1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/suntpi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 #include <sys/taskq.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <sys/mac.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <inet/iptun/iptun_impl.h> 101 #include <inet/ipdrop.h> 102 #include <inet/ip_netinfo.h> 103 #include <inet/ilb_ip.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/pattr.h> 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 #include <inet/rawip_impl.h> 119 #include <inet/rts_impl.h> 120 121 #include <sys/tsol/label.h> 122 #include <sys/tsol/tnet.h> 123 124 #include <sys/squeue_impl.h> 125 #include <inet/ip_arp.h> 126 127 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 139 /* 140 * Setable in /etc/system 141 */ 142 int ip_poll_normal_ms = 100; 143 int ip_poll_normal_ticks = 0; 144 int ip_modclose_ackwait_ms = 3000; 145 146 /* 147 * It would be nice to have these present only in DEBUG systems, but the 148 * current design of the global symbol checking logic requires them to be 149 * unconditionally present. 150 */ 151 uint_t ip_thread_data; /* TSD key for debug support */ 152 krwlock_t ip_thread_rwlock; 153 list_t ip_thread_list; 154 155 /* 156 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 157 */ 158 159 struct listptr_s { 160 mblk_t *lp_head; /* pointer to the head of the list */ 161 mblk_t *lp_tail; /* pointer to the tail of the list */ 162 }; 163 164 typedef struct listptr_s listptr_t; 165 166 /* 167 * This is used by ip_snmp_get_mib2_ip_route_media and 168 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 169 */ 170 typedef struct iproutedata_s { 171 uint_t ird_idx; 172 uint_t ird_flags; /* see below */ 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* Include ire_testhidden and IRE_IF_CLONE routes */ 179 #define IRD_REPORT_ALL 0x01 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, IPMP operations, most set ioctls, etc. 236 * 237 * Plumbing is a long sequence of operations involving message 238 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 239 * involved in plumbing operations. A natural model is to serialize these 240 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 241 * parallel without any interference. But various set ioctls on hme0 are best 242 * serialized, along with IPMP operations and processing of DLPI control 243 * messages received from drivers on a per phyint basis. This serialization is 244 * provided by the ipsq_t and primitives operating on this. Details can 245 * be found in ip_if.c above the core primitives operating on ipsq_t. 246 * 247 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 248 * Simiarly lookup of an ire by a thread also returns a refheld ire. 249 * In addition ipif's and ill's referenced by the ire are also indirectly 250 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 251 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 252 * address of an ipif has to go through the ipsq_t. This ensures that only 253 * one such exclusive operation proceeds at any time on the ipif. It then 254 * waits for all refcnts 255 * associated with this ipif to come down to zero. The address is changed 256 * only after the ipif has been quiesced. Then the ipif is brought up again. 257 * More details are described above the comment in ip_sioctl_flags. 258 * 259 * Packet processing is based mostly on IREs and are fully multi-threaded 260 * using standard Solaris MT techniques. 261 * 262 * There are explicit locks in IP to handle: 263 * - The ip_g_head list maintained by mi_open_link() and friends. 264 * 265 * - The reassembly data structures (one lock per hash bucket) 266 * 267 * - conn_lock is meant to protect conn_t fields. The fields actually 268 * protected by conn_lock are documented in the conn_t definition. 269 * 270 * - ire_lock to protect some of the fields of the ire, IRE tables 271 * (one lock per hash bucket). Refer to ip_ire.c for details. 272 * 273 * - ndp_g_lock and ncec_lock for protecting NCEs. 274 * 275 * - ill_lock protects fields of the ill and ipif. Details in ip.h 276 * 277 * - ill_g_lock: This is a global reader/writer lock. Protects the following 278 * * The AVL tree based global multi list of all ills. 279 * * The linked list of all ipifs of an ill 280 * * The <ipsq-xop> mapping 281 * * <ill-phyint> association 282 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 283 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 284 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 285 * writer for the actual duration of the insertion/deletion/change. 286 * 287 * - ill_lock: This is a per ill mutex. 288 * It protects some members of the ill_t struct; see ip.h for details. 289 * It also protects the <ill-phyint> assoc. 290 * It also protects the list of ipifs hanging off the ill. 291 * 292 * - ipsq_lock: This is a per ipsq_t mutex lock. 293 * This protects some members of the ipsq_t struct; see ip.h for details. 294 * It also protects the <ipsq-ipxop> mapping 295 * 296 * - ipx_lock: This is a per ipxop_t mutex lock. 297 * This protects some members of the ipxop_t struct; see ip.h for details. 298 * 299 * - phyint_lock: This is a per phyint mutex lock. Protects just the 300 * phyint_flags 301 * 302 * - ip_g_nd_lock: This is a global reader/writer lock. 303 * Any call to nd_load to load a new parameter to the ND table must hold the 304 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 305 * as reader. 306 * 307 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 308 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 309 * uniqueness check also done atomically. 310 * 311 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 312 * group list linked by ill_usesrc_grp_next. It also protects the 313 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 314 * group is being added or deleted. This lock is taken as a reader when 315 * walking the list/group(eg: to get the number of members in a usesrc group). 316 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 317 * field is changing state i.e from NULL to non-NULL or vice-versa. For 318 * example, it is not necessary to take this lock in the initial portion 319 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 320 * operations are executed exclusively and that ensures that the "usesrc 321 * group state" cannot change. The "usesrc group state" change can happen 322 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 323 * 324 * Changing <ill-phyint>, <ipsq-xop> assocications: 325 * 326 * To change the <ill-phyint> association, the ill_g_lock must be held 327 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 328 * must be held. 329 * 330 * To change the <ipsq-xop> association, the ill_g_lock must be held as 331 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 332 * This is only done when ills are added or removed from IPMP groups. 333 * 334 * To add or delete an ipif from the list of ipifs hanging off the ill, 335 * ill_g_lock (writer) and ill_lock must be held and the thread must be 336 * a writer on the associated ipsq. 337 * 338 * To add or delete an ill to the system, the ill_g_lock must be held as 339 * writer and the thread must be a writer on the associated ipsq. 340 * 341 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 342 * must be a writer on the associated ipsq. 343 * 344 * Lock hierarchy 345 * 346 * Some lock hierarchy scenarios are listed below. 347 * 348 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 349 * ill_g_lock -> ill_lock(s) -> phyint_lock 350 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 351 * ill_g_lock -> ip_addr_avail_lock 352 * conn_lock -> irb_lock -> ill_lock -> ire_lock 353 * ill_g_lock -> ip_g_nd_lock 354 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 355 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 356 * arl_lock -> ill_lock 357 * ips_ire_dep_lock -> irb_lock 358 * 359 * When more than 1 ill lock is needed to be held, all ill lock addresses 360 * are sorted on address and locked starting from highest addressed lock 361 * downward. 362 * 363 * Multicast scenarios 364 * ips_ill_g_lock -> ill_mcast_lock 365 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 368 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 369 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 370 * 371 * IPsec scenarios 372 * 373 * ipsa_lock -> ill_g_lock -> ill_lock 374 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 375 * 376 * Trusted Solaris scenarios 377 * 378 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 379 * igsa_lock -> gcdb_lock 380 * gcgrp_rwlock -> ire_lock 381 * gcgrp_rwlock -> gcdb_lock 382 * 383 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 384 * 385 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 386 * sq_lock -> conn_lock -> QLOCK(q) 387 * ill_lock -> ft_lock -> fe_lock 388 * 389 * Routing/forwarding table locking notes: 390 * 391 * Lock acquisition order: Radix tree lock, irb_lock. 392 * Requirements: 393 * i. Walker must not hold any locks during the walker callback. 394 * ii Walker must not see a truncated tree during the walk because of any node 395 * deletion. 396 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 397 * in many places in the code to walk the irb list. Thus even if all the 398 * ires in a bucket have been deleted, we still can't free the radix node 399 * until the ires have actually been inactive'd (freed). 400 * 401 * Tree traversal - Need to hold the global tree lock in read mode. 402 * Before dropping the global tree lock, need to either increment the ire_refcnt 403 * to ensure that the radix node can't be deleted. 404 * 405 * Tree add - Need to hold the global tree lock in write mode to add a 406 * radix node. To prevent the node from being deleted, increment the 407 * irb_refcnt, after the node is added to the tree. The ire itself is 408 * added later while holding the irb_lock, but not the tree lock. 409 * 410 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 411 * All associated ires must be inactive (i.e. freed), and irb_refcnt 412 * must be zero. 413 * 414 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 415 * global tree lock (read mode) for traversal. 416 * 417 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 418 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 419 * 420 * IPsec notes : 421 * 422 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 423 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 424 * ip_xmit_attr_t has the 425 * information used by the IPsec code for applying the right level of 426 * protection. The information initialized by IP in the ip_xmit_attr_t 427 * is determined by the per-socket policy or global policy in the system. 428 * For inbound datagrams, the ip_recv_attr_t 429 * starts out with nothing in it. It gets filled 430 * with the right information if it goes through the AH/ESP code, which 431 * happens if the incoming packet is secure. The information initialized 432 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 433 * the policy requirements needed by per-socket policy or global policy 434 * is met or not. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_policy_set once the destination is known. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition on the conn_wq 516 * of streams sockets, or the su_txqfull for non-streams sockets. 517 * connp->conn_direct_blocked will be set to indicate the blocked 518 * condition. 519 * 520 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 521 * A cookie is passed in the call to ill_flow_enable() that identifies the 522 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 523 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 524 * and goes through each conn in the drain list and calls conn_idl_remove 525 * for the conn to clear the qfull condition for the conn, as well as to 526 * remove the conn from the idl list. In addition, streams based sockets 527 * will have the conn_wq enabled, causing ip_wsrv to run for the 528 * conn. ip_wsrv drains the queued messages, and removes the conn from the 529 * drain list, if all messages were drained. It also notifies the 530 * conn_upcalls for the conn to signal that flow-control has opened up. 531 * 532 * In reality the drain list is not a single list, but a configurable number 533 * of lists. conn_walk_drain() in the IP module, notifies the conn_upcalls for 534 * each conn in the list. conn_drain_insert and conn_drain_tail are the only 535 * functions that manipulate this drain list. conn_drain_insert is called in 536 * from the protocol layer when conn_ip_output returns EWOULDBLOCK. 537 * (as opposed to from ip_wsrv context for STREAMS 538 * case -- see below). The synchronization between drain insertion and flow 539 * control wakeup is handled by using idl_txl->txl_lock. 540 * 541 * Flow control using STREAMS: 542 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 543 * is used. On the send side, if the packet cannot be sent down to the 544 * driver by IP, because of a canput failure, ip_xmit drops the packet 545 * and returns EWOULDBLOCK to the caller, who may then invoke 546 * ixa_check_drain_insert to insert the conn on the 0'th drain list. 547 * When ip_wsrv runs on the ill_wq because flow control has been relieved, the 548 * blocked conns in the * 0'th drain list is drained as with the 549 * non-STREAMS case. 550 * 551 * In both the STREAMS and non-STREAMS case, the sockfs upcall to set 552 * qfull is done when the conn is inserted into the drain list 553 * (conn_drain_insert()) and cleared when the conn is removed from the drain 554 * list (conn_idl_remove()). 555 * 556 * IPQOS notes: 557 * 558 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 559 * and IPQoS modules. IPPF includes hooks in IP at different control points 560 * (callout positions) which direct packets to IPQoS modules for policy 561 * processing. Policies, if present, are global. 562 * 563 * The callout positions are located in the following paths: 564 * o local_in (packets destined for this host) 565 * o local_out (packets orginating from this host ) 566 * o fwd_in (packets forwarded by this m/c - inbound) 567 * o fwd_out (packets forwarded by this m/c - outbound) 568 * Hooks at these callout points can be enabled/disabled using the ndd variable 569 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 570 * By default all the callout positions are enabled. 571 * 572 * Outbound (local_out) 573 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 574 * 575 * Inbound (local_in) 576 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 577 * 578 * Forwarding (in and out) 579 * Hooks are placed in ire_recv_forward_v4/v6. 580 * 581 * IP Policy Framework processing (IPPF processing) 582 * Policy processing for a packet is initiated by ip_process, which ascertains 583 * that the classifier (ipgpc) is loaded and configured, failing which the 584 * packet resumes normal processing in IP. If the clasifier is present, the 585 * packet is acted upon by one or more IPQoS modules (action instances), per 586 * filters configured in ipgpc and resumes normal IP processing thereafter. 587 * An action instance can drop a packet in course of its processing. 588 * 589 * Zones notes: 590 * 591 * The partitioning rules for networking are as follows: 592 * 1) Packets coming from a zone must have a source address belonging to that 593 * zone. 594 * 2) Packets coming from a zone can only be sent on a physical interface on 595 * which the zone has an IP address. 596 * 3) Between two zones on the same machine, packet delivery is only allowed if 597 * there's a matching route for the destination and zone in the forwarding 598 * table. 599 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 600 * different zones can bind to the same port with the wildcard address 601 * (INADDR_ANY). 602 * 603 * The granularity of interface partitioning is at the logical interface level. 604 * Therefore, every zone has its own IP addresses, and incoming packets can be 605 * attributed to a zone unambiguously. A logical interface is placed into a zone 606 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 607 * structure. Rule (1) is implemented by modifying the source address selection 608 * algorithm so that the list of eligible addresses is filtered based on the 609 * sending process zone. 610 * 611 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 612 * across all zones, depending on their type. Here is the break-up: 613 * 614 * IRE type Shared/exclusive 615 * -------- ---------------- 616 * IRE_BROADCAST Exclusive 617 * IRE_DEFAULT (default routes) Shared (*) 618 * IRE_LOCAL Exclusive (x) 619 * IRE_LOOPBACK Exclusive 620 * IRE_PREFIX (net routes) Shared (*) 621 * IRE_IF_NORESOLVER (interface routes) Exclusive 622 * IRE_IF_RESOLVER (interface routes) Exclusive 623 * IRE_IF_CLONE (interface routes) Exclusive 624 * IRE_HOST (host routes) Shared (*) 625 * 626 * (*) A zone can only use a default or off-subnet route if the gateway is 627 * directly reachable from the zone, that is, if the gateway's address matches 628 * one of the zone's logical interfaces. 629 * 630 * (x) IRE_LOCAL are handled a bit differently. 631 * When ip_restrict_interzone_loopback is set (the default), 632 * ire_route_recursive restricts loopback using an IRE_LOCAL 633 * between zone to the case when L2 would have conceptually looped the packet 634 * back, i.e. the loopback which is required since neither Ethernet drivers 635 * nor Ethernet hardware loops them back. This is the case when the normal 636 * routes (ignoring IREs with different zoneids) would send out the packet on 637 * the same ill as the ill with which is IRE_LOCAL is associated. 638 * 639 * Multiple zones can share a common broadcast address; typically all zones 640 * share the 255.255.255.255 address. Incoming as well as locally originated 641 * broadcast packets must be dispatched to all the zones on the broadcast 642 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 643 * since some zones may not be on the 10.16.72/24 network. To handle this, each 644 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 645 * sent to every zone that has an IRE_BROADCAST entry for the destination 646 * address on the input ill, see ip_input_broadcast(). 647 * 648 * Applications in different zones can join the same multicast group address. 649 * The same logic applies for multicast as for broadcast. ip_input_multicast 650 * dispatches packets to all zones that have members on the physical interface. 651 */ 652 653 /* 654 * Squeue Fanout flags: 655 * 0: No fanout. 656 * 1: Fanout across all squeues 657 */ 658 boolean_t ip_squeue_fanout = 0; 659 660 /* 661 * Maximum dups allowed per packet. 662 */ 663 uint_t ip_max_frag_dups = 10; 664 665 /* RFC 1122 Conformance */ 666 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 667 668 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 669 cred_t *credp, boolean_t isv6); 670 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 671 672 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 673 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 674 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 675 ip_recv_attr_t *); 676 static void icmp_options_update(ipha_t *); 677 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 678 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 679 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 680 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 681 ip_recv_attr_t *); 682 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 683 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 684 ip_recv_attr_t *); 685 686 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 687 char *ip_dot_addr(ipaddr_t, char *); 688 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 689 int ip_close(queue_t *, int); 690 static char *ip_dot_saddr(uchar_t *, char *); 691 static void ip_lrput(queue_t *, mblk_t *); 692 ipaddr_t ip_net_mask(ipaddr_t); 693 char *ip_nv_lookup(nv_t *, int); 694 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 695 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 696 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 697 ipndp_t *, size_t); 698 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 699 void ip_rput(queue_t *, mblk_t *); 700 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 701 void *dummy_arg); 702 int ip_snmp_get(queue_t *, mblk_t *, int); 703 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 704 mib2_ipIfStatsEntry_t *, ip_stack_t *); 705 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 706 ip_stack_t *); 707 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 708 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 709 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 710 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 711 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 712 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 713 ip_stack_t *ipst); 714 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 715 ip_stack_t *ipst); 716 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 717 ip_stack_t *ipst); 718 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 719 ip_stack_t *ipst); 720 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 721 ip_stack_t *ipst); 722 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 723 ip_stack_t *ipst); 724 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 725 ip_stack_t *ipst); 726 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 727 ip_stack_t *ipst); 728 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 729 ip_stack_t *ipst); 730 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 731 ip_stack_t *ipst); 732 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 733 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 734 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 735 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 736 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 737 738 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 739 mblk_t *); 740 741 static void conn_drain_init(ip_stack_t *); 742 static void conn_drain_fini(ip_stack_t *); 743 static void conn_drain_tail(conn_t *connp, boolean_t closing); 744 745 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 746 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 747 748 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 749 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 750 static void ip_stack_fini(netstackid_t stackid, void *arg); 751 752 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 753 754 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 755 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 756 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 757 const in6_addr_t *); 758 759 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 760 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 761 caddr_t, cred_t *); 762 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 763 caddr_t cp, cred_t *cr); 764 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 765 cred_t *); 766 static int ip_squeue_switch(int); 767 768 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 769 static void ip_kstat_fini(netstackid_t, kstat_t *); 770 static int ip_kstat_update(kstat_t *kp, int rw); 771 static void *icmp_kstat_init(netstackid_t); 772 static void icmp_kstat_fini(netstackid_t, kstat_t *); 773 static int icmp_kstat_update(kstat_t *kp, int rw); 774 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 775 static void ip_kstat2_fini(netstackid_t, kstat_t *); 776 777 static void ipobs_init(ip_stack_t *); 778 static void ipobs_fini(ip_stack_t *); 779 780 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 781 782 /* How long, in seconds, we allow frags to hang around. */ 783 #define IP_FRAG_TIMEOUT 15 784 #define IPV6_FRAG_TIMEOUT 60 785 786 static long ip_rput_pullups; 787 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 788 789 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 790 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 791 792 int ip_debug; 793 794 /* 795 * Multirouting/CGTP stuff 796 */ 797 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 798 799 /* 800 * Named Dispatch Parameter Table. 801 * All of these are alterable, within the min/max values given, at run time. 802 */ 803 static ipparam_t lcl_param_arr[] = { 804 /* min max value name */ 805 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 806 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 807 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 808 { 0, 1, 0, "ip_respond_to_timestamp"}, 809 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 810 { 0, 1, 1, "ip_send_redirects"}, 811 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 812 { 0, 10, 0, "ip_mrtdebug"}, 813 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 814 { 1, 8, 3, "ip_nce_reclaim_fraction" }, 815 { 1, 8, 3, "ip_dce_reclaim_fraction" }, 816 { 1, 255, 255, "ip_def_ttl" }, 817 { 0, 1, 0, "ip_forward_src_routed"}, 818 { 0, 256, 32, "ip_wroff_extra" }, 819 { 2, 999999999, 60*20, "ip_pathmtu_interval" }, /* In seconds */ 820 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 821 { 0, 1, 1, "ip_path_mtu_discovery" }, 822 { 68, 65535, 576, "ip_pmtu_min" }, 823 { 0, 1, 0, "ip_ignore_redirect" }, 824 { 0, 1, 0, "ip_arp_icmp_error" }, 825 { 1, 254, 1, "ip_broadcast_ttl" }, 826 { 0, 99999, 100, "ip_icmp_err_interval" }, 827 { 1, 99999, 10, "ip_icmp_err_burst" }, 828 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 829 { 0, 1, 0, "ip_strict_dst_multihoming" }, 830 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 831 { 0, 1, 0, "ipsec_override_persocket_policy" }, 832 { 0, 1, 1, "icmp_accept_clear_messages" }, 833 { 0, 1, 1, "igmp_accept_clear_messages" }, 834 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 835 "ip_ndp_delay_first_probe_time"}, 836 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 837 "ip_ndp_max_unicast_solicit"}, 838 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 839 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 840 { 0, 1, 0, "ip6_forward_src_routed"}, 841 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 842 { 0, 1, 1, "ip6_send_redirects"}, 843 { 0, 1, 0, "ip6_ignore_redirect" }, 844 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 845 846 { 0, 2, 2, "ip_src_check" }, 847 848 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 849 850 { 0, 1, 1, "pim_accept_clear_messages" }, 851 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 852 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 853 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 854 { 0, 15, 0, "ip_policy_mask" }, 855 { 0, 2, 2, "ip_ecmp_behavior" }, 856 { 0, 255, 1, "ip_multirt_ttl" }, 857 { 0, 3600, 60, "ip_ire_badcnt_lifetime" }, /* In seconds */ 858 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 859 { 0, 1000, 1, "ip_max_temp_defend" }, 860 /* 861 * when a conflict of an active address is detected, 862 * defend up to ip_max_defend times, within any 863 * ip_defend_interval span. 864 */ 865 { 0, 1000, 3, "ip_max_defend" }, 866 { 0, 999999, 30, "ip_defend_interval" }, 867 { 0, 3600000, 300000, "ip_dup_recovery" }, 868 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 869 { 0, 1, 1, "ip_lso_outbound" }, 870 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 871 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 872 #ifdef DEBUG 873 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 874 #else 875 { 0, 0, 0, "" }, 876 #endif 877 /* delay before sending first probe: */ 878 { 0, 20000, 1000, "arp_probe_delay" }, 879 { 0, 20000, 100, "arp_fastprobe_delay" }, 880 /* interval at which DAD probes are sent: */ 881 { 10, 20000, 1500, "arp_probe_interval" }, 882 { 10, 20000, 150, "arp_fastprobe_interval" }, 883 /* setting probe count to 0 will disable ARP probing for DAD. */ 884 { 0, 20, 3, "arp_probe_count" }, 885 { 0, 20, 3, "arp_fastprobe_count" }, 886 887 { 0, 3600000, 15000, "ipv4_dad_announce_interval"}, 888 { 0, 3600000, 15000, "ipv6_dad_announce_interval"}, 889 /* 890 * Rate limiting parameters for DAD defense used in 891 * ill_defend_rate_limit(): 892 * defend_rate : pkts/hour permitted 893 * defend_interval : time that can elapse before we send out a 894 * DAD defense. 895 * defend_period: denominator for defend_rate (in seconds). 896 */ 897 { 0, 3600000, 300000, "arp_defend_interval"}, 898 { 0, 20000, 100, "arp_defend_rate"}, 899 { 0, 3600000, 300000, "ndp_defend_interval"}, 900 { 0, 20000, 100, "ndp_defend_rate"}, 901 { 5, 86400, 3600, "arp_defend_period"}, 902 { 5, 86400, 3600, "ndp_defend_period"}, 903 { 0, 1, 1, "ipv4_icmp_return_pmtu" }, 904 { 0, 1, 1, "ipv6_icmp_return_pmtu" }, 905 /* 906 * publish count/interval values used to announce local addresses 907 * for IPv4, IPv6. 908 */ 909 { 1, 20, 5, "ip_arp_publish_count" }, 910 { 1000, 20000, 2000, "ip_arp_publish_interval" }, 911 }; 912 913 /* 914 * Extended NDP table 915 * The addresses for the first two are filled in to be ips_ip_g_forward 916 * and ips_ipv6_forward at init time. 917 */ 918 static ipndp_t lcl_ndp_arr[] = { 919 /* getf setf data name */ 920 #define IPNDP_IP_FORWARDING_OFFSET 0 921 { ip_param_generic_get, ip_forward_set, NULL, 922 "ip_forwarding" }, 923 #define IPNDP_IP6_FORWARDING_OFFSET 1 924 { ip_param_generic_get, ip_forward_set, NULL, 925 "ip6_forwarding" }, 926 { ip_param_generic_get, ip_input_proc_set, 927 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 928 { ip_param_generic_get, ip_int_set, 929 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 930 #define IPNDP_CGTP_FILTER_OFFSET 4 931 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 932 "ip_cgtp_filter" }, 933 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 934 "ip_debug" }, 935 }; 936 937 /* 938 * Table of IP ioctls encoding the various properties of the ioctl and 939 * indexed based on the last byte of the ioctl command. Occasionally there 940 * is a clash, and there is more than 1 ioctl with the same last byte. 941 * In such a case 1 ioctl is encoded in the ndx table and the remaining 942 * ioctls are encoded in the misc table. An entry in the ndx table is 943 * retrieved by indexing on the last byte of the ioctl command and comparing 944 * the ioctl command with the value in the ndx table. In the event of a 945 * mismatch the misc table is then searched sequentially for the desired 946 * ioctl command. 947 * 948 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 949 */ 950 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 951 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 962 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 963 MISC_CMD, ip_siocaddrt, NULL }, 964 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 965 MISC_CMD, ip_siocdelrt, NULL }, 966 967 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 968 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 969 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 970 IF_CMD, ip_sioctl_get_addr, NULL }, 971 972 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 973 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 974 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 975 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 976 977 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 978 IPI_PRIV | IPI_WR, 979 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 980 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 981 IPI_MODOK | IPI_GET_CMD, 982 IF_CMD, ip_sioctl_get_flags, NULL }, 983 984 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 985 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 986 987 /* copyin size cannot be coded for SIOCGIFCONF */ 988 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 989 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 990 991 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 992 IF_CMD, ip_sioctl_mtu, NULL }, 993 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 994 IF_CMD, ip_sioctl_get_mtu, NULL }, 995 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 996 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 997 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 998 IF_CMD, ip_sioctl_brdaddr, NULL }, 999 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1000 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1001 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1002 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1003 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1004 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1005 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1006 IF_CMD, ip_sioctl_metric, NULL }, 1007 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1008 1009 /* See 166-168 below for extended SIOC*XARP ioctls */ 1010 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1015 ARP_CMD, ip_sioctl_arp, NULL }, 1016 1017 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 1039 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1040 MISC_CMD, if_unitsel, if_unitsel_restart }, 1041 1042 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1062 IPI_PRIV | IPI_WR | IPI_MODOK, 1063 IF_CMD, ip_sioctl_sifname, NULL }, 1064 1065 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 1079 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1080 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1081 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1082 IF_CMD, ip_sioctl_get_muxid, NULL }, 1083 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1084 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1085 1086 /* Both if and lif variants share same func */ 1087 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1088 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1089 /* Both if and lif variants share same func */ 1090 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1091 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1092 1093 /* copyin size cannot be coded for SIOCGIFCONF */ 1094 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1095 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1096 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 1114 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1115 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1116 ip_sioctl_removeif_restart }, 1117 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1118 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1119 LIF_CMD, ip_sioctl_addif, NULL }, 1120 #define SIOCLIFADDR_NDX 112 1121 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1122 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1123 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1124 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1125 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1126 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1127 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1128 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1129 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1130 IPI_PRIV | IPI_WR, 1131 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1132 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1133 IPI_GET_CMD | IPI_MODOK, 1134 LIF_CMD, ip_sioctl_get_flags, NULL }, 1135 1136 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 1139 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1140 ip_sioctl_get_lifconf, NULL }, 1141 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1142 LIF_CMD, ip_sioctl_mtu, NULL }, 1143 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1144 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1145 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1146 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1147 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1148 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1149 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1150 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1151 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1152 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1153 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1154 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1155 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1156 LIF_CMD, ip_sioctl_metric, NULL }, 1157 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1158 IPI_PRIV | IPI_WR | IPI_MODOK, 1159 LIF_CMD, ip_sioctl_slifname, 1160 ip_sioctl_slifname_restart }, 1161 1162 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1163 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1164 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1165 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1166 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1167 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1168 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1169 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1170 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1171 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1172 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1173 LIF_CMD, ip_sioctl_token, NULL }, 1174 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1175 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1176 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1177 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1178 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1179 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1180 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1181 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1182 1183 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1184 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1185 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1186 LIF_CMD, ip_siocdelndp_v6, NULL }, 1187 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1188 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1189 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1190 LIF_CMD, ip_siocsetndp_v6, NULL }, 1191 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1192 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1193 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1194 MISC_CMD, ip_sioctl_tonlink, NULL }, 1195 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1196 MISC_CMD, ip_sioctl_tmysite, NULL }, 1197 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1200 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1201 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1202 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1203 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1204 1205 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 1207 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1208 LIF_CMD, ip_sioctl_get_binding, NULL }, 1209 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1210 IPI_PRIV | IPI_WR, 1211 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1212 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1213 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1214 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1215 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1216 1217 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1218 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 1222 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 1224 /* These are handled in ip_sioctl_copyin_setup itself */ 1225 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1226 MISC_CMD, NULL, NULL }, 1227 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1228 MISC_CMD, NULL, NULL }, 1229 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1230 1231 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1232 ip_sioctl_get_lifconf, NULL }, 1233 1234 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1235 XARP_CMD, ip_sioctl_arp, NULL }, 1236 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1237 XARP_CMD, ip_sioctl_arp, NULL }, 1238 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1239 XARP_CMD, ip_sioctl_arp, NULL }, 1240 1241 /* SIOCPOPSOCKFS is not handled by IP */ 1242 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1243 1244 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1245 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1246 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1247 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1248 ip_sioctl_slifzone_restart }, 1249 /* 172-174 are SCTP ioctls and not handled by IP */ 1250 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1253 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1254 IPI_GET_CMD, LIF_CMD, 1255 ip_sioctl_get_lifusesrc, 0 }, 1256 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1257 IPI_PRIV | IPI_WR, 1258 LIF_CMD, ip_sioctl_slifusesrc, 1259 NULL }, 1260 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1261 ip_sioctl_get_lifsrcof, NULL }, 1262 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1263 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1264 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1265 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1266 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1267 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1268 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1269 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1270 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1271 /* SIOCSENABLESDP is handled by SDP */ 1272 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1273 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1274 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1275 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1276 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1277 ip_sioctl_ilb_cmd, NULL }, 1278 }; 1279 1280 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1281 1282 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1283 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1284 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1285 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1286 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1287 { ND_GET, 0, 0, 0, NULL, NULL }, 1288 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1289 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1290 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1291 MISC_CMD, mrt_ioctl}, 1292 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1293 MISC_CMD, mrt_ioctl}, 1294 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1295 MISC_CMD, mrt_ioctl} 1296 }; 1297 1298 int ip_misc_ioctl_count = 1299 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1300 1301 int conn_drain_nthreads; /* Number of drainers reqd. */ 1302 /* Settable in /etc/system */ 1303 /* Defined in ip_ire.c */ 1304 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1305 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1306 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1307 1308 static nv_t ire_nv_arr[] = { 1309 { IRE_BROADCAST, "BROADCAST" }, 1310 { IRE_LOCAL, "LOCAL" }, 1311 { IRE_LOOPBACK, "LOOPBACK" }, 1312 { IRE_DEFAULT, "DEFAULT" }, 1313 { IRE_PREFIX, "PREFIX" }, 1314 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1315 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1316 { IRE_IF_CLONE, "IF_CLONE" }, 1317 { IRE_HOST, "HOST" }, 1318 { IRE_MULTICAST, "MULTICAST" }, 1319 { IRE_NOROUTE, "NOROUTE" }, 1320 { 0 } 1321 }; 1322 1323 nv_t *ire_nv_tbl = ire_nv_arr; 1324 1325 /* Simple ICMP IP Header Template */ 1326 static ipha_t icmp_ipha = { 1327 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1328 }; 1329 1330 struct module_info ip_mod_info = { 1331 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1332 IP_MOD_LOWAT 1333 }; 1334 1335 /* 1336 * Duplicate static symbols within a module confuses mdb; so we avoid the 1337 * problem by making the symbols here distinct from those in udp.c. 1338 */ 1339 1340 /* 1341 * Entry points for IP as a device and as a module. 1342 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1343 */ 1344 static struct qinit iprinitv4 = { 1345 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1346 &ip_mod_info 1347 }; 1348 1349 struct qinit iprinitv6 = { 1350 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1351 &ip_mod_info 1352 }; 1353 1354 static struct qinit ipwinit = { 1355 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1356 &ip_mod_info 1357 }; 1358 1359 static struct qinit iplrinit = { 1360 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1361 &ip_mod_info 1362 }; 1363 1364 static struct qinit iplwinit = { 1365 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1366 &ip_mod_info 1367 }; 1368 1369 /* For AF_INET aka /dev/ip */ 1370 struct streamtab ipinfov4 = { 1371 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1372 }; 1373 1374 /* For AF_INET6 aka /dev/ip6 */ 1375 struct streamtab ipinfov6 = { 1376 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1377 }; 1378 1379 #ifdef DEBUG 1380 boolean_t skip_sctp_cksum = B_FALSE; 1381 #endif 1382 1383 /* 1384 * Generate an ICMP fragmentation needed message. 1385 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1386 * constructed by the caller. 1387 */ 1388 void 1389 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1390 { 1391 icmph_t icmph; 1392 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1393 1394 mp = icmp_pkt_err_ok(mp, ira); 1395 if (mp == NULL) 1396 return; 1397 1398 bzero(&icmph, sizeof (icmph_t)); 1399 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1400 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1401 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1402 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1403 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1404 1405 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1406 } 1407 1408 /* 1409 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1410 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1411 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1412 * Likewise, if the ICMP error is misformed (too short, etc), then it 1413 * returns NULL. The caller uses this to determine whether or not to send 1414 * to raw sockets. 1415 * 1416 * All error messages are passed to the matching transport stream. 1417 * 1418 * The following cases are handled by icmp_inbound: 1419 * 1) It needs to send a reply back and possibly delivering it 1420 * to the "interested" upper clients. 1421 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1422 * 3) It needs to change some values in IP only. 1423 * 4) It needs to change some values in IP and upper layers e.g TCP 1424 * by delivering an error to the upper layers. 1425 * 1426 * We handle the above three cases in the context of IPsec in the 1427 * following way : 1428 * 1429 * 1) Send the reply back in the same way as the request came in. 1430 * If it came in encrypted, it goes out encrypted. If it came in 1431 * clear, it goes out in clear. Thus, this will prevent chosen 1432 * plain text attack. 1433 * 2) The client may or may not expect things to come in secure. 1434 * If it comes in secure, the policy constraints are checked 1435 * before delivering it to the upper layers. If it comes in 1436 * clear, ipsec_inbound_accept_clear will decide whether to 1437 * accept this in clear or not. In both the cases, if the returned 1438 * message (IP header + 8 bytes) that caused the icmp message has 1439 * AH/ESP headers, it is sent up to AH/ESP for validation before 1440 * sending up. If there are only 8 bytes of returned message, then 1441 * upper client will not be notified. 1442 * 3) Check with global policy to see whether it matches the constaints. 1443 * But this will be done only if icmp_accept_messages_in_clear is 1444 * zero. 1445 * 4) If we need to change both in IP and ULP, then the decision taken 1446 * while affecting the values in IP and while delivering up to TCP 1447 * should be the same. 1448 * 1449 * There are two cases. 1450 * 1451 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1452 * failed), we will not deliver it to the ULP, even though they 1453 * are *willing* to accept in *clear*. This is fine as our global 1454 * disposition to icmp messages asks us reject the datagram. 1455 * 1456 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1457 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1458 * to deliver it to ULP (policy failed), it can lead to 1459 * consistency problems. The cases known at this time are 1460 * ICMP_DESTINATION_UNREACHABLE messages with following code 1461 * values : 1462 * 1463 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1464 * and Upper layer rejects. Then the communication will 1465 * come to a stop. This is solved by making similar decisions 1466 * at both levels. Currently, when we are unable to deliver 1467 * to the Upper Layer (due to policy failures) while IP has 1468 * adjusted dce_pmtu, the next outbound datagram would 1469 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1470 * will be with the right level of protection. Thus the right 1471 * value will be communicated even if we are not able to 1472 * communicate when we get from the wire initially. But this 1473 * assumes there would be at least one outbound datagram after 1474 * IP has adjusted its dce_pmtu value. To make things 1475 * simpler, we accept in clear after the validation of 1476 * AH/ESP headers. 1477 * 1478 * - Other ICMP ERRORS : We may not be able to deliver it to the 1479 * upper layer depending on the level of protection the upper 1480 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1481 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1482 * should be accepted in clear when the Upper layer expects secure. 1483 * Thus the communication may get aborted by some bad ICMP 1484 * packets. 