1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 197 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 198 void *args) = NULL; 199 200 /* 201 * Hook function to generate cluster wide SPI. 202 */ 203 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 204 void *) = NULL; 205 206 /* 207 * Hook function to verify if the SPI is already utlized. 208 */ 209 210 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 211 212 /* 213 * Hook function to delete the SPI from the cluster wide repository. 214 */ 215 216 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 217 218 /* 219 * Hook function to inform the cluster when packet received on an IDLE SA 220 */ 221 222 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 223 in6_addr_t, in6_addr_t, void *) = NULL; 224 225 /* 226 * Synchronization notes: 227 * 228 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 229 * MT level protection given by STREAMS. IP uses a combination of its own 230 * internal serialization mechanism and standard Solaris locking techniques. 231 * The internal serialization is per phyint (no IPMP) or per IPMP group. 232 * This is used to serialize plumbing operations, IPMP operations, certain 233 * multicast operations, most set ioctls, igmp/mld timers etc. 234 * 235 * Plumbing is a long sequence of operations involving message 236 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 237 * involved in plumbing operations. A natural model is to serialize these 238 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 239 * parallel without any interference. But various set ioctls on hme0 are best 240 * serialized. However if the system uses IPMP, the operations are easier if 241 * they are serialized on a per IPMP group basis since IPMP operations 242 * happen across ill's of a group. Thus the lowest common denominator is to 243 * serialize most set ioctls, multicast join/leave operations, IPMP operations 244 * igmp/mld timer operations, and processing of DLPI control messages received 245 * from drivers on a per IPMP group basis. If the system does not employ 246 * IPMP the serialization is on a per phyint basis. This serialization is 247 * provided by the ipsq_t and primitives operating on this. Details can 248 * be found in ip_if.c above the core primitives operating on ipsq_t. 249 * 250 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 251 * Simiarly lookup of an ire by a thread also returns a refheld ire. 252 * In addition ipif's and ill's referenced by the ire are also indirectly 253 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 254 * the ipif's address or netmask change as long as an ipif is refheld 255 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 256 * address of an ipif has to go through the ipsq_t. This ensures that only 257 * 1 such exclusive operation proceeds at any time on the ipif. It then 258 * deletes all ires associated with this ipif, and waits for all refcnts 259 * associated with this ipif to come down to zero. The address is changed 260 * only after the ipif has been quiesced. Then the ipif is brought up again. 261 * More details are described above the comment in ip_sioctl_flags. 262 * 263 * Packet processing is based mostly on IREs and are fully multi-threaded 264 * using standard Solaris MT techniques. 265 * 266 * There are explicit locks in IP to handle: 267 * - The ip_g_head list maintained by mi_open_link() and friends. 268 * 269 * - The reassembly data structures (one lock per hash bucket) 270 * 271 * - conn_lock is meant to protect conn_t fields. The fields actually 272 * protected by conn_lock are documented in the conn_t definition. 273 * 274 * - ire_lock to protect some of the fields of the ire, IRE tables 275 * (one lock per hash bucket). Refer to ip_ire.c for details. 276 * 277 * - ndp_g_lock and nce_lock for protecting NCEs. 278 * 279 * - ill_lock protects fields of the ill and ipif. Details in ip.h 280 * 281 * - ill_g_lock: This is a global reader/writer lock. Protects the following 282 * * The AVL tree based global multi list of all ills. 283 * * The linked list of all ipifs of an ill 284 * * The <ill-ipsq> mapping 285 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 286 * * The illgroup list threaded by ill_group_next. 287 * * <ill-phyint> association 288 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 289 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 290 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 291 * will all have to hold the ill_g_lock as writer for the actual duration 292 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 293 * may be found in the IPMP section. 294 * 295 * - ill_lock: This is a per ill mutex. 296 * It protects some members of the ill and is documented below. 297 * It also protects the <ill-ipsq> mapping 298 * It also protects the illgroup list threaded by ill_group_next. 299 * It also protects the <ill-phyint> assoc. 300 * It also protects the list of ipifs hanging off the ill. 301 * 302 * - ipsq_lock: This is a per ipsq_t mutex lock. 303 * This protects all the other members of the ipsq struct except 304 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 305 * 306 * - illgrp_lock: This is a per ill_group mutex lock. 307 * The only thing it protects is the illgrp_ill_schednext member of ill_group 308 * which dictates which is the next ill in an ill_group that is to be chosen 309 * for sending outgoing packets, through creation of an IRE_CACHE that 310 * references this ill. 311 * 312 * - phyint_lock: This is a per phyint mutex lock. Protects just the 313 * phyint_flags 314 * 315 * - ip_g_nd_lock: This is a global reader/writer lock. 316 * Any call to nd_load to load a new parameter to the ND table must hold the 317 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 318 * as reader. 319 * 320 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 321 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 322 * uniqueness check also done atomically. 323 * 324 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 325 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 326 * as a writer when adding or deleting elements from these lists, and 327 * as a reader when walking these lists to send a SADB update to the 328 * IPsec capable ills. 329 * 330 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 331 * group list linked by ill_usesrc_grp_next. It also protects the 332 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 333 * group is being added or deleted. This lock is taken as a reader when 334 * walking the list/group(eg: to get the number of members in a usesrc group). 335 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 336 * field is changing state i.e from NULL to non-NULL or vice-versa. For 337 * example, it is not necessary to take this lock in the initial portion 338 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 339 * ip_sioctl_flags since the these operations are executed exclusively and 340 * that ensures that the "usesrc group state" cannot change. The "usesrc 341 * group state" change can happen only in the latter part of 342 * ip_sioctl_slifusesrc and in ill_delete. 343 * 344 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 345 * 346 * To change the <ill-phyint> association, the ill_g_lock must be held 347 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 348 * must be held. 349 * 350 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 351 * and the ill_lock of the ill in question must be held. 352 * 353 * To change the <ill-illgroup> association the ill_g_lock must be held as 354 * writer and the ill_lock of the ill in question must be held. 355 * 356 * To add or delete an ipif from the list of ipifs hanging off the ill, 357 * ill_g_lock (writer) and ill_lock must be held and the thread must be 358 * a writer on the associated ipsq,. 359 * 360 * To add or delete an ill to the system, the ill_g_lock must be held as 361 * writer and the thread must be a writer on the associated ipsq. 362 * 363 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 364 * must be a writer on the associated ipsq. 365 * 366 * Lock hierarchy 367 * 368 * Some lock hierarchy scenarios are listed below. 369 * 370 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 371 * ill_g_lock -> illgrp_lock -> ill_lock 372 * ill_g_lock -> ill_lock(s) -> phyint_lock 373 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 374 * ill_g_lock -> ip_addr_avail_lock 375 * conn_lock -> irb_lock -> ill_lock -> ire_lock 376 * ill_g_lock -> ip_g_nd_lock 377 * 378 * When more than 1 ill lock is needed to be held, all ill lock addresses 379 * are sorted on address and locked starting from highest addressed lock 380 * downward. 381 * 382 * IPsec scenarios 383 * 384 * ipsa_lock -> ill_g_lock -> ill_lock 385 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 386 * ipsec_capab_ills_lock -> ipsa_lock 387 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 388 * 389 * Trusted Solaris scenarios 390 * 391 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 392 * igsa_lock -> gcdb_lock 393 * gcgrp_rwlock -> ire_lock 394 * gcgrp_rwlock -> gcdb_lock 395 * 396 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 397 * 398 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 399 * sq_lock -> conn_lock -> QLOCK(q) 400 * ill_lock -> ft_lock -> fe_lock 401 * 402 * Routing/forwarding table locking notes: 403 * 404 * Lock acquisition order: Radix tree lock, irb_lock. 405 * Requirements: 406 * i. Walker must not hold any locks during the walker callback. 407 * ii Walker must not see a truncated tree during the walk because of any node 408 * deletion. 409 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 410 * in many places in the code to walk the irb list. Thus even if all the 411 * ires in a bucket have been deleted, we still can't free the radix node 412 * until the ires have actually been inactive'd (freed). 413 * 414 * Tree traversal - Need to hold the global tree lock in read mode. 415 * Before dropping the global tree lock, need to either increment the ire_refcnt 416 * to ensure that the radix node can't be deleted. 417 * 418 * Tree add - Need to hold the global tree lock in write mode to add a 419 * radix node. To prevent the node from being deleted, increment the 420 * irb_refcnt, after the node is added to the tree. The ire itself is 421 * added later while holding the irb_lock, but not the tree lock. 422 * 423 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 424 * All associated ires must be inactive (i.e. freed), and irb_refcnt 425 * must be zero. 426 * 427 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 428 * global tree lock (read mode) for traversal. 429 * 430 * IPsec notes : 431 * 432 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 433 * in front of the actual packet. For outbound datagrams, the M_CTL 434 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 435 * information used by the IPsec code for applying the right level of 436 * protection. The information initialized by IP in the ipsec_out_t 437 * is determined by the per-socket policy or global policy in the system. 438 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 439 * ipsec_info.h) which starts out with nothing in it. It gets filled 440 * with the right information if it goes through the AH/ESP code, which 441 * happens if the incoming packet is secure. The information initialized 442 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 443 * the policy requirements needed by per-socket policy or global policy 444 * is met or not. 445 * 446 * If there is both per-socket policy (set using setsockopt) and there 447 * is also global policy match for the 5 tuples of the socket, 448 * ipsec_override_policy() makes the decision of which one to use. 449 * 450 * For fully connected sockets i.e dst, src [addr, port] is known, 451 * conn_policy_cached is set indicating that policy has been cached. 452 * conn_in_enforce_policy may or may not be set depending on whether 453 * there is a global policy match or per-socket policy match. 454 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 455 * Once the right policy is set on the conn_t, policy cannot change for 456 * this socket. This makes life simpler for TCP (UDP ?) where 457 * re-transmissions go out with the same policy. For symmetry, policy 458 * is cached for fully connected UDP sockets also. Thus if policy is cached, 459 * it also implies that policy is latched i.e policy cannot change 460 * on these sockets. As we have the right policy on the conn, we don't 461 * have to lookup global policy for every outbound and inbound datagram 462 * and thus serving as an optimization. Note that a global policy change 463 * does not affect fully connected sockets if they have policy. If fully 464 * connected sockets did not have any policy associated with it, global 465 * policy change may affect them. 466 * 467 * IP Flow control notes: 468 * 469 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 470 * cannot be sent down to the driver by IP, because of a canput failure, IP 471 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 472 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 473 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 474 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 475 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 476 * the queued messages, and removes the conn from the drain list, if all 477 * messages were drained. It also qenables the next conn in the drain list to 478 * continue the drain process. 479 * 480 * In reality the drain list is not a single list, but a configurable number 481 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 482 * list. If the ip_wsrv of the next qenabled conn does not run, because the 483 * stream closes, ip_close takes responsibility to qenable the next conn in 484 * the drain list. The directly called ip_wput path always does a putq, if 485 * it cannot putnext. Thus synchronization problems are handled between 486 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 487 * functions that manipulate this drain list. Furthermore conn_drain_insert 488 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 489 * running on a queue at any time. conn_drain_tail can be simultaneously called 490 * from both ip_wsrv and ip_close. 491 * 492 * IPQOS notes: 493 * 494 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 495 * and IPQoS modules. IPPF includes hooks in IP at different control points 496 * (callout positions) which direct packets to IPQoS modules for policy 497 * processing. Policies, if present, are global. 498 * 499 * The callout positions are located in the following paths: 500 * o local_in (packets destined for this host) 501 * o local_out (packets orginating from this host ) 502 * o fwd_in (packets forwarded by this m/c - inbound) 503 * o fwd_out (packets forwarded by this m/c - outbound) 504 * Hooks at these callout points can be enabled/disabled using the ndd variable 505 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 506 * By default all the callout positions are enabled. 507 * 508 * Outbound (local_out) 509 * Hooks are placed in ip_wput_ire and ipsec_out_process. 510 * 511 * Inbound (local_in) 512 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 513 * TCP and UDP fanout routines. 514 * 515 * Forwarding (in and out) 516 * Hooks are placed in ip_rput_forward. 517 * 518 * IP Policy Framework processing (IPPF processing) 519 * Policy processing for a packet is initiated by ip_process, which ascertains 520 * that the classifier (ipgpc) is loaded and configured, failing which the 521 * packet resumes normal processing in IP. If the clasifier is present, the 522 * packet is acted upon by one or more IPQoS modules (action instances), per 523 * filters configured in ipgpc and resumes normal IP processing thereafter. 524 * An action instance can drop a packet in course of its processing. 525 * 526 * A boolean variable, ip_policy, is used in all the fanout routines that can 527 * invoke ip_process for a packet. This variable indicates if the packet should 528 * to be sent for policy processing. The variable is set to B_TRUE by default, 529 * i.e. when the routines are invoked in the normal ip procesing path for a 530 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 531 * ip_policy is set to B_FALSE for all the routines called in these two 532 * functions because, in the former case, we don't process loopback traffic 533 * currently while in the latter, the packets have already been processed in 534 * icmp_inbound. 535 * 536 * Zones notes: 537 * 538 * The partitioning rules for networking are as follows: 539 * 1) Packets coming from a zone must have a source address belonging to that 540 * zone. 541 * 2) Packets coming from a zone can only be sent on a physical interface on 542 * which the zone has an IP address. 543 * 3) Between two zones on the same machine, packet delivery is only allowed if 544 * there's a matching route for the destination and zone in the forwarding 545 * table. 546 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 547 * different zones can bind to the same port with the wildcard address 548 * (INADDR_ANY). 549 * 550 * The granularity of interface partitioning is at the logical interface level. 551 * Therefore, every zone has its own IP addresses, and incoming packets can be 552 * attributed to a zone unambiguously. A logical interface is placed into a zone 553 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 554 * structure. Rule (1) is implemented by modifying the source address selection 555 * algorithm so that the list of eligible addresses is filtered based on the 556 * sending process zone. 557 * 558 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 559 * across all zones, depending on their type. Here is the break-up: 560 * 561 * IRE type Shared/exclusive 562 * -------- ---------------- 563 * IRE_BROADCAST Exclusive 564 * IRE_DEFAULT (default routes) Shared (*) 565 * IRE_LOCAL Exclusive (x) 566 * IRE_LOOPBACK Exclusive 567 * IRE_PREFIX (net routes) Shared (*) 568 * IRE_CACHE Exclusive 569 * IRE_IF_NORESOLVER (interface routes) Exclusive 570 * IRE_IF_RESOLVER (interface routes) Exclusive 571 * IRE_HOST (host routes) Shared (*) 572 * 573 * (*) A zone can only use a default or off-subnet route if the gateway is 574 * directly reachable from the zone, that is, if the gateway's address matches 575 * one of the zone's logical interfaces. 576 * 577 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 578 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 579 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 580 * address of the zone itself (the destination). Since IRE_LOCAL is used 581 * for communication between zones, ip_wput_ire has special logic to set 582 * the right source address when sending using an IRE_LOCAL. 583 * 584 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 585 * ire_cache_lookup restricts loopback using an IRE_LOCAL 586 * between zone to the case when L2 would have conceptually looped the packet 587 * back, i.e. the loopback which is required since neither Ethernet drivers 588 * nor Ethernet hardware loops them back. This is the case when the normal 589 * routes (ignoring IREs with different zoneids) would send out the packet on 590 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 591 * associated. 592 * 593 * Multiple zones can share a common broadcast address; typically all zones 594 * share the 255.255.255.255 address. Incoming as well as locally originated 595 * broadcast packets must be dispatched to all the zones on the broadcast 596 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 597 * since some zones may not be on the 10.16.72/24 network. To handle this, each 598 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 599 * sent to every zone that has an IRE_BROADCAST entry for the destination 600 * address on the input ill, see conn_wantpacket(). 601 * 602 * Applications in different zones can join the same multicast group address. 603 * For IPv4, group memberships are per-logical interface, so they're already 604 * inherently part of a zone. For IPv6, group memberships are per-physical 605 * interface, so we distinguish IPv6 group memberships based on group address, 606 * interface and zoneid. In both cases, received multicast packets are sent to 607 * every zone for which a group membership entry exists. On IPv6 we need to 608 * check that the target zone still has an address on the receiving physical 609 * interface; it could have been removed since the application issued the 610 * IPV6_JOIN_GROUP. 611 */ 612 613 /* 614 * Squeue Fanout flags: 615 * 0: No fanout. 616 * 1: Fanout across all squeues 617 */ 618 boolean_t ip_squeue_fanout = 0; 619 620 /* 621 * Maximum dups allowed per packet. 622 */ 623 uint_t ip_max_frag_dups = 10; 624 625 #define IS_SIMPLE_IPH(ipha) \ 626 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 627 628 /* RFC 1122 Conformance */ 629 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 630 631 #define ILL_MAX_NAMELEN LIFNAMSIZ 632 633 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 634 635 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 636 cred_t *credp, boolean_t isv6); 637 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 638 ipha_t **); 639 640 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 641 ip_stack_t *); 642 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 643 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 644 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 645 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 646 mblk_t *, int, ip_stack_t *); 647 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 648 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 649 ill_t *, zoneid_t); 650 static void icmp_options_update(ipha_t *); 651 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 652 ip_stack_t *); 653 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 654 zoneid_t zoneid, ip_stack_t *); 655 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 656 static void icmp_redirect(ill_t *, mblk_t *); 657 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 658 ip_stack_t *); 659 660 static void ip_arp_news(queue_t *, mblk_t *); 661 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 662 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 663 char *ip_dot_addr(ipaddr_t, char *); 664 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 665 int ip_close(queue_t *, int); 666 static char *ip_dot_saddr(uchar_t *, char *); 667 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 668 boolean_t, boolean_t, ill_t *, zoneid_t); 669 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 670 boolean_t, boolean_t, zoneid_t); 671 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 672 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 673 static void ip_lrput(queue_t *, mblk_t *); 674 ipaddr_t ip_net_mask(ipaddr_t); 675 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 676 ip_stack_t *); 677 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 678 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 679 char *ip_nv_lookup(nv_t *, int); 680 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 681 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 682 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 683 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 684 ipndp_t *, size_t); 685 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 686 void ip_rput(queue_t *, mblk_t *); 687 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 688 void *dummy_arg); 689 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 690 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 691 ip_stack_t *); 692 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 693 ire_t *, ip_stack_t *); 694 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 695 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 696 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 697 ip_stack_t *); 698 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 699 uint16_t *); 700 int ip_snmp_get(queue_t *, mblk_t *, int); 701 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 702 mib2_ipIfStatsEntry_t *, ip_stack_t *); 703 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 704 ip_stack_t *); 705 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 706 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 707 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 708 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 709 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 710 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 711 ip_stack_t *ipst); 712 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 713 ip_stack_t *ipst); 714 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 715 ip_stack_t *ipst); 716 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 717 ip_stack_t *ipst); 718 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 719 ip_stack_t *ipst); 720 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 721 ip_stack_t *ipst); 722 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 723 ip_stack_t *ipst); 724 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 725 ip_stack_t *ipst); 726 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 727 ip_stack_t *ipst); 728 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 729 ip_stack_t *ipst); 730 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 731 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 732 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 733 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 734 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 735 static boolean_t ip_source_route_included(ipha_t *); 736 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 737 738 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 739 zoneid_t, ip_stack_t *, conn_t *); 740 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 741 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 742 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 743 zoneid_t, ip_stack_t *); 744 745 static void conn_drain_init(ip_stack_t *); 746 static void conn_drain_fini(ip_stack_t *); 747 static void conn_drain_tail(conn_t *connp, boolean_t closing); 748 749 static void conn_walk_drain(ip_stack_t *); 750 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 751 zoneid_t); 752 753 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 754 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 755 static void ip_stack_fini(netstackid_t stackid, void *arg); 756 757 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 758 zoneid_t); 759 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 760 void *dummy_arg); 761 762 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 763 764 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 765 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 766 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 767 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 768 769 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 770 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 771 caddr_t, cred_t *); 772 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 773 cred_t *, boolean_t); 774 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 775 caddr_t cp, cred_t *cr); 776 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 777 cred_t *); 778 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 779 cred_t *); 780 static int ip_squeue_switch(int); 781 782 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 783 static void ip_kstat_fini(netstackid_t, kstat_t *); 784 static int ip_kstat_update(kstat_t *kp, int rw); 785 static void *icmp_kstat_init(netstackid_t); 786 static void icmp_kstat_fini(netstackid_t, kstat_t *); 787 static int icmp_kstat_update(kstat_t *kp, int rw); 788 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 789 static void ip_kstat2_fini(netstackid_t, kstat_t *); 790 791 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 792 793 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 794 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 795 796 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 797 ipha_t *, ill_t *, boolean_t, boolean_t); 798 799 static void ipobs_init(ip_stack_t *); 800 static void ipobs_fini(ip_stack_t *); 801 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 802 803 /* How long, in seconds, we allow frags to hang around. */ 804 #define IP_FRAG_TIMEOUT 15 805 806 /* 807 * Threshold which determines whether MDT should be used when 808 * generating IP fragments; payload size must be greater than 809 * this threshold for MDT to take place. 810 */ 811 #define IP_WPUT_FRAG_MDT_MIN 32768 812 813 /* Setable in /etc/system only */ 814 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 815 816 static long ip_rput_pullups; 817 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 818 819 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 820 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 821 822 int ip_debug; 823 824 #ifdef DEBUG 825 uint32_t ipsechw_debug = 0; 826 #endif 827 828 /* 829 * Multirouting/CGTP stuff 830 */ 831 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 832 833 /* 834 * XXX following really should only be in a header. Would need more 835 * header and .c clean up first. 836 */ 837 extern optdb_obj_t ip_opt_obj; 838 839 ulong_t ip_squeue_enter_unbound = 0; 840 841 /* 842 * Named Dispatch Parameter Table. 843 * All of these are alterable, within the min/max values given, at run time. 844 */ 845 static ipparam_t lcl_param_arr[] = { 846 /* min max value name */ 847 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 848 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 849 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 850 { 0, 1, 0, "ip_respond_to_timestamp"}, 851 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 852 { 0, 1, 1, "ip_send_redirects"}, 853 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 854 { 0, 10, 0, "ip_mrtdebug"}, 855 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 856 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 857 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 858 { 1, 255, 255, "ip_def_ttl" }, 859 { 0, 1, 0, "ip_forward_src_routed"}, 860 { 0, 256, 32, "ip_wroff_extra" }, 861 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 862 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 863 { 0, 1, 1, "ip_path_mtu_discovery" }, 864 { 0, 240, 30, "ip_ignore_delete_time" }, 865 { 0, 1, 0, "ip_ignore_redirect" }, 866 { 0, 1, 1, "ip_output_queue" }, 867 { 1, 254, 1, "ip_broadcast_ttl" }, 868 { 0, 99999, 100, "ip_icmp_err_interval" }, 869 { 1, 99999, 10, "ip_icmp_err_burst" }, 870 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 871 { 0, 1, 0, "ip_strict_dst_multihoming" }, 872 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 873 { 0, 1, 0, "ipsec_override_persocket_policy" }, 874 { 0, 1, 1, "icmp_accept_clear_messages" }, 875 { 0, 1, 1, "igmp_accept_clear_messages" }, 876 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 877 "ip_ndp_delay_first_probe_time"}, 878 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 879 "ip_ndp_max_unicast_solicit"}, 880 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 881 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 882 { 0, 1, 0, "ip6_forward_src_routed"}, 883 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 884 { 0, 1, 1, "ip6_send_redirects"}, 885 { 0, 1, 0, "ip6_ignore_redirect" }, 886 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 887 888 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 889 890 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 891 892 { 0, 1, 1, "pim_accept_clear_messages" }, 893 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 894 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 895 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 896 { 0, 15, 0, "ip_policy_mask" }, 897 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 898 { 0, 255, 1, "ip_multirt_ttl" }, 899 { 0, 1, 1, "ip_multidata_outbound" }, 900 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 901 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 902 { 0, 1000, 1, "ip_max_temp_defend" }, 903 { 0, 1000, 3, "ip_max_defend" }, 904 { 0, 999999, 30, "ip_defend_interval" }, 905 { 0, 3600000, 300000, "ip_dup_recovery" }, 906 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 907 { 0, 1, 1, "ip_lso_outbound" }, 908 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 909 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 910 { 68, 65535, 576, "ip_pmtu_min" }, 911 #ifdef DEBUG 912 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 913 #else 914 { 0, 0, 0, "" }, 915 #endif 916 }; 917 918 /* 919 * Extended NDP table 920 * The addresses for the first two are filled in to be ips_ip_g_forward 921 * and ips_ipv6_forward at init time. 922 */ 923 static ipndp_t lcl_ndp_arr[] = { 924 /* getf setf data name */ 925 #define IPNDP_IP_FORWARDING_OFFSET 0 926 { ip_param_generic_get, ip_forward_set, NULL, 927 "ip_forwarding" }, 928 #define IPNDP_IP6_FORWARDING_OFFSET 1 929 { ip_param_generic_get, ip_forward_set, NULL, 930 "ip6_forwarding" }, 931 { ip_ill_report, NULL, NULL, 932 "ip_ill_status" }, 933 { ip_ipif_report, NULL, NULL, 934 "ip_ipif_status" }, 935 { ip_conn_report, NULL, NULL, 936 "ip_conn_status" }, 937 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 938 "ip_rput_pullups" }, 939 { ip_srcid_report, NULL, NULL, 940 "ip_srcid_status" }, 941 { ip_param_generic_get, ip_input_proc_set, 942 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 943 { ip_param_generic_get, ip_int_set, 944 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 945 #define IPNDP_CGTP_FILTER_OFFSET 9 946 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 947 "ip_cgtp_filter" }, 948 #define IPNDP_IPMP_HOOK_OFFSET 10 949 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 950 "ipmp_hook_emulation" }, 951 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 952 "ip_debug" }, 953 }; 954 955 /* 956 * Table of IP ioctls encoding the various properties of the ioctl and 957 * indexed based on the last byte of the ioctl command. Occasionally there 958 * is a clash, and there is more than 1 ioctl with the same last byte. 959 * In such a case 1 ioctl is encoded in the ndx table and the remaining 960 * ioctls are encoded in the misc table. An entry in the ndx table is 961 * retrieved by indexing on the last byte of the ioctl command and comparing 962 * the ioctl command with the value in the ndx table. In the event of a 963 * mismatch the misc table is then searched sequentially for the desired 964 * ioctl command. 965 * 966 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 967 */ 968 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 969 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 973 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 974 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 975 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 976 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 977 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 978 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 980 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 981 MISC_CMD, ip_siocaddrt, NULL }, 982 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 983 MISC_CMD, ip_siocdelrt, NULL }, 984 985 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 986 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 987 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 988 IF_CMD, ip_sioctl_get_addr, NULL }, 989 990 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 991 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 992 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 993 IPI_GET_CMD | IPI_REPL, 994 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 995 996 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 997 IPI_PRIV | IPI_WR | IPI_REPL, 998 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 999 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1000 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1001 IF_CMD, ip_sioctl_get_flags, NULL }, 1002 1003 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1004 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1005 1006 /* copyin size cannot be coded for SIOCGIFCONF */ 1007 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1008 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1009 1010 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1011 IF_CMD, ip_sioctl_mtu, NULL }, 1012 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1013 IF_CMD, ip_sioctl_get_mtu, NULL }, 1014 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1015 IPI_GET_CMD | IPI_REPL, 1016 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1017 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1018 IF_CMD, ip_sioctl_brdaddr, NULL }, 1019 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1020 IPI_GET_CMD | IPI_REPL, 1021 IF_CMD, ip_sioctl_get_netmask, NULL }, 1022 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1023 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1024 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1025 IPI_GET_CMD | IPI_REPL, 1026 IF_CMD, ip_sioctl_get_metric, NULL }, 1027 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1028 IF_CMD, ip_sioctl_metric, NULL }, 1029 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 1031 /* See 166-168 below for extended SIOC*XARP ioctls */ 1032 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1033 ARP_CMD, ip_sioctl_arp, NULL }, 1034 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1035 ARP_CMD, ip_sioctl_arp, NULL }, 1036 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1037 ARP_CMD, ip_sioctl_arp, NULL }, 1038 1039 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1062 MISC_CMD, if_unitsel, if_unitsel_restart }, 1063 1064 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1084 IPI_PRIV | IPI_WR | IPI_MODOK, 1085 IF_CMD, ip_sioctl_sifname, NULL }, 1086 1087 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 1101 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1102 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1103 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1104 IF_CMD, ip_sioctl_get_muxid, NULL }, 1105 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1106 IPI_PRIV | IPI_WR | IPI_REPL, 1107 IF_CMD, ip_sioctl_muxid, NULL }, 1108 1109 /* Both if and lif variants share same func */ 1110 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1111 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1112 /* Both if and lif variants share same func */ 1113 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1114 IPI_PRIV | IPI_WR | IPI_REPL, 1115 IF_CMD, ip_sioctl_slifindex, NULL }, 1116 1117 /* copyin size cannot be coded for SIOCGIFCONF */ 1118 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1119 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1120 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 1138 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1139 IPI_PRIV | IPI_WR | IPI_REPL, 1140 LIF_CMD, ip_sioctl_removeif, 1141 ip_sioctl_removeif_restart }, 1142 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1143 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_addif, NULL }, 1145 #define SIOCLIFADDR_NDX 112 1146 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1147 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1148 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1149 IPI_GET_CMD | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_addr, NULL }, 1151 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1152 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1153 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1154 IPI_GET_CMD | IPI_REPL, 1155 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1156 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1157 IPI_PRIV | IPI_WR | IPI_REPL, 1158 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1159 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1160 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1161 LIF_CMD, ip_sioctl_get_flags, NULL }, 1162 1163 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 1166 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1167 ip_sioctl_get_lifconf, NULL }, 1168 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1169 LIF_CMD, ip_sioctl_mtu, NULL }, 1170 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1171 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1172 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1173 IPI_GET_CMD | IPI_REPL, 1174 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1175 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1176 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1177 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1178 IPI_GET_CMD | IPI_REPL, 1179 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1180 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1181 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1182 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1183 IPI_GET_CMD | IPI_REPL, 1184 LIF_CMD, ip_sioctl_get_metric, NULL }, 1185 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1186 LIF_CMD, ip_sioctl_metric, NULL }, 1187 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1188 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1189 LIF_CMD, ip_sioctl_slifname, 1190 ip_sioctl_slifname_restart }, 1191 1192 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1193 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1194 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1197 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1198 IPI_PRIV | IPI_WR | IPI_REPL, 1199 LIF_CMD, ip_sioctl_muxid, NULL }, 1200 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1201 IPI_GET_CMD | IPI_REPL, 1202 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1203 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR | IPI_REPL, 1205 LIF_CMD, ip_sioctl_slifindex, 0 }, 1206 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1207 LIF_CMD, ip_sioctl_token, NULL }, 1208 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1209 IPI_GET_CMD | IPI_REPL, 1210 LIF_CMD, ip_sioctl_get_token, NULL }, 1211 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1212 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1213 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1214 IPI_GET_CMD | IPI_REPL, 1215 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1216 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1217 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1218 1219 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1220 IPI_GET_CMD | IPI_REPL, 1221 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1222 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1223 LIF_CMD, ip_siocdelndp_v6, NULL }, 1224 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1225 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1226 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1227 LIF_CMD, ip_siocsetndp_v6, NULL }, 1228 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1229 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1230 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1231 MISC_CMD, ip_sioctl_tonlink, NULL }, 1232 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1233 MISC_CMD, ip_sioctl_tmysite, NULL }, 1234 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1235 TUN_CMD, ip_sioctl_tunparam, NULL }, 1236 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1237 IPI_PRIV | IPI_WR, 1238 TUN_CMD, ip_sioctl_tunparam, NULL }, 1239 1240 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1241 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1242 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1243 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1244 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1245 1246 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1247 IPI_PRIV | IPI_WR | IPI_REPL, 1248 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1249 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1250 IPI_PRIV | IPI_WR | IPI_REPL, 1251 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1252 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1253 IPI_PRIV | IPI_WR | IPI_REPL, 1254 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1255 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1256 IPI_GET_CMD | IPI_REPL, 1257 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1258 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1259 IPI_GET_CMD | IPI_REPL, 1260 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1261 1262 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1263 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1264 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1265 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1266 1267 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1268 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1269 1270 /* These are handled in ip_sioctl_copyin_setup itself */ 1271 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1272 MISC_CMD, NULL, NULL }, 1273 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1274 MISC_CMD, NULL, NULL }, 1275 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1276 1277 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1278 ip_sioctl_get_lifconf, NULL }, 1279 1280 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1281 XARP_CMD, ip_sioctl_arp, NULL }, 1282 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1283 XARP_CMD, ip_sioctl_arp, NULL }, 1284 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1285 XARP_CMD, ip_sioctl_arp, NULL }, 1286 1287 /* SIOCPOPSOCKFS is not handled by IP */ 1288 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1289 1290 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1291 IPI_GET_CMD | IPI_REPL, 1292 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1293 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1294 IPI_PRIV | IPI_WR | IPI_REPL, 1295 LIF_CMD, ip_sioctl_slifzone, 1296 ip_sioctl_slifzone_restart }, 1297 /* 172-174 are SCTP ioctls and not handled by IP */ 1298 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1299 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1300 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1302 IPI_GET_CMD, LIF_CMD, 1303 ip_sioctl_get_lifusesrc, 0 }, 1304 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1305 IPI_PRIV | IPI_WR, 1306 LIF_CMD, ip_sioctl_slifusesrc, 1307 NULL }, 1308 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1309 ip_sioctl_get_lifsrcof, NULL }, 1310 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1311 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1312 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1313 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1314 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1315 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1316 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1317 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1318 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1319 ip_sioctl_set_ipmpfailback, NULL }, 1320 /* SIOCSENABLESDP is handled by SDP */ 1321 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1322 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1323 }; 1324 1325 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1326 1327 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1328 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1329 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1330 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1331 TUN_CMD, ip_sioctl_tunparam, NULL }, 1332 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1333 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1334 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1335 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1336 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1337 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1338 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1339 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1340 MISC_CMD, mrt_ioctl}, 1341 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1342 MISC_CMD, mrt_ioctl}, 1343 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1344 MISC_CMD, mrt_ioctl} 1345 }; 1346 1347 int ip_misc_ioctl_count = 1348 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1349 1350 int conn_drain_nthreads; /* Number of drainers reqd. */ 1351 /* Settable in /etc/system */ 1352 /* Defined in ip_ire.c */ 1353 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1354 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1355 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1356 1357 static nv_t ire_nv_arr[] = { 1358 { IRE_BROADCAST, "BROADCAST" }, 1359 { IRE_LOCAL, "LOCAL" }, 1360 { IRE_LOOPBACK, "LOOPBACK" }, 1361 { IRE_CACHE, "CACHE" }, 1362 { IRE_DEFAULT, "DEFAULT" }, 1363 { IRE_PREFIX, "PREFIX" }, 1364 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1365 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1366 { IRE_HOST, "HOST" }, 1367 { 0 } 1368 }; 1369 1370 nv_t *ire_nv_tbl = ire_nv_arr; 1371 1372 /* Simple ICMP IP Header Template */ 1373 static ipha_t icmp_ipha = { 1374 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1375 }; 1376 1377 struct module_info ip_mod_info = { 1378 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1379 IP_MOD_LOWAT 1380 }; 1381 1382 /* 1383 * Duplicate static symbols within a module confuses mdb; so we avoid the 1384 * problem by making the symbols here distinct from those in udp.c. 1385 */ 1386 1387 /* 1388 * Entry points for IP as a device and as a module. 1389 * FIXME: down the road we might want a separate module and driver qinit. 1390 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1391 */ 1392 static struct qinit iprinitv4 = { 1393 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1394 &ip_mod_info 1395 }; 1396 1397 struct qinit iprinitv6 = { 1398 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1399 &ip_mod_info 1400 }; 1401 1402 static struct qinit ipwinitv4 = { 1403 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1404 &ip_mod_info 1405 }; 1406 1407 struct qinit ipwinitv6 = { 1408 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1409 &ip_mod_info 1410 }; 1411 1412 static struct qinit iplrinit = { 1413 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1414 &ip_mod_info 1415 }; 1416 1417 static struct qinit iplwinit = { 1418 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1419 &ip_mod_info 1420 }; 1421 1422 /* For AF_INET aka /dev/ip */ 1423 struct streamtab ipinfov4 = { 1424 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1425 }; 1426 1427 /* For AF_INET6 aka /dev/ip6 */ 1428 struct streamtab ipinfov6 = { 1429 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1430 }; 1431 1432 #ifdef DEBUG 1433 static boolean_t skip_sctp_cksum = B_FALSE; 1434 #endif 1435 1436 /* 1437 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1438 * ip_rput_v6(), ip_output(), etc. If the message 1439 * block already has a M_CTL at the front of it, then simply set the zoneid 1440 * appropriately. 1441 */ 1442 mblk_t * 1443 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1444 { 1445 mblk_t *first_mp; 1446 ipsec_out_t *io; 1447 1448 ASSERT(zoneid != ALL_ZONES); 1449 if (mp->b_datap->db_type == M_CTL) { 1450 io = (ipsec_out_t *)mp->b_rptr; 1451 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1452 io->ipsec_out_zoneid = zoneid; 1453 return (mp); 1454 } 1455 1456 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1457 if (first_mp == NULL) 1458 return (NULL); 1459 io = (ipsec_out_t *)first_mp->b_rptr; 1460 /* This is not a secure packet */ 1461 io->ipsec_out_secure = B_FALSE; 1462 io->ipsec_out_zoneid = zoneid; 1463 first_mp->b_cont = mp; 1464 return (first_mp); 1465 } 1466 1467 /* 1468 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1469 */ 1470 mblk_t * 1471 ip_copymsg(mblk_t *mp) 1472 { 1473 mblk_t *nmp; 1474 ipsec_info_t *in; 1475 1476 if (mp->b_datap->db_type != M_CTL) 1477 return (copymsg(mp)); 1478 1479 in = (ipsec_info_t *)mp->b_rptr; 1480 1481 /* 1482 * Note that M_CTL is also used for delivering ICMP error messages 1483 * upstream to transport layers. 1484 */ 1485 if (in->ipsec_info_type != IPSEC_OUT && 1486 in->ipsec_info_type != IPSEC_IN) 1487 return (copymsg(mp)); 1488 1489 nmp = copymsg(mp->b_cont); 1490 1491 if (in->ipsec_info_type == IPSEC_OUT) { 1492 return (ipsec_out_tag(mp, nmp, 1493 ((ipsec_out_t *)in)->ipsec_out_ns)); 1494 } else { 1495 return (ipsec_in_tag(mp, nmp, 1496 ((ipsec_in_t *)in)->ipsec_in_ns)); 1497 } 1498 } 1499 1500 /* Generate an ICMP fragmentation needed message. */ 1501 static void 1502 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1503 ip_stack_t *ipst) 1504 { 1505 icmph_t icmph; 1506 mblk_t *first_mp; 1507 boolean_t mctl_present; 1508 1509 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1510 1511 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1512 if (mctl_present) 1513 freeb(first_mp); 1514 return; 1515 } 1516 1517 bzero(&icmph, sizeof (icmph_t)); 1518 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1519 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1520 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1521 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1522 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1523 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1524 ipst); 1525 } 1526 1527 /* 1528 * icmp_inbound deals with ICMP messages in the following ways. 1529 * 1530 * 1) It needs to send a reply back and possibly delivering it 1531 * to the "interested" upper clients. 1532 * 2) It needs to send it to the upper clients only. 1533 * 3) It needs to change some values in IP only. 1534 * 4) It needs to change some values in IP and upper layers e.g TCP. 1535 * 1536 * We need to accomodate icmp messages coming in clear until we get 1537 * everything secure from the wire. If icmp_accept_clear_messages 1538 * is zero we check with the global policy and act accordingly. If 1539 * it is non-zero, we accept the message without any checks. But 1540 * *this does not mean* that this will be delivered to the upper 1541 * clients. By accepting we might send replies back, change our MTU 1542 * value etc. but delivery to the ULP/clients depends on their policy 1543 * dispositions. 1544 * 1545 * We handle the above 4 cases in the context of IPsec in the 1546 * following way : 1547 * 1548 * 1) Send the reply back in the same way as the request came in. 1549 * If it came in encrypted, it goes out encrypted. If it came in 1550 * clear, it goes out in clear. Thus, this will prevent chosen 1551 * plain text attack. 1552 * 2) The client may or may not expect things to come in secure. 1553 * If it comes in secure, the policy constraints are checked 1554 * before delivering it to the upper layers. If it comes in 1555 * clear, ipsec_inbound_accept_clear will decide whether to 1556 * accept this in clear or not. In both the cases, if the returned 1557 * message (IP header + 8 bytes) that caused the icmp message has 1558 * AH/ESP headers, it is sent up to AH/ESP for validation before 1559 * sending up. If there are only 8 bytes of returned message, then 1560 * upper client will not be notified. 1561 * 3) Check with global policy to see whether it matches the constaints. 1562 * But this will be done only if icmp_accept_messages_in_clear is 1563 * zero. 1564 * 4) If we need to change both in IP and ULP, then the decision taken 1565 * while affecting the values in IP and while delivering up to TCP 1566 * should be the same. 1567 * 1568 * There are two cases. 1569 * 1570 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1571 * failed), we will not deliver it to the ULP, even though they 1572 * are *willing* to accept in *clear*. This is fine as our global 1573 * disposition to icmp messages asks us reject the datagram. 1574 * 1575 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1576 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1577 * to deliver it to ULP (policy failed), it can lead to 1578 * consistency problems. The cases known at this time are 1579 * ICMP_DESTINATION_UNREACHABLE messages with following code 1580 * values : 1581 * 1582 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1583 * and Upper layer rejects. Then the communication will 1584 * come to a stop. This is solved by making similar decisions 1585 * at both levels. Currently, when we are unable to deliver 1586 * to the Upper Layer (due to policy failures) while IP has 1587 * adjusted ire_max_frag, the next outbound datagram would 1588 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1589 * will be with the right level of protection. Thus the right 1590 * value will be communicated even if we are not able to 1591 * communicate when we get from the wire initially. But this 1592 * assumes there would be at least one outbound datagram after 1593 * IP has adjusted its ire_max_frag value. To make things 1594 * simpler, we accept in clear after the validation of 1595 * AH/ESP headers. 1596 * 1597 * - Other ICMP ERRORS : We may not be able to deliver it to the 1598 * upper layer depending on the level of protection the upper 1599 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1600 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1601 * should be accepted in clear when the Upper layer expects secure. 1602 * Thus the communication may get aborted by some bad ICMP 1603 * packets. 1604 * 1605 * IPQoS Notes: 1606 * The only instance when a packet is sent for processing is when there 1607 * isn't an ICMP client and if we are interested in it. 1608 * If there is a client, IPPF processing will take place in the 1609 * ip_fanout_proto routine. 1610 * 1611 * Zones notes: 1612 * The packet is only processed in the context of the specified zone: typically 1613 * only this zone will reply to an echo request, and only interested clients in 1614 * this zone will receive a copy of the packet. This means that the caller must 1615 * call icmp_inbound() for each relevant zone. 1616 */ 1617 static void 1618 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1619 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1620 ill_t *recv_ill, zoneid_t zoneid) 1621 { 1622 icmph_t *icmph; 1623 ipha_t *ipha; 1624 int iph_hdr_length; 1625 int hdr_length; 1626 boolean_t interested; 1627 uint32_t ts; 1628 uchar_t *wptr; 1629 ipif_t *ipif; 1630 mblk_t *first_mp; 1631 ipsec_in_t *ii; 1632 ire_t *src_ire; 1633 boolean_t onlink; 1634 timestruc_t now; 1635 uint32_t ill_index; 1636 ip_stack_t *ipst; 1637 1638 ASSERT(ill != NULL); 1639 ipst = ill->ill_ipst; 1640 1641 first_mp = mp; 1642 if (mctl_present) { 1643 mp = first_mp->b_cont; 1644 ASSERT(mp != NULL); 1645 } 1646 1647 ipha = (ipha_t *)mp->b_rptr; 1648 if (ipst->ips_icmp_accept_clear_messages == 0) { 1649 first_mp = ipsec_check_global_policy(first_mp, NULL, 1650 ipha, NULL, mctl_present, ipst->ips_netstack); 1651 if (first_mp == NULL) 1652 return; 1653 } 1654 1655 /* 1656 * On a labeled system, we have to check whether the zone itself is 1657 * permitted to receive raw traffic. 1658 */ 1659 if (is_system_labeled()) { 1660 if (zoneid == ALL_ZONES) 1661 zoneid = tsol_packet_to_zoneid(mp); 1662 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1663 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1664 zoneid)); 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1666 freemsg(first_mp); 1667 return; 1668 } 1669 } 1670 1671 /* 1672 * We have accepted the ICMP message. It means that we will 1673 * respond to the packet if needed. It may not be delivered 1674 * to the upper client depending on the policy constraints 1675 * and the disposition in ipsec_inbound_accept_clear. 1676 */ 1677 1678 ASSERT(ill != NULL); 1679 1680 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1681 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1682 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1683 /* Last chance to get real. */ 1684 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1686 freemsg(first_mp); 1687 return; 1688 } 1689 /* Refresh iph following the pullup. */ 1690 ipha = (ipha_t *)mp->b_rptr; 1691 } 1692 /* ICMP header checksum, including checksum field, should be zero. */ 1693 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1694 IP_CSUM(mp, iph_hdr_length, 0)) { 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1696 freemsg(first_mp); 1697 return; 1698 } 1699 /* The IP header will always be a multiple of four bytes */ 1700 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1701 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1702 icmph->icmph_code)); 1703 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1704 /* We will set "interested" to "true" if we want a copy */ 1705 interested = B_FALSE; 1706 switch (icmph->icmph_type) { 1707 case ICMP_ECHO_REPLY: 1708 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1709 break; 1710 case ICMP_DEST_UNREACHABLE: 1711 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1712 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1713 interested = B_TRUE; /* Pass up to transport */ 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1715 break; 1716 case ICMP_SOURCE_QUENCH: 1717 interested = B_TRUE; /* Pass up to transport */ 1718 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1719 break; 1720 case ICMP_REDIRECT: 1721 if (!ipst->ips_ip_ignore_redirect) 1722 interested = B_TRUE; 1723 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1724 break; 1725 case ICMP_ECHO_REQUEST: 1726 /* 1727 * Whether to respond to echo requests that come in as IP 1728 * broadcasts or as IP multicast is subject to debate 1729 * (what isn't?). We aim to please, you pick it. 1730 * Default is do it. 1731 */ 1732 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1733 /* unicast: always respond */ 1734 interested = B_TRUE; 1735 } else if (CLASSD(ipha->ipha_dst)) { 1736 /* multicast: respond based on tunable */ 1737 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1738 } else if (broadcast) { 1739 /* broadcast: respond based on tunable */ 1740 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1741 } 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1743 break; 1744 case ICMP_ROUTER_ADVERTISEMENT: 1745 case ICMP_ROUTER_SOLICITATION: 1746 break; 1747 case ICMP_TIME_EXCEEDED: 1748 interested = B_TRUE; /* Pass up to transport */ 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1750 break; 1751 case ICMP_PARAM_PROBLEM: 1752 interested = B_TRUE; /* Pass up to transport */ 1753 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1754 break; 1755 case ICMP_TIME_STAMP_REQUEST: 1756 /* Response to Time Stamp Requests is local policy. */ 1757 if (ipst->ips_ip_g_resp_to_timestamp && 1758 /* So is whether to respond if it was an IP broadcast. */ 1759 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1760 int tstamp_len = 3 * sizeof (uint32_t); 1761 1762 if (wptr + tstamp_len > mp->b_wptr) { 1763 if (!pullupmsg(mp, wptr + tstamp_len - 1764 mp->b_rptr)) { 1765 BUMP_MIB(ill->ill_ip_mib, 1766 ipIfStatsInDiscards); 1767 freemsg(first_mp); 1768 return; 1769 } 1770 /* Refresh ipha following the pullup. */ 1771 ipha = (ipha_t *)mp->b_rptr; 1772 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1773 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1774 } 1775 interested = B_TRUE; 1776 } 1777 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1778 break; 1779 case ICMP_TIME_STAMP_REPLY: 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1781 break; 1782 case ICMP_INFO_REQUEST: 1783 /* Per RFC 1122 3.2.2.7, ignore this. */ 1784 case ICMP_INFO_REPLY: 1785 break; 1786 case ICMP_ADDRESS_MASK_REQUEST: 1787 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1788 !broadcast) && 1789 /* TODO m_pullup of complete header? */ 1790 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1791 interested = B_TRUE; 1792 } 1793 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1794 break; 1795 case ICMP_ADDRESS_MASK_REPLY: 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1797 break; 1798 default: 1799 interested = B_TRUE; /* Pass up to transport */ 1800 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1801 break; 1802 } 1803 /* See if there is an ICMP client. */ 1804 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1805 /* If there is an ICMP client and we want one too, copy it. */ 1806 mblk_t *first_mp1; 1807 1808 if (!interested) { 1809 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1810 ip_policy, recv_ill, zoneid); 1811 return; 1812 } 1813 first_mp1 = ip_copymsg(first_mp); 1814 if (first_mp1 != NULL) { 1815 ip_fanout_proto(q, first_mp1, ill, ipha, 1816 0, mctl_present, ip_policy, recv_ill, zoneid); 1817 } 1818 } else if (!interested) { 1819 freemsg(first_mp); 1820 return; 1821 } else { 1822 /* 1823 * Initiate policy processing for this packet if ip_policy 1824 * is true. 1825 */ 1826 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1827 ill_index = ill->ill_phyint->phyint_ifindex; 1828 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1829 if (mp == NULL) { 1830 if (mctl_present) { 1831 freeb(first_mp); 1832 } 1833 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1834 return; 1835 } 1836 } 1837 } 1838 /* We want to do something with it. */ 1839 /* Check db_ref to make sure we can modify the packet. */ 1840 if (mp->b_datap->db_ref > 1) { 1841 mblk_t *first_mp1; 1842 1843 first_mp1 = ip_copymsg(first_mp); 1844 freemsg(first_mp); 1845 if (!first_mp1) { 1846 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1847 return; 1848 } 1849 first_mp = first_mp1; 1850 if (mctl_present) { 1851 mp = first_mp->b_cont; 1852 ASSERT(mp != NULL); 1853 } else { 1854 mp = first_mp; 1855 } 1856 ipha = (ipha_t *)mp->b_rptr; 1857 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1858 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1859 } 1860 switch (icmph->icmph_type) { 1861 case ICMP_ADDRESS_MASK_REQUEST: 1862 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1863 if (ipif == NULL) { 1864 freemsg(first_mp); 1865 return; 1866 } 1867 /* 1868 * outging interface must be IPv4 1869 */ 1870 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1871 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1872 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1873 ipif_refrele(ipif); 1874 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1875 break; 1876 case ICMP_ECHO_REQUEST: 1877 icmph->icmph_type = ICMP_ECHO_REPLY; 1878 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1879 break; 1880 case ICMP_TIME_STAMP_REQUEST: { 1881 uint32_t *tsp; 1882 1883 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1884 tsp = (uint32_t *)wptr; 1885 tsp++; /* Skip past 'originate time' */ 1886 /* Compute # of milliseconds since midnight */ 1887 gethrestime(&now); 1888 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1889 now.tv_nsec / (NANOSEC / MILLISEC); 1890 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1891 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1892 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1893 break; 1894 } 1895 default: 1896 ipha = (ipha_t *)&icmph[1]; 1897 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1898 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1899 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1900 freemsg(first_mp); 1901 return; 1902 } 1903 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1904 ipha = (ipha_t *)&icmph[1]; 1905 } 1906 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1907 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1908 freemsg(first_mp); 1909 return; 1910 } 1911 hdr_length = IPH_HDR_LENGTH(ipha); 1912 if (hdr_length < sizeof (ipha_t)) { 1913 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1914 freemsg(first_mp); 1915 return; 1916 } 1917 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1918 if (!pullupmsg(mp, 1919 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1920 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1921 freemsg(first_mp); 1922 return; 1923 } 1924 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1925 ipha = (ipha_t *)&icmph[1]; 1926 } 1927 switch (icmph->icmph_type) { 1928 case ICMP_REDIRECT: 1929 /* 1930 * As there is no upper client to deliver, we don't 1931 * need the first_mp any more. 1932 */ 1933 if (mctl_present) { 1934 freeb(first_mp); 1935 } 1936 icmp_redirect(ill, mp); 1937 return; 1938 case ICMP_DEST_UNREACHABLE: 1939 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1940 if (!icmp_inbound_too_big(icmph, ipha, ill, 1941 zoneid, mp, iph_hdr_length, ipst)) { 1942 freemsg(first_mp); 1943 return; 1944 } 1945 /* 1946 * icmp_inbound_too_big() may alter mp. 1947 * Resynch ipha and icmph accordingly. 1948 */ 1949 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1950 ipha = (ipha_t *)&icmph[1]; 1951 } 1952 /* FALLTHRU */ 1953 default : 1954 /* 1955 * IPQoS notes: Since we have already done IPQoS 1956 * processing we don't want to do it again in 1957 * the fanout routines called by 1958 * icmp_inbound_error_fanout, hence the last 1959 * argument, ip_policy, is B_FALSE. 1960 */ 1961 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1962 ipha, iph_hdr_length, hdr_length, mctl_present, 1963 B_FALSE, recv_ill, zoneid); 1964 } 1965 return; 1966 } 1967 /* Send out an ICMP packet */ 1968 icmph->icmph_checksum = 0; 1969 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1970 if (broadcast || CLASSD(ipha->ipha_dst)) { 1971 ipif_t *ipif_chosen; 1972 /* 1973 * Make it look like it was directed to us, so we don't look 1974 * like a fool with a broadcast or multicast source address. 1975 */ 1976 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1977 /* 1978 * Make sure that we haven't grabbed an interface that's DOWN. 1979 */ 1980 if (ipif != NULL) { 1981 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1982 ipha->ipha_src, zoneid); 1983 if (ipif_chosen != NULL) { 1984 ipif_refrele(ipif); 1985 ipif = ipif_chosen; 1986 } 1987 } 1988 if (ipif == NULL) { 1989 ip0dbg(("icmp_inbound: " 1990 "No source for broadcast/multicast:\n" 1991 "\tsrc 0x%x dst 0x%x ill %p " 1992 "ipif_lcl_addr 0x%x\n", 1993 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1994 (void *)ill, 1995 ill->ill_ipif->ipif_lcl_addr)); 1996 freemsg(first_mp); 1997 return; 1998 } 1999 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2000 ipha->ipha_dst = ipif->ipif_src_addr; 2001 ipif_refrele(ipif); 2002 } 2003 /* Reset time to live. */ 2004 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2005 { 2006 /* Swap source and destination addresses */ 2007 ipaddr_t tmp; 2008 2009 tmp = ipha->ipha_src; 2010 ipha->ipha_src = ipha->ipha_dst; 2011 ipha->ipha_dst = tmp; 2012 } 2013 ipha->ipha_ident = 0; 2014 if (!IS_SIMPLE_IPH(ipha)) 2015 icmp_options_update(ipha); 2016 2017 /* 2018 * ICMP echo replies should go out on the same interface 2019 * the request came on as probes used by in.mpathd for detecting 2020 * NIC failures are ECHO packets. We turn-off load spreading 2021 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2022 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2023 * function. This is in turn handled by ip_wput and ip_newroute 2024 * to make sure that the packet goes out on the interface it came 2025 * in on. If we don't turnoff load spreading, the packets might get 2026 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2027 * to go out and in.mpathd would wrongly detect a failure or 2028 * mis-detect a NIC failure for link failure. As load spreading 2029 * can happen only if ill_group is not NULL, we do only for 2030 * that case and this does not affect the normal case. 2031 * 2032 * We turn off load spreading only on echo packets that came from 2033 * on-link hosts. If the interface route has been deleted, this will 2034 * not be enforced as we can't do much. For off-link hosts, as the 2035 * default routes in IPv4 does not typically have an ire_ipif 2036 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2037 * Moreover, expecting a default route through this interface may 2038 * not be correct. We use ipha_dst because of the swap above. 2039 */ 2040 onlink = B_FALSE; 2041 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2042 /* 2043 * First, we need to make sure that it is not one of our 2044 * local addresses. If we set onlink when it is one of 2045 * our local addresses, we will end up creating IRE_CACHES 2046 * for one of our local addresses. Then, we will never 2047 * accept packets for them afterwards. 2048 */ 2049 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2050 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2051 if (src_ire == NULL) { 2052 ipif = ipif_get_next_ipif(NULL, ill); 2053 if (ipif == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2059 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2060 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2061 ipif_refrele(ipif); 2062 if (src_ire != NULL) { 2063 onlink = B_TRUE; 2064 ire_refrele(src_ire); 2065 } 2066 } else { 2067 ire_refrele(src_ire); 2068 } 2069 } 2070 if (!mctl_present) { 2071 /* 2072 * This packet should go out the same way as it 2073 * came in i.e in clear. To make sure that global 2074 * policy will not be applied to this in ip_wput_ire, 2075 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2076 */ 2077 ASSERT(first_mp == mp); 2078 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2079 if (first_mp == NULL) { 2080 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2081 freemsg(mp); 2082 return; 2083 } 2084 ii = (ipsec_in_t *)first_mp->b_rptr; 2085 2086 /* This is not a secure packet */ 2087 ii->ipsec_in_secure = B_FALSE; 2088 if (onlink) { 2089 ii->ipsec_in_attach_if = B_TRUE; 2090 ii->ipsec_in_ill_index = 2091 ill->ill_phyint->phyint_ifindex; 2092 ii->ipsec_in_rill_index = 2093 recv_ill->ill_phyint->phyint_ifindex; 2094 } 2095 first_mp->b_cont = mp; 2096 } else if (onlink) { 2097 ii = (ipsec_in_t *)first_mp->b_rptr; 2098 ii->ipsec_in_attach_if = B_TRUE; 2099 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2100 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2101 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2102 } else { 2103 ii = (ipsec_in_t *)first_mp->b_rptr; 2104 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2105 } 2106 ii->ipsec_in_zoneid = zoneid; 2107 ASSERT(zoneid != ALL_ZONES); 2108 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2109 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2110 return; 2111 } 2112 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2113 put(WR(q), first_mp); 2114 } 2115 2116 static ipaddr_t 2117 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2118 { 2119 conn_t *connp; 2120 connf_t *connfp; 2121 ipaddr_t nexthop_addr = INADDR_ANY; 2122 int hdr_length = IPH_HDR_LENGTH(ipha); 2123 uint16_t *up; 2124 uint32_t ports; 2125 ip_stack_t *ipst = ill->ill_ipst; 2126 2127 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2128 switch (ipha->ipha_protocol) { 2129 case IPPROTO_TCP: 2130 { 2131 tcph_t *tcph; 2132 2133 /* do a reverse lookup */ 2134 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2135 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2136 TCPS_LISTEN, ipst); 2137 break; 2138 } 2139 case IPPROTO_UDP: 2140 { 2141 uint32_t dstport, srcport; 2142 2143 ((uint16_t *)&ports)[0] = up[1]; 2144 ((uint16_t *)&ports)[1] = up[0]; 2145 2146 /* Extract ports in net byte order */ 2147 dstport = htons(ntohl(ports) & 0xFFFF); 2148 srcport = htons(ntohl(ports) >> 16); 2149 2150 connfp = &ipst->ips_ipcl_udp_fanout[ 2151 IPCL_UDP_HASH(dstport, ipst)]; 2152 mutex_enter(&connfp->connf_lock); 2153 connp = connfp->connf_head; 2154 2155 /* do a reverse lookup */ 2156 while ((connp != NULL) && 2157 (!IPCL_UDP_MATCH(connp, dstport, 2158 ipha->ipha_src, srcport, ipha->ipha_dst) || 2159 !IPCL_ZONE_MATCH(connp, zoneid))) { 2160 connp = connp->conn_next; 2161 } 2162 if (connp != NULL) 2163 CONN_INC_REF(connp); 2164 mutex_exit(&connfp->connf_lock); 2165 break; 2166 } 2167 case IPPROTO_SCTP: 2168 { 2169 in6_addr_t map_src, map_dst; 2170 2171 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2172 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2173 ((uint16_t *)&ports)[0] = up[1]; 2174 ((uint16_t *)&ports)[1] = up[0]; 2175 2176 connp = sctp_find_conn(&map_src, &map_dst, ports, 2177 zoneid, ipst->ips_netstack->netstack_sctp); 2178 if (connp == NULL) { 2179 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2180 zoneid, ports, ipha, ipst); 2181 } else { 2182 CONN_INC_REF(connp); 2183 SCTP_REFRELE(CONN2SCTP(connp)); 2184 } 2185 break; 2186 } 2187 default: 2188 { 2189 ipha_t ripha; 2190 2191 ripha.ipha_src = ipha->ipha_dst; 2192 ripha.ipha_dst = ipha->ipha_src; 2193 ripha.ipha_protocol = ipha->ipha_protocol; 2194 2195 connfp = &ipst->ips_ipcl_proto_fanout[ 2196 ipha->ipha_protocol]; 2197 mutex_enter(&connfp->connf_lock); 2198 connp = connfp->connf_head; 2199 for (connp = connfp->connf_head; connp != NULL; 2200 connp = connp->conn_next) { 2201 if (IPCL_PROTO_MATCH(connp, 2202 ipha->ipha_protocol, &ripha, ill, 2203 0, zoneid)) { 2204 CONN_INC_REF(connp); 2205 break; 2206 } 2207 } 2208 mutex_exit(&connfp->connf_lock); 2209 } 2210 } 2211 if (connp != NULL) { 2212 if (connp->conn_nexthop_set) 2213 nexthop_addr = connp->conn_nexthop_v4; 2214 CONN_DEC_REF(connp); 2215 } 2216 return (nexthop_addr); 2217 } 2218 2219 /* Table from RFC 1191 */ 2220 static int icmp_frag_size_table[] = 2221 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2222 2223 /* 2224 * Process received ICMP Packet too big. 2225 * After updating any IRE it does the fanout to any matching transport streams. 2226 * Assumes the message has been pulled up till the IP header that caused 2227 * the error. 2228 * 2229 * Returns B_FALSE on failure and B_TRUE on success. 2230 */ 2231 static boolean_t 2232 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2233 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2234 ip_stack_t *ipst) 2235 { 2236 ire_t *ire, *first_ire; 2237 int mtu, orig_mtu; 2238 int hdr_length; 2239 ipaddr_t nexthop_addr; 2240 boolean_t disable_pmtud; 2241 2242 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2243 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2244 ASSERT(ill != NULL); 2245 2246 hdr_length = IPH_HDR_LENGTH(ipha); 2247 2248 /* Drop if the original packet contained a source route */ 2249 if (ip_source_route_included(ipha)) { 2250 return (B_FALSE); 2251 } 2252 /* 2253 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2254 * header. 2255 */ 2256 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2257 mp->b_wptr) { 2258 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2259 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2260 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2261 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2262 return (B_FALSE); 2263 } 2264 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2265 ipha = (ipha_t *)&icmph[1]; 2266 } 2267 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2268 if (nexthop_addr != INADDR_ANY) { 2269 /* nexthop set */ 2270 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2271 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2272 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2273 } else { 2274 /* nexthop not set */ 2275 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2276 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2277 } 2278 2279 if (!first_ire) { 2280 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2281 ntohl(ipha->ipha_dst))); 2282 return (B_FALSE); 2283 } 2284 2285 /* Check for MTU discovery advice as described in RFC 1191 */ 2286 mtu = ntohs(icmph->icmph_du_mtu); 2287 orig_mtu = mtu; 2288 disable_pmtud = B_FALSE; 2289 2290 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2291 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2292 ire = ire->ire_next) { 2293 /* 2294 * Look for the connection to which this ICMP message is 2295 * directed. If it has the IP_NEXTHOP option set, then the 2296 * search is limited to IREs with the MATCH_IRE_PRIVATE 2297 * option. Else the search is limited to regular IREs. 2298 */ 2299 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2300 (nexthop_addr != ire->ire_gateway_addr)) || 2301 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2302 (nexthop_addr != INADDR_ANY))) 2303 continue; 2304 2305 mutex_enter(&ire->ire_lock); 2306 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2307 uint32_t length; 2308 int i; 2309 2310 /* 2311 * Use the table from RFC 1191 to figure out 2312 * the next "plateau" based on the length in 2313 * the original IP packet. 2314 */ 2315 length = ntohs(ipha->ipha_length); 2316 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2317 uint32_t, length); 2318 if (ire->ire_max_frag <= length && 2319 ire->ire_max_frag >= length - hdr_length) { 2320 /* 2321 * Handle broken BSD 4.2 systems that 2322 * return the wrong iph_length in ICMP 2323 * errors. 2324 */ 2325 length -= hdr_length; 2326 } 2327 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2328 if (length > icmp_frag_size_table[i]) 2329 break; 2330 } 2331 if (i == A_CNT(icmp_frag_size_table)) { 2332 /* Smaller than 68! */ 2333 disable_pmtud = B_TRUE; 2334 mtu = ipst->ips_ip_pmtu_min; 2335 } else { 2336 mtu = icmp_frag_size_table[i]; 2337 if (mtu < ipst->ips_ip_pmtu_min) { 2338 mtu = ipst->ips_ip_pmtu_min; 2339 disable_pmtud = B_TRUE; 2340 } 2341 } 2342 /* Fool the ULP into believing our guessed PMTU. */ 2343 icmph->icmph_du_zero = 0; 2344 icmph->icmph_du_mtu = htons(mtu); 2345 } 2346 if (disable_pmtud) 2347 ire->ire_frag_flag = 0; 2348 /* Reduce the IRE max frag value as advised. */ 2349 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2350 mutex_exit(&ire->ire_lock); 2351 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2352 ire, int, orig_mtu, int, mtu); 2353 } 2354 rw_exit(&first_ire->ire_bucket->irb_lock); 2355 ire_refrele(first_ire); 2356 return (B_TRUE); 2357 } 2358 2359 /* 2360 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2361 * calls this function. 2362 */ 2363 static mblk_t * 2364 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2365 { 2366 ipha_t *ipha; 2367 icmph_t *icmph; 2368 ipha_t *in_ipha; 2369 int length; 2370 2371 ASSERT(mp->b_datap->db_type == M_DATA); 2372 2373 /* 2374 * For Self-encapsulated packets, we added an extra IP header 2375 * without the options. Inner IP header is the one from which 2376 * the outer IP header was formed. Thus, we need to remove the 2377 * outer IP header. To do this, we pullup the whole message 2378 * and overlay whatever follows the outer IP header over the 2379 * outer IP header. 2380 */ 2381 2382 if (!pullupmsg(mp, -1)) 2383 return (NULL); 2384 2385 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2386 ipha = (ipha_t *)&icmph[1]; 2387 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2388 2389 /* 2390 * The length that we want to overlay is following the inner 2391 * IP header. Subtracting the IP header + icmp header + outer 2392 * IP header's length should give us the length that we want to 2393 * overlay. 2394 */ 2395 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2396 hdr_length; 2397 /* 2398 * Overlay whatever follows the inner header over the 2399 * outer header. 2400 */ 2401 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2402 2403 /* Set the wptr to account for the outer header */ 2404 mp->b_wptr -= hdr_length; 2405 return (mp); 2406 } 2407 2408 /* 2409 * Try to pass the ICMP message upstream in case the ULP cares. 2410 * 2411 * If the packet that caused the ICMP error is secure, we send 2412 * it to AH/ESP to make sure that the attached packet has a 2413 * valid association. ipha in the code below points to the 2414 * IP header of the packet that caused the error. 2415 * 2416 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2417 * in the context of IPsec. Normally we tell the upper layer 2418 * whenever we send the ire (including ip_bind), the IPsec header 2419 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2420 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2421 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2422 * same thing. As TCP has the IPsec options size that needs to be 2423 * adjusted, we just pass the MTU unchanged. 2424 * 2425 * IFN could have been generated locally or by some router. 2426 * 2427 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2428 * This happens because IP adjusted its value of MTU on an 2429 * earlier IFN message and could not tell the upper layer, 2430 * the new adjusted value of MTU e.g. Packet was encrypted 2431 * or there was not enough information to fanout to upper 2432 * layers. Thus on the next outbound datagram, ip_wput_ire 2433 * generates the IFN, where IPsec processing has *not* been 2434 * done. 2435 * 2436 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2437 * could have generated this. This happens because ire_max_frag 2438 * value in IP was set to a new value, while the IPsec processing 2439 * was being done and after we made the fragmentation check in 2440 * ip_wput_ire. Thus on return from IPsec processing, 2441 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2442 * and generates the IFN. As IPsec processing is over, we fanout 2443 * to AH/ESP to remove the header. 2444 * 2445 * In both these cases, ipsec_in_loopback will be set indicating 2446 * that IFN was generated locally. 2447 * 2448 * ROUTER : IFN could be secure or non-secure. 2449 * 2450 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2451 * packet in error has AH/ESP headers to validate the AH/ESP 2452 * headers. AH/ESP will verify whether there is a valid SA or 2453 * not and send it back. We will fanout again if we have more 2454 * data in the packet. 2455 * 2456 * If the packet in error does not have AH/ESP, we handle it 2457 * like any other case. 2458 * 2459 * * NON_SECURE : If the packet in error has AH/ESP headers, 2460 * we attach a dummy ipsec_in and send it up to AH/ESP 2461 * for validation. AH/ESP will verify whether there is a 2462 * valid SA or not and send it back. We will fanout again if 2463 * we have more data in the packet. 2464 * 2465 * If the packet in error does not have AH/ESP, we handle it 2466 * like any other case. 2467 */ 2468 static void 2469 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2470 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2471 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2472 zoneid_t zoneid) 2473 { 2474 uint16_t *up; /* Pointer to ports in ULP header */ 2475 uint32_t ports; /* reversed ports for fanout */ 2476 ipha_t ripha; /* With reversed addresses */ 2477 mblk_t *first_mp; 2478 ipsec_in_t *ii; 2479 tcph_t *tcph; 2480 conn_t *connp; 2481 ip_stack_t *ipst; 2482 2483 ASSERT(ill != NULL); 2484 2485 ASSERT(recv_ill != NULL); 2486 ipst = recv_ill->ill_ipst; 2487 2488 first_mp = mp; 2489 if (mctl_present) { 2490 mp = first_mp->b_cont; 2491 ASSERT(mp != NULL); 2492 2493 ii = (ipsec_in_t *)first_mp->b_rptr; 2494 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2495 } else { 2496 ii = NULL; 2497 } 2498 2499 switch (ipha->ipha_protocol) { 2500 case IPPROTO_UDP: 2501 /* 2502 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2503 * transport header. 2504 */ 2505 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2506 mp->b_wptr) { 2507 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2508 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2509 goto discard_pkt; 2510 } 2511 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2512 ipha = (ipha_t *)&icmph[1]; 2513 } 2514 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2515 2516 /* 2517 * Attempt to find a client stream based on port. 2518 * Note that we do a reverse lookup since the header is 2519 * in the form we sent it out. 2520 * The ripha header is only used for the IP_UDP_MATCH and we 2521 * only set the src and dst addresses and protocol. 2522 */ 2523 ripha.ipha_src = ipha->ipha_dst; 2524 ripha.ipha_dst = ipha->ipha_src; 2525 ripha.ipha_protocol = ipha->ipha_protocol; 2526 ((uint16_t *)&ports)[0] = up[1]; 2527 ((uint16_t *)&ports)[1] = up[0]; 2528 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2529 ntohl(ipha->ipha_src), ntohs(up[0]), 2530 ntohl(ipha->ipha_dst), ntohs(up[1]), 2531 icmph->icmph_type, icmph->icmph_code)); 2532 2533 /* Have to change db_type after any pullupmsg */ 2534 DB_TYPE(mp) = M_CTL; 2535 2536 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2537 mctl_present, ip_policy, recv_ill, zoneid); 2538 return; 2539 2540 case IPPROTO_TCP: 2541 /* 2542 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2543 * transport header. 2544 */ 2545 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2546 mp->b_wptr) { 2547 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2548 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2549 goto discard_pkt; 2550 } 2551 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2552 ipha = (ipha_t *)&icmph[1]; 2553 } 2554 /* 2555 * Find a TCP client stream for this packet. 2556 * Note that we do a reverse lookup since the header is 2557 * in the form we sent it out. 2558 */ 2559 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2560 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2561 ipst); 2562 if (connp == NULL) 2563 goto discard_pkt; 2564 2565 /* Have to change db_type after any pullupmsg */ 2566 DB_TYPE(mp) = M_CTL; 2567 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2568 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2569 return; 2570 2571 case IPPROTO_SCTP: 2572 /* 2573 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2574 * transport header. 2575 */ 2576 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2577 mp->b_wptr) { 2578 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2579 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2580 goto discard_pkt; 2581 } 2582 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2583 ipha = (ipha_t *)&icmph[1]; 2584 } 2585 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2586 /* 2587 * Find a SCTP client stream for this packet. 2588 * Note that we do a reverse lookup since the header is 2589 * in the form we sent it out. 2590 * The ripha header is only used for the matching and we 2591 * only set the src and dst addresses, protocol, and version. 2592 */ 2593 ripha.ipha_src = ipha->ipha_dst; 2594 ripha.ipha_dst = ipha->ipha_src; 2595 ripha.ipha_protocol = ipha->ipha_protocol; 2596 ripha.ipha_version_and_hdr_length = 2597 ipha->ipha_version_and_hdr_length; 2598 ((uint16_t *)&ports)[0] = up[1]; 2599 ((uint16_t *)&ports)[1] = up[0]; 2600 2601 /* Have to change db_type after any pullupmsg */ 2602 DB_TYPE(mp) = M_CTL; 2603 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2604 mctl_present, ip_policy, zoneid); 2605 return; 2606 2607 case IPPROTO_ESP: 2608 case IPPROTO_AH: { 2609 int ipsec_rc; 2610 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2611 2612 /* 2613 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2614 * We will re-use the IPSEC_IN if it is already present as 2615 * AH/ESP will not affect any fields in the IPSEC_IN for 2616 * ICMP errors. If there is no IPSEC_IN, allocate a new 2617 * one and attach it in the front. 2618 */ 2619 if (ii != NULL) { 2620 /* 2621 * ip_fanout_proto_again converts the ICMP errors 2622 * that come back from AH/ESP to M_DATA so that 2623 * if it is non-AH/ESP and we do a pullupmsg in 2624 * this function, it would work. Convert it back 2625 * to M_CTL before we send up as this is a ICMP 2626 * error. This could have been generated locally or 2627 * by some router. Validate the inner IPsec 2628 * headers. 2629 * 2630 * NOTE : ill_index is used by ip_fanout_proto_again 2631 * to locate the ill. 2632 */ 2633 ASSERT(ill != NULL); 2634 ii->ipsec_in_ill_index = 2635 ill->ill_phyint->phyint_ifindex; 2636 ii->ipsec_in_rill_index = 2637 recv_ill->ill_phyint->phyint_ifindex; 2638 DB_TYPE(first_mp->b_cont) = M_CTL; 2639 } else { 2640 /* 2641 * IPSEC_IN is not present. We attach a ipsec_in 2642 * message and send up to IPsec for validating 2643 * and removing the IPsec headers. Clear 2644 * ipsec_in_secure so that when we return 2645 * from IPsec, we don't mistakenly think that this 2646 * is a secure packet came from the network. 2647 * 2648 * NOTE : ill_index is used by ip_fanout_proto_again 2649 * to locate the ill. 2650 */ 2651 ASSERT(first_mp == mp); 2652 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2653 if (first_mp == NULL) { 2654 freemsg(mp); 2655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2656 return; 2657 } 2658 ii = (ipsec_in_t *)first_mp->b_rptr; 2659 2660 /* This is not a secure packet */ 2661 ii->ipsec_in_secure = B_FALSE; 2662 first_mp->b_cont = mp; 2663 DB_TYPE(mp) = M_CTL; 2664 ASSERT(ill != NULL); 2665 ii->ipsec_in_ill_index = 2666 ill->ill_phyint->phyint_ifindex; 2667 ii->ipsec_in_rill_index = 2668 recv_ill->ill_phyint->phyint_ifindex; 2669 } 2670 ip2dbg(("icmp_inbound_error: ipsec\n")); 2671 2672 if (!ipsec_loaded(ipss)) { 2673 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2674 return; 2675 } 2676 2677 if (ipha->ipha_protocol == IPPROTO_ESP) 2678 ipsec_rc = ipsecesp_icmp_error(first_mp); 2679 else 2680 ipsec_rc = ipsecah_icmp_error(first_mp); 2681 if (ipsec_rc == IPSEC_STATUS_FAILED) 2682 return; 2683 2684 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2685 return; 2686 } 2687 default: 2688 /* 2689 * The ripha header is only used for the lookup and we 2690 * only set the src and dst addresses and protocol. 2691 */ 2692 ripha.ipha_src = ipha->ipha_dst; 2693 ripha.ipha_dst = ipha->ipha_src; 2694 ripha.ipha_protocol = ipha->ipha_protocol; 2695 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2696 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2697 ntohl(ipha->ipha_dst), 2698 icmph->icmph_type, icmph->icmph_code)); 2699 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2700 ipha_t *in_ipha; 2701 2702 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2703 mp->b_wptr) { 2704 if (!pullupmsg(mp, (uchar_t *)ipha + 2705 hdr_length + sizeof (ipha_t) - 2706 mp->b_rptr)) { 2707 goto discard_pkt; 2708 } 2709 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2710 ipha = (ipha_t *)&icmph[1]; 2711 } 2712 /* 2713 * Caller has verified that length has to be 2714 * at least the size of IP header. 2715 */ 2716 ASSERT(hdr_length >= sizeof (ipha_t)); 2717 /* 2718 * Check the sanity of the inner IP header like 2719 * we did for the outer header. 2720 */ 2721 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2722 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2723 goto discard_pkt; 2724 } 2725 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2726 goto discard_pkt; 2727 } 2728 /* Check for Self-encapsulated tunnels */ 2729 if (in_ipha->ipha_src == ipha->ipha_src && 2730 in_ipha->ipha_dst == ipha->ipha_dst) { 2731 2732 mp = icmp_inbound_self_encap_error(mp, 2733 iph_hdr_length, hdr_length); 2734 if (mp == NULL) 2735 goto discard_pkt; 2736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2737 ipha = (ipha_t *)&icmph[1]; 2738 hdr_length = IPH_HDR_LENGTH(ipha); 2739 /* 2740 * The packet in error is self-encapsualted. 2741 * And we are finding it further encapsulated 2742 * which we could not have possibly generated. 2743 */ 2744 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2745 goto discard_pkt; 2746 } 2747 icmp_inbound_error_fanout(q, ill, first_mp, 2748 icmph, ipha, iph_hdr_length, hdr_length, 2749 mctl_present, ip_policy, recv_ill, zoneid); 2750 return; 2751 } 2752 } 2753 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2754 ipha->ipha_protocol == IPPROTO_IPV6) && 2755 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2756 ii != NULL && 2757 ii->ipsec_in_loopback && 2758 ii->ipsec_in_secure) { 2759 /* 2760 * For IP tunnels that get a looped-back 2761 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2762 * reported new MTU to take into account the IPsec 2763 * headers protecting this configured tunnel. 2764 * 2765 * This allows the tunnel module (tun.c) to blindly 2766 * accept the MTU reported in an ICMP "too big" 2767 * message. 2768 * 2769 * Non-looped back ICMP messages will just be 2770 * handled by the security protocols (if needed), 2771 * and the first subsequent packet will hit this 2772 * path. 2773 */ 2774 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2775 ipsec_in_extra_length(first_mp)); 2776 } 2777 /* Have to change db_type after any pullupmsg */ 2778 DB_TYPE(mp) = M_CTL; 2779 2780 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2781 ip_policy, recv_ill, zoneid); 2782 return; 2783 } 2784 /* NOTREACHED */ 2785 discard_pkt: 2786 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2787 drop_pkt:; 2788 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2789 freemsg(first_mp); 2790 } 2791 2792 /* 2793 * Common IP options parser. 2794 * 2795 * Setup routine: fill in *optp with options-parsing state, then 2796 * tail-call ipoptp_next to return the first option. 2797 */ 2798 uint8_t 2799 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2800 { 2801 uint32_t totallen; /* total length of all options */ 2802 2803 totallen = ipha->ipha_version_and_hdr_length - 2804 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2805 totallen <<= 2; 2806 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2807 optp->ipoptp_end = optp->ipoptp_next + totallen; 2808 optp->ipoptp_flags = 0; 2809 return (ipoptp_next(optp)); 2810 } 2811 2812 /* 2813 * Common IP options parser: extract next option. 2814 */ 2815 uint8_t 2816 ipoptp_next(ipoptp_t *optp) 2817 { 2818 uint8_t *end = optp->ipoptp_end; 2819 uint8_t *cur = optp->ipoptp_next; 2820 uint8_t opt, len, pointer; 2821 2822 /* 2823 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2824 * has been corrupted. 2825 */ 2826 ASSERT(cur <= end); 2827 2828 if (cur == end) 2829 return (IPOPT_EOL); 2830 2831 opt = cur[IPOPT_OPTVAL]; 2832 2833 /* 2834 * Skip any NOP options. 2835 */ 2836 while (opt == IPOPT_NOP) { 2837 cur++; 2838 if (cur == end) 2839 return (IPOPT_EOL); 2840 opt = cur[IPOPT_OPTVAL]; 2841 } 2842 2843 if (opt == IPOPT_EOL) 2844 return (IPOPT_EOL); 2845 2846 /* 2847 * Option requiring a length. 2848 */ 2849 if ((cur + 1) >= end) { 2850 optp->ipoptp_flags |= IPOPTP_ERROR; 2851 return (IPOPT_EOL); 2852 } 2853 len = cur[IPOPT_OLEN]; 2854 if (len < 2) { 2855 optp->ipoptp_flags |= IPOPTP_ERROR; 2856 return (IPOPT_EOL); 2857 } 2858 optp->ipoptp_cur = cur; 2859 optp->ipoptp_len = len; 2860 optp->ipoptp_next = cur + len; 2861 if (cur + len > end) { 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 return (IPOPT_EOL); 2864 } 2865 2866 /* 2867 * For the options which require a pointer field, make sure 2868 * its there, and make sure it points to either something 2869 * inside this option, or the end of the option. 2870 */ 2871 switch (opt) { 2872 case IPOPT_RR: 2873 case IPOPT_TS: 2874 case IPOPT_LSRR: 2875 case IPOPT_SSRR: 2876 if (len <= IPOPT_OFFSET) { 2877 optp->ipoptp_flags |= IPOPTP_ERROR; 2878 return (opt); 2879 } 2880 pointer = cur[IPOPT_OFFSET]; 2881 if (pointer - 1 > len) { 2882 optp->ipoptp_flags |= IPOPTP_ERROR; 2883 return (opt); 2884 } 2885 break; 2886 } 2887 2888 /* 2889 * Sanity check the pointer field based on the type of the 2890 * option. 2891 */ 2892 switch (opt) { 2893 case IPOPT_RR: 2894 case IPOPT_SSRR: 2895 case IPOPT_LSRR: 2896 if (pointer < IPOPT_MINOFF_SR) 2897 optp->ipoptp_flags |= IPOPTP_ERROR; 2898 break; 2899 case IPOPT_TS: 2900 if (pointer < IPOPT_MINOFF_IT) 2901 optp->ipoptp_flags |= IPOPTP_ERROR; 2902 /* 2903 * Note that the Internet Timestamp option also 2904 * contains two four bit fields (the Overflow field, 2905 * and the Flag field), which follow the pointer 2906 * field. We don't need to check that these fields 2907 * fall within the length of the option because this 2908 * was implicitely done above. We've checked that the 2909 * pointer value is at least IPOPT_MINOFF_IT, and that 2910 * it falls within the option. Since IPOPT_MINOFF_IT > 2911 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2912 */ 2913 ASSERT(len > IPOPT_POS_OV_FLG); 2914 break; 2915 } 2916 2917 return (opt); 2918 } 2919 2920 /* 2921 * Use the outgoing IP header to create an IP_OPTIONS option the way 2922 * it was passed down from the application. 2923 */ 2924 int 2925 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2926 { 2927 ipoptp_t opts; 2928 const uchar_t *opt; 2929 uint8_t optval; 2930 uint8_t optlen; 2931 uint32_t len = 0; 2932 uchar_t *buf1 = buf; 2933 2934 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2935 len += IP_ADDR_LEN; 2936 bzero(buf1, IP_ADDR_LEN); 2937 2938 /* 2939 * OK to cast away const here, as we don't store through the returned 2940 * opts.ipoptp_cur pointer. 2941 */ 2942 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2943 optval != IPOPT_EOL; 2944 optval = ipoptp_next(&opts)) { 2945 int off; 2946 2947 opt = opts.ipoptp_cur; 2948 optlen = opts.ipoptp_len; 2949 switch (optval) { 2950 case IPOPT_SSRR: 2951 case IPOPT_LSRR: 2952 2953 /* 2954 * Insert ipha_dst as the first entry in the source 2955 * route and move down the entries on step. 2956 * The last entry gets placed at buf1. 2957 */ 2958 buf[IPOPT_OPTVAL] = optval; 2959 buf[IPOPT_OLEN] = optlen; 2960 buf[IPOPT_OFFSET] = optlen; 2961 2962 off = optlen - IP_ADDR_LEN; 2963 if (off < 0) { 2964 /* No entries in source route */ 2965 break; 2966 } 2967 /* Last entry in source route */ 2968 bcopy(opt + off, buf1, IP_ADDR_LEN); 2969 off -= IP_ADDR_LEN; 2970 2971 while (off > 0) { 2972 bcopy(opt + off, 2973 buf + off + IP_ADDR_LEN, 2974 IP_ADDR_LEN); 2975 off -= IP_ADDR_LEN; 2976 } 2977 /* ipha_dst into first slot */ 2978 bcopy(&ipha->ipha_dst, 2979 buf + off + IP_ADDR_LEN, 2980 IP_ADDR_LEN); 2981 buf += optlen; 2982 len += optlen; 2983 break; 2984 2985 case IPOPT_COMSEC: 2986 case IPOPT_SECURITY: 2987 /* if passing up a label is not ok, then remove */ 2988 if (is_system_labeled()) 2989 break; 2990 /* FALLTHROUGH */ 2991 default: 2992 bcopy(opt, buf, optlen); 2993 buf += optlen; 2994 len += optlen; 2995 break; 2996 } 2997 } 2998 done: 2999 /* Pad the resulting options */ 3000 while (len & 0x3) { 3001 *buf++ = IPOPT_EOL; 3002 len++; 3003 } 3004 return (len); 3005 } 3006 3007 /* 3008 * Update any record route or timestamp options to include this host. 3009 * Reverse any source route option. 3010 * This routine assumes that the options are well formed i.e. that they 3011 * have already been checked. 3012 */ 3013 static void 3014 icmp_options_update(ipha_t *ipha) 3015 { 3016 ipoptp_t opts; 3017 uchar_t *opt; 3018 uint8_t optval; 3019 ipaddr_t src; /* Our local address */ 3020 ipaddr_t dst; 3021 3022 ip2dbg(("icmp_options_update\n")); 3023 src = ipha->ipha_src; 3024 dst = ipha->ipha_dst; 3025 3026 for (optval = ipoptp_first(&opts, ipha); 3027 optval != IPOPT_EOL; 3028 optval = ipoptp_next(&opts)) { 3029 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3030 opt = opts.ipoptp_cur; 3031 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3032 optval, opts.ipoptp_len)); 3033 switch (optval) { 3034 int off1, off2; 3035 case IPOPT_SSRR: 3036 case IPOPT_LSRR: 3037 /* 3038 * Reverse the source route. The first entry 3039 * should be the next to last one in the current 3040 * source route (the last entry is our address). 3041 * The last entry should be the final destination. 3042 */ 3043 off1 = IPOPT_MINOFF_SR - 1; 3044 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3045 if (off2 < 0) { 3046 /* No entries in source route */ 3047 ip1dbg(( 3048 "icmp_options_update: bad src route\n")); 3049 break; 3050 } 3051 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3052 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3053 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3054 off2 -= IP_ADDR_LEN; 3055 3056 while (off1 < off2) { 3057 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3058 bcopy((char *)opt + off2, (char *)opt + off1, 3059 IP_ADDR_LEN); 3060 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3061 off1 += IP_ADDR_LEN; 3062 off2 -= IP_ADDR_LEN; 3063 } 3064 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3065 break; 3066 } 3067 } 3068 } 3069 3070 /* 3071 * Process received ICMP Redirect messages. 3072 */ 3073 static void 3074 icmp_redirect(ill_t *ill, mblk_t *mp) 3075 { 3076 ipha_t *ipha; 3077 int iph_hdr_length; 3078 icmph_t *icmph; 3079 ipha_t *ipha_err; 3080 ire_t *ire; 3081 ire_t *prev_ire; 3082 ire_t *save_ire; 3083 ipaddr_t src, dst, gateway; 3084 iulp_t ulp_info = { 0 }; 3085 int error; 3086 ip_stack_t *ipst; 3087 3088 ASSERT(ill != NULL); 3089 ipst = ill->ill_ipst; 3090 3091 ipha = (ipha_t *)mp->b_rptr; 3092 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3093 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3094 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3095 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3096 freemsg(mp); 3097 return; 3098 } 3099 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3100 ipha_err = (ipha_t *)&icmph[1]; 3101 src = ipha->ipha_src; 3102 dst = ipha_err->ipha_dst; 3103 gateway = icmph->icmph_rd_gateway; 3104 /* Make sure the new gateway is reachable somehow. */ 3105 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3106 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3107 /* 3108 * Make sure we had a route for the dest in question and that 3109 * that route was pointing to the old gateway (the source of the 3110 * redirect packet.) 3111 */ 3112 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3113 NULL, MATCH_IRE_GW, ipst); 3114 /* 3115 * Check that 3116 * the redirect was not from ourselves 3117 * the new gateway and the old gateway are directly reachable 3118 */ 3119 if (!prev_ire || 3120 !ire || 3121 ire->ire_type == IRE_LOCAL) { 3122 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3123 freemsg(mp); 3124 if (ire != NULL) 3125 ire_refrele(ire); 3126 if (prev_ire != NULL) 3127 ire_refrele(prev_ire); 3128 return; 3129 } 3130 3131 /* 3132 * Should we use the old ULP info to create the new gateway? From 3133 * a user's perspective, we should inherit the info so that it 3134 * is a "smooth" transition. If we do not do that, then new 3135 * connections going thru the new gateway will have no route metrics, 3136 * which is counter-intuitive to user. From a network point of 3137 * view, this may or may not make sense even though the new gateway 3138 * is still directly connected to us so the route metrics should not 3139 * change much. 3140 * 3141 * But if the old ire_uinfo is not initialized, we do another 3142 * recursive lookup on the dest using the new gateway. There may 3143 * be a route to that. If so, use it to initialize the redirect 3144 * route. 3145 */ 3146 if (prev_ire->ire_uinfo.iulp_set) { 3147 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3148 } else { 3149 ire_t *tmp_ire; 3150 ire_t *sire; 3151 3152 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3153 ALL_ZONES, 0, NULL, 3154 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3155 ipst); 3156 if (sire != NULL) { 3157 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3158 /* 3159 * If sire != NULL, ire_ftable_lookup() should not 3160 * return a NULL value. 3161 */ 3162 ASSERT(tmp_ire != NULL); 3163 ire_refrele(tmp_ire); 3164 ire_refrele(sire); 3165 } else if (tmp_ire != NULL) { 3166 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3167 sizeof (iulp_t)); 3168 ire_refrele(tmp_ire); 3169 } 3170 } 3171 if (prev_ire->ire_type == IRE_CACHE) 3172 ire_delete(prev_ire); 3173 ire_refrele(prev_ire); 3174 /* 3175 * TODO: more precise handling for cases 0, 2, 3, the latter two 3176 * require TOS routing 3177 */ 3178 switch (icmph->icmph_code) { 3179 case 0: 3180 case 1: 3181 /* TODO: TOS specificity for cases 2 and 3 */ 3182 case 2: 3183 case 3: 3184 break; 3185 default: 3186 freemsg(mp); 3187 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3188 ire_refrele(ire); 3189 return; 3190 } 3191 /* 3192 * Create a Route Association. This will allow us to remember that 3193 * someone we believe told us to use the particular gateway. 3194 */ 3195 save_ire = ire; 3196 ire = ire_create( 3197 (uchar_t *)&dst, /* dest addr */ 3198 (uchar_t *)&ip_g_all_ones, /* mask */ 3199 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3200 (uchar_t *)&gateway, /* gateway addr */ 3201 &save_ire->ire_max_frag, /* max frag */ 3202 NULL, /* no src nce */ 3203 NULL, /* no rfq */ 3204 NULL, /* no stq */ 3205 IRE_HOST, 3206 NULL, /* ipif */ 3207 0, /* cmask */ 3208 0, /* phandle */ 3209 0, /* ihandle */ 3210 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3211 &ulp_info, 3212 NULL, /* tsol_gc_t */ 3213 NULL, /* gcgrp */ 3214 ipst); 3215 3216 if (ire == NULL) { 3217 freemsg(mp); 3218 ire_refrele(save_ire); 3219 return; 3220 } 3221 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3222 ire_refrele(save_ire); 3223 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3224 3225 if (error == 0) { 3226 ire_refrele(ire); /* Held in ire_add_v4 */ 3227 /* tell routing sockets that we received a redirect */ 3228 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3229 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3230 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3231 } 3232 3233 /* 3234 * Delete any existing IRE_HOST type redirect ires for this destination. 3235 * This together with the added IRE has the effect of 3236 * modifying an existing redirect. 3237 */ 3238 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3239 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3240 if (prev_ire != NULL) { 3241 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3242 ire_delete(prev_ire); 3243 ire_refrele(prev_ire); 3244 } 3245 3246 freemsg(mp); 3247 } 3248 3249 /* 3250 * Generate an ICMP parameter problem message. 3251 */ 3252 static void 3253 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3254 ip_stack_t *ipst) 3255 { 3256 icmph_t icmph; 3257 boolean_t mctl_present; 3258 mblk_t *first_mp; 3259 3260 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3261 3262 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3263 if (mctl_present) 3264 freeb(first_mp); 3265 return; 3266 } 3267 3268 bzero(&icmph, sizeof (icmph_t)); 3269 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3270 icmph.icmph_pp_ptr = ptr; 3271 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3272 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3273 ipst); 3274 } 3275 3276 /* 3277 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3278 * the ICMP header pointed to by "stuff". (May be called as writer.) 3279 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3280 * an icmp error packet can be sent. 3281 * Assigns an appropriate source address to the packet. If ipha_dst is 3282 * one of our addresses use it for source. Otherwise pick a source based 3283 * on a route lookup back to ipha_src. 3284 * Note that ipha_src must be set here since the 3285 * packet is likely to arrive on an ill queue in ip_wput() which will 3286 * not set a source address. 3287 */ 3288 static void 3289 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3290 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3291 { 3292 ipaddr_t dst; 3293 icmph_t *icmph; 3294 ipha_t *ipha; 3295 uint_t len_needed; 3296 size_t msg_len; 3297 mblk_t *mp1; 3298 ipaddr_t src; 3299 ire_t *ire; 3300 mblk_t *ipsec_mp; 3301 ipsec_out_t *io = NULL; 3302 3303 if (mctl_present) { 3304 /* 3305 * If it is : 3306 * 3307 * 1) a IPSEC_OUT, then this is caused by outbound 3308 * datagram originating on this host. IPsec processing 3309 * may or may not have been done. Refer to comments above 3310 * icmp_inbound_error_fanout for details. 3311 * 3312 * 2) a IPSEC_IN if we are generating a icmp_message 3313 * for an incoming datagram destined for us i.e called 3314 * from ip_fanout_send_icmp. 3315 */ 3316 ipsec_info_t *in; 3317 ipsec_mp = mp; 3318 mp = ipsec_mp->b_cont; 3319 3320 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3321 ipha = (ipha_t *)mp->b_rptr; 3322 3323 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3324 in->ipsec_info_type == IPSEC_IN); 3325 3326 if (in->ipsec_info_type == IPSEC_IN) { 3327 /* 3328 * Convert the IPSEC_IN to IPSEC_OUT. 3329 */ 3330 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3331 BUMP_MIB(&ipst->ips_ip_mib, 3332 ipIfStatsOutDiscards); 3333 return; 3334 } 3335 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3336 } else { 3337 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3338 io = (ipsec_out_t *)in; 3339 /* 3340 * Clear out ipsec_out_proc_begin, so we do a fresh 3341 * ire lookup. 3342 */ 3343 io->ipsec_out_proc_begin = B_FALSE; 3344 } 3345 ASSERT(zoneid == io->ipsec_out_zoneid); 3346 ASSERT(zoneid != ALL_ZONES); 3347 } else { 3348 /* 3349 * This is in clear. The icmp message we are building 3350 * here should go out in clear. 3351 * 3352 * Pardon the convolution of it all, but it's easier to 3353 * allocate a "use cleartext" IPSEC_IN message and convert 3354 * it than it is to allocate a new one. 3355 */ 3356 ipsec_in_t *ii; 3357 ASSERT(DB_TYPE(mp) == M_DATA); 3358 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3359 if (ipsec_mp == NULL) { 3360 freemsg(mp); 3361 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3362 return; 3363 } 3364 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3365 3366 /* This is not a secure packet */ 3367 ii->ipsec_in_secure = B_FALSE; 3368 /* 3369 * For trusted extensions using a shared IP address we can 3370 * send using any zoneid. 3371 */ 3372 if (zoneid == ALL_ZONES) 3373 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3374 else 3375 ii->ipsec_in_zoneid = zoneid; 3376 ipsec_mp->b_cont = mp; 3377 ipha = (ipha_t *)mp->b_rptr; 3378 /* 3379 * Convert the IPSEC_IN to IPSEC_OUT. 3380 */ 3381 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3382 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3383 return; 3384 } 3385 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3386 } 3387 3388 /* Remember our eventual destination */ 3389 dst = ipha->ipha_src; 3390 3391 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3392 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3393 if (ire != NULL && 3394 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3395 src = ipha->ipha_dst; 3396 } else { 3397 if (ire != NULL) 3398 ire_refrele(ire); 3399 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3400 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3401 ipst); 3402 if (ire == NULL) { 3403 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3404 freemsg(ipsec_mp); 3405 return; 3406 } 3407 src = ire->ire_src_addr; 3408 } 3409 3410 if (ire != NULL) 3411 ire_refrele(ire); 3412 3413 /* 3414 * Check if we can send back more then 8 bytes in addition to 3415 * the IP header. We try to send 64 bytes of data and the internal 3416 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3417 */ 3418 len_needed = IPH_HDR_LENGTH(ipha); 3419 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3420 ipha->ipha_protocol == IPPROTO_IPV6) { 3421 3422 if (!pullupmsg(mp, -1)) { 3423 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3424 freemsg(ipsec_mp); 3425 return; 3426 } 3427 ipha = (ipha_t *)mp->b_rptr; 3428 3429 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3430 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3431 len_needed)); 3432 } else { 3433 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3434 3435 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3436 len_needed += ip_hdr_length_v6(mp, ip6h); 3437 } 3438 } 3439 len_needed += ipst->ips_ip_icmp_return; 3440 msg_len = msgdsize(mp); 3441 if (msg_len > len_needed) { 3442 (void) adjmsg(mp, len_needed - msg_len); 3443 msg_len = len_needed; 3444 } 3445 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3446 if (mp1 == NULL) { 3447 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3448 freemsg(ipsec_mp); 3449 return; 3450 } 3451 mp1->b_cont = mp; 3452 mp = mp1; 3453 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3454 ipsec_mp->b_rptr == (uint8_t *)io && 3455 io->ipsec_out_type == IPSEC_OUT); 3456 ipsec_mp->b_cont = mp; 3457 3458 /* 3459 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3460 * node generates be accepted in peace by all on-host destinations. 3461 * If we do NOT assume that all on-host destinations trust 3462 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3463 * (Look for ipsec_out_icmp_loopback). 3464 */ 3465 io->ipsec_out_icmp_loopback = B_TRUE; 3466 3467 ipha = (ipha_t *)mp->b_rptr; 3468 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3469 *ipha = icmp_ipha; 3470 ipha->ipha_src = src; 3471 ipha->ipha_dst = dst; 3472 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3473 msg_len += sizeof (icmp_ipha) + len; 3474 if (msg_len > IP_MAXPACKET) { 3475 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3476 msg_len = IP_MAXPACKET; 3477 } 3478 ipha->ipha_length = htons((uint16_t)msg_len); 3479 icmph = (icmph_t *)&ipha[1]; 3480 bcopy(stuff, icmph, len); 3481 icmph->icmph_checksum = 0; 3482 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3483 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3484 put(q, ipsec_mp); 3485 } 3486 3487 /* 3488 * Determine if an ICMP error packet can be sent given the rate limit. 3489 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3490 * in milliseconds) and a burst size. Burst size number of packets can 3491 * be sent arbitrarely closely spaced. 3492 * The state is tracked using two variables to implement an approximate 3493 * token bucket filter: 3494 * icmp_pkt_err_last - lbolt value when the last burst started 3495 * icmp_pkt_err_sent - number of packets sent in current burst 3496 */ 3497 boolean_t 3498 icmp_err_rate_limit(ip_stack_t *ipst) 3499 { 3500 clock_t now = TICK_TO_MSEC(lbolt); 3501 uint_t refilled; /* Number of packets refilled in tbf since last */ 3502 /* Guard against changes by loading into local variable */ 3503 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3504 3505 if (err_interval == 0) 3506 return (B_FALSE); 3507 3508 if (ipst->ips_icmp_pkt_err_last > now) { 3509 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3510 ipst->ips_icmp_pkt_err_last = 0; 3511 ipst->ips_icmp_pkt_err_sent = 0; 3512 } 3513 /* 3514 * If we are in a burst update the token bucket filter. 3515 * Update the "last" time to be close to "now" but make sure 3516 * we don't loose precision. 3517 */ 3518 if (ipst->ips_icmp_pkt_err_sent != 0) { 3519 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3520 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3521 ipst->ips_icmp_pkt_err_sent = 0; 3522 } else { 3523 ipst->ips_icmp_pkt_err_sent -= refilled; 3524 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3525 } 3526 } 3527 if (ipst->ips_icmp_pkt_err_sent == 0) { 3528 /* Start of new burst */ 3529 ipst->ips_icmp_pkt_err_last = now; 3530 } 3531 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3532 ipst->ips_icmp_pkt_err_sent++; 3533 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3534 ipst->ips_icmp_pkt_err_sent)); 3535 return (B_FALSE); 3536 } 3537 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3538 return (B_TRUE); 3539 } 3540 3541 /* 3542 * Check if it is ok to send an IPv4 ICMP error packet in 3543 * response to the IPv4 packet in mp. 3544 * Free the message and return null if no 3545 * ICMP error packet should be sent. 3546 */ 3547 static mblk_t * 3548 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3549 { 3550 icmph_t *icmph; 3551 ipha_t *ipha; 3552 uint_t len_needed; 3553 ire_t *src_ire; 3554 ire_t *dst_ire; 3555 3556 if (!mp) 3557 return (NULL); 3558 ipha = (ipha_t *)mp->b_rptr; 3559 if (ip_csum_hdr(ipha)) { 3560 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3561 freemsg(mp); 3562 return (NULL); 3563 } 3564 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3565 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3566 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3567 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3568 if (src_ire != NULL || dst_ire != NULL || 3569 CLASSD(ipha->ipha_dst) || 3570 CLASSD(ipha->ipha_src) || 3571 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3572 /* Note: only errors to the fragment with offset 0 */ 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 if (src_ire != NULL) 3576 ire_refrele(src_ire); 3577 if (dst_ire != NULL) 3578 ire_refrele(dst_ire); 3579 return (NULL); 3580 } 3581 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3582 /* 3583 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3584 * errors in response to any ICMP errors. 3585 */ 3586 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3587 if (mp->b_wptr - mp->b_rptr < len_needed) { 3588 if (!pullupmsg(mp, len_needed)) { 3589 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3590 freemsg(mp); 3591 return (NULL); 3592 } 3593 ipha = (ipha_t *)mp->b_rptr; 3594 } 3595 icmph = (icmph_t *) 3596 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3597 switch (icmph->icmph_type) { 3598 case ICMP_DEST_UNREACHABLE: 3599 case ICMP_SOURCE_QUENCH: 3600 case ICMP_TIME_EXCEEDED: 3601 case ICMP_PARAM_PROBLEM: 3602 case ICMP_REDIRECT: 3603 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3604 freemsg(mp); 3605 return (NULL); 3606 default: 3607 break; 3608 } 3609 } 3610 /* 3611 * If this is a labeled system, then check to see if we're allowed to 3612 * send a response to this particular sender. If not, then just drop. 3613 */ 3614 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3615 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3616 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3617 freemsg(mp); 3618 return (NULL); 3619 } 3620 if (icmp_err_rate_limit(ipst)) { 3621 /* 3622 * Only send ICMP error packets every so often. 3623 * This should be done on a per port/source basis, 3624 * but for now this will suffice. 3625 */ 3626 freemsg(mp); 3627 return (NULL); 3628 } 3629 return (mp); 3630 } 3631 3632 /* 3633 * Generate an ICMP redirect message. 