b_cont = outer_mp; 26816 26817 io->ipsec_out_se_done = B_TRUE; 26818 io->ipsec_out_tunnel = B_TRUE; 26819 } 26820 26821 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26822 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26823 !ipsec_out_select_sa(ipsec_mp)) 26824 return; 26825 26826 /* 26827 * By now, we know what SA's to use. Toss over to ESP & AH 26828 * to do the heavy lifting. 26829 */ 26830 zoneid = io->ipsec_out_zoneid; 26831 ASSERT(zoneid != ALL_ZONES); 26832 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26833 ASSERT(io->ipsec_out_esp_sa != NULL); 26834 io->ipsec_out_esp_done = B_TRUE; 26835 /* 26836 * Note that since hw accel can only apply one transform, 26837 * not two, we skip hw accel for ESP if we also have AH 26838 * This is an design limitation of the interface 26839 * which should be revisited. 26840 */ 26841 ASSERT(ire != NULL); 26842 if (io->ipsec_out_ah_sa == NULL) { 26843 ill = (ill_t *)ire->ire_stq->q_ptr; 26844 ipsec_out_is_accelerated(ipsec_mp, 26845 io->ipsec_out_esp_sa, ill, ire); 26846 } 26847 26848 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26849 switch (ipsec_rc) { 26850 case IPSEC_STATUS_SUCCESS: 26851 break; 26852 case IPSEC_STATUS_FAILED: 26853 if (ill != NULL) { 26854 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26855 } else { 26856 BUMP_MIB(&ipst->ips_ip_mib, 26857 ipIfStatsOutDiscards); 26858 } 26859 /* FALLTHRU */ 26860 case IPSEC_STATUS_PENDING: 26861 return; 26862 } 26863 } 26864 26865 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26866 ASSERT(io->ipsec_out_ah_sa != NULL); 26867 io->ipsec_out_ah_done = B_TRUE; 26868 if (ire == NULL) { 26869 int idx = io->ipsec_out_capab_ill_index; 26870 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26871 NULL, NULL, NULL, NULL, ipst); 26872 ill_need_rele = B_TRUE; 26873 } else { 26874 ill = (ill_t *)ire->ire_stq->q_ptr; 26875 } 26876 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26877 ire); 26878 26879 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26880 switch (ipsec_rc) { 26881 case IPSEC_STATUS_SUCCESS: 26882 break; 26883 case IPSEC_STATUS_FAILED: 26884 if (ill != NULL) { 26885 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26886 } else { 26887 BUMP_MIB(&ipst->ips_ip_mib, 26888 ipIfStatsOutDiscards); 26889 } 26890 /* FALLTHRU */ 26891 case IPSEC_STATUS_PENDING: 26892 if (ill != NULL && ill_need_rele) 26893 ill_refrele(ill); 26894 return; 26895 } 26896 } 26897 /* 26898 * We are done with IPsec processing. Send it over 26899 * the wire. 26900 */ 26901 done: 26902 mp = ipsec_mp->b_cont; 26903 ipha = (ipha_t *)mp->b_rptr; 26904 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26905 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26906 } else { 26907 ip6h = (ip6_t *)ipha; 26908 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26909 } 26910 if (ill != NULL && ill_need_rele) 26911 ill_refrele(ill); 26912 } 26913 26914 /* ARGSUSED */ 26915 void 26916 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26917 { 26918 opt_restart_t *or; 26919 int err; 26920 conn_t *connp; 26921 26922 ASSERT(CONN_Q(q)); 26923 connp = Q_TO_CONN(q); 26924 26925 ASSERT(first_mp->b_datap->db_type == M_CTL); 26926 or = (opt_restart_t *)first_mp->b_rptr; 26927 /* 26928 * We don't need to pass any credentials here since this is just 26929 * a restart. The credentials are passed in when svr4_optcom_req 26930 * is called the first time (from ip_wput_nondata). 26931 */ 26932 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26933 err = svr4_optcom_req(q, first_mp, NULL, 26934 &ip_opt_obj, B_FALSE); 26935 } else { 26936 ASSERT(or->or_type == T_OPTMGMT_REQ); 26937 err = tpi_optcom_req(q, first_mp, NULL, 26938 &ip_opt_obj, B_FALSE); 26939 } 26940 if (err != EINPROGRESS) { 26941 /* operation is done */ 26942 CONN_OPER_PENDING_DONE(connp); 26943 } 26944 } 26945 26946 /* 26947 * ioctls that go through a down/up sequence may need to wait for the down 26948 * to complete. This involves waiting for the ire and ipif refcnts to go down 26949 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26950 */ 26951 /* ARGSUSED */ 26952 void 26953 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26954 { 26955 struct iocblk *iocp; 26956 mblk_t *mp1; 26957 ip_ioctl_cmd_t *ipip; 26958 int err; 26959 sin_t *sin; 26960 struct lifreq *lifr; 26961 struct ifreq *ifr; 26962 26963 iocp = (struct iocblk *)mp->b_rptr; 26964 ASSERT(ipsq != NULL); 26965 /* Existence of mp1 verified in ip_wput_nondata */ 26966 mp1 = mp->b_cont->b_cont; 26967 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26968 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26969 /* 26970 * Special case where ipsq_current_ipif is not set: 26971 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26972 * ill could also have become part of a ipmp group in the 26973 * process, we are here as were not able to complete the 26974 * operation in ipif_set_values because we could not become 26975 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26976 * will not be set so we need to set it. 26977 */ 26978 ill_t *ill = q->q_ptr; 26979 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26980 } 26981 ASSERT(ipsq->ipsq_current_ipif != NULL); 26982 26983 if (ipip->ipi_cmd_type == IF_CMD) { 26984 /* This a old style SIOC[GS]IF* command */ 26985 ifr = (struct ifreq *)mp1->b_rptr; 26986 sin = (sin_t *)&ifr->ifr_addr; 26987 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26988 /* This a new style SIOC[GS]LIF* command */ 26989 lifr = (struct lifreq *)mp1->b_rptr; 26990 sin = (sin_t *)&lifr->lifr_addr; 26991 } else { 26992 sin = NULL; 26993 } 26994 26995 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26996 ipip, mp1->b_rptr); 26997 26998 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26999 } 27000 27001 /* 27002 * ioctl processing 27003 * 27004 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27005 * the ioctl command in the ioctl tables, determines the copyin data size 27006 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27007 * 27008 * ioctl processing then continues when the M_IOCDATA makes its way down to 27009 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27010 * associated 'conn' is refheld till the end of the ioctl and the general 27011 * ioctl processing function ip_process_ioctl() is called to extract the 27012 * arguments and process the ioctl. To simplify extraction, ioctl commands 27013 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27014 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27015 * is used to extract the ioctl's arguments. 27016 * 27017 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27018 * so goes thru the serialization primitive ipsq_try_enter. Then the 27019 * appropriate function to handle the ioctl is called based on the entry in 27020 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27021 * which also refreleases the 'conn' that was refheld at the start of the 27022 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27023 * 27024 * Many exclusive ioctls go thru an internal down up sequence as part of 27025 * the operation. For example an attempt to change the IP address of an 27026 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27027 * does all the cleanup such as deleting all ires that use this address. 27028 * Then we need to wait till all references to the interface go away. 27029 */ 27030 void 27031 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27032 { 27033 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27034 ip_ioctl_cmd_t *ipip = arg; 27035 ip_extract_func_t *extract_funcp; 27036 cmd_info_t ci; 27037 int err; 27038 27039 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27040 27041 if (ipip == NULL) 27042 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27043 27044 /* 27045 * SIOCLIFADDIF needs to go thru a special path since the 27046 * ill may not exist yet. This happens in the case of lo0 27047 * which is created using this ioctl. 27048 */ 27049 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27050 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27051 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27052 return; 27053 } 27054 27055 ci.ci_ipif = NULL; 27056 if (ipip->ipi_cmd_type == MISC_CMD) { 27057 /* 27058 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27059 */ 27060 if (ipip->ipi_cmd == IF_UNITSEL) { 27061 /* ioctl comes down the ill */ 27062 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27063 ipif_refhold(ci.ci_ipif); 27064 } 27065 err = 0; 27066 ci.ci_sin = NULL; 27067 ci.ci_sin6 = NULL; 27068 ci.ci_lifr = NULL; 27069 } else { 27070 switch (ipip->ipi_cmd_type) { 27071 case IF_CMD: 27072 case LIF_CMD: 27073 extract_funcp = ip_extract_lifreq; 27074 break; 27075 27076 case ARP_CMD: 27077 case XARP_CMD: 27078 extract_funcp = ip_extract_arpreq; 27079 break; 27080 27081 case TUN_CMD: 27082 extract_funcp = ip_extract_tunreq; 27083 break; 27084 27085 case MSFILT_CMD: 27086 extract_funcp = ip_extract_msfilter; 27087 break; 27088 27089 default: 27090 ASSERT(0); 27091 } 27092 27093 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27094 if (err != 0) { 27095 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27096 return; 27097 } 27098 27099 /* 27100 * All of the extraction functions return a refheld ipif. 27101 */ 27102 ASSERT(ci.ci_ipif != NULL); 27103 } 27104 27105 if (!(ipip->ipi_flags & IPI_WR)) { 27106 /* 27107 * A return value of EINPROGRESS means the ioctl is 27108 * either queued and waiting for some reason or has 27109 * already completed. 27110 */ 27111 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27112 ci.ci_lifr); 27113 if (ci.ci_ipif != NULL) 27114 ipif_refrele(ci.ci_ipif); 27115 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27116 return; 27117 } 27118 27119 /* 27120 * If ipsq is non-null, we are already being called exclusively on an 27121 * ill but in the case of a failover in progress it is the "from" ill, 27122 * rather than the "to" ill (which is the ill ptr passed in). 27123 * In order to ensure we are exclusive on both ILLs we rerun 27124 * ipsq_try_enter() here, ipsq's support recursive entry. 27125 */ 27126 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27127 ASSERT(ci.ci_ipif != NULL); 27128 27129 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27130 NEW_OP, B_TRUE); 27131 27132 /* 27133 * Release the ipif so that ipif_down and friends that wait for 27134 * references to go away are not misled about the current ipif_refcnt 27135 * values. We are writer so we can access the ipif even after releasing 27136 * the ipif. 27137 */ 27138 ipif_refrele(ci.ci_ipif); 27139 if (ipsq == NULL) 27140 return; 27141 27142 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27143 27144 /* 27145 * For most set ioctls that come here, this serves as a single point 27146 * where we set the IPIF_CHANGING flag. This ensures that there won't 27147 * be any new references to the ipif. This helps functions that go 27148 * through this path and end up trying to wait for the refcnts 27149 * associated with the ipif to go down to zero. Some exceptions are 27150 * Failover, Failback, and Groupname commands that operate on more than 27151 * just the ci.ci_ipif. These commands internally determine the 27152 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27153 * flags on that set. Another exception is the Removeif command that 27154 * sets the IPIF_CONDEMNED flag internally after identifying the right 27155 * ipif to operate on. 27156 */ 27157 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27158 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27159 ipip->ipi_cmd != SIOCLIFFAILOVER && 27160 ipip->ipi_cmd != SIOCLIFFAILBACK && 27161 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27162 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27163 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27164 27165 /* 27166 * A return value of EINPROGRESS means the ioctl is 27167 * either queued and waiting for some reason or has 27168 * already completed. 27169 */ 27170 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27171 27172 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27173 27174 ipsq_exit(ipsq); 27175 } 27176 27177 /* 27178 * Complete the ioctl. Typically ioctls use the mi package and need to 27179 * do mi_copyout/mi_copy_done. 27180 */ 27181 void 27182 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27183 { 27184 conn_t *connp = NULL; 27185 27186 if (err == EINPROGRESS) 27187 return; 27188 27189 if (CONN_Q(q)) { 27190 connp = Q_TO_CONN(q); 27191 ASSERT(connp->conn_ref >= 2); 27192 } 27193 27194 switch (mode) { 27195 case COPYOUT: 27196 if (err == 0) 27197 mi_copyout(q, mp); 27198 else 27199 mi_copy_done(q, mp, err); 27200 break; 27201 27202 case NO_COPYOUT: 27203 mi_copy_done(q, mp, err); 27204 break; 27205 27206 default: 27207 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27208 break; 27209 } 27210 27211 /* 27212 * The refhold placed at the start of the ioctl is released here. 27213 */ 27214 if (connp != NULL) 27215 CONN_OPER_PENDING_DONE(connp); 27216 27217 if (ipsq != NULL) 27218 ipsq_current_finish(ipsq); 27219 } 27220 27221 /* 27222 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27223 */ 27224 /* ARGSUSED */ 27225 void 27226 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27227 { 27228 conn_t *connp = arg; 27229 tcp_t *tcp; 27230 27231 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27232 tcp = connp->conn_tcp; 27233 27234 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27235 freemsg(mp); 27236 else 27237 tcp_rput_other(tcp, mp); 27238 CONN_OPER_PENDING_DONE(connp); 27239 } 27240 27241 /* Called from ip_wput for all non data messages */ 27242 /* ARGSUSED */ 27243 void 27244 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27245 { 27246 mblk_t *mp1; 27247 ire_t *ire, *fake_ire; 27248 ill_t *ill; 27249 struct iocblk *iocp; 27250 ip_ioctl_cmd_t *ipip; 27251 cred_t *cr; 27252 conn_t *connp; 27253 int err; 27254 nce_t *nce; 27255 ipif_t *ipif; 27256 ip_stack_t *ipst; 27257 char *proto_str; 27258 27259 if (CONN_Q(q)) { 27260 connp = Q_TO_CONN(q); 27261 ipst = connp->conn_netstack->netstack_ip; 27262 } else { 27263 connp = NULL; 27264 ipst = ILLQ_TO_IPST(q); 27265 } 27266 27267 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27268 27269 switch (DB_TYPE(mp)) { 27270 case M_IOCTL: 27271 /* 27272 * IOCTL processing begins in ip_sioctl_copyin_setup which 27273 * will arrange to copy in associated control structures. 