1485 */ 1486 mblk_t * 1487 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1488 { 1489 icmph_t *icmph; 1490 ipha_t *ipha; /* Outer header */ 1491 int ip_hdr_length; /* Outer header length */ 1492 boolean_t interested; 1493 ipif_t *ipif; 1494 uint32_t ts; 1495 uint32_t *tsp; 1496 timestruc_t now; 1497 ill_t *ill = ira->ira_ill; 1498 ip_stack_t *ipst = ill->ill_ipst; 1499 zoneid_t zoneid = ira->ira_zoneid; 1500 int len_needed; 1501 mblk_t *mp_ret = NULL; 1502 1503 ipha = (ipha_t *)mp->b_rptr; 1504 1505 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1506 1507 ip_hdr_length = ira->ira_ip_hdr_length; 1508 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1509 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1510 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1511 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1512 freemsg(mp); 1513 return (NULL); 1514 } 1515 /* Last chance to get real. */ 1516 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1517 if (ipha == NULL) { 1518 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1519 freemsg(mp); 1520 return (NULL); 1521 } 1522 } 1523 1524 /* The IP header will always be a multiple of four bytes */ 1525 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1526 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1527 icmph->icmph_code)); 1528 1529 /* 1530 * We will set "interested" to "true" if we should pass a copy to 1531 * the transport or if we handle the packet locally. 1532 */ 1533 interested = B_FALSE; 1534 switch (icmph->icmph_type) { 1535 case ICMP_ECHO_REPLY: 1536 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1537 break; 1538 case ICMP_DEST_UNREACHABLE: 1539 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1540 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1541 interested = B_TRUE; /* Pass up to transport */ 1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1543 break; 1544 case ICMP_SOURCE_QUENCH: 1545 interested = B_TRUE; /* Pass up to transport */ 1546 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1547 break; 1548 case ICMP_REDIRECT: 1549 if (!ipst->ips_ip_ignore_redirect) 1550 interested = B_TRUE; 1551 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1552 break; 1553 case ICMP_ECHO_REQUEST: 1554 /* 1555 * Whether to respond to echo requests that come in as IP 1556 * broadcasts or as IP multicast is subject to debate 1557 * (what isn't?). We aim to please, you pick it. 1558 * Default is do it. 1559 */ 1560 if (ira->ira_flags & IRAF_MULTICAST) { 1561 /* multicast: respond based on tunable */ 1562 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1563 } else if (ira->ira_flags & IRAF_BROADCAST) { 1564 /* broadcast: respond based on tunable */ 1565 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1566 } else { 1567 /* unicast: always respond */ 1568 interested = B_TRUE; 1569 } 1570 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1571 if (!interested) { 1572 /* We never pass these to RAW sockets */ 1573 freemsg(mp); 1574 return (NULL); 1575 } 1576 1577 /* Check db_ref to make sure we can modify the packet. */ 1578 if (mp->b_datap->db_ref > 1) { 1579 mblk_t *mp1; 1580 1581 mp1 = copymsg(mp); 1582 freemsg(mp); 1583 if (!mp1) { 1584 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1585 return (NULL); 1586 } 1587 mp = mp1; 1588 ipha = (ipha_t *)mp->b_rptr; 1589 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1590 } 1591 icmph->icmph_type = ICMP_ECHO_REPLY; 1592 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1593 icmp_send_reply_v4(mp, ipha, icmph, ira); 1594 return (NULL); 1595 1596 case ICMP_ROUTER_ADVERTISEMENT: 1597 case ICMP_ROUTER_SOLICITATION: 1598 break; 1599 case ICMP_TIME_EXCEEDED: 1600 interested = B_TRUE; /* Pass up to transport */ 1601 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1602 break; 1603 case ICMP_PARAM_PROBLEM: 1604 interested = B_TRUE; /* Pass up to transport */ 1605 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1606 break; 1607 case ICMP_TIME_STAMP_REQUEST: 1608 /* Response to Time Stamp Requests is local policy. */ 1609 if (ipst->ips_ip_g_resp_to_timestamp) { 1610 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1611 interested = 1612 ipst->ips_ip_g_resp_to_timestamp_bcast; 1613 else 1614 interested = B_TRUE; 1615 } 1616 if (!interested) { 1617 /* We never pass these to RAW sockets */ 1618 freemsg(mp); 1619 return (NULL); 1620 } 1621 1622 /* Make sure we have enough of the packet */ 1623 len_needed = ip_hdr_length + ICMPH_SIZE + 1624 3 * sizeof (uint32_t); 1625 1626 if (mp->b_wptr - mp->b_rptr < len_needed) { 1627 ipha = ip_pullup(mp, len_needed, ira); 1628 if (ipha == NULL) { 1629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1630 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1631 mp, ill); 1632 freemsg(mp); 1633 return (NULL); 1634 } 1635 /* Refresh following the pullup. */ 1636 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1637 } 1638 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1639 /* Check db_ref to make sure we can modify the packet. */ 1640 if (mp->b_datap->db_ref > 1) { 1641 mblk_t *mp1; 1642 1643 mp1 = copymsg(mp); 1644 freemsg(mp); 1645 if (!mp1) { 1646 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1647 return (NULL); 1648 } 1649 mp = mp1; 1650 ipha = (ipha_t *)mp->b_rptr; 1651 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1652 } 1653 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1654 tsp = (uint32_t *)&icmph[1]; 1655 tsp++; /* Skip past 'originate time' */ 1656 /* Compute # of milliseconds since midnight */ 1657 gethrestime(&now); 1658 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1659 now.tv_nsec / (NANOSEC / MILLISEC); 1660 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1661 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1662 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1663 icmp_send_reply_v4(mp, ipha, icmph, ira); 1664 return (NULL); 1665 1666 case ICMP_TIME_STAMP_REPLY: 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1668 break; 1669 case ICMP_INFO_REQUEST: 1670 /* Per RFC 1122 3.2.2.7, ignore this. */ 1671 case ICMP_INFO_REPLY: 1672 break; 1673 case ICMP_ADDRESS_MASK_REQUEST: 1674 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1675 interested = 1676 ipst->ips_ip_respond_to_address_mask_broadcast; 1677 } else { 1678 interested = B_TRUE; 1679 } 1680 if (!interested) { 1681 /* We never pass these to RAW sockets */ 1682 freemsg(mp); 1683 return (NULL); 1684 } 1685 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1686 if (mp->b_wptr - mp->b_rptr < len_needed) { 1687 ipha = ip_pullup(mp, len_needed, ira); 1688 if (ipha == NULL) { 1689 BUMP_MIB(ill->ill_ip_mib, 1690 ipIfStatsInTruncatedPkts); 1691 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1692 ill); 1693 freemsg(mp); 1694 return (NULL); 1695 } 1696 /* Refresh following the pullup. */ 1697 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1698 } 1699 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1700 /* Check db_ref to make sure we can modify the packet. */ 1701 if (mp->b_datap->db_ref > 1) { 1702 mblk_t *mp1; 1703 1704 mp1 = copymsg(mp); 1705 freemsg(mp); 1706 if (!mp1) { 1707 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1708 return (NULL); 1709 } 1710 mp = mp1; 1711 ipha = (ipha_t *)mp->b_rptr; 1712 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1713 } 1714 /* 1715 * Need the ipif with the mask be the same as the source 1716 * address of the mask reply. For unicast we have a specific 1717 * ipif. For multicast/broadcast we only handle onlink 1718 * senders, and use the source address to pick an ipif. 1719 */ 1720 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1721 if (ipif == NULL) { 1722 /* Broadcast or multicast */ 1723 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1724 if (ipif == NULL) { 1725 freemsg(mp); 1726 return (NULL); 1727 } 1728 } 1729 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1730 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1731 ipif_refrele(ipif); 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1733 icmp_send_reply_v4(mp, ipha, icmph, ira); 1734 return (NULL); 1735 1736 case ICMP_ADDRESS_MASK_REPLY: 1737 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1738 break; 1739 default: 1740 interested = B_TRUE; /* Pass up to transport */ 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1742 break; 1743 } 1744 /* 1745 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1746 * if there isn't one. 1747 */ 1748 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1749 /* If there is an ICMP client and we want one too, copy it. */ 1750 1751 if (!interested) { 1752 /* Caller will deliver to RAW sockets */ 1753 return (mp); 1754 } 1755 mp_ret = copymsg(mp); 1756 if (mp_ret == NULL) { 1757 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1758 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1759 } 1760 } else if (!interested) { 1761 /* Neither we nor raw sockets are interested. Drop packet now */ 1762 freemsg(mp); 1763 return (NULL); 1764 } 1765 1766 /* 1767 * ICMP error or redirect packet. Make sure we have enough of 1768 * the header and that db_ref == 1 since we might end up modifying 1769 * the packet. 1770 */ 1771 if (mp->b_cont != NULL) { 1772 if (ip_pullup(mp, -1, ira) == NULL) { 1773 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1774 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1775 mp, ill); 1776 freemsg(mp); 1777 return (mp_ret); 1778 } 1779 } 1780 1781 if (mp->b_datap->db_ref > 1) { 1782 mblk_t *mp1; 1783 1784 mp1 = copymsg(mp); 1785 if (mp1 == NULL) { 1786 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1787 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1788 freemsg(mp); 1789 return (mp_ret); 1790 } 1791 freemsg(mp); 1792 mp = mp1; 1793 } 1794 1795 /* 1796 * In case mp has changed, verify the message before any further 1797 * processes. 1798 */ 1799 ipha = (ipha_t *)mp->b_rptr; 1800 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1801 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1802 freemsg(mp); 1803 return (mp_ret); 1804 } 1805 1806 switch (icmph->icmph_type) { 1807 case ICMP_REDIRECT: 1808 icmp_redirect_v4(mp, ipha, icmph, ira); 1809 break; 1810 case ICMP_DEST_UNREACHABLE: 1811 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1812 /* Update DCE and adjust MTU is icmp header if needed */ 1813 icmp_inbound_too_big_v4(icmph, ira); 1814 } 1815 /* FALLTHRU */ 1816 default: 1817 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1818 break; 1819 } 1820 return (mp_ret); 1821 } 1822 1823 /* 1824 * Send an ICMP echo, timestamp or address mask reply. 1825 * The caller has already updated the payload part of the packet. 1826 * We handle the ICMP checksum, IP source address selection and feed 1827 * the packet into ip_output_simple. 1828 */ 1829 static void 1830 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1831 ip_recv_attr_t *ira) 1832 { 1833 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1834 ill_t *ill = ira->ira_ill; 1835 ip_stack_t *ipst = ill->ill_ipst; 1836 ip_xmit_attr_t ixas; 1837 1838 /* Send out an ICMP packet */ 1839 icmph->icmph_checksum = 0; 1840 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1841 /* Reset time to live. */ 1842 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1843 { 1844 /* Swap source and destination addresses */ 1845 ipaddr_t tmp; 1846 1847 tmp = ipha->ipha_src; 1848 ipha->ipha_src = ipha->ipha_dst; 1849 ipha->ipha_dst = tmp; 1850 } 1851 ipha->ipha_ident = 0; 1852 if (!IS_SIMPLE_IPH(ipha)) 1853 icmp_options_update(ipha); 1854 1855 bzero(&ixas, sizeof (ixas)); 1856 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1857 ixas.ixa_zoneid = ira->ira_zoneid; 1858 ixas.ixa_cred = kcred; 1859 ixas.ixa_cpid = NOPID; 1860 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1861 ixas.ixa_ifindex = 0; 1862 ixas.ixa_ipst = ipst; 1863 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1864 1865 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1866 /* 1867 * This packet should go out the same way as it 1868 * came in i.e in clear, independent of the IPsec policy 1869 * for transmitting packets. 1870 */ 1871 ixas.ixa_flags |= IXAF_NO_IPSEC; 1872 } else { 1873 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1874 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1875 /* Note: mp already consumed and ip_drop_packet done */ 1876 return; 1877 } 1878 } 1879 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1880 /* 1881 * Not one or our addresses (IRE_LOCALs), thus we let 1882 * ip_output_simple pick the source. 1883 */ 1884 ipha->ipha_src = INADDR_ANY; 1885 ixas.ixa_flags |= IXAF_SET_SOURCE; 1886 } 1887 /* Should we send with DF and use dce_pmtu? */ 1888 if (ipst->ips_ipv4_icmp_return_pmtu) { 1889 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1890 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1891 } 1892 1893 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1894 1895 (void) ip_output_simple(mp, &ixas); 1896 ixa_cleanup(&ixas); 1897 } 1898 1899 /* 1900 * Verify the ICMP messages for either for ICMP error or redirect packet. 1901 * The caller should have fully pulled up the message. If it's a redirect 1902 * packet, only basic checks on IP header will be done; otherwise, verify 1903 * the packet by looking at the included ULP header. 1904 * 1905 * Called before icmp_inbound_error_fanout_v4 is called. 1906 */ 1907 static boolean_t 1908 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1909 { 1910 ill_t *ill = ira->ira_ill; 1911 int hdr_length; 1912 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1913 conn_t *connp; 1914 ipha_t *ipha; /* Inner IP header */ 1915 1916 ipha = (ipha_t *)&icmph[1]; 1917 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1918 goto truncated; 1919 1920 hdr_length = IPH_HDR_LENGTH(ipha); 1921 1922 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1923 goto discard_pkt; 1924 1925 if (hdr_length < sizeof (ipha_t)) 1926 goto truncated; 1927 1928 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1929 goto truncated; 1930 1931 /* 1932 * Stop here for ICMP_REDIRECT. 1933 */ 1934 if (icmph->icmph_type == ICMP_REDIRECT) 1935 return (B_TRUE); 1936 1937 /* 1938 * ICMP errors only. 1939 */ 1940 switch (ipha->ipha_protocol) { 1941 case IPPROTO_UDP: 1942 /* 1943 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1944 * transport header. 1945 */ 1946 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1947 mp->b_wptr) 1948 goto truncated; 1949 break; 1950 case IPPROTO_TCP: { 1951 tcpha_t *tcpha; 1952 1953 /* 1954 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1955 * transport header. 1956 */ 1957 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1958 mp->b_wptr) 1959 goto truncated; 1960 1961 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1962 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1963 ipst); 1964 if (connp == NULL) 1965 goto discard_pkt; 1966 1967 if ((connp->conn_verifyicmp != NULL) && 1968 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1969 CONN_DEC_REF(connp); 1970 goto discard_pkt; 1971 } 1972 CONN_DEC_REF(connp); 1973 break; 1974 } 1975 case IPPROTO_SCTP: 1976 /* 1977 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1978 * transport header. 1979 */ 1980 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1981 mp->b_wptr) 1982 goto truncated; 1983 break; 1984 case IPPROTO_ESP: 1985 case IPPROTO_AH: 1986 break; 1987 case IPPROTO_ENCAP: 1988 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1989 mp->b_wptr) 1990 goto truncated; 1991 break; 1992 default: 1993 break; 1994 } 1995 1996 return (B_TRUE); 1997 1998 discard_pkt: 1999 /* Bogus ICMP error. */ 2000 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2001 return (B_FALSE); 2002 2003 truncated: 2004 /* We pulled up everthing already. Must be truncated */ 2005 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2006 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2007 return (B_FALSE); 2008 } 2009 2010 /* Table from RFC 1191 */ 2011 static int icmp_frag_size_table[] = 2012 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2013 2014 /* 2015 * Process received ICMP Packet too big. 2016 * Just handles the DCE create/update, including using the above table of 2017 * PMTU guesses. The caller is responsible for validating the packet before 2018 * passing it in and also to fanout the ICMP error to any matching transport 2019 * conns. Assumes the message has been fully pulled up and verified. 2020 * 2021 * Before getting here, the caller has called icmp_inbound_verify_v4() 2022 * that should have verified with ULP to prevent undoing the changes we're 2023 * going to make to DCE. For example, TCP might have verified that the packet 2024 * which generated error is in the send window. 2025 * 2026 * In some cases modified this MTU in the ICMP header packet; the caller 2027 * should pass to the matching ULP after this returns. 2028 */ 2029 static void 2030 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 2031 { 2032 dce_t *dce; 2033 int old_mtu; 2034 int mtu, orig_mtu; 2035 ipaddr_t dst; 2036 boolean_t disable_pmtud; 2037 ill_t *ill = ira->ira_ill; 2038 ip_stack_t *ipst = ill->ill_ipst; 2039 uint_t hdr_length; 2040 ipha_t *ipha; 2041 2042 /* Caller already pulled up everything. */ 2043 ipha = (ipha_t *)&icmph[1]; 2044 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2045 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2046 ASSERT(ill != NULL); 2047 2048 hdr_length = IPH_HDR_LENGTH(ipha); 2049 2050 /* 2051 * We handle path MTU for source routed packets since the DCE 2052 * is looked up using the final destination. 2053 */ 2054 dst = ip_get_dst(ipha); 2055 2056 dce = dce_lookup_and_add_v4(dst, ipst); 2057 if (dce == NULL) { 2058 /* Couldn't add a unique one - ENOMEM */ 2059 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 2060 ntohl(dst))); 2061 return; 2062 } 2063 2064 /* Check for MTU discovery advice as described in RFC 1191 */ 2065 mtu = ntohs(icmph->icmph_du_mtu); 2066 orig_mtu = mtu; 2067 disable_pmtud = B_FALSE; 2068 2069 mutex_enter(&dce->dce_lock); 2070 if (dce->dce_flags & DCEF_PMTU) 2071 old_mtu = dce->dce_pmtu; 2072 else 2073 old_mtu = ill->ill_mtu; 2074 2075 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2076 uint32_t length; 2077 int i; 2078 2079 /* 2080 * Use the table from RFC 1191 to figure out 2081 * the next "plateau" based on the length in 2082 * the original IP packet. 2083 */ 2084 length = ntohs(ipha->ipha_length); 2085 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 2086 uint32_t, length); 2087 if (old_mtu <= length && 2088 old_mtu >= length - hdr_length) { 2089 /* 2090 * Handle broken BSD 4.2 systems that 2091 * return the wrong ipha_length in ICMP 2092 * errors. 2093 */ 2094 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 2095 length, old_mtu)); 2096 length -= hdr_length; 2097 } 2098 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2099 if (length > icmp_frag_size_table[i]) 2100 break; 2101 } 2102 if (i == A_CNT(icmp_frag_size_table)) { 2103 /* Smaller than IP_MIN_MTU! */ 2104 ip1dbg(("Too big for packet size %d\n", 2105 length)); 2106 disable_pmtud = B_TRUE; 2107 mtu = ipst->ips_ip_pmtu_min; 2108 } else { 2109 mtu = icmp_frag_size_table[i]; 2110 ip1dbg(("Calculated mtu %d, packet size %d, " 2111 "before %d\n", mtu, length, old_mtu)); 2112 if (mtu < ipst->ips_ip_pmtu_min) { 2113 mtu = ipst->ips_ip_pmtu_min; 2114 disable_pmtud = B_TRUE; 2115 } 2116 } 2117 } 2118 if (disable_pmtud) 2119 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 2120 else 2121 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 2122 2123 dce->dce_pmtu = MIN(old_mtu, mtu); 2124 /* Prepare to send the new max frag size for the ULP. */ 2125 icmph->icmph_du_zero = 0; 2126 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 2127 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 2128 dce, int, orig_mtu, int, mtu); 2129 2130 /* We now have a PMTU for sure */ 2131 dce->dce_flags |= DCEF_PMTU; 2132 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 2133 mutex_exit(&dce->dce_lock); 2134 /* 2135 * After dropping the lock the new value is visible to everyone. 2136 * Then we bump the generation number so any cached values reinspect 2137 * the dce_t. 2138 */ 2139 dce_increment_generation(dce); 2140 dce_refrele(dce); 2141 } 2142 2143 /* 2144 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 2145 * calls this function. 2146 */ 2147 static mblk_t * 2148 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 2149 { 2150 int length; 2151 2152 ASSERT(mp->b_datap->db_type == M_DATA); 2153 2154 /* icmp_inbound_v4 has already pulled up the whole error packet */ 2155 ASSERT(mp->b_cont == NULL); 2156 2157 /* 2158 * The length that we want to overlay is the inner header 2159 * and what follows it. 2160 */ 2161 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2162 2163 /* 2164 * Overlay the inner header and whatever follows it over the 2165 * outer header. 2166 */ 2167 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2168 2169 /* Adjust for what we removed */ 2170 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2171 return (mp); 2172 } 2173 2174 /* 2175 * Try to pass the ICMP message upstream in case the ULP cares. 2176 * 2177 * If the packet that caused the ICMP error is secure, we send 2178 * it to AH/ESP to make sure that the attached packet has a 2179 * valid association. ipha in the code below points to the 2180 * IP header of the packet that caused the error. 2181 * 2182 * For IPsec cases, we let the next-layer-up (which has access to 2183 * cached policy on the conn_t, or can query the SPD directly) 2184 * subtract out any IPsec overhead if they must. We therefore make no 2185 * adjustments here for IPsec overhead. 2186 * 2187 * IFN could have been generated locally or by some router. 2188 * 2189 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2190 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2191 * This happens because IP adjusted its value of MTU on an 2192 * earlier IFN message and could not tell the upper layer, 2193 * the new adjusted value of MTU e.g. Packet was encrypted 2194 * or there was not enough information to fanout to upper 2195 * layers. Thus on the next outbound datagram, ire_send_wire 2196 * generates the IFN, where IPsec processing has *not* been 2197 * done. 2198 * 2199 * Note that we retain ixa_fragsize across IPsec thus once 2200 * we have picking ixa_fragsize and entered ipsec_out_process we do 2201 * no change the fragsize even if the path MTU changes before 2202 * we reach ip_output_post_ipsec. 2203 * 2204 * In the local case, IRAF_LOOPBACK will be set indicating 2205 * that IFN was generated locally. 2206 * 2207 * ROUTER : IFN could be secure or non-secure. 2208 * 2209 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2210 * packet in error has AH/ESP headers to validate the AH/ESP 2211 * headers. AH/ESP will verify whether there is a valid SA or 2212 * not and send it back. We will fanout again if we have more 2213 * data in the packet. 2214 * 2215 * If the packet in error does not have AH/ESP, we handle it 2216 * like any other case. 2217 * 2218 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2219 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2220 * valid SA or not and send it back. We will fanout again if 2221 * we have more data in the packet. 2222 * 2223 * If the packet in error does not have AH/ESP, we handle it 2224 * like any other case. 2225 * 2226 * The caller must have called icmp_inbound_verify_v4. 2227 */ 2228 static void 2229 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2230 { 2231 uint16_t *up; /* Pointer to ports in ULP header */ 2232 uint32_t ports; /* reversed ports for fanout */ 2233 ipha_t ripha; /* With reversed addresses */ 2234 ipha_t *ipha; /* Inner IP header */ 2235 uint_t hdr_length; /* Inner IP header length */ 2236 tcpha_t *tcpha; 2237 conn_t *connp; 2238 ill_t *ill = ira->ira_ill; 2239 ip_stack_t *ipst = ill->ill_ipst; 2240 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2241 ill_t *rill = ira->ira_rill; 2242 2243 /* Caller already pulled up everything. */ 2244 ipha = (ipha_t *)&icmph[1]; 2245 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2246 ASSERT(mp->b_cont == NULL); 2247 2248 hdr_length = IPH_HDR_LENGTH(ipha); 2249 ira->ira_protocol = ipha->ipha_protocol; 2250 2251 /* 2252 * We need a separate IP header with the source and destination 2253 * addresses reversed to do fanout/classification because the ipha in 2254 * the ICMP error is in the form we sent it out. 2255 */ 2256 ripha.ipha_src = ipha->ipha_dst; 2257 ripha.ipha_dst = ipha->ipha_src; 2258 ripha.ipha_protocol = ipha->ipha_protocol; 2259 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2260 2261 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2262 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2263 ntohl(ipha->ipha_dst), 2264 icmph->icmph_type, icmph->icmph_code)); 2265 2266 switch (ipha->ipha_protocol) { 2267 case IPPROTO_UDP: 2268 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2269 2270 /* Attempt to find a client stream based on port. */ 2271 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2272 ntohs(up[0]), ntohs(up[1]))); 2273 2274 /* Note that we send error to all matches. */ 2275 ira->ira_flags |= IRAF_ICMP_ERROR; 2276 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2277 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2278 return; 2279 2280 case IPPROTO_TCP: 2281 /* 2282 * Find a TCP client stream for this packet. 2283 * Note that we do a reverse lookup since the header is 2284 * in the form we sent it out. 2285 */ 2286 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2287 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2288 ipst); 2289 if (connp == NULL) 2290 goto discard_pkt; 2291 2292 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2293 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2294 mp = ipsec_check_inbound_policy(mp, connp, 2295 ipha, NULL, ira); 2296 if (mp == NULL) { 2297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2298 /* Note that mp is NULL */ 2299 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2300 CONN_DEC_REF(connp); 2301 return; 2302 } 2303 } 2304 2305 ira->ira_flags |= IRAF_ICMP_ERROR; 2306 ira->ira_ill = ira->ira_rill = NULL; 2307 if (IPCL_IS_TCP(connp)) { 2308 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2309 connp->conn_recvicmp, connp, ira, SQ_FILL, 2310 SQTAG_TCP_INPUT_ICMP_ERR); 2311 } else { 2312 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2313 (connp->conn_recv)(connp, mp, NULL, ira); 2314 CONN_DEC_REF(connp); 2315 } 2316 ira->ira_ill = ill; 2317 ira->ira_rill = rill; 2318 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2319 return; 2320 2321 case IPPROTO_SCTP: 2322 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2323 /* Find a SCTP client stream for this packet. */ 2324 ((uint16_t *)&ports)[0] = up[1]; 2325 ((uint16_t *)&ports)[1] = up[0]; 2326 2327 ira->ira_flags |= IRAF_ICMP_ERROR; 2328 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2329 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2330 return; 2331 2332 case IPPROTO_ESP: 2333 case IPPROTO_AH: 2334 if (!ipsec_loaded(ipss)) { 2335 ip_proto_not_sup(mp, ira); 2336 return; 2337 } 2338 2339 if (ipha->ipha_protocol == IPPROTO_ESP) 2340 mp = ipsecesp_icmp_error(mp, ira); 2341 else 2342 mp = ipsecah_icmp_error(mp, ira); 2343 if (mp == NULL) 2344 return; 2345 2346 /* Just in case ipsec didn't preserve the NULL b_cont */ 2347 if (mp->b_cont != NULL) { 2348 if (!pullupmsg(mp, -1)) 2349 goto discard_pkt; 2350 } 2351 2352 /* 2353 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2354 * correct, but we don't use them any more here. 2355 * 2356 * If succesful, the mp has been modified to not include 2357 * the ESP/AH header so we can fanout to the ULP's icmp 2358 * error handler. 2359 */ 2360 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2361 goto truncated; 2362 2363 /* Verify the modified message before any further processes. */ 2364 ipha = (ipha_t *)mp->b_rptr; 2365 hdr_length = IPH_HDR_LENGTH(ipha); 2366 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2367 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2368 freemsg(mp); 2369 return; 2370 } 2371 2372 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2373 return; 2374 2375 case IPPROTO_ENCAP: { 2376 /* Look for self-encapsulated packets that caused an error */ 2377 ipha_t *in_ipha; 2378 2379 /* 2380 * Caller has verified that length has to be 2381 * at least the size of IP header. 2382 */ 2383 ASSERT(hdr_length >= sizeof (ipha_t)); 2384 /* 2385 * Check the sanity of the inner IP header like 2386 * we did for the outer header. 2387 */ 2388 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2389 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2390 goto discard_pkt; 2391 } 2392 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2393 goto discard_pkt; 2394 } 2395 /* Check for Self-encapsulated tunnels */ 2396 if (in_ipha->ipha_src == ipha->ipha_src && 2397 in_ipha->ipha_dst == ipha->ipha_dst) { 2398 2399 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2400 in_ipha); 2401 if (mp == NULL) 2402 goto discard_pkt; 2403 2404 /* 2405 * Just in case self_encap didn't preserve the NULL 2406 * b_cont 2407 */ 2408 if (mp->b_cont != NULL) { 2409 if (!pullupmsg(mp, -1)) 2410 goto discard_pkt; 2411 } 2412 /* 2413 * Note that ira_pktlen and ira_ip_hdr_length are no 2414 * longer correct, but we don't use them any more here. 2415 */ 2416 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2417 goto truncated; 2418 2419 /* 2420 * Verify the modified message before any further 2421 * processes. 2422 */ 2423 ipha = (ipha_t *)mp->b_rptr; 2424 hdr_length = IPH_HDR_LENGTH(ipha); 2425 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2426 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2427 freemsg(mp); 2428 return; 2429 } 2430 2431 /* 2432 * The packet in error is self-encapsualted. 2433 * And we are finding it further encapsulated 2434 * which we could not have possibly generated. 2435 */ 2436 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2437 goto discard_pkt; 2438 } 2439 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2440 return; 2441 } 2442 /* No self-encapsulated */ 2443 /* FALLTHRU */ 2444 } 2445 case IPPROTO_IPV6: 2446 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2447 &ripha.ipha_dst, ipst)) != NULL) { 2448 ira->ira_flags |= IRAF_ICMP_ERROR; 2449 connp->conn_recvicmp(connp, mp, NULL, ira); 2450 CONN_DEC_REF(connp); 2451 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2452 return; 2453 } 2454 /* 2455 * No IP tunnel is interested, fallthrough and see 2456 * if a raw socket will want it. 2457 */ 2458 /* FALLTHRU */ 2459 default: 2460 ira->ira_flags |= IRAF_ICMP_ERROR; 2461 ip_fanout_proto_v4(mp, &ripha, ira); 2462 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2463 return; 2464 } 2465 /* NOTREACHED */ 2466 discard_pkt: 2467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2468 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2469 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2470 freemsg(mp); 2471 return; 2472 2473 truncated: 2474 /* We pulled up everthing already. Must be truncated */ 2475 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2476 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2477 freemsg(mp); 2478 } 2479 2480 /* 2481 * Common IP options parser. 2482 * 2483 * Setup routine: fill in *optp with options-parsing state, then 2484 * tail-call ipoptp_next to return the first option. 2485 */ 2486 uint8_t 2487 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2488 { 2489 uint32_t totallen; /* total length of all options */ 2490 2491 totallen = ipha->ipha_version_and_hdr_length - 2492 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2493 totallen <<= 2; 2494 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2495 optp->ipoptp_end = optp->ipoptp_next + totallen; 2496 optp->ipoptp_flags = 0; 2497 return (ipoptp_next(optp)); 2498 } 2499 2500 /* Like above but without an ipha_t */ 2501 uint8_t 2502 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2503 { 2504 optp->ipoptp_next = opt; 2505 optp->ipoptp_end = optp->ipoptp_next + totallen; 2506 optp->ipoptp_flags = 0; 2507 return (ipoptp_next(optp)); 2508 } 2509 2510 /* 2511 * Common IP options parser: extract next option. 2512 */ 2513 uint8_t 2514 ipoptp_next(ipoptp_t *optp) 2515 { 2516 uint8_t *end = optp->ipoptp_end; 2517 uint8_t *cur = optp->ipoptp_next; 2518 uint8_t opt, len, pointer; 2519 2520 /* 2521 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2522 * has been corrupted. 2523 */ 2524 ASSERT(cur <= end); 2525 2526 if (cur == end) 2527 return (IPOPT_EOL); 2528 2529 opt = cur[IPOPT_OPTVAL]; 2530 2531 /* 2532 * Skip any NOP options. 2533 */ 2534 while (opt == IPOPT_NOP) { 2535 cur++; 2536 if (cur == end) 2537 return (IPOPT_EOL); 2538 opt = cur[IPOPT_OPTVAL]; 2539 } 2540 2541 if (opt == IPOPT_EOL) 2542 return (IPOPT_EOL); 2543 2544 /* 2545 * Option requiring a length. 2546 */ 2547 if ((cur + 1) >= end) { 2548 optp->ipoptp_flags |= IPOPTP_ERROR; 2549 return (IPOPT_EOL); 2550 } 2551 len = cur[IPOPT_OLEN]; 2552 if (len < 2) { 2553 optp->ipoptp_flags |= IPOPTP_ERROR; 2554 return (IPOPT_EOL); 2555 } 2556 optp->ipoptp_cur = cur; 2557 optp->ipoptp_len = len; 2558 optp->ipoptp_next = cur + len; 2559 if (cur + len > end) { 2560 optp->ipoptp_flags |= IPOPTP_ERROR; 2561 return (IPOPT_EOL); 2562 } 2563 2564 /* 2565 * For the options which require a pointer field, make sure 2566 * its there, and make sure it points to either something 2567 * inside this option, or the end of the option. 2568 */ 2569 switch (opt) { 2570 case IPOPT_RR: 2571 case IPOPT_TS: 2572 case IPOPT_LSRR: 2573 case IPOPT_SSRR: 2574 if (len <= IPOPT_OFFSET) { 2575 optp->ipoptp_flags |= IPOPTP_ERROR; 2576 return (opt); 2577 } 2578 pointer = cur[IPOPT_OFFSET]; 2579 if (pointer - 1 > len) { 2580 optp->ipoptp_flags |= IPOPTP_ERROR; 2581 return (opt); 2582 } 2583 break; 2584 } 2585 2586 /* 2587 * Sanity check the pointer field based on the type of the 2588 * option. 2589 */ 2590 switch (opt) { 2591 case IPOPT_RR: 2592 case IPOPT_SSRR: 2593 case IPOPT_LSRR: 2594 if (pointer < IPOPT_MINOFF_SR) 2595 optp->ipoptp_flags |= IPOPTP_ERROR; 2596 break; 2597 case IPOPT_TS: 2598 if (pointer < IPOPT_MINOFF_IT) 2599 optp->ipoptp_flags |= IPOPTP_ERROR; 2600 /* 2601 * Note that the Internet Timestamp option also 2602 * contains two four bit fields (the Overflow field, 2603 * and the Flag field), which follow the pointer 2604 * field. We don't need to check that these fields 2605 * fall within the length of the option because this 2606 * was implicitely done above. We've checked that the 2607 * pointer value is at least IPOPT_MINOFF_IT, and that 2608 * it falls within the option. Since IPOPT_MINOFF_IT > 2609 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2610 */ 2611 ASSERT(len > IPOPT_POS_OV_FLG); 2612 break; 2613 } 2614 2615 return (opt); 2616 } 2617 2618 /* 2619 * Use the outgoing IP header to create an IP_OPTIONS option the way 2620 * it was passed down from the application. 2621 * 2622 * This is compatible with BSD in that it returns 2623 * the reverse source route with the final destination 2624 * as the last entry. The first 4 bytes of the option 2625 * will contain the final destination. 2626 */ 2627 int 2628 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2629 { 2630 ipoptp_t opts; 2631 uchar_t *opt; 2632 uint8_t optval; 2633 uint8_t optlen; 2634 uint32_t len = 0; 2635 uchar_t *buf1 = buf; 2636 uint32_t totallen; 2637 ipaddr_t dst; 2638 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2639 2640 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2641 return (0); 2642 2643 totallen = ipp->ipp_ipv4_options_len; 2644 if (totallen & 0x3) 2645 return (0); 2646 2647 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2648 len += IP_ADDR_LEN; 2649 bzero(buf1, IP_ADDR_LEN); 2650 2651 dst = connp->conn_faddr_v4; 2652 2653 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2654 optval != IPOPT_EOL; 2655 optval = ipoptp_next(&opts)) { 2656 int off; 2657 2658 opt = opts.ipoptp_cur; 2659 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2660 break; 2661 } 2662 optlen = opts.ipoptp_len; 2663 2664 switch (optval) { 2665 case IPOPT_SSRR: 2666 case IPOPT_LSRR: 2667 2668 /* 2669 * Insert destination as the first entry in the source 2670 * route and move down the entries on step. 2671 * The last entry gets placed at buf1. 2672 */ 2673 buf[IPOPT_OPTVAL] = optval; 2674 buf[IPOPT_OLEN] = optlen; 2675 buf[IPOPT_OFFSET] = optlen; 2676 2677 off = optlen - IP_ADDR_LEN; 2678 if (off < 0) { 2679 /* No entries in source route */ 2680 break; 2681 } 2682 /* Last entry in source route if not already set */ 2683 if (dst == INADDR_ANY) 2684 bcopy(opt + off, buf1, IP_ADDR_LEN); 2685 off -= IP_ADDR_LEN; 2686 2687 while (off > 0) { 2688 bcopy(opt + off, 2689 buf + off + IP_ADDR_LEN, 2690 IP_ADDR_LEN); 2691 off -= IP_ADDR_LEN; 2692 } 2693 /* ipha_dst into first slot */ 2694 bcopy(&dst, buf + off + IP_ADDR_LEN, 2695 IP_ADDR_LEN); 2696 buf += optlen; 2697 len += optlen; 2698 break; 2699 2700 default: 2701 bcopy(opt, buf, optlen); 2702 buf += optlen; 2703 len += optlen; 2704 break; 2705 } 2706 } 2707 done: 2708 /* Pad the resulting options */ 2709 while (len & 0x3) { 2710 *buf++ = IPOPT_EOL; 2711 len++; 2712 } 2713 return (len); 2714 } 2715 2716 /* 2717 * Update any record route or timestamp options to include this host. 2718 * Reverse any source route option. 2719 * This routine assumes that the options are well formed i.e. that they 2720 * have already been checked. 2721 */ 2722 static void 2723 icmp_options_update(ipha_t *ipha) 2724 { 2725 ipoptp_t opts; 2726 uchar_t *opt; 2727 uint8_t optval; 2728 ipaddr_t src; /* Our local address */ 2729 ipaddr_t dst; 2730 2731 ip2dbg(("icmp_options_update\n")); 2732 src = ipha->ipha_src; 2733 dst = ipha->ipha_dst; 2734 2735 for (optval = ipoptp_first(&opts, ipha); 2736 optval != IPOPT_EOL; 2737 optval = ipoptp_next(&opts)) { 2738 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2739 opt = opts.ipoptp_cur; 2740 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2741 optval, opts.ipoptp_len)); 2742 switch (optval) { 2743 int off1, off2; 2744 case IPOPT_SSRR: 2745 case IPOPT_LSRR: 2746 /* 2747 * Reverse the source route. The first entry 2748 * should be the next to last one in the current 2749 * source route (the last entry is our address). 2750 * The last entry should be the final destination. 2751 */ 2752 off1 = IPOPT_MINOFF_SR - 1; 2753 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2754 if (off2 < 0) { 2755 /* No entries in source route */ 2756 ip1dbg(( 2757 "icmp_options_update: bad src route\n")); 2758 break; 2759 } 2760 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2761 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2762 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2763 off2 -= IP_ADDR_LEN; 2764 2765 while (off1 < off2) { 2766 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2767 bcopy((char *)opt + off2, (char *)opt + off1, 2768 IP_ADDR_LEN); 2769 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2770 off1 += IP_ADDR_LEN; 2771 off2 -= IP_ADDR_LEN; 2772 } 2773 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2774 break; 2775 } 2776 } 2777 } 2778 2779 /* 2780 * Process received ICMP Redirect messages. 2781 * Assumes the caller has verified that the headers are in the pulled up mblk. 2782 * Consumes mp. 2783 */ 2784 static void 2785 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2786 { 2787 ire_t *ire, *nire; 2788 ire_t *prev_ire; 2789 ipaddr_t src, dst, gateway; 2790 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2791 ipha_t *inner_ipha; /* Inner IP header */ 2792 2793 /* Caller already pulled up everything. */ 2794 inner_ipha = (ipha_t *)&icmph[1]; 2795 src = ipha->ipha_src; 2796 dst = inner_ipha->ipha_dst; 2797 gateway = icmph->icmph_rd_gateway; 2798 /* Make sure the new gateway is reachable somehow. */ 2799 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2800 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2801 /* 2802 * Make sure we had a route for the dest in question and that 2803 * that route was pointing to the old gateway (the source of the 2804 * redirect packet.) 2805 * We do longest match and then compare ire_gateway_addr below. 2806 */ 2807 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2808 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2809 /* 2810 * Check that 2811 * the redirect was not from ourselves 2812 * the new gateway and the old gateway are directly reachable 2813 */ 2814 if (prev_ire == NULL || ire == NULL || 2815 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2816 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2817 !(ire->ire_type & IRE_IF_ALL) || 2818 prev_ire->ire_gateway_addr != src) { 2819 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2820 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2821 freemsg(mp); 2822 if (ire != NULL) 2823 ire_refrele(ire); 2824 if (prev_ire != NULL) 2825 ire_refrele(prev_ire); 2826 return; 2827 } 2828 2829 ire_refrele(prev_ire); 2830 ire_refrele(ire); 2831 2832 /* 2833 * TODO: more precise handling for cases 0, 2, 3, the latter two 2834 * require TOS routing 2835 */ 2836 switch (icmph->icmph_code) { 2837 case 0: 2838 case 1: 2839 /* TODO: TOS specificity for cases 2 and 3 */ 2840 case 2: 2841 case 3: 2842 break; 2843 default: 2844 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2845 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2846 freemsg(mp); 2847 return; 2848 } 2849 /* 2850 * Create a Route Association. This will allow us to remember that 2851 * someone we believe told us to use the particular gateway. 2852 */ 2853 ire = ire_create( 2854 (uchar_t *)&dst, /* dest addr */ 2855 (uchar_t *)&ip_g_all_ones, /* mask */ 2856 (uchar_t *)&gateway, /* gateway addr */ 2857 IRE_HOST, 2858 NULL, /* ill */ 2859 ALL_ZONES, 2860 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2861 NULL, /* tsol_gc_t */ 2862 ipst); 2863 2864 if (ire == NULL) { 2865 freemsg(mp); 2866 return; 2867 } 2868 nire = ire_add(ire); 2869 /* Check if it was a duplicate entry */ 2870 if (nire != NULL && nire != ire) { 2871 ASSERT(nire->ire_identical_ref > 1); 2872 ire_delete(nire); 2873 ire_refrele(nire); 2874 nire = NULL; 2875 } 2876 ire = nire; 2877 if (ire != NULL) { 2878 ire_refrele(ire); /* Held in ire_add */ 2879 2880 /* tell routing sockets that we received a redirect */ 2881 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2882 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2883 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2884 } 2885 2886 /* 2887 * Delete any existing IRE_HOST type redirect ires for this destination. 2888 * This together with the added IRE has the effect of 2889 * modifying an existing redirect. 2890 */ 2891 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2892 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2893 if (prev_ire != NULL) { 2894 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2895 ire_delete(prev_ire); 2896 ire_refrele(prev_ire); 2897 } 2898 2899 freemsg(mp); 2900 } 2901 2902 /* 2903 * Generate an ICMP parameter problem message. 2904 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2905 * constructed by the caller. 2906 */ 2907 static void 2908 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2909 { 2910 icmph_t icmph; 2911 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2912 2913 mp = icmp_pkt_err_ok(mp, ira); 2914 if (mp == NULL) 2915 return; 2916 2917 bzero(&icmph, sizeof (icmph_t)); 2918 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2919 icmph.icmph_pp_ptr = ptr; 2920 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2921 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2922 } 2923 2924 /* 2925 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2926 * the ICMP header pointed to by "stuff". (May be called as writer.) 2927 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2928 * an icmp error packet can be sent. 2929 * Assigns an appropriate source address to the packet. If ipha_dst is 2930 * one of our addresses use it for source. Otherwise let ip_output_simple 2931 * pick the source address. 2932 */ 2933 static void 2934 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2935 { 2936 ipaddr_t dst; 2937 icmph_t *icmph; 2938 ipha_t *ipha; 2939 uint_t len_needed; 2940 size_t msg_len; 2941 mblk_t *mp1; 2942 ipaddr_t src; 2943 ire_t *ire; 2944 ip_xmit_attr_t ixas; 2945 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2946 2947 ipha = (ipha_t *)mp->b_rptr; 2948 2949 bzero(&ixas, sizeof (ixas)); 2950 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2951 ixas.ixa_zoneid = ira->ira_zoneid; 2952 ixas.ixa_ifindex = 0; 2953 ixas.ixa_ipst = ipst; 2954 ixas.ixa_cred = kcred; 2955 ixas.ixa_cpid = NOPID; 2956 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2957 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2958 2959 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2960 /* 2961 * Apply IPsec based on how IPsec was applied to 2962 * the packet that had the error. 2963 * 2964 * If it was an outbound packet that caused the ICMP 2965 * error, then the caller will have setup the IRA 2966 * appropriately. 2967 */ 2968 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2969 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2970 /* Note: mp already consumed and ip_drop_packet done */ 2971 return; 2972 } 2973 } else { 2974 /* 2975 * This is in clear. The icmp message we are building 2976 * here should go out in clear, independent of our policy. 2977 */ 2978 ixas.ixa_flags |= IXAF_NO_IPSEC; 2979 } 2980 2981 /* Remember our eventual destination */ 2982 dst = ipha->ipha_src; 2983 2984 /* 2985 * If the packet was for one of our unicast addresses, make 2986 * sure we respond with that as the source. Otherwise 2987 * have ip_output_simple pick the source address. 2988 */ 2989 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2990 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2991 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2992 if (ire != NULL) { 2993 ire_refrele(ire); 2994 src = ipha->ipha_dst; 2995 } else { 2996 src = INADDR_ANY; 2997 ixas.ixa_flags |= IXAF_SET_SOURCE; 2998 } 2999 3000 /* 3001 * Check if we can send back more then 8 bytes in addition to 3002 * the IP header. We try to send 64 bytes of data and the internal 3003 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3004 */ 3005 len_needed = IPH_HDR_LENGTH(ipha); 3006 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3007 ipha->ipha_protocol == IPPROTO_IPV6) { 3008 if (!pullupmsg(mp, -1)) { 3009 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3010 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 3011 freemsg(mp); 3012 return; 3013 } 3014 ipha = (ipha_t *)mp->b_rptr; 3015 3016 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3017 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3018 len_needed)); 3019 } else { 3020 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3021 3022 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3023 len_needed += ip_hdr_length_v6(mp, ip6h); 3024 } 3025 } 3026 len_needed += ipst->ips_ip_icmp_return; 3027 msg_len = msgdsize(mp); 3028 if (msg_len > len_needed) { 3029 (void) adjmsg(mp, len_needed - msg_len); 3030 msg_len = len_needed; 3031 } 3032 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 3033 if (mp1 == NULL) { 3034 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3035 freemsg(mp); 3036 return; 3037 } 3038 mp1->b_cont = mp; 3039 mp = mp1; 3040 3041 /* 3042 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 3043 * node generates be accepted in peace by all on-host destinations. 3044 * If we do NOT assume that all on-host destinations trust 3045 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3046 * (Look for IXAF_TRUSTED_ICMP). 3047 */ 3048 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 3049 3050 ipha = (ipha_t *)mp->b_rptr; 3051 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3052 *ipha = icmp_ipha; 3053 ipha->ipha_src = src; 3054 ipha->ipha_dst = dst; 3055 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3056 msg_len += sizeof (icmp_ipha) + len; 3057 if (msg_len > IP_MAXPACKET) { 3058 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3059 msg_len = IP_MAXPACKET; 3060 } 3061 ipha->ipha_length = htons((uint16_t)msg_len); 3062 icmph = (icmph_t *)&ipha[1]; 3063 bcopy(stuff, icmph, len); 3064 icmph->icmph_checksum = 0; 3065 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3066 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3067 3068 (void) ip_output_simple(mp, &ixas); 3069 ixa_cleanup(&ixas); 3070 } 3071 3072 /* 3073 * Determine if an ICMP error packet can be sent given the rate limit. 3074 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3075 * in milliseconds) and a burst size. Burst size number of packets can 3076 * be sent arbitrarely closely spaced. 3077 * The state is tracked using two variables to implement an approximate 3078 * token bucket filter: 3079 * icmp_pkt_err_last - lbolt value when the last burst started 3080 * icmp_pkt_err_sent - number of packets sent in current burst 3081 */ 3082 boolean_t 3083 icmp_err_rate_limit(ip_stack_t *ipst) 3084 { 3085 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 3086 uint_t refilled; /* Number of packets refilled in tbf since last */ 3087 /* Guard against changes by loading into local variable */ 3088 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3089 3090 if (err_interval == 0) 3091 return (B_FALSE); 3092 3093 if (ipst->ips_icmp_pkt_err_last > now) { 3094 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3095 ipst->ips_icmp_pkt_err_last = 0; 3096 ipst->ips_icmp_pkt_err_sent = 0; 3097 } 3098 /* 3099 * If we are in a burst update the token bucket filter. 