3634 */ 3635 static void 3636 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3637 { 3638 icmph_t icmph; 3639 3640 /* 3641 * We are called from ip_rput where we could 3642 * not have attached an IPSEC_IN. 3643 */ 3644 ASSERT(mp->b_datap->db_type == M_DATA); 3645 3646 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3647 return; 3648 } 3649 3650 bzero(&icmph, sizeof (icmph_t)); 3651 icmph.icmph_type = ICMP_REDIRECT; 3652 icmph.icmph_code = 1; 3653 icmph.icmph_rd_gateway = gateway; 3654 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3655 /* Redirects sent by router, and router is global zone */ 3656 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3657 } 3658 3659 /* 3660 * Generate an ICMP time exceeded message. 3661 */ 3662 void 3663 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3664 ip_stack_t *ipst) 3665 { 3666 icmph_t icmph; 3667 boolean_t mctl_present; 3668 mblk_t *first_mp; 3669 3670 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3671 3672 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3673 if (mctl_present) 3674 freeb(first_mp); 3675 return; 3676 } 3677 3678 bzero(&icmph, sizeof (icmph_t)); 3679 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3680 icmph.icmph_code = code; 3681 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3682 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3683 ipst); 3684 } 3685 3686 /* 3687 * Generate an ICMP unreachable message. 3688 */ 3689 void 3690 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3691 ip_stack_t *ipst) 3692 { 3693 icmph_t icmph; 3694 mblk_t *first_mp; 3695 boolean_t mctl_present; 3696 3697 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3698 3699 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3700 if (mctl_present) 3701 freeb(first_mp); 3702 return; 3703 } 3704 3705 bzero(&icmph, sizeof (icmph_t)); 3706 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3707 icmph.icmph_code = code; 3708 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3709 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3710 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3711 zoneid, ipst); 3712 } 3713 3714 /* 3715 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3716 * duplicate. As long as someone else holds the address, the interface will 3717 * stay down. When that conflict goes away, the interface is brought back up. 3718 * This is done so that accidental shutdowns of addresses aren't made 3719 * permanent. Your server will recover from a failure. 3720 * 3721 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3722 * user space process (dhcpagent). 3723 * 3724 * Recovery completes if ARP reports that the address is now ours (via 3725 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3726 * 3727 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3728 */ 3729 static void 3730 ipif_dup_recovery(void *arg) 3731 { 3732 ipif_t *ipif = arg; 3733 ill_t *ill = ipif->ipif_ill; 3734 mblk_t *arp_add_mp; 3735 mblk_t *arp_del_mp; 3736 area_t *area; 3737 ip_stack_t *ipst = ill->ill_ipst; 3738 3739 ipif->ipif_recovery_id = 0; 3740 3741 /* 3742 * No lock needed for moving or condemned check, as this is just an 3743 * optimization. 3744 */ 3745 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3746 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3747 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3748 /* No reason to try to bring this address back. */ 3749 return; 3750 } 3751 3752 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3753 goto alloc_fail; 3754 3755 if (ipif->ipif_arp_del_mp == NULL) { 3756 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3757 goto alloc_fail; 3758 ipif->ipif_arp_del_mp = arp_del_mp; 3759 } 3760 3761 /* Setting the 'unverified' flag restarts DAD */ 3762 area = (area_t *)arp_add_mp->b_rptr; 3763 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3764 ACE_F_UNVERIFIED; 3765 putnext(ill->ill_rq, arp_add_mp); 3766 return; 3767 3768 alloc_fail: 3769 /* 3770 * On allocation failure, just restart the timer. Note that the ipif 3771 * is down here, so no other thread could be trying to start a recovery 3772 * timer. The ill_lock protects the condemned flag and the recovery 3773 * timer ID. 3774 */ 3775 freemsg(arp_add_mp); 3776 mutex_enter(&ill->ill_lock); 3777 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3778 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3779 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3780 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3781 } 3782 mutex_exit(&ill->ill_lock); 3783 } 3784 3785 /* 3786 * This is for exclusive changes due to ARP. Either tear down an interface due 3787 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3788 */ 3789 /* ARGSUSED */ 3790 static void 3791 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3792 { 3793 ill_t *ill = rq->q_ptr; 3794 arh_t *arh; 3795 ipaddr_t src; 3796 ipif_t *ipif; 3797 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3798 char hbuf[MAC_STR_LEN]; 3799 char sbuf[INET_ADDRSTRLEN]; 3800 const char *failtype; 3801 boolean_t bring_up; 3802 ip_stack_t *ipst = ill->ill_ipst; 3803 3804 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3805 case AR_CN_READY: 3806 failtype = NULL; 3807 bring_up = B_TRUE; 3808 break; 3809 case AR_CN_FAILED: 3810 failtype = "in use"; 3811 bring_up = B_FALSE; 3812 break; 3813 default: 3814 failtype = "claimed"; 3815 bring_up = B_FALSE; 3816 break; 3817 } 3818 3819 arh = (arh_t *)mp->b_cont->b_rptr; 3820 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3821 3822 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3823 sizeof (hbuf)); 3824 (void) ip_dot_addr(src, sbuf); 3825 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3826 3827 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3828 ipif->ipif_lcl_addr != src) { 3829 continue; 3830 } 3831 3832 /* 3833 * If we failed on a recovery probe, then restart the timer to 3834 * try again later. 3835 */ 3836 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3837 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3838 ill->ill_net_type == IRE_IF_RESOLVER && 3839 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3840 ipst->ips_ip_dup_recovery > 0 && 3841 ipif->ipif_recovery_id == 0) { 3842 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3843 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3844 continue; 3845 } 3846 3847 /* 3848 * If what we're trying to do has already been done, then do 3849 * nothing. 3850 */ 3851 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3852 continue; 3853 3854 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3855 3856 if (failtype == NULL) { 3857 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3858 ibuf); 3859 } else { 3860 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3861 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3862 } 3863 3864 if (bring_up) { 3865 ASSERT(ill->ill_dl_up); 3866 /* 3867 * Free up the ARP delete message so we can allocate 3868 * a fresh one through the normal path. 3869 */ 3870 freemsg(ipif->ipif_arp_del_mp); 3871 ipif->ipif_arp_del_mp = NULL; 3872 if (ipif_resolver_up(ipif, Res_act_initial) != 3873 EINPROGRESS) { 3874 ipif->ipif_addr_ready = 1; 3875 (void) ipif_up_done(ipif); 3876 } 3877 continue; 3878 } 3879 3880 mutex_enter(&ill->ill_lock); 3881 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3882 ipif->ipif_flags |= IPIF_DUPLICATE; 3883 ill->ill_ipif_dup_count++; 3884 mutex_exit(&ill->ill_lock); 3885 /* 3886 * Already exclusive on the ill; no need to handle deferred 3887 * processing here. 3888 */ 3889 (void) ipif_down(ipif, NULL, NULL); 3890 ipif_down_tail(ipif); 3891 mutex_enter(&ill->ill_lock); 3892 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3893 ill->ill_net_type == IRE_IF_RESOLVER && 3894 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3895 ipst->ips_ip_dup_recovery > 0) { 3896 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3897 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3898 } 3899 mutex_exit(&ill->ill_lock); 3900 } 3901 freemsg(mp); 3902 } 3903 3904 /* ARGSUSED */ 3905 static void 3906 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3907 { 3908 ill_t *ill = rq->q_ptr; 3909 arh_t *arh; 3910 ipaddr_t src; 3911 ipif_t *ipif; 3912 3913 arh = (arh_t *)mp->b_cont->b_rptr; 3914 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3915 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3916 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3917 (void) ipif_resolver_up(ipif, Res_act_defend); 3918 } 3919 freemsg(mp); 3920 } 3921 3922 /* 3923 * News from ARP. ARP sends notification of interesting events down 3924 * to its clients using M_CTL messages with the interesting ARP packet 3925 * attached via b_cont. 3926 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3927 * queue as opposed to ARP sending the message to all the clients, i.e. all 3928 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3929 * table if a cache IRE is found to delete all the entries for the address in 3930 * the packet. 3931 */ 3932 static void 3933 ip_arp_news(queue_t *q, mblk_t *mp) 3934 { 3935 arcn_t *arcn; 3936 arh_t *arh; 3937 ire_t *ire = NULL; 3938 char hbuf[MAC_STR_LEN]; 3939 char sbuf[INET_ADDRSTRLEN]; 3940 ipaddr_t src; 3941 in6_addr_t v6src; 3942 boolean_t isv6 = B_FALSE; 3943 ipif_t *ipif; 3944 ill_t *ill; 3945 ip_stack_t *ipst; 3946 3947 if (CONN_Q(q)) { 3948 conn_t *connp = Q_TO_CONN(q); 3949 3950 ipst = connp->conn_netstack->netstack_ip; 3951 } else { 3952 ill_t *ill = (ill_t *)q->q_ptr; 3953 3954 ipst = ill->ill_ipst; 3955 } 3956 3957 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3958 if (q->q_next) { 3959 putnext(q, mp); 3960 } else 3961 freemsg(mp); 3962 return; 3963 } 3964 arh = (arh_t *)mp->b_cont->b_rptr; 3965 /* Is it one we are interested in? */ 3966 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3967 isv6 = B_TRUE; 3968 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3969 IPV6_ADDR_LEN); 3970 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3971 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3972 IP_ADDR_LEN); 3973 } else { 3974 freemsg(mp); 3975 return; 3976 } 3977 3978 ill = q->q_ptr; 3979 3980 arcn = (arcn_t *)mp->b_rptr; 3981 switch (arcn->arcn_code) { 3982 case AR_CN_BOGON: 3983 /* 3984 * Someone is sending ARP packets with a source protocol 3985 * address that we have published and for which we believe our 3986 * entry is authoritative and (when ill_arp_extend is set) 3987 * verified to be unique on the network. 3988 * 3989 * The ARP module internally handles the cases where the sender 3990 * is just probing (for DAD) and where the hardware address of 3991 * a non-authoritative entry has changed. Thus, these are the 3992 * real conflicts, and we have to do resolution. 3993 * 3994 * We back away quickly from the address if it's from DHCP or 3995 * otherwise temporary and hasn't been used recently (or at 3996 * all). We'd like to include "deprecated" addresses here as 3997 * well (as there's no real reason to defend something we're 3998 * discarding), but IPMP "reuses" this flag to mean something 3999 * other than the standard meaning. 4000 * 4001 * If the ARP module above is not extended (meaning that it 4002 * doesn't know how to defend the address), then we just log 4003 * the problem as we always did and continue on. It's not 4004 * right, but there's little else we can do, and those old ATM 4005 * users are going away anyway. 4006 */ 4007 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4008 hbuf, sizeof (hbuf)); 4009 (void) ip_dot_addr(src, sbuf); 4010 if (isv6) { 4011 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4012 ipst); 4013 } else { 4014 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4015 } 4016 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4017 uint32_t now; 4018 uint32_t maxage; 4019 clock_t lused; 4020 uint_t maxdefense; 4021 uint_t defs; 4022 4023 /* 4024 * First, figure out if this address hasn't been used 4025 * in a while. If it hasn't, then it's a better 4026 * candidate for abandoning. 4027 */ 4028 ipif = ire->ire_ipif; 4029 ASSERT(ipif != NULL); 4030 now = gethrestime_sec(); 4031 maxage = now - ire->ire_create_time; 4032 if (maxage > ipst->ips_ip_max_temp_idle) 4033 maxage = ipst->ips_ip_max_temp_idle; 4034 lused = drv_hztousec(ddi_get_lbolt() - 4035 ire->ire_last_used_time) / MICROSEC + 1; 4036 if (lused >= maxage && (ipif->ipif_flags & 4037 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4038 maxdefense = ipst->ips_ip_max_temp_defend; 4039 else 4040 maxdefense = ipst->ips_ip_max_defend; 4041 4042 /* 4043 * Now figure out how many times we've defended 4044 * ourselves. Ignore defenses that happened long in 4045 * the past. 4046 */ 4047 mutex_enter(&ire->ire_lock); 4048 if ((defs = ire->ire_defense_count) > 0 && 4049 now - ire->ire_defense_time > 4050 ipst->ips_ip_defend_interval) { 4051 ire->ire_defense_count = defs = 0; 4052 } 4053 ire->ire_defense_count++; 4054 ire->ire_defense_time = now; 4055 mutex_exit(&ire->ire_lock); 4056 ill_refhold(ill); 4057 ire_refrele(ire); 4058 4059 /* 4060 * If we've defended ourselves too many times already, 4061 * then give up and tear down the interface(s) using 4062 * this address. Otherwise, defend by sending out a 4063 * gratuitous ARP. 4064 */ 4065 if (defs >= maxdefense && ill->ill_arp_extend) { 4066 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4067 B_FALSE); 4068 } else { 4069 cmn_err(CE_WARN, 4070 "node %s is using our IP address %s on %s", 4071 hbuf, sbuf, ill->ill_name); 4072 /* 4073 * If this is an old (ATM) ARP module, then 4074 * don't try to defend the address. Remain 4075 * compatible with the old behavior. Defend 4076 * only with new ARP. 4077 */ 4078 if (ill->ill_arp_extend) { 4079 qwriter_ip(ill, q, mp, ip_arp_defend, 4080 NEW_OP, B_FALSE); 4081 } else { 4082 ill_refrele(ill); 4083 } 4084 } 4085 return; 4086 } 4087 cmn_err(CE_WARN, 4088 "proxy ARP problem? Node '%s' is using %s on %s", 4089 hbuf, sbuf, ill->ill_name); 4090 if (ire != NULL) 4091 ire_refrele(ire); 4092 break; 4093 case AR_CN_ANNOUNCE: 4094 if (isv6) { 4095 /* 4096 * For XRESOLV interfaces. 4097 * Delete the IRE cache entry and NCE for this 4098 * v6 address 4099 */ 4100 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4101 /* 4102 * If v6src is a non-zero, it's a router address 4103 * as below. Do the same sort of thing to clean 4104 * out off-net IRE_CACHE entries that go through 4105 * the router. 4106 */ 4107 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4108 ire_walk_v6(ire_delete_cache_gw_v6, 4109 (char *)&v6src, ALL_ZONES, ipst); 4110 } 4111 } else { 4112 nce_hw_map_t hwm; 4113 4114 /* 4115 * ARP gives us a copy of any packet where it thinks 4116 * the address has changed, so that we can update our 4117 * caches. We're responsible for caching known answers 4118 * in the current design. We check whether the 4119 * hardware address really has changed in all of our 4120 * entries that have cached this mapping, and if so, we 4121 * blow them away. This way we will immediately pick 4122 * up the rare case of a host changing hardware 4123 * address. 4124 */ 4125 if (src == 0) 4126 break; 4127 hwm.hwm_addr = src; 4128 hwm.hwm_hwlen = arh->arh_hlen; 4129 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4130 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4131 ndp_walk_common(ipst->ips_ndp4, NULL, 4132 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4133 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4134 } 4135 break; 4136 case AR_CN_READY: 4137 /* No external v6 resolver has a contract to use this */ 4138 if (isv6) 4139 break; 4140 /* If the link is down, we'll retry this later */ 4141 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4142 break; 4143 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4144 NULL, NULL, ipst); 4145 if (ipif != NULL) { 4146 /* 4147 * If this is a duplicate recovery, then we now need to 4148 * go exclusive to bring this thing back up. 4149 */ 4150 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4151 IPIF_DUPLICATE) { 4152 ipif_refrele(ipif); 4153 ill_refhold(ill); 4154 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4155 B_FALSE); 4156 return; 4157 } 4158 /* 4159 * If this is the first notice that this address is 4160 * ready, then let the user know now. 4161 */ 4162 if ((ipif->ipif_flags & IPIF_UP) && 4163 !ipif->ipif_addr_ready) { 4164 ipif_mask_reply(ipif); 4165 ipif_up_notify(ipif); 4166 } 4167 ipif->ipif_addr_ready = 1; 4168 ipif_refrele(ipif); 4169 } 4170 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4171 if (ire != NULL) { 4172 ire->ire_defense_count = 0; 4173 ire_refrele(ire); 4174 } 4175 break; 4176 case AR_CN_FAILED: 4177 /* No external v6 resolver has a contract to use this */ 4178 if (isv6) 4179 break; 4180 ill_refhold(ill); 4181 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4182 return; 4183 } 4184 freemsg(mp); 4185 } 4186 4187 /* 4188 * Create a mblk suitable for carrying the interface index and/or source link 4189 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4190 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4191 * application. 4192 */ 4193 mblk_t * 4194 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4195 ip_stack_t *ipst) 4196 { 4197 mblk_t *mp; 4198 ip_pktinfo_t *pinfo; 4199 ipha_t *ipha; 4200 struct ether_header *pether; 4201 4202 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4203 if (mp == NULL) { 4204 ip1dbg(("ip_add_info: allocation failure.\n")); 4205 return (data_mp); 4206 } 4207 4208 ipha = (ipha_t *)data_mp->b_rptr; 4209 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4210 bzero(pinfo, sizeof (ip_pktinfo_t)); 4211 pinfo->ip_pkt_flags = (uchar_t)flags; 4212 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4213 4214 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4215 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4216 if (flags & IPF_RECVADDR) { 4217 ipif_t *ipif; 4218 ire_t *ire; 4219 4220 /* 4221 * Only valid for V4 4222 */ 4223 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4224 (IPV4_VERSION << 4)); 4225 4226 ipif = ipif_get_next_ipif(NULL, ill); 4227 if (ipif != NULL) { 4228 /* 4229 * Since a decision has already been made to deliver the 4230 * packet, there is no need to test for SECATTR and 4231 * ZONEONLY. 4232 * When a multicast packet is transmitted 4233 * a cache entry is created for the multicast address. 4234 * When delivering a copy of the packet or when new 4235 * packets are received we do not want to match on the 4236 * cached entry so explicitly match on 4237 * IRE_LOCAL and IRE_LOOPBACK 4238 */ 4239 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4240 IRE_LOCAL | IRE_LOOPBACK, 4241 ipif, zoneid, NULL, 4242 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4243 if (ire == NULL) { 4244 /* 4245 * packet must have come on a different 4246 * interface. 4247 * Since a decision has already been made to 4248 * deliver the packet, there is no need to test 4249 * for SECATTR and ZONEONLY. 4250 * Only match on local and broadcast ire's. 4251 * See detailed comment above. 4252 */ 4253 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4254 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4255 NULL, MATCH_IRE_TYPE, ipst); 4256 } 4257 4258 if (ire == NULL) { 4259 /* 4260 * This is either a multicast packet or 4261 * the address has been removed since 4262 * the packet was received. 4263 * Return INADDR_ANY so that normal source 4264 * selection occurs for the response. 4265 */ 4266 4267 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4268 } else { 4269 pinfo->ip_pkt_match_addr.s_addr = 4270 ire->ire_src_addr; 4271 ire_refrele(ire); 4272 } 4273 ipif_refrele(ipif); 4274 } else { 4275 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4276 } 4277 } 4278 4279 pether = (struct ether_header *)((char *)ipha 4280 - sizeof (struct ether_header)); 4281 /* 4282 * Make sure the interface is an ethernet type, since this option 4283 * is currently supported only on this type of interface. Also make 4284 * sure we are pointing correctly above db_base. 4285 */ 4286 4287 if ((flags & IPF_RECVSLLA) && 4288 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4289 (ill->ill_type == IFT_ETHER) && 4290 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4291 4292 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4293 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4294 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4295 } else { 4296 /* 4297 * Clear the bit. Indicate to upper layer that IP is not 4298 * sending this ancillary info. 4299 */ 4300 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4301 } 4302 4303 mp->b_datap->db_type = M_CTL; 4304 mp->b_wptr += sizeof (ip_pktinfo_t); 4305 mp->b_cont = data_mp; 4306 4307 return (mp); 4308 } 4309 4310 /* 4311 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4312 * part of the bind request. 4313 */ 4314 4315 boolean_t 4316 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4317 { 4318 ipsec_in_t *ii; 4319 4320 ASSERT(policy_mp != NULL); 4321 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4322 4323 ii = (ipsec_in_t *)policy_mp->b_rptr; 4324 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4325 4326 connp->conn_policy = ii->ipsec_in_policy; 4327 ii->ipsec_in_policy = NULL; 4328 4329 if (ii->ipsec_in_action != NULL) { 4330 if (connp->conn_latch == NULL) { 4331 connp->conn_latch = iplatch_create(); 4332 if (connp->conn_latch == NULL) 4333 return (B_FALSE); 4334 } 4335 ipsec_latch_inbound(connp->conn_latch, ii); 4336 } 4337 return (B_TRUE); 4338 } 4339 4340 static void 4341 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4342 { 4343 /* 4344 * Pass the IPsec headers size in ire_ipsec_overhead. 4345 * We can't do this in ip_bind_get_ire because the policy 4346 * may not have been inherited at that point in time and hence 4347 * conn_out_enforce_policy may not be set. 4348 */ 4349 if (ire_requested && connp->conn_out_enforce_policy && 4350 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4351 ire_t *ire = (ire_t *)mp->b_rptr; 4352 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4353 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4354 } 4355 } 4356 4357 /* 4358 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4359 * and to arrange for power-fanout assist. The ULP is identified by 4360 * adding a single byte at the end of the original bind message. 4361 * A ULP other than UDP or TCP that wishes to be recognized passes 4362 * down a bind with a zero length address. 4363 * 4364 * The binding works as follows: 4365 * - A zero byte address means just bind to the protocol. 4366 * - A four byte address is treated as a request to validate 4367 * that the address is a valid local address, appropriate for 4368 * an application to bind to. This does not affect any fanout 4369 * information in IP. 4370 * - A sizeof sin_t byte address is used to bind to only the local address 4371 * and port. 4372 * - A sizeof ipa_conn_t byte address contains complete fanout information 4373 * consisting of local and remote addresses and ports. In 4374 * this case, the addresses are both validated as appropriate 4375 * for this operation, and, if so, the information is retained 4376 * for use in the inbound fanout. 4377 * 4378 * The ULP (except in the zero-length bind) can append an 4379 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4380 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4381 * a copy of the source or destination IRE (source for local bind; 4382 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4383 * policy information contained should be copied on to the conn. 4384 * 4385 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4386 */ 4387 mblk_t * 4388 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4389 { 4390 ssize_t len; 4391 struct T_bind_req *tbr; 4392 sin_t *sin; 4393 ipa_conn_t *ac; 4394 uchar_t *ucp; 4395 mblk_t *mp1; 4396 boolean_t ire_requested; 4397 int error = 0; 4398 int protocol; 4399 ipa_conn_x_t *acx; 4400 4401 ASSERT(!connp->conn_af_isv6); 4402 connp->conn_pkt_isv6 = B_FALSE; 4403 4404 len = MBLKL(mp); 4405 if (len < (sizeof (*tbr) + 1)) { 4406 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4407 "ip_bind: bogus msg, len %ld", len); 4408 /* XXX: Need to return something better */ 4409 goto bad_addr; 4410 } 4411 /* Back up and extract the protocol identifier. */ 4412 mp->b_wptr--; 4413 protocol = *mp->b_wptr & 0xFF; 4414 tbr = (struct T_bind_req *)mp->b_rptr; 4415 /* Reset the message type in preparation for shipping it back. */ 4416 DB_TYPE(mp) = M_PCPROTO; 4417 4418 connp->conn_ulp = (uint8_t)protocol; 4419 4420 /* 4421 * Check for a zero length address. This is from a protocol that 4422 * wants to register to receive all packets of its type. 4423 */ 4424 if (tbr->ADDR_length == 0) { 4425 /* 4426 * These protocols are now intercepted in ip_bind_v6(). 4427 * Reject protocol-level binds here for now. 4428 * 4429 * For SCTP raw socket, ICMP sends down a bind with sin_t 4430 * so that the protocol type cannot be SCTP. 4431 */ 4432 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4433 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4434 goto bad_addr; 4435 } 4436 4437 /* 4438 * 4439 * The udp module never sends down a zero-length address, 4440 * and allowing this on a labeled system will break MLP 4441 * functionality. 4442 */ 4443 if (is_system_labeled() && protocol == IPPROTO_UDP) 4444 goto bad_addr; 4445 4446 if (connp->conn_mac_exempt) 4447 goto bad_addr; 4448 4449 /* No hash here really. The table is big enough. */ 4450 connp->conn_srcv6 = ipv6_all_zeros; 4451 4452 ipcl_proto_insert(connp, protocol); 4453 4454 tbr->PRIM_type = T_BIND_ACK; 4455 return (mp); 4456 } 4457 4458 /* Extract the address pointer from the message. */ 4459 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4460 tbr->ADDR_length); 4461 if (ucp == NULL) { 4462 ip1dbg(("ip_bind: no address\n")); 4463 goto bad_addr; 4464 } 4465 if (!OK_32PTR(ucp)) { 4466 ip1dbg(("ip_bind: unaligned address\n")); 4467 goto bad_addr; 4468 } 4469 /* 4470 * Check for trailing mps. 4471 */ 4472 4473 mp1 = mp->b_cont; 4474 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4475 4476 switch (tbr->ADDR_length) { 4477 default: 4478 ip1dbg(("ip_bind: bad address length %d\n", 4479 (int)tbr->ADDR_length)); 4480 goto bad_addr; 4481 4482 case IP_ADDR_LEN: 4483 /* Verification of local address only */ 4484 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4485 *(ipaddr_t *)ucp, 0, B_FALSE); 4486 break; 4487 4488 case sizeof (sin_t): 4489 sin = (sin_t *)ucp; 4490 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4491 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4492 break; 4493 4494 case sizeof (ipa_conn_t): 4495 ac = (ipa_conn_t *)ucp; 4496 /* For raw socket, the local port is not set. */ 4497 if (ac->ac_lport == 0) 4498 ac->ac_lport = connp->conn_lport; 4499 /* Always verify destination reachability. */ 4500 error = ip_bind_connected_v4(connp, &mp1, protocol, 4501 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4502 B_TRUE, B_TRUE); 4503 break; 4504 4505 case sizeof (ipa_conn_x_t): 4506 acx = (ipa_conn_x_t *)ucp; 4507 /* 4508 * Whether or not to verify destination reachability depends 4509 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4510 */ 4511 error = ip_bind_connected_v4(connp, &mp1, protocol, 4512 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4513 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4514 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4515 break; 4516 } 4517 ASSERT(error != EINPROGRESS); 4518 if (error != 0) 4519 goto bad_addr; 4520 4521 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4522 4523 /* Send it home. */ 4524 mp->b_datap->db_type = M_PCPROTO; 4525 tbr->PRIM_type = T_BIND_ACK; 4526 return (mp); 4527 4528 bad_addr: 4529 /* 4530 * If error = -1 then we generate a TBADADDR - otherwise error is 4531 * a unix errno. 4532 */ 4533 if (error > 0) 4534 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4535 else 4536 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4537 return (mp); 4538 } 4539 4540 /* 4541 * Here address is verified to be a valid local address. 4542 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4543 * address is also considered a valid local address. 4544 * In the case of a broadcast/multicast address, however, the 4545 * upper protocol is expected to reset the src address 4546 * to 0 if it sees a IRE_BROADCAST type returned so that 4547 * no packets are emitted with broadcast/multicast address as 4548 * source address (that violates hosts requirements RFC 1122) 4549 * The addresses valid for bind are: 4550 * (1) - INADDR_ANY (0) 4551 * (2) - IP address of an UP interface 4552 * (3) - IP address of a DOWN interface 4553 * (4) - valid local IP broadcast addresses. In this case 4554 * the conn will only receive packets destined to 4555 * the specified broadcast address. 4556 * (5) - a multicast address. In this case 4557 * the conn will only receive packets destined to 4558 * the specified multicast address. Note: the 4559 * application still has to issue an 4560 * IP_ADD_MEMBERSHIP socket option. 4561 * 4562 * On error, return -1 for TBADADDR otherwise pass the 4563 * errno with TSYSERR reply. 4564 * 4565 * In all the above cases, the bound address must be valid in the current zone. 4566 * When the address is loopback, multicast or broadcast, there might be many 4567 * matching IREs so bind has to look up based on the zone. 4568 * 4569 * Note: lport is in network byte order. 4570 * 4571 */ 4572 int 4573 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4574 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4575 { 4576 int error = 0; 4577 ire_t *src_ire; 4578 zoneid_t zoneid; 4579 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4580 mblk_t *mp = NULL; 4581 boolean_t ire_requested = B_FALSE; 4582 boolean_t ipsec_policy_set = B_FALSE; 4583 4584 if (mpp) 4585 mp = *mpp; 4586 4587 if (mp != NULL) { 4588 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4589 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4590 } 4591 4592 /* 4593 * If it was previously connected, conn_fully_bound would have 4594 * been set. 4595 */ 4596 connp->conn_fully_bound = B_FALSE; 4597 4598 src_ire = NULL; 4599 4600 zoneid = IPCL_ZONEID(connp); 4601 4602 if (src_addr) { 4603 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4604 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4605 /* 4606 * If an address other than 0.0.0.0 is requested, 4607 * we verify that it is a valid address for bind 4608 * Note: Following code is in if-else-if form for 4609 * readability compared to a condition check. 4610 */ 4611 /* LINTED - statement has no consequence */ 4612 if (IRE_IS_LOCAL(src_ire)) { 4613 /* 4614 * (2) Bind to address of local UP interface 4615 */ 4616 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4617 /* 4618 * (4) Bind to broadcast address 4619 * Note: permitted only from transports that 4620 * request IRE 4621 */ 4622 if (!ire_requested) 4623 error = EADDRNOTAVAIL; 4624 } else { 4625 /* 4626 * (3) Bind to address of local DOWN interface 4627 * (ipif_lookup_addr() looks up all interfaces 4628 * but we do not get here for UP interfaces 4629 * - case (2) above) 4630 */ 4631 /* LINTED - statement has no consequent */ 4632 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4633 /* The address exists */ 4634 } else if (CLASSD(src_addr)) { 4635 error = 0; 4636 if (src_ire != NULL) 4637 ire_refrele(src_ire); 4638 /* 4639 * (5) bind to multicast address. 4640 * Fake out the IRE returned to upper 4641 * layer to be a broadcast IRE. 4642 */ 4643 src_ire = ire_ctable_lookup( 4644 INADDR_BROADCAST, INADDR_ANY, 4645 IRE_BROADCAST, NULL, zoneid, NULL, 4646 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4647 ipst); 4648 if (src_ire == NULL || !ire_requested) 4649 error = EADDRNOTAVAIL; 4650 } else { 4651 /* 4652 * Not a valid address for bind 4653 */ 4654 error = EADDRNOTAVAIL; 4655 } 4656 } 4657 if (error) { 4658 /* Red Alert! Attempting to be a bogon! */ 4659 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4660 ntohl(src_addr))); 4661 goto bad_addr; 4662 } 4663 } 4664 4665 4666 /* 4667 * Allow setting new policies. For example, disconnects come 4668 * down as ipa_t bind. As we would have set conn_policy_cached 4669 * to B_TRUE before, we should set it to B_FALSE, so that policy 4670 * can change after the disconnect. 4671 */ 4672 connp->conn_policy_cached = B_FALSE; 4673 4674 /* 4675 * If not fanout_insert this was just an address verification 4676 */ 4677 if (fanout_insert) { 4678 /* 4679 * The addresses have been verified. Time to insert in 4680 * the correct fanout list. 4681 */ 4682 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4683 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4684 connp->conn_lport = lport; 4685 connp->conn_fport = 0; 4686 /* 4687 * Do we need to add a check to reject Multicast packets 4688 */ 4689 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4690 } 4691 4692 if (error == 0) { 4693 if (ire_requested) { 4694 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4695 error = -1; 4696 /* Falls through to bad_addr */ 4697 } 4698 } else if (ipsec_policy_set) { 4699 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4700 error = -1; 4701 /* Falls through to bad_addr */ 4702 } 4703 } 4704 } 4705 bad_addr: 4706 if (error != 0) { 4707 if (connp->conn_anon_port) { 4708 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4709 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4710 B_FALSE); 4711 } 4712 connp->conn_mlp_type = mlptSingle; 4713 } 4714 if (src_ire != NULL) 4715 IRE_REFRELE(src_ire); 4716 return (error); 4717 } 4718 4719 int 4720 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4721 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4722 { 4723 int error; 4724 mblk_t *mp = NULL; 4725 boolean_t ire_requested; 4726 4727 if (ire_mpp) 4728 mp = *ire_mpp; 4729 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4730 4731 ASSERT(!connp->conn_af_isv6); 4732 connp->conn_pkt_isv6 = B_FALSE; 4733 connp->conn_ulp = protocol; 4734 4735 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4736 fanout_insert); 4737 if (error == 0) { 4738 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4739 ire_requested); 4740 } else if (error < 0) { 4741 error = -TBADADDR; 4742 } 4743 return (error); 4744 } 4745 4746 /* 4747 * Verify that both the source and destination addresses 4748 * are valid. If verify_dst is false, then the destination address may be 4749 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4750 * destination reachability, while tunnels do not. 4751 * Note that we allow connect to broadcast and multicast 4752 * addresses when ire_requested is set. Thus the ULP 4753 * has to check for IRE_BROADCAST and multicast. 4754 * 4755 * Returns zero if ok. 4756 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4757 * (for use with TSYSERR reply). 4758 * 4759 * Note: lport and fport are in network byte order. 4760 */ 4761 int 4762 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4763 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4764 boolean_t fanout_insert, boolean_t verify_dst) 4765 { 4766 4767 ire_t *src_ire; 4768 ire_t *dst_ire; 4769 int error = 0; 4770 ire_t *sire = NULL; 4771 ire_t *md_dst_ire = NULL; 4772 ire_t *lso_dst_ire = NULL; 4773 ill_t *ill = NULL; 4774 zoneid_t zoneid; 4775 ipaddr_t src_addr = *src_addrp; 4776 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4777 mblk_t *mp = NULL; 4778 boolean_t ire_requested = B_FALSE; 4779 boolean_t ipsec_policy_set = B_FALSE; 4780 ts_label_t *tsl = NULL; 4781 4782 if (mpp) 4783 mp = *mpp; 4784 4785 if (mp != NULL) { 4786 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4787 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4788 tsl = MBLK_GETLABEL(mp); 4789 } 4790 4791 src_ire = dst_ire = NULL; 4792 4793 /* 4794 * If we never got a disconnect before, clear it now. 4795 */ 4796 connp->conn_fully_bound = B_FALSE; 4797 4798 zoneid = IPCL_ZONEID(connp); 4799 4800 if (CLASSD(dst_addr)) { 4801 /* Pick up an IRE_BROADCAST */ 4802 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4803 NULL, zoneid, tsl, 4804 (MATCH_IRE_RECURSIVE | 4805 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4806 MATCH_IRE_SECATTR), ipst); 4807 } else { 4808 /* 4809 * If conn_dontroute is set or if conn_nexthop_set is set, 4810 * and onlink ipif is not found set ENETUNREACH error. 4811 */ 4812 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4813 ipif_t *ipif; 4814 4815 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4816 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4817 if (ipif == NULL) { 4818 error = ENETUNREACH; 4819 goto bad_addr; 4820 } 4821 ipif_refrele(ipif); 4822 } 4823 4824 if (connp->conn_nexthop_set) { 4825 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4826 0, 0, NULL, NULL, zoneid, tsl, 4827 MATCH_IRE_SECATTR, ipst); 4828 } else { 4829 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4830 &sire, zoneid, tsl, 4831 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4832 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4833 MATCH_IRE_SECATTR), ipst); 4834 } 4835 } 4836 /* 4837 * dst_ire can't be a broadcast when not ire_requested. 4838 * We also prevent ire's with src address INADDR_ANY to 4839 * be used, which are created temporarily for 4840 * sending out packets from endpoints that have 4841 * conn_unspec_src set. If verify_dst is true, the destination must be 4842 * reachable. If verify_dst is false, the destination needn't be 4843 * reachable. 4844 * 4845 * If we match on a reject or black hole, then we've got a 4846 * local failure. May as well fail out the connect() attempt, 4847 * since it's never going to succeed. 4848 */ 4849 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4850 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4851 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4852 /* 4853 * If we're verifying destination reachability, we always want 4854 * to complain here. 4855 * 4856 * If we're not verifying destination reachability but the 4857 * destination has a route, we still want to fail on the 4858 * temporary address and broadcast address tests. 4859 */ 4860 if (verify_dst || (dst_ire != NULL)) { 4861 if (ip_debug > 2) { 4862 pr_addr_dbg("ip_bind_connected_v4:" 4863 "bad connected dst %s\n", 4864 AF_INET, &dst_addr); 4865 } 4866 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4867 error = ENETUNREACH; 4868 else 4869 error = EHOSTUNREACH; 4870 goto bad_addr; 4871 } 4872 } 4873 4874 /* 4875 * We now know that routing will allow us to reach the destination. 4876 * Check whether Trusted Solaris policy allows communication with this 4877 * host, and pretend that the destination is unreachable if not. 4878 * 4879 * This is never a problem for TCP, since that transport is known to 4880 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4881 * handling. If the remote is unreachable, it will be detected at that 4882 * point, so there's no reason to check it here. 4883 * 4884 * Note that for sendto (and other datagram-oriented friends), this 4885 * check is done as part of the data path label computation instead. 4886 * The check here is just to make non-TCP connect() report the right 4887 * error. 4888 */ 4889 if (dst_ire != NULL && is_system_labeled() && 4890 !IPCL_IS_TCP(connp) && 4891 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4892 connp->conn_mac_exempt, ipst) != 0) { 4893 error = EHOSTUNREACH; 4894 if (ip_debug > 2) { 4895 pr_addr_dbg("ip_bind_connected_v4:" 4896 " no label for dst %s\n", 4897 AF_INET, &dst_addr); 4898 } 4899 goto bad_addr; 4900 } 4901 4902 /* 4903 * If the app does a connect(), it means that it will most likely 4904 * send more than 1 packet to the destination. It makes sense 4905 * to clear the temporary flag. 4906 */ 4907 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4908 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4909 irb_t *irb = dst_ire->ire_bucket; 4910 4911 rw_enter(&irb->irb_lock, RW_WRITER); 4912 /* 4913 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4914 * the lock to guarantee irb_tmp_ire_cnt. 4915 */ 4916 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4917 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4918 irb->irb_tmp_ire_cnt--; 4919 } 4920 rw_exit(&irb->irb_lock); 4921 } 4922 4923 /* 4924 * See if we should notify ULP about LSO/MDT; we do this whether or not 4925 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4926 * eligibility tests for passive connects are handled separately 4927 * through tcp_adapt_ire(). We do this before the source address 4928 * selection, because dst_ire may change after a call to 4929 * ipif_select_source(). This is a best-effort check, as the 4930 * packet for this connection may not actually go through 4931 * dst_ire->ire_stq, and the exact IRE can only be known after 4932 * calling ip_newroute(). This is why we further check on the 4933 * IRE during LSO/Multidata packet transmission in 4934 * tcp_lsosend()/tcp_multisend(). 4935 */ 4936 if (!ipsec_policy_set && dst_ire != NULL && 4937 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4938 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4939 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4940 lso_dst_ire = dst_ire; 4941 IRE_REFHOLD(lso_dst_ire); 4942 } else if (ipst->ips_ip_multidata_outbound && 4943 ILL_MDT_CAPABLE(ill)) { 4944 md_dst_ire = dst_ire; 4945 IRE_REFHOLD(md_dst_ire); 4946 } 4947 } 4948 4949 if (dst_ire != NULL && 4950 dst_ire->ire_type == IRE_LOCAL && 4951 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4952 /* 4953 * If the IRE belongs to a different zone, look for a matching 4954 * route in the forwarding table and use the source address from 4955 * that route. 4956 */ 4957 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4958 zoneid, 0, NULL, 4959 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4960 MATCH_IRE_RJ_BHOLE, ipst); 4961 if (src_ire == NULL) { 4962 error = EHOSTUNREACH; 4963 goto bad_addr; 4964 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4965 if (!(src_ire->ire_type & IRE_HOST)) 4966 error = ENETUNREACH; 4967 else 4968 error = EHOSTUNREACH; 4969 goto bad_addr; 4970 } 4971 if (src_addr == INADDR_ANY) 4972 src_addr = src_ire->ire_src_addr; 4973 ire_refrele(src_ire); 4974 src_ire = NULL; 4975 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4976 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4977 src_addr = sire->ire_src_addr; 4978 ire_refrele(dst_ire); 4979 dst_ire = sire; 4980 sire = NULL; 4981 } else { 4982 /* 4983 * Pick a source address so that a proper inbound 4984 * load spreading would happen. 4985 */ 4986 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4987 ipif_t *src_ipif = NULL; 4988 ire_t *ipif_ire; 4989 4990 /* 4991 * Supply a local source address such that inbound 4992 * load spreading happens. 4993 * 4994 * Determine the best source address on this ill for 4995 * the destination. 4996 * 4997 * 1) For broadcast, we should return a broadcast ire 4998 * found above so that upper layers know that the 4999 * destination address is a broadcast address. 5000 * 5001 * 2) If this is part of a group, select a better 5002 * source address so that better inbound load 5003 * balancing happens. Do the same if the ipif 5004 * is DEPRECATED. 5005 * 5006 * 3) If the outgoing interface is part of a usesrc 5007 * group, then try selecting a source address from 5008 * the usesrc ILL. 5009 */ 5010 if ((dst_ire->ire_zoneid != zoneid && 5011 dst_ire->ire_zoneid != ALL_ZONES) || 5012 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5013 (!(dst_ire->ire_type & IRE_BROADCAST) && 5014 ((dst_ill->ill_group != NULL) || 5015 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5016 (dst_ill->ill_usesrc_ifindex != 0)))) { 5017 /* 5018 * If the destination is reachable via a 5019 * given gateway, the selected source address 5020 * should be in the same subnet as the gateway. 5021 * Otherwise, the destination is not reachable. 5022 * 5023 * If there are no interfaces on the same subnet 5024 * as the destination, ipif_select_source gives 5025 * first non-deprecated interface which might be 5026 * on a different subnet than the gateway. 5027 * This is not desirable. Hence pass the dst_ire 5028 * source address to ipif_select_source. 5029 * It is sure that the destination is reachable 5030 * with the dst_ire source address subnet. 5031 * So passing dst_ire source address to 5032 * ipif_select_source will make sure that the 5033 * selected source will be on the same subnet 5034 * as dst_ire source address. 5035 */ 5036 ipaddr_t saddr = 5037 dst_ire->ire_ipif->ipif_src_addr; 5038 src_ipif = ipif_select_source(dst_ill, 5039 saddr, zoneid); 5040 if (src_ipif != NULL) { 5041 if (IS_VNI(src_ipif->ipif_ill)) { 5042 /* 5043 * For VNI there is no 5044 * interface route 5045 */ 5046 src_addr = 5047 src_ipif->ipif_src_addr; 5048 } else { 5049 ipif_ire = 5050 ipif_to_ire(src_ipif); 5051 if (ipif_ire != NULL) { 5052 IRE_REFRELE(dst_ire); 5053 dst_ire = ipif_ire; 5054 } 5055 src_addr = 5056 dst_ire->ire_src_addr; 5057 } 5058 ipif_refrele(src_ipif); 5059 } else { 5060 src_addr = dst_ire->ire_src_addr; 5061 } 5062 } else { 5063 src_addr = dst_ire->ire_src_addr; 5064 } 5065 } 5066 } 5067 5068 /* 5069 * We do ire_route_lookup() here (and not 5070 * interface lookup as we assert that 5071 * src_addr should only come from an 5072 * UP interface for hard binding. 5073 */ 5074 ASSERT(src_ire == NULL); 5075 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5076 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5077 /* src_ire must be a local|loopback */ 5078 if (!IRE_IS_LOCAL(src_ire)) { 5079 if (ip_debug > 2) { 5080 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5081 "src %s\n", AF_INET, &src_addr); 5082 } 5083 error = EADDRNOTAVAIL; 5084 goto bad_addr; 5085 } 5086 5087 /* 5088 * If the source address is a loopback address, the 5089 * destination had best be local or multicast. 5090 * The transports that can't handle multicast will reject 5091 * those addresses. 5092 */ 5093 if (src_ire->ire_type == IRE_LOOPBACK && 5094 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5095 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5096 error = -1; 5097 goto bad_addr; 5098 } 5099 5100 /* 5101 * Allow setting new policies. For example, disconnects come 5102 * down as ipa_t bind. As we would have set conn_policy_cached 5103 * to B_TRUE before, we should set it to B_FALSE, so that policy 5104 * can change after the disconnect. 5105 */ 5106 connp->conn_policy_cached = B_FALSE; 5107 5108 /* 5109 * Set the conn addresses/ports immediately, so the IPsec policy calls 5110 * can handle their passed-in conn's. 5111 */ 5112 5113 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5114 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5115 connp->conn_lport = lport; 5116 connp->conn_fport = fport; 5117 *src_addrp = src_addr; 5118 5119 ASSERT(!(ipsec_policy_set && ire_requested)); 5120 if (ire_requested) { 5121 iulp_t *ulp_info = NULL; 5122 5123 /* 5124 * Note that sire will not be NULL if this is an off-link 5125 * connection and there is not cache for that dest yet. 5126 * 5127 * XXX Because of an existing bug, if there are multiple 5128 * default routes, the IRE returned now may not be the actual 5129 * default route used (default routes are chosen in a 5130 * round robin fashion). So if the metrics for different 5131 * default routes are different, we may return the wrong 5132 * metrics. This will not be a problem if the existing 5133 * bug is fixed. 5134 */ 5135 if (sire != NULL) { 5136 ulp_info = &(sire->ire_uinfo); 5137 } 5138 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5139 error = -1; 5140 goto bad_addr; 5141 } 5142 mp = *mpp; 5143 } else if (ipsec_policy_set) { 5144 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5145 error = -1; 5146 goto bad_addr; 5147 } 5148 } 5149 5150 /* 5151 * Cache IPsec policy in this conn. If we have per-socket policy, 5152 * we'll cache that. If we don't, we'll inherit global policy. 5153 * 5154 * We can't insert until the conn reflects the policy. Note that 5155 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5156 * connections where we don't have a policy. This is to prevent 5157 * global policy lookups in the inbound path. 5158 * 5159 * If we insert before we set conn_policy_cached, 5160 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5161 * because global policy cound be non-empty. We normally call 5162 * ipsec_check_policy() for conn_policy_cached connections only if 5163 * ipc_in_enforce_policy is set. But in this case, 5164 * conn_policy_cached can get set anytime since we made the 5165 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5166 * called, which will make the above assumption false. Thus, we 5167 * need to insert after we set conn_policy_cached. 5168 */ 5169 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5170 goto bad_addr; 5171 5172 if (fanout_insert) { 5173 /* 5174 * The addresses have been verified. Time to insert in 5175 * the correct fanout list. 5176 */ 5177 error = ipcl_conn_insert(connp, protocol, src_addr, 5178 dst_addr, connp->conn_ports); 5179 } 5180 5181 if (error == 0) { 5182 connp->conn_fully_bound = B_TRUE; 5183 /* 5184 * Our initial checks for LSO/MDT have passed; the IRE is not 5185 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5186 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5187 * ip_xxinfo_return(), which performs further checks 5188 * against them and upon success, returns the LSO/MDT info 5189 * mblk which we will attach to the bind acknowledgment. 5190 */ 5191 if (lso_dst_ire != NULL) { 5192 mblk_t *lsoinfo_mp; 5193 5194 ASSERT(ill->ill_lso_capab != NULL); 5195 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5196 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5197 if (mp == NULL) { 5198 *mpp = lsoinfo_mp; 5199 } else { 5200 linkb(mp, lsoinfo_mp); 5201 } 5202 } 5203 } else if (md_dst_ire != NULL) { 5204 mblk_t *mdinfo_mp; 5205 5206 ASSERT(ill->ill_mdt_capab != NULL); 5207 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5208 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5209 if (mp == NULL) { 5210 *mpp = mdinfo_mp; 5211 } else { 5212 linkb(mp, mdinfo_mp); 5213 } 5214 } 5215 } 5216 } 5217 bad_addr: 5218 if (ipsec_policy_set) { 5219 ASSERT(mp != NULL); 5220 freeb(mp); 5221 /* 5222 * As of now assume that nothing else accompanies 5223 * IPSEC_POLICY_SET. 5224 */ 5225 *mpp = NULL; 5226 } 5227 if (src_ire != NULL) 5228 IRE_REFRELE(src_ire); 5229 if (dst_ire != NULL) 5230 IRE_REFRELE(dst_ire); 5231 if (sire != NULL) 5232 IRE_REFRELE(sire); 5233 if (md_dst_ire != NULL) 5234 IRE_REFRELE(md_dst_ire); 5235 if (lso_dst_ire != NULL) 5236 IRE_REFRELE(lso_dst_ire); 5237 return (error); 5238 } 5239 5240 int 5241 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5242 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5243 boolean_t fanout_insert, boolean_t verify_dst) 5244 { 5245 int error; 5246 mblk_t *mp = NULL; 5247 boolean_t ire_requested; 5248 5249 if (ire_mpp) 5250 mp = *ire_mpp; 5251 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5252 5253 ASSERT(!connp->conn_af_isv6); 5254 connp->conn_pkt_isv6 = B_FALSE; 5255 connp->conn_ulp = protocol; 5256 5257 /* For raw socket, the local port is not set. */ 5258 if (lport == 0) 5259 lport = connp->conn_lport; 5260 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5261 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst); 5262 if (error == 0) { 5263 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5264 ire_requested); 5265 } else if (error < 0) { 5266 error = -TBADADDR; 5267 } 5268 return (error); 5269 } 5270 5271 /* 5272 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5273 * Prefers dst_ire over src_ire. 5274 */ 5275 static boolean_t 5276 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5277 { 5278 mblk_t *mp = *mpp; 5279 ire_t *ret_ire; 5280 5281 ASSERT(mp != NULL); 5282 5283 if (ire != NULL) { 5284 /* 5285 * mp initialized above to IRE_DB_REQ_TYPE 5286 * appended mblk. Its <upper protocol>'s 5287 * job to make sure there is room. 5288 */ 5289 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5290 return (B_FALSE); 5291 5292 mp->b_datap->db_type = IRE_DB_TYPE; 5293 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5294 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5295 ret_ire = (ire_t *)mp->b_rptr; 5296 /* 5297 * Pass the latest setting of the ip_path_mtu_discovery and 5298 * copy the ulp info if any. 5299 */ 5300 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5301 IPH_DF : 0; 5302 if (ulp_info != NULL) { 5303 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5304 sizeof (iulp_t)); 5305 } 5306 ret_ire->ire_mp = mp; 5307 } else { 5308 /* 5309 * No IRE was found. Remove IRE mblk. 5310 */ 5311 *mpp = mp->b_cont; 5312 freeb(mp); 5313 } 5314 return (B_TRUE); 5315 } 5316 5317 /* 5318 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5319 * the final piece where we don't. Return a pointer to the first mblk in the 5320 * result, and update the pointer to the next mblk to chew on. If anything 5321 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5322 * NULL pointer. 5323 */ 5324 mblk_t * 5325 ip_carve_mp(mblk_t **mpp, ssize_t len) 5326 { 5327 mblk_t *mp0; 5328 mblk_t *mp1; 5329 mblk_t *mp2; 5330 5331 if (!len || !mpp || !(mp0 = *mpp)) 5332 return (NULL); 5333 /* If we aren't going to consume the first mblk, we need a dup. */ 5334 if (mp0->b_wptr - mp0->b_rptr > len) { 5335 mp1 = dupb(mp0); 5336 if (mp1) { 5337 /* Partition the data between the two mblks. */ 5338 mp1->b_wptr = mp1->b_rptr + len; 5339 mp0->b_rptr = mp1->b_wptr; 5340 /* 5341 * after adjustments if mblk not consumed is now 5342 * unaligned, try to align it. If this fails free 5343 * all messages and let upper layer recover. 5344 */ 5345 if (!OK_32PTR(mp0->b_rptr)) { 5346 if (!pullupmsg(mp0, -1)) { 5347 freemsg(mp0); 5348 freemsg(mp1); 5349 *mpp = NULL; 5350 return (NULL); 5351 } 5352 } 5353 } 5354 return (mp1); 5355 } 5356 /* Eat through as many mblks as we need to get len bytes. */ 5357 len -= mp0->b_wptr - mp0->b_rptr; 5358 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5359 if (mp2->b_wptr - mp2->b_rptr > len) { 5360 /* 5361 * We won't consume the entire last mblk. Like 5362 * above, dup and partition it. 5363 */ 5364 mp1->b_cont = dupb(mp2); 5365 mp1 = mp1->b_cont; 5366 if (!mp1) { 5367 /* 5368 * Trouble. Rather than go to a lot of 5369 * trouble to clean up, we free the messages. 5370 * This won't be any worse than losing it on 5371 * the wire. 5372 */ 5373 freemsg(mp0); 5374 freemsg(mp2); 5375 *mpp = NULL; 5376 return (NULL); 5377 } 5378 mp1->b_wptr = mp1->b_rptr + len; 5379 mp2->b_rptr = mp1->b_wptr; 5380 /* 5381 * after adjustments if mblk not consumed is now 5382 * unaligned, try to align it. If this fails free 5383 * all messages and let upper layer recover. 5384 */ 5385 if (!OK_32PTR(mp2->b_rptr)) { 5386 if (!pullupmsg(mp2, -1)) { 5387 freemsg(mp0); 5388 freemsg(mp2); 5389 *mpp = NULL; 5390 return (NULL); 5391 } 5392 } 5393 *mpp = mp2; 5394 return (mp0); 5395 } 5396 /* Decrement len by the amount we just got. */ 5397 len -= mp2->b_wptr - mp2->b_rptr; 5398 } 5399 /* 5400 * len should be reduced to zero now. If not our caller has 5401 * screwed up. 5402 */ 5403 if (len) { 5404 /* Shouldn't happen! */ 5405 freemsg(mp0); 5406 *mpp = NULL; 5407 return (NULL); 5408 } 5409 /* 5410 * We consumed up to exactly the end of an mblk. Detach the part 5411 * we are returning from the rest of the chain. 5412 */ 5413 mp1->b_cont = NULL; 5414 *mpp = mp2; 5415 return (mp0); 5416 } 5417 5418 /* The ill stream is being unplumbed. Called from ip_close */ 5419 int 5420 ip_modclose(ill_t *ill) 5421 { 5422 boolean_t success; 5423 ipsq_t *ipsq; 5424 ipif_t *ipif; 5425 queue_t *q = ill->ill_rq; 5426 ip_stack_t *ipst = ill->ill_ipst; 5427 5428 /* 5429 * The punlink prior to this may have initiated a capability 5430 * negotiation. But ipsq_enter will block until that finishes or 5431 * times out. 5432 */ 5433 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5434 5435 /* 5436 * Open/close/push/pop is guaranteed to be single threaded 5437 * per stream by STREAMS. FS guarantees that all references 5438 * from top are gone before close is called. So there can't 5439 * be another close thread that has set CONDEMNED on this ill. 5440 * and cause ipsq_enter to return failure. 5441 */ 5442 ASSERT(success); 5443 ipsq = ill->ill_phyint->phyint_ipsq; 5444 5445 /* 5446 * Mark it condemned. No new reference will be made to this ill. 5447 * Lookup functions will return an error. Threads that try to 5448 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5449 * that the refcnt will drop down to zero. 5450 */ 5451 mutex_enter(&ill->ill_lock); 5452 ill->ill_state_flags |= ILL_CONDEMNED; 5453 for (ipif = ill->ill_ipif; ipif != NULL; 5454 ipif = ipif->ipif_next) { 5455 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5456 } 5457 /* 5458 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5459 * returns error if ILL_CONDEMNED is set 5460 */ 5461 cv_broadcast(&ill->ill_cv); 5462 mutex_exit(&ill->ill_lock); 5463 5464 /* 5465 * Send all the deferred DLPI messages downstream which came in 5466 * during the small window right before ipsq_enter(). We do this 5467 * without waiting for the ACKs because all the ACKs for M_PROTO 5468 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5469 */ 5470 ill_dlpi_send_deferred(ill); 5471 5472 /* 5473 * Shut down fragmentation reassembly. 5474 * ill_frag_timer won't start a timer again. 5475 * Now cancel any existing timer 5476 */ 5477 (void) untimeout(ill->ill_frag_timer_id); 5478 (void) ill_frag_timeout(ill, 0); 5479 5480 /* 5481 * If MOVE was in progress, clear the 5482 * move_in_progress fields also. 5483 */ 5484 if (ill->ill_move_in_progress) { 5485 ILL_CLEAR_MOVE(ill); 5486 } 5487 5488 /* 5489 * Call ill_delete to bring down the ipifs, ilms and ill on 5490 * this ill. Then wait for the refcnts to drop to zero. 5491 * ill_is_freeable checks whether the ill is really quiescent. 5492 * Then make sure that threads that are waiting to enter the 5493 * ipsq have seen the error returned by ipsq_enter and have 5494 * gone away. Then we call ill_delete_tail which does the 5495 * DL_UNBIND_REQ with the driver and then qprocsoff. 5496 */ 5497 ill_delete(ill); 5498 mutex_enter(&ill->ill_lock); 5499 while (!ill_is_freeable(ill)) 5500 cv_wait(&ill->ill_cv, &ill->ill_lock); 5501 while (ill->ill_waiters) 5502 cv_wait(&ill->ill_cv, &ill->ill_lock); 5503 5504 mutex_exit(&ill->ill_lock); 5505 5506 /* 5507 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5508 * it held until the end of the function since the cleanup 5509 * below needs to be able to use the ip_stack_t. 5510 */ 5511 netstack_hold(ipst->ips_netstack); 5512 5513 /* qprocsoff is called in ill_delete_tail */ 5514 ill_delete_tail(ill); 5515 ASSERT(ill->ill_ipst == NULL); 5516 5517 /* 5518 * Walk through all upper (conn) streams and qenable 5519 * those that have queued data. 5520 * close synchronization needs this to 5521 * be done to ensure that all upper layers blocked 5522 * due to flow control to the closing device 5523 * get unblocked. 5524 */ 5525 ip1dbg(("ip_wsrv: walking\n")); 5526 conn_walk_drain(ipst); 5527 5528 mutex_enter(&ipst->ips_ip_mi_lock); 5529 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5530 mutex_exit(&ipst->ips_ip_mi_lock); 5531 5532 /* 5533 * credp could be null if the open didn't succeed and ip_modopen 5534 * itself calls ip_close. 5535 */ 5536 if (ill->ill_credp != NULL) 5537 crfree(ill->ill_credp); 5538 5539 /* 5540 * Now we are done with the module close pieces that 5541 * need the netstack_t. 5542 */ 5543 netstack_rele(ipst->ips_netstack); 5544 5545 mi_close_free((IDP)ill); 5546 q->q_ptr = WR(q)->q_ptr = NULL; 5547 5548 ipsq_exit(ipsq); 5549 5550 return (0); 5551 } 5552 5553 /* 5554 * This is called as part of close() for IP, UDP, ICMP, and RTS 5555 * in order to quiesce the conn. 5556 */ 5557 void 5558 ip_quiesce_conn(conn_t *connp) 5559 { 5560 boolean_t drain_cleanup_reqd = B_FALSE; 5561 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5562 boolean_t ilg_cleanup_reqd = B_FALSE; 5563 ip_stack_t *ipst; 5564 5565 ASSERT(!IPCL_IS_TCP(connp)); 5566 ipst = connp->conn_netstack->netstack_ip; 5567 5568 /* 5569 * Mark the conn as closing, and this conn must not be 5570 * inserted in future into any list. Eg. conn_drain_insert(), 5571 * won't insert this conn into the conn_drain_list. 5572 * Similarly ill_pending_mp_add() will not add any mp to 5573 * the pending mp list, after this conn has started closing. 5574 * 5575 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5576 * cannot get set henceforth. 5577 */ 5578 mutex_enter(&connp->conn_lock); 5579 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5580 connp->conn_state_flags |= CONN_CLOSING; 5581 if (connp->conn_idl != NULL) 5582 drain_cleanup_reqd = B_TRUE; 5583 if (connp->conn_oper_pending_ill != NULL) 5584 conn_ioctl_cleanup_reqd = B_TRUE; 5585 if (connp->conn_dhcpinit_ill != NULL) { 5586 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5587 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5588 connp->conn_dhcpinit_ill = NULL; 5589 } 5590 if (connp->conn_ilg_inuse != 0) 5591 ilg_cleanup_reqd = B_TRUE; 5592 mutex_exit(&connp->conn_lock); 5593 5594 if (conn_ioctl_cleanup_reqd) 5595 conn_ioctl_cleanup(connp); 5596 5597 if (is_system_labeled() && connp->conn_anon_port) { 5598 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5599 connp->conn_mlp_type, connp->conn_ulp, 5600 ntohs(connp->conn_lport), B_FALSE); 5601 connp->conn_anon_port = 0; 5602 } 5603 connp->conn_mlp_type = mlptSingle; 5604 5605 /* 5606 * Remove this conn from any fanout list it is on. 5607 * and then wait for any threads currently operating 5608 * on this endpoint to finish 5609 */ 5610 ipcl_hash_remove(connp); 5611 5612 /* 5613 * Remove this conn from the drain list, and do 5614 * any other cleanup that may be required. 5615 * (Only non-tcp streams may have a non-null conn_idl. 5616 * TCP streams are never flow controlled, and 5617 * conn_idl will be null) 5618 */ 5619 if (drain_cleanup_reqd) 5620 conn_drain_tail(connp, B_TRUE); 5621 5622 if (connp == ipst->ips_ip_g_mrouter) 5623 (void) ip_mrouter_done(NULL, ipst); 5624 5625 if (ilg_cleanup_reqd) 5626 ilg_delete_all(connp); 5627 5628 conn_delete_ire(connp, NULL); 5629 5630 /* 5631 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5632 * callers from write side can't be there now because close 5633 * is in progress. The only other caller is ipcl_walk 5634 * which checks for the condemned flag. 5635 */ 5636 mutex_enter(&connp->conn_lock); 5637 connp->conn_state_flags |= CONN_CONDEMNED; 5638 while (connp->conn_ref != 1) 5639 cv_wait(&connp->conn_cv, &connp->conn_lock); 5640 connp->conn_state_flags |= CONN_QUIESCED; 5641 mutex_exit(&connp->conn_lock); 5642 } 5643 5644 /* ARGSUSED */ 5645 int 5646 ip_close(queue_t *q, int flags) 5647 { 5648 conn_t *connp; 5649 5650 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5651 5652 /* 5653 * Call the appropriate delete routine depending on whether this is 5654 * a module or device. 5655 */ 5656 if (WR(q)->q_next != NULL) { 5657 /* This is a module close */ 5658 return (ip_modclose((ill_t *)q->q_ptr)); 5659 } 5660 5661 connp = q->q_ptr; 5662 ip_quiesce_conn(connp); 5663 5664 qprocsoff(q); 5665 5666 /* 5667 * Now we are truly single threaded on this stream, and can 5668 * delete the things hanging off the connp, and finally the connp. 5669 * We removed this connp from the fanout list, it cannot be 5670 * accessed thru the fanouts, and we already waited for the 5671 * conn_ref to drop to 0. We are already in close, so 5672 * there cannot be any other thread from the top. qprocsoff 5673 * has completed, and service has completed or won't run in 5674 * future. 5675 */ 5676 ASSERT(connp->conn_ref == 1); 5677 5678 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5679 5680 connp->conn_ref--; 5681 ipcl_conn_destroy(connp); 5682 5683 q->q_ptr = WR(q)->q_ptr = NULL; 5684 return (0); 5685 } 5686 5687 /* 5688 * Wapper around putnext() so that ip_rts_request can merely use 5689 * conn_recv. 5690 */ 5691 /*ARGSUSED2*/ 5692 static void 5693 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5694 { 5695 conn_t *connp = (conn_t *)arg1; 5696 5697 putnext(connp->conn_rq, mp); 5698 } 5699 5700 /* 5701 * Called when the module is about to be unloaded 5702 */ 5703 void 5704 ip_ddi_destroy(void) 5705 { 5706 tnet_fini(); 5707 5708 icmp_ddi_g_destroy(); 5709 rts_ddi_g_destroy(); 5710 udp_ddi_g_destroy(); 5711 sctp_ddi_g_destroy(); 5712 tcp_ddi_g_destroy(); 5713 ipsec_policy_g_destroy(); 5714 ipcl_g_destroy(); 5715 ip_net_g_destroy(); 5716 ip_ire_g_fini(); 5717 inet_minor_destroy(ip_minor_arena_sa); 5718 #if defined(_LP64) 5719 inet_minor_destroy(ip_minor_arena_la); 5720 #endif 5721 5722 #ifdef DEBUG 5723 list_destroy(&ip_thread_list); 5724 rw_destroy(&ip_thread_rwlock); 5725 tsd_destroy(&ip_thread_data); 5726 #endif 5727 5728 netstack_unregister(NS_IP); 5729 } 5730 5731 /* 5732 * First step in cleanup. 5733 */ 5734 /* ARGSUSED */ 5735 static void 5736 ip_stack_shutdown(netstackid_t stackid, void *arg) 5737 { 5738 ip_stack_t *ipst = (ip_stack_t *)arg; 5739 5740 #ifdef NS_DEBUG 5741 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5742 #endif 5743 5744 /* Get rid of loopback interfaces and their IREs */ 5745 ip_loopback_cleanup(ipst); 5746 5747 /* 5748 * The *_hook_shutdown()s start the process of notifying any 5749 * consumers that things are going away.... nothing is destroyed. 5750 */ 5751 ipv4_hook_shutdown(ipst); 5752 ipv6_hook_shutdown(ipst); 5753 5754 mutex_enter(&ipst->ips_capab_taskq_lock); 5755 ipst->ips_capab_taskq_quit = B_TRUE; 5756 cv_signal(&ipst->ips_capab_taskq_cv); 5757 mutex_exit(&ipst->ips_capab_taskq_lock); 5758 } 5759 5760 /* 5761 * Free the IP stack instance. 5762 */ 5763 static void 5764 ip_stack_fini(netstackid_t stackid, void *arg) 5765 { 5766 ip_stack_t *ipst = (ip_stack_t *)arg; 5767 int ret; 5768 5769 /* 5770 * At this point, all of the notifications that the events and 5771 * protocols are going away have been run, meaning that we can 5772 * now set about starting to clean things up. 5773 */ 5774 ipv4_hook_destroy(ipst); 5775 ipv6_hook_destroy(ipst); 5776 ip_net_destroy(ipst); 5777 5778 mutex_destroy(&ipst->ips_capab_taskq_lock); 5779 cv_destroy(&ipst->ips_capab_taskq_cv); 5780 list_destroy(&ipst->ips_capab_taskq_list); 5781 5782 #ifdef NS_DEBUG 5783 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5784 #endif 5785 rw_destroy(&ipst->ips_srcid_lock); 5786 5787 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5788 ipst->ips_ip_mibkp = NULL; 5789 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5790 ipst->ips_icmp_mibkp = NULL; 5791 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5792 ipst->ips_ip_kstat = NULL; 5793 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5794 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5795 ipst->ips_ip6_kstat = NULL; 5796 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5797 5798 nd_free(&ipst->ips_ip_g_nd); 5799 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5800 ipst->ips_param_arr = NULL; 5801 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5802 ipst->ips_ndp_arr = NULL; 5803 5804 ip_mrouter_stack_destroy(ipst); 5805 5806 mutex_destroy(&ipst->ips_ip_mi_lock); 5807 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5808 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5809 rw_destroy(&ipst->ips_ip_g_nd_lock); 5810 5811 ret = untimeout(ipst->ips_igmp_timeout_id); 5812 if (ret == -1) { 5813 ASSERT(ipst->ips_igmp_timeout_id == 0); 5814 } else { 5815 ASSERT(ipst->ips_igmp_timeout_id != 0); 5816 ipst->ips_igmp_timeout_id = 0; 5817 } 5818 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5819 if (ret == -1) { 5820 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5821 } else { 5822 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5823 ipst->ips_igmp_slowtimeout_id = 0; 5824 } 5825 ret = untimeout(ipst->ips_mld_timeout_id); 5826 if (ret == -1) { 5827 ASSERT(ipst->ips_mld_timeout_id == 0); 5828 } else { 5829 ASSERT(ipst->ips_mld_timeout_id != 0); 5830 ipst->ips_mld_timeout_id = 0; 5831 } 5832 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5833 if (ret == -1) { 5834 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5835 } else { 5836 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5837 ipst->ips_mld_slowtimeout_id = 0; 5838 } 5839 ret = untimeout(ipst->ips_ip_ire_expire_id); 5840 if (ret == -1) { 5841 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5842 } else { 5843 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5844 ipst->ips_ip_ire_expire_id = 0; 5845 } 5846 5847 mutex_destroy(&ipst->ips_igmp_timer_lock); 5848 mutex_destroy(&ipst->ips_mld_timer_lock); 5849 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5850 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5851 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5852 rw_destroy(&ipst->ips_ill_g_lock); 5853 5854 ipobs_fini(ipst); 5855 ip_ire_fini(ipst); 5856 ip6_asp_free(ipst); 5857 conn_drain_fini(ipst); 5858 ipcl_destroy(ipst); 5859 5860 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5861 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5862 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5863 ipst->ips_ndp4 = NULL; 5864 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5865 ipst->ips_ndp6 = NULL; 5866 5867 if (ipst->ips_loopback_ksp != NULL) { 5868 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5869 ipst->ips_loopback_ksp = NULL; 5870 } 5871 5872 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5873 ipst->ips_phyint_g_list = NULL; 5874 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5875 ipst->ips_ill_g_heads = NULL; 5876 5877 ldi_ident_release(ipst->ips_ldi_ident); 5878 kmem_free(ipst, sizeof (*ipst)); 5879 } 5880 5881 /* 5882 * This function is called from the TSD destructor, and is used to debug 5883 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5884 * details. 5885 */ 5886 static void 5887 ip_thread_exit(void *phash) 5888 { 5889 th_hash_t *thh = phash; 5890 5891 rw_enter(&ip_thread_rwlock, RW_WRITER); 5892 list_remove(&ip_thread_list, thh); 5893 rw_exit(&ip_thread_rwlock); 5894 mod_hash_destroy_hash(thh->thh_hash); 5895 kmem_free(thh, sizeof (*thh)); 5896 } 5897 5898 /* 5899 * Called when the IP kernel module is loaded into the kernel 5900 */ 5901 void 5902 ip_ddi_init(void) 5903 { 5904 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5905 5906 /* 5907 * For IP and TCP the minor numbers should start from 2 since we have 4 5908 * initial devices: ip, ip6, tcp, tcp6. 5909 */ 5910 /* 5911 * If this is a 64-bit kernel, then create two separate arenas - 5912 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5913 * other for socket apps in the range 2^^18 through 2^^32-1. 5914 */ 5915 ip_minor_arena_la = NULL; 5916 ip_minor_arena_sa = NULL; 5917 #if defined(_LP64) 5918 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5919 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5920 cmn_err(CE_PANIC, 5921 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5922 } 5923 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5924 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5925 cmn_err(CE_PANIC, 5926 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5927 } 5928 #else 5929 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5930 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5931 cmn_err(CE_PANIC, 5932 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5933 } 5934 #endif 5935 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5936 5937 ipcl_g_init(); 5938 ip_ire_g_init(); 5939 ip_net_g_init(); 5940 5941 #ifdef DEBUG 5942 tsd_create(&ip_thread_data, ip_thread_exit); 5943 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5944 list_create(&ip_thread_list, sizeof (th_hash_t), 5945 offsetof(th_hash_t, thh_link)); 5946 #endif 5947 5948 /* 5949 * We want to be informed each time a stack is created or 5950 * destroyed in the kernel, so we can maintain the 5951 * set of udp_stack_t's. 5952 */ 5953 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5954 ip_stack_fini); 5955 5956 ipsec_policy_g_init(); 5957 tcp_ddi_g_init(); 5958 sctp_ddi_g_init(); 5959 5960 tnet_init(); 5961 5962 udp_ddi_g_init(); 5963 rts_ddi_g_init(); 5964 icmp_ddi_g_init(); 5965 } 5966 5967 /* 5968 * Initialize the IP stack instance. 5969 */ 5970 static void * 5971 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5972 { 5973 ip_stack_t *ipst; 5974 ipparam_t *pa; 5975 ipndp_t *na; 5976 major_t major; 5977 5978 #ifdef NS_DEBUG 5979 printf("ip_stack_init(stack %d)\n", stackid); 5980 #endif 5981 5982 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5983 ipst->ips_netstack = ns; 5984 5985 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5986 KM_SLEEP); 5987 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5988 KM_SLEEP); 5989 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5990 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5991 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5992 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5993 5994 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5995 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5996 ipst->ips_igmp_deferred_next = INFINITY; 5997 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5998 ipst->ips_mld_deferred_next = INFINITY; 5999 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6000 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6001 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6002 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6003 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6004 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6005 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6006 6007 ipcl_init(ipst); 6008 ip_ire_init(ipst); 6009 ip6_asp_init(ipst); 6010 ipif_init(ipst); 6011 conn_drain_init(ipst); 6012 ip_mrouter_stack_init(ipst); 6013 6014 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6015 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6016 6017 ipst->ips_ip_multirt_log_interval = 1000; 6018 6019 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6020 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6021 ipst->ips_ill_index = 1; 6022 6023 ipst->ips_saved_ip_g_forward = -1; 6024 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6025 6026 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6027 ipst->ips_param_arr = pa; 6028 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6029 6030 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6031 ipst->ips_ndp_arr = na; 6032 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6033 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6034 (caddr_t)&ipst->ips_ip_g_forward; 6035 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6036 (caddr_t)&ipst->ips_ipv6_forward; 6037 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6038 "ip_cgtp_filter") == 0); 6039 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6040 (caddr_t)&ipst->ips_ip_cgtp_filter; 6041 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6042 "ipmp_hook_emulation") == 0); 6043 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6044 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6045 6046 (void) ip_param_register(&ipst->ips_ip_g_nd, 6047 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6048 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6049 6050 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6051 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6052 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6053 ipst->ips_ip6_kstat = 6054 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6055 6056 ipst->ips_ipmp_enable_failback = B_TRUE; 6057 6058 ipst->ips_ip_src_id = 1; 6059 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6060 6061 ipobs_init(ipst); 6062 ip_net_init(ipst, ns); 6063 ipv4_hook_init(ipst); 6064 ipv6_hook_init(ipst); 6065 6066 /* 6067 * Create the taskq dispatcher thread and initialize related stuff. 6068 */ 6069 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6070 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6071 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6072 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6073 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6074 offsetof(mblk_t, b_next)); 6075 6076 major = mod_name_to_major(INET_NAME); 6077 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6078 return (ipst); 6079 } 6080 6081 /* 6082 * Allocate and initialize a DLPI template of the specified length. (May be 6083 * called as writer.) 6084 */ 6085 mblk_t * 6086 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6087 { 6088 mblk_t *mp; 6089 6090 mp = allocb(len, BPRI_MED); 6091 if (!mp) 6092 return (NULL); 6093 6094 /* 6095 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6096 * of which we don't seem to use) are sent with M_PCPROTO, and 6097 * that other DLPI are M_PROTO. 6098 */ 6099 if (prim == DL_INFO_REQ) { 6100 mp->b_datap->db_type = M_PCPROTO; 6101 } else { 6102 mp->b_datap->db_type = M_PROTO; 6103 } 6104 6105 mp->b_wptr = mp->b_rptr + len; 6106 bzero(mp->b_rptr, len); 6107 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6108 return (mp); 6109 } 6110 6111 /* 6112 * Debug formatting routine. Returns a character string representation of the 6113 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6114 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6115 * 6116 * Once the ndd table-printing interfaces are removed, this can be changed to 6117 * standard dotted-decimal form. 6118 */ 6119 char * 6120 ip_dot_addr(ipaddr_t addr, char *buf) 6121 { 6122 uint8_t *ap = (uint8_t *)&addr; 6123 6124 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6125 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6126 return (buf); 6127 } 6128 6129 /* 6130 * Write the given MAC address as a printable string in the usual colon- 6131 * separated format. 6132 */ 6133 const char * 6134 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6135 { 6136 char *bp; 6137 6138 if (alen == 0 || buflen < 4) 6139 return ("?"); 6140 bp = buf; 6141 for (;;) { 6142 /* 6143 * If there are more MAC address bytes available, but we won't 6144 * have any room to print them, then add "..." to the string 6145 * instead. See below for the 'magic number' explanation. 6146 */ 6147 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6148 (void) strcpy(bp, "..."); 6149 break; 6150 } 6151 (void) sprintf(bp, "%02x", *addr++); 6152 bp += 2; 6153 if (--alen == 0) 6154 break; 6155 *bp++ = ':'; 6156 buflen -= 3; 6157 /* 6158 * At this point, based on the first 'if' statement above, 6159 * either alen == 1 and buflen >= 3, or alen > 1 and 6160 * buflen >= 4. The first case leaves room for the final "xx" 6161 * number and trailing NUL byte. The second leaves room for at 6162 * least "...". Thus the apparently 'magic' numbers chosen for 6163 * that statement. 6164 */ 6165 } 6166 return (buf); 6167 } 6168 6169 /* 6170 * Send an ICMP error after patching up the packet appropriately. Returns 6171 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6172 */ 6173 static boolean_t 6174 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6175 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6176 zoneid_t zoneid, ip_stack_t *ipst) 6177 { 6178 ipha_t *ipha; 6179 mblk_t *first_mp; 6180 boolean_t secure; 6181 unsigned char db_type; 6182 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6183 6184 first_mp = mp; 6185 if (mctl_present) { 6186 mp = mp->b_cont; 6187 secure = ipsec_in_is_secure(first_mp); 6188 ASSERT(mp != NULL); 6189 } else { 6190 /* 6191 * If this is an ICMP error being reported - which goes 6192 * up as M_CTLs, we need to convert them to M_DATA till 6193 * we finish checking with global policy because 6194 * ipsec_check_global_policy() assumes M_DATA as clear 6195 * and M_CTL as secure. 6196 */ 6197 db_type = DB_TYPE(mp); 6198 DB_TYPE(mp) = M_DATA; 6199 secure = B_FALSE; 6200 } 6201 /* 6202 * We are generating an icmp error for some inbound packet. 6203 * Called from all ip_fanout_(udp, tcp, proto) functions. 6204 * Before we generate an error, check with global policy 6205 * to see whether this is allowed to enter the system. As 6206 * there is no "conn", we are checking with global policy. 6207 */ 6208 ipha = (ipha_t *)mp->b_rptr; 6209 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6210 first_mp = ipsec_check_global_policy(first_mp, NULL, 6211 ipha, NULL, mctl_present, ipst->ips_netstack); 6212 if (first_mp == NULL) 6213 return (B_FALSE); 6214 } 6215 6216 if (!mctl_present) 6217 DB_TYPE(mp) = db_type; 6218 6219 if (flags & IP_FF_SEND_ICMP) { 6220 if (flags & IP_FF_HDR_COMPLETE) { 6221 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6222 freemsg(first_mp); 6223 return (B_TRUE); 6224 } 6225 } 6226 if (flags & IP_FF_CKSUM) { 6227 /* 6228 * Have to correct checksum since 6229 * the packet might have been 6230 * fragmented and the reassembly code in ip_rput 6231 * does not restore the IP checksum. 6232 */ 6233 ipha->ipha_hdr_checksum = 0; 6234 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6235 } 6236 switch (icmp_type) { 6237 case ICMP_DEST_UNREACHABLE: 6238 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6239 ipst); 6240 break; 6241 default: 6242 freemsg(first_mp); 6243 break; 6244 } 6245 } else { 6246 freemsg(first_mp); 6247 return (B_FALSE); 6248 } 6249 6250 return (B_TRUE); 6251 } 6252 6253 /* 6254 * Used to send an ICMP error message when a packet is received for 6255 * a protocol that is not supported. The mblk passed as argument 6256 * is consumed by this function. 6257 */ 6258 void 6259 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6260 ip_stack_t *ipst) 6261 { 6262 mblk_t *mp; 6263 ipha_t *ipha; 6264 ill_t *ill; 6265 ipsec_in_t *ii; 6266 6267 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6268 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6269 6270 mp = ipsec_mp->b_cont; 6271 ipsec_mp->b_cont = NULL; 6272 ipha = (ipha_t *)mp->b_rptr; 6273 /* Get ill from index in ipsec_in_t. */ 6274 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6275 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6276 ipst); 6277 if (ill != NULL) { 6278 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6279 if (ip_fanout_send_icmp(q, mp, flags, 6280 ICMP_DEST_UNREACHABLE, 6281 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6282 BUMP_MIB(ill->ill_ip_mib, 6283 ipIfStatsInUnknownProtos); 6284 } 6285 } else { 6286 if (ip_fanout_send_icmp_v6(q, mp, flags, 6287 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6288 0, B_FALSE, zoneid, ipst)) { 6289 BUMP_MIB(ill->ill_ip_mib, 6290 ipIfStatsInUnknownProtos); 6291 } 6292 } 6293 ill_refrele(ill); 6294 } else { /* re-link for the freemsg() below. */ 6295 ipsec_mp->b_cont = mp; 6296 } 6297 6298 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6299 freemsg(ipsec_mp); 6300 } 6301 6302 /* 6303 * See if the inbound datagram has had IPsec processing applied to it. 6304 */ 6305 boolean_t 6306 ipsec_in_is_secure(mblk_t *ipsec_mp) 6307 { 6308 ipsec_in_t *ii; 6309 6310 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6311 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6312 6313 if (ii->ipsec_in_loopback) { 6314 return (ii->ipsec_in_secure); 6315 } else { 6316 return (ii->ipsec_in_ah_sa != NULL || 6317 ii->ipsec_in_esp_sa != NULL || 6318 ii->ipsec_in_decaps); 6319 } 6320 } 6321 6322 /* 6323 * Handle protocols with which IP is less intimate. There 6324 * can be more than one stream bound to a particular 6325 * protocol. When this is the case, normally each one gets a copy 6326 * of any incoming packets. 6327 * 6328 * IPsec NOTE : 6329 * 6330 * Don't allow a secure packet going up a non-secure connection. 6331 * We don't allow this because 6332 * 6333 * 1) Reply might go out in clear which will be dropped at 6334 * the sending side. 6335 * 2) If the reply goes out in clear it will give the 6336 * adversary enough information for getting the key in 6337 * most of the cases. 6338 * 6339 * Moreover getting a secure packet when we expect clear 6340 * implies that SA's were added without checking for 6341 * policy on both ends. This should not happen once ISAKMP 6342 * is used to negotiate SAs as SAs will be added only after 6343 * verifying the policy. 6344 * 6345 * NOTE : If the packet was tunneled and not multicast we only send 6346 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6347 * back to delivering packets to AF_INET6 raw sockets. 6348 * 6349 * IPQoS Notes: 6350 * Once we have determined the client, invoke IPPF processing. 6351 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6352 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6353 * ip_policy will be false. 6354 * 6355 * Zones notes: 6356 * Currently only applications in the global zone can create raw sockets for 6357 * protocols other than ICMP. So unlike the broadcast / multicast case of 6358 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6359 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6360 */ 6361 static void 6362 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6363 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6364 zoneid_t zoneid) 6365 { 6366 queue_t *rq; 6367 mblk_t *mp1, *first_mp1; 6368 uint_t protocol = ipha->ipha_protocol; 6369 ipaddr_t dst; 6370 boolean_t one_only; 6371 mblk_t *first_mp = mp; 6372 boolean_t secure; 6373 uint32_t ill_index; 6374 conn_t *connp, *first_connp, *next_connp; 6375 connf_t *connfp; 6376 boolean_t shared_addr; 6377 mib2_ipIfStatsEntry_t *mibptr; 6378 ip_stack_t *ipst = recv_ill->ill_ipst; 6379 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6380 6381 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6382 if (mctl_present) { 6383 mp = first_mp->b_cont; 6384 secure = ipsec_in_is_secure(first_mp); 6385 ASSERT(mp != NULL); 6386 } else { 6387 secure = B_FALSE; 6388 } 6389 dst = ipha->ipha_dst; 6390 /* 6391 * If the packet was tunneled and not multicast we only send to it 6392 * the first match. 6393 */ 6394 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6395 !CLASSD(dst)); 6396 6397 shared_addr = (zoneid == ALL_ZONES); 6398 if (shared_addr) { 6399 /* 6400 * We don't allow multilevel ports for raw IP, so no need to 6401 * check for that here. 6402 */ 6403 zoneid = tsol_packet_to_zoneid(mp); 6404 } 6405 6406 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6407 mutex_enter(&connfp->connf_lock); 6408 connp = connfp->connf_head; 6409 for (connp = connfp->connf_head; connp != NULL; 6410 connp = connp->conn_next) { 6411 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6412 zoneid) && 6413 (!is_system_labeled() || 6414 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6415 connp))) { 6416 break; 6417 } 6418 } 6419 6420 if (connp == NULL) { 6421 /* 6422 * No one bound to these addresses. Is 6423 * there a client that wants all 6424 * unclaimed datagrams? 6425 */ 6426 mutex_exit(&connfp->connf_lock); 6427 /* 6428 * Check for IPPROTO_ENCAP... 6429 */ 6430 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6431 /* 6432 * If an IPsec mblk is here on a multicast 6433 * tunnel (using ip_mroute stuff), check policy here, 6434 * THEN ship off to ip_mroute_decap(). 6435 * 6436 * BTW, If I match a configured IP-in-IP 6437 * tunnel, this path will not be reached, and 6438 * ip_mroute_decap will never be called. 6439 */ 6440 first_mp = ipsec_check_global_policy(first_mp, connp, 6441 ipha, NULL, mctl_present, ipst->ips_netstack); 6442 if (first_mp != NULL) { 6443 if (mctl_present) 6444 freeb(first_mp); 6445 ip_mroute_decap(q, mp, ill); 6446 } /* Else we already freed everything! */ 6447 } else { 6448 /* 6449 * Otherwise send an ICMP protocol unreachable. 6450 */ 6451 if (ip_fanout_send_icmp(q, first_mp, flags, 6452 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6453 mctl_present, zoneid, ipst)) { 6454 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6455 } 6456 } 6457 return; 6458 } 6459 6460 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6461 6462 CONN_INC_REF(connp); 6463 first_connp = connp; 6464 6465 /* 6466 * Only send message to one tunnel driver by immediately 6467 * terminating the loop. 6468 */ 6469 connp = one_only ? NULL : connp->conn_next; 6470 6471 for (;;) { 6472 while (connp != NULL) { 6473 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6474 flags, zoneid) && 6475 (!is_system_labeled() || 6476 tsol_receive_local(mp, &dst, IPV4_VERSION, 6477 shared_addr, connp))) 6478 break; 6479 connp = connp->conn_next; 6480 } 6481 6482 /* 6483 * Copy the packet. 6484 */ 6485 if (connp == NULL || 6486 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6487 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6488 /* 6489 * No more interested clients or memory 6490 * allocation failed 6491 */ 6492 connp = first_connp; 6493 break; 6494 } 6495 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6496 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6497 CONN_INC_REF(connp); 6498 mutex_exit(&connfp->connf_lock); 6499 rq = connp->conn_rq; 6500 6501 /* 6502 * Check flow control 6503 */ 6504 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6505 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6506 if (flags & IP_FF_RAWIP) { 6507 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6508 } else { 6509 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6510 } 6511 6512 freemsg(first_mp1); 6513 } else { 6514 /* 6515 * Don't enforce here if we're an actual tunnel - 6516 * let "tun" do it instead. 6517 */ 6518 if (!IPCL_IS_IPTUN(connp) && 6519 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6520 secure)) { 6521 first_mp1 = ipsec_check_inbound_policy 6522 (first_mp1, connp, ipha, NULL, 6523 mctl_present); 6524 } 6525 if (first_mp1 != NULL) { 6526 int in_flags = 0; 6527 /* 6528 * ip_fanout_proto also gets called from 6529 * icmp_inbound_error_fanout, in which case 6530 * the msg type is M_CTL. Don't add info 6531 * in this case for the time being. In future 6532 * when there is a need for knowing the 6533 * inbound iface index for ICMP error msgs, 6534 * then this can be changed. 6535 */ 6536 if (connp->conn_recvif) 6537 in_flags = IPF_RECVIF; 6538 /* 6539 * The ULP may support IP_RECVPKTINFO for both 6540 * IP v4 and v6 so pass the appropriate argument 6541 * based on conn IP version. 6542 */ 6543 if (connp->conn_ip_recvpktinfo) { 6544 if (connp->conn_af_isv6) { 6545 /* 6546 * V6 only needs index 6547 */ 6548 in_flags |= IPF_RECVIF; 6549 } else { 6550 /* 6551 * V4 needs index + 6552 * matching address. 6553 */ 6554 in_flags |= IPF_RECVADDR; 6555 } 6556 } 6557 if ((in_flags != 0) && 6558 (mp->b_datap->db_type != M_CTL)) { 6559 /* 6560 * the actual data will be 6561 * contained in b_cont upon 6562 * successful return of the 6563 * following call else 6564 * original mblk is returned 6565 */ 6566 ASSERT(recv_ill != NULL); 6567 mp1 = ip_add_info(mp1, recv_ill, 6568 in_flags, IPCL_ZONEID(connp), ipst); 6569 } 6570 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6571 if (mctl_present) 6572 freeb(first_mp1); 6573 (connp->conn_recv)(connp, mp1, NULL); 6574 } 6575 } 6576 mutex_enter(&connfp->connf_lock); 6577 /* Follow the next pointer before releasing the conn. */ 6578 next_connp = connp->conn_next; 6579 CONN_DEC_REF(connp); 6580 connp = next_connp; 6581 } 6582 6583 /* Last one. Send it upstream. */ 6584 mutex_exit(&connfp->connf_lock); 6585 6586 /* 6587 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6588 * will be set to false. 6589 */ 6590 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6591 ill_index = ill->ill_phyint->phyint_ifindex; 6592 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6593 if (mp == NULL) { 6594 CONN_DEC_REF(connp); 6595 if (mctl_present) { 6596 freeb(first_mp); 6597 } 6598 return; 6599 } 6600 } 6601 6602 rq = connp->conn_rq; 6603 /* 6604 * Check flow control 6605 */ 6606 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6607 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6608 if (flags & IP_FF_RAWIP) { 6609 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6610 } else { 6611 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6612 } 6613 6614 freemsg(first_mp); 6615 } else { 6616 if (IPCL_IS_IPTUN(connp)) { 6617 /* 6618 * Tunneled packet. We enforce policy in the tunnel 6619 * module itself. 6620 * 6621 * Send the WHOLE packet up (incl. IPSEC_IN) without 6622 * a policy check. 6623 * FIXME to use conn_recv for tun later. 6624 */ 6625 putnext(rq, first_mp); 6626 CONN_DEC_REF(connp); 6627 return; 6628 } 6629 6630 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6631 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6632 ipha, NULL, mctl_present); 6633 } 6634 6635 if (first_mp != NULL) { 6636 int in_flags = 0; 6637 6638 /* 6639 * ip_fanout_proto also gets called 6640 * from icmp_inbound_error_fanout, in 6641 * which case the msg type is M_CTL. 6642 * Don't add info in this case for time 6643 * being. In future when there is a 6644 * need for knowing the inbound iface 6645 * index for ICMP error msgs, then this 6646 * can be changed 6647 */ 6648 if (connp->conn_recvif) 6649 in_flags = IPF_RECVIF; 6650 if (connp->conn_ip_recvpktinfo) { 6651 if (connp->conn_af_isv6) { 6652 /* 6653 * V6 only needs index 6654 */ 6655 in_flags |= IPF_RECVIF; 6656 } else { 6657 /* 6658 * V4 needs index + 6659 * matching address. 6660 */ 6661 in_flags |= IPF_RECVADDR; 6662 } 6663 } 6664 if ((in_flags != 0) && 6665 (mp->b_datap->db_type != M_CTL)) { 6666 6667 /* 6668 * the actual data will be contained in 6669 * b_cont upon successful return 6670 * of the following call else original 6671 * mblk is returned 6672 */ 6673 ASSERT(recv_ill != NULL); 6674 mp = ip_add_info(mp, recv_ill, 6675 in_flags, IPCL_ZONEID(connp), ipst); 6676 } 6677 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6678 (connp->conn_recv)(connp, mp, NULL); 6679 if (mctl_present) 6680 freeb(first_mp); 6681 } 6682 } 6683 CONN_DEC_REF(connp); 6684 } 6685 6686 /* 6687 * Fanout for TCP packets 6688 * The caller puts <fport, lport> in the ports parameter. 6689 * 6690 * IPQoS Notes 6691 * Before sending it to the client, invoke IPPF processing. 6692 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6693 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6694 * ip_policy is false. 6695 */ 6696 static void 6697 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6698 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6699 { 6700 mblk_t *first_mp; 6701 boolean_t secure; 6702 uint32_t ill_index; 6703 int ip_hdr_len; 6704 tcph_t *tcph; 6705 boolean_t syn_present = B_FALSE; 6706 conn_t *connp; 6707 ip_stack_t *ipst = recv_ill->ill_ipst; 6708 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6709 6710 ASSERT(recv_ill != NULL); 6711 6712 first_mp = mp; 6713 if (mctl_present) { 6714 ASSERT(first_mp->b_datap->db_type == M_CTL); 6715 mp = first_mp->b_cont; 6716 secure = ipsec_in_is_secure(first_mp); 6717 ASSERT(mp != NULL); 6718 } else { 6719 secure = B_FALSE; 6720 } 6721 6722 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6723 6724 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6725 zoneid, ipst)) == NULL) { 6726 /* 6727 * No connected connection or listener. Send a 6728 * TH_RST via tcp_xmit_listeners_reset. 6729 */ 6730 6731 /* Initiate IPPf processing, if needed. */ 6732 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6733 uint32_t ill_index; 6734 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6735 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6736 if (first_mp == NULL) 6737 return; 6738 } 6739 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6740 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6741 zoneid)); 6742 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6743 ipst->ips_netstack->netstack_tcp, NULL); 6744 return; 6745 } 6746 6747 /* 6748 * Allocate the SYN for the TCP connection here itself 6749 */ 6750 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6751 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6752 if (IPCL_IS_TCP(connp)) { 6753 squeue_t *sqp; 6754 6755 /* 6756 * For fused tcp loopback, assign the eager's 6757 * squeue to be that of the active connect's. 6758 * Note that we don't check for IP_FF_LOOPBACK 6759 * here since this routine gets called only 6760 * for loopback (unlike the IPv6 counterpart). 6761 */ 6762 ASSERT(Q_TO_CONN(q) != NULL); 6763 if (do_tcp_fusion && 6764 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6765 !secure && 6766 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6767 IPCL_IS_TCP(Q_TO_CONN(q))) { 6768 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6769 sqp = Q_TO_CONN(q)->conn_sqp; 6770 } else { 6771 sqp = IP_SQUEUE_GET(lbolt); 6772 } 6773 6774 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6775 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6776 syn_present = B_TRUE; 6777 } 6778 } 6779 6780 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6781 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6782 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6783 if ((flags & TH_RST) || (flags & TH_URG)) { 6784 CONN_DEC_REF(connp); 6785 freemsg(first_mp); 6786 return; 6787 } 6788 if (flags & TH_ACK) { 6789 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6790 ipst->ips_netstack->netstack_tcp, connp); 6791 CONN_DEC_REF(connp); 6792 return; 6793 } 6794 6795 CONN_DEC_REF(connp); 6796 freemsg(first_mp); 6797 return; 6798 } 6799 6800 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6801 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6802 NULL, mctl_present); 6803 if (first_mp == NULL) { 6804 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6805 CONN_DEC_REF(connp); 6806 return; 6807 } 6808 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6809 ASSERT(syn_present); 6810 if (mctl_present) { 6811 ASSERT(first_mp != mp); 6812 first_mp->b_datap->db_struioflag |= 6813 STRUIO_POLICY; 6814 } else { 6815 ASSERT(first_mp == mp); 6816 mp->b_datap->db_struioflag &= 6817 ~STRUIO_EAGER; 6818 mp->b_datap->db_struioflag |= 6819 STRUIO_POLICY; 6820 } 6821 } else { 6822 /* 6823 * Discard first_mp early since we're dealing with a 6824 * fully-connected conn_t and tcp doesn't do policy in 6825 * this case. 6826 */ 6827 if (mctl_present) { 6828 freeb(first_mp); 6829 mctl_present = B_FALSE; 6830 } 6831 first_mp = mp; 6832 } 6833 } 6834 6835 /* 6836 * Initiate policy processing here if needed. If we get here from 6837 * icmp_inbound_error_fanout, ip_policy is false. 6838 */ 6839 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6840 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6841 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6842 if (mp == NULL) { 6843 CONN_DEC_REF(connp); 6844 if (mctl_present) 6845 freeb(first_mp); 6846 return; 6847 } else if (mctl_present) { 6848 ASSERT(first_mp != mp); 6849 first_mp->b_cont = mp; 6850 } else { 6851 first_mp = mp; 6852 } 6853 } 6854 6855 6856 6857 /* Handle socket options. */ 6858 if (!syn_present && 6859 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6860 /* Add header */ 6861 ASSERT(recv_ill != NULL); 6862 /* 6863 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6864 * IPF_RECVIF. 6865 */ 6866 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6867 ipst); 6868 if (mp == NULL) { 6869 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6870 CONN_DEC_REF(connp); 6871 if (mctl_present) 6872 freeb(first_mp); 6873 return; 6874 } else if (mctl_present) { 6875 /* 6876 * ip_add_info might return a new mp. 6877 */ 6878 ASSERT(first_mp != mp); 6879 first_mp->b_cont = mp; 6880 } else { 6881 first_mp = mp; 6882 } 6883 } 6884 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6885 if (IPCL_IS_TCP(connp)) { 6886 /* do not drain, certain use cases can blow the stack */ 6887 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6888 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6889 } else { 6890 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6891 (connp->conn_recv)(connp, first_mp, NULL); 6892 CONN_DEC_REF(connp); 6893 } 6894 } 6895 6896 /* 6897 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6898 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6899 * is not consumed. 6900 * 6901 * One of four things can happen, all of which affect the passed-in mblk: 6902 * 6903 * 1.) ICMP messages that go through here just get returned TRUE. 6904 * 6905 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6906 * 6907 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6908 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6909 * 6910 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6911 */ 6912 static boolean_t 6913 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6914 ipsec_stack_t *ipss) 6915 { 6916 int shift, plen, iph_len; 6917 ipha_t *ipha; 6918 udpha_t *udpha; 6919 uint32_t *spi; 6920 uint32_t esp_ports; 6921 uint8_t *orptr; 6922 boolean_t free_ire; 6923 6924 if (DB_TYPE(mp) == M_CTL) { 6925 /* 6926 * ICMP message with UDP inside. Don't bother stripping, just 6927 * send it up. 6928 * 6929 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6930 * to ignore errors set by ICMP anyway ('cause they might be 6931 * forged), but that's the app's decision, not ours. 6932 */ 6933 6934 /* Bunch of reality checks for DEBUG kernels... */ 6935 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6936 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6937 6938 return (B_TRUE); 6939 } 6940 6941 ipha = (ipha_t *)mp->b_rptr; 6942 iph_len = IPH_HDR_LENGTH(ipha); 6943 plen = ntohs(ipha->ipha_length); 6944 6945 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6946 /* 6947 * Most likely a keepalive for the benefit of an intervening 6948 * NAT. These aren't for us, per se, so drop it. 6949 * 6950 * RFC 3947/8 doesn't say for sure what to do for 2-3 6951 * byte packets (keepalives are 1-byte), but we'll drop them 6952 * also. 6953 */ 6954 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6955 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6956 return (B_FALSE); 6957 } 6958 6959 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6960 /* might as well pull it all up - it might be ESP. */ 6961 if (!pullupmsg(mp, -1)) { 6962 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6963 DROPPER(ipss, ipds_esp_nomem), 6964 &ipss->ipsec_dropper); 6965 return (B_FALSE); 6966 } 6967 6968 ipha = (ipha_t *)mp->b_rptr; 6969 } 6970 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6971 if (*spi == 0) { 6972 /* UDP packet - remove 0-spi. */ 6973 shift = sizeof (uint32_t); 6974 } else { 6975 /* ESP-in-UDP packet - reduce to ESP. */ 6976 ipha->ipha_protocol = IPPROTO_ESP; 6977 shift = sizeof (udpha_t); 6978 } 6979 6980 /* Fix IP header */ 6981 ipha->ipha_length = htons(plen - shift); 6982 ipha->ipha_hdr_checksum = 0; 6983 6984 orptr = mp->b_rptr; 6985 mp->b_rptr += shift; 6986 6987 udpha = (udpha_t *)(orptr + iph_len); 6988 if (*spi == 0) { 6989 ASSERT((uint8_t *)ipha == orptr); 6990 udpha->uha_length = htons(plen - shift - iph_len); 6991 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6992 esp_ports = 0; 6993 } else { 6994 esp_ports = *((uint32_t *)udpha); 6995 ASSERT(esp_ports != 0); 6996 } 6997 ovbcopy(orptr, orptr + shift, iph_len); 6998 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6999 ipha = (ipha_t *)(orptr + shift); 7000 7001 free_ire = (ire == NULL); 7002 if (free_ire) { 7003 /* Re-acquire ire. */ 7004 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7005 ipss->ipsec_netstack->netstack_ip); 7006 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7007 if (ire != NULL) 7008 ire_refrele(ire); 7009 /* 7010 * Do a regular freemsg(), as this is an IP 7011 * error (no local route) not an IPsec one. 7012 */ 7013 freemsg(mp); 7014 } 7015 } 7016 7017 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7018 if (free_ire) 7019 ire_refrele(ire); 7020 } 7021 7022 return (esp_ports == 0); 7023 } 7024 7025 /* 7026 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7027 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7028 * Caller is responsible for dropping references to the conn, and freeing 7029 * first_mp. 7030 * 7031 * IPQoS Notes 7032 * Before sending it to the client, invoke IPPF processing. Policy processing 7033 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7034 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7035 * ip_wput_local, ip_policy is false. 7036 */ 7037 static void 7038 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7039 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7040 boolean_t ip_policy) 7041 { 7042 boolean_t mctl_present = (first_mp != NULL); 7043 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7044 uint32_t ill_index; 7045 ip_stack_t *ipst = recv_ill->ill_ipst; 7046 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7047 7048 ASSERT(ill != NULL); 7049 7050 if (mctl_present) 7051 first_mp->b_cont = mp; 7052 else 7053 first_mp = mp; 7054 7055 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7056 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7057 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7058 freemsg(first_mp); 7059 return; 7060 } 7061 7062 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7063 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7064 NULL, mctl_present); 7065 /* Freed by ipsec_check_inbound_policy(). */ 7066 if (first_mp == NULL) { 7067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7068 return; 7069 } 7070 } 7071 if (mctl_present) 7072 freeb(first_mp); 7073 7074 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7075 if (connp->conn_udp->udp_nat_t_endpoint) { 7076 if (mctl_present) { 7077 /* mctl_present *shouldn't* happen. */ 7078 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7079 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7080 &ipss->ipsec_dropper); 7081 return; 7082 } 7083 7084 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7085 return; 7086 } 7087 7088 /* Handle options. */ 7089 if (connp->conn_recvif) 7090 in_flags = IPF_RECVIF; 7091 /* 7092 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7093 * passed to ip_add_info is based on IP version of connp. 7094 */ 7095 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7096 if (connp->conn_af_isv6) { 7097 /* 7098 * V6 only needs index 7099 */ 7100 in_flags |= IPF_RECVIF; 7101 } else { 7102 /* 7103 * V4 needs index + matching address. 7104 */ 7105 in_flags |= IPF_RECVADDR; 7106 } 7107 } 7108 7109 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7110 in_flags |= IPF_RECVSLLA; 7111 7112 /* 7113 * Initiate IPPF processing here, if needed. Note first_mp won't be 7114 * freed if the packet is dropped. The caller will do so. 7115 */ 7116 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7117 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7118 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7119 if (mp == NULL) { 7120 return; 7121 } 7122 } 7123 if ((in_flags != 0) && 7124 (mp->b_datap->db_type != M_CTL)) { 7125 /* 7126 * The actual data will be contained in b_cont 7127 * upon successful return of the following call 7128 * else original mblk is returned 7129 */ 7130 ASSERT(recv_ill != NULL); 7131 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7132 ipst); 7133 } 7134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7135 /* Send it upstream */ 7136 (connp->conn_recv)(connp, mp, NULL); 7137 } 7138 7139 /* 7140 * Fanout for UDP packets. 7141 * The caller puts <fport, lport> in the ports parameter. 7142 * 7143 * If SO_REUSEADDR is set all multicast and broadcast packets 7144 * will be delivered to all streams bound to the same port. 7145 * 7146 * Zones notes: 7147 * Multicast and broadcast packets will be distributed to streams in all zones. 7148 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7149 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7150 * packets. To maintain this behavior with multiple zones, the conns are grouped 7151 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7152 * each zone. If unset, all the following conns in the same zone are skipped. 7153 */ 7154 static void 7155 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7156 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7157 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7158 { 7159 uint32_t dstport, srcport; 7160 ipaddr_t dst; 7161 mblk_t *first_mp; 7162 boolean_t secure; 7163 in6_addr_t v6src; 7164 conn_t *connp; 7165 connf_t *connfp; 7166 conn_t *first_connp; 7167 conn_t *next_connp; 7168 mblk_t *mp1, *first_mp1; 7169 ipaddr_t src; 7170 zoneid_t last_zoneid; 7171 boolean_t reuseaddr; 7172 boolean_t shared_addr; 7173 boolean_t unlabeled; 7174 ip_stack_t *ipst; 7175 7176 ASSERT(recv_ill != NULL); 7177 ipst = recv_ill->ill_ipst; 7178 7179 first_mp = mp; 7180 if (mctl_present) { 7181 mp = first_mp->b_cont; 7182 first_mp->b_cont = NULL; 7183 secure = ipsec_in_is_secure(first_mp); 7184 ASSERT(mp != NULL); 7185 } else { 7186 first_mp = NULL; 7187 secure = B_FALSE; 7188 } 7189 7190 /* Extract ports in net byte order */ 7191 dstport = htons(ntohl(ports) & 0xFFFF); 7192 srcport = htons(ntohl(ports) >> 16); 7193 dst = ipha->ipha_dst; 7194 src = ipha->ipha_src; 7195 7196 unlabeled = B_FALSE; 7197 if (is_system_labeled()) 7198 /* Cred cannot be null on IPv4 */ 7199 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7200 TSLF_UNLABELED) != 0; 7201 shared_addr = (zoneid == ALL_ZONES); 7202 if (shared_addr) { 7203 /* 7204 * No need to handle exclusive-stack zones since ALL_ZONES 7205 * only applies to the shared stack. 7206 */ 7207 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7208 /* 7209 * If no shared MLP is found, tsol_mlp_findzone returns 7210 * ALL_ZONES. In that case, we assume it's SLP, and 7211 * search for the zone based on the packet label. 7212 * 7213 * If there is such a zone, we prefer to find a 7214 * connection in it. Otherwise, we look for a 7215 * MAC-exempt connection in any zone whose label 7216 * dominates the default label on the packet. 7217 */ 7218 if (zoneid == ALL_ZONES) 7219 zoneid = tsol_packet_to_zoneid(mp); 7220 else 7221 unlabeled = B_FALSE; 7222 } 7223 7224 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7225 mutex_enter(&connfp->connf_lock); 7226 connp = connfp->connf_head; 7227 if (!broadcast && !CLASSD(dst)) { 7228 /* 7229 * Not broadcast or multicast. Send to the one (first) 7230 * client we find. No need to check conn_wantpacket() 7231 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7232 * IPv4 unicast packets. 7233 */ 7234 while ((connp != NULL) && 7235 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7236 (!IPCL_ZONE_MATCH(connp, zoneid) && 7237 !(unlabeled && connp->conn_mac_exempt)))) { 7238 /* 7239 * We keep searching since the conn did not match, 7240 * or its zone did not match and it is not either 7241 * an allzones conn or a mac exempt conn (if the 7242 * sender is unlabeled.) 7243 */ 7244 connp = connp->conn_next; 7245 } 7246 7247 if (connp == NULL || 7248 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7249 goto notfound; 7250 7251 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7252 7253 if (is_system_labeled() && 7254 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7255 connp)) 7256 goto notfound; 7257 7258 CONN_INC_REF(connp); 7259 mutex_exit(&connfp->connf_lock); 7260 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7261 flags, recv_ill, ip_policy); 7262 IP_STAT(ipst, ip_udp_fannorm); 7263 CONN_DEC_REF(connp); 7264 return; 7265 } 7266 7267 /* 7268 * Broadcast and multicast case 7269 * 7270 * Need to check conn_wantpacket(). 7271 * If SO_REUSEADDR has been set on the first we send the 7272 * packet to all clients that have joined the group and 7273 * match the port. 7274 */ 7275 7276 while (connp != NULL) { 7277 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7278 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7279 (!is_system_labeled() || 7280 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7281 connp))) 7282 break; 7283 connp = connp->conn_next; 7284 } 7285 7286 if (connp == NULL || 7287 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7288 goto notfound; 7289 7290 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7291 7292 first_connp = connp; 7293 /* 7294 * When SO_REUSEADDR is not set, send the packet only to the first 7295 * matching connection in its zone by keeping track of the zoneid. 7296 */ 7297 reuseaddr = first_connp->conn_reuseaddr; 7298 last_zoneid = first_connp->conn_zoneid; 7299 7300 CONN_INC_REF(connp); 7301 connp = connp->conn_next; 7302 for (;;) { 7303 while (connp != NULL) { 7304 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7305 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7306 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7307 (!is_system_labeled() || 7308 tsol_receive_local(mp, &dst, IPV4_VERSION, 7309 shared_addr, connp))) 7310 break; 7311 connp = connp->conn_next; 7312 } 7313 /* 7314 * Just copy the data part alone. The mctl part is 7315 * needed just for verifying policy and it is never 7316 * sent up. 7317 */ 7318 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7319 ((mp1 = copymsg(mp)) == NULL))) { 7320 /* 7321 * No more interested clients or memory 7322 * allocation failed 7323 */ 7324 connp = first_connp; 7325 break; 7326 } 7327 if (connp->conn_zoneid != last_zoneid) { 7328 /* 7329 * Update the zoneid so that the packet isn't sent to 7330 * any more conns in the same zone unless SO_REUSEADDR 7331 * is set. 7332 */ 7333 reuseaddr = connp->conn_reuseaddr; 7334 last_zoneid = connp->conn_zoneid; 7335 } 7336 if (first_mp != NULL) { 7337 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7338 ipsec_info_type == IPSEC_IN); 7339 first_mp1 = ipsec_in_tag(first_mp, NULL, 7340 ipst->ips_netstack); 7341 if (first_mp1 == NULL) { 7342 freemsg(mp1); 7343 connp = first_connp; 7344 break; 7345 } 7346 } else { 7347 first_mp1 = NULL; 7348 } 7349 CONN_INC_REF(connp); 7350 mutex_exit(&connfp->connf_lock); 7351 /* 7352 * IPQoS notes: We don't send the packet for policy 7353 * processing here, will do it for the last one (below). 7354 * i.e. we do it per-packet now, but if we do policy 7355 * processing per-conn, then we would need to do it 7356 * here too. 7357 */ 7358 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7359 ipha, flags, recv_ill, B_FALSE); 7360 mutex_enter(&connfp->connf_lock); 7361 /* Follow the next pointer before releasing the conn. */ 7362 next_connp = connp->conn_next; 7363 IP_STAT(ipst, ip_udp_fanmb); 7364 CONN_DEC_REF(connp); 7365 connp = next_connp; 7366 } 7367 7368 /* Last one. Send it upstream. */ 7369 mutex_exit(&connfp->connf_lock); 7370 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7371 recv_ill, ip_policy); 7372 IP_STAT(ipst, ip_udp_fanmb); 7373 CONN_DEC_REF(connp); 7374 return; 7375 7376 notfound: 7377 7378 mutex_exit(&connfp->connf_lock); 7379 IP_STAT(ipst, ip_udp_fanothers); 7380 /* 7381 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7382 * have already been matched above, since they live in the IPv4 7383 * fanout tables. This implies we only need to 7384 * check for IPv6 in6addr_any endpoints here. 7385 * Thus we compare using ipv6_all_zeros instead of the destination 7386 * address, except for the multicast group membership lookup which 7387 * uses the IPv4 destination. 7388 */ 7389 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7390 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7391 mutex_enter(&connfp->connf_lock); 7392 connp = connfp->connf_head; 7393 if (!broadcast && !CLASSD(dst)) { 7394 while (connp != NULL) { 7395 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7396 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7397 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7398 !connp->conn_ipv6_v6only) 7399 break; 7400 connp = connp->conn_next; 7401 } 7402 7403 if (connp != NULL && is_system_labeled() && 7404 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7405 connp)) 7406 connp = NULL; 7407 7408 if (connp == NULL || 7409 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7410 /* 7411 * No one bound to this port. Is 7412 * there a client that wants all 7413 * unclaimed datagrams? 7414 */ 7415 mutex_exit(&connfp->connf_lock); 7416 7417 if (mctl_present) 7418 first_mp->b_cont = mp; 7419 else 7420 first_mp = mp; 7421 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7422 connf_head != NULL) { 7423 ip_fanout_proto(q, first_mp, ill, ipha, 7424 flags | IP_FF_RAWIP, mctl_present, 7425 ip_policy, recv_ill, zoneid); 7426 } else { 7427 if (ip_fanout_send_icmp(q, first_mp, flags, 7428 ICMP_DEST_UNREACHABLE, 7429 ICMP_PORT_UNREACHABLE, 7430 mctl_present, zoneid, ipst)) { 7431 BUMP_MIB(ill->ill_ip_mib, 7432 udpIfStatsNoPorts); 7433 } 7434 } 7435 return; 7436 } 7437 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7438 7439 CONN_INC_REF(connp); 7440 mutex_exit(&connfp->connf_lock); 7441 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7442 flags, recv_ill, ip_policy); 7443 CONN_DEC_REF(connp); 7444 return; 7445 } 7446 /* 7447 * IPv4 multicast packet being delivered to an AF_INET6 7448 * in6addr_any endpoint. 7449 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7450 * and not conn_wantpacket_v6() since any multicast membership is 7451 * for an IPv4-mapped multicast address. 7452 * The packet is sent to all clients in all zones that have joined the 7453 * group and match the port. 7454 */ 7455 while (connp != NULL) { 7456 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7457 srcport, v6src) && 7458 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7459 (!is_system_labeled() || 7460 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7461 connp))) 7462 break; 7463 connp = connp->conn_next; 7464 } 7465 7466 if (connp == NULL || 7467 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7468 /* 7469 * No one bound to this port. Is 7470 * there a client that wants all 7471 * unclaimed datagrams? 7472 */ 7473 mutex_exit(&connfp->connf_lock); 7474 7475 if (mctl_present) 7476 first_mp->b_cont = mp; 7477 else 7478 first_mp = mp; 7479 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7480 NULL) { 7481 ip_fanout_proto(q, first_mp, ill, ipha, 7482 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7483 recv_ill, zoneid); 7484 } else { 7485 /* 7486 * We used to attempt to send an icmp error here, but 7487 * since this is known to be a multicast packet 7488 * and we don't send icmp errors in response to 7489 * multicast, just drop the packet and give up sooner. 7490 */ 7491 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7492 freemsg(first_mp); 7493 } 7494 return; 7495 } 7496 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7497 7498 first_connp = connp; 7499 7500 CONN_INC_REF(connp); 7501 connp = connp->conn_next; 7502 for (;;) { 7503 while (connp != NULL) { 7504 if (IPCL_UDP_MATCH_V6(connp, dstport, 7505 ipv6_all_zeros, srcport, v6src) && 7506 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7507 (!is_system_labeled() || 7508 tsol_receive_local(mp, &dst, IPV4_VERSION, 7509 shared_addr, connp))) 7510 break; 7511 connp = connp->conn_next; 7512 } 7513 /* 7514 * Just copy the data part alone. The mctl part is 7515 * needed just for verifying policy and it is never 7516 * sent up. 7517 */ 7518 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7519 ((mp1 = copymsg(mp)) == NULL))) { 7520 /* 7521 * No more intested clients or memory 7522 * allocation failed 7523 */ 7524 connp = first_connp; 7525 break; 7526 } 7527 if (first_mp != NULL) { 7528 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7529 ipsec_info_type == IPSEC_IN); 7530 first_mp1 = ipsec_in_tag(first_mp, NULL, 7531 ipst->ips_netstack); 7532 if (first_mp1 == NULL) { 7533 freemsg(mp1); 7534 connp = first_connp; 7535 break; 7536 } 7537 } else { 7538 first_mp1 = NULL; 7539 } 7540 CONN_INC_REF(connp); 7541 mutex_exit(&connfp->connf_lock); 7542 /* 7543 * IPQoS notes: We don't send the packet for policy 7544 * processing here, will do it for the last one (below). 7545 * i.e. we do it per-packet now, but if we do policy 7546 * processing per-conn, then we would need to do it 7547 * here too. 7548 */ 7549 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7550 ipha, flags, recv_ill, B_FALSE); 7551 mutex_enter(&connfp->connf_lock); 7552 /* Follow the next pointer before releasing the conn. */ 7553 next_connp = connp->conn_next; 7554 CONN_DEC_REF(connp); 7555 connp = next_connp; 7556 } 7557 7558 /* Last one. Send it upstream. */ 7559 mutex_exit(&connfp->connf_lock); 7560 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7561 recv_ill, ip_policy); 7562 CONN_DEC_REF(connp); 7563 } 7564 7565 /* 7566 * Complete the ip_wput header so that it 7567 * is possible to generate ICMP 7568 * errors. 7569 */ 7570 int 7571 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7572 { 7573 ire_t *ire; 7574 7575 if (ipha->ipha_src == INADDR_ANY) { 7576 ire = ire_lookup_local(zoneid, ipst); 7577 if (ire == NULL) { 7578 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7579 return (1); 7580 } 7581 ipha->ipha_src = ire->ire_addr; 7582 ire_refrele(ire); 7583 } 7584 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7585 ipha->ipha_hdr_checksum = 0; 7586 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7587 return (0); 7588 } 7589 7590 /* 7591 * Nobody should be sending 7592 * packets up this stream 7593 */ 7594 static void 7595 ip_lrput(queue_t *q, mblk_t *mp) 7596 { 7597 mblk_t *mp1; 7598 7599 switch (mp->b_datap->db_type) { 7600 case M_FLUSH: 7601 /* Turn around */ 7602 if (*mp->b_rptr & FLUSHW) { 7603 *mp->b_rptr &= ~FLUSHR; 7604 qreply(q, mp); 7605 return; 7606 } 7607 break; 7608 } 7609 /* Could receive messages that passed through ar_rput */ 7610 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7611 mp1->b_prev = mp1->b_next = NULL; 7612 freemsg(mp); 7613 } 7614 7615 /* Nobody should be sending packets down this stream */ 7616 /* ARGSUSED */ 7617 void 7618 ip_lwput(queue_t *q, mblk_t *mp) 7619 { 7620 freemsg(mp); 7621 } 7622 7623 /* 7624 * Move the first hop in any source route to ipha_dst and remove that part of 7625 * the source route. Called by other protocols. Errors in option formatting 7626 * are ignored - will be handled by ip_wput_options Return the final 7627 * destination (either ipha_dst or the last entry in a source route.) 