27274 */ 27275 ip_sioctl_copyin_setup(q, mp); 27276 return; 27277 case M_IOCDATA: 27278 /* 27279 * Ensure that this is associated with one of our trans- 27280 * parent ioctls. If it's not ours, discard it if we're 27281 * running as a driver, or pass it on if we're a module. 27282 */ 27283 iocp = (struct iocblk *)mp->b_rptr; 27284 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27285 if (ipip == NULL) { 27286 if (q->q_next == NULL) { 27287 goto nak; 27288 } else { 27289 putnext(q, mp); 27290 } 27291 return; 27292 } 27293 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27294 /* 27295 * the ioctl is one we recognise, but is not 27296 * consumed by IP as a module, pass M_IOCDATA 27297 * for processing downstream, but only for 27298 * common Streams ioctls. 27299 */ 27300 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27301 putnext(q, mp); 27302 return; 27303 } else { 27304 goto nak; 27305 } 27306 } 27307 27308 /* IOCTL continuation following copyin or copyout. */ 27309 if (mi_copy_state(q, mp, NULL) == -1) { 27310 /* 27311 * The copy operation failed. mi_copy_state already 27312 * cleaned up, so we're out of here. 27313 */ 27314 return; 27315 } 27316 /* 27317 * If we just completed a copy in, we become writer and 27318 * continue processing in ip_sioctl_copyin_done. If it 27319 * was a copy out, we call mi_copyout again. If there is 27320 * nothing more to copy out, it will complete the IOCTL. 27321 */ 27322 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27323 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27324 mi_copy_done(q, mp, EPROTO); 27325 return; 27326 } 27327 /* 27328 * Check for cases that need more copying. A return 27329 * value of 0 means a second copyin has been started, 27330 * so we return; a return value of 1 means no more 27331 * copying is needed, so we continue. 27332 */ 27333 if (ipip->ipi_cmd_type == MSFILT_CMD && 27334 MI_COPY_COUNT(mp) == 1) { 27335 if (ip_copyin_msfilter(q, mp) == 0) 27336 return; 27337 } 27338 /* 27339 * Refhold the conn, till the ioctl completes. This is 27340 * needed in case the ioctl ends up in the pending mp 27341 * list. Every mp in the ill_pending_mp list and 27342 * the ipsq_pending_mp must have a refhold on the conn 27343 * to resume processing. The refhold is released when 27344 * the ioctl completes. (normally or abnormally) 27345 * In all cases ip_ioctl_finish is called to finish 27346 * the ioctl. 27347 */ 27348 if (connp != NULL) { 27349 /* This is not a reentry */ 27350 ASSERT(ipsq == NULL); 27351 CONN_INC_REF(connp); 27352 } else { 27353 if (!(ipip->ipi_flags & IPI_MODOK)) { 27354 mi_copy_done(q, mp, EINVAL); 27355 return; 27356 } 27357 } 27358 27359 ip_process_ioctl(ipsq, q, mp, ipip); 27360 27361 } else { 27362 mi_copyout(q, mp); 27363 } 27364 return; 27365 nak: 27366 iocp->ioc_error = EINVAL; 27367 mp->b_datap->db_type = M_IOCNAK; 27368 iocp->ioc_count = 0; 27369 qreply(q, mp); 27370 return; 27371 27372 case M_IOCNAK: 27373 /* 27374 * The only way we could get here is if a resolver didn't like 27375 * an IOCTL we sent it. This shouldn't happen. 27376 */ 27377 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27378 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27379 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27380 freemsg(mp); 27381 return; 27382 case M_IOCACK: 27383 /* /dev/ip shouldn't see this */ 27384 if (CONN_Q(q)) 27385 goto nak; 27386 27387 /* Finish socket ioctls passed through to ARP. */ 27388 ip_sioctl_iocack(q, mp); 27389 return; 27390 case M_FLUSH: 27391 if (*mp->b_rptr & FLUSHW) 27392 flushq(q, FLUSHALL); 27393 if (q->q_next) { 27394 putnext(q, mp); 27395 return; 27396 } 27397 if (*mp->b_rptr & FLUSHR) { 27398 *mp->b_rptr &= ~FLUSHW; 27399 qreply(q, mp); 27400 return; 27401 } 27402 freemsg(mp); 27403 return; 27404 case IRE_DB_REQ_TYPE: 27405 if (connp == NULL) { 27406 proto_str = "IRE_DB_REQ_TYPE"; 27407 goto protonak; 27408 } 27409 /* An Upper Level Protocol wants a copy of an IRE. */ 27410 ip_ire_req(q, mp); 27411 return; 27412 case M_CTL: 27413 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27414 break; 27415 27416 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27417 TUN_HELLO) { 27418 ASSERT(connp != NULL); 27419 connp->conn_flags |= IPCL_IPTUN; 27420 freeb(mp); 27421 return; 27422 } 27423 27424 /* M_CTL messages are used by ARP to tell us things. */ 27425 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27426 break; 27427 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27428 case AR_ENTRY_SQUERY: 27429 ip_wput_ctl(q, mp); 27430 return; 27431 case AR_CLIENT_NOTIFY: 27432 ip_arp_news(q, mp); 27433 return; 27434 case AR_DLPIOP_DONE: 27435 ASSERT(q->q_next != NULL); 27436 ill = (ill_t *)q->q_ptr; 27437 /* qwriter_ip releases the refhold */ 27438 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27439 ill_refhold(ill); 27440 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27441 return; 27442 case AR_ARP_CLOSING: 27443 /* 27444 * ARP (above us) is closing. If no ARP bringup is 27445 * currently pending, ack the message so that ARP 27446 * can complete its close. Also mark ill_arp_closing 27447 * so that new ARP bringups will fail. If any 27448 * ARP bringup is currently in progress, we will 27449 * ack this when the current ARP bringup completes. 27450 */ 27451 ASSERT(q->q_next != NULL); 27452 ill = (ill_t *)q->q_ptr; 27453 mutex_enter(&ill->ill_lock); 27454 ill->ill_arp_closing = 1; 27455 if (!ill->ill_arp_bringup_pending) { 27456 mutex_exit(&ill->ill_lock); 27457 qreply(q, mp); 27458 } else { 27459 mutex_exit(&ill->ill_lock); 27460 freemsg(mp); 27461 } 27462 return; 27463 case AR_ARP_EXTEND: 27464 /* 27465 * The ARP module above us is capable of duplicate 27466 * address detection. Old ATM drivers will not send 27467 * this message. 27468 */ 27469 ASSERT(q->q_next != NULL); 27470 ill = (ill_t *)q->q_ptr; 27471 ill->ill_arp_extend = B_TRUE; 27472 freemsg(mp); 27473 return; 27474 default: 27475 break; 27476 } 27477 break; 27478 case M_PROTO: 27479 case M_PCPROTO: 27480 /* 27481 * The only PROTO messages we expect are ULP binds and 27482 * copies of option negotiation acknowledgements. 27483 */ 27484 switch (((union T_primitives *)mp->b_rptr)->type) { 27485 case O_T_BIND_REQ: 27486 case T_BIND_REQ: { 27487 /* Request can get queued in bind */ 27488 if (connp == NULL) { 27489 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27490 goto protonak; 27491 } 27492 /* 27493 * The transports except SCTP call ip_bind_{v4,v6}() 27494 * directly instead of a a putnext. SCTP doesn't 27495 * generate any T_BIND_REQ since it has its own 27496 * fanout data structures. However, ESP and AH 27497 * come in for regular binds; all other cases are 27498 * bind retries. 27499 */ 27500 ASSERT(!IPCL_IS_SCTP(connp)); 27501 27502 /* Don't increment refcnt if this is a re-entry */ 27503 if (ipsq == NULL) 27504 CONN_INC_REF(connp); 27505 27506 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27507 connp, NULL) : ip_bind_v4(q, mp, connp); 27508 if (mp == NULL) 27509 return; 27510 if (IPCL_IS_TCP(connp)) { 27511 /* 27512 * In the case of TCP endpoint we 27513 * come here only for bind retries 27514 */ 27515 ASSERT(ipsq != NULL); 27516 CONN_INC_REF(connp); 27517 squeue_fill(connp->conn_sqp, mp, 27518 ip_resume_tcp_bind, connp, 27519 SQTAG_BIND_RETRY); 27520 } else if (IPCL_IS_UDP(connp)) { 27521 /* 27522 * In the case of UDP endpoint we 27523 * come here only for bind retries 27524 */ 27525 ASSERT(ipsq != NULL); 27526 udp_resume_bind(connp, mp); 27527 } else if (IPCL_IS_RAWIP(connp)) { 27528 /* 27529 * In the case of RAWIP endpoint we 27530 * come here only for bind retries 27531 */ 27532 ASSERT(ipsq != NULL); 27533 rawip_resume_bind(connp, mp); 27534 } else { 27535 /* The case of AH and ESP */ 27536 qreply(q, mp); 27537 CONN_OPER_PENDING_DONE(connp); 27538 } 27539 return; 27540 } 27541 case T_SVR4_OPTMGMT_REQ: 27542 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27543 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27544 27545 if (connp == NULL) { 27546 proto_str = "T_SVR4_OPTMGMT_REQ"; 27547 goto protonak; 27548 } 27549 27550 if (!snmpcom_req(q, mp, ip_snmp_set, 27551 ip_snmp_get, cr)) { 27552 /* 27553 * Call svr4_optcom_req so that it can 27554 * generate the ack. We don't come here 27555 * if this operation is being restarted. 27556 * ip_restart_optmgmt will drop the conn ref. 27557 * In the case of ipsec option after the ipsec 27558 * load is complete conn_restart_ipsec_waiter 27559 * drops the conn ref. 27560 */ 27561 ASSERT(ipsq == NULL); 27562 CONN_INC_REF(connp); 27563 if (ip_check_for_ipsec_opt(q, mp)) 27564 return; 27565 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27566 B_FALSE); 27567 if (err != EINPROGRESS) { 27568 /* Operation is done */ 27569 CONN_OPER_PENDING_DONE(connp); 27570 } 27571 } 27572 return; 27573 case T_OPTMGMT_REQ: 27574 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27575 /* 27576 * Note: No snmpcom_req support through new 27577 * T_OPTMGMT_REQ. 27578 * Call tpi_optcom_req so that it can 27579 * generate the ack. 27580 */ 27581 if (connp == NULL) { 27582 proto_str = "T_OPTMGMT_REQ"; 27583 goto protonak; 27584 } 27585 27586 ASSERT(ipsq == NULL); 27587 /* 27588 * We don't come here for restart. ip_restart_optmgmt 27589 * will drop the conn ref. In the case of ipsec option 27590 * after the ipsec load is complete 27591 * conn_restart_ipsec_waiter drops the conn ref. 27592 */ 27593 CONN_INC_REF(connp); 27594 if (ip_check_for_ipsec_opt(q, mp)) 27595 return; 27596 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27597 if (err != EINPROGRESS) { 27598 /* Operation is done */ 27599 CONN_OPER_PENDING_DONE(connp); 27600 } 27601 return; 27602 case T_UNBIND_REQ: 27603 if (connp == NULL) { 27604 proto_str = "T_UNBIND_REQ"; 27605 goto protonak; 27606 } 27607 mp = ip_unbind(q, mp); 27608 qreply(q, mp); 27609 return; 27610 default: 27611 /* 27612 * Have to drop any DLPI messages coming down from 27613 * arp (such as an info_req which would cause ip 27614 * to receive an extra info_ack if it was passed 27615 * through. 27616 */ 27617 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27618 (int)*(uint_t *)mp->b_rptr)); 27619 freemsg(mp); 27620 return; 27621 } 27622 /* NOTREACHED */ 27623 case IRE_DB_TYPE: { 27624 nce_t *nce; 27625 ill_t *ill; 27626 in6_addr_t gw_addr_v6; 27627 27628 27629 /* 27630 * This is a response back from a resolver. It 27631 * consists of a message chain containing: 27632 * IRE_MBLK-->LL_HDR_MBLK->pkt 27633 * The IRE_MBLK is the one we allocated in ip_newroute. 27634 * The LL_HDR_MBLK is the DLPI header to use to get 27635 * the attached packet, and subsequent ones for the 27636 * same destination, transmitted. 27637 */ 27638 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27639 break; 27640 /* 27641 * First, check to make sure the resolution succeeded. 27642 * If it failed, the second mblk will be empty. 27643 * If it is, free the chain, dropping the packet. 27644 * (We must ire_delete the ire; that frees the ire mblk) 27645 * We're doing this now to support PVCs for ATM; it's 27646 * a partial xresolv implementation. When we fully implement 27647 * xresolv interfaces, instead of freeing everything here 27648 * we'll initiate neighbor discovery. 27649 * 27650 * For v4 (ARP and other external resolvers) the resolver 27651 * frees the message, so no check is needed. This check 27652 * is required, though, for a full xresolve implementation. 27653 * Including this code here now both shows how external 27654 * resolvers can NACK a resolution request using an 27655 * existing design that has no specific provisions for NACKs, 27656 * and also takes into account that the current non-ARP 27657 * external resolver has been coded to use this method of 27658 * NACKing for all IPv6 (xresolv) cases, 27659 * whether our xresolv implementation is complete or not. 27660 * 27661 */ 27662 ire = (ire_t *)mp->b_rptr; 27663 ill = ire_to_ill(ire); 27664 mp1 = mp->b_cont; /* dl_unitdata_req */ 27665 if (mp1->b_rptr == mp1->b_wptr) { 27666 if (ire->ire_ipversion == IPV6_VERSION) { 27667 /* 27668 * XRESOLV interface. 