3100 * Update the "last" time to be close to "now" but make sure 3101 * we don't loose precision. 3102 */ 3103 if (ipst->ips_icmp_pkt_err_sent != 0) { 3104 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3105 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3106 ipst->ips_icmp_pkt_err_sent = 0; 3107 } else { 3108 ipst->ips_icmp_pkt_err_sent -= refilled; 3109 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3110 } 3111 } 3112 if (ipst->ips_icmp_pkt_err_sent == 0) { 3113 /* Start of new burst */ 3114 ipst->ips_icmp_pkt_err_last = now; 3115 } 3116 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3117 ipst->ips_icmp_pkt_err_sent++; 3118 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3119 ipst->ips_icmp_pkt_err_sent)); 3120 return (B_FALSE); 3121 } 3122 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3123 return (B_TRUE); 3124 } 3125 3126 /* 3127 * Check if it is ok to send an IPv4 ICMP error packet in 3128 * response to the IPv4 packet in mp. 3129 * Free the message and return null if no 3130 * ICMP error packet should be sent. 3131 */ 3132 static mblk_t * 3133 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 3134 { 3135 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3136 icmph_t *icmph; 3137 ipha_t *ipha; 3138 uint_t len_needed; 3139 3140 if (!mp) 3141 return (NULL); 3142 ipha = (ipha_t *)mp->b_rptr; 3143 if (ip_csum_hdr(ipha)) { 3144 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3145 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 3146 freemsg(mp); 3147 return (NULL); 3148 } 3149 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 3150 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 3151 CLASSD(ipha->ipha_dst) || 3152 CLASSD(ipha->ipha_src) || 3153 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3154 /* Note: only errors to the fragment with offset 0 */ 3155 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3156 freemsg(mp); 3157 return (NULL); 3158 } 3159 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3160 /* 3161 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3162 * errors in response to any ICMP errors. 3163 */ 3164 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3165 if (mp->b_wptr - mp->b_rptr < len_needed) { 3166 if (!pullupmsg(mp, len_needed)) { 3167 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3168 freemsg(mp); 3169 return (NULL); 3170 } 3171 ipha = (ipha_t *)mp->b_rptr; 3172 } 3173 icmph = (icmph_t *) 3174 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3175 switch (icmph->icmph_type) { 3176 case ICMP_DEST_UNREACHABLE: 3177 case ICMP_SOURCE_QUENCH: 3178 case ICMP_TIME_EXCEEDED: 3179 case ICMP_PARAM_PROBLEM: 3180 case ICMP_REDIRECT: 3181 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3182 freemsg(mp); 3183 return (NULL); 3184 default: 3185 break; 3186 } 3187 } 3188 /* 3189 * If this is a labeled system, then check to see if we're allowed to 3190 * send a response to this particular sender. If not, then just drop. 3191 */ 3192 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3193 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3194 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3195 freemsg(mp); 3196 return (NULL); 3197 } 3198 if (icmp_err_rate_limit(ipst)) { 3199 /* 3200 * Only send ICMP error packets every so often. 3201 * This should be done on a per port/source basis, 3202 * but for now this will suffice. 3203 */ 3204 freemsg(mp); 3205 return (NULL); 3206 } 3207 return (mp); 3208 } 3209 3210 /* 3211 * Called when a packet was sent out the same link that it arrived on. 3212 * Check if it is ok to send a redirect and then send it. 3213 */ 3214 void 3215 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3216 ip_recv_attr_t *ira) 3217 { 3218 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3219 ipaddr_t src, nhop; 3220 mblk_t *mp1; 3221 ire_t *nhop_ire; 3222 3223 /* 3224 * Check the source address to see if it originated 3225 * on the same logical subnet it is going back out on. 3226 * If so, we should be able to send it a redirect. 3227 * Avoid sending a redirect if the destination 3228 * is directly connected (i.e., we matched an IRE_ONLINK), 3229 * or if the packet was source routed out this interface. 3230 * 3231 * We avoid sending a redirect if the 3232 * destination is directly connected 3233 * because it is possible that multiple 3234 * IP subnets may have been configured on 3235 * the link, and the source may not 3236 * be on the same subnet as ip destination, 3237 * even though they are on the same 3238 * physical link. 3239 */ 3240 if ((ire->ire_type & IRE_ONLINK) || 3241 ip_source_routed(ipha, ipst)) 3242 return; 3243 3244 nhop_ire = ire_nexthop(ire); 3245 if (nhop_ire == NULL) 3246 return; 3247 3248 nhop = nhop_ire->ire_addr; 3249 3250 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3251 ire_t *ire2; 3252 3253 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3254 mutex_enter(&nhop_ire->ire_lock); 3255 ire2 = nhop_ire->ire_dep_parent; 3256 if (ire2 != NULL) 3257 ire_refhold(ire2); 3258 mutex_exit(&nhop_ire->ire_lock); 3259 ire_refrele(nhop_ire); 3260 nhop_ire = ire2; 3261 } 3262 if (nhop_ire == NULL) 3263 return; 3264 3265 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3266 3267 src = ipha->ipha_src; 3268 3269 /* 3270 * We look at the interface ire for the nexthop, 3271 * to see if ipha_src is in the same subnet 3272 * as the nexthop. 3273 */ 3274 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3275 /* 3276 * The source is directly connected. 3277 */ 3278 mp1 = copymsg(mp); 3279 if (mp1 != NULL) { 3280 icmp_send_redirect(mp1, nhop, ira); 3281 } 3282 } 3283 ire_refrele(nhop_ire); 3284 } 3285 3286 /* 3287 * Generate an ICMP redirect message. 3288 */ 3289 static void 3290 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3291 { 3292 icmph_t icmph; 3293 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3294 3295 mp = icmp_pkt_err_ok(mp, ira); 3296 if (mp == NULL) 3297 return; 3298 3299 bzero(&icmph, sizeof (icmph_t)); 3300 icmph.icmph_type = ICMP_REDIRECT; 3301 icmph.icmph_code = 1; 3302 icmph.icmph_rd_gateway = gateway; 3303 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3304 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3305 } 3306 3307 /* 3308 * Generate an ICMP time exceeded message. 3309 */ 3310 void 3311 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3312 { 3313 icmph_t icmph; 3314 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3315 3316 mp = icmp_pkt_err_ok(mp, ira); 3317 if (mp == NULL) 3318 return; 3319 3320 bzero(&icmph, sizeof (icmph_t)); 3321 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3322 icmph.icmph_code = code; 3323 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3324 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3325 } 3326 3327 /* 3328 * Generate an ICMP unreachable message. 3329 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3330 * constructed by the caller. 3331 */ 3332 void 3333 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3334 { 3335 icmph_t icmph; 3336 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3337 3338 mp = icmp_pkt_err_ok(mp, ira); 3339 if (mp == NULL) 3340 return; 3341 3342 bzero(&icmph, sizeof (icmph_t)); 3343 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3344 icmph.icmph_code = code; 3345 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3346 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3347 } 3348 3349 /* 3350 * Latch in the IPsec state for a stream based the policy in the listener 3351 * and the actions in the ip_recv_attr_t. 3352 * Called directly from TCP and SCTP. 3353 */ 3354 boolean_t 3355 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3356 { 3357 ASSERT(lconnp->conn_policy != NULL); 3358 ASSERT(connp->conn_policy == NULL); 3359 3360 IPPH_REFHOLD(lconnp->conn_policy); 3361 connp->conn_policy = lconnp->conn_policy; 3362 3363 if (ira->ira_ipsec_action != NULL) { 3364 if (connp->conn_latch == NULL) { 3365 connp->conn_latch = iplatch_create(); 3366 if (connp->conn_latch == NULL) 3367 return (B_FALSE); 3368 } 3369 ipsec_latch_inbound(connp, ira); 3370 } 3371 return (B_TRUE); 3372 } 3373 3374 /* 3375 * Verify whether or not the IP address is a valid local address. 3376 * Could be a unicast, including one for a down interface. 3377 * If allow_mcbc then a multicast or broadcast address is also 3378 * acceptable. 3379 * 3380 * In the case of a broadcast/multicast address, however, the 3381 * upper protocol is expected to reset the src address 3382 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3383 * no packets are emitted with broadcast/multicast address as 3384 * source address (that violates hosts requirements RFC 1122) 3385 * The addresses valid for bind are: 3386 * (1) - INADDR_ANY (0) 3387 * (2) - IP address of an UP interface 3388 * (3) - IP address of a DOWN interface 3389 * (4) - valid local IP broadcast addresses. In this case 3390 * the conn will only receive packets destined to 3391 * the specified broadcast address. 3392 * (5) - a multicast address. In this case 3393 * the conn will only receive packets destined to 3394 * the specified multicast address. Note: the 3395 * application still has to issue an 3396 * IP_ADD_MEMBERSHIP socket option. 3397 * 3398 * In all the above cases, the bound address must be valid in the current zone. 3399 * When the address is loopback, multicast or broadcast, there might be many 3400 * matching IREs so bind has to look up based on the zone. 3401 */ 3402 ip_laddr_t 3403 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3404 ip_stack_t *ipst, boolean_t allow_mcbc) 3405 { 3406 ire_t *src_ire; 3407 3408 ASSERT(src_addr != INADDR_ANY); 3409 3410 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3411 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3412 3413 /* 3414 * If an address other than in6addr_any is requested, 3415 * we verify that it is a valid address for bind 3416 * Note: Following code is in if-else-if form for 3417 * readability compared to a condition check. 3418 */ 3419 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3420 /* 3421 * (2) Bind to address of local UP interface 3422 */ 3423 ire_refrele(src_ire); 3424 return (IPVL_UNICAST_UP); 3425 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3426 /* 3427 * (4) Bind to broadcast address 3428 */ 3429 ire_refrele(src_ire); 3430 if (allow_mcbc) 3431 return (IPVL_BCAST); 3432 else 3433 return (IPVL_BAD); 3434 } else if (CLASSD(src_addr)) { 3435 /* (5) bind to multicast address. */ 3436 if (src_ire != NULL) 3437 ire_refrele(src_ire); 3438 3439 if (allow_mcbc) 3440 return (IPVL_MCAST); 3441 else 3442 return (IPVL_BAD); 3443 } else { 3444 ipif_t *ipif; 3445 3446 /* 3447 * (3) Bind to address of local DOWN interface? 3448 * (ipif_lookup_addr() looks up all interfaces 3449 * but we do not get here for UP interfaces 3450 * - case (2) above) 3451 */ 3452 if (src_ire != NULL) 3453 ire_refrele(src_ire); 3454 3455 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3456 if (ipif == NULL) 3457 return (IPVL_BAD); 3458 3459 /* Not a useful source? */ 3460 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3461 ipif_refrele(ipif); 3462 return (IPVL_BAD); 3463 } 3464 ipif_refrele(ipif); 3465 return (IPVL_UNICAST_DOWN); 3466 } 3467 } 3468 3469 /* 3470 * Insert in the bind fanout for IPv4 and IPv6. 3471 * The caller should already have used ip_laddr_verify_v*() before calling 3472 * this. 3473 */ 3474 int 3475 ip_laddr_fanout_insert(conn_t *connp) 3476 { 3477 int error; 3478 3479 /* 3480 * Allow setting new policies. For example, disconnects result 3481 * in us being called. As we would have set conn_policy_cached 3482 * to B_TRUE before, we should set it to B_FALSE, so that policy 3483 * can change after the disconnect. 3484 */ 3485 connp->conn_policy_cached = B_FALSE; 3486 3487 error = ipcl_bind_insert(connp); 3488 if (error != 0) { 3489 if (connp->conn_anon_port) { 3490 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3491 connp->conn_mlp_type, connp->conn_proto, 3492 ntohs(connp->conn_lport), B_FALSE); 3493 } 3494 connp->conn_mlp_type = mlptSingle; 3495 } 3496 return (error); 3497 } 3498 3499 /* 3500 * Verify that both the source and destination addresses are valid. If 3501 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3502 * i.e. have no route to it. Protocols like TCP want to verify destination 3503 * reachability, while tunnels do not. 3504 * 3505 * Determine the route, the interface, and (optionally) the source address 3506 * to use to reach a given destination. 3507 * Note that we allow connect to broadcast and multicast addresses when 3508 * IPDF_ALLOW_MCBC is set. 3509 * first_hop and dst_addr are normally the same, but if source routing 3510 * they will differ; in that case the first_hop is what we'll use for the 3511 * routing lookup but the dce and label checks will be done on dst_addr, 3512 * 3513 * If uinfo is set, then we fill in the best available information 3514 * we have for the destination. This is based on (in priority order) any 3515 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3516 * ill_mtu. 3517 * 3518 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3519 * always do the label check on dst_addr. 3520 */ 3521 int 3522 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3523 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3524 { 3525 ire_t *ire = NULL; 3526 int error = 0; 3527 ipaddr_t setsrc; /* RTF_SETSRC */ 3528 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3529 ip_stack_t *ipst = ixa->ixa_ipst; 3530 dce_t *dce; 3531 uint_t pmtu; 3532 uint_t generation; 3533 nce_t *nce; 3534 ill_t *ill = NULL; 3535 boolean_t multirt = B_FALSE; 3536 3537 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3538 3539 /* 3540 * We never send to zero; the ULPs map it to the loopback address. 3541 * We can't allow it since we use zero to mean unitialized in some 3542 * places. 3543 */ 3544 ASSERT(dst_addr != INADDR_ANY); 3545 3546 if (is_system_labeled()) { 3547 ts_label_t *tsl = NULL; 3548 3549 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3550 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3551 if (error != 0) 3552 return (error); 3553 if (tsl != NULL) { 3554 /* Update the label */ 3555 ip_xmit_attr_replace_tsl(ixa, tsl); 3556 } 3557 } 3558 3559 setsrc = INADDR_ANY; 3560 /* 3561 * Select a route; For IPMP interfaces, we would only select 3562 * a "hidden" route (i.e., going through a specific under_ill) 3563 * if ixa_ifindex has been specified. 3564 */ 3565 ire = ip_select_route_v4(firsthop, ixa, &generation, &setsrc, &error, 3566 &multirt); 3567 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3568 if (error != 0) 3569 goto bad_addr; 3570 3571 /* 3572 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3573 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3574 * Otherwise the destination needn't be reachable. 3575 * 3576 * If we match on a reject or black hole, then we've got a 3577 * local failure. May as well fail out the connect() attempt, 3578 * since it's never going to succeed. 3579 */ 3580 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3581 /* 3582 * If we're verifying destination reachability, we always want 3583 * to complain here. 3584 * 3585 * If we're not verifying destination reachability but the 3586 * destination has a route, we still want to fail on the 3587 * temporary address and broadcast address tests. 3588 * 3589 * In both cases do we let the code continue so some reasonable 3590 * information is returned to the caller. That enables the 3591 * caller to use (and even cache) the IRE. conn_ip_ouput will 3592 * use the generation mismatch path to check for the unreachable 3593 * case thereby avoiding any specific check in the main path. 3594 */ 3595 ASSERT(generation == IRE_GENERATION_VERIFY); 3596 if (flags & IPDF_VERIFY_DST) { 3597 /* 3598 * Set errno but continue to set up ixa_ire to be 3599 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3600 * That allows callers to use ip_output to get an 3601 * ICMP error back. 3602 */ 3603 if (!(ire->ire_type & IRE_HOST)) 3604 error = ENETUNREACH; 3605 else 3606 error = EHOSTUNREACH; 3607 } 3608 } 3609 3610 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3611 !(flags & IPDF_ALLOW_MCBC)) { 3612 ire_refrele(ire); 3613 ire = ire_reject(ipst, B_FALSE); 3614 generation = IRE_GENERATION_VERIFY; 3615 error = ENETUNREACH; 3616 } 3617 3618 /* Cache things */ 3619 if (ixa->ixa_ire != NULL) 3620 ire_refrele_notr(ixa->ixa_ire); 3621 #ifdef DEBUG 3622 ire_refhold_notr(ire); 3623 ire_refrele(ire); 3624 #endif 3625 ixa->ixa_ire = ire; 3626 ixa->ixa_ire_generation = generation; 3627 3628 /* 3629 * For multicast with multirt we have a flag passed back from 3630 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3631 * possible multicast address. 3632 * We also need a flag for multicast since we can't check 3633 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3634 */ 3635 if (multirt) { 3636 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3637 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3638 } else { 3639 ixa->ixa_postfragfn = ire->ire_postfragfn; 3640 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3641 } 3642 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3643 /* Get an nce to cache. */ 3644 nce = ire_to_nce(ire, firsthop, NULL); 3645 if (nce == NULL) { 3646 /* Allocation failure? */ 3647 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3648 } else { 3649 if (ixa->ixa_nce != NULL) 3650 nce_refrele(ixa->ixa_nce); 3651 ixa->ixa_nce = nce; 3652 } 3653 } 3654 3655 /* 3656 * If the source address is a loopback address, the 3657 * destination had best be local or multicast. 3658 * If we are sending to an IRE_LOCAL using a loopback source then 3659 * it had better be the same zoneid. 3660 */ 3661 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3662 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3663 ire = NULL; /* Stored in ixa_ire */ 3664 error = EADDRNOTAVAIL; 3665 goto bad_addr; 3666 } 3667 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3668 ire = NULL; /* Stored in ixa_ire */ 3669 error = EADDRNOTAVAIL; 3670 goto bad_addr; 3671 } 3672 } 3673 if (ire->ire_type & IRE_BROADCAST) { 3674 /* 3675 * If the ULP didn't have a specified source, then we 3676 * make sure we reselect the source when sending 3677 * broadcasts out different interfaces. 3678 */ 3679 if (flags & IPDF_SELECT_SRC) 3680 ixa->ixa_flags |= IXAF_SET_SOURCE; 3681 else 3682 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3683 } 3684 3685 /* 3686 * Does the caller want us to pick a source address? 3687 */ 3688 if (flags & IPDF_SELECT_SRC) { 3689 ipaddr_t src_addr; 3690 3691 /* 3692 * We use use ire_nexthop_ill to avoid the under ipmp 3693 * interface for source address selection. Note that for ipmp 3694 * probe packets, ixa_ifindex would have been specified, and 3695 * the ip_select_route() invocation would have picked an ire 3696 * will ire_ill pointing at an under interface. 3697 */ 3698 ill = ire_nexthop_ill(ire); 3699 3700 /* If unreachable we have no ill but need some source */ 3701 if (ill == NULL) { 3702 src_addr = htonl(INADDR_LOOPBACK); 3703 /* Make sure we look for a better source address */ 3704 generation = SRC_GENERATION_VERIFY; 3705 } else { 3706 error = ip_select_source_v4(ill, setsrc, dst_addr, 3707 ixa->ixa_multicast_ifaddr, zoneid, 3708 ipst, &src_addr, &generation, NULL); 3709 if (error != 0) { 3710 ire = NULL; /* Stored in ixa_ire */ 3711 goto bad_addr; 3712 } 3713 } 3714 3715 /* 3716 * We allow the source address to to down. 3717 * However, we check that we don't use the loopback address 3718 * as a source when sending out on the wire. 3719 */ 3720 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3721 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3722 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3723 ire = NULL; /* Stored in ixa_ire */ 3724 error = EADDRNOTAVAIL; 3725 goto bad_addr; 3726 } 3727 3728 *src_addrp = src_addr; 3729 ixa->ixa_src_generation = generation; 3730 } 3731 3732 if (flags & IPDF_UNIQUE_DCE) { 3733 /* Fallback to the default dce if allocation fails */ 3734 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3735 if (dce != NULL) 3736 generation = dce->dce_generation; 3737 else 3738 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3739 } else { 3740 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3741 } 3742 ASSERT(dce != NULL); 3743 if (ixa->ixa_dce != NULL) 3744 dce_refrele_notr(ixa->ixa_dce); 3745 #ifdef DEBUG 3746 dce_refhold_notr(dce); 3747 dce_refrele(dce); 3748 #endif 3749 ixa->ixa_dce = dce; 3750 ixa->ixa_dce_generation = generation; 3751 3752 /* 3753 * Make sure we don't leave an unreachable ixa_nce in place 3754 * since ip_select_route is used when we unplumb i.e., remove 3755 * references on ixa_ire, ixa_nce, and ixa_dce. 3756 */ 3757 nce = ixa->ixa_nce; 3758 if (nce != NULL && nce->nce_is_condemned) { 3759 nce_refrele(nce); 3760 ixa->ixa_nce = NULL; 3761 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3762 } 3763 3764 /* 3765 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3766 * However, we can't do it for IPv4 multicast or broadcast. 3767 */ 3768 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3769 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3770 3771 /* 3772 * Set initial value for fragmentation limit. Either conn_ip_output 3773 * or ULP might updates it when there are routing changes. 3774 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3775 */ 3776 pmtu = ip_get_pmtu(ixa); 3777 ixa->ixa_fragsize = pmtu; 3778 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3779 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3780 ixa->ixa_pmtu = pmtu; 3781 3782 /* 3783 * Extract information useful for some transports. 3784 * First we look for DCE metrics. Then we take what we have in 3785 * the metrics in the route, where the offlink is used if we have 3786 * one. 3787 */ 3788 if (uinfo != NULL) { 3789 bzero(uinfo, sizeof (*uinfo)); 3790 3791 if (dce->dce_flags & DCEF_UINFO) 3792 *uinfo = dce->dce_uinfo; 3793 3794 rts_merge_metrics(uinfo, &ire->ire_metrics); 3795 3796 /* Allow ire_metrics to decrease the path MTU from above */ 3797 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3798 uinfo->iulp_mtu = pmtu; 3799 3800 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3801 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3802 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3803 } 3804 3805 if (ill != NULL) 3806 ill_refrele(ill); 3807 3808 return (error); 3809 3810 bad_addr: 3811 if (ire != NULL) 3812 ire_refrele(ire); 3813 3814 if (ill != NULL) 3815 ill_refrele(ill); 3816 3817 /* 3818 * Make sure we don't leave an unreachable ixa_nce in place 3819 * since ip_select_route is used when we unplumb i.e., remove 3820 * references on ixa_ire, ixa_nce, and ixa_dce. 3821 */ 3822 nce = ixa->ixa_nce; 3823 if (nce != NULL && nce->nce_is_condemned) { 3824 nce_refrele(nce); 3825 ixa->ixa_nce = NULL; 3826 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3827 } 3828 3829 return (error); 3830 } 3831 3832 3833 /* 3834 * Get the base MTU for the case when path MTU discovery is not used. 3835 * Takes the MTU of the IRE into account. 3836 */ 3837 uint_t 3838 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3839 { 3840 uint_t mtu = ill->ill_mtu; 3841 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3842 3843 if (iremtu != 0 && iremtu < mtu) 3844 mtu = iremtu; 3845 3846 return (mtu); 3847 } 3848 3849 /* 3850 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3851 * Assumes that ixa_ire, dce, and nce have already been set up. 3852 * 3853 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3854 * We avoid path MTU discovery if it is disabled with ndd. 3855 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3856 * 3857 * NOTE: We also used to turn it off for source routed packets. That 3858 * is no longer required since the dce is per final destination. 3859 */ 3860 uint_t 3861 ip_get_pmtu(ip_xmit_attr_t *ixa) 3862 { 3863 ip_stack_t *ipst = ixa->ixa_ipst; 3864 dce_t *dce; 3865 nce_t *nce; 3866 ire_t *ire; 3867 uint_t pmtu; 3868 3869 ire = ixa->ixa_ire; 3870 dce = ixa->ixa_dce; 3871 nce = ixa->ixa_nce; 3872 3873 /* 3874 * If path MTU discovery has been turned off by ndd, then we ignore 3875 * any dce_pmtu and for IPv4 we will not set DF. 3876 */ 3877 if (!ipst->ips_ip_path_mtu_discovery) 3878 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3879 3880 pmtu = IP_MAXPACKET; 3881 /* 3882 * Decide whether whether IPv4 sets DF 3883 * For IPv6 "no DF" means to use the 1280 mtu 3884 */ 3885 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3886 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3887 } else { 3888 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3889 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3890 pmtu = IPV6_MIN_MTU; 3891 } 3892 3893 /* Check if the PMTU is to old before we use it */ 3894 if ((dce->dce_flags & DCEF_PMTU) && 3895 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3896 ipst->ips_ip_pathmtu_interval) { 3897 /* 3898 * Older than 20 minutes. Drop the path MTU information. 3899 */ 3900 mutex_enter(&dce->dce_lock); 3901 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3902 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3903 mutex_exit(&dce->dce_lock); 3904 dce_increment_generation(dce); 3905 } 3906 3907 /* The metrics on the route can lower the path MTU */ 3908 if (ire->ire_metrics.iulp_mtu != 0 && 3909 ire->ire_metrics.iulp_mtu < pmtu) 3910 pmtu = ire->ire_metrics.iulp_mtu; 3911 3912 /* 3913 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3914 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3915 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3916 */ 3917 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3918 if (dce->dce_flags & DCEF_PMTU) { 3919 if (dce->dce_pmtu < pmtu) 3920 pmtu = dce->dce_pmtu; 3921 3922 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3923 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3924 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3925 } else { 3926 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3927 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3928 } 3929 } else { 3930 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3931 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3932 } 3933 } 3934 3935 /* 3936 * If we have an IRE_LOCAL we use the loopback mtu instead of 3937 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3938 * mtu as IRE_LOOPBACK. 3939 */ 3940 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3941 uint_t loopback_mtu; 3942 3943 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3944 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3945 3946 if (loopback_mtu < pmtu) 3947 pmtu = loopback_mtu; 3948 } else if (nce != NULL) { 3949 /* 3950 * Make sure we don't exceed the interface MTU. 3951 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3952 * an ill. We'd use the above IP_MAXPACKET in that case just 3953 * to tell the transport something larger than zero. 3954 */ 3955 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3956 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3957 if (nce->nce_common->ncec_ill != nce->nce_ill && 3958 nce->nce_ill->ill_mtu < pmtu) { 3959 /* 3960 * for interfaces in an IPMP group, the mtu of 3961 * the nce_ill (under_ill) could be different 3962 * from the mtu of the ncec_ill, so we take the 3963 * min of the two. 3964 */ 3965 pmtu = nce->nce_ill->ill_mtu; 3966 } 3967 } 3968 3969 /* 3970 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3971 * Only applies to IPv6. 3972 */ 3973 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3974 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3975 switch (ixa->ixa_use_min_mtu) { 3976 case IPV6_USE_MIN_MTU_MULTICAST: 3977 if (ire->ire_type & IRE_MULTICAST) 3978 pmtu = IPV6_MIN_MTU; 3979 break; 3980 case IPV6_USE_MIN_MTU_ALWAYS: 3981 pmtu = IPV6_MIN_MTU; 3982 break; 3983 case IPV6_USE_MIN_MTU_NEVER: 3984 break; 3985 } 3986 } else { 3987 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3988 if (ire->ire_type & IRE_MULTICAST) 3989 pmtu = IPV6_MIN_MTU; 3990 } 3991 } 3992 3993 /* 3994 * After receiving an ICMPv6 "packet too big" message with a 3995 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3996 * will insert a 8-byte fragment header in every packet. We compensate 3997 * for those cases by returning a smaller path MTU to the ULP. 3998 * 3999 * In the case of CGTP then ip_output will add a fragment header. 4000 * Make sure there is room for it by telling a smaller number 4001 * to the transport. 4002 * 4003 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 4004 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 4005 * which is the size of the packets it can send. 4006 */ 4007 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 4008 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 4009 (ire->ire_flags & RTF_MULTIRT) || 4010 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 4011 pmtu -= sizeof (ip6_frag_t); 4012 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 4013 } 4014 } 4015 4016 return (pmtu); 4017 } 4018 4019 /* 4020 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4021 * the final piece where we don't. Return a pointer to the first mblk in the 4022 * result, and update the pointer to the next mblk to chew on. If anything 4023 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4024 * NULL pointer. 4025 */ 4026 mblk_t * 4027 ip_carve_mp(mblk_t **mpp, ssize_t len) 4028 { 4029 mblk_t *mp0; 4030 mblk_t *mp1; 4031 mblk_t *mp2; 4032 4033 if (!len || !mpp || !(mp0 = *mpp)) 4034 return (NULL); 4035 /* If we aren't going to consume the first mblk, we need a dup. */ 4036 if (mp0->b_wptr - mp0->b_rptr > len) { 4037 mp1 = dupb(mp0); 4038 if (mp1) { 4039 /* Partition the data between the two mblks. */ 4040 mp1->b_wptr = mp1->b_rptr + len; 4041 mp0->b_rptr = mp1->b_wptr; 4042 /* 4043 * after adjustments if mblk not consumed is now 4044 * unaligned, try to align it. If this fails free 4045 * all messages and let upper layer recover. 4046 */ 4047 if (!OK_32PTR(mp0->b_rptr)) { 4048 if (!pullupmsg(mp0, -1)) { 4049 freemsg(mp0); 4050 freemsg(mp1); 4051 *mpp = NULL; 4052 return (NULL); 4053 } 4054 } 4055 } 4056 return (mp1); 4057 } 4058 /* Eat through as many mblks as we need to get len bytes. */ 4059 len -= mp0->b_wptr - mp0->b_rptr; 4060 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4061 if (mp2->b_wptr - mp2->b_rptr > len) { 4062 /* 4063 * We won't consume the entire last mblk. Like 4064 * above, dup and partition it. 4065 */ 4066 mp1->b_cont = dupb(mp2); 4067 mp1 = mp1->b_cont; 4068 if (!mp1) { 4069 /* 4070 * Trouble. Rather than go to a lot of 4071 * trouble to clean up, we free the messages. 4072 * This won't be any worse than losing it on 4073 * the wire. 4074 */ 4075 freemsg(mp0); 4076 freemsg(mp2); 4077 *mpp = NULL; 4078 return (NULL); 4079 } 4080 mp1->b_wptr = mp1->b_rptr + len; 4081 mp2->b_rptr = mp1->b_wptr; 4082 /* 4083 * after adjustments if mblk not consumed is now 4084 * unaligned, try to align it. If this fails free 4085 * all messages and let upper layer recover. 4086 */ 4087 if (!OK_32PTR(mp2->b_rptr)) { 4088 if (!pullupmsg(mp2, -1)) { 4089 freemsg(mp0); 4090 freemsg(mp2); 4091 *mpp = NULL; 4092 return (NULL); 4093 } 4094 } 4095 *mpp = mp2; 4096 return (mp0); 4097 } 4098 /* Decrement len by the amount we just got. */ 4099 len -= mp2->b_wptr - mp2->b_rptr; 4100 } 4101 /* 4102 * len should be reduced to zero now. If not our caller has 4103 * screwed up. 4104 */ 4105 if (len) { 4106 /* Shouldn't happen! */ 4107 freemsg(mp0); 4108 *mpp = NULL; 4109 return (NULL); 4110 } 4111 /* 4112 * We consumed up to exactly the end of an mblk. Detach the part 4113 * we are returning from the rest of the chain. 4114 */ 4115 mp1->b_cont = NULL; 4116 *mpp = mp2; 4117 return (mp0); 4118 } 4119 4120 /* The ill stream is being unplumbed. Called from ip_close */ 4121 int 4122 ip_modclose(ill_t *ill) 4123 { 4124 boolean_t success; 4125 ipsq_t *ipsq; 4126 ipif_t *ipif; 4127 queue_t *q = ill->ill_rq; 4128 ip_stack_t *ipst = ill->ill_ipst; 4129 int i; 4130 arl_ill_common_t *ai = ill->ill_common; 4131 4132 /* 4133 * The punlink prior to this may have initiated a capability 4134 * negotiation. But ipsq_enter will block until that finishes or 4135 * times out. 4136 */ 4137 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4138 4139 /* 4140 * Open/close/push/pop is guaranteed to be single threaded 4141 * per stream by STREAMS. FS guarantees that all references 4142 * from top are gone before close is called. So there can't 4143 * be another close thread that has set CONDEMNED on this ill. 4144 * and cause ipsq_enter to return failure. 4145 */ 4146 ASSERT(success); 4147 ipsq = ill->ill_phyint->phyint_ipsq; 4148 4149 /* 4150 * Mark it condemned. No new reference will be made to this ill. 4151 * Lookup functions will return an error. Threads that try to 4152 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4153 * that the refcnt will drop down to zero. 4154 */ 4155 mutex_enter(&ill->ill_lock); 4156 ill->ill_state_flags |= ILL_CONDEMNED; 4157 for (ipif = ill->ill_ipif; ipif != NULL; 4158 ipif = ipif->ipif_next) { 4159 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4160 } 4161 /* 4162 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4163 * returns error if ILL_CONDEMNED is set 4164 */ 4165 cv_broadcast(&ill->ill_cv); 4166 mutex_exit(&ill->ill_lock); 4167 4168 /* 4169 * Send all the deferred DLPI messages downstream which came in 4170 * during the small window right before ipsq_enter(). We do this 4171 * without waiting for the ACKs because all the ACKs for M_PROTO 4172 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4173 */ 4174 ill_dlpi_send_deferred(ill); 4175 4176 /* 4177 * Shut down fragmentation reassembly. 4178 * ill_frag_timer won't start a timer again. 4179 * Now cancel any existing timer 4180 */ 4181 (void) untimeout(ill->ill_frag_timer_id); 4182 (void) ill_frag_timeout(ill, 0); 4183 4184 /* 4185 * Call ill_delete to bring down the ipifs, ilms and ill on 4186 * this ill. Then wait for the refcnts to drop to zero. 4187 * ill_is_freeable checks whether the ill is really quiescent. 4188 * Then make sure that threads that are waiting to enter the 4189 * ipsq have seen the error returned by ipsq_enter and have 4190 * gone away. Then we call ill_delete_tail which does the 4191 * DL_UNBIND_REQ with the driver and then qprocsoff. 4192 */ 4193 ill_delete(ill); 4194 mutex_enter(&ill->ill_lock); 4195 while (!ill_is_freeable(ill)) 4196 cv_wait(&ill->ill_cv, &ill->ill_lock); 4197 4198 while (ill->ill_waiters) 4199 cv_wait(&ill->ill_cv, &ill->ill_lock); 4200 4201 mutex_exit(&ill->ill_lock); 4202 4203 /* 4204 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4205 * it held until the end of the function since the cleanup 4206 * below needs to be able to use the ip_stack_t. 4207 */ 4208 netstack_hold(ipst->ips_netstack); 4209 4210 /* qprocsoff is done via ill_delete_tail */ 4211 ill_delete_tail(ill); 4212 /* 4213 * synchronously wait for arp stream to unbind. After this, we 4214 * cannot get any data packets up from the driver. 4215 */ 4216 arp_unbind_complete(ill); 4217 ASSERT(ill->ill_ipst == NULL); 4218 4219 /* 4220 * Walk through all conns and qenable those that have queued data. 4221 * Close synchronization needs this to 4222 * be done to ensure that all upper layers blocked 4223 * due to flow control to the closing device 4224 * get unblocked. 4225 */ 4226 ip1dbg(("ip_wsrv: walking\n")); 4227 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4228 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4229 } 4230 4231 /* 4232 * ai can be null if this is an IPv6 ill, or if the IPv4 4233 * stream is being torn down before ARP was plumbed (e.g., 4234 * /sbin/ifconfig plumbing a stream twice, and encountering 4235 * an error 4236 */ 4237 if (ai != NULL) { 4238 ASSERT(!ill->ill_isv6); 4239 mutex_enter(&ai->ai_lock); 4240 ai->ai_ill = NULL; 4241 if (ai->ai_arl == NULL) { 4242 mutex_destroy(&ai->ai_lock); 4243 kmem_free(ai, sizeof (*ai)); 4244 } else { 4245 cv_signal(&ai->ai_ill_unplumb_done); 4246 mutex_exit(&ai->ai_lock); 4247 } 4248 } 4249 4250 mutex_enter(&ipst->ips_ip_mi_lock); 4251 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4252 mutex_exit(&ipst->ips_ip_mi_lock); 4253 4254 /* 4255 * credp could be null if the open didn't succeed and ip_modopen 4256 * itself calls ip_close. 4257 */ 4258 if (ill->ill_credp != NULL) 4259 crfree(ill->ill_credp); 4260 4261 mutex_destroy(&ill->ill_saved_ire_lock); 4262 mutex_destroy(&ill->ill_lock); 4263 rw_destroy(&ill->ill_mcast_lock); 4264 mutex_destroy(&ill->ill_mcast_serializer); 4265 list_destroy(&ill->ill_nce); 4266 4267 /* 4268 * Now we are done with the module close pieces that 4269 * need the netstack_t. 4270 */ 4271 netstack_rele(ipst->ips_netstack); 4272 4273 mi_close_free((IDP)ill); 4274 q->q_ptr = WR(q)->q_ptr = NULL; 4275 4276 ipsq_exit(ipsq); 4277 4278 return (0); 4279 } 4280 4281 /* 4282 * This is called as part of close() for IP, UDP, ICMP, and RTS 4283 * in order to quiesce the conn. 4284 */ 4285 void 4286 ip_quiesce_conn(conn_t *connp) 4287 { 4288 boolean_t drain_cleanup_reqd = B_FALSE; 4289 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4290 boolean_t ilg_cleanup_reqd = B_FALSE; 4291 ip_stack_t *ipst; 4292 4293 ASSERT(!IPCL_IS_TCP(connp)); 4294 ipst = connp->conn_netstack->netstack_ip; 4295 4296 /* 4297 * Mark the conn as closing, and this conn must not be 4298 * inserted in future into any list. Eg. conn_drain_insert(), 4299 * won't insert this conn into the conn_drain_list. 4300 * 4301 * conn_idl, and conn_ilg cannot get set henceforth. 4302 */ 4303 mutex_enter(&connp->conn_lock); 4304 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4305 connp->conn_state_flags |= CONN_CLOSING; 4306 if (connp->conn_idl != NULL) 4307 drain_cleanup_reqd = B_TRUE; 4308 if (connp->conn_oper_pending_ill != NULL) 4309 conn_ioctl_cleanup_reqd = B_TRUE; 4310 if (connp->conn_dhcpinit_ill != NULL) { 4311 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4312 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4313 ill_set_inputfn(connp->conn_dhcpinit_ill); 4314 connp->conn_dhcpinit_ill = NULL; 4315 } 4316 if (connp->conn_ilg != NULL) 4317 ilg_cleanup_reqd = B_TRUE; 4318 mutex_exit(&connp->conn_lock); 4319 4320 if (conn_ioctl_cleanup_reqd) 4321 conn_ioctl_cleanup(connp); 4322 4323 if (is_system_labeled() && connp->conn_anon_port) { 4324 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4325 connp->conn_mlp_type, connp->conn_proto, 4326 ntohs(connp->conn_lport), B_FALSE); 4327 connp->conn_anon_port = 0; 4328 } 4329 connp->conn_mlp_type = mlptSingle; 4330 4331 /* 4332 * Remove this conn from any fanout list it is on. 4333 * and then wait for any threads currently operating 4334 * on this endpoint to finish 4335 */ 4336 ipcl_hash_remove(connp); 4337 4338 /* 4339 * Remove this conn from the drain list, and do 4340 * any other cleanup that may be required. 4341 * (Only non-tcp conns may have a non-null conn_idl. 4342 * TCP conns are never flow controlled, and 4343 * conn_idl will be null) 4344 */ 4345 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4346 mutex_enter(&connp->conn_idl->idl_lock); 4347 conn_drain_tail(connp, B_TRUE); 4348 mutex_exit(&connp->conn_idl->idl_lock); 4349 } 4350 4351 if (connp == ipst->ips_ip_g_mrouter) 4352 (void) ip_mrouter_done(ipst); 4353 4354 if (ilg_cleanup_reqd) 4355 ilg_delete_all(connp); 4356 4357 /* 4358 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4359 * callers from write side can't be there now because close 4360 * is in progress. The only other caller is ipcl_walk 4361 * which checks for the condemned flag. 4362 */ 4363 mutex_enter(&connp->conn_lock); 4364 connp->conn_state_flags |= CONN_CONDEMNED; 4365 while (connp->conn_ref != 1) 4366 cv_wait(&connp->conn_cv, &connp->conn_lock); 4367 connp->conn_state_flags |= CONN_QUIESCED; 4368 mutex_exit(&connp->conn_lock); 4369 } 4370 4371 /* ARGSUSED */ 4372 int 4373 ip_close(queue_t *q, int flags) 4374 { 4375 conn_t *connp; 4376 4377 /* 4378 * Call the appropriate delete routine depending on whether this is 4379 * a module or device. 4380 */ 4381 if (WR(q)->q_next != NULL) { 4382 /* This is a module close */ 4383 return (ip_modclose((ill_t *)q->q_ptr)); 4384 } 4385 4386 connp = q->q_ptr; 4387 ip_quiesce_conn(connp); 4388 4389 qprocsoff(q); 4390 4391 /* 4392 * Now we are truly single threaded on this stream, and can 4393 * delete the things hanging off the connp, and finally the connp. 4394 * We removed this connp from the fanout list, it cannot be 4395 * accessed thru the fanouts, and we already waited for the 4396 * conn_ref to drop to 0. We are already in close, so 4397 * there cannot be any other thread from the top. qprocsoff 4398 * has completed, and service has completed or won't run in 4399 * future. 4400 */ 4401 ASSERT(connp->conn_ref == 1); 4402 4403 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4404 4405 connp->conn_ref--; 4406 ipcl_conn_destroy(connp); 4407 4408 q->q_ptr = WR(q)->q_ptr = NULL; 4409 return (0); 4410 } 4411 4412 /* 4413 * Wapper around putnext() so that ip_rts_request can merely use 4414 * conn_recv. 4415 */ 4416 /*ARGSUSED2*/ 4417 static void 4418 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4419 { 4420 conn_t *connp = (conn_t *)arg1; 4421 4422 putnext(connp->conn_rq, mp); 4423 } 4424 4425 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4426 /* ARGSUSED */ 4427 static void 4428 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4429 { 4430 freemsg(mp); 4431 } 4432 4433 /* 4434 * Called when the module is about to be unloaded 4435 */ 4436 void 4437 ip_ddi_destroy(void) 4438 { 4439 tnet_fini(); 4440 4441 icmp_ddi_g_destroy(); 4442 rts_ddi_g_destroy(); 4443 udp_ddi_g_destroy(); 4444 sctp_ddi_g_destroy(); 4445 tcp_ddi_g_destroy(); 4446 ilb_ddi_g_destroy(); 4447 dce_g_destroy(); 4448 ipsec_policy_g_destroy(); 4449 ipcl_g_destroy(); 4450 ip_net_g_destroy(); 4451 ip_ire_g_fini(); 4452 inet_minor_destroy(ip_minor_arena_sa); 4453 #if defined(_LP64) 4454 inet_minor_destroy(ip_minor_arena_la); 4455 #endif 4456 4457 #ifdef DEBUG 4458 list_destroy(&ip_thread_list); 4459 rw_destroy(&ip_thread_rwlock); 4460 tsd_destroy(&ip_thread_data); 4461 #endif 4462 4463 netstack_unregister(NS_IP); 4464 } 4465 4466 /* 4467 * First step in cleanup. 4468 */ 4469 /* ARGSUSED */ 4470 static void 4471 ip_stack_shutdown(netstackid_t stackid, void *arg) 4472 { 4473 ip_stack_t *ipst = (ip_stack_t *)arg; 4474 4475 #ifdef NS_DEBUG 4476 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4477 #endif 4478 4479 /* 4480 * Perform cleanup for special interfaces (loopback and IPMP). 4481 */ 4482 ip_interface_cleanup(ipst); 4483 4484 /* 4485 * The *_hook_shutdown()s start the process of notifying any 4486 * consumers that things are going away.... nothing is destroyed. 4487 */ 4488 ipv4_hook_shutdown(ipst); 4489 ipv6_hook_shutdown(ipst); 4490 arp_hook_shutdown(ipst); 4491 4492 mutex_enter(&ipst->ips_capab_taskq_lock); 4493 ipst->ips_capab_taskq_quit = B_TRUE; 4494 cv_signal(&ipst->ips_capab_taskq_cv); 4495 mutex_exit(&ipst->ips_capab_taskq_lock); 4496 } 4497 4498 /* 4499 * Free the IP stack instance. 4500 */ 4501 static void 4502 ip_stack_fini(netstackid_t stackid, void *arg) 4503 { 4504 ip_stack_t *ipst = (ip_stack_t *)arg; 4505 int ret; 4506 4507 #ifdef NS_DEBUG 4508 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4509 #endif 4510 /* 4511 * At this point, all of the notifications that the events and 4512 * protocols are going away have been run, meaning that we can 4513 * now set about starting to clean things up. 4514 */ 4515 ipobs_fini(ipst); 4516 ipv4_hook_destroy(ipst); 4517 ipv6_hook_destroy(ipst); 4518 arp_hook_destroy(ipst); 4519 ip_net_destroy(ipst); 4520 4521 mutex_destroy(&ipst->ips_capab_taskq_lock); 4522 cv_destroy(&ipst->ips_capab_taskq_cv); 4523 4524 ipmp_destroy(ipst); 4525 rw_destroy(&ipst->ips_srcid_lock); 4526 4527 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4528 ipst->ips_ip_mibkp = NULL; 4529 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4530 ipst->ips_icmp_mibkp = NULL; 4531 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4532 ipst->ips_ip_kstat = NULL; 4533 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4534 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4535 ipst->ips_ip6_kstat = NULL; 4536 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4537 4538 nd_free(&ipst->ips_ip_g_nd); 4539 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 4540 ipst->ips_param_arr = NULL; 4541 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 4542 ipst->ips_ndp_arr = NULL; 4543 4544 dce_stack_destroy(ipst); 4545 ip_mrouter_stack_destroy(ipst); 4546 4547 mutex_destroy(&ipst->ips_ip_mi_lock); 4548 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4549 rw_destroy(&ipst->ips_ip_g_nd_lock); 4550 4551 ret = untimeout(ipst->ips_igmp_timeout_id); 4552 if (ret == -1) { 4553 ASSERT(ipst->ips_igmp_timeout_id == 0); 4554 } else { 4555 ASSERT(ipst->ips_igmp_timeout_id != 0); 4556 ipst->ips_igmp_timeout_id = 0; 4557 } 4558 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4559 if (ret == -1) { 4560 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4561 } else { 4562 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4563 ipst->ips_igmp_slowtimeout_id = 0; 4564 } 4565 ret = untimeout(ipst->ips_mld_timeout_id); 4566 if (ret == -1) { 4567 ASSERT(ipst->ips_mld_timeout_id == 0); 4568 } else { 4569 ASSERT(ipst->ips_mld_timeout_id != 0); 4570 ipst->ips_mld_timeout_id = 0; 4571 } 4572 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4573 if (ret == -1) { 4574 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4575 } else { 4576 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4577 ipst->ips_mld_slowtimeout_id = 0; 4578 } 4579 4580 mutex_destroy(&ipst->ips_igmp_timer_lock); 4581 mutex_destroy(&ipst->ips_mld_timer_lock); 4582 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4583 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4584 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4585 rw_destroy(&ipst->ips_ill_g_lock); 4586 4587 ip_ire_fini(ipst); 4588 ip6_asp_free(ipst); 4589 conn_drain_fini(ipst); 4590 ipcl_destroy(ipst); 4591 4592 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4593 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4594 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4595 ipst->ips_ndp4 = NULL; 4596 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4597 ipst->ips_ndp6 = NULL; 4598 4599 if (ipst->ips_loopback_ksp != NULL) { 4600 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4601 ipst->ips_loopback_ksp = NULL; 4602 } 4603 4604 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4605 ipst->ips_phyint_g_list = NULL; 4606 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4607 ipst->ips_ill_g_heads = NULL; 4608 4609 ldi_ident_release(ipst->ips_ldi_ident); 4610 kmem_free(ipst, sizeof (*ipst)); 4611 } 4612 4613 /* 4614 * This function is called from the TSD destructor, and is used to debug 4615 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4616 * details. 4617 */ 4618 static void 4619 ip_thread_exit(void *phash) 4620 { 4621 th_hash_t *thh = phash; 4622 4623 rw_enter(&ip_thread_rwlock, RW_WRITER); 4624 list_remove(&ip_thread_list, thh); 4625 rw_exit(&ip_thread_rwlock); 4626 mod_hash_destroy_hash(thh->thh_hash); 4627 kmem_free(thh, sizeof (*thh)); 4628 } 4629 4630 /* 4631 * Called when the IP kernel module is loaded into the kernel 4632 */ 4633 void 4634 ip_ddi_init(void) 4635 { 4636 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4637 4638 /* 4639 * For IP and TCP the minor numbers should start from 2 since we have 4 4640 * initial devices: ip, ip6, tcp, tcp6. 4641 */ 4642 /* 4643 * If this is a 64-bit kernel, then create two separate arenas - 4644 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4645 * other for socket apps in the range 2^^18 through 2^^32-1. 4646 */ 4647 ip_minor_arena_la = NULL; 4648 ip_minor_arena_sa = NULL; 4649 #if defined(_LP64) 4650 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4651 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4652 cmn_err(CE_PANIC, 4653 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4654 } 4655 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4656 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4657 cmn_err(CE_PANIC, 4658 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4659 } 4660 #else 4661 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4662 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4663 cmn_err(CE_PANIC, 4664 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4665 } 4666 #endif 4667 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4668 4669 ipcl_g_init(); 4670 ip_ire_g_init(); 4671 ip_net_g_init(); 4672 4673 #ifdef DEBUG 4674 tsd_create(&ip_thread_data, ip_thread_exit); 4675 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4676 list_create(&ip_thread_list, sizeof (th_hash_t), 4677 offsetof(th_hash_t, thh_link)); 4678 #endif 4679 ipsec_policy_g_init(); 4680 tcp_ddi_g_init(); 4681 sctp_ddi_g_init(); 4682 dce_g_init(); 4683 4684 /* 4685 * We want to be informed each time a stack is created or 4686 * destroyed in the kernel, so we can maintain the 4687 * set of udp_stack_t's. 4688 */ 4689 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4690 ip_stack_fini); 4691 4692 tnet_init(); 4693 4694 udp_ddi_g_init(); 4695 rts_ddi_g_init(); 4696 icmp_ddi_g_init(); 4697 ilb_ddi_g_init(); 4698 } 4699 4700 /* 4701 * Initialize the IP stack instance. 