7628 */ 7629 ipaddr_t 7630 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7631 { 7632 ipoptp_t opts; 7633 uchar_t *opt; 7634 uint8_t optval; 7635 uint8_t optlen; 7636 ipaddr_t dst; 7637 int i; 7638 ire_t *ire; 7639 ip_stack_t *ipst = ns->netstack_ip; 7640 7641 ip2dbg(("ip_massage_options\n")); 7642 dst = ipha->ipha_dst; 7643 for (optval = ipoptp_first(&opts, ipha); 7644 optval != IPOPT_EOL; 7645 optval = ipoptp_next(&opts)) { 7646 opt = opts.ipoptp_cur; 7647 switch (optval) { 7648 uint8_t off; 7649 case IPOPT_SSRR: 7650 case IPOPT_LSRR: 7651 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7652 ip1dbg(("ip_massage_options: bad src route\n")); 7653 break; 7654 } 7655 optlen = opts.ipoptp_len; 7656 off = opt[IPOPT_OFFSET]; 7657 off--; 7658 redo_srr: 7659 if (optlen < IP_ADDR_LEN || 7660 off > optlen - IP_ADDR_LEN) { 7661 /* End of source route */ 7662 ip1dbg(("ip_massage_options: end of SR\n")); 7663 break; 7664 } 7665 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7666 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7667 ntohl(dst))); 7668 /* 7669 * Check if our address is present more than 7670 * once as consecutive hops in source route. 7671 * XXX verify per-interface ip_forwarding 7672 * for source route? 7673 */ 7674 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7675 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7676 if (ire != NULL) { 7677 ire_refrele(ire); 7678 off += IP_ADDR_LEN; 7679 goto redo_srr; 7680 } 7681 if (dst == htonl(INADDR_LOOPBACK)) { 7682 ip1dbg(("ip_massage_options: loopback addr in " 7683 "source route!\n")); 7684 break; 7685 } 7686 /* 7687 * Update ipha_dst to be the first hop and remove the 7688 * first hop from the source route (by overwriting 7689 * part of the option with NOP options). 7690 */ 7691 ipha->ipha_dst = dst; 7692 /* Put the last entry in dst */ 7693 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7694 3; 7695 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7696 7697 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7698 ntohl(dst))); 7699 /* Move down and overwrite */ 7700 opt[IP_ADDR_LEN] = opt[0]; 7701 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7702 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7703 for (i = 0; i < IP_ADDR_LEN; i++) 7704 opt[i] = IPOPT_NOP; 7705 break; 7706 } 7707 } 7708 return (dst); 7709 } 7710 7711 /* 7712 * Return the network mask 7713 * associated with the specified address. 7714 */ 7715 ipaddr_t 7716 ip_net_mask(ipaddr_t addr) 7717 { 7718 uchar_t *up = (uchar_t *)&addr; 7719 ipaddr_t mask = 0; 7720 uchar_t *maskp = (uchar_t *)&mask; 7721 7722 #if defined(__i386) || defined(__amd64) 7723 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7724 #endif 7725 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7726 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7727 #endif 7728 if (CLASSD(addr)) { 7729 maskp[0] = 0xF0; 7730 return (mask); 7731 } 7732 7733 /* We assume Class E default netmask to be 32 */ 7734 if (CLASSE(addr)) 7735 return (0xffffffffU); 7736 7737 if (addr == 0) 7738 return (0); 7739 maskp[0] = 0xFF; 7740 if ((up[0] & 0x80) == 0) 7741 return (mask); 7742 7743 maskp[1] = 0xFF; 7744 if ((up[0] & 0xC0) == 0x80) 7745 return (mask); 7746 7747 maskp[2] = 0xFF; 7748 if ((up[0] & 0xE0) == 0xC0) 7749 return (mask); 7750 7751 /* Otherwise return no mask */ 7752 return ((ipaddr_t)0); 7753 } 7754 7755 /* 7756 * Select an ill for the packet by considering load spreading across 7757 * a different ill in the group if dst_ill is part of some group. 7758 */ 7759 ill_t * 7760 ip_newroute_get_dst_ill(ill_t *dst_ill) 7761 { 7762 ill_t *ill; 7763 7764 /* 7765 * We schedule irrespective of whether the source address is 7766 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7767 */ 7768 ill = illgrp_scheduler(dst_ill); 7769 if (ill == NULL) 7770 return (NULL); 7771 7772 /* 7773 * For groups with names ip_sioctl_groupname ensures that all 7774 * ills are of same type. For groups without names, ifgrp_insert 7775 * ensures this. 7776 */ 7777 ASSERT(dst_ill->ill_type == ill->ill_type); 7778 7779 return (ill); 7780 } 7781 7782 /* 7783 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7784 */ 7785 ill_t * 7786 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7787 ip_stack_t *ipst) 7788 { 7789 ill_t *ret_ill; 7790 7791 ASSERT(ifindex != 0); 7792 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7793 ipst); 7794 if (ret_ill == NULL || 7795 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7796 if (isv6) { 7797 if (ill != NULL) { 7798 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7799 } else { 7800 BUMP_MIB(&ipst->ips_ip6_mib, 7801 ipIfStatsOutDiscards); 7802 } 7803 ip1dbg(("ip_grab_attach_ill (IPv6): " 7804 "bad ifindex %d.\n", ifindex)); 7805 } else { 7806 if (ill != NULL) { 7807 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7808 } else { 7809 BUMP_MIB(&ipst->ips_ip_mib, 7810 ipIfStatsOutDiscards); 7811 } 7812 ip1dbg(("ip_grab_attach_ill (IPv4): " 7813 "bad ifindex %d.\n", ifindex)); 7814 } 7815 if (ret_ill != NULL) 7816 ill_refrele(ret_ill); 7817 freemsg(first_mp); 7818 return (NULL); 7819 } 7820 7821 return (ret_ill); 7822 } 7823 7824 /* 7825 * IPv4 - 7826 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7827 * out a packet to a destination address for which we do not have specific 7828 * (or sufficient) routing information. 7829 * 7830 * NOTE : These are the scopes of some of the variables that point at IRE, 7831 * which needs to be followed while making any future modifications 7832 * to avoid memory leaks. 7833 * 7834 * - ire and sire are the entries looked up initially by 7835 * ire_ftable_lookup. 7836 * - ipif_ire is used to hold the interface ire associated with 7837 * the new cache ire. But it's scope is limited, so we always REFRELE 7838 * it before branching out to error paths. 7839 * - save_ire is initialized before ire_create, so that ire returned 7840 * by ire_create will not over-write the ire. We REFRELE save_ire 7841 * before breaking out of the switch. 7842 * 7843 * Thus on failures, we have to REFRELE only ire and sire, if they 7844 * are not NULL. 7845 */ 7846 void 7847 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7848 zoneid_t zoneid, ip_stack_t *ipst) 7849 { 7850 areq_t *areq; 7851 ipaddr_t gw = 0; 7852 ire_t *ire = NULL; 7853 mblk_t *res_mp; 7854 ipaddr_t *addrp; 7855 ipaddr_t nexthop_addr; 7856 ipif_t *src_ipif = NULL; 7857 ill_t *dst_ill = NULL; 7858 ipha_t *ipha; 7859 ire_t *sire = NULL; 7860 mblk_t *first_mp; 7861 ire_t *save_ire; 7862 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7863 ushort_t ire_marks = 0; 7864 boolean_t mctl_present; 7865 ipsec_out_t *io; 7866 mblk_t *saved_mp; 7867 ire_t *first_sire = NULL; 7868 mblk_t *copy_mp = NULL; 7869 mblk_t *xmit_mp = NULL; 7870 ipaddr_t save_dst; 7871 uint32_t multirt_flags = 7872 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7873 boolean_t multirt_is_resolvable; 7874 boolean_t multirt_resolve_next; 7875 boolean_t unspec_src; 7876 boolean_t do_attach_ill = B_FALSE; 7877 boolean_t ip_nexthop = B_FALSE; 7878 tsol_ire_gw_secattr_t *attrp = NULL; 7879 tsol_gcgrp_t *gcgrp = NULL; 7880 tsol_gcgrp_addr_t ga; 7881 7882 if (ip_debug > 2) { 7883 /* ip1dbg */ 7884 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7885 } 7886 7887 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7888 if (mctl_present) { 7889 io = (ipsec_out_t *)first_mp->b_rptr; 7890 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7891 ASSERT(zoneid == io->ipsec_out_zoneid); 7892 ASSERT(zoneid != ALL_ZONES); 7893 } 7894 7895 ipha = (ipha_t *)mp->b_rptr; 7896 7897 /* All multicast lookups come through ip_newroute_ipif() */ 7898 if (CLASSD(dst)) { 7899 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7900 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7901 freemsg(first_mp); 7902 return; 7903 } 7904 7905 if (mctl_present && io->ipsec_out_attach_if) { 7906 /* ip_grab_attach_ill returns a held ill */ 7907 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7908 io->ipsec_out_ill_index, B_FALSE, ipst); 7909 7910 /* Failure case frees things for us. */ 7911 if (attach_ill == NULL) 7912 return; 7913 7914 /* 7915 * Check if we need an ire that will not be 7916 * looked up by anybody else i.e. HIDDEN. 7917 */ 7918 if (ill_is_probeonly(attach_ill)) 7919 ire_marks = IRE_MARK_HIDDEN; 7920 } 7921 if (mctl_present && io->ipsec_out_ip_nexthop) { 7922 ip_nexthop = B_TRUE; 7923 nexthop_addr = io->ipsec_out_nexthop_addr; 7924 } 7925 /* 7926 * If this IRE is created for forwarding or it is not for 7927 * traffic for congestion controlled protocols, mark it as temporary. 7928 */ 7929 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7930 ire_marks |= IRE_MARK_TEMPORARY; 7931 7932 /* 7933 * Get what we can from ire_ftable_lookup which will follow an IRE 7934 * chain until it gets the most specific information available. 7935 * For example, we know that there is no IRE_CACHE for this dest, 7936 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7937 * ire_ftable_lookup will look up the gateway, etc. 7938 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7939 * to the destination, of equal netmask length in the forward table, 7940 * will be recursively explored. If no information is available 7941 * for the final gateway of that route, we force the returned ire 7942 * to be equal to sire using MATCH_IRE_PARENT. 7943 * At least, in this case we have a starting point (in the buckets) 7944 * to look for other routes to the destination in the forward table. 7945 * This is actually used only for multirouting, where a list 7946 * of routes has to be processed in sequence. 7947 * 7948 * In the process of coming up with the most specific information, 7949 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7950 * for the gateway (i.e., one for which the ire_nce->nce_state is 7951 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7952 * Two caveats when handling incomplete ire's in ip_newroute: 7953 * - we should be careful when accessing its ire_nce (specifically 7954 * the nce_res_mp) ast it might change underneath our feet, and, 7955 * - not all legacy code path callers are prepared to handle 7956 * incomplete ire's, so we should not create/add incomplete 7957 * ire_cache entries here. (See discussion about temporary solution 7958 * further below). 7959 * 7960 * In order to minimize packet dropping, and to preserve existing 7961 * behavior, we treat this case as if there were no IRE_CACHE for the 7962 * gateway, and instead use the IF_RESOLVER ire to send out 7963 * another request to ARP (this is achieved by passing the 7964 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7965 * arp response comes back in ip_wput_nondata, we will create 7966 * a per-dst ire_cache that has an ND_COMPLETE ire. 7967 * 7968 * Note that this is a temporary solution; the correct solution is 7969 * to create an incomplete per-dst ire_cache entry, and send the 7970 * packet out when the gw's nce is resolved. In order to achieve this, 7971 * all packet processing must have been completed prior to calling 7972 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7973 * to be modified to accomodate this solution. 7974 */ 7975 if (ip_nexthop) { 7976 /* 7977 * The first time we come here, we look for an IRE_INTERFACE 7978 * entry for the specified nexthop, set the dst to be the 7979 * nexthop address and create an IRE_CACHE entry for the 7980 * nexthop. The next time around, we are able to find an 7981 * IRE_CACHE entry for the nexthop, set the gateway to be the 7982 * nexthop address and create an IRE_CACHE entry for the 7983 * destination address via the specified nexthop. 7984 */ 7985 ire = ire_cache_lookup(nexthop_addr, zoneid, 7986 MBLK_GETLABEL(mp), ipst); 7987 if (ire != NULL) { 7988 gw = nexthop_addr; 7989 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7990 } else { 7991 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7992 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7993 MBLK_GETLABEL(mp), 7994 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7995 ipst); 7996 if (ire != NULL) { 7997 dst = nexthop_addr; 7998 } 7999 } 8000 } else if (attach_ill == NULL) { 8001 ire = ire_ftable_lookup(dst, 0, 0, 0, 8002 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8003 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8004 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8005 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8006 ipst); 8007 } else { 8008 /* 8009 * attach_ill is set only for communicating with 8010 * on-link hosts. So, don't look for DEFAULT. 8011 */ 8012 ipif_t *attach_ipif; 8013 8014 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8015 if (attach_ipif == NULL) { 8016 ill_refrele(attach_ill); 8017 goto icmp_err_ret; 8018 } 8019 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8020 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8021 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8022 MATCH_IRE_SECATTR, ipst); 8023 ipif_refrele(attach_ipif); 8024 } 8025 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8026 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8027 8028 /* 8029 * This loop is run only once in most cases. 8030 * We loop to resolve further routes only when the destination 8031 * can be reached through multiple RTF_MULTIRT-flagged ires. 8032 */ 8033 do { 8034 /* Clear the previous iteration's values */ 8035 if (src_ipif != NULL) { 8036 ipif_refrele(src_ipif); 8037 src_ipif = NULL; 8038 } 8039 if (dst_ill != NULL) { 8040 ill_refrele(dst_ill); 8041 dst_ill = NULL; 8042 } 8043 8044 multirt_resolve_next = B_FALSE; 8045 /* 8046 * We check if packets have to be multirouted. 8047 * In this case, given the current <ire, sire> couple, 8048 * we look for the next suitable <ire, sire>. 8049 * This check is done in ire_multirt_lookup(), 8050 * which applies various criteria to find the next route 8051 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8052 * unchanged if it detects it has not been tried yet. 8053 */ 8054 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8055 ip3dbg(("ip_newroute: starting next_resolution " 8056 "with first_mp %p, tag %d\n", 8057 (void *)first_mp, 8058 MULTIRT_DEBUG_TAGGED(first_mp))); 8059 8060 ASSERT(sire != NULL); 8061 multirt_is_resolvable = 8062 ire_multirt_lookup(&ire, &sire, multirt_flags, 8063 MBLK_GETLABEL(mp), ipst); 8064 8065 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8066 "ire %p, sire %p\n", 8067 multirt_is_resolvable, 8068 (void *)ire, (void *)sire)); 8069 8070 if (!multirt_is_resolvable) { 8071 /* 8072 * No more multirt route to resolve; give up 8073 * (all routes resolved or no more 8074 * resolvable routes). 8075 */ 8076 if (ire != NULL) { 8077 ire_refrele(ire); 8078 ire = NULL; 8079 } 8080 } else { 8081 ASSERT(sire != NULL); 8082 ASSERT(ire != NULL); 8083 /* 8084 * We simply use first_sire as a flag that 8085 * indicates if a resolvable multirt route 8086 * has already been found. 8087 * If it is not the case, we may have to send 8088 * an ICMP error to report that the 8089 * destination is unreachable. 8090 * We do not IRE_REFHOLD first_sire. 8091 */ 8092 if (first_sire == NULL) { 8093 first_sire = sire; 8094 } 8095 } 8096 } 8097 if (ire == NULL) { 8098 if (ip_debug > 3) { 8099 /* ip2dbg */ 8100 pr_addr_dbg("ip_newroute: " 8101 "can't resolve %s\n", AF_INET, &dst); 8102 } 8103 ip3dbg(("ip_newroute: " 8104 "ire %p, sire %p, first_sire %p\n", 8105 (void *)ire, (void *)sire, (void *)first_sire)); 8106 8107 if (sire != NULL) { 8108 ire_refrele(sire); 8109 sire = NULL; 8110 } 8111 8112 if (first_sire != NULL) { 8113 /* 8114 * At least one multirt route has been found 8115 * in the same call to ip_newroute(); 8116 * there is no need to report an ICMP error. 8117 * first_sire was not IRE_REFHOLDed. 8118 */ 8119 MULTIRT_DEBUG_UNTAG(first_mp); 8120 freemsg(first_mp); 8121 return; 8122 } 8123 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8124 RTA_DST, ipst); 8125 if (attach_ill != NULL) 8126 ill_refrele(attach_ill); 8127 goto icmp_err_ret; 8128 } 8129 8130 /* 8131 * Verify that the returned IRE does not have either 8132 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8133 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8134 */ 8135 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8136 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8137 if (attach_ill != NULL) 8138 ill_refrele(attach_ill); 8139 goto icmp_err_ret; 8140 } 8141 /* 8142 * Increment the ire_ob_pkt_count field for ire if it is an 8143 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8144 * increment the same for the parent IRE, sire, if it is some 8145 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8146 */ 8147 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8148 UPDATE_OB_PKT_COUNT(ire); 8149 ire->ire_last_used_time = lbolt; 8150 } 8151 8152 if (sire != NULL) { 8153 gw = sire->ire_gateway_addr; 8154 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8155 IRE_INTERFACE)) == 0); 8156 UPDATE_OB_PKT_COUNT(sire); 8157 sire->ire_last_used_time = lbolt; 8158 } 8159 /* 8160 * We have a route to reach the destination. 8161 * 8162 * 1) If the interface is part of ill group, try to get a new 8163 * ill taking load spreading into account. 8164 * 8165 * 2) After selecting the ill, get a source address that 8166 * might create good inbound load spreading. 8167 * ipif_select_source does this for us. 8168 * 8169 * If the application specified the ill (ifindex), we still 8170 * load spread. Only if the packets needs to go out 8171 * specifically on a given ill e.g. binding to 8172 * IPIF_NOFAILOVER address, then we don't try to use a 8173 * different ill for load spreading. 8174 */ 8175 if (attach_ill == NULL) { 8176 /* 8177 * Don't perform outbound load spreading in the 8178 * case of an RTF_MULTIRT route, as we actually 8179 * typically want to replicate outgoing packets 8180 * through particular interfaces. 8181 */ 8182 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8183 dst_ill = ire->ire_ipif->ipif_ill; 8184 /* for uniformity */ 8185 ill_refhold(dst_ill); 8186 } else { 8187 /* 8188 * If we are here trying to create an IRE_CACHE 8189 * for an offlink destination and have the 8190 * IRE_CACHE for the next hop and the latter is 8191 * using virtual IP source address selection i.e 8192 * it's ire->ire_ipif is pointing to a virtual 8193 * network interface (vni) then 8194 * ip_newroute_get_dst_ll() will return the vni 8195 * interface as the dst_ill. Since the vni is 8196 * virtual i.e not associated with any physical 8197 * interface, it cannot be the dst_ill, hence 8198 * in such a case call ip_newroute_get_dst_ll() 8199 * with the stq_ill instead of the ire_ipif ILL. 8200 * The function returns a refheld ill. 8201 */ 8202 if ((ire->ire_type == IRE_CACHE) && 8203 IS_VNI(ire->ire_ipif->ipif_ill)) 8204 dst_ill = ip_newroute_get_dst_ill( 8205 ire->ire_stq->q_ptr); 8206 else 8207 dst_ill = ip_newroute_get_dst_ill( 8208 ire->ire_ipif->ipif_ill); 8209 } 8210 if (dst_ill == NULL) { 8211 if (ip_debug > 2) { 8212 pr_addr_dbg("ip_newroute: " 8213 "no dst ill for dst" 8214 " %s\n", AF_INET, &dst); 8215 } 8216 goto icmp_err_ret; 8217 } 8218 } else { 8219 dst_ill = ire->ire_ipif->ipif_ill; 8220 /* for uniformity */ 8221 ill_refhold(dst_ill); 8222 /* 8223 * We should have found a route matching ill as we 8224 * called ire_ftable_lookup with MATCH_IRE_ILL. 8225 * Rather than asserting, when there is a mismatch, 8226 * we just drop the packet. 8227 */ 8228 if (dst_ill != attach_ill) { 8229 ip0dbg(("ip_newroute: Packet dropped as " 8230 "IPIF_NOFAILOVER ill is %s, " 8231 "ire->ire_ipif->ipif_ill is %s\n", 8232 attach_ill->ill_name, 8233 dst_ill->ill_name)); 8234 ill_refrele(attach_ill); 8235 goto icmp_err_ret; 8236 } 8237 } 8238 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8239 if (attach_ill != NULL) { 8240 ill_refrele(attach_ill); 8241 attach_ill = NULL; 8242 do_attach_ill = B_TRUE; 8243 } 8244 ASSERT(dst_ill != NULL); 8245 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8246 8247 /* 8248 * Pick the best source address from dst_ill. 8249 * 8250 * 1) If it is part of a multipathing group, we would 8251 * like to spread the inbound packets across different 8252 * interfaces. ipif_select_source picks a random source 8253 * across the different ills in the group. 8254 * 8255 * 2) If it is not part of a multipathing group, we try 8256 * to pick the source address from the destination 8257 * route. Clustering assumes that when we have multiple 8258 * prefixes hosted on an interface, the prefix of the 8259 * source address matches the prefix of the destination 8260 * route. We do this only if the address is not 8261 * DEPRECATED. 8262 * 8263 * 3) If the conn is in a different zone than the ire, we 8264 * need to pick a source address from the right zone. 8265 * 8266 * NOTE : If we hit case (1) above, the prefix of the source 8267 * address picked may not match the prefix of the 8268 * destination routes prefix as ipif_select_source 8269 * does not look at "dst" while picking a source 8270 * address. 8271 * If we want the same behavior as (2), we will need 8272 * to change the behavior of ipif_select_source. 8273 */ 8274 ASSERT(src_ipif == NULL); 8275 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8276 /* 8277 * The RTF_SETSRC flag is set in the parent ire (sire). 8278 * Check that the ipif matching the requested source 8279 * address still exists. 8280 */ 8281 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8282 zoneid, NULL, NULL, NULL, NULL, ipst); 8283 } 8284 8285 unspec_src = (connp != NULL && connp->conn_unspec_src); 8286 8287 if (src_ipif == NULL && 8288 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8289 ire_marks |= IRE_MARK_USESRC_CHECK; 8290 if ((dst_ill->ill_group != NULL) || 8291 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8292 (connp != NULL && ire->ire_zoneid != zoneid && 8293 ire->ire_zoneid != ALL_ZONES) || 8294 (dst_ill->ill_usesrc_ifindex != 0)) { 8295 /* 8296 * If the destination is reachable via a 8297 * given gateway, the selected source address 8298 * should be in the same subnet as the gateway. 8299 * Otherwise, the destination is not reachable. 8300 * 8301 * If there are no interfaces on the same subnet 8302 * as the destination, ipif_select_source gives 8303 * first non-deprecated interface which might be 8304 * on a different subnet than the gateway. 8305 * This is not desirable. Hence pass the dst_ire 8306 * source address to ipif_select_source. 8307 * It is sure that the destination is reachable 8308 * with the dst_ire source address subnet. 8309 * So passing dst_ire source address to 8310 * ipif_select_source will make sure that the 8311 * selected source will be on the same subnet 8312 * as dst_ire source address. 8313 */ 8314 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8315 src_ipif = ipif_select_source(dst_ill, saddr, 8316 zoneid); 8317 if (src_ipif == NULL) { 8318 if (ip_debug > 2) { 8319 pr_addr_dbg("ip_newroute: " 8320 "no src for dst %s ", 8321 AF_INET, &dst); 8322 printf("through interface %s\n", 8323 dst_ill->ill_name); 8324 } 8325 goto icmp_err_ret; 8326 } 8327 } else { 8328 src_ipif = ire->ire_ipif; 8329 ASSERT(src_ipif != NULL); 8330 /* hold src_ipif for uniformity */ 8331 ipif_refhold(src_ipif); 8332 } 8333 } 8334 8335 /* 8336 * Assign a source address while we have the conn. 8337 * We can't have ip_wput_ire pick a source address when the 8338 * packet returns from arp since we need to look at 8339 * conn_unspec_src and conn_zoneid, and we lose the conn when 8340 * going through arp. 8341 * 8342 * NOTE : ip_newroute_v6 does not have this piece of code as 8343 * it uses ip6i to store this information. 8344 */ 8345 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8346 ipha->ipha_src = src_ipif->ipif_src_addr; 8347 8348 if (ip_debug > 3) { 8349 /* ip2dbg */ 8350 pr_addr_dbg("ip_newroute: first hop %s\n", 8351 AF_INET, &gw); 8352 } 8353 ip2dbg(("\tire type %s (%d)\n", 8354 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8355 8356 /* 8357 * The TTL of multirouted packets is bounded by the 8358 * ip_multirt_ttl ndd variable. 8359 */ 8360 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8361 /* Force TTL of multirouted packets */ 8362 if ((ipst->ips_ip_multirt_ttl > 0) && 8363 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8364 ip2dbg(("ip_newroute: forcing multirt TTL " 8365 "to %d (was %d), dst 0x%08x\n", 8366 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8367 ntohl(sire->ire_addr))); 8368 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8369 } 8370 } 8371 /* 8372 * At this point in ip_newroute(), ire is either the 8373 * IRE_CACHE of the next-hop gateway for an off-subnet 8374 * destination or an IRE_INTERFACE type that should be used 8375 * to resolve an on-subnet destination or an on-subnet 8376 * next-hop gateway. 8377 * 8378 * In the IRE_CACHE case, we have the following : 8379 * 8380 * 1) src_ipif - used for getting a source address. 8381 * 8382 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8383 * means packets using this IRE_CACHE will go out on 8384 * dst_ill. 8385 * 8386 * 3) The IRE sire will point to the prefix that is the 8387 * longest matching route for the destination. These 8388 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8389 * 8390 * The newly created IRE_CACHE entry for the off-subnet 8391 * destination is tied to both the prefix route and the 8392 * interface route used to resolve the next-hop gateway 8393 * via the ire_phandle and ire_ihandle fields, 8394 * respectively. 8395 * 8396 * In the IRE_INTERFACE case, we have the following : 8397 * 8398 * 1) src_ipif - used for getting a source address. 8399 * 8400 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8401 * means packets using the IRE_CACHE that we will build 8402 * here will go out on dst_ill. 8403 * 8404 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8405 * to be created will only be tied to the IRE_INTERFACE 8406 * that was derived from the ire_ihandle field. 8407 * 8408 * If sire is non-NULL, it means the destination is 8409 * off-link and we will first create the IRE_CACHE for the 8410 * gateway. Next time through ip_newroute, we will create 8411 * the IRE_CACHE for the final destination as described 8412 * above. 8413 * 8414 * In both cases, after the current resolution has been 8415 * completed (or possibly initialised, in the IRE_INTERFACE 8416 * case), the loop may be re-entered to attempt the resolution 8417 * of another RTF_MULTIRT route. 8418 * 8419 * When an IRE_CACHE entry for the off-subnet destination is 8420 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8421 * for further processing in emission loops. 8422 */ 8423 save_ire = ire; 8424 switch (ire->ire_type) { 8425 case IRE_CACHE: { 8426 ire_t *ipif_ire; 8427 8428 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8429 if (gw == 0) 8430 gw = ire->ire_gateway_addr; 8431 /* 8432 * We need 3 ire's to create a new cache ire for an 8433 * off-link destination from the cache ire of the 8434 * gateway. 8435 * 8436 * 1. The prefix ire 'sire' (Note that this does 8437 * not apply to the conn_nexthop_set case) 8438 * 2. The cache ire of the gateway 'ire' 8439 * 3. The interface ire 'ipif_ire' 8440 * 8441 * We have (1) and (2). We lookup (3) below. 8442 * 8443 * If there is no interface route to the gateway, 8444 * it is a race condition, where we found the cache 8445 * but the interface route has been deleted. 8446 */ 8447 if (ip_nexthop) { 8448 ipif_ire = ire_ihandle_lookup_onlink(ire); 8449 } else { 8450 ipif_ire = 8451 ire_ihandle_lookup_offlink(ire, sire); 8452 } 8453 if (ipif_ire == NULL) { 8454 ip1dbg(("ip_newroute: " 8455 "ire_ihandle_lookup_offlink failed\n")); 8456 goto icmp_err_ret; 8457 } 8458 8459 /* 8460 * Check cached gateway IRE for any security 8461 * attributes; if found, associate the gateway 8462 * credentials group to the destination IRE. 8463 */ 8464 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8465 mutex_enter(&attrp->igsa_lock); 8466 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8467 GCGRP_REFHOLD(gcgrp); 8468 mutex_exit(&attrp->igsa_lock); 8469 } 8470 8471 /* 8472 * XXX For the source of the resolver mp, 8473 * we are using the same DL_UNITDATA_REQ 8474 * (from save_ire->ire_nce->nce_res_mp) 8475 * though the save_ire is not pointing at the same ill. 8476 * This is incorrect. We need to send it up to the 8477 * resolver to get the right res_mp. For ethernets 8478 * this may be okay (ill_type == DL_ETHER). 8479 */ 8480 8481 ire = ire_create( 8482 (uchar_t *)&dst, /* dest address */ 8483 (uchar_t *)&ip_g_all_ones, /* mask */ 8484 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8485 (uchar_t *)&gw, /* gateway address */ 8486 &save_ire->ire_max_frag, 8487 save_ire->ire_nce, /* src nce */ 8488 dst_ill->ill_rq, /* recv-from queue */ 8489 dst_ill->ill_wq, /* send-to queue */ 8490 IRE_CACHE, /* IRE type */ 8491 src_ipif, 8492 (sire != NULL) ? 8493 sire->ire_mask : 0, /* Parent mask */ 8494 (sire != NULL) ? 8495 sire->ire_phandle : 0, /* Parent handle */ 8496 ipif_ire->ire_ihandle, /* Interface handle */ 8497 (sire != NULL) ? (sire->ire_flags & 8498 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8499 (sire != NULL) ? 8500 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8501 NULL, 8502 gcgrp, 8503 ipst); 8504 8505 if (ire == NULL) { 8506 if (gcgrp != NULL) { 8507 GCGRP_REFRELE(gcgrp); 8508 gcgrp = NULL; 8509 } 8510 ire_refrele(ipif_ire); 8511 ire_refrele(save_ire); 8512 break; 8513 } 8514 8515 /* reference now held by IRE */ 8516 gcgrp = NULL; 8517 8518 ire->ire_marks |= ire_marks; 8519 8520 /* 8521 * Prevent sire and ipif_ire from getting deleted. 8522 * The newly created ire is tied to both of them via 8523 * the phandle and ihandle respectively. 8524 */ 8525 if (sire != NULL) { 8526 IRB_REFHOLD(sire->ire_bucket); 8527 /* Has it been removed already ? */ 8528 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8529 IRB_REFRELE(sire->ire_bucket); 8530 ire_refrele(ipif_ire); 8531 ire_refrele(save_ire); 8532 break; 8533 } 8534 } 8535 8536 IRB_REFHOLD(ipif_ire->ire_bucket); 8537 /* Has it been removed already ? */ 8538 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8539 IRB_REFRELE(ipif_ire->ire_bucket); 8540 if (sire != NULL) 8541 IRB_REFRELE(sire->ire_bucket); 8542 ire_refrele(ipif_ire); 8543 ire_refrele(save_ire); 8544 break; 8545 } 8546 8547 xmit_mp = first_mp; 8548 /* 8549 * In the case of multirouting, a copy 8550 * of the packet is done before its sending. 8551 * The copy is used to attempt another 8552 * route resolution, in a next loop. 8553 */ 8554 if (ire->ire_flags & RTF_MULTIRT) { 8555 copy_mp = copymsg(first_mp); 8556 if (copy_mp != NULL) { 8557 xmit_mp = copy_mp; 8558 MULTIRT_DEBUG_TAG(first_mp); 8559 } 8560 } 8561 ire_add_then_send(q, ire, xmit_mp); 8562 ire_refrele(save_ire); 8563 8564 /* Assert that sire is not deleted yet. */ 8565 if (sire != NULL) { 8566 ASSERT(sire->ire_ptpn != NULL); 8567 IRB_REFRELE(sire->ire_bucket); 8568 } 8569 8570 /* Assert that ipif_ire is not deleted yet. */ 8571 ASSERT(ipif_ire->ire_ptpn != NULL); 8572 IRB_REFRELE(ipif_ire->ire_bucket); 8573 ire_refrele(ipif_ire); 8574 8575 /* 8576 * If copy_mp is not NULL, multirouting was 8577 * requested. We loop to initiate a next 8578 * route resolution attempt, starting from sire. 8579 */ 8580 if (copy_mp != NULL) { 8581 /* 8582 * Search for the next unresolved 8583 * multirt route. 8584 */ 8585 copy_mp = NULL; 8586 ipif_ire = NULL; 8587 ire = NULL; 8588 multirt_resolve_next = B_TRUE; 8589 continue; 8590 } 8591 if (sire != NULL) 8592 ire_refrele(sire); 8593 ipif_refrele(src_ipif); 8594 ill_refrele(dst_ill); 8595 return; 8596 } 8597 case IRE_IF_NORESOLVER: { 8598 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8599 dst_ill->ill_resolver_mp == NULL) { 8600 ip1dbg(("ip_newroute: dst_ill %p " 8601 "for IRE_IF_NORESOLVER ire %p has " 8602 "no ill_resolver_mp\n", 8603 (void *)dst_ill, (void *)ire)); 8604 break; 8605 } 8606 8607 /* 8608 * TSol note: We are creating the ire cache for the 8609 * destination 'dst'. If 'dst' is offlink, going 8610 * through the first hop 'gw', the security attributes 8611 * of 'dst' must be set to point to the gateway 8612 * credentials of gateway 'gw'. If 'dst' is onlink, it 8613 * is possible that 'dst' is a potential gateway that is 8614 * referenced by some route that has some security 8615 * attributes. Thus in the former case, we need to do a 8616 * gcgrp_lookup of 'gw' while in the latter case we 8617 * need to do gcgrp_lookup of 'dst' itself. 8618 */ 8619 ga.ga_af = AF_INET; 8620 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8621 &ga.ga_addr); 8622 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8623 8624 ire = ire_create( 8625 (uchar_t *)&dst, /* dest address */ 8626 (uchar_t *)&ip_g_all_ones, /* mask */ 8627 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8628 (uchar_t *)&gw, /* gateway address */ 8629 &save_ire->ire_max_frag, 8630 NULL, /* no src nce */ 8631 dst_ill->ill_rq, /* recv-from queue */ 8632 dst_ill->ill_wq, /* send-to queue */ 8633 IRE_CACHE, 8634 src_ipif, 8635 save_ire->ire_mask, /* Parent mask */ 8636 (sire != NULL) ? /* Parent handle */ 8637 sire->ire_phandle : 0, 8638 save_ire->ire_ihandle, /* Interface handle */ 8639 (sire != NULL) ? sire->ire_flags & 8640 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8641 &(save_ire->ire_uinfo), 8642 NULL, 8643 gcgrp, 8644 ipst); 8645 8646 if (ire == NULL) { 8647 if (gcgrp != NULL) { 8648 GCGRP_REFRELE(gcgrp); 8649 gcgrp = NULL; 8650 } 8651 ire_refrele(save_ire); 8652 break; 8653 } 8654 8655 /* reference now held by IRE */ 8656 gcgrp = NULL; 8657 8658 ire->ire_marks |= ire_marks; 8659 8660 /* Prevent save_ire from getting deleted */ 8661 IRB_REFHOLD(save_ire->ire_bucket); 8662 /* Has it been removed already ? */ 8663 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8664 IRB_REFRELE(save_ire->ire_bucket); 8665 ire_refrele(save_ire); 8666 break; 8667 } 8668 8669 /* 8670 * In the case of multirouting, a copy 8671 * of the packet is made before it is sent. 8672 * The copy is used in the next 8673 * loop to attempt another resolution. 8674 */ 8675 xmit_mp = first_mp; 8676 if ((sire != NULL) && 8677 (sire->ire_flags & RTF_MULTIRT)) { 8678 copy_mp = copymsg(first_mp); 8679 if (copy_mp != NULL) { 8680 xmit_mp = copy_mp; 8681 MULTIRT_DEBUG_TAG(first_mp); 8682 } 8683 } 8684 ire_add_then_send(q, ire, xmit_mp); 8685 8686 /* Assert that it is not deleted yet. */ 8687 ASSERT(save_ire->ire_ptpn != NULL); 8688 IRB_REFRELE(save_ire->ire_bucket); 8689 ire_refrele(save_ire); 8690 8691 if (copy_mp != NULL) { 8692 /* 8693 * If we found a (no)resolver, we ignore any 8694 * trailing top priority IRE_CACHE in further 8695 * loops. This ensures that we do not omit any 8696 * (no)resolver. 8697 * This IRE_CACHE, if any, will be processed 8698 * by another thread entering ip_newroute(). 8699 * IRE_CACHE entries, if any, will be processed 8700 * by another thread entering ip_newroute(), 8701 * (upon resolver response, for instance). 8702 * This aims to force parallel multirt 8703 * resolutions as soon as a packet must be sent. 8704 * In the best case, after the tx of only one 8705 * packet, all reachable routes are resolved. 8706 * Otherwise, the resolution of all RTF_MULTIRT 8707 * routes would require several emissions. 8708 */ 8709 multirt_flags &= ~MULTIRT_CACHEGW; 8710 8711 /* 8712 * Search for the next unresolved multirt 8713 * route. 8714 */ 8715 copy_mp = NULL; 8716 save_ire = NULL; 8717 ire = NULL; 8718 multirt_resolve_next = B_TRUE; 8719 continue; 8720 } 8721 8722 /* 8723 * Don't need sire anymore 8724 */ 8725 if (sire != NULL) 8726 ire_refrele(sire); 8727 8728 ipif_refrele(src_ipif); 8729 ill_refrele(dst_ill); 8730 return; 8731 } 8732 case IRE_IF_RESOLVER: 8733 /* 8734 * We can't build an IRE_CACHE yet, but at least we 8735 * found a resolver that can help. 8736 */ 8737 res_mp = dst_ill->ill_resolver_mp; 8738 if (!OK_RESOLVER_MP(res_mp)) 8739 break; 8740 8741 /* 8742 * To be at this point in the code with a non-zero gw 8743 * means that dst is reachable through a gateway that 8744 * we have never resolved. By changing dst to the gw 8745 * addr we resolve the gateway first. 8746 * When ire_add_then_send() tries to put the IP dg 8747 * to dst, it will reenter ip_newroute() at which 8748 * time we will find the IRE_CACHE for the gw and 8749 * create another IRE_CACHE in case IRE_CACHE above. 8750 */ 8751 if (gw != INADDR_ANY) { 8752 /* 8753 * The source ipif that was determined above was 8754 * relative to the destination address, not the 8755 * gateway's. If src_ipif was not taken out of 8756 * the IRE_IF_RESOLVER entry, we'll need to call 8757 * ipif_select_source() again. 8758 */ 8759 if (src_ipif != ire->ire_ipif) { 8760 ipif_refrele(src_ipif); 8761 src_ipif = ipif_select_source(dst_ill, 8762 gw, zoneid); 8763 if (src_ipif == NULL) { 8764 if (ip_debug > 2) { 8765 pr_addr_dbg( 8766 "ip_newroute: no " 8767 "src for gw %s ", 8768 AF_INET, &gw); 8769 printf("through " 8770 "interface %s\n", 8771 dst_ill->ill_name); 8772 } 8773 goto icmp_err_ret; 8774 } 8775 } 8776 save_dst = dst; 8777 dst = gw; 8778 gw = INADDR_ANY; 8779 } 8780 8781 /* 8782 * We obtain a partial IRE_CACHE which we will pass 8783 * along with the resolver query. When the response 8784 * comes back it will be there ready for us to add. 8785 * The ire_max_frag is atomically set under the 8786 * irebucket lock in ire_add_v[46]. 8787 */ 8788 8789 ire = ire_create_mp( 8790 (uchar_t *)&dst, /* dest address */ 8791 (uchar_t *)&ip_g_all_ones, /* mask */ 8792 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8793 (uchar_t *)&gw, /* gateway address */ 8794 NULL, /* ire_max_frag */ 8795 NULL, /* no src nce */ 8796 dst_ill->ill_rq, /* recv-from queue */ 8797 dst_ill->ill_wq, /* send-to queue */ 8798 IRE_CACHE, 8799 src_ipif, /* Interface ipif */ 8800 save_ire->ire_mask, /* Parent mask */ 8801 0, 8802 save_ire->ire_ihandle, /* Interface handle */ 8803 0, /* flags if any */ 8804 &(save_ire->ire_uinfo), 8805 NULL, 8806 NULL, 8807 ipst); 8808 8809 if (ire == NULL) { 8810 ire_refrele(save_ire); 8811 break; 8812 } 8813 8814 if ((sire != NULL) && 8815 (sire->ire_flags & RTF_MULTIRT)) { 8816 copy_mp = copymsg(first_mp); 8817 if (copy_mp != NULL) 8818 MULTIRT_DEBUG_TAG(copy_mp); 8819 } 8820 8821 ire->ire_marks |= ire_marks; 8822 8823 /* 8824 * Construct message chain for the resolver 8825 * of the form: 8826 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8827 * Packet could contain a IPSEC_OUT mp. 8828 * 8829 * NOTE : ire will be added later when the response 8830 * comes back from ARP. If the response does not 8831 * come back, ARP frees the packet. For this reason, 8832 * we can't REFHOLD the bucket of save_ire to prevent 8833 * deletions. We may not be able to REFRELE the bucket 8834 * if the response never comes back. Thus, before 8835 * adding the ire, ire_add_v4 will make sure that the 8836 * interface route does not get deleted. This is the 8837 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8838 * where we can always prevent deletions because of 8839 * the synchronous nature of adding IRES i.e 8840 * ire_add_then_send is called after creating the IRE. 8841 */ 8842 ASSERT(ire->ire_mp != NULL); 8843 ire->ire_mp->b_cont = first_mp; 8844 /* Have saved_mp handy, for cleanup if canput fails */ 8845 saved_mp = mp; 8846 mp = copyb(res_mp); 8847 if (mp == NULL) { 8848 /* Prepare for cleanup */ 8849 mp = saved_mp; /* pkt */ 8850 ire_delete(ire); /* ire_mp */ 8851 ire = NULL; 8852 ire_refrele(save_ire); 8853 if (copy_mp != NULL) { 8854 MULTIRT_DEBUG_UNTAG(copy_mp); 8855 freemsg(copy_mp); 8856 copy_mp = NULL; 8857 } 8858 break; 8859 } 8860 linkb(mp, ire->ire_mp); 8861 8862 /* 8863 * Fill in the source and dest addrs for the resolver. 8864 * NOTE: this depends on memory layouts imposed by 8865 * ill_init(). 8866 */ 8867 areq = (areq_t *)mp->b_rptr; 8868 addrp = (ipaddr_t *)((char *)areq + 8869 areq->areq_sender_addr_offset); 8870 if (do_attach_ill) { 8871 /* 8872 * This is bind to no failover case. 8873 * arp packet also must go out on attach_ill. 8874 */ 8875 ASSERT(ipha->ipha_src != NULL); 8876 *addrp = ipha->ipha_src; 8877 } else { 8878 *addrp = save_ire->ire_src_addr; 8879 } 8880 8881 ire_refrele(save_ire); 8882 addrp = (ipaddr_t *)((char *)areq + 8883 areq->areq_target_addr_offset); 8884 *addrp = dst; 8885 /* Up to the resolver. */ 8886 if (canputnext(dst_ill->ill_rq) && 8887 !(dst_ill->ill_arp_closing)) { 8888 putnext(dst_ill->ill_rq, mp); 8889 ire = NULL; 8890 if (copy_mp != NULL) { 8891 /* 8892 * If we found a resolver, we ignore 8893 * any trailing top priority IRE_CACHE 8894 * in the further loops. This ensures 8895 * that we do not omit any resolver. 8896 * IRE_CACHE entries, if any, will be 8897 * processed next time we enter 8898 * ip_newroute(). 8899 */ 8900 multirt_flags &= ~MULTIRT_CACHEGW; 8901 /* 8902 * Search for the next unresolved 8903 * multirt route. 8904 */ 8905 first_mp = copy_mp; 8906 copy_mp = NULL; 8907 /* Prepare the next resolution loop. */ 8908 mp = first_mp; 8909 EXTRACT_PKT_MP(mp, first_mp, 8910 mctl_present); 8911 if (mctl_present) 8912 io = (ipsec_out_t *) 8913 first_mp->b_rptr; 8914 ipha = (ipha_t *)mp->b_rptr; 8915 8916 ASSERT(sire != NULL); 8917 8918 dst = save_dst; 8919 multirt_resolve_next = B_TRUE; 8920 continue; 8921 } 8922 8923 if (sire != NULL) 8924 ire_refrele(sire); 8925 8926 /* 8927 * The response will come back in ip_wput 8928 * with db_type IRE_DB_TYPE. 8929 */ 8930 ipif_refrele(src_ipif); 8931 ill_refrele(dst_ill); 8932 return; 8933 } else { 8934 /* Prepare for cleanup */ 8935 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8936 mp); 8937 mp->b_cont = NULL; 8938 freeb(mp); /* areq */ 8939 /* 8940 * this is an ire that is not added to the 8941 * cache. ire_freemblk will handle the release 8942 * of any resources associated with the ire. 8943 */ 8944 ire_delete(ire); /* ire_mp */ 8945 mp = saved_mp; /* pkt */ 8946 ire = NULL; 8947 if (copy_mp != NULL) { 8948 MULTIRT_DEBUG_UNTAG(copy_mp); 8949 freemsg(copy_mp); 8950 copy_mp = NULL; 8951 } 8952 break; 8953 } 8954 default: 8955 break; 8956 } 8957 } while (multirt_resolve_next); 8958 8959 ip1dbg(("ip_newroute: dropped\n")); 8960 /* Did this packet originate externally? */ 8961 if (mp->b_prev) { 8962 mp->b_next = NULL; 8963 mp->b_prev = NULL; 8964 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8965 } else { 8966 if (dst_ill != NULL) { 8967 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8968 } else { 8969 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8970 } 8971 } 8972 ASSERT(copy_mp == NULL); 8973 MULTIRT_DEBUG_UNTAG(first_mp); 8974 freemsg(first_mp); 8975 if (ire != NULL) 8976 ire_refrele(ire); 8977 if (sire != NULL) 8978 ire_refrele(sire); 8979 if (src_ipif != NULL) 8980 ipif_refrele(src_ipif); 8981 if (dst_ill != NULL) 8982 ill_refrele(dst_ill); 8983 return; 8984 8985 icmp_err_ret: 8986 ip1dbg(("ip_newroute: no route\n")); 8987 if (src_ipif != NULL) 8988 ipif_refrele(src_ipif); 8989 if (dst_ill != NULL) 8990 ill_refrele(dst_ill); 8991 if (sire != NULL) 8992 ire_refrele(sire); 8993 /* Did this packet originate externally? */ 8994 if (mp->b_prev) { 8995 mp->b_next = NULL; 8996 mp->b_prev = NULL; 8997 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8998 q = WR(q); 8999 } else { 9000 /* 9001 * There is no outgoing ill, so just increment the 9002 * system MIB. 9003 */ 9004 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9005 /* 9006 * Since ip_wput() isn't close to finished, we fill 9007 * in enough of the header for credible error reporting. 9008 */ 9009 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9010 /* Failed */ 9011 MULTIRT_DEBUG_UNTAG(first_mp); 9012 freemsg(first_mp); 9013 if (ire != NULL) 9014 ire_refrele(ire); 9015 return; 9016 } 9017 } 9018 9019 /* 9020 * At this point we will have ire only if RTF_BLACKHOLE 9021 * or RTF_REJECT flags are set on the IRE. It will not 9022 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9023 */ 9024 if (ire != NULL) { 9025 if (ire->ire_flags & RTF_BLACKHOLE) { 9026 ire_refrele(ire); 9027 MULTIRT_DEBUG_UNTAG(first_mp); 9028 freemsg(first_mp); 9029 return; 9030 } 9031 ire_refrele(ire); 9032 } 9033 if (ip_source_routed(ipha, ipst)) { 9034 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9035 zoneid, ipst); 9036 return; 9037 } 9038 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9039 } 9040 9041 ip_opt_info_t zero_info; 9042 9043 /* 9044 * IPv4 - 9045 * ip_newroute_ipif is called by ip_wput_multicast and 9046 * ip_rput_forward_multicast whenever we need to send 9047 * out a packet to a destination address for which we do not have specific 9048 * routing information. It is used when the packet will be sent out 9049 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9050 * socket option is set or icmp error message wants to go out on a particular 9051 * interface for a unicast packet. 9052 * 9053 * In most cases, the destination address is resolved thanks to the ipif 9054 * intrinsic resolver. However, there are some cases where the call to 9055 * ip_newroute_ipif must take into account the potential presence of 9056 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9057 * that uses the interface. This is specified through flags, 9058 * which can be a combination of: 9059 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9060 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9061 * and flags. Additionally, the packet source address has to be set to 9062 * the specified address. The caller is thus expected to set this flag 9063 * if the packet has no specific source address yet. 9064 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9065 * flag, the resulting ire will inherit the flag. All unresolved routes 9066 * to the destination must be explored in the same call to 9067 * ip_newroute_ipif(). 9068 */ 9069 static void 9070 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9071 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9072 { 9073 areq_t *areq; 9074 ire_t *ire = NULL; 9075 mblk_t *res_mp; 9076 ipaddr_t *addrp; 9077 mblk_t *first_mp; 9078 ire_t *save_ire = NULL; 9079 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9080 ipif_t *src_ipif = NULL; 9081 ushort_t ire_marks = 0; 9082 ill_t *dst_ill = NULL; 9083 boolean_t mctl_present; 9084 ipsec_out_t *io; 9085 ipha_t *ipha; 9086 int ihandle = 0; 9087 mblk_t *saved_mp; 9088 ire_t *fire = NULL; 9089 mblk_t *copy_mp = NULL; 9090 boolean_t multirt_resolve_next; 9091 boolean_t unspec_src; 9092 ipaddr_t ipha_dst; 9093 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9094 9095 /* 9096 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9097 * here for uniformity 9098 */ 9099 ipif_refhold(ipif); 9100 9101 /* 9102 * This loop is run only once in most cases. 9103 * We loop to resolve further routes only when the destination 9104 * can be reached through multiple RTF_MULTIRT-flagged ires. 9105 */ 9106 do { 9107 if (dst_ill != NULL) { 9108 ill_refrele(dst_ill); 9109 dst_ill = NULL; 9110 } 9111 if (src_ipif != NULL) { 9112 ipif_refrele(src_ipif); 9113 src_ipif = NULL; 9114 } 9115 multirt_resolve_next = B_FALSE; 9116 9117 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9118 ipif->ipif_ill->ill_name)); 9119 9120 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9121 if (mctl_present) 9122 io = (ipsec_out_t *)first_mp->b_rptr; 9123 9124 ipha = (ipha_t *)mp->b_rptr; 9125 9126 /* 9127 * Save the packet destination address, we may need it after 9128 * the packet has been consumed. 9129 */ 9130 ipha_dst = ipha->ipha_dst; 9131 9132 /* 9133 * If the interface is a pt-pt interface we look for an 9134 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9135 * local_address and the pt-pt destination address. Otherwise 9136 * we just match the local address. 9137 * NOTE: dst could be different than ipha->ipha_dst in case 9138 * of sending igmp multicast packets over a point-to-point 9139 * connection. 9140 * Thus we must be careful enough to check ipha_dst to be a 9141 * multicast address, otherwise it will take xmit_if path for 9142 * multicast packets resulting into kernel stack overflow by 9143 * repeated calls to ip_newroute_ipif from ire_send(). 9144 */ 9145 if (CLASSD(ipha_dst) && 9146 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9147 goto err_ret; 9148 } 9149 9150 /* 9151 * We check if an IRE_OFFSUBNET for the addr that goes through 9152 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9153 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9154 * propagate its flags to the new ire. 9155 */ 9156 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9157 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9158 ip2dbg(("ip_newroute_ipif: " 9159 "ipif_lookup_multi_ire(" 9160 "ipif %p, dst %08x) = fire %p\n", 9161 (void *)ipif, ntohl(dst), (void *)fire)); 9162 } 9163 9164 if (mctl_present && io->ipsec_out_attach_if) { 9165 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9166 io->ipsec_out_ill_index, B_FALSE, ipst); 9167 9168 /* Failure case frees things for us. */ 9169 if (attach_ill == NULL) { 9170 ipif_refrele(ipif); 9171 if (fire != NULL) 9172 ire_refrele(fire); 9173 return; 9174 } 9175 9176 /* 9177 * Check if we need an ire that will not be 9178 * looked up by anybody else i.e. HIDDEN. 9179 */ 9180 if (ill_is_probeonly(attach_ill)) { 9181 ire_marks = IRE_MARK_HIDDEN; 9182 } 9183 /* 9184 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9185 * case. 9186 */ 9187 dst_ill = ipif->ipif_ill; 9188 /* attach_ill has been refheld by ip_grab_attach_ill */ 9189 ASSERT(dst_ill == attach_ill); 9190 } else { 9191 /* 9192 * If the interface belongs to an interface group, 9193 * make sure the next possible interface in the group 9194 * is used. This encourages load spreading among 9195 * peers in an interface group. 9196 * Note: load spreading is disabled for RTF_MULTIRT 9197 * routes. 9198 */ 9199 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9200 (fire->ire_flags & RTF_MULTIRT)) { 9201 /* 9202 * Don't perform outbound load spreading 9203 * in the case of an RTF_MULTIRT issued route, 9204 * we actually typically want to replicate 9205 * outgoing packets through particular 9206 * interfaces. 9207 */ 9208 dst_ill = ipif->ipif_ill; 9209 ill_refhold(dst_ill); 9210 } else { 9211 dst_ill = ip_newroute_get_dst_ill( 9212 ipif->ipif_ill); 9213 } 9214 if (dst_ill == NULL) { 9215 if (ip_debug > 2) { 9216 pr_addr_dbg("ip_newroute_ipif: " 9217 "no dst ill for dst %s\n", 9218 AF_INET, &dst); 9219 } 9220 goto err_ret; 9221 } 9222 } 9223 9224 /* 9225 * Pick a source address preferring non-deprecated ones. 9226 * Unlike ip_newroute, we don't do any source address 9227 * selection here since for multicast it really does not help 9228 * in inbound load spreading as in the unicast case. 9229 */ 9230 if ((flags & RTF_SETSRC) && (fire != NULL) && 9231 (fire->ire_flags & RTF_SETSRC)) { 9232 /* 9233 * As requested by flags, an IRE_OFFSUBNET was looked up 9234 * on that interface. This ire has RTF_SETSRC flag, so 9235 * the source address of the packet must be changed. 9236 * Check that the ipif matching the requested source 9237 * address still exists. 9238 */ 9239 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9240 zoneid, NULL, NULL, NULL, NULL, ipst); 9241 } 9242 9243 unspec_src = (connp != NULL && connp->conn_unspec_src); 9244 9245 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9246 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9247 (connp != NULL && ipif->ipif_zoneid != zoneid && 9248 ipif->ipif_zoneid != ALL_ZONES)) && 9249 (src_ipif == NULL) && 9250 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9251 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9252 if (src_ipif == NULL) { 9253 if (ip_debug > 2) { 9254 /* ip1dbg */ 9255 pr_addr_dbg("ip_newroute_ipif: " 9256 "no src for dst %s", 9257 AF_INET, &dst); 9258 } 9259 ip1dbg((" through interface %s\n", 9260 dst_ill->ill_name)); 9261 goto err_ret; 9262 } 9263 ipif_refrele(ipif); 9264 ipif = src_ipif; 9265 ipif_refhold(ipif); 9266 } 9267 if (src_ipif == NULL) { 9268 src_ipif = ipif; 9269 ipif_refhold(src_ipif); 9270 } 9271 9272 /* 9273 * Assign a source address while we have the conn. 9274 * We can't have ip_wput_ire pick a source address when the 9275 * packet returns from arp since conn_unspec_src might be set 9276 * and we lose the conn when going through arp. 9277 */ 9278 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9279 ipha->ipha_src = src_ipif->ipif_src_addr; 9280 9281 /* 9282 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9283 * that the outgoing interface does not have an interface ire. 9284 */ 9285 if (CLASSD(ipha_dst) && (connp == NULL || 9286 connp->conn_outgoing_ill == NULL) && 9287 infop->ip_opt_ill_index == 0) { 9288 /* ipif_to_ire returns an held ire */ 9289 ire = ipif_to_ire(ipif); 9290 if (ire == NULL) 9291 goto err_ret; 9292 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9293 goto err_ret; 9294 /* 9295 * ihandle is needed when the ire is added to 9296 * cache table. 9297 */ 9298 save_ire = ire; 9299 ihandle = save_ire->ire_ihandle; 9300 9301 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9302 "flags %04x\n", 9303 (void *)ire, (void *)ipif, flags)); 9304 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9305 (fire->ire_flags & RTF_MULTIRT)) { 9306 /* 9307 * As requested by flags, an IRE_OFFSUBNET was 9308 * looked up on that interface. This ire has 9309 * RTF_MULTIRT flag, so the resolution loop will 9310 * be re-entered to resolve additional routes on 9311 * other interfaces. For that purpose, a copy of 9312 * the packet is performed at this point. 9313 */ 9314 fire->ire_last_used_time = lbolt; 9315 copy_mp = copymsg(first_mp); 9316 if (copy_mp) { 9317 MULTIRT_DEBUG_TAG(copy_mp); 9318 } 9319 } 9320 if ((flags & RTF_SETSRC) && (fire != NULL) && 9321 (fire->ire_flags & RTF_SETSRC)) { 9322 /* 9323 * As requested by flags, an IRE_OFFSUBET was 9324 * looked up on that interface. This ire has 9325 * RTF_SETSRC flag, so the source address of the 9326 * packet must be changed. 9327 */ 9328 ipha->ipha_src = fire->ire_src_addr; 9329 } 9330 } else { 9331 ASSERT((connp == NULL) || 9332 (connp->conn_outgoing_ill != NULL) || 9333 (connp->conn_dontroute) || 9334 infop->ip_opt_ill_index != 0); 9335 /* 9336 * The only ways we can come here are: 9337 * 1) IP_BOUND_IF socket option is set 9338 * 2) SO_DONTROUTE socket option is set 9339 * 3) IP_PKTINFO option is passed in as ancillary data. 9340 * In all cases, the new ire will not be added 9341 * into cache table. 9342 */ 9343 ire_marks |= IRE_MARK_NOADD; 9344 } 9345 9346 switch (ipif->ipif_net_type) { 9347 case IRE_IF_NORESOLVER: { 9348 /* We have what we need to build an IRE_CACHE. */ 9349 9350 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9351 (dst_ill->ill_resolver_mp == NULL)) { 9352 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9353 "for IRE_IF_NORESOLVER ire %p has " 9354 "no ill_resolver_mp\n", 9355 (void *)dst_ill, (void *)ire)); 9356 break; 9357 } 9358 9359 /* 9360 * The new ire inherits the IRE_OFFSUBNET flags 9361 * and source address, if this was requested. 9362 */ 9363 ire = ire_create( 9364 (uchar_t *)&dst, /* dest address */ 9365 (uchar_t *)&ip_g_all_ones, /* mask */ 9366 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9367 NULL, /* gateway address */ 9368 &ipif->ipif_mtu, 9369 NULL, /* no src nce */ 9370 dst_ill->ill_rq, /* recv-from queue */ 9371 dst_ill->ill_wq, /* send-to queue */ 9372 IRE_CACHE, 9373 src_ipif, 9374 (save_ire != NULL ? save_ire->ire_mask : 0), 9375 (fire != NULL) ? /* Parent handle */ 9376 fire->ire_phandle : 0, 9377 ihandle, /* Interface handle */ 9378 (fire != NULL) ? 9379 (fire->ire_flags & 9380 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9381 (save_ire == NULL ? &ire_uinfo_null : 9382 &save_ire->ire_uinfo), 9383 NULL, 9384 NULL, 9385 ipst); 9386 9387 if (ire == NULL) { 9388 if (save_ire != NULL) 9389 ire_refrele(save_ire); 9390 break; 9391 } 9392 9393 ire->ire_marks |= ire_marks; 9394 9395 /* 9396 * If IRE_MARK_NOADD is set then we need to convert 9397 * the max_fragp to a useable value now. This is 9398 * normally done in ire_add_v[46]. We also need to 9399 * associate the ire with an nce (normally would be 9400 * done in ip_wput_nondata()). 9401 * 9402 * Note that IRE_MARK_NOADD packets created here 9403 * do not have a non-null ire_mp pointer. The null 9404 * value of ire_bucket indicates that they were 9405 * never added. 9406 */ 9407 if (ire->ire_marks & IRE_MARK_NOADD) { 9408 uint_t max_frag; 9409 9410 max_frag = *ire->ire_max_fragp; 9411 ire->ire_max_fragp = NULL; 9412 ire->ire_max_frag = max_frag; 9413 9414 if ((ire->ire_nce = ndp_lookup_v4( 9415 ire_to_ill(ire), 9416 (ire->ire_gateway_addr != INADDR_ANY ? 9417 &ire->ire_gateway_addr : &ire->ire_addr), 9418 B_FALSE)) == NULL) { 9419 if (save_ire != NULL) 9420 ire_refrele(save_ire); 9421 break; 9422 } 9423 ASSERT(ire->ire_nce->nce_state == 9424 ND_REACHABLE); 9425 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9426 } 9427 9428 /* Prevent save_ire from getting deleted */ 9429 if (save_ire != NULL) { 9430 IRB_REFHOLD(save_ire->ire_bucket); 9431 /* Has it been removed already ? */ 9432 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9433 IRB_REFRELE(save_ire->ire_bucket); 9434 ire_refrele(save_ire); 9435 break; 9436 } 9437 } 9438 9439 ire_add_then_send(q, ire, first_mp); 9440 9441 /* Assert that save_ire is not deleted yet. */ 9442 if (save_ire != NULL) { 9443 ASSERT(save_ire->ire_ptpn != NULL); 9444 IRB_REFRELE(save_ire->ire_bucket); 9445 ire_refrele(save_ire); 9446 save_ire = NULL; 9447 } 9448 if (fire != NULL) { 9449 ire_refrele(fire); 9450 fire = NULL; 9451 } 9452 9453 /* 9454 * the resolution loop is re-entered if this 9455 * was requested through flags and if we 9456 * actually are in a multirouting case. 9457 */ 9458 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9459 boolean_t need_resolve = 9460 ire_multirt_need_resolve(ipha_dst, 9461 MBLK_GETLABEL(copy_mp), ipst); 9462 if (!need_resolve) { 9463 MULTIRT_DEBUG_UNTAG(copy_mp); 9464 freemsg(copy_mp); 9465 copy_mp = NULL; 9466 } else { 9467 /* 9468 * ipif_lookup_group() calls 9469 * ire_lookup_multi() that uses 9470 * ire_ftable_lookup() to find 9471 * an IRE_INTERFACE for the group. 9472 * In the multirt case, 9473 * ire_lookup_multi() then invokes 9474 * ire_multirt_lookup() to find 9475 * the next resolvable ire. 9476 * As a result, we obtain an new 9477 * interface, derived from the 9478 * next ire. 9479 */ 9480 ipif_refrele(ipif); 9481 ipif = ipif_lookup_group(ipha_dst, 9482 zoneid, ipst); 9483 ip2dbg(("ip_newroute_ipif: " 9484 "multirt dst %08x, ipif %p\n", 9485 htonl(dst), (void *)ipif)); 9486 if (ipif != NULL) { 9487 mp = copy_mp; 9488 copy_mp = NULL; 9489 multirt_resolve_next = B_TRUE; 9490 continue; 9491 } else { 9492 freemsg(copy_mp); 9493 } 9494 } 9495 } 9496 if (ipif != NULL) 9497 ipif_refrele(ipif); 9498 ill_refrele(dst_ill); 9499 ipif_refrele(src_ipif); 9500 return; 9501 } 9502 case IRE_IF_RESOLVER: 9503 /* 9504 * We can't build an IRE_CACHE yet, but at least 9505 * we found a resolver that can help. 9506 */ 9507 res_mp = dst_ill->ill_resolver_mp; 9508 if (!OK_RESOLVER_MP(res_mp)) 9509 break; 9510 9511 /* 9512 * We obtain a partial IRE_CACHE which we will pass 9513 * along with the resolver query. When the response 9514 * comes back it will be there ready for us to add. 9515 * The new ire inherits the IRE_OFFSUBNET flags 9516 * and source address, if this was requested. 9517 * The ire_max_frag is atomically set under the 9518 * irebucket lock in ire_add_v[46]. Only in the 9519 * case of IRE_MARK_NOADD, we set it here itself. 9520 */ 9521 ire = ire_create_mp( 9522 (uchar_t *)&dst, /* dest address */ 9523 (uchar_t *)&ip_g_all_ones, /* mask */ 9524 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9525 NULL, /* gateway address */ 9526 (ire_marks & IRE_MARK_NOADD) ? 9527 ipif->ipif_mtu : 0, /* max_frag */ 9528 NULL, /* no src nce */ 9529 dst_ill->ill_rq, /* recv-from queue */ 9530 dst_ill->ill_wq, /* send-to queue */ 9531 IRE_CACHE, 9532 src_ipif, 9533 (save_ire != NULL ? save_ire->ire_mask : 0), 9534 (fire != NULL) ? /* Parent handle */ 9535 fire->ire_phandle : 0, 9536 ihandle, /* Interface handle */ 9537 (fire != NULL) ? /* flags if any */ 9538 (fire->ire_flags & 9539 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9540 (save_ire == NULL ? &ire_uinfo_null : 9541 &save_ire->ire_uinfo), 9542 NULL, 9543 NULL, 9544 ipst); 9545 9546 if (save_ire != NULL) { 9547 ire_refrele(save_ire); 9548 save_ire = NULL; 9549 } 9550 if (ire == NULL) 9551 break; 9552 9553 ire->ire_marks |= ire_marks; 9554 /* 9555 * Construct message chain for the resolver of the 9556 * form: 9557 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9558 * 9559 * NOTE : ire will be added later when the response 9560 * comes back from ARP. If the response does not 9561 * come back, ARP frees the packet. For this reason, 9562 * we can't REFHOLD the bucket of save_ire to prevent 9563 * deletions. We may not be able to REFRELE the 9564 * bucket if the response never comes back. 9565 * Thus, before adding the ire, ire_add_v4 will make 9566 * sure that the interface route does not get deleted. 9567 * This is the only case unlike ip_newroute_v6, 9568 * ip_newroute_ipif_v6 where we can always prevent 9569 * deletions because ire_add_then_send is called after 9570 * creating the IRE. 9571 * If IRE_MARK_NOADD is set, then ire_add_then_send 9572 * does not add this IRE into the IRE CACHE. 9573 */ 9574 ASSERT(ire->ire_mp != NULL); 9575 ire->ire_mp->b_cont = first_mp; 9576 /* Have saved_mp handy, for cleanup if canput fails */ 9577 saved_mp = mp; 9578 mp = copyb(res_mp); 9579 if (mp == NULL) { 9580 /* Prepare for cleanup */ 9581 mp = saved_mp; /* pkt */ 9582 ire_delete(ire); /* ire_mp */ 9583 ire = NULL; 9584 if (copy_mp != NULL) { 9585 MULTIRT_DEBUG_UNTAG(copy_mp); 9586 freemsg(copy_mp); 9587 copy_mp = NULL; 9588 } 9589 break; 9590 } 9591 linkb(mp, ire->ire_mp); 9592 9593 /* 9594 * Fill in the source and dest addrs for the resolver. 9595 * NOTE: this depends on memory layouts imposed by 9596 * ill_init(). 9597 */ 9598 areq = (areq_t *)mp->b_rptr; 9599 addrp = (ipaddr_t *)((char *)areq + 9600 areq->areq_sender_addr_offset); 9601 *addrp = ire->ire_src_addr; 9602 addrp = (ipaddr_t *)((char *)areq + 9603 areq->areq_target_addr_offset); 9604 *addrp = dst; 9605 /* Up to the resolver. */ 9606 if (canputnext(dst_ill->ill_rq) && 9607 !(dst_ill->ill_arp_closing)) { 9608 putnext(dst_ill->ill_rq, mp); 9609 /* 9610 * The response will come back in ip_wput 9611 * with db_type IRE_DB_TYPE. 9612 */ 9613 } else { 9614 mp->b_cont = NULL; 9615 freeb(mp); /* areq */ 9616 ire_delete(ire); /* ire_mp */ 9617 saved_mp->b_next = NULL; 9618 saved_mp->b_prev = NULL; 9619 freemsg(first_mp); /* pkt */ 9620 ip2dbg(("ip_newroute_ipif: dropped\n")); 9621 } 9622 9623 if (fire != NULL) { 9624 ire_refrele(fire); 9625 fire = NULL; 9626 } 9627 9628 9629 /* 9630 * The resolution loop is re-entered if this was 9631 * requested through flags and we actually are 9632 * in a multirouting case. 9633 */ 9634 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9635 boolean_t need_resolve = 9636 ire_multirt_need_resolve(ipha_dst, 9637 MBLK_GETLABEL(copy_mp), ipst); 9638 if (!need_resolve) { 9639 MULTIRT_DEBUG_UNTAG(copy_mp); 9640 freemsg(copy_mp); 9641 copy_mp = NULL; 9642 } else { 9643 /* 9644 * ipif_lookup_group() calls 9645 * ire_lookup_multi() that uses 9646 * ire_ftable_lookup() to find 9647 * an IRE_INTERFACE for the group. 9648 * In the multirt case, 9649 * ire_lookup_multi() then invokes 9650 * ire_multirt_lookup() to find 9651 * the next resolvable ire. 9652 * As a result, we obtain an new 9653 * interface, derived from the 9654 * next ire. 9655 */ 9656 ipif_refrele(ipif); 9657 ipif = ipif_lookup_group(ipha_dst, 9658 zoneid, ipst); 9659 if (ipif != NULL) { 9660 mp = copy_mp; 9661 copy_mp = NULL; 9662 multirt_resolve_next = B_TRUE; 9663 continue; 9664 } else { 9665 freemsg(copy_mp); 9666 } 9667 } 9668 } 9669 if (ipif != NULL) 9670 ipif_refrele(ipif); 9671 ill_refrele(dst_ill); 9672 ipif_refrele(src_ipif); 9673 return; 9674 default: 9675 break; 9676 } 9677 } while (multirt_resolve_next); 9678 9679 err_ret: 9680 ip2dbg(("ip_newroute_ipif: dropped\n")); 9681 if (fire != NULL) 9682 ire_refrele(fire); 9683 ipif_refrele(ipif); 9684 /* Did this packet originate externally? */ 9685 if (dst_ill != NULL) 9686 ill_refrele(dst_ill); 9687 if (src_ipif != NULL) 9688 ipif_refrele(src_ipif); 9689 if (mp->b_prev || mp->b_next) { 9690 mp->b_next = NULL; 9691 mp->b_prev = NULL; 9692 } else { 9693 /* 9694 * Since ip_wput() isn't close to finished, we fill 9695 * in enough of the header for credible error reporting. 9696 */ 9697 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9698 /* Failed */ 9699 freemsg(first_mp); 9700 if (ire != NULL) 9701 ire_refrele(ire); 9702 return; 9703 } 9704 } 9705 /* 9706 * At this point we will have ire only if RTF_BLACKHOLE 9707 * or RTF_REJECT flags are set on the IRE. It will not 9708 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9709 */ 9710 if (ire != NULL) { 9711 if (ire->ire_flags & RTF_BLACKHOLE) { 9712 ire_refrele(ire); 9713 freemsg(first_mp); 9714 return; 9715 } 9716 ire_refrele(ire); 9717 } 9718 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9719 } 9720 9721 /* Name/Value Table Lookup Routine */ 9722 char * 9723 ip_nv_lookup(nv_t *nv, int value) 9724 { 9725 if (!nv) 9726 return (NULL); 9727 for (; nv->nv_name; nv++) { 9728 if (nv->nv_value == value) 9729 return (nv->nv_name); 9730 } 9731 return ("unknown"); 9732 } 9733 9734 /* 9735 * This is a module open, i.e. this is a control stream for access 9736 * to a DLPI device. We allocate an ill_t as the instance data in 9737 * this case. 9738 */ 9739 int 9740 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9741 { 9742 ill_t *ill; 9743 int err; 9744 zoneid_t zoneid; 9745 netstack_t *ns; 9746 ip_stack_t *ipst; 9747 9748 /* 9749 * Prevent unprivileged processes from pushing IP so that 9750 * they can't send raw IP. 9751 */ 9752 if (secpolicy_net_rawaccess(credp) != 0) 9753 return (EPERM); 9754 9755 ns = netstack_find_by_cred(credp); 9756 ASSERT(ns != NULL); 9757 ipst = ns->netstack_ip; 9758 ASSERT(ipst != NULL); 9759 9760 /* 9761 * For exclusive stacks we set the zoneid to zero 9762 * to make IP operate as if in the global zone. 9763 */ 9764 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9765 zoneid = GLOBAL_ZONEID; 9766 else 9767 zoneid = crgetzoneid(credp); 9768 9769 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9770 q->q_ptr = WR(q)->q_ptr = ill; 9771 ill->ill_ipst = ipst; 9772 ill->ill_zoneid = zoneid; 9773 9774 /* 9775 * ill_init initializes the ill fields and then sends down 9776 * down a DL_INFO_REQ after calling qprocson. 9777 */ 9778 err = ill_init(q, ill); 9779 if (err != 0) { 9780 mi_free(ill); 9781 netstack_rele(ipst->ips_netstack); 9782 q->q_ptr = NULL; 9783 WR(q)->q_ptr = NULL; 9784 return (err); 9785 } 9786 9787 /* ill_init initializes the ipsq marking this thread as writer */ 9788 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9789 /* Wait for the DL_INFO_ACK */ 9790 mutex_enter(&ill->ill_lock); 9791 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9792 /* 9793 * Return value of 0 indicates a pending signal. 9794 */ 9795 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9796 if (err == 0) { 9797 mutex_exit(&ill->ill_lock); 9798 (void) ip_close(q, 0); 9799 return (EINTR); 9800 } 9801 } 9802 mutex_exit(&ill->ill_lock); 9803 9804 /* 9805 * ip_rput_other could have set an error in ill_error on 9806 * receipt of M_ERROR. 9807 */ 9808 9809 err = ill->ill_error; 9810 if (err != 0) { 9811 (void) ip_close(q, 0); 9812 return (err); 9813 } 9814 9815 ill->ill_credp = credp; 9816 crhold(credp); 9817 9818 mutex_enter(&ipst->ips_ip_mi_lock); 9819 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9820 credp); 9821 mutex_exit(&ipst->ips_ip_mi_lock); 9822 if (err) { 9823 (void) ip_close(q, 0); 9824 return (err); 9825 } 9826 return (0); 9827 } 9828 9829 /* For /dev/ip aka AF_INET open */ 9830 int 9831 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9832 { 9833 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9834 } 9835 9836 /* For /dev/ip6 aka AF_INET6 open */ 9837 int 9838 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9839 { 9840 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9841 } 9842 9843 /* IP open routine. */ 9844 int 9845 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9846 boolean_t isv6) 9847 { 9848 conn_t *connp; 9849 major_t maj; 9850 zoneid_t zoneid; 9851 netstack_t *ns; 9852 ip_stack_t *ipst; 9853 9854 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9855 9856 /* Allow reopen. */ 9857 if (q->q_ptr != NULL) 9858 return (0); 9859 9860 if (sflag & MODOPEN) { 9861 /* This is a module open */ 9862 return (ip_modopen(q, devp, flag, sflag, credp)); 9863 } 9864 9865 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9866 /* 9867 * Non streams based socket looking for a stream 9868 * to access IP 9869 */ 9870 return (ip_helper_stream_setup(q, devp, flag, sflag, 9871 credp, isv6)); 9872 } 9873 9874 ns = netstack_find_by_cred(credp); 9875 ASSERT(ns != NULL); 9876 ipst = ns->netstack_ip; 9877 ASSERT(ipst != NULL); 9878 9879 /* 9880 * For exclusive stacks we set the zoneid to zero 9881 * to make IP operate as if in the global zone. 9882 */ 9883 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9884 zoneid = GLOBAL_ZONEID; 9885 else 9886 zoneid = crgetzoneid(credp); 9887 9888 /* 9889 * We are opening as a device. This is an IP client stream, and we 9890 * allocate an conn_t as the instance data. 9891 */ 9892 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9893 9894 /* 9895 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9896 * done by netstack_find_by_cred() 9897 */ 9898 netstack_rele(ipst->ips_netstack); 9899 9900 connp->conn_zoneid = zoneid; 9901 connp->conn_sqp = NULL; 9902 connp->conn_initial_sqp = NULL; 9903 connp->conn_final_sqp = NULL; 9904 9905 connp->conn_upq = q; 9906 q->q_ptr = WR(q)->q_ptr = connp; 9907 9908 if (flag & SO_SOCKSTR) 9909 connp->conn_flags |= IPCL_SOCKET; 9910 9911 /* Minor tells us which /dev entry was opened */ 9912 if (isv6) { 9913 connp->conn_flags |= IPCL_ISV6; 9914 connp->conn_af_isv6 = B_TRUE; 9915 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9916 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9917 } else { 9918 connp->conn_af_isv6 = B_FALSE; 9919 connp->conn_pkt_isv6 = B_FALSE; 9920 } 9921 9922 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9923 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9924 connp->conn_minor_arena = ip_minor_arena_la; 9925 } else { 9926 /* 9927 * Either minor numbers in the large arena were exhausted 9928 * or a non socket application is doing the open. 9929 * Try to allocate from the small arena. 9930 */ 9931 if ((connp->conn_dev = 9932 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9933 /* CONN_DEC_REF takes care of netstack_rele() */ 9934 q->q_ptr = WR(q)->q_ptr = NULL; 9935 CONN_DEC_REF(connp); 9936 return (EBUSY); 9937 } 9938 connp->conn_minor_arena = ip_minor_arena_sa; 9939 } 9940 9941 maj = getemajor(*devp); 9942 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9943 9944 /* 9945 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9946 */ 9947 connp->conn_cred = credp; 9948 9949 /* 9950 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9951 */ 9952 connp->conn_recv = ip_conn_input; 9953 9954 crhold(connp->conn_cred); 9955 9956 /* 9957 * If the caller has the process-wide flag set, then default to MAC 9958 * exempt mode. This allows read-down to unlabeled hosts. 9959 */ 9960 if (getpflags(NET_MAC_AWARE, credp) != 0) 9961 connp->conn_mac_exempt = B_TRUE; 9962 9963 connp->conn_rq = q; 9964 connp->conn_wq = WR(q); 9965 9966 /* Non-zero default values */ 9967 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9968 9969 /* 9970 * Make the conn globally visible to walkers 9971 */ 9972 ASSERT(connp->conn_ref == 1); 9973 mutex_enter(&connp->conn_lock); 9974 connp->conn_state_flags &= ~CONN_INCIPIENT; 9975 mutex_exit(&connp->conn_lock); 9976 9977 qprocson(q); 9978 9979 return (0); 9980 } 9981 9982 /* 9983 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9984 * Note that there is no race since either ip_output function works - it 9985 * is just an optimization to enter the best ip_output routine directly. 9986 */ 9987 void 9988 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9989 ip_stack_t *ipst) 9990 { 9991 if (isv6) { 9992 if (bump_mib) { 9993 BUMP_MIB(&ipst->ips_ip6_mib, 9994 ipIfStatsOutSwitchIPVersion); 9995 } 9996 connp->conn_send = ip_output_v6; 9997 connp->conn_pkt_isv6 = B_TRUE; 9998 } else { 9999 if (bump_mib) { 10000 BUMP_MIB(&ipst->ips_ip_mib, 10001 ipIfStatsOutSwitchIPVersion); 10002 } 10003 connp->conn_send = ip_output; 10004 connp->conn_pkt_isv6 = B_FALSE; 10005 } 10006 10007 } 10008 10009 /* 10010 * See if IPsec needs loading because of the options in mp. 10011 */ 10012 static boolean_t 10013 ipsec_opt_present(mblk_t *mp) 10014 { 10015 uint8_t *optcp, *next_optcp, *opt_endcp; 10016 struct opthdr *opt; 10017 struct T_opthdr *topt; 10018 int opthdr_len; 10019 t_uscalar_t optname, optlevel; 10020 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10021 ipsec_req_t *ipsr; 10022 10023 /* 10024 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10025 * return TRUE. 10026 */ 10027 10028 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10029 opt_endcp = optcp + tor->OPT_length; 10030 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10031 opthdr_len = sizeof (struct T_opthdr); 10032 } else { /* O_OPTMGMT_REQ */ 10033 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10034 opthdr_len = sizeof (struct opthdr); 10035 } 10036 for (; optcp < opt_endcp; optcp = next_optcp) { 10037 if (optcp + opthdr_len > opt_endcp) 10038 return (B_FALSE); /* Not enough option header. */ 10039 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10040 topt = (struct T_opthdr *)optcp; 10041 optlevel = topt->level; 10042 optname = topt->name; 10043 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10044 } else { 10045 opt = (struct opthdr *)optcp; 10046 optlevel = opt->level; 10047 optname = opt->name; 10048 next_optcp = optcp + opthdr_len + 10049 _TPI_ALIGN_OPT(opt->len); 10050 } 10051 if ((next_optcp < optcp) || /* wraparound pointer space */ 10052 ((next_optcp >= opt_endcp) && /* last option bad len */ 10053 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10054 return (B_FALSE); /* bad option buffer */ 10055 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10056 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10057 /* 10058 * Check to see if it's an all-bypass or all-zeroes 10059 * IPsec request. Don't bother loading IPsec if 10060 * the socket doesn't want to use it. (A good example 10061 * is a bypass request.) 10062 * 10063 * Basically, if any of the non-NEVER bits are set, 10064 * load IPsec. 10065 */ 10066 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10067 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10068 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10069 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10070 != 0) 10071 return (B_TRUE); 10072 } 10073 } 10074 return (B_FALSE); 10075 } 10076 10077 /* 10078 * If conn is is waiting for ipsec to finish loading, kick it. 10079 */ 10080 /* ARGSUSED */ 10081 static void 10082 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10083 { 10084 t_scalar_t optreq_prim; 10085 mblk_t *mp; 10086 cred_t *cr; 10087 int err = 0; 10088 10089 /* 10090 * This function is called, after ipsec loading is complete. 10091 * Since IP checks exclusively and atomically (i.e it prevents 10092 * ipsec load from completing until ip_optcom_req completes) 10093 * whether ipsec load is complete, there cannot be a race with IP 10094 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10095 */ 10096 mutex_enter(&connp->conn_lock); 10097 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10098 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10099 mp = connp->conn_ipsec_opt_mp; 10100 connp->conn_ipsec_opt_mp = NULL; 10101 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10102 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10103 mutex_exit(&connp->conn_lock); 10104 10105 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10106 10107 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10108 if (optreq_prim == T_OPTMGMT_REQ) { 10109 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10110 &ip_opt_obj, B_FALSE); 10111 } else { 10112 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10113 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10114 &ip_opt_obj, B_FALSE); 10115 } 10116 if (err != EINPROGRESS) 10117 CONN_OPER_PENDING_DONE(connp); 10118 return; 10119 } 10120 mutex_exit(&connp->conn_lock); 10121 } 10122 10123 /* 10124 * Called from the ipsec_loader thread, outside any perimeter, to tell 10125 * ip qenable any of the queues waiting for the ipsec loader to 10126 * complete. 10127 */ 10128 void 10129 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10130 { 10131 netstack_t *ns = ipss->ipsec_netstack; 10132 10133 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10134 } 10135 10136 /* 10137 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10138 * determines the grp on which it has to become exclusive, queues the mp 10139 * and sq draining restarts the optmgmt 10140 */ 10141 static boolean_t 10142 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10143 { 10144 conn_t *connp = Q_TO_CONN(q); 10145 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10146 10147 /* 10148 * Take IPsec requests and treat them special. 10149 */ 10150 if (ipsec_opt_present(mp)) { 10151 /* First check if IPsec is loaded. */ 10152 mutex_enter(&ipss->ipsec_loader_lock); 10153 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10154 mutex_exit(&ipss->ipsec_loader_lock); 10155 return (B_FALSE); 10156 } 10157 mutex_enter(&connp->conn_lock); 10158 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10159 10160 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10161 connp->conn_ipsec_opt_mp = mp; 10162 mutex_exit(&connp->conn_lock); 10163 mutex_exit(&ipss->ipsec_loader_lock); 10164 10165 ipsec_loader_loadnow(ipss); 10166 return (B_TRUE); 10167 } 10168 return (B_FALSE); 10169 } 10170 10171 /* 10172 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10173 * all of them are copied to the conn_t. If the req is "zero", the policy is 10174 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10175 * fields. 10176 * We keep only the latest setting of the policy and thus policy setting 10177 * is not incremental/cumulative. 10178 * 10179 * Requests to set policies with multiple alternative actions will 10180 * go through a different API. 10181 */ 10182 int 10183 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10184 { 10185 uint_t ah_req = 0; 10186 uint_t esp_req = 0; 10187 uint_t se_req = 0; 10188 ipsec_selkey_t sel; 10189 ipsec_act_t *actp = NULL; 10190 uint_t nact; 10191 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10192 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10193 ipsec_policy_root_t *pr; 10194 ipsec_policy_head_t *ph; 10195 int fam; 10196 boolean_t is_pol_reset; 10197 int error = 0; 10198 netstack_t *ns = connp->conn_netstack; 10199 ip_stack_t *ipst = ns->netstack_ip; 10200 ipsec_stack_t *ipss = ns->netstack_ipsec; 10201 10202 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10203 10204 /* 10205 * The IP_SEC_OPT option does not allow variable length parameters, 10206 * hence a request cannot be NULL. 10207 */ 10208 if (req == NULL) 10209 return (EINVAL); 10210 10211 ah_req = req->ipsr_ah_req; 10212 esp_req = req->ipsr_esp_req; 10213 se_req = req->ipsr_self_encap_req; 10214 10215 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10216 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10217 return (EINVAL); 10218 10219 /* 10220 * Are we dealing with a request to reset the policy (i.e. 10221 * zero requests). 10222 */ 10223 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10224 (esp_req & REQ_MASK) == 0 && 10225 (se_req & REQ_MASK) == 0); 10226 10227 if (!is_pol_reset) { 10228 /* 10229 * If we couldn't load IPsec, fail with "protocol 10230 * not supported". 10231 * IPsec may not have been loaded for a request with zero 10232 * policies, so we don't fail in this case. 10233 */ 10234 mutex_enter(&ipss->ipsec_loader_lock); 10235 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10236 mutex_exit(&ipss->ipsec_loader_lock); 10237 return (EPROTONOSUPPORT); 10238 } 10239 mutex_exit(&ipss->ipsec_loader_lock); 10240 10241 /* 10242 * Test for valid requests. Invalid algorithms 10243 * need to be tested by IPsec code because new 10244 * algorithms can be added dynamically. 10245 */ 10246 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10247 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10248 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10249 return (EINVAL); 10250 } 10251 10252 /* 10253 * Only privileged users can issue these 10254 * requests. 10255 */ 10256 if (((ah_req & IPSEC_PREF_NEVER) || 10257 (esp_req & IPSEC_PREF_NEVER) || 10258 (se_req & IPSEC_PREF_NEVER)) && 10259 secpolicy_ip_config(cr, B_FALSE) != 0) { 10260 return (EPERM); 10261 } 10262 10263 /* 10264 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10265 * are mutually exclusive. 10266 */ 10267 if (((ah_req & REQ_MASK) == REQ_MASK) || 10268 ((esp_req & REQ_MASK) == REQ_MASK) || 10269 ((se_req & REQ_MASK) == REQ_MASK)) { 10270 /* Both of them are set */ 10271 return (EINVAL); 10272 } 10273 } 10274 10275 mutex_enter(&connp->conn_lock); 10276 10277 /* 10278 * If we have already cached policies in ip_bind_connected*(), don't 10279 * let them change now. We cache policies for connections 10280 * whose src,dst [addr, port] is known. 10281 */ 10282 if (connp->conn_policy_cached) { 10283 mutex_exit(&connp->conn_lock); 10284 return (EINVAL); 10285 } 10286 10287 /* 10288 * We have a zero policies, reset the connection policy if already 10289 * set. This will cause the connection to inherit the 10290 * global policy, if any. 10291 */ 10292 if (is_pol_reset) { 10293 if (connp->conn_policy != NULL) { 10294 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10295 connp->conn_policy = NULL; 10296 } 10297 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10298 connp->conn_in_enforce_policy = B_FALSE; 10299 connp->conn_out_enforce_policy = B_FALSE; 10300 mutex_exit(&connp->conn_lock); 10301 return (0); 10302 } 10303 10304 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10305 ipst->ips_netstack); 10306 if (ph == NULL) 10307 goto enomem; 10308 10309 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10310 if (actp == NULL) 10311 goto enomem; 10312 10313 /* 10314 * Always allocate IPv4 policy entries, since they can also 10315 * apply to ipv6 sockets being used in ipv4-compat mode. 10316 */ 10317 bzero(&sel, sizeof (sel)); 10318 sel.ipsl_valid = IPSL_IPV4; 10319 10320 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10321 ipst->ips_netstack); 10322 if (pin4 == NULL) 10323 goto enomem; 10324 10325 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10326 ipst->ips_netstack); 10327 if (pout4 == NULL) 10328 goto enomem; 10329 10330 if (connp->conn_af_isv6) { 10331 /* 10332 * We're looking at a v6 socket, also allocate the 10333 * v6-specific entries... 10334 */ 10335 sel.ipsl_valid = IPSL_IPV6; 10336 pin6 = ipsec_policy_create(&sel, actp, nact, 10337 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10338 if (pin6 == NULL) 10339 goto enomem; 10340 10341 pout6 = ipsec_policy_create(&sel, actp, nact, 10342 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10343 if (pout6 == NULL) 10344 goto enomem; 10345 10346 /* 10347 * .. and file them away in the right place. 10348 */ 10349 fam = IPSEC_AF_V6; 10350 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10351 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10352 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10353 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10354 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10355 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10356 } 10357 10358 ipsec_actvec_free(actp, nact); 10359 10360 /* 10361 * File the v4 policies. 10362 */ 10363 fam = IPSEC_AF_V4; 10364 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10365 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10366 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10367 10368 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10369 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10370 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10371 10372 /* 10373 * If the requests need security, set enforce_policy. 10374 * If the requests are IPSEC_PREF_NEVER, one should 10375 * still set conn_out_enforce_policy so that an ipsec_out 10376 * gets attached in ip_wput. This is needed so that 10377 * for connections that we don't cache policy in ip_bind, 10378 * if global policy matches in ip_wput_attach_policy, we 10379 * don't wrongly inherit global policy. Similarly, we need 10380 * to set conn_in_enforce_policy also so that we don't verify 10381 * policy wrongly. 10382 */ 10383 if ((ah_req & REQ_MASK) != 0 || 10384 (esp_req & REQ_MASK) != 0 || 10385 (se_req & REQ_MASK) != 0) { 10386 connp->conn_in_enforce_policy = B_TRUE; 10387 connp->conn_out_enforce_policy = B_TRUE; 10388 connp->conn_flags |= IPCL_CHECK_POLICY; 10389 } 10390 10391 mutex_exit(&connp->conn_lock); 10392 return (error); 10393 #undef REQ_MASK 10394 10395 /* 10396 * Common memory-allocation-failure exit path. 10397 */ 10398 enomem: 10399 mutex_exit(&connp->conn_lock); 10400 if (actp != NULL) 10401 ipsec_actvec_free(actp, nact); 10402 if (pin4 != NULL) 10403 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10404 if (pout4 != NULL) 10405 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10406 if (pin6 != NULL) 10407 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10408 if (pout6 != NULL) 10409 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10410 return (ENOMEM); 10411 } 10412 10413 /* 10414 * Only for options that pass in an IP addr. Currently only V4 options 10415 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10416 * So this function assumes level is IPPROTO_IP 10417 */ 10418 int 10419 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10420 mblk_t *first_mp) 10421 { 10422 ipif_t *ipif = NULL; 10423 int error; 10424 ill_t *ill; 10425 int zoneid; 10426 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10427 10428 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10429 10430 if (addr != INADDR_ANY || checkonly) { 10431 ASSERT(connp != NULL); 10432 zoneid = IPCL_ZONEID(connp); 10433 if (option == IP_NEXTHOP) { 10434 ipif = ipif_lookup_onlink_addr(addr, 10435 connp->conn_zoneid, ipst); 10436 } else { 10437 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10438 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10439 &error, ipst); 10440 } 10441 if (ipif == NULL) { 10442 if (error == EINPROGRESS) 10443 return (error); 10444 if ((option == IP_MULTICAST_IF) || 10445 (option == IP_NEXTHOP)) 10446 return (EHOSTUNREACH); 10447 else 10448 return (EINVAL); 10449 } else if (checkonly) { 10450 if (option == IP_MULTICAST_IF) { 10451 ill = ipif->ipif_ill; 10452 /* not supported by the virtual network iface */ 10453 if (IS_VNI(ill)) { 10454 ipif_refrele(ipif); 10455 return (EINVAL); 10456 } 10457 } 10458 ipif_refrele(ipif); 10459 return (0); 10460 } 10461 ill = ipif->ipif_ill; 10462 mutex_enter(&connp->conn_lock); 10463 mutex_enter(&ill->ill_lock); 10464 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10465 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10466 mutex_exit(&ill->ill_lock); 10467 mutex_exit(&connp->conn_lock); 10468 ipif_refrele(ipif); 10469 return (option == IP_MULTICAST_IF ? 10470 EHOSTUNREACH : EINVAL); 10471 } 10472 } else { 10473 mutex_enter(&connp->conn_lock); 10474 } 10475 10476 /* None of the options below are supported on the VNI */ 10477 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10478 mutex_exit(&ill->ill_lock); 10479 mutex_exit(&connp->conn_lock); 10480 ipif_refrele(ipif); 10481 return (EINVAL); 10482 } 10483 10484 switch (option) { 10485 case IP_DONTFAILOVER_IF: 10486 /* 10487 * This option is used by in.mpathd to ensure 10488 * that IPMP probe packets only go out on the 10489 * test interfaces. in.mpathd sets this option 10490 * on the non-failover interfaces. 10491 * For backward compatibility, this option 10492 * implicitly sets IP_MULTICAST_IF, as used 10493 * be done in bind(), so that ip_wput gets 10494 * this ipif to send mcast packets. 10495 */ 10496 if (ipif != NULL) { 10497 ASSERT(addr != INADDR_ANY); 10498 connp->conn_nofailover_ill = ipif->ipif_ill; 10499 connp->conn_multicast_ipif = ipif; 10500 } else { 10501 ASSERT(addr == INADDR_ANY); 10502 connp->conn_nofailover_ill = NULL; 10503 connp->conn_multicast_ipif = NULL; 10504 } 10505 break; 10506 10507 case IP_MULTICAST_IF: 10508 connp->conn_multicast_ipif = ipif; 10509 break; 10510 case IP_NEXTHOP: 10511 connp->conn_nexthop_v4 = addr; 10512 connp->conn_nexthop_set = B_TRUE; 10513 break; 10514 } 10515 10516 if (ipif != NULL) { 10517 mutex_exit(&ill->ill_lock); 10518 mutex_exit(&connp->conn_lock); 10519 ipif_refrele(ipif); 10520 return (0); 10521 } 10522 mutex_exit(&connp->conn_lock); 10523 /* We succeded in cleared the option */ 10524 return (0); 10525 } 10526 10527 /* 10528 * For options that pass in an ifindex specifying the ill. V6 options always 10529 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10530 */ 10531 int 10532 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10533 int level, int option, mblk_t *first_mp) 10534 { 10535 ill_t *ill = NULL; 10536 int error = 0; 10537 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10538 10539 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10540 if (ifindex != 0) { 10541 ASSERT(connp != NULL); 10542 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10543 first_mp, ip_restart_optmgmt, &error, ipst); 10544 if (ill != NULL) { 10545 if (checkonly) { 10546 /* not supported by the virtual network iface */ 10547 if (IS_VNI(ill)) { 10548 ill_refrele(ill); 10549 return (EINVAL); 10550 } 10551 ill_refrele(ill); 10552 return (0); 10553 } 10554 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10555 0, NULL)) { 10556 ill_refrele(ill); 10557 ill = NULL; 10558 mutex_enter(&connp->conn_lock); 10559 goto setit; 10560 } 10561 mutex_enter(&connp->conn_lock); 10562 mutex_enter(&ill->ill_lock); 10563 if (ill->ill_state_flags & ILL_CONDEMNED) { 10564 mutex_exit(&ill->ill_lock); 10565 mutex_exit(&connp->conn_lock); 10566 ill_refrele(ill); 10567 ill = NULL; 10568 mutex_enter(&connp->conn_lock); 10569 } 10570 goto setit; 10571 } else if (error == EINPROGRESS) { 10572 return (error); 10573 } else { 10574 error = 0; 10575 } 10576 } 10577 mutex_enter(&connp->conn_lock); 10578 setit: 10579 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10580 10581 /* 10582 * The options below assume that the ILL (if any) transmits and/or 10583 * receives traffic. Neither of which is true for the virtual network 10584 * interface, so fail setting these on a VNI. 10585 */ 10586 if (IS_VNI(ill)) { 10587 ASSERT(ill != NULL); 10588 mutex_exit(&ill->ill_lock); 10589 mutex_exit(&connp->conn_lock); 10590 ill_refrele(ill); 10591 return (EINVAL); 10592 } 10593 10594 if (level == IPPROTO_IP) { 10595 switch (option) { 10596 case IP_BOUND_IF: 10597 connp->conn_incoming_ill = ill; 10598 connp->conn_outgoing_ill = ill; 10599 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10600 0 : ifindex; 10601 break; 10602 10603 case IP_MULTICAST_IF: 10604 /* 10605 * This option is an internal special. The socket 10606 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10607 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10608 * specifies an ifindex and we try first on V6 ill's. 10609 * If we don't find one, we they try using on v4 ill's 10610 * intenally and we come here. 10611 */ 10612 if (!checkonly && ill != NULL) { 10613 ipif_t *ipif; 10614 ipif = ill->ill_ipif; 10615 10616 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10617 mutex_exit(&ill->ill_lock); 10618 mutex_exit(&connp->conn_lock); 10619 ill_refrele(ill); 10620 ill = NULL; 10621 mutex_enter(&connp->conn_lock); 10622 } else { 10623 connp->conn_multicast_ipif = ipif; 10624 } 10625 } 10626 break; 10627 10628 case IP_DHCPINIT_IF: 10629 if (connp->conn_dhcpinit_ill != NULL) { 10630 /* 10631 * We've locked the conn so conn_cleanup_ill() 10632 * cannot clear conn_dhcpinit_ill -- so it's 10633 * safe to access the ill. 10634 */ 10635 ill_t *oill = connp->conn_dhcpinit_ill; 10636 10637 ASSERT(oill->ill_dhcpinit != 0); 10638 atomic_dec_32(&oill->ill_dhcpinit); 10639 connp->conn_dhcpinit_ill = NULL; 10640 } 10641 10642 if (ill != NULL) { 10643 connp->conn_dhcpinit_ill = ill; 10644 atomic_inc_32(&ill->ill_dhcpinit); 10645 } 10646 break; 10647 } 10648 } else { 10649 switch (option) { 10650 case IPV6_BOUND_IF: 10651 connp->conn_incoming_ill = ill; 10652 connp->conn_outgoing_ill = ill; 10653 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10654 0 : ifindex; 10655 break; 10656 10657 case IPV6_BOUND_PIF: 10658 /* 10659 * Limit all transmit to this ill. 10660 * Unlike IPV6_BOUND_IF, using this option 10661 * prevents load spreading and failover from 10662 * happening when the interface is part of the 10663 * group. That's why we don't need to remember 10664 * the ifindex in orig_bound_ifindex as in 10665 * IPV6_BOUND_IF. 10666 */ 10667 connp->conn_outgoing_pill = ill; 10668 break; 10669 10670 case IPV6_DONTFAILOVER_IF: 10671 /* 10672 * This option is used by in.mpathd to ensure 10673 * that IPMP probe packets only go out on the 10674 * test interfaces. in.mpathd sets this option 10675 * on the non-failover interfaces. 10676 */ 10677 connp->conn_nofailover_ill = ill; 10678 /* 10679 * For backward compatibility, this option 10680 * implicitly sets ip_multicast_ill as used in 10681 * IPV6_MULTICAST_IF so that ip_wput gets 10682 * this ill to send mcast packets. 10683 */ 10684 connp->conn_multicast_ill = ill; 10685 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10686 0 : ifindex; 10687 break; 10688 10689 case IPV6_MULTICAST_IF: 10690 /* 10691 * Set conn_multicast_ill to be the IPv6 ill. 10692 * Set conn_multicast_ipif to be an IPv4 ipif 10693 * for ifindex to make IPv4 mapped addresses 10694 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10695 * Even if no IPv6 ill exists for the ifindex 10696 * we need to check for an IPv4 ifindex in order 10697 * for this to work with mapped addresses. In that 10698 * case only set conn_multicast_ipif. 10699 */ 10700 if (!checkonly) { 10701 if (ifindex == 0) { 10702 connp->conn_multicast_ill = NULL; 10703 connp->conn_orig_multicast_ifindex = 0; 10704 connp->conn_multicast_ipif = NULL; 10705 } else if (ill != NULL) { 10706 connp->conn_multicast_ill = ill; 10707 connp->conn_orig_multicast_ifindex = 10708 ifindex; 10709 } 10710 } 10711 break; 10712 } 10713 } 10714 10715 if (ill != NULL) { 10716 mutex_exit(&ill->ill_lock); 10717 mutex_exit(&connp->conn_lock); 10718 ill_refrele(ill); 10719 return (0); 10720 } 10721 mutex_exit(&connp->conn_lock); 10722 /* 10723 * We succeeded in clearing the option (ifindex == 0) or failed to 10724 * locate the ill and could not set the option (ifindex != 0) 10725 */ 10726 return (ifindex == 0 ? 0 : EINVAL); 10727 } 10728 10729 /* This routine sets socket options. */ 10730 /* ARGSUSED */ 10731 int 10732 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10733 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10734 void *dummy, cred_t *cr, mblk_t *first_mp) 10735 { 10736 int *i1 = (int *)invalp; 10737 conn_t *connp = Q_TO_CONN(q); 10738 int error = 0; 10739 boolean_t checkonly; 10740 ire_t *ire; 10741 boolean_t found; 10742 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10743 10744 switch (optset_context) { 10745 10746 case SETFN_OPTCOM_CHECKONLY: 10747 checkonly = B_TRUE; 10748 /* 10749 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10750 * inlen != 0 implies value supplied and 10751 * we have to "pretend" to set it. 10752 * inlen == 0 implies that there is no 10753 * value part in T_CHECK request and just validation 10754 * done elsewhere should be enough, we just return here. 10755 */ 10756 if (inlen == 0) { 10757 *outlenp = 0; 10758 return (0); 10759 } 10760 break; 10761 case SETFN_OPTCOM_NEGOTIATE: 10762 case SETFN_UD_NEGOTIATE: 10763 case SETFN_CONN_NEGOTIATE: 10764 checkonly = B_FALSE; 10765 break; 10766 default: 10767 /* 10768 * We should never get here 10769 */ 10770 *outlenp = 0; 10771 return (EINVAL); 10772 } 10773 10774 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10775 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10776 10777 /* 10778 * For fixed length options, no sanity check 10779 * of passed in length is done. It is assumed *_optcom_req() 10780 * routines do the right thing. 10781 */ 10782 10783 switch (level) { 10784 case SOL_SOCKET: 10785 /* 10786 * conn_lock protects the bitfields, and is used to 10787 * set the fields atomically. 10788 */ 10789 switch (name) { 10790 case SO_BROADCAST: 10791 if (!checkonly) { 10792 /* TODO: use value someplace? */ 10793 mutex_enter(&connp->conn_lock); 10794 connp->conn_broadcast = *i1 ? 1 : 0; 10795 mutex_exit(&connp->conn_lock); 10796 } 10797 break; /* goto sizeof (int) option return */ 10798 case SO_USELOOPBACK: 10799 if (!checkonly) { 10800 /* TODO: use value someplace? */ 10801 mutex_enter(&connp->conn_lock); 10802 connp->conn_loopback = *i1 ? 1 : 0; 10803 mutex_exit(&connp->conn_lock); 10804 } 10805 break; /* goto sizeof (int) option return */ 10806 case SO_DONTROUTE: 10807 if (!checkonly) { 10808 mutex_enter(&connp->conn_lock); 10809 connp->conn_dontroute = *i1 ? 1 : 0; 10810 mutex_exit(&connp->conn_lock); 10811 } 10812 break; /* goto sizeof (int) option return */ 10813 case SO_REUSEADDR: 10814 if (!checkonly) { 10815 mutex_enter(&connp->conn_lock); 10816 connp->conn_reuseaddr = *i1 ? 1 : 0; 10817 mutex_exit(&connp->conn_lock); 10818 } 10819 break; /* goto sizeof (int) option return */ 10820 case SO_PROTOTYPE: 10821 if (!checkonly) { 10822 mutex_enter(&connp->conn_lock); 10823 connp->conn_proto = *i1; 10824 mutex_exit(&connp->conn_lock); 10825 } 10826 break; /* goto sizeof (int) option return */ 10827 case SO_ALLZONES: 10828 if (!checkonly) { 10829 mutex_enter(&connp->conn_lock); 10830 if (IPCL_IS_BOUND(connp)) { 10831 mutex_exit(&connp->conn_lock); 10832 return (EINVAL); 10833 } 10834 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10835 mutex_exit(&connp->conn_lock); 10836 } 10837 break; /* goto sizeof (int) option return */ 10838 case SO_ANON_MLP: 10839 if (!checkonly) { 10840 mutex_enter(&connp->conn_lock); 10841 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10842 mutex_exit(&connp->conn_lock); 10843 } 10844 break; /* goto sizeof (int) option return */ 10845 case SO_MAC_EXEMPT: 10846 if (secpolicy_net_mac_aware(cr) != 0 || 10847 IPCL_IS_BOUND(connp)) 10848 return (EACCES); 10849 if (!checkonly) { 10850 mutex_enter(&connp->conn_lock); 10851 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10852 mutex_exit(&connp->conn_lock); 10853 } 10854 break; /* goto sizeof (int) option return */ 10855 default: 10856 /* 10857 * "soft" error (negative) 10858 * option not handled at this level 10859 * Note: Do not modify *outlenp 10860 */ 10861 return (-EINVAL); 10862 } 10863 break; 10864 case IPPROTO_IP: 10865 switch (name) { 10866 case IP_NEXTHOP: 10867 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10868 return (EPERM); 10869 /* FALLTHRU */ 10870 case IP_MULTICAST_IF: 10871 case IP_DONTFAILOVER_IF: { 10872 ipaddr_t addr = *i1; 10873 10874 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10875 first_mp); 10876 if (error != 0) 10877 return (error); 10878 break; /* goto sizeof (int) option return */ 10879 } 10880 10881 case IP_MULTICAST_TTL: 10882 /* Recorded in transport above IP */ 10883 *outvalp = *invalp; 10884 *outlenp = sizeof (uchar_t); 10885 return (0); 10886 case IP_MULTICAST_LOOP: 10887 if (!checkonly) { 10888 mutex_enter(&connp->conn_lock); 10889 connp->conn_multicast_loop = *invalp ? 1 : 0; 10890 mutex_exit(&connp->conn_lock); 10891 } 10892 *outvalp = *invalp; 10893 *outlenp = sizeof (uchar_t); 10894 return (0); 10895 case IP_ADD_MEMBERSHIP: 10896 case MCAST_JOIN_GROUP: 10897 case IP_DROP_MEMBERSHIP: 10898 case MCAST_LEAVE_GROUP: { 10899 struct ip_mreq *mreqp; 10900 struct group_req *greqp; 10901 ire_t *ire; 10902 boolean_t done = B_FALSE; 10903 ipaddr_t group, ifaddr; 10904 struct sockaddr_in *sin; 10905 uint32_t *ifindexp; 10906 boolean_t mcast_opt = B_TRUE; 10907 mcast_record_t fmode; 10908 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10909 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10910 10911 switch (name) { 10912 case IP_ADD_MEMBERSHIP: 10913 mcast_opt = B_FALSE; 10914 /* FALLTHRU */ 10915 case MCAST_JOIN_GROUP: 10916 fmode = MODE_IS_EXCLUDE; 10917 optfn = ip_opt_add_group; 10918 break; 10919 10920 case IP_DROP_MEMBERSHIP: 10921 mcast_opt = B_FALSE; 10922 /* FALLTHRU */ 10923 case MCAST_LEAVE_GROUP: 10924 fmode = MODE_IS_INCLUDE; 10925 optfn = ip_opt_delete_group; 10926 break; 10927 } 10928 10929 if (mcast_opt) { 10930 greqp = (struct group_req *)i1; 10931 sin = (struct sockaddr_in *)&greqp->gr_group; 10932 if (sin->sin_family != AF_INET) { 10933 *outlenp = 0; 10934 return (ENOPROTOOPT); 10935 } 10936 group = (ipaddr_t)sin->sin_addr.s_addr; 10937 ifaddr = INADDR_ANY; 10938 ifindexp = &greqp->gr_interface; 10939 } else { 10940 mreqp = (struct ip_mreq *)i1; 10941 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10942 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10943 ifindexp = NULL; 10944 } 10945 10946 /* 10947 * In the multirouting case, we need to replicate 10948 * the request on all interfaces that will take part 10949 * in replication. We do so because multirouting is 10950 * reflective, thus we will probably receive multi- 10951 * casts on those interfaces. 10952 * The ip_multirt_apply_membership() succeeds if the 10953 * operation succeeds on at least one interface. 10954 */ 10955 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10956 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10957 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10958 if (ire != NULL) { 10959 if (ire->ire_flags & RTF_MULTIRT) { 10960 error = ip_multirt_apply_membership( 10961 optfn, ire, connp, checkonly, group, 10962 fmode, INADDR_ANY, first_mp); 10963 done = B_TRUE; 10964 } 10965 ire_refrele(ire); 10966 } 10967 if (!done) { 10968 error = optfn(connp, checkonly, group, ifaddr, 10969 ifindexp, fmode, INADDR_ANY, first_mp); 10970 } 10971 if (error) { 10972 /* 10973 * EINPROGRESS is a soft error, needs retry 10974 * so don't make *outlenp zero. 10975 */ 10976 if (error != EINPROGRESS) 10977 *outlenp = 0; 10978 return (error); 10979 } 10980 /* OK return - copy input buffer into output buffer */ 10981 if (invalp != outvalp) { 10982 /* don't trust bcopy for identical src/dst */ 10983 bcopy(invalp, outvalp, inlen); 10984 } 10985 *outlenp = inlen; 10986 return (0); 10987 } 10988 case IP_BLOCK_SOURCE: 10989 case IP_UNBLOCK_SOURCE: 10990 case IP_ADD_SOURCE_MEMBERSHIP: 10991 case IP_DROP_SOURCE_MEMBERSHIP: 10992 case MCAST_BLOCK_SOURCE: 10993 case MCAST_UNBLOCK_SOURCE: 10994 case MCAST_JOIN_SOURCE_GROUP: 10995 case MCAST_LEAVE_SOURCE_GROUP: { 10996 struct ip_mreq_source *imreqp; 10997 struct group_source_req *gsreqp; 10998 in_addr_t grp, src, ifaddr = INADDR_ANY; 10999 uint32_t ifindex = 0; 11000 mcast_record_t fmode; 11001 struct sockaddr_in *sin; 11002 ire_t *ire; 11003 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11004 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11005 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11006 11007 switch (name) { 11008 case IP_BLOCK_SOURCE: 11009 mcast_opt = B_FALSE; 11010 /* FALLTHRU */ 11011 case MCAST_BLOCK_SOURCE: 11012 fmode = MODE_IS_EXCLUDE; 11013 optfn = ip_opt_add_group; 11014 break; 11015 11016 case IP_UNBLOCK_SOURCE: 11017 mcast_opt = B_FALSE; 11018 /* FALLTHRU */ 11019 case MCAST_UNBLOCK_SOURCE: 11020 fmode = MODE_IS_EXCLUDE; 11021 optfn = ip_opt_delete_group; 11022 break; 11023 11024 case IP_ADD_SOURCE_MEMBERSHIP: 11025 mcast_opt = B_FALSE; 11026 /* FALLTHRU */ 11027 case MCAST_JOIN_SOURCE_GROUP: 11028 fmode = MODE_IS_INCLUDE; 11029 optfn = ip_opt_add_group; 11030 break; 11031 11032 case IP_DROP_SOURCE_MEMBERSHIP: 11033 mcast_opt = B_FALSE; 11034 /* FALLTHRU */ 11035 case MCAST_LEAVE_SOURCE_GROUP: 11036 fmode = MODE_IS_INCLUDE; 11037 optfn = ip_opt_delete_group; 11038 break; 11039 } 11040 11041 if (mcast_opt) { 11042 gsreqp = (struct group_source_req *)i1; 11043 if (gsreqp->gsr_group.ss_family != AF_INET) { 11044 *outlenp = 0; 11045 return (ENOPROTOOPT); 11046 } 11047 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11048 grp = (ipaddr_t)sin->sin_addr.s_addr; 11049 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11050 src = (ipaddr_t)sin->sin_addr.s_addr; 11051 ifindex = gsreqp->gsr_interface; 11052 } else { 11053 imreqp = (struct ip_mreq_source *)i1; 11054 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11055 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11056 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11057 } 11058 11059 /* 11060 * In the multirouting case, we need to replicate 11061 * the request as noted in the mcast cases above. 11062 */ 11063 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11064 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11065 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11066 if (ire != NULL) { 11067 if (ire->ire_flags & RTF_MULTIRT) { 11068 error = ip_multirt_apply_membership( 11069 optfn, ire, connp, checkonly, grp, 11070 fmode, src, first_mp); 11071 done = B_TRUE; 11072 } 11073 ire_refrele(ire); 11074 } 11075 if (!done) { 11076 error = optfn(connp, checkonly, grp, ifaddr, 11077 &ifindex, fmode, src, first_mp); 11078 } 11079 if (error != 0) { 11080 /* 11081 * EINPROGRESS is a soft error, needs retry 11082 * so don't make *outlenp zero. 11083 */ 11084 if (error != EINPROGRESS) 11085 *outlenp = 0; 11086 return (error); 11087 } 11088 /* OK return - copy input buffer into output buffer */ 11089 if (invalp != outvalp) { 11090 bcopy(invalp, outvalp, inlen); 11091 } 11092 *outlenp = inlen; 11093 return (0); 11094 } 11095 case IP_SEC_OPT: 11096 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11097 if (error != 0) { 11098 *outlenp = 0; 11099 return (error); 11100 } 11101 break; 11102 case IP_HDRINCL: 11103 case IP_OPTIONS: 11104 case T_IP_OPTIONS: 11105 case IP_TOS: 11106 case T_IP_TOS: 11107 case IP_TTL: 11108 case IP_RECVDSTADDR: 11109 case IP_RECVOPTS: 11110 /* OK return - copy input buffer into output buffer */ 11111 if (invalp != outvalp) { 11112 /* don't trust bcopy for identical src/dst */ 11113 bcopy(invalp, outvalp, inlen); 11114 } 11115 *outlenp = inlen; 11116 return (0); 11117 case IP_RECVIF: 11118 /* Retrieve the inbound interface index */ 11119 if (!checkonly) { 11120 mutex_enter(&connp->conn_lock); 11121 connp->conn_recvif = *i1 ? 1 : 0; 11122 mutex_exit(&connp->conn_lock); 11123 } 11124 break; /* goto sizeof (int) option return */ 11125 case IP_RECVPKTINFO: 11126 if (!checkonly) { 11127 mutex_enter(&connp->conn_lock); 11128 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11129 mutex_exit(&connp->conn_lock); 11130 } 11131 break; /* goto sizeof (int) option return */ 11132 case IP_RECVSLLA: 11133 /* Retrieve the source link layer address */ 11134 if (!checkonly) { 11135 mutex_enter(&connp->conn_lock); 11136 connp->conn_recvslla = *i1 ? 1 : 0; 11137 mutex_exit(&connp->conn_lock); 11138 } 11139 break; /* goto sizeof (int) option return */ 11140 case MRT_INIT: 11141 case MRT_DONE: 11142 case MRT_ADD_VIF: 11143 case MRT_DEL_VIF: 11144 case MRT_ADD_MFC: 11145 case MRT_DEL_MFC: 11146 case MRT_ASSERT: 11147 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11148 *outlenp = 0; 11149 return (error); 11150 } 11151 error = ip_mrouter_set((int)name, q, checkonly, 11152 (uchar_t *)invalp, inlen, first_mp); 11153 if (error) { 11154 *outlenp = 0; 11155 return (error); 11156 } 11157 /* OK return - copy input buffer into output buffer */ 11158 if (invalp != outvalp) { 11159 /* don't trust bcopy for identical src/dst */ 11160 bcopy(invalp, outvalp, inlen); 11161 } 11162 *outlenp = inlen; 11163 return (0); 11164 case IP_BOUND_IF: 11165 case IP_DHCPINIT_IF: 11166 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11167 level, name, first_mp); 11168 if (error != 0) 11169 return (error); 11170 break; /* goto sizeof (int) option return */ 11171 11172 case IP_UNSPEC_SRC: 11173 /* Allow sending with a zero source address */ 11174 if (!checkonly) { 11175 mutex_enter(&connp->conn_lock); 11176 connp->conn_unspec_src = *i1 ? 1 : 0; 11177 mutex_exit(&connp->conn_lock); 11178 } 11179 break; /* goto sizeof (int) option return */ 11180 default: 11181 /* 11182 * "soft" error (negative) 11183 * option not handled at this level 11184 * Note: Do not modify *outlenp 11185 */ 11186 return (-EINVAL); 11187 } 11188 break; 11189 case IPPROTO_IPV6: 11190 switch (name) { 11191 case IPV6_BOUND_IF: 11192 case IPV6_BOUND_PIF: 11193 case IPV6_DONTFAILOVER_IF: 11194 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11195 level, name, first_mp); 11196 if (error != 0) 11197 return (error); 11198 break; /* goto sizeof (int) option return */ 11199 11200 case IPV6_MULTICAST_IF: 11201 /* 11202 * The only possible errors are EINPROGRESS and 11203 * EINVAL. EINPROGRESS will be restarted and is not 11204 * a hard error. We call this option on both V4 and V6 11205 * If both return EINVAL, then this call returns 11206 * EINVAL. If at least one of them succeeds we 11207 * return success. 11208 */ 11209 found = B_FALSE; 11210 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11211 level, name, first_mp); 11212 if (error == EINPROGRESS) 11213 return (error); 11214 if (error == 0) 11215 found = B_TRUE; 11216 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11217 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11218 if (error == 0) 11219 found = B_TRUE; 11220 if (!found) 11221 return (error); 11222 break; /* goto sizeof (int) option return */ 11223 11224 case IPV6_MULTICAST_HOPS: 11225 /* Recorded in transport above IP */ 11226 break; /* goto sizeof (int) option return */ 11227 case IPV6_MULTICAST_LOOP: 11228 if (!checkonly) { 11229 mutex_enter(&connp->conn_lock); 11230 connp->conn_multicast_loop = *i1; 11231 mutex_exit(&connp->conn_lock); 11232 } 11233 break; /* goto sizeof (int) option return */ 11234 case IPV6_JOIN_GROUP: 11235 case MCAST_JOIN_GROUP: 11236 case IPV6_LEAVE_GROUP: 11237 case MCAST_LEAVE_GROUP: { 11238 struct ipv6_mreq *ip_mreqp; 11239 struct group_req *greqp; 11240 ire_t *ire; 11241 boolean_t done = B_FALSE; 11242 in6_addr_t groupv6; 11243 uint32_t ifindex; 11244 boolean_t mcast_opt = B_TRUE; 11245 mcast_record_t fmode; 11246 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11247 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11248 11249 switch (name) { 11250 case IPV6_JOIN_GROUP: 11251 mcast_opt = B_FALSE; 11252 /* FALLTHRU */ 11253 case MCAST_JOIN_GROUP: 11254 fmode = MODE_IS_EXCLUDE; 11255 optfn = ip_opt_add_group_v6; 11256 break; 11257 11258 case IPV6_LEAVE_GROUP: 11259 mcast_opt = B_FALSE; 11260 /* FALLTHRU */ 11261 case MCAST_LEAVE_GROUP: 11262 fmode = MODE_IS_INCLUDE; 11263 optfn = ip_opt_delete_group_v6; 11264 break; 11265 } 11266 11267 if (mcast_opt) { 11268 struct sockaddr_in *sin; 11269 struct sockaddr_in6 *sin6; 11270 greqp = (struct group_req *)i1; 11271 if (greqp->gr_group.ss_family == AF_INET) { 11272 sin = (struct sockaddr_in *) 11273 &(greqp->gr_group); 11274 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11275 &groupv6); 11276 } else { 11277 sin6 = (struct sockaddr_in6 *) 11278 &(greqp->gr_group); 11279 groupv6 = sin6->sin6_addr; 11280 } 11281 ifindex = greqp->gr_interface; 11282 } else { 11283 ip_mreqp = (struct ipv6_mreq *)i1; 11284 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11285 ifindex = ip_mreqp->ipv6mr_interface; 11286 } 11287 /* 11288 * In the multirouting case, we need to replicate 11289 * the request on all interfaces that will take part 11290 * in replication. We do so because multirouting is 11291 * reflective, thus we will probably receive multi- 11292 * casts on those interfaces. 11293 * The ip_multirt_apply_membership_v6() succeeds if 11294 * the operation succeeds on at least one interface. 11295 */ 11296 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11297 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11298 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11299 if (ire != NULL) { 11300 if (ire->ire_flags & RTF_MULTIRT) { 11301 error = ip_multirt_apply_membership_v6( 11302 optfn, ire, connp, checkonly, 11303 &groupv6, fmode, &ipv6_all_zeros, 11304 first_mp); 11305 done = B_TRUE; 11306 } 11307 ire_refrele(ire); 11308 } 11309 if (!done) { 11310 error = optfn(connp, checkonly, &groupv6, 11311 ifindex, fmode, &ipv6_all_zeros, first_mp); 11312 } 11313 if (error) { 11314 /* 11315 * EINPROGRESS is a soft error, needs retry 11316 * so don't make *outlenp zero. 11317 */ 11318 if (error != EINPROGRESS) 11319 *outlenp = 0; 11320 return (error); 11321 } 11322 /* OK return - copy input buffer into output buffer */ 11323 if (invalp != outvalp) { 11324 /* don't trust bcopy for identical src/dst */ 11325 bcopy(invalp, outvalp, inlen); 11326 } 11327 *outlenp = inlen; 11328 return (0); 11329 } 11330 case MCAST_BLOCK_SOURCE: 11331 case MCAST_UNBLOCK_SOURCE: 11332 case MCAST_JOIN_SOURCE_GROUP: 11333 case MCAST_LEAVE_SOURCE_GROUP: { 11334 struct group_source_req *gsreqp; 11335 in6_addr_t v6grp, v6src; 11336 uint32_t ifindex; 11337 mcast_record_t fmode; 11338 ire_t *ire; 11339 boolean_t done = B_FALSE; 11340 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11341 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11342 11343 switch (name) { 11344 case MCAST_BLOCK_SOURCE: 11345 fmode = MODE_IS_EXCLUDE; 11346 optfn = ip_opt_add_group_v6; 11347 break; 11348 case MCAST_UNBLOCK_SOURCE: 11349 fmode = MODE_IS_EXCLUDE; 11350 optfn = ip_opt_delete_group_v6; 11351 break; 11352 case MCAST_JOIN_SOURCE_GROUP: 11353 fmode = MODE_IS_INCLUDE; 11354 optfn = ip_opt_add_group_v6; 11355 break; 11356 case MCAST_LEAVE_SOURCE_GROUP: 11357 fmode = MODE_IS_INCLUDE; 11358 optfn = ip_opt_delete_group_v6; 11359 break; 11360 } 11361 11362 gsreqp = (struct group_source_req *)i1; 11363 ifindex = gsreqp->gsr_interface; 11364 if (gsreqp->gsr_group.ss_family == AF_INET) { 11365 struct sockaddr_in *s; 11366 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11367 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11368 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11369 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11370 } else { 11371 struct sockaddr_in6 *s6; 11372 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11373 v6grp = s6->sin6_addr; 11374 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11375 v6src = s6->sin6_addr; 11376 } 11377 11378 /* 11379 * In the multirouting case, we need to replicate 11380 * the request as noted in the mcast cases above. 11381 */ 11382 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11383 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11384 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11385 if (ire != NULL) { 11386 if (ire->ire_flags & RTF_MULTIRT) { 11387 error = ip_multirt_apply_membership_v6( 11388 optfn, ire, connp, checkonly, 11389 &v6grp, fmode, &v6src, first_mp); 11390 done = B_TRUE; 11391 } 11392 ire_refrele(ire); 11393 } 11394 if (!done) { 11395 error = optfn(connp, checkonly, &v6grp, 11396 ifindex, fmode, &v6src, first_mp); 11397 } 11398 if (error != 0) { 11399 /* 11400 * EINPROGRESS is a soft error, needs retry 11401 * so don't make *outlenp zero. 11402 */ 11403 if (error != EINPROGRESS) 11404 *outlenp = 0; 11405 return (error); 11406 } 11407 /* OK return - copy input buffer into output buffer */ 11408 if (invalp != outvalp) { 11409 bcopy(invalp, outvalp, inlen); 11410 } 11411 *outlenp = inlen; 11412 return (0); 11413 } 11414 case IPV6_UNICAST_HOPS: 11415 /* Recorded in transport above IP */ 11416 break; /* goto sizeof (int) option return */ 11417 case IPV6_UNSPEC_SRC: 11418 /* Allow sending with a zero source address */ 11419 if (!checkonly) { 11420 mutex_enter(&connp->conn_lock); 11421 connp->conn_unspec_src = *i1 ? 1 : 0; 11422 mutex_exit(&connp->conn_lock); 11423 } 11424 break; /* goto sizeof (int) option return */ 11425 case IPV6_RECVPKTINFO: 11426 if (!checkonly) { 11427 mutex_enter(&connp->conn_lock); 11428 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11429 mutex_exit(&connp->conn_lock); 11430 } 11431 break; /* goto sizeof (int) option return */ 11432 case IPV6_RECVTCLASS: 11433 if (!checkonly) { 11434 if (*i1 < 0 || *i1 > 1) { 11435 return (EINVAL); 11436 } 11437 mutex_enter(&connp->conn_lock); 11438 connp->conn_ipv6_recvtclass = *i1; 11439 mutex_exit(&connp->conn_lock); 11440 } 11441 break; 11442 case IPV6_RECVPATHMTU: 11443 if (!checkonly) { 11444 if (*i1 < 0 || *i1 > 1) { 11445 return (EINVAL); 11446 } 11447 mutex_enter(&connp->conn_lock); 11448 connp->conn_ipv6_recvpathmtu = *i1; 11449 mutex_exit(&connp->conn_lock); 11450 } 11451 break; 11452 case IPV6_RECVHOPLIMIT: 11453 if (!checkonly) { 11454 mutex_enter(&connp->conn_lock); 11455 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11456 mutex_exit(&connp->conn_lock); 11457 } 11458 break; /* goto sizeof (int) option return */ 11459 case IPV6_RECVHOPOPTS: 11460 if (!checkonly) { 11461 mutex_enter(&connp->conn_lock); 11462 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11463 mutex_exit(&connp->conn_lock); 11464 } 11465 break; /* goto sizeof (int) option return */ 11466 case IPV6_RECVDSTOPTS: 11467 if (!checkonly) { 11468 mutex_enter(&connp->conn_lock); 11469 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11470 mutex_exit(&connp->conn_lock); 11471 } 11472 break; /* goto sizeof (int) option return */ 11473 case IPV6_RECVRTHDR: 11474 if (!checkonly) { 11475 mutex_enter(&connp->conn_lock); 11476 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11477 mutex_exit(&connp->conn_lock); 11478 } 11479 break; /* goto sizeof (int) option return */ 11480 case IPV6_RECVRTHDRDSTOPTS: 11481 if (!checkonly) { 11482 mutex_enter(&connp->conn_lock); 11483 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11484 mutex_exit(&connp->conn_lock); 11485 } 11486 break; /* goto sizeof (int) option return */ 11487 case IPV6_PKTINFO: 11488 if (inlen == 0) 11489 return (-EINVAL); /* clearing option */ 11490 error = ip6_set_pktinfo(cr, connp, 11491 (struct in6_pktinfo *)invalp, first_mp); 11492 if (error != 0) 11493 *outlenp = 0; 11494 else 11495 *outlenp = inlen; 11496 return (error); 11497 case IPV6_NEXTHOP: { 11498 struct sockaddr_in6 *sin6; 11499 11500 /* Verify that the nexthop is reachable */ 11501 if (inlen == 0) 11502 return (-EINVAL); /* clearing option */ 11503 11504 sin6 = (struct sockaddr_in6 *)invalp; 11505 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11506 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11507 NULL, MATCH_IRE_DEFAULT, ipst); 11508 11509 if (ire == NULL) { 11510 *outlenp = 0; 11511 return (EHOSTUNREACH); 11512 } 11513 ire_refrele(ire); 11514 return (-EINVAL); 11515 } 11516 case IPV6_SEC_OPT: 11517 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11518 if (error != 0) { 11519 *outlenp = 0; 11520 return (error); 11521 } 11522 break; 11523 case IPV6_SRC_PREFERENCES: { 11524 /* 11525 * This is implemented strictly in the ip module 11526 * (here and in tcp_opt_*() to accomodate tcp 11527 * sockets). Modules above ip pass this option 11528 * down here since ip is the only one that needs to 11529 * be aware of source address preferences. 11530 * 11531 * This socket option only affects connected 11532 * sockets that haven't already bound to a specific 11533 * IPv6 address. In other words, sockets that 11534 * don't call bind() with an address other than the 11535 * unspecified address and that call connect(). 11536 * ip_bind_connected_v6() passes these preferences 11537 * to the ipif_select_source_v6() function. 11538 */ 11539 if (inlen != sizeof (uint32_t)) 11540 return (EINVAL); 11541 error = ip6_set_src_preferences(connp, 11542 *(uint32_t *)invalp); 11543 if (error != 0) { 11544 *outlenp = 0; 11545 return (error); 11546 } else { 11547 *outlenp = sizeof (uint32_t); 11548 } 11549 break; 11550 } 11551 case IPV6_V6ONLY: 11552 if (*i1 < 0 || *i1 > 1) { 11553 return (EINVAL); 11554 } 11555 mutex_enter(&connp->conn_lock); 11556 connp->conn_ipv6_v6only = *i1; 11557 mutex_exit(&connp->conn_lock); 11558 break; 11559 default: 11560 return (-EINVAL); 11561 } 11562 break; 11563 default: 11564 /* 11565 * "soft" error (negative) 11566 * option not handled at this level 11567 * Note: Do not modify *outlenp 11568 */ 11569 return (-EINVAL); 11570 } 11571 /* 11572 * Common case of return from an option that is sizeof (int) 11573 */ 11574 *(int *)outvalp = *i1; 11575 *outlenp = sizeof (int); 11576 return (0); 11577 } 11578 11579 /* 11580 * This routine gets default values of certain options whose default 11581 * values are maintained by protocol specific code 11582 */ 11583 /* ARGSUSED */ 11584 int 11585 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11586 { 11587 int *i1 = (int *)ptr; 11588 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11589 11590 switch (level) { 11591 case IPPROTO_IP: 11592 switch (name) { 11593 case IP_MULTICAST_TTL: 11594 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11595 return (sizeof (uchar_t)); 11596 case IP_MULTICAST_LOOP: 11597 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11598 return (sizeof (uchar_t)); 11599 default: 11600 return (-1); 11601 } 11602 case IPPROTO_IPV6: 11603 switch (name) { 11604 case IPV6_UNICAST_HOPS: 11605 *i1 = ipst->ips_ipv6_def_hops; 11606 return (sizeof (int)); 11607 case IPV6_MULTICAST_HOPS: 11608 *i1 = IP_DEFAULT_MULTICAST_TTL; 11609 return (sizeof (int)); 11610 case IPV6_MULTICAST_LOOP: 11611 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11612 return (sizeof (int)); 11613 case IPV6_V6ONLY: 11614 *i1 = 1; 11615 return (sizeof (int)); 11616 default: 11617 return (-1); 11618 } 11619 default: 11620 return (-1); 11621 } 11622 /* NOTREACHED */ 11623 } 11624 11625 /* 11626 * Given a destination address and a pointer to where to put the information 11627 * this routine fills in the mtuinfo. 