27669 */ 27670 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27671 mutex_enter(&ire->ire_lock); 27672 gw_addr_v6 = ire->ire_gateway_addr_v6; 27673 mutex_exit(&ire->ire_lock); 27674 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27675 nce = ndp_lookup_v6(ill, 27676 &ire->ire_addr_v6, B_FALSE); 27677 } else { 27678 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27679 B_FALSE); 27680 } 27681 if (nce != NULL) { 27682 nce_resolv_failed(nce); 27683 ndp_delete(nce); 27684 NCE_REFRELE(nce); 27685 } 27686 } 27687 mp->b_cont = NULL; 27688 freemsg(mp1); /* frees the pkt as well */ 27689 ASSERT(ire->ire_nce == NULL); 27690 ire_delete((ire_t *)mp->b_rptr); 27691 return; 27692 } 27693 27694 /* 27695 * Split them into IRE_MBLK and pkt and feed it into 27696 * ire_add_then_send. Then in ire_add_then_send 27697 * the IRE will be added, and then the packet will be 27698 * run back through ip_wput. This time it will make 27699 * it to the wire. 27700 */ 27701 mp->b_cont = NULL; 27702 mp = mp1->b_cont; /* now, mp points to pkt */ 27703 mp1->b_cont = NULL; 27704 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27705 if (ire->ire_ipversion == IPV6_VERSION) { 27706 /* 27707 * XRESOLV interface. Find the nce and put a copy 27708 * of the dl_unitdata_req in nce_res_mp 27709 */ 27710 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27711 mutex_enter(&ire->ire_lock); 27712 gw_addr_v6 = ire->ire_gateway_addr_v6; 27713 mutex_exit(&ire->ire_lock); 27714 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27715 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27716 B_FALSE); 27717 } else { 27718 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27719 } 27720 if (nce != NULL) { 27721 /* 27722 * We have to protect nce_res_mp here 27723 * from being accessed by other threads 27724 * while we change the mblk pointer. 27725 * Other functions will also lock the nce when 27726 * accessing nce_res_mp. 27727 * 27728 * The reason we change the mblk pointer 27729 * here rather than copying the resolved address 27730 * into the template is that, unlike with 27731 * ethernet, we have no guarantee that the 27732 * resolved address length will be 27733 * smaller than or equal to the lla length 27734 * with which the template was allocated, 27735 * (for ethernet, they're equal) 27736 * so we have to use the actual resolved 27737 * address mblk - which holds the real 27738 * dl_unitdata_req with the resolved address. 27739 * 27740 * Doing this is the same behavior as was 27741 * previously used in the v4 ARP case. 27742 */ 27743 mutex_enter(&nce->nce_lock); 27744 if (nce->nce_res_mp != NULL) 27745 freemsg(nce->nce_res_mp); 27746 nce->nce_res_mp = mp1; 27747 mutex_exit(&nce->nce_lock); 27748 /* 27749 * We do a fastpath probe here because 27750 * we have resolved the address without 27751 * using Neighbor Discovery. 27752 * In the non-XRESOLV v6 case, the fastpath 27753 * probe is done right after neighbor 27754 * discovery completes. 27755 */ 27756 if (nce->nce_res_mp != NULL) { 27757 int res; 27758 nce_fastpath_list_add(nce); 27759 res = ill_fastpath_probe(ill, 27760 nce->nce_res_mp); 27761 if (res != 0 && res != EAGAIN) 27762 nce_fastpath_list_delete(nce); 27763 } 27764 27765 ire_add_then_send(q, ire, mp); 27766 /* 27767 * Now we have to clean out any packets 27768 * that may have been queued on the nce 27769 * while it was waiting for address resolution 27770 * to complete. 27771 */ 27772 mutex_enter(&nce->nce_lock); 27773 mp1 = nce->nce_qd_mp; 27774 nce->nce_qd_mp = NULL; 27775 mutex_exit(&nce->nce_lock); 27776 while (mp1 != NULL) { 27777 mblk_t *nxt_mp; 27778 queue_t *fwdq = NULL; 27779 ill_t *inbound_ill; 27780 uint_t ifindex; 27781 27782 nxt_mp = mp1->b_next; 27783 mp1->b_next = NULL; 27784 /* 27785 * Retrieve ifindex stored in 27786 * ip_rput_data_v6() 27787 */ 27788 ifindex = 27789 (uint_t)(uintptr_t)mp1->b_prev; 27790 inbound_ill = 27791 ill_lookup_on_ifindex(ifindex, 27792 B_TRUE, NULL, NULL, NULL, 27793 NULL, ipst); 27794 mp1->b_prev = NULL; 27795 if (inbound_ill != NULL) 27796 fwdq = inbound_ill->ill_rq; 27797 27798 if (fwdq != NULL) { 27799 put(fwdq, mp1); 27800 ill_refrele(inbound_ill); 27801 } else 27802 put(WR(ill->ill_rq), mp1); 27803 mp1 = nxt_mp; 27804 } 27805 NCE_REFRELE(nce); 27806 } else { /* nce is NULL; clean up */ 27807 ire_delete(ire); 27808 freemsg(mp); 27809 freemsg(mp1); 27810 return; 27811 } 27812 } else { 27813 nce_t *arpce; 27814 /* 27815 * Link layer resolution succeeded. Recompute the 27816 * ire_nce. 27817 */ 27818 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27819 if ((arpce = ndp_lookup_v4(ill, 27820 (ire->ire_gateway_addr != INADDR_ANY ? 27821 &ire->ire_gateway_addr : &ire->ire_addr), 27822 B_FALSE)) == NULL) { 27823 freeb(ire->ire_mp); 27824 freeb(mp1); 27825 freemsg(mp); 27826 return; 27827 } 27828 mutex_enter(&arpce->nce_lock); 27829 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27830 if (arpce->nce_state == ND_REACHABLE) { 27831 /* 27832 * Someone resolved this before us; 27833 * cleanup the res_mp. Since ire has 27834 * not been added yet, the call to ire_add_v4 27835 * from ire_add_then_send (when a dup is 27836 * detected) will clean up the ire. 27837 */ 27838 freeb(mp1); 27839 } else { 27840 ASSERT(arpce->nce_res_mp == NULL); 27841 arpce->nce_res_mp = mp1; 27842 arpce->nce_state = ND_REACHABLE; 27843 } 27844 mutex_exit(&arpce->nce_lock); 27845 if (ire->ire_marks & IRE_MARK_NOADD) { 27846 /* 27847 * this ire will not be added to the ire 27848 * cache table, so we can set the ire_nce 27849 * here, as there are no atomicity constraints. 27850 */ 27851 ire->ire_nce = arpce; 27852 /* 27853 * We are associating this nce with the ire 27854 * so change the nce ref taken in 27855 * ndp_lookup_v4() from 27856 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27857 */ 27858 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27859 } else { 27860 NCE_REFRELE(arpce); 27861 } 27862 ire_add_then_send(q, ire, mp); 27863 } 27864 return; /* All is well, the packet has been sent. */ 27865 } 27866 case IRE_ARPRESOLVE_TYPE: { 27867 27868 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27869 break; 27870 mp1 = mp->b_cont; /* dl_unitdata_req */ 27871 mp->b_cont = NULL; 27872 /* 27873 * First, check to make sure the resolution succeeded. 27874 * If it failed, the second mblk will be empty. 27875 */ 27876 if (mp1->b_rptr == mp1->b_wptr) { 27877 /* cleanup the incomplete ire, free queued packets */ 27878 freemsg(mp); /* fake ire */ 27879 freeb(mp1); /* dl_unitdata response */ 27880 return; 27881 } 27882 27883 /* 27884 * update any incomplete nce_t found. we lookup the ctable 27885 * and find the nce from the ire->ire_nce because we need 27886 * to pass the ire to ip_xmit_v4 later, and can find both 27887 * ire and nce in one lookup from the ctable. 27888 */ 27889 fake_ire = (ire_t *)mp->b_rptr; 27890 /* 27891 * By the time we come back here from ARP 27892 * the logical outgoing interface of the incomplete ire 27893 * we added in ire_forward could have disappeared, 27894 * causing the incomplete ire to also have 27895 * dissapeared. So we need to retreive the 27896 * proper ipif for the ire before looking 27897 * in ctable; do the ctablelookup based on ire_ipif_seqid 27898 */ 27899 ill = q->q_ptr; 27900 27901 /* Get the outgoing ipif */ 27902 mutex_enter(&ill->ill_lock); 27903 if (ill->ill_state_flags & ILL_CONDEMNED) { 27904 mutex_exit(&ill->ill_lock); 27905 freemsg(mp); /* fake ire */ 27906 freeb(mp1); /* dl_unitdata response */ 27907 return; 27908 } 27909 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27910 27911 if (ipif == NULL) { 27912 mutex_exit(&ill->ill_lock); 27913 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27914 freemsg(mp); 27915 freeb(mp1); 27916 return; 27917 } 27918 ipif_refhold_locked(ipif); 27919 mutex_exit(&ill->ill_lock); 27920 ire = ire_ctable_lookup(fake_ire->ire_addr, 27921 fake_ire->ire_gateway_addr, IRE_CACHE, 27922 ipif, fake_ire->ire_zoneid, NULL, 27923 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY| 27924 MATCH_IRE_TYPE), ipst); 27925 ipif_refrele(ipif); 27926 if (ire == NULL) { 27927 /* 27928 * no ire was found; check if there is an nce 27929 * for this lookup; if it has no ire's pointing at it 27930 * cleanup. 27931 */ 27932 if ((nce = ndp_lookup_v4(ill, 27933 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27934 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27935 B_FALSE)) != NULL) { 27936 /* 27937 * cleanup: 27938 * We check for refcnt 2 (one for the nce 27939 * hash list + 1 for the ref taken by 27940 * ndp_lookup_v4) to check that there are 27941 * no ire's pointing at the nce. 27942 */ 27943 if (nce->nce_refcnt == 2) 27944 ndp_delete(nce); 27945 NCE_REFRELE(nce); 27946 } 27947 freeb(mp1); /* dl_unitdata response */ 27948 freemsg(mp); /* fake ire */ 27949 return; 27950 } 27951 nce = ire->ire_nce; 27952 DTRACE_PROBE2(ire__arpresolve__type, 27953 ire_t *, ire, nce_t *, nce); 27954 ASSERT(nce->nce_state != ND_INITIAL); 27955 mutex_enter(&nce->nce_lock); 27956 nce->nce_last = TICK_TO_MSEC(lbolt64); 27957 if (nce->nce_state == ND_REACHABLE) { 27958 /* 27959 * Someone resolved this before us; 27960 * our response is not needed any more. 27961 */ 27962 mutex_exit(&nce->nce_lock); 27963 freeb(mp1); /* dl_unitdata response */ 27964 } else { 27965 ASSERT(nce->nce_res_mp == NULL); 27966 nce->nce_res_mp = mp1; 27967 nce->nce_state = ND_REACHABLE; 27968 mutex_exit(&nce->nce_lock); 27969 nce_fastpath(nce); 27970 } 27971 /* 27972 * The cached nce_t has been updated to be reachable; 27973 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27974 */ 27975 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27976 freemsg(mp); 27977 /* 27978 * send out queued packets. 27979 */ 27980 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27981 27982 IRE_REFRELE(ire); 27983 return; 27984 } 27985 default: 27986 break; 27987 } 27988 if (q->q_next) { 27989 putnext(q, mp); 27990 } else 27991 freemsg(mp); 27992 return; 27993 27994 protonak: 27995 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27996 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27997 qreply(q, mp); 27998 } 27999 28000 /* 28001 * Process IP options in an outbound packet. Modify the destination if there 28002 * is a source route option. 28003 * Returns non-zero if something fails in which case an ICMP error has been 28004 * sent and mp freed. 28005 */ 28006 static int 28007 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28008 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28009 { 28010 ipoptp_t opts; 28011 uchar_t *opt; 28012 uint8_t optval; 28013 uint8_t optlen; 28014 ipaddr_t dst; 28015 intptr_t code = 0; 28016 mblk_t *mp; 28017 ire_t *ire = NULL; 28018 28019 ip2dbg(("ip_wput_options\n")); 28020 mp = ipsec_mp; 28021 if (mctl_present) { 28022 mp = ipsec_mp->b_cont; 28023 } 28024 28025 dst = ipha->ipha_dst; 28026 for (optval = ipoptp_first(&opts, ipha); 28027 optval != IPOPT_EOL; 28028 optval = ipoptp_next(&opts)) { 28029 opt = opts.ipoptp_cur; 28030 optlen = opts.ipoptp_len; 28031 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28032 optval, optlen)); 28033 switch (optval) { 28034 uint32_t off; 28035 case IPOPT_SSRR: 28036 case IPOPT_LSRR: 28037 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28038 ip1dbg(( 28039 "ip_wput_options: bad option offset\n")); 28040 code = (char *)&opt[IPOPT_OLEN] - 28041 (char *)ipha; 28042 goto param_prob; 28043 } 28044 off = opt[IPOPT_OFFSET]; 28045 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28046 ntohl(dst))); 28047 /* 28048 * For strict: verify that dst is directly 28049 * reachable. 28050 */ 28051 if (optval == IPOPT_SSRR) { 28052 ire = ire_ftable_lookup(dst, 0, 0, 28053 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28054 MBLK_GETLABEL(mp), 28055 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28056 if (ire == NULL) { 28057 ip1dbg(("ip_wput_options: SSRR not" 28058 " directly reachable: 0x%x\n", 28059 ntohl(dst))); 28060 goto bad_src_route; 28061 } 28062 ire_refrele(ire); 28063 } 28064 break; 28065 case IPOPT_RR: 28066 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28067 ip1dbg(( 28068 "ip_wput_options: bad option offset\n")); 28069 code = (char *)&opt[IPOPT_OLEN] - 28070 (char *)ipha; 28071 goto param_prob; 28072 } 28073 break; 28074 case IPOPT_TS: 28075 /* 28076 * Verify that length >=5 and that there is either 28077 * room for another timestamp or that the overflow 28078 * counter is not maxed out. 28079 */ 28080 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28081 if (optlen < IPOPT_MINLEN_IT) { 28082 goto param_prob; 28083 } 28084 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28085 ip1dbg(( 28086 "ip_wput_options: bad option offset\n")); 28087 code = (char *)&opt[IPOPT_OFFSET] - 28088 (char *)ipha; 28089 goto param_prob; 28090 } 28091 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28092 case IPOPT_TS_TSONLY: 28093 off = IPOPT_TS_TIMELEN; 28094 break; 28095 case IPOPT_TS_TSANDADDR: 28096 case IPOPT_TS_PRESPEC: 28097 case IPOPT_TS_PRESPEC_RFC791: 28098 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28099 break; 28100 default: 28101 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28102 (char *)ipha; 28103 goto param_prob; 28104 } 28105 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28106 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28107 /* 28108 * No room and the overflow counter is 15 28109 * already. 28110 */ 28111 goto param_prob; 28112 } 28113 break; 28114 } 28115 } 28116 28117 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28118 return (0); 28119 28120 ip1dbg(("ip_wput_options: error processing IP options.")); 28121 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28122 28123 param_prob: 28124 /* 28125 * Since ip_wput() isn't close to finished, we fill 28126 * in enough of the header for credible error reporting. 