4702 */ 4703 static void * 4704 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4705 { 4706 ip_stack_t *ipst; 4707 ipparam_t *pa; 4708 ipndp_t *na; 4709 major_t major; 4710 4711 #ifdef NS_DEBUG 4712 printf("ip_stack_init(stack %d)\n", stackid); 4713 #endif 4714 4715 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4716 ipst->ips_netstack = ns; 4717 4718 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4719 KM_SLEEP); 4720 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4721 KM_SLEEP); 4722 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4723 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4724 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4725 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4726 4727 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 4728 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4729 ipst->ips_igmp_deferred_next = INFINITY; 4730 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4731 ipst->ips_mld_deferred_next = INFINITY; 4732 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4733 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4734 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4735 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4736 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4737 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4738 4739 ipcl_init(ipst); 4740 ip_ire_init(ipst); 4741 ip6_asp_init(ipst); 4742 ipif_init(ipst); 4743 conn_drain_init(ipst); 4744 ip_mrouter_stack_init(ipst); 4745 dce_stack_init(ipst); 4746 4747 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 4748 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 4749 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 4750 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 4751 4752 ipst->ips_ip_multirt_log_interval = 1000; 4753 4754 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 4755 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 4756 ipst->ips_ill_index = 1; 4757 4758 ipst->ips_saved_ip_g_forward = -1; 4759 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4760 4761 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 4762 ipst->ips_param_arr = pa; 4763 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 4764 4765 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 4766 ipst->ips_ndp_arr = na; 4767 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 4768 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 4769 (caddr_t)&ipst->ips_ip_g_forward; 4770 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 4771 (caddr_t)&ipst->ips_ipv6_forward; 4772 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 4773 "ip_cgtp_filter") == 0); 4774 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 4775 (caddr_t)&ipst->ips_ip_cgtp_filter; 4776 4777 (void) ip_param_register(&ipst->ips_ip_g_nd, 4778 ipst->ips_param_arr, A_CNT(lcl_param_arr), 4779 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 4780 4781 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4782 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4783 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4784 ipst->ips_ip6_kstat = 4785 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4786 4787 ipst->ips_ip_src_id = 1; 4788 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4789 4790 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4791 4792 ip_net_init(ipst, ns); 4793 ipv4_hook_init(ipst); 4794 ipv6_hook_init(ipst); 4795 arp_hook_init(ipst); 4796 ipmp_init(ipst); 4797 ipobs_init(ipst); 4798 4799 /* 4800 * Create the taskq dispatcher thread and initialize related stuff. 4801 */ 4802 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4803 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4804 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4805 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4806 4807 major = mod_name_to_major(INET_NAME); 4808 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4809 return (ipst); 4810 } 4811 4812 /* 4813 * Allocate and initialize a DLPI template of the specified length. (May be 4814 * called as writer.) 4815 */ 4816 mblk_t * 4817 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4818 { 4819 mblk_t *mp; 4820 4821 mp = allocb(len, BPRI_MED); 4822 if (!mp) 4823 return (NULL); 4824 4825 /* 4826 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4827 * of which we don't seem to use) are sent with M_PCPROTO, and 4828 * that other DLPI are M_PROTO. 4829 */ 4830 if (prim == DL_INFO_REQ) { 4831 mp->b_datap->db_type = M_PCPROTO; 4832 } else { 4833 mp->b_datap->db_type = M_PROTO; 4834 } 4835 4836 mp->b_wptr = mp->b_rptr + len; 4837 bzero(mp->b_rptr, len); 4838 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4839 return (mp); 4840 } 4841 4842 /* 4843 * Allocate and initialize a DLPI notification. (May be called as writer.) 4844 */ 4845 mblk_t * 4846 ip_dlnotify_alloc(uint_t notification, uint_t data) 4847 { 4848 dl_notify_ind_t *notifyp; 4849 mblk_t *mp; 4850 4851 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4852 return (NULL); 4853 4854 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4855 notifyp->dl_notification = notification; 4856 notifyp->dl_data = data; 4857 return (mp); 4858 } 4859 4860 /* 4861 * Debug formatting routine. Returns a character string representation of the 4862 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4863 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4864 * 4865 * Once the ndd table-printing interfaces are removed, this can be changed to 4866 * standard dotted-decimal form. 4867 */ 4868 char * 4869 ip_dot_addr(ipaddr_t addr, char *buf) 4870 { 4871 uint8_t *ap = (uint8_t *)&addr; 4872 4873 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4874 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4875 return (buf); 4876 } 4877 4878 /* 4879 * Write the given MAC address as a printable string in the usual colon- 4880 * separated format. 4881 */ 4882 const char * 4883 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4884 { 4885 char *bp; 4886 4887 if (alen == 0 || buflen < 4) 4888 return ("?"); 4889 bp = buf; 4890 for (;;) { 4891 /* 4892 * If there are more MAC address bytes available, but we won't 4893 * have any room to print them, then add "..." to the string 4894 * instead. See below for the 'magic number' explanation. 4895 */ 4896 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4897 (void) strcpy(bp, "..."); 4898 break; 4899 } 4900 (void) sprintf(bp, "%02x", *addr++); 4901 bp += 2; 4902 if (--alen == 0) 4903 break; 4904 *bp++ = ':'; 4905 buflen -= 3; 4906 /* 4907 * At this point, based on the first 'if' statement above, 4908 * either alen == 1 and buflen >= 3, or alen > 1 and 4909 * buflen >= 4. The first case leaves room for the final "xx" 4910 * number and trailing NUL byte. The second leaves room for at 4911 * least "...". Thus the apparently 'magic' numbers chosen for 4912 * that statement. 4913 */ 4914 } 4915 return (buf); 4916 } 4917 4918 /* 4919 * Called when it is conceptually a ULP that would sent the packet 4920 * e.g., port unreachable and protocol unreachable. Check that the packet 4921 * would have passed the IPsec global policy before sending the error. 4922 * 4923 * Send an ICMP error after patching up the packet appropriately. 4924 * Uses ip_drop_input and bumps the appropriate MIB. 4925 */ 4926 void 4927 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4928 ip_recv_attr_t *ira) 4929 { 4930 ipha_t *ipha; 4931 boolean_t secure; 4932 ill_t *ill = ira->ira_ill; 4933 ip_stack_t *ipst = ill->ill_ipst; 4934 netstack_t *ns = ipst->ips_netstack; 4935 ipsec_stack_t *ipss = ns->netstack_ipsec; 4936 4937 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4938 4939 /* 4940 * We are generating an icmp error for some inbound packet. 4941 * Called from all ip_fanout_(udp, tcp, proto) functions. 4942 * Before we generate an error, check with global policy 4943 * to see whether this is allowed to enter the system. As 4944 * there is no "conn", we are checking with global policy. 4945 */ 4946 ipha = (ipha_t *)mp->b_rptr; 4947 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4948 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4949 if (mp == NULL) 4950 return; 4951 } 4952 4953 /* We never send errors for protocols that we do implement */ 4954 if (ira->ira_protocol == IPPROTO_ICMP || 4955 ira->ira_protocol == IPPROTO_IGMP) { 4956 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4957 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4958 freemsg(mp); 4959 return; 4960 } 4961 /* 4962 * Have to correct checksum since 4963 * the packet might have been 4964 * fragmented and the reassembly code in ip_rput 4965 * does not restore the IP checksum. 4966 */ 4967 ipha->ipha_hdr_checksum = 0; 4968 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4969 4970 switch (icmp_type) { 4971 case ICMP_DEST_UNREACHABLE: 4972 switch (icmp_code) { 4973 case ICMP_PROTOCOL_UNREACHABLE: 4974 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4975 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4976 break; 4977 case ICMP_PORT_UNREACHABLE: 4978 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4979 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4980 break; 4981 } 4982 4983 icmp_unreachable(mp, icmp_code, ira); 4984 break; 4985 default: 4986 #ifdef DEBUG 4987 panic("ip_fanout_send_icmp_v4: wrong type"); 4988 /*NOTREACHED*/ 4989 #else 4990 freemsg(mp); 4991 break; 4992 #endif 4993 } 4994 } 4995 4996 /* 4997 * Used to send an ICMP error message when a packet is received for 4998 * a protocol that is not supported. The mblk passed as argument 4999 * is consumed by this function. 5000 */ 5001 void 5002 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 5003 { 5004 ipha_t *ipha; 5005 5006 ipha = (ipha_t *)mp->b_rptr; 5007 if (ira->ira_flags & IRAF_IS_IPV4) { 5008 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 5009 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5010 ICMP_PROTOCOL_UNREACHABLE, ira); 5011 } else { 5012 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 5013 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 5014 ICMP6_PARAMPROB_NEXTHEADER, ira); 5015 } 5016 } 5017 5018 /* 5019 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 5020 * Handles IPv4 and IPv6. 5021 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5022 * Caller is responsible for dropping references to the conn. 5023 */ 5024 void 5025 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5026 ip_recv_attr_t *ira) 5027 { 5028 ill_t *ill = ira->ira_ill; 5029 ip_stack_t *ipst = ill->ill_ipst; 5030 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5031 boolean_t secure; 5032 uint_t protocol = ira->ira_protocol; 5033 iaflags_t iraflags = ira->ira_flags; 5034 queue_t *rq; 5035 5036 secure = iraflags & IRAF_IPSEC_SECURE; 5037 5038 rq = connp->conn_rq; 5039 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 5040 switch (protocol) { 5041 case IPPROTO_ICMPV6: 5042 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 5043 break; 5044 case IPPROTO_ICMP: 5045 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 5046 break; 5047 default: 5048 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 5049 break; 5050 } 5051 freemsg(mp); 5052 return; 5053 } 5054 5055 ASSERT(!(IPCL_IS_IPTUN(connp))); 5056 5057 if (((iraflags & IRAF_IS_IPV4) ? 5058 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5059 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5060 secure) { 5061 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5062 ip6h, ira); 5063 if (mp == NULL) { 5064 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5065 /* Note that mp is NULL */ 5066 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5067 return; 5068 } 5069 } 5070 5071 if (iraflags & IRAF_ICMP_ERROR) { 5072 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5073 } else { 5074 ill_t *rill = ira->ira_rill; 5075 5076 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5077 ira->ira_ill = ira->ira_rill = NULL; 5078 /* Send it upstream */ 5079 (connp->conn_recv)(connp, mp, NULL, ira); 5080 ira->ira_ill = ill; 5081 ira->ira_rill = rill; 5082 } 5083 } 5084 5085 /* 5086 * Handle protocols with which IP is less intimate. There 5087 * can be more than one stream bound to a particular 5088 * protocol. When this is the case, normally each one gets a copy 5089 * of any incoming packets. 5090 * 5091 * IPsec NOTE : 5092 * 5093 * Don't allow a secure packet going up a non-secure connection. 5094 * We don't allow this because 5095 * 5096 * 1) Reply might go out in clear which will be dropped at 5097 * the sending side. 5098 * 2) If the reply goes out in clear it will give the 5099 * adversary enough information for getting the key in 5100 * most of the cases. 5101 * 5102 * Moreover getting a secure packet when we expect clear 5103 * implies that SA's were added without checking for 5104 * policy on both ends. This should not happen once ISAKMP 5105 * is used to negotiate SAs as SAs will be added only after 5106 * verifying the policy. 5107 * 5108 * Zones notes: 5109 * Earlier in ip_input on a system with multiple shared-IP zones we 5110 * duplicate the multicast and broadcast packets and send them up 5111 * with each explicit zoneid that exists on that ill. 5112 * This means that here we can match the zoneid with SO_ALLZONES being special. 5113 */ 5114 void 5115 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5116 { 5117 mblk_t *mp1; 5118 ipaddr_t laddr; 5119 conn_t *connp, *first_connp, *next_connp; 5120 connf_t *connfp; 5121 ill_t *ill = ira->ira_ill; 5122 ip_stack_t *ipst = ill->ill_ipst; 5123 5124 laddr = ipha->ipha_dst; 5125 5126 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5127 mutex_enter(&connfp->connf_lock); 5128 connp = connfp->connf_head; 5129 for (connp = connfp->connf_head; connp != NULL; 5130 connp = connp->conn_next) { 5131 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5132 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5133 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5134 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5135 break; 5136 } 5137 } 5138 5139 if (connp == NULL) { 5140 /* 5141 * No one bound to these addresses. Is 5142 * there a client that wants all 5143 * unclaimed datagrams? 5144 */ 5145 mutex_exit(&connfp->connf_lock); 5146 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5147 ICMP_PROTOCOL_UNREACHABLE, ira); 5148 return; 5149 } 5150 5151 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5152 5153 CONN_INC_REF(connp); 5154 first_connp = connp; 5155 connp = connp->conn_next; 5156 5157 for (;;) { 5158 while (connp != NULL) { 5159 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5160 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5161 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5162 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5163 ira, connp))) 5164 break; 5165 connp = connp->conn_next; 5166 } 5167 5168 if (connp == NULL) { 5169 /* No more interested clients */ 5170 connp = first_connp; 5171 break; 5172 } 5173 if (((mp1 = dupmsg(mp)) == NULL) && 5174 ((mp1 = copymsg(mp)) == NULL)) { 5175 /* Memory allocation failed */ 5176 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5177 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5178 connp = first_connp; 5179 break; 5180 } 5181 5182 CONN_INC_REF(connp); 5183 mutex_exit(&connfp->connf_lock); 5184 5185 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5186 ira); 5187 5188 mutex_enter(&connfp->connf_lock); 5189 /* Follow the next pointer before releasing the conn. */ 5190 next_connp = connp->conn_next; 5191 CONN_DEC_REF(connp); 5192 connp = next_connp; 5193 } 5194 5195 /* Last one. Send it upstream. */ 5196 mutex_exit(&connfp->connf_lock); 5197 5198 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5199 5200 CONN_DEC_REF(connp); 5201 } 5202 5203 /* 5204 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5205 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5206 * is not consumed. 5207 * 5208 * One of three things can happen, all of which affect the passed-in mblk: 5209 * 5210 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5211 * 5212 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5213 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5214 * 5215 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5216 */ 5217 mblk_t * 5218 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5219 { 5220 int shift, plen, iph_len; 5221 ipha_t *ipha; 5222 udpha_t *udpha; 5223 uint32_t *spi; 5224 uint32_t esp_ports; 5225 uint8_t *orptr; 5226 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5227 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5228 5229 ipha = (ipha_t *)mp->b_rptr; 5230 iph_len = ira->ira_ip_hdr_length; 5231 plen = ira->ira_pktlen; 5232 5233 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5234 /* 5235 * Most likely a keepalive for the benefit of an intervening 5236 * NAT. These aren't for us, per se, so drop it. 5237 * 5238 * RFC 3947/8 doesn't say for sure what to do for 2-3 5239 * byte packets (keepalives are 1-byte), but we'll drop them 5240 * also. 5241 */ 5242 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5243 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5244 return (NULL); 5245 } 5246 5247 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5248 /* might as well pull it all up - it might be ESP. */ 5249 if (!pullupmsg(mp, -1)) { 5250 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5251 DROPPER(ipss, ipds_esp_nomem), 5252 &ipss->ipsec_dropper); 5253 return (NULL); 5254 } 5255 5256 ipha = (ipha_t *)mp->b_rptr; 5257 } 5258 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5259 if (*spi == 0) { 5260 /* UDP packet - remove 0-spi. */ 5261 shift = sizeof (uint32_t); 5262 } else { 5263 /* ESP-in-UDP packet - reduce to ESP. */ 5264 ipha->ipha_protocol = IPPROTO_ESP; 5265 shift = sizeof (udpha_t); 5266 } 5267 5268 /* Fix IP header */ 5269 ira->ira_pktlen = (plen - shift); 5270 ipha->ipha_length = htons(ira->ira_pktlen); 5271 ipha->ipha_hdr_checksum = 0; 5272 5273 orptr = mp->b_rptr; 5274 mp->b_rptr += shift; 5275 5276 udpha = (udpha_t *)(orptr + iph_len); 5277 if (*spi == 0) { 5278 ASSERT((uint8_t *)ipha == orptr); 5279 udpha->uha_length = htons(plen - shift - iph_len); 5280 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5281 esp_ports = 0; 5282 } else { 5283 esp_ports = *((uint32_t *)udpha); 5284 ASSERT(esp_ports != 0); 5285 } 5286 ovbcopy(orptr, orptr + shift, iph_len); 5287 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5288 ipha = (ipha_t *)(orptr + shift); 5289 5290 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5291 ira->ira_esp_udp_ports = esp_ports; 5292 ip_fanout_v4(mp, ipha, ira); 5293 return (NULL); 5294 } 5295 return (mp); 5296 } 5297 5298 /* 5299 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5300 * Handles IPv4 and IPv6. 5301 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5302 * Caller is responsible for dropping references to the conn. 5303 */ 5304 void 5305 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5306 ip_recv_attr_t *ira) 5307 { 5308 ill_t *ill = ira->ira_ill; 5309 ip_stack_t *ipst = ill->ill_ipst; 5310 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5311 boolean_t secure; 5312 iaflags_t iraflags = ira->ira_flags; 5313 5314 secure = iraflags & IRAF_IPSEC_SECURE; 5315 5316 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5317 !canputnext(connp->conn_rq)) { 5318 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5319 freemsg(mp); 5320 return; 5321 } 5322 5323 if (((iraflags & IRAF_IS_IPV4) ? 5324 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5325 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5326 secure) { 5327 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5328 ip6h, ira); 5329 if (mp == NULL) { 5330 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5331 /* Note that mp is NULL */ 5332 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5333 return; 5334 } 5335 } 5336 5337 /* 5338 * Since this code is not used for UDP unicast we don't need a NAT_T 5339 * check. Only ip_fanout_v4 has that check. 5340 */ 5341 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5342 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5343 } else { 5344 ill_t *rill = ira->ira_rill; 5345 5346 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5347 ira->ira_ill = ira->ira_rill = NULL; 5348 /* Send it upstream */ 5349 (connp->conn_recv)(connp, mp, NULL, ira); 5350 ira->ira_ill = ill; 5351 ira->ira_rill = rill; 5352 } 5353 } 5354 5355 /* 5356 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5357 * (Unicast fanout is handled in ip_input_v4.) 5358 * 5359 * If SO_REUSEADDR is set all multicast and broadcast packets 5360 * will be delivered to all conns bound to the same port. 5361 * 5362 * If there is at least one matching AF_INET receiver, then we will 5363 * ignore any AF_INET6 receivers. 5364 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5365 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5366 * packets. 5367 * 5368 * Zones notes: 5369 * Earlier in ip_input on a system with multiple shared-IP zones we 5370 * duplicate the multicast and broadcast packets and send them up 5371 * with each explicit zoneid that exists on that ill. 5372 * This means that here we can match the zoneid with SO_ALLZONES being special. 5373 */ 5374 void 5375 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5376 ip_recv_attr_t *ira) 5377 { 5378 ipaddr_t laddr; 5379 in6_addr_t v6faddr; 5380 conn_t *connp; 5381 connf_t *connfp; 5382 ipaddr_t faddr; 5383 ill_t *ill = ira->ira_ill; 5384 ip_stack_t *ipst = ill->ill_ipst; 5385 5386 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5387 5388 laddr = ipha->ipha_dst; 5389 faddr = ipha->ipha_src; 5390 5391 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5392 mutex_enter(&connfp->connf_lock); 5393 connp = connfp->connf_head; 5394 5395 /* 5396 * If SO_REUSEADDR has been set on the first we send the 5397 * packet to all clients that have joined the group and 5398 * match the port. 5399 */ 5400 while (connp != NULL) { 5401 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5402 conn_wantpacket(connp, ira, ipha) && 5403 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5404 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5405 break; 5406 connp = connp->conn_next; 5407 } 5408 5409 if (connp == NULL) 5410 goto notfound; 5411 5412 CONN_INC_REF(connp); 5413 5414 if (connp->conn_reuseaddr) { 5415 conn_t *first_connp = connp; 5416 conn_t *next_connp; 5417 mblk_t *mp1; 5418 5419 connp = connp->conn_next; 5420 for (;;) { 5421 while (connp != NULL) { 5422 if (IPCL_UDP_MATCH(connp, lport, laddr, 5423 fport, faddr) && 5424 conn_wantpacket(connp, ira, ipha) && 5425 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5426 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5427 ira, connp))) 5428 break; 5429 connp = connp->conn_next; 5430 } 5431 if (connp == NULL) { 5432 /* No more interested clients */ 5433 connp = first_connp; 5434 break; 5435 } 5436 if (((mp1 = dupmsg(mp)) == NULL) && 5437 ((mp1 = copymsg(mp)) == NULL)) { 5438 /* Memory allocation failed */ 5439 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5440 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5441 connp = first_connp; 5442 break; 5443 } 5444 CONN_INC_REF(connp); 5445 mutex_exit(&connfp->connf_lock); 5446 5447 IP_STAT(ipst, ip_udp_fanmb); 5448 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5449 NULL, ira); 5450 mutex_enter(&connfp->connf_lock); 5451 /* Follow the next pointer before releasing the conn */ 5452 next_connp = connp->conn_next; 5453 CONN_DEC_REF(connp); 5454 connp = next_connp; 5455 } 5456 } 5457 5458 /* Last one. Send it upstream. */ 5459 mutex_exit(&connfp->connf_lock); 5460 IP_STAT(ipst, ip_udp_fanmb); 5461 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5462 CONN_DEC_REF(connp); 5463 return; 5464 5465 notfound: 5466 mutex_exit(&connfp->connf_lock); 5467 /* 5468 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5469 * have already been matched above, since they live in the IPv4 5470 * fanout tables. This implies we only need to 5471 * check for IPv6 in6addr_any endpoints here. 5472 * Thus we compare using ipv6_all_zeros instead of the destination 5473 * address, except for the multicast group membership lookup which 5474 * uses the IPv4 destination. 5475 */ 5476 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5477 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5478 mutex_enter(&connfp->connf_lock); 5479 connp = connfp->connf_head; 5480 /* 5481 * IPv4 multicast packet being delivered to an AF_INET6 5482 * in6addr_any endpoint. 5483 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5484 * and not conn_wantpacket_v6() since any multicast membership is 5485 * for an IPv4-mapped multicast address. 5486 */ 5487 while (connp != NULL) { 5488 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5489 fport, v6faddr) && 5490 conn_wantpacket(connp, ira, ipha) && 5491 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5492 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5493 break; 5494 connp = connp->conn_next; 5495 } 5496 5497 if (connp == NULL) { 5498 /* 5499 * No one bound to this port. Is 5500 * there a client that wants all 5501 * unclaimed datagrams? 5502 */ 5503 mutex_exit(&connfp->connf_lock); 5504 5505 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5506 NULL) { 5507 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5508 ip_fanout_proto_v4(mp, ipha, ira); 5509 } else { 5510 /* 5511 * We used to attempt to send an icmp error here, but 5512 * since this is known to be a multicast packet 5513 * and we don't send icmp errors in response to 5514 * multicast, just drop the packet and give up sooner. 5515 */ 5516 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5517 freemsg(mp); 5518 } 5519 return; 5520 } 5521 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5522 5523 /* 5524 * If SO_REUSEADDR has been set on the first we send the 5525 * packet to all clients that have joined the group and 5526 * match the port. 5527 */ 5528 if (connp->conn_reuseaddr) { 5529 conn_t *first_connp = connp; 5530 conn_t *next_connp; 5531 mblk_t *mp1; 5532 5533 CONN_INC_REF(connp); 5534 connp = connp->conn_next; 5535 for (;;) { 5536 while (connp != NULL) { 5537 if (IPCL_UDP_MATCH_V6(connp, lport, 5538 ipv6_all_zeros, fport, v6faddr) && 5539 conn_wantpacket(connp, ira, ipha) && 5540 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5541 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5542 ira, connp))) 5543 break; 5544 connp = connp->conn_next; 5545 } 5546 if (connp == NULL) { 5547 /* No more interested clients */ 5548 connp = first_connp; 5549 break; 5550 } 5551 if (((mp1 = dupmsg(mp)) == NULL) && 5552 ((mp1 = copymsg(mp)) == NULL)) { 5553 /* Memory allocation failed */ 5554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5555 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5556 connp = first_connp; 5557 break; 5558 } 5559 CONN_INC_REF(connp); 5560 mutex_exit(&connfp->connf_lock); 5561 5562 IP_STAT(ipst, ip_udp_fanmb); 5563 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5564 NULL, ira); 5565 mutex_enter(&connfp->connf_lock); 5566 /* Follow the next pointer before releasing the conn */ 5567 next_connp = connp->conn_next; 5568 CONN_DEC_REF(connp); 5569 connp = next_connp; 5570 } 5571 } 5572 5573 /* Last one. Send it upstream. */ 5574 mutex_exit(&connfp->connf_lock); 5575 IP_STAT(ipst, ip_udp_fanmb); 5576 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5577 CONN_DEC_REF(connp); 5578 } 5579 5580 /* 5581 * Split an incoming packet's IPv4 options into the label and the other options. 5582 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5583 * clearing out any leftover label or options. 5584 * Otherwise it just makes ipp point into the packet. 5585 * 5586 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5587 */ 5588 int 5589 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5590 { 5591 uchar_t *opt; 5592 uint32_t totallen; 5593 uint32_t optval; 5594 uint32_t optlen; 5595 5596 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5597 ipp->ipp_hoplimit = ipha->ipha_ttl; 5598 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5599 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5600 5601 /* 5602 * Get length (in 4 byte octets) of IP header options. 5603 */ 5604 totallen = ipha->ipha_version_and_hdr_length - 5605 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5606 5607 if (totallen == 0) { 5608 if (!allocate) 5609 return (0); 5610 5611 /* Clear out anything from a previous packet */ 5612 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5613 kmem_free(ipp->ipp_ipv4_options, 5614 ipp->ipp_ipv4_options_len); 5615 ipp->ipp_ipv4_options = NULL; 5616 ipp->ipp_ipv4_options_len = 0; 5617 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5618 } 5619 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5620 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5621 ipp->ipp_label_v4 = NULL; 5622 ipp->ipp_label_len_v4 = 0; 5623 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5624 } 5625 return (0); 5626 } 5627 5628 totallen <<= 2; 5629 opt = (uchar_t *)&ipha[1]; 5630 if (!is_system_labeled()) { 5631 5632 copyall: 5633 if (!allocate) { 5634 if (totallen != 0) { 5635 ipp->ipp_ipv4_options = opt; 5636 ipp->ipp_ipv4_options_len = totallen; 5637 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5638 } 5639 return (0); 5640 } 5641 /* Just copy all of options */ 5642 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5643 if (totallen == ipp->ipp_ipv4_options_len) { 5644 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5645 return (0); 5646 } 5647 kmem_free(ipp->ipp_ipv4_options, 5648 ipp->ipp_ipv4_options_len); 5649 ipp->ipp_ipv4_options = NULL; 5650 ipp->ipp_ipv4_options_len = 0; 5651 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5652 } 5653 if (totallen == 0) 5654 return (0); 5655 5656 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5657 if (ipp->ipp_ipv4_options == NULL) 5658 return (ENOMEM); 5659 ipp->ipp_ipv4_options_len = totallen; 5660 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5661 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5662 return (0); 5663 } 5664 5665 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5666 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5667 ipp->ipp_label_v4 = NULL; 5668 ipp->ipp_label_len_v4 = 0; 5669 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5670 } 5671 5672 /* 5673 * Search for CIPSO option. 5674 * We assume CIPSO is first in options if it is present. 5675 * If it isn't, then ipp_opt_ipv4_options will not include the options 5676 * prior to the CIPSO option. 5677 */ 5678 while (totallen != 0) { 5679 switch (optval = opt[IPOPT_OPTVAL]) { 5680 case IPOPT_EOL: 5681 return (0); 5682 case IPOPT_NOP: 5683 optlen = 1; 5684 break; 5685 default: 5686 if (totallen <= IPOPT_OLEN) 5687 return (EINVAL); 5688 optlen = opt[IPOPT_OLEN]; 5689 if (optlen < 2) 5690 return (EINVAL); 5691 } 5692 if (optlen > totallen) 5693 return (EINVAL); 5694 5695 switch (optval) { 5696 case IPOPT_COMSEC: 5697 if (!allocate) { 5698 ipp->ipp_label_v4 = opt; 5699 ipp->ipp_label_len_v4 = optlen; 5700 ipp->ipp_fields |= IPPF_LABEL_V4; 5701 } else { 5702 ipp->ipp_label_v4 = kmem_alloc(optlen, 5703 KM_NOSLEEP); 5704 if (ipp->ipp_label_v4 == NULL) 5705 return (ENOMEM); 5706 ipp->ipp_label_len_v4 = optlen; 5707 ipp->ipp_fields |= IPPF_LABEL_V4; 5708 bcopy(opt, ipp->ipp_label_v4, optlen); 5709 } 5710 totallen -= optlen; 5711 opt += optlen; 5712 5713 /* Skip padding bytes until we get to a multiple of 4 */ 5714 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5715 totallen--; 5716 opt++; 5717 } 5718 /* Remaining as ipp_ipv4_options */ 5719 goto copyall; 5720 } 5721 totallen -= optlen; 5722 opt += optlen; 5723 } 5724 /* No CIPSO found; return everything as ipp_ipv4_options */ 5725 totallen = ipha->ipha_version_and_hdr_length - 5726 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5727 totallen <<= 2; 5728 opt = (uchar_t *)&ipha[1]; 5729 goto copyall; 5730 } 5731 5732 /* 5733 * Efficient versions of lookup for an IRE when we only 5734 * match the address. 5735 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5736 * Does not handle multicast addresses. 5737 */ 5738 uint_t 5739 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5740 { 5741 ire_t *ire; 5742 uint_t result; 5743 5744 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5745 ASSERT(ire != NULL); 5746 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5747 result = IRE_NOROUTE; 5748 else 5749 result = ire->ire_type; 5750 ire_refrele(ire); 5751 return (result); 5752 } 5753 5754 /* 5755 * Efficient versions of lookup for an IRE when we only 5756 * match the address. 5757 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5758 * Does not handle multicast addresses. 5759 */ 5760 uint_t 5761 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5762 { 5763 ire_t *ire; 5764 uint_t result; 5765 5766 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5767 ASSERT(ire != NULL); 5768 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5769 result = IRE_NOROUTE; 5770 else 5771 result = ire->ire_type; 5772 ire_refrele(ire); 5773 return (result); 5774 } 5775 5776 /* 5777 * Nobody should be sending 5778 * packets up this stream 5779 */ 5780 static void 5781 ip_lrput(queue_t *q, mblk_t *mp) 5782 { 5783 switch (mp->b_datap->db_type) { 5784 case M_FLUSH: 5785 /* Turn around */ 5786 if (*mp->b_rptr & FLUSHW) { 5787 *mp->b_rptr &= ~FLUSHR; 5788 qreply(q, mp); 5789 return; 5790 } 5791 break; 5792 } 5793 freemsg(mp); 5794 } 5795 5796 /* Nobody should be sending packets down this stream */ 5797 /* ARGSUSED */ 5798 void 5799 ip_lwput(queue_t *q, mblk_t *mp) 5800 { 5801 freemsg(mp); 5802 } 5803 5804 /* 5805 * Move the first hop in any source route to ipha_dst and remove that part of 5806 * the source route. Called by other protocols. Errors in option formatting 5807 * are ignored - will be handled by ip_output_options. Return the final 5808 * destination (either ipha_dst or the last entry in a source route.) 5809 */ 5810 ipaddr_t 5811 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5812 { 5813 ipoptp_t opts; 5814 uchar_t *opt; 5815 uint8_t optval; 5816 uint8_t optlen; 5817 ipaddr_t dst; 5818 int i; 5819 ip_stack_t *ipst = ns->netstack_ip; 5820 5821 ip2dbg(("ip_massage_options\n")); 5822 dst = ipha->ipha_dst; 5823 for (optval = ipoptp_first(&opts, ipha); 5824 optval != IPOPT_EOL; 5825 optval = ipoptp_next(&opts)) { 5826 opt = opts.ipoptp_cur; 5827 switch (optval) { 5828 uint8_t off; 5829 case IPOPT_SSRR: 5830 case IPOPT_LSRR: 5831 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5832 ip1dbg(("ip_massage_options: bad src route\n")); 5833 break; 5834 } 5835 optlen = opts.ipoptp_len; 5836 off = opt[IPOPT_OFFSET]; 5837 off--; 5838 redo_srr: 5839 if (optlen < IP_ADDR_LEN || 5840 off > optlen - IP_ADDR_LEN) { 5841 /* End of source route */ 5842 ip1dbg(("ip_massage_options: end of SR\n")); 5843 break; 5844 } 5845 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5846 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5847 ntohl(dst))); 5848 /* 5849 * Check if our address is present more than 5850 * once as consecutive hops in source route. 5851 * XXX verify per-interface ip_forwarding 5852 * for source route? 5853 */ 5854 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5855 off += IP_ADDR_LEN; 5856 goto redo_srr; 5857 } 5858 if (dst == htonl(INADDR_LOOPBACK)) { 5859 ip1dbg(("ip_massage_options: loopback addr in " 5860 "source route!\n")); 5861 break; 5862 } 5863 /* 5864 * Update ipha_dst to be the first hop and remove the 5865 * first hop from the source route (by overwriting 5866 * part of the option with NOP options). 5867 */ 5868 ipha->ipha_dst = dst; 5869 /* Put the last entry in dst */ 5870 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5871 3; 5872 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5873 5874 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5875 ntohl(dst))); 5876 /* Move down and overwrite */ 5877 opt[IP_ADDR_LEN] = opt[0]; 5878 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5879 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5880 for (i = 0; i < IP_ADDR_LEN; i++) 5881 opt[i] = IPOPT_NOP; 5882 break; 5883 } 5884 } 5885 return (dst); 5886 } 5887 5888 /* 5889 * Return the network mask 5890 * associated with the specified address. 5891 */ 5892 ipaddr_t 5893 ip_net_mask(ipaddr_t addr) 5894 { 5895 uchar_t *up = (uchar_t *)&addr; 5896 ipaddr_t mask = 0; 5897 uchar_t *maskp = (uchar_t *)&mask; 5898 5899 #if defined(__i386) || defined(__amd64) 5900 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5901 #endif 5902 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5903 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5904 #endif 5905 if (CLASSD(addr)) { 5906 maskp[0] = 0xF0; 5907 return (mask); 5908 } 5909 5910 /* We assume Class E default netmask to be 32 */ 5911 if (CLASSE(addr)) 5912 return (0xffffffffU); 5913 5914 if (addr == 0) 5915 return (0); 5916 maskp[0] = 0xFF; 5917 if ((up[0] & 0x80) == 0) 5918 return (mask); 5919 5920 maskp[1] = 0xFF; 5921 if ((up[0] & 0xC0) == 0x80) 5922 return (mask); 5923 5924 maskp[2] = 0xFF; 5925 if ((up[0] & 0xE0) == 0xC0) 5926 return (mask); 5927 5928 /* Otherwise return no mask */ 5929 return ((ipaddr_t)0); 5930 } 5931 5932 /* Name/Value Table Lookup Routine */ 5933 char * 5934 ip_nv_lookup(nv_t *nv, int value) 5935 { 5936 if (!nv) 5937 return (NULL); 5938 for (; nv->nv_name; nv++) { 5939 if (nv->nv_value == value) 5940 return (nv->nv_name); 5941 } 5942 return ("unknown"); 5943 } 5944 5945 static int 5946 ip_wait_for_info_ack(ill_t *ill) 5947 { 5948 int err; 5949 5950 mutex_enter(&ill->ill_lock); 5951 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5952 /* 5953 * Return value of 0 indicates a pending signal. 5954 */ 5955 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5956 if (err == 0) { 5957 mutex_exit(&ill->ill_lock); 5958 return (EINTR); 5959 } 5960 } 5961 mutex_exit(&ill->ill_lock); 5962 /* 5963 * ip_rput_other could have set an error in ill_error on 5964 * receipt of M_ERROR. 5965 */ 5966 return (ill->ill_error); 5967 } 5968 5969 /* 5970 * This is a module open, i.e. this is a control stream for access 5971 * to a DLPI device. We allocate an ill_t as the instance data in 5972 * this case. 5973 */ 5974 static int 5975 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5976 { 5977 ill_t *ill; 5978 int err; 5979 zoneid_t zoneid; 5980 netstack_t *ns; 5981 ip_stack_t *ipst; 5982 5983 /* 5984 * Prevent unprivileged processes from pushing IP so that 5985 * they can't send raw IP. 5986 */ 5987 if (secpolicy_net_rawaccess(credp) != 0) 5988 return (EPERM); 5989 5990 ns = netstack_find_by_cred(credp); 5991 ASSERT(ns != NULL); 5992 ipst = ns->netstack_ip; 5993 ASSERT(ipst != NULL); 5994 5995 /* 5996 * For exclusive stacks we set the zoneid to zero 5997 * to make IP operate as if in the global zone. 5998 */ 5999 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6000 zoneid = GLOBAL_ZONEID; 6001 else 6002 zoneid = crgetzoneid(credp); 6003 6004 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 6005 q->q_ptr = WR(q)->q_ptr = ill; 6006 ill->ill_ipst = ipst; 6007 ill->ill_zoneid = zoneid; 6008 6009 /* 6010 * ill_init initializes the ill fields and then sends down 6011 * down a DL_INFO_REQ after calling qprocson. 6012 */ 6013 err = ill_init(q, ill); 6014 6015 if (err != 0) { 6016 mi_free(ill); 6017 netstack_rele(ipst->ips_netstack); 6018 q->q_ptr = NULL; 6019 WR(q)->q_ptr = NULL; 6020 return (err); 6021 } 6022 6023 /* 6024 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 6025 * 6026 * ill_init initializes the ipsq marking this thread as 6027 * writer 6028 */ 6029 ipsq_exit(ill->ill_phyint->phyint_ipsq); 6030 err = ip_wait_for_info_ack(ill); 6031 if (err == 0) 6032 ill->ill_credp = credp; 6033 else 6034 goto fail; 6035 6036 crhold(credp); 6037 6038 mutex_enter(&ipst->ips_ip_mi_lock); 6039 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 6040 sflag, credp); 6041 mutex_exit(&ipst->ips_ip_mi_lock); 6042 fail: 6043 if (err) { 6044 (void) ip_close(q, 0); 6045 return (err); 6046 } 6047 return (0); 6048 } 6049 6050 /* For /dev/ip aka AF_INET open */ 6051 int 6052 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 6053 { 6054 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 6055 } 6056 6057 /* For /dev/ip6 aka AF_INET6 open */ 6058 int 6059 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 6060 { 6061 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 6062 } 6063 6064 /* IP open routine. */ 6065 int 6066 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 6067 boolean_t isv6) 6068 { 6069 conn_t *connp; 6070 major_t maj; 6071 zoneid_t zoneid; 6072 netstack_t *ns; 6073 ip_stack_t *ipst; 6074 6075 /* Allow reopen. */ 6076 if (q->q_ptr != NULL) 6077 return (0); 6078 6079 if (sflag & MODOPEN) { 6080 /* This is a module open */ 6081 return (ip_modopen(q, devp, flag, sflag, credp)); 6082 } 6083 6084 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 6085 /* 6086 * Non streams based socket looking for a stream 6087 * to access IP 6088 */ 6089 return (ip_helper_stream_setup(q, devp, flag, sflag, 6090 credp, isv6)); 6091 } 6092 6093 ns = netstack_find_by_cred(credp); 6094 ASSERT(ns != NULL); 6095 ipst = ns->netstack_ip; 6096 ASSERT(ipst != NULL); 6097 6098 /* 6099 * For exclusive stacks we set the zoneid to zero 6100 * to make IP operate as if in the global zone. 6101 */ 6102 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6103 zoneid = GLOBAL_ZONEID; 6104 else 6105 zoneid = crgetzoneid(credp); 6106 6107 /* 6108 * We are opening as a device. This is an IP client stream, and we 6109 * allocate an conn_t as the instance data. 6110 */ 6111 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6112 6113 /* 6114 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6115 * done by netstack_find_by_cred() 6116 */ 6117 netstack_rele(ipst->ips_netstack); 6118 6119 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6120 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6121 connp->conn_ixa->ixa_zoneid = zoneid; 6122 connp->conn_zoneid = zoneid; 6123 6124 connp->conn_rq = q; 6125 q->q_ptr = WR(q)->q_ptr = connp; 6126 6127 /* Minor tells us which /dev entry was opened */ 6128 if (isv6) { 6129 connp->conn_family = AF_INET6; 6130 connp->conn_ipversion = IPV6_VERSION; 6131 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6132 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6133 } else { 6134 connp->conn_family = AF_INET; 6135 connp->conn_ipversion = IPV4_VERSION; 6136 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6137 } 6138 6139 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6140 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6141 connp->conn_minor_arena = ip_minor_arena_la; 6142 } else { 6143 /* 6144 * Either minor numbers in the large arena were exhausted 6145 * or a non socket application is doing the open. 6146 * Try to allocate from the small arena. 6147 */ 6148 if ((connp->conn_dev = 6149 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6150 /* CONN_DEC_REF takes care of netstack_rele() */ 6151 q->q_ptr = WR(q)->q_ptr = NULL; 6152 CONN_DEC_REF(connp); 6153 return (EBUSY); 6154 } 6155 connp->conn_minor_arena = ip_minor_arena_sa; 6156 } 6157 6158 maj = getemajor(*devp); 6159 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6160 6161 /* 6162 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6163 */ 6164 connp->conn_cred = credp; 6165 /* Cache things in ixa without an extra refhold */ 6166 connp->conn_ixa->ixa_cred = connp->conn_cred; 6167 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6168 if (is_system_labeled()) 6169 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6170 6171 /* 6172 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6173 */ 6174 connp->conn_recv = ip_conn_input; 6175 connp->conn_recvicmp = ip_conn_input_icmp; 6176 6177 crhold(connp->conn_cred); 6178 6179 /* 6180 * If the caller has the process-wide flag set, then default to MAC 6181 * exempt mode. This allows read-down to unlabeled hosts. 6182 */ 6183 if (getpflags(NET_MAC_AWARE, credp) != 0) 6184 connp->conn_mac_mode = CONN_MAC_AWARE; 6185 6186 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6187 6188 connp->conn_rq = q; 6189 connp->conn_wq = WR(q); 6190 6191 /* Non-zero default values */ 6192 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6193 6194 /* 6195 * Make the conn globally visible to walkers 6196 */ 6197 ASSERT(connp->conn_ref == 1); 6198 mutex_enter(&connp->conn_lock); 6199 connp->conn_state_flags &= ~CONN_INCIPIENT; 6200 mutex_exit(&connp->conn_lock); 6201 6202 qprocson(q); 6203 6204 return (0); 6205 } 6206 6207 /* 6208 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6209 * all of them are copied to the conn_t. If the req is "zero", the policy is 6210 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6211 * fields. 6212 * We keep only the latest setting of the policy and thus policy setting 6213 * is not incremental/cumulative. 6214 * 6215 * Requests to set policies with multiple alternative actions will 6216 * go through a different API. 6217 */ 6218 int 6219 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6220 { 6221 uint_t ah_req = 0; 6222 uint_t esp_req = 0; 6223 uint_t se_req = 0; 6224 ipsec_act_t *actp = NULL; 6225 uint_t nact; 6226 ipsec_policy_head_t *ph; 6227 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6228 int error = 0; 6229 netstack_t *ns = connp->conn_netstack; 6230 ip_stack_t *ipst = ns->netstack_ip; 6231 ipsec_stack_t *ipss = ns->netstack_ipsec; 6232 6233 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6234 6235 /* 6236 * The IP_SEC_OPT option does not allow variable length parameters, 6237 * hence a request cannot be NULL. 6238 */ 6239 if (req == NULL) 6240 return (EINVAL); 6241 6242 ah_req = req->ipsr_ah_req; 6243 esp_req = req->ipsr_esp_req; 6244 se_req = req->ipsr_self_encap_req; 6245 6246 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6247 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6248 return (EINVAL); 6249 6250 /* 6251 * Are we dealing with a request to reset the policy (i.e. 6252 * zero requests). 6253 */ 6254 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6255 (esp_req & REQ_MASK) == 0 && 6256 (se_req & REQ_MASK) == 0); 6257 6258 if (!is_pol_reset) { 6259 /* 6260 * If we couldn't load IPsec, fail with "protocol 6261 * not supported". 6262 * IPsec may not have been loaded for a request with zero 6263 * policies, so we don't fail in this case. 6264 */ 6265 mutex_enter(&ipss->ipsec_loader_lock); 6266 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6267 mutex_exit(&ipss->ipsec_loader_lock); 6268 return (EPROTONOSUPPORT); 6269 } 6270 mutex_exit(&ipss->ipsec_loader_lock); 6271 6272 /* 6273 * Test for valid requests. Invalid algorithms 6274 * need to be tested by IPsec code because new 6275 * algorithms can be added dynamically. 6276 */ 6277 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6278 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6279 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6280 return (EINVAL); 6281 } 6282 6283 /* 6284 * Only privileged users can issue these 6285 * requests. 6286 */ 6287 if (((ah_req & IPSEC_PREF_NEVER) || 6288 (esp_req & IPSEC_PREF_NEVER) || 6289 (se_req & IPSEC_PREF_NEVER)) && 6290 secpolicy_ip_config(cr, B_FALSE) != 0) { 6291 return (EPERM); 6292 } 6293 6294 /* 6295 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6296 * are mutually exclusive. 6297 */ 6298 if (((ah_req & REQ_MASK) == REQ_MASK) || 6299 ((esp_req & REQ_MASK) == REQ_MASK) || 6300 ((se_req & REQ_MASK) == REQ_MASK)) { 6301 /* Both of them are set */ 6302 return (EINVAL); 6303 } 6304 } 6305 6306 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6307 6308 /* 6309 * If we have already cached policies in conn_connect(), don't 6310 * let them change now. We cache policies for connections 6311 * whose src,dst [addr, port] is known. 6312 */ 6313 if (connp->conn_policy_cached) { 6314 return (EINVAL); 6315 } 6316 6317 /* 6318 * We have a zero policies, reset the connection policy if already 6319 * set. This will cause the connection to inherit the 6320 * global policy, if any. 6321 */ 6322 if (is_pol_reset) { 6323 if (connp->conn_policy != NULL) { 6324 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6325 connp->conn_policy = NULL; 6326 } 6327 connp->conn_in_enforce_policy = B_FALSE; 6328 connp->conn_out_enforce_policy = B_FALSE; 6329 return (0); 6330 } 6331 6332 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6333 ipst->ips_netstack); 6334 if (ph == NULL) 6335 goto enomem; 6336 6337 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6338 if (actp == NULL) 6339 goto enomem; 6340 6341 /* 6342 * Always insert IPv4 policy entries, since they can also apply to 6343 * ipv6 sockets being used in ipv4-compat mode. 6344 */ 6345 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6346 IPSEC_TYPE_INBOUND, ns)) 6347 goto enomem; 6348 is_pol_inserted = B_TRUE; 6349 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6350 IPSEC_TYPE_OUTBOUND, ns)) 6351 goto enomem; 6352 6353 /* 6354 * We're looking at a v6 socket, also insert the v6-specific 6355 * entries. 6356 */ 6357 if (connp->conn_family == AF_INET6) { 6358 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6359 IPSEC_TYPE_INBOUND, ns)) 6360 goto enomem; 6361 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6362 IPSEC_TYPE_OUTBOUND, ns)) 6363 goto enomem; 6364 } 6365 6366 ipsec_actvec_free(actp, nact); 6367 6368 /* 6369 * If the requests need security, set enforce_policy. 