11628 */ 11629 int 11630 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11631 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11632 { 11633 ire_t *ire; 11634 ip_stack_t *ipst = ns->netstack_ip; 11635 11636 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11637 return (-1); 11638 11639 bzero(mtuinfo, sizeof (*mtuinfo)); 11640 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11641 mtuinfo->ip6m_addr.sin6_port = port; 11642 mtuinfo->ip6m_addr.sin6_addr = *in6; 11643 11644 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11645 if (ire != NULL) { 11646 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11647 ire_refrele(ire); 11648 } else { 11649 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11650 } 11651 return (sizeof (struct ip6_mtuinfo)); 11652 } 11653 11654 /* 11655 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11656 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11657 * isn't. This doesn't matter as the error checking is done properly for the 11658 * other MRT options coming in through ip_opt_set. 11659 */ 11660 int 11661 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11662 { 11663 conn_t *connp = Q_TO_CONN(q); 11664 ipsec_req_t *req = (ipsec_req_t *)ptr; 11665 11666 switch (level) { 11667 case IPPROTO_IP: 11668 switch (name) { 11669 case MRT_VERSION: 11670 case MRT_ASSERT: 11671 (void) ip_mrouter_get(name, q, ptr); 11672 return (sizeof (int)); 11673 case IP_SEC_OPT: 11674 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11675 case IP_NEXTHOP: 11676 if (connp->conn_nexthop_set) { 11677 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11678 return (sizeof (ipaddr_t)); 11679 } else 11680 return (0); 11681 case IP_RECVPKTINFO: 11682 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11683 return (sizeof (int)); 11684 default: 11685 break; 11686 } 11687 break; 11688 case IPPROTO_IPV6: 11689 switch (name) { 11690 case IPV6_SEC_OPT: 11691 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11692 case IPV6_SRC_PREFERENCES: { 11693 return (ip6_get_src_preferences(connp, 11694 (uint32_t *)ptr)); 11695 } 11696 case IPV6_V6ONLY: 11697 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11698 return (sizeof (int)); 11699 case IPV6_PATHMTU: 11700 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11701 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11702 default: 11703 break; 11704 } 11705 break; 11706 default: 11707 break; 11708 } 11709 return (-1); 11710 } 11711 /* Named Dispatch routine to get a current value out of our parameter table. */ 11712 /* ARGSUSED */ 11713 static int 11714 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11715 { 11716 ipparam_t *ippa = (ipparam_t *)cp; 11717 11718 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11719 return (0); 11720 } 11721 11722 /* ARGSUSED */ 11723 static int 11724 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11725 { 11726 11727 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11728 return (0); 11729 } 11730 11731 /* 11732 * Set ip{,6}_forwarding values. This means walking through all of the 11733 * ill's and toggling their forwarding values. 11734 */ 11735 /* ARGSUSED */ 11736 static int 11737 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11738 { 11739 long new_value; 11740 int *forwarding_value = (int *)cp; 11741 ill_t *ill; 11742 boolean_t isv6; 11743 ill_walk_context_t ctx; 11744 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11745 11746 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11747 11748 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11749 new_value < 0 || new_value > 1) { 11750 return (EINVAL); 11751 } 11752 11753 *forwarding_value = new_value; 11754 11755 /* 11756 * Regardless of the current value of ip_forwarding, set all per-ill 11757 * values of ip_forwarding to the value being set. 11758 * 11759 * Bring all the ill's up to date with the new global value. 11760 */ 11761 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11762 11763 if (isv6) 11764 ill = ILL_START_WALK_V6(&ctx, ipst); 11765 else 11766 ill = ILL_START_WALK_V4(&ctx, ipst); 11767 11768 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11769 (void) ill_forward_set(ill, new_value != 0); 11770 11771 rw_exit(&ipst->ips_ill_g_lock); 11772 return (0); 11773 } 11774 11775 /* 11776 * Walk through the param array specified registering each element with the 11777 * Named Dispatch handler. This is called only during init. So it is ok 11778 * not to acquire any locks 11779 */ 11780 static boolean_t 11781 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11782 ipndp_t *ipnd, size_t ipnd_cnt) 11783 { 11784 for (; ippa_cnt-- > 0; ippa++) { 11785 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11786 if (!nd_load(ndp, ippa->ip_param_name, 11787 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11788 nd_free(ndp); 11789 return (B_FALSE); 11790 } 11791 } 11792 } 11793 11794 for (; ipnd_cnt-- > 0; ipnd++) { 11795 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11796 if (!nd_load(ndp, ipnd->ip_ndp_name, 11797 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11798 ipnd->ip_ndp_data)) { 11799 nd_free(ndp); 11800 return (B_FALSE); 11801 } 11802 } 11803 } 11804 11805 return (B_TRUE); 11806 } 11807 11808 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11809 /* ARGSUSED */ 11810 static int 11811 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11812 { 11813 long new_value; 11814 ipparam_t *ippa = (ipparam_t *)cp; 11815 11816 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11817 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11818 return (EINVAL); 11819 } 11820 ippa->ip_param_value = new_value; 11821 return (0); 11822 } 11823 11824 /* 11825 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11826 * When an ipf is passed here for the first time, if 11827 * we already have in-order fragments on the queue, we convert from the fast- 11828 * path reassembly scheme to the hard-case scheme. From then on, additional 11829 * fragments are reassembled here. We keep track of the start and end offsets 11830 * of each piece, and the number of holes in the chain. When the hole count 11831 * goes to zero, we are done! 11832 * 11833 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11834 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11835 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11836 * after the call to ip_reassemble(). 11837 */ 11838 int 11839 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11840 size_t msg_len) 11841 { 11842 uint_t end; 11843 mblk_t *next_mp; 11844 mblk_t *mp1; 11845 uint_t offset; 11846 boolean_t incr_dups = B_TRUE; 11847 boolean_t offset_zero_seen = B_FALSE; 11848 boolean_t pkt_boundary_checked = B_FALSE; 11849 11850 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11851 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11852 11853 /* Add in byte count */ 11854 ipf->ipf_count += msg_len; 11855 if (ipf->ipf_end) { 11856 /* 11857 * We were part way through in-order reassembly, but now there 11858 * is a hole. We walk through messages already queued, and 11859 * mark them for hard case reassembly. We know that up till 11860 * now they were in order starting from offset zero. 11861 */ 11862 offset = 0; 11863 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11864 IP_REASS_SET_START(mp1, offset); 11865 if (offset == 0) { 11866 ASSERT(ipf->ipf_nf_hdr_len != 0); 11867 offset = -ipf->ipf_nf_hdr_len; 11868 } 11869 offset += mp1->b_wptr - mp1->b_rptr; 11870 IP_REASS_SET_END(mp1, offset); 11871 } 11872 /* One hole at the end. */ 11873 ipf->ipf_hole_cnt = 1; 11874 /* Brand it as a hard case, forever. */ 11875 ipf->ipf_end = 0; 11876 } 11877 /* Walk through all the new pieces. */ 11878 do { 11879 end = start + (mp->b_wptr - mp->b_rptr); 11880 /* 11881 * If start is 0, decrease 'end' only for the first mblk of 11882 * the fragment. Otherwise 'end' can get wrong value in the 11883 * second pass of the loop if first mblk is exactly the 11884 * size of ipf_nf_hdr_len. 11885 */ 11886 if (start == 0 && !offset_zero_seen) { 11887 /* First segment */ 11888 ASSERT(ipf->ipf_nf_hdr_len != 0); 11889 end -= ipf->ipf_nf_hdr_len; 11890 offset_zero_seen = B_TRUE; 11891 } 11892 next_mp = mp->b_cont; 11893 /* 11894 * We are checking to see if there is any interesing data 11895 * to process. If there isn't and the mblk isn't the 11896 * one which carries the unfragmentable header then we 11897 * drop it. It's possible to have just the unfragmentable 11898 * header come through without any data. That needs to be 11899 * saved. 11900 * 11901 * If the assert at the top of this function holds then the 11902 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11903 * is infrequently traveled enough that the test is left in 11904 * to protect against future code changes which break that 11905 * invariant. 11906 */ 11907 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11908 /* Empty. Blast it. */ 11909 IP_REASS_SET_START(mp, 0); 11910 IP_REASS_SET_END(mp, 0); 11911 /* 11912 * If the ipf points to the mblk we are about to free, 11913 * update ipf to point to the next mblk (or NULL 11914 * if none). 11915 */ 11916 if (ipf->ipf_mp->b_cont == mp) 11917 ipf->ipf_mp->b_cont = next_mp; 11918 freeb(mp); 11919 continue; 11920 } 11921 mp->b_cont = NULL; 11922 IP_REASS_SET_START(mp, start); 11923 IP_REASS_SET_END(mp, end); 11924 if (!ipf->ipf_tail_mp) { 11925 ipf->ipf_tail_mp = mp; 11926 ipf->ipf_mp->b_cont = mp; 11927 if (start == 0 || !more) { 11928 ipf->ipf_hole_cnt = 1; 11929 /* 11930 * if the first fragment comes in more than one 11931 * mblk, this loop will be executed for each 11932 * mblk. Need to adjust hole count so exiting 11933 * this routine will leave hole count at 1. 11934 */ 11935 if (next_mp) 11936 ipf->ipf_hole_cnt++; 11937 } else 11938 ipf->ipf_hole_cnt = 2; 11939 continue; 11940 } else if (ipf->ipf_last_frag_seen && !more && 11941 !pkt_boundary_checked) { 11942 /* 11943 * We check datagram boundary only if this fragment 11944 * claims to be the last fragment and we have seen a 11945 * last fragment in the past too. We do this only 11946 * once for a given fragment. 11947 * 11948 * start cannot be 0 here as fragments with start=0 11949 * and MF=0 gets handled as a complete packet. These 11950 * fragments should not reach here. 11951 */ 11952 11953 if (start + msgdsize(mp) != 11954 IP_REASS_END(ipf->ipf_tail_mp)) { 11955 /* 11956 * We have two fragments both of which claim 11957 * to be the last fragment but gives conflicting 11958 * information about the whole datagram size. 11959 * Something fishy is going on. Drop the 11960 * fragment and free up the reassembly list. 11961 */ 11962 return (IP_REASS_FAILED); 11963 } 11964 11965 /* 11966 * We shouldn't come to this code block again for this 11967 * particular fragment. 11968 */ 11969 pkt_boundary_checked = B_TRUE; 11970 } 11971 11972 /* New stuff at or beyond tail? */ 11973 offset = IP_REASS_END(ipf->ipf_tail_mp); 11974 if (start >= offset) { 11975 if (ipf->ipf_last_frag_seen) { 11976 /* current fragment is beyond last fragment */ 11977 return (IP_REASS_FAILED); 11978 } 11979 /* Link it on end. */ 11980 ipf->ipf_tail_mp->b_cont = mp; 11981 ipf->ipf_tail_mp = mp; 11982 if (more) { 11983 if (start != offset) 11984 ipf->ipf_hole_cnt++; 11985 } else if (start == offset && next_mp == NULL) 11986 ipf->ipf_hole_cnt--; 11987 continue; 11988 } 11989 mp1 = ipf->ipf_mp->b_cont; 11990 offset = IP_REASS_START(mp1); 11991 /* New stuff at the front? */ 11992 if (start < offset) { 11993 if (start == 0) { 11994 if (end >= offset) { 11995 /* Nailed the hole at the begining. */ 11996 ipf->ipf_hole_cnt--; 11997 } 11998 } else if (end < offset) { 11999 /* 12000 * A hole, stuff, and a hole where there used 12001 * to be just a hole. 12002 */ 12003 ipf->ipf_hole_cnt++; 12004 } 12005 mp->b_cont = mp1; 12006 /* Check for overlap. */ 12007 while (end > offset) { 12008 if (end < IP_REASS_END(mp1)) { 12009 mp->b_wptr -= end - offset; 12010 IP_REASS_SET_END(mp, offset); 12011 BUMP_MIB(ill->ill_ip_mib, 12012 ipIfStatsReasmPartDups); 12013 break; 12014 } 12015 /* Did we cover another hole? */ 12016 if ((mp1->b_cont && 12017 IP_REASS_END(mp1) != 12018 IP_REASS_START(mp1->b_cont) && 12019 end >= IP_REASS_START(mp1->b_cont)) || 12020 (!ipf->ipf_last_frag_seen && !more)) { 12021 ipf->ipf_hole_cnt--; 12022 } 12023 /* Clip out mp1. */ 12024 if ((mp->b_cont = mp1->b_cont) == NULL) { 12025 /* 12026 * After clipping out mp1, this guy 12027 * is now hanging off the end. 12028 */ 12029 ipf->ipf_tail_mp = mp; 12030 } 12031 IP_REASS_SET_START(mp1, 0); 12032 IP_REASS_SET_END(mp1, 0); 12033 /* Subtract byte count */ 12034 ipf->ipf_count -= mp1->b_datap->db_lim - 12035 mp1->b_datap->db_base; 12036 freeb(mp1); 12037 BUMP_MIB(ill->ill_ip_mib, 12038 ipIfStatsReasmPartDups); 12039 mp1 = mp->b_cont; 12040 if (!mp1) 12041 break; 12042 offset = IP_REASS_START(mp1); 12043 } 12044 ipf->ipf_mp->b_cont = mp; 12045 continue; 12046 } 12047 /* 12048 * The new piece starts somewhere between the start of the head 12049 * and before the end of the tail. 12050 */ 12051 for (; mp1; mp1 = mp1->b_cont) { 12052 offset = IP_REASS_END(mp1); 12053 if (start < offset) { 12054 if (end <= offset) { 12055 /* Nothing new. */ 12056 IP_REASS_SET_START(mp, 0); 12057 IP_REASS_SET_END(mp, 0); 12058 /* Subtract byte count */ 12059 ipf->ipf_count -= mp->b_datap->db_lim - 12060 mp->b_datap->db_base; 12061 if (incr_dups) { 12062 ipf->ipf_num_dups++; 12063 incr_dups = B_FALSE; 12064 } 12065 freeb(mp); 12066 BUMP_MIB(ill->ill_ip_mib, 12067 ipIfStatsReasmDuplicates); 12068 break; 12069 } 12070 /* 12071 * Trim redundant stuff off beginning of new 12072 * piece. 12073 */ 12074 IP_REASS_SET_START(mp, offset); 12075 mp->b_rptr += offset - start; 12076 BUMP_MIB(ill->ill_ip_mib, 12077 ipIfStatsReasmPartDups); 12078 start = offset; 12079 if (!mp1->b_cont) { 12080 /* 12081 * After trimming, this guy is now 12082 * hanging off the end. 12083 */ 12084 mp1->b_cont = mp; 12085 ipf->ipf_tail_mp = mp; 12086 if (!more) { 12087 ipf->ipf_hole_cnt--; 12088 } 12089 break; 12090 } 12091 } 12092 if (start >= IP_REASS_START(mp1->b_cont)) 12093 continue; 12094 /* Fill a hole */ 12095 if (start > offset) 12096 ipf->ipf_hole_cnt++; 12097 mp->b_cont = mp1->b_cont; 12098 mp1->b_cont = mp; 12099 mp1 = mp->b_cont; 12100 offset = IP_REASS_START(mp1); 12101 if (end >= offset) { 12102 ipf->ipf_hole_cnt--; 12103 /* Check for overlap. */ 12104 while (end > offset) { 12105 if (end < IP_REASS_END(mp1)) { 12106 mp->b_wptr -= end - offset; 12107 IP_REASS_SET_END(mp, offset); 12108 /* 12109 * TODO we might bump 12110 * this up twice if there is 12111 * overlap at both ends. 12112 */ 12113 BUMP_MIB(ill->ill_ip_mib, 12114 ipIfStatsReasmPartDups); 12115 break; 12116 } 12117 /* Did we cover another hole? */ 12118 if ((mp1->b_cont && 12119 IP_REASS_END(mp1) 12120 != IP_REASS_START(mp1->b_cont) && 12121 end >= 12122 IP_REASS_START(mp1->b_cont)) || 12123 (!ipf->ipf_last_frag_seen && 12124 !more)) { 12125 ipf->ipf_hole_cnt--; 12126 } 12127 /* Clip out mp1. */ 12128 if ((mp->b_cont = mp1->b_cont) == 12129 NULL) { 12130 /* 12131 * After clipping out mp1, 12132 * this guy is now hanging 12133 * off the end. 12134 */ 12135 ipf->ipf_tail_mp = mp; 12136 } 12137 IP_REASS_SET_START(mp1, 0); 12138 IP_REASS_SET_END(mp1, 0); 12139 /* Subtract byte count */ 12140 ipf->ipf_count -= 12141 mp1->b_datap->db_lim - 12142 mp1->b_datap->db_base; 12143 freeb(mp1); 12144 BUMP_MIB(ill->ill_ip_mib, 12145 ipIfStatsReasmPartDups); 12146 mp1 = mp->b_cont; 12147 if (!mp1) 12148 break; 12149 offset = IP_REASS_START(mp1); 12150 } 12151 } 12152 break; 12153 } 12154 } while (start = end, mp = next_mp); 12155 12156 /* Fragment just processed could be the last one. Remember this fact */ 12157 if (!more) 12158 ipf->ipf_last_frag_seen = B_TRUE; 12159 12160 /* Still got holes? */ 12161 if (ipf->ipf_hole_cnt) 12162 return (IP_REASS_PARTIAL); 12163 /* Clean up overloaded fields to avoid upstream disasters. */ 12164 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12165 IP_REASS_SET_START(mp1, 0); 12166 IP_REASS_SET_END(mp1, 0); 12167 } 12168 return (IP_REASS_COMPLETE); 12169 } 12170 12171 /* 12172 * ipsec processing for the fast path, used for input UDP Packets 12173 * Returns true if ready for passup to UDP. 12174 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12175 * was an ESP-in-UDP packet, etc.). 12176 */ 12177 static boolean_t 12178 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12179 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12180 { 12181 uint32_t ill_index; 12182 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12183 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12184 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12185 udp_t *udp = connp->conn_udp; 12186 12187 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12188 /* The ill_index of the incoming ILL */ 12189 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12190 12191 /* pass packet up to the transport */ 12192 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12193 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12194 NULL, mctl_present); 12195 if (*first_mpp == NULL) { 12196 return (B_FALSE); 12197 } 12198 } 12199 12200 /* Initiate IPPF processing for fastpath UDP */ 12201 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12202 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12203 if (*mpp == NULL) { 12204 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12205 "deferred/dropped during IPPF processing\n")); 12206 return (B_FALSE); 12207 } 12208 } 12209 /* 12210 * Remove 0-spi if it's 0, or move everything behind 12211 * the UDP header over it and forward to ESP via 12212 * ip_proto_input(). 12213 */ 12214 if (udp->udp_nat_t_endpoint) { 12215 if (mctl_present) { 12216 /* mctl_present *shouldn't* happen. */ 12217 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12218 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12219 &ipss->ipsec_dropper); 12220 *first_mpp = NULL; 12221 return (B_FALSE); 12222 } 12223 12224 /* "ill" is "recv_ill" in actuality. */ 12225 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12226 return (B_FALSE); 12227 12228 /* Else continue like a normal UDP packet. */ 12229 } 12230 12231 /* 12232 * We make the checks as below since we are in the fast path 12233 * and want to minimize the number of checks if the IP_RECVIF and/or 12234 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12235 */ 12236 if (connp->conn_recvif || connp->conn_recvslla || 12237 connp->conn_ip_recvpktinfo) { 12238 if (connp->conn_recvif) { 12239 in_flags = IPF_RECVIF; 12240 } 12241 /* 12242 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12243 * so the flag passed to ip_add_info is based on IP version 12244 * of connp. 12245 */ 12246 if (connp->conn_ip_recvpktinfo) { 12247 if (connp->conn_af_isv6) { 12248 /* 12249 * V6 only needs index 12250 */ 12251 in_flags |= IPF_RECVIF; 12252 } else { 12253 /* 12254 * V4 needs index + matching address. 12255 */ 12256 in_flags |= IPF_RECVADDR; 12257 } 12258 } 12259 if (connp->conn_recvslla) { 12260 in_flags |= IPF_RECVSLLA; 12261 } 12262 /* 12263 * since in_flags are being set ill will be 12264 * referenced in ip_add_info, so it better not 12265 * be NULL. 12266 */ 12267 /* 12268 * the actual data will be contained in b_cont 12269 * upon successful return of the following call. 12270 * If the call fails then the original mblk is 12271 * returned. 12272 */ 12273 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12274 ipst); 12275 } 12276 12277 return (B_TRUE); 12278 } 12279 12280 /* 12281 * Fragmentation reassembly. Each ILL has a hash table for 12282 * queuing packets undergoing reassembly for all IPIFs 12283 * associated with the ILL. The hash is based on the packet 12284 * IP ident field. The ILL frag hash table was allocated 12285 * as a timer block at the time the ILL was created. Whenever 12286 * there is anything on the reassembly queue, the timer will 12287 * be running. Returns B_TRUE if successful else B_FALSE; 12288 * frees mp on failure. 12289 */ 12290 static boolean_t 12291 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12292 uint32_t *cksum_val, uint16_t *cksum_flags) 12293 { 12294 uint32_t frag_offset_flags; 12295 ill_t *ill = (ill_t *)q->q_ptr; 12296 mblk_t *mp = *mpp; 12297 mblk_t *t_mp; 12298 ipaddr_t dst; 12299 uint8_t proto = ipha->ipha_protocol; 12300 uint32_t sum_val; 12301 uint16_t sum_flags; 12302 ipf_t *ipf; 12303 ipf_t **ipfp; 12304 ipfb_t *ipfb; 12305 uint16_t ident; 12306 uint32_t offset; 12307 ipaddr_t src; 12308 uint_t hdr_length; 12309 uint32_t end; 12310 mblk_t *mp1; 12311 mblk_t *tail_mp; 12312 size_t count; 12313 size_t msg_len; 12314 uint8_t ecn_info = 0; 12315 uint32_t packet_size; 12316 boolean_t pruned = B_FALSE; 12317 ip_stack_t *ipst = ill->ill_ipst; 12318 12319 if (cksum_val != NULL) 12320 *cksum_val = 0; 12321 if (cksum_flags != NULL) 12322 *cksum_flags = 0; 12323 12324 /* 12325 * Drop the fragmented as early as possible, if 12326 * we don't have resource(s) to re-assemble. 12327 */ 12328 if (ipst->ips_ip_reass_queue_bytes == 0) { 12329 freemsg(mp); 12330 return (B_FALSE); 12331 } 12332 12333 /* Check for fragmentation offset; return if there's none */ 12334 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12335 (IPH_MF | IPH_OFFSET)) == 0) 12336 return (B_TRUE); 12337 12338 /* 12339 * We utilize hardware computed checksum info only for UDP since 12340 * IP fragmentation is a normal occurence for the protocol. In 12341 * addition, checksum offload support for IP fragments carrying 12342 * UDP payload is commonly implemented across network adapters. 12343 */ 12344 ASSERT(ill != NULL); 12345 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12346 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12347 mblk_t *mp1 = mp->b_cont; 12348 int32_t len; 12349 12350 /* Record checksum information from the packet */ 12351 sum_val = (uint32_t)DB_CKSUM16(mp); 12352 sum_flags = DB_CKSUMFLAGS(mp); 12353 12354 /* IP payload offset from beginning of mblk */ 12355 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12356 12357 if ((sum_flags & HCK_PARTIALCKSUM) && 12358 (mp1 == NULL || mp1->b_cont == NULL) && 12359 offset >= DB_CKSUMSTART(mp) && 12360 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12361 uint32_t adj; 12362 /* 12363 * Partial checksum has been calculated by hardware 12364 * and attached to the packet; in addition, any 12365 * prepended extraneous data is even byte aligned. 12366 * If any such data exists, we adjust the checksum; 12367 * this would also handle any postpended data. 12368 */ 12369 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12370 mp, mp1, len, adj); 12371 12372 /* One's complement subtract extraneous checksum */ 12373 if (adj >= sum_val) 12374 sum_val = ~(adj - sum_val) & 0xFFFF; 12375 else 12376 sum_val -= adj; 12377 } 12378 } else { 12379 sum_val = 0; 12380 sum_flags = 0; 12381 } 12382 12383 /* Clear hardware checksumming flag */ 12384 DB_CKSUMFLAGS(mp) = 0; 12385 12386 ident = ipha->ipha_ident; 12387 offset = (frag_offset_flags << 3) & 0xFFFF; 12388 src = ipha->ipha_src; 12389 dst = ipha->ipha_dst; 12390 hdr_length = IPH_HDR_LENGTH(ipha); 12391 end = ntohs(ipha->ipha_length) - hdr_length; 12392 12393 /* If end == 0 then we have a packet with no data, so just free it */ 12394 if (end == 0) { 12395 freemsg(mp); 12396 return (B_FALSE); 12397 } 12398 12399 /* Record the ECN field info. */ 12400 ecn_info = (ipha->ipha_type_of_service & 0x3); 12401 if (offset != 0) { 12402 /* 12403 * If this isn't the first piece, strip the header, and 12404 * add the offset to the end value. 12405 */ 12406 mp->b_rptr += hdr_length; 12407 end += offset; 12408 } 12409 12410 msg_len = MBLKSIZE(mp); 12411 tail_mp = mp; 12412 while (tail_mp->b_cont != NULL) { 12413 tail_mp = tail_mp->b_cont; 12414 msg_len += MBLKSIZE(tail_mp); 12415 } 12416 12417 /* If the reassembly list for this ILL will get too big, prune it */ 12418 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12419 ipst->ips_ip_reass_queue_bytes) { 12420 ill_frag_prune(ill, 12421 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12422 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12423 pruned = B_TRUE; 12424 } 12425 12426 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12427 mutex_enter(&ipfb->ipfb_lock); 12428 12429 ipfp = &ipfb->ipfb_ipf; 12430 /* Try to find an existing fragment queue for this packet. */ 12431 for (;;) { 12432 ipf = ipfp[0]; 12433 if (ipf != NULL) { 12434 /* 12435 * It has to match on ident and src/dst address. 12436 */ 12437 if (ipf->ipf_ident == ident && 12438 ipf->ipf_src == src && 12439 ipf->ipf_dst == dst && 12440 ipf->ipf_protocol == proto) { 12441 /* 12442 * If we have received too many 12443 * duplicate fragments for this packet 12444 * free it. 12445 */ 12446 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12447 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12448 freemsg(mp); 12449 mutex_exit(&ipfb->ipfb_lock); 12450 return (B_FALSE); 12451 } 12452 /* Found it. */ 12453 break; 12454 } 12455 ipfp = &ipf->ipf_hash_next; 12456 continue; 12457 } 12458 12459 /* 12460 * If we pruned the list, do we want to store this new 12461 * fragment?. We apply an optimization here based on the 12462 * fact that most fragments will be received in order. 12463 * So if the offset of this incoming fragment is zero, 12464 * it is the first fragment of a new packet. We will 12465 * keep it. Otherwise drop the fragment, as we have 12466 * probably pruned the packet already (since the 12467 * packet cannot be found). 12468 */ 12469 if (pruned && offset != 0) { 12470 mutex_exit(&ipfb->ipfb_lock); 12471 freemsg(mp); 12472 return (B_FALSE); 12473 } 12474 12475 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12476 /* 12477 * Too many fragmented packets in this hash 12478 * bucket. Free the oldest. 12479 */ 12480 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12481 } 12482 12483 /* New guy. Allocate a frag message. */ 12484 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12485 if (mp1 == NULL) { 12486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12487 freemsg(mp); 12488 reass_done: 12489 mutex_exit(&ipfb->ipfb_lock); 12490 return (B_FALSE); 12491 } 12492 12493 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12494 mp1->b_cont = mp; 12495 12496 /* Initialize the fragment header. */ 12497 ipf = (ipf_t *)mp1->b_rptr; 12498 ipf->ipf_mp = mp1; 12499 ipf->ipf_ptphn = ipfp; 12500 ipfp[0] = ipf; 12501 ipf->ipf_hash_next = NULL; 12502 ipf->ipf_ident = ident; 12503 ipf->ipf_protocol = proto; 12504 ipf->ipf_src = src; 12505 ipf->ipf_dst = dst; 12506 ipf->ipf_nf_hdr_len = 0; 12507 /* Record reassembly start time. */ 12508 ipf->ipf_timestamp = gethrestime_sec(); 12509 /* Record ipf generation and account for frag header */ 12510 ipf->ipf_gen = ill->ill_ipf_gen++; 12511 ipf->ipf_count = MBLKSIZE(mp1); 12512 ipf->ipf_last_frag_seen = B_FALSE; 12513 ipf->ipf_ecn = ecn_info; 12514 ipf->ipf_num_dups = 0; 12515 ipfb->ipfb_frag_pkts++; 12516 ipf->ipf_checksum = 0; 12517 ipf->ipf_checksum_flags = 0; 12518 12519 /* Store checksum value in fragment header */ 12520 if (sum_flags != 0) { 12521 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12522 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12523 ipf->ipf_checksum = sum_val; 12524 ipf->ipf_checksum_flags = sum_flags; 12525 } 12526 12527 /* 12528 * We handle reassembly two ways. In the easy case, 12529 * where all the fragments show up in order, we do 12530 * minimal bookkeeping, and just clip new pieces on 12531 * the end. If we ever see a hole, then we go off 12532 * to ip_reassemble which has to mark the pieces and 12533 * keep track of the number of holes, etc. Obviously, 12534 * the point of having both mechanisms is so we can 12535 * handle the easy case as efficiently as possible. 12536 */ 12537 if (offset == 0) { 12538 /* Easy case, in-order reassembly so far. */ 12539 ipf->ipf_count += msg_len; 12540 ipf->ipf_tail_mp = tail_mp; 12541 /* 12542 * Keep track of next expected offset in 12543 * ipf_end. 12544 */ 12545 ipf->ipf_end = end; 12546 ipf->ipf_nf_hdr_len = hdr_length; 12547 } else { 12548 /* Hard case, hole at the beginning. */ 12549 ipf->ipf_tail_mp = NULL; 12550 /* 12551 * ipf_end == 0 means that we have given up 12552 * on easy reassembly. 12553 */ 12554 ipf->ipf_end = 0; 12555 12556 /* Forget checksum offload from now on */ 12557 ipf->ipf_checksum_flags = 0; 12558 12559 /* 12560 * ipf_hole_cnt is set by ip_reassemble. 12561 * ipf_count is updated by ip_reassemble. 12562 * No need to check for return value here 12563 * as we don't expect reassembly to complete 12564 * or fail for the first fragment itself. 12565 */ 12566 (void) ip_reassemble(mp, ipf, 12567 (frag_offset_flags & IPH_OFFSET) << 3, 12568 (frag_offset_flags & IPH_MF), ill, msg_len); 12569 } 12570 /* Update per ipfb and ill byte counts */ 12571 ipfb->ipfb_count += ipf->ipf_count; 12572 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12573 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12574 /* If the frag timer wasn't already going, start it. */ 12575 mutex_enter(&ill->ill_lock); 12576 ill_frag_timer_start(ill); 12577 mutex_exit(&ill->ill_lock); 12578 goto reass_done; 12579 } 12580 12581 /* 12582 * If the packet's flag has changed (it could be coming up 12583 * from an interface different than the previous, therefore 12584 * possibly different checksum capability), then forget about 12585 * any stored checksum states. Otherwise add the value to 12586 * the existing one stored in the fragment header. 12587 */ 12588 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12589 sum_val += ipf->ipf_checksum; 12590 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12591 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12592 ipf->ipf_checksum = sum_val; 12593 } else if (ipf->ipf_checksum_flags != 0) { 12594 /* Forget checksum offload from now on */ 12595 ipf->ipf_checksum_flags = 0; 12596 } 12597 12598 /* 12599 * We have a new piece of a datagram which is already being 12600 * reassembled. Update the ECN info if all IP fragments 12601 * are ECN capable. If there is one which is not, clear 12602 * all the info. If there is at least one which has CE 12603 * code point, IP needs to report that up to transport. 12604 */ 12605 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12606 if (ecn_info == IPH_ECN_CE) 12607 ipf->ipf_ecn = IPH_ECN_CE; 12608 } else { 12609 ipf->ipf_ecn = IPH_ECN_NECT; 12610 } 12611 if (offset && ipf->ipf_end == offset) { 12612 /* The new fragment fits at the end */ 12613 ipf->ipf_tail_mp->b_cont = mp; 12614 /* Update the byte count */ 12615 ipf->ipf_count += msg_len; 12616 /* Update per ipfb and ill byte counts */ 12617 ipfb->ipfb_count += msg_len; 12618 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12619 atomic_add_32(&ill->ill_frag_count, msg_len); 12620 if (frag_offset_flags & IPH_MF) { 12621 /* More to come. */ 12622 ipf->ipf_end = end; 12623 ipf->ipf_tail_mp = tail_mp; 12624 goto reass_done; 12625 } 12626 } else { 12627 /* Go do the hard cases. */ 12628 int ret; 12629 12630 if (offset == 0) 12631 ipf->ipf_nf_hdr_len = hdr_length; 12632 12633 /* Save current byte count */ 12634 count = ipf->ipf_count; 12635 ret = ip_reassemble(mp, ipf, 12636 (frag_offset_flags & IPH_OFFSET) << 3, 12637 (frag_offset_flags & IPH_MF), ill, msg_len); 12638 /* Count of bytes added and subtracted (freeb()ed) */ 12639 count = ipf->ipf_count - count; 12640 if (count) { 12641 /* Update per ipfb and ill byte counts */ 12642 ipfb->ipfb_count += count; 12643 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12644 atomic_add_32(&ill->ill_frag_count, count); 12645 } 12646 if (ret == IP_REASS_PARTIAL) { 12647 goto reass_done; 12648 } else if (ret == IP_REASS_FAILED) { 12649 /* Reassembly failed. Free up all resources */ 12650 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12651 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12652 IP_REASS_SET_START(t_mp, 0); 12653 IP_REASS_SET_END(t_mp, 0); 12654 } 12655 freemsg(mp); 12656 goto reass_done; 12657 } 12658 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12659 } 12660 /* 12661 * We have completed reassembly. Unhook the frag header from 12662 * the reassembly list. 12663 * 12664 * Before we free the frag header, record the ECN info 12665 * to report back to the transport. 12666 */ 12667 ecn_info = ipf->ipf_ecn; 12668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12669 ipfp = ipf->ipf_ptphn; 12670 12671 /* We need to supply these to caller */ 12672 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12673 sum_val = ipf->ipf_checksum; 12674 else 12675 sum_val = 0; 12676 12677 mp1 = ipf->ipf_mp; 12678 count = ipf->ipf_count; 12679 ipf = ipf->ipf_hash_next; 12680 if (ipf != NULL) 12681 ipf->ipf_ptphn = ipfp; 12682 ipfp[0] = ipf; 12683 atomic_add_32(&ill->ill_frag_count, -count); 12684 ASSERT(ipfb->ipfb_count >= count); 12685 ipfb->ipfb_count -= count; 12686 ipfb->ipfb_frag_pkts--; 12687 mutex_exit(&ipfb->ipfb_lock); 12688 /* Ditch the frag header. */ 12689 mp = mp1->b_cont; 12690 12691 freeb(mp1); 12692 12693 /* Restore original IP length in header. */ 12694 packet_size = (uint32_t)msgdsize(mp); 12695 if (packet_size > IP_MAXPACKET) { 12696 freemsg(mp); 12697 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12698 return (B_FALSE); 12699 } 12700 12701 if (DB_REF(mp) > 1) { 12702 mblk_t *mp2 = copymsg(mp); 12703 12704 freemsg(mp); 12705 if (mp2 == NULL) { 12706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12707 return (B_FALSE); 12708 } 12709 mp = mp2; 12710 } 12711 ipha = (ipha_t *)mp->b_rptr; 12712 12713 ipha->ipha_length = htons((uint16_t)packet_size); 12714 /* We're now complete, zip the frag state */ 12715 ipha->ipha_fragment_offset_and_flags = 0; 12716 /* Record the ECN info. */ 12717 ipha->ipha_type_of_service &= 0xFC; 12718 ipha->ipha_type_of_service |= ecn_info; 12719 *mpp = mp; 12720 12721 /* Reassembly is successful; return checksum information if needed */ 12722 if (cksum_val != NULL) 12723 *cksum_val = sum_val; 12724 if (cksum_flags != NULL) 12725 *cksum_flags = sum_flags; 12726 12727 return (B_TRUE); 12728 } 12729 12730 /* 12731 * Perform ip header check sum update local options. 12732 * return B_TRUE if all is well, else return B_FALSE and release 12733 * the mp. caller is responsible for decrementing ire ref cnt. 12734 */ 12735 static boolean_t 12736 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12737 ip_stack_t *ipst) 12738 { 12739 mblk_t *first_mp; 12740 boolean_t mctl_present; 12741 uint16_t sum; 12742 12743 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12744 /* 12745 * Don't do the checksum if it has gone through AH/ESP 12746 * processing. 12747 */ 12748 if (!mctl_present) { 12749 sum = ip_csum_hdr(ipha); 12750 if (sum != 0) { 12751 if (ill != NULL) { 12752 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12753 } else { 12754 BUMP_MIB(&ipst->ips_ip_mib, 12755 ipIfStatsInCksumErrs); 12756 } 12757 freemsg(first_mp); 12758 return (B_FALSE); 12759 } 12760 } 12761 12762 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12763 if (mctl_present) 12764 freeb(first_mp); 12765 return (B_FALSE); 12766 } 12767 12768 return (B_TRUE); 12769 } 12770 12771 /* 12772 * All udp packet are delivered to the local host via this routine. 12773 */ 12774 void 12775 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12776 ill_t *recv_ill) 12777 { 12778 uint32_t sum; 12779 uint32_t u1; 12780 boolean_t mctl_present; 12781 conn_t *connp; 12782 mblk_t *first_mp; 12783 uint16_t *up; 12784 ill_t *ill = (ill_t *)q->q_ptr; 12785 uint16_t reass_hck_flags = 0; 12786 ip_stack_t *ipst; 12787 12788 ASSERT(recv_ill != NULL); 12789 ipst = recv_ill->ill_ipst; 12790 12791 #define rptr ((uchar_t *)ipha) 12792 12793 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12794 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12795 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12796 ASSERT(ill != NULL); 12797 12798 /* 12799 * FAST PATH for udp packets 12800 */ 12801 12802 /* u1 is # words of IP options */ 12803 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12804 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12805 12806 /* IP options present */ 12807 if (u1 != 0) 12808 goto ipoptions; 12809 12810 /* Check the IP header checksum. */ 12811 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12812 /* Clear the IP header h/w cksum flag */ 12813 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12814 } else if (!mctl_present) { 12815 /* 12816 * Don't verify header checksum if this packet is coming 12817 * back from AH/ESP as we already did it. 12818 */ 12819 #define uph ((uint16_t *)ipha) 12820 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12821 uph[6] + uph[7] + uph[8] + uph[9]; 12822 #undef uph 12823 /* finish doing IP checksum */ 12824 sum = (sum & 0xFFFF) + (sum >> 16); 12825 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12826 if (sum != 0 && sum != 0xFFFF) { 12827 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12828 freemsg(first_mp); 12829 return; 12830 } 12831 } 12832 12833 /* 12834 * Count for SNMP of inbound packets for ire. 12835 * if mctl is present this might be a secure packet and 12836 * has already been counted for in ip_proto_input(). 12837 */ 12838 if (!mctl_present) { 12839 UPDATE_IB_PKT_COUNT(ire); 12840 ire->ire_last_used_time = lbolt; 12841 } 12842 12843 /* packet part of fragmented IP packet? */ 12844 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12845 if (u1 & (IPH_MF | IPH_OFFSET)) { 12846 goto fragmented; 12847 } 12848 12849 /* u1 = IP header length (20 bytes) */ 12850 u1 = IP_SIMPLE_HDR_LENGTH; 12851 12852 /* packet does not contain complete IP & UDP headers */ 12853 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12854 goto udppullup; 12855 12856 /* up points to UDP header */ 12857 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12858 #define iphs ((uint16_t *)ipha) 12859 12860 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12861 if (up[3] != 0) { 12862 mblk_t *mp1 = mp->b_cont; 12863 boolean_t cksum_err; 12864 uint16_t hck_flags = 0; 12865 12866 /* Pseudo-header checksum */ 12867 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12868 iphs[9] + up[2]; 12869 12870 /* 12871 * Revert to software checksum calculation if the interface 12872 * isn't capable of checksum offload or if IPsec is present. 12873 */ 12874 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12875 hck_flags = DB_CKSUMFLAGS(mp); 12876 12877 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12878 IP_STAT(ipst, ip_in_sw_cksum); 12879 12880 IP_CKSUM_RECV(hck_flags, u1, 12881 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12882 (int32_t)((uchar_t *)up - rptr), 12883 mp, mp1, cksum_err); 12884 12885 if (cksum_err) { 12886 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12887 if (hck_flags & HCK_FULLCKSUM) 12888 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12889 else if (hck_flags & HCK_PARTIALCKSUM) 12890 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12891 else 12892 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12893 12894 freemsg(first_mp); 12895 return; 12896 } 12897 } 12898 12899 /* Non-fragmented broadcast or multicast packet? */ 12900 if (ire->ire_type == IRE_BROADCAST) 12901 goto udpslowpath; 12902 12903 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12904 ire->ire_zoneid, ipst)) != NULL) { 12905 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12906 IP_STAT(ipst, ip_udp_fast_path); 12907 12908 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12909 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12910 freemsg(mp); 12911 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12912 } else { 12913 if (!mctl_present) { 12914 BUMP_MIB(ill->ill_ip_mib, 12915 ipIfStatsHCInDelivers); 12916 } 12917 /* 12918 * mp and first_mp can change. 12919 */ 12920 if (ip_udp_check(q, connp, recv_ill, 12921 ipha, &mp, &first_mp, mctl_present, ire)) { 12922 /* Send it upstream */ 12923 (connp->conn_recv)(connp, mp, NULL); 12924 } 12925 } 12926 /* 12927 * freeb() cannot deal with null mblk being passed 12928 * in and first_mp can be set to null in the call 12929 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12930 */ 12931 if (mctl_present && first_mp != NULL) { 12932 freeb(first_mp); 12933 } 12934 CONN_DEC_REF(connp); 12935 return; 12936 } 12937 12938 /* 12939 * if we got here we know the packet is not fragmented and 12940 * has no options. The classifier could not find a conn_t and 12941 * most likely its an icmp packet so send it through slow path. 12942 */ 12943 12944 goto udpslowpath; 12945 12946 ipoptions: 12947 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12948 goto slow_done; 12949 } 12950 12951 UPDATE_IB_PKT_COUNT(ire); 12952 ire->ire_last_used_time = lbolt; 12953 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12954 if (u1 & (IPH_MF | IPH_OFFSET)) { 12955 fragmented: 12956 /* 12957 * "sum" and "reass_hck_flags" are non-zero if the 12958 * reassembled packet has a valid hardware computed 12959 * checksum information associated with it. 12960 */ 12961 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12962 goto slow_done; 12963 /* 12964 * Make sure that first_mp points back to mp as 12965 * the mp we came in with could have changed in 12966 * ip_rput_fragment(). 12967 */ 12968 ASSERT(!mctl_present); 12969 ipha = (ipha_t *)mp->b_rptr; 12970 first_mp = mp; 12971 } 12972 12973 /* Now we have a complete datagram, destined for this machine. */ 12974 u1 = IPH_HDR_LENGTH(ipha); 12975 /* Pull up the UDP header, if necessary. */ 12976 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12977 udppullup: 12978 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12980 freemsg(first_mp); 12981 goto slow_done; 12982 } 12983 ipha = (ipha_t *)mp->b_rptr; 12984 } 12985 12986 /* 12987 * Validate the checksum for the reassembled packet; for the 12988 * pullup case we calculate the payload checksum in software. 12989 */ 12990 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12991 if (up[3] != 0) { 12992 boolean_t cksum_err; 12993 12994 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12995 IP_STAT(ipst, ip_in_sw_cksum); 12996 12997 IP_CKSUM_RECV_REASS(reass_hck_flags, 12998 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12999 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13000 iphs[9] + up[2], sum, cksum_err); 13001 13002 if (cksum_err) { 13003 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13004 13005 if (reass_hck_flags & HCK_FULLCKSUM) 13006 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13007 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13008 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13009 else 13010 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13011 13012 freemsg(first_mp); 13013 goto slow_done; 13014 } 13015 } 13016 udpslowpath: 13017 13018 /* Clear hardware checksum flag to be safe */ 13019 DB_CKSUMFLAGS(mp) = 0; 13020 13021 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13022 (ire->ire_type == IRE_BROADCAST), 13023 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13024 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13025 13026 slow_done: 13027 IP_STAT(ipst, ip_udp_slow_path); 13028 return; 13029 13030 #undef iphs 13031 #undef rptr 13032 } 13033 13034 /* ARGSUSED */ 13035 static mblk_t * 13036 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13037 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13038 ill_rx_ring_t *ill_ring) 13039 { 13040 conn_t *connp; 13041 uint32_t sum; 13042 uint32_t u1; 13043 uint16_t *up; 13044 int offset; 13045 ssize_t len; 13046 mblk_t *mp1; 13047 boolean_t syn_present = B_FALSE; 13048 tcph_t *tcph; 13049 uint_t tcph_flags; 13050 uint_t ip_hdr_len; 13051 ill_t *ill = (ill_t *)q->q_ptr; 13052 zoneid_t zoneid = ire->ire_zoneid; 13053 boolean_t cksum_err; 13054 uint16_t hck_flags = 0; 13055 ip_stack_t *ipst = recv_ill->ill_ipst; 13056 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13057 13058 #define rptr ((uchar_t *)ipha) 13059 13060 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13061 ASSERT(ill != NULL); 13062 13063 /* 13064 * FAST PATH for tcp packets 13065 */ 13066 13067 /* u1 is # words of IP options */ 13068 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13069 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13070 13071 /* IP options present */ 13072 if (u1) { 13073 goto ipoptions; 13074 } else if (!mctl_present) { 13075 /* Check the IP header checksum. */ 13076 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13077 /* Clear the IP header h/w cksum flag */ 13078 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13079 } else if (!mctl_present) { 13080 /* 13081 * Don't verify header checksum if this packet 13082 * is coming back from AH/ESP as we already did it. 13083 */ 13084 #define uph ((uint16_t *)ipha) 13085 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13086 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13087 #undef uph 13088 /* finish doing IP checksum */ 13089 sum = (sum & 0xFFFF) + (sum >> 16); 13090 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13091 if (sum != 0 && sum != 0xFFFF) { 13092 BUMP_MIB(ill->ill_ip_mib, 13093 ipIfStatsInCksumErrs); 13094 goto error; 13095 } 13096 } 13097 } 13098 13099 if (!mctl_present) { 13100 UPDATE_IB_PKT_COUNT(ire); 13101 ire->ire_last_used_time = lbolt; 13102 } 13103 13104 /* packet part of fragmented IP packet? */ 13105 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13106 if (u1 & (IPH_MF | IPH_OFFSET)) { 13107 goto fragmented; 13108 } 13109 13110 /* u1 = IP header length (20 bytes) */ 13111 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13112 13113 /* does packet contain IP+TCP headers? */ 13114 len = mp->b_wptr - rptr; 13115 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13116 IP_STAT(ipst, ip_tcppullup); 13117 goto tcppullup; 13118 } 13119 13120 /* TCP options present? */ 13121 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13122 13123 /* 13124 * If options need to be pulled up, then goto tcpoptions. 13125 * otherwise we are still in the fast path 13126 */ 13127 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13128 IP_STAT(ipst, ip_tcpoptions); 13129 goto tcpoptions; 13130 } 13131 13132 /* multiple mblks of tcp data? */ 13133 if ((mp1 = mp->b_cont) != NULL) { 13134 /* more then two? */ 13135 if (mp1->b_cont != NULL) { 13136 IP_STAT(ipst, ip_multipkttcp); 13137 goto multipkttcp; 13138 } 13139 len += mp1->b_wptr - mp1->b_rptr; 13140 } 13141 13142 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13143 13144 /* part of pseudo checksum */ 13145 13146 /* TCP datagram length */ 13147 u1 = len - IP_SIMPLE_HDR_LENGTH; 13148 13149 #define iphs ((uint16_t *)ipha) 13150 13151 #ifdef _BIG_ENDIAN 13152 u1 += IPPROTO_TCP; 13153 #else 13154 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13155 #endif 13156 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13157 13158 /* 13159 * Revert to software checksum calculation if the interface 13160 * isn't capable of checksum offload or if IPsec is present. 13161 */ 13162 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13163 hck_flags = DB_CKSUMFLAGS(mp); 13164 13165 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13166 IP_STAT(ipst, ip_in_sw_cksum); 13167 13168 IP_CKSUM_RECV(hck_flags, u1, 13169 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13170 (int32_t)((uchar_t *)up - rptr), 13171 mp, mp1, cksum_err); 13172 13173 if (cksum_err) { 13174 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13175 13176 if (hck_flags & HCK_FULLCKSUM) 13177 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13178 else if (hck_flags & HCK_PARTIALCKSUM) 13179 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13180 else 13181 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13182 13183 goto error; 13184 } 13185 13186 try_again: 13187 13188 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13189 zoneid, ipst)) == NULL) { 13190 /* Send the TH_RST */ 13191 goto no_conn; 13192 } 13193 13194 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13195 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13196 13197 /* 13198 * TCP FAST PATH for AF_INET socket. 13199 * 13200 * TCP fast path to avoid extra work. An AF_INET socket type 13201 * does not have facility to receive extra information via 13202 * ip_process or ip_add_info. Also, when the connection was 13203 * established, we made a check if this connection is impacted 13204 * by any global IPsec policy or per connection policy (a 13205 * policy that comes in effect later will not apply to this 13206 * connection). Since all this can be determined at the 13207 * connection establishment time, a quick check of flags 13208 * can avoid extra work. 13209 */ 13210 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13211 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13212 ASSERT(first_mp == mp); 13213 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13214 if (tcph_flags != (TH_SYN | TH_ACK)) { 13215 SET_SQUEUE(mp, tcp_rput_data, connp); 13216 return (mp); 13217 } 13218 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13219 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13220 SET_SQUEUE(mp, tcp_input, connp); 13221 return (mp); 13222 } 13223 13224 if (tcph_flags == TH_SYN) { 13225 if (IPCL_IS_TCP(connp)) { 13226 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13227 DB_CKSUMSTART(mp) = 13228 (intptr_t)ip_squeue_get(ill_ring); 13229 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13230 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13231 BUMP_MIB(ill->ill_ip_mib, 13232 ipIfStatsHCInDelivers); 13233 SET_SQUEUE(mp, connp->conn_recv, connp); 13234 return (mp); 13235 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13236 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13237 BUMP_MIB(ill->ill_ip_mib, 13238 ipIfStatsHCInDelivers); 13239 ip_squeue_enter_unbound++; 13240 SET_SQUEUE(mp, tcp_conn_request_unbound, 13241 connp); 13242 return (mp); 13243 } 13244 syn_present = B_TRUE; 13245 } 13246 } 13247 13248 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13249 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13250 13251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13252 /* No need to send this packet to TCP */ 13253 if ((flags & TH_RST) || (flags & TH_URG)) { 13254 CONN_DEC_REF(connp); 13255 freemsg(first_mp); 13256 return (NULL); 13257 } 13258 if (flags & TH_ACK) { 13259 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13260 ipst->ips_netstack->netstack_tcp, connp); 13261 CONN_DEC_REF(connp); 13262 return (NULL); 13263 } 13264 13265 CONN_DEC_REF(connp); 13266 freemsg(first_mp); 13267 return (NULL); 13268 } 13269 13270 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13271 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13272 ipha, NULL, mctl_present); 13273 if (first_mp == NULL) { 13274 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13275 CONN_DEC_REF(connp); 13276 return (NULL); 13277 } 13278 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13279 ASSERT(syn_present); 13280 if (mctl_present) { 13281 ASSERT(first_mp != mp); 13282 first_mp->b_datap->db_struioflag |= 13283 STRUIO_POLICY; 13284 } else { 13285 ASSERT(first_mp == mp); 13286 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13287 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13288 } 13289 } else { 13290 /* 13291 * Discard first_mp early since we're dealing with a 13292 * fully-connected conn_t and tcp doesn't do policy in 13293 * this case. 13294 */ 13295 if (mctl_present) { 13296 freeb(first_mp); 13297 mctl_present = B_FALSE; 13298 } 13299 first_mp = mp; 13300 } 13301 } 13302 13303 /* Initiate IPPF processing for fastpath */ 13304 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13305 uint32_t ill_index; 13306 13307 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13308 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13309 if (mp == NULL) { 13310 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13311 "deferred/dropped during IPPF processing\n")); 13312 CONN_DEC_REF(connp); 13313 if (mctl_present) 13314 freeb(first_mp); 13315 return (NULL); 13316 } else if (mctl_present) { 13317 /* 13318 * ip_process might return a new mp. 13319 */ 13320 ASSERT(first_mp != mp); 13321 first_mp->b_cont = mp; 13322 } else { 13323 first_mp = mp; 13324 } 13325 13326 } 13327 13328 if (!syn_present && connp->conn_ip_recvpktinfo) { 13329 /* 13330 * TCP does not support IP_RECVPKTINFO for v4 so lets 13331 * make sure IPF_RECVIF is passed to ip_add_info. 13332 */ 13333 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13334 IPCL_ZONEID(connp), ipst); 13335 if (mp == NULL) { 13336 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13337 CONN_DEC_REF(connp); 13338 if (mctl_present) 13339 freeb(first_mp); 13340 return (NULL); 13341 } else if (mctl_present) { 13342 /* 13343 * ip_add_info might return a new mp. 13344 */ 13345 ASSERT(first_mp != mp); 13346 first_mp->b_cont = mp; 13347 } else { 13348 first_mp = mp; 13349 } 13350 } 13351 13352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13353 if (IPCL_IS_TCP(connp)) { 13354 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13355 return (first_mp); 13356 } else { 13357 /* SOCK_RAW, IPPROTO_TCP case */ 13358 (connp->conn_recv)(connp, first_mp, NULL); 13359 CONN_DEC_REF(connp); 13360 return (NULL); 13361 } 13362 13363 no_conn: 13364 /* Initiate IPPf processing, if needed. */ 13365 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13366 uint32_t ill_index; 13367 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13368 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13369 if (first_mp == NULL) { 13370 return (NULL); 13371 } 13372 } 13373 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13374 13375 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13376 ipst->ips_netstack->netstack_tcp, NULL); 13377 return (NULL); 13378 ipoptions: 13379 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13380 goto slow_done; 13381 } 13382 13383 UPDATE_IB_PKT_COUNT(ire); 13384 ire->ire_last_used_time = lbolt; 13385 13386 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13387 if (u1 & (IPH_MF | IPH_OFFSET)) { 13388 fragmented: 13389 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13390 if (mctl_present) 13391 freeb(first_mp); 13392 goto slow_done; 13393 } 13394 /* 13395 * Make sure that first_mp points back to mp as 13396 * the mp we came in with could have changed in 13397 * ip_rput_fragment(). 13398 */ 13399 ASSERT(!mctl_present); 13400 ipha = (ipha_t *)mp->b_rptr; 13401 first_mp = mp; 13402 } 13403 13404 /* Now we have a complete datagram, destined for this machine. */ 13405 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13406 13407 len = mp->b_wptr - mp->b_rptr; 13408 /* Pull up a minimal TCP header, if necessary. */ 13409 if (len < (u1 + 20)) { 13410 tcppullup: 13411 if (!pullupmsg(mp, u1 + 20)) { 13412 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13413 goto error; 13414 } 13415 ipha = (ipha_t *)mp->b_rptr; 13416 len = mp->b_wptr - mp->b_rptr; 13417 } 13418 13419 /* 13420 * Extract the offset field from the TCP header. As usual, we 13421 * try to help the compiler more than the reader. 13422 */ 13423 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13424 if (offset != 5) { 13425 tcpoptions: 13426 if (offset < 5) { 13427 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13428 goto error; 13429 } 13430 /* 13431 * There must be TCP options. 13432 * Make sure we can grab them. 13433 */ 13434 offset <<= 2; 13435 offset += u1; 13436 if (len < offset) { 13437 if (!pullupmsg(mp, offset)) { 13438 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13439 goto error; 13440 } 13441 ipha = (ipha_t *)mp->b_rptr; 13442 len = mp->b_wptr - rptr; 13443 } 13444 } 13445 13446 /* Get the total packet length in len, including headers. */ 13447 if (mp->b_cont) { 13448 multipkttcp: 13449 len = msgdsize(mp); 13450 } 13451 13452 /* 13453 * Check the TCP checksum by pulling together the pseudo- 13454 * header checksum, and passing it to ip_csum to be added in 13455 * with the TCP datagram. 13456 * 13457 * Since we are not using the hwcksum if available we must 13458 * clear the flag. We may come here via tcppullup or tcpoptions. 13459 * If either of these fails along the way the mblk is freed. 13460 * If this logic ever changes and mblk is reused to say send 13461 * ICMP's back, then this flag may need to be cleared in 13462 * other places as well. 13463 */ 13464 DB_CKSUMFLAGS(mp) = 0; 13465 13466 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13467 13468 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13469 #ifdef _BIG_ENDIAN 13470 u1 += IPPROTO_TCP; 13471 #else 13472 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13473 #endif 13474 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13475 /* 13476 * Not M_DATA mblk or its a dup, so do the checksum now. 13477 */ 13478 IP_STAT(ipst, ip_in_sw_cksum); 13479 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13480 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13481 goto error; 13482 } 13483 13484 IP_STAT(ipst, ip_tcp_slow_path); 13485 goto try_again; 13486 #undef iphs 13487 #undef rptr 13488 13489 error: 13490 freemsg(first_mp); 13491 slow_done: 13492 return (NULL); 13493 } 13494 13495 /* ARGSUSED */ 13496 static void 13497 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13498 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13499 { 13500 conn_t *connp; 13501 uint32_t sum; 13502 uint32_t u1; 13503 ssize_t len; 13504 sctp_hdr_t *sctph; 13505 zoneid_t zoneid = ire->ire_zoneid; 13506 uint32_t pktsum; 13507 uint32_t calcsum; 13508 uint32_t ports; 13509 in6_addr_t map_src, map_dst; 13510 ill_t *ill = (ill_t *)q->q_ptr; 13511 ip_stack_t *ipst; 13512 sctp_stack_t *sctps; 13513 boolean_t sctp_csum_err = B_FALSE; 13514 13515 ASSERT(recv_ill != NULL); 13516 ipst = recv_ill->ill_ipst; 13517 sctps = ipst->ips_netstack->netstack_sctp; 13518 13519 #define rptr ((uchar_t *)ipha) 13520 13521 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13522 ASSERT(ill != NULL); 13523 13524 /* u1 is # words of IP options */ 13525 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13526 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13527 13528 /* IP options present */ 13529 if (u1 > 0) { 13530 goto ipoptions; 13531 } else { 13532 /* Check the IP header checksum. */ 13533 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13534 !mctl_present) { 13535 #define uph ((uint16_t *)ipha) 13536 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13537 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13538 #undef uph 13539 /* finish doing IP checksum */ 13540 sum = (sum & 0xFFFF) + (sum >> 16); 13541 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13542 /* 13543 * Don't verify header checksum if this packet 13544 * is coming back from AH/ESP as we already did it. 13545 */ 13546 if (sum != 0 && sum != 0xFFFF) { 13547 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13548 goto error; 13549 } 13550 } 13551 /* 13552 * Since there is no SCTP h/w cksum support yet, just 13553 * clear the flag. 13554 */ 13555 DB_CKSUMFLAGS(mp) = 0; 13556 } 13557 13558 /* 13559 * Don't verify header checksum if this packet is coming 13560 * back from AH/ESP as we already did it. 13561 */ 13562 if (!mctl_present) { 13563 UPDATE_IB_PKT_COUNT(ire); 13564 ire->ire_last_used_time = lbolt; 13565 } 13566 13567 /* packet part of fragmented IP packet? */ 13568 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13569 if (u1 & (IPH_MF | IPH_OFFSET)) 13570 goto fragmented; 13571 13572 /* u1 = IP header length (20 bytes) */ 13573 u1 = IP_SIMPLE_HDR_LENGTH; 13574 13575 find_sctp_client: 13576 /* Pullup if we don't have the sctp common header. */ 13577 len = MBLKL(mp); 13578 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13579 if (mp->b_cont == NULL || 13580 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13581 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13582 goto error; 13583 } 13584 ipha = (ipha_t *)mp->b_rptr; 13585 len = MBLKL(mp); 13586 } 13587 13588 sctph = (sctp_hdr_t *)(rptr + u1); 13589 #ifdef DEBUG 13590 if (!skip_sctp_cksum) { 13591 #endif 13592 pktsum = sctph->sh_chksum; 13593 sctph->sh_chksum = 0; 13594 calcsum = sctp_cksum(mp, u1); 13595 sctph->sh_chksum = pktsum; 13596 if (calcsum != pktsum) 13597 sctp_csum_err = B_TRUE; 13598 #ifdef DEBUG /* skip_sctp_cksum */ 13599 } 13600 #endif 13601 /* get the ports */ 13602 ports = *(uint32_t *)&sctph->sh_sport; 13603 13604 IRE_REFRELE(ire); 13605 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13606 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13607 if (sctp_csum_err) { 13608 /* 13609 * No potential sctp checksum errors go to the Sun 13610 * sctp stack however they might be Adler-32 summed 13611 * packets a userland stack bound to a raw IP socket 13612 * could reasonably use. Note though that Adler-32 is 13613 * a long deprecated algorithm and customer sctp 13614 * networks should eventually migrate to CRC-32 at 13615 * which time this facility should be removed. 13616 */ 13617 flags |= IP_FF_SCTP_CSUM_ERR; 13618 goto no_conn; 13619 } 13620 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13621 sctps)) == NULL) { 13622 /* Check for raw socket or OOTB handling */ 13623 goto no_conn; 13624 } 13625 13626 /* Found a client; up it goes */ 13627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13628 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13629 return; 13630 13631 no_conn: 13632 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13633 ports, mctl_present, flags, B_TRUE, zoneid); 13634 return; 13635 13636 ipoptions: 13637 DB_CKSUMFLAGS(mp) = 0; 13638 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13639 goto slow_done; 13640 13641 UPDATE_IB_PKT_COUNT(ire); 13642 ire->ire_last_used_time = lbolt; 13643 13644 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13645 if (u1 & (IPH_MF | IPH_OFFSET)) { 13646 fragmented: 13647 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13648 goto slow_done; 13649 /* 13650 * Make sure that first_mp points back to mp as 13651 * the mp we came in with could have changed in 13652 * ip_rput_fragment(). 13653 */ 13654 ASSERT(!mctl_present); 13655 ipha = (ipha_t *)mp->b_rptr; 13656 first_mp = mp; 13657 } 13658 13659 /* Now we have a complete datagram, destined for this machine. */ 13660 u1 = IPH_HDR_LENGTH(ipha); 13661 goto find_sctp_client; 13662 #undef iphs 13663 #undef rptr 13664 13665 error: 13666 freemsg(first_mp); 13667 slow_done: 13668 IRE_REFRELE(ire); 13669 } 13670 13671 #define VER_BITS 0xF0 13672 #define VERSION_6 0x60 13673 13674 static boolean_t 13675 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13676 ipaddr_t *dstp, ip_stack_t *ipst) 13677 { 13678 uint_t opt_len; 13679 ipha_t *ipha; 13680 ssize_t len; 13681 uint_t pkt_len; 13682 13683 ASSERT(ill != NULL); 13684 IP_STAT(ipst, ip_ipoptions); 13685 ipha = *iphapp; 13686 13687 #define rptr ((uchar_t *)ipha) 13688 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13689 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13691 freemsg(mp); 13692 return (B_FALSE); 13693 } 13694 13695 /* multiple mblk or too short */ 13696 pkt_len = ntohs(ipha->ipha_length); 13697 13698 /* Get the number of words of IP options in the IP header. */ 13699 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13700 if (opt_len) { 13701 /* IP Options present! Validate and process. */ 13702 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13703 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13704 goto done; 13705 } 13706 /* 13707 * Recompute complete header length and make sure we 13708 * have access to all of it. 13709 */ 13710 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13711 if (len > (mp->b_wptr - rptr)) { 13712 if (len > pkt_len) { 13713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13714 goto done; 13715 } 13716 if (!pullupmsg(mp, len)) { 13717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13718 goto done; 13719 } 13720 ipha = (ipha_t *)mp->b_rptr; 13721 } 13722 /* 13723 * Go off to ip_rput_options which returns the next hop 13724 * destination address, which may have been affected 13725 * by source routing. 13726 */ 13727 IP_STAT(ipst, ip_opt); 13728 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13730 return (B_FALSE); 13731 } 13732 } 13733 *iphapp = ipha; 13734 return (B_TRUE); 13735 done: 13736 /* clear b_prev - used by ip_mroute_decap */ 13737 mp->b_prev = NULL; 13738 freemsg(mp); 13739 return (B_FALSE); 13740 #undef rptr 13741 } 13742 13743 /* 13744 * Deal with the fact that there is no ire for the destination. 13745 */ 13746 static ire_t * 13747 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13748 { 13749 ipha_t *ipha; 13750 ill_t *ill; 13751 ire_t *ire; 13752 ip_stack_t *ipst; 13753 enum ire_forward_action ret_action; 13754 13755 ipha = (ipha_t *)mp->b_rptr; 13756 ill = (ill_t *)q->q_ptr; 13757 13758 ASSERT(ill != NULL); 13759 ipst = ill->ill_ipst; 13760 13761 /* 13762 * No IRE for this destination, so it can't be for us. 13763 * Unless we are forwarding, drop the packet. 13764 * We have to let source routed packets through 13765 * since we don't yet know if they are 'ping -l' 13766 * packets i.e. if they will go out over the 13767 * same interface as they came in on. 13768 */ 13769 if (ll_multicast) { 13770 freemsg(mp); 13771 return (NULL); 13772 } 13773 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13774 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13775 freemsg(mp); 13776 return (NULL); 13777 } 13778 13779 /* 13780 * Mark this packet as having originated externally. 13781 * 13782 * For non-forwarding code path, ire_send later double 13783 * checks this interface to see if it is still exists 13784 * post-ARP resolution. 13785 * 13786 * Also, IPQOS uses this to differentiate between 13787 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13788 * QOS packet processing in ip_wput_attach_llhdr(). 13789 * The QoS module can mark the b_band for a fastpath message 13790 * or the dl_priority field in a unitdata_req header for 13791 * CoS marking. This info can only be found in 13792 * ip_wput_attach_llhdr(). 13793 */ 13794 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13795 /* 13796 * Clear the indication that this may have a hardware checksum 13797 * as we are not using it 13798 */ 13799 DB_CKSUMFLAGS(mp) = 0; 13800 13801 ire = ire_forward(dst, &ret_action, NULL, NULL, 13802 MBLK_GETLABEL(mp), ipst); 13803 13804 if (ire == NULL && ret_action == Forward_check_multirt) { 13805 /* Let ip_newroute handle CGTP */ 13806 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13807 return (NULL); 13808 } 13809 13810 if (ire != NULL) 13811 return (ire); 13812 13813 mp->b_prev = mp->b_next = 0; 13814 13815 if (ret_action == Forward_blackhole) { 13816 freemsg(mp); 13817 return (NULL); 13818 } 13819 /* send icmp unreachable */ 13820 q = WR(q); 13821 /* Sent by forwarding path, and router is global zone */ 13822 if (ip_source_routed(ipha, ipst)) { 13823 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13824 GLOBAL_ZONEID, ipst); 13825 } else { 13826 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13827 ipst); 13828 } 13829 13830 return (NULL); 13831 13832 } 13833 13834 /* 13835 * check ip header length and align it. 13836 */ 13837 static boolean_t 13838 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13839 { 13840 ssize_t len; 13841 ill_t *ill; 13842 ipha_t *ipha; 13843 13844 len = MBLKL(mp); 13845 13846 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13847 ill = (ill_t *)q->q_ptr; 13848 13849 if (!OK_32PTR(mp->b_rptr)) 13850 IP_STAT(ipst, ip_notaligned1); 13851 else 13852 IP_STAT(ipst, ip_notaligned2); 13853 /* Guard against bogus device drivers */ 13854 if (len < 0) { 13855 /* clear b_prev - used by ip_mroute_decap */ 13856 mp->b_prev = NULL; 13857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13858 freemsg(mp); 13859 return (B_FALSE); 13860 } 13861 13862 if (ip_rput_pullups++ == 0) { 13863 ipha = (ipha_t *)mp->b_rptr; 13864 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13865 "ip_check_and_align_header: %s forced us to " 13866 " pullup pkt, hdr len %ld, hdr addr %p", 13867 ill->ill_name, len, (void *)ipha); 13868 } 13869 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13870 /* clear b_prev - used by ip_mroute_decap */ 13871 mp->b_prev = NULL; 13872 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13873 freemsg(mp); 13874 return (B_FALSE); 13875 } 13876 } 13877 return (B_TRUE); 13878 } 13879 13880 ire_t * 13881 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13882 { 13883 ire_t *new_ire; 13884 ill_t *ire_ill; 13885 uint_t ifindex; 13886 ip_stack_t *ipst = ill->ill_ipst; 13887 boolean_t strict_check = B_FALSE; 13888 13889 /* 13890 * This packet came in on an interface other than the one associated 13891 * with the first ire we found for the destination address. We do 13892 * another ire lookup here, using the ingress ill, to see if the 13893 * interface is in an interface group. 13894 * As long as the ills belong to the same group, we don't consider 13895 * them to be arriving on the wrong interface. Thus, if the switch 13896 * is doing inbound load spreading, we won't drop packets when the 13897 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13898 * for 'usesrc groups' where the destination address may belong to 13899 * another interface to allow multipathing to happen. 13900 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13901 * where the local address may not be unique. In this case we were 13902 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13903 * actually returned. The new lookup, which is more specific, should 13904 * only find the IRE_LOCAL associated with the ingress ill if one 13905 * exists. 13906 */ 13907 13908 if (ire->ire_ipversion == IPV4_VERSION) { 13909 if (ipst->ips_ip_strict_dst_multihoming) 13910 strict_check = B_TRUE; 13911 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13912 ill->ill_ipif, ALL_ZONES, NULL, 13913 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13914 } else { 13915 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13916 if (ipst->ips_ipv6_strict_dst_multihoming) 13917 strict_check = B_TRUE; 13918 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13919 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13920 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13921 } 13922 /* 13923 * If the same ire that was returned in ip_input() is found then this 13924 * is an indication that interface groups are in use. The packet 13925 * arrived on a different ill in the group than the one associated with 13926 * the destination address. If a different ire was found then the same 13927 * IP address must be hosted on multiple ills. This is possible with 13928 * unnumbered point2point interfaces. We switch to use this new ire in 13929 * order to have accurate interface statistics. 13930 */ 13931 if (new_ire != NULL) { 13932 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13933 ire_refrele(ire); 13934 ire = new_ire; 13935 } else { 13936 ire_refrele(new_ire); 13937 } 13938 return (ire); 13939 } else if ((ire->ire_rfq == NULL) && 13940 (ire->ire_ipversion == IPV4_VERSION)) { 13941 /* 13942 * The best match could have been the original ire which 13943 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13944 * the strict multihoming checks are irrelevant as we consider 13945 * local addresses hosted on lo0 to be interface agnostic. We 13946 * only expect a null ire_rfq on IREs which are associated with 13947 * lo0 hence we can return now. 13948 */ 13949 return (ire); 13950 } 13951 13952 /* 13953 * Chase pointers once and store locally. 13954 */ 13955 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13956 (ill_t *)(ire->ire_rfq->q_ptr); 13957 ifindex = ill->ill_usesrc_ifindex; 13958 13959 /* 13960 * Check if it's a legal address on the 'usesrc' interface. 13961 */ 13962 if ((ifindex != 0) && (ire_ill != NULL) && 13963 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13964 return (ire); 13965 } 13966 13967 /* 13968 * If the ip*_strict_dst_multihoming switch is on then we can 13969 * only accept this packet if the interface is marked as routing. 13970 */ 13971 if (!(strict_check)) 13972 return (ire); 13973 13974 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13975 ILLF_ROUTER) != 0) { 13976 return (ire); 13977 } 13978 13979 ire_refrele(ire); 13980 return (NULL); 13981 } 13982 13983 /* 13984 * 13985 * This is the fast forward path. If we are here, we dont need to 13986 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13987 * needed to find the nexthop in this case is much simpler 13988 */ 13989 ire_t * 13990 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13991 { 13992 ipha_t *ipha; 13993 ire_t *src_ire; 13994 ill_t *stq_ill; 13995 uint_t hlen; 13996 uint_t pkt_len; 13997 uint32_t sum; 13998 queue_t *dev_q; 13999 ip_stack_t *ipst = ill->ill_ipst; 14000 mblk_t *fpmp; 14001 enum ire_forward_action ret_action; 14002 14003 ipha = (ipha_t *)mp->b_rptr; 14004 14005 if (ire != NULL && 14006 ire->ire_zoneid != GLOBAL_ZONEID && 14007 ire->ire_zoneid != ALL_ZONES) { 14008 /* 14009 * Should only use IREs that are visible to the global 14010 * zone for forwarding. 14011 */ 14012 ire_refrele(ire); 14013 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 14014 /* 14015 * ire_cache_lookup() can return ire of IRE_LOCAL in 14016 * transient cases. In such case, just drop the packet 14017 */ 14018 if (ire->ire_type != IRE_CACHE) 14019 goto drop; 14020 } 14021 14022 /* 14023 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14024 * The loopback address check for both src and dst has already 14025 * been checked in ip_input 14026 */ 14027 14028 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 14029 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14030 goto drop; 14031 } 14032 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14033 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14034 14035 if (src_ire != NULL) { 14036 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14037 ire_refrele(src_ire); 14038 goto drop; 14039 } 14040 14041 /* No ire cache of nexthop. So first create one */ 14042 if (ire == NULL) { 14043 14044 ire = ire_forward_simple(dst, &ret_action, ipst); 14045 14046 /* 14047 * We only come to ip_fast_forward if ip_cgtp_filter 14048 * is not set. So ire_forward() should not return with 14049 * Forward_check_multirt as the next action. 14050 */ 14051 ASSERT(ret_action != Forward_check_multirt); 14052 if (ire == NULL) { 14053 /* An attempt was made to forward the packet */ 14054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14055 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14056 mp->b_prev = mp->b_next = 0; 14057 /* send icmp unreachable */ 14058 /* Sent by forwarding path, and router is global zone */ 14059 if (ret_action == Forward_ret_icmp_err) { 14060 if (ip_source_routed(ipha, ipst)) { 14061 icmp_unreachable(ill->ill_wq, mp, 14062 ICMP_SOURCE_ROUTE_FAILED, 14063 GLOBAL_ZONEID, ipst); 14064 } else { 14065 icmp_unreachable(ill->ill_wq, mp, 14066 ICMP_HOST_UNREACHABLE, 14067 GLOBAL_ZONEID, ipst); 14068 } 14069 } else { 14070 freemsg(mp); 14071 } 14072 return (NULL); 14073 } 14074 } 14075 14076 /* 14077 * Forwarding fastpath exception case: 14078 * If either of the follwoing case is true, we take 14079 * the slowpath 14080 * o forwarding is not enabled 14081 * o incoming and outgoing interface are the same, or the same 14082 * IPMP group 14083 * o corresponding ire is in incomplete state 14084 * o packet needs fragmentation 14085 * o ARP cache is not resolved 14086 * 14087 * The codeflow from here on is thus: 14088 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14089 */ 14090 pkt_len = ntohs(ipha->ipha_length); 14091 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14092 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14093 (ill == stq_ill) || 14094 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14095 (ire->ire_nce == NULL) || 14096 (pkt_len > ire->ire_max_frag) || 14097 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14098 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14099 ipha->ipha_ttl <= 1) { 14100 ip_rput_process_forward(ill->ill_rq, mp, ire, 14101 ipha, ill, B_FALSE, B_TRUE); 14102 return (ire); 14103 } 14104 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14105 14106 DTRACE_PROBE4(ip4__forwarding__start, 14107 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14108 14109 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14110 ipst->ips_ipv4firewall_forwarding, 14111 ill, stq_ill, ipha, mp, mp, 0, ipst); 14112 14113 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14114 14115 if (mp == NULL) 14116 goto drop; 14117 14118 mp->b_datap->db_struioun.cksum.flags = 0; 14119 /* Adjust the checksum to reflect the ttl decrement. */ 14120 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14121 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14122 ipha->ipha_ttl--; 14123 14124 /* 14125 * Write the link layer header. We can do this safely here, 14126 * because we have already tested to make sure that the IP 14127 * policy is not set, and that we have a fast path destination 14128 * header. 14129 */ 14130 mp->b_rptr -= hlen; 14131 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14132 14133 UPDATE_IB_PKT_COUNT(ire); 14134 ire->ire_last_used_time = lbolt; 14135 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14136 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14137 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14138 14139 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14140 dev_q = ire->ire_stq->q_next; 14141 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14142 goto indiscard; 14143 } 14144 14145 DTRACE_PROBE4(ip4__physical__out__start, 14146 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14147 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14148 ipst->ips_ipv4firewall_physical_out, 14149 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14150 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14151 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14152 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14153 ip6_t *, NULL, int, 0); 14154 14155 if (mp != NULL) { 14156 if (ipst->ips_ipobs_enabled) { 14157 zoneid_t szone; 14158 14159 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14160 ipst, ALL_ZONES); 14161 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14162 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14163 } 14164 14165 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC); 14166 } 14167 return (ire); 14168 14169 indiscard: 14170 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14171 drop: 14172 if (mp != NULL) 14173 freemsg(mp); 14174 return (ire); 14175 14176 } 14177 14178 /* 14179 * This function is called in the forwarding slowpath, when 14180 * either the ire lacks the link-layer address, or the packet needs 14181 * further processing(eg. fragmentation), before transmission. 14182 */ 14183 14184 static void 14185 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14186 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14187 { 14188 ill_group_t *ill_group; 14189 ill_group_t *ire_group; 14190 queue_t *dev_q; 14191 ire_t *src_ire; 14192 ip_stack_t *ipst = ill->ill_ipst; 14193 14194 ASSERT(ire->ire_stq != NULL); 14195 14196 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14197 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14198 14199 /* 14200 * If the caller of this function is ip_fast_forward() skip the 14201 * next three checks as it does not apply. 14202 */ 14203 if (from_ip_fast_forward) { 14204 ill_group = ill->ill_group; 14205 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14206 goto skip; 14207 } 14208 14209 if (ll_multicast != 0) { 14210 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14211 goto drop_pkt; 14212 } 14213 14214 /* 14215 * check if ipha_src is a broadcast address. Note that this 14216 * check is redundant when we get here from ip_fast_forward() 14217 * which has already done this check. However, since we can 14218 * also get here from ip_rput_process_broadcast() or, for 14219 * for the slow path through ip_fast_forward(), we perform 14220 * the check again for code-reusability 14221 */ 14222 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14223 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14224 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14225 if (src_ire != NULL) 14226 ire_refrele(src_ire); 14227 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14228 ip2dbg(("ip_rput_process_forward: Received packet with" 14229 " bad src/dst address on %s\n", ill->ill_name)); 14230 goto drop_pkt; 14231 } 14232 14233 ill_group = ill->ill_group; 14234 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14235 /* 14236 * Check if we want to forward this one at this time. 14237 * We allow source routed packets on a host provided that 14238 * they go out the same interface or same interface group 14239 * as they came in on. 14240 * 14241 * XXX To be quicker, we may wish to not chase pointers to 14242 * get the ILLF_ROUTER flag and instead store the 14243 * forwarding policy in the ire. An unfortunate 14244 * side-effect of that would be requiring an ire flush 14245 * whenever the ILLF_ROUTER flag changes. 14246 */ 14247 skip: 14248 if (((ill->ill_flags & 14249 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14250 ILLF_ROUTER) == 0) && 14251 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14252 (ill_group != NULL && ill_group == ire_group)))) { 14253 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14254 if (ip_source_routed(ipha, ipst)) { 14255 q = WR(q); 14256 /* 14257 * Clear the indication that this may have 14258 * hardware checksum as we are not using it. 14259 */ 14260 DB_CKSUMFLAGS(mp) = 0; 14261 /* Sent by forwarding path, and router is global zone */ 14262 icmp_unreachable(q, mp, 14263 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14264 return; 14265 } 14266 goto drop_pkt; 14267 } 14268 14269 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14270 14271 /* Packet is being forwarded. Turning off hwcksum flag. */ 14272 DB_CKSUMFLAGS(mp) = 0; 14273 if (ipst->ips_ip_g_send_redirects) { 14274 /* 14275 * Check whether the incoming interface and outgoing 14276 * interface is part of the same group. If so, 14277 * send redirects. 14278 * 14279 * Check the source address to see if it originated 14280 * on the same logical subnet it is going back out on. 14281 * If so, we should be able to send it a redirect. 14282 * Avoid sending a redirect if the destination 14283 * is directly connected (i.e., ipha_dst is the same 14284 * as ire_gateway_addr or the ire_addr of the 14285 * nexthop IRE_CACHE ), or if the packet was source 14286 * routed out this interface. 14287 */ 14288 ipaddr_t src, nhop; 14289 mblk_t *mp1; 14290 ire_t *nhop_ire = NULL; 14291 14292 /* 14293 * Check whether ire_rfq and q are from the same ill 14294 * or if they are not same, they at least belong 14295 * to the same group. If so, send redirects. 14296 */ 14297 if ((ire->ire_rfq == q || 14298 (ill_group != NULL && ill_group == ire_group)) && 14299 !ip_source_routed(ipha, ipst)) { 14300 14301 nhop = (ire->ire_gateway_addr != 0 ? 14302 ire->ire_gateway_addr : ire->ire_addr); 14303 14304 if (ipha->ipha_dst == nhop) { 14305 /* 14306 * We avoid sending a redirect if the 14307 * destination is directly connected 14308 * because it is possible that multiple 14309 * IP subnets may have been configured on 14310 * the link, and the source may not 14311 * be on the same subnet as ip destination, 14312 * even though they are on the same 14313 * physical link. 14314 */ 14315 goto sendit; 14316 } 14317 14318 src = ipha->ipha_src; 14319 14320 /* 14321 * We look up the interface ire for the nexthop, 14322 * to see if ipha_src is in the same subnet 14323 * as the nexthop. 14324 * 14325 * Note that, if, in the future, IRE_CACHE entries 14326 * are obsoleted, this lookup will not be needed, 14327 * as the ire passed to this function will be the 14328 * same as the nhop_ire computed below. 14329 */ 14330 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14331 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14332 0, NULL, MATCH_IRE_TYPE, ipst); 14333 14334 if (nhop_ire != NULL) { 14335 if ((src & nhop_ire->ire_mask) == 14336 (nhop & nhop_ire->ire_mask)) { 14337 /* 14338 * The source is directly connected. 14339 * Just copy the ip header (which is 14340 * in the first mblk) 14341 */ 14342 mp1 = copyb(mp); 14343 if (mp1 != NULL) { 14344 icmp_send_redirect(WR(q), mp1, 14345 nhop, ipst); 14346 } 14347 } 14348 ire_refrele(nhop_ire); 14349 } 14350 } 14351 } 14352 sendit: 14353 dev_q = ire->ire_stq->q_next; 14354 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14355 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14356 freemsg(mp); 14357 return; 14358 } 14359 14360 ip_rput_forward(ire, ipha, mp, ill); 14361 return; 14362 14363 drop_pkt: 14364 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14365 freemsg(mp); 14366 } 14367 14368 ire_t * 14369 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14370 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14371 { 14372 queue_t *q; 14373 uint16_t hcksumflags; 14374 ip_stack_t *ipst = ill->ill_ipst; 14375 14376 q = *qp; 14377 14378 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14379 14380 /* 14381 * Clear the indication that this may have hardware 14382 * checksum as we are not using it for forwarding. 14383 */ 14384 hcksumflags = DB_CKSUMFLAGS(mp); 14385 DB_CKSUMFLAGS(mp) = 0; 14386 14387 /* 14388 * Directed broadcast forwarding: if the packet came in over a 14389 * different interface then it is routed out over we can forward it. 14390 */ 14391 if (ipha->ipha_protocol == IPPROTO_TCP) { 14392 ire_refrele(ire); 14393 freemsg(mp); 14394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14395 return (NULL); 14396 } 14397 /* 14398 * For multicast we have set dst to be INADDR_BROADCAST 14399 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14400 * only for broadcast packets. 14401 */ 14402 if (!CLASSD(ipha->ipha_dst)) { 14403 ire_t *new_ire; 14404 ipif_t *ipif; 14405 /* 14406 * For ill groups, as the switch duplicates broadcasts 14407 * across all the ports, we need to filter out and 14408 * send up only one copy. There is one copy for every 14409 * broadcast address on each ill. Thus, we look for a 14410 * specific IRE on this ill and look at IRE_MARK_NORECV 14411 * later to see whether this ill is eligible to receive 14412 * them or not. ill_nominate_bcast_rcv() nominates only 14413 * one set of IREs for receiving. 14414 */ 14415 14416 ipif = ipif_get_next_ipif(NULL, ill); 14417 if (ipif == NULL) { 14418 ire_refrele(ire); 14419 freemsg(mp); 14420 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14421 return (NULL); 14422 } 14423 new_ire = ire_ctable_lookup(dst, 0, 0, 14424 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14425 ipif_refrele(ipif); 14426 14427 if (new_ire != NULL) { 14428 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14429 ire_refrele(ire); 14430 ire_refrele(new_ire); 14431 freemsg(mp); 14432 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14433 return (NULL); 14434 } 14435 /* 14436 * In the special case of multirouted broadcast 14437 * packets, we unconditionally need to "gateway" 14438 * them to the appropriate interface here. 14439 * In the normal case, this cannot happen, because 14440 * there is no broadcast IRE tagged with the 14441 * RTF_MULTIRT flag. 14442 */ 14443 if (new_ire->ire_flags & RTF_MULTIRT) { 14444 ire_refrele(new_ire); 14445 if (ire->ire_rfq != NULL) { 14446 q = ire->ire_rfq; 14447 *qp = q; 14448 } 14449 } else { 14450 ire_refrele(ire); 14451 ire = new_ire; 14452 } 14453 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14454 if (!ipst->ips_ip_g_forward_directed_bcast) { 14455 /* 14456 * Free the message if 14457 * ip_g_forward_directed_bcast is turned 14458 * off for non-local broadcast. 14459 */ 14460 ire_refrele(ire); 14461 freemsg(mp); 14462 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14463 return (NULL); 14464 } 14465 } else { 14466 /* 14467 * This CGTP packet successfully passed the 14468 * CGTP filter, but the related CGTP 14469 * broadcast IRE has not been found, 14470 * meaning that the redundant ipif is 14471 * probably down. However, if we discarded 14472 * this packet, its duplicate would be 14473 * filtered out by the CGTP filter so none 14474 * of them would get through. So we keep 14475 * going with this one. 14476 */ 14477 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14478 if (ire->ire_rfq != NULL) { 14479 q = ire->ire_rfq; 14480 *qp = q; 14481 } 14482 } 14483 } 14484 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14485 /* 14486 * Verify that there are not more then one 14487 * IRE_BROADCAST with this broadcast address which 14488 * has ire_stq set. 14489 * TODO: simplify, loop over all IRE's 14490 */ 14491 ire_t *ire1; 14492 int num_stq = 0; 14493 mblk_t *mp1; 14494 14495 /* Find the first one with ire_stq set */ 14496 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14497 for (ire1 = ire; ire1 && 14498 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14499 ire1 = ire1->ire_next) 14500 ; 14501 if (ire1) { 14502 ire_refrele(ire); 14503 ire = ire1; 14504 IRE_REFHOLD(ire); 14505 } 14506 14507 /* Check if there are additional ones with stq set */ 14508 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14509 if (ire->ire_addr != ire1->ire_addr) 14510 break; 14511 if (ire1->ire_stq) { 14512 num_stq++; 14513 break; 14514 } 14515 } 14516 rw_exit(&ire->ire_bucket->irb_lock); 14517 if (num_stq == 1 && ire->ire_stq != NULL) { 14518 ip1dbg(("ip_rput_process_broadcast: directed " 14519 "broadcast to 0x%x\n", 14520 ntohl(ire->ire_addr))); 14521 mp1 = copymsg(mp); 14522 if (mp1) { 14523 switch (ipha->ipha_protocol) { 14524 case IPPROTO_UDP: 14525 ip_udp_input(q, mp1, ipha, ire, ill); 14526 break; 14527 default: 14528 ip_proto_input(q, mp1, ipha, ire, ill, 14529 0); 14530 break; 14531 } 14532 } 14533 /* 14534 * Adjust ttl to 2 (1+1 - the forward engine 14535 * will decrement it by one. 14536 */ 14537 if (ip_csum_hdr(ipha)) { 14538 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14539 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14540 freemsg(mp); 14541 ire_refrele(ire); 14542 return (NULL); 14543 } 14544 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14545 ipha->ipha_hdr_checksum = 0; 14546 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14547 ip_rput_process_forward(q, mp, ire, ipha, 14548 ill, ll_multicast, B_FALSE); 14549 ire_refrele(ire); 14550 return (NULL); 14551 } 14552 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14553 ntohl(ire->ire_addr))); 14554 } 14555 14556 14557 /* Restore any hardware checksum flags */ 14558 DB_CKSUMFLAGS(mp) = hcksumflags; 14559 return (ire); 14560 } 14561 14562 /* ARGSUSED */ 14563 static boolean_t 14564 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14565 int *ll_multicast, ipaddr_t *dstp) 14566 { 14567 ip_stack_t *ipst = ill->ill_ipst; 14568 14569 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14570 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14571 ntohs(ipha->ipha_length)); 14572 14573 /* 14574 * Forward packets only if we have joined the allmulti 14575 * group on this interface. 14576 */ 14577 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14578 int retval; 14579 14580 /* 14581 * Clear the indication that this may have hardware 14582 * checksum as we are not using it. 14583 */ 14584 DB_CKSUMFLAGS(mp) = 0; 14585 retval = ip_mforward(ill, ipha, mp); 14586 /* ip_mforward updates mib variables if needed */ 14587 /* clear b_prev - used by ip_mroute_decap */ 14588 mp->b_prev = NULL; 14589 14590 switch (retval) { 14591 case 0: 14592 /* 14593 * pkt is okay and arrived on phyint. 14594 * 14595 * If we are running as a multicast router 14596 * we need to see all IGMP and/or PIM packets. 14597 */ 14598 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14599 (ipha->ipha_protocol == IPPROTO_PIM)) { 14600 goto done; 14601 } 14602 break; 14603 case -1: 14604 /* pkt is mal-formed, toss it */ 14605 goto drop_pkt; 14606 case 1: 14607 /* pkt is okay and arrived on a tunnel */ 14608 /* 14609 * If we are running a multicast router 14610 * we need to see all igmp packets. 14611 */ 14612 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14613 *dstp = INADDR_BROADCAST; 14614 *ll_multicast = 1; 14615 return (B_FALSE); 14616 } 14617 14618 goto drop_pkt; 14619 } 14620 } 14621 14622 ILM_WALKER_HOLD(ill); 14623 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14624 /* 14625 * This might just be caused by the fact that 14626 * multiple IP Multicast addresses map to the same 14627 * link layer multicast - no need to increment counter! 14628 */ 14629 ILM_WALKER_RELE(ill); 14630 freemsg(mp); 14631 return (B_TRUE); 14632 } 14633 ILM_WALKER_RELE(ill); 14634 done: 14635 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14636 /* 14637 * This assumes the we deliver to all streams for multicast 14638 * and broadcast packets. 14639 */ 14640 *dstp = INADDR_BROADCAST; 14641 *ll_multicast = 1; 14642 return (B_FALSE); 14643 drop_pkt: 14644 ip2dbg(("ip_rput: drop pkt\n")); 14645 freemsg(mp); 14646 return (B_TRUE); 14647 } 14648 14649 /* 14650 * This function is used to both return an indication of whether or not 14651 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14652 * and in doing so, determine whether or not it is broadcast vs multicast. 14653 * For it to be a broadcast packet, we must have the appropriate mblk_t 14654 * hanging off the ill_t. If this is either not present or doesn't match 14655 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14656 * to be multicast. Thus NICs that have no broadcast address (or no 14657 * capability for one, such as point to point links) cannot return as 14658 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14659 * the return values simplifies the current use of the return value of this 14660 * function, which is to pass through the multicast/broadcast characteristic 14661 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14662 * changing the return value to some other symbol demands the appropriate 14663 * "translation" when hpe_flags is set prior to calling hook_run() for 14664 * packet events. 14665 */ 14666 int 14667 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14668 { 14669 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14670 mblk_t *bmp; 14671 14672 if (ind->dl_group_address) { 14673 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14674 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14675 MBLKL(mb) && 14676 (bmp = ill->ill_bcast_mp) != NULL) { 14677 dl_unitdata_req_t *dlur; 14678 uint8_t *bphys_addr; 14679 14680 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14681 if (ill->ill_sap_length < 0) 14682 bphys_addr = (uchar_t *)dlur + 14683 dlur->dl_dest_addr_offset; 14684 else 14685 bphys_addr = (uchar_t *)dlur + 14686 dlur->dl_dest_addr_offset + 14687 ill->ill_sap_length; 14688 14689 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14690 bphys_addr, ind->dl_dest_addr_length) == 0) { 14691 return (HPE_BROADCAST); 14692 } 14693 return (HPE_MULTICAST); 14694 } 14695 return (HPE_MULTICAST); 14696 } 14697 return (0); 14698 } 14699 14700 static boolean_t 14701 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14702 int *ll_multicast, mblk_t **mpp) 14703 { 14704 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14705 boolean_t must_copy = B_FALSE; 14706 struct iocblk *iocp; 14707 ipha_t *ipha; 14708 ip_stack_t *ipst = ill->ill_ipst; 14709 14710 #define rptr ((uchar_t *)ipha) 14711 14712 first_mp = *first_mpp; 14713 mp = *mpp; 14714 14715 ASSERT(first_mp == mp); 14716 14717 /* 14718 * if db_ref > 1 then copymsg and free original. Packet may be 14719 * changed and do not want other entity who has a reference to this 14720 * message to trip over the changes. This is a blind change because 14721 * trying to catch all places that might change packet is too 14722 * difficult (since it may be a module above this one) 14723 * 14724 * This corresponds to the non-fast path case. We walk down the full 14725 * chain in this case, and check the db_ref count of all the dblks, 14726 * and do a copymsg if required. It is possible that the db_ref counts 14727 * of the data blocks in the mblk chain can be different. 14728 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14729 * count of 1, followed by a M_DATA block with a ref count of 2, if 14730 * 'snoop' is running. 14731 */ 14732 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14733 if (mp1->b_datap->db_ref > 1) { 14734 must_copy = B_TRUE; 14735 break; 14736 } 14737 } 14738 14739 if (must_copy) { 14740 mp1 = copymsg(mp); 14741 if (mp1 == NULL) { 14742 for (mp1 = mp; mp1 != NULL; 14743 mp1 = mp1->b_cont) { 14744 mp1->b_next = NULL; 14745 mp1->b_prev = NULL; 14746 } 14747 freemsg(mp); 14748 if (ill != NULL) { 14749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14750 } else { 14751 BUMP_MIB(&ipst->ips_ip_mib, 14752 ipIfStatsInDiscards); 14753 } 14754 return (B_TRUE); 14755 } 14756 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14757 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14758 /* Copy b_prev - used by ip_mroute_decap */ 14759 to_mp->b_prev = from_mp->b_prev; 14760 from_mp->b_prev = NULL; 14761 } 14762 *first_mpp = first_mp = mp1; 14763 freemsg(mp); 14764 mp = mp1; 14765 *mpp = mp1; 14766 } 14767 14768 ipha = (ipha_t *)mp->b_rptr; 14769 14770 /* 14771 * previous code has a case for M_DATA. 14772 * We want to check how that happens. 14773 */ 14774 ASSERT(first_mp->b_datap->db_type != M_DATA); 14775 switch (first_mp->b_datap->db_type) { 14776 case M_PROTO: 14777 case M_PCPROTO: 14778 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14779 DL_UNITDATA_IND) { 14780 /* Go handle anything other than data elsewhere. */ 14781 ip_rput_dlpi(q, mp); 14782 return (B_TRUE); 14783 } 14784 14785 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14786 /* Ditch the DLPI header. */ 14787 mp1 = mp->b_cont; 14788 ASSERT(first_mp == mp); 14789 *first_mpp = mp1; 14790 freeb(mp); 14791 *mpp = mp1; 14792 return (B_FALSE); 14793 case M_IOCACK: 14794 ip1dbg(("got iocack ")); 14795 iocp = (struct iocblk *)mp->b_rptr; 14796 switch (iocp->ioc_cmd) { 14797 case DL_IOC_HDR_INFO: 14798 ill = (ill_t *)q->q_ptr; 14799 ill_fastpath_ack(ill, mp); 14800 return (B_TRUE); 14801 case SIOCSTUNPARAM: 14802 case OSIOCSTUNPARAM: 14803 /* Go through qwriter_ip */ 14804 break; 14805 case SIOCGTUNPARAM: 14806 case OSIOCGTUNPARAM: 14807 ip_rput_other(NULL, q, mp, NULL); 14808 return (B_TRUE); 14809 default: 14810 putnext(q, mp); 14811 return (B_TRUE); 14812 } 14813 /* FALLTHRU */ 14814 case M_ERROR: 14815 case M_HANGUP: 14816 /* 14817 * Since this is on the ill stream we unconditionally 14818 * bump up the refcount 14819 */ 14820 ill_refhold(ill); 14821 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14822 return (B_TRUE); 14823 case M_CTL: 14824 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14825 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14826 IPHADA_M_CTL)) { 14827 /* 14828 * It's an IPsec accelerated packet. 14829 * Make sure that the ill from which we received the 14830 * packet has enabled IPsec hardware acceleration. 14831 */ 14832 if (!(ill->ill_capabilities & 14833 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14834 /* IPsec kstats: bean counter */ 14835 freemsg(mp); 14836 return (B_TRUE); 14837 } 14838 14839 /* 14840 * Make mp point to the mblk following the M_CTL, 14841 * then process according to type of mp. 14842 * After this processing, first_mp will point to 14843 * the data-attributes and mp to the pkt following 14844 * the M_CTL. 14845 */ 14846 mp = first_mp->b_cont; 14847 if (mp == NULL) { 14848 freemsg(first_mp); 14849 return (B_TRUE); 14850 } 14851 /* 14852 * A Hardware Accelerated packet can only be M_DATA 14853 * ESP or AH packet. 14854 */ 14855 if (mp->b_datap->db_type != M_DATA) { 14856 /* non-M_DATA IPsec accelerated packet */ 14857 IPSECHW_DEBUG(IPSECHW_PKT, 14858 ("non-M_DATA IPsec accelerated pkt\n")); 14859 freemsg(first_mp); 14860 return (B_TRUE); 14861 } 14862 ipha = (ipha_t *)mp->b_rptr; 14863 if (ipha->ipha_protocol != IPPROTO_AH && 14864 ipha->ipha_protocol != IPPROTO_ESP) { 14865 IPSECHW_DEBUG(IPSECHW_PKT, 14866 ("non-M_DATA IPsec accelerated pkt\n")); 14867 freemsg(first_mp); 14868 return (B_TRUE); 14869 } 14870 *mpp = mp; 14871 return (B_FALSE); 14872 } 14873 putnext(q, mp); 14874 return (B_TRUE); 14875 case M_IOCNAK: 14876 ip1dbg(("got iocnak ")); 14877 iocp = (struct iocblk *)mp->b_rptr; 14878 switch (iocp->ioc_cmd) { 14879 case SIOCSTUNPARAM: 14880 case OSIOCSTUNPARAM: 14881 /* 14882 * Since this is on the ill stream we unconditionally 14883 * bump up the refcount 14884 */ 14885 ill_refhold(ill); 14886 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14887 return (B_TRUE); 14888 case DL_IOC_HDR_INFO: 14889 case SIOCGTUNPARAM: 14890 case OSIOCGTUNPARAM: 14891 ip_rput_other(NULL, q, mp, NULL); 14892 return (B_TRUE); 14893 default: 14894 break; 14895 } 14896 /* FALLTHRU */ 14897 default: 14898 putnext(q, mp); 14899 return (B_TRUE); 14900 } 14901 } 14902 14903 /* Read side put procedure. Packets coming from the wire arrive here. */ 14904 void 14905 ip_rput(queue_t *q, mblk_t *mp) 14906 { 14907 ill_t *ill; 14908 union DL_primitives *dl; 14909 14910 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14911 14912 ill = (ill_t *)q->q_ptr; 14913 14914 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14915 /* 14916 * If things are opening or closing, only accept high-priority 14917 * DLPI messages. (On open ill->ill_ipif has not yet been 14918 * created; on close, things hanging off the ill may have been 14919 * freed already.) 14920 */ 14921 dl = (union DL_primitives *)mp->b_rptr; 14922 if (DB_TYPE(mp) != M_PCPROTO || 14923 dl->dl_primitive == DL_UNITDATA_IND) { 14924 /* 14925 * SIOC[GS]TUNPARAM ioctls can come here. 14926 */ 14927 inet_freemsg(mp); 14928 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14929 "ip_rput_end: q %p (%S)", q, "uninit"); 14930 return; 14931 } 14932 } 14933 14934 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14935 "ip_rput_end: q %p (%S)", q, "end"); 14936 14937 ip_input(ill, NULL, mp, NULL); 14938 } 14939 14940 static mblk_t * 14941 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14942 { 14943 mblk_t *mp1; 14944 boolean_t adjusted = B_FALSE; 14945 ip_stack_t *ipst = ill->ill_ipst; 14946 14947 IP_STAT(ipst, ip_db_ref); 14948 /* 14949 * The IP_RECVSLLA option depends on having the 14950 * link layer header. First check that: 14951 * a> the underlying device is of type ether, 14952 * since this option is currently supported only 14953 * over ethernet. 14954 * b> there is enough room to copy over the link 14955 * layer header. 14956 * 14957 * Once the checks are done, adjust rptr so that 14958 * the link layer header will be copied via 14959 * copymsg. Note that, IFT_ETHER may be returned 14960 * by some non-ethernet drivers but in this case 14961 * the second check will fail. 14962 */ 14963 if (ill->ill_type == IFT_ETHER && 14964 (mp->b_rptr - mp->b_datap->db_base) >= 14965 sizeof (struct ether_header)) { 14966 mp->b_rptr -= sizeof (struct ether_header); 14967 adjusted = B_TRUE; 14968 } 14969 mp1 = copymsg(mp); 14970 14971 if (mp1 == NULL) { 14972 mp->b_next = NULL; 14973 /* clear b_prev - used by ip_mroute_decap */ 14974 mp->b_prev = NULL; 14975 freemsg(mp); 14976 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14977 return (NULL); 14978 } 14979 14980 if (adjusted) { 14981 /* 14982 * Copy is done. Restore the pointer in 14983 * the _new_ mblk 14984 */ 14985 mp1->b_rptr += sizeof (struct ether_header); 14986 } 14987 14988 /* Copy b_prev - used by ip_mroute_decap */ 14989 mp1->b_prev = mp->b_prev; 14990 mp->b_prev = NULL; 14991 14992 /* preserve the hardware checksum flags and data, if present */ 14993 if (DB_CKSUMFLAGS(mp) != 0) { 14994 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14995 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14996 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14997 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14998 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14999 } 15000 15001 freemsg(mp); 15002 return (mp1); 15003 } 15004 15005 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 15006 if (tail != NULL) \ 15007 tail->b_next = mp; \ 15008 else \ 15009 head = mp; \ 15010 tail = mp; \ 15011 cnt++; \ 15012 } 15013 15014 /* 15015 * Direct read side procedure capable of dealing with chains. GLDv3 based 15016 * drivers call this function directly with mblk chains while STREAMS 15017 * read side procedure ip_rput() calls this for single packet with ip_ring 15018 * set to NULL to process one packet at a time. 15019 * 15020 * The ill will always be valid if this function is called directly from 15021 * the driver. 15022 * 15023 * If ip_input() is called from GLDv3: 15024 * 15025 * - This must be a non-VLAN IP stream. 15026 * - 'mp' is either an untagged or a special priority-tagged packet. 15027 * - Any VLAN tag that was in the MAC header has been stripped. 15028 * 15029 * If the IP header in packet is not 32-bit aligned, every message in the 15030 * chain will be aligned before further operations. This is required on SPARC 15031 * platform. 15032 */ 15033 /* ARGSUSED */ 15034 void 15035 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15036 struct mac_header_info_s *mhip) 15037 { 15038 ipaddr_t dst = NULL; 15039 ipaddr_t prev_dst; 15040 ire_t *ire = NULL; 15041 ipha_t *ipha; 15042 uint_t pkt_len; 15043 ssize_t len; 15044 uint_t opt_len; 15045 int ll_multicast; 15046 int cgtp_flt_pkt; 15047 queue_t *q = ill->ill_rq; 15048 squeue_t *curr_sqp = NULL; 15049 mblk_t *head = NULL; 15050 mblk_t *tail = NULL; 15051 mblk_t *first_mp; 15052 int cnt = 0; 15053 ip_stack_t *ipst = ill->ill_ipst; 15054 mblk_t *mp; 15055 mblk_t *dmp; 15056 uint8_t tag; 15057 15058 ASSERT(mp_chain != NULL); 15059 ASSERT(ill != NULL); 15060 15061 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15062 15063 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 15064 15065 #define rptr ((uchar_t *)ipha) 15066 15067 while (mp_chain != NULL) { 15068 mp = mp_chain; 15069 mp_chain = mp_chain->b_next; 15070 mp->b_next = NULL; 15071 ll_multicast = 0; 15072 15073 /* 15074 * We do ire caching from one iteration to 15075 * another. In the event the packet chain contains 15076 * all packets from the same dst, this caching saves 15077 * an ire_cache_lookup for each of the succeeding 15078 * packets in a packet chain. 15079 */ 15080 prev_dst = dst; 15081 15082 /* 15083 * if db_ref > 1 then copymsg and free original. Packet 15084 * may be changed and we do not want the other entity 15085 * who has a reference to this message to trip over the 15086 * changes. This is a blind change because trying to 15087 * catch all places that might change the packet is too 15088 * difficult. 15089 * 15090 * This corresponds to the fast path case, where we have 15091 * a chain of M_DATA mblks. We check the db_ref count 15092 * of only the 1st data block in the mblk chain. There 15093 * doesn't seem to be a reason why a device driver would 15094 * send up data with varying db_ref counts in the mblk 15095 * chain. In any case the Fast path is a private 15096 * interface, and our drivers don't do such a thing. 15097 * Given the above assumption, there is no need to walk 15098 * down the entire mblk chain (which could have a 15099 * potential performance problem) 15100 * 15101 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 15102 * to here because of exclusive ip stacks and vnics. 15103 * Packets transmitted from exclusive stack over vnic 15104 * can have db_ref > 1 and when it gets looped back to 15105 * another vnic in a different zone, you have ip_input() 15106 * getting dblks with db_ref > 1. So if someone 15107 * complains of TCP performance under this scenario, 15108 * take a serious look here on the impact of copymsg(). 15109 */ 15110 15111 if (DB_REF(mp) > 1) { 15112 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 15113 continue; 15114 } 15115 15116 /* 15117 * Check and align the IP header. 15118 */ 15119 first_mp = mp; 15120 if (DB_TYPE(mp) == M_DATA) { 15121 dmp = mp; 15122 } else if (DB_TYPE(mp) == M_PROTO && 15123 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15124 dmp = mp->b_cont; 15125 } else { 15126 dmp = NULL; 15127 } 15128 if (dmp != NULL) { 15129 /* 15130 * IP header ptr not aligned? 15131 * OR IP header not complete in first mblk 15132 */ 15133 if (!OK_32PTR(dmp->b_rptr) || 15134 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15135 if (!ip_check_and_align_header(q, dmp, ipst)) 15136 continue; 15137 } 15138 } 15139 15140 /* 15141 * ip_input fast path 15142 */ 15143 15144 /* mblk type is not M_DATA */ 15145 if (DB_TYPE(mp) != M_DATA) { 15146 if (ip_rput_process_notdata(q, &first_mp, ill, 15147 &ll_multicast, &mp)) 15148 continue; 15149 15150 /* 15151 * The only way we can get here is if we had a 15152 * packet that was either a DL_UNITDATA_IND or 15153 * an M_CTL for an IPsec accelerated packet. 15154 * 15155 * In either case, the first_mp will point to 15156 * the leading M_PROTO or M_CTL. 15157 */ 15158 ASSERT(first_mp != NULL); 15159 } else if (mhip != NULL) { 15160 /* 15161 * ll_multicast is set here so that it is ready 15162 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15163 * manipulates ll_multicast in the same fashion when 15164 * called from ip_rput_process_notdata. 15165 */ 15166 switch (mhip->mhi_dsttype) { 15167 case MAC_ADDRTYPE_MULTICAST : 15168 ll_multicast = HPE_MULTICAST; 15169 break; 15170 case MAC_ADDRTYPE_BROADCAST : 15171 ll_multicast = HPE_BROADCAST; 15172 break; 15173 default : 15174 break; 15175 } 15176 } 15177 15178 /* Only M_DATA can come here and it is always aligned */ 15179 ASSERT(DB_TYPE(mp) == M_DATA); 15180 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15181 15182 ipha = (ipha_t *)mp->b_rptr; 15183 len = mp->b_wptr - rptr; 15184 pkt_len = ntohs(ipha->ipha_length); 15185 15186 /* 15187 * We must count all incoming packets, even if they end 15188 * up being dropped later on. 15189 */ 15190 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15191 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15192 15193 /* multiple mblk or too short */ 15194 len -= pkt_len; 15195 if (len != 0) { 15196 /* 15197 * Make sure we have data length consistent 15198 * with the IP header. 15199 */ 15200 if (mp->b_cont == NULL) { 15201 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15202 BUMP_MIB(ill->ill_ip_mib, 15203 ipIfStatsInHdrErrors); 15204 ip2dbg(("ip_input: drop pkt\n")); 15205 freemsg(mp); 15206 continue; 15207 } 15208 mp->b_wptr = rptr + pkt_len; 15209 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15210 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15211 BUMP_MIB(ill->ill_ip_mib, 15212 ipIfStatsInHdrErrors); 15213 ip2dbg(("ip_input: drop pkt\n")); 15214 freemsg(mp); 15215 continue; 15216 } 15217 (void) adjmsg(mp, -len); 15218 IP_STAT(ipst, ip_multimblk3); 15219 } 15220 } 15221 15222 /* Obtain the dst of the current packet */ 15223 dst = ipha->ipha_dst; 15224 15225 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15226 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15227 ipha, ip6_t *, NULL, int, 0); 15228 15229 /* 15230 * The following test for loopback is faster than 15231 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15232 * operations. 15233 * Note that these addresses are always in network byte order 15234 */ 15235 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15236 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15238 freemsg(mp); 15239 continue; 15240 } 15241 15242 /* 15243 * The event for packets being received from a 'physical' 15244 * interface is placed after validation of the source and/or 15245 * destination address as being local so that packets can be 15246 * redirected to loopback addresses using ipnat. 15247 */ 15248 DTRACE_PROBE4(ip4__physical__in__start, 15249 ill_t *, ill, ill_t *, NULL, 15250 ipha_t *, ipha, mblk_t *, first_mp); 15251 15252 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15253 ipst->ips_ipv4firewall_physical_in, 15254 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15255 15256 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15257 15258 if (first_mp == NULL) { 15259 continue; 15260 } 15261 dst = ipha->ipha_dst; 15262 /* 15263 * Attach any necessary label information to 15264 * this packet 15265 */ 15266 if (is_system_labeled() && 15267 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15268 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15269 freemsg(mp); 15270 continue; 15271 } 15272 15273 if (ipst->ips_ipobs_enabled) { 15274 zoneid_t dzone; 15275 15276 /* 15277 * On the inbound path the src zone will be unknown as 15278 * this packet has come from the wire. 15279 */ 15280 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15281 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15282 ill, IPV4_VERSION, 0, ipst); 15283 } 15284 15285 /* 15286 * Reuse the cached ire only if the ipha_dst of the previous 15287 * packet is the same as the current packet AND it is not 15288 * INADDR_ANY. 15289 */ 15290 if (!(dst == prev_dst && dst != INADDR_ANY) && 15291 (ire != NULL)) { 15292 ire_refrele(ire); 15293 ire = NULL; 15294 } 15295 15296 opt_len = ipha->ipha_version_and_hdr_length - 15297 IP_SIMPLE_HDR_VERSION; 15298 15299 /* 15300 * Check to see if we can take the fastpath. 15301 * That is possible if the following conditions are met 15302 * o Tsol disabled 15303 * o CGTP disabled 15304 * o ipp_action_count is 0 15305 * o no options in the packet 15306 * o not a RSVP packet 15307 * o not a multicast packet 15308 * o ill not in IP_DHCPINIT_IF mode 15309 */ 15310 if (!is_system_labeled() && 15311 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15312 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15313 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15314 if (ire == NULL) 15315 ire = ire_cache_lookup_simple(dst, ipst); 15316 /* 15317 * Unless forwarding is enabled, dont call 15318 * ip_fast_forward(). Incoming packet is for forwarding 15319 */ 15320 if ((ill->ill_flags & ILLF_ROUTER) && 15321 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15322 ire = ip_fast_forward(ire, dst, ill, mp); 15323 continue; 15324 } 15325 /* incoming packet is for local consumption */ 15326 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15327 goto local; 15328 } 15329 15330 /* 15331 * Disable ire caching for anything more complex 15332 * than the simple fast path case we checked for above. 15333 */ 15334 if (ire != NULL) { 15335 ire_refrele(ire); 15336 ire = NULL; 15337 } 15338 15339 /* 15340 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15341 * server to unicast DHCP packets to a DHCP client using the 15342 * IP address it is offering to the client. This can be 15343 * disabled through the "broadcast bit", but not all DHCP 15344 * servers honor that bit. Therefore, to interoperate with as 15345 * many DHCP servers as possible, the DHCP client allows the 15346 * server to unicast, but we treat those packets as broadcast 15347 * here. Note that we don't rewrite the packet itself since 15348 * (a) that would mess up the checksums and (b) the DHCP 15349 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15350 * hand it the packet regardless. 15351 */ 15352 if (ill->ill_dhcpinit != 0 && 15353 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15354 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15355 udpha_t *udpha; 15356 15357 /* 15358 * Reload ipha since pullupmsg() can change b_rptr. 15359 */ 15360 ipha = (ipha_t *)mp->b_rptr; 15361 udpha = (udpha_t *)&ipha[1]; 15362 15363 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15364 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15365 mblk_t *, mp); 15366 dst = INADDR_BROADCAST; 15367 } 15368 } 15369 15370 /* Full-blown slow path */ 15371 if (opt_len != 0) { 15372 if (len != 0) 15373 IP_STAT(ipst, ip_multimblk4); 15374 else 15375 IP_STAT(ipst, ip_ipoptions); 15376 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15377 &dst, ipst)) 15378 continue; 15379 } 15380 15381 /* 15382 * Invoke the CGTP (multirouting) filtering module to process 15383 * the incoming packet. Packets identified as duplicates 15384 * must be discarded. Filtering is active only if the 15385 * the ip_cgtp_filter ndd variable is non-zero. 15386 */ 15387 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15388 if (ipst->ips_ip_cgtp_filter && 15389 ipst->ips_ip_cgtp_filter_ops != NULL) { 15390 netstackid_t stackid; 15391 15392 stackid = ipst->ips_netstack->netstack_stackid; 15393 cgtp_flt_pkt = 15394 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15395 ill->ill_phyint->phyint_ifindex, mp); 15396 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15397 freemsg(first_mp); 15398 continue; 15399 } 15400 } 15401 15402 /* 15403 * If rsvpd is running, let RSVP daemon handle its processing 15404 * and forwarding of RSVP multicast/unicast packets. 15405 * If rsvpd is not running but mrouted is running, RSVP 15406 * multicast packets are forwarded as multicast traffic 15407 * and RSVP unicast packets are forwarded by unicast router. 15408 * If neither rsvpd nor mrouted is running, RSVP multicast 15409 * packets are not forwarded, but the unicast packets are 15410 * forwarded like unicast traffic. 15411 */ 15412 if (ipha->ipha_protocol == IPPROTO_RSVP && 15413 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15414 NULL) { 15415 /* RSVP packet and rsvpd running. Treat as ours */ 15416 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15417 /* 15418 * This assumes that we deliver to all streams for 15419 * multicast and broadcast packets. 15420 * We have to force ll_multicast to 1 to handle the 15421 * M_DATA messages passed in from ip_mroute_decap. 15422 */ 15423 dst = INADDR_BROADCAST; 15424 ll_multicast = 1; 15425 } else if (CLASSD(dst)) { 15426 /* packet is multicast */ 15427 mp->b_next = NULL; 15428 if (ip_rput_process_multicast(q, mp, ill, ipha, 15429 &ll_multicast, &dst)) 15430 continue; 15431 } 15432 15433 if (ire == NULL) { 15434 ire = ire_cache_lookup(dst, ALL_ZONES, 15435 MBLK_GETLABEL(mp), ipst); 15436 } 15437 15438 if (ire != NULL && ire->ire_stq != NULL && 15439 ire->ire_zoneid != GLOBAL_ZONEID && 15440 ire->ire_zoneid != ALL_ZONES) { 15441 /* 15442 * Should only use IREs that are visible from the 15443 * global zone for forwarding. 15444 */ 15445 ire_refrele(ire); 15446 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15447 MBLK_GETLABEL(mp), ipst); 15448 } 15449 15450 if (ire == NULL) { 15451 /* 15452 * No IRE for this destination, so it can't be for us. 15453 * Unless we are forwarding, drop the packet. 15454 * We have to let source routed packets through 15455 * since we don't yet know if they are 'ping -l' 15456 * packets i.e. if they will go out over the 15457 * same interface as they came in on. 15458 */ 15459 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15460 if (ire == NULL) 15461 continue; 15462 } 15463 15464 /* 15465 * Broadcast IRE may indicate either broadcast or 15466 * multicast packet 15467 */ 15468 if (ire->ire_type == IRE_BROADCAST) { 15469 /* 15470 * Skip broadcast checks if packet is UDP multicast; 15471 * we'd rather not enter ip_rput_process_broadcast() 15472 * unless the packet is broadcast for real, since 15473 * that routine is a no-op for multicast. 15474 */ 15475 if (ipha->ipha_protocol != IPPROTO_UDP || 15476 !CLASSD(ipha->ipha_dst)) { 15477 ire = ip_rput_process_broadcast(&q, mp, 15478 ire, ipha, ill, dst, cgtp_flt_pkt, 15479 ll_multicast); 15480 if (ire == NULL) 15481 continue; 15482 } 15483 } else if (ire->ire_stq != NULL) { 15484 /* fowarding? */ 15485 ip_rput_process_forward(q, mp, ire, ipha, ill, 15486 ll_multicast, B_FALSE); 15487 /* ip_rput_process_forward consumed the packet */ 15488 continue; 15489 } 15490 15491 local: 15492 /* 15493 * If the queue in the ire is different to the ingress queue 15494 * then we need to check to see if we can accept the packet. 