28127 */ 28128 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28129 /* Failed */ 28130 freemsg(ipsec_mp); 28131 return (-1); 28132 } 28133 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28134 return (-1); 28135 28136 bad_src_route: 28137 /* 28138 * Since ip_wput() isn't close to finished, we fill 28139 * in enough of the header for credible error reporting. 28140 */ 28141 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28142 /* Failed */ 28143 freemsg(ipsec_mp); 28144 return (-1); 28145 } 28146 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28147 return (-1); 28148 } 28149 28150 /* 28151 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28152 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28153 * thru /etc/system. 28154 */ 28155 #define CONN_MAXDRAINCNT 64 28156 28157 static void 28158 conn_drain_init(ip_stack_t *ipst) 28159 { 28160 int i; 28161 28162 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28163 28164 if ((ipst->ips_conn_drain_list_cnt == 0) || 28165 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28166 /* 28167 * Default value of the number of drainers is the 28168 * number of cpus, subject to maximum of 8 drainers. 28169 */ 28170 if (boot_max_ncpus != -1) 28171 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28172 else 28173 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28174 } 28175 28176 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28177 sizeof (idl_t), KM_SLEEP); 28178 28179 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28180 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28181 MUTEX_DEFAULT, NULL); 28182 } 28183 } 28184 28185 static void 28186 conn_drain_fini(ip_stack_t *ipst) 28187 { 28188 int i; 28189 28190 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28191 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28192 kmem_free(ipst->ips_conn_drain_list, 28193 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28194 ipst->ips_conn_drain_list = NULL; 28195 } 28196 28197 /* 28198 * Note: For an overview of how flowcontrol is handled in IP please see the 28199 * IP Flowcontrol notes at the top of this file. 28200 * 28201 * Flow control has blocked us from proceeding. Insert the given conn in one 28202 * of the conn drain lists. These conn wq's will be qenabled later on when 28203 * STREAMS flow control does a backenable. conn_walk_drain will enable 28204 * the first conn in each of these drain lists. Each of these qenabled conns 28205 * in turn enables the next in the list, after it runs, or when it closes, 28206 * thus sustaining the drain process. 28207 * 28208 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28209 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28210 * running at any time, on a given conn, since there can be only 1 service proc 28211 * running on a queue at any time. 28212 */ 28213 void 28214 conn_drain_insert(conn_t *connp) 28215 { 28216 idl_t *idl; 28217 uint_t index; 28218 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28219 28220 mutex_enter(&connp->conn_lock); 28221 if (connp->conn_state_flags & CONN_CLOSING) { 28222 /* 28223 * The conn is closing as a result of which CONN_CLOSING 28224 * is set. Return. 28225 */ 28226 mutex_exit(&connp->conn_lock); 28227 return; 28228 } else if (connp->conn_idl == NULL) { 28229 /* 28230 * Assign the next drain list round robin. We dont' use 28231 * a lock, and thus it may not be strictly round robin. 28232 * Atomicity of load/stores is enough to make sure that 28233 * conn_drain_list_index is always within bounds. 28234 */ 28235 index = ipst->ips_conn_drain_list_index; 28236 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28237 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28238 index++; 28239 if (index == ipst->ips_conn_drain_list_cnt) 28240 index = 0; 28241 ipst->ips_conn_drain_list_index = index; 28242 } 28243 mutex_exit(&connp->conn_lock); 28244 28245 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28246 if ((connp->conn_drain_prev != NULL) || 28247 (connp->conn_state_flags & CONN_CLOSING)) { 28248 /* 28249 * The conn is already in the drain list, OR 28250 * the conn is closing. We need to check again for 28251 * the closing case again since close can happen 28252 * after we drop the conn_lock, and before we 28253 * acquire the CONN_DRAIN_LIST_LOCK. 28254 */ 28255 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28256 return; 28257 } else { 28258 idl = connp->conn_idl; 28259 } 28260 28261 /* 28262 * The conn is not in the drain list. Insert it at the 28263 * tail of the drain list. The drain list is circular 28264 * and doubly linked. idl_conn points to the 1st element 28265 * in the list. 28266 */ 28267 if (idl->idl_conn == NULL) { 28268 idl->idl_conn = connp; 28269 connp->conn_drain_next = connp; 28270 connp->conn_drain_prev = connp; 28271 } else { 28272 conn_t *head = idl->idl_conn; 28273 28274 connp->conn_drain_next = head; 28275 connp->conn_drain_prev = head->conn_drain_prev; 28276 head->conn_drain_prev->conn_drain_next = connp; 28277 head->conn_drain_prev = connp; 28278 } 28279 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28280 } 28281 28282 /* 28283 * This conn is closing, and we are called from ip_close. OR 28284 * This conn has been serviced by ip_wsrv, and we need to do the tail 28285 * processing. 28286 * If this conn is part of the drain list, we may need to sustain the drain 28287 * process by qenabling the next conn in the drain list. We may also need to 28288 * remove this conn from the list, if it is done. 28289 */ 28290 static void 28291 conn_drain_tail(conn_t *connp, boolean_t closing) 28292 { 28293 idl_t *idl; 28294 28295 /* 28296 * connp->conn_idl is stable at this point, and no lock is needed 28297 * to check it. If we are called from ip_close, close has already 28298 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28299 * called us only because conn_idl is non-null. If we are called thru 28300 * service, conn_idl could be null, but it cannot change because 28301 * service is single-threaded per queue, and there cannot be another 28302 * instance of service trying to call conn_drain_insert on this conn 28303 * now. 28304 */ 28305 ASSERT(!closing || (connp->conn_idl != NULL)); 28306 28307 /* 28308 * If connp->conn_idl is null, the conn has not been inserted into any 28309 * drain list even once since creation of the conn. Just return. 28310 */ 28311 if (connp->conn_idl == NULL) 28312 return; 28313 28314 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28315 28316 if (connp->conn_drain_prev == NULL) { 28317 /* This conn is currently not in the drain list. */ 28318 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28319 return; 28320 } 28321 idl = connp->conn_idl; 28322 if (idl->idl_conn_draining == connp) { 28323 /* 28324 * This conn is the current drainer. If this is the last conn 28325 * in the drain list, we need to do more checks, in the 'if' 28326 * below. Otherwwise we need to just qenable the next conn, 28327 * to sustain the draining, and is handled in the 'else' 28328 * below. 28329 */ 28330 if (connp->conn_drain_next == idl->idl_conn) { 28331 /* 28332 * This conn is the last in this list. This round 28333 * of draining is complete. If idl_repeat is set, 28334 * it means another flow enabling has happened from 28335 * the driver/streams and we need to another round 28336 * of draining. 28337 * If there are more than 2 conns in the drain list, 28338 * do a left rotate by 1, so that all conns except the 28339 * conn at the head move towards the head by 1, and the 28340 * the conn at the head goes to the tail. This attempts 28341 * a more even share for all queues that are being 28342 * drained. 28343 */ 28344 if ((connp->conn_drain_next != connp) && 28345 (idl->idl_conn->conn_drain_next != connp)) { 28346 idl->idl_conn = idl->idl_conn->conn_drain_next; 28347 } 28348 if (idl->idl_repeat) { 28349 qenable(idl->idl_conn->conn_wq); 28350 idl->idl_conn_draining = idl->idl_conn; 28351 idl->idl_repeat = 0; 28352 } else { 28353 idl->idl_conn_draining = NULL; 28354 } 28355 } else { 28356 /* 28357 * If the next queue that we are now qenable'ing, 28358 * is closing, it will remove itself from this list 28359 * and qenable the subsequent queue in ip_close(). 28360 * Serialization is acheived thru idl_lock. 28361 */ 28362 qenable(connp->conn_drain_next->conn_wq); 28363 idl->idl_conn_draining = connp->conn_drain_next; 28364 } 28365 } 28366 if (!connp->conn_did_putbq || closing) { 28367 /* 28368 * Remove ourself from the drain list, if we did not do 28369 * a putbq, or if the conn is closing. 28370 * Note: It is possible that q->q_first is non-null. It means 28371 * that these messages landed after we did a enableok() in 28372 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28373 * service them. 28374 */ 28375 if (connp->conn_drain_next == connp) { 28376 /* Singleton in the list */ 28377 ASSERT(connp->conn_drain_prev == connp); 28378 idl->idl_conn = NULL; 28379 idl->idl_conn_draining = NULL; 28380 } else { 28381 connp->conn_drain_prev->conn_drain_next = 28382 connp->conn_drain_next; 28383 connp->conn_drain_next->conn_drain_prev = 28384 connp->conn_drain_prev; 28385 if (idl->idl_conn == connp) 28386 idl->idl_conn = connp->conn_drain_next; 28387 ASSERT(idl->idl_conn_draining != connp); 28388 28389 } 28390 connp->conn_drain_next = NULL; 28391 connp->conn_drain_prev = NULL; 28392 } 28393 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28394 } 28395 28396 /* 28397 * Write service routine. Shared perimeter entry point. 28398 * ip_wsrv can be called in any of the following ways. 28399 * 1. The device queue's messages has fallen below the low water mark 28400 * and STREAMS has backenabled the ill_wq. We walk thru all the 28401 * the drain lists and backenable the first conn in each list. 28402 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28403 * qenabled non-tcp upper layers. We start dequeing messages and call 28404 * ip_wput for each message. 28405 */ 28406 28407 void 28408 ip_wsrv(queue_t *q) 28409 { 28410 conn_t *connp; 28411 ill_t *ill; 28412 mblk_t *mp; 28413 28414 if (q->q_next) { 28415 ill = (ill_t *)q->q_ptr; 28416 if (ill->ill_state_flags == 0) { 28417 /* 28418 * The device flow control has opened up. 28419 * Walk through conn drain lists and qenable the 28420 * first conn in each list. This makes sense only 28421 * if the stream is fully plumbed and setup. 28422 * Hence the if check above. 28423 */ 28424 ip1dbg(("ip_wsrv: walking\n")); 28425 conn_walk_drain(ill->ill_ipst); 28426 } 28427 return; 28428 } 28429 28430 connp = Q_TO_CONN(q); 28431 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28432 28433 /* 28434 * 1. Set conn_draining flag to signal that service is active. 28435 * 28436 * 2. ip_output determines whether it has been called from service, 28437 * based on the last parameter. If it is IP_WSRV it concludes it 28438 * has been called from service. 28439 * 28440 * 3. Message ordering is preserved by the following logic. 28441 * i. A directly called ip_output (i.e. not thru service) will queue 28442 * the message at the tail, if conn_draining is set (i.e. service 28443 * is running) or if q->q_first is non-null. 28444 * 28445 * ii. If ip_output is called from service, and if ip_output cannot 28446 * putnext due to flow control, it does a putbq. 28447 * 28448 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28449 * (causing an infinite loop). 28450 */ 28451 ASSERT(!connp->conn_did_putbq); 28452 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28453 connp->conn_draining = 1; 28454 noenable(q); 28455 while ((mp = getq(q)) != NULL) { 28456 ASSERT(CONN_Q(q)); 28457 28458 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28459 if (connp->conn_did_putbq) { 28460 /* ip_wput did a putbq */ 28461 break; 28462 } 28463 } 28464 /* 28465 * At this point, a thread coming down from top, calling 28466 * ip_wput, may end up queueing the message. We have not yet 28467 * enabled the queue, so ip_wsrv won't be called again. 28468 * To avoid this race, check q->q_first again (in the loop) 28469 * If the other thread queued the message before we call 28470 * enableok(), we will catch it in the q->q_first check. 28471 * If the other thread queues the message after we call 28472 * enableok(), ip_wsrv will be called again by STREAMS. 28473 */ 28474 connp->conn_draining = 0; 28475 enableok(q); 28476 } 28477 28478 /* Enable the next conn for draining */ 28479 conn_drain_tail(connp, B_FALSE); 28480 28481 connp->conn_did_putbq = 0; 28482 } 28483 28484 /* 28485 * Walk the list of all conn's calling the function provided with the 28486 * specified argument for each. Note that this only walks conn's that 28487 * have been bound. 28488 * Applies to both IPv4 and IPv6. 28489 */ 28490 static void 28491 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28492 { 28493 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28494 ipst->ips_ipcl_udp_fanout_size, 28495 func, arg, zoneid); 28496 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28497 ipst->ips_ipcl_conn_fanout_size, 28498 func, arg, zoneid); 28499 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28500 ipst->ips_ipcl_bind_fanout_size, 28501 func, arg, zoneid); 28502 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28503 IPPROTO_MAX, func, arg, zoneid); 28504 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28505 IPPROTO_MAX, func, arg, zoneid); 28506 } 28507 28508 /* 28509 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28510 * of conns that need to be drained, check if drain is already in progress. 