6370 * If the requests are IPSEC_PREF_NEVER, one should 6371 * still set conn_out_enforce_policy so that ip_set_destination 6372 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6373 * for connections that we don't cache policy in at connect time, 6374 * if global policy matches in ip_output_attach_policy, we 6375 * don't wrongly inherit global policy. Similarly, we need 6376 * to set conn_in_enforce_policy also so that we don't verify 6377 * policy wrongly. 6378 */ 6379 if ((ah_req & REQ_MASK) != 0 || 6380 (esp_req & REQ_MASK) != 0 || 6381 (se_req & REQ_MASK) != 0) { 6382 connp->conn_in_enforce_policy = B_TRUE; 6383 connp->conn_out_enforce_policy = B_TRUE; 6384 } 6385 6386 return (error); 6387 #undef REQ_MASK 6388 6389 /* 6390 * Common memory-allocation-failure exit path. 6391 */ 6392 enomem: 6393 if (actp != NULL) 6394 ipsec_actvec_free(actp, nact); 6395 if (is_pol_inserted) 6396 ipsec_polhead_flush(ph, ns); 6397 return (ENOMEM); 6398 } 6399 6400 /* 6401 * Set socket options for joining and leaving multicast groups. 6402 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6403 * The caller has already check that the option name is consistent with 6404 * the address family of the socket. 6405 */ 6406 int 6407 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6408 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6409 { 6410 int *i1 = (int *)invalp; 6411 int error = 0; 6412 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6413 struct ip_mreq *v4_mreqp; 6414 struct ipv6_mreq *v6_mreqp; 6415 struct group_req *greqp; 6416 ire_t *ire; 6417 boolean_t done = B_FALSE; 6418 ipaddr_t ifaddr; 6419 in6_addr_t v6group; 6420 uint_t ifindex; 6421 boolean_t mcast_opt = B_TRUE; 6422 mcast_record_t fmode; 6423 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6424 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6425 6426 switch (name) { 6427 case IP_ADD_MEMBERSHIP: 6428 case IPV6_JOIN_GROUP: 6429 mcast_opt = B_FALSE; 6430 /* FALLTHRU */ 6431 case MCAST_JOIN_GROUP: 6432 fmode = MODE_IS_EXCLUDE; 6433 optfn = ip_opt_add_group; 6434 break; 6435 6436 case IP_DROP_MEMBERSHIP: 6437 case IPV6_LEAVE_GROUP: 6438 mcast_opt = B_FALSE; 6439 /* FALLTHRU */ 6440 case MCAST_LEAVE_GROUP: 6441 fmode = MODE_IS_INCLUDE; 6442 optfn = ip_opt_delete_group; 6443 break; 6444 default: 6445 ASSERT(0); 6446 } 6447 6448 if (mcast_opt) { 6449 struct sockaddr_in *sin; 6450 struct sockaddr_in6 *sin6; 6451 6452 greqp = (struct group_req *)i1; 6453 if (greqp->gr_group.ss_family == AF_INET) { 6454 sin = (struct sockaddr_in *)&(greqp->gr_group); 6455 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6456 } else { 6457 if (!inet6) 6458 return (EINVAL); /* Not on INET socket */ 6459 6460 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6461 v6group = sin6->sin6_addr; 6462 } 6463 ifaddr = INADDR_ANY; 6464 ifindex = greqp->gr_interface; 6465 } else if (inet6) { 6466 v6_mreqp = (struct ipv6_mreq *)i1; 6467 v6group = v6_mreqp->ipv6mr_multiaddr; 6468 ifaddr = INADDR_ANY; 6469 ifindex = v6_mreqp->ipv6mr_interface; 6470 } else { 6471 v4_mreqp = (struct ip_mreq *)i1; 6472 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6473 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6474 ifindex = 0; 6475 } 6476 6477 /* 6478 * In the multirouting case, we need to replicate 6479 * the request on all interfaces that will take part 6480 * in replication. We do so because multirouting is 6481 * reflective, thus we will probably receive multi- 6482 * casts on those interfaces. 6483 * The ip_multirt_apply_membership() succeeds if 6484 * the operation succeeds on at least one interface. 6485 */ 6486 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6487 ipaddr_t group; 6488 6489 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6490 6491 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6492 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6493 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6494 } else { 6495 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6496 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6497 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6498 } 6499 if (ire != NULL) { 6500 if (ire->ire_flags & RTF_MULTIRT) { 6501 error = ip_multirt_apply_membership(optfn, ire, connp, 6502 checkonly, &v6group, fmode, &ipv6_all_zeros); 6503 done = B_TRUE; 6504 } 6505 ire_refrele(ire); 6506 } 6507 6508 if (!done) { 6509 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6510 fmode, &ipv6_all_zeros); 6511 } 6512 return (error); 6513 } 6514 6515 /* 6516 * Set socket options for joining and leaving multicast groups 6517 * for specific sources. 6518 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6519 * The caller has already check that the option name is consistent with 6520 * the address family of the socket. 6521 */ 6522 int 6523 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6524 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6525 { 6526 int *i1 = (int *)invalp; 6527 int error = 0; 6528 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6529 struct ip_mreq_source *imreqp; 6530 struct group_source_req *gsreqp; 6531 in6_addr_t v6group, v6src; 6532 uint32_t ifindex; 6533 ipaddr_t ifaddr; 6534 boolean_t mcast_opt = B_TRUE; 6535 mcast_record_t fmode; 6536 ire_t *ire; 6537 boolean_t done = B_FALSE; 6538 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6539 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6540 6541 switch (name) { 6542 case IP_BLOCK_SOURCE: 6543 mcast_opt = B_FALSE; 6544 /* FALLTHRU */ 6545 case MCAST_BLOCK_SOURCE: 6546 fmode = MODE_IS_EXCLUDE; 6547 optfn = ip_opt_add_group; 6548 break; 6549 6550 case IP_UNBLOCK_SOURCE: 6551 mcast_opt = B_FALSE; 6552 /* FALLTHRU */ 6553 case MCAST_UNBLOCK_SOURCE: 6554 fmode = MODE_IS_EXCLUDE; 6555 optfn = ip_opt_delete_group; 6556 break; 6557 6558 case IP_ADD_SOURCE_MEMBERSHIP: 6559 mcast_opt = B_FALSE; 6560 /* FALLTHRU */ 6561 case MCAST_JOIN_SOURCE_GROUP: 6562 fmode = MODE_IS_INCLUDE; 6563 optfn = ip_opt_add_group; 6564 break; 6565 6566 case IP_DROP_SOURCE_MEMBERSHIP: 6567 mcast_opt = B_FALSE; 6568 /* FALLTHRU */ 6569 case MCAST_LEAVE_SOURCE_GROUP: 6570 fmode = MODE_IS_INCLUDE; 6571 optfn = ip_opt_delete_group; 6572 break; 6573 default: 6574 ASSERT(0); 6575 } 6576 6577 if (mcast_opt) { 6578 gsreqp = (struct group_source_req *)i1; 6579 ifindex = gsreqp->gsr_interface; 6580 if (gsreqp->gsr_group.ss_family == AF_INET) { 6581 struct sockaddr_in *s; 6582 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6583 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6584 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6585 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6586 } else { 6587 struct sockaddr_in6 *s6; 6588 6589 if (!inet6) 6590 return (EINVAL); /* Not on INET socket */ 6591 6592 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6593 v6group = s6->sin6_addr; 6594 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6595 v6src = s6->sin6_addr; 6596 } 6597 ifaddr = INADDR_ANY; 6598 } else { 6599 imreqp = (struct ip_mreq_source *)i1; 6600 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6601 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6602 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6603 ifindex = 0; 6604 } 6605 6606 /* 6607 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6608 */ 6609 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6610 v6src = ipv6_all_zeros; 6611 6612 /* 6613 * In the multirouting case, we need to replicate 6614 * the request as noted in the mcast cases above. 6615 */ 6616 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6617 ipaddr_t group; 6618 6619 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6620 6621 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6622 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6623 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6624 } else { 6625 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6626 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6627 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6628 } 6629 if (ire != NULL) { 6630 if (ire->ire_flags & RTF_MULTIRT) { 6631 error = ip_multirt_apply_membership(optfn, ire, connp, 6632 checkonly, &v6group, fmode, &v6src); 6633 done = B_TRUE; 6634 } 6635 ire_refrele(ire); 6636 } 6637 if (!done) { 6638 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6639 fmode, &v6src); 6640 } 6641 return (error); 6642 } 6643 6644 /* 6645 * Given a destination address and a pointer to where to put the information 6646 * this routine fills in the mtuinfo. 6647 * The socket must be connected. 6648 * For sctp conn_faddr is the primary address. 6649 */ 6650 int 6651 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6652 { 6653 uint32_t pmtu = IP_MAXPACKET; 6654 uint_t scopeid; 6655 6656 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6657 return (-1); 6658 6659 /* In case we never sent or called ip_set_destination_v4/v6 */ 6660 if (ixa->ixa_ire != NULL) 6661 pmtu = ip_get_pmtu(ixa); 6662 6663 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6664 scopeid = ixa->ixa_scopeid; 6665 else 6666 scopeid = 0; 6667 6668 bzero(mtuinfo, sizeof (*mtuinfo)); 6669 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6670 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6671 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6672 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6673 mtuinfo->ip6m_mtu = pmtu; 6674 6675 return (sizeof (struct ip6_mtuinfo)); 6676 } 6677 6678 /* Named Dispatch routine to get a current value out of our parameter table. */ 6679 /* ARGSUSED */ 6680 static int 6681 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 6682 { 6683 ipparam_t *ippa = (ipparam_t *)cp; 6684 6685 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 6686 return (0); 6687 } 6688 6689 /* ARGSUSED */ 6690 static int 6691 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 6692 { 6693 6694 (void) mi_mpprintf(mp, "%d", *(int *)cp); 6695 return (0); 6696 } 6697 6698 /* 6699 * Set ip{,6}_forwarding values. This means walking through all of the 6700 * ill's and toggling their forwarding values. 6701 */ 6702 /* ARGSUSED */ 6703 static int 6704 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 6705 { 6706 long new_value; 6707 int *forwarding_value = (int *)cp; 6708 ill_t *ill; 6709 boolean_t isv6; 6710 ill_walk_context_t ctx; 6711 ip_stack_t *ipst = CONNQ_TO_IPST(q); 6712 6713 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 6714 6715 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6716 new_value < 0 || new_value > 1) { 6717 return (EINVAL); 6718 } 6719 6720 *forwarding_value = new_value; 6721 6722 /* 6723 * Regardless of the current value of ip_forwarding, set all per-ill 6724 * values of ip_forwarding to the value being set. 6725 * 6726 * Bring all the ill's up to date with the new global value. 6727 */ 6728 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6729 6730 if (isv6) 6731 ill = ILL_START_WALK_V6(&ctx, ipst); 6732 else 6733 ill = ILL_START_WALK_V4(&ctx, ipst); 6734 6735 for (; ill != NULL; ill = ill_next(&ctx, ill)) 6736 (void) ill_forward_set(ill, new_value != 0); 6737 6738 rw_exit(&ipst->ips_ill_g_lock); 6739 return (0); 6740 } 6741 6742 /* 6743 * Walk through the param array specified registering each element with the 6744 * Named Dispatch handler. This is called only during init. So it is ok 6745 * not to acquire any locks 6746 */ 6747 static boolean_t 6748 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 6749 ipndp_t *ipnd, size_t ipnd_cnt) 6750 { 6751 for (; ippa_cnt-- > 0; ippa++) { 6752 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 6753 if (!nd_load(ndp, ippa->ip_param_name, 6754 ip_param_get, ip_param_set, (caddr_t)ippa)) { 6755 nd_free(ndp); 6756 return (B_FALSE); 6757 } 6758 } 6759 } 6760 6761 for (; ipnd_cnt-- > 0; ipnd++) { 6762 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 6763 if (!nd_load(ndp, ipnd->ip_ndp_name, 6764 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 6765 ipnd->ip_ndp_data)) { 6766 nd_free(ndp); 6767 return (B_FALSE); 6768 } 6769 } 6770 } 6771 6772 return (B_TRUE); 6773 } 6774 6775 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 6776 /* ARGSUSED */ 6777 static int 6778 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 6779 { 6780 long new_value; 6781 ipparam_t *ippa = (ipparam_t *)cp; 6782 6783 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6784 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 6785 return (EINVAL); 6786 } 6787 ippa->ip_param_value = new_value; 6788 return (0); 6789 } 6790 6791 /* 6792 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6793 * When an ipf is passed here for the first time, if 6794 * we already have in-order fragments on the queue, we convert from the fast- 6795 * path reassembly scheme to the hard-case scheme. From then on, additional 6796 * fragments are reassembled here. We keep track of the start and end offsets 6797 * of each piece, and the number of holes in the chain. When the hole count 6798 * goes to zero, we are done! 6799 * 6800 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6801 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6802 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6803 * after the call to ip_reassemble(). 6804 */ 6805 int 6806 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6807 size_t msg_len) 6808 { 6809 uint_t end; 6810 mblk_t *next_mp; 6811 mblk_t *mp1; 6812 uint_t offset; 6813 boolean_t incr_dups = B_TRUE; 6814 boolean_t offset_zero_seen = B_FALSE; 6815 boolean_t pkt_boundary_checked = B_FALSE; 6816 6817 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6818 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6819 6820 /* Add in byte count */ 6821 ipf->ipf_count += msg_len; 6822 if (ipf->ipf_end) { 6823 /* 6824 * We were part way through in-order reassembly, but now there 6825 * is a hole. We walk through messages already queued, and 6826 * mark them for hard case reassembly. We know that up till 6827 * now they were in order starting from offset zero. 6828 */ 6829 offset = 0; 6830 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6831 IP_REASS_SET_START(mp1, offset); 6832 if (offset == 0) { 6833 ASSERT(ipf->ipf_nf_hdr_len != 0); 6834 offset = -ipf->ipf_nf_hdr_len; 6835 } 6836 offset += mp1->b_wptr - mp1->b_rptr; 6837 IP_REASS_SET_END(mp1, offset); 6838 } 6839 /* One hole at the end. */ 6840 ipf->ipf_hole_cnt = 1; 6841 /* Brand it as a hard case, forever. */ 6842 ipf->ipf_end = 0; 6843 } 6844 /* Walk through all the new pieces. */ 6845 do { 6846 end = start + (mp->b_wptr - mp->b_rptr); 6847 /* 6848 * If start is 0, decrease 'end' only for the first mblk of 6849 * the fragment. Otherwise 'end' can get wrong value in the 6850 * second pass of the loop if first mblk is exactly the 6851 * size of ipf_nf_hdr_len. 6852 */ 6853 if (start == 0 && !offset_zero_seen) { 6854 /* First segment */ 6855 ASSERT(ipf->ipf_nf_hdr_len != 0); 6856 end -= ipf->ipf_nf_hdr_len; 6857 offset_zero_seen = B_TRUE; 6858 } 6859 next_mp = mp->b_cont; 6860 /* 6861 * We are checking to see if there is any interesing data 6862 * to process. If there isn't and the mblk isn't the 6863 * one which carries the unfragmentable header then we 6864 * drop it. It's possible to have just the unfragmentable 6865 * header come through without any data. That needs to be 6866 * saved. 6867 * 6868 * If the assert at the top of this function holds then the 6869 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6870 * is infrequently traveled enough that the test is left in 6871 * to protect against future code changes which break that 6872 * invariant. 6873 */ 6874 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6875 /* Empty. Blast it. */ 6876 IP_REASS_SET_START(mp, 0); 6877 IP_REASS_SET_END(mp, 0); 6878 /* 6879 * If the ipf points to the mblk we are about to free, 6880 * update ipf to point to the next mblk (or NULL 6881 * if none). 6882 */ 6883 if (ipf->ipf_mp->b_cont == mp) 6884 ipf->ipf_mp->b_cont = next_mp; 6885 freeb(mp); 6886 continue; 6887 } 6888 mp->b_cont = NULL; 6889 IP_REASS_SET_START(mp, start); 6890 IP_REASS_SET_END(mp, end); 6891 if (!ipf->ipf_tail_mp) { 6892 ipf->ipf_tail_mp = mp; 6893 ipf->ipf_mp->b_cont = mp; 6894 if (start == 0 || !more) { 6895 ipf->ipf_hole_cnt = 1; 6896 /* 6897 * if the first fragment comes in more than one 6898 * mblk, this loop will be executed for each 6899 * mblk. Need to adjust hole count so exiting 6900 * this routine will leave hole count at 1. 6901 */ 6902 if (next_mp) 6903 ipf->ipf_hole_cnt++; 6904 } else 6905 ipf->ipf_hole_cnt = 2; 6906 continue; 6907 } else if (ipf->ipf_last_frag_seen && !more && 6908 !pkt_boundary_checked) { 6909 /* 6910 * We check datagram boundary only if this fragment 6911 * claims to be the last fragment and we have seen a 6912 * last fragment in the past too. We do this only 6913 * once for a given fragment. 6914 * 6915 * start cannot be 0 here as fragments with start=0 6916 * and MF=0 gets handled as a complete packet. These 6917 * fragments should not reach here. 6918 */ 6919 6920 if (start + msgdsize(mp) != 6921 IP_REASS_END(ipf->ipf_tail_mp)) { 6922 /* 6923 * We have two fragments both of which claim 6924 * to be the last fragment but gives conflicting 6925 * information about the whole datagram size. 6926 * Something fishy is going on. Drop the 6927 * fragment and free up the reassembly list. 6928 */ 6929 return (IP_REASS_FAILED); 6930 } 6931 6932 /* 6933 * We shouldn't come to this code block again for this 6934 * particular fragment. 6935 */ 6936 pkt_boundary_checked = B_TRUE; 6937 } 6938 6939 /* New stuff at or beyond tail? */ 6940 offset = IP_REASS_END(ipf->ipf_tail_mp); 6941 if (start >= offset) { 6942 if (ipf->ipf_last_frag_seen) { 6943 /* current fragment is beyond last fragment */ 6944 return (IP_REASS_FAILED); 6945 } 6946 /* Link it on end. */ 6947 ipf->ipf_tail_mp->b_cont = mp; 6948 ipf->ipf_tail_mp = mp; 6949 if (more) { 6950 if (start != offset) 6951 ipf->ipf_hole_cnt++; 6952 } else if (start == offset && next_mp == NULL) 6953 ipf->ipf_hole_cnt--; 6954 continue; 6955 } 6956 mp1 = ipf->ipf_mp->b_cont; 6957 offset = IP_REASS_START(mp1); 6958 /* New stuff at the front? */ 6959 if (start < offset) { 6960 if (start == 0) { 6961 if (end >= offset) { 6962 /* Nailed the hole at the begining. */ 6963 ipf->ipf_hole_cnt--; 6964 } 6965 } else if (end < offset) { 6966 /* 6967 * A hole, stuff, and a hole where there used 6968 * to be just a hole. 6969 */ 6970 ipf->ipf_hole_cnt++; 6971 } 6972 mp->b_cont = mp1; 6973 /* Check for overlap. */ 6974 while (end > offset) { 6975 if (end < IP_REASS_END(mp1)) { 6976 mp->b_wptr -= end - offset; 6977 IP_REASS_SET_END(mp, offset); 6978 BUMP_MIB(ill->ill_ip_mib, 6979 ipIfStatsReasmPartDups); 6980 break; 6981 } 6982 /* Did we cover another hole? */ 6983 if ((mp1->b_cont && 6984 IP_REASS_END(mp1) != 6985 IP_REASS_START(mp1->b_cont) && 6986 end >= IP_REASS_START(mp1->b_cont)) || 6987 (!ipf->ipf_last_frag_seen && !more)) { 6988 ipf->ipf_hole_cnt--; 6989 } 6990 /* Clip out mp1. */ 6991 if ((mp->b_cont = mp1->b_cont) == NULL) { 6992 /* 6993 * After clipping out mp1, this guy 6994 * is now hanging off the end. 6995 */ 6996 ipf->ipf_tail_mp = mp; 6997 } 6998 IP_REASS_SET_START(mp1, 0); 6999 IP_REASS_SET_END(mp1, 0); 7000 /* Subtract byte count */ 7001 ipf->ipf_count -= mp1->b_datap->db_lim - 7002 mp1->b_datap->db_base; 7003 freeb(mp1); 7004 BUMP_MIB(ill->ill_ip_mib, 7005 ipIfStatsReasmPartDups); 7006 mp1 = mp->b_cont; 7007 if (!mp1) 7008 break; 7009 offset = IP_REASS_START(mp1); 7010 } 7011 ipf->ipf_mp->b_cont = mp; 7012 continue; 7013 } 7014 /* 7015 * The new piece starts somewhere between the start of the head 7016 * and before the end of the tail. 7017 */ 7018 for (; mp1; mp1 = mp1->b_cont) { 7019 offset = IP_REASS_END(mp1); 7020 if (start < offset) { 7021 if (end <= offset) { 7022 /* Nothing new. */ 7023 IP_REASS_SET_START(mp, 0); 7024 IP_REASS_SET_END(mp, 0); 7025 /* Subtract byte count */ 7026 ipf->ipf_count -= mp->b_datap->db_lim - 7027 mp->b_datap->db_base; 7028 if (incr_dups) { 7029 ipf->ipf_num_dups++; 7030 incr_dups = B_FALSE; 7031 } 7032 freeb(mp); 7033 BUMP_MIB(ill->ill_ip_mib, 7034 ipIfStatsReasmDuplicates); 7035 break; 7036 } 7037 /* 7038 * Trim redundant stuff off beginning of new 7039 * piece. 7040 */ 7041 IP_REASS_SET_START(mp, offset); 7042 mp->b_rptr += offset - start; 7043 BUMP_MIB(ill->ill_ip_mib, 7044 ipIfStatsReasmPartDups); 7045 start = offset; 7046 if (!mp1->b_cont) { 7047 /* 7048 * After trimming, this guy is now 7049 * hanging off the end. 7050 */ 7051 mp1->b_cont = mp; 7052 ipf->ipf_tail_mp = mp; 7053 if (!more) { 7054 ipf->ipf_hole_cnt--; 7055 } 7056 break; 7057 } 7058 } 7059 if (start >= IP_REASS_START(mp1->b_cont)) 7060 continue; 7061 /* Fill a hole */ 7062 if (start > offset) 7063 ipf->ipf_hole_cnt++; 7064 mp->b_cont = mp1->b_cont; 7065 mp1->b_cont = mp; 7066 mp1 = mp->b_cont; 7067 offset = IP_REASS_START(mp1); 7068 if (end >= offset) { 7069 ipf->ipf_hole_cnt--; 7070 /* Check for overlap. */ 7071 while (end > offset) { 7072 if (end < IP_REASS_END(mp1)) { 7073 mp->b_wptr -= end - offset; 7074 IP_REASS_SET_END(mp, offset); 7075 /* 7076 * TODO we might bump 7077 * this up twice if there is 7078 * overlap at both ends. 7079 */ 7080 BUMP_MIB(ill->ill_ip_mib, 7081 ipIfStatsReasmPartDups); 7082 break; 7083 } 7084 /* Did we cover another hole? */ 7085 if ((mp1->b_cont && 7086 IP_REASS_END(mp1) 7087 != IP_REASS_START(mp1->b_cont) && 7088 end >= 7089 IP_REASS_START(mp1->b_cont)) || 7090 (!ipf->ipf_last_frag_seen && 7091 !more)) { 7092 ipf->ipf_hole_cnt--; 7093 } 7094 /* Clip out mp1. */ 7095 if ((mp->b_cont = mp1->b_cont) == 7096 NULL) { 7097 /* 7098 * After clipping out mp1, 7099 * this guy is now hanging 7100 * off the end. 7101 */ 7102 ipf->ipf_tail_mp = mp; 7103 } 7104 IP_REASS_SET_START(mp1, 0); 7105 IP_REASS_SET_END(mp1, 0); 7106 /* Subtract byte count */ 7107 ipf->ipf_count -= 7108 mp1->b_datap->db_lim - 7109 mp1->b_datap->db_base; 7110 freeb(mp1); 7111 BUMP_MIB(ill->ill_ip_mib, 7112 ipIfStatsReasmPartDups); 7113 mp1 = mp->b_cont; 7114 if (!mp1) 7115 break; 7116 offset = IP_REASS_START(mp1); 7117 } 7118 } 7119 break; 7120 } 7121 } while (start = end, mp = next_mp); 7122 7123 /* Fragment just processed could be the last one. Remember this fact */ 7124 if (!more) 7125 ipf->ipf_last_frag_seen = B_TRUE; 7126 7127 /* Still got holes? */ 7128 if (ipf->ipf_hole_cnt) 7129 return (IP_REASS_PARTIAL); 7130 /* Clean up overloaded fields to avoid upstream disasters. */ 7131 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7132 IP_REASS_SET_START(mp1, 0); 7133 IP_REASS_SET_END(mp1, 0); 7134 } 7135 return (IP_REASS_COMPLETE); 7136 } 7137 7138 /* 7139 * Fragmentation reassembly. Each ILL has a hash table for 7140 * queuing packets undergoing reassembly for all IPIFs 7141 * associated with the ILL. The hash is based on the packet 7142 * IP ident field. The ILL frag hash table was allocated 7143 * as a timer block at the time the ILL was created. Whenever 7144 * there is anything on the reassembly queue, the timer will 7145 * be running. Returns the reassembled packet if reassembly completes. 7146 */ 7147 mblk_t * 7148 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7149 { 7150 uint32_t frag_offset_flags; 7151 mblk_t *t_mp; 7152 ipaddr_t dst; 7153 uint8_t proto = ipha->ipha_protocol; 7154 uint32_t sum_val; 7155 uint16_t sum_flags; 7156 ipf_t *ipf; 7157 ipf_t **ipfp; 7158 ipfb_t *ipfb; 7159 uint16_t ident; 7160 uint32_t offset; 7161 ipaddr_t src; 7162 uint_t hdr_length; 7163 uint32_t end; 7164 mblk_t *mp1; 7165 mblk_t *tail_mp; 7166 size_t count; 7167 size_t msg_len; 7168 uint8_t ecn_info = 0; 7169 uint32_t packet_size; 7170 boolean_t pruned = B_FALSE; 7171 ill_t *ill = ira->ira_ill; 7172 ip_stack_t *ipst = ill->ill_ipst; 7173 7174 /* 7175 * Drop the fragmented as early as possible, if 7176 * we don't have resource(s) to re-assemble. 7177 */ 7178 if (ipst->ips_ip_reass_queue_bytes == 0) { 7179 freemsg(mp); 7180 return (NULL); 7181 } 7182 7183 /* Check for fragmentation offset; return if there's none */ 7184 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7185 (IPH_MF | IPH_OFFSET)) == 0) 7186 return (mp); 7187 7188 /* 7189 * We utilize hardware computed checksum info only for UDP since 7190 * IP fragmentation is a normal occurrence for the protocol. In 7191 * addition, checksum offload support for IP fragments carrying 7192 * UDP payload is commonly implemented across network adapters. 7193 */ 7194 ASSERT(ira->ira_rill != NULL); 7195 if (proto == IPPROTO_UDP && dohwcksum && 7196 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7197 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7198 mblk_t *mp1 = mp->b_cont; 7199 int32_t len; 7200 7201 /* Record checksum information from the packet */ 7202 sum_val = (uint32_t)DB_CKSUM16(mp); 7203 sum_flags = DB_CKSUMFLAGS(mp); 7204 7205 /* IP payload offset from beginning of mblk */ 7206 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7207 7208 if ((sum_flags & HCK_PARTIALCKSUM) && 7209 (mp1 == NULL || mp1->b_cont == NULL) && 7210 offset >= DB_CKSUMSTART(mp) && 7211 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7212 uint32_t adj; 7213 /* 7214 * Partial checksum has been calculated by hardware 7215 * and attached to the packet; in addition, any 7216 * prepended extraneous data is even byte aligned. 7217 * If any such data exists, we adjust the checksum; 7218 * this would also handle any postpended data. 7219 */ 7220 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7221 mp, mp1, len, adj); 7222 7223 /* One's complement subtract extraneous checksum */ 7224 if (adj >= sum_val) 7225 sum_val = ~(adj - sum_val) & 0xFFFF; 7226 else 7227 sum_val -= adj; 7228 } 7229 } else { 7230 sum_val = 0; 7231 sum_flags = 0; 7232 } 7233 7234 /* Clear hardware checksumming flag */ 7235 DB_CKSUMFLAGS(mp) = 0; 7236 7237 ident = ipha->ipha_ident; 7238 offset = (frag_offset_flags << 3) & 0xFFFF; 7239 src = ipha->ipha_src; 7240 dst = ipha->ipha_dst; 7241 hdr_length = IPH_HDR_LENGTH(ipha); 7242 end = ntohs(ipha->ipha_length) - hdr_length; 7243 7244 /* If end == 0 then we have a packet with no data, so just free it */ 7245 if (end == 0) { 7246 freemsg(mp); 7247 return (NULL); 7248 } 7249 7250 /* Record the ECN field info. */ 7251 ecn_info = (ipha->ipha_type_of_service & 0x3); 7252 if (offset != 0) { 7253 /* 7254 * If this isn't the first piece, strip the header, and 7255 * add the offset to the end value. 7256 */ 7257 mp->b_rptr += hdr_length; 7258 end += offset; 7259 } 7260 7261 /* Handle vnic loopback of fragments */ 7262 if (mp->b_datap->db_ref > 2) 7263 msg_len = 0; 7264 else 7265 msg_len = MBLKSIZE(mp); 7266 7267 tail_mp = mp; 7268 while (tail_mp->b_cont != NULL) { 7269 tail_mp = tail_mp->b_cont; 7270 if (tail_mp->b_datap->db_ref <= 2) 7271 msg_len += MBLKSIZE(tail_mp); 7272 } 7273 7274 /* If the reassembly list for this ILL will get too big, prune it */ 7275 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7276 ipst->ips_ip_reass_queue_bytes) { 7277 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7278 uint_t, ill->ill_frag_count, 7279 uint_t, ipst->ips_ip_reass_queue_bytes); 7280 ill_frag_prune(ill, 7281 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7282 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7283 pruned = B_TRUE; 7284 } 7285 7286 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7287 mutex_enter(&ipfb->ipfb_lock); 7288 7289 ipfp = &ipfb->ipfb_ipf; 7290 /* Try to find an existing fragment queue for this packet. */ 7291 for (;;) { 7292 ipf = ipfp[0]; 7293 if (ipf != NULL) { 7294 /* 7295 * It has to match on ident and src/dst address. 7296 */ 7297 if (ipf->ipf_ident == ident && 7298 ipf->ipf_src == src && 7299 ipf->ipf_dst == dst && 7300 ipf->ipf_protocol == proto) { 7301 /* 7302 * If we have received too many 7303 * duplicate fragments for this packet 7304 * free it. 7305 */ 7306 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7307 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7308 freemsg(mp); 7309 mutex_exit(&ipfb->ipfb_lock); 7310 return (NULL); 7311 } 7312 /* Found it. */ 7313 break; 7314 } 7315 ipfp = &ipf->ipf_hash_next; 7316 continue; 7317 } 7318 7319 /* 7320 * If we pruned the list, do we want to store this new 7321 * fragment?. We apply an optimization here based on the 7322 * fact that most fragments will be received in order. 7323 * So if the offset of this incoming fragment is zero, 7324 * it is the first fragment of a new packet. We will 7325 * keep it. Otherwise drop the fragment, as we have 7326 * probably pruned the packet already (since the 7327 * packet cannot be found). 7328 */ 7329 if (pruned && offset != 0) { 7330 mutex_exit(&ipfb->ipfb_lock); 7331 freemsg(mp); 7332 return (NULL); 7333 } 7334 7335 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7336 /* 7337 * Too many fragmented packets in this hash 7338 * bucket. Free the oldest. 7339 */ 7340 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7341 } 7342 7343 /* New guy. Allocate a frag message. */ 7344 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7345 if (mp1 == NULL) { 7346 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7347 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7348 freemsg(mp); 7349 reass_done: 7350 mutex_exit(&ipfb->ipfb_lock); 7351 return (NULL); 7352 } 7353 7354 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7355 mp1->b_cont = mp; 7356 7357 /* Initialize the fragment header. */ 7358 ipf = (ipf_t *)mp1->b_rptr; 7359 ipf->ipf_mp = mp1; 7360 ipf->ipf_ptphn = ipfp; 7361 ipfp[0] = ipf; 7362 ipf->ipf_hash_next = NULL; 7363 ipf->ipf_ident = ident; 7364 ipf->ipf_protocol = proto; 7365 ipf->ipf_src = src; 7366 ipf->ipf_dst = dst; 7367 ipf->ipf_nf_hdr_len = 0; 7368 /* Record reassembly start time. */ 7369 ipf->ipf_timestamp = gethrestime_sec(); 7370 /* Record ipf generation and account for frag header */ 7371 ipf->ipf_gen = ill->ill_ipf_gen++; 7372 ipf->ipf_count = MBLKSIZE(mp1); 7373 ipf->ipf_last_frag_seen = B_FALSE; 7374 ipf->ipf_ecn = ecn_info; 7375 ipf->ipf_num_dups = 0; 7376 ipfb->ipfb_frag_pkts++; 7377 ipf->ipf_checksum = 0; 7378 ipf->ipf_checksum_flags = 0; 7379 7380 /* Store checksum value in fragment header */ 7381 if (sum_flags != 0) { 7382 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7383 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7384 ipf->ipf_checksum = sum_val; 7385 ipf->ipf_checksum_flags = sum_flags; 7386 } 7387 7388 /* 7389 * We handle reassembly two ways. In the easy case, 7390 * where all the fragments show up in order, we do 7391 * minimal bookkeeping, and just clip new pieces on 7392 * the end. If we ever see a hole, then we go off 7393 * to ip_reassemble which has to mark the pieces and 7394 * keep track of the number of holes, etc. Obviously, 7395 * the point of having both mechanisms is so we can 7396 * handle the easy case as efficiently as possible. 7397 */ 7398 if (offset == 0) { 7399 /* Easy case, in-order reassembly so far. */ 7400 ipf->ipf_count += msg_len; 7401 ipf->ipf_tail_mp = tail_mp; 7402 /* 7403 * Keep track of next expected offset in 7404 * ipf_end. 7405 */ 7406 ipf->ipf_end = end; 7407 ipf->ipf_nf_hdr_len = hdr_length; 7408 } else { 7409 /* Hard case, hole at the beginning. */ 7410 ipf->ipf_tail_mp = NULL; 7411 /* 7412 * ipf_end == 0 means that we have given up 7413 * on easy reassembly. 7414 */ 7415 ipf->ipf_end = 0; 7416 7417 /* Forget checksum offload from now on */ 7418 ipf->ipf_checksum_flags = 0; 7419 7420 /* 7421 * ipf_hole_cnt is set by ip_reassemble. 7422 * ipf_count is updated by ip_reassemble. 7423 * No need to check for return value here 7424 * as we don't expect reassembly to complete 7425 * or fail for the first fragment itself. 7426 */ 7427 (void) ip_reassemble(mp, ipf, 7428 (frag_offset_flags & IPH_OFFSET) << 3, 7429 (frag_offset_flags & IPH_MF), ill, msg_len); 7430 } 7431 /* Update per ipfb and ill byte counts */ 7432 ipfb->ipfb_count += ipf->ipf_count; 7433 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7434 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7435 /* If the frag timer wasn't already going, start it. */ 7436 mutex_enter(&ill->ill_lock); 7437 ill_frag_timer_start(ill); 7438 mutex_exit(&ill->ill_lock); 7439 goto reass_done; 7440 } 7441 7442 /* 7443 * If the packet's flag has changed (it could be coming up 7444 * from an interface different than the previous, therefore 7445 * possibly different checksum capability), then forget about 7446 * any stored checksum states. Otherwise add the value to 7447 * the existing one stored in the fragment header. 7448 */ 7449 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7450 sum_val += ipf->ipf_checksum; 7451 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7452 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7453 ipf->ipf_checksum = sum_val; 7454 } else if (ipf->ipf_checksum_flags != 0) { 7455 /* Forget checksum offload from now on */ 7456 ipf->ipf_checksum_flags = 0; 7457 } 7458 7459 /* 7460 * We have a new piece of a datagram which is already being 7461 * reassembled. Update the ECN info if all IP fragments 7462 * are ECN capable. If there is one which is not, clear 7463 * all the info. If there is at least one which has CE 7464 * code point, IP needs to report that up to transport. 7465 */ 7466 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7467 if (ecn_info == IPH_ECN_CE) 7468 ipf->ipf_ecn = IPH_ECN_CE; 7469 } else { 7470 ipf->ipf_ecn = IPH_ECN_NECT; 7471 } 7472 if (offset && ipf->ipf_end == offset) { 7473 /* The new fragment fits at the end */ 7474 ipf->ipf_tail_mp->b_cont = mp; 7475 /* Update the byte count */ 7476 ipf->ipf_count += msg_len; 7477 /* Update per ipfb and ill byte counts */ 7478 ipfb->ipfb_count += msg_len; 7479 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7480 atomic_add_32(&ill->ill_frag_count, msg_len); 7481 if (frag_offset_flags & IPH_MF) { 7482 /* More to come. */ 7483 ipf->ipf_end = end; 7484 ipf->ipf_tail_mp = tail_mp; 7485 goto reass_done; 7486 } 7487 } else { 7488 /* Go do the hard cases. */ 7489 int ret; 7490 7491 if (offset == 0) 7492 ipf->ipf_nf_hdr_len = hdr_length; 7493 7494 /* Save current byte count */ 7495 count = ipf->ipf_count; 7496 ret = ip_reassemble(mp, ipf, 7497 (frag_offset_flags & IPH_OFFSET) << 3, 7498 (frag_offset_flags & IPH_MF), ill, msg_len); 7499 /* Count of bytes added and subtracted (freeb()ed) */ 7500 count = ipf->ipf_count - count; 7501 if (count) { 7502 /* Update per ipfb and ill byte counts */ 7503 ipfb->ipfb_count += count; 7504 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7505 atomic_add_32(&ill->ill_frag_count, count); 7506 } 7507 if (ret == IP_REASS_PARTIAL) { 7508 goto reass_done; 7509 } else if (ret == IP_REASS_FAILED) { 7510 /* Reassembly failed. Free up all resources */ 7511 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7512 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7513 IP_REASS_SET_START(t_mp, 0); 7514 IP_REASS_SET_END(t_mp, 0); 7515 } 7516 freemsg(mp); 7517 goto reass_done; 7518 } 7519 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7520 } 7521 /* 7522 * We have completed reassembly. Unhook the frag header from 7523 * the reassembly list. 7524 * 7525 * Before we free the frag header, record the ECN info 7526 * to report back to the transport. 7527 */ 7528 ecn_info = ipf->ipf_ecn; 7529 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7530 ipfp = ipf->ipf_ptphn; 7531 7532 /* We need to supply these to caller */ 7533 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7534 sum_val = ipf->ipf_checksum; 7535 else 7536 sum_val = 0; 7537 7538 mp1 = ipf->ipf_mp; 7539 count = ipf->ipf_count; 7540 ipf = ipf->ipf_hash_next; 7541 if (ipf != NULL) 7542 ipf->ipf_ptphn = ipfp; 7543 ipfp[0] = ipf; 7544 atomic_add_32(&ill->ill_frag_count, -count); 7545 ASSERT(ipfb->ipfb_count >= count); 7546 ipfb->ipfb_count -= count; 7547 ipfb->ipfb_frag_pkts--; 7548 mutex_exit(&ipfb->ipfb_lock); 7549 /* Ditch the frag header. */ 7550 mp = mp1->b_cont; 7551 7552 freeb(mp1); 7553 7554 /* Restore original IP length in header. */ 7555 packet_size = (uint32_t)msgdsize(mp); 7556 if (packet_size > IP_MAXPACKET) { 7557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7558 ip_drop_input("Reassembled packet too large", mp, ill); 7559 freemsg(mp); 7560 return (NULL); 7561 } 7562 7563 if (DB_REF(mp) > 1) { 7564 mblk_t *mp2 = copymsg(mp); 7565 7566 if (mp2 == NULL) { 7567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7568 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7569 freemsg(mp); 7570 return (NULL); 7571 } 7572 freemsg(mp); 7573 mp = mp2; 7574 } 7575 ipha = (ipha_t *)mp->b_rptr; 7576 7577 ipha->ipha_length = htons((uint16_t)packet_size); 7578 /* We're now complete, zip the frag state */ 7579 ipha->ipha_fragment_offset_and_flags = 0; 7580 /* Record the ECN info. */ 7581 ipha->ipha_type_of_service &= 0xFC; 7582 ipha->ipha_type_of_service |= ecn_info; 7583 7584 /* Update the receive attributes */ 7585 ira->ira_pktlen = packet_size; 7586 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7587 7588 /* Reassembly is successful; set checksum information in packet */ 7589 DB_CKSUM16(mp) = (uint16_t)sum_val; 7590 DB_CKSUMFLAGS(mp) = sum_flags; 7591 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7592 7593 return (mp); 7594 } 7595 7596 /* 7597 * Pullup function that should be used for IP input in order to 7598 * ensure we do not loose the L2 source address; we need the l2 source 7599 * address for IP_RECVSLLA and for ndp_input. 7600 * 7601 * We return either NULL or b_rptr. 7602 */ 7603 void * 7604 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7605 { 7606 ill_t *ill = ira->ira_ill; 7607 7608 if (ip_rput_pullups++ == 0) { 7609 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7610 "ip_pullup: %s forced us to " 7611 " pullup pkt, hdr len %ld, hdr addr %p", 7612 ill->ill_name, len, (void *)mp->b_rptr); 7613 } 7614 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7615 ip_setl2src(mp, ira, ira->ira_rill); 7616 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7617 if (!pullupmsg(mp, len)) 7618 return (NULL); 7619 else 7620 return (mp->b_rptr); 7621 } 7622 7623 /* 7624 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7625 * When called from the ULP ira_rill will be NULL hence the caller has to 7626 * pass in the ill. 7627 */ 7628 /* ARGSUSED */ 7629 void 7630 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7631 { 7632 const uchar_t *addr; 7633 int alen; 7634 7635 if (ira->ira_flags & IRAF_L2SRC_SET) 7636 return; 7637 7638 ASSERT(ill != NULL); 7639 alen = ill->ill_phys_addr_length; 7640 ASSERT(alen <= sizeof (ira->ira_l2src)); 7641 if (ira->ira_mhip != NULL && 7642 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7643 bcopy(addr, ira->ira_l2src, alen); 7644 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7645 (addr = ill->ill_phys_addr) != NULL) { 7646 bcopy(addr, ira->ira_l2src, alen); 7647 } else { 7648 bzero(ira->ira_l2src, alen); 7649 } 7650 ira->ira_flags |= IRAF_L2SRC_SET; 7651 } 7652 7653 /* 7654 * check ip header length and align it. 7655 */ 7656 mblk_t * 7657 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7658 { 7659 ill_t *ill = ira->ira_ill; 7660 ssize_t len; 7661 7662 len = MBLKL(mp); 7663 7664 if (!OK_32PTR(mp->b_rptr)) 7665 IP_STAT(ill->ill_ipst, ip_notaligned); 7666 else 7667 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7668 7669 /* Guard against bogus device drivers */ 7670 if (len < 0) { 7671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7672 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7673 freemsg(mp); 7674 return (NULL); 7675 } 7676 7677 if (len == 0) { 7678 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7679 mblk_t *mp1 = mp->b_cont; 7680 7681 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7682 ip_setl2src(mp, ira, ira->ira_rill); 7683 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7684 7685 freeb(mp); 7686 mp = mp1; 7687 if (mp == NULL) 7688 return (NULL); 7689 7690 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7691 return (mp); 7692 } 7693 if (ip_pullup(mp, min_size, ira) == NULL) { 7694 if (msgdsize(mp) < min_size) { 7695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7696 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7697 } else { 7698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7699 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7700 } 7701 freemsg(mp); 7702 return (NULL); 7703 } 7704 return (mp); 7705 } 7706 7707 /* 7708 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7709 */ 7710 mblk_t * 7711 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7712 uint_t min_size, ip_recv_attr_t *ira) 7713 { 7714 ill_t *ill = ira->ira_ill; 7715 7716 /* 7717 * Make sure we have data length consistent 7718 * with the IP header. 7719 */ 7720 if (mp->b_cont == NULL) { 7721 /* pkt_len is based on ipha_len, not the mblk length */ 7722 if (pkt_len < min_size) { 7723 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7724 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7725 freemsg(mp); 7726 return (NULL); 7727 } 7728 if (len < 0) { 7729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7730 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7731 freemsg(mp); 7732 return (NULL); 7733 } 7734 /* Drop any pad */ 7735 mp->b_wptr = rptr + pkt_len; 7736 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7737 ASSERT(pkt_len >= min_size); 7738 if (pkt_len < min_size) { 7739 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7740 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7741 freemsg(mp); 7742 return (NULL); 7743 } 7744 if (len < 0) { 7745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7746 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7747 freemsg(mp); 7748 return (NULL); 7749 } 7750 /* Drop any pad */ 7751 (void) adjmsg(mp, -len); 7752 /* 7753 * adjmsg may have freed an mblk from the chain, hence 7754 * invalidate any hw checksum here. This will force IP to 7755 * calculate the checksum in sw, but only for this packet. 7756 */ 7757 DB_CKSUMFLAGS(mp) = 0; 7758 IP_STAT(ill->ill_ipst, ip_multimblk); 7759 } 7760 return (mp); 7761 } 7762 7763 /* 7764 * Check that the IPv4 opt_len is consistent with the packet and pullup 7765 * the options. 7766 */ 7767 mblk_t * 7768 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7769 ip_recv_attr_t *ira) 7770 { 7771 ill_t *ill = ira->ira_ill; 7772 ssize_t len; 7773 7774 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7775 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7777 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7778 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7779 freemsg(mp); 7780 return (NULL); 7781 } 7782 7783 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7784 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7785 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7786 freemsg(mp); 7787 return (NULL); 7788 } 7789 /* 7790 * Recompute complete header length and make sure we 7791 * have access to all of it. 7792 */ 7793 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7794 if (len > (mp->b_wptr - mp->b_rptr)) { 7795 if (len > pkt_len) { 7796 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7797 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7798 freemsg(mp); 7799 return (NULL); 7800 } 7801 if (ip_pullup(mp, len, ira) == NULL) { 7802 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7803 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7804 freemsg(mp); 7805 return (NULL); 7806 } 7807 } 7808 return (mp); 7809 } 7810 7811 /* 7812 * Returns a new ire, or the same ire, or NULL. 7813 * If a different IRE is returned, then it is held; the caller 7814 * needs to release it. 7815 * In no case is there any hold/release on the ire argument. 7816 */ 7817 ire_t * 7818 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7819 { 7820 ire_t *new_ire; 7821 ill_t *ire_ill; 7822 uint_t ifindex; 7823 ip_stack_t *ipst = ill->ill_ipst; 7824 boolean_t strict_check = B_FALSE; 7825 7826 /* 7827 * IPMP common case: if IRE and ILL are in the same group, there's no 7828 * issue (e.g. packet received on an underlying interface matched an 7829 * IRE_LOCAL on its associated group interface). 7830 */ 7831 ASSERT(ire->ire_ill != NULL); 7832 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7833 return (ire); 7834 7835 /* 7836 * Do another ire lookup here, using the ingress ill, to see if the 7837 * interface is in a usesrc group. 7838 * As long as the ills belong to the same group, we don't consider 7839 * them to be arriving on the wrong interface. Thus, if the switch 7840 * is doing inbound load spreading, we won't drop packets when the 7841 * ip*_strict_dst_multihoming switch is on. 7842 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7843 * where the local address may not be unique. In this case we were 7844 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7845 * actually returned. The new lookup, which is more specific, should 7846 * only find the IRE_LOCAL associated with the ingress ill if one 7847 * exists. 7848 */ 7849 if (ire->ire_ipversion == IPV4_VERSION) { 7850 if (ipst->ips_ip_strict_dst_multihoming) 7851 strict_check = B_TRUE; 7852 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7853 IRE_LOCAL, ill, ALL_ZONES, NULL, 7854 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7855 } else { 7856 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7857 if (ipst->ips_ipv6_strict_dst_multihoming) 7858 strict_check = B_TRUE; 7859 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7860 IRE_LOCAL, ill, ALL_ZONES, NULL, 7861 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7862 } 7863 /* 7864 * If the same ire that was returned in ip_input() is found then this 7865 * is an indication that usesrc groups are in use. The packet 7866 * arrived on a different ill in the group than the one associated with 7867 * the destination address. If a different ire was found then the same 7868 * IP address must be hosted on multiple ills. This is possible with 7869 * unnumbered point2point interfaces. We switch to use this new ire in 7870 * order to have accurate interface statistics. 7871 */ 7872 if (new_ire != NULL) { 7873 /* Note: held in one case but not the other? Caller handles */ 7874 if (new_ire != ire) 7875 return (new_ire); 7876 /* Unchanged */ 7877 ire_refrele(new_ire); 7878 return (ire); 7879 } 7880 7881 /* 7882 * Chase pointers once and store locally. 7883 */ 7884 ASSERT(ire->ire_ill != NULL); 7885 ire_ill = ire->ire_ill; 7886 ifindex = ill->ill_usesrc_ifindex; 7887 7888 /* 7889 * Check if it's a legal address on the 'usesrc' interface. 7890 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7891 * can just check phyint_ifindex. 7892 */ 7893 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7894 return (ire); 7895 } 7896 7897 /* 7898 * If the ip*_strict_dst_multihoming switch is on then we can 7899 * only accept this packet if the interface is marked as routing. 7900 */ 7901 if (!(strict_check)) 7902 return (ire); 7903 7904 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7905 return (ire); 7906 } 7907 return (NULL); 7908 } 7909 7910 /* 7911 * This function is used to construct a mac_header_info_s from a 7912 * DL_UNITDATA_IND message. 7913 * The address fields in the mhi structure points into the message, 7914 * thus the caller can't use those fields after freeing the message. 7915 * 7916 * We determine whether the packet received is a non-unicast packet 7917 * and in doing so, determine whether or not it is broadcast vs multicast. 7918 * For it to be a broadcast packet, we must have the appropriate mblk_t 7919 * hanging off the ill_t. If this is either not present or doesn't match 7920 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7921 * to be multicast. Thus NICs that have no broadcast address (or no 7922 * capability for one, such as point to point links) cannot return as 7923 * the packet being broadcast. 7924 */ 7925 void 7926 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7927 { 7928 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7929 mblk_t *bmp; 7930 uint_t extra_offset; 7931 7932 bzero(mhip, sizeof (struct mac_header_info_s)); 7933 7934 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7935 7936 if (ill->ill_sap_length < 0) 7937 extra_offset = 0; 7938 else 7939 extra_offset = ill->ill_sap_length; 7940 7941 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7942 extra_offset; 7943 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7944 extra_offset; 7945 7946 if (!ind->dl_group_address) 7947 return; 7948 7949 /* Multicast or broadcast */ 7950 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7951 7952 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7953 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7954 (bmp = ill->ill_bcast_mp) != NULL) { 7955 dl_unitdata_req_t *dlur; 7956 uint8_t *bphys_addr; 7957 7958 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7959 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7960 extra_offset; 7961 7962 if (bcmp(mhip->mhi_daddr, bphys_addr, 7963 ind->dl_dest_addr_length) == 0) 7964 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7965 } 7966 } 7967 7968 /* 7969 * This function is used to construct a mac_header_info_s from a 7970 * M_DATA fastpath message from a DLPI driver. 7971 * The address fields in the mhi structure points into the message, 7972 * thus the caller can't use those fields after freeing the message. 7973 * 7974 * We determine whether the packet received is a non-unicast packet 7975 * and in doing so, determine whether or not it is broadcast vs multicast. 7976 * For it to be a broadcast packet, we must have the appropriate mblk_t 7977 * hanging off the ill_t. If this is either not present or doesn't match 7978 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7979 * to be multicast. Thus NICs that have no broadcast address (or no 7980 * capability for one, such as point to point links) cannot return as 7981 * the packet being broadcast. 