15495 * Note that for multicast packets and broadcast packets sent 15496 * to a broadcast address which is shared between multiple 15497 * interfaces we should not do this since we just got a random 15498 * broadcast ire. 15499 */ 15500 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15501 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15502 ill)) == NULL) { 15503 /* Drop packet */ 15504 BUMP_MIB(ill->ill_ip_mib, 15505 ipIfStatsForwProhibits); 15506 freemsg(mp); 15507 continue; 15508 } 15509 if (ire->ire_rfq != NULL) 15510 q = ire->ire_rfq; 15511 } 15512 15513 switch (ipha->ipha_protocol) { 15514 case IPPROTO_TCP: 15515 ASSERT(first_mp == mp); 15516 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15517 mp, 0, q, ip_ring)) != NULL) { 15518 if (curr_sqp == NULL) { 15519 curr_sqp = GET_SQUEUE(mp); 15520 ASSERT(cnt == 0); 15521 cnt++; 15522 head = tail = mp; 15523 } else if (curr_sqp == GET_SQUEUE(mp)) { 15524 ASSERT(tail != NULL); 15525 cnt++; 15526 tail->b_next = mp; 15527 tail = mp; 15528 } else { 15529 /* 15530 * A different squeue. Send the 15531 * chain for the previous squeue on 15532 * its way. This shouldn't happen 15533 * often unless interrupt binding 15534 * changes. 15535 */ 15536 IP_STAT(ipst, ip_input_multi_squeue); 15537 SQUEUE_ENTER(curr_sqp, head, 15538 tail, cnt, SQ_PROCESS, tag); 15539 curr_sqp = GET_SQUEUE(mp); 15540 head = mp; 15541 tail = mp; 15542 cnt = 1; 15543 } 15544 } 15545 continue; 15546 case IPPROTO_UDP: 15547 ASSERT(first_mp == mp); 15548 ip_udp_input(q, mp, ipha, ire, ill); 15549 continue; 15550 case IPPROTO_SCTP: 15551 ASSERT(first_mp == mp); 15552 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15553 q, dst); 15554 /* ire has been released by ip_sctp_input */ 15555 ire = NULL; 15556 continue; 15557 default: 15558 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15559 continue; 15560 } 15561 } 15562 15563 if (ire != NULL) 15564 ire_refrele(ire); 15565 15566 if (head != NULL) 15567 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15568 15569 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15570 "ip_input_end: q %p (%S)", q, "end"); 15571 #undef rptr 15572 } 15573 15574 /* 15575 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15576 * a chain of packets in the poll mode. The packets have gone through the 15577 * data link processing but not IP processing. For performance and latency 15578 * reasons, the squeue wants to process the chain in line instead of feeding 15579 * it back via ip_input path. 15580 * 15581 * So this is a light weight function which checks to see if the packets 15582 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15583 * but we still do the paranoid check) meant for local machine and we don't 15584 * have labels etc enabled. Packets that meet the criterion are returned to 15585 * the squeue and processed inline while the rest go via ip_input path. 15586 */ 15587 /*ARGSUSED*/ 15588 mblk_t * 15589 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15590 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15591 { 15592 mblk_t *mp; 15593 ipaddr_t dst = NULL; 15594 ipaddr_t prev_dst; 15595 ire_t *ire = NULL; 15596 ipha_t *ipha; 15597 uint_t pkt_len; 15598 ssize_t len; 15599 uint_t opt_len; 15600 queue_t *q = ill->ill_rq; 15601 squeue_t *curr_sqp; 15602 mblk_t *ahead = NULL; /* Accepted head */ 15603 mblk_t *atail = NULL; /* Accepted tail */ 15604 uint_t acnt = 0; /* Accepted count */ 15605 mblk_t *utail = NULL; /* Unaccepted head */ 15606 mblk_t *uhead = NULL; /* Unaccepted tail */ 15607 uint_t ucnt = 0; /* Unaccepted cnt */ 15608 ip_stack_t *ipst = ill->ill_ipst; 15609 15610 *cnt = 0; 15611 15612 ASSERT(ill != NULL); 15613 ASSERT(ip_ring != NULL); 15614 15615 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15616 15617 #define rptr ((uchar_t *)ipha) 15618 15619 while (mp_chain != NULL) { 15620 mp = mp_chain; 15621 mp_chain = mp_chain->b_next; 15622 mp->b_next = NULL; 15623 15624 /* 15625 * We do ire caching from one iteration to 15626 * another. In the event the packet chain contains 15627 * all packets from the same dst, this caching saves 15628 * an ire_cache_lookup for each of the succeeding 15629 * packets in a packet chain. 15630 */ 15631 prev_dst = dst; 15632 15633 ipha = (ipha_t *)mp->b_rptr; 15634 len = mp->b_wptr - rptr; 15635 15636 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15637 15638 /* 15639 * If it is a non TCP packet, or doesn't have H/W cksum, 15640 * or doesn't have min len, reject. 15641 */ 15642 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15643 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15644 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15645 continue; 15646 } 15647 15648 pkt_len = ntohs(ipha->ipha_length); 15649 if (len != pkt_len) { 15650 if (len > pkt_len) { 15651 mp->b_wptr = rptr + pkt_len; 15652 } else { 15653 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15654 continue; 15655 } 15656 } 15657 15658 opt_len = ipha->ipha_version_and_hdr_length - 15659 IP_SIMPLE_HDR_VERSION; 15660 dst = ipha->ipha_dst; 15661 15662 /* IP version bad or there are IP options */ 15663 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15664 mp, &ipha, &dst, ipst))) 15665 continue; 15666 15667 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15668 (ipst->ips_ip_cgtp_filter && 15669 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15670 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15671 continue; 15672 } 15673 15674 /* 15675 * Reuse the cached ire only if the ipha_dst of the previous 15676 * packet is the same as the current packet AND it is not 15677 * INADDR_ANY. 15678 */ 15679 if (!(dst == prev_dst && dst != INADDR_ANY) && 15680 (ire != NULL)) { 15681 ire_refrele(ire); 15682 ire = NULL; 15683 } 15684 15685 if (ire == NULL) 15686 ire = ire_cache_lookup_simple(dst, ipst); 15687 15688 /* 15689 * Unless forwarding is enabled, dont call 15690 * ip_fast_forward(). Incoming packet is for forwarding 15691 */ 15692 if ((ill->ill_flags & ILLF_ROUTER) && 15693 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15694 15695 DTRACE_PROBE4(ip4__physical__in__start, 15696 ill_t *, ill, ill_t *, NULL, 15697 ipha_t *, ipha, mblk_t *, mp); 15698 15699 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15700 ipst->ips_ipv4firewall_physical_in, 15701 ill, NULL, ipha, mp, mp, 0, ipst); 15702 15703 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15704 15705 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15706 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15707 pkt_len); 15708 15709 ire = ip_fast_forward(ire, dst, ill, mp); 15710 continue; 15711 } 15712 15713 /* incoming packet is for local consumption */ 15714 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15715 goto local_accept; 15716 15717 /* 15718 * Disable ire caching for anything more complex 15719 * than the simple fast path case we checked for above. 15720 */ 15721 if (ire != NULL) { 15722 ire_refrele(ire); 15723 ire = NULL; 15724 } 15725 15726 ire = ire_cache_lookup(dst, ALL_ZONES, MBLK_GETLABEL(mp), 15727 ipst); 15728 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15729 ire->ire_stq != NULL) { 15730 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15731 if (ire != NULL) { 15732 ire_refrele(ire); 15733 ire = NULL; 15734 } 15735 continue; 15736 } 15737 15738 local_accept: 15739 15740 if (ire->ire_rfq != q) { 15741 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15742 if (ire != NULL) { 15743 ire_refrele(ire); 15744 ire = NULL; 15745 } 15746 continue; 15747 } 15748 15749 /* 15750 * The event for packets being received from a 'physical' 15751 * interface is placed after validation of the source and/or 15752 * destination address as being local so that packets can be 15753 * redirected to loopback addresses using ipnat. 15754 */ 15755 DTRACE_PROBE4(ip4__physical__in__start, 15756 ill_t *, ill, ill_t *, NULL, 15757 ipha_t *, ipha, mblk_t *, mp); 15758 15759 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15760 ipst->ips_ipv4firewall_physical_in, 15761 ill, NULL, ipha, mp, mp, 0, ipst); 15762 15763 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15764 15765 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15766 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15767 15768 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15769 0, q, ip_ring)) != NULL) { 15770 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15771 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15772 } else { 15773 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15774 SQ_FILL, SQTAG_IP_INPUT); 15775 } 15776 } 15777 } 15778 15779 if (ire != NULL) 15780 ire_refrele(ire); 15781 15782 if (uhead != NULL) 15783 ip_input(ill, ip_ring, uhead, NULL); 15784 15785 if (ahead != NULL) { 15786 *last = atail; 15787 *cnt = acnt; 15788 return (ahead); 15789 } 15790 15791 return (NULL); 15792 #undef rptr 15793 } 15794 15795 static void 15796 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15797 t_uscalar_t err) 15798 { 15799 if (dl_err == DL_SYSERR) { 15800 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15801 "%s: %s failed: DL_SYSERR (errno %u)\n", 15802 ill->ill_name, dl_primstr(prim), err); 15803 return; 15804 } 15805 15806 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15807 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15808 dl_errstr(dl_err)); 15809 } 15810 15811 /* 15812 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15813 * than DL_UNITDATA_IND messages. If we need to process this message 15814 * exclusively, we call qwriter_ip, in which case we also need to call 15815 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15816 */ 15817 void 15818 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15819 { 15820 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15821 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15822 ill_t *ill = q->q_ptr; 15823 t_uscalar_t prim = dloa->dl_primitive; 15824 t_uscalar_t reqprim = DL_PRIM_INVAL; 15825 15826 ip1dbg(("ip_rput_dlpi")); 15827 15828 /* 15829 * If we received an ACK but didn't send a request for it, then it 15830 * can't be part of any pending operation; discard up-front. 15831 */ 15832 switch (prim) { 15833 case DL_ERROR_ACK: 15834 reqprim = dlea->dl_error_primitive; 15835 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15836 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15837 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15838 dlea->dl_unix_errno)); 15839 break; 15840 case DL_OK_ACK: 15841 reqprim = dloa->dl_correct_primitive; 15842 break; 15843 case DL_INFO_ACK: 15844 reqprim = DL_INFO_REQ; 15845 break; 15846 case DL_BIND_ACK: 15847 reqprim = DL_BIND_REQ; 15848 break; 15849 case DL_PHYS_ADDR_ACK: 15850 reqprim = DL_PHYS_ADDR_REQ; 15851 break; 15852 case DL_NOTIFY_ACK: 15853 reqprim = DL_NOTIFY_REQ; 15854 break; 15855 case DL_CONTROL_ACK: 15856 reqprim = DL_CONTROL_REQ; 15857 break; 15858 case DL_CAPABILITY_ACK: 15859 reqprim = DL_CAPABILITY_REQ; 15860 break; 15861 } 15862 15863 if (prim != DL_NOTIFY_IND) { 15864 if (reqprim == DL_PRIM_INVAL || 15865 !ill_dlpi_pending(ill, reqprim)) { 15866 /* Not a DLPI message we support or expected */ 15867 freemsg(mp); 15868 return; 15869 } 15870 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15871 dl_primstr(reqprim))); 15872 } 15873 15874 switch (reqprim) { 15875 case DL_UNBIND_REQ: 15876 /* 15877 * NOTE: we mark the unbind as complete even if we got a 15878 * DL_ERROR_ACK, since there's not much else we can do. 15879 */ 15880 mutex_enter(&ill->ill_lock); 15881 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15882 cv_signal(&ill->ill_cv); 15883 mutex_exit(&ill->ill_lock); 15884 break; 15885 15886 case DL_ENABMULTI_REQ: 15887 if (prim == DL_OK_ACK) { 15888 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15889 ill->ill_dlpi_multicast_state = IDS_OK; 15890 } 15891 break; 15892 } 15893 15894 /* 15895 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15896 * need to become writer to continue to process it. Because an 15897 * exclusive operation doesn't complete until replies to all queued 15898 * DLPI messages have been received, we know we're in the middle of an 15899 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15900 * 15901 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15902 * Since this is on the ill stream we unconditionally bump up the 15903 * refcount without doing ILL_CAN_LOOKUP(). 15904 */ 15905 ill_refhold(ill); 15906 if (prim == DL_NOTIFY_IND) 15907 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15908 else 15909 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15910 } 15911 15912 /* 15913 * Handling of DLPI messages that require exclusive access to the ipsq. 15914 * 15915 * Need to do ill_pending_mp_release on ioctl completion, which could 15916 * happen here. (along with mi_copy_done) 15917 */ 15918 /* ARGSUSED */ 15919 static void 15920 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15921 { 15922 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15923 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15924 int err = 0; 15925 ill_t *ill; 15926 ipif_t *ipif = NULL; 15927 mblk_t *mp1 = NULL; 15928 conn_t *connp = NULL; 15929 t_uscalar_t paddrreq; 15930 mblk_t *mp_hw; 15931 boolean_t success; 15932 boolean_t ioctl_aborted = B_FALSE; 15933 boolean_t log = B_TRUE; 15934 ip_stack_t *ipst; 15935 15936 ip1dbg(("ip_rput_dlpi_writer ..")); 15937 ill = (ill_t *)q->q_ptr; 15938 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15939 15940 ASSERT(IAM_WRITER_ILL(ill)); 15941 15942 ipst = ill->ill_ipst; 15943 15944 /* 15945 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15946 * both are null or non-null. However we can assert that only 15947 * after grabbing the ipsq_lock. So we don't make any assertion 15948 * here and in other places in the code. 15949 */ 15950 ipif = ipsq->ipsq_pending_ipif; 15951 /* 15952 * The current ioctl could have been aborted by the user and a new 15953 * ioctl to bring up another ill could have started. We could still 15954 * get a response from the driver later. 15955 */ 15956 if (ipif != NULL && ipif->ipif_ill != ill) 15957 ioctl_aborted = B_TRUE; 15958 15959 switch (dloa->dl_primitive) { 15960 case DL_ERROR_ACK: 15961 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15962 dl_primstr(dlea->dl_error_primitive))); 15963 15964 switch (dlea->dl_error_primitive) { 15965 case DL_DISABMULTI_REQ: 15966 if (!ill->ill_isv6) 15967 ipsq_current_finish(ipsq); 15968 ill_dlpi_done(ill, dlea->dl_error_primitive); 15969 break; 15970 case DL_PROMISCON_REQ: 15971 case DL_PROMISCOFF_REQ: 15972 case DL_UNBIND_REQ: 15973 case DL_ATTACH_REQ: 15974 case DL_INFO_REQ: 15975 ill_dlpi_done(ill, dlea->dl_error_primitive); 15976 break; 15977 case DL_NOTIFY_REQ: 15978 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15979 log = B_FALSE; 15980 break; 15981 case DL_PHYS_ADDR_REQ: 15982 /* 15983 * For IPv6 only, there are two additional 15984 * phys_addr_req's sent to the driver to get the 15985 * IPv6 token and lla. This allows IP to acquire 15986 * the hardware address format for a given interface 15987 * without having built in knowledge of the hardware 15988 * address. ill_phys_addr_pend keeps track of the last 15989 * DL_PAR sent so we know which response we are 15990 * dealing with. ill_dlpi_done will update 15991 * ill_phys_addr_pend when it sends the next req. 15992 * We don't complete the IOCTL until all three DL_PARs 15993 * have been attempted, so set *_len to 0 and break. 15994 */ 15995 paddrreq = ill->ill_phys_addr_pend; 15996 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15997 if (paddrreq == DL_IPV6_TOKEN) { 15998 ill->ill_token_length = 0; 15999 log = B_FALSE; 16000 break; 16001 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16002 ill->ill_nd_lla_len = 0; 16003 log = B_FALSE; 16004 break; 16005 } 16006 /* 16007 * Something went wrong with the DL_PHYS_ADDR_REQ. 16008 * We presumably have an IOCTL hanging out waiting 16009 * for completion. Find it and complete the IOCTL 16010 * with the error noted. 16011 * However, ill_dl_phys was called on an ill queue 16012 * (from SIOCSLIFNAME), thus conn_pending_ill is not 16013 * set. But the ioctl is known to be pending on ill_wq. 16014 */ 16015 if (!ill->ill_ifname_pending) 16016 break; 16017 ill->ill_ifname_pending = 0; 16018 if (!ioctl_aborted) 16019 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16020 if (mp1 != NULL) { 16021 /* 16022 * This operation (SIOCSLIFNAME) must have 16023 * happened on the ill. Assert there is no conn 16024 */ 16025 ASSERT(connp == NULL); 16026 q = ill->ill_wq; 16027 } 16028 break; 16029 case DL_BIND_REQ: 16030 ill_dlpi_done(ill, DL_BIND_REQ); 16031 if (ill->ill_ifname_pending) 16032 break; 16033 /* 16034 * Something went wrong with the bind. We presumably 16035 * have an IOCTL hanging out waiting for completion. 16036 * Find it, take down the interface that was coming 16037 * up, and complete the IOCTL with the error noted. 16038 */ 16039 if (!ioctl_aborted) 16040 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16041 if (mp1 != NULL) { 16042 /* 16043 * This operation (SIOCSLIFFLAGS) must have 16044 * happened from a conn. 16045 */ 16046 ASSERT(connp != NULL); 16047 q = CONNP_TO_WQ(connp); 16048 if (ill->ill_move_in_progress) { 16049 ILL_CLEAR_MOVE(ill); 16050 } 16051 (void) ipif_down(ipif, NULL, NULL); 16052 /* error is set below the switch */ 16053 } 16054 break; 16055 case DL_ENABMULTI_REQ: 16056 if (!ill->ill_isv6) 16057 ipsq_current_finish(ipsq); 16058 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 16059 16060 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 16061 ill->ill_dlpi_multicast_state = IDS_FAILED; 16062 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 16063 ipif_t *ipif; 16064 16065 printf("ip: joining multicasts failed (%d)" 16066 " on %s - will use link layer " 16067 "broadcasts for multicast\n", 16068 dlea->dl_errno, ill->ill_name); 16069 16070 /* 16071 * Set up the multicast mapping alone. 16072 * writer, so ok to access ill->ill_ipif 16073 * without any lock. 16074 */ 16075 ipif = ill->ill_ipif; 16076 mutex_enter(&ill->ill_phyint->phyint_lock); 16077 ill->ill_phyint->phyint_flags |= 16078 PHYI_MULTI_BCAST; 16079 mutex_exit(&ill->ill_phyint->phyint_lock); 16080 16081 if (!ill->ill_isv6) { 16082 (void) ipif_arp_setup_multicast(ipif, 16083 NULL); 16084 } else { 16085 (void) ipif_ndp_setup_multicast(ipif, 16086 NULL); 16087 } 16088 } 16089 freemsg(mp); /* Don't want to pass this up */ 16090 return; 16091 case DL_CONTROL_REQ: 16092 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16093 "DL_CONTROL_REQ\n")); 16094 ill_dlpi_done(ill, dlea->dl_error_primitive); 16095 freemsg(mp); 16096 return; 16097 case DL_CAPABILITY_REQ: 16098 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16099 "DL_CAPABILITY REQ\n")); 16100 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 16101 ill->ill_dlpi_capab_state = IDCS_FAILED; 16102 ill_capability_done(ill); 16103 freemsg(mp); 16104 return; 16105 } 16106 /* 16107 * Note the error for IOCTL completion (mp1 is set when 16108 * ready to complete ioctl). If ill_ifname_pending_err is 16109 * set, an error occured during plumbing (ill_ifname_pending), 16110 * so we want to report that error. 16111 * 16112 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 16113 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 16114 * expected to get errack'd if the driver doesn't support 16115 * these flags (e.g. ethernet). log will be set to B_FALSE 16116 * if these error conditions are encountered. 16117 */ 16118 if (mp1 != NULL) { 16119 if (ill->ill_ifname_pending_err != 0) { 16120 err = ill->ill_ifname_pending_err; 16121 ill->ill_ifname_pending_err = 0; 16122 } else { 16123 err = dlea->dl_unix_errno ? 16124 dlea->dl_unix_errno : ENXIO; 16125 } 16126 /* 16127 * If we're plumbing an interface and an error hasn't already 16128 * been saved, set ill_ifname_pending_err to the error passed 16129 * up. Ignore the error if log is B_FALSE (see comment above). 16130 */ 16131 } else if (log && ill->ill_ifname_pending && 16132 ill->ill_ifname_pending_err == 0) { 16133 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 16134 dlea->dl_unix_errno : ENXIO; 16135 } 16136 16137 if (log) 16138 ip_dlpi_error(ill, dlea->dl_error_primitive, 16139 dlea->dl_errno, dlea->dl_unix_errno); 16140 break; 16141 case DL_CAPABILITY_ACK: 16142 ill_capability_ack(ill, mp); 16143 /* 16144 * The message has been handed off to ill_capability_ack 16145 * and must not be freed below 16146 */ 16147 mp = NULL; 16148 break; 16149 16150 case DL_CONTROL_ACK: 16151 /* We treat all of these as "fire and forget" */ 16152 ill_dlpi_done(ill, DL_CONTROL_REQ); 16153 break; 16154 case DL_INFO_ACK: 16155 /* Call a routine to handle this one. */ 16156 ill_dlpi_done(ill, DL_INFO_REQ); 16157 ip_ll_subnet_defaults(ill, mp); 16158 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16159 return; 16160 case DL_BIND_ACK: 16161 /* 16162 * We should have an IOCTL waiting on this unless 16163 * sent by ill_dl_phys, in which case just return 16164 */ 16165 ill_dlpi_done(ill, DL_BIND_REQ); 16166 if (ill->ill_ifname_pending) 16167 break; 16168 16169 if (!ioctl_aborted) 16170 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16171 if (mp1 == NULL) 16172 break; 16173 /* 16174 * Because mp1 was added by ill_dl_up(), and it always 16175 * passes a valid connp, connp must be valid here. 16176 */ 16177 ASSERT(connp != NULL); 16178 q = CONNP_TO_WQ(connp); 16179 16180 /* 16181 * We are exclusive. So nothing can change even after 16182 * we get the pending mp. If need be we can put it back 16183 * and restart, as in calling ipif_arp_up() below. 16184 */ 16185 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16186 16187 mutex_enter(&ill->ill_lock); 16188 ill->ill_dl_up = 1; 16189 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16190 mutex_exit(&ill->ill_lock); 16191 16192 /* 16193 * Now bring up the resolver; when that is complete, we'll 16194 * create IREs. Note that we intentionally mirror what 16195 * ipif_up() would have done, because we got here by way of 16196 * ill_dl_up(), which stopped ipif_up()'s processing. 16197 */ 16198 if (ill->ill_isv6) { 16199 /* 16200 * v6 interfaces. 16201 * Unlike ARP which has to do another bind 16202 * and attach, once we get here we are 16203 * done with NDP. Except in the case of 16204 * ILLF_XRESOLV, in which case we send an 16205 * AR_INTERFACE_UP to the external resolver. 16206 * If all goes well, the ioctl will complete 16207 * in ip_rput(). If there's an error, we 16208 * complete it here. 16209 */ 16210 if ((err = ipif_ndp_up(ipif)) == 0) { 16211 if (ill->ill_flags & ILLF_XRESOLV) { 16212 mutex_enter(&connp->conn_lock); 16213 mutex_enter(&ill->ill_lock); 16214 success = ipsq_pending_mp_add( 16215 connp, ipif, q, mp1, 0); 16216 mutex_exit(&ill->ill_lock); 16217 mutex_exit(&connp->conn_lock); 16218 if (success) { 16219 err = ipif_resolver_up(ipif, 16220 Res_act_initial); 16221 if (err == EINPROGRESS) { 16222 freemsg(mp); 16223 return; 16224 } 16225 ASSERT(err != 0); 16226 mp1 = ipsq_pending_mp_get(ipsq, 16227 &connp); 16228 ASSERT(mp1 != NULL); 16229 } else { 16230 /* conn has started closing */ 16231 err = EINTR; 16232 } 16233 } else { /* Non XRESOLV interface */ 16234 (void) ipif_resolver_up(ipif, 16235 Res_act_initial); 16236 err = ipif_up_done_v6(ipif); 16237 } 16238 } 16239 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16240 /* 16241 * ARP and other v4 external resolvers. 16242 * Leave the pending mblk intact so that 16243 * the ioctl completes in ip_rput(). 16244 */ 16245 mutex_enter(&connp->conn_lock); 16246 mutex_enter(&ill->ill_lock); 16247 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16248 mutex_exit(&ill->ill_lock); 16249 mutex_exit(&connp->conn_lock); 16250 if (success) { 16251 err = ipif_resolver_up(ipif, Res_act_initial); 16252 if (err == EINPROGRESS) { 16253 freemsg(mp); 16254 return; 16255 } 16256 ASSERT(err != 0); 16257 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16258 } else { 16259 /* The conn has started closing */ 16260 err = EINTR; 16261 } 16262 } else { 16263 /* 16264 * This one is complete. Reply to pending ioctl. 16265 */ 16266 (void) ipif_resolver_up(ipif, Res_act_initial); 16267 err = ipif_up_done(ipif); 16268 } 16269 16270 if ((err == 0) && (ill->ill_up_ipifs)) { 16271 err = ill_up_ipifs(ill, q, mp1); 16272 if (err == EINPROGRESS) { 16273 freemsg(mp); 16274 return; 16275 } 16276 } 16277 16278 if (ill->ill_up_ipifs) { 16279 ill_group_cleanup(ill); 16280 } 16281 16282 break; 16283 case DL_NOTIFY_IND: { 16284 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16285 ire_t *ire; 16286 boolean_t need_ire_walk_v4 = B_FALSE; 16287 boolean_t need_ire_walk_v6 = B_FALSE; 16288 16289 switch (notify->dl_notification) { 16290 case DL_NOTE_PHYS_ADDR: 16291 err = ill_set_phys_addr(ill, mp); 16292 break; 16293 16294 case DL_NOTE_FASTPATH_FLUSH: 16295 ill_fastpath_flush(ill); 16296 break; 16297 16298 case DL_NOTE_SDU_SIZE: 16299 /* 16300 * Change the MTU size of the interface, of all 16301 * attached ipif's, and of all relevant ire's. The 16302 * new value's a uint32_t at notify->dl_data. 16303 * Mtu change Vs. new ire creation - protocol below. 16304 * 16305 * a Mark the ipif as IPIF_CHANGING. 16306 * b Set the new mtu in the ipif. 16307 * c Change the ire_max_frag on all affected ires 16308 * d Unmark the IPIF_CHANGING 16309 * 16310 * To see how the protocol works, assume an interface 16311 * route is also being added simultaneously by 16312 * ip_rt_add and let 'ipif' be the ipif referenced by 16313 * the ire. If the ire is created before step a, 16314 * it will be cleaned up by step c. If the ire is 16315 * created after step d, it will see the new value of 16316 * ipif_mtu. Any attempt to create the ire between 16317 * steps a to d will fail because of the IPIF_CHANGING 16318 * flag. Note that ire_create() is passed a pointer to 16319 * the ipif_mtu, and not the value. During ire_add 16320 * under the bucket lock, the ire_max_frag of the 16321 * new ire being created is set from the ipif/ire from 16322 * which it is being derived. 16323 */ 16324 mutex_enter(&ill->ill_lock); 16325 ill->ill_max_frag = (uint_t)notify->dl_data; 16326 16327 /* 16328 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16329 * leave it alone 16330 */ 16331 if (ill->ill_mtu_userspecified) { 16332 mutex_exit(&ill->ill_lock); 16333 break; 16334 } 16335 ill->ill_max_mtu = ill->ill_max_frag; 16336 if (ill->ill_isv6) { 16337 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16338 ill->ill_max_mtu = IPV6_MIN_MTU; 16339 } else { 16340 if (ill->ill_max_mtu < IP_MIN_MTU) 16341 ill->ill_max_mtu = IP_MIN_MTU; 16342 } 16343 for (ipif = ill->ill_ipif; ipif != NULL; 16344 ipif = ipif->ipif_next) { 16345 /* 16346 * Don't override the mtu if the user 16347 * has explicitly set it. 16348 */ 16349 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16350 continue; 16351 ipif->ipif_mtu = (uint_t)notify->dl_data; 16352 if (ipif->ipif_isv6) 16353 ire = ipif_to_ire_v6(ipif); 16354 else 16355 ire = ipif_to_ire(ipif); 16356 if (ire != NULL) { 16357 ire->ire_max_frag = ipif->ipif_mtu; 16358 ire_refrele(ire); 16359 } 16360 if (ipif->ipif_flags & IPIF_UP) { 16361 if (ill->ill_isv6) 16362 need_ire_walk_v6 = B_TRUE; 16363 else 16364 need_ire_walk_v4 = B_TRUE; 16365 } 16366 } 16367 mutex_exit(&ill->ill_lock); 16368 if (need_ire_walk_v4) 16369 ire_walk_v4(ill_mtu_change, (char *)ill, 16370 ALL_ZONES, ipst); 16371 if (need_ire_walk_v6) 16372 ire_walk_v6(ill_mtu_change, (char *)ill, 16373 ALL_ZONES, ipst); 16374 break; 16375 case DL_NOTE_LINK_UP: 16376 case DL_NOTE_LINK_DOWN: { 16377 /* 16378 * We are writer. ill / phyint / ipsq assocs stable. 16379 * The RUNNING flag reflects the state of the link. 16380 */ 16381 phyint_t *phyint = ill->ill_phyint; 16382 uint64_t new_phyint_flags; 16383 boolean_t changed = B_FALSE; 16384 boolean_t went_up; 16385 16386 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16387 mutex_enter(&phyint->phyint_lock); 16388 new_phyint_flags = went_up ? 16389 phyint->phyint_flags | PHYI_RUNNING : 16390 phyint->phyint_flags & ~PHYI_RUNNING; 16391 if (new_phyint_flags != phyint->phyint_flags) { 16392 phyint->phyint_flags = new_phyint_flags; 16393 changed = B_TRUE; 16394 } 16395 mutex_exit(&phyint->phyint_lock); 16396 /* 16397 * ill_restart_dad handles the DAD restart and routing 16398 * socket notification logic. 16399 */ 16400 if (changed) { 16401 ill_restart_dad(phyint->phyint_illv4, went_up); 16402 ill_restart_dad(phyint->phyint_illv6, went_up); 16403 } 16404 break; 16405 } 16406 case DL_NOTE_PROMISC_ON_PHYS: 16407 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16408 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16409 mutex_enter(&ill->ill_lock); 16410 ill->ill_promisc_on_phys = B_TRUE; 16411 mutex_exit(&ill->ill_lock); 16412 break; 16413 case DL_NOTE_PROMISC_OFF_PHYS: 16414 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16415 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16416 mutex_enter(&ill->ill_lock); 16417 ill->ill_promisc_on_phys = B_FALSE; 16418 mutex_exit(&ill->ill_lock); 16419 break; 16420 case DL_NOTE_CAPAB_RENEG: 16421 /* 16422 * Something changed on the driver side. 16423 * It wants us to renegotiate the capabilities 16424 * on this ill. One possible cause is the aggregation 16425 * interface under us where a port got added or 16426 * went away. 16427 * 16428 * If the capability negotiation is already done 16429 * or is in progress, reset the capabilities and 16430 * mark the ill's ill_capab_reneg to be B_TRUE, 16431 * so that when the ack comes back, we can start 16432 * the renegotiation process. 16433 * 16434 * Note that if ill_capab_reneg is already B_TRUE 16435 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16436 * the capability resetting request has been sent 16437 * and the renegotiation has not been started yet; 16438 * nothing needs to be done in this case. 16439 */ 16440 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16441 ill_capability_reset(ill, B_TRUE); 16442 ipsq_current_finish(ipsq); 16443 break; 16444 default: 16445 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16446 "type 0x%x for DL_NOTIFY_IND\n", 16447 notify->dl_notification)); 16448 break; 16449 } 16450 16451 /* 16452 * As this is an asynchronous operation, we 16453 * should not call ill_dlpi_done 16454 */ 16455 break; 16456 } 16457 case DL_NOTIFY_ACK: { 16458 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16459 16460 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16461 ill->ill_note_link = 1; 16462 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16463 break; 16464 } 16465 case DL_PHYS_ADDR_ACK: { 16466 /* 16467 * As part of plumbing the interface via SIOCSLIFNAME, 16468 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16469 * whose answers we receive here. As each answer is received, 16470 * we call ill_dlpi_done() to dispatch the next request as 16471 * we're processing the current one. Once all answers have 16472 * been received, we use ipsq_pending_mp_get() to dequeue the 16473 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16474 * is invoked from an ill queue, conn_oper_pending_ill is not 16475 * available, but we know the ioctl is pending on ill_wq.) 16476 */ 16477 uint_t paddrlen, paddroff; 16478 16479 paddrreq = ill->ill_phys_addr_pend; 16480 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16481 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16482 16483 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16484 if (paddrreq == DL_IPV6_TOKEN) { 16485 /* 16486 * bcopy to low-order bits of ill_token 16487 * 16488 * XXX Temporary hack - currently, all known tokens 16489 * are 64 bits, so I'll cheat for the moment. 16490 */ 16491 bcopy(mp->b_rptr + paddroff, 16492 &ill->ill_token.s6_addr32[2], paddrlen); 16493 ill->ill_token_length = paddrlen; 16494 break; 16495 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16496 ASSERT(ill->ill_nd_lla_mp == NULL); 16497 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16498 mp = NULL; 16499 break; 16500 } 16501 16502 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16503 ASSERT(ill->ill_phys_addr_mp == NULL); 16504 if (!ill->ill_ifname_pending) 16505 break; 16506 ill->ill_ifname_pending = 0; 16507 if (!ioctl_aborted) 16508 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16509 if (mp1 != NULL) { 16510 ASSERT(connp == NULL); 16511 q = ill->ill_wq; 16512 } 16513 /* 16514 * If any error acks received during the plumbing sequence, 16515 * ill_ifname_pending_err will be set. Break out and send up 16516 * the error to the pending ioctl. 16517 */ 16518 if (ill->ill_ifname_pending_err != 0) { 16519 err = ill->ill_ifname_pending_err; 16520 ill->ill_ifname_pending_err = 0; 16521 break; 16522 } 16523 16524 ill->ill_phys_addr_mp = mp; 16525 ill->ill_phys_addr = mp->b_rptr + paddroff; 16526 mp = NULL; 16527 16528 /* 16529 * If paddrlen is zero, the DLPI provider doesn't support 16530 * physical addresses. The other two tests were historical 16531 * workarounds for bugs in our former PPP implementation, but 16532 * now other things have grown dependencies on them -- e.g., 16533 * the tun module specifies a dl_addr_length of zero in its 16534 * DL_BIND_ACK, but then specifies an incorrect value in its 16535 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16536 * but only after careful testing ensures that all dependent 16537 * broken DLPI providers have been fixed. 16538 */ 16539 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16540 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16541 ill->ill_phys_addr = NULL; 16542 } else if (paddrlen != ill->ill_phys_addr_length) { 16543 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16544 paddrlen, ill->ill_phys_addr_length)); 16545 err = EINVAL; 16546 break; 16547 } 16548 16549 if (ill->ill_nd_lla_mp == NULL) { 16550 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16551 err = ENOMEM; 16552 break; 16553 } 16554 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16555 } 16556 16557 /* 16558 * Set the interface token. If the zeroth interface address 16559 * is unspecified, then set it to the link local address. 16560 */ 16561 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16562 (void) ill_setdefaulttoken(ill); 16563 16564 ASSERT(ill->ill_ipif->ipif_id == 0); 16565 if (ipif != NULL && 16566 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16567 (void) ipif_setlinklocal(ipif); 16568 } 16569 break; 16570 } 16571 case DL_OK_ACK: 16572 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16573 dl_primstr((int)dloa->dl_correct_primitive), 16574 dloa->dl_correct_primitive)); 16575 switch (dloa->dl_correct_primitive) { 16576 case DL_ENABMULTI_REQ: 16577 case DL_DISABMULTI_REQ: 16578 if (!ill->ill_isv6) 16579 ipsq_current_finish(ipsq); 16580 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16581 break; 16582 case DL_PROMISCON_REQ: 16583 case DL_PROMISCOFF_REQ: 16584 case DL_UNBIND_REQ: 16585 case DL_ATTACH_REQ: 16586 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16587 break; 16588 } 16589 break; 16590 default: 16591 break; 16592 } 16593 16594 freemsg(mp); 16595 if (mp1 != NULL) { 16596 /* 16597 * The operation must complete without EINPROGRESS 16598 * since ipsq_pending_mp_get() has removed the mblk 16599 * from ipsq_pending_mp. Otherwise, the operation 16600 * will be stuck forever in the ipsq. 16601 */ 16602 ASSERT(err != EINPROGRESS); 16603 16604 switch (ipsq->ipsq_current_ioctl) { 16605 case 0: 16606 ipsq_current_finish(ipsq); 16607 break; 16608 16609 case SIOCLIFADDIF: 16610 case SIOCSLIFNAME: 16611 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16612 break; 16613 16614 default: 16615 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16616 break; 16617 } 16618 } 16619 } 16620 16621 /* 16622 * ip_rput_other is called by ip_rput to handle messages modifying the global 16623 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16624 */ 16625 /* ARGSUSED */ 16626 void 16627 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16628 { 16629 ill_t *ill; 16630 struct iocblk *iocp; 16631 mblk_t *mp1; 16632 conn_t *connp = NULL; 16633 16634 ip1dbg(("ip_rput_other ")); 16635 ill = (ill_t *)q->q_ptr; 16636 /* 16637 * This routine is not a writer in the case of SIOCGTUNPARAM 16638 * in which case ipsq is NULL. 16639 */ 16640 if (ipsq != NULL) { 16641 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16642 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16643 } 16644 16645 switch (mp->b_datap->db_type) { 16646 case M_ERROR: 16647 case M_HANGUP: 16648 /* 16649 * The device has a problem. We force the ILL down. It can 16650 * be brought up again manually using SIOCSIFFLAGS (via 16651 * ifconfig or equivalent). 16652 */ 16653 ASSERT(ipsq != NULL); 16654 if (mp->b_rptr < mp->b_wptr) 16655 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16656 if (ill->ill_error == 0) 16657 ill->ill_error = ENXIO; 16658 if (!ill_down_start(q, mp)) 16659 return; 16660 ipif_all_down_tail(ipsq, q, mp, NULL); 16661 break; 16662 case M_IOCACK: 16663 iocp = (struct iocblk *)mp->b_rptr; 16664 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16665 switch (iocp->ioc_cmd) { 16666 case SIOCSTUNPARAM: 16667 case OSIOCSTUNPARAM: 16668 ASSERT(ipsq != NULL); 16669 /* 16670 * Finish socket ioctl passed through to tun. 16671 * We should have an IOCTL waiting on this. 16672 */ 16673 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16674 if (ill->ill_isv6) { 16675 struct iftun_req *ta; 16676 16677 /* 16678 * if a source or destination is 16679 * being set, try and set the link 16680 * local address for the tunnel 16681 */ 16682 ta = (struct iftun_req *)mp->b_cont-> 16683 b_cont->b_rptr; 16684 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16685 ipif_set_tun_llink(ill, ta); 16686 } 16687 16688 } 16689 if (mp1 != NULL) { 16690 /* 16691 * Now copy back the b_next/b_prev used by 16692 * mi code for the mi_copy* functions. 16693 * See ip_sioctl_tunparam() for the reason. 16694 * Also protect against missing b_cont. 16695 */ 16696 if (mp->b_cont != NULL) { 16697 mp->b_cont->b_next = 16698 mp1->b_cont->b_next; 16699 mp->b_cont->b_prev = 16700 mp1->b_cont->b_prev; 16701 } 16702 inet_freemsg(mp1); 16703 ASSERT(connp != NULL); 16704 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16705 iocp->ioc_error, NO_COPYOUT, ipsq); 16706 } else { 16707 ASSERT(connp == NULL); 16708 putnext(q, mp); 16709 } 16710 break; 16711 case SIOCGTUNPARAM: 16712 case OSIOCGTUNPARAM: 16713 /* 16714 * This is really M_IOCDATA from the tunnel driver. 16715 * convert back and complete the ioctl. 16716 * We should have an IOCTL waiting on this. 16717 */ 16718 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16719 if (mp1) { 16720 /* 16721 * Now copy back the b_next/b_prev used by 16722 * mi code for the mi_copy* functions. 16723 * See ip_sioctl_tunparam() for the reason. 16724 * Also protect against missing b_cont. 16725 */ 16726 if (mp->b_cont != NULL) { 16727 mp->b_cont->b_next = 16728 mp1->b_cont->b_next; 16729 mp->b_cont->b_prev = 16730 mp1->b_cont->b_prev; 16731 } 16732 inet_freemsg(mp1); 16733 if (iocp->ioc_error == 0) 16734 mp->b_datap->db_type = M_IOCDATA; 16735 ASSERT(connp != NULL); 16736 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16737 iocp->ioc_error, COPYOUT, NULL); 16738 } else { 16739 ASSERT(connp == NULL); 16740 putnext(q, mp); 16741 } 16742 break; 16743 default: 16744 break; 16745 } 16746 break; 16747 case M_IOCNAK: 16748 iocp = (struct iocblk *)mp->b_rptr; 16749 16750 switch (iocp->ioc_cmd) { 16751 int mode; 16752 16753 case DL_IOC_HDR_INFO: 16754 /* 16755 * If this was the first attempt turn of the 16756 * fastpath probing. 16757 */ 16758 mutex_enter(&ill->ill_lock); 16759 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16760 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16761 mutex_exit(&ill->ill_lock); 16762 ill_fastpath_nack(ill); 16763 ip1dbg(("ip_rput: DLPI fastpath off on " 16764 "interface %s\n", 16765 ill->ill_name)); 16766 } else { 16767 mutex_exit(&ill->ill_lock); 16768 } 16769 freemsg(mp); 16770 break; 16771 case SIOCSTUNPARAM: 16772 case OSIOCSTUNPARAM: 16773 ASSERT(ipsq != NULL); 16774 /* 16775 * Finish socket ioctl passed through to tun 16776 * We should have an IOCTL waiting on this. 16777 */ 16778 /* FALLTHRU */ 16779 case SIOCGTUNPARAM: 16780 case OSIOCGTUNPARAM: 16781 /* 16782 * This is really M_IOCDATA from the tunnel driver. 16783 * convert back and complete the ioctl. 16784 * We should have an IOCTL waiting on this. 16785 */ 16786 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16787 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16788 mp1 = ill_pending_mp_get(ill, &connp, 16789 iocp->ioc_id); 16790 mode = COPYOUT; 16791 ipsq = NULL; 16792 } else { 16793 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16794 mode = NO_COPYOUT; 16795 } 16796 if (mp1 != NULL) { 16797 /* 16798 * Now copy back the b_next/b_prev used by 16799 * mi code for the mi_copy* functions. 16800 * See ip_sioctl_tunparam() for the reason. 16801 * Also protect against missing b_cont. 16802 */ 16803 if (mp->b_cont != NULL) { 16804 mp->b_cont->b_next = 16805 mp1->b_cont->b_next; 16806 mp->b_cont->b_prev = 16807 mp1->b_cont->b_prev; 16808 } 16809 inet_freemsg(mp1); 16810 if (iocp->ioc_error == 0) 16811 iocp->ioc_error = EINVAL; 16812 ASSERT(connp != NULL); 16813 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16814 iocp->ioc_error, mode, ipsq); 16815 } else { 16816 ASSERT(connp == NULL); 16817 putnext(q, mp); 16818 } 16819 break; 16820 default: 16821 break; 16822 } 16823 default: 16824 break; 16825 } 16826 } 16827 16828 /* 16829 * NOTE : This function does not ire_refrele the ire argument passed in. 16830 * 16831 * IPQoS notes 16832 * IP policy is invoked twice for a forwarded packet, once on the read side 16833 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16834 * enabled. An additional parameter, in_ill, has been added for this purpose. 16835 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16836 * because ip_mroute drops this information. 16837 * 16838 */ 16839 void 16840 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16841 { 16842 uint32_t old_pkt_len; 16843 uint32_t pkt_len; 16844 queue_t *q; 16845 uint32_t sum; 16846 #define rptr ((uchar_t *)ipha) 16847 uint32_t max_frag; 16848 uint32_t ill_index; 16849 ill_t *out_ill; 16850 mib2_ipIfStatsEntry_t *mibptr; 16851 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16852 16853 /* Get the ill_index of the incoming ILL */ 16854 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16855 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16856 16857 /* Initiate Read side IPPF processing */ 16858 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16859 ip_process(IPP_FWD_IN, &mp, ill_index); 16860 if (mp == NULL) { 16861 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16862 "during IPPF processing\n")); 16863 return; 16864 } 16865 } 16866 16867 /* Adjust the checksum to reflect the ttl decrement. */ 16868 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16869 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16870 16871 if (ipha->ipha_ttl-- <= 1) { 16872 if (ip_csum_hdr(ipha)) { 16873 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16874 goto drop_pkt; 16875 } 16876 /* 16877 * Note: ire_stq this will be NULL for multicast 16878 * datagrams using the long path through arp (the IRE 16879 * is not an IRE_CACHE). This should not cause 16880 * problems since we don't generate ICMP errors for 16881 * multicast packets. 16882 */ 16883 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16884 q = ire->ire_stq; 16885 if (q != NULL) { 16886 /* Sent by forwarding path, and router is global zone */ 16887 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16888 GLOBAL_ZONEID, ipst); 16889 } else 16890 freemsg(mp); 16891 return; 16892 } 16893 16894 /* 16895 * Don't forward if the interface is down 16896 */ 16897 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16898 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16899 ip2dbg(("ip_rput_forward:interface is down\n")); 16900 goto drop_pkt; 16901 } 16902 16903 /* Get the ill_index of the outgoing ILL */ 16904 out_ill = ire_to_ill(ire); 16905 ill_index = out_ill->ill_phyint->phyint_ifindex; 16906 16907 DTRACE_PROBE4(ip4__forwarding__start, 16908 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16909 16910 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16911 ipst->ips_ipv4firewall_forwarding, 16912 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16913 16914 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16915 16916 if (mp == NULL) 16917 return; 16918 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16919 16920 if (is_system_labeled()) { 16921 mblk_t *mp1; 16922 16923 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16924 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16925 goto drop_pkt; 16926 } 16927 /* Size may have changed */ 16928 mp = mp1; 16929 ipha = (ipha_t *)mp->b_rptr; 16930 pkt_len = ntohs(ipha->ipha_length); 16931 } 16932 16933 /* Check if there are options to update */ 16934 if (!IS_SIMPLE_IPH(ipha)) { 16935 if (ip_csum_hdr(ipha)) { 16936 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16937 goto drop_pkt; 16938 } 16939 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16940 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16941 return; 16942 } 16943 16944 ipha->ipha_hdr_checksum = 0; 16945 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16946 } 16947 max_frag = ire->ire_max_frag; 16948 if (pkt_len > max_frag) { 16949 /* 16950 * It needs fragging on its way out. We haven't 16951 * verified the header checksum yet. Since we 16952 * are going to put a surely good checksum in the 16953 * outgoing header, we have to make sure that it 16954 * was good coming in. 16955 */ 16956 if (ip_csum_hdr(ipha)) { 16957 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16958 goto drop_pkt; 16959 } 16960 /* Initiate Write side IPPF processing */ 16961 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16962 ip_process(IPP_FWD_OUT, &mp, ill_index); 16963 if (mp == NULL) { 16964 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16965 " during IPPF processing\n")); 16966 return; 16967 } 16968 } 16969 /* 16970 * Handle labeled packet resizing. 16971 * 16972 * If we have added a label, inform ip_wput_frag() of its 16973 * effect on the MTU for ICMP messages. 16974 */ 16975 if (pkt_len > old_pkt_len) { 16976 uint32_t secopt_size; 16977 16978 secopt_size = pkt_len - old_pkt_len; 16979 if (secopt_size < max_frag) 16980 max_frag -= secopt_size; 16981 } 16982 16983 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16984 GLOBAL_ZONEID, ipst, NULL); 16985 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16986 return; 16987 } 16988 16989 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16990 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16991 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16992 ipst->ips_ipv4firewall_physical_out, 16993 NULL, out_ill, ipha, mp, mp, 0, ipst); 16994 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16995 if (mp == NULL) 16996 return; 16997 16998 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16999 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 17000 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 17001 /* ip_xmit_v4 always consumes the packet */ 17002 return; 17003 17004 drop_pkt:; 17005 ip1dbg(("ip_rput_forward: drop pkt\n")); 17006 freemsg(mp); 17007 #undef rptr 17008 } 17009 17010 void 17011 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 17012 { 17013 ire_t *ire; 17014 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17015 17016 ASSERT(!ipif->ipif_isv6); 17017 /* 17018 * Find an IRE which matches the destination and the outgoing 17019 * queue in the cache table. All we need is an IRE_CACHE which 17020 * is pointing at ipif->ipif_ill. If it is part of some ill group, 17021 * then it is enough to have some IRE_CACHE in the group. 17022 */ 17023 if (ipif->ipif_flags & IPIF_POINTOPOINT) 17024 dst = ipif->ipif_pp_dst_addr; 17025 17026 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 17027 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 17028 if (ire == NULL) { 17029 /* 17030 * Mark this packet to make it be delivered to 17031 * ip_rput_forward after the new ire has been 17032 * created. 17033 */ 17034 mp->b_prev = NULL; 17035 mp->b_next = mp; 17036 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 17037 NULL, 0, GLOBAL_ZONEID, &zero_info); 17038 } else { 17039 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 17040 IRE_REFRELE(ire); 17041 } 17042 } 17043 17044 /* Update any source route, record route or timestamp options */ 17045 static int 17046 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 17047 { 17048 ipoptp_t opts; 17049 uchar_t *opt; 17050 uint8_t optval; 17051 uint8_t optlen; 17052 ipaddr_t dst; 17053 uint32_t ts; 17054 ire_t *dst_ire = NULL; 17055 ire_t *tmp_ire = NULL; 17056 timestruc_t now; 17057 17058 ip2dbg(("ip_rput_forward_options\n")); 17059 dst = ipha->ipha_dst; 17060 for (optval = ipoptp_first(&opts, ipha); 17061 optval != IPOPT_EOL; 17062 optval = ipoptp_next(&opts)) { 17063 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17064 opt = opts.ipoptp_cur; 17065 optlen = opts.ipoptp_len; 17066 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 17067 optval, opts.ipoptp_len)); 17068 switch (optval) { 17069 uint32_t off; 17070 case IPOPT_SSRR: 17071 case IPOPT_LSRR: 17072 /* Check if adminstratively disabled */ 17073 if (!ipst->ips_ip_forward_src_routed) { 17074 if (ire->ire_stq != NULL) { 17075 /* 17076 * Sent by forwarding path, and router 17077 * is global zone 17078 */ 17079 icmp_unreachable(ire->ire_stq, mp, 17080 ICMP_SOURCE_ROUTE_FAILED, 17081 GLOBAL_ZONEID, ipst); 17082 } else { 17083 ip0dbg(("ip_rput_forward_options: " 17084 "unable to send unreach\n")); 17085 freemsg(mp); 17086 } 17087 return (-1); 17088 } 17089 17090 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17091 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17092 if (dst_ire == NULL) { 17093 /* 17094 * Must be partial since ip_rput_options 17095 * checked for strict. 17096 */ 17097 break; 17098 } 17099 off = opt[IPOPT_OFFSET]; 17100 off--; 17101 redo_srr: 17102 if (optlen < IP_ADDR_LEN || 17103 off > optlen - IP_ADDR_LEN) { 17104 /* End of source route */ 17105 ip1dbg(( 17106 "ip_rput_forward_options: end of SR\n")); 17107 ire_refrele(dst_ire); 17108 break; 17109 } 17110 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17111 bcopy(&ire->ire_src_addr, (char *)opt + off, 17112 IP_ADDR_LEN); 17113 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17114 ntohl(dst))); 17115 17116 /* 17117 * Check if our address is present more than 17118 * once as consecutive hops in source route. 17119 */ 17120 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17121 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17122 if (tmp_ire != NULL) { 17123 ire_refrele(tmp_ire); 17124 off += IP_ADDR_LEN; 17125 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17126 goto redo_srr; 17127 } 17128 ipha->ipha_dst = dst; 17129 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17130 ire_refrele(dst_ire); 17131 break; 17132 case IPOPT_RR: 17133 off = opt[IPOPT_OFFSET]; 17134 off--; 17135 if (optlen < IP_ADDR_LEN || 17136 off > optlen - IP_ADDR_LEN) { 17137 /* No more room - ignore */ 17138 ip1dbg(( 17139 "ip_rput_forward_options: end of RR\n")); 17140 break; 17141 } 17142 bcopy(&ire->ire_src_addr, (char *)opt + off, 17143 IP_ADDR_LEN); 17144 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17145 break; 17146 case IPOPT_TS: 17147 /* Insert timestamp if there is room */ 17148 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17149 case IPOPT_TS_TSONLY: 17150 off = IPOPT_TS_TIMELEN; 17151 break; 17152 case IPOPT_TS_PRESPEC: 17153 case IPOPT_TS_PRESPEC_RFC791: 17154 /* Verify that the address matched */ 17155 off = opt[IPOPT_OFFSET] - 1; 17156 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17157 dst_ire = ire_ctable_lookup(dst, 0, 17158 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17159 MATCH_IRE_TYPE, ipst); 17160 if (dst_ire == NULL) { 17161 /* Not for us */ 17162 break; 17163 } 17164 ire_refrele(dst_ire); 17165 /* FALLTHRU */ 17166 case IPOPT_TS_TSANDADDR: 17167 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17168 break; 17169 default: 17170 /* 17171 * ip_*put_options should have already 17172 * dropped this packet. 17173 */ 17174 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17175 "unknown IT - bug in ip_rput_options?\n"); 17176 return (0); /* Keep "lint" happy */ 17177 } 17178 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17179 /* Increase overflow counter */ 17180 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17181 opt[IPOPT_POS_OV_FLG] = 17182 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17183 (off << 4)); 17184 break; 17185 } 17186 off = opt[IPOPT_OFFSET] - 1; 17187 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17188 case IPOPT_TS_PRESPEC: 17189 case IPOPT_TS_PRESPEC_RFC791: 17190 case IPOPT_TS_TSANDADDR: 17191 bcopy(&ire->ire_src_addr, 17192 (char *)opt + off, IP_ADDR_LEN); 17193 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17194 /* FALLTHRU */ 17195 case IPOPT_TS_TSONLY: 17196 off = opt[IPOPT_OFFSET] - 1; 17197 /* Compute # of milliseconds since midnight */ 17198 gethrestime(&now); 17199 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17200 now.tv_nsec / (NANOSEC / MILLISEC); 17201 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17202 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17203 break; 17204 } 17205 break; 17206 } 17207 } 17208 return (0); 17209 } 17210 17211 /* 17212 * This is called after processing at least one of AH/ESP headers. 17213 * 17214 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17215 * the actual, physical interface on which the packet was received, 17216 * but, when ip_strict_dst_multihoming is set to 1, could be the 17217 * interface which had the ipha_dst configured when the packet went 17218 * through ip_rput. The ill_index corresponding to the recv_ill 17219 * is saved in ipsec_in_rill_index 17220 * 17221 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17222 * cannot assume "ire" points to valid data for any IPv6 cases. 17223 */ 17224 void 17225 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17226 { 17227 mblk_t *mp; 17228 ipaddr_t dst; 17229 in6_addr_t *v6dstp; 17230 ipha_t *ipha; 17231 ip6_t *ip6h; 17232 ipsec_in_t *ii; 17233 boolean_t ill_need_rele = B_FALSE; 17234 boolean_t rill_need_rele = B_FALSE; 17235 boolean_t ire_need_rele = B_FALSE; 17236 netstack_t *ns; 17237 ip_stack_t *ipst; 17238 17239 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17240 ASSERT(ii->ipsec_in_ill_index != 0); 17241 ns = ii->ipsec_in_ns; 17242 ASSERT(ii->ipsec_in_ns != NULL); 17243 ipst = ns->netstack_ip; 17244 17245 mp = ipsec_mp->b_cont; 17246 ASSERT(mp != NULL); 17247 17248 17249 if (ill == NULL) { 17250 ASSERT(recv_ill == NULL); 17251 /* 17252 * We need to get the original queue on which ip_rput_local 17253 * or ip_rput_data_v6 was called. 17254 */ 17255 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17256 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17257 ill_need_rele = B_TRUE; 17258 17259 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17260 recv_ill = ill_lookup_on_ifindex( 17261 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17262 NULL, NULL, NULL, NULL, ipst); 17263 rill_need_rele = B_TRUE; 17264 } else { 17265 recv_ill = ill; 17266 } 17267 17268 if ((ill == NULL) || (recv_ill == NULL)) { 17269 ip0dbg(("ip_fanout_proto_again: interface " 17270 "disappeared\n")); 17271 if (ill != NULL) 17272 ill_refrele(ill); 17273 if (recv_ill != NULL) 17274 ill_refrele(recv_ill); 17275 freemsg(ipsec_mp); 17276 return; 17277 } 17278 } 17279 17280 ASSERT(ill != NULL && recv_ill != NULL); 17281 17282 if (mp->b_datap->db_type == M_CTL) { 17283 /* 17284 * AH/ESP is returning the ICMP message after 17285 * removing their headers. Fanout again till 17286 * it gets to the right protocol. 17287 */ 17288 if (ii->ipsec_in_v4) { 17289 icmph_t *icmph; 17290 int iph_hdr_length; 17291 int hdr_length; 17292 17293 ipha = (ipha_t *)mp->b_rptr; 17294 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17295 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17296 ipha = (ipha_t *)&icmph[1]; 17297 hdr_length = IPH_HDR_LENGTH(ipha); 17298 /* 17299 * icmp_inbound_error_fanout may need to do pullupmsg. 17300 * Reset the type to M_DATA. 17301 */ 17302 mp->b_datap->db_type = M_DATA; 17303 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17304 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17305 B_FALSE, ill, ii->ipsec_in_zoneid); 17306 } else { 17307 icmp6_t *icmp6; 17308 int hdr_length; 17309 17310 ip6h = (ip6_t *)mp->b_rptr; 17311 /* Don't call hdr_length_v6() unless you have to. */ 17312 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17313 hdr_length = ip_hdr_length_v6(mp, ip6h); 17314 else 17315 hdr_length = IPV6_HDR_LEN; 17316 17317 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17318 /* 17319 * icmp_inbound_error_fanout_v6 may need to do 17320 * pullupmsg. Reset the type to M_DATA. 17321 */ 17322 mp->b_datap->db_type = M_DATA; 17323 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17324 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17325 } 17326 if (ill_need_rele) 17327 ill_refrele(ill); 17328 if (rill_need_rele) 17329 ill_refrele(recv_ill); 17330 return; 17331 } 17332 17333 if (ii->ipsec_in_v4) { 17334 ipha = (ipha_t *)mp->b_rptr; 17335 dst = ipha->ipha_dst; 17336 if (CLASSD(dst)) { 17337 /* 17338 * Multicast has to be delivered to all streams. 17339 */ 17340 dst = INADDR_BROADCAST; 17341 } 17342 17343 if (ire == NULL) { 17344 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17345 MBLK_GETLABEL(mp), ipst); 17346 if (ire == NULL) { 17347 if (ill_need_rele) 17348 ill_refrele(ill); 17349 if (rill_need_rele) 17350 ill_refrele(recv_ill); 17351 ip1dbg(("ip_fanout_proto_again: " 17352 "IRE not found")); 17353 freemsg(ipsec_mp); 17354 return; 17355 } 17356 ire_need_rele = B_TRUE; 17357 } 17358 17359 switch (ipha->ipha_protocol) { 17360 case IPPROTO_UDP: 17361 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17362 recv_ill); 17363 if (ire_need_rele) 17364 ire_refrele(ire); 17365 break; 17366 case IPPROTO_TCP: 17367 if (!ire_need_rele) 17368 IRE_REFHOLD(ire); 17369 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17370 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17371 IRE_REFRELE(ire); 17372 if (mp != NULL) { 17373 17374 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17375 mp, 1, SQ_PROCESS, 17376 SQTAG_IP_PROTO_AGAIN); 17377 } 17378 break; 17379 case IPPROTO_SCTP: 17380 if (!ire_need_rele) 17381 IRE_REFHOLD(ire); 17382 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17383 ipsec_mp, 0, ill->ill_rq, dst); 17384 break; 17385 default: 17386 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17387 recv_ill, 0); 17388 if (ire_need_rele) 17389 ire_refrele(ire); 17390 break; 17391 } 17392 } else { 17393 uint32_t rput_flags = 0; 17394 17395 ip6h = (ip6_t *)mp->b_rptr; 17396 v6dstp = &ip6h->ip6_dst; 17397 /* 17398 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17399 * address. 17400 * 17401 * Currently, we don't store that state in the IPSEC_IN 17402 * message, and we may need to. 17403 */ 17404 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17405 IP6_IN_LLMCAST : 0); 17406 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17407 NULL, NULL); 17408 } 17409 if (ill_need_rele) 17410 ill_refrele(ill); 17411 if (rill_need_rele) 17412 ill_refrele(recv_ill); 17413 } 17414 17415 /* 17416 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17417 * returns 'true' if there are still fragments left on the queue, in 17418 * which case we restart the timer. 17419 */ 17420 void 17421 ill_frag_timer(void *arg) 17422 { 17423 ill_t *ill = (ill_t *)arg; 17424 boolean_t frag_pending; 17425 ip_stack_t *ipst = ill->ill_ipst; 17426 17427 mutex_enter(&ill->ill_lock); 17428 ASSERT(!ill->ill_fragtimer_executing); 17429 if (ill->ill_state_flags & ILL_CONDEMNED) { 17430 ill->ill_frag_timer_id = 0; 17431 mutex_exit(&ill->ill_lock); 17432 return; 17433 } 17434 ill->ill_fragtimer_executing = 1; 17435 mutex_exit(&ill->ill_lock); 17436 17437 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17438 17439 /* 17440 * Restart the timer, if we have fragments pending or if someone 17441 * wanted us to be scheduled again. 17442 */ 17443 mutex_enter(&ill->ill_lock); 17444 ill->ill_fragtimer_executing = 0; 17445 ill->ill_frag_timer_id = 0; 17446 if (frag_pending || ill->ill_fragtimer_needrestart) 17447 ill_frag_timer_start(ill); 17448 mutex_exit(&ill->ill_lock); 17449 } 17450 17451 void 17452 ill_frag_timer_start(ill_t *ill) 17453 { 17454 ip_stack_t *ipst = ill->ill_ipst; 17455 17456 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17457 17458 /* If the ill is closing or opening don't proceed */ 17459 if (ill->ill_state_flags & ILL_CONDEMNED) 17460 return; 17461 17462 if (ill->ill_fragtimer_executing) { 17463 /* 17464 * ill_frag_timer is currently executing. Just record the 17465 * the fact that we want the timer to be restarted. 17466 * ill_frag_timer will post a timeout before it returns, 17467 * ensuring it will be called again. 17468 */ 17469 ill->ill_fragtimer_needrestart = 1; 17470 return; 17471 } 17472 17473 if (ill->ill_frag_timer_id == 0) { 17474 /* 17475 * The timer is neither running nor is the timeout handler 17476 * executing. Post a timeout so that ill_frag_timer will be 17477 * called 17478 */ 17479 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17480 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17481 ill->ill_fragtimer_needrestart = 0; 17482 } 17483 } 17484 17485 /* 17486 * This routine is needed for loopback when forwarding multicasts. 17487 * 17488 * IPQoS Notes: 17489 * IPPF processing is done in fanout routines. 17490 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17491 * processing for IPsec packets is done when it comes back in clear. 17492 * NOTE : The callers of this function need to do the ire_refrele for the 17493 * ire that is being passed in. 17494 */ 17495 void 17496 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17497 ill_t *recv_ill, uint32_t esp_udp_ports) 17498 { 17499 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17500 ill_t *ill = (ill_t *)q->q_ptr; 17501 uint32_t sum; 17502 uint32_t u1; 17503 uint32_t u2; 17504 int hdr_length; 17505 boolean_t mctl_present; 17506 mblk_t *first_mp = mp; 17507 mblk_t *hada_mp = NULL; 17508 ipha_t *inner_ipha; 17509 ip_stack_t *ipst; 17510 17511 ASSERT(recv_ill != NULL); 17512 ipst = recv_ill->ill_ipst; 17513 17514 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17515 "ip_rput_locl_start: q %p", q); 17516 17517 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17518 ASSERT(ill != NULL); 17519 17520 17521 #define rptr ((uchar_t *)ipha) 17522 #define iphs ((uint16_t *)ipha) 17523 17524 /* 17525 * no UDP or TCP packet should come here anymore. 17526 */ 17527 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17528 ipha->ipha_protocol != IPPROTO_UDP); 17529 17530 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17531 if (mctl_present && 17532 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17533 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17534 17535 /* 17536 * It's an IPsec accelerated packet. 17537 * Keep a pointer to the data attributes around until 17538 * we allocate the ipsec_info_t. 17539 */ 17540 IPSECHW_DEBUG(IPSECHW_PKT, 17541 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17542 hada_mp = first_mp; 17543 hada_mp->b_cont = NULL; 17544 /* 17545 * Since it is accelerated, it comes directly from 17546 * the ill and the data attributes is followed by 17547 * the packet data. 17548 */ 17549 ASSERT(mp->b_datap->db_type != M_CTL); 17550 first_mp = mp; 17551 mctl_present = B_FALSE; 17552 } 17553 17554 /* 17555 * IF M_CTL is not present, then ipsec_in_is_secure 17556 * should return B_TRUE. There is a case where loopback 17557 * packets has an M_CTL in the front with all the 17558 * IPsec options set to IPSEC_PREF_NEVER - which means 17559 * ipsec_in_is_secure will return B_FALSE. As loopback 17560 * packets never comes here, it is safe to ASSERT the 17561 * following. 17562 */ 17563 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17564 17565 /* 17566 * Also, we should never have an mctl_present if this is an 17567 * ESP-in-UDP packet. 17568 */ 17569 ASSERT(!mctl_present || !esp_in_udp_packet); 17570 17571 17572 /* u1 is # words of IP options */ 17573 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17574 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17575 17576 /* 17577 * Don't verify header checksum if we just removed UDP header or 17578 * packet is coming back from AH/ESP. 17579 */ 17580 if (!esp_in_udp_packet && !mctl_present) { 17581 if (u1) { 17582 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17583 if (hada_mp != NULL) 17584 freemsg(hada_mp); 17585 return; 17586 } 17587 } else { 17588 /* Check the IP header checksum. */ 17589 #define uph ((uint16_t *)ipha) 17590 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17591 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17592 #undef uph 17593 /* finish doing IP checksum */ 17594 sum = (sum & 0xFFFF) + (sum >> 16); 17595 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17596 if (sum && sum != 0xFFFF) { 17597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17598 goto drop_pkt; 17599 } 17600 } 17601 } 17602 17603 /* 17604 * Count for SNMP of inbound packets for ire. As ip_proto_input 17605 * might be called more than once for secure packets, count only 17606 * the first time. 17607 */ 17608 if (!mctl_present) { 17609 UPDATE_IB_PKT_COUNT(ire); 17610 ire->ire_last_used_time = lbolt; 17611 } 17612 17613 /* Check for fragmentation offset. */ 17614 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17615 u1 = u2 & (IPH_MF | IPH_OFFSET); 17616 if (u1) { 17617 /* 17618 * We re-assemble fragments before we do the AH/ESP 17619 * processing. Thus, M_CTL should not be present 17620 * while we are re-assembling. 17621 */ 17622 ASSERT(!mctl_present); 17623 ASSERT(first_mp == mp); 17624 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17625 return; 17626 } 17627 /* 17628 * Make sure that first_mp points back to mp as 17629 * the mp we came in with could have changed in 17630 * ip_rput_fragment(). 17631 */ 17632 ipha = (ipha_t *)mp->b_rptr; 17633 first_mp = mp; 17634 } 17635 17636 /* 17637 * Clear hardware checksumming flag as it is currently only 17638 * used by TCP and UDP. 17639 */ 17640 DB_CKSUMFLAGS(mp) = 0; 17641 17642 /* Now we have a complete datagram, destined for this machine. */ 17643 u1 = IPH_HDR_LENGTH(ipha); 17644 switch (ipha->ipha_protocol) { 17645 case IPPROTO_ICMP: { 17646 ire_t *ire_zone; 17647 ilm_t *ilm; 17648 mblk_t *mp1; 17649 zoneid_t last_zoneid; 17650 17651 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17652 ASSERT(ire->ire_type == IRE_BROADCAST); 17653 /* 17654 * Inactive/Failed interfaces are not supposed to 17655 * respond to the multicast packets. 17656 */ 17657 if (ill_is_probeonly(ill)) { 17658 freemsg(first_mp); 17659 return; 17660 } 17661 17662 /* 17663 * In the multicast case, applications may have joined 17664 * the group from different zones, so we need to deliver 17665 * the packet to each of them. Loop through the 17666 * multicast memberships structures (ilm) on the receive 17667 * ill and send a copy of the packet up each matching 17668 * one. However, we don't do this for multicasts sent on 17669 * the loopback interface (PHYI_LOOPBACK flag set) as 17670 * they must stay in the sender's zone. 17671 * 17672 * ilm_add_v6() ensures that ilms in the same zone are 17673 * contiguous in the ill_ilm list. We use this property 17674 * to avoid sending duplicates needed when two 17675 * applications in the same zone join the same group on 17676 * different logical interfaces: we ignore the ilm if 17677 * its zoneid is the same as the last matching one. 17678 * In addition, the sending of the packet for 17679 * ire_zoneid is delayed until all of the other ilms 17680 * have been exhausted. 17681 */ 17682 last_zoneid = -1; 17683 ILM_WALKER_HOLD(recv_ill); 17684 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17685 ilm = ilm->ilm_next) { 17686 if ((ilm->ilm_flags & ILM_DELETED) || 17687 ipha->ipha_dst != ilm->ilm_addr || 17688 ilm->ilm_zoneid == last_zoneid || 17689 ilm->ilm_zoneid == ire->ire_zoneid || 17690 ilm->ilm_zoneid == ALL_ZONES || 17691 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17692 continue; 17693 mp1 = ip_copymsg(first_mp); 17694 if (mp1 == NULL) 17695 continue; 17696 icmp_inbound(q, mp1, B_TRUE, ill, 17697 0, sum, mctl_present, B_TRUE, 17698 recv_ill, ilm->ilm_zoneid); 17699 last_zoneid = ilm->ilm_zoneid; 17700 } 17701 ILM_WALKER_RELE(recv_ill); 17702 } else if (ire->ire_type == IRE_BROADCAST) { 17703 /* 17704 * In the broadcast case, there may be many zones 17705 * which need a copy of the packet delivered to them. 17706 * There is one IRE_BROADCAST per broadcast address 17707 * and per zone; we walk those using a helper function. 17708 * In addition, the sending of the packet for ire is 17709 * delayed until all of the other ires have been 17710 * processed. 17711 */ 17712 IRB_REFHOLD(ire->ire_bucket); 17713 ire_zone = NULL; 17714 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17715 ire)) != NULL) { 17716 mp1 = ip_copymsg(first_mp); 17717 if (mp1 == NULL) 17718 continue; 17719 17720 UPDATE_IB_PKT_COUNT(ire_zone); 17721 ire_zone->ire_last_used_time = lbolt; 17722 icmp_inbound(q, mp1, B_TRUE, ill, 17723 0, sum, mctl_present, B_TRUE, 17724 recv_ill, ire_zone->ire_zoneid); 17725 } 17726 IRB_REFRELE(ire->ire_bucket); 17727 } 17728 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17729 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17730 ire->ire_zoneid); 17731 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17732 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17733 return; 17734 } 17735 case IPPROTO_IGMP: 17736 /* 17737 * If we are not willing to accept IGMP packets in clear, 17738 * then check with global policy. 17739 */ 17740 if (ipst->ips_igmp_accept_clear_messages == 0) { 17741 first_mp = ipsec_check_global_policy(first_mp, NULL, 17742 ipha, NULL, mctl_present, ipst->ips_netstack); 17743 if (first_mp == NULL) 17744 return; 17745 } 17746 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17747 freemsg(first_mp); 17748 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17750 return; 17751 } 17752 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17753 /* Bad packet - discarded by igmp_input */ 17754 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17755 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17756 if (mctl_present) 17757 freeb(first_mp); 17758 return; 17759 } 17760 /* 17761 * igmp_input() may have returned the pulled up message. 17762 * So first_mp and ipha need to be reinitialized. 17763 */ 17764 ipha = (ipha_t *)mp->b_rptr; 17765 if (mctl_present) 17766 first_mp->b_cont = mp; 17767 else 17768 first_mp = mp; 17769 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17770 connf_head != NULL) { 17771 /* No user-level listener for IGMP packets */ 17772 goto drop_pkt; 17773 } 17774 /* deliver to local raw users */ 17775 break; 17776 case IPPROTO_PIM: 17777 /* 17778 * If we are not willing to accept PIM packets in clear, 17779 * then check with global policy. 17780 */ 17781 if (ipst->ips_pim_accept_clear_messages == 0) { 17782 first_mp = ipsec_check_global_policy(first_mp, NULL, 17783 ipha, NULL, mctl_present, ipst->ips_netstack); 17784 if (first_mp == NULL) 17785 return; 17786 } 17787 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17788 freemsg(first_mp); 17789 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17790 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17791 return; 17792 } 17793 if (pim_input(q, mp, ill) != 0) { 17794 /* Bad packet - discarded by pim_input */ 17795 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17796 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17797 if (mctl_present) 17798 freeb(first_mp); 17799 return; 17800 } 17801 17802 /* 17803 * pim_input() may have pulled up the message so ipha needs to 17804 * be reinitialized. 17805 */ 17806 ipha = (ipha_t *)mp->b_rptr; 17807 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17808 connf_head != NULL) { 17809 /* No user-level listener for PIM packets */ 17810 goto drop_pkt; 17811 } 17812 /* deliver to local raw users */ 17813 break; 17814 case IPPROTO_ENCAP: 17815 /* 17816 * Handle self-encapsulated packets (IP-in-IP where 17817 * the inner addresses == the outer addresses). 17818 */ 17819 hdr_length = IPH_HDR_LENGTH(ipha); 17820 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17821 mp->b_wptr) { 17822 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17823 sizeof (ipha_t) - mp->b_rptr)) { 17824 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17825 freemsg(first_mp); 17826 return; 17827 } 17828 ipha = (ipha_t *)mp->b_rptr; 17829 } 17830 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17831 /* 17832 * Check the sanity of the inner IP header. 17833 */ 17834 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17835 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17836 freemsg(first_mp); 17837 return; 17838 } 17839 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17841 freemsg(first_mp); 17842 return; 17843 } 17844 if (inner_ipha->ipha_src == ipha->ipha_src && 17845 inner_ipha->ipha_dst == ipha->ipha_dst) { 17846 ipsec_in_t *ii; 17847 17848 /* 17849 * Self-encapsulated tunnel packet. Remove 17850 * the outer IP header and fanout again. 17851 * We also need to make sure that the inner 17852 * header is pulled up until options. 17853 */ 17854 mp->b_rptr = (uchar_t *)inner_ipha; 17855 ipha = inner_ipha; 17856 hdr_length = IPH_HDR_LENGTH(ipha); 17857 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17858 if (!pullupmsg(mp, (uchar_t *)ipha + 17859 + hdr_length - mp->b_rptr)) { 17860 freemsg(first_mp); 17861 return; 17862 } 17863 ipha = (ipha_t *)mp->b_rptr; 17864 } 17865 if (hdr_length > sizeof (ipha_t)) { 17866 /* We got options on the inner packet. */ 17867 ipaddr_t dst = ipha->ipha_dst; 17868 17869 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17870 -1) { 17871 /* Bad options! */ 17872 return; 17873 } 17874 if (dst != ipha->ipha_dst) { 17875 /* 17876 * Someone put a source-route in 17877 * the inside header of a self- 17878 * encapsulated packet. Drop it 17879 * with extreme prejudice and let 17880 * the sender know. 17881 */ 17882 icmp_unreachable(q, first_mp, 17883 ICMP_SOURCE_ROUTE_FAILED, 17884 recv_ill->ill_zoneid, ipst); 17885 return; 17886 } 17887 } 17888 if (!mctl_present) { 17889 ASSERT(first_mp == mp); 17890 /* 17891 * This means that somebody is sending 17892 * Self-encapsualted packets without AH/ESP. 17893 * If AH/ESP was present, we would have already 17894 * allocated the first_mp. 17895 * 17896 * Send this packet to find a tunnel endpoint. 17897 * if I can't find one, an ICMP 17898 * PROTOCOL_UNREACHABLE will get sent. 17899 */ 17900 goto fanout; 17901 } 17902 /* 17903 * We generally store the ill_index if we need to 17904 * do IPsec processing as we lose the ill queue when 17905 * we come back. But in this case, we never should 17906 * have to store the ill_index here as it should have 17907 * been stored previously when we processed the 17908 * AH/ESP header in this routine or for non-ipsec 17909 * cases, we still have the queue. But for some bad 17910 * packets from the wire, we can get to IPsec after 17911 * this and we better store the index for that case. 17912 */ 17913 ill = (ill_t *)q->q_ptr; 17914 ii = (ipsec_in_t *)first_mp->b_rptr; 17915 ii->ipsec_in_ill_index = 17916 ill->ill_phyint->phyint_ifindex; 17917 ii->ipsec_in_rill_index = 17918 recv_ill->ill_phyint->phyint_ifindex; 17919 if (ii->ipsec_in_decaps) { 17920 /* 17921 * This packet is self-encapsulated multiple 17922 * times. We don't want to recurse infinitely. 17923 * To keep it simple, drop the packet. 17924 */ 17925 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17926 freemsg(first_mp); 17927 return; 17928 } 17929 ii->ipsec_in_decaps = B_TRUE; 17930 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17931 ire); 17932 return; 17933 } 17934 break; 17935 case IPPROTO_AH: 17936 case IPPROTO_ESP: { 17937 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17938 17939 /* 17940 * Fast path for AH/ESP. If this is the first time 17941 * we are sending a datagram to AH/ESP, allocate 17942 * a IPSEC_IN message and prepend it. Otherwise, 17943 * just fanout. 17944 */ 17945 17946 int ipsec_rc; 17947 ipsec_in_t *ii; 17948 netstack_t *ns = ipst->ips_netstack; 17949 17950 IP_STAT(ipst, ipsec_proto_ahesp); 17951 if (!mctl_present) { 17952 ASSERT(first_mp == mp); 17953 first_mp = ipsec_in_alloc(B_TRUE, ns); 17954 if (first_mp == NULL) { 17955 ip1dbg(("ip_proto_input: IPSEC_IN " 17956 "allocation failure.\n")); 17957 freemsg(hada_mp); /* okay ifnull */ 17958 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17959 freemsg(mp); 17960 return; 17961 } 17962 /* 17963 * Store the ill_index so that when we come back 17964 * from IPsec we ride on the same queue. 17965 */ 17966 ill = (ill_t *)q->q_ptr; 17967 ii = (ipsec_in_t *)first_mp->b_rptr; 17968 ii->ipsec_in_ill_index = 17969 ill->ill_phyint->phyint_ifindex; 17970 ii->ipsec_in_rill_index = 17971 recv_ill->ill_phyint->phyint_ifindex; 17972 first_mp->b_cont = mp; 17973 /* 17974 * Cache hardware acceleration info. 17975 */ 17976 if (hada_mp != NULL) { 17977 IPSECHW_DEBUG(IPSECHW_PKT, 17978 ("ip_rput_local: caching data attr.\n")); 17979 ii->ipsec_in_accelerated = B_TRUE; 17980 ii->ipsec_in_da = hada_mp; 17981 hada_mp = NULL; 17982 } 17983 } else { 17984 ii = (ipsec_in_t *)first_mp->b_rptr; 17985 } 17986 17987 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17988 17989 if (!ipsec_loaded(ipss)) { 17990 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17991 ire->ire_zoneid, ipst); 17992 return; 17993 } 17994 17995 ns = ipst->ips_netstack; 17996 /* select inbound SA and have IPsec process the pkt */ 17997 if (ipha->ipha_protocol == IPPROTO_ESP) { 17998 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17999 boolean_t esp_in_udp_sa; 18000 if (esph == NULL) 18001 return; 18002 ASSERT(ii->ipsec_in_esp_sa != NULL); 18003 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 18004 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 18005 IPSA_F_NATT) != 0); 18006 /* 18007 * The following is a fancy, but quick, way of saying: 18008 * ESP-in-UDP SA and Raw ESP packet --> drop 18009 * OR 18010 * ESP SA and ESP-in-UDP packet --> drop 18011 */ 18012 if (esp_in_udp_sa != esp_in_udp_packet) { 18013 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 18014 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 18015 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 18016 &ns->netstack_ipsec->ipsec_dropper); 18017 return; 18018 } 18019 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 18020 first_mp, esph); 18021 } else { 18022 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 18023 if (ah == NULL) 18024 return; 18025 ASSERT(ii->ipsec_in_ah_sa != NULL); 18026 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 18027 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 18028 first_mp, ah); 18029 } 18030 18031 switch (ipsec_rc) { 18032 case IPSEC_STATUS_SUCCESS: 18033 break; 18034 case IPSEC_STATUS_FAILED: 18035 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 18036 /* FALLTHRU */ 18037 case IPSEC_STATUS_PENDING: 18038 return; 18039 } 18040 /* we're done with IPsec processing, send it up */ 18041 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 18042 return; 18043 } 18044 default: 18045 break; 18046 } 18047 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 18048 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 18049 ire->ire_zoneid)); 18050 goto drop_pkt; 18051 } 18052 /* 18053 * Handle protocols with which IP is less intimate. There 18054 * can be more than one stream bound to a particular 18055 * protocol. When this is the case, each one gets a copy 18056 * of any incoming packets. 18057 */ 18058 fanout: 18059 ip_fanout_proto(q, first_mp, ill, ipha, 18060 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 18061 B_TRUE, recv_ill, ire->ire_zoneid); 18062 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18063 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 18064 return; 18065 18066 drop_pkt: 18067 freemsg(first_mp); 18068 if (hada_mp != NULL) 18069 freeb(hada_mp); 18070 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18071 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 18072 #undef rptr 18073 #undef iphs 18074 18075 } 18076 18077 /* 18078 * Update any source route, record route or timestamp options. 18079 * Check that we are at end of strict source route. 18080 * The options have already been checked for sanity in ip_rput_options(). 18081 */ 18082 static boolean_t 18083 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 18084 ip_stack_t *ipst) 18085 { 18086 ipoptp_t opts; 18087 uchar_t *opt; 18088 uint8_t optval; 18089 uint8_t optlen; 18090 ipaddr_t dst; 18091 uint32_t ts; 18092 ire_t *dst_ire; 18093 timestruc_t now; 18094 zoneid_t zoneid; 18095 ill_t *ill; 18096 18097 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18098 18099 ip2dbg(("ip_rput_local_options\n")); 18100 18101 for (optval = ipoptp_first(&opts, ipha); 18102 optval != IPOPT_EOL; 18103 optval = ipoptp_next(&opts)) { 18104 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18105 opt = opts.ipoptp_cur; 18106 optlen = opts.ipoptp_len; 18107 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18108 optval, optlen)); 18109 switch (optval) { 18110 uint32_t off; 18111 case IPOPT_SSRR: 18112 case IPOPT_LSRR: 18113 off = opt[IPOPT_OFFSET]; 18114 off--; 18115 if (optlen < IP_ADDR_LEN || 18116 off > optlen - IP_ADDR_LEN) { 18117 /* End of source route */ 18118 ip1dbg(("ip_rput_local_options: end of SR\n")); 18119 break; 18120 } 18121 /* 18122 * This will only happen if two consecutive entries 18123 * in the source route contains our address or if 18124 * it is a packet with a loose source route which 18125 * reaches us before consuming the whole source route 18126 */ 18127 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18128 if (optval == IPOPT_SSRR) { 18129 goto bad_src_route; 18130 } 18131 /* 18132 * Hack: instead of dropping the packet truncate the 18133 * source route to what has been used by filling the 18134 * rest with IPOPT_NOP. 18135 */ 18136 opt[IPOPT_OLEN] = (uint8_t)off; 18137 while (off < optlen) { 18138 opt[off++] = IPOPT_NOP; 18139 } 18140 break; 18141 case IPOPT_RR: 18142 off = opt[IPOPT_OFFSET]; 18143 off--; 18144 if (optlen < IP_ADDR_LEN || 18145 off > optlen - IP_ADDR_LEN) { 18146 /* No more room - ignore */ 18147 ip1dbg(( 18148 "ip_rput_local_options: end of RR\n")); 18149 break; 18150 } 18151 bcopy(&ire->ire_src_addr, (char *)opt + off, 18152 IP_ADDR_LEN); 18153 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18154 break; 18155 case IPOPT_TS: 18156 /* Insert timestamp if there is romm */ 18157 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18158 case IPOPT_TS_TSONLY: 18159 off = IPOPT_TS_TIMELEN; 18160 break; 18161 case IPOPT_TS_PRESPEC: 18162 case IPOPT_TS_PRESPEC_RFC791: 18163 /* Verify that the address matched */ 18164 off = opt[IPOPT_OFFSET] - 1; 18165 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18166 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18167 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18168 ipst); 18169 if (dst_ire == NULL) { 18170 /* Not for us */ 18171 break; 18172 } 18173 ire_refrele(dst_ire); 18174 /* FALLTHRU */ 18175 case IPOPT_TS_TSANDADDR: 18176 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18177 break; 18178 default: 18179 /* 18180 * ip_*put_options should have already 18181 * dropped this packet. 18182 */ 18183 cmn_err(CE_PANIC, "ip_rput_local_options: " 18184 "unknown IT - bug in ip_rput_options?\n"); 18185 return (B_TRUE); /* Keep "lint" happy */ 18186 } 18187 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18188 /* Increase overflow counter */ 18189 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18190 opt[IPOPT_POS_OV_FLG] = 18191 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18192 (off << 4)); 18193 break; 18194 } 18195 off = opt[IPOPT_OFFSET] - 1; 18196 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18197 case IPOPT_TS_PRESPEC: 18198 case IPOPT_TS_PRESPEC_RFC791: 18199 case IPOPT_TS_TSANDADDR: 18200 bcopy(&ire->ire_src_addr, (char *)opt + off, 18201 IP_ADDR_LEN); 18202 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18203 /* FALLTHRU */ 18204 case IPOPT_TS_TSONLY: 18205 off = opt[IPOPT_OFFSET] - 1; 18206 /* Compute # of milliseconds since midnight */ 18207 gethrestime(&now); 18208 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18209 now.tv_nsec / (NANOSEC / MILLISEC); 18210 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18211 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18212 break; 18213 } 18214 break; 18215 } 18216 } 18217 return (B_TRUE); 18218 18219 bad_src_route: 18220 q = WR(q); 18221 if (q->q_next != NULL) 18222 ill = q->q_ptr; 18223 else 18224 ill = NULL; 18225 18226 /* make sure we clear any indication of a hardware checksum */ 18227 DB_CKSUMFLAGS(mp) = 0; 18228 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18229 if (zoneid == ALL_ZONES) 18230 freemsg(mp); 18231 else 18232 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18233 return (B_FALSE); 18234 18235 } 18236 18237 /* 18238 * Process IP options in an inbound packet. If an option affects the 18239 * effective destination address, return the next hop address via dstp. 18240 * Returns -1 if something fails in which case an ICMP error has been sent 18241 * and mp freed. 18242 */ 18243 static int 18244 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18245 ip_stack_t *ipst) 18246 { 18247 ipoptp_t opts; 18248 uchar_t *opt; 18249 uint8_t optval; 18250 uint8_t optlen; 18251 ipaddr_t dst; 18252 intptr_t code = 0; 18253 ire_t *ire = NULL; 18254 zoneid_t zoneid; 18255 ill_t *ill; 18256 18257 ip2dbg(("ip_rput_options\n")); 18258 dst = ipha->ipha_dst; 18259 for (optval = ipoptp_first(&opts, ipha); 18260 optval != IPOPT_EOL; 18261 optval = ipoptp_next(&opts)) { 18262 opt = opts.ipoptp_cur; 18263 optlen = opts.ipoptp_len; 18264 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18265 optval, optlen)); 18266 /* 18267 * Note: we need to verify the checksum before we 18268 * modify anything thus this routine only extracts the next 18269 * hop dst from any source route. 18270 */ 18271 switch (optval) { 18272 uint32_t off; 18273 case IPOPT_SSRR: 18274 case IPOPT_LSRR: 18275 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18276 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18277 if (ire == NULL) { 18278 if (optval == IPOPT_SSRR) { 18279 ip1dbg(("ip_rput_options: not next" 18280 " strict source route 0x%x\n", 18281 ntohl(dst))); 18282 code = (char *)&ipha->ipha_dst - 18283 (char *)ipha; 18284 goto param_prob; /* RouterReq's */ 18285 } 18286 ip2dbg(("ip_rput_options: " 18287 "not next source route 0x%x\n", 18288 ntohl(dst))); 18289 break; 18290 } 18291 ire_refrele(ire); 18292 18293 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18294 ip1dbg(( 18295 "ip_rput_options: bad option offset\n")); 18296 code = (char *)&opt[IPOPT_OLEN] - 18297 (char *)ipha; 18298 goto param_prob; 18299 } 18300 off = opt[IPOPT_OFFSET]; 18301 off--; 18302 redo_srr: 18303 if (optlen < IP_ADDR_LEN || 18304 off > optlen - IP_ADDR_LEN) { 18305 /* End of source route */ 18306 ip1dbg(("ip_rput_options: end of SR\n")); 18307 break; 18308 } 18309 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18310 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18311 ntohl(dst))); 18312 18313 /* 18314 * Check if our address is present more than 18315 * once as consecutive hops in source route. 18316 * XXX verify per-interface ip_forwarding 18317 * for source route? 18318 */ 18319 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18320 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18321 18322 if (ire != NULL) { 18323 ire_refrele(ire); 18324 off += IP_ADDR_LEN; 18325 goto redo_srr; 18326 } 18327 18328 if (dst == htonl(INADDR_LOOPBACK)) { 18329 ip1dbg(("ip_rput_options: loopback addr in " 18330 "source route!\n")); 18331 goto bad_src_route; 18332 } 18333 /* 18334 * For strict: verify that dst is directly 18335 * reachable. 18336 */ 18337 if (optval == IPOPT_SSRR) { 18338 ire = ire_ftable_lookup(dst, 0, 0, 18339 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18340 MBLK_GETLABEL(mp), 18341 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18342 if (ire == NULL) { 18343 ip1dbg(("ip_rput_options: SSRR not " 18344 "directly reachable: 0x%x\n", 18345 ntohl(dst))); 18346 goto bad_src_route; 18347 } 18348 ire_refrele(ire); 18349 } 18350 /* 18351 * Defer update of the offset and the record route 18352 * until the packet is forwarded. 18353 */ 18354 break; 18355 case IPOPT_RR: 18356 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18357 ip1dbg(( 18358 "ip_rput_options: bad option offset\n")); 18359 code = (char *)&opt[IPOPT_OLEN] - 18360 (char *)ipha; 18361 goto param_prob; 18362 } 18363 break; 18364 case IPOPT_TS: 18365 /* 18366 * Verify that length >= 5 and that there is either 18367 * room for another timestamp or that the overflow 18368 * counter is not maxed out. 18369 */ 18370 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18371 if (optlen < IPOPT_MINLEN_IT) { 18372 goto param_prob; 18373 } 18374 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18375 ip1dbg(( 18376 "ip_rput_options: bad option offset\n")); 18377 code = (char *)&opt[IPOPT_OFFSET] - 18378 (char *)ipha; 18379 goto param_prob; 18380 } 18381 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18382 case IPOPT_TS_TSONLY: 18383 off = IPOPT_TS_TIMELEN; 18384 break; 18385 case IPOPT_TS_TSANDADDR: 18386 case IPOPT_TS_PRESPEC: 18387 case IPOPT_TS_PRESPEC_RFC791: 18388 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18389 break; 18390 default: 18391 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18392 (char *)ipha; 18393 goto param_prob; 18394 } 18395 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18396 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18397 /* 18398 * No room and the overflow counter is 15 18399 * already. 18400 */ 18401 goto param_prob; 18402 } 18403 break; 18404 } 18405 } 18406 18407 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18408 *dstp = dst; 18409 return (0); 18410 } 18411 18412 ip1dbg(("ip_rput_options: error processing IP options.")); 18413 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18414 18415 param_prob: 18416 q = WR(q); 18417 if (q->q_next != NULL) 18418 ill = q->q_ptr; 18419 else 18420 ill = NULL; 18421 18422 /* make sure we clear any indication of a hardware checksum */ 18423 DB_CKSUMFLAGS(mp) = 0; 18424 /* Don't know whether this is for non-global or global/forwarding */ 18425 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18426 if (zoneid == ALL_ZONES) 18427 freemsg(mp); 18428 else 18429 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18430 return (-1); 18431 18432 bad_src_route: 18433 q = WR(q); 18434 if (q->q_next != NULL) 18435 ill = q->q_ptr; 18436 else 18437 ill = NULL; 18438 18439 /* make sure we clear any indication of a hardware checksum */ 18440 DB_CKSUMFLAGS(mp) = 0; 18441 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18442 if (zoneid == ALL_ZONES) 18443 freemsg(mp); 18444 else 18445 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18446 return (-1); 18447 } 18448 18449 /* 18450 * IP & ICMP info in >=14 msg's ... 18451 * - ip fixed part (mib2_ip_t) 18452 * - icmp fixed part (mib2_icmp_t) 18453 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18454 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18455 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18456 * - ipRouteAttributeTable (ip 102) labeled routes 18457 * - ip multicast membership (ip_member_t) 18458 * - ip multicast source filtering (ip_grpsrc_t) 18459 * - igmp fixed part (struct igmpstat) 18460 * - multicast routing stats (struct mrtstat) 18461 * - multicast routing vifs (array of struct vifctl) 18462 * - multicast routing routes (array of struct mfcctl) 18463 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18464 * One per ill plus one generic 18465 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18466 * One per ill plus one generic 18467 * - ipv6RouteEntry all IPv6 IREs 18468 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18469 * - ipv6NetToMediaEntry all Neighbor Cache entries 18470 * - ipv6AddrEntry all IPv6 ipifs 18471 * - ipv6 multicast membership (ipv6_member_t) 18472 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18473 * 18474 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18475 * 18476 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18477 * already filled in by the caller. 18478 * Return value of 0 indicates that no messages were sent and caller 18479 * should free mpctl. 18480 */ 18481 int 18482 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18483 { 18484 ip_stack_t *ipst; 18485 sctp_stack_t *sctps; 18486 18487 if (q->q_next != NULL) { 18488 ipst = ILLQ_TO_IPST(q); 18489 } else { 18490 ipst = CONNQ_TO_IPST(q); 18491 } 18492 ASSERT(ipst != NULL); 18493 sctps = ipst->ips_netstack->netstack_sctp; 18494 18495 if (mpctl == NULL || mpctl->b_cont == NULL) { 18496 return (0); 18497 } 18498 18499 /* 18500 * For the purposes of the (broken) packet shell use 18501 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18502 * to make TCP and UDP appear first in the list of mib items. 18503 * TBD: We could expand this and use it in netstat so that 18504 * the kernel doesn't have to produce large tables (connections, 18505 * routes, etc) when netstat only wants the statistics or a particular 18506 * table. 18507 */ 18508 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18509 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18510 return (1); 18511 } 18512 } 18513 18514 if (level != MIB2_TCP) { 18515 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18516 return (1); 18517 } 18518 } 18519 18520 if (level != MIB2_UDP) { 18521 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18522 return (1); 18523 } 18524 } 18525 18526 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18527 ipst)) == NULL) { 18528 return (1); 18529 } 18530 18531 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18532 return (1); 18533 } 18534 18535 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18536 return (1); 18537 } 18538 18539 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18540 return (1); 18541 } 18542 18543 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18544 return (1); 18545 } 18546 18547 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18548 return (1); 18549 } 18550 18551 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18552 return (1); 18553 } 18554 18555 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18556 return (1); 18557 } 18558 18559 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18560 return (1); 18561 } 18562 18563 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18564 return (1); 18565 } 18566 18567 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18568 return (1); 18569 } 18570 18571 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18572 return (1); 18573 } 18574 18575 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18576 return (1); 18577 } 18578 18579 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18580 return (1); 18581 } 18582 18583 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18584 return (1); 18585 } 18586 18587 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18588 if (mpctl == NULL) { 18589 return (1); 18590 } 18591 18592 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18593 return (1); 18594 } 18595 freemsg(mpctl); 18596 return (1); 18597 } 18598 18599 18600 /* Get global (legacy) IPv4 statistics */ 18601 static mblk_t * 18602 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18603 ip_stack_t *ipst) 18604 { 18605 mib2_ip_t old_ip_mib; 18606 struct opthdr *optp; 18607 mblk_t *mp2ctl; 18608 18609 /* 18610 * make a copy of the original message 18611 */ 18612 mp2ctl = copymsg(mpctl); 18613 18614 /* fixed length IP structure... */ 18615 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18616 optp->level = MIB2_IP; 18617 optp->name = 0; 18618 SET_MIB(old_ip_mib.ipForwarding, 18619 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18620 SET_MIB(old_ip_mib.ipDefaultTTL, 18621 (uint32_t)ipst->ips_ip_def_ttl); 18622 SET_MIB(old_ip_mib.ipReasmTimeout, 18623 ipst->ips_ip_g_frag_timeout); 18624 SET_MIB(old_ip_mib.ipAddrEntrySize, 18625 sizeof (mib2_ipAddrEntry_t)); 18626 SET_MIB(old_ip_mib.ipRouteEntrySize, 18627 sizeof (mib2_ipRouteEntry_t)); 18628 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18629 sizeof (mib2_ipNetToMediaEntry_t)); 18630 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18631 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18632 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18633 sizeof (mib2_ipAttributeEntry_t)); 18634 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18635 18636 /* 18637 * Grab the statistics from the new IP MIB 18638 */ 18639 SET_MIB(old_ip_mib.ipInReceives, 18640 (uint32_t)ipmib->ipIfStatsHCInReceives); 18641 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18642 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18643 SET_MIB(old_ip_mib.ipForwDatagrams, 18644 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18645 SET_MIB(old_ip_mib.ipInUnknownProtos, 18646 ipmib->ipIfStatsInUnknownProtos); 18647 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18648 SET_MIB(old_ip_mib.ipInDelivers, 18649 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18650 SET_MIB(old_ip_mib.ipOutRequests, 18651 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18652 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18653 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18654 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18655 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18656 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18657 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18658 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18659 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18660 18661 /* ipRoutingDiscards is not being used */ 18662 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18663 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18664 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18665 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18666 SET_MIB(old_ip_mib.ipReasmDuplicates, 18667 ipmib->ipIfStatsReasmDuplicates); 18668 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18669 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18670 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18671 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18672 SET_MIB(old_ip_mib.rawipInOverflows, 18673 ipmib->rawipIfStatsInOverflows); 18674 18675 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18676 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18677 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18678 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18679 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18680 ipmib->ipIfStatsOutSwitchIPVersion); 18681 18682 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18683 (int)sizeof (old_ip_mib))) { 18684 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18685 (uint_t)sizeof (old_ip_mib))); 18686 } 18687 18688 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18689 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18690 (int)optp->level, (int)optp->name, (int)optp->len)); 18691 qreply(q, mpctl); 18692 return (mp2ctl); 18693 } 18694 18695 /* Per interface IPv4 statistics */ 18696 static mblk_t * 18697 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18698 { 18699 struct opthdr *optp; 18700 mblk_t *mp2ctl; 18701 ill_t *ill; 18702 ill_walk_context_t ctx; 18703 mblk_t *mp_tail = NULL; 18704 mib2_ipIfStatsEntry_t global_ip_mib; 18705 18706 /* 18707 * Make a copy of the original message 18708 */ 18709 mp2ctl = copymsg(mpctl); 18710 18711 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18712 optp->level = MIB2_IP; 18713 optp->name = MIB2_IP_TRAFFIC_STATS; 18714 /* Include "unknown interface" ip_mib */ 18715 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18716 ipst->ips_ip_mib.ipIfStatsIfIndex = 18717 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18718 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18719 (ipst->ips_ip_g_forward ? 1 : 2)); 18720 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18721 (uint32_t)ipst->ips_ip_def_ttl); 18722 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18723 sizeof (mib2_ipIfStatsEntry_t)); 18724 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18725 sizeof (mib2_ipAddrEntry_t)); 18726 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18727 sizeof (mib2_ipRouteEntry_t)); 18728 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18729 sizeof (mib2_ipNetToMediaEntry_t)); 18730 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18731 sizeof (ip_member_t)); 18732 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18733 sizeof (ip_grpsrc_t)); 18734 18735 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18736 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18737 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18738 "failed to allocate %u bytes\n", 18739 (uint_t)sizeof (ipst->ips_ip_mib))); 18740 } 18741 18742 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18743 18744 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18745 ill = ILL_START_WALK_V4(&ctx, ipst); 18746 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18747 ill->ill_ip_mib->ipIfStatsIfIndex = 18748 ill->ill_phyint->phyint_ifindex; 18749 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18750 (ipst->ips_ip_g_forward ? 1 : 2)); 18751 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18752 (uint32_t)ipst->ips_ip_def_ttl); 18753 18754 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18755 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18756 (char *)ill->ill_ip_mib, 18757 (int)sizeof (*ill->ill_ip_mib))) { 18758 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18759 "failed to allocate %u bytes\n", 18760 (uint_t)sizeof (*ill->ill_ip_mib))); 18761 } 18762 } 18763 rw_exit(&ipst->ips_ill_g_lock); 18764 18765 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18766 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18767 "level %d, name %d, len %d\n", 18768 (int)optp->level, (int)optp->name, (int)optp->len)); 18769 qreply(q, mpctl); 18770 18771 if (mp2ctl == NULL) 18772 return (NULL); 18773 18774 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18775 } 18776 18777 /* Global IPv4 ICMP statistics */ 18778 static mblk_t * 18779 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18780 { 18781 struct opthdr *optp; 18782 mblk_t *mp2ctl; 18783 18784 /* 18785 * Make a copy of the original message 18786 */ 18787 mp2ctl = copymsg(mpctl); 18788 18789 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18790 optp->level = MIB2_ICMP; 18791 optp->name = 0; 18792 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18793 (int)sizeof (ipst->ips_icmp_mib))) { 18794 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18795 (uint_t)sizeof (ipst->ips_icmp_mib))); 18796 } 18797 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18798 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18799 (int)optp->level, (int)optp->name, (int)optp->len)); 18800 qreply(q, mpctl); 18801 return (mp2ctl); 18802 } 18803 18804 /* Global IPv4 IGMP statistics */ 18805 static mblk_t * 18806 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18807 { 18808 struct opthdr *optp; 18809 mblk_t *mp2ctl; 18810 18811 /* 18812 * make a copy of the original message 18813 */ 18814 mp2ctl = copymsg(mpctl); 18815 18816 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18817 optp->level = EXPER_IGMP; 18818 optp->name = 0; 18819 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18820 (int)sizeof (ipst->ips_igmpstat))) { 18821 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18822 (uint_t)sizeof (ipst->ips_igmpstat))); 18823 } 18824 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18825 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18826 (int)optp->level, (int)optp->name, (int)optp->len)); 18827 qreply(q, mpctl); 18828 return (mp2ctl); 18829 } 18830 18831 /* Global IPv4 Multicast Routing statistics */ 18832 static mblk_t * 18833 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18834 { 18835 struct opthdr *optp; 18836 mblk_t *mp2ctl; 18837 18838 /* 18839 * make a copy of the original message 18840 */ 18841 mp2ctl = copymsg(mpctl); 18842 18843 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18844 optp->level = EXPER_DVMRP; 18845 optp->name = 0; 18846 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18847 ip0dbg(("ip_mroute_stats: failed\n")); 18848 } 18849 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18850 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18851 (int)optp->level, (int)optp->name, (int)optp->len)); 18852 qreply(q, mpctl); 18853 return (mp2ctl); 18854 } 18855 18856 /* IPv4 address information */ 18857 static mblk_t * 18858 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18859 { 18860 struct opthdr *optp; 18861 mblk_t *mp2ctl; 18862 mblk_t *mp_tail = NULL; 18863 ill_t *ill; 18864 ipif_t *ipif; 18865 uint_t bitval; 18866 mib2_ipAddrEntry_t mae; 18867 zoneid_t zoneid; 18868 ill_walk_context_t ctx; 18869 18870 /* 18871 * make a copy of the original message 18872 */ 18873 mp2ctl = copymsg(mpctl); 18874 18875 /* ipAddrEntryTable */ 18876 18877 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18878 optp->level = MIB2_IP; 18879 optp->name = MIB2_IP_ADDR; 18880 zoneid = Q_TO_CONN(q)->conn_zoneid; 18881 18882 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18883 ill = ILL_START_WALK_V4(&ctx, ipst); 18884 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18885 for (ipif = ill->ill_ipif; ipif != NULL; 18886 ipif = ipif->ipif_next) { 18887 if (ipif->ipif_zoneid != zoneid && 18888 ipif->ipif_zoneid != ALL_ZONES) 18889 continue; 18890 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18891 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18892 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18893 18894 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18895 OCTET_LENGTH); 18896 mae.ipAdEntIfIndex.o_length = 18897 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18898 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18899 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18900 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18901 mae.ipAdEntInfo.ae_subnet_len = 18902 ip_mask_to_plen(ipif->ipif_net_mask); 18903 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18904 for (bitval = 1; 18905 bitval && 18906 !(bitval & ipif->ipif_brd_addr); 18907 bitval <<= 1) 18908 noop; 18909 mae.ipAdEntBcastAddr = bitval; 18910 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18911 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18912 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18913 mae.ipAdEntInfo.ae_broadcast_addr = 18914 ipif->ipif_brd_addr; 18915 mae.ipAdEntInfo.ae_pp_dst_addr = 18916 ipif->ipif_pp_dst_addr; 18917 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18918 ill->ill_flags | ill->ill_phyint->phyint_flags; 18919 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18920 18921 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18922 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18923 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18924 "allocate %u bytes\n", 18925 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18926 } 18927 } 18928 } 18929 rw_exit(&ipst->ips_ill_g_lock); 18930 18931 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18932 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18933 (int)optp->level, (int)optp->name, (int)optp->len)); 18934 qreply(q, mpctl); 18935 return (mp2ctl); 18936 } 18937 18938 /* IPv6 address information */ 18939 static mblk_t * 18940 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18941 { 18942 struct opthdr *optp; 18943 mblk_t *mp2ctl; 18944 mblk_t *mp_tail = NULL; 18945 ill_t *ill; 18946 ipif_t *ipif; 18947 mib2_ipv6AddrEntry_t mae6; 18948 zoneid_t zoneid; 18949 ill_walk_context_t ctx; 18950 18951 /* 18952 * make a copy of the original message 18953 */ 18954 mp2ctl = copymsg(mpctl); 18955 18956 /* ipv6AddrEntryTable */ 18957 18958 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18959 optp->level = MIB2_IP6; 18960 optp->name = MIB2_IP6_ADDR; 18961 zoneid = Q_TO_CONN(q)->conn_zoneid; 18962 18963 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18964 ill = ILL_START_WALK_V6(&ctx, ipst); 18965 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18966 for (ipif = ill->ill_ipif; ipif != NULL; 18967 ipif = ipif->ipif_next) { 18968 if (ipif->ipif_zoneid != zoneid && 18969 ipif->ipif_zoneid != ALL_ZONES) 18970 continue; 18971 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18972 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18973 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18974 18975 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18976 OCTET_LENGTH); 18977 mae6.ipv6AddrIfIndex.o_length = 18978 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18979 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18980 mae6.ipv6AddrPfxLength = 18981 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18982 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18983 mae6.ipv6AddrInfo.ae_subnet_len = 18984 mae6.ipv6AddrPfxLength; 18985 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18986 18987 /* Type: stateless(1), stateful(2), unknown(3) */ 18988 if (ipif->ipif_flags & IPIF_ADDRCONF) 18989 mae6.ipv6AddrType = 1; 18990 else 18991 mae6.ipv6AddrType = 2; 18992 /* Anycast: true(1), false(2) */ 18993 if (ipif->ipif_flags & IPIF_ANYCAST) 18994 mae6.ipv6AddrAnycastFlag = 1; 18995 else 18996 mae6.ipv6AddrAnycastFlag = 2; 18997 18998 /* 18999 * Address status: preferred(1), deprecated(2), 19000 * invalid(3), inaccessible(4), unknown(5) 19001 */ 19002 if (ipif->ipif_flags & IPIF_NOLOCAL) 19003 mae6.ipv6AddrStatus = 3; 19004 else if (ipif->ipif_flags & IPIF_DEPRECATED) 19005 mae6.ipv6AddrStatus = 2; 19006 else 19007 mae6.ipv6AddrStatus = 1; 19008 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 19009 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 19010 mae6.ipv6AddrInfo.ae_pp_dst_addr = 19011 ipif->ipif_v6pp_dst_addr; 19012 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 19013 ill->ill_flags | ill->ill_phyint->phyint_flags; 19014 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 19015 mae6.ipv6AddrIdentifier = ill->ill_token; 19016 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 19017 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 19018 mae6.ipv6AddrRetransmitTime = 19019 ill->ill_reachable_retrans_time; 19020 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19021 (char *)&mae6, 19022 (int)sizeof (mib2_ipv6AddrEntry_t))) { 19023 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 19024 "allocate %u bytes\n", 19025 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 19026 } 19027 } 19028 } 19029 rw_exit(&ipst->ips_ill_g_lock); 19030 19031 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19032 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 19033 (int)optp->level, (int)optp->name, (int)optp->len)); 19034 qreply(q, mpctl); 19035 return (mp2ctl); 19036 } 19037 19038 /* IPv4 multicast group membership. */ 19039 static mblk_t * 19040 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19041 { 19042 struct opthdr *optp; 19043 mblk_t *mp2ctl; 19044 ill_t *ill; 19045 ipif_t *ipif; 19046 ilm_t *ilm; 19047 ip_member_t ipm; 19048 mblk_t *mp_tail = NULL; 19049 ill_walk_context_t ctx; 19050 zoneid_t zoneid; 19051 19052 /* 19053 * make a copy of the original message 19054 */ 19055 mp2ctl = copymsg(mpctl); 19056 zoneid = Q_TO_CONN(q)->conn_zoneid; 19057 19058 /* ipGroupMember table */ 19059 optp = (struct opthdr *)&mpctl->b_rptr[ 19060 sizeof (struct T_optmgmt_ack)]; 19061 optp->level = MIB2_IP; 19062 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 19063 19064 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19065 ill = ILL_START_WALK_V4(&ctx, ipst); 19066 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19067 ILM_WALKER_HOLD(ill); 19068 for (ipif = ill->ill_ipif; ipif != NULL; 19069 ipif = ipif->ipif_next) { 19070 if (ipif->ipif_zoneid != zoneid && 19071 ipif->ipif_zoneid != ALL_ZONES) 19072 continue; /* not this zone */ 19073 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 19074 OCTET_LENGTH); 19075 ipm.ipGroupMemberIfIndex.o_length = 19076 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 19077 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19078 ASSERT(ilm->ilm_ipif != NULL); 19079 ASSERT(ilm->ilm_ill == NULL); 19080 if (ilm->ilm_ipif != ipif) 19081 continue; 19082 ipm.ipGroupMemberAddress = ilm->ilm_addr; 19083 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 19084 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 19085 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19086 (char *)&ipm, (int)sizeof (ipm))) { 19087 ip1dbg(("ip_snmp_get_mib2_ip_group: " 19088 "failed to allocate %u bytes\n", 19089 (uint_t)sizeof (ipm))); 19090 } 19091 } 19092 } 19093 ILM_WALKER_RELE(ill); 19094 } 19095 rw_exit(&ipst->ips_ill_g_lock); 19096 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19097 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19098 (int)optp->level, (int)optp->name, (int)optp->len)); 19099 qreply(q, mpctl); 19100 return (mp2ctl); 19101 } 19102 19103 /* IPv6 multicast group membership. */ 19104 static mblk_t * 19105 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19106 { 19107 struct opthdr *optp; 19108 mblk_t *mp2ctl; 19109 ill_t *ill; 19110 ilm_t *ilm; 19111 ipv6_member_t ipm6; 19112 mblk_t *mp_tail = NULL; 19113 ill_walk_context_t ctx; 19114 zoneid_t zoneid; 19115 19116 /* 19117 * make a copy of the original message 19118 */ 19119 mp2ctl = copymsg(mpctl); 19120 zoneid = Q_TO_CONN(q)->conn_zoneid; 19121 19122 /* ip6GroupMember table */ 19123 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19124 optp->level = MIB2_IP6; 19125 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19126 19127 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19128 ill = ILL_START_WALK_V6(&ctx, ipst); 19129 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19130 ILM_WALKER_HOLD(ill); 19131 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19132 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19133 ASSERT(ilm->ilm_ipif == NULL); 19134 ASSERT(ilm->ilm_ill != NULL); 19135 if (ilm->ilm_zoneid != zoneid) 19136 continue; /* not this zone */ 19137 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19138 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19139 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19140 if (!snmp_append_data2(mpctl->b_cont, 19141 &mp_tail, 19142 (char *)&ipm6, (int)sizeof (ipm6))) { 19143 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19144 "failed to allocate %u bytes\n", 19145 (uint_t)sizeof (ipm6))); 19146 } 19147 } 19148 ILM_WALKER_RELE(ill); 19149 } 19150 rw_exit(&ipst->ips_ill_g_lock); 19151 19152 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19153 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19154 (int)optp->level, (int)optp->name, (int)optp->len)); 19155 qreply(q, mpctl); 19156 return (mp2ctl); 19157 } 19158 19159 /* IP multicast filtered sources */ 19160 static mblk_t * 19161 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19162 { 19163 struct opthdr *optp; 19164 mblk_t *mp2ctl; 19165 ill_t *ill; 19166 ipif_t *ipif; 19167 ilm_t *ilm; 19168 ip_grpsrc_t ips; 19169 mblk_t *mp_tail = NULL; 19170 ill_walk_context_t ctx; 19171 zoneid_t zoneid; 19172 int i; 19173 slist_t *sl; 19174 19175 /* 19176 * make a copy of the original message 19177 */ 19178 mp2ctl = copymsg(mpctl); 19179 zoneid = Q_TO_CONN(q)->conn_zoneid; 19180 19181 /* ipGroupSource table */ 19182 optp = (struct opthdr *)&mpctl->b_rptr[ 19183 sizeof (struct T_optmgmt_ack)]; 19184 optp->level = MIB2_IP; 19185 optp->name = EXPER_IP_GROUP_SOURCES; 19186 19187 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19188 ill = ILL_START_WALK_V4(&ctx, ipst); 19189 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19190 ILM_WALKER_HOLD(ill); 19191 for (ipif = ill->ill_ipif; ipif != NULL; 19192 ipif = ipif->ipif_next) { 19193 if (ipif->ipif_zoneid != zoneid) 19194 continue; /* not this zone */ 19195 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19196 OCTET_LENGTH); 19197 ips.ipGroupSourceIfIndex.o_length = 19198 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19199 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19200 ASSERT(ilm->ilm_ipif != NULL); 19201 ASSERT(ilm->ilm_ill == NULL); 19202 sl = ilm->ilm_filter; 19203 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19204 continue; 19205 ips.ipGroupSourceGroup = ilm->ilm_addr; 19206 for (i = 0; i < sl->sl_numsrc; i++) { 19207 if (!IN6_IS_ADDR_V4MAPPED( 19208 &sl->sl_addr[i])) 19209 continue; 19210 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19211 ips.ipGroupSourceAddress); 19212 if (snmp_append_data2(mpctl->b_cont, 19213 &mp_tail, (char *)&ips, 19214 (int)sizeof (ips)) == 0) { 19215 ip1dbg(("ip_snmp_get_mib2_" 19216 "ip_group_src: failed to " 19217 "allocate %u bytes\n", 19218 (uint_t)sizeof (ips))); 19219 } 19220 } 19221 } 19222 } 19223 ILM_WALKER_RELE(ill); 19224 } 19225 rw_exit(&ipst->ips_ill_g_lock); 19226 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19227 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19228 (int)optp->level, (int)optp->name, (int)optp->len)); 19229 qreply(q, mpctl); 19230 return (mp2ctl); 19231 } 19232 19233 /* IPv6 multicast filtered sources. */ 19234 static mblk_t * 19235 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19236 { 19237 struct opthdr *optp; 19238 mblk_t *mp2ctl; 19239 ill_t *ill; 19240 ilm_t *ilm; 19241 ipv6_grpsrc_t ips6; 19242 mblk_t *mp_tail = NULL; 19243 ill_walk_context_t ctx; 19244 zoneid_t zoneid; 19245 int i; 19246 slist_t *sl; 19247 19248 /* 19249 * make a copy of the original message 19250 */ 19251 mp2ctl = copymsg(mpctl); 19252 zoneid = Q_TO_CONN(q)->conn_zoneid; 19253 19254 /* ip6GroupMember table */ 19255 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19256 optp->level = MIB2_IP6; 19257 optp->name = EXPER_IP6_GROUP_SOURCES; 19258 19259 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19260 ill = ILL_START_WALK_V6(&ctx, ipst); 19261 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19262 ILM_WALKER_HOLD(ill); 19263 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19264 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19265 ASSERT(ilm->ilm_ipif == NULL); 19266 ASSERT(ilm->ilm_ill != NULL); 19267 sl = ilm->ilm_filter; 19268 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19269 continue; 19270 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19271 for (i = 0; i < sl->sl_numsrc; i++) { 19272 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19273 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19274 (char *)&ips6, (int)sizeof (ips6))) { 19275 ip1dbg(("ip_snmp_get_mib2_ip6_" 19276 "group_src: failed to allocate " 19277 "%u bytes\n", 19278 (uint_t)sizeof (ips6))); 19279 } 19280 } 19281 } 19282 ILM_WALKER_RELE(ill); 19283 } 19284 rw_exit(&ipst->ips_ill_g_lock); 19285 19286 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19287 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19288 (int)optp->level, (int)optp->name, (int)optp->len)); 19289 qreply(q, mpctl); 19290 return (mp2ctl); 19291 } 19292 19293 /* Multicast routing virtual interface table. */ 19294 static mblk_t * 19295 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19296 { 19297 struct opthdr *optp; 19298 mblk_t *mp2ctl; 19299 19300 /* 19301 * make a copy of the original message 19302 */ 19303 mp2ctl = copymsg(mpctl); 19304 19305 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19306 optp->level = EXPER_DVMRP; 19307 optp->name = EXPER_DVMRP_VIF; 19308 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19309 ip0dbg(("ip_mroute_vif: failed\n")); 19310 } 19311 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19312 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19313 (int)optp->level, (int)optp->name, (int)optp->len)); 19314 qreply(q, mpctl); 19315 return (mp2ctl); 19316 } 19317 19318 /* Multicast routing table. */ 19319 static mblk_t * 19320 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19321 { 19322 struct opthdr *optp; 19323 mblk_t *mp2ctl; 19324 19325 /* 19326 * make a copy of the original message 19327 */ 19328 mp2ctl = copymsg(mpctl); 19329 19330 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19331 optp->level = EXPER_DVMRP; 19332 optp->name = EXPER_DVMRP_MRT; 19333 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19334 ip0dbg(("ip_mroute_mrt: failed\n")); 19335 } 19336 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19337 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19338 (int)optp->level, (int)optp->name, (int)optp->len)); 19339 qreply(q, mpctl); 19340 return (mp2ctl); 19341 } 19342 19343 /* 19344 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19345 * in one IRE walk. 19346 */ 19347 static mblk_t * 19348 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19349 { 19350 struct opthdr *optp; 19351 mblk_t *mp2ctl; /* Returned */ 19352 mblk_t *mp3ctl; /* nettomedia */ 19353 mblk_t *mp4ctl; /* routeattrs */ 19354 iproutedata_t ird; 19355 zoneid_t zoneid; 19356 19357 /* 19358 * make copies of the original message 19359 * - mp2ctl is returned unchanged to the caller for his use 19360 * - mpctl is sent upstream as ipRouteEntryTable 19361 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19362 * - mp4ctl is sent upstream as ipRouteAttributeTable 19363 */ 19364 mp2ctl = copymsg(mpctl); 19365 mp3ctl = copymsg(mpctl); 19366 mp4ctl = copymsg(mpctl); 19367 if (mp3ctl == NULL || mp4ctl == NULL) { 19368 freemsg(mp4ctl); 19369 freemsg(mp3ctl); 19370 freemsg(mp2ctl); 19371 freemsg(mpctl); 19372 return (NULL); 19373 } 19374 19375 bzero(&ird, sizeof (ird)); 19376 19377 ird.ird_route.lp_head = mpctl->b_cont; 19378 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19379 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19380 19381 zoneid = Q_TO_CONN(q)->conn_zoneid; 19382 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19383 19384 /* ipRouteEntryTable in mpctl */ 19385 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19386 optp->level = MIB2_IP; 19387 optp->name = MIB2_IP_ROUTE; 19388 optp->len = msgdsize(ird.ird_route.lp_head); 19389 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19390 (int)optp->level, (int)optp->name, (int)optp->len)); 19391 qreply(q, mpctl); 19392 19393 /* ipNetToMediaEntryTable in mp3ctl */ 19394 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19395 optp->level = MIB2_IP; 19396 optp->name = MIB2_IP_MEDIA; 19397 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19398 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19399 (int)optp->level, (int)optp->name, (int)optp->len)); 19400 qreply(q, mp3ctl); 19401 19402 /* ipRouteAttributeTable in mp4ctl */ 19403 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19404 optp->level = MIB2_IP; 19405 optp->name = EXPER_IP_RTATTR; 19406 optp->len = msgdsize(ird.ird_attrs.lp_head); 19407 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19408 (int)optp->level, (int)optp->name, (int)optp->len)); 19409 if (optp->len == 0) 19410 freemsg(mp4ctl); 19411 else 19412 qreply(q, mp4ctl); 19413 19414 return (mp2ctl); 19415 } 19416 19417 /* 19418 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19419 * ipv6NetToMediaEntryTable in an NDP walk. 19420 */ 19421 static mblk_t * 19422 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19423 { 19424 struct opthdr *optp; 19425 mblk_t *mp2ctl; /* Returned */ 19426 mblk_t *mp3ctl; /* nettomedia */ 19427 mblk_t *mp4ctl; /* routeattrs */ 19428 iproutedata_t ird; 19429 zoneid_t zoneid; 19430 19431 /* 19432 * make copies of the original message 19433 * - mp2ctl is returned unchanged to the caller for his use 19434 * - mpctl is sent upstream as ipv6RouteEntryTable 19435 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19436 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19437 */ 19438 mp2ctl = copymsg(mpctl); 19439 mp3ctl = copymsg(mpctl); 19440 mp4ctl = copymsg(mpctl); 19441 if (mp3ctl == NULL || mp4ctl == NULL) { 19442 freemsg(mp4ctl); 19443 freemsg(mp3ctl); 19444 freemsg(mp2ctl); 19445 freemsg(mpctl); 19446 return (NULL); 19447 } 19448 19449 bzero(&ird, sizeof (ird)); 19450 19451 ird.ird_route.lp_head = mpctl->b_cont; 19452 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19453 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19454 19455 zoneid = Q_TO_CONN(q)->conn_zoneid; 19456 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19457 19458 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19459 optp->level = MIB2_IP6; 19460 optp->name = MIB2_IP6_ROUTE; 19461 optp->len = msgdsize(ird.ird_route.lp_head); 19462 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19463 (int)optp->level, (int)optp->name, (int)optp->len)); 19464 qreply(q, mpctl); 19465 19466 /* ipv6NetToMediaEntryTable in mp3ctl */ 19467 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19468 19469 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19470 optp->level = MIB2_IP6; 19471 optp->name = MIB2_IP6_MEDIA; 19472 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19473 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19474 (int)optp->level, (int)optp->name, (int)optp->len)); 19475 qreply(q, mp3ctl); 19476 19477 /* ipv6RouteAttributeTable in mp4ctl */ 19478 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19479 optp->level = MIB2_IP6; 19480 optp->name = EXPER_IP_RTATTR; 19481 optp->len = msgdsize(ird.ird_attrs.lp_head); 19482 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19483 (int)optp->level, (int)optp->name, (int)optp->len)); 19484 if (optp->len == 0) 19485 freemsg(mp4ctl); 19486 else 19487 qreply(q, mp4ctl); 19488 19489 return (mp2ctl); 19490 } 19491 19492 /* 19493 * IPv6 mib: One per ill 19494 */ 19495 static mblk_t * 19496 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19497 { 19498 struct opthdr *optp; 19499 mblk_t *mp2ctl; 19500 ill_t *ill; 19501 ill_walk_context_t ctx; 19502 mblk_t *mp_tail = NULL; 19503 19504 /* 19505 * Make a copy of the original message 19506 */ 19507 mp2ctl = copymsg(mpctl); 19508 19509 /* fixed length IPv6 structure ... */ 19510 19511 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19512 optp->level = MIB2_IP6; 19513 optp->name = 0; 19514 /* Include "unknown interface" ip6_mib */ 19515 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19516 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19517 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19518 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19519 ipst->ips_ipv6_forward ? 