28511 * If so set the idl_repeat bit, indicating that the last conn in the list 28512 * needs to reinitiate the drain once again, for the list. If drain is not 28513 * in progress for the list, initiate the draining, by qenabling the 1st 28514 * conn in the list. The drain is self-sustaining, each qenabled conn will 28515 * in turn qenable the next conn, when it is done/blocked/closing. 28516 */ 28517 static void 28518 conn_walk_drain(ip_stack_t *ipst) 28519 { 28520 int i; 28521 idl_t *idl; 28522 28523 IP_STAT(ipst, ip_conn_walk_drain); 28524 28525 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28526 idl = &ipst->ips_conn_drain_list[i]; 28527 mutex_enter(&idl->idl_lock); 28528 if (idl->idl_conn == NULL) { 28529 mutex_exit(&idl->idl_lock); 28530 continue; 28531 } 28532 /* 28533 * If this list is not being drained currently by 28534 * an ip_wsrv thread, start the process. 28535 */ 28536 if (idl->idl_conn_draining == NULL) { 28537 ASSERT(idl->idl_repeat == 0); 28538 qenable(idl->idl_conn->conn_wq); 28539 idl->idl_conn_draining = idl->idl_conn; 28540 } else { 28541 idl->idl_repeat = 1; 28542 } 28543 mutex_exit(&idl->idl_lock); 28544 } 28545 } 28546 28547 /* 28548 * Walk an conn hash table of `count' buckets, calling func for each entry. 28549 */ 28550 static void 28551 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28552 zoneid_t zoneid) 28553 { 28554 conn_t *connp; 28555 28556 while (count-- > 0) { 28557 mutex_enter(&connfp->connf_lock); 28558 for (connp = connfp->connf_head; connp != NULL; 28559 connp = connp->conn_next) { 28560 if (zoneid == GLOBAL_ZONEID || 28561 zoneid == connp->conn_zoneid) { 28562 CONN_INC_REF(connp); 28563 mutex_exit(&connfp->connf_lock); 28564 (*func)(connp, arg); 28565 mutex_enter(&connfp->connf_lock); 28566 CONN_DEC_REF(connp); 28567 } 28568 } 28569 mutex_exit(&connfp->connf_lock); 28570 connfp++; 28571 } 28572 } 28573 28574 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28575 static void 28576 conn_report1(conn_t *connp, void *mp) 28577 { 28578 char buf1[INET6_ADDRSTRLEN]; 28579 char buf2[INET6_ADDRSTRLEN]; 28580 uint_t print_len, buf_len; 28581 28582 ASSERT(connp != NULL); 28583 28584 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28585 if (buf_len <= 0) 28586 return; 28587 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28588 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28589 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28590 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28591 "%5d %s/%05d %s/%05d\n", 28592 (void *)connp, (void *)CONNP_TO_RQ(connp), 28593 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28594 buf1, connp->conn_lport, 28595 buf2, connp->conn_fport); 28596 if (print_len < buf_len) { 28597 ((mblk_t *)mp)->b_wptr += print_len; 28598 } else { 28599 ((mblk_t *)mp)->b_wptr += buf_len; 28600 } 28601 } 28602 28603 /* 28604 * Named Dispatch routine to produce a formatted report on all conns 28605 * that are listed in one of the fanout tables. 28606 * This report is accessed by using the ndd utility to "get" ND variable 28607 * "ip_conn_status". 28608 */ 28609 /* ARGSUSED */ 28610 static int 28611 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28612 { 28613 conn_t *connp = Q_TO_CONN(q); 28614 28615 (void) mi_mpprintf(mp, 28616 "CONN " MI_COL_HDRPAD_STR 28617 "rfq " MI_COL_HDRPAD_STR 28618 "stq " MI_COL_HDRPAD_STR 28619 " zone local remote"); 28620 28621 /* 28622 * Because of the ndd constraint, at most we can have 64K buffer 28623 * to put in all conn info. So to be more efficient, just 28624 * allocate a 64K buffer here, assuming we need that large buffer. 28625 * This should be OK as only privileged processes can do ndd /dev/ip. 28626 */ 28627 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28628 /* The following may work even if we cannot get a large buf. */ 28629 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28630 return (0); 28631 } 28632 28633 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28634 connp->conn_netstack->netstack_ip); 28635 return (0); 28636 } 28637 28638 /* 28639 * Determine if the ill and multicast aspects of that packets 28640 * "matches" the conn. 28641 */ 28642 boolean_t 28643 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28644 zoneid_t zoneid) 28645 { 28646 ill_t *in_ill; 28647 boolean_t found; 28648 ipif_t *ipif; 28649 ire_t *ire; 28650 ipaddr_t dst, src; 28651 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28652 28653 dst = ipha->ipha_dst; 28654 src = ipha->ipha_src; 28655 28656 /* 28657 * conn_incoming_ill is set by IP_BOUND_IF which limits 28658 * unicast, broadcast and multicast reception to 28659 * conn_incoming_ill. conn_wantpacket itself is called 28660 * only for BROADCAST and multicast. 28661 * 28662 * 1) ip_rput supresses duplicate broadcasts if the ill 28663 * is part of a group. Hence, we should be receiving 28664 * just one copy of broadcast for the whole group. 28665 * Thus, if it is part of the group the packet could 28666 * come on any ill of the group and hence we need a 28667 * match on the group. Otherwise, match on ill should 28668 * be sufficient. 28669 * 28670 * 2) ip_rput does not suppress duplicate multicast packets. 28671 * If there are two interfaces in a ill group and we have 28672 * 2 applications (conns) joined a multicast group G on 28673 * both the interfaces, ilm_lookup_ill filter in ip_rput 28674 * will give us two packets because we join G on both the 28675 * interfaces rather than nominating just one interface 28676 * for receiving multicast like broadcast above. So, 28677 * we have to call ilg_lookup_ill to filter out duplicate 28678 * copies, if ill is part of a group. 28679 */ 28680 in_ill = connp->conn_incoming_ill; 28681 if (in_ill != NULL) { 28682 if (in_ill->ill_group == NULL) { 28683 if (in_ill != ill) 28684 return (B_FALSE); 28685 } else if (in_ill->ill_group != ill->ill_group) { 28686 return (B_FALSE); 28687 } 28688 } 28689 28690 if (!CLASSD(dst)) { 28691 if (IPCL_ZONE_MATCH(connp, zoneid)) 28692 return (B_TRUE); 28693 /* 28694 * The conn is in a different zone; we need to check that this 28695 * broadcast address is configured in the application's zone and 28696 * on one ill in the group. 28697 */ 28698 ipif = ipif_get_next_ipif(NULL, ill); 28699 if (ipif == NULL) 28700 return (B_FALSE); 28701 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28702 connp->conn_zoneid, NULL, 28703 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28704 ipif_refrele(ipif); 28705 if (ire != NULL) { 28706 ire_refrele(ire); 28707 return (B_TRUE); 28708 } else { 28709 return (B_FALSE); 28710 } 28711 } 28712 28713 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28714 connp->conn_zoneid == zoneid) { 28715 /* 28716 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28717 * disabled, therefore we don't dispatch the multicast packet to 28718 * the sending zone. 28719 */ 28720 return (B_FALSE); 28721 } 28722 28723 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28724 /* 28725 * Multicast packet on the loopback interface: we only match 28726 * conns who joined the group in the specified zone. 28727 */ 28728 return (B_FALSE); 28729 } 28730 28731 if (connp->conn_multi_router) { 28732 /* multicast packet and multicast router socket: send up */ 28733 return (B_TRUE); 28734 } 28735 28736 mutex_enter(&connp->conn_lock); 28737 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28738 mutex_exit(&connp->conn_lock); 28739 return (found); 28740 } 28741 28742 /* 28743 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28744 */ 28745 /* ARGSUSED */ 28746 static void 28747 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28748 { 28749 ill_t *ill = (ill_t *)q->q_ptr; 28750 mblk_t *mp1, *mp2; 28751 ipif_t *ipif; 28752 int err = 0; 28753 conn_t *connp = NULL; 28754 ipsq_t *ipsq; 28755 arc_t *arc; 28756 28757 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28758 28759 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28760 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28761 28762 ASSERT(IAM_WRITER_ILL(ill)); 28763 mp2 = mp->b_cont; 28764 mp->b_cont = NULL; 28765 28766 /* 28767 * We have now received the arp bringup completion message 28768 * from ARP. Mark the arp bringup as done. Also if the arp 28769 * stream has already started closing, send up the AR_ARP_CLOSING 28770 * ack now since ARP is waiting in close for this ack. 28771 */ 28772 mutex_enter(&ill->ill_lock); 28773 ill->ill_arp_bringup_pending = 0; 28774 if (ill->ill_arp_closing) { 28775 mutex_exit(&ill->ill_lock); 28776 /* Let's reuse the mp for sending the ack */ 28777 arc = (arc_t *)mp->b_rptr; 28778 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28779 arc->arc_cmd = AR_ARP_CLOSING; 28780 qreply(q, mp); 28781 } else { 28782 mutex_exit(&ill->ill_lock); 28783 freeb(mp); 28784 } 28785 28786 ipsq = ill->ill_phyint->phyint_ipsq; 28787 ipif = ipsq->ipsq_pending_ipif; 28788 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28789 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28790 if (mp1 == NULL) { 28791 /* bringup was aborted by the user */ 28792 freemsg(mp2); 28793 return; 28794 } 28795 28796 /* 28797 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28798 * must have an associated conn_t. Otherwise, we're bringing this 28799 * interface back up as part of handling an asynchronous event (e.g., 28800 * physical address change). 28801 */ 28802 if (ipsq->ipsq_current_ioctl != 0) { 28803 ASSERT(connp != NULL); 28804 q = CONNP_TO_WQ(connp); 28805 } else { 28806 ASSERT(connp == NULL); 28807 q = ill->ill_rq; 28808 } 28809 28810 /* 28811 * If the DL_BIND_REQ fails, it is noted 28812 * in arc_name_offset. 28813 */ 28814 err = *((int *)mp2->b_rptr); 28815 if (err == 0) { 28816 if (ipif->ipif_isv6) { 28817 if ((err = ipif_up_done_v6(ipif)) != 0) 28818 ip0dbg(("ip_arp_done: init failed\n")); 28819 } else { 28820 if ((err = ipif_up_done(ipif)) != 0) 28821 ip0dbg(("ip_arp_done: init failed\n")); 28822 } 28823 } else { 28824 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28825 } 28826 28827 freemsg(mp2); 28828 28829 if ((err == 0) && (ill->ill_up_ipifs)) { 28830 err = ill_up_ipifs(ill, q, mp1); 28831 if (err == EINPROGRESS) 28832 return; 28833 } 28834 28835 if (ill->ill_up_ipifs) 28836 ill_group_cleanup(ill); 28837 28838 /* 28839 * The operation must complete without EINPROGRESS since 28840 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28841 * Otherwise, the operation will be stuck forever in the ipsq. 28842 */ 28843 ASSERT(err != EINPROGRESS); 28844 if (ipsq->ipsq_current_ioctl != 0) 28845 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28846 else 28847 ipsq_current_finish(ipsq); 28848 } 28849 28850 /* Allocate the private structure */ 28851 static int 28852 ip_priv_alloc(void **bufp) 28853 { 28854 void *buf; 28855 28856 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28857 return (ENOMEM); 28858 28859 *bufp = buf; 28860 return (0); 28861 } 28862 28863 /* Function to delete the private structure */ 28864 void 28865 ip_priv_free(void *buf) 28866 { 28867 ASSERT(buf != NULL); 28868 kmem_free(buf, sizeof (ip_priv_t)); 28869 } 28870 28871 /* 28872 * The entry point for IPPF processing. 28873 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28874 * routine just returns. 28875 * 28876 * When called, ip_process generates an ipp_packet_t structure 28877 * which holds the state information for this packet and invokes the 28878 * the classifier (via ipp_packet_process). The classification, depending on 28879 * configured filters, results in a list of actions for this packet. Invoking 28880 * an action may cause the packet to be dropped, in which case the resulting 28881 * mblk (*mpp) is NULL. proc indicates the callout position for 28882 * this packet and ill_index is the interface this packet on or will leave 28883 * on (inbound and outbound resp.). 28884 */ 28885 void 28886 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28887 { 28888 mblk_t *mp; 28889 ip_priv_t *priv; 28890 ipp_action_id_t aid; 28891 int rc = 0; 28892 ipp_packet_t *pp; 28893 #define IP_CLASS "ip" 28894 28895 /* If the classifier is not loaded, return */ 28896 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28897 return; 28898 } 28899 28900 mp = *mpp; 28901 ASSERT(mp != NULL); 28902 28903 /* Allocate the packet structure */ 28904 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28905 if (rc != 0) { 28906 *mpp = NULL; 28907 freemsg(mp); 28908 return; 28909 } 28910 28911 /* Allocate the private structure */ 28912 rc = ip_priv_alloc((void **)&priv); 28913 if (rc != 0) { 28914 *mpp = NULL; 28915 freemsg(mp); 28916 ipp_packet_free(pp); 28917 return; 28918 } 28919 priv->proc = proc; 28920 priv->ill_index = ill_index; 28921 ipp_packet_set_private(pp, priv, ip_priv_free); 28922 ipp_packet_set_data(pp, mp); 28923 28924 /* Invoke the classifier */ 28925 rc = ipp_packet_process(&pp); 28926 if (pp != NULL) { 28927 mp = ipp_packet_get_data(pp); 28928 ipp_packet_free(pp); 28929 if (rc != 0) { 28930 freemsg(mp); 28931 *mpp = NULL; 28932 } 28933 } else { 28934 *mpp = NULL; 28935 } 28936 #undef IP_CLASS 28937 } 28938 28939 /* 28940 * Propagate a multicast group membership operation (add/drop) on 28941 * all the interfaces crossed by the related multirt routes. 28942 * The call is considered successful if the operation succeeds 28943 * on at least one interface. 