7982 */ 7983 void 7984 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7985 { 7986 mblk_t *bmp; 7987 struct ether_header *pether; 7988 7989 bzero(mhip, sizeof (struct mac_header_info_s)); 7990 7991 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7992 7993 pether = (struct ether_header *)((char *)mp->b_rptr 7994 - sizeof (struct ether_header)); 7995 7996 /* 7997 * Make sure the interface is an ethernet type, since we don't 7998 * know the header format for anything but Ethernet. Also make 7999 * sure we are pointing correctly above db_base. 8000 */ 8001 if (ill->ill_type != IFT_ETHER) 8002 return; 8003 8004 retry: 8005 if ((uchar_t *)pether < mp->b_datap->db_base) 8006 return; 8007 8008 /* Is there a VLAN tag? */ 8009 if (ill->ill_isv6) { 8010 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 8011 pether = (struct ether_header *)((char *)pether - 4); 8012 goto retry; 8013 } 8014 } else { 8015 if (pether->ether_type != htons(ETHERTYPE_IP)) { 8016 pether = (struct ether_header *)((char *)pether - 4); 8017 goto retry; 8018 } 8019 } 8020 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 8021 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 8022 8023 if (!(mhip->mhi_daddr[0] & 0x01)) 8024 return; 8025 8026 /* Multicast or broadcast */ 8027 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 8028 8029 if ((bmp = ill->ill_bcast_mp) != NULL) { 8030 dl_unitdata_req_t *dlur; 8031 uint8_t *bphys_addr; 8032 uint_t addrlen; 8033 8034 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 8035 addrlen = dlur->dl_dest_addr_length; 8036 if (ill->ill_sap_length < 0) { 8037 bphys_addr = (uchar_t *)dlur + 8038 dlur->dl_dest_addr_offset; 8039 addrlen += ill->ill_sap_length; 8040 } else { 8041 bphys_addr = (uchar_t *)dlur + 8042 dlur->dl_dest_addr_offset + 8043 ill->ill_sap_length; 8044 addrlen -= ill->ill_sap_length; 8045 } 8046 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 8047 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 8048 } 8049 } 8050 8051 /* 8052 * Handle anything but M_DATA messages 8053 * We see the DL_UNITDATA_IND which are part 8054 * of the data path, and also the other messages from the driver. 8055 */ 8056 void 8057 ip_rput_notdata(ill_t *ill, mblk_t *mp) 8058 { 8059 mblk_t *first_mp; 8060 struct iocblk *iocp; 8061 struct mac_header_info_s mhi; 8062 8063 switch (DB_TYPE(mp)) { 8064 case M_PROTO: 8065 case M_PCPROTO: { 8066 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 8067 DL_UNITDATA_IND) { 8068 /* Go handle anything other than data elsewhere. */ 8069 ip_rput_dlpi(ill, mp); 8070 return; 8071 } 8072 8073 first_mp = mp; 8074 mp = first_mp->b_cont; 8075 first_mp->b_cont = NULL; 8076 8077 if (mp == NULL) { 8078 freeb(first_mp); 8079 return; 8080 } 8081 ip_dlur_to_mhi(ill, first_mp, &mhi); 8082 if (ill->ill_isv6) 8083 ip_input_v6(ill, NULL, mp, &mhi); 8084 else 8085 ip_input(ill, NULL, mp, &mhi); 8086 8087 /* Ditch the DLPI header. */ 8088 freeb(first_mp); 8089 return; 8090 } 8091 case M_IOCACK: 8092 iocp = (struct iocblk *)mp->b_rptr; 8093 switch (iocp->ioc_cmd) { 8094 case DL_IOC_HDR_INFO: 8095 ill_fastpath_ack(ill, mp); 8096 return; 8097 default: 8098 putnext(ill->ill_rq, mp); 8099 return; 8100 } 8101 /* FALLTHRU */ 8102 case M_ERROR: 8103 case M_HANGUP: 8104 mutex_enter(&ill->ill_lock); 8105 if (ill->ill_state_flags & ILL_CONDEMNED) { 8106 mutex_exit(&ill->ill_lock); 8107 freemsg(mp); 8108 return; 8109 } 8110 ill_refhold_locked(ill); 8111 mutex_exit(&ill->ill_lock); 8112 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 8113 B_FALSE); 8114 return; 8115 case M_CTL: 8116 putnext(ill->ill_rq, mp); 8117 return; 8118 case M_IOCNAK: 8119 ip1dbg(("got iocnak ")); 8120 iocp = (struct iocblk *)mp->b_rptr; 8121 switch (iocp->ioc_cmd) { 8122 case DL_IOC_HDR_INFO: 8123 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 8124 return; 8125 default: 8126 break; 8127 } 8128 /* FALLTHRU */ 8129 default: 8130 putnext(ill->ill_rq, mp); 8131 return; 8132 } 8133 } 8134 8135 /* Read side put procedure. Packets coming from the wire arrive here. */ 8136 void 8137 ip_rput(queue_t *q, mblk_t *mp) 8138 { 8139 ill_t *ill; 8140 union DL_primitives *dl; 8141 8142 ill = (ill_t *)q->q_ptr; 8143 8144 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8145 /* 8146 * If things are opening or closing, only accept high-priority 8147 * DLPI messages. (On open ill->ill_ipif has not yet been 8148 * created; on close, things hanging off the ill may have been 8149 * freed already.) 8150 */ 8151 dl = (union DL_primitives *)mp->b_rptr; 8152 if (DB_TYPE(mp) != M_PCPROTO || 8153 dl->dl_primitive == DL_UNITDATA_IND) { 8154 inet_freemsg(mp); 8155 return; 8156 } 8157 } 8158 if (DB_TYPE(mp) == M_DATA) { 8159 struct mac_header_info_s mhi; 8160 8161 ip_mdata_to_mhi(ill, mp, &mhi); 8162 ip_input(ill, NULL, mp, &mhi); 8163 } else { 8164 ip_rput_notdata(ill, mp); 8165 } 8166 } 8167 8168 /* 8169 * Move the information to a copy. 8170 */ 8171 mblk_t * 8172 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8173 { 8174 mblk_t *mp1; 8175 ill_t *ill = ira->ira_ill; 8176 ip_stack_t *ipst = ill->ill_ipst; 8177 8178 IP_STAT(ipst, ip_db_ref); 8179 8180 /* Make sure we have ira_l2src before we loose the original mblk */ 8181 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8182 ip_setl2src(mp, ira, ira->ira_rill); 8183 8184 mp1 = copymsg(mp); 8185 if (mp1 == NULL) { 8186 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8187 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8188 freemsg(mp); 8189 return (NULL); 8190 } 8191 /* preserve the hardware checksum flags and data, if present */ 8192 if (DB_CKSUMFLAGS(mp) != 0) { 8193 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8194 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8195 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8196 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8197 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8198 } 8199 freemsg(mp); 8200 return (mp1); 8201 } 8202 8203 static void 8204 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8205 t_uscalar_t err) 8206 { 8207 if (dl_err == DL_SYSERR) { 8208 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8209 "%s: %s failed: DL_SYSERR (errno %u)\n", 8210 ill->ill_name, dl_primstr(prim), err); 8211 return; 8212 } 8213 8214 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8215 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8216 dl_errstr(dl_err)); 8217 } 8218 8219 /* 8220 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8221 * than DL_UNITDATA_IND messages. If we need to process this message 8222 * exclusively, we call qwriter_ip, in which case we also need to call 8223 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8224 */ 8225 void 8226 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8227 { 8228 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8229 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8230 queue_t *q = ill->ill_rq; 8231 t_uscalar_t prim = dloa->dl_primitive; 8232 t_uscalar_t reqprim = DL_PRIM_INVAL; 8233 8234 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8235 char *, dl_primstr(prim), ill_t *, ill); 8236 ip1dbg(("ip_rput_dlpi")); 8237 8238 /* 8239 * If we received an ACK but didn't send a request for it, then it 8240 * can't be part of any pending operation; discard up-front. 8241 */ 8242 switch (prim) { 8243 case DL_ERROR_ACK: 8244 reqprim = dlea->dl_error_primitive; 8245 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8246 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8247 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8248 dlea->dl_unix_errno)); 8249 break; 8250 case DL_OK_ACK: 8251 reqprim = dloa->dl_correct_primitive; 8252 break; 8253 case DL_INFO_ACK: 8254 reqprim = DL_INFO_REQ; 8255 break; 8256 case DL_BIND_ACK: 8257 reqprim = DL_BIND_REQ; 8258 break; 8259 case DL_PHYS_ADDR_ACK: 8260 reqprim = DL_PHYS_ADDR_REQ; 8261 break; 8262 case DL_NOTIFY_ACK: 8263 reqprim = DL_NOTIFY_REQ; 8264 break; 8265 case DL_CAPABILITY_ACK: 8266 reqprim = DL_CAPABILITY_REQ; 8267 break; 8268 } 8269 8270 if (prim != DL_NOTIFY_IND) { 8271 if (reqprim == DL_PRIM_INVAL || 8272 !ill_dlpi_pending(ill, reqprim)) { 8273 /* Not a DLPI message we support or expected */ 8274 freemsg(mp); 8275 return; 8276 } 8277 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8278 dl_primstr(reqprim))); 8279 } 8280 8281 switch (reqprim) { 8282 case DL_UNBIND_REQ: 8283 /* 8284 * NOTE: we mark the unbind as complete even if we got a 8285 * DL_ERROR_ACK, since there's not much else we can do. 8286 */ 8287 mutex_enter(&ill->ill_lock); 8288 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8289 cv_signal(&ill->ill_cv); 8290 mutex_exit(&ill->ill_lock); 8291 break; 8292 8293 case DL_ENABMULTI_REQ: 8294 if (prim == DL_OK_ACK) { 8295 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8296 ill->ill_dlpi_multicast_state = IDS_OK; 8297 } 8298 break; 8299 } 8300 8301 /* 8302 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8303 * need to become writer to continue to process it. Because an 8304 * exclusive operation doesn't complete until replies to all queued 8305 * DLPI messages have been received, we know we're in the middle of an 8306 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8307 * 8308 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8309 * Since this is on the ill stream we unconditionally bump up the 8310 * refcount without doing ILL_CAN_LOOKUP(). 8311 */ 8312 ill_refhold(ill); 8313 if (prim == DL_NOTIFY_IND) 8314 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8315 else 8316 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8317 } 8318 8319 /* 8320 * Handling of DLPI messages that require exclusive access to the ipsq. 8321 * 8322 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8323 * happen here. (along with mi_copy_done) 8324 */ 8325 /* ARGSUSED */ 8326 static void 8327 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8328 { 8329 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8330 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8331 int err = 0; 8332 ill_t *ill = (ill_t *)q->q_ptr; 8333 ipif_t *ipif = NULL; 8334 mblk_t *mp1 = NULL; 8335 conn_t *connp = NULL; 8336 t_uscalar_t paddrreq; 8337 mblk_t *mp_hw; 8338 boolean_t success; 8339 boolean_t ioctl_aborted = B_FALSE; 8340 boolean_t log = B_TRUE; 8341 8342 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8343 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8344 8345 ip1dbg(("ip_rput_dlpi_writer ..")); 8346 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8347 ASSERT(IAM_WRITER_ILL(ill)); 8348 8349 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8350 /* 8351 * The current ioctl could have been aborted by the user and a new 8352 * ioctl to bring up another ill could have started. We could still 8353 * get a response from the driver later. 8354 */ 8355 if (ipif != NULL && ipif->ipif_ill != ill) 8356 ioctl_aborted = B_TRUE; 8357 8358 switch (dloa->dl_primitive) { 8359 case DL_ERROR_ACK: 8360 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8361 dl_primstr(dlea->dl_error_primitive))); 8362 8363 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8364 char *, dl_primstr(dlea->dl_error_primitive), 8365 ill_t *, ill); 8366 8367 switch (dlea->dl_error_primitive) { 8368 case DL_DISABMULTI_REQ: 8369 ill_dlpi_done(ill, dlea->dl_error_primitive); 8370 break; 8371 case DL_PROMISCON_REQ: 8372 case DL_PROMISCOFF_REQ: 8373 case DL_UNBIND_REQ: 8374 case DL_ATTACH_REQ: 8375 case DL_INFO_REQ: 8376 ill_dlpi_done(ill, dlea->dl_error_primitive); 8377 break; 8378 case DL_NOTIFY_REQ: 8379 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8380 log = B_FALSE; 8381 break; 8382 case DL_PHYS_ADDR_REQ: 8383 /* 8384 * For IPv6 only, there are two additional 8385 * phys_addr_req's sent to the driver to get the 8386 * IPv6 token and lla. This allows IP to acquire 8387 * the hardware address format for a given interface 8388 * without having built in knowledge of the hardware 8389 * address. ill_phys_addr_pend keeps track of the last 8390 * DL_PAR sent so we know which response we are 8391 * dealing with. ill_dlpi_done will update 8392 * ill_phys_addr_pend when it sends the next req. 8393 * We don't complete the IOCTL until all three DL_PARs 8394 * have been attempted, so set *_len to 0 and break. 8395 */ 8396 paddrreq = ill->ill_phys_addr_pend; 8397 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8398 if (paddrreq == DL_IPV6_TOKEN) { 8399 ill->ill_token_length = 0; 8400 log = B_FALSE; 8401 break; 8402 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8403 ill->ill_nd_lla_len = 0; 8404 log = B_FALSE; 8405 break; 8406 } 8407 /* 8408 * Something went wrong with the DL_PHYS_ADDR_REQ. 8409 * We presumably have an IOCTL hanging out waiting 8410 * for completion. Find it and complete the IOCTL 8411 * with the error noted. 8412 * However, ill_dl_phys was called on an ill queue 8413 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8414 * set. But the ioctl is known to be pending on ill_wq. 8415 */ 8416 if (!ill->ill_ifname_pending) 8417 break; 8418 ill->ill_ifname_pending = 0; 8419 if (!ioctl_aborted) 8420 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8421 if (mp1 != NULL) { 8422 /* 8423 * This operation (SIOCSLIFNAME) must have 8424 * happened on the ill. Assert there is no conn 8425 */ 8426 ASSERT(connp == NULL); 8427 q = ill->ill_wq; 8428 } 8429 break; 8430 case DL_BIND_REQ: 8431 ill_dlpi_done(ill, DL_BIND_REQ); 8432 if (ill->ill_ifname_pending) 8433 break; 8434 /* 8435 * Something went wrong with the bind. We presumably 8436 * have an IOCTL hanging out waiting for completion. 8437 * Find it, take down the interface that was coming 8438 * up, and complete the IOCTL with the error noted. 8439 */ 8440 if (!ioctl_aborted) 8441 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8442 if (mp1 != NULL) { 8443 /* 8444 * This might be a result of a DL_NOTE_REPLUMB 8445 * notification. In that case, connp is NULL. 8446 */ 8447 if (connp != NULL) 8448 q = CONNP_TO_WQ(connp); 8449 8450 (void) ipif_down(ipif, NULL, NULL); 8451 /* error is set below the switch */ 8452 } 8453 break; 8454 case DL_ENABMULTI_REQ: 8455 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8456 8457 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8458 ill->ill_dlpi_multicast_state = IDS_FAILED; 8459 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8460 8461 printf("ip: joining multicasts failed (%d)" 8462 " on %s - will use link layer " 8463 "broadcasts for multicast\n", 8464 dlea->dl_errno, ill->ill_name); 8465 8466 /* 8467 * Set up for multi_bcast; We are the 8468 * writer, so ok to access ill->ill_ipif 8469 * without any lock. 8470 */ 8471 mutex_enter(&ill->ill_phyint->phyint_lock); 8472 ill->ill_phyint->phyint_flags |= 8473 PHYI_MULTI_BCAST; 8474 mutex_exit(&ill->ill_phyint->phyint_lock); 8475 8476 } 8477 freemsg(mp); /* Don't want to pass this up */ 8478 return; 8479 case DL_CAPABILITY_REQ: 8480 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8481 "DL_CAPABILITY REQ\n")); 8482 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8483 ill->ill_dlpi_capab_state = IDCS_FAILED; 8484 ill_capability_done(ill); 8485 freemsg(mp); 8486 return; 8487 } 8488 /* 8489 * Note the error for IOCTL completion (mp1 is set when 8490 * ready to complete ioctl). If ill_ifname_pending_err is 8491 * set, an error occured during plumbing (ill_ifname_pending), 8492 * so we want to report that error. 8493 * 8494 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8495 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8496 * expected to get errack'd if the driver doesn't support 8497 * these flags (e.g. ethernet). log will be set to B_FALSE 8498 * if these error conditions are encountered. 8499 */ 8500 if (mp1 != NULL) { 8501 if (ill->ill_ifname_pending_err != 0) { 8502 err = ill->ill_ifname_pending_err; 8503 ill->ill_ifname_pending_err = 0; 8504 } else { 8505 err = dlea->dl_unix_errno ? 8506 dlea->dl_unix_errno : ENXIO; 8507 } 8508 /* 8509 * If we're plumbing an interface and an error hasn't already 8510 * been saved, set ill_ifname_pending_err to the error passed 8511 * up. Ignore the error if log is B_FALSE (see comment above). 8512 */ 8513 } else if (log && ill->ill_ifname_pending && 8514 ill->ill_ifname_pending_err == 0) { 8515 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8516 dlea->dl_unix_errno : ENXIO; 8517 } 8518 8519 if (log) 8520 ip_dlpi_error(ill, dlea->dl_error_primitive, 8521 dlea->dl_errno, dlea->dl_unix_errno); 8522 break; 8523 case DL_CAPABILITY_ACK: 8524 ill_capability_ack(ill, mp); 8525 /* 8526 * The message has been handed off to ill_capability_ack 8527 * and must not be freed below 8528 */ 8529 mp = NULL; 8530 break; 8531 8532 case DL_INFO_ACK: 8533 /* Call a routine to handle this one. */ 8534 ill_dlpi_done(ill, DL_INFO_REQ); 8535 ip_ll_subnet_defaults(ill, mp); 8536 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8537 return; 8538 case DL_BIND_ACK: 8539 /* 8540 * We should have an IOCTL waiting on this unless 8541 * sent by ill_dl_phys, in which case just return 8542 */ 8543 ill_dlpi_done(ill, DL_BIND_REQ); 8544 if (ill->ill_ifname_pending) { 8545 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8546 ill_t *, ill, mblk_t *, mp); 8547 break; 8548 } 8549 if (!ioctl_aborted) 8550 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8551 if (mp1 == NULL) { 8552 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8553 break; 8554 } 8555 /* 8556 * mp1 was added by ill_dl_up(). if that is a result of 8557 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8558 */ 8559 if (connp != NULL) 8560 q = CONNP_TO_WQ(connp); 8561 /* 8562 * We are exclusive. So nothing can change even after 8563 * we get the pending mp. 8564 */ 8565 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8566 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8567 8568 mutex_enter(&ill->ill_lock); 8569 ill->ill_dl_up = 1; 8570 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8571 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8572 mutex_exit(&ill->ill_lock); 8573 8574 /* 8575 * Now bring up the resolver; when that is complete, we'll 8576 * create IREs. Note that we intentionally mirror what 8577 * ipif_up() would have done, because we got here by way of 8578 * ill_dl_up(), which stopped ipif_up()'s processing. 8579 */ 8580 if (ill->ill_isv6) { 8581 /* 8582 * v6 interfaces. 8583 * Unlike ARP which has to do another bind 8584 * and attach, once we get here we are 8585 * done with NDP 8586 */ 8587 (void) ipif_resolver_up(ipif, Res_act_initial); 8588 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8589 err = ipif_up_done_v6(ipif); 8590 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8591 /* 8592 * ARP and other v4 external resolvers. 8593 * Leave the pending mblk intact so that 8594 * the ioctl completes in ip_rput(). 8595 */ 8596 if (connp != NULL) 8597 mutex_enter(&connp->conn_lock); 8598 mutex_enter(&ill->ill_lock); 8599 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8600 mutex_exit(&ill->ill_lock); 8601 if (connp != NULL) 8602 mutex_exit(&connp->conn_lock); 8603 if (success) { 8604 err = ipif_resolver_up(ipif, Res_act_initial); 8605 if (err == EINPROGRESS) { 8606 freemsg(mp); 8607 return; 8608 } 8609 ASSERT(arp_no_defense || err != 0); 8610 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8611 } else { 8612 /* The conn has started closing */ 8613 err = EINTR; 8614 } 8615 } else { 8616 /* 8617 * This one is complete. Reply to pending ioctl. 8618 */ 8619 (void) ipif_resolver_up(ipif, Res_act_initial); 8620 err = ipif_up_done(ipif); 8621 } 8622 8623 if ((err == 0) && (ill->ill_up_ipifs)) { 8624 err = ill_up_ipifs(ill, q, mp1); 8625 if (err == EINPROGRESS) { 8626 freemsg(mp); 8627 return; 8628 } 8629 } 8630 8631 /* 8632 * If we have a moved ipif to bring up, and everything has 8633 * succeeded to this point, bring it up on the IPMP ill. 8634 * Otherwise, leave it down -- the admin can try to bring it 8635 * up by hand if need be. 8636 */ 8637 if (ill->ill_move_ipif != NULL) { 8638 if (err != 0) { 8639 ill->ill_move_ipif = NULL; 8640 } else { 8641 ipif = ill->ill_move_ipif; 8642 ill->ill_move_ipif = NULL; 8643 err = ipif_up(ipif, q, mp1); 8644 if (err == EINPROGRESS) { 8645 freemsg(mp); 8646 return; 8647 } 8648 } 8649 } 8650 break; 8651 8652 case DL_NOTIFY_IND: { 8653 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8654 uint_t orig_mtu; 8655 8656 switch (notify->dl_notification) { 8657 case DL_NOTE_PHYS_ADDR: 8658 err = ill_set_phys_addr(ill, mp); 8659 break; 8660 8661 case DL_NOTE_REPLUMB: 8662 /* 8663 * Directly return after calling ill_replumb(). 8664 * Note that we should not free mp as it is reused 8665 * in the ill_replumb() function. 8666 */ 8667 err = ill_replumb(ill, mp); 8668 return; 8669 8670 case DL_NOTE_FASTPATH_FLUSH: 8671 nce_flush(ill, B_FALSE); 8672 break; 8673 8674 case DL_NOTE_SDU_SIZE: 8675 /* 8676 * The dce and fragmentation code can cope with 8677 * this changing while packets are being sent. 8678 * When packets are sent ip_output will discover 8679 * a change. 8680 * 8681 * Change the MTU size of the interface. 8682 */ 8683 mutex_enter(&ill->ill_lock); 8684 ill->ill_current_frag = (uint_t)notify->dl_data; 8685 if (ill->ill_current_frag > ill->ill_max_frag) 8686 ill->ill_max_frag = ill->ill_current_frag; 8687 8688 orig_mtu = ill->ill_mtu; 8689 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8690 ill->ill_mtu = ill->ill_current_frag; 8691 8692 /* 8693 * If ill_user_mtu was set (via 8694 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8695 */ 8696 if (ill->ill_user_mtu != 0 && 8697 ill->ill_user_mtu < ill->ill_mtu) 8698 ill->ill_mtu = ill->ill_user_mtu; 8699 8700 if (ill->ill_isv6) { 8701 if (ill->ill_mtu < IPV6_MIN_MTU) 8702 ill->ill_mtu = IPV6_MIN_MTU; 8703 } else { 8704 if (ill->ill_mtu < IP_MIN_MTU) 8705 ill->ill_mtu = IP_MIN_MTU; 8706 } 8707 } 8708 mutex_exit(&ill->ill_lock); 8709 /* 8710 * Make sure all dce_generation checks find out 8711 * that ill_mtu has changed. 8712 */ 8713 if (orig_mtu != ill->ill_mtu) { 8714 dce_increment_all_generations(ill->ill_isv6, 8715 ill->ill_ipst); 8716 } 8717 8718 /* 8719 * Refresh IPMP meta-interface MTU if necessary. 8720 */ 8721 if (IS_UNDER_IPMP(ill)) 8722 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8723 break; 8724 8725 case DL_NOTE_LINK_UP: 8726 case DL_NOTE_LINK_DOWN: { 8727 /* 8728 * We are writer. ill / phyint / ipsq assocs stable. 8729 * The RUNNING flag reflects the state of the link. 8730 */ 8731 phyint_t *phyint = ill->ill_phyint; 8732 uint64_t new_phyint_flags; 8733 boolean_t changed = B_FALSE; 8734 boolean_t went_up; 8735 8736 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8737 mutex_enter(&phyint->phyint_lock); 8738 8739 new_phyint_flags = went_up ? 8740 phyint->phyint_flags | PHYI_RUNNING : 8741 phyint->phyint_flags & ~PHYI_RUNNING; 8742 8743 if (IS_IPMP(ill)) { 8744 new_phyint_flags = went_up ? 8745 new_phyint_flags & ~PHYI_FAILED : 8746 new_phyint_flags | PHYI_FAILED; 8747 } 8748 8749 if (new_phyint_flags != phyint->phyint_flags) { 8750 phyint->phyint_flags = new_phyint_flags; 8751 changed = B_TRUE; 8752 } 8753 mutex_exit(&phyint->phyint_lock); 8754 /* 8755 * ill_restart_dad handles the DAD restart and routing 8756 * socket notification logic. 8757 */ 8758 if (changed) { 8759 ill_restart_dad(phyint->phyint_illv4, went_up); 8760 ill_restart_dad(phyint->phyint_illv6, went_up); 8761 } 8762 break; 8763 } 8764 case DL_NOTE_PROMISC_ON_PHYS: { 8765 phyint_t *phyint = ill->ill_phyint; 8766 8767 mutex_enter(&phyint->phyint_lock); 8768 phyint->phyint_flags |= PHYI_PROMISC; 8769 mutex_exit(&phyint->phyint_lock); 8770 break; 8771 } 8772 case DL_NOTE_PROMISC_OFF_PHYS: { 8773 phyint_t *phyint = ill->ill_phyint; 8774 8775 mutex_enter(&phyint->phyint_lock); 8776 phyint->phyint_flags &= ~PHYI_PROMISC; 8777 mutex_exit(&phyint->phyint_lock); 8778 break; 8779 } 8780 case DL_NOTE_CAPAB_RENEG: 8781 /* 8782 * Something changed on the driver side. 8783 * It wants us to renegotiate the capabilities 8784 * on this ill. One possible cause is the aggregation 8785 * interface under us where a port got added or 8786 * went away. 8787 * 8788 * If the capability negotiation is already done 8789 * or is in progress, reset the capabilities and 8790 * mark the ill's ill_capab_reneg to be B_TRUE, 8791 * so that when the ack comes back, we can start 8792 * the renegotiation process. 8793 * 8794 * Note that if ill_capab_reneg is already B_TRUE 8795 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8796 * the capability resetting request has been sent 8797 * and the renegotiation has not been started yet; 8798 * nothing needs to be done in this case. 8799 */ 8800 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8801 ill_capability_reset(ill, B_TRUE); 8802 ipsq_current_finish(ipsq); 8803 break; 8804 default: 8805 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8806 "type 0x%x for DL_NOTIFY_IND\n", 8807 notify->dl_notification)); 8808 break; 8809 } 8810 8811 /* 8812 * As this is an asynchronous operation, we 8813 * should not call ill_dlpi_done 8814 */ 8815 break; 8816 } 8817 case DL_NOTIFY_ACK: { 8818 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8819 8820 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8821 ill->ill_note_link = 1; 8822 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8823 break; 8824 } 8825 case DL_PHYS_ADDR_ACK: { 8826 /* 8827 * As part of plumbing the interface via SIOCSLIFNAME, 8828 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8829 * whose answers we receive here. As each answer is received, 8830 * we call ill_dlpi_done() to dispatch the next request as 8831 * we're processing the current one. Once all answers have 8832 * been received, we use ipsq_pending_mp_get() to dequeue the 8833 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8834 * is invoked from an ill queue, conn_oper_pending_ill is not 8835 * available, but we know the ioctl is pending on ill_wq.) 8836 */ 8837 uint_t paddrlen, paddroff; 8838 uint8_t *addr; 8839 8840 paddrreq = ill->ill_phys_addr_pend; 8841 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8842 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8843 addr = mp->b_rptr + paddroff; 8844 8845 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8846 if (paddrreq == DL_IPV6_TOKEN) { 8847 /* 8848 * bcopy to low-order bits of ill_token 8849 * 8850 * XXX Temporary hack - currently, all known tokens 8851 * are 64 bits, so I'll cheat for the moment. 8852 */ 8853 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8854 ill->ill_token_length = paddrlen; 8855 break; 8856 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8857 ASSERT(ill->ill_nd_lla_mp == NULL); 8858 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8859 mp = NULL; 8860 break; 8861 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8862 ASSERT(ill->ill_dest_addr_mp == NULL); 8863 ill->ill_dest_addr_mp = mp; 8864 ill->ill_dest_addr = addr; 8865 mp = NULL; 8866 if (ill->ill_isv6) { 8867 ill_setdesttoken(ill); 8868 ipif_setdestlinklocal(ill->ill_ipif); 8869 } 8870 break; 8871 } 8872 8873 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8874 ASSERT(ill->ill_phys_addr_mp == NULL); 8875 if (!ill->ill_ifname_pending) 8876 break; 8877 ill->ill_ifname_pending = 0; 8878 if (!ioctl_aborted) 8879 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8880 if (mp1 != NULL) { 8881 ASSERT(connp == NULL); 8882 q = ill->ill_wq; 8883 } 8884 /* 8885 * If any error acks received during the plumbing sequence, 8886 * ill_ifname_pending_err will be set. Break out and send up 8887 * the error to the pending ioctl. 8888 */ 8889 if (ill->ill_ifname_pending_err != 0) { 8890 err = ill->ill_ifname_pending_err; 8891 ill->ill_ifname_pending_err = 0; 8892 break; 8893 } 8894 8895 ill->ill_phys_addr_mp = mp; 8896 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8897 mp = NULL; 8898 8899 /* 8900 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8901 * provider doesn't support physical addresses. We check both 8902 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8903 * not have physical addresses, but historically adversises a 8904 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8905 * its DL_PHYS_ADDR_ACK. 8906 */ 8907 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8908 ill->ill_phys_addr = NULL; 8909 } else if (paddrlen != ill->ill_phys_addr_length) { 8910 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8911 paddrlen, ill->ill_phys_addr_length)); 8912 err = EINVAL; 8913 break; 8914 } 8915 8916 if (ill->ill_nd_lla_mp == NULL) { 8917 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8918 err = ENOMEM; 8919 break; 8920 } 8921 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8922 } 8923 8924 if (ill->ill_isv6) { 8925 ill_setdefaulttoken(ill); 8926 ipif_setlinklocal(ill->ill_ipif); 8927 } 8928 break; 8929 } 8930 case DL_OK_ACK: 8931 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8932 dl_primstr((int)dloa->dl_correct_primitive), 8933 dloa->dl_correct_primitive)); 8934 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8935 char *, dl_primstr(dloa->dl_correct_primitive), 8936 ill_t *, ill); 8937 8938 switch (dloa->dl_correct_primitive) { 8939 case DL_ENABMULTI_REQ: 8940 case DL_DISABMULTI_REQ: 8941 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8942 break; 8943 case DL_PROMISCON_REQ: 8944 case DL_PROMISCOFF_REQ: 8945 case DL_UNBIND_REQ: 8946 case DL_ATTACH_REQ: 8947 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8948 break; 8949 } 8950 break; 8951 default: 8952 break; 8953 } 8954 8955 freemsg(mp); 8956 if (mp1 == NULL) 8957 return; 8958 8959 /* 8960 * The operation must complete without EINPROGRESS since 8961 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8962 * the operation will be stuck forever inside the IPSQ. 8963 */ 8964 ASSERT(err != EINPROGRESS); 8965 8966 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8967 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8968 ipif_t *, NULL); 8969 8970 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8971 case 0: 8972 ipsq_current_finish(ipsq); 8973 break; 8974 8975 case SIOCSLIFNAME: 8976 case IF_UNITSEL: { 8977 ill_t *ill_other = ILL_OTHER(ill); 8978 8979 /* 8980 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8981 * ill has a peer which is in an IPMP group, then place ill 8982 * into the same group. One catch: although ifconfig plumbs 8983 * the appropriate IPMP meta-interface prior to plumbing this 8984 * ill, it is possible for multiple ifconfig applications to 8985 * race (or for another application to adjust plumbing), in 8986 * which case the IPMP meta-interface we need will be missing. 8987 * If so, kick the phyint out of the group. 8988 */ 8989 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8990 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8991 ipmp_illgrp_t *illg; 8992 8993 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8994 if (illg == NULL) 8995 ipmp_phyint_leave_grp(ill->ill_phyint); 8996 else 8997 ipmp_ill_join_illgrp(ill, illg); 8998 } 8999 9000 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 9001 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 9002 else 9003 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 9004 break; 9005 } 9006 case SIOCLIFADDIF: 9007 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 9008 break; 9009 9010 default: 9011 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 9012 break; 9013 } 9014 } 9015 9016 /* 9017 * ip_rput_other is called by ip_rput to handle messages modifying the global 9018 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 9019 */ 9020 /* ARGSUSED */ 9021 void 9022 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9023 { 9024 ill_t *ill = q->q_ptr; 9025 struct iocblk *iocp; 9026 9027 ip1dbg(("ip_rput_other ")); 9028 if (ipsq != NULL) { 9029 ASSERT(IAM_WRITER_IPSQ(ipsq)); 9030 ASSERT(ipsq->ipsq_xop == 9031 ill->ill_phyint->phyint_ipsq->ipsq_xop); 9032 } 9033 9034 switch (mp->b_datap->db_type) { 9035 case M_ERROR: 9036 case M_HANGUP: 9037 /* 9038 * The device has a problem. We force the ILL down. It can 9039 * be brought up again manually using SIOCSIFFLAGS (via 9040 * ifconfig or equivalent). 9041 */ 9042 ASSERT(ipsq != NULL); 9043 if (mp->b_rptr < mp->b_wptr) 9044 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 9045 if (ill->ill_error == 0) 9046 ill->ill_error = ENXIO; 9047 if (!ill_down_start(q, mp)) 9048 return; 9049 ipif_all_down_tail(ipsq, q, mp, NULL); 9050 break; 9051 case M_IOCNAK: { 9052 iocp = (struct iocblk *)mp->b_rptr; 9053 9054 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 9055 /* 9056 * If this was the first attempt, turn off the fastpath 9057 * probing. 9058 */ 9059 mutex_enter(&ill->ill_lock); 9060 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 9061 ill->ill_dlpi_fastpath_state = IDS_FAILED; 9062 mutex_exit(&ill->ill_lock); 9063 /* 9064 * don't flush the nce_t entries: we use them 9065 * as an index to the ncec itself. 9066 */ 9067 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 9068 ill->ill_name)); 9069 } else { 9070 mutex_exit(&ill->ill_lock); 9071 } 9072 freemsg(mp); 9073 break; 9074 } 9075 default: 9076 ASSERT(0); 9077 break; 9078 } 9079 } 9080 9081 /* 9082 * Update any source route, record route or timestamp options 9083 * When it fails it has consumed the message and BUMPed the MIB. 9084 */ 9085 boolean_t 9086 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 9087 ip_recv_attr_t *ira) 9088 { 9089 ipoptp_t opts; 9090 uchar_t *opt; 9091 uint8_t optval; 9092 uint8_t optlen; 9093 ipaddr_t dst; 9094 ipaddr_t ifaddr; 9095 uint32_t ts; 9096 timestruc_t now; 9097 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9098 9099 ip2dbg(("ip_forward_options\n")); 9100 dst = ipha->ipha_dst; 9101 for (optval = ipoptp_first(&opts, ipha); 9102 optval != IPOPT_EOL; 9103 optval = ipoptp_next(&opts)) { 9104 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9105 opt = opts.ipoptp_cur; 9106 optlen = opts.ipoptp_len; 9107 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9108 optval, opts.ipoptp_len)); 9109 switch (optval) { 9110 uint32_t off; 9111 case IPOPT_SSRR: 9112 case IPOPT_LSRR: 9113 /* Check if adminstratively disabled */ 9114 if (!ipst->ips_ip_forward_src_routed) { 9115 BUMP_MIB(dst_ill->ill_ip_mib, 9116 ipIfStatsForwProhibits); 9117 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9118 mp, dst_ill); 9119 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9120 ira); 9121 return (B_FALSE); 9122 } 9123 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9124 /* 9125 * Must be partial since ip_input_options 9126 * checked for strict. 9127 */ 9128 break; 9129 } 9130 off = opt[IPOPT_OFFSET]; 9131 off--; 9132 redo_srr: 9133 if (optlen < IP_ADDR_LEN || 9134 off > optlen - IP_ADDR_LEN) { 9135 /* End of source route */ 9136 ip1dbg(( 9137 "ip_forward_options: end of SR\n")); 9138 break; 9139 } 9140 /* Pick a reasonable address on the outbound if */ 9141 ASSERT(dst_ill != NULL); 9142 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9143 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9144 NULL) != 0) { 9145 /* No source! Shouldn't happen */ 9146 ifaddr = INADDR_ANY; 9147 } 9148 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9149 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9150 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9151 ntohl(dst))); 9152 9153 /* 9154 * Check if our address is present more than 9155 * once as consecutive hops in source route. 9156 */ 9157 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9158 off += IP_ADDR_LEN; 9159 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9160 goto redo_srr; 9161 } 9162 ipha->ipha_dst = dst; 9163 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9164 break; 9165 case IPOPT_RR: 9166 off = opt[IPOPT_OFFSET]; 9167 off--; 9168 if (optlen < IP_ADDR_LEN || 9169 off > optlen - IP_ADDR_LEN) { 9170 /* No more room - ignore */ 9171 ip1dbg(( 9172 "ip_forward_options: end of RR\n")); 9173 break; 9174 } 9175 /* Pick a reasonable address on the outbound if */ 9176 ASSERT(dst_ill != NULL); 9177 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9178 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9179 NULL) != 0) { 9180 /* No source! Shouldn't happen */ 9181 ifaddr = INADDR_ANY; 9182 } 9183 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9184 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9185 break; 9186 case IPOPT_TS: 9187 /* Insert timestamp if there is room */ 9188 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9189 case IPOPT_TS_TSONLY: 9190 off = IPOPT_TS_TIMELEN; 9191 break; 9192 case IPOPT_TS_PRESPEC: 9193 case IPOPT_TS_PRESPEC_RFC791: 9194 /* Verify that the address matched */ 9195 off = opt[IPOPT_OFFSET] - 1; 9196 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9197 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9198 /* Not for us */ 9199 break; 9200 } 9201 /* FALLTHRU */ 9202 case IPOPT_TS_TSANDADDR: 9203 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9204 break; 9205 default: 9206 /* 9207 * ip_*put_options should have already 9208 * dropped this packet. 9209 */ 9210 cmn_err(CE_PANIC, "ip_forward_options: " 9211 "unknown IT - bug in ip_input_options?\n"); 9212 return (B_TRUE); /* Keep "lint" happy */ 9213 } 9214 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9215 /* Increase overflow counter */ 9216 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9217 opt[IPOPT_POS_OV_FLG] = 9218 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9219 (off << 4)); 9220 break; 9221 } 9222 off = opt[IPOPT_OFFSET] - 1; 9223 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9224 case IPOPT_TS_PRESPEC: 9225 case IPOPT_TS_PRESPEC_RFC791: 9226 case IPOPT_TS_TSANDADDR: 9227 /* Pick a reasonable addr on the outbound if */ 9228 ASSERT(dst_ill != NULL); 9229 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9230 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9231 NULL, NULL) != 0) { 9232 /* No source! Shouldn't happen */ 9233 ifaddr = INADDR_ANY; 9234 } 9235 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9236 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9237 /* FALLTHRU */ 9238 case IPOPT_TS_TSONLY: 9239 off = opt[IPOPT_OFFSET] - 1; 9240 /* Compute # of milliseconds since midnight */ 9241 gethrestime(&now); 9242 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9243 now.tv_nsec / (NANOSEC / MILLISEC); 9244 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9245 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9246 break; 9247 } 9248 break; 9249 } 9250 } 9251 return (B_TRUE); 9252 } 9253 9254 /* 9255 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9256 * returns 'true' if there are still fragments left on the queue, in 9257 * which case we restart the timer. 9258 */ 9259 void 9260 ill_frag_timer(void *arg) 9261 { 9262 ill_t *ill = (ill_t *)arg; 9263 boolean_t frag_pending; 9264 ip_stack_t *ipst = ill->ill_ipst; 9265 time_t timeout; 9266 9267 mutex_enter(&ill->ill_lock); 9268 ASSERT(!ill->ill_fragtimer_executing); 9269 if (ill->ill_state_flags & ILL_CONDEMNED) { 9270 ill->ill_frag_timer_id = 0; 9271 mutex_exit(&ill->ill_lock); 9272 return; 9273 } 9274 ill->ill_fragtimer_executing = 1; 9275 mutex_exit(&ill->ill_lock); 9276 9277 if (ill->ill_isv6) 9278 timeout = ipst->ips_ipv6_frag_timeout; 9279 else 9280 timeout = ipst->ips_ip_g_frag_timeout; 9281 9282 frag_pending = ill_frag_timeout(ill, timeout); 9283 9284 /* 9285 * Restart the timer, if we have fragments pending or if someone 9286 * wanted us to be scheduled again. 9287 */ 9288 mutex_enter(&ill->ill_lock); 9289 ill->ill_fragtimer_executing = 0; 9290 ill->ill_frag_timer_id = 0; 9291 if (frag_pending || ill->ill_fragtimer_needrestart) 9292 ill_frag_timer_start(ill); 9293 mutex_exit(&ill->ill_lock); 9294 } 9295 9296 void 9297 ill_frag_timer_start(ill_t *ill) 9298 { 9299 ip_stack_t *ipst = ill->ill_ipst; 9300 clock_t timeo_ms; 9301 9302 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9303 9304 /* If the ill is closing or opening don't proceed */ 9305 if (ill->ill_state_flags & ILL_CONDEMNED) 9306 return; 9307 9308 if (ill->ill_fragtimer_executing) { 9309 /* 9310 * ill_frag_timer is currently executing. Just record the 9311 * the fact that we want the timer to be restarted. 9312 * ill_frag_timer will post a timeout before it returns, 9313 * ensuring it will be called again. 9314 */ 9315 ill->ill_fragtimer_needrestart = 1; 9316 return; 9317 } 9318 9319 if (ill->ill_frag_timer_id == 0) { 9320 if (ill->ill_isv6) 9321 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 9322 else 9323 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 9324 /* 9325 * The timer is neither running nor is the timeout handler 9326 * executing. Post a timeout so that ill_frag_timer will be 9327 * called 9328 */ 9329 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9330 MSEC_TO_TICK(timeo_ms >> 1)); 9331 ill->ill_fragtimer_needrestart = 0; 9332 } 9333 } 9334 9335 /* 9336 * Update any source route, record route or timestamp options. 9337 * Check that we are at end of strict source route. 9338 * The options have already been checked for sanity in ip_input_options(). 9339 */ 9340 boolean_t 9341 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9342 { 9343 ipoptp_t opts; 9344 uchar_t *opt; 9345 uint8_t optval; 9346 uint8_t optlen; 9347 ipaddr_t dst; 9348 ipaddr_t ifaddr; 9349 uint32_t ts; 9350 timestruc_t now; 9351 ill_t *ill = ira->ira_ill; 9352 ip_stack_t *ipst = ill->ill_ipst; 9353 9354 ip2dbg(("ip_input_local_options\n")); 9355 9356 for (optval = ipoptp_first(&opts, ipha); 9357 optval != IPOPT_EOL; 9358 optval = ipoptp_next(&opts)) { 9359 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9360 opt = opts.ipoptp_cur; 9361 optlen = opts.ipoptp_len; 9362 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9363 optval, optlen)); 9364 switch (optval) { 9365 uint32_t off; 9366 case IPOPT_SSRR: 9367 case IPOPT_LSRR: 9368 off = opt[IPOPT_OFFSET]; 9369 off--; 9370 if (optlen < IP_ADDR_LEN || 9371 off > optlen - IP_ADDR_LEN) { 9372 /* End of source route */ 9373 ip1dbg(("ip_input_local_options: end of SR\n")); 9374 break; 9375 } 9376 /* 9377 * This will only happen if two consecutive entries 9378 * in the source route contains our address or if 9379 * it is a packet with a loose source route which 9380 * reaches us before consuming the whole source route 9381 */ 9382 ip1dbg(("ip_input_local_options: not end of SR\n")); 9383 if (optval == IPOPT_SSRR) { 9384 goto bad_src_route; 9385 } 9386 /* 9387 * Hack: instead of dropping the packet truncate the 9388 * source route to what has been used by filling the 9389 * rest with IPOPT_NOP. 9390 */ 9391 opt[IPOPT_OLEN] = (uint8_t)off; 9392 while (off < optlen) { 9393 opt[off++] = IPOPT_NOP; 9394 } 9395 break; 9396 case IPOPT_RR: 9397 off = opt[IPOPT_OFFSET]; 9398 off--; 9399 if (optlen < IP_ADDR_LEN || 9400 off > optlen - IP_ADDR_LEN) { 9401 /* No more room - ignore */ 9402 ip1dbg(( 9403 "ip_input_local_options: end of RR\n")); 9404 break; 9405 } 9406 /* Pick a reasonable address on the outbound if */ 9407 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9408 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9409 NULL) != 0) { 9410 /* No source! Shouldn't happen */ 9411 ifaddr = INADDR_ANY; 9412 } 9413 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9414 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9415 break; 9416 case IPOPT_TS: 9417 /* Insert timestamp if there is romm */ 9418 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9419 case IPOPT_TS_TSONLY: 9420 off = IPOPT_TS_TIMELEN; 9421 break; 9422 case IPOPT_TS_PRESPEC: 9423 case IPOPT_TS_PRESPEC_RFC791: 9424 /* Verify that the address matched */ 9425 off = opt[IPOPT_OFFSET] - 1; 9426 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9427 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9428 /* Not for us */ 9429 break; 9430 } 9431 /* FALLTHRU */ 9432 case IPOPT_TS_TSANDADDR: 9433 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9434 break; 9435 default: 9436 /* 9437 * ip_*put_options should have already 9438 * dropped this packet. 9439 */ 9440 cmn_err(CE_PANIC, "ip_input_local_options: " 9441 "unknown IT - bug in ip_input_options?\n"); 9442 return (B_TRUE); /* Keep "lint" happy */ 9443 } 9444 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9445 /* Increase overflow counter */ 9446 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9447 opt[IPOPT_POS_OV_FLG] = 9448 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9449 (off << 4)); 9450 break; 9451 } 9452 off = opt[IPOPT_OFFSET] - 1; 9453 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9454 case IPOPT_TS_PRESPEC: 9455 case IPOPT_TS_PRESPEC_RFC791: 9456 case IPOPT_TS_TSANDADDR: 9457 /* Pick a reasonable addr on the outbound if */ 9458 if (ip_select_source_v4(ill, INADDR_ANY, 9459 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9460 &ifaddr, NULL, NULL) != 0) { 9461 /* No source! Shouldn't happen */ 9462 ifaddr = INADDR_ANY; 9463 } 9464 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9465 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9466 /* FALLTHRU */ 9467 case IPOPT_TS_TSONLY: 9468 off = opt[IPOPT_OFFSET] - 1; 9469 /* Compute # of milliseconds since midnight */ 9470 gethrestime(&now); 9471 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9472 now.tv_nsec / (NANOSEC / MILLISEC); 9473 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9474 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9475 break; 9476 } 9477 break; 9478 } 9479 } 9480 return (B_TRUE); 9481 9482 bad_src_route: 9483 /* make sure we clear any indication of a hardware checksum */ 9484 DB_CKSUMFLAGS(mp) = 0; 9485 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9486 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9487 return (B_FALSE); 9488 9489 } 9490 9491 /* 9492 * Process IP options in an inbound packet. Always returns the nexthop. 9493 * Normally this is the passed in nexthop, but if there is an option 9494 * that effects the nexthop (such as a source route) that will be returned. 9495 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9496 * and mp freed. 9497 */ 9498 ipaddr_t 9499 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9500 ip_recv_attr_t *ira, int *errorp) 9501 { 9502 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9503 ipoptp_t opts; 9504 uchar_t *opt; 9505 uint8_t optval; 9506 uint8_t optlen; 9507 intptr_t code = 0; 9508 ire_t *ire; 9509 9510 ip2dbg(("ip_input_options\n")); 9511 *errorp = 0; 9512 for (optval = ipoptp_first(&opts, ipha); 9513 optval != IPOPT_EOL; 9514 optval = ipoptp_next(&opts)) { 9515 opt = opts.ipoptp_cur; 9516 optlen = opts.ipoptp_len; 9517 ip2dbg(("ip_input_options: opt %d, len %d\n", 9518 optval, optlen)); 9519 /* 9520 * Note: we need to verify the checksum before we 9521 * modify anything thus this routine only extracts the next 9522 * hop dst from any source route. 9523 */ 9524 switch (optval) { 9525 uint32_t off; 9526 case IPOPT_SSRR: 9527 case IPOPT_LSRR: 9528 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9529 if (optval == IPOPT_SSRR) { 9530 ip1dbg(("ip_input_options: not next" 9531 " strict source route 0x%x\n", 9532 ntohl(dst))); 9533 code = (char *)&ipha->ipha_dst - 9534 (char *)ipha; 9535 goto param_prob; /* RouterReq's */ 9536 } 9537 ip2dbg(("ip_input_options: " 9538 "not next source route 0x%x\n", 9539 ntohl(dst))); 9540 break; 9541 } 9542 9543 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9544 ip1dbg(( 9545 "ip_input_options: bad option offset\n")); 9546 code = (char *)&opt[IPOPT_OLEN] - 9547 (char *)ipha; 9548 goto param_prob; 9549 } 9550 off = opt[IPOPT_OFFSET]; 9551 off--; 9552 redo_srr: 9553 if (optlen < IP_ADDR_LEN || 9554 off > optlen - IP_ADDR_LEN) { 9555 /* End of source route */ 9556 ip1dbg(("ip_input_options: end of SR\n")); 9557 break; 9558 } 9559 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9560 ip1dbg(("ip_input_options: next hop 0x%x\n", 9561 ntohl(dst))); 9562 9563 /* 9564 * Check if our address is present more than 9565 * once as consecutive hops in source route. 9566 * XXX verify per-interface ip_forwarding 9567 * for source route? 9568 */ 9569 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9570 off += IP_ADDR_LEN; 9571 goto redo_srr; 9572 } 9573 9574 if (dst == htonl(INADDR_LOOPBACK)) { 9575 ip1dbg(("ip_input_options: loopback addr in " 9576 "source route!\n")); 9577 goto bad_src_route; 9578 } 9579 /* 9580 * For strict: verify that dst is directly 9581 * reachable. 9582 */ 9583 if (optval == IPOPT_SSRR) { 9584 ire = ire_ftable_lookup_v4(dst, 0, 0, 9585 IRE_IF_ALL, NULL, ALL_ZONES, 9586 ira->ira_tsl, 9587 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9588 NULL); 9589 if (ire == NULL) { 9590 ip1dbg(("ip_input_options: SSRR not " 9591 "directly reachable: 0x%x\n", 9592 ntohl(dst))); 9593 goto bad_src_route; 9594 } 9595 ire_refrele(ire); 9596 } 9597 /* 9598 * Defer update of the offset and the record route 9599 * until the packet is forwarded. 9600 */ 9601 break; 9602 case IPOPT_RR: 9603 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9604 ip1dbg(( 9605 "ip_input_options: bad option offset\n")); 9606 code = (char *)&opt[IPOPT_OLEN] - 9607 (char *)ipha; 9608 goto param_prob; 9609 } 9610 break; 9611 case IPOPT_TS: 9612 /* 9613 * Verify that length >= 5 and that there is either 9614 * room for another timestamp or that the overflow 9615 * counter is not maxed out. 9616 */ 9617 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9618 if (optlen < IPOPT_MINLEN_IT) { 9619 goto param_prob; 9620 } 9621 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9622 ip1dbg(( 9623 "ip_input_options: bad option offset\n")); 9624 code = (char *)&opt[IPOPT_OFFSET] - 9625 (char *)ipha; 9626 goto param_prob; 9627 } 9628 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9629 case IPOPT_TS_TSONLY: 9630 off = IPOPT_TS_TIMELEN; 9631 break; 9632 case IPOPT_TS_TSANDADDR: 9633 case IPOPT_TS_PRESPEC: 9634 case IPOPT_TS_PRESPEC_RFC791: 9635 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9636 break; 9637 default: 9638 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9639 (char *)ipha; 9640 goto param_prob; 9641 } 9642 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9643 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9644 /* 9645 * No room and the overflow counter is 15 9646 * already. 