1 : 2); 19520 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19521 ipst->ips_ipv6_def_hops); 19522 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19523 sizeof (mib2_ipIfStatsEntry_t)); 19524 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19525 sizeof (mib2_ipv6AddrEntry_t)); 19526 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19527 sizeof (mib2_ipv6RouteEntry_t)); 19528 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19529 sizeof (mib2_ipv6NetToMediaEntry_t)); 19530 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19531 sizeof (ipv6_member_t)); 19532 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19533 sizeof (ipv6_grpsrc_t)); 19534 19535 /* 19536 * Synchronize 64- and 32-bit counters 19537 */ 19538 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19539 ipIfStatsHCInReceives); 19540 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19541 ipIfStatsHCInDelivers); 19542 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19543 ipIfStatsHCOutRequests); 19544 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19545 ipIfStatsHCOutForwDatagrams); 19546 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19547 ipIfStatsHCOutMcastPkts); 19548 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19549 ipIfStatsHCInMcastPkts); 19550 19551 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19552 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19553 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19554 (uint_t)sizeof (ipst->ips_ip6_mib))); 19555 } 19556 19557 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19558 ill = ILL_START_WALK_V6(&ctx, ipst); 19559 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19560 ill->ill_ip_mib->ipIfStatsIfIndex = 19561 ill->ill_phyint->phyint_ifindex; 19562 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19563 ipst->ips_ipv6_forward ? 1 : 2); 19564 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19565 ill->ill_max_hops); 19566 19567 /* 19568 * Synchronize 64- and 32-bit counters 19569 */ 19570 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19571 ipIfStatsHCInReceives); 19572 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19573 ipIfStatsHCInDelivers); 19574 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19575 ipIfStatsHCOutRequests); 19576 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19577 ipIfStatsHCOutForwDatagrams); 19578 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19579 ipIfStatsHCOutMcastPkts); 19580 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19581 ipIfStatsHCInMcastPkts); 19582 19583 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19584 (char *)ill->ill_ip_mib, 19585 (int)sizeof (*ill->ill_ip_mib))) { 19586 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19587 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19588 } 19589 } 19590 rw_exit(&ipst->ips_ill_g_lock); 19591 19592 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19593 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19594 (int)optp->level, (int)optp->name, (int)optp->len)); 19595 qreply(q, mpctl); 19596 return (mp2ctl); 19597 } 19598 19599 /* 19600 * ICMPv6 mib: One per ill 19601 */ 19602 static mblk_t * 19603 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19604 { 19605 struct opthdr *optp; 19606 mblk_t *mp2ctl; 19607 ill_t *ill; 19608 ill_walk_context_t ctx; 19609 mblk_t *mp_tail = NULL; 19610 /* 19611 * Make a copy of the original message 19612 */ 19613 mp2ctl = copymsg(mpctl); 19614 19615 /* fixed length ICMPv6 structure ... */ 19616 19617 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19618 optp->level = MIB2_ICMP6; 19619 optp->name = 0; 19620 /* Include "unknown interface" icmp6_mib */ 19621 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19622 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19623 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19624 sizeof (mib2_ipv6IfIcmpEntry_t); 19625 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19626 (char *)&ipst->ips_icmp6_mib, 19627 (int)sizeof (ipst->ips_icmp6_mib))) { 19628 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19629 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19630 } 19631 19632 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19633 ill = ILL_START_WALK_V6(&ctx, ipst); 19634 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19635 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19636 ill->ill_phyint->phyint_ifindex; 19637 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19638 (char *)ill->ill_icmp6_mib, 19639 (int)sizeof (*ill->ill_icmp6_mib))) { 19640 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19641 "%u bytes\n", 19642 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19643 } 19644 } 19645 rw_exit(&ipst->ips_ill_g_lock); 19646 19647 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19648 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19649 (int)optp->level, (int)optp->name, (int)optp->len)); 19650 qreply(q, mpctl); 19651 return (mp2ctl); 19652 } 19653 19654 /* 19655 * ire_walk routine to create both ipRouteEntryTable and 19656 * ipRouteAttributeTable in one IRE walk 19657 */ 19658 static void 19659 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19660 { 19661 ill_t *ill; 19662 ipif_t *ipif; 19663 mib2_ipRouteEntry_t *re; 19664 mib2_ipAttributeEntry_t *iae, *iaeptr; 19665 ipaddr_t gw_addr; 19666 tsol_ire_gw_secattr_t *attrp; 19667 tsol_gc_t *gc = NULL; 19668 tsol_gcgrp_t *gcgrp = NULL; 19669 uint_t sacnt = 0; 19670 int i; 19671 19672 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19673 19674 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19675 return; 19676 19677 if ((attrp = ire->ire_gw_secattr) != NULL) { 19678 mutex_enter(&attrp->igsa_lock); 19679 if ((gc = attrp->igsa_gc) != NULL) { 19680 gcgrp = gc->gc_grp; 19681 ASSERT(gcgrp != NULL); 19682 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19683 sacnt = 1; 19684 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19685 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19686 gc = gcgrp->gcgrp_head; 19687 sacnt = gcgrp->gcgrp_count; 19688 } 19689 mutex_exit(&attrp->igsa_lock); 19690 19691 /* do nothing if there's no gc to report */ 19692 if (gc == NULL) { 19693 ASSERT(sacnt == 0); 19694 if (gcgrp != NULL) { 19695 /* we might as well drop the lock now */ 19696 rw_exit(&gcgrp->gcgrp_rwlock); 19697 gcgrp = NULL; 19698 } 19699 attrp = NULL; 19700 } 19701 19702 ASSERT(gc == NULL || (gcgrp != NULL && 19703 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19704 } 19705 ASSERT(sacnt == 0 || gc != NULL); 19706 19707 if (sacnt != 0 && 19708 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19709 kmem_free(re, sizeof (*re)); 19710 rw_exit(&gcgrp->gcgrp_rwlock); 19711 return; 19712 } 19713 19714 /* 19715 * Return all IRE types for route table... let caller pick and choose 19716 */ 19717 re->ipRouteDest = ire->ire_addr; 19718 ipif = ire->ire_ipif; 19719 re->ipRouteIfIndex.o_length = 0; 19720 if (ire->ire_type == IRE_CACHE) { 19721 ill = (ill_t *)ire->ire_stq->q_ptr; 19722 re->ipRouteIfIndex.o_length = 19723 ill->ill_name_length == 0 ? 0 : 19724 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19725 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19726 re->ipRouteIfIndex.o_length); 19727 } else if (ipif != NULL) { 19728 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19729 re->ipRouteIfIndex.o_length = 19730 mi_strlen(re->ipRouteIfIndex.o_bytes); 19731 } 19732 re->ipRouteMetric1 = -1; 19733 re->ipRouteMetric2 = -1; 19734 re->ipRouteMetric3 = -1; 19735 re->ipRouteMetric4 = -1; 19736 19737 gw_addr = ire->ire_gateway_addr; 19738 19739 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19740 re->ipRouteNextHop = ire->ire_src_addr; 19741 else 19742 re->ipRouteNextHop = gw_addr; 19743 /* indirect(4), direct(3), or invalid(2) */ 19744 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19745 re->ipRouteType = 2; 19746 else 19747 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19748 re->ipRouteProto = -1; 19749 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19750 re->ipRouteMask = ire->ire_mask; 19751 re->ipRouteMetric5 = -1; 19752 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19753 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19754 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19755 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19756 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19757 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19758 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19759 re->ipRouteInfo.re_flags = ire->ire_flags; 19760 19761 if (ire->ire_flags & RTF_DYNAMIC) { 19762 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19763 } else { 19764 re->ipRouteInfo.re_ire_type = ire->ire_type; 19765 } 19766 19767 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19768 (char *)re, (int)sizeof (*re))) { 19769 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19770 (uint_t)sizeof (*re))); 19771 } 19772 19773 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19774 iaeptr->iae_routeidx = ird->ird_idx; 19775 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19776 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19777 } 19778 19779 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19780 (char *)iae, sacnt * sizeof (*iae))) { 19781 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19782 (unsigned)(sacnt * sizeof (*iae)))); 19783 } 19784 19785 /* bump route index for next pass */ 19786 ird->ird_idx++; 19787 19788 kmem_free(re, sizeof (*re)); 19789 if (sacnt != 0) 19790 kmem_free(iae, sacnt * sizeof (*iae)); 19791 19792 if (gcgrp != NULL) 19793 rw_exit(&gcgrp->gcgrp_rwlock); 19794 } 19795 19796 /* 19797 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19798 */ 19799 static void 19800 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19801 { 19802 ill_t *ill; 19803 ipif_t *ipif; 19804 mib2_ipv6RouteEntry_t *re; 19805 mib2_ipAttributeEntry_t *iae, *iaeptr; 19806 in6_addr_t gw_addr_v6; 19807 tsol_ire_gw_secattr_t *attrp; 19808 tsol_gc_t *gc = NULL; 19809 tsol_gcgrp_t *gcgrp = NULL; 19810 uint_t sacnt = 0; 19811 int i; 19812 19813 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19814 19815 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19816 return; 19817 19818 if ((attrp = ire->ire_gw_secattr) != NULL) { 19819 mutex_enter(&attrp->igsa_lock); 19820 if ((gc = attrp->igsa_gc) != NULL) { 19821 gcgrp = gc->gc_grp; 19822 ASSERT(gcgrp != NULL); 19823 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19824 sacnt = 1; 19825 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19826 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19827 gc = gcgrp->gcgrp_head; 19828 sacnt = gcgrp->gcgrp_count; 19829 } 19830 mutex_exit(&attrp->igsa_lock); 19831 19832 /* do nothing if there's no gc to report */ 19833 if (gc == NULL) { 19834 ASSERT(sacnt == 0); 19835 if (gcgrp != NULL) { 19836 /* we might as well drop the lock now */ 19837 rw_exit(&gcgrp->gcgrp_rwlock); 19838 gcgrp = NULL; 19839 } 19840 attrp = NULL; 19841 } 19842 19843 ASSERT(gc == NULL || (gcgrp != NULL && 19844 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19845 } 19846 ASSERT(sacnt == 0 || gc != NULL); 19847 19848 if (sacnt != 0 && 19849 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19850 kmem_free(re, sizeof (*re)); 19851 rw_exit(&gcgrp->gcgrp_rwlock); 19852 return; 19853 } 19854 19855 /* 19856 * Return all IRE types for route table... let caller pick and choose 19857 */ 19858 re->ipv6RouteDest = ire->ire_addr_v6; 19859 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19860 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19861 re->ipv6RouteIfIndex.o_length = 0; 19862 ipif = ire->ire_ipif; 19863 if (ire->ire_type == IRE_CACHE) { 19864 ill = (ill_t *)ire->ire_stq->q_ptr; 19865 re->ipv6RouteIfIndex.o_length = 19866 ill->ill_name_length == 0 ? 0 : 19867 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19868 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19869 re->ipv6RouteIfIndex.o_length); 19870 } else if (ipif != NULL) { 19871 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19872 re->ipv6RouteIfIndex.o_length = 19873 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19874 } 19875 19876 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19877 19878 mutex_enter(&ire->ire_lock); 19879 gw_addr_v6 = ire->ire_gateway_addr_v6; 19880 mutex_exit(&ire->ire_lock); 19881 19882 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19883 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19884 else 19885 re->ipv6RouteNextHop = gw_addr_v6; 19886 19887 /* remote(4), local(3), or discard(2) */ 19888 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19889 re->ipv6RouteType = 2; 19890 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19891 re->ipv6RouteType = 3; 19892 else 19893 re->ipv6RouteType = 4; 19894 19895 re->ipv6RouteProtocol = -1; 19896 re->ipv6RoutePolicy = 0; 19897 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19898 re->ipv6RouteNextHopRDI = 0; 19899 re->ipv6RouteWeight = 0; 19900 re->ipv6RouteMetric = 0; 19901 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19902 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19903 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19904 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19905 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19906 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19907 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19908 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19909 19910 if (ire->ire_flags & RTF_DYNAMIC) { 19911 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19912 } else { 19913 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19914 } 19915 19916 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19917 (char *)re, (int)sizeof (*re))) { 19918 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19919 (uint_t)sizeof (*re))); 19920 } 19921 19922 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19923 iaeptr->iae_routeidx = ird->ird_idx; 19924 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19925 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19926 } 19927 19928 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19929 (char *)iae, sacnt * sizeof (*iae))) { 19930 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19931 (unsigned)(sacnt * sizeof (*iae)))); 19932 } 19933 19934 /* bump route index for next pass */ 19935 ird->ird_idx++; 19936 19937 kmem_free(re, sizeof (*re)); 19938 if (sacnt != 0) 19939 kmem_free(iae, sacnt * sizeof (*iae)); 19940 19941 if (gcgrp != NULL) 19942 rw_exit(&gcgrp->gcgrp_rwlock); 19943 } 19944 19945 /* 19946 * ndp_walk routine to create ipv6NetToMediaEntryTable 19947 */ 19948 static int 19949 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19950 { 19951 ill_t *ill; 19952 mib2_ipv6NetToMediaEntry_t ntme; 19953 dl_unitdata_req_t *dl; 19954 19955 ill = nce->nce_ill; 19956 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19957 return (0); 19958 19959 /* 19960 * Neighbor cache entry attached to IRE with on-link 19961 * destination. 19962 */ 19963 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19964 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19965 if ((ill->ill_flags & ILLF_XRESOLV) && 19966 (nce->nce_res_mp != NULL)) { 19967 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19968 ntme.ipv6NetToMediaPhysAddress.o_length = 19969 dl->dl_dest_addr_length; 19970 } else { 19971 ntme.ipv6NetToMediaPhysAddress.o_length = 19972 ill->ill_phys_addr_length; 19973 } 19974 if (nce->nce_res_mp != NULL) { 19975 bcopy((char *)nce->nce_res_mp->b_rptr + 19976 NCE_LL_ADDR_OFFSET(ill), 19977 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19978 ntme.ipv6NetToMediaPhysAddress.o_length); 19979 } else { 19980 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19981 ill->ill_phys_addr_length); 19982 } 19983 /* 19984 * Note: Returns ND_* states. Should be: 19985 * reachable(1), stale(2), delay(3), probe(4), 19986 * invalid(5), unknown(6) 19987 */ 19988 ntme.ipv6NetToMediaState = nce->nce_state; 19989 ntme.ipv6NetToMediaLastUpdated = 0; 19990 19991 /* other(1), dynamic(2), static(3), local(4) */ 19992 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19993 ntme.ipv6NetToMediaType = 4; 19994 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19995 ntme.ipv6NetToMediaType = 1; 19996 } else { 19997 ntme.ipv6NetToMediaType = 2; 19998 } 19999 20000 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 20001 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 20002 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 20003 (uint_t)sizeof (ntme))); 20004 } 20005 return (0); 20006 } 20007 20008 /* 20009 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 20010 */ 20011 /* ARGSUSED */ 20012 int 20013 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 20014 { 20015 switch (level) { 20016 case MIB2_IP: 20017 case MIB2_ICMP: 20018 switch (name) { 20019 default: 20020 break; 20021 } 20022 return (1); 20023 default: 20024 return (1); 20025 } 20026 } 20027 20028 /* 20029 * When there exists both a 64- and 32-bit counter of a particular type 20030 * (i.e., InReceives), only the 64-bit counters are added. 20031 */ 20032 void 20033 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 20034 { 20035 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 20036 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 20037 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 20038 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 20039 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 20040 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 20041 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 20042 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 20043 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 20044 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 20045 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 20046 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 20047 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 20048 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 20049 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 20050 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 20051 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 20052 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 20053 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 20054 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 20055 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 20056 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 20057 o2->ipIfStatsInWrongIPVersion); 20058 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 20059 o2->ipIfStatsInWrongIPVersion); 20060 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 20061 o2->ipIfStatsOutSwitchIPVersion); 20062 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 20063 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20064 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20065 o2->ipIfStatsHCInForwDatagrams); 20066 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20067 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20068 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20069 o2->ipIfStatsHCOutForwDatagrams); 20070 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20071 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20072 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20073 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20074 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20075 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20076 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20077 o2->ipIfStatsHCOutMcastOctets); 20078 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20079 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20080 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20081 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20082 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20083 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20084 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20085 } 20086 20087 void 20088 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20089 { 20090 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20091 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20092 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20093 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20094 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20095 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20096 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20097 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20098 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20099 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20100 o2->ipv6IfIcmpInRouterSolicits); 20101 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20102 o2->ipv6IfIcmpInRouterAdvertisements); 20103 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20104 o2->ipv6IfIcmpInNeighborSolicits); 20105 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20106 o2->ipv6IfIcmpInNeighborAdvertisements); 20107 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20108 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20109 o2->ipv6IfIcmpInGroupMembQueries); 20110 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20111 o2->ipv6IfIcmpInGroupMembResponses); 20112 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20113 o2->ipv6IfIcmpInGroupMembReductions); 20114 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20115 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20116 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20117 o2->ipv6IfIcmpOutDestUnreachs); 20118 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20119 o2->ipv6IfIcmpOutAdminProhibs); 20120 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20121 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20122 o2->ipv6IfIcmpOutParmProblems); 20123 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20124 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20125 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20126 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20127 o2->ipv6IfIcmpOutRouterSolicits); 20128 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20129 o2->ipv6IfIcmpOutRouterAdvertisements); 20130 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20131 o2->ipv6IfIcmpOutNeighborSolicits); 20132 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20133 o2->ipv6IfIcmpOutNeighborAdvertisements); 20134 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20135 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20136 o2->ipv6IfIcmpOutGroupMembQueries); 20137 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20138 o2->ipv6IfIcmpOutGroupMembResponses); 20139 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20140 o2->ipv6IfIcmpOutGroupMembReductions); 20141 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20142 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20143 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20144 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20145 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20146 o2->ipv6IfIcmpInBadNeighborSolicitations); 20147 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20148 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20149 o2->ipv6IfIcmpInGroupMembTotal); 20150 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20151 o2->ipv6IfIcmpInGroupMembBadQueries); 20152 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20153 o2->ipv6IfIcmpInGroupMembBadReports); 20154 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20155 o2->ipv6IfIcmpInGroupMembOurReports); 20156 } 20157 20158 /* 20159 * Called before the options are updated to check if this packet will 20160 * be source routed from here. 20161 * This routine assumes that the options are well formed i.e. that they 20162 * have already been checked. 20163 */ 20164 static boolean_t 20165 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20166 { 20167 ipoptp_t opts; 20168 uchar_t *opt; 20169 uint8_t optval; 20170 uint8_t optlen; 20171 ipaddr_t dst; 20172 ire_t *ire; 20173 20174 if (IS_SIMPLE_IPH(ipha)) { 20175 ip2dbg(("not source routed\n")); 20176 return (B_FALSE); 20177 } 20178 dst = ipha->ipha_dst; 20179 for (optval = ipoptp_first(&opts, ipha); 20180 optval != IPOPT_EOL; 20181 optval = ipoptp_next(&opts)) { 20182 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20183 opt = opts.ipoptp_cur; 20184 optlen = opts.ipoptp_len; 20185 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20186 optval, optlen)); 20187 switch (optval) { 20188 uint32_t off; 20189 case IPOPT_SSRR: 20190 case IPOPT_LSRR: 20191 /* 20192 * If dst is one of our addresses and there are some 20193 * entries left in the source route return (true). 20194 */ 20195 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20196 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20197 if (ire == NULL) { 20198 ip2dbg(("ip_source_routed: not next" 20199 " source route 0x%x\n", 20200 ntohl(dst))); 20201 return (B_FALSE); 20202 } 20203 ire_refrele(ire); 20204 off = opt[IPOPT_OFFSET]; 20205 off--; 20206 if (optlen < IP_ADDR_LEN || 20207 off > optlen - IP_ADDR_LEN) { 20208 /* End of source route */ 20209 ip1dbg(("ip_source_routed: end of SR\n")); 20210 return (B_FALSE); 20211 } 20212 return (B_TRUE); 20213 } 20214 } 20215 ip2dbg(("not source routed\n")); 20216 return (B_FALSE); 20217 } 20218 20219 /* 20220 * Check if the packet contains any source route. 20221 */ 20222 static boolean_t 20223 ip_source_route_included(ipha_t *ipha) 20224 { 20225 ipoptp_t opts; 20226 uint8_t optval; 20227 20228 if (IS_SIMPLE_IPH(ipha)) 20229 return (B_FALSE); 20230 for (optval = ipoptp_first(&opts, ipha); 20231 optval != IPOPT_EOL; 20232 optval = ipoptp_next(&opts)) { 20233 switch (optval) { 20234 case IPOPT_SSRR: 20235 case IPOPT_LSRR: 20236 return (B_TRUE); 20237 } 20238 } 20239 return (B_FALSE); 20240 } 20241 20242 /* 20243 * Called when the IRE expiration timer fires. 20244 */ 20245 void 20246 ip_trash_timer_expire(void *args) 20247 { 20248 int flush_flag = 0; 20249 ire_expire_arg_t iea; 20250 ip_stack_t *ipst = (ip_stack_t *)args; 20251 20252 iea.iea_ipst = ipst; /* No netstack_hold */ 20253 20254 /* 20255 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20256 * This lock makes sure that a new invocation of this function 20257 * that occurs due to an almost immediate timer firing will not 20258 * progress beyond this point until the current invocation is done 20259 */ 20260 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20261 ipst->ips_ip_ire_expire_id = 0; 20262 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20263 20264 /* Periodic timer */ 20265 if (ipst->ips_ip_ire_arp_time_elapsed >= 20266 ipst->ips_ip_ire_arp_interval) { 20267 /* 20268 * Remove all IRE_CACHE entries since they might 20269 * contain arp information. 20270 */ 20271 flush_flag |= FLUSH_ARP_TIME; 20272 ipst->ips_ip_ire_arp_time_elapsed = 0; 20273 IP_STAT(ipst, ip_ire_arp_timer_expired); 20274 } 20275 if (ipst->ips_ip_ire_rd_time_elapsed >= 20276 ipst->ips_ip_ire_redir_interval) { 20277 /* Remove all redirects */ 20278 flush_flag |= FLUSH_REDIRECT_TIME; 20279 ipst->ips_ip_ire_rd_time_elapsed = 0; 20280 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20281 } 20282 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20283 ipst->ips_ip_ire_pathmtu_interval) { 20284 /* Increase path mtu */ 20285 flush_flag |= FLUSH_MTU_TIME; 20286 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20287 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20288 } 20289 20290 /* 20291 * Optimize for the case when there are no redirects in the 20292 * ftable, that is, no need to walk the ftable in that case. 20293 */ 20294 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20295 iea.iea_flush_flag = flush_flag; 20296 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20297 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20298 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20299 NULL, ALL_ZONES, ipst); 20300 } 20301 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20302 ipst->ips_ip_redirect_cnt > 0) { 20303 iea.iea_flush_flag = flush_flag; 20304 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20305 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20306 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20307 } 20308 if (flush_flag & FLUSH_MTU_TIME) { 20309 /* 20310 * Walk all IPv6 IRE's and update them 20311 * Note that ARP and redirect timers are not 20312 * needed since NUD handles stale entries. 20313 */ 20314 flush_flag = FLUSH_MTU_TIME; 20315 iea.iea_flush_flag = flush_flag; 20316 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20317 ALL_ZONES, ipst); 20318 } 20319 20320 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20321 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20322 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20323 20324 /* 20325 * Hold the lock to serialize timeout calls and prevent 20326 * stale values in ip_ire_expire_id. Otherwise it is possible 20327 * for the timer to fire and a new invocation of this function 20328 * to start before the return value of timeout has been stored 20329 * in ip_ire_expire_id by the current invocation. 20330 */ 20331 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20332 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20333 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20334 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20335 } 20336 20337 /* 20338 * Called by the memory allocator subsystem directly, when the system 20339 * is running low on memory. 20340 */ 20341 /* ARGSUSED */ 20342 void 20343 ip_trash_ire_reclaim(void *args) 20344 { 20345 netstack_handle_t nh; 20346 netstack_t *ns; 20347 20348 netstack_next_init(&nh); 20349 while ((ns = netstack_next(&nh)) != NULL) { 20350 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20351 netstack_rele(ns); 20352 } 20353 netstack_next_fini(&nh); 20354 } 20355 20356 static void 20357 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20358 { 20359 ire_cache_count_t icc; 20360 ire_cache_reclaim_t icr; 20361 ncc_cache_count_t ncc; 20362 nce_cache_reclaim_t ncr; 20363 uint_t delete_cnt; 20364 /* 20365 * Memory reclaim call back. 20366 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20367 * Then, with a target of freeing 1/Nth of IRE_CACHE 20368 * entries, determine what fraction to free for 20369 * each category of IRE_CACHE entries giving absolute priority 20370 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20371 * entry will be freed unless all offlink entries are freed). 20372 */ 20373 icc.icc_total = 0; 20374 icc.icc_unused = 0; 20375 icc.icc_offlink = 0; 20376 icc.icc_pmtu = 0; 20377 icc.icc_onlink = 0; 20378 ire_walk(ire_cache_count, (char *)&icc, ipst); 20379 20380 /* 20381 * Free NCEs for IPv6 like the onlink ires. 20382 */ 20383 ncc.ncc_total = 0; 20384 ncc.ncc_host = 0; 20385 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20386 20387 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20388 icc.icc_pmtu + icc.icc_onlink); 20389 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20390 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20391 if (delete_cnt == 0) 20392 return; 20393 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20394 /* Always delete all unused offlink entries */ 20395 icr.icr_ipst = ipst; 20396 icr.icr_unused = 1; 20397 if (delete_cnt <= icc.icc_unused) { 20398 /* 20399 * Only need to free unused entries. In other words, 20400 * there are enough unused entries to free to meet our 20401 * target number of freed ire cache entries. 20402 */ 20403 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20404 ncr.ncr_host = 0; 20405 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20406 /* 20407 * Only need to free unused entries, plus a fraction of offlink 20408 * entries. It follows from the first if statement that 20409 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20410 */ 20411 delete_cnt -= icc.icc_unused; 20412 /* Round up # deleted by truncating fraction */ 20413 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20414 icr.icr_pmtu = icr.icr_onlink = 0; 20415 ncr.ncr_host = 0; 20416 } else if (delete_cnt <= 20417 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20418 /* 20419 * Free all unused and offlink entries, plus a fraction of 20420 * pmtu entries. It follows from the previous if statement 20421 * that icc_pmtu is non-zero, and that 20422 * delete_cnt != icc_unused + icc_offlink. 20423 */ 20424 icr.icr_offlink = 1; 20425 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20426 /* Round up # deleted by truncating fraction */ 20427 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20428 icr.icr_onlink = 0; 20429 ncr.ncr_host = 0; 20430 } else { 20431 /* 20432 * Free all unused, offlink, and pmtu entries, plus a fraction 20433 * of onlink entries. If we're here, then we know that 20434 * icc_onlink is non-zero, and that 20435 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20436 */ 20437 icr.icr_offlink = icr.icr_pmtu = 1; 20438 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20439 icc.icc_pmtu; 20440 /* Round up # deleted by truncating fraction */ 20441 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20442 /* Using the same delete fraction as for onlink IREs */ 20443 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20444 } 20445 #ifdef DEBUG 20446 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20447 "fractions %d/%d/%d/%d\n", 20448 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20449 icc.icc_unused, icc.icc_offlink, 20450 icc.icc_pmtu, icc.icc_onlink, 20451 icr.icr_unused, icr.icr_offlink, 20452 icr.icr_pmtu, icr.icr_onlink)); 20453 #endif 20454 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20455 if (ncr.ncr_host != 0) 20456 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20457 (uchar_t *)&ncr, ipst); 20458 #ifdef DEBUG 20459 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20460 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20461 ire_walk(ire_cache_count, (char *)&icc, ipst); 20462 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20463 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20464 icc.icc_pmtu, icc.icc_onlink)); 20465 #endif 20466 } 20467 20468 /* 20469 * ip_unbind is called when a copy of an unbind request is received from the 20470 * upper level protocol. We remove this conn from any fanout hash list it is 20471 * on, and zero out the bind information. No reply is expected up above. 20472 */ 20473 void 20474 ip_unbind(conn_t *connp) 20475 { 20476 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20477 20478 if (is_system_labeled() && connp->conn_anon_port) { 20479 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20480 connp->conn_mlp_type, connp->conn_ulp, 20481 ntohs(connp->conn_lport), B_FALSE); 20482 connp->conn_anon_port = 0; 20483 } 20484 connp->conn_mlp_type = mlptSingle; 20485 20486 ipcl_hash_remove(connp); 20487 20488 } 20489 20490 /* 20491 * Write side put procedure. Outbound data, IOCTLs, responses from 20492 * resolvers, etc, come down through here. 20493 * 20494 * arg2 is always a queue_t *. 20495 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20496 * the zoneid. 20497 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20498 */ 20499 void 20500 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20501 { 20502 ip_output_options(arg, mp, arg2, caller, &zero_info); 20503 } 20504 20505 void 20506 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20507 ip_opt_info_t *infop) 20508 { 20509 conn_t *connp = NULL; 20510 queue_t *q = (queue_t *)arg2; 20511 ipha_t *ipha; 20512 #define rptr ((uchar_t *)ipha) 20513 ire_t *ire = NULL; 20514 ire_t *sctp_ire = NULL; 20515 uint32_t v_hlen_tos_len; 20516 ipaddr_t dst; 20517 mblk_t *first_mp = NULL; 20518 boolean_t mctl_present; 20519 ipsec_out_t *io; 20520 int match_flags; 20521 ill_t *attach_ill = NULL; 20522 /* Bind to IPIF_NOFAILOVER ill etc. */ 20523 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20524 ipif_t *dst_ipif; 20525 boolean_t multirt_need_resolve = B_FALSE; 20526 mblk_t *copy_mp = NULL; 20527 int err; 20528 zoneid_t zoneid; 20529 boolean_t need_decref = B_FALSE; 20530 boolean_t ignore_dontroute = B_FALSE; 20531 boolean_t ignore_nexthop = B_FALSE; 20532 boolean_t ip_nexthop = B_FALSE; 20533 ipaddr_t nexthop_addr; 20534 ip_stack_t *ipst; 20535 20536 #ifdef _BIG_ENDIAN 20537 #define V_HLEN (v_hlen_tos_len >> 24) 20538 #else 20539 #define V_HLEN (v_hlen_tos_len & 0xFF) 20540 #endif 20541 20542 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20543 "ip_wput_start: q %p", q); 20544 20545 /* 20546 * ip_wput fast path 20547 */ 20548 20549 /* is packet from ARP ? */ 20550 if (q->q_next != NULL) { 20551 zoneid = (zoneid_t)(uintptr_t)arg; 20552 goto qnext; 20553 } 20554 20555 connp = (conn_t *)arg; 20556 ASSERT(connp != NULL); 20557 zoneid = connp->conn_zoneid; 20558 ipst = connp->conn_netstack->netstack_ip; 20559 ASSERT(ipst != NULL); 20560 20561 /* is queue flow controlled? */ 20562 if ((q->q_first != NULL || connp->conn_draining) && 20563 (caller == IP_WPUT)) { 20564 ASSERT(!need_decref); 20565 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20566 (void) putq(q, mp); 20567 return; 20568 } 20569 20570 /* Multidata transmit? */ 20571 if (DB_TYPE(mp) == M_MULTIDATA) { 20572 /* 20573 * We should never get here, since all Multidata messages 20574 * originating from tcp should have been directed over to 20575 * tcp_multisend() in the first place. 20576 */ 20577 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20578 freemsg(mp); 20579 return; 20580 } else if (DB_TYPE(mp) != M_DATA) 20581 goto notdata; 20582 20583 if (mp->b_flag & MSGHASREF) { 20584 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20585 mp->b_flag &= ~MSGHASREF; 20586 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20587 need_decref = B_TRUE; 20588 } 20589 ipha = (ipha_t *)mp->b_rptr; 20590 20591 /* is IP header non-aligned or mblk smaller than basic IP header */ 20592 #ifndef SAFETY_BEFORE_SPEED 20593 if (!OK_32PTR(rptr) || 20594 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20595 goto hdrtoosmall; 20596 #endif 20597 20598 ASSERT(OK_32PTR(ipha)); 20599 20600 /* 20601 * This function assumes that mp points to an IPv4 packet. If it's the 20602 * wrong version, we'll catch it again in ip_output_v6. 20603 * 20604 * Note that this is *only* locally-generated output here, and never 20605 * forwarded data, and that we need to deal only with transports that 20606 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20607 * label.) 20608 */ 20609 if (is_system_labeled() && 20610 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20611 !connp->conn_ulp_labeled) { 20612 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20613 connp->conn_mac_exempt, ipst); 20614 ipha = (ipha_t *)mp->b_rptr; 20615 if (err != 0) { 20616 first_mp = mp; 20617 if (err == EINVAL) 20618 goto icmp_parameter_problem; 20619 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20620 goto discard_pkt; 20621 } 20622 } 20623 20624 ASSERT(infop != NULL); 20625 20626 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20627 /* 20628 * IP_PKTINFO ancillary option is present. 20629 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20630 * allows using address of any zone as the source address. 20631 */ 20632 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20633 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20634 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20635 if (ire == NULL) 20636 goto drop_pkt; 20637 ire_refrele(ire); 20638 ire = NULL; 20639 } 20640 20641 /* 20642 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20643 * passed in IP_PKTINFO. 20644 */ 20645 if (infop->ip_opt_ill_index != 0 && 20646 connp->conn_outgoing_ill == NULL && 20647 connp->conn_nofailover_ill == NULL) { 20648 20649 xmit_ill = ill_lookup_on_ifindex( 20650 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20651 ipst); 20652 20653 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20654 goto drop_pkt; 20655 /* 20656 * check that there is an ipif belonging 20657 * to our zone. IPCL_ZONEID is not used because 20658 * IP_ALLZONES option is valid only when the ill is 20659 * accessible from all zones i.e has a valid ipif in 20660 * all zones. 20661 */ 20662 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20663 goto drop_pkt; 20664 } 20665 } 20666 20667 /* 20668 * If there is a policy, try to attach an ipsec_out in 20669 * the front. At the end, first_mp either points to a 20670 * M_DATA message or IPSEC_OUT message linked to a 20671 * M_DATA message. We have to do it now as we might 20672 * lose the "conn" if we go through ip_newroute. 20673 */ 20674 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20675 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20676 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20677 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20678 if (need_decref) 20679 CONN_DEC_REF(connp); 20680 return; 20681 } else { 20682 ASSERT(mp->b_datap->db_type == M_CTL); 20683 first_mp = mp; 20684 mp = mp->b_cont; 20685 mctl_present = B_TRUE; 20686 } 20687 } else { 20688 first_mp = mp; 20689 mctl_present = B_FALSE; 20690 } 20691 20692 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20693 20694 /* is wrong version or IP options present */ 20695 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20696 goto version_hdrlen_check; 20697 dst = ipha->ipha_dst; 20698 20699 if (connp->conn_nofailover_ill != NULL) { 20700 attach_ill = conn_get_held_ill(connp, 20701 &connp->conn_nofailover_ill, &err); 20702 if (err == ILL_LOOKUP_FAILED) { 20703 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20704 if (need_decref) 20705 CONN_DEC_REF(connp); 20706 freemsg(first_mp); 20707 return; 20708 } 20709 } 20710 20711 /* If IP_BOUND_IF has been set, use that ill. */ 20712 if (connp->conn_outgoing_ill != NULL) { 20713 xmit_ill = conn_get_held_ill(connp, 20714 &connp->conn_outgoing_ill, &err); 20715 if (err == ILL_LOOKUP_FAILED) 20716 goto drop_pkt; 20717 20718 goto send_from_ill; 20719 } 20720 20721 /* is packet multicast? */ 20722 if (CLASSD(dst)) 20723 goto multicast; 20724 20725 /* 20726 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20727 * takes precedence over conn_dontroute and conn_nexthop_set 20728 */ 20729 if (xmit_ill != NULL) 20730 goto send_from_ill; 20731 20732 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20733 /* 20734 * If the destination is a broadcast, local, or loopback 20735 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20736 * standard path. 20737 */ 20738 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20739 if ((ire == NULL) || (ire->ire_type & 20740 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20741 if (ire != NULL) { 20742 ire_refrele(ire); 20743 /* No more access to ire */ 20744 ire = NULL; 20745 } 20746 /* 20747 * bypass routing checks and go directly to interface. 20748 */ 20749 if (connp->conn_dontroute) 20750 goto dontroute; 20751 20752 ASSERT(connp->conn_nexthop_set); 20753 ip_nexthop = B_TRUE; 20754 nexthop_addr = connp->conn_nexthop_v4; 20755 goto send_from_ill; 20756 } 20757 20758 /* Must be a broadcast, a loopback or a local ire */ 20759 ire_refrele(ire); 20760 /* No more access to ire */ 20761 ire = NULL; 20762 } 20763 20764 if (attach_ill != NULL) 20765 goto send_from_ill; 20766 20767 /* 20768 * We cache IRE_CACHEs to avoid lookups. We don't do 20769 * this for the tcp global queue and listen end point 20770 * as it does not really have a real destination to 20771 * talk to. This is also true for SCTP. 20772 */ 20773 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20774 !connp->conn_fully_bound) { 20775 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20776 if (ire == NULL) 20777 goto noirefound; 20778 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20779 "ip_wput_end: q %p (%S)", q, "end"); 20780 20781 /* 20782 * Check if the ire has the RTF_MULTIRT flag, inherited 20783 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20784 */ 20785 if (ire->ire_flags & RTF_MULTIRT) { 20786 20787 /* 20788 * Force the TTL of multirouted packets if required. 20789 * The TTL of such packets is bounded by the 20790 * ip_multirt_ttl ndd variable. 20791 */ 20792 if ((ipst->ips_ip_multirt_ttl > 0) && 20793 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20794 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20795 "(was %d), dst 0x%08x\n", 20796 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20797 ntohl(ire->ire_addr))); 20798 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20799 } 20800 /* 20801 * We look at this point if there are pending 20802 * unresolved routes. ire_multirt_resolvable() 20803 * checks in O(n) that all IRE_OFFSUBNET ire 20804 * entries for the packet's destination and 20805 * flagged RTF_MULTIRT are currently resolved. 20806 * If some remain unresolved, we make a copy 20807 * of the current message. It will be used 20808 * to initiate additional route resolutions. 20809 */ 20810 multirt_need_resolve = 20811 ire_multirt_need_resolve(ire->ire_addr, 20812 MBLK_GETLABEL(first_mp), ipst); 20813 ip2dbg(("ip_wput[TCP]: ire %p, " 20814 "multirt_need_resolve %d, first_mp %p\n", 20815 (void *)ire, multirt_need_resolve, 20816 (void *)first_mp)); 20817 if (multirt_need_resolve) { 20818 copy_mp = copymsg(first_mp); 20819 if (copy_mp != NULL) { 20820 MULTIRT_DEBUG_TAG(copy_mp); 20821 } 20822 } 20823 } 20824 20825 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20826 20827 /* 20828 * Try to resolve another multiroute if 20829 * ire_multirt_need_resolve() deemed it necessary. 20830 */ 20831 if (copy_mp != NULL) 20832 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20833 if (need_decref) 20834 CONN_DEC_REF(connp); 20835 return; 20836 } 20837 20838 /* 20839 * Access to conn_ire_cache. (protected by conn_lock) 20840 * 20841 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20842 * the ire bucket lock here to check for CONDEMNED as it is okay to 20843 * send a packet or two with the IRE_CACHE that is going away. 20844 * Access to the ire requires an ire refhold on the ire prior to 20845 * its use since an interface unplumb thread may delete the cached 20846 * ire and release the refhold at any time. 20847 * 20848 * Caching an ire in the conn_ire_cache 20849 * 20850 * o Caching an ire pointer in the conn requires a strict check for 20851 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20852 * ires before cleaning up the conns. So the caching of an ire pointer 20853 * in the conn is done after making sure under the bucket lock that the 20854 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20855 * caching an ire after the unplumb thread has cleaned up the conn. 20856 * If the conn does not send a packet subsequently the unplumb thread 20857 * will be hanging waiting for the ire count to drop to zero. 20858 * 20859 * o We also need to atomically test for a null conn_ire_cache and 20860 * set the conn_ire_cache under the the protection of the conn_lock 20861 * to avoid races among concurrent threads trying to simultaneously 20862 * cache an ire in the conn_ire_cache. 20863 */ 20864 mutex_enter(&connp->conn_lock); 20865 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20866 20867 if (ire != NULL && ire->ire_addr == dst && 20868 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20869 20870 IRE_REFHOLD(ire); 20871 mutex_exit(&connp->conn_lock); 20872 20873 } else { 20874 boolean_t cached = B_FALSE; 20875 connp->conn_ire_cache = NULL; 20876 mutex_exit(&connp->conn_lock); 20877 /* Release the old ire */ 20878 if (ire != NULL && sctp_ire == NULL) 20879 IRE_REFRELE_NOTR(ire); 20880 20881 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20882 if (ire == NULL) 20883 goto noirefound; 20884 IRE_REFHOLD_NOTR(ire); 20885 20886 mutex_enter(&connp->conn_lock); 20887 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20888 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20889 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20890 if (connp->conn_ulp == IPPROTO_TCP) 20891 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20892 connp->conn_ire_cache = ire; 20893 cached = B_TRUE; 20894 } 20895 rw_exit(&ire->ire_bucket->irb_lock); 20896 } 20897 mutex_exit(&connp->conn_lock); 20898 20899 /* 20900 * We can continue to use the ire but since it was 20901 * not cached, we should drop the extra reference. 20902 */ 20903 if (!cached) 20904 IRE_REFRELE_NOTR(ire); 20905 } 20906 20907 20908 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20909 "ip_wput_end: q %p (%S)", q, "end"); 20910 20911 /* 20912 * Check if the ire has the RTF_MULTIRT flag, inherited 20913 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20914 */ 20915 if (ire->ire_flags & RTF_MULTIRT) { 20916 20917 /* 20918 * Force the TTL of multirouted packets if required. 20919 * The TTL of such packets is bounded by the 20920 * ip_multirt_ttl ndd variable. 20921 */ 20922 if ((ipst->ips_ip_multirt_ttl > 0) && 20923 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20924 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20925 "(was %d), dst 0x%08x\n", 20926 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20927 ntohl(ire->ire_addr))); 20928 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20929 } 20930 20931 /* 20932 * At this point, we check to see if there are any pending 20933 * unresolved routes. ire_multirt_resolvable() 20934 * checks in O(n) that all IRE_OFFSUBNET ire 20935 * entries for the packet's destination and 20936 * flagged RTF_MULTIRT are currently resolved. 20937 * If some remain unresolved, we make a copy 20938 * of the current message. It will be used 20939 * to initiate additional route resolutions. 20940 */ 20941 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20942 MBLK_GETLABEL(first_mp), ipst); 20943 ip2dbg(("ip_wput[not TCP]: ire %p, " 20944 "multirt_need_resolve %d, first_mp %p\n", 20945 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20946 if (multirt_need_resolve) { 20947 copy_mp = copymsg(first_mp); 20948 if (copy_mp != NULL) { 20949 MULTIRT_DEBUG_TAG(copy_mp); 20950 } 20951 } 20952 } 20953 20954 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20955 20956 /* 20957 * Try to resolve another multiroute if 20958 * ire_multirt_resolvable() deemed it necessary 20959 */ 20960 if (copy_mp != NULL) 20961 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20962 if (need_decref) 20963 CONN_DEC_REF(connp); 20964 return; 20965 20966 qnext: 20967 /* 20968 * Upper Level Protocols pass down complete IP datagrams 20969 * as M_DATA messages. Everything else is a sideshow. 20970 * 20971 * 1) We could be re-entering ip_wput because of ip_neworute 20972 * in which case we could have a IPSEC_OUT message. We 20973 * need to pass through ip_wput like other datagrams and 20974 * hence cannot branch to ip_wput_nondata. 20975 * 20976 * 2) ARP, AH, ESP, and other clients who are on the module 20977 * instance of IP stream, give us something to deal with. 20978 * We will handle AH and ESP here and rest in ip_wput_nondata. 20979 * 20980 * 3) ICMP replies also could come here. 20981 */ 20982 ipst = ILLQ_TO_IPST(q); 20983 20984 if (DB_TYPE(mp) != M_DATA) { 20985 notdata: 20986 if (DB_TYPE(mp) == M_CTL) { 20987 /* 20988 * M_CTL messages are used by ARP, AH and ESP to 20989 * communicate with IP. We deal with IPSEC_IN and 20990 * IPSEC_OUT here. ip_wput_nondata handles other 20991 * cases. 20992 */ 20993 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20994 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20995 first_mp = mp->b_cont; 20996 first_mp->b_flag &= ~MSGHASREF; 20997 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20998 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20999 CONN_DEC_REF(connp); 21000 connp = NULL; 21001 } 21002 if (ii->ipsec_info_type == IPSEC_IN) { 21003 /* 21004 * Either this message goes back to 21005 * IPsec for further processing or to 21006 * ULP after policy checks. 21007 */ 21008 ip_fanout_proto_again(mp, NULL, NULL, NULL); 21009 return; 21010 } else if (ii->ipsec_info_type == IPSEC_OUT) { 21011 io = (ipsec_out_t *)ii; 21012 if (io->ipsec_out_proc_begin) { 21013 /* 21014 * IPsec processing has already started. 21015 * Complete it. 21016 * IPQoS notes: We don't care what is 21017 * in ipsec_out_ill_index since this 21018 * won't be processed for IPQoS policies 21019 * in ipsec_out_process. 21020 */ 21021 ipsec_out_process(q, mp, NULL, 21022 io->ipsec_out_ill_index); 21023 return; 21024 } else { 21025 connp = (q->q_next != NULL) ? 21026 NULL : Q_TO_CONN(q); 21027 first_mp = mp; 21028 mp = mp->b_cont; 21029 mctl_present = B_TRUE; 21030 } 21031 zoneid = io->ipsec_out_zoneid; 21032 ASSERT(zoneid != ALL_ZONES); 21033 } else if (ii->ipsec_info_type == IPSEC_CTL) { 21034 /* 21035 * It's an IPsec control message requesting 21036 * an SADB update to be sent to the IPsec 21037 * hardware acceleration capable ills. 21038 */ 21039 ipsec_ctl_t *ipsec_ctl = 21040 (ipsec_ctl_t *)mp->b_rptr; 21041 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 21042 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 21043 mblk_t *cmp = mp->b_cont; 21044 21045 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 21046 ASSERT(cmp != NULL); 21047 21048 freeb(mp); 21049 ill_ipsec_capab_send_all(satype, cmp, sa, 21050 ipst->ips_netstack); 21051 return; 21052 } else { 21053 /* 21054 * This must be ARP or special TSOL signaling. 21055 */ 21056 ip_wput_nondata(NULL, q, mp, NULL); 21057 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21058 "ip_wput_end: q %p (%S)", q, "nondata"); 21059 return; 21060 } 21061 } else { 21062 /* 21063 * This must be non-(ARP/AH/ESP) messages. 21064 */ 21065 ASSERT(!need_decref); 21066 ip_wput_nondata(NULL, q, mp, NULL); 21067 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21068 "ip_wput_end: q %p (%S)", q, "nondata"); 21069 return; 21070 } 21071 } else { 21072 first_mp = mp; 21073 mctl_present = B_FALSE; 21074 } 21075 21076 ASSERT(first_mp != NULL); 21077 /* 21078 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 21079 * to make sure that this packet goes out on the same interface it 21080 * came in. We handle that here. 21081 */ 21082 if (mctl_present) { 21083 uint_t ifindex; 21084 21085 io = (ipsec_out_t *)first_mp->b_rptr; 21086 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 21087 /* 21088 * We may have lost the conn context if we are 21089 * coming here from ip_newroute(). Copy the 21090 * nexthop information. 21091 */ 21092 if (io->ipsec_out_ip_nexthop) { 21093 ip_nexthop = B_TRUE; 21094 nexthop_addr = io->ipsec_out_nexthop_addr; 21095 21096 ipha = (ipha_t *)mp->b_rptr; 21097 dst = ipha->ipha_dst; 21098 goto send_from_ill; 21099 } else { 21100 ASSERT(io->ipsec_out_ill_index != 0); 21101 ifindex = io->ipsec_out_ill_index; 21102 attach_ill = ill_lookup_on_ifindex(ifindex, 21103 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21104 if (attach_ill == NULL) { 21105 ASSERT(xmit_ill == NULL); 21106 ip1dbg(("ip_output: bad ifindex for " 21107 "(BIND TO IPIF_NOFAILOVER) %d\n", 21108 ifindex)); 21109 freemsg(first_mp); 21110 BUMP_MIB(&ipst->ips_ip_mib, 21111 ipIfStatsOutDiscards); 21112 ASSERT(!need_decref); 21113 return; 21114 } 21115 } 21116 } 21117 } 21118 21119 ASSERT(xmit_ill == NULL); 21120 21121 /* We have a complete IP datagram heading outbound. */ 21122 ipha = (ipha_t *)mp->b_rptr; 21123 21124 #ifndef SPEED_BEFORE_SAFETY 21125 /* 21126 * Make sure we have a full-word aligned message and that at least 21127 * a simple IP header is accessible in the first message. If not, 21128 * try a pullup. For labeled systems we need to always take this 21129 * path as M_CTLs are "notdata" but have trailing data to process. 21130 */ 21131 if (!OK_32PTR(rptr) || 21132 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21133 hdrtoosmall: 21134 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21135 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21136 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21137 if (first_mp == NULL) 21138 first_mp = mp; 21139 goto discard_pkt; 21140 } 21141 21142 /* This function assumes that mp points to an IPv4 packet. */ 21143 if (is_system_labeled() && q->q_next == NULL && 21144 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21145 !connp->conn_ulp_labeled) { 21146 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 21147 connp->conn_mac_exempt, ipst); 21148 ipha = (ipha_t *)mp->b_rptr; 21149 if (first_mp != NULL) 21150 first_mp->b_cont = mp; 21151 if (err != 0) { 21152 if (first_mp == NULL) 21153 first_mp = mp; 21154 if (err == EINVAL) 21155 goto icmp_parameter_problem; 21156 ip2dbg(("ip_wput: label check failed (%d)\n", 21157 err)); 21158 goto discard_pkt; 21159 } 21160 } 21161 21162 ipha = (ipha_t *)mp->b_rptr; 21163 if (first_mp == NULL) { 21164 ASSERT(attach_ill == NULL && xmit_ill == NULL); 21165 /* 21166 * If we got here because of "goto hdrtoosmall" 21167 * We need to attach a IPSEC_OUT. 21168 */ 21169 if (connp->conn_out_enforce_policy) { 21170 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21171 NULL, ipha->ipha_protocol, 21172 ipst->ips_netstack)) == NULL)) { 21173 BUMP_MIB(&ipst->ips_ip_mib, 21174 ipIfStatsOutDiscards); 21175 if (need_decref) 21176 CONN_DEC_REF(connp); 21177 return; 21178 } else { 21179 ASSERT(mp->b_datap->db_type == M_CTL); 21180 first_mp = mp; 21181 mp = mp->b_cont; 21182 mctl_present = B_TRUE; 21183 } 21184 } else { 21185 first_mp = mp; 21186 mctl_present = B_FALSE; 21187 } 21188 } 21189 } 21190 #endif 21191 21192 /* Most of the code below is written for speed, not readability */ 21193 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21194 21195 /* 21196 * If ip_newroute() fails, we're going to need a full 21197 * header for the icmp wraparound. 21198 */ 21199 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21200 uint_t v_hlen; 21201 version_hdrlen_check: 21202 ASSERT(first_mp != NULL); 21203 v_hlen = V_HLEN; 21204 /* 21205 * siphon off IPv6 packets coming down from transport 21206 * layer modules here. 21207 * Note: high-order bit carries NUD reachability confirmation 21208 */ 21209 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21210 /* 21211 * FIXME: assume that callers of ip_output* call 21212 * the right version? 21213 */ 21214 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21215 ASSERT(xmit_ill == NULL); 21216 if (attach_ill != NULL) 21217 ill_refrele(attach_ill); 21218 if (need_decref) 21219 mp->b_flag |= MSGHASREF; 21220 (void) ip_output_v6(arg, first_mp, arg2, caller); 21221 return; 21222 } 21223 21224 if ((v_hlen >> 4) != IP_VERSION) { 21225 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21226 "ip_wput_end: q %p (%S)", q, "badvers"); 21227 goto discard_pkt; 21228 } 21229 /* 21230 * Is the header length at least 20 bytes? 21231 * 21232 * Are there enough bytes accessible in the header? If 21233 * not, try a pullup. 21234 */ 21235 v_hlen &= 0xF; 21236 v_hlen <<= 2; 21237 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21238 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21239 "ip_wput_end: q %p (%S)", q, "badlen"); 21240 goto discard_pkt; 21241 } 21242 if (v_hlen > (mp->b_wptr - rptr)) { 21243 if (!pullupmsg(mp, v_hlen)) { 21244 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21245 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21246 goto discard_pkt; 21247 } 21248 ipha = (ipha_t *)mp->b_rptr; 21249 } 21250 /* 21251 * Move first entry from any source route into ipha_dst and 21252 * verify the options 21253 */ 21254 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21255 zoneid, ipst)) { 21256 ASSERT(xmit_ill == NULL); 21257 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21258 if (attach_ill != NULL) 21259 ill_refrele(attach_ill); 21260 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21261 "ip_wput_end: q %p (%S)", q, "badopts"); 21262 if (need_decref) 21263 CONN_DEC_REF(connp); 21264 return; 21265 } 21266 } 21267 dst = ipha->ipha_dst; 21268 21269 /* 21270 * Try to get an IRE_CACHE for the destination address. If we can't, 21271 * we have to run the packet through ip_newroute which will take 21272 * the appropriate action to arrange for an IRE_CACHE, such as querying 21273 * a resolver, or assigning a default gateway, etc. 21274 */ 21275 if (CLASSD(dst)) { 21276 ipif_t *ipif; 21277 uint32_t setsrc = 0; 21278 21279 multicast: 21280 ASSERT(first_mp != NULL); 21281 ip2dbg(("ip_wput: CLASSD\n")); 21282 if (connp == NULL) { 21283 /* 21284 * Use the first good ipif on the ill. 21285 * XXX Should this ever happen? (Appears 21286 * to show up with just ppp and no ethernet due 21287 * to in.rdisc.) 21288 * However, ire_send should be able to 21289 * call ip_wput_ire directly. 21290 * 21291 * XXX Also, this can happen for ICMP and other packets 21292 * with multicast source addresses. Perhaps we should 21293 * fix things so that we drop the packet in question, 21294 * but for now, just run with it. 21295 */ 21296 ill_t *ill = (ill_t *)q->q_ptr; 21297 21298 /* 21299 * Don't honor attach_if for this case. If ill 21300 * is part of the group, ipif could belong to 21301 * any ill and we cannot maintain attach_ill 21302 * and ipif_ill same anymore and the assert 21303 * below would fail. 21304 */ 21305 if (mctl_present && io->ipsec_out_attach_if) { 21306 io->ipsec_out_ill_index = 0; 21307 io->ipsec_out_attach_if = B_FALSE; 21308 ASSERT(attach_ill != NULL); 21309 ill_refrele(attach_ill); 21310 attach_ill = NULL; 21311 } 21312 21313 ASSERT(attach_ill == NULL); 21314 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21315 if (ipif == NULL) { 21316 if (need_decref) 21317 CONN_DEC_REF(connp); 21318 freemsg(first_mp); 21319 return; 21320 } 21321 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21322 ntohl(dst), ill->ill_name)); 21323 } else { 21324 /* 21325 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21326 * and IP_MULTICAST_IF. The block comment above this 21327 * function explains the locking mechanism used here. 21328 */ 21329 if (xmit_ill == NULL) { 21330 xmit_ill = conn_get_held_ill(connp, 21331 &connp->conn_outgoing_ill, &err); 21332 if (err == ILL_LOOKUP_FAILED) { 21333 ip1dbg(("ip_wput: No ill for " 21334 "IP_BOUND_IF\n")); 21335 BUMP_MIB(&ipst->ips_ip_mib, 21336 ipIfStatsOutNoRoutes); 21337 goto drop_pkt; 21338 } 21339 } 21340 21341 if (xmit_ill == NULL) { 21342 ipif = conn_get_held_ipif(connp, 21343 &connp->conn_multicast_ipif, &err); 21344 if (err == IPIF_LOOKUP_FAILED) { 21345 ip1dbg(("ip_wput: No ipif for " 21346 "multicast\n")); 21347 BUMP_MIB(&ipst->ips_ip_mib, 21348 ipIfStatsOutNoRoutes); 21349 goto drop_pkt; 21350 } 21351 } 21352 if (xmit_ill != NULL) { 21353 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21354 if (ipif == NULL) { 21355 ip1dbg(("ip_wput: No ipif for " 21356 "xmit_ill\n")); 21357 BUMP_MIB(&ipst->ips_ip_mib, 21358 ipIfStatsOutNoRoutes); 21359 goto drop_pkt; 21360 } 21361 } else if (ipif == NULL || ipif->ipif_isv6) { 21362 /* 21363 * We must do this ipif determination here 21364 * else we could pass through ip_newroute 21365 * and come back here without the conn context. 21366 * 21367 * Note: we do late binding i.e. we bind to 21368 * the interface when the first packet is sent. 21369 * For performance reasons we do not rebind on 21370 * each packet but keep the binding until the 21371 * next IP_MULTICAST_IF option. 21372 * 21373 * conn_multicast_{ipif,ill} are shared between 21374 * IPv4 and IPv6 and AF_INET6 sockets can 21375 * send both IPv4 and IPv6 packets. Hence 21376 * we have to check that "isv6" matches above. 21377 */ 21378 if (ipif != NULL) 21379 ipif_refrele(ipif); 21380 ipif = ipif_lookup_group(dst, zoneid, ipst); 21381 if (ipif == NULL) { 21382 ip1dbg(("ip_wput: No ipif for " 21383 "multicast\n")); 21384 BUMP_MIB(&ipst->ips_ip_mib, 21385 ipIfStatsOutNoRoutes); 21386 goto drop_pkt; 21387 } 21388 err = conn_set_held_ipif(connp, 21389 &connp->conn_multicast_ipif, ipif); 21390 if (err == IPIF_LOOKUP_FAILED) { 21391 ipif_refrele(ipif); 21392 ip1dbg(("ip_wput: No ipif for " 21393 "multicast\n")); 21394 BUMP_MIB(&ipst->ips_ip_mib, 21395 ipIfStatsOutNoRoutes); 21396 goto drop_pkt; 21397 } 21398 } 21399 } 21400 ASSERT(!ipif->ipif_isv6); 21401 /* 21402 * As we may lose the conn by the time we reach ip_wput_ire, 21403 * we copy conn_multicast_loop and conn_dontroute on to an 21404 * ipsec_out. In case if this datagram goes out secure, 21405 * we need the ill_index also. Copy that also into the 21406 * ipsec_out. 21407 */ 21408 if (mctl_present) { 21409 io = (ipsec_out_t *)first_mp->b_rptr; 21410 ASSERT(first_mp->b_datap->db_type == M_CTL); 21411 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21412 } else { 21413 ASSERT(mp == first_mp); 21414 if ((first_mp = allocb(sizeof (ipsec_info_t), 21415 BPRI_HI)) == NULL) { 21416 ipif_refrele(ipif); 21417 first_mp = mp; 21418 goto discard_pkt; 21419 } 21420 first_mp->b_datap->db_type = M_CTL; 21421 first_mp->b_wptr += sizeof (ipsec_info_t); 21422 /* ipsec_out_secure is B_FALSE now */ 21423 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21424 io = (ipsec_out_t *)first_mp->b_rptr; 21425 io->ipsec_out_type = IPSEC_OUT; 21426 io->ipsec_out_len = sizeof (ipsec_out_t); 21427 io->ipsec_out_use_global_policy = B_TRUE; 21428 io->ipsec_out_ns = ipst->ips_netstack; 21429 first_mp->b_cont = mp; 21430 mctl_present = B_TRUE; 21431 } 21432 if (attach_ill != NULL) { 21433 ASSERT(attach_ill == ipif->ipif_ill); 21434 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21435 21436 /* 21437 * Check if we need an ire that will not be 21438 * looked up by anybody else i.e. HIDDEN. 21439 */ 21440 if (ill_is_probeonly(attach_ill)) { 21441 match_flags |= MATCH_IRE_MARK_HIDDEN; 21442 } 21443 io->ipsec_out_ill_index = 21444 attach_ill->ill_phyint->phyint_ifindex; 21445 io->ipsec_out_attach_if = B_TRUE; 21446 } else { 21447 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21448 io->ipsec_out_ill_index = 21449 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21450 } 21451 if (connp != NULL) { 21452 io->ipsec_out_multicast_loop = 21453 connp->conn_multicast_loop; 21454 io->ipsec_out_dontroute = connp->conn_dontroute; 21455 io->ipsec_out_zoneid = connp->conn_zoneid; 21456 } 21457 /* 21458 * If the application uses IP_MULTICAST_IF with 21459 * different logical addresses of the same ILL, we 21460 * need to make sure that the soruce address of 21461 * the packet matches the logical IP address used 21462 * in the option. We do it by initializing ipha_src 21463 * here. This should keep IPsec also happy as 21464 * when we return from IPsec processing, we don't 21465 * have to worry about getting the right address on 21466 * the packet. Thus it is sufficient to look for 21467 * IRE_CACHE using MATCH_IRE_ILL rathen than 21468 * MATCH_IRE_IPIF. 21469 * 21470 * NOTE : We need to do it for non-secure case also as 21471 * this might go out secure if there is a global policy 21472 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21473 * address, the source should be initialized already and 21474 * hence we won't be initializing here. 21475 * 21476 * As we do not have the ire yet, it is possible that 21477 * we set the source address here and then later discover 21478 * that the ire implies the source address to be assigned 21479 * through the RTF_SETSRC flag. 21480 * In that case, the setsrc variable will remind us 21481 * that overwritting the source address by the one 21482 * of the RTF_SETSRC-flagged ire is allowed. 21483 */ 21484 if (ipha->ipha_src == INADDR_ANY && 21485 (connp == NULL || !connp->conn_unspec_src)) { 21486 ipha->ipha_src = ipif->ipif_src_addr; 21487 setsrc = RTF_SETSRC; 21488 } 21489 /* 21490 * Find an IRE which matches the destination and the outgoing 21491 * queue (i.e. the outgoing interface.) 21492 * For loopback use a unicast IP address for 21493 * the ire lookup. 21494 */ 21495 if (IS_LOOPBACK(ipif->ipif_ill)) 21496 dst = ipif->ipif_lcl_addr; 21497 21498 /* 21499 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21500 * We don't need to lookup ire in ctable as the packet 21501 * needs to be sent to the destination through the specified 21502 * ill irrespective of ires in the cache table. 21503 */ 21504 ire = NULL; 21505 if (xmit_ill == NULL) { 21506 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21507 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21508 } 21509 21510 /* 21511 * refrele attach_ill as its not needed anymore. 21512 */ 21513 if (attach_ill != NULL) { 21514 ill_refrele(attach_ill); 21515 attach_ill = NULL; 21516 } 21517 21518 if (ire == NULL) { 21519 /* 21520 * Multicast loopback and multicast forwarding is 21521 * done in ip_wput_ire. 21522 * 21523 * Mark this packet to make it be delivered to 21524 * ip_wput_ire after the new ire has been 21525 * created. 21526 * 21527 * The call to ip_newroute_ipif takes into account 21528 * the setsrc reminder. In any case, we take care 21529 * of the RTF_MULTIRT flag. 21530 */ 21531 mp->b_prev = mp->b_next = NULL; 21532 if (xmit_ill == NULL || 21533 xmit_ill->ill_ipif_up_count > 0) { 21534 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21535 setsrc | RTF_MULTIRT, zoneid, infop); 21536 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21537 "ip_wput_end: q %p (%S)", q, "noire"); 21538 } else { 21539 freemsg(first_mp); 21540 } 21541 ipif_refrele(ipif); 21542 if (xmit_ill != NULL) 21543 ill_refrele(xmit_ill); 21544 if (need_decref) 21545 CONN_DEC_REF(connp); 21546 return; 21547 } 21548 21549 ipif_refrele(ipif); 21550 ipif = NULL; 21551 ASSERT(xmit_ill == NULL); 21552 21553 /* 21554 * Honor the RTF_SETSRC flag for multicast packets, 21555 * if allowed by the setsrc reminder. 21556 */ 21557 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21558 ipha->ipha_src = ire->ire_src_addr; 21559 } 21560 21561 /* 21562 * Unconditionally force the TTL to 1 for 21563 * multirouted multicast packets: 21564 * multirouted multicast should not cross 21565 * multicast routers. 21566 */ 21567 if (ire->ire_flags & RTF_MULTIRT) { 21568 if (ipha->ipha_ttl > 1) { 21569 ip2dbg(("ip_wput: forcing multicast " 21570 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21571 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21572 ipha->ipha_ttl = 1; 21573 } 21574 } 21575 } else { 21576 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21577 if ((ire != NULL) && (ire->ire_type & 21578 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21579 ignore_dontroute = B_TRUE; 21580 ignore_nexthop = B_TRUE; 21581 } 21582 if (ire != NULL) { 21583 ire_refrele(ire); 21584 ire = NULL; 21585 } 21586 /* 21587 * Guard against coming in from arp in which case conn is NULL. 21588 * Also guard against non M_DATA with dontroute set but 21589 * destined to local, loopback or broadcast addresses. 21590 */ 21591 if (connp != NULL && connp->conn_dontroute && 21592 !ignore_dontroute) { 21593 dontroute: 21594 /* 21595 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21596 * routing protocols from seeing false direct 21597 * connectivity. 21598 */ 21599 ipha->ipha_ttl = 1; 21600 /* If suitable ipif not found, drop packet */ 21601 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21602 if (dst_ipif == NULL) { 21603 noroute: 21604 ip1dbg(("ip_wput: no route for dst using" 21605 " SO_DONTROUTE\n")); 21606 BUMP_MIB(&ipst->ips_ip_mib, 21607 ipIfStatsOutNoRoutes); 21608 mp->b_prev = mp->b_next = NULL; 21609 if (first_mp == NULL) 21610 first_mp = mp; 21611 goto drop_pkt; 21612 } else { 21613 /* 21614 * If suitable ipif has been found, set 21615 * xmit_ill to the corresponding 21616 * ipif_ill because we'll be using the 21617 * send_from_ill logic below. 21618 */ 21619 ASSERT(xmit_ill == NULL); 21620 xmit_ill = dst_ipif->ipif_ill; 21621 mutex_enter(&xmit_ill->ill_lock); 21622 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21623 mutex_exit(&xmit_ill->ill_lock); 21624 xmit_ill = NULL; 21625 ipif_refrele(dst_ipif); 21626 goto noroute; 21627 } 21628 ill_refhold_locked(xmit_ill); 21629 mutex_exit(&xmit_ill->ill_lock); 21630 ipif_refrele(dst_ipif); 21631 } 21632 } 21633 /* 21634 * If we are bound to IPIF_NOFAILOVER address, look for 21635 * an IRE_CACHE matching the ill. 21636 */ 21637 send_from_ill: 21638 if (attach_ill != NULL) { 21639 ipif_t *attach_ipif; 21640 21641 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21642 21643 /* 21644 * Check if we need an ire that will not be 21645 * looked up by anybody else i.e. HIDDEN. 21646 */ 21647 if (ill_is_probeonly(attach_ill)) { 21648 match_flags |= MATCH_IRE_MARK_HIDDEN; 21649 } 21650 21651 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21652 if (attach_ipif == NULL) { 21653 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21654 goto discard_pkt; 21655 } 21656 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21657 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21658 ipif_refrele(attach_ipif); 21659 } else if (xmit_ill != NULL) { 21660 ipif_t *ipif; 21661 21662 /* 21663 * Mark this packet as originated locally 21664 */ 21665 mp->b_prev = mp->b_next = NULL; 21666 21667 /* 21668 * Could be SO_DONTROUTE case also. 21669 * Verify that at least one ipif is up on the ill. 21670 */ 21671 if (xmit_ill->ill_ipif_up_count == 0) { 21672 ip1dbg(("ip_output: xmit_ill %s is down\n", 21673 xmit_ill->ill_name)); 21674 goto drop_pkt; 21675 } 21676 21677 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21678 if (ipif == NULL) { 21679 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21680 xmit_ill->ill_name)); 21681 goto drop_pkt; 21682 } 21683 21684 /* 21685 * Look for a ire that is part of the group, 21686 * if found use it else call ip_newroute_ipif. 21687 * IPCL_ZONEID is not used for matching because 21688 * IP_ALLZONES option is valid only when the 21689 * ill is accessible from all zones i.e has a 21690 * valid ipif in all zones. 21691 */ 21692 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21693 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21694 MBLK_GETLABEL(mp), match_flags, ipst); 21695 /* 21696 * If an ire exists use it or else create 21697 * an ire but don't add it to the cache. 21698 * Adding an ire may cause issues with 21699 * asymmetric routing. 21700 * In case of multiroute always act as if 21701 * ire does not exist. 21702 */ 21703 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21704 if (ire != NULL) 21705 ire_refrele(ire); 21706 ip_newroute_ipif(q, first_mp, ipif, 21707 dst, connp, 0, zoneid, infop); 21708 ipif_refrele(ipif); 21709 ip1dbg(("ip_output: xmit_ill via %s\n", 21710 xmit_ill->ill_name)); 21711 ill_refrele(xmit_ill); 21712 if (need_decref) 21713 CONN_DEC_REF(connp); 21714 return; 21715 } 21716 ipif_refrele(ipif); 21717 } else if (ip_nexthop || (connp != NULL && 21718 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21719 if (!ip_nexthop) { 21720 ip_nexthop = B_TRUE; 21721 nexthop_addr = connp->conn_nexthop_v4; 21722 } 21723 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21724 MATCH_IRE_GW; 21725 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21726 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21727 } else { 21728 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21729 ipst); 21730 } 21731 if (!ire) { 21732 /* 21733 * Make sure we don't load spread if this 21734 * is IPIF_NOFAILOVER case. 21735 */ 21736 if ((attach_ill != NULL) || 21737 (ip_nexthop && !ignore_nexthop)) { 21738 if (mctl_present) { 21739 io = (ipsec_out_t *)first_mp->b_rptr; 21740 ASSERT(first_mp->b_datap->db_type == 21741 M_CTL); 21742 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21743 } else { 21744 ASSERT(mp == first_mp); 21745 first_mp = allocb( 21746 sizeof (ipsec_info_t), BPRI_HI); 21747 if (first_mp == NULL) { 21748 first_mp = mp; 21749 goto discard_pkt; 21750 } 21751 first_mp->b_datap->db_type = M_CTL; 21752 first_mp->b_wptr += 21753 sizeof (ipsec_info_t); 21754 /* ipsec_out_secure is B_FALSE now */ 21755 bzero(first_mp->b_rptr, 21756 sizeof (ipsec_info_t)); 21757 io = (ipsec_out_t *)first_mp->b_rptr; 21758 io->ipsec_out_type = IPSEC_OUT; 21759 io->ipsec_out_len = 21760 sizeof (ipsec_out_t); 21761 io->ipsec_out_use_global_policy = 21762 B_TRUE; 21763 io->ipsec_out_ns = ipst->ips_netstack; 21764 first_mp->b_cont = mp; 21765 mctl_present = B_TRUE; 21766 } 21767 if (attach_ill != NULL) { 21768 io->ipsec_out_ill_index = attach_ill-> 21769 ill_phyint->phyint_ifindex; 21770 io->ipsec_out_attach_if = B_TRUE; 21771 } else { 21772 io->ipsec_out_ip_nexthop = ip_nexthop; 21773 io->ipsec_out_nexthop_addr = 21774 nexthop_addr; 21775 } 21776 } 21777 noirefound: 21778 /* 21779 * Mark this packet as having originated on 21780 * this machine. This will be noted in 21781 * ire_add_then_send, which needs to know 21782 * whether to run it back through ip_wput or 21783 * ip_rput following successful resolution. 21784 */ 21785 mp->b_prev = NULL; 21786 mp->b_next = NULL; 21787 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21788 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21789 "ip_wput_end: q %p (%S)", q, "newroute"); 21790 if (attach_ill != NULL) 21791 ill_refrele(attach_ill); 21792 if (xmit_ill != NULL) 21793 ill_refrele(xmit_ill); 21794 if (need_decref) 21795 CONN_DEC_REF(connp); 21796 return; 21797 } 21798 } 21799 21800 /* We now know where we are going with it. */ 21801 21802 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21803 "ip_wput_end: q %p (%S)", q, "end"); 21804 21805 /* 21806 * Check if the ire has the RTF_MULTIRT flag, inherited 21807 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21808 */ 21809 if (ire->ire_flags & RTF_MULTIRT) { 21810 /* 21811 * Force the TTL of multirouted packets if required. 21812 * The TTL of such packets is bounded by the 21813 * ip_multirt_ttl ndd variable. 21814 */ 21815 if ((ipst->ips_ip_multirt_ttl > 0) && 21816 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21817 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21818 "(was %d), dst 0x%08x\n", 21819 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21820 ntohl(ire->ire_addr))); 21821 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21822 } 21823 /* 21824 * At this point, we check to see if there are any pending 21825 * unresolved routes. ire_multirt_resolvable() 21826 * checks in O(n) that all IRE_OFFSUBNET ire 21827 * entries for the packet's destination and 21828 * flagged RTF_MULTIRT are currently resolved. 21829 * If some remain unresolved, we make a copy 21830 * of the current message. It will be used 21831 * to initiate additional route resolutions. 21832 */ 21833 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21834 MBLK_GETLABEL(first_mp), ipst); 21835 ip2dbg(("ip_wput[noirefound]: ire %p, " 21836 "multirt_need_resolve %d, first_mp %p\n", 21837 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21838 if (multirt_need_resolve) { 21839 copy_mp = copymsg(first_mp); 21840 if (copy_mp != NULL) { 21841 MULTIRT_DEBUG_TAG(copy_mp); 21842 } 21843 } 21844 } 21845 21846 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21847 /* 21848 * Try to resolve another multiroute if 21849 * ire_multirt_resolvable() deemed it necessary. 21850 * At this point, we need to distinguish 21851 * multicasts from other packets. For multicasts, 21852 * we call ip_newroute_ipif() and request that both 21853 * multirouting and setsrc flags are checked. 21854 */ 21855 if (copy_mp != NULL) { 21856 if (CLASSD(dst)) { 21857 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21858 if (ipif) { 21859 ASSERT(infop->ip_opt_ill_index == 0); 21860 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21861 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21862 ipif_refrele(ipif); 21863 } else { 21864 MULTIRT_DEBUG_UNTAG(copy_mp); 21865 freemsg(copy_mp); 21866 copy_mp = NULL; 21867 } 21868 } else { 21869 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21870 } 21871 } 21872 if (attach_ill != NULL) 21873 ill_refrele(attach_ill); 21874 if (xmit_ill != NULL) 21875 ill_refrele(xmit_ill); 21876 if (need_decref) 21877 CONN_DEC_REF(connp); 21878 return; 21879 21880 icmp_parameter_problem: 21881 /* could not have originated externally */ 21882 ASSERT(mp->b_prev == NULL); 21883 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21884 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21885 /* it's the IP header length that's in trouble */ 21886 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21887 first_mp = NULL; 21888 } 21889 21890 discard_pkt: 21891 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21892 drop_pkt: 21893 ip1dbg(("ip_wput: dropped packet\n")); 21894 if (ire != NULL) 21895 ire_refrele(ire); 21896 if (need_decref) 21897 CONN_DEC_REF(connp); 21898 freemsg(first_mp); 21899 if (attach_ill != NULL) 21900 ill_refrele(attach_ill); 21901 if (xmit_ill != NULL) 21902 ill_refrele(xmit_ill); 21903 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21904 "ip_wput_end: q %p (%S)", q, "droppkt"); 21905 } 21906 21907 /* 21908 * If this is a conn_t queue, then we pass in the conn. This includes the 21909 * zoneid. 21910 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21911 * in which case we use the global zoneid since those are all part of 21912 * the global zone. 21913 */ 21914 void 21915 ip_wput(queue_t *q, mblk_t *mp) 21916 { 21917 if (CONN_Q(q)) 21918 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21919 else 21920 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21921 } 21922 21923 /* 21924 * 21925 * The following rules must be observed when accessing any ipif or ill 21926 * that has been cached in the conn. Typically conn_nofailover_ill, 21927 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21928 * 21929 * Access: The ipif or ill pointed to from the conn can be accessed under 21930 * the protection of the conn_lock or after it has been refheld under the 21931 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21932 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21933 * The reason for this is that a concurrent unplumb could actually be 21934 * cleaning up these cached pointers by walking the conns and might have 21935 * finished cleaning up the conn in question. The macros check that an 21936 * unplumb has not yet started on the ipif or ill. 21937 * 21938 * Caching: An ipif or ill pointer may be cached in the conn only after 21939 * making sure that an unplumb has not started. So the caching is done 21940 * while holding both the conn_lock and the ill_lock and after using the 21941 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21942 * flag before starting the cleanup of conns. 21943 * 21944 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21945 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21946 * or a reference to the ipif or a reference to an ire that references the 21947 * ipif. An ipif does not change its ill except for failover/failback. Since 21948 * failover/failback happens only after bringing down the ipif and making sure 21949 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21950 * the above holds. 21951 */ 21952 ipif_t * 21953 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21954 { 21955 ipif_t *ipif; 21956 ill_t *ill; 21957 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21958 21959 *err = 0; 21960 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21961 mutex_enter(&connp->conn_lock); 21962 ipif = *ipifp; 21963 if (ipif != NULL) { 21964 ill = ipif->ipif_ill; 21965 mutex_enter(&ill->ill_lock); 21966 if (IPIF_CAN_LOOKUP(ipif)) { 21967 ipif_refhold_locked(ipif); 21968 mutex_exit(&ill->ill_lock); 21969 mutex_exit(&connp->conn_lock); 21970 rw_exit(&ipst->ips_ill_g_lock); 21971 return (ipif); 21972 } else { 21973 *err = IPIF_LOOKUP_FAILED; 21974 } 21975 mutex_exit(&ill->ill_lock); 21976 } 21977 mutex_exit(&connp->conn_lock); 21978 rw_exit(&ipst->ips_ill_g_lock); 21979 return (NULL); 21980 } 21981 21982 ill_t * 21983 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21984 { 21985 ill_t *ill; 21986 21987 *err = 0; 21988 mutex_enter(&connp->conn_lock); 21989 ill = *illp; 21990 if (ill != NULL) { 21991 mutex_enter(&ill->ill_lock); 21992 if (ILL_CAN_LOOKUP(ill)) { 21993 ill_refhold_locked(ill); 21994 mutex_exit(&ill->ill_lock); 21995 mutex_exit(&connp->conn_lock); 21996 return (ill); 21997 } else { 21998 *err = ILL_LOOKUP_FAILED; 21999 } 22000 mutex_exit(&ill->ill_lock); 22001 } 22002 mutex_exit(&connp->conn_lock); 22003 return (NULL); 22004 } 22005 22006 static int 22007 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 22008 { 22009 ill_t *ill; 22010 22011 ill = ipif->ipif_ill; 22012 mutex_enter(&connp->conn_lock); 22013 mutex_enter(&ill->ill_lock); 22014 if (IPIF_CAN_LOOKUP(ipif)) { 22015 *ipifp = ipif; 22016 mutex_exit(&ill->ill_lock); 22017 mutex_exit(&connp->conn_lock); 22018 return (0); 22019 } 22020 mutex_exit(&ill->ill_lock); 22021 mutex_exit(&connp->conn_lock); 22022 return (IPIF_LOOKUP_FAILED); 22023 } 22024 22025 /* 22026 * This is called if the outbound datagram needs fragmentation. 22027 * 22028 * NOTE : This function does not ire_refrele the ire argument passed in. 22029 */ 22030 static void 22031 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 22032 ip_stack_t *ipst, conn_t *connp) 22033 { 22034 ipha_t *ipha; 22035 mblk_t *mp; 22036 uint32_t v_hlen_tos_len; 22037 uint32_t max_frag; 22038 uint32_t frag_flag; 22039 boolean_t dont_use; 22040 22041 if (ipsec_mp->b_datap->db_type == M_CTL) { 22042 mp = ipsec_mp->b_cont; 22043 } else { 22044 mp = ipsec_mp; 22045 } 22046 22047 ipha = (ipha_t *)mp->b_rptr; 22048 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22049 22050 #ifdef _BIG_ENDIAN 22051 #define V_HLEN (v_hlen_tos_len >> 24) 22052 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22053 #else 22054 #define V_HLEN (v_hlen_tos_len & 0xFF) 22055 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22056 #endif 22057 22058 #ifndef SPEED_BEFORE_SAFETY 22059 /* 22060 * Check that ipha_length is consistent with 22061 * the mblk length 22062 */ 22063 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 22064 ip0dbg(("Packet length mismatch: %d, %ld\n", 22065 LENGTH, msgdsize(mp))); 22066 freemsg(ipsec_mp); 22067 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22068 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 22069 "packet length mismatch"); 22070 return; 22071 } 22072 #endif 22073 /* 22074 * Don't use frag_flag if pre-built packet or source 22075 * routed or if multicast (since multicast packets do not solicit 22076 * ICMP "packet too big" messages). Get the values of 22077 * max_frag and frag_flag atomically by acquiring the 22078 * ire_lock. 22079 */ 22080 mutex_enter(&ire->ire_lock); 22081 max_frag = ire->ire_max_frag; 22082 frag_flag = ire->ire_frag_flag; 22083 mutex_exit(&ire->ire_lock); 22084 22085 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 22086 (V_HLEN != IP_SIMPLE_HDR_VERSION && 22087 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 22088 22089 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 22090 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 22091 } 22092 22093 /* 22094 * Used for deciding the MSS size for the upper layer. Thus 22095 * we need to check the outbound policy values in the conn. 22096 */ 22097 int 22098 conn_ipsec_length(conn_t *connp) 22099 { 22100 ipsec_latch_t *ipl; 22101 22102 ipl = connp->conn_latch; 22103 if (ipl == NULL) 22104 return (0); 22105 22106 if (ipl->ipl_out_policy == NULL) 22107 return (0); 22108 22109 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 22110 } 22111 22112 /* 22113 * Returns an estimate of the IPsec headers size. This is used if 22114 * we don't want to call into IPsec to get the exact size. 22115 */ 22116 int 22117 ipsec_out_extra_length(mblk_t *ipsec_mp) 22118 { 22119 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 22120 ipsec_action_t *a; 22121 22122 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22123 if (!io->ipsec_out_secure) 22124 return (0); 22125 22126 a = io->ipsec_out_act; 22127 22128 if (a == NULL) { 22129 ASSERT(io->ipsec_out_policy != NULL); 22130 a = io->ipsec_out_policy->ipsp_act; 22131 } 22132 ASSERT(a != NULL); 22133 22134 return (a->ipa_ovhd); 22135 } 22136 22137 /* 22138 * Returns an estimate of the IPsec headers size. This is used if 22139 * we don't want to call into IPsec to get the exact size. 22140 */ 22141 int 22142 ipsec_in_extra_length(mblk_t *ipsec_mp) 22143 { 22144 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22145 ipsec_action_t *a; 22146 22147 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22148 22149 a = ii->ipsec_in_action; 22150 return (a == NULL ? 0 : a->ipa_ovhd); 22151 } 22152 22153 /* 22154 * If there are any source route options, return the true final 22155 * destination. Otherwise, return the destination. 22156 */ 22157 ipaddr_t 22158 ip_get_dst(ipha_t *ipha) 22159 { 22160 ipoptp_t opts; 22161 uchar_t *opt; 22162 uint8_t optval; 22163 uint8_t optlen; 22164 ipaddr_t dst; 22165 uint32_t off; 22166 22167 dst = ipha->ipha_dst; 22168 22169 if (IS_SIMPLE_IPH(ipha)) 22170 return (dst); 22171 22172 for (optval = ipoptp_first(&opts, ipha); 22173 optval != IPOPT_EOL; 22174 optval = ipoptp_next(&opts)) { 22175 opt = opts.ipoptp_cur; 22176 optlen = opts.ipoptp_len; 22177 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22178 switch (optval) { 22179 case IPOPT_SSRR: 22180 case IPOPT_LSRR: 22181 off = opt[IPOPT_OFFSET]; 22182 /* 22183 * If one of the conditions is true, it means 22184 * end of options and dst already has the right 22185 * value. 22186 */ 22187 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22188 off = optlen - IP_ADDR_LEN; 22189 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22190 } 22191 return (dst); 22192 default: 22193 break; 22194 } 22195 } 22196 22197 return (dst); 22198 } 22199 22200 mblk_t * 22201 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22202 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22203 { 22204 ipsec_out_t *io; 22205 mblk_t *first_mp; 22206 boolean_t policy_present; 22207 ip_stack_t *ipst; 22208 ipsec_stack_t *ipss; 22209 22210 ASSERT(ire != NULL); 22211 ipst = ire->ire_ipst; 22212 ipss = ipst->ips_netstack->netstack_ipsec; 22213 22214 first_mp = mp; 22215 if (mp->b_datap->db_type == M_CTL) { 22216 io = (ipsec_out_t *)first_mp->b_rptr; 22217 /* 22218 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22219 * 22220 * 1) There is per-socket policy (including cached global 22221 * policy) or a policy on the IP-in-IP tunnel. 22222 * 2) There is no per-socket policy, but it is 22223 * a multicast packet that needs to go out 22224 * on a specific interface. This is the case 22225 * where (ip_wput and ip_wput_multicast) attaches 22226 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22227 * 22228 * In case (2) we check with global policy to 22229 * see if there is a match and set the ill_index 22230 * appropriately so that we can lookup the ire 22231 * properly in ip_wput_ipsec_out. 22232 */ 22233 22234 /* 22235 * ipsec_out_use_global_policy is set to B_FALSE 22236 * in ipsec_in_to_out(). Refer to that function for 22237 * details. 22238 */ 22239 if ((io->ipsec_out_latch == NULL) && 22240 (io->ipsec_out_use_global_policy)) { 22241 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22242 ire, connp, unspec_src, zoneid)); 22243 } 22244 if (!io->ipsec_out_secure) { 22245 /* 22246 * If this is not a secure packet, drop 22247 * the IPSEC_OUT mp and treat it as a clear 22248 * packet. This happens when we are sending 22249 * a ICMP reply back to a clear packet. See 22250 * ipsec_in_to_out() for details. 22251 */ 22252 mp = first_mp->b_cont; 22253 freeb(first_mp); 22254 } 22255 return (mp); 22256 } 22257 /* 22258 * See whether we need to attach a global policy here. We 22259 * don't depend on the conn (as it could be null) for deciding 22260 * what policy this datagram should go through because it 22261 * should have happened in ip_wput if there was some 22262 * policy. This normally happens for connections which are not 22263 * fully bound preventing us from caching policies in 22264 * ip_bind. Packets coming from the TCP listener/global queue 22265 * - which are non-hard_bound - could also be affected by 22266 * applying policy here. 22267 * 22268 * If this packet is coming from tcp global queue or listener, 22269 * we will be applying policy here. This may not be *right* 22270 * if these packets are coming from the detached connection as 22271 * it could have gone in clear before. This happens only if a 22272 * TCP connection started when there is no policy and somebody 22273 * added policy before it became detached. Thus packets of the 22274 * detached connection could go out secure and the other end 22275 * would drop it because it will be expecting in clear. The 22276 * converse is not true i.e if somebody starts a TCP 22277 * connection and deletes the policy, all the packets will 22278 * still go out with the policy that existed before deleting 22279 * because ip_unbind sends up policy information which is used 22280 * by TCP on subsequent ip_wputs. The right solution is to fix 22281 * TCP to attach a dummy IPSEC_OUT and set 22282 * ipsec_out_use_global_policy to B_FALSE. As this might 22283 * affect performance for normal cases, we are not doing it. 22284 * Thus, set policy before starting any TCP connections. 22285 * 22286 * NOTE - We might apply policy even for a hard bound connection 22287 * - for which we cached policy in ip_bind - if somebody added 22288 * global policy after we inherited the policy in ip_bind. 22289 * This means that the packets that were going out in clear 22290 * previously would start going secure and hence get dropped 22291 * on the other side. To fix this, TCP attaches a dummy 22292 * ipsec_out and make sure that we don't apply global policy. 22293 */ 22294 if (ipha != NULL) 22295 policy_present = ipss->ipsec_outbound_v4_policy_present; 22296 else 22297 policy_present = ipss->ipsec_outbound_v6_policy_present; 22298 if (!policy_present) 22299 return (mp); 22300 22301 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22302 zoneid)); 22303 } 22304 22305 ire_t * 22306 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22307 { 22308 ipaddr_t addr; 22309 ire_t *save_ire; 22310 irb_t *irb; 22311 ill_group_t *illgrp; 22312 int err; 22313 22314 save_ire = ire; 22315 addr = ire->ire_addr; 22316 22317 ASSERT(ire->ire_type == IRE_BROADCAST); 22318 22319 illgrp = connp->conn_outgoing_ill->ill_group; 22320 if (illgrp == NULL) { 22321 *conn_outgoing_ill = conn_get_held_ill(connp, 22322 &connp->conn_outgoing_ill, &err); 22323 if (err == ILL_LOOKUP_FAILED) { 22324 ire_refrele(save_ire); 22325 return (NULL); 22326 } 22327 return (save_ire); 22328 } 22329 /* 22330 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22331 * If it is part of the group, we need to send on the ire 22332 * that has been cleared of IRE_MARK_NORECV and that belongs 22333 * to this group. This is okay as IP_BOUND_IF really means 22334 * any ill in the group. We depend on the fact that the 22335 * first ire in the group is always cleared of IRE_MARK_NORECV 22336 * if such an ire exists. This is possible only if you have 22337 * at least one ill in the group that has not failed. 22338 * 22339 * First get to the ire that matches the address and group. 22340 * 22341 * We don't look for an ire with a matching zoneid because a given zone 22342 * won't always have broadcast ires on all ills in the group. 22343 */ 22344 irb = ire->ire_bucket; 22345 rw_enter(&irb->irb_lock, RW_READER); 22346 if (ire->ire_marks & IRE_MARK_NORECV) { 22347 /* 22348 * If the current zone only has an ire broadcast for this 22349 * address marked NORECV, the ire we want is ahead in the 22350 * bucket, so we look it up deliberately ignoring the zoneid. 22351 */ 22352 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22353 if (ire->ire_addr != addr) 22354 continue; 22355 /* skip over deleted ires */ 22356 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22357 continue; 22358 } 22359 } 22360 while (ire != NULL) { 22361 /* 22362 * If a new interface is coming up, we could end up 22363 * seeing the loopback ire and the non-loopback ire 22364 * may not have been added yet. So check for ire_stq 22365 */ 22366 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22367 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22368 break; 22369 } 22370 ire = ire->ire_next; 22371 } 22372 if (ire != NULL && ire->ire_addr == addr && 22373 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22374 IRE_REFHOLD(ire); 22375 rw_exit(&irb->irb_lock); 22376 ire_refrele(save_ire); 22377 *conn_outgoing_ill = ire_to_ill(ire); 22378 /* 22379 * Refhold the ill to make the conn_outgoing_ill 22380 * independent of the ire. ip_wput_ire goes in a loop 22381 * and may refrele the ire. Since we have an ire at this 22382 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22383 */ 22384 ill_refhold(*conn_outgoing_ill); 22385 return (ire); 22386 } 22387 rw_exit(&irb->irb_lock); 22388 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22389 /* 22390 * If we can't find a suitable ire, return the original ire. 22391 */ 22392 return (save_ire); 22393 } 22394 22395 /* 22396 * This function does the ire_refrele of the ire passed in as the 22397 * argument. As this function looks up more ires i.e broadcast ires, 22398 * it needs to REFRELE them. Currently, for simplicity we don't 22399 * differentiate the one passed in and looked up here. We always 22400 * REFRELE. 22401 * IPQoS Notes: 22402 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22403 * IPsec packets are done in ipsec_out_process. 22404 * 22405 */ 22406 void 22407 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22408 zoneid_t zoneid) 22409 { 22410 ipha_t *ipha; 22411 #define rptr ((uchar_t *)ipha) 22412 queue_t *stq; 22413 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22414 uint32_t v_hlen_tos_len; 22415 uint32_t ttl_protocol; 22416 ipaddr_t src; 22417 ipaddr_t dst; 22418 uint32_t cksum; 22419 ipaddr_t orig_src; 22420 ire_t *ire1; 22421 mblk_t *next_mp; 22422 uint_t hlen; 22423 uint16_t *up; 22424 uint32_t max_frag = ire->ire_max_frag; 22425 ill_t *ill = ire_to_ill(ire); 22426 int clusterwide; 22427 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22428 int ipsec_len; 22429 mblk_t *first_mp; 22430 ipsec_out_t *io; 22431 boolean_t conn_dontroute; /* conn value for multicast */ 22432 boolean_t conn_multicast_loop; /* conn value for multicast */ 22433 boolean_t multicast_forward; /* Should we forward ? */ 22434 boolean_t unspec_src; 22435 ill_t *conn_outgoing_ill = NULL; 22436 ill_t *ire_ill; 22437 ill_t *ire1_ill; 22438 ill_t *out_ill; 22439 uint32_t ill_index = 0; 22440 boolean_t multirt_send = B_FALSE; 22441 int err; 22442 ipxmit_state_t pktxmit_state; 22443 ip_stack_t *ipst = ire->ire_ipst; 22444 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22445 22446 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22447 "ip_wput_ire_start: q %p", q); 22448 22449 multicast_forward = B_FALSE; 22450 unspec_src = (connp != NULL && connp->conn_unspec_src); 22451 22452 if (ire->ire_flags & RTF_MULTIRT) { 22453 /* 22454 * Multirouting case. The bucket where ire is stored 22455 * probably holds other RTF_MULTIRT flagged ire 22456 * to the destination. In this call to ip_wput_ire, 22457 * we attempt to send the packet through all 22458 * those ires. Thus, we first ensure that ire is the 22459 * first RTF_MULTIRT ire in the bucket, 22460 * before walking the ire list. 22461 */ 22462 ire_t *first_ire; 22463 irb_t *irb = ire->ire_bucket; 22464 ASSERT(irb != NULL); 22465 22466 /* Make sure we do not omit any multiroute ire. */ 22467 IRB_REFHOLD(irb); 22468 for (first_ire = irb->irb_ire; 22469 first_ire != NULL; 22470 first_ire = first_ire->ire_next) { 22471 if ((first_ire->ire_flags & RTF_MULTIRT) && 22472 (first_ire->ire_addr == ire->ire_addr) && 22473 !(first_ire->ire_marks & 22474 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22475 break; 22476 } 22477 } 22478 22479 if ((first_ire != NULL) && (first_ire != ire)) { 22480 IRE_REFHOLD(first_ire); 22481 ire_refrele(ire); 22482 ire = first_ire; 22483 ill = ire_to_ill(ire); 22484 } 22485 IRB_REFRELE(irb); 22486 } 22487 22488 /* 22489 * conn_outgoing_ill variable is used only in the broadcast loop. 22490 * for performance we don't grab the mutexs in the fastpath 22491 */ 22492 if ((connp != NULL) && 22493 (ire->ire_type == IRE_BROADCAST) && 22494 ((connp->conn_nofailover_ill != NULL) || 22495 (connp->conn_outgoing_ill != NULL))) { 22496 /* 22497 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22498 * option. So, see if this endpoint is bound to a 22499 * IPIF_NOFAILOVER address. If so, honor it. This implies 22500 * that if the interface is failed, we will still send 22501 * the packet on the same ill which is what we want. 22502 */ 22503 conn_outgoing_ill = conn_get_held_ill(connp, 22504 &connp->conn_nofailover_ill, &err); 22505 if (err == ILL_LOOKUP_FAILED) { 22506 ire_refrele(ire); 22507 freemsg(mp); 22508 return; 22509 } 22510 if (conn_outgoing_ill == NULL) { 22511 /* 22512 * Choose a good ill in the group to send the 22513 * packets on. 22514 */ 22515 ire = conn_set_outgoing_ill(connp, ire, 22516 &conn_outgoing_ill); 22517 if (ire == NULL) { 22518 freemsg(mp); 22519 return; 22520 } 22521 } 22522 } 22523 22524 if (mp->b_datap->db_type != M_CTL) { 22525 ipha = (ipha_t *)mp->b_rptr; 22526 } else { 22527 io = (ipsec_out_t *)mp->b_rptr; 22528 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22529 ASSERT(zoneid == io->ipsec_out_zoneid); 22530 ASSERT(zoneid != ALL_ZONES); 22531 ipha = (ipha_t *)mp->b_cont->b_rptr; 22532 dst = ipha->ipha_dst; 22533 /* 22534 * For the multicast case, ipsec_out carries conn_dontroute and 22535 * conn_multicast_loop as conn may not be available here. We 22536 * need this for multicast loopback and forwarding which is done 22537 * later in the code. 22538 */ 22539 if (CLASSD(dst)) { 22540 conn_dontroute = io->ipsec_out_dontroute; 22541 conn_multicast_loop = io->ipsec_out_multicast_loop; 22542 /* 22543 * If conn_dontroute is not set or conn_multicast_loop 22544 * is set, we need to do forwarding/loopback. For 22545 * datagrams from ip_wput_multicast, conn_dontroute is 22546 * set to B_TRUE and conn_multicast_loop is set to 22547 * B_FALSE so that we neither do forwarding nor 22548 * loopback. 22549 */ 22550 if (!conn_dontroute || conn_multicast_loop) 22551 multicast_forward = B_TRUE; 22552 } 22553 } 22554 22555 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22556 ire->ire_zoneid != ALL_ZONES) { 22557 /* 22558 * When a zone sends a packet to another zone, we try to deliver 22559 * the packet under the same conditions as if the destination 22560 * was a real node on the network. To do so, we look for a 22561 * matching route in the forwarding table. 22562 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22563 * ip_newroute() does. 22564 * Note that IRE_LOCAL are special, since they are used 22565 * when the zoneid doesn't match in some cases. This means that 22566 * we need to handle ipha_src differently since ire_src_addr 22567 * belongs to the receiving zone instead of the sending zone. 22568 * When ip_restrict_interzone_loopback is set, then 22569 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22570 * for loopback between zones when the logical "Ethernet" would 22571 * have looped them back. 22572 */ 22573 ire_t *src_ire; 22574 22575 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22576 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22577 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22578 if (src_ire != NULL && 22579 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22580 (!ipst->ips_ip_restrict_interzone_loopback || 22581 ire_local_same_ill_group(ire, src_ire))) { 22582 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22583 ipha->ipha_src = src_ire->ire_src_addr; 22584 ire_refrele(src_ire); 22585 } else { 22586 ire_refrele(ire); 22587 if (conn_outgoing_ill != NULL) 22588 ill_refrele(conn_outgoing_ill); 22589 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22590 if (src_ire != NULL) { 22591 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22592 ire_refrele(src_ire); 22593 freemsg(mp); 22594 return; 22595 } 22596 ire_refrele(src_ire); 22597 } 22598 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22599 /* Failed */ 22600 freemsg(mp); 22601 return; 22602 } 22603 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22604 ipst); 22605 return; 22606 } 22607 } 22608 22609 if (mp->b_datap->db_type == M_CTL || 22610 ipss->ipsec_outbound_v4_policy_present) { 22611 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22612 unspec_src, zoneid); 22613 if (mp == NULL) { 22614 ire_refrele(ire); 22615 if (conn_outgoing_ill != NULL) 22616 ill_refrele(conn_outgoing_ill); 22617 return; 22618 } 22619 /* 22620 * Trusted Extensions supports all-zones interfaces, so 22621 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22622 * the global zone. 22623 */ 22624 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22625 io = (ipsec_out_t *)mp->b_rptr; 22626 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22627 zoneid = io->ipsec_out_zoneid; 22628 } 22629 } 22630 22631 first_mp = mp; 22632 ipsec_len = 0; 22633 22634 if (first_mp->b_datap->db_type == M_CTL) { 22635 io = (ipsec_out_t *)first_mp->b_rptr; 22636 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22637 mp = first_mp->b_cont; 22638 ipsec_len = ipsec_out_extra_length(first_mp); 22639 ASSERT(ipsec_len >= 0); 22640 /* We already picked up the zoneid from the M_CTL above */ 22641 ASSERT(zoneid == io->ipsec_out_zoneid); 22642 ASSERT(zoneid != ALL_ZONES); 22643 22644 /* 22645 * Drop M_CTL here if IPsec processing is not needed. 22646 * (Non-IPsec use of M_CTL extracted any information it 22647 * needed above). 22648 */ 22649 if (ipsec_len == 0) { 22650 freeb(first_mp); 22651 first_mp = mp; 22652 } 22653 } 22654 22655 /* 22656 * Fast path for ip_wput_ire 22657 */ 22658 22659 ipha = (ipha_t *)mp->b_rptr; 22660 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22661 dst = ipha->ipha_dst; 22662 22663 /* 22664 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22665 * if the socket is a SOCK_RAW type. The transport checksum should 22666 * be provided in the pre-built packet, so we don't need to compute it. 22667 * Also, other application set flags, like DF, should not be altered. 22668 * Other transport MUST pass down zero. 22669 */ 22670 ip_hdr_included = ipha->ipha_ident; 22671 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22672 22673 if (CLASSD(dst)) { 22674 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22675 ntohl(dst), 22676 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22677 ntohl(ire->ire_addr))); 22678 } 22679 22680 /* Macros to extract header fields from data already in registers */ 22681 #ifdef _BIG_ENDIAN 22682 #define V_HLEN (v_hlen_tos_len >> 24) 22683 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22684 #define PROTO (ttl_protocol & 0xFF) 22685 #else 22686 #define V_HLEN (v_hlen_tos_len & 0xFF) 22687 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22688 #define PROTO (ttl_protocol >> 8) 22689 #endif 22690 22691 22692 orig_src = src = ipha->ipha_src; 22693 /* (The loop back to "another" is explained down below.) */ 22694 another:; 22695 /* 22696 * Assign an ident value for this packet. We assign idents on 22697 * a per destination basis out of the IRE. There could be 22698 * other threads targeting the same destination, so we have to 22699 * arrange for a atomic increment. Note that we use a 32-bit 22700 * atomic add because it has better performance than its 22701 * 16-bit sibling. 22702 * 22703 * If running in cluster mode and if the source address 22704 * belongs to a replicated service then vector through 22705 * cl_inet_ipident vector to allocate ip identifier 22706 * NOTE: This is a contract private interface with the 22707 * clustering group. 22708 */ 22709 clusterwide = 0; 22710 if (cl_inet_ipident) { 22711 ASSERT(cl_inet_isclusterwide); 22712 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22713 22714 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22715 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22716 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22717 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22718 (uint8_t *)(uintptr_t)dst, NULL); 22719 clusterwide = 1; 22720 } 22721 } 22722 if (!clusterwide) { 22723 ipha->ipha_ident = 22724 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22725 } 22726 22727 #ifndef _BIG_ENDIAN 22728 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22729 #endif 22730 22731 /* 22732 * Set source address unless sent on an ill or conn_unspec_src is set. 22733 * This is needed to obey conn_unspec_src when packets go through 22734 * ip_newroute + arp. 22735 * Assumes ip_newroute{,_multi} sets the source address as well. 22736 */ 22737 if (src == INADDR_ANY && !unspec_src) { 22738 /* 22739 * Assign the appropriate source address from the IRE if none 22740 * was specified. 22741 */ 22742 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22743 22744 /* 22745 * With IP multipathing, broadcast packets are sent on the ire 22746 * that has been cleared of IRE_MARK_NORECV and that belongs to 22747 * the group. However, this ire might not be in the same zone so 22748 * we can't always use its source address. We look for a 22749 * broadcast ire in the same group and in the right zone. 22750 */ 22751 if (ire->ire_type == IRE_BROADCAST && 22752 ire->ire_zoneid != zoneid) { 22753 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22754 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22755 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22756 if (src_ire != NULL) { 22757 src = src_ire->ire_src_addr; 22758 ire_refrele(src_ire); 22759 } else { 22760 ire_refrele(ire); 22761 if (conn_outgoing_ill != NULL) 22762 ill_refrele(conn_outgoing_ill); 22763 freemsg(first_mp); 22764 if (ill != NULL) { 22765 BUMP_MIB(ill->ill_ip_mib, 22766 ipIfStatsOutDiscards); 22767 } else { 22768 BUMP_MIB(&ipst->ips_ip_mib, 22769 ipIfStatsOutDiscards); 22770 } 22771 return; 22772 } 22773 } else { 22774 src = ire->ire_src_addr; 22775 } 22776 22777 if (connp == NULL) { 22778 ip1dbg(("ip_wput_ire: no connp and no src " 22779 "address for dst 0x%x, using src 0x%x\n", 22780 ntohl(dst), 22781 ntohl(src))); 22782 } 22783 ipha->ipha_src = src; 22784 } 22785 stq = ire->ire_stq; 22786 22787 /* 22788 * We only allow ire chains for broadcasts since there will 22789 * be multiple IRE_CACHE entries for the same multicast 22790 * address (one per ipif). 22791 */ 22792 next_mp = NULL; 22793 22794 /* broadcast packet */ 22795 if (ire->ire_type == IRE_BROADCAST) 22796 goto broadcast; 22797 22798 /* loopback ? */ 22799 if (stq == NULL) 22800 goto nullstq; 22801 22802 /* The ill_index for outbound ILL */ 22803 ill_index = Q_TO_INDEX(stq); 22804 22805 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22806 ttl_protocol = ((uint16_t *)ipha)[4]; 22807 22808 /* pseudo checksum (do it in parts for IP header checksum) */ 22809 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22810 22811 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22812 queue_t *dev_q = stq->q_next; 22813 22814 /* flow controlled */ 22815 if (DEV_Q_FLOW_BLOCKED(dev_q)) 22816 goto blocked; 22817 22818 if ((PROTO == IPPROTO_UDP) && 22819 (ip_hdr_included != IP_HDR_INCLUDED)) { 22820 hlen = (V_HLEN & 0xF) << 2; 22821 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22822 if (*up != 0) { 22823 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22824 hlen, LENGTH, max_frag, ipsec_len, cksum); 22825 /* Software checksum? */ 22826 if (DB_CKSUMFLAGS(mp) == 0) { 22827 IP_STAT(ipst, ip_out_sw_cksum); 22828 IP_STAT_UPDATE(ipst, 22829 ip_udp_out_sw_cksum_bytes, 22830 LENGTH - hlen); 22831 } 22832 } 22833 } 22834 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22835 hlen = (V_HLEN & 0xF) << 2; 22836 if (PROTO == IPPROTO_TCP) { 22837 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22838 /* 22839 * The packet header is processed once and for all, even 22840 * in the multirouting case. We disable hardware 22841 * checksum if the packet is multirouted, as it will be 22842 * replicated via several interfaces, and not all of 22843 * them may have this capability. 22844 */ 22845 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22846 LENGTH, max_frag, ipsec_len, cksum); 22847 /* Software checksum? */ 22848 if (DB_CKSUMFLAGS(mp) == 0) { 22849 IP_STAT(ipst, ip_out_sw_cksum); 22850 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22851 LENGTH - hlen); 22852 } 22853 } else { 22854 sctp_hdr_t *sctph; 22855 22856 ASSERT(PROTO == IPPROTO_SCTP); 22857 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22858 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22859 /* 22860 * Zero out the checksum field to ensure proper 22861 * checksum calculation. 22862 */ 22863 sctph->sh_chksum = 0; 22864 #ifdef DEBUG 22865 if (!skip_sctp_cksum) 22866 #endif 22867 sctph->sh_chksum = sctp_cksum(mp, hlen); 22868 } 22869 } 22870 22871 /* 22872 * If this is a multicast packet and originated from ip_wput 22873 * we need to do loopback and forwarding checks. If it comes 22874 * from ip_wput_multicast, we SHOULD not do this. 22875 */ 22876 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22877 22878 /* checksum */ 22879 cksum += ttl_protocol; 22880 22881 /* fragment the packet */ 22882 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22883 goto fragmentit; 22884 /* 22885 * Don't use frag_flag if packet is pre-built or source 22886 * routed or if multicast (since multicast packets do 22887 * not solicit ICMP "packet too big" messages). 22888 */ 22889 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22890 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22891 !ip_source_route_included(ipha)) && 22892 !CLASSD(ipha->ipha_dst)) 22893 ipha->ipha_fragment_offset_and_flags |= 22894 htons(ire->ire_frag_flag); 22895 22896 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22897 /* calculate IP header checksum */ 22898 cksum += ipha->ipha_ident; 22899 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22900 cksum += ipha->ipha_fragment_offset_and_flags; 22901 22902 /* IP options present */ 22903 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22904 if (hlen) 22905 goto checksumoptions; 22906 22907 /* calculate hdr checksum */ 22908 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22909 cksum = ~(cksum + (cksum >> 16)); 22910 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22911 } 22912 if (ipsec_len != 0) { 22913 /* 22914 * We will do the rest of the processing after 22915 * we come back from IPsec in ip_wput_ipsec_out(). 22916 */ 22917 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22918 22919 io = (ipsec_out_t *)first_mp->b_rptr; 22920 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22921 ill_phyint->phyint_ifindex; 22922 22923 ipsec_out_process(q, first_mp, ire, ill_index); 22924 ire_refrele(ire); 22925 if (conn_outgoing_ill != NULL) 22926 ill_refrele(conn_outgoing_ill); 22927 return; 22928 } 22929 22930 /* 22931 * In most cases, the emission loop below is entered only 22932 * once. Only in the case where the ire holds the 22933 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22934 * flagged ires in the bucket, and send the packet 22935 * through all crossed RTF_MULTIRT routes. 22936 */ 22937 if (ire->ire_flags & RTF_MULTIRT) { 22938 multirt_send = B_TRUE; 22939 } 22940 do { 22941 if (multirt_send) { 22942 irb_t *irb; 22943 /* 22944 * We are in a multiple send case, need to get 22945 * the next ire and make a duplicate of the packet. 22946 * ire1 holds here the next ire to process in the 22947 * bucket. If multirouting is expected, 22948 * any non-RTF_MULTIRT ire that has the 22949 * right destination address is ignored. 