28944 */ 28945 static int 28946 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28947 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28948 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28949 mblk_t *first_mp) 28950 { 28951 ire_t *ire_gw; 28952 irb_t *irb; 28953 int error = 0; 28954 opt_restart_t *or; 28955 ip_stack_t *ipst = ire->ire_ipst; 28956 28957 irb = ire->ire_bucket; 28958 ASSERT(irb != NULL); 28959 28960 ASSERT(DB_TYPE(first_mp) == M_CTL); 28961 28962 or = (opt_restart_t *)first_mp->b_rptr; 28963 IRB_REFHOLD(irb); 28964 for (; ire != NULL; ire = ire->ire_next) { 28965 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28966 continue; 28967 if (ire->ire_addr != group) 28968 continue; 28969 28970 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28971 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28972 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28973 /* No resolver exists for the gateway; skip this ire. */ 28974 if (ire_gw == NULL) 28975 continue; 28976 28977 /* 28978 * This function can return EINPROGRESS. If so the operation 28979 * will be restarted from ip_restart_optmgmt which will 28980 * call ip_opt_set and option processing will restart for 28981 * this option. So we may end up calling 'fn' more than once. 28982 * This requires that 'fn' is idempotent except for the 28983 * return value. The operation is considered a success if 28984 * it succeeds at least once on any one interface. 28985 */ 28986 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28987 NULL, fmode, src, first_mp); 28988 if (error == 0) 28989 or->or_private = CGTP_MCAST_SUCCESS; 28990 28991 if (ip_debug > 0) { 28992 ulong_t off; 28993 char *ksym; 28994 ksym = kobj_getsymname((uintptr_t)fn, &off); 28995 ip2dbg(("ip_multirt_apply_membership: " 28996 "called %s, multirt group 0x%08x via itf 0x%08x, " 28997 "error %d [success %u]\n", 28998 ksym ? ksym : "?", 28999 ntohl(group), ntohl(ire_gw->ire_src_addr), 29000 error, or->or_private)); 29001 } 29002 29003 ire_refrele(ire_gw); 29004 if (error == EINPROGRESS) { 29005 IRB_REFRELE(irb); 29006 return (error); 29007 } 29008 } 29009 IRB_REFRELE(irb); 29010 /* 29011 * Consider the call as successful if we succeeded on at least 29012 * one interface. Otherwise, return the last encountered error. 29013 */ 29014 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29015 } 29016 29017 29018 /* 29019 * Issue a warning regarding a route crossing an interface with an 29020 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29021 * amount of time is logged. 29022 */ 29023 static void 29024 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29025 { 29026 hrtime_t current = gethrtime(); 29027 char buf[INET_ADDRSTRLEN]; 29028 ip_stack_t *ipst = ire->ire_ipst; 29029 29030 /* Convert interval in ms to hrtime in ns */ 29031 if (ipst->ips_multirt_bad_mtu_last_time + 29032 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29033 current) { 29034 cmn_err(CE_WARN, "ip: ignoring multiroute " 29035 "to %s, incorrect MTU %u (expected %u)\n", 29036 ip_dot_addr(ire->ire_addr, buf), 29037 ire->ire_max_frag, max_frag); 29038 29039 ipst->ips_multirt_bad_mtu_last_time = current; 29040 } 29041 } 29042 29043 29044 /* 29045 * Get the CGTP (multirouting) filtering status. 29046 * If 0, the CGTP hooks are transparent. 29047 */ 29048 /* ARGSUSED */ 29049 static int 29050 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29051 { 29052 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29053 29054 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29055 return (0); 29056 } 29057 29058 29059 /* 29060 * Set the CGTP (multirouting) filtering status. 29061 * If the status is changed from active to transparent 29062 * or from transparent to active, forward the new status 29063 * to the filtering module (if loaded). 29064 */ 29065 /* ARGSUSED */ 29066 static int 29067 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29068 cred_t *ioc_cr) 29069 { 29070 long new_value; 29071 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29072 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29073 29074 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29075 return (EPERM); 29076 29077 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29078 new_value < 0 || new_value > 1) { 29079 return (EINVAL); 29080 } 29081 29082 if ((!*ip_cgtp_filter_value) && new_value) { 29083 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29084 ipst->ips_ip_cgtp_filter_ops == NULL ? 29085 " (module not loaded)" : ""); 29086 } 29087 if (*ip_cgtp_filter_value && (!new_value)) { 29088 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29089 ipst->ips_ip_cgtp_filter_ops == NULL ? 29090 " (module not loaded)" : ""); 29091 } 29092 29093 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29094 int res; 29095 netstackid_t stackid; 29096 29097 stackid = ipst->ips_netstack->netstack_stackid; 29098 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29099 new_value); 29100 if (res) 29101 return (res); 29102 } 29103 29104 *ip_cgtp_filter_value = (boolean_t)new_value; 29105 29106 return (0); 29107 } 29108 29109 29110 /* 29111 * Return the expected CGTP hooks version number. 29112 */ 29113 int 29114 ip_cgtp_filter_supported(void) 29115 { 29116 return (ip_cgtp_filter_rev); 29117 } 29118 29119 29120 /* 29121 * CGTP hooks can be registered by invoking this function. 29122 * Checks that the version number matches. 29123 */ 29124 int 29125 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29126 { 29127 netstack_t *ns; 29128 ip_stack_t *ipst; 29129 29130 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29131 return (ENOTSUP); 29132 29133 ns = netstack_find_by_stackid(stackid); 29134 if (ns == NULL) 29135 return (EINVAL); 29136 ipst = ns->netstack_ip; 29137 ASSERT(ipst != NULL); 29138 29139 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29140 netstack_rele(ns); 29141 return (EALREADY); 29142 } 29143 29144 ipst->ips_ip_cgtp_filter_ops = ops; 29145 netstack_rele(ns); 29146 return (0); 29147 } 29148 29149 /* 29150 * CGTP hooks can be unregistered by invoking this function. 29151 * Returns ENXIO if there was no registration. 29152 * Returns EBUSY if the ndd variable has not been turned off. 29153 */ 29154 int 29155 ip_cgtp_filter_unregister(netstackid_t stackid) 29156 { 29157 netstack_t *ns; 29158 ip_stack_t *ipst; 29159 29160 ns = netstack_find_by_stackid(stackid); 29161 if (ns == NULL) 29162 return (EINVAL); 29163 ipst = ns->netstack_ip; 29164 ASSERT(ipst != NULL); 29165 29166 if (ipst->ips_ip_cgtp_filter) { 29167 netstack_rele(ns); 29168 return (EBUSY); 29169 } 29170 29171 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29172 netstack_rele(ns); 29173 return (ENXIO); 29174 } 29175 ipst->ips_ip_cgtp_filter_ops = NULL; 29176 netstack_rele(ns); 29177 return (0); 29178 } 29179 29180 /* 29181 * Check whether there is a CGTP filter registration. 29182 * Returns non-zero if there is a registration, otherwise returns zero. 29183 * Note: returns zero if bad stackid. 29184 */ 29185 int 29186 ip_cgtp_filter_is_registered(netstackid_t stackid) 29187 { 29188 netstack_t *ns; 29189 ip_stack_t *ipst; 29190 int ret; 29191 29192 ns = netstack_find_by_stackid(stackid); 29193 if (ns == NULL) 29194 return (0); 29195 ipst = ns->netstack_ip; 29196 ASSERT(ipst != NULL); 29197 29198 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29199 ret = 1; 29200 else 29201 ret = 0; 29202 29203 netstack_rele(ns); 29204 return (ret); 29205 } 29206 29207 static squeue_func_t 29208 ip_squeue_switch(int val) 29209 { 29210 squeue_func_t rval = squeue_fill; 29211 29212 switch (val) { 29213 case IP_SQUEUE_ENTER_NODRAIN: 29214 rval = squeue_enter_nodrain; 29215 break; 29216 case IP_SQUEUE_ENTER: 29217 rval = squeue_enter; 29218 break; 29219 default: 29220 break; 29221 } 29222 return (rval); 29223 } 29224 29225 /* ARGSUSED */ 29226 static int 29227 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29228 caddr_t addr, cred_t *cr) 29229 { 29230 int *v = (int *)addr; 29231 long new_value; 29232 29233 if (secpolicy_net_config(cr, B_FALSE) != 0) 29234 return (EPERM); 29235 29236 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29237 return (EINVAL); 29238 29239 ip_input_proc = ip_squeue_switch(new_value); 29240 *v = new_value; 29241 return (0); 29242 } 29243 29244 /* 29245 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29246 * ip_debug. 29247 */ 29248 /* ARGSUSED */ 29249 static int 29250 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29251 caddr_t addr, cred_t *cr) 29252 { 29253 int *v = (int *)addr; 29254 long new_value; 29255 29256 if (secpolicy_net_config(cr, B_FALSE) != 0) 29257 return (EPERM); 29258 29259 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29260 return (EINVAL); 29261 29262 *v = new_value; 29263 return (0); 29264 } 29265 29266 /* 29267 * Handle changes to ipmp_hook_emulation ndd variable. 29268 * Need to update phyint_hook_ifindex. 29269 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29270 */ 29271 static void 29272 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29273 { 29274 phyint_t *phyi; 29275 phyint_t *phyi_tmp; 29276 char *groupname; 29277 int namelen; 29278 ill_t *ill; 29279 boolean_t new_group; 29280 29281 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29282 /* 29283 * Group indicies are stored in the phyint - a common structure 29284 * to both IPv4 and IPv6. 29285 */ 29286 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29287 for (; phyi != NULL; 29288 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29289 phyi, AVL_AFTER)) { 29290 /* Ignore the ones that do not have a group */ 29291 if (phyi->phyint_groupname_len == 0) 29292 continue; 29293 29294 /* 29295 * Look for other phyint in group. 29296 * Clear name/namelen so the lookup doesn't find ourselves. 29297 */ 29298 namelen = phyi->phyint_groupname_len; 29299 groupname = phyi->phyint_groupname; 29300 phyi->phyint_groupname_len = 0; 29301 phyi->phyint_groupname = NULL; 29302 29303 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29304 /* Restore */ 29305 phyi->phyint_groupname_len = namelen; 29306 phyi->phyint_groupname = groupname; 29307 29308 new_group = B_FALSE; 29309 if (ipst->ips_ipmp_hook_emulation) { 29310 /* 29311 * If the group already exists and has already 29312 * been assigned a group ifindex, we use the existing 29313 * group_ifindex, otherwise we pick a new group_ifindex 29314 * here. 29315 */ 29316 if (phyi_tmp != NULL && 29317 phyi_tmp->phyint_group_ifindex != 0) { 29318 phyi->phyint_group_ifindex = 29319 phyi_tmp->phyint_group_ifindex; 29320 } else { 29321 /* XXX We need a recovery strategy here. */ 29322 if (!ip_assign_ifindex( 29323 &phyi->phyint_group_ifindex, ipst)) 29324 cmn_err(CE_PANIC, 29325 "ip_assign_ifindex() failed"); 29326 new_group = B_TRUE; 29327 } 29328 } else { 29329 phyi->phyint_group_ifindex = 0; 29330 } 29331 if (ipst->ips_ipmp_hook_emulation) 29332 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29333 else 29334 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29335 29336 /* 29337 * For IP Filter to find out the relationship between 29338 * names and interface indicies, we need to generate 29339 * a NE_PLUMB event when a new group can appear. 29340 * We always generate events when a new interface appears 29341 * (even when ipmp_hook_emulation is set) so there 29342 * is no need to generate NE_PLUMB events when 29343 * ipmp_hook_emulation is turned off. 29344 * And since it isn't critical for IP Filter to get 29345 * the NE_UNPLUMB events we skip those here. 29346 */ 29347 if (new_group) { 29348 /* 29349 * First phyint in group - generate group PLUMB event. 29350 * Since we are not running inside the ipsq we do 29351 * the dispatch immediately. 