9647 */ 9648 goto param_prob; 9649 } 9650 break; 9651 } 9652 } 9653 9654 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9655 return (dst); 9656 } 9657 9658 ip1dbg(("ip_input_options: error processing IP options.")); 9659 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9660 9661 param_prob: 9662 /* make sure we clear any indication of a hardware checksum */ 9663 DB_CKSUMFLAGS(mp) = 0; 9664 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9665 icmp_param_problem(mp, (uint8_t)code, ira); 9666 *errorp = -1; 9667 return (dst); 9668 9669 bad_src_route: 9670 /* make sure we clear any indication of a hardware checksum */ 9671 DB_CKSUMFLAGS(mp) = 0; 9672 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9673 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9674 *errorp = -1; 9675 return (dst); 9676 } 9677 9678 /* 9679 * IP & ICMP info in >=14 msg's ... 9680 * - ip fixed part (mib2_ip_t) 9681 * - icmp fixed part (mib2_icmp_t) 9682 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9683 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9684 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9685 * - ipRouteAttributeTable (ip 102) labeled routes 9686 * - ip multicast membership (ip_member_t) 9687 * - ip multicast source filtering (ip_grpsrc_t) 9688 * - igmp fixed part (struct igmpstat) 9689 * - multicast routing stats (struct mrtstat) 9690 * - multicast routing vifs (array of struct vifctl) 9691 * - multicast routing routes (array of struct mfcctl) 9692 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9693 * One per ill plus one generic 9694 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9695 * One per ill plus one generic 9696 * - ipv6RouteEntry all IPv6 IREs 9697 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9698 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9699 * - ipv6AddrEntry all IPv6 ipifs 9700 * - ipv6 multicast membership (ipv6_member_t) 9701 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9702 * 9703 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9704 * already filled in by the caller. 9705 * Return value of 0 indicates that no messages were sent and caller 9706 * should free mpctl. 9707 */ 9708 int 9709 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 9710 { 9711 ip_stack_t *ipst; 9712 sctp_stack_t *sctps; 9713 9714 if (q->q_next != NULL) { 9715 ipst = ILLQ_TO_IPST(q); 9716 } else { 9717 ipst = CONNQ_TO_IPST(q); 9718 } 9719 ASSERT(ipst != NULL); 9720 sctps = ipst->ips_netstack->netstack_sctp; 9721 9722 if (mpctl == NULL || mpctl->b_cont == NULL) { 9723 return (0); 9724 } 9725 9726 /* 9727 * For the purposes of the (broken) packet shell use 9728 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9729 * to make TCP and UDP appear first in the list of mib items. 9730 * TBD: We could expand this and use it in netstat so that 9731 * the kernel doesn't have to produce large tables (connections, 9732 * routes, etc) when netstat only wants the statistics or a particular 9733 * table. 9734 */ 9735 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9736 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9737 return (1); 9738 } 9739 } 9740 9741 if (level != MIB2_TCP) { 9742 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 9743 return (1); 9744 } 9745 } 9746 9747 if (level != MIB2_UDP) { 9748 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 9749 return (1); 9750 } 9751 } 9752 9753 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9754 ipst)) == NULL) { 9755 return (1); 9756 } 9757 9758 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 9759 return (1); 9760 } 9761 9762 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9763 return (1); 9764 } 9765 9766 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9767 return (1); 9768 } 9769 9770 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9771 return (1); 9772 } 9773 9774 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9775 return (1); 9776 } 9777 9778 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 9779 return (1); 9780 } 9781 9782 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 9783 return (1); 9784 } 9785 9786 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9787 return (1); 9788 } 9789 9790 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9791 return (1); 9792 } 9793 9794 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9795 return (1); 9796 } 9797 9798 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9799 return (1); 9800 } 9801 9802 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9803 return (1); 9804 } 9805 9806 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9807 return (1); 9808 } 9809 9810 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9811 if (mpctl == NULL) 9812 return (1); 9813 9814 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9815 if (mpctl == NULL) 9816 return (1); 9817 9818 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9819 return (1); 9820 } 9821 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9822 return (1); 9823 } 9824 freemsg(mpctl); 9825 return (1); 9826 } 9827 9828 /* Get global (legacy) IPv4 statistics */ 9829 static mblk_t * 9830 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9831 ip_stack_t *ipst) 9832 { 9833 mib2_ip_t old_ip_mib; 9834 struct opthdr *optp; 9835 mblk_t *mp2ctl; 9836 9837 /* 9838 * make a copy of the original message 9839 */ 9840 mp2ctl = copymsg(mpctl); 9841 9842 /* fixed length IP structure... */ 9843 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9844 optp->level = MIB2_IP; 9845 optp->name = 0; 9846 SET_MIB(old_ip_mib.ipForwarding, 9847 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9848 SET_MIB(old_ip_mib.ipDefaultTTL, 9849 (uint32_t)ipst->ips_ip_def_ttl); 9850 SET_MIB(old_ip_mib.ipReasmTimeout, 9851 ipst->ips_ip_g_frag_timeout); 9852 SET_MIB(old_ip_mib.ipAddrEntrySize, 9853 sizeof (mib2_ipAddrEntry_t)); 9854 SET_MIB(old_ip_mib.ipRouteEntrySize, 9855 sizeof (mib2_ipRouteEntry_t)); 9856 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9857 sizeof (mib2_ipNetToMediaEntry_t)); 9858 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9859 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9860 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9861 sizeof (mib2_ipAttributeEntry_t)); 9862 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9863 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9864 9865 /* 9866 * Grab the statistics from the new IP MIB 9867 */ 9868 SET_MIB(old_ip_mib.ipInReceives, 9869 (uint32_t)ipmib->ipIfStatsHCInReceives); 9870 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9871 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9872 SET_MIB(old_ip_mib.ipForwDatagrams, 9873 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9874 SET_MIB(old_ip_mib.ipInUnknownProtos, 9875 ipmib->ipIfStatsInUnknownProtos); 9876 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9877 SET_MIB(old_ip_mib.ipInDelivers, 9878 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9879 SET_MIB(old_ip_mib.ipOutRequests, 9880 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9881 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9882 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9883 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9884 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9885 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9886 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9887 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9888 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9889 9890 /* ipRoutingDiscards is not being used */ 9891 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9892 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9893 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9894 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9895 SET_MIB(old_ip_mib.ipReasmDuplicates, 9896 ipmib->ipIfStatsReasmDuplicates); 9897 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9898 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9899 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9900 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9901 SET_MIB(old_ip_mib.rawipInOverflows, 9902 ipmib->rawipIfStatsInOverflows); 9903 9904 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9905 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9906 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9907 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9908 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9909 ipmib->ipIfStatsOutSwitchIPVersion); 9910 9911 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9912 (int)sizeof (old_ip_mib))) { 9913 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9914 (uint_t)sizeof (old_ip_mib))); 9915 } 9916 9917 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9918 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9919 (int)optp->level, (int)optp->name, (int)optp->len)); 9920 qreply(q, mpctl); 9921 return (mp2ctl); 9922 } 9923 9924 /* Per interface IPv4 statistics */ 9925 static mblk_t * 9926 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9927 { 9928 struct opthdr *optp; 9929 mblk_t *mp2ctl; 9930 ill_t *ill; 9931 ill_walk_context_t ctx; 9932 mblk_t *mp_tail = NULL; 9933 mib2_ipIfStatsEntry_t global_ip_mib; 9934 9935 /* 9936 * Make a copy of the original message 9937 */ 9938 mp2ctl = copymsg(mpctl); 9939 9940 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9941 optp->level = MIB2_IP; 9942 optp->name = MIB2_IP_TRAFFIC_STATS; 9943 /* Include "unknown interface" ip_mib */ 9944 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9945 ipst->ips_ip_mib.ipIfStatsIfIndex = 9946 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9947 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9948 (ipst->ips_ip_g_forward ? 1 : 2)); 9949 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9950 (uint32_t)ipst->ips_ip_def_ttl); 9951 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9952 sizeof (mib2_ipIfStatsEntry_t)); 9953 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9954 sizeof (mib2_ipAddrEntry_t)); 9955 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9956 sizeof (mib2_ipRouteEntry_t)); 9957 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9958 sizeof (mib2_ipNetToMediaEntry_t)); 9959 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9960 sizeof (ip_member_t)); 9961 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9962 sizeof (ip_grpsrc_t)); 9963 9964 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9965 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 9966 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9967 "failed to allocate %u bytes\n", 9968 (uint_t)sizeof (ipst->ips_ip_mib))); 9969 } 9970 9971 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9972 9973 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9974 ill = ILL_START_WALK_V4(&ctx, ipst); 9975 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9976 ill->ill_ip_mib->ipIfStatsIfIndex = 9977 ill->ill_phyint->phyint_ifindex; 9978 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9979 (ipst->ips_ip_g_forward ? 1 : 2)); 9980 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9981 (uint32_t)ipst->ips_ip_def_ttl); 9982 9983 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9984 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9985 (char *)ill->ill_ip_mib, 9986 (int)sizeof (*ill->ill_ip_mib))) { 9987 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9988 "failed to allocate %u bytes\n", 9989 (uint_t)sizeof (*ill->ill_ip_mib))); 9990 } 9991 } 9992 rw_exit(&ipst->ips_ill_g_lock); 9993 9994 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9995 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9996 "level %d, name %d, len %d\n", 9997 (int)optp->level, (int)optp->name, (int)optp->len)); 9998 qreply(q, mpctl); 9999 10000 if (mp2ctl == NULL) 10001 return (NULL); 10002 10003 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 10004 } 10005 10006 /* Global IPv4 ICMP statistics */ 10007 static mblk_t * 10008 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10009 { 10010 struct opthdr *optp; 10011 mblk_t *mp2ctl; 10012 10013 /* 10014 * Make a copy of the original message 10015 */ 10016 mp2ctl = copymsg(mpctl); 10017 10018 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10019 optp->level = MIB2_ICMP; 10020 optp->name = 0; 10021 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 10022 (int)sizeof (ipst->ips_icmp_mib))) { 10023 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 10024 (uint_t)sizeof (ipst->ips_icmp_mib))); 10025 } 10026 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10027 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 10028 (int)optp->level, (int)optp->name, (int)optp->len)); 10029 qreply(q, mpctl); 10030 return (mp2ctl); 10031 } 10032 10033 /* Global IPv4 IGMP statistics */ 10034 static mblk_t * 10035 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10036 { 10037 struct opthdr *optp; 10038 mblk_t *mp2ctl; 10039 10040 /* 10041 * make a copy of the original message 10042 */ 10043 mp2ctl = copymsg(mpctl); 10044 10045 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10046 optp->level = EXPER_IGMP; 10047 optp->name = 0; 10048 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 10049 (int)sizeof (ipst->ips_igmpstat))) { 10050 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 10051 (uint_t)sizeof (ipst->ips_igmpstat))); 10052 } 10053 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10054 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 10055 (int)optp->level, (int)optp->name, (int)optp->len)); 10056 qreply(q, mpctl); 10057 return (mp2ctl); 10058 } 10059 10060 /* Global IPv4 Multicast Routing statistics */ 10061 static mblk_t * 10062 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10063 { 10064 struct opthdr *optp; 10065 mblk_t *mp2ctl; 10066 10067 /* 10068 * make a copy of the original message 10069 */ 10070 mp2ctl = copymsg(mpctl); 10071 10072 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10073 optp->level = EXPER_DVMRP; 10074 optp->name = 0; 10075 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 10076 ip0dbg(("ip_mroute_stats: failed\n")); 10077 } 10078 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10079 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10080 (int)optp->level, (int)optp->name, (int)optp->len)); 10081 qreply(q, mpctl); 10082 return (mp2ctl); 10083 } 10084 10085 /* IPv4 address information */ 10086 static mblk_t * 10087 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10088 { 10089 struct opthdr *optp; 10090 mblk_t *mp2ctl; 10091 mblk_t *mp_tail = NULL; 10092 ill_t *ill; 10093 ipif_t *ipif; 10094 uint_t bitval; 10095 mib2_ipAddrEntry_t mae; 10096 zoneid_t zoneid; 10097 ill_walk_context_t ctx; 10098 10099 /* 10100 * make a copy of the original message 10101 */ 10102 mp2ctl = copymsg(mpctl); 10103 10104 /* ipAddrEntryTable */ 10105 10106 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10107 optp->level = MIB2_IP; 10108 optp->name = MIB2_IP_ADDR; 10109 zoneid = Q_TO_CONN(q)->conn_zoneid; 10110 10111 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10112 ill = ILL_START_WALK_V4(&ctx, ipst); 10113 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10114 for (ipif = ill->ill_ipif; ipif != NULL; 10115 ipif = ipif->ipif_next) { 10116 if (ipif->ipif_zoneid != zoneid && 10117 ipif->ipif_zoneid != ALL_ZONES) 10118 continue; 10119 /* Sum of count from dead IRE_LO* and our current */ 10120 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10121 if (ipif->ipif_ire_local != NULL) { 10122 mae.ipAdEntInfo.ae_ibcnt += 10123 ipif->ipif_ire_local->ire_ib_pkt_count; 10124 } 10125 mae.ipAdEntInfo.ae_obcnt = 0; 10126 mae.ipAdEntInfo.ae_focnt = 0; 10127 10128 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10129 OCTET_LENGTH); 10130 mae.ipAdEntIfIndex.o_length = 10131 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10132 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10133 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10134 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10135 mae.ipAdEntInfo.ae_subnet_len = 10136 ip_mask_to_plen(ipif->ipif_net_mask); 10137 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10138 for (bitval = 1; 10139 bitval && 10140 !(bitval & ipif->ipif_brd_addr); 10141 bitval <<= 1) 10142 noop; 10143 mae.ipAdEntBcastAddr = bitval; 10144 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10145 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10146 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 10147 mae.ipAdEntInfo.ae_broadcast_addr = 10148 ipif->ipif_brd_addr; 10149 mae.ipAdEntInfo.ae_pp_dst_addr = 10150 ipif->ipif_pp_dst_addr; 10151 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10152 ill->ill_flags | ill->ill_phyint->phyint_flags; 10153 mae.ipAdEntRetransmitTime = 10154 ill->ill_reachable_retrans_time; 10155 10156 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10157 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 10158 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10159 "allocate %u bytes\n", 10160 (uint_t)sizeof (mib2_ipAddrEntry_t))); 10161 } 10162 } 10163 } 10164 rw_exit(&ipst->ips_ill_g_lock); 10165 10166 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10167 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10168 (int)optp->level, (int)optp->name, (int)optp->len)); 10169 qreply(q, mpctl); 10170 return (mp2ctl); 10171 } 10172 10173 /* IPv6 address information */ 10174 static mblk_t * 10175 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10176 { 10177 struct opthdr *optp; 10178 mblk_t *mp2ctl; 10179 mblk_t *mp_tail = NULL; 10180 ill_t *ill; 10181 ipif_t *ipif; 10182 mib2_ipv6AddrEntry_t mae6; 10183 zoneid_t zoneid; 10184 ill_walk_context_t ctx; 10185 10186 /* 10187 * make a copy of the original message 10188 */ 10189 mp2ctl = copymsg(mpctl); 10190 10191 /* ipv6AddrEntryTable */ 10192 10193 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10194 optp->level = MIB2_IP6; 10195 optp->name = MIB2_IP6_ADDR; 10196 zoneid = Q_TO_CONN(q)->conn_zoneid; 10197 10198 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10199 ill = ILL_START_WALK_V6(&ctx, ipst); 10200 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10201 for (ipif = ill->ill_ipif; ipif != NULL; 10202 ipif = ipif->ipif_next) { 10203 if (ipif->ipif_zoneid != zoneid && 10204 ipif->ipif_zoneid != ALL_ZONES) 10205 continue; 10206 /* Sum of count from dead IRE_LO* and our current */ 10207 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10208 if (ipif->ipif_ire_local != NULL) { 10209 mae6.ipv6AddrInfo.ae_ibcnt += 10210 ipif->ipif_ire_local->ire_ib_pkt_count; 10211 } 10212 mae6.ipv6AddrInfo.ae_obcnt = 0; 10213 mae6.ipv6AddrInfo.ae_focnt = 0; 10214 10215 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10216 OCTET_LENGTH); 10217 mae6.ipv6AddrIfIndex.o_length = 10218 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10219 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10220 mae6.ipv6AddrPfxLength = 10221 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10222 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10223 mae6.ipv6AddrInfo.ae_subnet_len = 10224 mae6.ipv6AddrPfxLength; 10225 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10226 10227 /* Type: stateless(1), stateful(2), unknown(3) */ 10228 if (ipif->ipif_flags & IPIF_ADDRCONF) 10229 mae6.ipv6AddrType = 1; 10230 else 10231 mae6.ipv6AddrType = 2; 10232 /* Anycast: true(1), false(2) */ 10233 if (ipif->ipif_flags & IPIF_ANYCAST) 10234 mae6.ipv6AddrAnycastFlag = 1; 10235 else 10236 mae6.ipv6AddrAnycastFlag = 2; 10237 10238 /* 10239 * Address status: preferred(1), deprecated(2), 10240 * invalid(3), inaccessible(4), unknown(5) 10241 */ 10242 if (ipif->ipif_flags & IPIF_NOLOCAL) 10243 mae6.ipv6AddrStatus = 3; 10244 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10245 mae6.ipv6AddrStatus = 2; 10246 else 10247 mae6.ipv6AddrStatus = 1; 10248 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10249 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 10250 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10251 ipif->ipif_v6pp_dst_addr; 10252 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10253 ill->ill_flags | ill->ill_phyint->phyint_flags; 10254 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10255 mae6.ipv6AddrIdentifier = ill->ill_token; 10256 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10257 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10258 mae6.ipv6AddrRetransmitTime = 10259 ill->ill_reachable_retrans_time; 10260 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10261 (char *)&mae6, 10262 (int)sizeof (mib2_ipv6AddrEntry_t))) { 10263 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10264 "allocate %u bytes\n", 10265 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 10266 } 10267 } 10268 } 10269 rw_exit(&ipst->ips_ill_g_lock); 10270 10271 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10272 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10273 (int)optp->level, (int)optp->name, (int)optp->len)); 10274 qreply(q, mpctl); 10275 return (mp2ctl); 10276 } 10277 10278 /* IPv4 multicast group membership. */ 10279 static mblk_t * 10280 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10281 { 10282 struct opthdr *optp; 10283 mblk_t *mp2ctl; 10284 ill_t *ill; 10285 ipif_t *ipif; 10286 ilm_t *ilm; 10287 ip_member_t ipm; 10288 mblk_t *mp_tail = NULL; 10289 ill_walk_context_t ctx; 10290 zoneid_t zoneid; 10291 10292 /* 10293 * make a copy of the original message 10294 */ 10295 mp2ctl = copymsg(mpctl); 10296 zoneid = Q_TO_CONN(q)->conn_zoneid; 10297 10298 /* ipGroupMember table */ 10299 optp = (struct opthdr *)&mpctl->b_rptr[ 10300 sizeof (struct T_optmgmt_ack)]; 10301 optp->level = MIB2_IP; 10302 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10303 10304 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10305 ill = ILL_START_WALK_V4(&ctx, ipst); 10306 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10307 /* Make sure the ill isn't going away. */ 10308 if (!ill_check_and_refhold(ill)) 10309 continue; 10310 rw_exit(&ipst->ips_ill_g_lock); 10311 rw_enter(&ill->ill_mcast_lock, RW_READER); 10312 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10313 if (ilm->ilm_zoneid != zoneid && 10314 ilm->ilm_zoneid != ALL_ZONES) 10315 continue; 10316 10317 /* Is there an ipif for ilm_ifaddr? */ 10318 for (ipif = ill->ill_ipif; ipif != NULL; 10319 ipif = ipif->ipif_next) { 10320 if (!IPIF_IS_CONDEMNED(ipif) && 10321 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10322 ilm->ilm_ifaddr != INADDR_ANY) 10323 break; 10324 } 10325 if (ipif != NULL) { 10326 ipif_get_name(ipif, 10327 ipm.ipGroupMemberIfIndex.o_bytes, 10328 OCTET_LENGTH); 10329 } else { 10330 ill_get_name(ill, 10331 ipm.ipGroupMemberIfIndex.o_bytes, 10332 OCTET_LENGTH); 10333 } 10334 ipm.ipGroupMemberIfIndex.o_length = 10335 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10336 10337 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10338 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10339 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10340 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10341 (char *)&ipm, (int)sizeof (ipm))) { 10342 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10343 "failed to allocate %u bytes\n", 10344 (uint_t)sizeof (ipm))); 10345 } 10346 } 10347 rw_exit(&ill->ill_mcast_lock); 10348 ill_refrele(ill); 10349 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10350 } 10351 rw_exit(&ipst->ips_ill_g_lock); 10352 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10353 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10354 (int)optp->level, (int)optp->name, (int)optp->len)); 10355 qreply(q, mpctl); 10356 return (mp2ctl); 10357 } 10358 10359 /* IPv6 multicast group membership. */ 10360 static mblk_t * 10361 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10362 { 10363 struct opthdr *optp; 10364 mblk_t *mp2ctl; 10365 ill_t *ill; 10366 ilm_t *ilm; 10367 ipv6_member_t ipm6; 10368 mblk_t *mp_tail = NULL; 10369 ill_walk_context_t ctx; 10370 zoneid_t zoneid; 10371 10372 /* 10373 * make a copy of the original message 10374 */ 10375 mp2ctl = copymsg(mpctl); 10376 zoneid = Q_TO_CONN(q)->conn_zoneid; 10377 10378 /* ip6GroupMember table */ 10379 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10380 optp->level = MIB2_IP6; 10381 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10382 10383 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10384 ill = ILL_START_WALK_V6(&ctx, ipst); 10385 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10386 /* Make sure the ill isn't going away. */ 10387 if (!ill_check_and_refhold(ill)) 10388 continue; 10389 rw_exit(&ipst->ips_ill_g_lock); 10390 /* 10391 * Normally we don't have any members on under IPMP interfaces. 10392 * We report them as a debugging aid. 10393 */ 10394 rw_enter(&ill->ill_mcast_lock, RW_READER); 10395 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10396 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10397 if (ilm->ilm_zoneid != zoneid && 10398 ilm->ilm_zoneid != ALL_ZONES) 10399 continue; /* not this zone */ 10400 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10401 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10402 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10403 if (!snmp_append_data2(mpctl->b_cont, 10404 &mp_tail, 10405 (char *)&ipm6, (int)sizeof (ipm6))) { 10406 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10407 "failed to allocate %u bytes\n", 10408 (uint_t)sizeof (ipm6))); 10409 } 10410 } 10411 rw_exit(&ill->ill_mcast_lock); 10412 ill_refrele(ill); 10413 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10414 } 10415 rw_exit(&ipst->ips_ill_g_lock); 10416 10417 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10418 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10419 (int)optp->level, (int)optp->name, (int)optp->len)); 10420 qreply(q, mpctl); 10421 return (mp2ctl); 10422 } 10423 10424 /* IP multicast filtered sources */ 10425 static mblk_t * 10426 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10427 { 10428 struct opthdr *optp; 10429 mblk_t *mp2ctl; 10430 ill_t *ill; 10431 ipif_t *ipif; 10432 ilm_t *ilm; 10433 ip_grpsrc_t ips; 10434 mblk_t *mp_tail = NULL; 10435 ill_walk_context_t ctx; 10436 zoneid_t zoneid; 10437 int i; 10438 slist_t *sl; 10439 10440 /* 10441 * make a copy of the original message 10442 */ 10443 mp2ctl = copymsg(mpctl); 10444 zoneid = Q_TO_CONN(q)->conn_zoneid; 10445 10446 /* ipGroupSource table */ 10447 optp = (struct opthdr *)&mpctl->b_rptr[ 10448 sizeof (struct T_optmgmt_ack)]; 10449 optp->level = MIB2_IP; 10450 optp->name = EXPER_IP_GROUP_SOURCES; 10451 10452 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10453 ill = ILL_START_WALK_V4(&ctx, ipst); 10454 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10455 /* Make sure the ill isn't going away. */ 10456 if (!ill_check_and_refhold(ill)) 10457 continue; 10458 rw_exit(&ipst->ips_ill_g_lock); 10459 rw_enter(&ill->ill_mcast_lock, RW_READER); 10460 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10461 sl = ilm->ilm_filter; 10462 if (ilm->ilm_zoneid != zoneid && 10463 ilm->ilm_zoneid != ALL_ZONES) 10464 continue; 10465 if (SLIST_IS_EMPTY(sl)) 10466 continue; 10467 10468 /* Is there an ipif for ilm_ifaddr? */ 10469 for (ipif = ill->ill_ipif; ipif != NULL; 10470 ipif = ipif->ipif_next) { 10471 if (!IPIF_IS_CONDEMNED(ipif) && 10472 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10473 ilm->ilm_ifaddr != INADDR_ANY) 10474 break; 10475 } 10476 if (ipif != NULL) { 10477 ipif_get_name(ipif, 10478 ips.ipGroupSourceIfIndex.o_bytes, 10479 OCTET_LENGTH); 10480 } else { 10481 ill_get_name(ill, 10482 ips.ipGroupSourceIfIndex.o_bytes, 10483 OCTET_LENGTH); 10484 } 10485 ips.ipGroupSourceIfIndex.o_length = 10486 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10487 10488 ips.ipGroupSourceGroup = ilm->ilm_addr; 10489 for (i = 0; i < sl->sl_numsrc; i++) { 10490 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10491 continue; 10492 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10493 ips.ipGroupSourceAddress); 10494 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10495 (char *)&ips, (int)sizeof (ips)) == 0) { 10496 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10497 " failed to allocate %u bytes\n", 10498 (uint_t)sizeof (ips))); 10499 } 10500 } 10501 } 10502 rw_exit(&ill->ill_mcast_lock); 10503 ill_refrele(ill); 10504 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10505 } 10506 rw_exit(&ipst->ips_ill_g_lock); 10507 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10508 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10509 (int)optp->level, (int)optp->name, (int)optp->len)); 10510 qreply(q, mpctl); 10511 return (mp2ctl); 10512 } 10513 10514 /* IPv6 multicast filtered sources. */ 10515 static mblk_t * 10516 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10517 { 10518 struct opthdr *optp; 10519 mblk_t *mp2ctl; 10520 ill_t *ill; 10521 ilm_t *ilm; 10522 ipv6_grpsrc_t ips6; 10523 mblk_t *mp_tail = NULL; 10524 ill_walk_context_t ctx; 10525 zoneid_t zoneid; 10526 int i; 10527 slist_t *sl; 10528 10529 /* 10530 * make a copy of the original message 10531 */ 10532 mp2ctl = copymsg(mpctl); 10533 zoneid = Q_TO_CONN(q)->conn_zoneid; 10534 10535 /* ip6GroupMember table */ 10536 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10537 optp->level = MIB2_IP6; 10538 optp->name = EXPER_IP6_GROUP_SOURCES; 10539 10540 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10541 ill = ILL_START_WALK_V6(&ctx, ipst); 10542 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10543 /* Make sure the ill isn't going away. */ 10544 if (!ill_check_and_refhold(ill)) 10545 continue; 10546 rw_exit(&ipst->ips_ill_g_lock); 10547 /* 10548 * Normally we don't have any members on under IPMP interfaces. 10549 * We report them as a debugging aid. 10550 */ 10551 rw_enter(&ill->ill_mcast_lock, RW_READER); 10552 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10553 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10554 sl = ilm->ilm_filter; 10555 if (ilm->ilm_zoneid != zoneid && 10556 ilm->ilm_zoneid != ALL_ZONES) 10557 continue; 10558 if (SLIST_IS_EMPTY(sl)) 10559 continue; 10560 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10561 for (i = 0; i < sl->sl_numsrc; i++) { 10562 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10563 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10564 (char *)&ips6, (int)sizeof (ips6))) { 10565 ip1dbg(("ip_snmp_get_mib2_ip6_" 10566 "group_src: failed to allocate " 10567 "%u bytes\n", 10568 (uint_t)sizeof (ips6))); 10569 } 10570 } 10571 } 10572 rw_exit(&ill->ill_mcast_lock); 10573 ill_refrele(ill); 10574 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10575 } 10576 rw_exit(&ipst->ips_ill_g_lock); 10577 10578 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10579 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10580 (int)optp->level, (int)optp->name, (int)optp->len)); 10581 qreply(q, mpctl); 10582 return (mp2ctl); 10583 } 10584 10585 /* Multicast routing virtual interface table. */ 10586 static mblk_t * 10587 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10588 { 10589 struct opthdr *optp; 10590 mblk_t *mp2ctl; 10591 10592 /* 10593 * make a copy of the original message 10594 */ 10595 mp2ctl = copymsg(mpctl); 10596 10597 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10598 optp->level = EXPER_DVMRP; 10599 optp->name = EXPER_DVMRP_VIF; 10600 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10601 ip0dbg(("ip_mroute_vif: failed\n")); 10602 } 10603 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10604 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10605 (int)optp->level, (int)optp->name, (int)optp->len)); 10606 qreply(q, mpctl); 10607 return (mp2ctl); 10608 } 10609 10610 /* Multicast routing table. */ 10611 static mblk_t * 10612 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10613 { 10614 struct opthdr *optp; 10615 mblk_t *mp2ctl; 10616 10617 /* 10618 * make a copy of the original message 10619 */ 10620 mp2ctl = copymsg(mpctl); 10621 10622 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10623 optp->level = EXPER_DVMRP; 10624 optp->name = EXPER_DVMRP_MRT; 10625 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10626 ip0dbg(("ip_mroute_mrt: failed\n")); 10627 } 10628 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10629 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10630 (int)optp->level, (int)optp->name, (int)optp->len)); 10631 qreply(q, mpctl); 10632 return (mp2ctl); 10633 } 10634 10635 /* 10636 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10637 * in one IRE walk. 10638 */ 10639 static mblk_t * 10640 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10641 ip_stack_t *ipst) 10642 { 10643 struct opthdr *optp; 10644 mblk_t *mp2ctl; /* Returned */ 10645 mblk_t *mp3ctl; /* nettomedia */ 10646 mblk_t *mp4ctl; /* routeattrs */ 10647 iproutedata_t ird; 10648 zoneid_t zoneid; 10649 10650 /* 10651 * make copies of the original message 10652 * - mp2ctl is returned unchanged to the caller for his use 10653 * - mpctl is sent upstream as ipRouteEntryTable 10654 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10655 * - mp4ctl is sent upstream as ipRouteAttributeTable 10656 */ 10657 mp2ctl = copymsg(mpctl); 10658 mp3ctl = copymsg(mpctl); 10659 mp4ctl = copymsg(mpctl); 10660 if (mp3ctl == NULL || mp4ctl == NULL) { 10661 freemsg(mp4ctl); 10662 freemsg(mp3ctl); 10663 freemsg(mp2ctl); 10664 freemsg(mpctl); 10665 return (NULL); 10666 } 10667 10668 bzero(&ird, sizeof (ird)); 10669 10670 ird.ird_route.lp_head = mpctl->b_cont; 10671 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10672 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10673 /* 10674 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10675 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10676 * intended a temporary solution until a proper MIB API is provided 10677 * that provides complete filtering/caller-opt-in. 10678 */ 10679 if (level == EXPER_IP_AND_ALL_IRES) 10680 ird.ird_flags |= IRD_REPORT_ALL; 10681 10682 zoneid = Q_TO_CONN(q)->conn_zoneid; 10683 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10684 10685 /* ipRouteEntryTable in mpctl */ 10686 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10687 optp->level = MIB2_IP; 10688 optp->name = MIB2_IP_ROUTE; 10689 optp->len = msgdsize(ird.ird_route.lp_head); 10690 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10691 (int)optp->level, (int)optp->name, (int)optp->len)); 10692 qreply(q, mpctl); 10693 10694 /* ipNetToMediaEntryTable in mp3ctl */ 10695 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10696 10697 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10698 optp->level = MIB2_IP; 10699 optp->name = MIB2_IP_MEDIA; 10700 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10701 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10702 (int)optp->level, (int)optp->name, (int)optp->len)); 10703 qreply(q, mp3ctl); 10704 10705 /* ipRouteAttributeTable in mp4ctl */ 10706 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10707 optp->level = MIB2_IP; 10708 optp->name = EXPER_IP_RTATTR; 10709 optp->len = msgdsize(ird.ird_attrs.lp_head); 10710 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10711 (int)optp->level, (int)optp->name, (int)optp->len)); 10712 if (optp->len == 0) 10713 freemsg(mp4ctl); 10714 else 10715 qreply(q, mp4ctl); 10716 10717 return (mp2ctl); 10718 } 10719 10720 /* 10721 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10722 * ipv6NetToMediaEntryTable in an NDP walk. 10723 */ 10724 static mblk_t * 10725 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10726 ip_stack_t *ipst) 10727 { 10728 struct opthdr *optp; 10729 mblk_t *mp2ctl; /* Returned */ 10730 mblk_t *mp3ctl; /* nettomedia */ 10731 mblk_t *mp4ctl; /* routeattrs */ 10732 iproutedata_t ird; 10733 zoneid_t zoneid; 10734 10735 /* 10736 * make copies of the original message 10737 * - mp2ctl is returned unchanged to the caller for his use 10738 * - mpctl is sent upstream as ipv6RouteEntryTable 10739 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10740 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10741 */ 10742 mp2ctl = copymsg(mpctl); 10743 mp3ctl = copymsg(mpctl); 10744 mp4ctl = copymsg(mpctl); 10745 if (mp3ctl == NULL || mp4ctl == NULL) { 10746 freemsg(mp4ctl); 10747 freemsg(mp3ctl); 10748 freemsg(mp2ctl); 10749 freemsg(mpctl); 10750 return (NULL); 10751 } 10752 10753 bzero(&ird, sizeof (ird)); 10754 10755 ird.ird_route.lp_head = mpctl->b_cont; 10756 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10757 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10758 /* 10759 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10760 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10761 * intended a temporary solution until a proper MIB API is provided 10762 * that provides complete filtering/caller-opt-in. 10763 */ 10764 if (level == EXPER_IP_AND_ALL_IRES) 10765 ird.ird_flags |= IRD_REPORT_ALL; 10766 10767 zoneid = Q_TO_CONN(q)->conn_zoneid; 10768 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10769 10770 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10771 optp->level = MIB2_IP6; 10772 optp->name = MIB2_IP6_ROUTE; 10773 optp->len = msgdsize(ird.ird_route.lp_head); 10774 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10775 (int)optp->level, (int)optp->name, (int)optp->len)); 10776 qreply(q, mpctl); 10777 10778 /* ipv6NetToMediaEntryTable in mp3ctl */ 10779 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10780 10781 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10782 optp->level = MIB2_IP6; 10783 optp->name = MIB2_IP6_MEDIA; 10784 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10785 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10786 (int)optp->level, (int)optp->name, (int)optp->len)); 10787 qreply(q, mp3ctl); 10788 10789 /* ipv6RouteAttributeTable in mp4ctl */ 10790 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10791 optp->level = MIB2_IP6; 10792 optp->name = EXPER_IP_RTATTR; 10793 optp->len = msgdsize(ird.ird_attrs.lp_head); 10794 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10795 (int)optp->level, (int)optp->name, (int)optp->len)); 10796 if (optp->len == 0) 10797 freemsg(mp4ctl); 10798 else 10799 qreply(q, mp4ctl); 10800 10801 return (mp2ctl); 10802 } 10803 10804 /* 10805 * IPv6 mib: One per ill 10806 */ 10807 static mblk_t * 10808 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10809 { 10810 struct opthdr *optp; 10811 mblk_t *mp2ctl; 10812 ill_t *ill; 10813 ill_walk_context_t ctx; 10814 mblk_t *mp_tail = NULL; 10815 10816 /* 10817 * Make a copy of the original message 10818 */ 10819 mp2ctl = copymsg(mpctl); 10820 10821 /* fixed length IPv6 structure ... */ 10822 10823 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10824 optp->level = MIB2_IP6; 10825 optp->name = 0; 10826 /* Include "unknown interface" ip6_mib */ 10827 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10828 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10829 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10830 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10831 ipst->ips_ipv6_forward ? 1 : 2); 10832 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10833 ipst->ips_ipv6_def_hops); 10834 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10835 sizeof (mib2_ipIfStatsEntry_t)); 10836 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10837 sizeof (mib2_ipv6AddrEntry_t)); 10838 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10839 sizeof (mib2_ipv6RouteEntry_t)); 10840 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10841 sizeof (mib2_ipv6NetToMediaEntry_t)); 10842 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10843 sizeof (ipv6_member_t)); 10844 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10845 sizeof (ipv6_grpsrc_t)); 10846 10847 /* 10848 * Synchronize 64- and 32-bit counters 10849 */ 10850 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10851 ipIfStatsHCInReceives); 10852 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10853 ipIfStatsHCInDelivers); 10854 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10855 ipIfStatsHCOutRequests); 10856 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10857 ipIfStatsHCOutForwDatagrams); 10858 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10859 ipIfStatsHCOutMcastPkts); 10860 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10861 ipIfStatsHCInMcastPkts); 10862 10863 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10864 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 10865 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10866 (uint_t)sizeof (ipst->ips_ip6_mib))); 10867 } 10868 10869 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10870 ill = ILL_START_WALK_V6(&ctx, ipst); 10871 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10872 ill->ill_ip_mib->ipIfStatsIfIndex = 10873 ill->ill_phyint->phyint_ifindex; 10874 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10875 ipst->ips_ipv6_forward ? 1 : 2); 10876 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10877 ill->ill_max_hops); 10878 10879 /* 10880 * Synchronize 64- and 32-bit counters 10881 */ 10882 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10883 ipIfStatsHCInReceives); 10884 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10885 ipIfStatsHCInDelivers); 10886 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10887 ipIfStatsHCOutRequests); 10888 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10889 ipIfStatsHCOutForwDatagrams); 10890 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10891 ipIfStatsHCOutMcastPkts); 10892 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10893 ipIfStatsHCInMcastPkts); 10894 10895 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10896 (char *)ill->ill_ip_mib, 10897 (int)sizeof (*ill->ill_ip_mib))) { 10898 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10899 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 10900 } 10901 } 10902 rw_exit(&ipst->ips_ill_g_lock); 10903 10904 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10905 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10906 (int)optp->level, (int)optp->name, (int)optp->len)); 10907 qreply(q, mpctl); 10908 return (mp2ctl); 10909 } 10910 10911 /* 10912 * ICMPv6 mib: One per ill 10913 */ 10914 static mblk_t * 10915 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10916 { 10917 struct opthdr *optp; 10918 mblk_t *mp2ctl; 10919 ill_t *ill; 10920 ill_walk_context_t ctx; 10921 mblk_t *mp_tail = NULL; 10922 /* 10923 * Make a copy of the original message 10924 */ 10925 mp2ctl = copymsg(mpctl); 10926 10927 /* fixed length ICMPv6 structure ... */ 10928 10929 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10930 optp->level = MIB2_ICMP6; 10931 optp->name = 0; 10932 /* Include "unknown interface" icmp6_mib */ 10933 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10934 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10935 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10936 sizeof (mib2_ipv6IfIcmpEntry_t); 10937 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10938 (char *)&ipst->ips_icmp6_mib, 10939 (int)sizeof (ipst->ips_icmp6_mib))) { 10940 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10941 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10942 } 10943 10944 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10945 ill = ILL_START_WALK_V6(&ctx, ipst); 10946 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10947 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10948 ill->ill_phyint->phyint_ifindex; 10949 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10950 (char *)ill->ill_icmp6_mib, 10951 (int)sizeof (*ill->ill_icmp6_mib))) { 10952 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10953 "%u bytes\n", 10954 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10955 } 10956 } 10957 rw_exit(&ipst->ips_ill_g_lock); 10958 10959 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10960 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10961 (int)optp->level, (int)optp->name, (int)optp->len)); 10962 qreply(q, mpctl); 10963 return (mp2ctl); 10964 } 10965 10966 /* 10967 * ire_walk routine to create both ipRouteEntryTable and 10968 * ipRouteAttributeTable in one IRE walk 10969 */ 10970 static void 10971 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10972 { 10973 ill_t *ill; 10974 mib2_ipRouteEntry_t *re; 10975 mib2_ipAttributeEntry_t iaes; 10976 tsol_ire_gw_secattr_t *attrp; 10977 tsol_gc_t *gc = NULL; 10978 tsol_gcgrp_t *gcgrp = NULL; 10979 ip_stack_t *ipst = ire->ire_ipst; 10980 10981 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10982 10983 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10984 if (ire->ire_testhidden) 10985 return; 10986 if (ire->ire_type & IRE_IF_CLONE) 10987 return; 10988 } 10989 10990 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10991 return; 10992 10993 if ((attrp = ire->ire_gw_secattr) != NULL) { 10994 mutex_enter(&attrp->igsa_lock); 10995 if ((gc = attrp->igsa_gc) != NULL) { 10996 gcgrp = gc->gc_grp; 10997 ASSERT(gcgrp != NULL); 10998 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10999 } 11000 mutex_exit(&attrp->igsa_lock); 11001 } 11002 /* 11003 * Return all IRE types for route table... let caller pick and choose 11004 */ 11005 re->ipRouteDest = ire->ire_addr; 11006 ill = ire->ire_ill; 11007 re->ipRouteIfIndex.o_length = 0; 11008 if (ill != NULL) { 11009 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 11010 re->ipRouteIfIndex.o_length = 11011 mi_strlen(re->ipRouteIfIndex.o_bytes); 11012 } 11013 re->ipRouteMetric1 = -1; 11014 re->ipRouteMetric2 = -1; 11015 re->ipRouteMetric3 = -1; 11016 re->ipRouteMetric4 = -1; 11017 11018 re->ipRouteNextHop = ire->ire_gateway_addr; 11019 /* indirect(4), direct(3), or invalid(2) */ 11020 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11021 re->ipRouteType = 2; 11022 else if (ire->ire_type & IRE_ONLINK) 11023 re->ipRouteType = 3; 11024 else 11025 re->ipRouteType = 4; 11026 11027 re->ipRouteProto = -1; 11028 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 11029 re->ipRouteMask = ire->ire_mask; 11030 re->ipRouteMetric5 = -1; 11031 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11032 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 11033 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11034 11035 re->ipRouteInfo.re_frag_flag = 0; 11036 re->ipRouteInfo.re_rtt = 0; 11037 re->ipRouteInfo.re_src_addr = 0; 11038 re->ipRouteInfo.re_ref = ire->ire_refcnt; 11039 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11040 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11041 re->ipRouteInfo.re_flags = ire->ire_flags; 11042 11043 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11044 if (ire->ire_type & IRE_INTERFACE) { 11045 ire_t *child; 11046 11047 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11048 child = ire->ire_dep_children; 11049 while (child != NULL) { 11050 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11051 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11052 child = child->ire_dep_sib_next; 11053 } 11054 rw_exit(&ipst->ips_ire_dep_lock); 11055 } 11056 11057 if (ire->ire_flags & RTF_DYNAMIC) { 11058 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11059 } else { 11060 re->ipRouteInfo.re_ire_type = ire->ire_type; 11061 } 11062 11063 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11064 (char *)re, (int)sizeof (*re))) { 11065 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11066 (uint_t)sizeof (*re))); 11067 } 11068 11069 if (gc != NULL) { 11070 iaes.iae_routeidx = ird->ird_idx; 11071 iaes.iae_doi = gc->gc_db->gcdb_doi; 11072 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11073 11074 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11075 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11076 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11077 "bytes\n", (uint_t)sizeof (iaes))); 11078 } 11079 } 11080 11081 /* bump route index for next pass */ 11082 ird->ird_idx++; 11083 11084 kmem_free(re, sizeof (*re)); 11085 if (gcgrp != NULL) 11086 rw_exit(&gcgrp->gcgrp_rwlock); 11087 } 11088 11089 /* 11090 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11091 */ 11092 static void 11093 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11094 { 11095 ill_t *ill; 11096 mib2_ipv6RouteEntry_t *re; 11097 mib2_ipAttributeEntry_t iaes; 11098 tsol_ire_gw_secattr_t *attrp; 11099 tsol_gc_t *gc = NULL; 11100 tsol_gcgrp_t *gcgrp = NULL; 11101 ip_stack_t *ipst = ire->ire_ipst; 11102 11103 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11104 11105 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11106 if (ire->ire_testhidden) 11107 return; 11108 if (ire->ire_type & IRE_IF_CLONE) 11109 return; 11110 } 11111 11112 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11113 return; 11114 11115 if ((attrp = ire->ire_gw_secattr) != NULL) { 11116 mutex_enter(&attrp->igsa_lock); 11117 if ((gc = attrp->igsa_gc) != NULL) { 11118 gcgrp = gc->gc_grp; 11119 ASSERT(gcgrp != NULL); 11120 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11121 } 11122 mutex_exit(&attrp->igsa_lock); 11123 } 11124 /* 11125 * Return all IRE types for route table... let caller pick and choose 11126 */ 11127 re->ipv6RouteDest = ire->ire_addr_v6; 11128 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11129 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11130 re->ipv6RouteIfIndex.o_length = 0; 11131 ill = ire->ire_ill; 11132 if (ill != NULL) { 11133 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11134 re->ipv6RouteIfIndex.o_length = 11135 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11136 } 11137 11138 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11139 11140 mutex_enter(&ire->ire_lock); 11141 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11142 mutex_exit(&ire->ire_lock); 11143 11144 /* remote(4), local(3), or discard(2) */ 11145 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11146 re->ipv6RouteType = 2; 11147 else if (ire->ire_type & IRE_ONLINK) 11148 re->ipv6RouteType = 3; 11149 else 11150 re->ipv6RouteType = 4; 11151 11152 re->ipv6RouteProtocol = -1; 11153 re->ipv6RoutePolicy = 0; 11154 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11155 re->ipv6RouteNextHopRDI = 0; 11156 re->ipv6RouteWeight = 0; 11157 re->ipv6RouteMetric = 0; 11158 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11159 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11160 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11161 11162 re->ipv6RouteInfo.re_frag_flag = 0; 11163 re->ipv6RouteInfo.re_rtt = 0; 11164 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11165 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11166 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11167 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11168 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11169 11170 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11171 if (ire->ire_type & IRE_INTERFACE) { 11172 ire_t *child; 11173 11174 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11175 child = ire->ire_dep_children; 11176 while (child != NULL) { 11177 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11178 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11179 child = child->ire_dep_sib_next; 11180 } 11181 rw_exit(&ipst->ips_ire_dep_lock); 11182 } 11183 if (ire->ire_flags & RTF_DYNAMIC) { 11184 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11185 } else { 11186 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11187 } 11188 11189 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11190 (char *)re, (int)sizeof (*re))) { 11191 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11192 (uint_t)sizeof (*re))); 11193 } 11194 11195 if (gc != NULL) { 11196 iaes.iae_routeidx = ird->ird_idx; 11197 iaes.iae_doi = gc->gc_db->gcdb_doi; 11198 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11199 11200 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11201 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11202 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11203 "bytes\n", (uint_t)sizeof (iaes))); 11204 } 11205 } 11206 11207 /* bump route index for next pass */ 11208 ird->ird_idx++; 11209 11210 kmem_free(re, sizeof (*re)); 11211 if (gcgrp != NULL) 11212 rw_exit(&gcgrp->gcgrp_rwlock); 11213 } 11214 11215 /* 11216 * ncec_walk routine to create ipv6NetToMediaEntryTable 11217 */ 11218 static int 11219 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11220 { 11221 ill_t *ill; 11222 mib2_ipv6NetToMediaEntry_t ntme; 11223 11224 ill = ncec->ncec_ill; 11225 /* skip arpce entries, and loopback ncec entries */ 11226 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11227 return (0); 11228 /* 11229 * Neighbor cache entry attached to IRE with on-link 11230 * destination. 