22950 */ 22951 irb = ire->ire_bucket; 22952 ASSERT(irb != NULL); 22953 22954 IRB_REFHOLD(irb); 22955 for (ire1 = ire->ire_next; 22956 ire1 != NULL; 22957 ire1 = ire1->ire_next) { 22958 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22959 continue; 22960 if (ire1->ire_addr != ire->ire_addr) 22961 continue; 22962 if (ire1->ire_marks & 22963 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22964 continue; 22965 22966 /* Got one */ 22967 IRE_REFHOLD(ire1); 22968 break; 22969 } 22970 IRB_REFRELE(irb); 22971 22972 if (ire1 != NULL) { 22973 next_mp = copyb(mp); 22974 if ((next_mp == NULL) || 22975 ((mp->b_cont != NULL) && 22976 ((next_mp->b_cont = 22977 dupmsg(mp->b_cont)) == NULL))) { 22978 freemsg(next_mp); 22979 next_mp = NULL; 22980 ire_refrele(ire1); 22981 ire1 = NULL; 22982 } 22983 } 22984 22985 /* Last multiroute ire; don't loop anymore. */ 22986 if (ire1 == NULL) { 22987 multirt_send = B_FALSE; 22988 } 22989 } 22990 22991 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22992 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22993 mblk_t *, mp); 22994 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22995 ipst->ips_ipv4firewall_physical_out, 22996 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22997 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22998 22999 if (mp == NULL) 23000 goto release_ire_and_ill; 23001 23002 if (ipst->ips_ipobs_enabled) { 23003 zoneid_t szone; 23004 23005 /* 23006 * On the outbound path the destination zone will be 23007 * unknown as we're sending this packet out on the 23008 * wire. 23009 */ 23010 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 23011 ALL_ZONES); 23012 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 23013 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 23014 } 23015 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 23016 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 23017 23018 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 23019 23020 if ((pktxmit_state == SEND_FAILED) || 23021 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23022 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 23023 "- packet dropped\n")); 23024 release_ire_and_ill: 23025 ire_refrele(ire); 23026 if (next_mp != NULL) { 23027 freemsg(next_mp); 23028 ire_refrele(ire1); 23029 } 23030 if (conn_outgoing_ill != NULL) 23031 ill_refrele(conn_outgoing_ill); 23032 return; 23033 } 23034 23035 if (CLASSD(dst)) { 23036 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 23037 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 23038 LENGTH); 23039 } 23040 23041 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23042 "ip_wput_ire_end: q %p (%S)", 23043 q, "last copy out"); 23044 IRE_REFRELE(ire); 23045 23046 if (multirt_send) { 23047 ASSERT(ire1); 23048 /* 23049 * Proceed with the next RTF_MULTIRT ire, 23050 * Also set up the send-to queue accordingly. 23051 */ 23052 ire = ire1; 23053 ire1 = NULL; 23054 stq = ire->ire_stq; 23055 mp = next_mp; 23056 next_mp = NULL; 23057 ipha = (ipha_t *)mp->b_rptr; 23058 ill_index = Q_TO_INDEX(stq); 23059 ill = (ill_t *)stq->q_ptr; 23060 } 23061 } while (multirt_send); 23062 if (conn_outgoing_ill != NULL) 23063 ill_refrele(conn_outgoing_ill); 23064 return; 23065 23066 /* 23067 * ire->ire_type == IRE_BROADCAST (minimize diffs) 23068 */ 23069 broadcast: 23070 { 23071 /* 23072 * To avoid broadcast storms, we usually set the TTL to 1 for 23073 * broadcasts. However, if SO_DONTROUTE isn't set, this value 23074 * can be overridden stack-wide through the ip_broadcast_ttl 23075 * ndd tunable, or on a per-connection basis through the 23076 * IP_BROADCAST_TTL socket option. 23077 * 23078 * In the event that we are replying to incoming ICMP packets, 23079 * connp could be NULL. 23080 */ 23081 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 23082 if (connp != NULL) { 23083 if (connp->conn_dontroute) 23084 ipha->ipha_ttl = 1; 23085 else if (connp->conn_broadcast_ttl != 0) 23086 ipha->ipha_ttl = connp->conn_broadcast_ttl; 23087 } 23088 23089 /* 23090 * Note that we are not doing a IRB_REFHOLD here. 23091 * Actually we don't care if the list changes i.e 23092 * if somebody deletes an IRE from the list while 23093 * we drop the lock, the next time we come around 23094 * ire_next will be NULL and hence we won't send 23095 * out multiple copies which is fine. 23096 */ 23097 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 23098 ire1 = ire->ire_next; 23099 if (conn_outgoing_ill != NULL) { 23100 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 23101 ASSERT(ire1 == ire->ire_next); 23102 if (ire1 != NULL && ire1->ire_addr == dst) { 23103 ire_refrele(ire); 23104 ire = ire1; 23105 IRE_REFHOLD(ire); 23106 ire1 = ire->ire_next; 23107 continue; 23108 } 23109 rw_exit(&ire->ire_bucket->irb_lock); 23110 /* Did not find a matching ill */ 23111 ip1dbg(("ip_wput_ire: broadcast with no " 23112 "matching IP_BOUND_IF ill %s dst %x\n", 23113 conn_outgoing_ill->ill_name, dst)); 23114 freemsg(first_mp); 23115 if (ire != NULL) 23116 ire_refrele(ire); 23117 ill_refrele(conn_outgoing_ill); 23118 return; 23119 } 23120 } else if (ire1 != NULL && ire1->ire_addr == dst) { 23121 /* 23122 * If the next IRE has the same address and is not one 23123 * of the two copies that we need to send, try to see 23124 * whether this copy should be sent at all. This 23125 * assumes that we insert loopbacks first and then 23126 * non-loopbacks. This is acheived by inserting the 23127 * loopback always before non-loopback. 23128 * This is used to send a single copy of a broadcast 23129 * packet out all physical interfaces that have an 23130 * matching IRE_BROADCAST while also looping 23131 * back one copy (to ip_wput_local) for each 23132 * matching physical interface. However, we avoid 23133 * sending packets out different logical that match by 23134 * having ipif_up/ipif_down supress duplicate 23135 * IRE_BROADCASTS. 23136 * 23137 * This feature is currently used to get broadcasts 23138 * sent to multiple interfaces, when the broadcast 23139 * address being used applies to multiple interfaces. 23140 * For example, a whole net broadcast will be 23141 * replicated on every connected subnet of 23142 * the target net. 23143 * 23144 * Each zone has its own set of IRE_BROADCASTs, so that 23145 * we're able to distribute inbound packets to multiple 23146 * zones who share a broadcast address. We avoid looping 23147 * back outbound packets in different zones but on the 23148 * same ill, as the application would see duplicates. 23149 * 23150 * If the interfaces are part of the same group, 23151 * we would want to send only one copy out for 23152 * whole group. 23153 * 23154 * This logic assumes that ire_add_v4() groups the 23155 * IRE_BROADCAST entries so that those with the same 23156 * ire_addr and ill_group are kept together. 23157 */ 23158 ire_ill = ire->ire_ipif->ipif_ill; 23159 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 23160 if (ire_ill->ill_group != NULL && 23161 (ire->ire_marks & IRE_MARK_NORECV)) { 23162 /* 23163 * If the current zone only has an ire 23164 * broadcast for this address marked 23165 * NORECV, the ire we want is ahead in 23166 * the bucket, so we look it up 23167 * deliberately ignoring the zoneid. 23168 */ 23169 for (ire1 = ire->ire_bucket->irb_ire; 23170 ire1 != NULL; 23171 ire1 = ire1->ire_next) { 23172 ire1_ill = 23173 ire1->ire_ipif->ipif_ill; 23174 if (ire1->ire_addr != dst) 23175 continue; 23176 /* skip over the current ire */ 23177 if (ire1 == ire) 23178 continue; 23179 /* skip over deleted ires */ 23180 if (ire1->ire_marks & 23181 IRE_MARK_CONDEMNED) 23182 continue; 23183 /* 23184 * non-loopback ire in our 23185 * group: use it for the next 23186 * pass in the loop 23187 */ 23188 if (ire1->ire_stq != NULL && 23189 ire1_ill->ill_group == 23190 ire_ill->ill_group) 23191 break; 23192 } 23193 } 23194 } else { 23195 while (ire1 != NULL && ire1->ire_addr == dst) { 23196 ire1_ill = ire1->ire_ipif->ipif_ill; 23197 /* 23198 * We can have two broadcast ires on the 23199 * same ill in different zones; here 23200 * we'll send a copy of the packet on 23201 * each ill and the fanout code will 23202 * call conn_wantpacket() to check that 23203 * the zone has the broadcast address 23204 * configured on the ill. If the two 23205 * ires are in the same group we only 23206 * send one copy up. 23207 */ 23208 if (ire1_ill != ire_ill && 23209 (ire1_ill->ill_group == NULL || 23210 ire_ill->ill_group == NULL || 23211 ire1_ill->ill_group != 23212 ire_ill->ill_group)) { 23213 break; 23214 } 23215 ire1 = ire1->ire_next; 23216 } 23217 } 23218 } 23219 ASSERT(multirt_send == B_FALSE); 23220 if (ire1 != NULL && ire1->ire_addr == dst) { 23221 if ((ire->ire_flags & RTF_MULTIRT) && 23222 (ire1->ire_flags & RTF_MULTIRT)) { 23223 /* 23224 * We are in the multirouting case. 23225 * The message must be sent at least 23226 * on both ires. These ires have been 23227 * inserted AFTER the standard ones 23228 * in ip_rt_add(). There are thus no 23229 * other ire entries for the destination 23230 * address in the rest of the bucket 23231 * that do not have the RTF_MULTIRT 23232 * flag. We don't process a copy 23233 * of the message here. This will be 23234 * done in the final sending loop. 23235 */ 23236 multirt_send = B_TRUE; 23237 } else { 23238 next_mp = ip_copymsg(first_mp); 23239 if (next_mp != NULL) 23240 IRE_REFHOLD(ire1); 23241 } 23242 } 23243 rw_exit(&ire->ire_bucket->irb_lock); 23244 } 23245 23246 if (stq) { 23247 /* 23248 * A non-NULL send-to queue means this packet is going 23249 * out of this machine. 23250 */ 23251 out_ill = (ill_t *)stq->q_ptr; 23252 23253 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23254 ttl_protocol = ((uint16_t *)ipha)[4]; 23255 /* 23256 * We accumulate the pseudo header checksum in cksum. 23257 * This is pretty hairy code, so watch close. One 23258 * thing to keep in mind is that UDP and TCP have 23259 * stored their respective datagram lengths in their 23260 * checksum fields. This lines things up real nice. 23261 */ 23262 cksum = (dst >> 16) + (dst & 0xFFFF) + 23263 (src >> 16) + (src & 0xFFFF); 23264 /* 23265 * We assume the udp checksum field contains the 23266 * length, so to compute the pseudo header checksum, 23267 * all we need is the protocol number and src/dst. 23268 */ 23269 /* Provide the checksums for UDP and TCP. */ 23270 if ((PROTO == IPPROTO_TCP) && 23271 (ip_hdr_included != IP_HDR_INCLUDED)) { 23272 /* hlen gets the number of uchar_ts in the IP header */ 23273 hlen = (V_HLEN & 0xF) << 2; 23274 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23275 IP_STAT(ipst, ip_out_sw_cksum); 23276 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23277 LENGTH - hlen); 23278 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23279 } else if (PROTO == IPPROTO_SCTP && 23280 (ip_hdr_included != IP_HDR_INCLUDED)) { 23281 sctp_hdr_t *sctph; 23282 23283 hlen = (V_HLEN & 0xF) << 2; 23284 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23285 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23286 sctph->sh_chksum = 0; 23287 #ifdef DEBUG 23288 if (!skip_sctp_cksum) 23289 #endif 23290 sctph->sh_chksum = sctp_cksum(mp, hlen); 23291 } else { 23292 queue_t *dev_q = stq->q_next; 23293 23294 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 23295 blocked: 23296 ipha->ipha_ident = ip_hdr_included; 23297 /* 23298 * If we don't have a conn to apply 23299 * backpressure, free the message. 23300 * In the ire_send path, we don't know 23301 * the position to requeue the packet. Rather 23302 * than reorder packets, we just drop this 23303 * packet. 23304 */ 23305 if (ipst->ips_ip_output_queue && 23306 connp != NULL && 23307 caller != IRE_SEND) { 23308 if (caller == IP_WSRV) { 23309 connp->conn_did_putbq = 1; 23310 (void) putbq(connp->conn_wq, 23311 first_mp); 23312 conn_drain_insert(connp); 23313 /* 23314 * This is the service thread, 23315 * and the queue is already 23316 * noenabled. The check for 23317 * canput and the putbq is not 23318 * atomic. So we need to check 23319 * again. 23320 */ 23321 if (canput(stq->q_next)) 23322 connp->conn_did_putbq 23323 = 0; 23324 IP_STAT(ipst, ip_conn_flputbq); 23325 } else { 23326 /* 23327 * We are not the service proc. 23328 * ip_wsrv will be scheduled or 23329 * is already running. 23330 */ 23331 23332 (void) putq(connp->conn_wq, 23333 first_mp); 23334 } 23335 } else { 23336 out_ill = (ill_t *)stq->q_ptr; 23337 BUMP_MIB(out_ill->ill_ip_mib, 23338 ipIfStatsOutDiscards); 23339 freemsg(first_mp); 23340 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23341 "ip_wput_ire_end: q %p (%S)", 23342 q, "discard"); 23343 } 23344 ire_refrele(ire); 23345 if (next_mp) { 23346 ire_refrele(ire1); 23347 freemsg(next_mp); 23348 } 23349 if (conn_outgoing_ill != NULL) 23350 ill_refrele(conn_outgoing_ill); 23351 return; 23352 } 23353 if ((PROTO == IPPROTO_UDP) && 23354 (ip_hdr_included != IP_HDR_INCLUDED)) { 23355 /* 23356 * hlen gets the number of uchar_ts in the 23357 * IP header 23358 */ 23359 hlen = (V_HLEN & 0xF) << 2; 23360 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23361 max_frag = ire->ire_max_frag; 23362 if (*up != 0) { 23363 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 23364 up, PROTO, hlen, LENGTH, max_frag, 23365 ipsec_len, cksum); 23366 /* Software checksum? */ 23367 if (DB_CKSUMFLAGS(mp) == 0) { 23368 IP_STAT(ipst, ip_out_sw_cksum); 23369 IP_STAT_UPDATE(ipst, 23370 ip_udp_out_sw_cksum_bytes, 23371 LENGTH - hlen); 23372 } 23373 } 23374 } 23375 } 23376 /* 23377 * Need to do this even when fragmenting. The local 23378 * loopback can be done without computing checksums 23379 * but forwarding out other interface must be done 23380 * after the IP checksum (and ULP checksums) have been 23381 * computed. 23382 * 23383 * NOTE : multicast_forward is set only if this packet 23384 * originated from ip_wput. For packets originating from 23385 * ip_wput_multicast, it is not set. 23386 */ 23387 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23388 multi_loopback: 23389 ip2dbg(("ip_wput: multicast, loop %d\n", 23390 conn_multicast_loop)); 23391 23392 /* Forget header checksum offload */ 23393 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23394 23395 /* 23396 * Local loopback of multicasts? Check the 23397 * ill. 23398 * 23399 * Note that the loopback function will not come 23400 * in through ip_rput - it will only do the 23401 * client fanout thus we need to do an mforward 23402 * as well. The is different from the BSD 23403 * logic. 23404 */ 23405 if (ill != NULL) { 23406 ilm_t *ilm; 23407 23408 ILM_WALKER_HOLD(ill); 23409 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23410 ALL_ZONES); 23411 ILM_WALKER_RELE(ill); 23412 if (ilm != NULL) { 23413 /* 23414 * Pass along the virtual output q. 23415 * ip_wput_local() will distribute the 23416 * packet to all the matching zones, 23417 * except the sending zone when 23418 * IP_MULTICAST_LOOP is false. 23419 */ 23420 ip_multicast_loopback(q, ill, first_mp, 23421 conn_multicast_loop ? 0 : 23422 IP_FF_NO_MCAST_LOOP, zoneid); 23423 } 23424 } 23425 if (ipha->ipha_ttl == 0) { 23426 /* 23427 * 0 => only to this host i.e. we are 23428 * done. We are also done if this was the 23429 * loopback interface since it is sufficient 23430 * to loopback one copy of a multicast packet. 23431 */ 23432 freemsg(first_mp); 23433 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23434 "ip_wput_ire_end: q %p (%S)", 23435 q, "loopback"); 23436 ire_refrele(ire); 23437 if (conn_outgoing_ill != NULL) 23438 ill_refrele(conn_outgoing_ill); 23439 return; 23440 } 23441 /* 23442 * ILLF_MULTICAST is checked in ip_newroute 23443 * i.e. we don't need to check it here since 23444 * all IRE_CACHEs come from ip_newroute. 23445 * For multicast traffic, SO_DONTROUTE is interpreted 23446 * to mean only send the packet out the interface 23447 * (optionally specified with IP_MULTICAST_IF) 23448 * and do not forward it out additional interfaces. 23449 * RSVP and the rsvp daemon is an example of a 23450 * protocol and user level process that 23451 * handles it's own routing. Hence, it uses the 23452 * SO_DONTROUTE option to accomplish this. 23453 */ 23454 23455 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23456 ill != NULL) { 23457 /* Unconditionally redo the checksum */ 23458 ipha->ipha_hdr_checksum = 0; 23459 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23460 23461 /* 23462 * If this needs to go out secure, we need 23463 * to wait till we finish the IPsec 23464 * processing. 23465 */ 23466 if (ipsec_len == 0 && 23467 ip_mforward(ill, ipha, mp)) { 23468 freemsg(first_mp); 23469 ip1dbg(("ip_wput: mforward failed\n")); 23470 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23471 "ip_wput_ire_end: q %p (%S)", 23472 q, "mforward failed"); 23473 ire_refrele(ire); 23474 if (conn_outgoing_ill != NULL) 23475 ill_refrele(conn_outgoing_ill); 23476 return; 23477 } 23478 } 23479 } 23480 max_frag = ire->ire_max_frag; 23481 cksum += ttl_protocol; 23482 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23483 /* No fragmentation required for this one. */ 23484 /* 23485 * Don't use frag_flag if packet is pre-built or source 23486 * routed or if multicast (since multicast packets do 23487 * not solicit ICMP "packet too big" messages). 23488 */ 23489 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23490 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23491 !ip_source_route_included(ipha)) && 23492 !CLASSD(ipha->ipha_dst)) 23493 ipha->ipha_fragment_offset_and_flags |= 23494 htons(ire->ire_frag_flag); 23495 23496 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23497 /* Complete the IP header checksum. */ 23498 cksum += ipha->ipha_ident; 23499 cksum += (v_hlen_tos_len >> 16)+ 23500 (v_hlen_tos_len & 0xFFFF); 23501 cksum += ipha->ipha_fragment_offset_and_flags; 23502 hlen = (V_HLEN & 0xF) - 23503 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23504 if (hlen) { 23505 checksumoptions: 23506 /* 23507 * Account for the IP Options in the IP 23508 * header checksum. 23509 */ 23510 up = (uint16_t *)(rptr+ 23511 IP_SIMPLE_HDR_LENGTH); 23512 do { 23513 cksum += up[0]; 23514 cksum += up[1]; 23515 up += 2; 23516 } while (--hlen); 23517 } 23518 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23519 cksum = ~(cksum + (cksum >> 16)); 23520 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23521 } 23522 if (ipsec_len != 0) { 23523 ipsec_out_process(q, first_mp, ire, ill_index); 23524 if (!next_mp) { 23525 ire_refrele(ire); 23526 if (conn_outgoing_ill != NULL) 23527 ill_refrele(conn_outgoing_ill); 23528 return; 23529 } 23530 goto next; 23531 } 23532 23533 /* 23534 * multirt_send has already been handled 23535 * for broadcast, but not yet for multicast 23536 * or IP options. 23537 */ 23538 if (next_mp == NULL) { 23539 if (ire->ire_flags & RTF_MULTIRT) { 23540 multirt_send = B_TRUE; 23541 } 23542 } 23543 23544 /* 23545 * In most cases, the emission loop below is 23546 * entered only once. Only in the case where 23547 * the ire holds the RTF_MULTIRT flag, do we loop 23548 * to process all RTF_MULTIRT ires in the bucket, 23549 * and send the packet through all crossed 23550 * RTF_MULTIRT routes. 23551 */ 23552 do { 23553 if (multirt_send) { 23554 irb_t *irb; 23555 23556 irb = ire->ire_bucket; 23557 ASSERT(irb != NULL); 23558 /* 23559 * We are in a multiple send case, 23560 * need to get the next IRE and make 23561 * a duplicate of the packet. 23562 */ 23563 IRB_REFHOLD(irb); 23564 for (ire1 = ire->ire_next; 23565 ire1 != NULL; 23566 ire1 = ire1->ire_next) { 23567 if (!(ire1->ire_flags & 23568 RTF_MULTIRT)) { 23569 continue; 23570 } 23571 if (ire1->ire_addr != 23572 ire->ire_addr) { 23573 continue; 23574 } 23575 if (ire1->ire_marks & 23576 (IRE_MARK_CONDEMNED| 23577 IRE_MARK_HIDDEN)) { 23578 continue; 23579 } 23580 23581 /* Got one */ 23582 IRE_REFHOLD(ire1); 23583 break; 23584 } 23585 IRB_REFRELE(irb); 23586 23587 if (ire1 != NULL) { 23588 next_mp = copyb(mp); 23589 if ((next_mp == NULL) || 23590 ((mp->b_cont != NULL) && 23591 ((next_mp->b_cont = 23592 dupmsg(mp->b_cont)) 23593 == NULL))) { 23594 freemsg(next_mp); 23595 next_mp = NULL; 23596 ire_refrele(ire1); 23597 ire1 = NULL; 23598 } 23599 } 23600 23601 /* 23602 * Last multiroute ire; don't loop 23603 * anymore. The emission is over 23604 * and next_mp is NULL. 23605 */ 23606 if (ire1 == NULL) { 23607 multirt_send = B_FALSE; 23608 } 23609 } 23610 23611 out_ill = ire_to_ill(ire); 23612 DTRACE_PROBE4(ip4__physical__out__start, 23613 ill_t *, NULL, 23614 ill_t *, out_ill, 23615 ipha_t *, ipha, mblk_t *, mp); 23616 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23617 ipst->ips_ipv4firewall_physical_out, 23618 NULL, out_ill, ipha, mp, mp, 0, ipst); 23619 DTRACE_PROBE1(ip4__physical__out__end, 23620 mblk_t *, mp); 23621 if (mp == NULL) 23622 goto release_ire_and_ill_2; 23623 23624 ASSERT(ipsec_len == 0); 23625 mp->b_prev = 23626 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23627 DTRACE_PROBE2(ip__xmit__2, 23628 mblk_t *, mp, ire_t *, ire); 23629 pktxmit_state = ip_xmit_v4(mp, ire, 23630 NULL, B_TRUE, connp); 23631 if ((pktxmit_state == SEND_FAILED) || 23632 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23633 release_ire_and_ill_2: 23634 if (next_mp) { 23635 freemsg(next_mp); 23636 ire_refrele(ire1); 23637 } 23638 ire_refrele(ire); 23639 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23640 "ip_wput_ire_end: q %p (%S)", 23641 q, "discard MDATA"); 23642 if (conn_outgoing_ill != NULL) 23643 ill_refrele(conn_outgoing_ill); 23644 return; 23645 } 23646 23647 if (CLASSD(dst)) { 23648 BUMP_MIB(out_ill->ill_ip_mib, 23649 ipIfStatsHCOutMcastPkts); 23650 UPDATE_MIB(out_ill->ill_ip_mib, 23651 ipIfStatsHCOutMcastOctets, 23652 LENGTH); 23653 } else if (ire->ire_type == IRE_BROADCAST) { 23654 BUMP_MIB(out_ill->ill_ip_mib, 23655 ipIfStatsHCOutBcastPkts); 23656 } 23657 23658 if (multirt_send) { 23659 /* 23660 * We are in a multiple send case, 23661 * need to re-enter the sending loop 23662 * using the next ire. 23663 */ 23664 ire_refrele(ire); 23665 ire = ire1; 23666 stq = ire->ire_stq; 23667 mp = next_mp; 23668 next_mp = NULL; 23669 ipha = (ipha_t *)mp->b_rptr; 23670 ill_index = Q_TO_INDEX(stq); 23671 } 23672 } while (multirt_send); 23673 23674 if (!next_mp) { 23675 /* 23676 * Last copy going out (the ultra-common 23677 * case). Note that we intentionally replicate 23678 * the putnext rather than calling it before 23679 * the next_mp check in hopes of a little 23680 * tail-call action out of the compiler. 23681 */ 23682 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23683 "ip_wput_ire_end: q %p (%S)", 23684 q, "last copy out(1)"); 23685 ire_refrele(ire); 23686 if (conn_outgoing_ill != NULL) 23687 ill_refrele(conn_outgoing_ill); 23688 return; 23689 } 23690 /* More copies going out below. */ 23691 } else { 23692 int offset; 23693 fragmentit: 23694 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23695 /* 23696 * If this would generate a icmp_frag_needed message, 23697 * we need to handle it before we do the IPsec 23698 * processing. Otherwise, we need to strip the IPsec 23699 * headers before we send up the message to the ULPs 23700 * which becomes messy and difficult. 23701 */ 23702 if (ipsec_len != 0) { 23703 if ((max_frag < (unsigned int)(LENGTH + 23704 ipsec_len)) && (offset & IPH_DF)) { 23705 out_ill = (ill_t *)stq->q_ptr; 23706 BUMP_MIB(out_ill->ill_ip_mib, 23707 ipIfStatsOutFragFails); 23708 BUMP_MIB(out_ill->ill_ip_mib, 23709 ipIfStatsOutFragReqds); 23710 ipha->ipha_hdr_checksum = 0; 23711 ipha->ipha_hdr_checksum = 23712 (uint16_t)ip_csum_hdr(ipha); 23713 icmp_frag_needed(ire->ire_stq, first_mp, 23714 max_frag, zoneid, ipst); 23715 if (!next_mp) { 23716 ire_refrele(ire); 23717 if (conn_outgoing_ill != NULL) { 23718 ill_refrele( 23719 conn_outgoing_ill); 23720 } 23721 return; 23722 } 23723 } else { 23724 /* 23725 * This won't cause a icmp_frag_needed 23726 * message. to be generated. Send it on 23727 * the wire. Note that this could still 23728 * cause fragmentation and all we 23729 * do is the generation of the message 23730 * to the ULP if needed before IPsec. 23731 */ 23732 if (!next_mp) { 23733 ipsec_out_process(q, first_mp, 23734 ire, ill_index); 23735 TRACE_2(TR_FAC_IP, 23736 TR_IP_WPUT_IRE_END, 23737 "ip_wput_ire_end: q %p " 23738 "(%S)", q, 23739 "last ipsec_out_process"); 23740 ire_refrele(ire); 23741 if (conn_outgoing_ill != NULL) { 23742 ill_refrele( 23743 conn_outgoing_ill); 23744 } 23745 return; 23746 } 23747 ipsec_out_process(q, first_mp, 23748 ire, ill_index); 23749 } 23750 } else { 23751 /* 23752 * Initiate IPPF processing. For 23753 * fragmentable packets we finish 23754 * all QOS packet processing before 23755 * calling: 23756 * ip_wput_ire_fragmentit->ip_wput_frag 23757 */ 23758 23759 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23760 ip_process(IPP_LOCAL_OUT, &mp, 23761 ill_index); 23762 if (mp == NULL) { 23763 out_ill = (ill_t *)stq->q_ptr; 23764 BUMP_MIB(out_ill->ill_ip_mib, 23765 ipIfStatsOutDiscards); 23766 if (next_mp != NULL) { 23767 freemsg(next_mp); 23768 ire_refrele(ire1); 23769 } 23770 ire_refrele(ire); 23771 TRACE_2(TR_FAC_IP, 23772 TR_IP_WPUT_IRE_END, 23773 "ip_wput_ire: q %p (%S)", 23774 q, "discard MDATA"); 23775 if (conn_outgoing_ill != NULL) { 23776 ill_refrele( 23777 conn_outgoing_ill); 23778 } 23779 return; 23780 } 23781 } 23782 if (!next_mp) { 23783 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23784 "ip_wput_ire_end: q %p (%S)", 23785 q, "last fragmentation"); 23786 ip_wput_ire_fragmentit(mp, ire, 23787 zoneid, ipst, connp); 23788 ire_refrele(ire); 23789 if (conn_outgoing_ill != NULL) 23790 ill_refrele(conn_outgoing_ill); 23791 return; 23792 } 23793 ip_wput_ire_fragmentit(mp, ire, 23794 zoneid, ipst, connp); 23795 } 23796 } 23797 } else { 23798 nullstq: 23799 /* A NULL stq means the destination address is local. */ 23800 UPDATE_OB_PKT_COUNT(ire); 23801 ire->ire_last_used_time = lbolt; 23802 ASSERT(ire->ire_ipif != NULL); 23803 if (!next_mp) { 23804 /* 23805 * Is there an "in" and "out" for traffic local 23806 * to a host (loopback)? The code in Solaris doesn't 23807 * explicitly draw a line in its code for in vs out, 23808 * so we've had to draw a line in the sand: ip_wput_ire 23809 * is considered to be the "output" side and 23810 * ip_wput_local to be the "input" side. 23811 */ 23812 out_ill = ire_to_ill(ire); 23813 23814 /* 23815 * DTrace this as ip:::send. A blocked packet will 23816 * fire the send probe, but not the receive probe. 23817 */ 23818 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23819 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23820 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23821 23822 DTRACE_PROBE4(ip4__loopback__out__start, 23823 ill_t *, NULL, ill_t *, out_ill, 23824 ipha_t *, ipha, mblk_t *, first_mp); 23825 23826 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23827 ipst->ips_ipv4firewall_loopback_out, 23828 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23829 23830 DTRACE_PROBE1(ip4__loopback__out_end, 23831 mblk_t *, first_mp); 23832 23833 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23834 "ip_wput_ire_end: q %p (%S)", 23835 q, "local address"); 23836 23837 if (first_mp != NULL) 23838 ip_wput_local(q, out_ill, ipha, 23839 first_mp, ire, 0, ire->ire_zoneid); 23840 ire_refrele(ire); 23841 if (conn_outgoing_ill != NULL) 23842 ill_refrele(conn_outgoing_ill); 23843 return; 23844 } 23845 23846 out_ill = ire_to_ill(ire); 23847 23848 /* 23849 * DTrace this as ip:::send. A blocked packet will fire the 23850 * send probe, but not the receive probe. 23851 */ 23852 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23853 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23854 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23855 23856 DTRACE_PROBE4(ip4__loopback__out__start, 23857 ill_t *, NULL, ill_t *, out_ill, 23858 ipha_t *, ipha, mblk_t *, first_mp); 23859 23860 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23861 ipst->ips_ipv4firewall_loopback_out, 23862 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23863 23864 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23865 23866 if (first_mp != NULL) 23867 ip_wput_local(q, out_ill, ipha, 23868 first_mp, ire, 0, ire->ire_zoneid); 23869 } 23870 next: 23871 /* 23872 * More copies going out to additional interfaces. 23873 * ire1 has already been held. We don't need the 23874 * "ire" anymore. 23875 */ 23876 ire_refrele(ire); 23877 ire = ire1; 23878 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23879 mp = next_mp; 23880 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23881 ill = ire_to_ill(ire); 23882 first_mp = mp; 23883 if (ipsec_len != 0) { 23884 ASSERT(first_mp->b_datap->db_type == M_CTL); 23885 mp = mp->b_cont; 23886 } 23887 dst = ire->ire_addr; 23888 ipha = (ipha_t *)mp->b_rptr; 23889 /* 23890 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23891 * Restore ipha_ident "no checksum" flag. 23892 */ 23893 src = orig_src; 23894 ipha->ipha_ident = ip_hdr_included; 23895 goto another; 23896 23897 #undef rptr 23898 #undef Q_TO_INDEX 23899 } 23900 23901 /* 23902 * Routine to allocate a message that is used to notify the ULP about MDT. 23903 * The caller may provide a pointer to the link-layer MDT capabilities, 23904 * or NULL if MDT is to be disabled on the stream. 23905 */ 23906 mblk_t * 23907 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23908 { 23909 mblk_t *mp; 23910 ip_mdt_info_t *mdti; 23911 ill_mdt_capab_t *idst; 23912 23913 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23914 DB_TYPE(mp) = M_CTL; 23915 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23916 mdti = (ip_mdt_info_t *)mp->b_rptr; 23917 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23918 idst = &(mdti->mdt_capab); 23919 23920 /* 23921 * If the caller provides us with the capability, copy 23922 * it over into our notification message; otherwise 23923 * we zero out the capability portion. 23924 */ 23925 if (isrc != NULL) 23926 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23927 else 23928 bzero((caddr_t)idst, sizeof (*idst)); 23929 } 23930 return (mp); 23931 } 23932 23933 /* 23934 * Routine which determines whether MDT can be enabled on the destination 23935 * IRE and IPC combination, and if so, allocates and returns the MDT 23936 * notification mblk that may be used by ULP. We also check if we need to 23937 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23938 * MDT usage in the past have been lifted. This gets called during IP 23939 * and ULP binding. 23940 */ 23941 mblk_t * 23942 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23943 ill_mdt_capab_t *mdt_cap) 23944 { 23945 mblk_t *mp; 23946 boolean_t rc = B_FALSE; 23947 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23948 23949 ASSERT(dst_ire != NULL); 23950 ASSERT(connp != NULL); 23951 ASSERT(mdt_cap != NULL); 23952 23953 /* 23954 * Currently, we only support simple TCP/{IPv4,IPv6} with 23955 * Multidata, which is handled in tcp_multisend(). This 23956 * is the reason why we do all these checks here, to ensure 23957 * that we don't enable Multidata for the cases which we 23958 * can't handle at the moment. 23959 */ 23960 do { 23961 /* Only do TCP at the moment */ 23962 if (connp->conn_ulp != IPPROTO_TCP) 23963 break; 23964 23965 /* 23966 * IPsec outbound policy present? Note that we get here 23967 * after calling ipsec_conn_cache_policy() where the global 23968 * policy checking is performed. conn_latch will be 23969 * non-NULL as long as there's a policy defined, 23970 * i.e. conn_out_enforce_policy may be NULL in such case 23971 * when the connection is non-secure, and hence we check 23972 * further if the latch refers to an outbound policy. 23973 */ 23974 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23975 break; 23976 23977 /* CGTP (multiroute) is enabled? */ 23978 if (dst_ire->ire_flags & RTF_MULTIRT) 23979 break; 23980 23981 /* Outbound IPQoS enabled? */ 23982 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23983 /* 23984 * In this case, we disable MDT for this and all 23985 * future connections going over the interface. 23986 */ 23987 mdt_cap->ill_mdt_on = 0; 23988 break; 23989 } 23990 23991 /* socket option(s) present? */ 23992 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23993 break; 23994 23995 rc = B_TRUE; 23996 /* CONSTCOND */ 23997 } while (0); 23998 23999 /* Remember the result */ 24000 connp->conn_mdt_ok = rc; 24001 24002 if (!rc) 24003 return (NULL); 24004 else if (!mdt_cap->ill_mdt_on) { 24005 /* 24006 * If MDT has been previously turned off in the past, and we 24007 * currently can do MDT (due to IPQoS policy removal, etc.) 24008 * then enable it for this interface. 24009 */ 24010 mdt_cap->ill_mdt_on = 1; 24011 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 24012 "interface %s\n", ill_name)); 24013 } 24014 24015 /* Allocate the MDT info mblk */ 24016 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 24017 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 24018 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 24019 return (NULL); 24020 } 24021 return (mp); 24022 } 24023 24024 /* 24025 * Routine to allocate a message that is used to notify the ULP about LSO. 24026 * The caller may provide a pointer to the link-layer LSO capabilities, 24027 * or NULL if LSO is to be disabled on the stream. 24028 */ 24029 mblk_t * 24030 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 24031 { 24032 mblk_t *mp; 24033 ip_lso_info_t *lsoi; 24034 ill_lso_capab_t *idst; 24035 24036 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 24037 DB_TYPE(mp) = M_CTL; 24038 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 24039 lsoi = (ip_lso_info_t *)mp->b_rptr; 24040 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 24041 idst = &(lsoi->lso_capab); 24042 24043 /* 24044 * If the caller provides us with the capability, copy 24045 * it over into our notification message; otherwise 24046 * we zero out the capability portion. 24047 */ 24048 if (isrc != NULL) 24049 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 24050 else 24051 bzero((caddr_t)idst, sizeof (*idst)); 24052 } 24053 return (mp); 24054 } 24055 24056 /* 24057 * Routine which determines whether LSO can be enabled on the destination 24058 * IRE and IPC combination, and if so, allocates and returns the LSO 24059 * notification mblk that may be used by ULP. We also check if we need to 24060 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 24061 * LSO usage in the past have been lifted. This gets called during IP 24062 * and ULP binding. 24063 */ 24064 mblk_t * 24065 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 24066 ill_lso_capab_t *lso_cap) 24067 { 24068 mblk_t *mp; 24069 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 24070 24071 ASSERT(dst_ire != NULL); 24072 ASSERT(connp != NULL); 24073 ASSERT(lso_cap != NULL); 24074 24075 connp->conn_lso_ok = B_TRUE; 24076 24077 if ((connp->conn_ulp != IPPROTO_TCP) || 24078 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 24079 (dst_ire->ire_flags & RTF_MULTIRT) || 24080 !CONN_IS_LSO_MD_FASTPATH(connp) || 24081 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 24082 connp->conn_lso_ok = B_FALSE; 24083 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 24084 /* 24085 * Disable LSO for this and all future connections going 24086 * over the interface. 24087 */ 24088 lso_cap->ill_lso_on = 0; 24089 } 24090 } 24091 24092 if (!connp->conn_lso_ok) 24093 return (NULL); 24094 else if (!lso_cap->ill_lso_on) { 24095 /* 24096 * If LSO has been previously turned off in the past, and we 24097 * currently can do LSO (due to IPQoS policy removal, etc.) 24098 * then enable it for this interface. 24099 */ 24100 lso_cap->ill_lso_on = 1; 24101 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 24102 ill_name)); 24103 } 24104 24105 /* Allocate the LSO info mblk */ 24106 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 24107 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 24108 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 24109 24110 return (mp); 24111 } 24112 24113 /* 24114 * Create destination address attribute, and fill it with the physical 24115 * destination address and SAP taken from the template DL_UNITDATA_REQ 24116 * message block. 24117 */ 24118 boolean_t 24119 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 24120 { 24121 dl_unitdata_req_t *dlurp; 24122 pattr_t *pa; 24123 pattrinfo_t pa_info; 24124 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 24125 uint_t das_len, das_off; 24126 24127 ASSERT(dlmp != NULL); 24128 24129 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 24130 das_len = dlurp->dl_dest_addr_length; 24131 das_off = dlurp->dl_dest_addr_offset; 24132 24133 pa_info.type = PATTR_DSTADDRSAP; 24134 pa_info.len = sizeof (**das) + das_len - 1; 24135 24136 /* create and associate the attribute */ 24137 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24138 if (pa != NULL) { 24139 ASSERT(*das != NULL); 24140 (*das)->addr_is_group = 0; 24141 (*das)->addr_len = (uint8_t)das_len; 24142 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 24143 } 24144 24145 return (pa != NULL); 24146 } 24147 24148 /* 24149 * Create hardware checksum attribute and fill it with the values passed. 24150 */ 24151 boolean_t 24152 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 24153 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 24154 { 24155 pattr_t *pa; 24156 pattrinfo_t pa_info; 24157 24158 ASSERT(mmd != NULL); 24159 24160 pa_info.type = PATTR_HCKSUM; 24161 pa_info.len = sizeof (pattr_hcksum_t); 24162 24163 /* create and associate the attribute */ 24164 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24165 if (pa != NULL) { 24166 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 24167 24168 hck->hcksum_start_offset = start_offset; 24169 hck->hcksum_stuff_offset = stuff_offset; 24170 hck->hcksum_end_offset = end_offset; 24171 hck->hcksum_flags = flags; 24172 } 24173 return (pa != NULL); 24174 } 24175 24176 /* 24177 * Create zerocopy attribute and fill it with the specified flags 24178 */ 24179 boolean_t 24180 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 24181 { 24182 pattr_t *pa; 24183 pattrinfo_t pa_info; 24184 24185 ASSERT(mmd != NULL); 24186 pa_info.type = PATTR_ZCOPY; 24187 pa_info.len = sizeof (pattr_zcopy_t); 24188 24189 /* create and associate the attribute */ 24190 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24191 if (pa != NULL) { 24192 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 24193 24194 zcopy->zcopy_flags = flags; 24195 } 24196 return (pa != NULL); 24197 } 24198 24199 /* 24200 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 24201 * block chain. We could rewrite to handle arbitrary message block chains but 24202 * that would make the code complicated and slow. Right now there three 24203 * restrictions: 24204 * 24205 * 1. The first message block must contain the complete IP header and 24206 * at least 1 byte of payload data. 24207 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24208 * so that we can use a single Multidata message. 24209 * 3. No frag must be distributed over two or more message blocks so 24210 * that we don't need more than two packet descriptors per frag. 24211 * 24212 * The above restrictions allow us to support userland applications (which 24213 * will send down a single message block) and NFS over UDP (which will 24214 * send down a chain of at most three message blocks). 24215 * 24216 * We also don't use MDT for payloads with less than or equal to 24217 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24218 */ 24219 boolean_t 24220 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24221 { 24222 int blocks; 24223 ssize_t total, missing, size; 24224 24225 ASSERT(mp != NULL); 24226 ASSERT(hdr_len > 0); 24227 24228 size = MBLKL(mp) - hdr_len; 24229 if (size <= 0) 24230 return (B_FALSE); 24231 24232 /* The first mblk contains the header and some payload. */ 24233 blocks = 1; 24234 total = size; 24235 size %= len; 24236 missing = (size == 0) ? 0 : (len - size); 24237 mp = mp->b_cont; 24238 24239 while (mp != NULL) { 24240 /* 24241 * Give up if we encounter a zero length message block. 24242 * In practice, this should rarely happen and therefore 24243 * not worth the trouble of freeing and re-linking the 24244 * mblk from the chain to handle such case. 24245 */ 24246 if ((size = MBLKL(mp)) == 0) 24247 return (B_FALSE); 24248 24249 /* Too many payload buffers for a single Multidata message? */ 24250 if (++blocks > MULTIDATA_MAX_PBUFS) 24251 return (B_FALSE); 24252 24253 total += size; 24254 /* Is a frag distributed over two or more message blocks? */ 24255 if (missing > size) 24256 return (B_FALSE); 24257 size -= missing; 24258 24259 size %= len; 24260 missing = (size == 0) ? 0 : (len - size); 24261 24262 mp = mp->b_cont; 24263 } 24264 24265 return (total > ip_wput_frag_mdt_min); 24266 } 24267 24268 /* 24269 * Outbound IPv4 fragmentation routine using MDT. 24270 */ 24271 static void 24272 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24273 uint32_t frag_flag, int offset) 24274 { 24275 ipha_t *ipha_orig; 24276 int i1, ip_data_end; 24277 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24278 mblk_t *hdr_mp, *md_mp = NULL; 24279 unsigned char *hdr_ptr, *pld_ptr; 24280 multidata_t *mmd; 24281 ip_pdescinfo_t pdi; 24282 ill_t *ill; 24283 ip_stack_t *ipst = ire->ire_ipst; 24284 24285 ASSERT(DB_TYPE(mp) == M_DATA); 24286 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24287 24288 ill = ire_to_ill(ire); 24289 ASSERT(ill != NULL); 24290 24291 ipha_orig = (ipha_t *)mp->b_rptr; 24292 mp->b_rptr += sizeof (ipha_t); 24293 24294 /* Calculate how many packets we will send out */ 24295 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24296 pkts = (i1 + len - 1) / len; 24297 ASSERT(pkts > 1); 24298 24299 /* Allocate a message block which will hold all the IP Headers. */ 24300 wroff = ipst->ips_ip_wroff_extra; 24301 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24302 24303 i1 = pkts * hdr_chunk_len; 24304 /* 24305 * Create the header buffer, Multidata and destination address 24306 * and SAP attribute that should be associated with it. 24307 */ 24308 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24309 ((hdr_mp->b_wptr += i1), 24310 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24311 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24312 freemsg(mp); 24313 if (md_mp == NULL) { 24314 freemsg(hdr_mp); 24315 } else { 24316 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24317 freemsg(md_mp); 24318 } 24319 IP_STAT(ipst, ip_frag_mdt_allocfail); 24320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24321 return; 24322 } 24323 IP_STAT(ipst, ip_frag_mdt_allocd); 24324 24325 /* 24326 * Add a payload buffer to the Multidata; this operation must not 24327 * fail, or otherwise our logic in this routine is broken. There 24328 * is no memory allocation done by the routine, so any returned 24329 * failure simply tells us that we've done something wrong. 24330 * 24331 * A failure tells us that either we're adding the same payload 24332 * buffer more than once, or we're trying to add more buffers than 24333 * allowed. None of the above cases should happen, and we panic 24334 * because either there's horrible heap corruption, and/or 24335 * programming mistake. 24336 */ 24337 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24338 goto pbuf_panic; 24339 24340 hdr_ptr = hdr_mp->b_rptr; 24341 pld_ptr = mp->b_rptr; 24342 24343 /* Establish the ending byte offset, based on the starting offset. */ 24344 offset <<= 3; 24345 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24346 IP_SIMPLE_HDR_LENGTH; 24347 24348 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24349 24350 while (pld_ptr < mp->b_wptr) { 24351 ipha_t *ipha; 24352 uint16_t offset_and_flags; 24353 uint16_t ip_len; 24354 int error; 24355 24356 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24357 ipha = (ipha_t *)(hdr_ptr + wroff); 24358 ASSERT(OK_32PTR(ipha)); 24359 *ipha = *ipha_orig; 24360 24361 if (ip_data_end - offset > len) { 24362 offset_and_flags = IPH_MF; 24363 } else { 24364 /* 24365 * Last frag. Set len to the length of this last piece. 24366 */ 24367 len = ip_data_end - offset; 24368 /* A frag of a frag might have IPH_MF non-zero */ 24369 offset_and_flags = 24370 ntohs(ipha->ipha_fragment_offset_and_flags) & 24371 IPH_MF; 24372 } 24373 offset_and_flags |= (uint16_t)(offset >> 3); 24374 offset_and_flags |= (uint16_t)frag_flag; 24375 /* Store the offset and flags in the IP header. */ 24376 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24377 24378 /* Store the length in the IP header. */ 24379 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24380 ipha->ipha_length = htons(ip_len); 24381 24382 /* 24383 * Set the IP header checksum. Note that mp is just 24384 * the header, so this is easy to pass to ip_csum. 24385 */ 24386 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24387 24388 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24389 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24390 NULL, int, 0); 24391 24392 /* 24393 * Record offset and size of header and data of the next packet 24394 * in the multidata message. 24395 */ 24396 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24397 PDESC_PLD_INIT(&pdi); 24398 i1 = MIN(mp->b_wptr - pld_ptr, len); 24399 ASSERT(i1 > 0); 24400 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24401 if (i1 == len) { 24402 pld_ptr += len; 24403 } else { 24404 i1 = len - i1; 24405 mp = mp->b_cont; 24406 ASSERT(mp != NULL); 24407 ASSERT(MBLKL(mp) >= i1); 24408 /* 24409 * Attach the next payload message block to the 24410 * multidata message. 24411 */ 24412 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24413 goto pbuf_panic; 24414 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24415 pld_ptr = mp->b_rptr + i1; 24416 } 24417 24418 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24419 KM_NOSLEEP)) == NULL) { 24420 /* 24421 * Any failure other than ENOMEM indicates that we 24422 * have passed in invalid pdesc info or parameters 24423 * to mmd_addpdesc, which must not happen. 24424 * 24425 * EINVAL is a result of failure on boundary checks 24426 * against the pdesc info contents. It should not 24427 * happen, and we panic because either there's 24428 * horrible heap corruption, and/or programming 24429 * mistake. 24430 */ 24431 if (error != ENOMEM) { 24432 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24433 "pdesc logic error detected for " 24434 "mmd %p pinfo %p (%d)\n", 24435 (void *)mmd, (void *)&pdi, error); 24436 /* NOTREACHED */ 24437 } 24438 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24439 /* Free unattached payload message blocks as well */ 24440 md_mp->b_cont = mp->b_cont; 24441 goto free_mmd; 24442 } 24443 24444 /* Advance fragment offset. */ 24445 offset += len; 24446 24447 /* Advance to location for next header in the buffer. */ 24448 hdr_ptr += hdr_chunk_len; 24449 24450 /* Did we reach the next payload message block? */ 24451 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24452 mp = mp->b_cont; 24453 /* 24454 * Attach the next message block with payload 24455 * data to the multidata message. 24456 */ 24457 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24458 goto pbuf_panic; 24459 pld_ptr = mp->b_rptr; 24460 } 24461 } 24462 24463 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24464 ASSERT(mp->b_wptr == pld_ptr); 24465 24466 /* Update IP statistics */ 24467 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24468 24469 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24470 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24471 24472 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24473 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24474 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24475 24476 if (pkt_type == OB_PKT) { 24477 ire->ire_ob_pkt_count += pkts; 24478 if (ire->ire_ipif != NULL) 24479 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24480 } else { 24481 /* The type is IB_PKT in the forwarding path. */ 24482 ire->ire_ib_pkt_count += pkts; 24483 ASSERT(!IRE_IS_LOCAL(ire)); 24484 if (ire->ire_type & IRE_BROADCAST) { 24485 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24486 } else { 24487 UPDATE_MIB(ill->ill_ip_mib, 24488 ipIfStatsHCOutForwDatagrams, pkts); 24489 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24490 } 24491 } 24492 ire->ire_last_used_time = lbolt; 24493 /* Send it down */ 24494 putnext(ire->ire_stq, md_mp); 24495 return; 24496 24497 pbuf_panic: 24498 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24499 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24500 pbuf_idx); 24501 /* NOTREACHED */ 24502 } 24503 24504 /* 24505 * Outbound IP fragmentation routine. 24506 * 24507 * NOTE : This routine does not ire_refrele the ire that is passed in 24508 * as the argument. 24509 */ 24510 static void 24511 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24512 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24513 { 24514 int i1; 24515 mblk_t *ll_hdr_mp; 24516 int ll_hdr_len; 24517 int hdr_len; 24518 mblk_t *hdr_mp; 24519 ipha_t *ipha; 24520 int ip_data_end; 24521 int len; 24522 mblk_t *mp = mp_orig, *mp1; 24523 int offset; 24524 queue_t *q; 24525 uint32_t v_hlen_tos_len; 24526 mblk_t *first_mp; 24527 boolean_t mctl_present; 24528 ill_t *ill; 24529 ill_t *out_ill; 24530 mblk_t *xmit_mp; 24531 mblk_t *carve_mp; 24532 ire_t *ire1 = NULL; 24533 ire_t *save_ire = NULL; 24534 mblk_t *next_mp = NULL; 24535 boolean_t last_frag = B_FALSE; 24536 boolean_t multirt_send = B_FALSE; 24537 ire_t *first_ire = NULL; 24538 irb_t *irb = NULL; 24539 mib2_ipIfStatsEntry_t *mibptr = NULL; 24540 24541 ill = ire_to_ill(ire); 24542 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24543 24544 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24545 24546 if (max_frag == 0) { 24547 ip1dbg(("ip_wput_frag: ire frag size is 0" 24548 " - dropping packet\n")); 24549 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24550 freemsg(mp); 24551 return; 24552 } 24553 24554 /* 24555 * IPsec does not allow hw accelerated packets to be fragmented 24556 * This check is made in ip_wput_ipsec_out prior to coming here 24557 * via ip_wput_ire_fragmentit. 24558 * 24559 * If at this point we have an ire whose ARP request has not 24560 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24561 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24562 * This packet and all fragmentable packets for this ire will 24563 * continue to get dropped while ire_nce->nce_state remains in 24564 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24565 * ND_REACHABLE, all subsquent large packets for this ire will 24566 * get fragemented and sent out by this function. 24567 */ 24568 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24569 /* If nce_state is ND_INITIAL, trigger ARP query */ 24570 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24571 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24572 " - dropping packet\n")); 24573 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24574 freemsg(mp); 24575 return; 24576 } 24577 24578 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24579 "ip_wput_frag_start:"); 24580 24581 if (mp->b_datap->db_type == M_CTL) { 24582 first_mp = mp; 24583 mp_orig = mp = mp->b_cont; 24584 mctl_present = B_TRUE; 24585 } else { 24586 first_mp = mp; 24587 mctl_present = B_FALSE; 24588 } 24589 24590 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24591 ipha = (ipha_t *)mp->b_rptr; 24592 24593 /* 24594 * If the Don't Fragment flag is on, generate an ICMP destination 24595 * unreachable, fragmentation needed. 24596 */ 24597 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24598 if (offset & IPH_DF) { 24599 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24600 if (is_system_labeled()) { 24601 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24602 ire->ire_max_frag - max_frag, AF_INET); 24603 } 24604 /* 24605 * Need to compute hdr checksum if called from ip_wput_ire. 24606 * Note that ip_rput_forward verifies the checksum before 24607 * calling this routine so in that case this is a noop. 24608 */ 24609 ipha->ipha_hdr_checksum = 0; 24610 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24611 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24612 ipst); 24613 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24614 "ip_wput_frag_end:(%S)", 24615 "don't fragment"); 24616 return; 24617 } 24618 /* 24619 * Labeled systems adjust max_frag if they add a label 24620 * to send the correct path mtu. We need the real mtu since we 24621 * are fragmenting the packet after label adjustment. 24622 */ 24623 if (is_system_labeled()) 24624 max_frag = ire->ire_max_frag; 24625 if (mctl_present) 24626 freeb(first_mp); 24627 /* 24628 * Establish the starting offset. May not be zero if we are fragging 24629 * a fragment that is being forwarded. 24630 */ 24631 offset = offset & IPH_OFFSET; 24632 24633 /* TODO why is this test needed? */ 24634 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24635 if (((max_frag - LENGTH) & ~7) < 8) { 24636 /* TODO: notify ulp somehow */ 24637 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24638 freemsg(mp); 24639 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24640 "ip_wput_frag_end:(%S)", 24641 "len < 8"); 24642 return; 24643 } 24644 24645 hdr_len = (V_HLEN & 0xF) << 2; 24646 24647 ipha->ipha_hdr_checksum = 0; 24648 24649 /* 24650 * Establish the number of bytes maximum per frag, after putting 24651 * in the header. 24652 */ 24653 len = (max_frag - hdr_len) & ~7; 24654 24655 /* Check if we can use MDT to send out the frags. */ 24656 ASSERT(!IRE_IS_LOCAL(ire)); 24657 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24658 ipst->ips_ip_multidata_outbound && 24659 !(ire->ire_flags & RTF_MULTIRT) && 24660 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24661 ill != NULL && ILL_MDT_CAPABLE(ill) && 24662 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24663 ASSERT(ill->ill_mdt_capab != NULL); 24664 if (!ill->ill_mdt_capab->ill_mdt_on) { 24665 /* 24666 * If MDT has been previously turned off in the past, 24667 * and we currently can do MDT (due to IPQoS policy 24668 * removal, etc.) then enable it for this interface. 24669 */ 24670 ill->ill_mdt_capab->ill_mdt_on = 1; 24671 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24672 ill->ill_name)); 24673 } 24674 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24675 offset); 24676 return; 24677 } 24678 24679 /* Get a copy of the header for the trailing frags */ 24680 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24681 if (!hdr_mp) { 24682 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24683 freemsg(mp); 24684 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24685 "ip_wput_frag_end:(%S)", 24686 "couldn't copy hdr"); 24687 return; 24688 } 24689 if (DB_CRED(mp) != NULL) 24690 mblk_setcred(hdr_mp, DB_CRED(mp)); 24691 24692 /* Store the starting offset, with the MoreFrags flag. */ 24693 i1 = offset | IPH_MF | frag_flag; 24694 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24695 24696 /* Establish the ending byte offset, based on the starting offset. */ 24697 offset <<= 3; 24698 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24699 24700 /* Store the length of the first fragment in the IP header. */ 24701 i1 = len + hdr_len; 24702 ASSERT(i1 <= IP_MAXPACKET); 24703 ipha->ipha_length = htons((uint16_t)i1); 24704 24705 /* 24706 * Compute the IP header checksum for the first frag. We have to 24707 * watch out that we stop at the end of the header. 24708 */ 24709 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24710 24711 /* 24712 * Now carve off the first frag. Note that this will include the 24713 * original IP header. 24714 */ 24715 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24716 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24717 freeb(hdr_mp); 24718 freemsg(mp_orig); 24719 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24720 "ip_wput_frag_end:(%S)", 24721 "couldn't carve first"); 24722 return; 24723 } 24724 24725 /* 24726 * Multirouting case. Each fragment is replicated 24727 * via all non-condemned RTF_MULTIRT routes 24728 * currently resolved. 24729 * We ensure that first_ire is the first RTF_MULTIRT 24730 * ire in the bucket. 24731 */ 24732 if (ire->ire_flags & RTF_MULTIRT) { 24733 irb = ire->ire_bucket; 24734 ASSERT(irb != NULL); 24735 24736 multirt_send = B_TRUE; 24737 24738 /* Make sure we do not omit any multiroute ire. */ 24739 IRB_REFHOLD(irb); 24740 for (first_ire = irb->irb_ire; 24741 first_ire != NULL; 24742 first_ire = first_ire->ire_next) { 24743 if ((first_ire->ire_flags & RTF_MULTIRT) && 24744 (first_ire->ire_addr == ire->ire_addr) && 24745 !(first_ire->ire_marks & 24746 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24747 break; 24748 } 24749 } 24750 24751 if (first_ire != NULL) { 24752 if (first_ire != ire) { 24753 IRE_REFHOLD(first_ire); 24754 /* 24755 * Do not release the ire passed in 24756 * as the argument. 24757 */ 24758 ire = first_ire; 24759 } else { 24760 first_ire = NULL; 24761 } 24762 } 24763 IRB_REFRELE(irb); 24764 24765 /* 24766 * Save the first ire; we will need to restore it 24767 * for the trailing frags. 24768 * We REFHOLD save_ire, as each iterated ire will be 24769 * REFRELEd. 24770 */ 24771 save_ire = ire; 24772 IRE_REFHOLD(save_ire); 24773 } 24774 24775 /* 24776 * First fragment emission loop. 24777 * In most cases, the emission loop below is entered only 24778 * once. Only in the case where the ire holds the RTF_MULTIRT 24779 * flag, do we loop to process all RTF_MULTIRT ires in the 24780 * bucket, and send the fragment through all crossed 24781 * RTF_MULTIRT routes. 24782 */ 24783 do { 24784 if (ire->ire_flags & RTF_MULTIRT) { 24785 /* 24786 * We are in a multiple send case, need to get 24787 * the next ire and make a copy of the packet. 24788 * ire1 holds here the next ire to process in the 24789 * bucket. If multirouting is expected, 24790 * any non-RTF_MULTIRT ire that has the 24791 * right destination address is ignored. 24792 * 24793 * We have to take into account the MTU of 24794 * each walked ire. max_frag is set by the 24795 * the caller and generally refers to 24796 * the primary ire entry. Here we ensure that 24797 * no route with a lower MTU will be used, as 24798 * fragments are carved once for all ires, 24799 * then replicated. 24800 */ 24801 ASSERT(irb != NULL); 24802 IRB_REFHOLD(irb); 24803 for (ire1 = ire->ire_next; 24804 ire1 != NULL; 24805 ire1 = ire1->ire_next) { 24806 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24807 continue; 24808 if (ire1->ire_addr != ire->ire_addr) 24809 continue; 24810 if (ire1->ire_marks & 24811 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24812 continue; 24813 /* 24814 * Ensure we do not exceed the MTU 24815 * of the next route. 24816 */ 24817 if (ire1->ire_max_frag < max_frag) { 24818 ip_multirt_bad_mtu(ire1, max_frag); 24819 continue; 24820 } 24821 24822 /* Got one. */ 24823 IRE_REFHOLD(ire1); 24824 break; 24825 } 24826 IRB_REFRELE(irb); 24827 24828 if (ire1 != NULL) { 24829 next_mp = copyb(mp); 24830 if ((next_mp == NULL) || 24831 ((mp->b_cont != NULL) && 24832 ((next_mp->b_cont = 24833 dupmsg(mp->b_cont)) == NULL))) { 24834 freemsg(next_mp); 24835 next_mp = NULL; 24836 ire_refrele(ire1); 24837 ire1 = NULL; 24838 } 24839 } 24840 24841 /* Last multiroute ire; don't loop anymore. */ 24842 if (ire1 == NULL) { 24843 multirt_send = B_FALSE; 24844 } 24845 } 24846 24847 ll_hdr_len = 0; 24848 LOCK_IRE_FP_MP(ire); 24849 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24850 if (ll_hdr_mp != NULL) { 24851 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24852 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24853 } else { 24854 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24855 } 24856 24857 /* If there is a transmit header, get a copy for this frag. */ 24858 /* 24859 * TODO: should check db_ref before calling ip_carve_mp since 24860 * it might give us a dup. 24861 */ 24862 if (!ll_hdr_mp) { 24863 /* No xmit header. */ 24864 xmit_mp = mp; 24865 24866 /* We have a link-layer header that can fit in our mblk. */ 24867 } else if (mp->b_datap->db_ref == 1 && 24868 ll_hdr_len != 0 && 24869 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24870 /* M_DATA fastpath */ 24871 mp->b_rptr -= ll_hdr_len; 24872 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24873 xmit_mp = mp; 24874 24875 /* Corner case if copyb has failed */ 24876 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24877 UNLOCK_IRE_FP_MP(ire); 24878 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24879 freeb(hdr_mp); 24880 freemsg(mp); 24881 freemsg(mp_orig); 24882 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24883 "ip_wput_frag_end:(%S)", 24884 "discard"); 24885 24886 if (multirt_send) { 24887 ASSERT(ire1); 24888 ASSERT(next_mp); 24889 24890 freemsg(next_mp); 24891 ire_refrele(ire1); 24892 } 24893 if (save_ire != NULL) 24894 IRE_REFRELE(save_ire); 24895 24896 if (first_ire != NULL) 24897 ire_refrele(first_ire); 24898 return; 24899 24900 /* 24901 * Case of res_mp OR the fastpath mp can't fit 24902 * in the mblk 24903 */ 24904 } else { 24905 xmit_mp->b_cont = mp; 24906 if (DB_CRED(mp) != NULL) 24907 mblk_setcred(xmit_mp, DB_CRED(mp)); 24908 /* 24909 * Get priority marking, if any. 24910 * We propagate the CoS marking from the 24911 * original packet that went to QoS processing 24912 * in ip_wput_ire to the newly carved mp. 24913 */ 24914 if (DB_TYPE(xmit_mp) == M_DATA) 24915 xmit_mp->b_band = mp->b_band; 24916 } 24917 UNLOCK_IRE_FP_MP(ire); 24918 24919 q = ire->ire_stq; 24920 out_ill = (ill_t *)q->q_ptr; 24921 24922 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24923 24924 DTRACE_PROBE4(ip4__physical__out__start, 24925 ill_t *, NULL, ill_t *, out_ill, 24926 ipha_t *, ipha, mblk_t *, xmit_mp); 24927 24928 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24929 ipst->ips_ipv4firewall_physical_out, 24930 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24931 24932 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24933 24934 if (xmit_mp != NULL) { 24935 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24936 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24937 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24938 24939 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24940 24941 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24942 UPDATE_MIB(out_ill->ill_ip_mib, 24943 ipIfStatsHCOutOctets, i1); 24944 24945 if (pkt_type != OB_PKT) { 24946 /* 24947 * Update the packet count and MIB stats 24948 * of trailing RTF_MULTIRT ires. 24949 */ 24950 UPDATE_OB_PKT_COUNT(ire); 24951 BUMP_MIB(out_ill->ill_ip_mib, 24952 ipIfStatsOutFragReqds); 24953 } 24954 } 24955 24956 if (multirt_send) { 24957 /* 24958 * We are in a multiple send case; look for 24959 * the next ire and re-enter the loop. 24960 */ 24961 ASSERT(ire1); 24962 ASSERT(next_mp); 24963 /* REFRELE the current ire before looping */ 24964 ire_refrele(ire); 24965 ire = ire1; 24966 ire1 = NULL; 24967 mp = next_mp; 24968 next_mp = NULL; 24969 } 24970 } while (multirt_send); 24971 24972 ASSERT(ire1 == NULL); 24973 24974 /* Restore the original ire; we need it for the trailing frags */ 24975 if (save_ire != NULL) { 24976 /* REFRELE the last iterated ire */ 24977 ire_refrele(ire); 24978 /* save_ire has been REFHOLDed */ 24979 ire = save_ire; 24980 save_ire = NULL; 24981 q = ire->ire_stq; 24982 } 24983 24984 if (pkt_type == OB_PKT) { 24985 UPDATE_OB_PKT_COUNT(ire); 24986 } else { 24987 out_ill = (ill_t *)q->q_ptr; 24988 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24989 UPDATE_IB_PKT_COUNT(ire); 24990 } 24991 24992 /* Advance the offset to the second frag starting point. */ 24993 offset += len; 24994 /* 24995 * Update hdr_len from the copied header - there might be less options 24996 * in the later fragments. 24997 */ 24998 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24999 /* Loop until done. */ 25000 for (;;) { 25001 uint16_t offset_and_flags; 25002 uint16_t ip_len; 25003 25004 if (ip_data_end - offset > len) { 25005 /* 25006 * Carve off the appropriate amount from the original 25007 * datagram. 25008 */ 25009 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 25010 mp = NULL; 25011 break; 25012 } 25013 /* 25014 * More frags after this one. Get another copy 25015 * of the header. 25016 */ 25017 if (carve_mp->b_datap->db_ref == 1 && 25018 hdr_mp->b_wptr - hdr_mp->b_rptr < 25019 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 25020 /* Inline IP header */ 25021 carve_mp->b_rptr -= hdr_mp->b_wptr - 25022 hdr_mp->b_rptr; 25023 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 25024 hdr_mp->b_wptr - hdr_mp->b_rptr); 25025 mp = carve_mp; 25026 } else { 25027 if (!(mp = copyb(hdr_mp))) { 25028 freemsg(carve_mp); 25029 break; 25030 } 25031 /* Get priority marking, if any. */ 25032 mp->b_band = carve_mp->b_band; 25033 mp->b_cont = carve_mp; 25034 } 25035 ipha = (ipha_t *)mp->b_rptr; 25036 offset_and_flags = IPH_MF; 25037 } else { 25038 /* 25039 * Last frag. Consume the header. Set len to 25040 * the length of this last piece. 25041 */ 25042 len = ip_data_end - offset; 25043 25044 /* 25045 * Carve off the appropriate amount from the original 25046 * datagram. 25047 */ 25048 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 25049 mp = NULL; 25050 break; 25051 } 25052 if (carve_mp->b_datap->db_ref == 1 && 25053 hdr_mp->b_wptr - hdr_mp->b_rptr < 25054 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 25055 /* Inline IP header */ 25056 carve_mp->b_rptr -= hdr_mp->b_wptr - 25057 hdr_mp->b_rptr; 25058 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 25059 hdr_mp->b_wptr - hdr_mp->b_rptr); 25060 mp = carve_mp; 25061 freeb(hdr_mp); 25062 hdr_mp = mp; 25063 } else { 25064 mp = hdr_mp; 25065 /* Get priority marking, if any. */ 25066 mp->b_band = carve_mp->b_band; 25067 mp->b_cont = carve_mp; 25068 } 25069 ipha = (ipha_t *)mp->b_rptr; 25070 /* A frag of a frag might have IPH_MF non-zero */ 25071 offset_and_flags = 25072 ntohs(ipha->ipha_fragment_offset_and_flags) & 25073 IPH_MF; 25074 } 25075 offset_and_flags |= (uint16_t)(offset >> 3); 25076 offset_and_flags |= (uint16_t)frag_flag; 25077 /* Store the offset and flags in the IP header. */ 25078 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 25079 25080 /* Store the length in the IP header. */ 25081 ip_len = (uint16_t)(len + hdr_len); 25082 ipha->ipha_length = htons(ip_len); 25083 25084 /* 25085 * Set the IP header checksum. Note that mp is just 25086 * the header, so this is easy to pass to ip_csum. 25087 */ 25088 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 25089 25090 /* Attach a transmit header, if any, and ship it. */ 25091 if (pkt_type == OB_PKT) { 25092 UPDATE_OB_PKT_COUNT(ire); 25093 } else { 25094 out_ill = (ill_t *)q->q_ptr; 25095 BUMP_MIB(out_ill->ill_ip_mib, 25096 ipIfStatsHCOutForwDatagrams); 25097 UPDATE_IB_PKT_COUNT(ire); 25098 } 25099 25100 if (ire->ire_flags & RTF_MULTIRT) { 25101 irb = ire->ire_bucket; 25102 ASSERT(irb != NULL); 25103 25104 multirt_send = B_TRUE; 25105 25106 /* 25107 * Save the original ire; we will need to restore it 25108 * for the tailing frags. 25109 */ 25110 save_ire = ire; 25111 IRE_REFHOLD(save_ire); 25112 } 25113 /* 25114 * Emission loop for this fragment, similar 25115 * to what is done for the first fragment. 25116 */ 25117 do { 25118 if (multirt_send) { 25119 /* 25120 * We are in a multiple send case, need to get 25121 * the next ire and make a copy of the packet. 25122 */ 25123 ASSERT(irb != NULL); 25124 IRB_REFHOLD(irb); 25125 for (ire1 = ire->ire_next; 25126 ire1 != NULL; 25127 ire1 = ire1->ire_next) { 25128 if (!(ire1->ire_flags & RTF_MULTIRT)) 25129 continue; 25130 if (ire1->ire_addr != ire->ire_addr) 25131 continue; 25132 if (ire1->ire_marks & 25133 (IRE_MARK_CONDEMNED| 25134 IRE_MARK_HIDDEN)) { 25135 continue; 25136 } 25137 /* 25138 * Ensure we do not exceed the MTU 25139 * of the next route. 25140 */ 25141 if (ire1->ire_max_frag < max_frag) { 25142 ip_multirt_bad_mtu(ire1, 25143 max_frag); 25144 continue; 25145 } 25146 25147 /* Got one. */ 25148 IRE_REFHOLD(ire1); 25149 break; 25150 } 25151 IRB_REFRELE(irb); 25152 25153 if (ire1 != NULL) { 25154 next_mp = copyb(mp); 25155 if ((next_mp == NULL) || 25156 ((mp->b_cont != NULL) && 25157 ((next_mp->b_cont = 25158 dupmsg(mp->b_cont)) == NULL))) { 25159 freemsg(next_mp); 25160 next_mp = NULL; 25161 ire_refrele(ire1); 25162 ire1 = NULL; 25163 } 25164 } 25165 25166 /* Last multiroute ire; don't loop anymore. */ 25167 if (ire1 == NULL) { 25168 multirt_send = B_FALSE; 25169 } 25170 } 25171 25172 /* Update transmit header */ 25173 ll_hdr_len = 0; 25174 LOCK_IRE_FP_MP(ire); 25175 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 25176 if (ll_hdr_mp != NULL) { 25177 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 25178 ll_hdr_len = MBLKL(ll_hdr_mp); 25179 } else { 25180 ll_hdr_mp = ire->ire_nce->nce_res_mp; 25181 } 25182 25183 if (!ll_hdr_mp) { 25184 xmit_mp = mp; 25185 25186 /* 25187 * We have link-layer header that can fit in 25188 * our mblk. 25189 */ 25190 } else if (mp->b_datap->db_ref == 1 && 25191 ll_hdr_len != 0 && 25192 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 25193 /* M_DATA fastpath */ 25194 mp->b_rptr -= ll_hdr_len; 25195 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 25196 ll_hdr_len); 25197 xmit_mp = mp; 25198 25199 /* 25200 * Case of res_mp OR the fastpath mp can't fit 25201 * in the mblk 25202 */ 25203 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 25204 xmit_mp->b_cont = mp; 25205 if (DB_CRED(mp) != NULL) 25206 mblk_setcred(xmit_mp, DB_CRED(mp)); 25207 /* Get priority marking, if any. */ 25208 if (DB_TYPE(xmit_mp) == M_DATA) 25209 xmit_mp->b_band = mp->b_band; 25210 25211 /* Corner case if copyb failed */ 25212 } else { 25213 /* 25214 * Exit both the replication and 25215 * fragmentation loops. 25216 */ 25217 UNLOCK_IRE_FP_MP(ire); 25218 goto drop_pkt; 25219 } 25220 UNLOCK_IRE_FP_MP(ire); 25221 25222 mp1 = mp; 25223 out_ill = (ill_t *)q->q_ptr; 25224 25225 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 25226 25227 DTRACE_PROBE4(ip4__physical__out__start, 25228 ill_t *, NULL, ill_t *, out_ill, 25229 ipha_t *, ipha, mblk_t *, xmit_mp); 25230 25231 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25232 ipst->ips_ipv4firewall_physical_out, 25233 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 25234 25235 DTRACE_PROBE1(ip4__physical__out__end, 25236 mblk_t *, xmit_mp); 25237 25238 if (mp != mp1 && hdr_mp == mp1) 25239 hdr_mp = mp; 25240 if (mp != mp1 && mp_orig == mp1) 25241 mp_orig = mp; 25242 25243 if (xmit_mp != NULL) { 25244 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 25245 NULL, void_ip_t *, ipha, 25246 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 25247 ipha, ip6_t *, NULL, int, 0); 25248 25249 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 25250 25251 BUMP_MIB(out_ill->ill_ip_mib, 25252 ipIfStatsHCOutTransmits); 25253 UPDATE_MIB(out_ill->ill_ip_mib, 25254 ipIfStatsHCOutOctets, ip_len); 25255 25256 if (pkt_type != OB_PKT) { 25257 /* 25258 * Update the packet count of trailing 25259 * RTF_MULTIRT ires. 25260 */ 25261 UPDATE_OB_PKT_COUNT(ire); 25262 } 25263 } 25264 25265 /* All done if we just consumed the hdr_mp. */ 25266 if (mp == hdr_mp) { 25267 last_frag = B_TRUE; 25268 BUMP_MIB(out_ill->ill_ip_mib, 25269 ipIfStatsOutFragOKs); 25270 } 25271 25272 if (multirt_send) { 25273 /* 25274 * We are in a multiple send case; look for 25275 * the next ire and re-enter the loop. 25276 */ 25277 ASSERT(ire1); 25278 ASSERT(next_mp); 25279 /* REFRELE the current ire before looping */ 25280 ire_refrele(ire); 25281 ire = ire1; 25282 ire1 = NULL; 25283 q = ire->ire_stq; 25284 mp = next_mp; 25285 next_mp = NULL; 25286 } 25287 } while (multirt_send); 25288 /* 25289 * Restore the original ire; we need it for the 25290 * trailing frags 25291 */ 25292 if (save_ire != NULL) { 25293 ASSERT(ire1 == NULL); 25294 /* REFRELE the last iterated ire */ 25295 ire_refrele(ire); 25296 /* save_ire has been REFHOLDed */ 25297 ire = save_ire; 25298 q = ire->ire_stq; 25299 save_ire = NULL; 25300 } 25301 25302 if (last_frag) { 25303 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25304 "ip_wput_frag_end:(%S)", 25305 "consumed hdr_mp"); 25306 25307 if (first_ire != NULL) 25308 ire_refrele(first_ire); 25309 return; 25310 } 25311 /* Otherwise, advance and loop. */ 25312 offset += len; 25313 } 25314 25315 drop_pkt: 25316 /* Clean up following allocation failure. */ 25317 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25318 freemsg(mp); 25319 if (mp != hdr_mp) 25320 freeb(hdr_mp); 25321 if (mp != mp_orig) 25322 freemsg(mp_orig); 25323 25324 if (save_ire != NULL) 25325 IRE_REFRELE(save_ire); 25326 if (first_ire != NULL) 25327 ire_refrele(first_ire); 25328 25329 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25330 "ip_wput_frag_end:(%S)", 25331 "end--alloc failure"); 25332 } 25333 25334 /* 25335 * Copy the header plus those options which have the copy bit set 25336 */ 25337 static mblk_t * 25338 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25339 { 25340 mblk_t *mp; 25341 uchar_t *up; 25342 25343 /* 25344 * Quick check if we need to look for options without the copy bit 25345 * set 25346 */ 25347 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25348 if (!mp) 25349 return (mp); 25350 mp->b_rptr += ipst->ips_ip_wroff_extra; 25351 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25352 bcopy(rptr, mp->b_rptr, hdr_len); 25353 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25354 return (mp); 25355 } 25356 up = mp->b_rptr; 25357 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25358 up += IP_SIMPLE_HDR_LENGTH; 25359 rptr += IP_SIMPLE_HDR_LENGTH; 25360 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25361 while (hdr_len > 0) { 25362 uint32_t optval; 25363 uint32_t optlen; 25364 25365 optval = *rptr; 25366 if (optval == IPOPT_EOL) 25367 break; 25368 if (optval == IPOPT_NOP) 25369 optlen = 1; 25370 else 25371 optlen = rptr[1]; 25372 if (optval & IPOPT_COPY) { 25373 bcopy(rptr, up, optlen); 25374 up += optlen; 25375 } 25376 rptr += optlen; 25377 hdr_len -= optlen; 25378 } 25379 /* 25380 * Make sure that we drop an even number of words by filling 25381 * with EOL to the next word boundary. 25382 */ 25383 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25384 hdr_len & 0x3; hdr_len++) 25385 *up++ = IPOPT_EOL; 25386 mp->b_wptr = up; 25387 /* Update header length */ 25388 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25389 return (mp); 25390 } 25391 25392 /* 25393 * Delivery to local recipients including fanout to multiple recipients. 25394 * Does not do checksumming of UDP/TCP. 25395 * Note: q should be the read side queue for either the ill or conn. 25396 * Note: rq should be the read side q for the lower (ill) stream. 25397 * We don't send packets to IPPF processing, thus the last argument 25398 * to all the fanout calls are B_FALSE. 25399 */ 25400 void 25401 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25402 int fanout_flags, zoneid_t zoneid) 25403 { 25404 uint32_t protocol; 25405 mblk_t *first_mp; 25406 boolean_t mctl_present; 25407 int ire_type; 25408 #define rptr ((uchar_t *)ipha) 25409 ip_stack_t *ipst = ill->ill_ipst; 25410 25411 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25412 "ip_wput_local_start: q %p", q); 25413 25414 if (ire != NULL) { 25415 ire_type = ire->ire_type; 25416 } else { 25417 /* 25418 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25419 * packet is not multicast, we can't tell the ire type. 25420 */ 25421 ASSERT(CLASSD(ipha->ipha_dst)); 25422 ire_type = IRE_BROADCAST; 25423 } 25424 25425 first_mp = mp; 25426 if (first_mp->b_datap->db_type == M_CTL) { 25427 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25428 if (!io->ipsec_out_secure) { 25429 /* 25430 * This ipsec_out_t was allocated in ip_wput 25431 * for multicast packets to store the ill_index. 25432 * As this is being delivered locally, we don't 25433 * need this anymore. 25434 */ 25435 mp = first_mp->b_cont; 25436 freeb(first_mp); 25437 first_mp = mp; 25438 mctl_present = B_FALSE; 25439 } else { 25440 /* 25441 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25442 * security properties for the looped-back packet. 25443 */ 25444 mctl_present = B_TRUE; 25445 mp = first_mp->b_cont; 25446 ASSERT(mp != NULL); 25447 ipsec_out_to_in(first_mp); 25448 } 25449 } else { 25450 mctl_present = B_FALSE; 25451 } 25452 25453 DTRACE_PROBE4(ip4__loopback__in__start, 25454 ill_t *, ill, ill_t *, NULL, 25455 ipha_t *, ipha, mblk_t *, first_mp); 25456 25457 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25458 ipst->ips_ipv4firewall_loopback_in, 25459 ill, NULL, ipha, first_mp, mp, 0, ipst); 25460 25461 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25462 25463 if (first_mp == NULL) 25464 return; 25465 25466 if (ipst->ips_ipobs_enabled) { 25467 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25468 zoneid_t stackzoneid = netstackid_to_zoneid( 25469 ipst->ips_netstack->netstack_stackid); 25470 25471 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25472 /* 25473 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25474 * address. Restrict the lookup below to the destination zone. 25475 */ 25476 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25477 lookup_zoneid = zoneid; 25478 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25479 lookup_zoneid); 25480 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25481 IPV4_VERSION, 0, ipst); 25482 } 25483 25484 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25485 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25486 int, 1); 25487 25488 ipst->ips_loopback_packets++; 25489 25490 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25491 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25492 if (!IS_SIMPLE_IPH(ipha)) { 25493 ip_wput_local_options(ipha, ipst); 25494 } 25495 25496 protocol = ipha->ipha_protocol; 25497 switch (protocol) { 25498 case IPPROTO_ICMP: { 25499 ire_t *ire_zone; 25500 ilm_t *ilm; 25501 mblk_t *mp1; 25502 zoneid_t last_zoneid; 25503 25504 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25505 ASSERT(ire_type == IRE_BROADCAST); 25506 /* 25507 * In the multicast case, applications may have joined 25508 * the group from different zones, so we need to deliver 25509 * the packet to each of them. Loop through the 25510 * multicast memberships structures (ilm) on the receive 25511 * ill and send a copy of the packet up each matching 25512 * one. However, we don't do this for multicasts sent on 25513 * the loopback interface (PHYI_LOOPBACK flag set) as 25514 * they must stay in the sender's zone. 25515 * 25516 * ilm_add_v6() ensures that ilms in the same zone are 25517 * contiguous in the ill_ilm list. We use this property 25518 * to avoid sending duplicates needed when two 25519 * applications in the same zone join the same group on 25520 * different logical interfaces: we ignore the ilm if 25521 * it's zoneid is the same as the last matching one. 25522 * In addition, the sending of the packet for 25523 * ire_zoneid is delayed until all of the other ilms 25524 * have been exhausted. 25525 */ 25526 last_zoneid = -1; 25527 ILM_WALKER_HOLD(ill); 25528 for (ilm = ill->ill_ilm; ilm != NULL; 25529 ilm = ilm->ilm_next) { 25530 if ((ilm->ilm_flags & ILM_DELETED) || 25531 ipha->ipha_dst != ilm->ilm_addr || 25532 ilm->ilm_zoneid == last_zoneid || 25533 ilm->ilm_zoneid == zoneid || 25534 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25535 continue; 25536 mp1 = ip_copymsg(first_mp); 25537 if (mp1 == NULL) 25538 continue; 25539 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25540 mctl_present, B_FALSE, ill, 25541 ilm->ilm_zoneid); 25542 last_zoneid = ilm->ilm_zoneid; 25543 } 25544 ILM_WALKER_RELE(ill); 25545 /* 25546 * Loopback case: the sending endpoint has 25547 * IP_MULTICAST_LOOP disabled, therefore we don't 25548 * dispatch the multicast packet to the sending zone. 25549 */ 25550 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25551 freemsg(first_mp); 25552 return; 25553 } 25554 } else if (ire_type == IRE_BROADCAST) { 25555 /* 25556 * In the broadcast case, there may be many zones 25557 * which need a copy of the packet delivered to them. 25558 * There is one IRE_BROADCAST per broadcast address 25559 * and per zone; we walk those using a helper function. 25560 * In addition, the sending of the packet for zoneid is 25561 * delayed until all of the other ires have been 25562 * processed. 25563 */ 25564 IRB_REFHOLD(ire->ire_bucket); 25565 ire_zone = NULL; 25566 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25567 ire)) != NULL) { 25568 mp1 = ip_copymsg(first_mp); 25569 if (mp1 == NULL) 25570 continue; 25571 25572 UPDATE_IB_PKT_COUNT(ire_zone); 25573 ire_zone->ire_last_used_time = lbolt; 25574 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25575 mctl_present, B_FALSE, ill, 25576 ire_zone->ire_zoneid); 25577 } 25578 IRB_REFRELE(ire->ire_bucket); 25579 } 25580 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25581 0, mctl_present, B_FALSE, ill, zoneid); 25582 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25583 "ip_wput_local_end: q %p (%S)", 25584 q, "icmp"); 25585 return; 25586 } 25587 case IPPROTO_IGMP: 25588 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25589 /* Bad packet - discarded by igmp_input */ 25590 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25591 "ip_wput_local_end: q %p (%S)", 25592 q, "igmp_input--bad packet"); 25593 if (mctl_present) 25594 freeb(first_mp); 25595 return; 25596 } 25597 /* 25598 * igmp_input() may have returned the pulled up message. 25599 * So first_mp and ipha need to be reinitialized. 25600 */ 25601 ipha = (ipha_t *)mp->b_rptr; 25602 if (mctl_present) 25603 first_mp->b_cont = mp; 25604 else 25605 first_mp = mp; 25606 /* deliver to local raw users */ 25607 break; 25608 case IPPROTO_ENCAP: 25609 /* 25610 * This case is covered by either ip_fanout_proto, or by 25611 * the above security processing for self-tunneled packets. 25612 */ 25613 break; 25614 case IPPROTO_UDP: { 25615 uint16_t *up; 25616 uint32_t ports; 25617 25618 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25619 UDP_PORTS_OFFSET); 25620 /* Force a 'valid' checksum. */ 25621 up[3] = 0; 25622 25623 ports = *(uint32_t *)up; 25624 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25625 (ire_type == IRE_BROADCAST), 25626 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25627 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25628 ill, zoneid); 25629 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25630 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25631 return; 25632 } 25633 case IPPROTO_TCP: { 25634 25635 /* 25636 * For TCP, discard broadcast packets. 25637 */ 25638 if ((ushort_t)ire_type == IRE_BROADCAST) { 25639 freemsg(first_mp); 25640 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25641 ip2dbg(("ip_wput_local: discard broadcast\n")); 25642 return; 25643 } 25644 25645 if (mp->b_datap->db_type == M_DATA) { 25646 /* 25647 * M_DATA mblk, so init mblk (chain) for no struio(). 25648 */ 25649 mblk_t *mp1 = mp; 25650 25651 do { 25652 mp1->b_datap->db_struioflag = 0; 25653 } while ((mp1 = mp1->b_cont) != NULL); 25654 } 25655 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25656 <= mp->b_wptr); 25657 ip_fanout_tcp(q, first_mp, ill, ipha, 25658 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25659 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25660 mctl_present, B_FALSE, zoneid); 25661 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25662 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25663 return; 25664 } 25665 case IPPROTO_SCTP: 25666 { 25667 uint32_t ports; 25668 25669 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25670 ip_fanout_sctp(first_mp, ill, ipha, ports, 25671 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25672 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25673 return; 25674 } 25675 25676 default: 25677 break; 25678 } 25679 /* 25680 * Find a client for some other protocol. We give 25681 * copies to multiple clients, if more than one is 25682 * bound. 25683 */ 25684 ip_fanout_proto(q, first_mp, ill, ipha, 25685 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25686 mctl_present, B_FALSE, ill, zoneid); 25687 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25688 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25689 #undef rptr 25690 } 25691 25692 /* 25693 * Update any source route, record route, or timestamp options. 25694 * Check that we are at end of strict source route. 25695 * The options have been sanity checked by ip_wput_options(). 25696 */ 25697 static void 25698 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25699 { 25700 ipoptp_t opts; 25701 uchar_t *opt; 25702 uint8_t optval; 25703 uint8_t optlen; 25704 ipaddr_t dst; 25705 uint32_t ts; 25706 ire_t *ire; 25707 timestruc_t now; 25708 25709 ip2dbg(("ip_wput_local_options\n")); 25710 for (optval = ipoptp_first(&opts, ipha); 25711 optval != IPOPT_EOL; 25712 optval = ipoptp_next(&opts)) { 25713 opt = opts.ipoptp_cur; 25714 optlen = opts.ipoptp_len; 25715 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25716 switch (optval) { 25717 uint32_t off; 25718 case IPOPT_SSRR: 25719 case IPOPT_LSRR: 25720 off = opt[IPOPT_OFFSET]; 25721 off--; 25722 if (optlen < IP_ADDR_LEN || 25723 off > optlen - IP_ADDR_LEN) { 25724 /* End of source route */ 25725 break; 25726 } 25727 /* 25728 * This will only happen if two consecutive entries 25729 * in the source route contains our address or if 25730 * it is a packet with a loose source route which 25731 * reaches us before consuming the whole source route 25732 */ 25733 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25734 if (optval == IPOPT_SSRR) { 25735 return; 25736 } 25737 /* 25738 * Hack: instead of dropping the packet truncate the 25739 * source route to what has been used by filling the 25740 * rest with IPOPT_NOP. 25741 */ 25742 opt[IPOPT_OLEN] = (uint8_t)off; 25743 while (off < optlen) { 25744 opt[off++] = IPOPT_NOP; 25745 } 25746 break; 25747 case IPOPT_RR: 25748 off = opt[IPOPT_OFFSET]; 25749 off--; 25750 if (optlen < IP_ADDR_LEN || 25751 off > optlen - IP_ADDR_LEN) { 25752 /* No more room - ignore */ 25753 ip1dbg(( 25754 "ip_wput_forward_options: end of RR\n")); 25755 break; 25756 } 25757 dst = htonl(INADDR_LOOPBACK); 25758 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25759 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25760 break; 25761 case IPOPT_TS: 25762 /* Insert timestamp if there is romm */ 25763 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25764 case IPOPT_TS_TSONLY: 25765 off = IPOPT_TS_TIMELEN; 25766 break; 25767 case IPOPT_TS_PRESPEC: 25768 case IPOPT_TS_PRESPEC_RFC791: 25769 /* Verify that the address matched */ 25770 off = opt[IPOPT_OFFSET] - 1; 25771 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25772 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25773 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25774 ipst); 25775 if (ire == NULL) { 25776 /* Not for us */ 25777 break; 25778 } 25779 ire_refrele(ire); 25780 /* FALLTHRU */ 25781 case IPOPT_TS_TSANDADDR: 25782 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25783 break; 25784 default: 25785 /* 25786 * ip_*put_options should have already 25787 * dropped this packet. 25788 */ 25789 cmn_err(CE_PANIC, "ip_wput_local_options: " 25790 "unknown IT - bug in ip_wput_options?\n"); 25791 return; /* Keep "lint" happy */ 25792 } 25793 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25794 /* Increase overflow counter */ 25795 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25796 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25797 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25798 (off << 4); 25799 break; 25800 } 25801 off = opt[IPOPT_OFFSET] - 1; 25802 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25803 case IPOPT_TS_PRESPEC: 25804 case IPOPT_TS_PRESPEC_RFC791: 25805 case IPOPT_TS_TSANDADDR: 25806 dst = htonl(INADDR_LOOPBACK); 25807 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25808 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25809 /* FALLTHRU */ 25810 case IPOPT_TS_TSONLY: 25811 off = opt[IPOPT_OFFSET] - 1; 25812 /* Compute # of milliseconds since midnight */ 25813 gethrestime(&now); 25814 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25815 now.tv_nsec / (NANOSEC / MILLISEC); 25816 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25817 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25818 break; 25819 } 25820 break; 25821 } 25822 } 25823 } 25824 25825 /* 25826 * Send out a multicast packet on interface ipif. 25827 * The sender does not have an conn. 25828 * Caller verifies that this isn't a PHYI_LOOPBACK. 25829 */ 25830 void 25831 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25832 { 25833 ipha_t *ipha; 25834 ire_t *ire; 25835 ipaddr_t dst; 25836 mblk_t *first_mp; 25837 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25838 25839 /* igmp_sendpkt always allocates a ipsec_out_t */ 25840 ASSERT(mp->b_datap->db_type == M_CTL); 25841 ASSERT(!ipif->ipif_isv6); 25842 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25843 25844 first_mp = mp; 25845 mp = first_mp->b_cont; 25846 ASSERT(mp->b_datap->db_type == M_DATA); 25847 ipha = (ipha_t *)mp->b_rptr; 25848 25849 /* 25850 * Find an IRE which matches the destination and the outgoing 25851 * queue (i.e. the outgoing interface.) 25852 */ 25853 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25854 dst = ipif->ipif_pp_dst_addr; 25855 else 25856 dst = ipha->ipha_dst; 25857 /* 25858 * The source address has already been initialized by the 25859 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25860 * be sufficient rather than MATCH_IRE_IPIF. 25861 * 25862 * This function is used for sending IGMP packets. We need 25863 * to make sure that we send the packet out of the interface 25864 * (ipif->ipif_ill) where we joined the group. This is to 25865 * prevent from switches doing IGMP snooping to send us multicast 25866 * packets for a given group on the interface we have joined. 25867 * If we can't find an ire, igmp_sendpkt has already initialized 25868 * ipsec_out_attach_if so that this will not be load spread in 25869 * ip_newroute_ipif. 25870 */ 25871 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25872 MATCH_IRE_ILL, ipst); 25873 if (!ire) { 25874 /* 25875 * Mark this packet to make it be delivered to 25876 * ip_wput_ire after the new ire has been 25877 * created. 25878 */ 25879 mp->b_prev = NULL; 25880 mp->b_next = NULL; 25881 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25882 zoneid, &zero_info); 25883 return; 25884 } 25885 25886 /* 25887 * Honor the RTF_SETSRC flag; this is the only case 25888 * where we force this addr whatever the current src addr is, 25889 * because this address is set by igmp_sendpkt(), and 25890 * cannot be specified by any user. 25891 */ 25892 if (ire->ire_flags & RTF_SETSRC) { 25893 ipha->ipha_src = ire->ire_src_addr; 25894 } 25895 25896 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25897 } 25898 25899 /* 25900 * NOTE : This function does not ire_refrele the ire argument passed in. 25901 * 25902 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25903 * failure. The nce_fp_mp can vanish any time in the case of 25904 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25905 * the ire_lock to access the nce_fp_mp in this case. 25906 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25907 * prepending a fastpath message IPQoS processing must precede it, we also set 25908 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25909 * (IPQoS might have set the b_band for CoS marking). 25910 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25911 * must follow it so that IPQoS can mark the dl_priority field for CoS 25912 * marking, if needed. 25913 */ 25914 static mblk_t * 25915 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25916 uint32_t ill_index, ipha_t **iphap) 25917 { 25918 uint_t hlen; 25919 ipha_t *ipha; 25920 mblk_t *mp1; 25921 boolean_t qos_done = B_FALSE; 25922 uchar_t *ll_hdr; 25923 ip_stack_t *ipst = ire->ire_ipst; 25924 25925 #define rptr ((uchar_t *)ipha) 25926 25927 ipha = (ipha_t *)mp->b_rptr; 25928 hlen = 0; 25929 LOCK_IRE_FP_MP(ire); 25930 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25931 ASSERT(DB_TYPE(mp1) == M_DATA); 25932 /* Initiate IPPF processing */ 25933 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25934 UNLOCK_IRE_FP_MP(ire); 25935 ip_process(proc, &mp, ill_index); 25936 if (mp == NULL) 25937 return (NULL); 25938 25939 ipha = (ipha_t *)mp->b_rptr; 25940 LOCK_IRE_FP_MP(ire); 25941 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25942 qos_done = B_TRUE; 25943 goto no_fp_mp; 25944 } 25945 ASSERT(DB_TYPE(mp1) == M_DATA); 25946 } 25947 hlen = MBLKL(mp1); 25948 /* 25949 * Check if we have enough room to prepend fastpath 25950 * header 25951 */ 25952 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25953 ll_hdr = rptr - hlen; 25954 bcopy(mp1->b_rptr, ll_hdr, hlen); 25955 /* 25956 * Set the b_rptr to the start of the link layer 25957 * header 25958 */ 25959 mp->b_rptr = ll_hdr; 25960 mp1 = mp; 25961 } else { 25962 mp1 = copyb(mp1); 25963 if (mp1 == NULL) 25964 goto unlock_err; 25965 mp1->b_band = mp->b_band; 25966 mp1->b_cont = mp; 25967 /* 25968 * certain system generated traffic may not 25969 * have cred/label in ip header block. This 25970 * is true even for a labeled system. But for 25971 * labeled traffic, inherit the label in the 25972 * new header. 25973 */ 25974 if (DB_CRED(mp) != NULL) 25975 mblk_setcred(mp1, DB_CRED(mp)); 25976 /* 25977 * XXX disable ICK_VALID and compute checksum 25978 * here; can happen if nce_fp_mp changes and 25979 * it can't be copied now due to insufficient 25980 * space. (unlikely, fp mp can change, but it 25981 * does not increase in length) 25982 */ 25983 } 25984 UNLOCK_IRE_FP_MP(ire); 25985 } else { 25986 no_fp_mp: 25987 mp1 = copyb(ire->ire_nce->nce_res_mp); 25988 if (mp1 == NULL) { 25989 unlock_err: 25990 UNLOCK_IRE_FP_MP(ire); 25991 freemsg(mp); 25992 return (NULL); 25993 } 25994 UNLOCK_IRE_FP_MP(ire); 25995 mp1->b_cont = mp; 25996 /* 25997 * certain system generated traffic may not 25998 * have cred/label in ip header block. This 25999 * is true even for a labeled system. But for 26000 * labeled traffic, inherit the label in the 26001 * new header. 26002 */ 26003 if (DB_CRED(mp) != NULL) 26004 mblk_setcred(mp1, DB_CRED(mp)); 26005 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 26006 ip_process(proc, &mp1, ill_index); 26007 if (mp1 == NULL) 26008 return (NULL); 26009 26010 if (mp1->b_cont == NULL) 26011 ipha = NULL; 26012 else 26013 ipha = (ipha_t *)mp1->b_cont->b_rptr; 26014 } 26015 } 26016 26017 *iphap = ipha; 26018 return (mp1); 26019 #undef rptr 26020 } 26021 26022 /* 26023 * Finish the outbound IPsec processing for an IPv6 packet. This function 26024 * is called from ipsec_out_process() if the IPsec packet was processed 26025 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26026 * asynchronously. 26027 */ 26028 void 26029 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 26030 ire_t *ire_arg) 26031 { 26032 in6_addr_t *v6dstp; 26033 ire_t *ire; 26034 mblk_t *mp; 26035 ip6_t *ip6h1; 26036 uint_t ill_index; 26037 ipsec_out_t *io; 26038 boolean_t attach_if, hwaccel; 26039 uint32_t flags = IP6_NO_IPPOLICY; 26040 int match_flags; 26041 zoneid_t zoneid; 26042 boolean_t ill_need_rele = B_FALSE; 26043 boolean_t ire_need_rele = B_FALSE; 26044 ip_stack_t *ipst; 26045 26046 mp = ipsec_mp->b_cont; 26047 ip6h1 = (ip6_t *)mp->b_rptr; 26048 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26049 ASSERT(io->ipsec_out_ns != NULL); 26050 ipst = io->ipsec_out_ns->netstack_ip; 26051 ill_index = io->ipsec_out_ill_index; 26052 if (io->ipsec_out_reachable) { 26053 flags |= IPV6_REACHABILITY_CONFIRMATION; 26054 } 26055 attach_if = io->ipsec_out_attach_if; 26056 hwaccel = io->ipsec_out_accelerated; 26057 zoneid = io->ipsec_out_zoneid; 26058 ASSERT(zoneid != ALL_ZONES); 26059 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26060 /* Multicast addresses should have non-zero ill_index. */ 26061 v6dstp = &ip6h->ip6_dst; 26062 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 26063 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 26064 ASSERT(!attach_if || ill_index != 0); 26065 if (ill_index != 0) { 26066 if (ill == NULL) { 26067 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 26068 B_TRUE, ipst); 26069 26070 /* Failure case frees things for us. */ 26071 if (ill == NULL) 26072 return; 26073 26074 ill_need_rele = B_TRUE; 26075 } 26076 /* 26077 * If this packet needs to go out on a particular interface 26078 * honor it. 26079 */ 26080 if (attach_if) { 26081 match_flags = MATCH_IRE_ILL; 26082 26083 /* 26084 * Check if we need an ire that will not be 26085 * looked up by anybody else i.e. HIDDEN. 26086 */ 26087 if (ill_is_probeonly(ill)) { 26088 match_flags |= MATCH_IRE_MARK_HIDDEN; 26089 } 26090 } 26091 } 26092 ASSERT(mp != NULL); 26093 26094 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 26095 boolean_t unspec_src; 26096 ipif_t *ipif; 26097 26098 /* 26099 * Use the ill_index to get the right ill. 26100 */ 26101 unspec_src = io->ipsec_out_unspec_src; 26102 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26103 if (ipif == NULL) { 26104 if (ill_need_rele) 26105 ill_refrele(ill); 26106 freemsg(ipsec_mp); 26107 return; 26108 } 26109 26110 if (ire_arg != NULL) { 26111 ire = ire_arg; 26112 } else { 26113 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 26114 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26115 ire_need_rele = B_TRUE; 26116 } 26117 if (ire != NULL) { 26118 ipif_refrele(ipif); 26119 /* 26120 * XXX Do the multicast forwarding now, as the IPsec 26121 * processing has been done. 26122 */ 26123 goto send; 26124 } 26125 26126 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 26127 mp->b_prev = NULL; 26128 mp->b_next = NULL; 26129 26130 /* 26131 * If the IPsec packet was processed asynchronously, 26132 * drop it now. 26133 */ 26134 if (q == NULL) { 26135 if (ill_need_rele) 26136 ill_refrele(ill); 26137 freemsg(ipsec_mp); 26138 return; 26139 } 26140 26141 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 26142 unspec_src, zoneid); 26143 ipif_refrele(ipif); 26144 } else { 26145 if (attach_if) { 26146 ipif_t *ipif; 26147 26148 ipif = ipif_get_next_ipif(NULL, ill); 26149 if (ipif == NULL) { 26150 if (ill_need_rele) 26151 ill_refrele(ill); 26152 freemsg(ipsec_mp); 26153 return; 26154 } 26155 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 26156 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26157 ire_need_rele = B_TRUE; 26158 ipif_refrele(ipif); 26159 } else { 26160 if (ire_arg != NULL) { 26161 ire = ire_arg; 26162 } else { 26163 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 26164 ipst); 26165 ire_need_rele = B_TRUE; 26166 } 26167 } 26168 if (ire != NULL) 26169 goto send; 26170 /* 26171 * ire disappeared underneath. 26172 * 26173 * What we need to do here is the ip_newroute 26174 * logic to get the ire without doing the IPsec 26175 * processing. Follow the same old path. But this 26176 * time, ip_wput or ire_add_then_send will call us 26177 * directly as all the IPsec operations are done. 26178 */ 26179 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 26180 mp->b_prev = NULL; 26181 mp->b_next = NULL; 26182 26183 /* 26184 * If the IPsec packet was processed asynchronously, 26185 * drop it now. 26186 */ 26187 if (q == NULL) { 26188 if (ill_need_rele) 26189 ill_refrele(ill); 26190 freemsg(ipsec_mp); 26191 return; 26192 } 26193 26194 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 26195 zoneid, ipst); 26196 } 26197 if (ill != NULL && ill_need_rele) 26198 ill_refrele(ill); 26199 return; 26200 send: 26201 if (ill != NULL && ill_need_rele) 26202 ill_refrele(ill); 26203 26204 /* Local delivery */ 26205 if (ire->ire_stq == NULL) { 26206 ill_t *out_ill; 26207 ASSERT(q != NULL); 26208 26209 /* PFHooks: LOOPBACK_OUT */ 26210 out_ill = ire_to_ill(ire); 26211 26212 /* 26213 * DTrace this as ip:::send. A blocked packet will fire the 26214 * send probe, but not the receive probe. 26215 */ 26216 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26217 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 26218 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 26219 26220 DTRACE_PROBE4(ip6__loopback__out__start, 26221 ill_t *, NULL, ill_t *, out_ill, 26222 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 26223 26224 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 26225 ipst->ips_ipv6firewall_loopback_out, 26226 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 26227 26228 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 26229 26230 if (ipsec_mp != NULL) { 26231 ip_wput_local_v6(RD(q), out_ill, 26232 ip6h, ipsec_mp, ire, 0, zoneid); 26233 } 26234 if (ire_need_rele) 26235 ire_refrele(ire); 26236 return; 26237 } 26238 /* 26239 * Everything is done. Send it out on the wire. 26240 * We force the insertion of a fragment header using the 26241 * IPH_FRAG_HDR flag in two cases: 26242 * - after reception of an ICMPv6 "packet too big" message 26243 * with a MTU < 1280 (cf. RFC 2460 section 5) 26244 * - for multirouted IPv6 packets, so that the receiver can 26245 * discard duplicates according to their fragment identifier 26246 */ 26247 /* XXX fix flow control problems. */ 26248 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 26249 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 26250 if (hwaccel) { 26251 /* 26252 * hardware acceleration does not handle these 26253 * "slow path" cases. 26254 */ 26255 /* IPsec KSTATS: should bump bean counter here. */ 26256 if (ire_need_rele) 26257 ire_refrele(ire); 26258 freemsg(ipsec_mp); 26259 return; 26260 } 26261 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 26262 (mp->b_cont ? msgdsize(mp) : 26263 mp->b_wptr - (uchar_t *)ip6h)) { 26264 /* IPsec KSTATS: should bump bean counter here. */ 26265 ip0dbg(("Packet length mismatch: %d, %ld\n", 26266 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 26267 msgdsize(mp))); 26268 if (ire_need_rele) 26269 ire_refrele(ire); 26270 freemsg(ipsec_mp); 26271 return; 26272 } 26273 ASSERT(mp->b_prev == NULL); 26274 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26275 ntohs(ip6h->ip6_plen) + 26276 IPV6_HDR_LEN, ire->ire_max_frag)); 26277 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26278 ire->ire_max_frag); 26279 } else { 26280 UPDATE_OB_PKT_COUNT(ire); 26281 ire->ire_last_used_time = lbolt; 26282 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26283 } 26284 if (ire_need_rele) 26285 ire_refrele(ire); 26286 freeb(ipsec_mp); 26287 } 26288 26289 void 26290 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26291 { 26292 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26293 da_ipsec_t *hada; /* data attributes */ 26294 ill_t *ill = (ill_t *)q->q_ptr; 26295 26296 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26297 26298 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26299 /* IPsec KSTATS: Bump lose counter here! */ 26300 freemsg(mp); 26301 return; 26302 } 26303 26304 /* 26305 * It's an IPsec packet that must be 26306 * accelerated by the Provider, and the 26307 * outbound ill is IPsec acceleration capable. 26308 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26309 * to the ill. 26310 * IPsec KSTATS: should bump packet counter here. 26311 */ 26312 26313 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26314 if (hada_mp == NULL) { 26315 /* IPsec KSTATS: should bump packet counter here. */ 26316 freemsg(mp); 26317 return; 26318 } 26319 26320 hada_mp->b_datap->db_type = M_CTL; 26321 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26322 hada_mp->b_cont = mp; 26323 26324 hada = (da_ipsec_t *)hada_mp->b_rptr; 26325 bzero(hada, sizeof (da_ipsec_t)); 26326 hada->da_type = IPHADA_M_CTL; 26327 26328 putnext(q, hada_mp); 26329 } 26330 26331 /* 26332 * Finish the outbound IPsec processing. This function is called from 26333 * ipsec_out_process() if the IPsec packet was processed 26334 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26335 * asynchronously. 26336 */ 26337 void 26338 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26339 ire_t *ire_arg) 26340 { 26341 uint32_t v_hlen_tos_len; 26342 ipaddr_t dst; 26343 ipif_t *ipif = NULL; 26344 ire_t *ire; 26345 ire_t *ire1 = NULL; 26346 mblk_t *next_mp = NULL; 26347 uint32_t max_frag; 26348 boolean_t multirt_send = B_FALSE; 26349 mblk_t *mp; 26350 ipha_t *ipha1; 26351 uint_t ill_index; 26352 ipsec_out_t *io; 26353 boolean_t attach_if; 26354 int match_flags; 26355 irb_t *irb = NULL; 26356 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26357 zoneid_t zoneid; 26358 ipxmit_state_t pktxmit_state; 26359 ip_stack_t *ipst; 26360 26361 #ifdef _BIG_ENDIAN 26362 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26363 #else 26364 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26365 #endif 26366 26367 mp = ipsec_mp->b_cont; 26368 ipha1 = (ipha_t *)mp->b_rptr; 26369 ASSERT(mp != NULL); 26370 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26371 dst = ipha->ipha_dst; 26372 26373 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26374 ill_index = io->ipsec_out_ill_index; 26375 attach_if = io->ipsec_out_attach_if; 26376 zoneid = io->ipsec_out_zoneid; 26377 ASSERT(zoneid != ALL_ZONES); 26378 ipst = io->ipsec_out_ns->netstack_ip; 26379 ASSERT(io->ipsec_out_ns != NULL); 26380 26381 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26382 if (ill_index != 0) { 26383 if (ill == NULL) { 26384 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26385 ill_index, B_FALSE, ipst); 26386 26387 /* Failure case frees things for us. */ 26388 if (ill == NULL) 26389 return; 26390 26391 ill_need_rele = B_TRUE; 26392 } 26393 /* 26394 * If this packet needs to go out on a particular interface 26395 * honor it. 26396 */ 26397 if (attach_if) { 26398 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26399 26400 /* 26401 * Check if we need an ire that will not be 26402 * looked up by anybody else i.e. HIDDEN. 26403 */ 26404 if (ill_is_probeonly(ill)) { 26405 match_flags |= MATCH_IRE_MARK_HIDDEN; 26406 } 26407 } 26408 } 26409 26410 if (CLASSD(dst)) { 26411 boolean_t conn_dontroute; 26412 /* 26413 * Use the ill_index to get the right ipif. 26414 */ 26415 conn_dontroute = io->ipsec_out_dontroute; 26416 if (ill_index == 0) 26417 ipif = ipif_lookup_group(dst, zoneid, ipst); 26418 else 26419 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26420 if (ipif == NULL) { 26421 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26422 " multicast\n")); 26423 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26424 freemsg(ipsec_mp); 26425 goto done; 26426 } 26427 /* 26428 * ipha_src has already been intialized with the 26429 * value of the ipif in ip_wput. All we need now is 26430 * an ire to send this downstream. 26431 */ 26432 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26433 MBLK_GETLABEL(mp), match_flags, ipst); 26434 if (ire != NULL) { 26435 ill_t *ill1; 26436 /* 26437 * Do the multicast forwarding now, as the IPsec 26438 * processing has been done. 26439 */ 26440 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26441 (ill1 = ire_to_ill(ire))) { 26442 if (ip_mforward(ill1, ipha, mp)) { 26443 freemsg(ipsec_mp); 26444 ip1dbg(("ip_wput_ipsec_out: mforward " 26445 "failed\n")); 26446 ire_refrele(ire); 26447 goto done; 26448 } 26449 } 26450 goto send; 26451 } 26452 26453 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26454 mp->b_prev = NULL; 26455 mp->b_next = NULL; 26456 26457 /* 26458 * If the IPsec packet was processed asynchronously, 26459 * drop it now. 26460 */ 26461 if (q == NULL) { 26462 freemsg(ipsec_mp); 26463 goto done; 26464 } 26465 26466 /* 26467 * We may be using a wrong ipif to create the ire. 26468 * But it is okay as the source address is assigned 26469 * for the packet already. Next outbound packet would 26470 * create the IRE with the right IPIF in ip_wput. 26471 * 26472 * Also handle RTF_MULTIRT routes. 26473 */ 26474 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26475 zoneid, &zero_info); 26476 } else { 26477 if (attach_if) { 26478 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26479 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26480 } else { 26481 if (ire_arg != NULL) { 26482 ire = ire_arg; 26483 ire_need_rele = B_FALSE; 26484 } else { 26485 ire = ire_cache_lookup(dst, zoneid, 26486 MBLK_GETLABEL(mp), ipst); 26487 } 26488 } 26489 if (ire != NULL) { 26490 goto send; 26491 } 26492 26493 /* 26494 * ire disappeared underneath. 26495 * 26496 * What we need to do here is the ip_newroute 26497 * logic to get the ire without doing the IPsec 26498 * processing. Follow the same old path. But this 26499 * time, ip_wput or ire_add_then_put will call us 26500 * directly as all the IPsec operations are done. 26501 */ 26502 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26503 mp->b_prev = NULL; 26504 mp->b_next = NULL; 26505 26506 /* 26507 * If the IPsec packet was processed asynchronously, 26508 * drop it now. 26509 */ 26510 if (q == NULL) { 26511 freemsg(ipsec_mp); 26512 goto done; 26513 } 26514 26515 /* 26516 * Since we're going through ip_newroute() again, we 26517 * need to make sure we don't: 26518 * 26519 * 1.) Trigger the ASSERT() with the ipha_ident 26520 * overloading. 26521 * 2.) Redo transport-layer checksumming, since we've 26522 * already done all that to get this far. 26523 * 26524 * The easiest way not do either of the above is to set 26525 * the ipha_ident field to IP_HDR_INCLUDED. 26526 */ 26527 ipha->ipha_ident = IP_HDR_INCLUDED; 26528 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26529 zoneid, ipst); 26530 } 26531 goto done; 26532 send: 26533 if (ire->ire_stq == NULL) { 26534 ill_t *out_ill; 26535 /* 26536 * Loopbacks go through ip_wput_local except for one case. 26537 * We come here if we generate a icmp_frag_needed message 26538 * after IPsec processing is over. When this function calls 26539 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26540 * icmp_frag_needed. The message generated comes back here 26541 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26542 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26543 * source address as it is usually set in ip_wput_ire. As 26544 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26545 * and we end up here. We can't enter ip_wput_ire once the 26546 * IPsec processing is over and hence we need to do it here. 26547 */ 26548 ASSERT(q != NULL); 26549 UPDATE_OB_PKT_COUNT(ire); 26550 ire->ire_last_used_time = lbolt; 26551 if (ipha->ipha_src == 0) 26552 ipha->ipha_src = ire->ire_src_addr; 26553 26554 /* PFHooks: LOOPBACK_OUT */ 26555 out_ill = ire_to_ill(ire); 26556 26557 /* 26558 * DTrace this as ip:::send. A blocked packet will fire the 26559 * send probe, but not the receive probe. 26560 */ 26561 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26562 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26563 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26564 26565 DTRACE_PROBE4(ip4__loopback__out__start, 26566 ill_t *, NULL, ill_t *, out_ill, 26567 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26568 26569 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26570 ipst->ips_ipv4firewall_loopback_out, 26571 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26572 26573 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26574 26575 if (ipsec_mp != NULL) 26576 ip_wput_local(RD(q), out_ill, 26577 ipha, ipsec_mp, ire, 0, zoneid); 26578 if (ire_need_rele) 26579 ire_refrele(ire); 26580 goto done; 26581 } 26582 26583 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26584 /* 26585 * We are through with IPsec processing. 26586 * Fragment this and send it on the wire. 26587 */ 26588 if (io->ipsec_out_accelerated) { 26589 /* 26590 * The packet has been accelerated but must 26591 * be fragmented. This should not happen 26592 * since AH and ESP must not accelerate 26593 * packets that need fragmentation, however 26594 * the configuration could have changed 26595 * since the AH or ESP processing. 26596 * Drop packet. 26597 * IPsec KSTATS: bump bean counter here. 26598 */ 26599 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26600 "fragmented accelerated packet!\n")); 26601 freemsg(ipsec_mp); 26602 } else { 26603 ip_wput_ire_fragmentit(ipsec_mp, ire, 26604 zoneid, ipst, NULL); 26605 } 26606 if (ire_need_rele) 26607 ire_refrele(ire); 26608 goto done; 26609 } 26610 26611 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26612 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26613 (void *)ire->ire_ipif, (void *)ipif)); 26614 26615 /* 26616 * Multiroute the secured packet, unless IPsec really 26617 * requires the packet to go out only through a particular 26618 * interface. 26619 */ 26620 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26621 ire_t *first_ire; 26622 irb = ire->ire_bucket; 26623 ASSERT(irb != NULL); 26624 /* 26625 * This ire has been looked up as the one that 26626 * goes through the given ipif; 26627 * make sure we do not omit any other multiroute ire 26628 * that may be present in the bucket before this one. 26629 */ 26630 IRB_REFHOLD(irb); 26631 for (first_ire = irb->irb_ire; 26632 first_ire != NULL; 26633 first_ire = first_ire->ire_next) { 26634 if ((first_ire->ire_flags & RTF_MULTIRT) && 26635 (first_ire->ire_addr == ire->ire_addr) && 26636 !(first_ire->ire_marks & 26637 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26638 break; 26639 } 26640 } 26641 26642 if ((first_ire != NULL) && (first_ire != ire)) { 26643 /* 26644 * Don't change the ire if the packet must 26645 * be fragmented if sent via this new one. 26646 */ 26647 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26648 IRE_REFHOLD(first_ire); 26649 if (ire_need_rele) 26650 ire_refrele(ire); 26651 else 26652 ire_need_rele = B_TRUE; 26653 ire = first_ire; 26654 } 26655 } 26656 IRB_REFRELE(irb); 26657 26658 multirt_send = B_TRUE; 26659 max_frag = ire->ire_max_frag; 26660 } else { 26661 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26662 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26663 "flag, attach_if %d\n", attach_if)); 26664 } 26665 } 26666 26667 /* 26668 * In most cases, the emission loop below is entered only once. 26669 * Only in the case where the ire holds the RTF_MULTIRT 26670 * flag, we loop to process all RTF_MULTIRT ires in the 26671 * bucket, and send the packet through all crossed 26672 * RTF_MULTIRT routes. 26673 */ 26674 do { 26675 if (multirt_send) { 26676 /* 26677 * ire1 holds here the next ire to process in the 26678 * bucket. If multirouting is expected, 26679 * any non-RTF_MULTIRT ire that has the 26680 * right destination address is ignored. 26681 */ 26682 ASSERT(irb != NULL); 26683 IRB_REFHOLD(irb); 26684 for (ire1 = ire->ire_next; 26685 ire1 != NULL; 26686 ire1 = ire1->ire_next) { 26687 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26688 continue; 26689 if (ire1->ire_addr != ire->ire_addr) 26690 continue; 26691 if (ire1->ire_marks & 26692 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26693 continue; 26694 /* No loopback here */ 26695 if (ire1->ire_stq == NULL) 26696 continue; 26697 /* 26698 * Ensure we do not exceed the MTU 26699 * of the next route. 26700 */ 26701 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26702 ip_multirt_bad_mtu(ire1, max_frag); 26703 continue; 26704 } 26705 26706 IRE_REFHOLD(ire1); 26707 break; 26708 } 26709 IRB_REFRELE(irb); 26710 if (ire1 != NULL) { 26711 /* 26712 * We are in a multiple send case, need to 26713 * make a copy of the packet. 26714 */ 26715 next_mp = copymsg(ipsec_mp); 26716 if (next_mp == NULL) { 26717 ire_refrele(ire1); 26718 ire1 = NULL; 26719 } 26720 } 26721 } 26722 /* 26723 * Everything is done. Send it out on the wire 26724 * 26725 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26726 * either send it on the wire or, in the case of 26727 * HW acceleration, call ipsec_hw_putnext. 26728 */ 26729 if (ire->ire_nce && 26730 ire->ire_nce->nce_state != ND_REACHABLE) { 26731 DTRACE_PROBE2(ip__wput__ipsec__bail, 26732 (ire_t *), ire, (mblk_t *), ipsec_mp); 26733 /* 26734 * If ire's link-layer is unresolved (this 26735 * would only happen if the incomplete ire 26736 * was added to cachetable via forwarding path) 26737 * don't bother going to ip_xmit_v4. Just drop the 26738 * packet. 26739 * There is a slight risk here, in that, if we 26740 * have the forwarding path create an incomplete 26741 * IRE, then until the IRE is completed, any 26742 * transmitted IPsec packets will be dropped 26743 * instead of being queued waiting for resolution. 26744 * 26745 * But the likelihood of a forwarding packet and a wput 26746 * packet sending to the same dst at the same time 26747 * and there not yet be an ARP entry for it is small. 26748 * Furthermore, if this actually happens, it might 26749 * be likely that wput would generate multiple 26750 * packets (and forwarding would also have a train 26751 * of packets) for that destination. If this is 26752 * the case, some of them would have been dropped 26753 * anyway, since ARP only queues a few packets while 26754 * waiting for resolution 26755 * 26756 * NOTE: We should really call ip_xmit_v4, 26757 * and let it queue the packet and send the 26758 * ARP query and have ARP come back thus: 26759 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26760 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26761 * hw accel work. But it's too complex to get 26762 * the IPsec hw acceleration approach to fit 26763 * well with ip_xmit_v4 doing ARP without 26764 * doing IPsec simplification. For now, we just 26765 * poke ip_xmit_v4 to trigger the arp resolve, so 26766 * that we can continue with the send on the next 26767 * attempt. 26768 * 26769 * XXX THis should be revisited, when 26770 * the IPsec/IP interaction is cleaned up 26771 */ 26772 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26773 " - dropping packet\n")); 26774 freemsg(ipsec_mp); 26775 /* 26776 * Call ip_xmit_v4() to trigger ARP query 26777 * in case the nce_state is ND_INITIAL 26778 */ 26779 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26780 goto drop_pkt; 26781 } 26782 26783 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26784 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26785 mblk_t *, ipsec_mp); 26786 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26787 ipst->ips_ipv4firewall_physical_out, NULL, 26788 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26789 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26790 if (ipsec_mp == NULL) 26791 goto drop_pkt; 26792 26793 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26794 pktxmit_state = ip_xmit_v4(mp, ire, 26795 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26796 26797 if ((pktxmit_state == SEND_FAILED) || 26798 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26799 26800 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26801 drop_pkt: 26802 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26803 ipIfStatsOutDiscards); 26804 if (ire_need_rele) 26805 ire_refrele(ire); 26806 if (ire1 != NULL) { 26807 ire_refrele(ire1); 26808 freemsg(next_mp); 26809 } 26810 goto done; 26811 } 26812 26813 freeb(ipsec_mp); 26814 if (ire_need_rele) 26815 ire_refrele(ire); 26816 26817 if (ire1 != NULL) { 26818 ire = ire1; 26819 ire_need_rele = B_TRUE; 26820 ASSERT(next_mp); 26821 ipsec_mp = next_mp; 26822 mp = ipsec_mp->b_cont; 26823 ire1 = NULL; 26824 next_mp = NULL; 26825 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26826 } else { 26827 multirt_send = B_FALSE; 26828 } 26829 } while (multirt_send); 26830 done: 26831 if (ill != NULL && ill_need_rele) 26832 ill_refrele(ill); 26833 if (ipif != NULL) 26834 ipif_refrele(ipif); 26835 } 26836 26837 /* 26838 * Get the ill corresponding to the specified ire, and compare its 26839 * capabilities with the protocol and algorithms specified by the 26840 * the SA obtained from ipsec_out. If they match, annotate the 26841 * ipsec_out structure to indicate that the packet needs acceleration. 26842 * 26843 * 26844 * A packet is eligible for outbound hardware acceleration if the 26845 * following conditions are satisfied: 26846 * 26847 * 1. the packet will not be fragmented 26848 * 2. the provider supports the algorithm 26849 * 3. there is no pending control message being exchanged 26850 * 4. snoop is not attached 26851 * 5. the destination address is not a broadcast or multicast address. 26852 * 26853 * Rationale: 26854 * - Hardware drivers do not support fragmentation with 26855 * the current interface. 26856 * - snoop, multicast, and broadcast may result in exposure of 26857 * a cleartext datagram. 26858 * We check all five of these conditions here. 26859 * 26860 * XXX would like to nuke "ire_t *" parameter here; problem is that 26861 * IRE is only way to figure out if a v4 address is a broadcast and 26862 * thus ineligible for acceleration... 26863 */ 26864 static void 26865 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26866 { 26867 ipsec_out_t *io; 26868 mblk_t *data_mp; 26869 uint_t plen, overhead; 26870 ip_stack_t *ipst; 26871 26872 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26873 return; 26874 26875 if (ill == NULL) 26876 return; 26877 ipst = ill->ill_ipst; 26878 /* 26879 * Destination address is a broadcast or multicast. Punt. 26880 */ 26881 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26882 IRE_LOCAL))) 26883 return; 26884 26885 data_mp = ipsec_mp->b_cont; 26886 26887 if (ill->ill_isv6) { 26888 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26889 26890 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26891 return; 26892 26893 plen = ip6h->ip6_plen; 26894 } else { 26895 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26896 26897 if (CLASSD(ipha->ipha_dst)) 26898 return; 26899 26900 plen = ipha->ipha_length; 26901 } 26902 /* 26903 * Is there a pending DLPI control message being exchanged 26904 * between IP/IPsec and the DLS Provider? If there is, it 26905 * could be a SADB update, and the state of the DLS Provider 26906 * SADB might not be in sync with the SADB maintained by 26907 * IPsec. To avoid dropping packets or using the wrong keying 26908 * material, we do not accelerate this packet. 26909 */ 26910 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26911 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26912 "ill_dlpi_pending! don't accelerate packet\n")); 26913 return; 26914 } 26915 26916 /* 26917 * Is the Provider in promiscous mode? If it does, we don't 26918 * accelerate the packet since it will bounce back up to the 26919 * listeners in the clear. 26920 */ 26921 if (ill->ill_promisc_on_phys) { 26922 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26923 "ill in promiscous mode, don't accelerate packet\n")); 26924 return; 26925 } 26926 26927 /* 26928 * Will the packet require fragmentation? 