29352 */ 29353 if (phyi->phyint_illv4 != NULL) 29354 ill = phyi->phyint_illv4; 29355 else 29356 ill = phyi->phyint_illv6; 29357 29358 if (ill != NULL) { 29359 mutex_enter(&ill->ill_lock); 29360 ill_nic_info_plumb(ill, B_TRUE); 29361 ill_nic_info_dispatch(ill); 29362 mutex_exit(&ill->ill_lock); 29363 } 29364 } 29365 } 29366 rw_exit(&ipst->ips_ill_g_lock); 29367 } 29368 29369 /* ARGSUSED */ 29370 static int 29371 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29372 caddr_t addr, cred_t *cr) 29373 { 29374 int *v = (int *)addr; 29375 long new_value; 29376 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29377 29378 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29379 return (EINVAL); 29380 29381 if (*v != new_value) { 29382 *v = new_value; 29383 ipmp_hook_emulation_changed(ipst); 29384 } 29385 return (0); 29386 } 29387 29388 static void * 29389 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29390 { 29391 kstat_t *ksp; 29392 29393 ip_stat_t template = { 29394 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29395 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29396 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29397 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29398 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29399 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29400 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29401 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29402 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29403 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29404 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29405 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29406 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29407 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29408 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29409 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29410 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29411 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29412 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29413 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29414 { "ip_opt", KSTAT_DATA_UINT64 }, 29415 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29416 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29417 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29418 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29419 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29420 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29421 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29422 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29423 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29424 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29425 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29426 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29427 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29428 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29429 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29430 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29431 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29432 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29433 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29434 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29435 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29436 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29437 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29438 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29439 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29440 }; 29441 29442 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29443 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29444 KSTAT_FLAG_VIRTUAL, stackid); 29445 29446 if (ksp == NULL) 29447 return (NULL); 29448 29449 bcopy(&template, ip_statisticsp, sizeof (template)); 29450 ksp->ks_data = (void *)ip_statisticsp; 29451 ksp->ks_private = (void *)(uintptr_t)stackid; 29452 29453 kstat_install(ksp); 29454 return (ksp); 29455 } 29456 29457 static void 29458 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29459 { 29460 if (ksp != NULL) { 29461 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29462 kstat_delete_netstack(ksp, stackid); 29463 } 29464 } 29465 29466 static void * 29467 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29468 { 29469 kstat_t *ksp; 29470 29471 ip_named_kstat_t template = { 29472 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29473 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29474 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29475 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29476 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29477 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29478 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29479 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29480 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29481 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29482 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29483 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29484 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29485 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29486 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29487 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29488 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29489 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29490 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29491 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29492 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29493 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29494 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29495 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29496 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29497 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29498 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29499 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29500 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29501 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29502 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29503 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29504 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29505 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29506 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29507 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29508 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29509 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29510 }; 29511 29512 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29513 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29514 if (ksp == NULL || ksp->ks_data == NULL) 29515 return (NULL); 29516 29517 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29518 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29519 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29520 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29521 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29522 29523 template.netToMediaEntrySize.value.i32 = 29524 sizeof (mib2_ipNetToMediaEntry_t); 29525 29526 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29527 29528 bcopy(&template, ksp->ks_data, sizeof (template)); 29529 ksp->ks_update = ip_kstat_update; 29530 ksp->ks_private = (void *)(uintptr_t)stackid; 29531 29532 kstat_install(ksp); 29533 return (ksp); 29534 } 29535 29536 static void 29537 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29538 { 29539 if (ksp != NULL) { 29540 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29541 kstat_delete_netstack(ksp, stackid); 29542 } 29543 } 29544 29545 static int 29546 ip_kstat_update(kstat_t *kp, int rw) 29547 { 29548 ip_named_kstat_t *ipkp; 29549 mib2_ipIfStatsEntry_t ipmib; 29550 ill_walk_context_t ctx; 29551 ill_t *ill; 29552 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29553 netstack_t *ns; 29554 ip_stack_t *ipst; 29555 29556 if (kp == NULL || kp->ks_data == NULL) 29557 return (EIO); 29558 29559 if (rw == KSTAT_WRITE) 29560 return (EACCES); 29561 29562 ns = netstack_find_by_stackid(stackid); 29563 if (ns == NULL) 29564 return (-1); 29565 ipst = ns->netstack_ip; 29566 if (ipst == NULL) { 29567 netstack_rele(ns); 29568 return (-1); 29569 } 29570 ipkp = (ip_named_kstat_t *)kp->ks_data; 29571 29572 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29573 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29574 ill = ILL_START_WALK_V4(&ctx, ipst); 29575 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29576 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29577 rw_exit(&ipst->ips_ill_g_lock); 29578 29579 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29580 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29581 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29582 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29583 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29584 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29585 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29586 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29587 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29588 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29589 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29590 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29591 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29592 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29593 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29594 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29595 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29596 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29597 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29598 29599 ipkp->routingDiscards.value.ui32 = 0; 29600 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29601 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29602 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29603 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29604 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29605 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29606 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29607 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29608 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29609 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29610 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29611 29612 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29613 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29614 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29615 29616 netstack_rele(ns); 29617 29618 return (0); 29619 } 29620 29621 static void * 29622 icmp_kstat_init(netstackid_t stackid) 29623 { 29624 kstat_t *ksp; 29625 29626 icmp_named_kstat_t template = { 29627 { "inMsgs", KSTAT_DATA_UINT32 }, 29628 { "inErrors", KSTAT_DATA_UINT32 }, 29629 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29630 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29631 { "inParmProbs", KSTAT_DATA_UINT32 }, 29632 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29633 { "inRedirects", KSTAT_DATA_UINT32 }, 29634 { "inEchos", KSTAT_DATA_UINT32 }, 29635 { "inEchoReps", KSTAT_DATA_UINT32 }, 29636 { "inTimestamps", KSTAT_DATA_UINT32 }, 29637 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29638 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29639 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29640 { "outMsgs", KSTAT_DATA_UINT32 }, 29641 { "outErrors", KSTAT_DATA_UINT32 }, 29642 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29643 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29644 { "outParmProbs", KSTAT_DATA_UINT32 }, 29645 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29646 { "outRedirects", KSTAT_DATA_UINT32 }, 29647 { "outEchos", KSTAT_DATA_UINT32 }, 29648 { "outEchoReps", KSTAT_DATA_UINT32 }, 29649 { "outTimestamps", KSTAT_DATA_UINT32 }, 29650 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29651 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29652 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29653 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29654 { "inUnknowns", KSTAT_DATA_UINT32 }, 29655 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29656 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29657 { "outDrops", KSTAT_DATA_UINT32 }, 29658 { "inOverFlows", KSTAT_DATA_UINT32 }, 29659 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29660 }; 29661 29662 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29663 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29664 if (ksp == NULL || ksp->ks_data == NULL) 29665 return (NULL); 29666 29667 bcopy(&template, ksp->ks_data, sizeof (template)); 29668 29669 ksp->ks_update = icmp_kstat_update; 29670 ksp->ks_private = (void *)(uintptr_t)stackid; 29671 29672 kstat_install(ksp); 29673 return (ksp); 29674 } 29675 29676 static void 29677 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29678 { 29679 if (ksp != NULL) { 29680 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29681 kstat_delete_netstack(ksp, stackid); 29682 } 29683 } 29684 29685 static int 29686 icmp_kstat_update(kstat_t *kp, int rw) 29687 { 29688 icmp_named_kstat_t *icmpkp; 29689 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29690 netstack_t *ns; 29691 ip_stack_t *ipst; 29692 29693 if ((kp == NULL) || (kp->ks_data == NULL)) 29694 return (EIO); 29695 29696 if (rw == KSTAT_WRITE) 29697 return (EACCES); 29698 29699 ns = netstack_find_by_stackid(stackid); 29700 if (ns == NULL) 29701 return (-1); 29702 ipst = ns->netstack_ip; 29703 if (ipst == NULL) { 29704 netstack_rele(ns); 29705 return (-1); 29706 } 29707 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29708 29709 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29710 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29711 icmpkp->inDestUnreachs.value.ui32 = 29712 ipst->ips_icmp_mib.icmpInDestUnreachs; 29713 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29714 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29715 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29716 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29717 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29718 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29719 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29720 icmpkp->inTimestampReps.value.ui32 = 29721 ipst->ips_icmp_mib.icmpInTimestampReps; 29722 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29723 icmpkp->inAddrMaskReps.value.ui32 = 29724 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29725 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29726 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29727 icmpkp->outDestUnreachs.value.ui32 = 29728 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29729 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29730 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29731 icmpkp->outSrcQuenchs.value.ui32 = 29732 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29733 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29734 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29735 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29736 icmpkp->outTimestamps.value.ui32 = 29737 ipst->ips_icmp_mib.icmpOutTimestamps; 29738 icmpkp->outTimestampReps.value.ui32 = 29739 ipst->ips_icmp_mib.icmpOutTimestampReps; 29740 icmpkp->outAddrMasks.value.ui32 = 29741 ipst->ips_icmp_mib.icmpOutAddrMasks; 29742 icmpkp->outAddrMaskReps.value.ui32 = 29743 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29744 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29745 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29746 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29747 icmpkp->outFragNeeded.value.ui32 = 29748 ipst->ips_icmp_mib.icmpOutFragNeeded; 29749 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29750 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29751 icmpkp->inBadRedirects.value.ui32 = 29752 ipst->ips_icmp_mib.icmpInBadRedirects; 29753 29754 netstack_rele(ns); 29755 return (0); 29756 } 29757 29758 /* 29759 * This is the fanout function for raw socket opened for SCTP. Note 29760 * that it is called after SCTP checks that there is no socket which 29761 * wants a packet. Then before SCTP handles this out of the blue packet, 29762 * this function is called to see if there is any raw socket for SCTP. 29763 * If there is and it is bound to the correct address, the packet will 29764 * be sent to that socket. Note that only one raw socket can be bound to 29765 * a port. This is assured in ipcl_sctp_hash_insert(); 29766 */ 29767 void 29768 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29769 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29770 zoneid_t zoneid) 29771 { 29772 conn_t *connp; 29773 queue_t *rq; 29774 mblk_t *first_mp; 29775 boolean_t secure; 29776 ip6_t *ip6h; 29777 ip_stack_t *ipst = recv_ill->ill_ipst; 29778 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29779 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29780 boolean_t sctp_csum_err = B_FALSE; 29781 29782 if (flags & IP_FF_SCTP_CSUM_ERR) { 29783 sctp_csum_err = B_TRUE; 29784 flags &= ~IP_FF_SCTP_CSUM_ERR; 29785 } 29786 29787 first_mp = mp; 29788 if (mctl_present) { 29789 mp = first_mp->b_cont; 29790 secure = ipsec_in_is_secure(first_mp); 29791 ASSERT(mp != NULL); 29792 } else { 29793 secure = B_FALSE; 29794 } 29795 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29796 29797 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29798 if (connp == NULL) { 29799 /* 29800 * Although raw sctp is not summed, OOB chunks must be. 29801 * Drop the packet here if the sctp checksum failed. 29802 */ 29803 if (sctp_csum_err) { 29804 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29805 freemsg(first_mp); 29806 return; 29807 } 29808 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29809 return; 29810 } 29811 rq = connp->conn_rq; 29812 if (!canputnext(rq)) { 29813 CONN_DEC_REF(connp); 29814 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29815 freemsg(first_mp); 29816 return; 29817 } 29818 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29819 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29820 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29821 (isv4 ? ipha : NULL), ip6h, mctl_present); 29822 if (first_mp == NULL) { 29823 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29824 CONN_DEC_REF(connp); 29825 return; 29826 } 29827 } 29828 /* 29829 * We probably should not send M_CTL message up to 29830 * raw socket. 29831 */ 29832 if (mctl_present) 29833 freeb(first_mp); 29834 29835 /* Initiate IPPF processing here if needed. */ 29836 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29837 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29838 ip_process(IPP_LOCAL_IN, &mp, 29839 recv_ill->ill_phyint->phyint_ifindex); 29840 if (mp == NULL) { 29841 CONN_DEC_REF(connp); 29842 return; 29843 } 29844 } 29845 29846 if (connp->conn_recvif || connp->conn_recvslla || 29847 ((connp->conn_ip_recvpktinfo || 29848 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29849 (flags & IP_FF_IPINFO))) { 29850 int in_flags = 0; 29851 29852 /* 29853 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29854 * IPF_RECVIF. 29855 */ 29856 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29857 in_flags = IPF_RECVIF; 29858 } 29859 if (connp->conn_recvslla) { 29860 in_flags |= IPF_RECVSLLA; 29861 } 29862 if (isv4) { 29863 mp = ip_add_info(mp, recv_ill, in_flags, 29864 IPCL_ZONEID(connp), ipst); 29865 } else { 29866 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29867 if (mp == NULL) { 29868 BUMP_MIB(recv_ill->ill_ip_mib, 29869 ipIfStatsInDiscards); 29870 CONN_DEC_REF(connp); 29871 return; 29872 } 29873 } 29874 } 29875 29876 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29877 /* 29878 * We are sending the IPSEC_IN message also up. Refer 29879 * to comments above this function. 29880 * This is the SOCK_RAW, IPPROTO_SCTP case. 29881 */ 29882 (connp->conn_recv)(connp, mp, NULL); 29883 CONN_DEC_REF(connp); 29884 } 29885 29886 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29887 { \ 29888 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29889 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29890 } 29891 /* 29892 * This function should be called only if all packet processing 29893 * including fragmentation is complete. Callers of this function 29894 * must set mp->b_prev to one of these values: 29895 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29896 * prior to handing over the mp as first argument to this function. 29897 * 29898 * If the ire passed by caller is incomplete, this function 29899 * queues the packet and if necessary, sends ARP request and bails. 29900 * If the ire passed is fully resolved, we simply prepend 29901 * the link-layer header to the packet, do ipsec hw acceleration 29902 * work if necessary, and send the packet out on the wire. 29903 * 29904 * NOTE: IPsec will only call this function with fully resolved 29905 * ires if hw acceleration is involved. 29906 * TODO list : 29907 * a Handle M_MULTIDATA so that 29908 * tcp_multisend->tcp_multisend_data can 29909 * call ip_xmit_v4 directly 29910 * b Handle post-ARP work for fragments so that 29911 * ip_wput_frag can call this function. 29912 */ 29913 ipxmit_state_t 29914 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29915 { 29916 nce_t *arpce; 29917 ipha_t *ipha; 29918 queue_t *q; 29919 int ill_index; 29920 mblk_t *nxt_mp, *first_mp; 29921 boolean_t xmit_drop = B_FALSE; 29922 ip_proc_t proc; 29923 ill_t *out_ill; 29924 int pkt_len; 29925 29926 arpce = ire->ire_nce; 29927 ASSERT(arpce != NULL); 29928 29929 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29930 29931 mutex_enter(&arpce->nce_lock); 29932 switch (arpce->nce_state) { 29933 case ND_REACHABLE: 29934 /* If there are other queued packets, queue this packet */ 29935 if (arpce->nce_qd_mp != NULL) { 29936 if (mp != NULL) 29937 nce_queue_mp_common(arpce, mp, B_FALSE); 29938 mp = arpce->nce_qd_mp; 29939 } 29940 arpce->nce_qd_mp = NULL; 29941 mutex_exit(&arpce->nce_lock); 29942 29943 /* 29944 * Flush the queue. In the common case, where the 29945 * ARP is already resolved, it will go through the 29946 * while loop only once. 29947 */ 29948 while (mp != NULL) { 29949 29950 nxt_mp = mp->b_next; 29951 mp->b_next = NULL; 29952 ASSERT(mp->b_datap->db_type != M_CTL); 29953 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29954 /* 29955 * This info is needed for IPQOS to do COS marking 29956 * in ip_wput_attach_llhdr->ip_process. 29957 */ 29958 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29959 mp->b_prev = NULL; 29960 29961 /* set up ill index for outbound qos processing */ 29962 out_ill = ire_to_ill(ire); 29963 ill_index = out_ill->ill_phyint->phyint_ifindex; 29964 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29965 ill_index, &ipha); 29966 if (first_mp == NULL) { 29967 xmit_drop = B_TRUE; 29968 BUMP_MIB(out_ill->ill_ip_mib, 29969 ipIfStatsOutDiscards); 29970 goto next_mp; 29971 } 29972 29973 /* non-ipsec hw accel case */ 29974 if (io == NULL || !io->ipsec_out_accelerated) { 29975 /* send it */ 29976 q = ire->ire_stq; 29977 if (proc == IPP_FWD_OUT) { 29978 UPDATE_IB_PKT_COUNT(ire); 29979 } else { 29980 UPDATE_OB_PKT_COUNT(ire); 29981 } 29982 ire->ire_last_used_time = lbolt; 29983 29984 if (flow_ctl_enabled || canputnext(q)) { 29985 if (proc == IPP_FWD_OUT) { 29986 29987 BUMP_MIB(out_ill->ill_ip_mib, 29988 ipIfStatsHCOutForwDatagrams); 29989 29990 } 29991 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29992 pkt_len); 29993 29994 DTRACE_IP7(send, mblk_t *, first_mp, 29995 conn_t *, NULL, void_ip_t *, ipha, 29996 __dtrace_ipsr_ill_t *, out_ill, 29997 ipha_t *, ipha, ip6_t *, NULL, int, 29998 0); 29999 30000 putnext(q, first_mp); 30001 } else { 30002 BUMP_MIB(out_ill->ill_ip_mib, 30003 ipIfStatsOutDiscards); 30004 xmit_drop = B_TRUE; 30005 freemsg(first_mp); 30006 } 30007 } else { 30008 /* 30009 * Safety Pup says: make sure this 30010 * is going to the right interface! 30011 */ 30012 ill_t *ill1 = 30013 (ill_t *)ire->ire_stq->q_ptr; 30014 int ifindex = 30015 ill1->ill_phyint->phyint_ifindex; 30016 if (ifindex != 30017 io->ipsec_out_capab_ill_index) { 30018 xmit_drop = B_TRUE; 30019 freemsg(mp); 30020 } else { 30021 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30022 pkt_len); 30023 30024 DTRACE_IP7(send, mblk_t *, first_mp, 30025 conn_t *, NULL, void_ip_t *, ipha, 30026 __dtrace_ipsr_ill_t *, ill1, 30027 ipha_t *, ipha, ip6_t *, NULL, 30028 int, 0); 30029 30030 ipsec_hw_putnext(ire->ire_stq, mp); 30031 } 30032 } 30033 next_mp: 30034 mp = nxt_mp; 30035 } /* while (mp != NULL) */ 30036 if (xmit_drop) 30037 return (SEND_FAILED); 30038 else 30039 return (SEND_PASSED); 30040 30041 case ND_INITIAL: 30042 case ND_INCOMPLETE: 30043 30044 /* 30045 * While we do send off packets to dests that 30046 * use fully-resolved CGTP routes, we do not 30047 * handle unresolved CGTP routes. 30048 */ 30049 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30050 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30051 30052 if (mp != NULL) { 30053 /* queue the packet */ 30054 nce_queue_mp_common(arpce, mp, B_FALSE); 30055 } 30056 30057 if (arpce->nce_state == ND_INCOMPLETE) { 30058 mutex_exit(&arpce->nce_lock); 30059 DTRACE_PROBE3(ip__xmit__incomplete, 30060 (ire_t *), ire, (mblk_t *), mp, 30061 (ipsec_out_t *), io); 30062 return (LOOKUP_IN_PROGRESS); 30063 } 30064 30065 arpce->nce_state = ND_INCOMPLETE; 30066 mutex_exit(&arpce->nce_lock); 30067 /* 30068 * Note that ire_add() (called from ire_forward()) 30069 * holds a ref on the ire until ARP is completed. 30070 */ 30071 30072 ire_arpresolve(ire, ire_to_ill(ire)); 30073 return (LOOKUP_IN_PROGRESS); 30074 default: 30075 ASSERT(0); 30076 mutex_exit(&arpce->nce_lock); 30077 return (LLHDR_RESLV_FAILED); 30078 } 30079 } 30080 30081 #undef UPDATE_IP_MIB_OB_COUNTERS 30082 30083 /* 30084 * Return B_TRUE if the buffers differ in length or content. 30085 * This is used for comparing extension header buffers. 30086 * Note that an extension header would be declared different 30087 * even if all that changed was the next header value in that header i.e. 30088 * what really changed is the next extension header. 30089 */ 30090 boolean_t 30091 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30092 uint_t blen) 30093 { 30094 if (!b_valid) 30095 blen = 0; 30096 30097 if (alen != blen) 30098 return (B_TRUE); 30099 if (alen == 0) 30100 return (B_FALSE); /* Both zero length */ 30101 return (bcmp(abuf, bbuf, alen)); 30102 } 30103 30104 /* 30105 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30106 * Return B_FALSE if memory allocation fails - don't change any state! 30107 */ 30108 boolean_t 30109 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30110 const void *src, uint_t srclen) 30111 { 30112 void *dst; 30113 30114 if (!src_valid) 30115 srclen = 0; 30116 30117 ASSERT(*dstlenp == 0); 30118 if (src != NULL && srclen != 0) { 30119 dst = mi_alloc(srclen, BPRI_MED); 30120 if (dst == NULL) 30121 return (B_FALSE); 30122 } else { 30123 dst = NULL; 30124 } 30125 if (*dstp != NULL) 30126 mi_free(*dstp); 30127 *dstp = dst; 30128 *dstlenp = dst == NULL ? 0 : srclen; 30129 return (B_TRUE); 30130 } 30131 30132 /* 30133 * Replace what is in *dst, *dstlen with the source. 30134 * Assumes ip_allocbuf has already been called. 30135 */ 30136 void 30137 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30138 const void *src, uint_t srclen) 30139 { 30140 if (!src_valid) 30141 srclen = 0; 30142 30143 ASSERT(*dstlenp == srclen); 30144 if (src != NULL && srclen != 0) 30145 bcopy(src, *dstp, srclen); 30146 } 30147 30148 /* 30149 * Free the storage pointed to by the members of an ip6_pkt_t. 30150 */ 30151 void 30152 ip6_pkt_free(ip6_pkt_t *ipp) 30153 { 30154 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30155 30156 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30157 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30158 ipp->ipp_hopopts = NULL; 30159 ipp->ipp_hopoptslen = 0; 30160 } 30161 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30162 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30163 ipp->ipp_rtdstopts = NULL; 30164 ipp->ipp_rtdstoptslen = 0; 30165 } 30166 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30167 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30168 ipp->ipp_dstopts = NULL; 30169 ipp->ipp_dstoptslen = 0; 30170 } 30171 if (ipp->ipp_fields & IPPF_RTHDR) { 30172 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30173 ipp->ipp_rthdr = NULL; 30174 ipp->ipp_rthdrlen = 0; 30175 } 30176 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30177 IPPF_RTHDR); 30178 } 30179