26929 */ 26930 26931 /* 26932 * IPsec ESP note: this is a pessimistic estimate, but the same 26933 * as is used elsewhere. 26934 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26935 * + 2-byte trailer 26936 */ 26937 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26938 IPSEC_BASE_ESP_HDR_SIZE(sa); 26939 26940 if ((plen + overhead) > ill->ill_max_mtu) 26941 return; 26942 26943 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26944 26945 /* 26946 * Can the ill accelerate this IPsec protocol and algorithm 26947 * specified by the SA? 26948 */ 26949 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26950 ill->ill_isv6, sa, ipst->ips_netstack)) { 26951 return; 26952 } 26953 26954 /* 26955 * Tell AH or ESP that the outbound ill is capable of 26956 * accelerating this packet. 26957 */ 26958 io->ipsec_out_is_capab_ill = B_TRUE; 26959 } 26960 26961 /* 26962 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26963 * 26964 * If this function returns B_TRUE, the requested SA's have been filled 26965 * into the ipsec_out_*_sa pointers. 26966 * 26967 * If the function returns B_FALSE, the packet has been "consumed", most 26968 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26969 * 26970 * The SA references created by the protocol-specific "select" 26971 * function will be released when the ipsec_mp is freed, thanks to the 26972 * ipsec_out_free destructor -- see spd.c. 26973 */ 26974 static boolean_t 26975 ipsec_out_select_sa(mblk_t *ipsec_mp) 26976 { 26977 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26978 ipsec_out_t *io; 26979 ipsec_policy_t *pp; 26980 ipsec_action_t *ap; 26981 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26982 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26983 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26984 26985 if (!io->ipsec_out_secure) { 26986 /* 26987 * We came here by mistake. 26988 * Don't bother with ipsec processing 26989 * We should "discourage" this path in the future. 26990 */ 26991 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26992 return (B_FALSE); 26993 } 26994 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26995 ASSERT((io->ipsec_out_policy != NULL) || 26996 (io->ipsec_out_act != NULL)); 26997 26998 ASSERT(io->ipsec_out_failed == B_FALSE); 26999 27000 /* 27001 * IPsec processing has started. 27002 */ 27003 io->ipsec_out_proc_begin = B_TRUE; 27004 ap = io->ipsec_out_act; 27005 if (ap == NULL) { 27006 pp = io->ipsec_out_policy; 27007 ASSERT(pp != NULL); 27008 ap = pp->ipsp_act; 27009 ASSERT(ap != NULL); 27010 } 27011 27012 /* 27013 * We have an action. now, let's select SA's. 27014 * (In the future, we can cache this in the conn_t..) 27015 */ 27016 if (ap->ipa_want_esp) { 27017 if (io->ipsec_out_esp_sa == NULL) { 27018 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 27019 IPPROTO_ESP); 27020 } 27021 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 27022 } 27023 27024 if (ap->ipa_want_ah) { 27025 if (io->ipsec_out_ah_sa == NULL) { 27026 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 27027 IPPROTO_AH); 27028 } 27029 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 27030 /* 27031 * The ESP and AH processing order needs to be preserved 27032 * when both protocols are required (ESP should be applied 27033 * before AH for an outbound packet). Force an ESP ACQUIRE 27034 * when both ESP and AH are required, and an AH ACQUIRE 27035 * is needed. 27036 */ 27037 if (ap->ipa_want_esp && need_ah_acquire) 27038 need_esp_acquire = B_TRUE; 27039 } 27040 27041 /* 27042 * Send an ACQUIRE (extended, regular, or both) if we need one. 27043 * Release SAs that got referenced, but will not be used until we 27044 * acquire _all_ of the SAs we need. 27045 */ 27046 if (need_ah_acquire || need_esp_acquire) { 27047 if (io->ipsec_out_ah_sa != NULL) { 27048 IPSA_REFRELE(io->ipsec_out_ah_sa); 27049 io->ipsec_out_ah_sa = NULL; 27050 } 27051 if (io->ipsec_out_esp_sa != NULL) { 27052 IPSA_REFRELE(io->ipsec_out_esp_sa); 27053 io->ipsec_out_esp_sa = NULL; 27054 } 27055 27056 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 27057 return (B_FALSE); 27058 } 27059 27060 return (B_TRUE); 27061 } 27062 27063 /* 27064 * Process an IPSEC_OUT message and see what you can 27065 * do with it. 27066 * IPQoS Notes: 27067 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 27068 * IPsec. 27069 * XXX would like to nuke ire_t. 27070 * XXX ill_index better be "real" 27071 */ 27072 void 27073 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 27074 { 27075 ipsec_out_t *io; 27076 ipsec_policy_t *pp; 27077 ipsec_action_t *ap; 27078 ipha_t *ipha; 27079 ip6_t *ip6h; 27080 mblk_t *mp; 27081 ill_t *ill; 27082 zoneid_t zoneid; 27083 ipsec_status_t ipsec_rc; 27084 boolean_t ill_need_rele = B_FALSE; 27085 ip_stack_t *ipst; 27086 ipsec_stack_t *ipss; 27087 27088 io = (ipsec_out_t *)ipsec_mp->b_rptr; 27089 ASSERT(io->ipsec_out_type == IPSEC_OUT); 27090 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 27091 ipst = io->ipsec_out_ns->netstack_ip; 27092 mp = ipsec_mp->b_cont; 27093 27094 /* 27095 * Initiate IPPF processing. We do it here to account for packets 27096 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 27097 * We can check for ipsec_out_proc_begin even for such packets, as 27098 * they will always be false (asserted below). 27099 */ 27100 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 27101 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 27102 io->ipsec_out_ill_index : ill_index); 27103 if (mp == NULL) { 27104 ip2dbg(("ipsec_out_process: packet dropped "\ 27105 "during IPPF processing\n")); 27106 freeb(ipsec_mp); 27107 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 27108 return; 27109 } 27110 } 27111 27112 if (!io->ipsec_out_secure) { 27113 /* 27114 * We came here by mistake. 27115 * Don't bother with ipsec processing 27116 * Should "discourage" this path in the future. 27117 */ 27118 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 27119 goto done; 27120 } 27121 ASSERT(io->ipsec_out_need_policy == B_FALSE); 27122 ASSERT((io->ipsec_out_policy != NULL) || 27123 (io->ipsec_out_act != NULL)); 27124 ASSERT(io->ipsec_out_failed == B_FALSE); 27125 27126 ipss = ipst->ips_netstack->netstack_ipsec; 27127 if (!ipsec_loaded(ipss)) { 27128 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 27129 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27130 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 27131 } else { 27132 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 27133 } 27134 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 27135 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 27136 &ipss->ipsec_dropper); 27137 return; 27138 } 27139 27140 /* 27141 * IPsec processing has started. 27142 */ 27143 io->ipsec_out_proc_begin = B_TRUE; 27144 ap = io->ipsec_out_act; 27145 if (ap == NULL) { 27146 pp = io->ipsec_out_policy; 27147 ASSERT(pp != NULL); 27148 ap = pp->ipsp_act; 27149 ASSERT(ap != NULL); 27150 } 27151 27152 /* 27153 * Save the outbound ill index. When the packet comes back 27154 * from IPsec, we make sure the ill hasn't changed or disappeared 27155 * before sending it the accelerated packet. 27156 */ 27157 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 27158 int ifindex; 27159 ill = ire_to_ill(ire); 27160 ifindex = ill->ill_phyint->phyint_ifindex; 27161 io->ipsec_out_capab_ill_index = ifindex; 27162 } 27163 27164 /* 27165 * The order of processing is first insert a IP header if needed. 27166 * Then insert the ESP header and then the AH header. 27167 */ 27168 if ((io->ipsec_out_se_done == B_FALSE) && 27169 (ap->ipa_want_se)) { 27170 /* 27171 * First get the outer IP header before sending 27172 * it to ESP. 27173 */ 27174 ipha_t *oipha, *iipha; 27175 mblk_t *outer_mp, *inner_mp; 27176 27177 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 27178 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 27179 "ipsec_out_process: " 27180 "Self-Encapsulation failed: Out of memory\n"); 27181 freemsg(ipsec_mp); 27182 if (ill != NULL) { 27183 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27184 } else { 27185 BUMP_MIB(&ipst->ips_ip_mib, 27186 ipIfStatsOutDiscards); 27187 } 27188 return; 27189 } 27190 inner_mp = ipsec_mp->b_cont; 27191 ASSERT(inner_mp->b_datap->db_type == M_DATA); 27192 oipha = (ipha_t *)outer_mp->b_rptr; 27193 iipha = (ipha_t *)inner_mp->b_rptr; 27194 *oipha = *iipha; 27195 outer_mp->b_wptr += sizeof (ipha_t); 27196 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 27197 sizeof (ipha_t)); 27198 oipha->ipha_protocol = IPPROTO_ENCAP; 27199 oipha->ipha_version_and_hdr_length = 27200 IP_SIMPLE_HDR_VERSION; 27201 oipha->ipha_hdr_checksum = 0; 27202 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 27203 outer_mp->b_cont = inner_mp; 27204 ipsec_mp->b_cont = outer_mp; 27205 27206 io->ipsec_out_se_done = B_TRUE; 27207 io->ipsec_out_tunnel = B_TRUE; 27208 } 27209 27210 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 27211 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 27212 !ipsec_out_select_sa(ipsec_mp)) 27213 return; 27214 27215 /* 27216 * By now, we know what SA's to use. Toss over to ESP & AH 27217 * to do the heavy lifting. 27218 */ 27219 zoneid = io->ipsec_out_zoneid; 27220 ASSERT(zoneid != ALL_ZONES); 27221 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 27222 ASSERT(io->ipsec_out_esp_sa != NULL); 27223 io->ipsec_out_esp_done = B_TRUE; 27224 /* 27225 * Note that since hw accel can only apply one transform, 27226 * not two, we skip hw accel for ESP if we also have AH 27227 * This is an design limitation of the interface 27228 * which should be revisited. 27229 */ 27230 ASSERT(ire != NULL); 27231 if (io->ipsec_out_ah_sa == NULL) { 27232 ill = (ill_t *)ire->ire_stq->q_ptr; 27233 ipsec_out_is_accelerated(ipsec_mp, 27234 io->ipsec_out_esp_sa, ill, ire); 27235 } 27236 27237 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 27238 switch (ipsec_rc) { 27239 case IPSEC_STATUS_SUCCESS: 27240 break; 27241 case IPSEC_STATUS_FAILED: 27242 if (ill != NULL) { 27243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27244 } else { 27245 BUMP_MIB(&ipst->ips_ip_mib, 27246 ipIfStatsOutDiscards); 27247 } 27248 /* FALLTHRU */ 27249 case IPSEC_STATUS_PENDING: 27250 return; 27251 } 27252 } 27253 27254 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27255 ASSERT(io->ipsec_out_ah_sa != NULL); 27256 io->ipsec_out_ah_done = B_TRUE; 27257 if (ire == NULL) { 27258 int idx = io->ipsec_out_capab_ill_index; 27259 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27260 NULL, NULL, NULL, NULL, ipst); 27261 ill_need_rele = B_TRUE; 27262 } else { 27263 ill = (ill_t *)ire->ire_stq->q_ptr; 27264 } 27265 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27266 ire); 27267 27268 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27269 switch (ipsec_rc) { 27270 case IPSEC_STATUS_SUCCESS: 27271 break; 27272 case IPSEC_STATUS_FAILED: 27273 if (ill != NULL) { 27274 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27275 } else { 27276 BUMP_MIB(&ipst->ips_ip_mib, 27277 ipIfStatsOutDiscards); 27278 } 27279 /* FALLTHRU */ 27280 case IPSEC_STATUS_PENDING: 27281 if (ill != NULL && ill_need_rele) 27282 ill_refrele(ill); 27283 return; 27284 } 27285 } 27286 /* 27287 * We are done with IPsec processing. Send it over 27288 * the wire. 27289 */ 27290 done: 27291 mp = ipsec_mp->b_cont; 27292 ipha = (ipha_t *)mp->b_rptr; 27293 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27294 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27295 } else { 27296 ip6h = (ip6_t *)ipha; 27297 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27298 } 27299 if (ill != NULL && ill_need_rele) 27300 ill_refrele(ill); 27301 } 27302 27303 /* ARGSUSED */ 27304 void 27305 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27306 { 27307 opt_restart_t *or; 27308 int err; 27309 conn_t *connp; 27310 27311 ASSERT(CONN_Q(q)); 27312 connp = Q_TO_CONN(q); 27313 27314 ASSERT(first_mp->b_datap->db_type == M_CTL); 27315 or = (opt_restart_t *)first_mp->b_rptr; 27316 /* 27317 * We don't need to pass any credentials here since this is just 27318 * a restart. The credentials are passed in when svr4_optcom_req 27319 * is called the first time (from ip_wput_nondata). 27320 */ 27321 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27322 err = svr4_optcom_req(q, first_mp, NULL, 27323 &ip_opt_obj, B_FALSE); 27324 } else { 27325 ASSERT(or->or_type == T_OPTMGMT_REQ); 27326 err = tpi_optcom_req(q, first_mp, NULL, 27327 &ip_opt_obj, B_FALSE); 27328 } 27329 if (err != EINPROGRESS) { 27330 /* operation is done */ 27331 CONN_OPER_PENDING_DONE(connp); 27332 } 27333 } 27334 27335 /* 27336 * ioctls that go through a down/up sequence may need to wait for the down 27337 * to complete. This involves waiting for the ire and ipif refcnts to go down 27338 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27339 */ 27340 /* ARGSUSED */ 27341 void 27342 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27343 { 27344 struct iocblk *iocp; 27345 mblk_t *mp1; 27346 ip_ioctl_cmd_t *ipip; 27347 int err; 27348 sin_t *sin; 27349 struct lifreq *lifr; 27350 struct ifreq *ifr; 27351 27352 iocp = (struct iocblk *)mp->b_rptr; 27353 ASSERT(ipsq != NULL); 27354 /* Existence of mp1 verified in ip_wput_nondata */ 27355 mp1 = mp->b_cont->b_cont; 27356 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27357 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27358 /* 27359 * Special case where ipsq_current_ipif is not set: 27360 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27361 * ill could also have become part of a ipmp group in the 27362 * process, we are here as were not able to complete the 27363 * operation in ipif_set_values because we could not become 27364 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27365 * will not be set so we need to set it. 27366 */ 27367 ill_t *ill = q->q_ptr; 27368 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27369 } 27370 ASSERT(ipsq->ipsq_current_ipif != NULL); 27371 27372 if (ipip->ipi_cmd_type == IF_CMD) { 27373 /* This a old style SIOC[GS]IF* command */ 27374 ifr = (struct ifreq *)mp1->b_rptr; 27375 sin = (sin_t *)&ifr->ifr_addr; 27376 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27377 /* This a new style SIOC[GS]LIF* command */ 27378 lifr = (struct lifreq *)mp1->b_rptr; 27379 sin = (sin_t *)&lifr->lifr_addr; 27380 } else { 27381 sin = NULL; 27382 } 27383 27384 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27385 ipip, mp1->b_rptr); 27386 27387 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27388 } 27389 27390 /* 27391 * ioctl processing 27392 * 27393 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27394 * the ioctl command in the ioctl tables, determines the copyin data size 27395 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27396 * 27397 * ioctl processing then continues when the M_IOCDATA makes its way down to 27398 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27399 * associated 'conn' is refheld till the end of the ioctl and the general 27400 * ioctl processing function ip_process_ioctl() is called to extract the 27401 * arguments and process the ioctl. To simplify extraction, ioctl commands 27402 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27403 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27404 * is used to extract the ioctl's arguments. 27405 * 27406 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27407 * so goes thru the serialization primitive ipsq_try_enter. Then the 27408 * appropriate function to handle the ioctl is called based on the entry in 27409 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27410 * which also refreleases the 'conn' that was refheld at the start of the 27411 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27412 * 27413 * Many exclusive ioctls go thru an internal down up sequence as part of 27414 * the operation. For example an attempt to change the IP address of an 27415 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27416 * does all the cleanup such as deleting all ires that use this address. 27417 * Then we need to wait till all references to the interface go away. 27418 */ 27419 void 27420 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27421 { 27422 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27423 ip_ioctl_cmd_t *ipip = arg; 27424 ip_extract_func_t *extract_funcp; 27425 cmd_info_t ci; 27426 int err; 27427 27428 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27429 27430 if (ipip == NULL) 27431 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27432 27433 /* 27434 * SIOCLIFADDIF needs to go thru a special path since the 27435 * ill may not exist yet. This happens in the case of lo0 27436 * which is created using this ioctl. 27437 */ 27438 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27439 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27440 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27441 return; 27442 } 27443 27444 ci.ci_ipif = NULL; 27445 if (ipip->ipi_cmd_type == MISC_CMD) { 27446 /* 27447 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27448 */ 27449 if (ipip->ipi_cmd == IF_UNITSEL) { 27450 /* ioctl comes down the ill */ 27451 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27452 ipif_refhold(ci.ci_ipif); 27453 } 27454 err = 0; 27455 ci.ci_sin = NULL; 27456 ci.ci_sin6 = NULL; 27457 ci.ci_lifr = NULL; 27458 } else { 27459 switch (ipip->ipi_cmd_type) { 27460 case IF_CMD: 27461 case LIF_CMD: 27462 extract_funcp = ip_extract_lifreq; 27463 break; 27464 27465 case ARP_CMD: 27466 case XARP_CMD: 27467 extract_funcp = ip_extract_arpreq; 27468 break; 27469 27470 case TUN_CMD: 27471 extract_funcp = ip_extract_tunreq; 27472 break; 27473 27474 case MSFILT_CMD: 27475 extract_funcp = ip_extract_msfilter; 27476 break; 27477 27478 default: 27479 ASSERT(0); 27480 } 27481 27482 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27483 if (err != 0) { 27484 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27485 return; 27486 } 27487 27488 /* 27489 * All of the extraction functions return a refheld ipif. 27490 */ 27491 ASSERT(ci.ci_ipif != NULL); 27492 } 27493 27494 if (!(ipip->ipi_flags & IPI_WR)) { 27495 /* 27496 * A return value of EINPROGRESS means the ioctl is 27497 * either queued and waiting for some reason or has 27498 * already completed. 27499 */ 27500 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27501 ci.ci_lifr); 27502 if (ci.ci_ipif != NULL) 27503 ipif_refrele(ci.ci_ipif); 27504 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27505 return; 27506 } 27507 27508 /* 27509 * If ipsq is non-null, we are already being called exclusively on an 27510 * ill but in the case of a failover in progress it is the "from" ill, 27511 * rather than the "to" ill (which is the ill ptr passed in). 27512 * In order to ensure we are exclusive on both ILLs we rerun 27513 * ipsq_try_enter() here, ipsq's support recursive entry. 27514 */ 27515 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27516 ASSERT(ci.ci_ipif != NULL); 27517 27518 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27519 NEW_OP, B_TRUE); 27520 27521 /* 27522 * Release the ipif so that ipif_down and friends that wait for 27523 * references to go away are not misled about the current ipif_refcnt 27524 * values. We are writer so we can access the ipif even after releasing 27525 * the ipif. 27526 */ 27527 ipif_refrele(ci.ci_ipif); 27528 if (ipsq == NULL) 27529 return; 27530 27531 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27532 27533 /* 27534 * For most set ioctls that come here, this serves as a single point 27535 * where we set the IPIF_CHANGING flag. This ensures that there won't 27536 * be any new references to the ipif. This helps functions that go 27537 * through this path and end up trying to wait for the refcnts 27538 * associated with the ipif to go down to zero. Some exceptions are 27539 * Failover, Failback, and Groupname commands that operate on more than 27540 * just the ci.ci_ipif. These commands internally determine the 27541 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27542 * flags on that set. Another exception is the Removeif command that 27543 * sets the IPIF_CONDEMNED flag internally after identifying the right 27544 * ipif to operate on. 27545 */ 27546 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27547 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27548 ipip->ipi_cmd != SIOCLIFFAILOVER && 27549 ipip->ipi_cmd != SIOCLIFFAILBACK && 27550 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27551 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27552 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27553 27554 /* 27555 * A return value of EINPROGRESS means the ioctl is 27556 * either queued and waiting for some reason or has 27557 * already completed. 27558 */ 27559 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27560 27561 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27562 27563 ipsq_exit(ipsq); 27564 } 27565 27566 /* 27567 * Complete the ioctl. Typically ioctls use the mi package and need to 27568 * do mi_copyout/mi_copy_done. 27569 */ 27570 void 27571 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27572 { 27573 conn_t *connp = NULL; 27574 27575 if (err == EINPROGRESS) 27576 return; 27577 27578 if (CONN_Q(q)) { 27579 connp = Q_TO_CONN(q); 27580 ASSERT(connp->conn_ref >= 2); 27581 } 27582 27583 switch (mode) { 27584 case COPYOUT: 27585 if (err == 0) 27586 mi_copyout(q, mp); 27587 else 27588 mi_copy_done(q, mp, err); 27589 break; 27590 27591 case NO_COPYOUT: 27592 mi_copy_done(q, mp, err); 27593 break; 27594 27595 default: 27596 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27597 break; 27598 } 27599 27600 /* 27601 * The refhold placed at the start of the ioctl is released here. 27602 */ 27603 if (connp != NULL) 27604 CONN_OPER_PENDING_DONE(connp); 27605 27606 if (ipsq != NULL) 27607 ipsq_current_finish(ipsq); 27608 } 27609 27610 /* Called from ip_wput for all non data messages */ 27611 /* ARGSUSED */ 27612 void 27613 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27614 { 27615 mblk_t *mp1; 27616 ire_t *ire, *fake_ire; 27617 ill_t *ill; 27618 struct iocblk *iocp; 27619 ip_ioctl_cmd_t *ipip; 27620 cred_t *cr; 27621 conn_t *connp; 27622 int err; 27623 nce_t *nce; 27624 ipif_t *ipif; 27625 ip_stack_t *ipst; 27626 char *proto_str; 27627 27628 if (CONN_Q(q)) { 27629 connp = Q_TO_CONN(q); 27630 ipst = connp->conn_netstack->netstack_ip; 27631 } else { 27632 connp = NULL; 27633 ipst = ILLQ_TO_IPST(q); 27634 } 27635 27636 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27637 27638 switch (DB_TYPE(mp)) { 27639 case M_IOCTL: 27640 /* 27641 * IOCTL processing begins in ip_sioctl_copyin_setup which 27642 * will arrange to copy in associated control structures. 27643 */ 27644 ip_sioctl_copyin_setup(q, mp); 27645 return; 27646 case M_IOCDATA: 27647 /* 27648 * Ensure that this is associated with one of our trans- 27649 * parent ioctls. If it's not ours, discard it if we're 27650 * running as a driver, or pass it on if we're a module. 27651 */ 27652 iocp = (struct iocblk *)mp->b_rptr; 27653 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27654 if (ipip == NULL) { 27655 if (q->q_next == NULL) { 27656 goto nak; 27657 } else { 27658 putnext(q, mp); 27659 } 27660 return; 27661 } 27662 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27663 /* 27664 * the ioctl is one we recognise, but is not 27665 * consumed by IP as a module, pass M_IOCDATA 27666 * for processing downstream, but only for 27667 * common Streams ioctls. 27668 */ 27669 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27670 putnext(q, mp); 27671 return; 27672 } else { 27673 goto nak; 27674 } 27675 } 27676 27677 /* IOCTL continuation following copyin or copyout. */ 27678 if (mi_copy_state(q, mp, NULL) == -1) { 27679 /* 27680 * The copy operation failed. mi_copy_state already 27681 * cleaned up, so we're out of here. 27682 */ 27683 return; 27684 } 27685 /* 27686 * If we just completed a copy in, we become writer and 27687 * continue processing in ip_sioctl_copyin_done. If it 27688 * was a copy out, we call mi_copyout again. If there is 27689 * nothing more to copy out, it will complete the IOCTL. 27690 */ 27691 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27692 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27693 mi_copy_done(q, mp, EPROTO); 27694 return; 27695 } 27696 /* 27697 * Check for cases that need more copying. A return 27698 * value of 0 means a second copyin has been started, 27699 * so we return; a return value of 1 means no more 27700 * copying is needed, so we continue. 27701 */ 27702 if (ipip->ipi_cmd_type == MSFILT_CMD && 27703 MI_COPY_COUNT(mp) == 1) { 27704 if (ip_copyin_msfilter(q, mp) == 0) 27705 return; 27706 } 27707 /* 27708 * Refhold the conn, till the ioctl completes. This is 27709 * needed in case the ioctl ends up in the pending mp 27710 * list. Every mp in the ill_pending_mp list and 27711 * the ipsq_pending_mp must have a refhold on the conn 27712 * to resume processing. The refhold is released when 27713 * the ioctl completes. (normally or abnormally) 27714 * In all cases ip_ioctl_finish is called to finish 27715 * the ioctl. 27716 */ 27717 if (connp != NULL) { 27718 /* This is not a reentry */ 27719 ASSERT(ipsq == NULL); 27720 CONN_INC_REF(connp); 27721 } else { 27722 if (!(ipip->ipi_flags & IPI_MODOK)) { 27723 mi_copy_done(q, mp, EINVAL); 27724 return; 27725 } 27726 } 27727 27728 ip_process_ioctl(ipsq, q, mp, ipip); 27729 27730 } else { 27731 mi_copyout(q, mp); 27732 } 27733 return; 27734 nak: 27735 iocp->ioc_error = EINVAL; 27736 mp->b_datap->db_type = M_IOCNAK; 27737 iocp->ioc_count = 0; 27738 qreply(q, mp); 27739 return; 27740 27741 case M_IOCNAK: 27742 /* 27743 * The only way we could get here is if a resolver didn't like 27744 * an IOCTL we sent it. This shouldn't happen. 27745 */ 27746 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27747 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27748 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27749 freemsg(mp); 27750 return; 27751 case M_IOCACK: 27752 /* /dev/ip shouldn't see this */ 27753 if (CONN_Q(q)) 27754 goto nak; 27755 27756 /* Finish socket ioctls passed through to ARP. */ 27757 ip_sioctl_iocack(q, mp); 27758 return; 27759 case M_FLUSH: 27760 if (*mp->b_rptr & FLUSHW) 27761 flushq(q, FLUSHALL); 27762 if (q->q_next) { 27763 putnext(q, mp); 27764 return; 27765 } 27766 if (*mp->b_rptr & FLUSHR) { 27767 *mp->b_rptr &= ~FLUSHW; 27768 qreply(q, mp); 27769 return; 27770 } 27771 freemsg(mp); 27772 return; 27773 case IRE_DB_REQ_TYPE: 27774 if (connp == NULL) { 27775 proto_str = "IRE_DB_REQ_TYPE"; 27776 goto protonak; 27777 } 27778 /* An Upper Level Protocol wants a copy of an IRE. */ 27779 ip_ire_req(q, mp); 27780 return; 27781 case M_CTL: 27782 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27783 break; 27784 27785 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27786 TUN_HELLO) { 27787 ASSERT(connp != NULL); 27788 connp->conn_flags |= IPCL_IPTUN; 27789 freeb(mp); 27790 return; 27791 } 27792 27793 /* M_CTL messages are used by ARP to tell us things. */ 27794 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27795 break; 27796 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27797 case AR_ENTRY_SQUERY: 27798 ip_wput_ctl(q, mp); 27799 return; 27800 case AR_CLIENT_NOTIFY: 27801 ip_arp_news(q, mp); 27802 return; 27803 case AR_DLPIOP_DONE: 27804 ASSERT(q->q_next != NULL); 27805 ill = (ill_t *)q->q_ptr; 27806 /* qwriter_ip releases the refhold */ 27807 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27808 ill_refhold(ill); 27809 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27810 return; 27811 case AR_ARP_CLOSING: 27812 /* 27813 * ARP (above us) is closing. If no ARP bringup is 27814 * currently pending, ack the message so that ARP 27815 * can complete its close. Also mark ill_arp_closing 27816 * so that new ARP bringups will fail. If any 27817 * ARP bringup is currently in progress, we will 27818 * ack this when the current ARP bringup completes. 27819 */ 27820 ASSERT(q->q_next != NULL); 27821 ill = (ill_t *)q->q_ptr; 27822 mutex_enter(&ill->ill_lock); 27823 ill->ill_arp_closing = 1; 27824 if (!ill->ill_arp_bringup_pending) { 27825 mutex_exit(&ill->ill_lock); 27826 qreply(q, mp); 27827 } else { 27828 mutex_exit(&ill->ill_lock); 27829 freemsg(mp); 27830 } 27831 return; 27832 case AR_ARP_EXTEND: 27833 /* 27834 * The ARP module above us is capable of duplicate 27835 * address detection. Old ATM drivers will not send 27836 * this message. 27837 */ 27838 ASSERT(q->q_next != NULL); 27839 ill = (ill_t *)q->q_ptr; 27840 ill->ill_arp_extend = B_TRUE; 27841 freemsg(mp); 27842 return; 27843 default: 27844 break; 27845 } 27846 break; 27847 case M_PROTO: 27848 case M_PCPROTO: 27849 /* 27850 * The only PROTO messages we expect are copies of option 27851 * negotiation acknowledgements, AH and ESP bind requests 27852 * are also expected. 27853 */ 27854 switch (((union T_primitives *)mp->b_rptr)->type) { 27855 case O_T_BIND_REQ: 27856 case T_BIND_REQ: { 27857 /* Request can get queued in bind */ 27858 if (connp == NULL) { 27859 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27860 goto protonak; 27861 } 27862 /* 27863 * The transports except SCTP call ip_bind_{v4,v6}() 27864 * directly instead of a a putnext. SCTP doesn't 27865 * generate any T_BIND_REQ since it has its own 27866 * fanout data structures. However, ESP and AH 27867 * come in for regular binds; all other cases are 27868 * bind retries. 27869 */ 27870 ASSERT(!IPCL_IS_SCTP(connp)); 27871 27872 /* Don't increment refcnt if this is a re-entry */ 27873 if (ipsq == NULL) 27874 CONN_INC_REF(connp); 27875 27876 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27877 connp, NULL) : ip_bind_v4(q, mp, connp); 27878 ASSERT(mp != NULL); 27879 27880 ASSERT(!IPCL_IS_TCP(connp)); 27881 ASSERT(!IPCL_IS_UDP(connp)); 27882 ASSERT(!IPCL_IS_RAWIP(connp)); 27883 27884 /* The case of AH and ESP */ 27885 qreply(q, mp); 27886 CONN_OPER_PENDING_DONE(connp); 27887 return; 27888 } 27889 case T_SVR4_OPTMGMT_REQ: 27890 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27891 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27892 27893 if (connp == NULL) { 27894 proto_str = "T_SVR4_OPTMGMT_REQ"; 27895 goto protonak; 27896 } 27897 27898 if (!snmpcom_req(q, mp, ip_snmp_set, 27899 ip_snmp_get, cr)) { 27900 /* 27901 * Call svr4_optcom_req so that it can 27902 * generate the ack. We don't come here 27903 * if this operation is being restarted. 27904 * ip_restart_optmgmt will drop the conn ref. 27905 * In the case of ipsec option after the ipsec 27906 * load is complete conn_restart_ipsec_waiter 27907 * drops the conn ref. 27908 */ 27909 ASSERT(ipsq == NULL); 27910 CONN_INC_REF(connp); 27911 if (ip_check_for_ipsec_opt(q, mp)) 27912 return; 27913 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27914 B_FALSE); 27915 if (err != EINPROGRESS) { 27916 /* Operation is done */ 27917 CONN_OPER_PENDING_DONE(connp); 27918 } 27919 } 27920 return; 27921 case T_OPTMGMT_REQ: 27922 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27923 /* 27924 * Note: No snmpcom_req support through new 27925 * T_OPTMGMT_REQ. 27926 * Call tpi_optcom_req so that it can 27927 * generate the ack. 27928 */ 27929 if (connp == NULL) { 27930 proto_str = "T_OPTMGMT_REQ"; 27931 goto protonak; 27932 } 27933 27934 ASSERT(ipsq == NULL); 27935 /* 27936 * We don't come here for restart. ip_restart_optmgmt 27937 * will drop the conn ref. In the case of ipsec option 27938 * after the ipsec load is complete 27939 * conn_restart_ipsec_waiter drops the conn ref. 27940 */ 27941 CONN_INC_REF(connp); 27942 if (ip_check_for_ipsec_opt(q, mp)) 27943 return; 27944 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27945 if (err != EINPROGRESS) { 27946 /* Operation is done */ 27947 CONN_OPER_PENDING_DONE(connp); 27948 } 27949 return; 27950 case T_UNBIND_REQ: 27951 if (connp == NULL) { 27952 proto_str = "T_UNBIND_REQ"; 27953 goto protonak; 27954 } 27955 ip_unbind(Q_TO_CONN(q)); 27956 mp = mi_tpi_ok_ack_alloc(mp); 27957 qreply(q, mp); 27958 return; 27959 default: 27960 /* 27961 * Have to drop any DLPI messages coming down from 27962 * arp (such as an info_req which would cause ip 27963 * to receive an extra info_ack if it was passed 27964 * through. 27965 */ 27966 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27967 (int)*(uint_t *)mp->b_rptr)); 27968 freemsg(mp); 27969 return; 27970 } 27971 /* NOTREACHED */ 27972 case IRE_DB_TYPE: { 27973 nce_t *nce; 27974 ill_t *ill; 27975 in6_addr_t gw_addr_v6; 27976 27977 27978 /* 27979 * This is a response back from a resolver. It 27980 * consists of a message chain containing: 27981 * IRE_MBLK-->LL_HDR_MBLK->pkt 27982 * The IRE_MBLK is the one we allocated in ip_newroute. 27983 * The LL_HDR_MBLK is the DLPI header to use to get 27984 * the attached packet, and subsequent ones for the 27985 * same destination, transmitted. 27986 */ 27987 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27988 break; 27989 /* 27990 * First, check to make sure the resolution succeeded. 27991 * If it failed, the second mblk will be empty. 27992 * If it is, free the chain, dropping the packet. 27993 * (We must ire_delete the ire; that frees the ire mblk) 27994 * We're doing this now to support PVCs for ATM; it's 27995 * a partial xresolv implementation. When we fully implement 27996 * xresolv interfaces, instead of freeing everything here 27997 * we'll initiate neighbor discovery. 27998 * 27999 * For v4 (ARP and other external resolvers) the resolver 28000 * frees the message, so no check is needed. This check 28001 * is required, though, for a full xresolve implementation. 28002 * Including this code here now both shows how external 28003 * resolvers can NACK a resolution request using an 28004 * existing design that has no specific provisions for NACKs, 28005 * and also takes into account that the current non-ARP 28006 * external resolver has been coded to use this method of 28007 * NACKing for all IPv6 (xresolv) cases, 28008 * whether our xresolv implementation is complete or not. 28009 * 28010 */ 28011 ire = (ire_t *)mp->b_rptr; 28012 ill = ire_to_ill(ire); 28013 mp1 = mp->b_cont; /* dl_unitdata_req */ 28014 if (mp1->b_rptr == mp1->b_wptr) { 28015 if (ire->ire_ipversion == IPV6_VERSION) { 28016 /* 28017 * XRESOLV interface. 28018 */ 28019 ASSERT(ill->ill_flags & ILLF_XRESOLV); 28020 mutex_enter(&ire->ire_lock); 28021 gw_addr_v6 = ire->ire_gateway_addr_v6; 28022 mutex_exit(&ire->ire_lock); 28023 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 28024 nce = ndp_lookup_v6(ill, 28025 &ire->ire_addr_v6, B_FALSE); 28026 } else { 28027 nce = ndp_lookup_v6(ill, &gw_addr_v6, 28028 B_FALSE); 28029 } 28030 if (nce != NULL) { 28031 nce_resolv_failed(nce); 28032 ndp_delete(nce); 28033 NCE_REFRELE(nce); 28034 } 28035 } 28036 mp->b_cont = NULL; 28037 freemsg(mp1); /* frees the pkt as well */ 28038 ASSERT(ire->ire_nce == NULL); 28039 ire_delete((ire_t *)mp->b_rptr); 28040 return; 28041 } 28042 28043 /* 28044 * Split them into IRE_MBLK and pkt and feed it into 28045 * ire_add_then_send. Then in ire_add_then_send 28046 * the IRE will be added, and then the packet will be 28047 * run back through ip_wput. This time it will make 28048 * it to the wire. 28049 */ 28050 mp->b_cont = NULL; 28051 mp = mp1->b_cont; /* now, mp points to pkt */ 28052 mp1->b_cont = NULL; 28053 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 28054 if (ire->ire_ipversion == IPV6_VERSION) { 28055 /* 28056 * XRESOLV interface. Find the nce and put a copy 28057 * of the dl_unitdata_req in nce_res_mp 28058 */ 28059 ASSERT(ill->ill_flags & ILLF_XRESOLV); 28060 mutex_enter(&ire->ire_lock); 28061 gw_addr_v6 = ire->ire_gateway_addr_v6; 28062 mutex_exit(&ire->ire_lock); 28063 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 28064 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 28065 B_FALSE); 28066 } else { 28067 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 28068 } 28069 if (nce != NULL) { 28070 /* 28071 * We have to protect nce_res_mp here 28072 * from being accessed by other threads 28073 * while we change the mblk pointer. 28074 * Other functions will also lock the nce when 28075 * accessing nce_res_mp. 28076 * 28077 * The reason we change the mblk pointer 28078 * here rather than copying the resolved address 28079 * into the template is that, unlike with 28080 * ethernet, we have no guarantee that the 28081 * resolved address length will be 28082 * smaller than or equal to the lla length 28083 * with which the template was allocated, 28084 * (for ethernet, they're equal) 28085 * so we have to use the actual resolved 28086 * address mblk - which holds the real 28087 * dl_unitdata_req with the resolved address. 28088 * 28089 * Doing this is the same behavior as was 28090 * previously used in the v4 ARP case. 28091 */ 28092 mutex_enter(&nce->nce_lock); 28093 if (nce->nce_res_mp != NULL) 28094 freemsg(nce->nce_res_mp); 28095 nce->nce_res_mp = mp1; 28096 mutex_exit(&nce->nce_lock); 28097 /* 28098 * We do a fastpath probe here because 28099 * we have resolved the address without 28100 * using Neighbor Discovery. 28101 * In the non-XRESOLV v6 case, the fastpath 28102 * probe is done right after neighbor 28103 * discovery completes. 28104 */ 28105 if (nce->nce_res_mp != NULL) { 28106 int res; 28107 nce_fastpath_list_add(nce); 28108 res = ill_fastpath_probe(ill, 28109 nce->nce_res_mp); 28110 if (res != 0 && res != EAGAIN) 28111 nce_fastpath_list_delete(nce); 28112 } 28113 28114 ire_add_then_send(q, ire, mp); 28115 /* 28116 * Now we have to clean out any packets 28117 * that may have been queued on the nce 28118 * while it was waiting for address resolution 28119 * to complete. 28120 */ 28121 mutex_enter(&nce->nce_lock); 28122 mp1 = nce->nce_qd_mp; 28123 nce->nce_qd_mp = NULL; 28124 mutex_exit(&nce->nce_lock); 28125 while (mp1 != NULL) { 28126 mblk_t *nxt_mp; 28127 queue_t *fwdq = NULL; 28128 ill_t *inbound_ill; 28129 uint_t ifindex; 28130 28131 nxt_mp = mp1->b_next; 28132 mp1->b_next = NULL; 28133 /* 28134 * Retrieve ifindex stored in 28135 * ip_rput_data_v6() 28136 */ 28137 ifindex = 28138 (uint_t)(uintptr_t)mp1->b_prev; 28139 inbound_ill = 28140 ill_lookup_on_ifindex(ifindex, 28141 B_TRUE, NULL, NULL, NULL, 28142 NULL, ipst); 28143 mp1->b_prev = NULL; 28144 if (inbound_ill != NULL) 28145 fwdq = inbound_ill->ill_rq; 28146 28147 if (fwdq != NULL) { 28148 put(fwdq, mp1); 28149 ill_refrele(inbound_ill); 28150 } else 28151 put(WR(ill->ill_rq), mp1); 28152 mp1 = nxt_mp; 28153 } 28154 NCE_REFRELE(nce); 28155 } else { /* nce is NULL; clean up */ 28156 ire_delete(ire); 28157 freemsg(mp); 28158 freemsg(mp1); 28159 return; 28160 } 28161 } else { 28162 nce_t *arpce; 28163 /* 28164 * Link layer resolution succeeded. Recompute the 28165 * ire_nce. 28166 */ 28167 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 28168 if ((arpce = ndp_lookup_v4(ill, 28169 (ire->ire_gateway_addr != INADDR_ANY ? 28170 &ire->ire_gateway_addr : &ire->ire_addr), 28171 B_FALSE)) == NULL) { 28172 freeb(ire->ire_mp); 28173 freeb(mp1); 28174 freemsg(mp); 28175 return; 28176 } 28177 mutex_enter(&arpce->nce_lock); 28178 arpce->nce_last = TICK_TO_MSEC(lbolt64); 28179 if (arpce->nce_state == ND_REACHABLE) { 28180 /* 28181 * Someone resolved this before us; 28182 * cleanup the res_mp. Since ire has 28183 * not been added yet, the call to ire_add_v4 28184 * from ire_add_then_send (when a dup is 28185 * detected) will clean up the ire. 28186 */ 28187 freeb(mp1); 28188 } else { 28189 ASSERT(arpce->nce_res_mp == NULL); 28190 arpce->nce_res_mp = mp1; 28191 arpce->nce_state = ND_REACHABLE; 28192 } 28193 mutex_exit(&arpce->nce_lock); 28194 if (ire->ire_marks & IRE_MARK_NOADD) { 28195 /* 28196 * this ire will not be added to the ire 28197 * cache table, so we can set the ire_nce 28198 * here, as there are no atomicity constraints. 28199 */ 28200 ire->ire_nce = arpce; 28201 /* 28202 * We are associating this nce with the ire 28203 * so change the nce ref taken in 28204 * ndp_lookup_v4() from 28205 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28206 */ 28207 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28208 } else { 28209 NCE_REFRELE(arpce); 28210 } 28211 ire_add_then_send(q, ire, mp); 28212 } 28213 return; /* All is well, the packet has been sent. */ 28214 } 28215 case IRE_ARPRESOLVE_TYPE: { 28216 28217 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28218 break; 28219 mp1 = mp->b_cont; /* dl_unitdata_req */ 28220 mp->b_cont = NULL; 28221 /* 28222 * First, check to make sure the resolution succeeded. 28223 * If it failed, the second mblk will be empty. 28224 */ 28225 if (mp1->b_rptr == mp1->b_wptr) { 28226 /* cleanup the incomplete ire, free queued packets */ 28227 freemsg(mp); /* fake ire */ 28228 freeb(mp1); /* dl_unitdata response */ 28229 return; 28230 } 28231 28232 /* 28233 * Update any incomplete nce_t found. We search the ctable 28234 * and find the nce from the ire->ire_nce because we need 28235 * to pass the ire to ip_xmit_v4 later, and can find both 28236 * ire and nce in one lookup. 28237 */ 28238 fake_ire = (ire_t *)mp->b_rptr; 28239 28240 /* 28241 * By the time we come back here from ARP the incomplete ire 28242 * created in ire_forward() could have been removed. We use 28243 * the parameters stored in the fake_ire to specify the real 28244 * ire as explicitly as possible. This avoids problems when 28245 * IPMP groups are configured as an ipif can 'float' 28246 * across several ill queues. We can be confident that the 28247 * the inability to find an ire is because it no longer exists. 28248 */ 28249 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 28250 NULL, NULL, NULL, NULL, ipst); 28251 if (ill == NULL) { 28252 ip1dbg(("ill for incomplete ire vanished\n")); 28253 freemsg(mp); /* fake ire */ 28254 freeb(mp1); /* dl_unitdata response */ 28255 return; 28256 } 28257 28258 /* Get the outgoing ipif */ 28259 mutex_enter(&ill->ill_lock); 28260 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28261 if (ipif == NULL) { 28262 mutex_exit(&ill->ill_lock); 28263 ill_refrele(ill); 28264 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28265 freemsg(mp); /* fake_ire */ 28266 freeb(mp1); /* dl_unitdata response */ 28267 return; 28268 } 28269 28270 ipif_refhold_locked(ipif); 28271 mutex_exit(&ill->ill_lock); 28272 ill_refrele(ill); 28273 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 28274 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 28275 ipst, ((ill_t *)q->q_ptr)->ill_wq); 28276 ipif_refrele(ipif); 28277 if (ire == NULL) { 28278 /* 28279 * no ire was found; check if there is an nce 28280 * for this lookup; if it has no ire's pointing at it 28281 * cleanup. 28282 */ 28283 if ((nce = ndp_lookup_v4(q->q_ptr, 28284 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28285 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28286 B_FALSE)) != NULL) { 28287 /* 28288 * cleanup: 28289 * We check for refcnt 2 (one for the nce 28290 * hash list + 1 for the ref taken by 28291 * ndp_lookup_v4) to check that there are 28292 * no ire's pointing at the nce. 28293 */ 28294 if (nce->nce_refcnt == 2) 28295 ndp_delete(nce); 28296 NCE_REFRELE(nce); 28297 } 28298 freeb(mp1); /* dl_unitdata response */ 28299 freemsg(mp); /* fake ire */ 28300 return; 28301 } 28302 nce = ire->ire_nce; 28303 DTRACE_PROBE2(ire__arpresolve__type, 28304 ire_t *, ire, nce_t *, nce); 28305 ASSERT(nce->nce_state != ND_INITIAL); 28306 mutex_enter(&nce->nce_lock); 28307 nce->nce_last = TICK_TO_MSEC(lbolt64); 28308 if (nce->nce_state == ND_REACHABLE) { 28309 /* 28310 * Someone resolved this before us; 28311 * our response is not needed any more. 28312 */ 28313 mutex_exit(&nce->nce_lock); 28314 freeb(mp1); /* dl_unitdata response */ 28315 } else { 28316 ASSERT(nce->nce_res_mp == NULL); 28317 nce->nce_res_mp = mp1; 28318 nce->nce_state = ND_REACHABLE; 28319 mutex_exit(&nce->nce_lock); 28320 nce_fastpath(nce); 28321 } 28322 /* 28323 * The cached nce_t has been updated to be reachable; 28324 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 28325 */ 28326 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28327 freemsg(mp); 28328 /* 28329 * send out queued packets. 28330 */ 28331 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 28332 28333 IRE_REFRELE(ire); 28334 return; 28335 } 28336 default: 28337 break; 28338 } 28339 if (q->q_next) { 28340 putnext(q, mp); 28341 } else 28342 freemsg(mp); 28343 return; 28344 28345 protonak: 28346 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28347 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28348 qreply(q, mp); 28349 } 28350 28351 /* 28352 * Process IP options in an outbound packet. Modify the destination if there 28353 * is a source route option. 28354 * Returns non-zero if something fails in which case an ICMP error has been 28355 * sent and mp freed. 28356 */ 28357 static int 28358 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28359 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28360 { 28361 ipoptp_t opts; 28362 uchar_t *opt; 28363 uint8_t optval; 28364 uint8_t optlen; 28365 ipaddr_t dst; 28366 intptr_t code = 0; 28367 mblk_t *mp; 28368 ire_t *ire = NULL; 28369 28370 ip2dbg(("ip_wput_options\n")); 28371 mp = ipsec_mp; 28372 if (mctl_present) { 28373 mp = ipsec_mp->b_cont; 28374 } 28375 28376 dst = ipha->ipha_dst; 28377 for (optval = ipoptp_first(&opts, ipha); 28378 optval != IPOPT_EOL; 28379 optval = ipoptp_next(&opts)) { 28380 opt = opts.ipoptp_cur; 28381 optlen = opts.ipoptp_len; 28382 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28383 optval, optlen)); 28384 switch (optval) { 28385 uint32_t off; 28386 case IPOPT_SSRR: 28387 case IPOPT_LSRR: 28388 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28389 ip1dbg(( 28390 "ip_wput_options: bad option offset\n")); 28391 code = (char *)&opt[IPOPT_OLEN] - 28392 (char *)ipha; 28393 goto param_prob; 28394 } 28395 off = opt[IPOPT_OFFSET]; 28396 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28397 ntohl(dst))); 28398 /* 28399 * For strict: verify that dst is directly 28400 * reachable. 28401 */ 28402 if (optval == IPOPT_SSRR) { 28403 ire = ire_ftable_lookup(dst, 0, 0, 28404 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28405 MBLK_GETLABEL(mp), 28406 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28407 if (ire == NULL) { 28408 ip1dbg(("ip_wput_options: SSRR not" 28409 " directly reachable: 0x%x\n", 28410 ntohl(dst))); 28411 goto bad_src_route; 28412 } 28413 ire_refrele(ire); 28414 } 28415 break; 28416 case IPOPT_RR: 28417 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28418 ip1dbg(( 28419 "ip_wput_options: bad option offset\n")); 28420 code = (char *)&opt[IPOPT_OLEN] - 28421 (char *)ipha; 28422 goto param_prob; 28423 } 28424 break; 28425 case IPOPT_TS: 28426 /* 28427 * Verify that length >=5 and that there is either 28428 * room for another timestamp or that the overflow 28429 * counter is not maxed out. 28430 */ 28431 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28432 if (optlen < IPOPT_MINLEN_IT) { 28433 goto param_prob; 28434 } 28435 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28436 ip1dbg(( 28437 "ip_wput_options: bad option offset\n")); 28438 code = (char *)&opt[IPOPT_OFFSET] - 28439 (char *)ipha; 28440 goto param_prob; 28441 } 28442 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28443 case IPOPT_TS_TSONLY: 28444 off = IPOPT_TS_TIMELEN; 28445 break; 28446 case IPOPT_TS_TSANDADDR: 28447 case IPOPT_TS_PRESPEC: 28448 case IPOPT_TS_PRESPEC_RFC791: 28449 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28450 break; 28451 default: 28452 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28453 (char *)ipha; 28454 goto param_prob; 28455 } 28456 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28457 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28458 /* 28459 * No room and the overflow counter is 15 28460 * already. 28461 */ 28462 goto param_prob; 28463 } 28464 break; 28465 } 28466 } 28467 28468 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28469 return (0); 28470 28471 ip1dbg(("ip_wput_options: error processing IP options.")); 28472 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28473 28474 param_prob: 28475 /* 28476 * Since ip_wput() isn't close to finished, we fill 28477 * in enough of the header for credible error reporting. 28478 */ 28479 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28480 /* Failed */ 28481 freemsg(ipsec_mp); 28482 return (-1); 28483 } 28484 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28485 return (-1); 28486 28487 bad_src_route: 28488 /* 28489 * Since ip_wput() isn't close to finished, we fill 28490 * in enough of the header for credible error reporting. 28491 */ 28492 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28493 /* Failed */ 28494 freemsg(ipsec_mp); 28495 return (-1); 28496 } 28497 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28498 return (-1); 28499 } 28500 28501 /* 28502 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28503 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28504 * thru /etc/system. 28505 */ 28506 #define CONN_MAXDRAINCNT 64 28507 28508 static void 28509 conn_drain_init(ip_stack_t *ipst) 28510 { 28511 int i; 28512 28513 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28514 28515 if ((ipst->ips_conn_drain_list_cnt == 0) || 28516 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28517 /* 28518 * Default value of the number of drainers is the 28519 * number of cpus, subject to maximum of 8 drainers. 28520 */ 28521 if (boot_max_ncpus != -1) 28522 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28523 else 28524 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28525 } 28526 28527 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28528 sizeof (idl_t), KM_SLEEP); 28529 28530 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28531 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28532 MUTEX_DEFAULT, NULL); 28533 } 28534 } 28535 28536 static void 28537 conn_drain_fini(ip_stack_t *ipst) 28538 { 28539 int i; 28540 28541 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28542 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28543 kmem_free(ipst->ips_conn_drain_list, 28544 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28545 ipst->ips_conn_drain_list = NULL; 28546 } 28547 28548 /* 28549 * Note: For an overview of how flowcontrol is handled in IP please see the 28550 * IP Flowcontrol notes at the top of this file. 28551 * 28552 * Flow control has blocked us from proceeding. Insert the given conn in one 28553 * of the conn drain lists. These conn wq's will be qenabled later on when 28554 * STREAMS flow control does a backenable. conn_walk_drain will enable 28555 * the first conn in each of these drain lists. Each of these qenabled conns 28556 * in turn enables the next in the list, after it runs, or when it closes, 28557 * thus sustaining the drain process. 28558 * 28559 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28560 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28561 * running at any time, on a given conn, since there can be only 1 service proc 28562 * running on a queue at any time. 28563 */ 28564 void 28565 conn_drain_insert(conn_t *connp) 28566 { 28567 idl_t *idl; 28568 uint_t index; 28569 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28570 28571 mutex_enter(&connp->conn_lock); 28572 if (connp->conn_state_flags & CONN_CLOSING) { 28573 /* 28574 * The conn is closing as a result of which CONN_CLOSING 28575 * is set. Return. 28576 */ 28577 mutex_exit(&connp->conn_lock); 28578 return; 28579 } else if (connp->conn_idl == NULL) { 28580 /* 28581 * Assign the next drain list round robin. We dont' use 28582 * a lock, and thus it may not be strictly round robin. 28583 * Atomicity of load/stores is enough to make sure that 28584 * conn_drain_list_index is always within bounds. 28585 */ 28586 index = ipst->ips_conn_drain_list_index; 28587 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28588 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28589 index++; 28590 if (index == ipst->ips_conn_drain_list_cnt) 28591 index = 0; 28592 ipst->ips_conn_drain_list_index = index; 28593 } 28594 mutex_exit(&connp->conn_lock); 28595 28596 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28597 if ((connp->conn_drain_prev != NULL) || 28598 (connp->conn_state_flags & CONN_CLOSING)) { 28599 /* 28600 * The conn is already in the drain list, OR 28601 * the conn is closing. We need to check again for 28602 * the closing case again since close can happen 28603 * after we drop the conn_lock, and before we 28604 * acquire the CONN_DRAIN_LIST_LOCK. 28605 */ 28606 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28607 return; 28608 } else { 28609 idl = connp->conn_idl; 28610 } 28611 28612 /* 28613 * The conn is not in the drain list. Insert it at the 28614 * tail of the drain list. The drain list is circular 28615 * and doubly linked. idl_conn points to the 1st element 28616 * in the list. 28617 */ 28618 if (idl->idl_conn == NULL) { 28619 idl->idl_conn = connp; 28620 connp->conn_drain_next = connp; 28621 connp->conn_drain_prev = connp; 28622 } else { 28623 conn_t *head = idl->idl_conn; 28624 28625 connp->conn_drain_next = head; 28626 connp->conn_drain_prev = head->conn_drain_prev; 28627 head->conn_drain_prev->conn_drain_next = connp; 28628 head->conn_drain_prev = connp; 28629 } 28630 /* 28631 * For non streams based sockets assert flow control. 28632 */ 28633 (*connp->conn_upcalls->su_txq_full) 28634 (connp->conn_upper_handle, B_TRUE); 28635 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28636 } 28637 28638 /* 28639 * This conn is closing, and we are called from ip_close. OR 28640 * This conn has been serviced by ip_wsrv, and we need to do the tail 28641 * processing. 28642 * If this conn is part of the drain list, we may need to sustain the drain 28643 * process by qenabling the next conn in the drain list. We may also need to 28644 * remove this conn from the list, if it is done. 28645 */ 28646 static void 28647 conn_drain_tail(conn_t *connp, boolean_t closing) 28648 { 28649 idl_t *idl; 28650 28651 /* 28652 * connp->conn_idl is stable at this point, and no lock is needed 28653 * to check it. If we are called from ip_close, close has already 28654 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28655 * called us only because conn_idl is non-null. If we are called thru 28656 * service, conn_idl could be null, but it cannot change because 28657 * service is single-threaded per queue, and there cannot be another 28658 * instance of service trying to call conn_drain_insert on this conn 28659 * now. 28660 */ 28661 ASSERT(!closing || (connp->conn_idl != NULL)); 28662 28663 /* 28664 * If connp->conn_idl is null, the conn has not been inserted into any 28665 * drain list even once since creation of the conn. Just return. 28666 */ 28667 if (connp->conn_idl == NULL) 28668 return; 28669 28670 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28671 28672 if (connp->conn_drain_prev == NULL) { 28673 /* This conn is currently not in the drain list. */ 28674 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28675 return; 28676 } 28677 idl = connp->conn_idl; 28678 if (idl->idl_conn_draining == connp) { 28679 /* 28680 * This conn is the current drainer. If this is the last conn 28681 * in the drain list, we need to do more checks, in the 'if' 28682 * below. Otherwwise we need to just qenable the next conn, 28683 * to sustain the draining, and is handled in the 'else' 28684 * below. 28685 */ 28686 if (connp->conn_drain_next == idl->idl_conn) { 28687 /* 28688 * This conn is the last in this list. This round 28689 * of draining is complete. If idl_repeat is set, 28690 * it means another flow enabling has happened from 28691 * the driver/streams and we need to another round 28692 * of draining. 28693 * If there are more than 2 conns in the drain list, 28694 * do a left rotate by 1, so that all conns except the 28695 * conn at the head move towards the head by 1, and the 28696 * the conn at the head goes to the tail. This attempts 28697 * a more even share for all queues that are being 28698 * drained. 28699 */ 28700 if ((connp->conn_drain_next != connp) && 28701 (idl->idl_conn->conn_drain_next != connp)) { 28702 idl->idl_conn = idl->idl_conn->conn_drain_next; 28703 } 28704 if (idl->idl_repeat) { 28705 qenable(idl->idl_conn->conn_wq); 28706 idl->idl_conn_draining = idl->idl_conn; 28707 idl->idl_repeat = 0; 28708 } else { 28709 idl->idl_conn_draining = NULL; 28710 } 28711 } else { 28712 /* 28713 * If the next queue that we are now qenable'ing, 28714 * is closing, it will remove itself from this list 28715 * and qenable the subsequent queue in ip_close(). 28716 * Serialization is acheived thru idl_lock. 28717 */ 28718 qenable(connp->conn_drain_next->conn_wq); 28719 idl->idl_conn_draining = connp->conn_drain_next; 28720 } 28721 } 28722 if (!connp->conn_did_putbq || closing) { 28723 /* 28724 * Remove ourself from the drain list, if we did not do 28725 * a putbq, or if the conn is closing. 28726 * Note: It is possible that q->q_first is non-null. It means 28727 * that these messages landed after we did a enableok() in 28728 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28729 * service them. 28730 */ 28731 if (connp->conn_drain_next == connp) { 28732 /* Singleton in the list */ 28733 ASSERT(connp->conn_drain_prev == connp); 28734 idl->idl_conn = NULL; 28735 idl->idl_conn_draining = NULL; 28736 } else { 28737 connp->conn_drain_prev->conn_drain_next = 28738 connp->conn_drain_next; 28739 connp->conn_drain_next->conn_drain_prev = 28740 connp->conn_drain_prev; 28741 if (idl->idl_conn == connp) 28742 idl->idl_conn = connp->conn_drain_next; 28743 ASSERT(idl->idl_conn_draining != connp); 28744 28745 } 28746 connp->conn_drain_next = NULL; 28747 connp->conn_drain_prev = NULL; 28748 28749 /* 28750 * For non streams based sockets open up flow control. 28751 */ 28752 if (IPCL_IS_NONSTR(connp)) { 28753 (*connp->conn_upcalls->su_txq_full) 28754 (connp->conn_upper_handle, B_FALSE); 28755 } 28756 } 28757 28758 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28759 } 28760 28761 /* 28762 * Write service routine. Shared perimeter entry point. 28763 * ip_wsrv can be called in any of the following ways. 28764 * 1. The device queue's messages has fallen below the low water mark 28765 * and STREAMS has backenabled the ill_wq. We walk thru all the 28766 * the drain lists and backenable the first conn in each list. 28767 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28768 * qenabled non-tcp upper layers. We start dequeing messages and call 28769 * ip_wput for each message. 28770 */ 28771 28772 void 28773 ip_wsrv(queue_t *q) 28774 { 28775 conn_t *connp; 28776 ill_t *ill; 28777 mblk_t *mp; 28778 28779 if (q->q_next) { 28780 ill = (ill_t *)q->q_ptr; 28781 if (ill->ill_state_flags == 0) { 28782 /* 28783 * The device flow control has opened up. 28784 * Walk through conn drain lists and qenable the 28785 * first conn in each list. This makes sense only 28786 * if the stream is fully plumbed and setup. 28787 * Hence the if check above. 28788 */ 28789 ip1dbg(("ip_wsrv: walking\n")); 28790 conn_walk_drain(ill->ill_ipst); 28791 } 28792 return; 28793 } 28794 28795 connp = Q_TO_CONN(q); 28796 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28797 28798 /* 28799 * 1. Set conn_draining flag to signal that service is active. 28800 * 28801 * 2. ip_output determines whether it has been called from service, 28802 * based on the last parameter. If it is IP_WSRV it concludes it 28803 * has been called from service. 28804 * 28805 * 3. Message ordering is preserved by the following logic. 28806 * i. A directly called ip_output (i.e. not thru service) will queue 28807 * the message at the tail, if conn_draining is set (i.e. service 28808 * is running) or if q->q_first is non-null. 28809 * 28810 * ii. If ip_output is called from service, and if ip_output cannot 28811 * putnext due to flow control, it does a putbq. 28812 * 28813 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28814 * (causing an infinite loop). 28815 */ 28816 ASSERT(!connp->conn_did_putbq); 28817 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28818 connp->conn_draining = 1; 28819 noenable(q); 28820 while ((mp = getq(q)) != NULL) { 28821 ASSERT(CONN_Q(q)); 28822 28823 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28824 if (connp->conn_did_putbq) { 28825 /* ip_wput did a putbq */ 28826 break; 28827 } 28828 } 28829 /* 28830 * At this point, a thread coming down from top, calling 28831 * ip_wput, may end up queueing the message. We have not yet 28832 * enabled the queue, so ip_wsrv won't be called again. 28833 * To avoid this race, check q->q_first again (in the loop) 28834 * If the other thread queued the message before we call 28835 * enableok(), we will catch it in the q->q_first check. 28836 * If the other thread queues the message after we call 28837 * enableok(), ip_wsrv will be called again by STREAMS. 28838 */ 28839 connp->conn_draining = 0; 28840 enableok(q); 28841 28842 } 28843 28844 /* Enable the next conn for draining */ 28845 conn_drain_tail(connp, B_FALSE); 28846 28847 connp->conn_did_putbq = 0; 28848 } 28849 28850 /* 28851 * Callback to disable flow control in IP. 28852 * 28853 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28854 * is enabled. 28855 * 28856 * When MAC_TX() is not able to send any more packets, dld sets its queue 28857 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28858 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28859 * function and wakes up corresponding mac worker threads, which in turn 28860 * calls this callback function, and disables flow control. 28861 */ 28862 /* ARGSUSED */ 28863 void 28864 ill_flow_enable(void *ill, ip_mac_tx_cookie_t cookie) 28865 { 28866 qenable(((ill_t *)ill)->ill_wq); 28867 } 28868 28869 /* 28870 * Walk the list of all conn's calling the function provided with the 28871 * specified argument for each. Note that this only walks conn's that 28872 * have been bound. 28873 * Applies to both IPv4 and IPv6. 28874 */ 28875 static void 28876 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28877 { 28878 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28879 ipst->ips_ipcl_udp_fanout_size, 28880 func, arg, zoneid); 28881 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28882 ipst->ips_ipcl_conn_fanout_size, 28883 func, arg, zoneid); 28884 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28885 ipst->ips_ipcl_bind_fanout_size, 28886 func, arg, zoneid); 28887 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28888 IPPROTO_MAX, func, arg, zoneid); 28889 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28890 IPPROTO_MAX, func, arg, zoneid); 28891 } 28892 28893 /* 28894 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28895 * of conns that need to be drained, check if drain is already in progress. 28896 * If so set the idl_repeat bit, indicating that the last conn in the list 28897 * needs to reinitiate the drain once again, for the list. If drain is not 28898 * in progress for the list, initiate the draining, by qenabling the 1st 28899 * conn in the list. The drain is self-sustaining, each qenabled conn will 28900 * in turn qenable the next conn, when it is done/blocked/closing. 28901 */ 28902 static void 28903 conn_walk_drain(ip_stack_t *ipst) 28904 { 28905 int i; 28906 idl_t *idl; 28907 28908 IP_STAT(ipst, ip_conn_walk_drain); 28909 28910 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28911 idl = &ipst->ips_conn_drain_list[i]; 28912 mutex_enter(&idl->idl_lock); 28913 if (idl->idl_conn == NULL) { 28914 mutex_exit(&idl->idl_lock); 28915 continue; 28916 } 28917 /* 28918 * If this list is not being drained currently by 28919 * an ip_wsrv thread, start the process. 28920 */ 28921 if (idl->idl_conn_draining == NULL) { 28922 ASSERT(idl->idl_repeat == 0); 28923 qenable(idl->idl_conn->conn_wq); 28924 idl->idl_conn_draining = idl->idl_conn; 28925 } else { 28926 idl->idl_repeat = 1; 28927 } 28928 mutex_exit(&idl->idl_lock); 28929 } 28930 } 28931 28932 /* 28933 * Walk an conn hash table of `count' buckets, calling func for each entry. 28934 */ 28935 static void 28936 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28937 zoneid_t zoneid) 28938 { 28939 conn_t *connp; 28940 28941 while (count-- > 0) { 28942 mutex_enter(&connfp->connf_lock); 28943 for (connp = connfp->connf_head; connp != NULL; 28944 connp = connp->conn_next) { 28945 if (zoneid == GLOBAL_ZONEID || 28946 zoneid == connp->conn_zoneid) { 28947 CONN_INC_REF(connp); 28948 mutex_exit(&connfp->connf_lock); 28949 (*func)(connp, arg); 28950 mutex_enter(&connfp->connf_lock); 28951 CONN_DEC_REF(connp); 28952 } 28953 } 28954 mutex_exit(&connfp->connf_lock); 28955 connfp++; 28956 } 28957 } 28958 28959 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28960 static void 28961 conn_report1(conn_t *connp, void *mp) 28962 { 28963 char buf1[INET6_ADDRSTRLEN]; 28964 char buf2[INET6_ADDRSTRLEN]; 28965 uint_t print_len, buf_len; 28966 28967 ASSERT(connp != NULL); 28968 28969 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28970 if (buf_len <= 0) 28971 return; 28972 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28973 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28974 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28975 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28976 "%5d %s/%05d %s/%05d\n", 28977 (void *)connp, (void *)CONNP_TO_RQ(connp), 28978 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28979 buf1, connp->conn_lport, 28980 buf2, connp->conn_fport); 28981 if (print_len < buf_len) { 28982 ((mblk_t *)mp)->b_wptr += print_len; 28983 } else { 28984 ((mblk_t *)mp)->b_wptr += buf_len; 28985 } 28986 } 28987 28988 /* 28989 * Named Dispatch routine to produce a formatted report on all conns 28990 * that are listed in one of the fanout tables. 28991 * This report is accessed by using the ndd utility to "get" ND variable 28992 * "ip_conn_status". 28993 */ 28994 /* ARGSUSED */ 28995 static int 28996 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28997 { 28998 conn_t *connp = Q_TO_CONN(q); 28999 29000 (void) mi_mpprintf(mp, 29001 "CONN " MI_COL_HDRPAD_STR 29002 "rfq " MI_COL_HDRPAD_STR 29003 "stq " MI_COL_HDRPAD_STR 29004 " zone local remote"); 29005 29006 /* 29007 * Because of the ndd constraint, at most we can have 64K buffer 29008 * to put in all conn info. So to be more efficient, just 29009 * allocate a 64K buffer here, assuming we need that large buffer. 29010 * This should be OK as only privileged processes can do ndd /dev/ip. 29011 */ 29012 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 29013 /* The following may work even if we cannot get a large buf. */ 29014 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 29015 return (0); 29016 } 29017 29018 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 29019 connp->conn_netstack->netstack_ip); 29020 return (0); 29021 } 29022 29023 /* 29024 * Determine if the ill and multicast aspects of that packets 29025 * "matches" the conn. 29026 */ 29027 boolean_t 29028 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 29029 zoneid_t zoneid) 29030 { 29031 ill_t *in_ill; 29032 boolean_t found; 29033 ipif_t *ipif; 29034 ire_t *ire; 29035 ipaddr_t dst, src; 29036 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 29037 29038 dst = ipha->ipha_dst; 29039 src = ipha->ipha_src; 29040 29041 /* 29042 * conn_incoming_ill is set by IP_BOUND_IF which limits 29043 * unicast, broadcast and multicast reception to 29044 * conn_incoming_ill. conn_wantpacket itself is called 29045 * only for BROADCAST and multicast. 29046 * 29047 * 1) ip_rput supresses duplicate broadcasts if the ill 29048 * is part of a group. Hence, we should be receiving 29049 * just one copy of broadcast for the whole group. 29050 * Thus, if it is part of the group the packet could 29051 * come on any ill of the group and hence we need a 29052 * match on the group. Otherwise, match on ill should 29053 * be sufficient. 29054 * 29055 * 2) ip_rput does not suppress duplicate multicast packets. 29056 * If there are two interfaces in a ill group and we have 29057 * 2 applications (conns) joined a multicast group G on 29058 * both the interfaces, ilm_lookup_ill filter in ip_rput 29059 * will give us two packets because we join G on both the 29060 * interfaces rather than nominating just one interface 29061 * for receiving multicast like broadcast above. So, 29062 * we have to call ilg_lookup_ill to filter out duplicate 29063 * copies, if ill is part of a group. 29064 */ 29065 in_ill = connp->conn_incoming_ill; 29066 if (in_ill != NULL) { 29067 if (in_ill->ill_group == NULL) { 29068 if (in_ill != ill) 29069 return (B_FALSE); 29070 } else if (in_ill->ill_group != ill->ill_group) { 29071 return (B_FALSE); 29072 } 29073 } 29074 29075 if (!CLASSD(dst)) { 29076 if (IPCL_ZONE_MATCH(connp, zoneid)) 29077 return (B_TRUE); 29078 /* 29079 * The conn is in a different zone; we need to check that this 29080 * broadcast address is configured in the application's zone and 29081 * on one ill in the group. 29082 */ 29083 ipif = ipif_get_next_ipif(NULL, ill); 29084 if (ipif == NULL) 29085 return (B_FALSE); 29086 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 29087 connp->conn_zoneid, NULL, 29088 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 29089 ipif_refrele(ipif); 29090 if (ire != NULL) { 29091 ire_refrele(ire); 29092 return (B_TRUE); 29093 } else { 29094 return (B_FALSE); 29095 } 29096 } 29097 29098 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 29099 connp->conn_zoneid == zoneid) { 29100 /* 29101 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 29102 * disabled, therefore we don't dispatch the multicast packet to 29103 * the sending zone. 29104 */ 29105 return (B_FALSE); 29106 } 29107 29108 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 29109 /* 29110 * Multicast packet on the loopback interface: we only match 29111 * conns who joined the group in the specified zone. 29112 */ 29113 return (B_FALSE); 29114 } 29115 29116 if (connp->conn_multi_router) { 29117 /* multicast packet and multicast router socket: send up */ 29118 return (B_TRUE); 29119 } 29120 29121 mutex_enter(&connp->conn_lock); 29122 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 29123 mutex_exit(&connp->conn_lock); 29124 return (found); 29125 } 29126 29127 /* 29128 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 29129 */ 29130 /* ARGSUSED */ 29131 static void 29132 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 29133 { 29134 ill_t *ill = (ill_t *)q->q_ptr; 29135 mblk_t *mp1, *mp2; 29136 ipif_t *ipif; 29137 int err = 0; 29138 conn_t *connp = NULL; 29139 ipsq_t *ipsq; 29140 arc_t *arc; 29141 29142 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 29143 29144 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 29145 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 29146 29147 ASSERT(IAM_WRITER_ILL(ill)); 29148 mp2 = mp->b_cont; 29149 mp->b_cont = NULL; 29150 29151 /* 29152 * We have now received the arp bringup completion message 29153 * from ARP. Mark the arp bringup as done. Also if the arp 29154 * stream has already started closing, send up the AR_ARP_CLOSING 29155 * ack now since ARP is waiting in close for this ack. 29156 */ 29157 mutex_enter(&ill->ill_lock); 29158 ill->ill_arp_bringup_pending = 0; 29159 if (ill->ill_arp_closing) { 29160 mutex_exit(&ill->ill_lock); 29161 /* Let's reuse the mp for sending the ack */ 29162 arc = (arc_t *)mp->b_rptr; 29163 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 29164 arc->arc_cmd = AR_ARP_CLOSING; 29165 qreply(q, mp); 29166 } else { 29167 mutex_exit(&ill->ill_lock); 29168 freeb(mp); 29169 } 29170 29171 ipsq = ill->ill_phyint->phyint_ipsq; 29172 ipif = ipsq->ipsq_pending_ipif; 29173 mp1 = ipsq_pending_mp_get(ipsq, &connp); 29174 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 29175 if (mp1 == NULL) { 29176 /* bringup was aborted by the user */ 29177 freemsg(mp2); 29178 return; 29179 } 29180 29181 /* 29182 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 29183 * must have an associated conn_t. Otherwise, we're bringing this 29184 * interface back up as part of handling an asynchronous event (e.g., 29185 * physical address change). 29186 */ 29187 if (ipsq->ipsq_current_ioctl != 0) { 29188 ASSERT(connp != NULL); 29189 q = CONNP_TO_WQ(connp); 29190 } else { 29191 ASSERT(connp == NULL); 29192 q = ill->ill_rq; 29193 } 29194 29195 /* 29196 * If the DL_BIND_REQ fails, it is noted 29197 * in arc_name_offset. 29198 */ 29199 err = *((int *)mp2->b_rptr); 29200 if (err == 0) { 29201 if (ipif->ipif_isv6) { 29202 if ((err = ipif_up_done_v6(ipif)) != 0) 29203 ip0dbg(("ip_arp_done: init failed\n")); 29204 } else { 29205 if ((err = ipif_up_done(ipif)) != 0) 29206 ip0dbg(("ip_arp_done: init failed\n")); 29207 } 29208 } else { 29209 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 29210 } 29211 29212 freemsg(mp2); 29213 29214 if ((err == 0) && (ill->ill_up_ipifs)) { 29215 err = ill_up_ipifs(ill, q, mp1); 29216 if (err == EINPROGRESS) 29217 return; 29218 } 29219 29220 if (ill->ill_up_ipifs) 29221 ill_group_cleanup(ill); 29222 29223 /* 29224 * The operation must complete without EINPROGRESS since 29225 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29226 * Otherwise, the operation will be stuck forever in the ipsq. 29227 */ 29228 ASSERT(err != EINPROGRESS); 29229 if (ipsq->ipsq_current_ioctl != 0) 29230 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29231 else 29232 ipsq_current_finish(ipsq); 29233 } 29234 29235 /* Allocate the private structure */ 29236 static int 29237 ip_priv_alloc(void **bufp) 29238 { 29239 void *buf; 29240 29241 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29242 return (ENOMEM); 29243 29244 *bufp = buf; 29245 return (0); 29246 } 29247 29248 /* Function to delete the private structure */ 29249 void 29250 ip_priv_free(void *buf) 29251 { 29252 ASSERT(buf != NULL); 29253 kmem_free(buf, sizeof (ip_priv_t)); 29254 } 29255 29256 /* 29257 * The entry point for IPPF processing. 29258 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29259 * routine just returns. 29260 * 29261 * When called, ip_process generates an ipp_packet_t structure 29262 * which holds the state information for this packet and invokes the 29263 * the classifier (via ipp_packet_process). The classification, depending on 29264 * configured filters, results in a list of actions for this packet. Invoking 29265 * an action may cause the packet to be dropped, in which case the resulting 29266 * mblk (*mpp) is NULL. proc indicates the callout position for 29267 * this packet and ill_index is the interface this packet on or will leave 29268 * on (inbound and outbound resp.). 29269 */ 29270 void 29271 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29272 { 29273 mblk_t *mp; 29274 ip_priv_t *priv; 29275 ipp_action_id_t aid; 29276 int rc = 0; 29277 ipp_packet_t *pp; 29278 #define IP_CLASS "ip" 29279 29280 /* If the classifier is not loaded, return */ 29281 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29282 return; 29283 } 29284 29285 mp = *mpp; 29286 ASSERT(mp != NULL); 29287 29288 /* Allocate the packet structure */ 29289 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29290 if (rc != 0) { 29291 *mpp = NULL; 29292 freemsg(mp); 29293 return; 29294 } 29295 29296 /* Allocate the private structure */ 29297 rc = ip_priv_alloc((void **)&priv); 29298 if (rc != 0) { 29299 *mpp = NULL; 29300 freemsg(mp); 29301 ipp_packet_free(pp); 29302 return; 29303 } 29304 priv->proc = proc; 29305 priv->ill_index = ill_index; 29306 ipp_packet_set_private(pp, priv, ip_priv_free); 29307 ipp_packet_set_data(pp, mp); 29308 29309 /* Invoke the classifier */ 29310 rc = ipp_packet_process(&pp); 29311 if (pp != NULL) { 29312 mp = ipp_packet_get_data(pp); 29313 ipp_packet_free(pp); 29314 if (rc != 0) { 29315 freemsg(mp); 29316 *mpp = NULL; 29317 } 29318 } else { 29319 *mpp = NULL; 29320 } 29321 #undef IP_CLASS 29322 } 29323 29324 /* 29325 * Propagate a multicast group membership operation (add/drop) on 29326 * all the interfaces crossed by the related multirt routes. 29327 * The call is considered successful if the operation succeeds 29328 * on at least one interface. 29329 */ 29330 static int 29331 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29332 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29333 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29334 mblk_t *first_mp) 29335 { 29336 ire_t *ire_gw; 29337 irb_t *irb; 29338 int error = 0; 29339 opt_restart_t *or; 29340 ip_stack_t *ipst = ire->ire_ipst; 29341 29342 irb = ire->ire_bucket; 29343 ASSERT(irb != NULL); 29344 29345 ASSERT(DB_TYPE(first_mp) == M_CTL); 29346 29347 or = (opt_restart_t *)first_mp->b_rptr; 29348 IRB_REFHOLD(irb); 29349 for (; ire != NULL; ire = ire->ire_next) { 29350 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29351 continue; 29352 if (ire->ire_addr != group) 29353 continue; 29354 29355 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29356 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29357 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29358 /* No resolver exists for the gateway; skip this ire. */ 29359 if (ire_gw == NULL) 29360 continue; 29361 29362 /* 29363 * This function can return EINPROGRESS. If so the operation 29364 * will be restarted from ip_restart_optmgmt which will 29365 * call ip_opt_set and option processing will restart for 29366 * this option. So we may end up calling 'fn' more than once. 29367 * This requires that 'fn' is idempotent except for the 29368 * return value. The operation is considered a success if 29369 * it succeeds at least once on any one interface. 29370 */ 29371 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29372 NULL, fmode, src, first_mp); 29373 if (error == 0) 29374 or->or_private = CGTP_MCAST_SUCCESS; 29375 29376 if (ip_debug > 0) { 29377 ulong_t off; 29378 char *ksym; 29379 ksym = kobj_getsymname((uintptr_t)fn, &off); 29380 ip2dbg(("ip_multirt_apply_membership: " 29381 "called %s, multirt group 0x%08x via itf 0x%08x, " 29382 "error %d [success %u]\n", 29383 ksym ? ksym : "?", 29384 ntohl(group), ntohl(ire_gw->ire_src_addr), 29385 error, or->or_private)); 29386 } 29387 29388 ire_refrele(ire_gw); 29389 if (error == EINPROGRESS) { 29390 IRB_REFRELE(irb); 29391 return (error); 29392 } 29393 } 29394 IRB_REFRELE(irb); 29395 /* 29396 * Consider the call as successful if we succeeded on at least 29397 * one interface. Otherwise, return the last encountered error. 29398 */ 29399 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29400 } 29401 29402 /* 29403 * Issue a warning regarding a route crossing an interface with an 29404 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29405 * amount of time is logged. 29406 */ 29407 static void 29408 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29409 { 29410 hrtime_t current = gethrtime(); 29411 char buf[INET_ADDRSTRLEN]; 29412 ip_stack_t *ipst = ire->ire_ipst; 29413 29414 /* Convert interval in ms to hrtime in ns */ 29415 if (ipst->ips_multirt_bad_mtu_last_time + 29416 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29417 current) { 29418 cmn_err(CE_WARN, "ip: ignoring multiroute " 29419 "to %s, incorrect MTU %u (expected %u)\n", 29420 ip_dot_addr(ire->ire_addr, buf), 29421 ire->ire_max_frag, max_frag); 29422 29423 ipst->ips_multirt_bad_mtu_last_time = current; 29424 } 29425 } 29426 29427 29428 /* 29429 * Get the CGTP (multirouting) filtering status. 29430 * If 0, the CGTP hooks are transparent. 29431 */ 29432 /* ARGSUSED */ 29433 static int 29434 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29435 { 29436 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29437 29438 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29439 return (0); 29440 } 29441 29442 29443 /* 29444 * Set the CGTP (multirouting) filtering status. 29445 * If the status is changed from active to transparent 29446 * or from transparent to active, forward the new status 29447 * to the filtering module (if loaded). 29448 */ 29449 /* ARGSUSED */ 29450 static int 29451 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29452 cred_t *ioc_cr) 29453 { 29454 long new_value; 29455 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29456 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29457 29458 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29459 return (EPERM); 29460 29461 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29462 new_value < 0 || new_value > 1) { 29463 return (EINVAL); 29464 } 29465 29466 if ((!*ip_cgtp_filter_value) && new_value) { 29467 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29468 ipst->ips_ip_cgtp_filter_ops == NULL ? 29469 " (module not loaded)" : ""); 29470 } 29471 if (*ip_cgtp_filter_value && (!new_value)) { 29472 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29473 ipst->ips_ip_cgtp_filter_ops == NULL ? 29474 " (module not loaded)" : ""); 29475 } 29476 29477 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29478 int res; 29479 netstackid_t stackid; 29480 29481 stackid = ipst->ips_netstack->netstack_stackid; 29482 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29483 new_value); 29484 if (res) 29485 return (res); 29486 } 29487 29488 *ip_cgtp_filter_value = (boolean_t)new_value; 29489 29490 return (0); 29491 } 29492 29493 29494 /* 29495 * Return the expected CGTP hooks version number. 29496 */ 29497 int 29498 ip_cgtp_filter_supported(void) 29499 { 29500 return (ip_cgtp_filter_rev); 29501 } 29502 29503 29504 /* 29505 * CGTP hooks can be registered by invoking this function. 29506 * Checks that the version number matches. 29507 */ 29508 int 29509 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29510 { 29511 netstack_t *ns; 29512 ip_stack_t *ipst; 29513 29514 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29515 return (ENOTSUP); 29516 29517 ns = netstack_find_by_stackid(stackid); 29518 if (ns == NULL) 29519 return (EINVAL); 29520 ipst = ns->netstack_ip; 29521 ASSERT(ipst != NULL); 29522 29523 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29524 netstack_rele(ns); 29525 return (EALREADY); 29526 } 29527 29528 ipst->ips_ip_cgtp_filter_ops = ops; 29529 netstack_rele(ns); 29530 return (0); 29531 } 29532 29533 /* 29534 * CGTP hooks can be unregistered by invoking this function. 29535 * Returns ENXIO if there was no registration. 29536 * Returns EBUSY if the ndd variable has not been turned off. 29537 */ 29538 int 29539 ip_cgtp_filter_unregister(netstackid_t stackid) 29540 { 29541 netstack_t *ns; 29542 ip_stack_t *ipst; 29543 29544 ns = netstack_find_by_stackid(stackid); 29545 if (ns == NULL) 29546 return (EINVAL); 29547 ipst = ns->netstack_ip; 29548 ASSERT(ipst != NULL); 29549 29550 if (ipst->ips_ip_cgtp_filter) { 29551 netstack_rele(ns); 29552 return (EBUSY); 29553 } 29554 29555 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29556 netstack_rele(ns); 29557 return (ENXIO); 29558 } 29559 ipst->ips_ip_cgtp_filter_ops = NULL; 29560 netstack_rele(ns); 29561 return (0); 29562 } 29563 29564 /* 29565 * Check whether there is a CGTP filter registration. 29566 * Returns non-zero if there is a registration, otherwise returns zero. 29567 * Note: returns zero if bad stackid. 29568 */ 29569 int 29570 ip_cgtp_filter_is_registered(netstackid_t stackid) 29571 { 29572 netstack_t *ns; 29573 ip_stack_t *ipst; 29574 int ret; 29575 29576 ns = netstack_find_by_stackid(stackid); 29577 if (ns == NULL) 29578 return (0); 29579 ipst = ns->netstack_ip; 29580 ASSERT(ipst != NULL); 29581 29582 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29583 ret = 1; 29584 else 29585 ret = 0; 29586 29587 netstack_rele(ns); 29588 return (ret); 29589 } 29590 29591 static int 29592 ip_squeue_switch(int val) 29593 { 29594 int rval = SQ_FILL; 29595 29596 switch (val) { 29597 case IP_SQUEUE_ENTER_NODRAIN: 29598 rval = SQ_NODRAIN; 29599 break; 29600 case IP_SQUEUE_ENTER: 29601 rval = SQ_PROCESS; 29602 break; 29603 default: 29604 break; 29605 } 29606 return (rval); 29607 } 29608 29609 /* ARGSUSED */ 29610 static int 29611 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29612 caddr_t addr, cred_t *cr) 29613 { 29614 int *v = (int *)addr; 29615 long new_value; 29616 29617 if (secpolicy_net_config(cr, B_FALSE) != 0) 29618 return (EPERM); 29619 29620 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29621 return (EINVAL); 29622 29623 ip_squeue_flag = ip_squeue_switch(new_value); 29624 *v = new_value; 29625 return (0); 29626 } 29627 29628 /* 29629 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29630 * ip_debug. 29631 */ 29632 /* ARGSUSED */ 29633 static int 29634 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29635 caddr_t addr, cred_t *cr) 29636 { 29637 int *v = (int *)addr; 29638 long new_value; 29639 29640 if (secpolicy_net_config(cr, B_FALSE) != 0) 29641 return (EPERM); 29642 29643 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29644 return (EINVAL); 29645 29646 *v = new_value; 29647 return (0); 29648 } 29649 29650 /* 29651 * Handle changes to ipmp_hook_emulation ndd variable. 29652 * Need to update phyint_hook_ifindex. 29653 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29654 */ 29655 static void 29656 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29657 { 29658 phyint_t *phyi; 29659 phyint_t *phyi_tmp; 29660 char *groupname; 29661 int namelen; 29662 ill_t *ill; 29663 boolean_t new_group; 29664 29665 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29666 /* 29667 * Group indicies are stored in the phyint - a common structure 29668 * to both IPv4 and IPv6. 29669 */ 29670 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29671 for (; phyi != NULL; 29672 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29673 phyi, AVL_AFTER)) { 29674 /* Ignore the ones that do not have a group */ 29675 if (phyi->phyint_groupname_len == 0) 29676 continue; 29677 29678 /* 29679 * Look for other phyint in group. 29680 * Clear name/namelen so the lookup doesn't find ourselves. 29681 */ 29682 namelen = phyi->phyint_groupname_len; 29683 groupname = phyi->phyint_groupname; 29684 phyi->phyint_groupname_len = 0; 29685 phyi->phyint_groupname = NULL; 29686 29687 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29688 /* Restore */ 29689 phyi->phyint_groupname_len = namelen; 29690 phyi->phyint_groupname = groupname; 29691 29692 new_group = B_FALSE; 29693 if (ipst->ips_ipmp_hook_emulation) { 29694 /* 29695 * If the group already exists and has already 29696 * been assigned a group ifindex, we use the existing 29697 * group_ifindex, otherwise we pick a new group_ifindex 29698 * here. 29699 */ 29700 if (phyi_tmp != NULL && 29701 phyi_tmp->phyint_group_ifindex != 0) { 29702 phyi->phyint_group_ifindex = 29703 phyi_tmp->phyint_group_ifindex; 29704 } else { 29705 /* XXX We need a recovery strategy here. */ 29706 if (!ip_assign_ifindex( 29707 &phyi->phyint_group_ifindex, ipst)) 29708 cmn_err(CE_PANIC, 29709 "ip_assign_ifindex() failed"); 29710 new_group = B_TRUE; 29711 } 29712 } else { 29713 phyi->phyint_group_ifindex = 0; 29714 } 29715 if (ipst->ips_ipmp_hook_emulation) 29716 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29717 else 29718 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29719 29720 /* 29721 * For IP Filter to find out the relationship between 29722 * names and interface indicies, we need to generate 29723 * a NE_PLUMB event when a new group can appear. 29724 * We always generate events when a new interface appears 29725 * (even when ipmp_hook_emulation is set) so there 29726 * is no need to generate NE_PLUMB events when 29727 * ipmp_hook_emulation is turned off. 29728 * And since it isn't critical for IP Filter to get 29729 * the NE_UNPLUMB events we skip those here. 29730 */ 29731 if (new_group) { 29732 /* 29733 * First phyint in group - generate group PLUMB event. 29734 * Since we are not running inside the ipsq we do 29735 * the dispatch immediately. 29736 */ 29737 if (phyi->phyint_illv4 != NULL) 29738 ill = phyi->phyint_illv4; 29739 else 29740 ill = phyi->phyint_illv6; 29741 29742 if (ill != NULL) 29743 ill_nic_event_plumb(ill, B_TRUE); 29744 } 29745 } 29746 rw_exit(&ipst->ips_ill_g_lock); 29747 } 29748 29749 /* ARGSUSED */ 29750 static int 29751 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29752 caddr_t addr, cred_t *cr) 29753 { 29754 int *v = (int *)addr; 29755 long new_value; 29756 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29757 29758 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29759 return (EINVAL); 29760 29761 if (*v != new_value) { 29762 *v = new_value; 29763 ipmp_hook_emulation_changed(ipst); 29764 } 29765 return (0); 29766 } 29767 29768 static void * 29769 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29770 { 29771 kstat_t *ksp; 29772 29773 ip_stat_t template = { 29774 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29775 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29776 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29777 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29778 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29779 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29780 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29781 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29782 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29783 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29784 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29785 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29786 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29787 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29788 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29789 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29790 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29791 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29792 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29793 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29794 { "ip_opt", KSTAT_DATA_UINT64 }, 29795 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29796 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29797 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29798 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29799 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29800 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29801 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29802 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29803 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29804 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29805 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29806 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29807 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29808 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29809 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29810 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29811 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29812 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29813 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29814 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29815 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29816 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29817 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29818 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29819 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29820 }; 29821 29822 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29823 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29824 KSTAT_FLAG_VIRTUAL, stackid); 29825 29826 if (ksp == NULL) 29827 return (NULL); 29828 29829 bcopy(&template, ip_statisticsp, sizeof (template)); 29830 ksp->ks_data = (void *)ip_statisticsp; 29831 ksp->ks_private = (void *)(uintptr_t)stackid; 29832 29833 kstat_install(ksp); 29834 return (ksp); 29835 } 29836 29837 static void 29838 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29839 { 29840 if (ksp != NULL) { 29841 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29842 kstat_delete_netstack(ksp, stackid); 29843 } 29844 } 29845 29846 static void * 29847 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29848 { 29849 kstat_t *ksp; 29850 29851 ip_named_kstat_t template = { 29852 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29853 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29854 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29855 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29856 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29857 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29858 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29859 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29860 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29861 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29862 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29863 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29864 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29865 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29866 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29867 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29868 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29869 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29870 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29871 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29872 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29873 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29874 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29875 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29876 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29877 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29878 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29879 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29880 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29881 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29882 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29883 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29884 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29885 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29886 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29887 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29888 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29889 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29890 }; 29891 29892 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29893 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29894 if (ksp == NULL || ksp->ks_data == NULL) 29895 return (NULL); 29896 29897 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29898 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29899 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29900 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29901 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29902 29903 template.netToMediaEntrySize.value.i32 = 29904 sizeof (mib2_ipNetToMediaEntry_t); 29905 29906 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29907 29908 bcopy(&template, ksp->ks_data, sizeof (template)); 29909 ksp->ks_update = ip_kstat_update; 29910 ksp->ks_private = (void *)(uintptr_t)stackid; 29911 29912 kstat_install(ksp); 29913 return (ksp); 29914 } 29915 29916 static void 29917 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29918 { 29919 if (ksp != NULL) { 29920 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29921 kstat_delete_netstack(ksp, stackid); 29922 } 29923 } 29924 29925 static int 29926 ip_kstat_update(kstat_t *kp, int rw) 29927 { 29928 ip_named_kstat_t *ipkp; 29929 mib2_ipIfStatsEntry_t ipmib; 29930 ill_walk_context_t ctx; 29931 ill_t *ill; 29932 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29933 netstack_t *ns; 29934 ip_stack_t *ipst; 29935 29936 if (kp == NULL || kp->ks_data == NULL) 29937 return (EIO); 29938 29939 if (rw == KSTAT_WRITE) 29940 return (EACCES); 29941 29942 ns = netstack_find_by_stackid(stackid); 29943 if (ns == NULL) 29944 return (-1); 29945 ipst = ns->netstack_ip; 29946 if (ipst == NULL) { 29947 netstack_rele(ns); 29948 return (-1); 29949 } 29950 ipkp = (ip_named_kstat_t *)kp->ks_data; 29951 29952 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29953 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29954 ill = ILL_START_WALK_V4(&ctx, ipst); 29955 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29956 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29957 rw_exit(&ipst->ips_ill_g_lock); 29958 29959 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29960 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29961 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29962 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29963 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29964 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29965 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29966 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29967 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29968 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29969 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29970 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29971 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29972 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29973 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29974 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29975 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29976 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29977 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29978 29979 ipkp->routingDiscards.value.ui32 = 0; 29980 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29981 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29982 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29983 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29984 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29985 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29986 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29987 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29988 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29989 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29990 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29991 29992 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29993 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29994 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29995 29996 netstack_rele(ns); 29997 29998 return (0); 29999 } 30000 30001 static void * 30002 icmp_kstat_init(netstackid_t stackid) 30003 { 30004 kstat_t *ksp; 30005 30006 icmp_named_kstat_t template = { 30007 { "inMsgs", KSTAT_DATA_UINT32 }, 30008 { "inErrors", KSTAT_DATA_UINT32 }, 30009 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 30010 { "inTimeExcds", KSTAT_DATA_UINT32 }, 30011 { "inParmProbs", KSTAT_DATA_UINT32 }, 30012 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 30013 { "inRedirects", KSTAT_DATA_UINT32 }, 30014 { "inEchos", KSTAT_DATA_UINT32 }, 30015 { "inEchoReps", KSTAT_DATA_UINT32 }, 30016 { "inTimestamps", KSTAT_DATA_UINT32 }, 30017 { "inTimestampReps", KSTAT_DATA_UINT32 }, 30018 { "inAddrMasks", KSTAT_DATA_UINT32 }, 30019 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 30020 { "outMsgs", KSTAT_DATA_UINT32 }, 30021 { "outErrors", KSTAT_DATA_UINT32 }, 30022 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 30023 { "outTimeExcds", KSTAT_DATA_UINT32 }, 30024 { "outParmProbs", KSTAT_DATA_UINT32 }, 30025 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 30026 { "outRedirects", KSTAT_DATA_UINT32 }, 30027 { "outEchos", KSTAT_DATA_UINT32 }, 30028 { "outEchoReps", KSTAT_DATA_UINT32 }, 30029 { "outTimestamps", KSTAT_DATA_UINT32 }, 30030 { "outTimestampReps", KSTAT_DATA_UINT32 }, 30031 { "outAddrMasks", KSTAT_DATA_UINT32 }, 30032 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 30033 { "inChksumErrs", KSTAT_DATA_UINT32 }, 30034 { "inUnknowns", KSTAT_DATA_UINT32 }, 30035 { "inFragNeeded", KSTAT_DATA_UINT32 }, 30036 { "outFragNeeded", KSTAT_DATA_UINT32 }, 30037 { "outDrops", KSTAT_DATA_UINT32 }, 30038 { "inOverFlows", KSTAT_DATA_UINT32 }, 30039 { "inBadRedirects", KSTAT_DATA_UINT32 }, 30040 }; 30041 30042 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 30043 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 30044 if (ksp == NULL || ksp->ks_data == NULL) 30045 return (NULL); 30046 30047 bcopy(&template, ksp->ks_data, sizeof (template)); 30048 30049 ksp->ks_update = icmp_kstat_update; 30050 ksp->ks_private = (void *)(uintptr_t)stackid; 30051 30052 kstat_install(ksp); 30053 return (ksp); 30054 } 30055 30056 static void 30057 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 30058 { 30059 if (ksp != NULL) { 30060 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 30061 kstat_delete_netstack(ksp, stackid); 30062 } 30063 } 30064 30065 static int 30066 icmp_kstat_update(kstat_t *kp, int rw) 30067 { 30068 icmp_named_kstat_t *icmpkp; 30069 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 30070 netstack_t *ns; 30071 ip_stack_t *ipst; 30072 30073 if ((kp == NULL) || (kp->ks_data == NULL)) 30074 return (EIO); 30075 30076 if (rw == KSTAT_WRITE) 30077 return (EACCES); 30078 30079 ns = netstack_find_by_stackid(stackid); 30080 if (ns == NULL) 30081 return (-1); 30082 ipst = ns->netstack_ip; 30083 if (ipst == NULL) { 30084 netstack_rele(ns); 30085 return (-1); 30086 } 30087 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 30088 30089 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 30090 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 30091 icmpkp->inDestUnreachs.value.ui32 = 30092 ipst->ips_icmp_mib.icmpInDestUnreachs; 30093 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 30094 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 30095 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 30096 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 30097 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 30098 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 30099 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 30100 icmpkp->inTimestampReps.value.ui32 = 30101 ipst->ips_icmp_mib.icmpInTimestampReps; 30102 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 30103 icmpkp->inAddrMaskReps.value.ui32 = 30104 ipst->ips_icmp_mib.icmpInAddrMaskReps; 30105 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 30106 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 30107 icmpkp->outDestUnreachs.value.ui32 = 30108 ipst->ips_icmp_mib.icmpOutDestUnreachs; 30109 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 30110 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 30111 icmpkp->outSrcQuenchs.value.ui32 = 30112 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 30113 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 30114 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 30115 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 30116 icmpkp->outTimestamps.value.ui32 = 30117 ipst->ips_icmp_mib.icmpOutTimestamps; 30118 icmpkp->outTimestampReps.value.ui32 = 30119 ipst->ips_icmp_mib.icmpOutTimestampReps; 30120 icmpkp->outAddrMasks.value.ui32 = 30121 ipst->ips_icmp_mib.icmpOutAddrMasks; 30122 icmpkp->outAddrMaskReps.value.ui32 = 30123 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 30124 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 30125 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 30126 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 30127 icmpkp->outFragNeeded.value.ui32 = 30128 ipst->ips_icmp_mib.icmpOutFragNeeded; 30129 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 30130 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 30131 icmpkp->inBadRedirects.value.ui32 = 30132 ipst->ips_icmp_mib.icmpInBadRedirects; 30133 30134 netstack_rele(ns); 30135 return (0); 30136 } 30137 30138 /* 30139 * This is the fanout function for raw socket opened for SCTP. Note 30140 * that it is called after SCTP checks that there is no socket which 30141 * wants a packet. Then before SCTP handles this out of the blue packet, 30142 * this function is called to see if there is any raw socket for SCTP. 30143 * If there is and it is bound to the correct address, the packet will 30144 * be sent to that socket. Note that only one raw socket can be bound to 30145 * a port. This is assured in ipcl_sctp_hash_insert(); 30146 */ 30147 void 30148 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 30149 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 30150 zoneid_t zoneid) 30151 { 30152 conn_t *connp; 30153 queue_t *rq; 30154 mblk_t *first_mp; 30155 boolean_t secure; 30156 ip6_t *ip6h; 30157 ip_stack_t *ipst = recv_ill->ill_ipst; 30158 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 30159 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 30160 boolean_t sctp_csum_err = B_FALSE; 30161 30162 if (flags & IP_FF_SCTP_CSUM_ERR) { 30163 sctp_csum_err = B_TRUE; 30164 flags &= ~IP_FF_SCTP_CSUM_ERR; 30165 } 30166 30167 first_mp = mp; 30168 if (mctl_present) { 30169 mp = first_mp->b_cont; 30170 secure = ipsec_in_is_secure(first_mp); 30171 ASSERT(mp != NULL); 30172 } else { 30173 secure = B_FALSE; 30174 } 30175 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 30176 30177 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 30178 if (connp == NULL) { 30179 /* 30180 * Although raw sctp is not summed, OOB chunks must be. 30181 * Drop the packet here if the sctp checksum failed. 30182 */ 30183 if (sctp_csum_err) { 30184 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 30185 freemsg(first_mp); 30186 return; 30187 } 30188 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 30189 return; 30190 } 30191 rq = connp->conn_rq; 30192 if (!canputnext(rq)) { 30193 CONN_DEC_REF(connp); 30194 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 30195 freemsg(first_mp); 30196 return; 30197 } 30198 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 30199 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 30200 first_mp = ipsec_check_inbound_policy(first_mp, connp, 30201 (isv4 ? ipha : NULL), ip6h, mctl_present); 30202 if (first_mp == NULL) { 30203 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 30204 CONN_DEC_REF(connp); 30205 return; 30206 } 30207 } 30208 /* 30209 * We probably should not send M_CTL message up to 30210 * raw socket. 30211 */ 30212 if (mctl_present) 30213 freeb(first_mp); 30214 30215 /* Initiate IPPF processing here if needed. */ 30216 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 30217 (!isv4 && IP6_IN_IPP(flags, ipst))) { 30218 ip_process(IPP_LOCAL_IN, &mp, 30219 recv_ill->ill_phyint->phyint_ifindex); 30220 if (mp == NULL) { 30221 CONN_DEC_REF(connp); 30222 return; 30223 } 30224 } 30225 30226 if (connp->conn_recvif || connp->conn_recvslla || 30227 ((connp->conn_ip_recvpktinfo || 30228 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 30229 (flags & IP_FF_IPINFO))) { 30230 int in_flags = 0; 30231 30232 /* 30233 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 30234 * IPF_RECVIF. 30235 */ 30236 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 30237 in_flags = IPF_RECVIF; 30238 } 30239 if (connp->conn_recvslla) { 30240 in_flags |= IPF_RECVSLLA; 30241 } 30242 if (isv4) { 30243 mp = ip_add_info(mp, recv_ill, in_flags, 30244 IPCL_ZONEID(connp), ipst); 30245 } else { 30246 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 30247 if (mp == NULL) { 30248 BUMP_MIB(recv_ill->ill_ip_mib, 30249 ipIfStatsInDiscards); 30250 CONN_DEC_REF(connp); 30251 return; 30252 } 30253 } 30254 } 30255 30256 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30257 /* 30258 * We are sending the IPSEC_IN message also up. Refer 30259 * to comments above this function. 30260 * This is the SOCK_RAW, IPPROTO_SCTP case. 30261 */ 30262 (connp->conn_recv)(connp, mp, NULL); 30263 CONN_DEC_REF(connp); 30264 } 30265 30266 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30267 { \ 30268 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30269 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30270 } 30271 /* 30272 * This function should be called only if all packet processing 30273 * including fragmentation is complete. Callers of this function 30274 * must set mp->b_prev to one of these values: 30275 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30276 * prior to handing over the mp as first argument to this function. 30277 * 30278 * If the ire passed by caller is incomplete, this function 30279 * queues the packet and if necessary, sends ARP request and bails. 30280 * If the ire passed is fully resolved, we simply prepend 30281 * the link-layer header to the packet, do ipsec hw acceleration 30282 * work if necessary, and send the packet out on the wire. 30283 * 30284 * NOTE: IPsec will only call this function with fully resolved 30285 * ires if hw acceleration is involved. 30286 * TODO list : 30287 * a Handle M_MULTIDATA so that 30288 * tcp_multisend->tcp_multisend_data can 30289 * call ip_xmit_v4 directly 30290 * b Handle post-ARP work for fragments so that 30291 * ip_wput_frag can call this function. 30292 */ 30293 ipxmit_state_t 30294 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 30295 boolean_t flow_ctl_enabled, conn_t *connp) 30296 { 30297 nce_t *arpce; 30298 ipha_t *ipha; 30299 queue_t *q; 30300 int ill_index; 30301 mblk_t *nxt_mp, *first_mp; 30302 boolean_t xmit_drop = B_FALSE; 30303 ip_proc_t proc; 30304 ill_t *out_ill; 30305 int pkt_len; 30306 30307 arpce = ire->ire_nce; 30308 ASSERT(arpce != NULL); 30309 30310 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30311 30312 mutex_enter(&arpce->nce_lock); 30313 switch (arpce->nce_state) { 30314 case ND_REACHABLE: 30315 /* If there are other queued packets, queue this packet */ 30316 if (arpce->nce_qd_mp != NULL) { 30317 if (mp != NULL) 30318 nce_queue_mp_common(arpce, mp, B_FALSE); 30319 mp = arpce->nce_qd_mp; 30320 } 30321 arpce->nce_qd_mp = NULL; 30322 mutex_exit(&arpce->nce_lock); 30323 30324 /* 30325 * Flush the queue. In the common case, where the 30326 * ARP is already resolved, it will go through the 30327 * while loop only once. 30328 */ 30329 while (mp != NULL) { 30330 30331 nxt_mp = mp->b_next; 30332 mp->b_next = NULL; 30333 ASSERT(mp->b_datap->db_type != M_CTL); 30334 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30335 /* 30336 * This info is needed for IPQOS to do COS marking 30337 * in ip_wput_attach_llhdr->ip_process. 30338 */ 30339 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30340 mp->b_prev = NULL; 30341 30342 /* set up ill index for outbound qos processing */ 30343 out_ill = ire_to_ill(ire); 30344 ill_index = out_ill->ill_phyint->phyint_ifindex; 30345 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30346 ill_index, &ipha); 30347 if (first_mp == NULL) { 30348 xmit_drop = B_TRUE; 30349 BUMP_MIB(out_ill->ill_ip_mib, 30350 ipIfStatsOutDiscards); 30351 goto next_mp; 30352 } 30353 30354 /* non-ipsec hw accel case */ 30355 if (io == NULL || !io->ipsec_out_accelerated) { 30356 /* send it */ 30357 q = ire->ire_stq; 30358 if (proc == IPP_FWD_OUT) { 30359 UPDATE_IB_PKT_COUNT(ire); 30360 } else { 30361 UPDATE_OB_PKT_COUNT(ire); 30362 } 30363 ire->ire_last_used_time = lbolt; 30364 30365 if (flow_ctl_enabled || canputnext(q)) { 30366 if (proc == IPP_FWD_OUT) { 30367 30368 BUMP_MIB(out_ill->ill_ip_mib, 30369 ipIfStatsHCOutForwDatagrams); 30370 30371 } 30372 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30373 pkt_len); 30374 30375 DTRACE_IP7(send, mblk_t *, first_mp, 30376 conn_t *, NULL, void_ip_t *, ipha, 30377 __dtrace_ipsr_ill_t *, out_ill, 30378 ipha_t *, ipha, ip6_t *, NULL, int, 30379 0); 30380 30381 ILL_SEND_TX(out_ill, 30382 ire, connp, first_mp, 0); 30383 } else { 30384 BUMP_MIB(out_ill->ill_ip_mib, 30385 ipIfStatsOutDiscards); 30386 xmit_drop = B_TRUE; 30387 freemsg(first_mp); 30388 } 30389 } else { 30390 /* 30391 * Safety Pup says: make sure this 30392 * is going to the right interface! 30393 */ 30394 ill_t *ill1 = 30395 (ill_t *)ire->ire_stq->q_ptr; 30396 int ifindex = 30397 ill1->ill_phyint->phyint_ifindex; 30398 if (ifindex != 30399 io->ipsec_out_capab_ill_index) { 30400 xmit_drop = B_TRUE; 30401 freemsg(mp); 30402 } else { 30403 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30404 pkt_len); 30405 30406 DTRACE_IP7(send, mblk_t *, first_mp, 30407 conn_t *, NULL, void_ip_t *, ipha, 30408 __dtrace_ipsr_ill_t *, ill1, 30409 ipha_t *, ipha, ip6_t *, NULL, 30410 int, 0); 30411 30412 ipsec_hw_putnext(ire->ire_stq, mp); 30413 } 30414 } 30415 next_mp: 30416 mp = nxt_mp; 30417 } /* while (mp != NULL) */ 30418 if (xmit_drop) 30419 return (SEND_FAILED); 30420 else 30421 return (SEND_PASSED); 30422 30423 case ND_INITIAL: 30424 case ND_INCOMPLETE: 30425 30426 /* 30427 * While we do send off packets to dests that 30428 * use fully-resolved CGTP routes, we do not 30429 * handle unresolved CGTP routes. 30430 */ 30431 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30432 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30433 30434 if (mp != NULL) { 30435 /* queue the packet */ 30436 nce_queue_mp_common(arpce, mp, B_FALSE); 30437 } 30438 30439 if (arpce->nce_state == ND_INCOMPLETE) { 30440 mutex_exit(&arpce->nce_lock); 30441 DTRACE_PROBE3(ip__xmit__incomplete, 30442 (ire_t *), ire, (mblk_t *), mp, 30443 (ipsec_out_t *), io); 30444 return (LOOKUP_IN_PROGRESS); 30445 } 30446 30447 arpce->nce_state = ND_INCOMPLETE; 30448 mutex_exit(&arpce->nce_lock); 30449 /* 30450 * Note that ire_add() (called from ire_forward()) 30451 * holds a ref on the ire until ARP is completed. 30452 */ 30453 30454 ire_arpresolve(ire, ire_to_ill(ire)); 30455 return (LOOKUP_IN_PROGRESS); 30456 default: 30457 ASSERT(0); 30458 mutex_exit(&arpce->nce_lock); 30459 return (LLHDR_RESLV_FAILED); 30460 } 30461 } 30462 30463 #undef UPDATE_IP_MIB_OB_COUNTERS 30464 30465 /* 30466 * Return B_TRUE if the buffers differ in length or content. 30467 * This is used for comparing extension header buffers. 30468 * Note that an extension header would be declared different 30469 * even if all that changed was the next header value in that header i.e. 30470 * what really changed is the next extension header. 30471 */ 30472 boolean_t 30473 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30474 uint_t blen) 30475 { 30476 if (!b_valid) 30477 blen = 0; 30478 30479 if (alen != blen) 30480 return (B_TRUE); 30481 if (alen == 0) 30482 return (B_FALSE); /* Both zero length */ 30483 return (bcmp(abuf, bbuf, alen)); 30484 } 30485 30486 /* 30487 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30488 * Return B_FALSE if memory allocation fails - don't change any state! 30489 */ 30490 boolean_t 30491 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30492 const void *src, uint_t srclen) 30493 { 30494 void *dst; 30495 30496 if (!src_valid) 30497 srclen = 0; 30498 30499 ASSERT(*dstlenp == 0); 30500 if (src != NULL && srclen != 0) { 30501 dst = mi_alloc(srclen, BPRI_MED); 30502 if (dst == NULL) 30503 return (B_FALSE); 30504 } else { 30505 dst = NULL; 30506 } 30507 if (*dstp != NULL) 30508 mi_free(*dstp); 30509 *dstp = dst; 30510 *dstlenp = dst == NULL ? 0 : srclen; 30511 return (B_TRUE); 30512 } 30513 30514 /* 30515 * Replace what is in *dst, *dstlen with the source. 30516 * Assumes ip_allocbuf has already been called. 30517 */ 30518 void 30519 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30520 const void *src, uint_t srclen) 30521 { 30522 if (!src_valid) 30523 srclen = 0; 30524 30525 ASSERT(*dstlenp == srclen); 30526 if (src != NULL && srclen != 0) 30527 bcopy(src, *dstp, srclen); 30528 } 30529 30530 /* 30531 * Free the storage pointed to by the members of an ip6_pkt_t. 30532 */ 30533 void 30534 ip6_pkt_free(ip6_pkt_t *ipp) 30535 { 30536 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30537 30538 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30539 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30540 ipp->ipp_hopopts = NULL; 30541 ipp->ipp_hopoptslen = 0; 30542 } 30543 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30544 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30545 ipp->ipp_rtdstopts = NULL; 30546 ipp->ipp_rtdstoptslen = 0; 30547 } 30548 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30549 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30550 ipp->ipp_dstopts = NULL; 30551 ipp->ipp_dstoptslen = 0; 30552 } 30553 if (ipp->ipp_fields & IPPF_RTHDR) { 30554 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30555 ipp->ipp_rthdr = NULL; 30556 ipp->ipp_rthdrlen = 0; 30557 } 30558 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30559 IPPF_RTHDR); 30560 } 30561 30562 zoneid_t 30563 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30564 zoneid_t lookup_zoneid) 30565 { 30566 ire_t *ire; 30567 int ire_flags = MATCH_IRE_TYPE; 30568 zoneid_t zoneid = ALL_ZONES; 30569 30570 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30571 return (ALL_ZONES); 30572 30573 if (lookup_zoneid != ALL_ZONES) 30574 ire_flags |= MATCH_IRE_ZONEONLY; 30575 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30576 lookup_zoneid, NULL, ire_flags, ipst); 30577 if (ire != NULL) { 30578 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30579 ire_refrele(ire); 30580 } 30581 return (zoneid); 30582 } 30583 30584 zoneid_t 30585 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30586 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30587 { 30588 ire_t *ire; 30589 int ire_flags = MATCH_IRE_TYPE; 30590 zoneid_t zoneid = ALL_ZONES; 30591 ipif_t *ipif_arg = NULL; 30592 30593 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30594 return (ALL_ZONES); 30595 30596 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30597 ire_flags |= MATCH_IRE_ILL_GROUP; 30598 ipif_arg = ill->ill_ipif; 30599 } 30600 if (lookup_zoneid != ALL_ZONES) 30601 ire_flags |= MATCH_IRE_ZONEONLY; 30602 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30603 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30604 if (ire != NULL) { 30605 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30606 ire_refrele(ire); 30607 } 30608 return (zoneid); 30609 } 30610 30611 /* 30612 * IP obserability hook support functions. 30613 */ 30614 30615 static void 30616 ipobs_init(ip_stack_t *ipst) 30617 { 30618 ipst->ips_ipobs_enabled = B_FALSE; 30619 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30620 offsetof(ipobs_cb_t, ipobs_cbnext)); 30621 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30622 ipst->ips_ipobs_cb_nwalkers = 0; 30623 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30624 } 30625 30626 static void 30627 ipobs_fini(ip_stack_t *ipst) 30628 { 30629 ipobs_cb_t *cb; 30630 30631 mutex_enter(&ipst->ips_ipobs_cb_lock); 30632 while (ipst->ips_ipobs_cb_nwalkers != 0) 30633 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30634 30635 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30636 list_remove(&ipst->ips_ipobs_cb_list, cb); 30637 kmem_free(cb, sizeof (*cb)); 30638 } 30639 list_destroy(&ipst->ips_ipobs_cb_list); 30640 mutex_exit(&ipst->ips_ipobs_cb_lock); 30641 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30642 cv_destroy(&ipst->ips_ipobs_cb_cv); 30643 } 30644 30645 void 30646 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30647 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30648 { 30649 ipobs_cb_t *ipobs_cb; 30650 30651 ASSERT(DB_TYPE(mp) == M_DATA); 30652 30653 mutex_enter(&ipst->ips_ipobs_cb_lock); 30654 ipst->ips_ipobs_cb_nwalkers++; 30655 mutex_exit(&ipst->ips_ipobs_cb_lock); 30656 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30657 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30658 mblk_t *mp2 = allocb(sizeof (ipobs_hook_data_t), 30659 BPRI_HI); 30660 if (mp2 != NULL) { 30661 ipobs_hook_data_t *ihd = 30662 (ipobs_hook_data_t *)mp2->b_rptr; 30663 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30664 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30665 freemsg(mp2); 30666 continue; 30667 } 30668 ihd->ihd_mp->b_rptr += hlen; 30669 ihd->ihd_htype = htype; 30670 ihd->ihd_ipver = ipver; 30671 ihd->ihd_zsrc = zsrc; 30672 ihd->ihd_zdst = zdst; 30673 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30674 ihd->ihd_stack = ipst->ips_netstack; 30675 mp2->b_wptr += sizeof (*ihd); 30676 ipobs_cb->ipobs_cbfunc(mp2); 30677 } 30678 } 30679 mutex_enter(&ipst->ips_ipobs_cb_lock); 30680 ipst->ips_ipobs_cb_nwalkers--; 30681 if (ipst->ips_ipobs_cb_nwalkers == 0) 30682 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30683 mutex_exit(&ipst->ips_ipobs_cb_lock); 30684 } 30685 30686 void 30687 ipobs_register_hook(netstack_t *ns, pfv_t func) 30688 { 30689 ipobs_cb_t *cb; 30690 ip_stack_t *ipst = ns->netstack_ip; 30691 30692 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30693 30694 mutex_enter(&ipst->ips_ipobs_cb_lock); 30695 while (ipst->ips_ipobs_cb_nwalkers != 0) 30696 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30697 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30698 30699 cb->ipobs_cbfunc = func; 30700 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30701 ipst->ips_ipobs_enabled = B_TRUE; 30702 mutex_exit(&ipst->ips_ipobs_cb_lock); 30703 } 30704 30705 void 30706 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30707 { 30708 ipobs_cb_t *curcb; 30709 ip_stack_t *ipst = ns->netstack_ip; 30710 30711 mutex_enter(&ipst->ips_ipobs_cb_lock); 30712 while (ipst->ips_ipobs_cb_nwalkers != 0) 30713 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30714 30715 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30716 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30717 if (func == curcb->ipobs_cbfunc) { 30718 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30719 kmem_free(curcb, sizeof (*curcb)); 30720 break; 30721 } 30722 } 30723 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30724 ipst->ips_ipobs_enabled = B_FALSE; 30725 mutex_exit(&ipst->ips_ipobs_cb_lock); 30726 } 30727