11231 * We report all IPMP groups on ncec_ill which is normally the upper. 11232 */ 11233 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11234 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11235 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11236 if (ncec->ncec_lladdr != NULL) { 11237 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11238 ntme.ipv6NetToMediaPhysAddress.o_length); 11239 } 11240 /* 11241 * Note: Returns ND_* states. Should be: 11242 * reachable(1), stale(2), delay(3), probe(4), 11243 * invalid(5), unknown(6) 11244 */ 11245 ntme.ipv6NetToMediaState = ncec->ncec_state; 11246 ntme.ipv6NetToMediaLastUpdated = 0; 11247 11248 /* other(1), dynamic(2), static(3), local(4) */ 11249 if (NCE_MYADDR(ncec)) { 11250 ntme.ipv6NetToMediaType = 4; 11251 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11252 ntme.ipv6NetToMediaType = 1; /* proxy */ 11253 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11254 ntme.ipv6NetToMediaType = 3; 11255 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11256 ntme.ipv6NetToMediaType = 1; 11257 } else { 11258 ntme.ipv6NetToMediaType = 2; 11259 } 11260 11261 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11262 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11263 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11264 (uint_t)sizeof (ntme))); 11265 } 11266 return (0); 11267 } 11268 11269 int 11270 nce2ace(ncec_t *ncec) 11271 { 11272 int flags = 0; 11273 11274 if (NCE_ISREACHABLE(ncec)) 11275 flags |= ACE_F_RESOLVED; 11276 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11277 flags |= ACE_F_AUTHORITY; 11278 if (ncec->ncec_flags & NCE_F_PUBLISH) 11279 flags |= ACE_F_PUBLISH; 11280 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11281 flags |= ACE_F_PERMANENT; 11282 if (NCE_MYADDR(ncec)) 11283 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11284 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11285 flags |= ACE_F_UNVERIFIED; 11286 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11287 flags |= ACE_F_AUTHORITY; 11288 if (ncec->ncec_flags & NCE_F_DELAYED) 11289 flags |= ACE_F_DELAYED; 11290 return (flags); 11291 } 11292 11293 /* 11294 * ncec_walk routine to create ipNetToMediaEntryTable 11295 */ 11296 static int 11297 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11298 { 11299 ill_t *ill; 11300 mib2_ipNetToMediaEntry_t ntme; 11301 const char *name = "unknown"; 11302 ipaddr_t ncec_addr; 11303 11304 ill = ncec->ncec_ill; 11305 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11306 ill->ill_net_type == IRE_LOOPBACK) 11307 return (0); 11308 11309 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11310 name = ill->ill_name; 11311 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11312 if (NCE_MYADDR(ncec)) { 11313 ntme.ipNetToMediaType = 4; 11314 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11315 ntme.ipNetToMediaType = 1; 11316 } else { 11317 ntme.ipNetToMediaType = 3; 11318 } 11319 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11320 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11321 ntme.ipNetToMediaIfIndex.o_length); 11322 11323 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11324 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11325 11326 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11327 ncec_addr = INADDR_BROADCAST; 11328 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11329 sizeof (ncec_addr)); 11330 /* 11331 * map all the flags to the ACE counterpart. 11332 */ 11333 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11334 11335 ntme.ipNetToMediaPhysAddress.o_length = 11336 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11337 11338 if (!NCE_ISREACHABLE(ncec)) 11339 ntme.ipNetToMediaPhysAddress.o_length = 0; 11340 else { 11341 if (ncec->ncec_lladdr != NULL) { 11342 bcopy(ncec->ncec_lladdr, 11343 ntme.ipNetToMediaPhysAddress.o_bytes, 11344 ntme.ipNetToMediaPhysAddress.o_length); 11345 } 11346 } 11347 11348 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11349 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11350 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11351 (uint_t)sizeof (ntme))); 11352 } 11353 return (0); 11354 } 11355 11356 /* 11357 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11358 */ 11359 /* ARGSUSED */ 11360 int 11361 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11362 { 11363 switch (level) { 11364 case MIB2_IP: 11365 case MIB2_ICMP: 11366 switch (name) { 11367 default: 11368 break; 11369 } 11370 return (1); 11371 default: 11372 return (1); 11373 } 11374 } 11375 11376 /* 11377 * When there exists both a 64- and 32-bit counter of a particular type 11378 * (i.e., InReceives), only the 64-bit counters are added. 11379 */ 11380 void 11381 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11382 { 11383 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11384 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11385 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11386 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11387 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11388 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11389 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11390 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11391 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11392 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11393 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11394 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11395 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11396 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11397 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11398 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11399 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11400 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11401 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11402 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11403 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11404 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11405 o2->ipIfStatsInWrongIPVersion); 11406 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11407 o2->ipIfStatsInWrongIPVersion); 11408 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11409 o2->ipIfStatsOutSwitchIPVersion); 11410 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11411 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11412 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11413 o2->ipIfStatsHCInForwDatagrams); 11414 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11415 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11416 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11417 o2->ipIfStatsHCOutForwDatagrams); 11418 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11419 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11420 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11421 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11422 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11423 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11424 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11425 o2->ipIfStatsHCOutMcastOctets); 11426 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11427 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11428 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11429 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11430 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11431 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11432 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11433 } 11434 11435 void 11436 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11437 { 11438 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11439 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11440 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11441 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11442 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11443 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11444 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11445 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11446 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11447 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11448 o2->ipv6IfIcmpInRouterSolicits); 11449 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11450 o2->ipv6IfIcmpInRouterAdvertisements); 11451 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11452 o2->ipv6IfIcmpInNeighborSolicits); 11453 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11454 o2->ipv6IfIcmpInNeighborAdvertisements); 11455 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11456 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11457 o2->ipv6IfIcmpInGroupMembQueries); 11458 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11459 o2->ipv6IfIcmpInGroupMembResponses); 11460 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11461 o2->ipv6IfIcmpInGroupMembReductions); 11462 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11463 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11464 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11465 o2->ipv6IfIcmpOutDestUnreachs); 11466 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11467 o2->ipv6IfIcmpOutAdminProhibs); 11468 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11469 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11470 o2->ipv6IfIcmpOutParmProblems); 11471 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11472 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11473 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11474 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11475 o2->ipv6IfIcmpOutRouterSolicits); 11476 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11477 o2->ipv6IfIcmpOutRouterAdvertisements); 11478 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11479 o2->ipv6IfIcmpOutNeighborSolicits); 11480 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11481 o2->ipv6IfIcmpOutNeighborAdvertisements); 11482 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11483 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11484 o2->ipv6IfIcmpOutGroupMembQueries); 11485 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11486 o2->ipv6IfIcmpOutGroupMembResponses); 11487 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11488 o2->ipv6IfIcmpOutGroupMembReductions); 11489 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11490 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11491 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11492 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11493 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11494 o2->ipv6IfIcmpInBadNeighborSolicitations); 11495 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11496 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11497 o2->ipv6IfIcmpInGroupMembTotal); 11498 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11499 o2->ipv6IfIcmpInGroupMembBadQueries); 11500 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11501 o2->ipv6IfIcmpInGroupMembBadReports); 11502 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11503 o2->ipv6IfIcmpInGroupMembOurReports); 11504 } 11505 11506 /* 11507 * Called before the options are updated to check if this packet will 11508 * be source routed from here. 11509 * This routine assumes that the options are well formed i.e. that they 11510 * have already been checked. 11511 */ 11512 boolean_t 11513 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11514 { 11515 ipoptp_t opts; 11516 uchar_t *opt; 11517 uint8_t optval; 11518 uint8_t optlen; 11519 ipaddr_t dst; 11520 11521 if (IS_SIMPLE_IPH(ipha)) { 11522 ip2dbg(("not source routed\n")); 11523 return (B_FALSE); 11524 } 11525 dst = ipha->ipha_dst; 11526 for (optval = ipoptp_first(&opts, ipha); 11527 optval != IPOPT_EOL; 11528 optval = ipoptp_next(&opts)) { 11529 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11530 opt = opts.ipoptp_cur; 11531 optlen = opts.ipoptp_len; 11532 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11533 optval, optlen)); 11534 switch (optval) { 11535 uint32_t off; 11536 case IPOPT_SSRR: 11537 case IPOPT_LSRR: 11538 /* 11539 * If dst is one of our addresses and there are some 11540 * entries left in the source route return (true). 11541 */ 11542 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11543 ip2dbg(("ip_source_routed: not next" 11544 " source route 0x%x\n", 11545 ntohl(dst))); 11546 return (B_FALSE); 11547 } 11548 off = opt[IPOPT_OFFSET]; 11549 off--; 11550 if (optlen < IP_ADDR_LEN || 11551 off > optlen - IP_ADDR_LEN) { 11552 /* End of source route */ 11553 ip1dbg(("ip_source_routed: end of SR\n")); 11554 return (B_FALSE); 11555 } 11556 return (B_TRUE); 11557 } 11558 } 11559 ip2dbg(("not source routed\n")); 11560 return (B_FALSE); 11561 } 11562 11563 /* 11564 * ip_unbind is called by the transports to remove a conn from 11565 * the fanout table. 11566 */ 11567 void 11568 ip_unbind(conn_t *connp) 11569 { 11570 11571 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11572 11573 if (is_system_labeled() && connp->conn_anon_port) { 11574 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11575 connp->conn_mlp_type, connp->conn_proto, 11576 ntohs(connp->conn_lport), B_FALSE); 11577 connp->conn_anon_port = 0; 11578 } 11579 connp->conn_mlp_type = mlptSingle; 11580 11581 ipcl_hash_remove(connp); 11582 } 11583 11584 /* 11585 * Used for deciding the MSS size for the upper layer. Thus 11586 * we need to check the outbound policy values in the conn. 11587 */ 11588 int 11589 conn_ipsec_length(conn_t *connp) 11590 { 11591 ipsec_latch_t *ipl; 11592 11593 ipl = connp->conn_latch; 11594 if (ipl == NULL) 11595 return (0); 11596 11597 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11598 return (0); 11599 11600 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11601 } 11602 11603 /* 11604 * Returns an estimate of the IPsec headers size. This is used if 11605 * we don't want to call into IPsec to get the exact size. 11606 */ 11607 int 11608 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11609 { 11610 ipsec_action_t *a; 11611 11612 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11613 return (0); 11614 11615 a = ixa->ixa_ipsec_action; 11616 if (a == NULL) { 11617 ASSERT(ixa->ixa_ipsec_policy != NULL); 11618 a = ixa->ixa_ipsec_policy->ipsp_act; 11619 } 11620 ASSERT(a != NULL); 11621 11622 return (a->ipa_ovhd); 11623 } 11624 11625 /* 11626 * If there are any source route options, return the true final 11627 * destination. Otherwise, return the destination. 11628 */ 11629 ipaddr_t 11630 ip_get_dst(ipha_t *ipha) 11631 { 11632 ipoptp_t opts; 11633 uchar_t *opt; 11634 uint8_t optval; 11635 uint8_t optlen; 11636 ipaddr_t dst; 11637 uint32_t off; 11638 11639 dst = ipha->ipha_dst; 11640 11641 if (IS_SIMPLE_IPH(ipha)) 11642 return (dst); 11643 11644 for (optval = ipoptp_first(&opts, ipha); 11645 optval != IPOPT_EOL; 11646 optval = ipoptp_next(&opts)) { 11647 opt = opts.ipoptp_cur; 11648 optlen = opts.ipoptp_len; 11649 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11650 switch (optval) { 11651 case IPOPT_SSRR: 11652 case IPOPT_LSRR: 11653 off = opt[IPOPT_OFFSET]; 11654 /* 11655 * If one of the conditions is true, it means 11656 * end of options and dst already has the right 11657 * value. 11658 */ 11659 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11660 off = optlen - IP_ADDR_LEN; 11661 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11662 } 11663 return (dst); 11664 default: 11665 break; 11666 } 11667 } 11668 11669 return (dst); 11670 } 11671 11672 /* 11673 * Outbound IP fragmentation routine. 11674 * Assumes the caller has checked whether or not fragmentation should 11675 * be allowed. Here we copy the DF bit from the header to all the generated 11676 * fragments. 11677 */ 11678 int 11679 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11680 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11681 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11682 { 11683 int i1; 11684 int hdr_len; 11685 mblk_t *hdr_mp; 11686 ipha_t *ipha; 11687 int ip_data_end; 11688 int len; 11689 mblk_t *mp = mp_orig; 11690 int offset; 11691 ill_t *ill = nce->nce_ill; 11692 ip_stack_t *ipst = ill->ill_ipst; 11693 mblk_t *carve_mp; 11694 uint32_t frag_flag; 11695 uint_t priority = mp->b_band; 11696 int error = 0; 11697 11698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11699 11700 if (pkt_len != msgdsize(mp)) { 11701 ip0dbg(("Packet length mismatch: %d, %ld\n", 11702 pkt_len, msgdsize(mp))); 11703 freemsg(mp); 11704 return (EINVAL); 11705 } 11706 11707 if (max_frag == 0) { 11708 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11709 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11710 ip_drop_output("FragFails: zero max_frag", mp, ill); 11711 freemsg(mp); 11712 return (EINVAL); 11713 } 11714 11715 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11716 ipha = (ipha_t *)mp->b_rptr; 11717 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11718 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11719 11720 /* 11721 * Establish the starting offset. May not be zero if we are fragging 11722 * a fragment that is being forwarded. 11723 */ 11724 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11725 11726 /* TODO why is this test needed? */ 11727 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11728 /* TODO: notify ulp somehow */ 11729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11730 ip_drop_output("FragFails: bad starting offset", mp, ill); 11731 freemsg(mp); 11732 return (EINVAL); 11733 } 11734 11735 hdr_len = IPH_HDR_LENGTH(ipha); 11736 ipha->ipha_hdr_checksum = 0; 11737 11738 /* 11739 * Establish the number of bytes maximum per frag, after putting 11740 * in the header. 11741 */ 11742 len = (max_frag - hdr_len) & ~7; 11743 11744 /* Get a copy of the header for the trailing frags */ 11745 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11746 mp); 11747 if (hdr_mp == NULL) { 11748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11749 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11750 freemsg(mp); 11751 return (ENOBUFS); 11752 } 11753 11754 /* Store the starting offset, with the MoreFrags flag. */ 11755 i1 = offset | IPH_MF | frag_flag; 11756 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11757 11758 /* Establish the ending byte offset, based on the starting offset. */ 11759 offset <<= 3; 11760 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11761 11762 /* Store the length of the first fragment in the IP header. */ 11763 i1 = len + hdr_len; 11764 ASSERT(i1 <= IP_MAXPACKET); 11765 ipha->ipha_length = htons((uint16_t)i1); 11766 11767 /* 11768 * Compute the IP header checksum for the first frag. We have to 11769 * watch out that we stop at the end of the header. 11770 */ 11771 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11772 11773 /* 11774 * Now carve off the first frag. Note that this will include the 11775 * original IP header. 11776 */ 11777 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11778 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11779 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11780 freeb(hdr_mp); 11781 freemsg(mp_orig); 11782 return (ENOBUFS); 11783 } 11784 11785 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11786 11787 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11788 ixa_cookie); 11789 if (error != 0 && error != EWOULDBLOCK) { 11790 /* No point in sending the other fragments */ 11791 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11792 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11793 freeb(hdr_mp); 11794 freemsg(mp_orig); 11795 return (error); 11796 } 11797 11798 /* No need to redo state machine in loop */ 11799 ixaflags &= ~IXAF_REACH_CONF; 11800 11801 /* Advance the offset to the second frag starting point. */ 11802 offset += len; 11803 /* 11804 * Update hdr_len from the copied header - there might be less options 11805 * in the later fragments. 11806 */ 11807 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11808 /* Loop until done. */ 11809 for (;;) { 11810 uint16_t offset_and_flags; 11811 uint16_t ip_len; 11812 11813 if (ip_data_end - offset > len) { 11814 /* 11815 * Carve off the appropriate amount from the original 11816 * datagram. 11817 */ 11818 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11819 mp = NULL; 11820 break; 11821 } 11822 /* 11823 * More frags after this one. Get another copy 11824 * of the header. 11825 */ 11826 if (carve_mp->b_datap->db_ref == 1 && 11827 hdr_mp->b_wptr - hdr_mp->b_rptr < 11828 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11829 /* Inline IP header */ 11830 carve_mp->b_rptr -= hdr_mp->b_wptr - 11831 hdr_mp->b_rptr; 11832 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11833 hdr_mp->b_wptr - hdr_mp->b_rptr); 11834 mp = carve_mp; 11835 } else { 11836 if (!(mp = copyb(hdr_mp))) { 11837 freemsg(carve_mp); 11838 break; 11839 } 11840 /* Get priority marking, if any. */ 11841 mp->b_band = priority; 11842 mp->b_cont = carve_mp; 11843 } 11844 ipha = (ipha_t *)mp->b_rptr; 11845 offset_and_flags = IPH_MF; 11846 } else { 11847 /* 11848 * Last frag. Consume the header. Set len to 11849 * the length of this last piece. 11850 */ 11851 len = ip_data_end - offset; 11852 11853 /* 11854 * Carve off the appropriate amount from the original 11855 * datagram. 11856 */ 11857 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11858 mp = NULL; 11859 break; 11860 } 11861 if (carve_mp->b_datap->db_ref == 1 && 11862 hdr_mp->b_wptr - hdr_mp->b_rptr < 11863 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11864 /* Inline IP header */ 11865 carve_mp->b_rptr -= hdr_mp->b_wptr - 11866 hdr_mp->b_rptr; 11867 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11868 hdr_mp->b_wptr - hdr_mp->b_rptr); 11869 mp = carve_mp; 11870 freeb(hdr_mp); 11871 hdr_mp = mp; 11872 } else { 11873 mp = hdr_mp; 11874 /* Get priority marking, if any. */ 11875 mp->b_band = priority; 11876 mp->b_cont = carve_mp; 11877 } 11878 ipha = (ipha_t *)mp->b_rptr; 11879 /* A frag of a frag might have IPH_MF non-zero */ 11880 offset_and_flags = 11881 ntohs(ipha->ipha_fragment_offset_and_flags) & 11882 IPH_MF; 11883 } 11884 offset_and_flags |= (uint16_t)(offset >> 3); 11885 offset_and_flags |= (uint16_t)frag_flag; 11886 /* Store the offset and flags in the IP header. */ 11887 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11888 11889 /* Store the length in the IP header. */ 11890 ip_len = (uint16_t)(len + hdr_len); 11891 ipha->ipha_length = htons(ip_len); 11892 11893 /* 11894 * Set the IP header checksum. Note that mp is just 11895 * the header, so this is easy to pass to ip_csum. 11896 */ 11897 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11898 11899 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11900 11901 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11902 nolzid, ixa_cookie); 11903 /* All done if we just consumed the hdr_mp. */ 11904 if (mp == hdr_mp) { 11905 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11906 return (error); 11907 } 11908 if (error != 0 && error != EWOULDBLOCK) { 11909 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11910 mblk_t *, hdr_mp); 11911 /* No point in sending the other fragments */ 11912 break; 11913 } 11914 11915 /* Otherwise, advance and loop. */ 11916 offset += len; 11917 } 11918 /* Clean up following allocation failure. */ 11919 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11920 ip_drop_output("FragFails: loop ended", NULL, ill); 11921 if (mp != hdr_mp) 11922 freeb(hdr_mp); 11923 if (mp != mp_orig) 11924 freemsg(mp_orig); 11925 return (error); 11926 } 11927 11928 /* 11929 * Copy the header plus those options which have the copy bit set 11930 */ 11931 static mblk_t * 11932 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11933 mblk_t *src) 11934 { 11935 mblk_t *mp; 11936 uchar_t *up; 11937 11938 /* 11939 * Quick check if we need to look for options without the copy bit 11940 * set 11941 */ 11942 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11943 if (!mp) 11944 return (mp); 11945 mp->b_rptr += ipst->ips_ip_wroff_extra; 11946 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11947 bcopy(rptr, mp->b_rptr, hdr_len); 11948 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11949 return (mp); 11950 } 11951 up = mp->b_rptr; 11952 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11953 up += IP_SIMPLE_HDR_LENGTH; 11954 rptr += IP_SIMPLE_HDR_LENGTH; 11955 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11956 while (hdr_len > 0) { 11957 uint32_t optval; 11958 uint32_t optlen; 11959 11960 optval = *rptr; 11961 if (optval == IPOPT_EOL) 11962 break; 11963 if (optval == IPOPT_NOP) 11964 optlen = 1; 11965 else 11966 optlen = rptr[1]; 11967 if (optval & IPOPT_COPY) { 11968 bcopy(rptr, up, optlen); 11969 up += optlen; 11970 } 11971 rptr += optlen; 11972 hdr_len -= optlen; 11973 } 11974 /* 11975 * Make sure that we drop an even number of words by filling 11976 * with EOL to the next word boundary. 11977 */ 11978 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11979 hdr_len & 0x3; hdr_len++) 11980 *up++ = IPOPT_EOL; 11981 mp->b_wptr = up; 11982 /* Update header length */ 11983 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11984 return (mp); 11985 } 11986 11987 /* 11988 * Update any source route, record route, or timestamp options when 11989 * sending a packet back to ourselves. 11990 * Check that we are at end of strict source route. 11991 * The options have been sanity checked by ip_output_options(). 11992 */ 11993 void 11994 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11995 { 11996 ipoptp_t opts; 11997 uchar_t *opt; 11998 uint8_t optval; 11999 uint8_t optlen; 12000 ipaddr_t dst; 12001 uint32_t ts; 12002 timestruc_t now; 12003 12004 for (optval = ipoptp_first(&opts, ipha); 12005 optval != IPOPT_EOL; 12006 optval = ipoptp_next(&opts)) { 12007 opt = opts.ipoptp_cur; 12008 optlen = opts.ipoptp_len; 12009 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 12010 switch (optval) { 12011 uint32_t off; 12012 case IPOPT_SSRR: 12013 case IPOPT_LSRR: 12014 off = opt[IPOPT_OFFSET]; 12015 off--; 12016 if (optlen < IP_ADDR_LEN || 12017 off > optlen - IP_ADDR_LEN) { 12018 /* End of source route */ 12019 break; 12020 } 12021 /* 12022 * This will only happen if two consecutive entries 12023 * in the source route contains our address or if 12024 * it is a packet with a loose source route which 12025 * reaches us before consuming the whole source route 12026 */ 12027 12028 if (optval == IPOPT_SSRR) { 12029 return; 12030 } 12031 /* 12032 * Hack: instead of dropping the packet truncate the 12033 * source route to what has been used by filling the 12034 * rest with IPOPT_NOP. 12035 */ 12036 opt[IPOPT_OLEN] = (uint8_t)off; 12037 while (off < optlen) { 12038 opt[off++] = IPOPT_NOP; 12039 } 12040 break; 12041 case IPOPT_RR: 12042 off = opt[IPOPT_OFFSET]; 12043 off--; 12044 if (optlen < IP_ADDR_LEN || 12045 off > optlen - IP_ADDR_LEN) { 12046 /* No more room - ignore */ 12047 ip1dbg(( 12048 "ip_output_local_options: end of RR\n")); 12049 break; 12050 } 12051 dst = htonl(INADDR_LOOPBACK); 12052 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12053 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12054 break; 12055 case IPOPT_TS: 12056 /* Insert timestamp if there is romm */ 12057 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12058 case IPOPT_TS_TSONLY: 12059 off = IPOPT_TS_TIMELEN; 12060 break; 12061 case IPOPT_TS_PRESPEC: 12062 case IPOPT_TS_PRESPEC_RFC791: 12063 /* Verify that the address matched */ 12064 off = opt[IPOPT_OFFSET] - 1; 12065 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12066 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12067 /* Not for us */ 12068 break; 12069 } 12070 /* FALLTHRU */ 12071 case IPOPT_TS_TSANDADDR: 12072 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12073 break; 12074 default: 12075 /* 12076 * ip_*put_options should have already 12077 * dropped this packet. 12078 */ 12079 cmn_err(CE_PANIC, "ip_output_local_options: " 12080 "unknown IT - bug in ip_output_options?\n"); 12081 return; /* Keep "lint" happy */ 12082 } 12083 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12084 /* Increase overflow counter */ 12085 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12086 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12087 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12088 (off << 4); 12089 break; 12090 } 12091 off = opt[IPOPT_OFFSET] - 1; 12092 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12093 case IPOPT_TS_PRESPEC: 12094 case IPOPT_TS_PRESPEC_RFC791: 12095 case IPOPT_TS_TSANDADDR: 12096 dst = htonl(INADDR_LOOPBACK); 12097 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12098 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12099 /* FALLTHRU */ 12100 case IPOPT_TS_TSONLY: 12101 off = opt[IPOPT_OFFSET] - 1; 12102 /* Compute # of milliseconds since midnight */ 12103 gethrestime(&now); 12104 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12105 now.tv_nsec / (NANOSEC / MILLISEC); 12106 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12107 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12108 break; 12109 } 12110 break; 12111 } 12112 } 12113 } 12114 12115 /* 12116 * Prepend an M_DATA fastpath header, and if none present prepend a 12117 * DL_UNITDATA_REQ. Frees the mblk on failure. 12118 * 12119 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12120 * If there is a change to them, the nce will be deleted (condemned) and 12121 * a new nce_t will be created when packets are sent. Thus we need no locks 12122 * to access those fields. 12123 * 12124 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12125 * we place b_band in dl_priority.dl_max. 12126 */ 12127 static mblk_t * 12128 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12129 { 12130 uint_t hlen; 12131 mblk_t *mp1; 12132 uint_t priority; 12133 uchar_t *rptr; 12134 12135 rptr = mp->b_rptr; 12136 12137 ASSERT(DB_TYPE(mp) == M_DATA); 12138 priority = mp->b_band; 12139 12140 ASSERT(nce != NULL); 12141 if ((mp1 = nce->nce_fp_mp) != NULL) { 12142 hlen = MBLKL(mp1); 12143 /* 12144 * Check if we have enough room to prepend fastpath 12145 * header 12146 */ 12147 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12148 rptr -= hlen; 12149 bcopy(mp1->b_rptr, rptr, hlen); 12150 /* 12151 * Set the b_rptr to the start of the link layer 12152 * header 12153 */ 12154 mp->b_rptr = rptr; 12155 return (mp); 12156 } 12157 mp1 = copyb(mp1); 12158 if (mp1 == NULL) { 12159 ill_t *ill = nce->nce_ill; 12160 12161 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12162 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12163 freemsg(mp); 12164 return (NULL); 12165 } 12166 mp1->b_band = priority; 12167 mp1->b_cont = mp; 12168 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12169 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12170 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12171 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12172 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12173 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12174 /* 12175 * XXX disable ICK_VALID and compute checksum 12176 * here; can happen if nce_fp_mp changes and 12177 * it can't be copied now due to insufficient 12178 * space. (unlikely, fp mp can change, but it 12179 * does not increase in length) 12180 */ 12181 return (mp1); 12182 } 12183 mp1 = copyb(nce->nce_dlur_mp); 12184 12185 if (mp1 == NULL) { 12186 ill_t *ill = nce->nce_ill; 12187 12188 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12189 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12190 freemsg(mp); 12191 return (NULL); 12192 } 12193 mp1->b_cont = mp; 12194 if (priority != 0) { 12195 mp1->b_band = priority; 12196 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12197 priority; 12198 } 12199 return (mp1); 12200 #undef rptr 12201 } 12202 12203 /* 12204 * Finish the outbound IPsec processing. This function is called from 12205 * ipsec_out_process() if the IPsec packet was processed 12206 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12207 * asynchronously. 12208 * 12209 * This is common to IPv4 and IPv6. 12210 */ 12211 int 12212 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12213 { 12214 iaflags_t ixaflags = ixa->ixa_flags; 12215 uint_t pktlen; 12216 12217 12218 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12219 if (ixaflags & IXAF_IS_IPV4) { 12220 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12221 12222 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12223 pktlen = ntohs(ipha->ipha_length); 12224 } else { 12225 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12226 12227 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12228 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12229 } 12230 12231 /* 12232 * We release any hard reference on the SAs here to make 12233 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12234 * on the SAs. 12235 * If in the future we want the hard latching of the SAs in the 12236 * ip_xmit_attr_t then we should remove this. 12237 */ 12238 if (ixa->ixa_ipsec_esp_sa != NULL) { 12239 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12240 ixa->ixa_ipsec_esp_sa = NULL; 12241 } 12242 if (ixa->ixa_ipsec_ah_sa != NULL) { 12243 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12244 ixa->ixa_ipsec_ah_sa = NULL; 12245 } 12246 12247 /* Do we need to fragment? */ 12248 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12249 pktlen > ixa->ixa_fragsize) { 12250 if (ixaflags & IXAF_IS_IPV4) { 12251 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12252 /* 12253 * We check for the DF case in ipsec_out_process 12254 * hence this only handles the non-DF case. 12255 */ 12256 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12257 pktlen, ixa->ixa_fragsize, 12258 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12259 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12260 &ixa->ixa_cookie)); 12261 } else { 12262 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12263 if (mp == NULL) { 12264 /* MIB and ip_drop_output already done */ 12265 return (ENOMEM); 12266 } 12267 pktlen += sizeof (ip6_frag_t); 12268 if (pktlen > ixa->ixa_fragsize) { 12269 return (ip_fragment_v6(mp, ixa->ixa_nce, 12270 ixa->ixa_flags, pktlen, 12271 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12272 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12273 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12274 } 12275 } 12276 } 12277 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12278 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12279 ixa->ixa_no_loop_zoneid, NULL)); 12280 } 12281 12282 /* 12283 * Finish the inbound IPsec processing. This function is called from 12284 * ipsec_out_process() if the IPsec packet was processed 12285 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12286 * asynchronously. 12287 * 12288 * This is common to IPv4 and IPv6. 12289 */ 12290 void 12291 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12292 { 12293 iaflags_t iraflags = ira->ira_flags; 12294 12295 /* Length might have changed */ 12296 if (iraflags & IRAF_IS_IPV4) { 12297 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12298 12299 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12300 ira->ira_pktlen = ntohs(ipha->ipha_length); 12301 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12302 ira->ira_protocol = ipha->ipha_protocol; 12303 12304 ip_fanout_v4(mp, ipha, ira); 12305 } else { 12306 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12307 uint8_t *nexthdrp; 12308 12309 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12310 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12311 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12312 &nexthdrp)) { 12313 /* Malformed packet */ 12314 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12315 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12316 freemsg(mp); 12317 return; 12318 } 12319 ira->ira_protocol = *nexthdrp; 12320 ip_fanout_v6(mp, ip6h, ira); 12321 } 12322 } 12323 12324 /* 12325 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12326 * 12327 * If this function returns B_TRUE, the requested SA's have been filled 12328 * into the ixa_ipsec_*_sa pointers. 12329 * 12330 * If the function returns B_FALSE, the packet has been "consumed", most 12331 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12332 * 12333 * The SA references created by the protocol-specific "select" 12334 * function will be released in ip_output_post_ipsec. 12335 */ 12336 static boolean_t 12337 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12338 { 12339 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12340 ipsec_policy_t *pp; 12341 ipsec_action_t *ap; 12342 12343 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12344 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12345 (ixa->ixa_ipsec_action != NULL)); 12346 12347 ap = ixa->ixa_ipsec_action; 12348 if (ap == NULL) { 12349 pp = ixa->ixa_ipsec_policy; 12350 ASSERT(pp != NULL); 12351 ap = pp->ipsp_act; 12352 ASSERT(ap != NULL); 12353 } 12354 12355 /* 12356 * We have an action. now, let's select SA's. 12357 * A side effect of setting ixa_ipsec_*_sa is that it will 12358 * be cached in the conn_t. 12359 */ 12360 if (ap->ipa_want_esp) { 12361 if (ixa->ixa_ipsec_esp_sa == NULL) { 12362 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12363 IPPROTO_ESP); 12364 } 12365 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12366 } 12367 12368 if (ap->ipa_want_ah) { 12369 if (ixa->ixa_ipsec_ah_sa == NULL) { 12370 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12371 IPPROTO_AH); 12372 } 12373 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12374 /* 12375 * The ESP and AH processing order needs to be preserved 12376 * when both protocols are required (ESP should be applied 12377 * before AH for an outbound packet). Force an ESP ACQUIRE 12378 * when both ESP and AH are required, and an AH ACQUIRE 12379 * is needed. 12380 */ 12381 if (ap->ipa_want_esp && need_ah_acquire) 12382 need_esp_acquire = B_TRUE; 12383 } 12384 12385 /* 12386 * Send an ACQUIRE (extended, regular, or both) if we need one. 12387 * Release SAs that got referenced, but will not be used until we 12388 * acquire _all_ of the SAs we need. 12389 */ 12390 if (need_ah_acquire || need_esp_acquire) { 12391 if (ixa->ixa_ipsec_ah_sa != NULL) { 12392 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12393 ixa->ixa_ipsec_ah_sa = NULL; 12394 } 12395 if (ixa->ixa_ipsec_esp_sa != NULL) { 12396 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12397 ixa->ixa_ipsec_esp_sa = NULL; 12398 } 12399 12400 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12401 return (B_FALSE); 12402 } 12403 12404 return (B_TRUE); 12405 } 12406 12407 /* 12408 * Handle IPsec output processing. 12409 * This function is only entered once for a given packet. 12410 * We try to do things synchronously, but if we need to have user-level 12411 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12412 * will be completed 12413 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12414 * - when asynchronous ESP is done it will do AH 12415 * 12416 * In all cases we come back in ip_output_post_ipsec() to fragment and 12417 * send out the packet. 12418 */ 12419 int 12420 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12421 { 12422 ill_t *ill = ixa->ixa_nce->nce_ill; 12423 ip_stack_t *ipst = ixa->ixa_ipst; 12424 ipsec_stack_t *ipss; 12425 ipsec_policy_t *pp; 12426 ipsec_action_t *ap; 12427 12428 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12429 12430 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12431 (ixa->ixa_ipsec_action != NULL)); 12432 12433 ipss = ipst->ips_netstack->netstack_ipsec; 12434 if (!ipsec_loaded(ipss)) { 12435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12436 ip_drop_packet(mp, B_TRUE, ill, 12437 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12438 &ipss->ipsec_dropper); 12439 return (ENOTSUP); 12440 } 12441 12442 ap = ixa->ixa_ipsec_action; 12443 if (ap == NULL) { 12444 pp = ixa->ixa_ipsec_policy; 12445 ASSERT(pp != NULL); 12446 ap = pp->ipsp_act; 12447 ASSERT(ap != NULL); 12448 } 12449 12450 /* Handle explicit drop action and bypass. */ 12451 switch (ap->ipa_act.ipa_type) { 12452 case IPSEC_ACT_DISCARD: 12453 case IPSEC_ACT_REJECT: 12454 ip_drop_packet(mp, B_FALSE, ill, 12455 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12456 return (EHOSTUNREACH); /* IPsec policy failure */ 12457 case IPSEC_ACT_BYPASS: 12458 return (ip_output_post_ipsec(mp, ixa)); 12459 } 12460 12461 /* 12462 * The order of processing is first insert a IP header if needed. 12463 * Then insert the ESP header and then the AH header. 12464 */ 12465 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12466 /* 12467 * First get the outer IP header before sending 12468 * it to ESP. 12469 */ 12470 ipha_t *oipha, *iipha; 12471 mblk_t *outer_mp, *inner_mp; 12472 12473 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12474 (void) mi_strlog(ill->ill_rq, 0, 12475 SL_ERROR|SL_TRACE|SL_CONSOLE, 12476 "ipsec_out_process: " 12477 "Self-Encapsulation failed: Out of memory\n"); 12478 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12479 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12480 freemsg(mp); 12481 return (ENOBUFS); 12482 } 12483 inner_mp = mp; 12484 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12485 oipha = (ipha_t *)outer_mp->b_rptr; 12486 iipha = (ipha_t *)inner_mp->b_rptr; 12487 *oipha = *iipha; 12488 outer_mp->b_wptr += sizeof (ipha_t); 12489 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12490 sizeof (ipha_t)); 12491 oipha->ipha_protocol = IPPROTO_ENCAP; 12492 oipha->ipha_version_and_hdr_length = 12493 IP_SIMPLE_HDR_VERSION; 12494 oipha->ipha_hdr_checksum = 0; 12495 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12496 outer_mp->b_cont = inner_mp; 12497 mp = outer_mp; 12498 12499 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12500 } 12501 12502 /* If we need to wait for a SA then we can't return any errno */ 12503 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12504 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12505 !ipsec_out_select_sa(mp, ixa)) 12506 return (0); 12507 12508 /* 12509 * By now, we know what SA's to use. Toss over to ESP & AH 12510 * to do the heavy lifting. 12511 */ 12512 if (ap->ipa_want_esp) { 12513 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12514 12515 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12516 if (mp == NULL) { 12517 /* 12518 * Either it failed or is pending. In the former case 12519 * ipIfStatsInDiscards was increased. 12520 */ 12521 return (0); 12522 } 12523 } 12524 12525 if (ap->ipa_want_ah) { 12526 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12527 12528 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12529 if (mp == NULL) { 12530 /* 12531 * Either it failed or is pending. In the former case 12532 * ipIfStatsInDiscards was increased. 12533 */ 12534 return (0); 12535 } 12536 } 12537 /* 12538 * We are done with IPsec processing. Send it over 12539 * the wire. 12540 */ 12541 return (ip_output_post_ipsec(mp, ixa)); 12542 } 12543 12544 /* 12545 * ioctls that go through a down/up sequence may need to wait for the down 12546 * to complete. This involves waiting for the ire and ipif refcnts to go down 12547 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12548 */ 12549 /* ARGSUSED */ 12550 void 12551 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12552 { 12553 struct iocblk *iocp; 12554 mblk_t *mp1; 12555 ip_ioctl_cmd_t *ipip; 12556 int err; 12557 sin_t *sin; 12558 struct lifreq *lifr; 12559 struct ifreq *ifr; 12560 12561 iocp = (struct iocblk *)mp->b_rptr; 12562 ASSERT(ipsq != NULL); 12563 /* Existence of mp1 verified in ip_wput_nondata */ 12564 mp1 = mp->b_cont->b_cont; 12565 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12566 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12567 /* 12568 * Special case where ipx_current_ipif is not set: 12569 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12570 * We are here as were not able to complete the operation in 12571 * ipif_set_values because we could not become exclusive on 12572 * the new ipsq. 12573 */ 12574 ill_t *ill = q->q_ptr; 12575 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12576 } 12577 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12578 12579 if (ipip->ipi_cmd_type == IF_CMD) { 12580 /* This a old style SIOC[GS]IF* command */ 12581 ifr = (struct ifreq *)mp1->b_rptr; 12582 sin = (sin_t *)&ifr->ifr_addr; 12583 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12584 /* This a new style SIOC[GS]LIF* command */ 12585 lifr = (struct lifreq *)mp1->b_rptr; 12586 sin = (sin_t *)&lifr->lifr_addr; 12587 } else { 12588 sin = NULL; 12589 } 12590 12591 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12592 q, mp, ipip, mp1->b_rptr); 12593 12594 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12595 int, ipip->ipi_cmd, 12596 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12597 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12598 12599 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12600 } 12601 12602 /* 12603 * ioctl processing 12604 * 12605 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12606 * the ioctl command in the ioctl tables, determines the copyin data size 12607 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12608 * 12609 * ioctl processing then continues when the M_IOCDATA makes its way down to 12610 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12611 * associated 'conn' is refheld till the end of the ioctl and the general 12612 * ioctl processing function ip_process_ioctl() is called to extract the 12613 * arguments and process the ioctl. To simplify extraction, ioctl commands 12614 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12615 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12616 * is used to extract the ioctl's arguments. 12617 * 12618 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12619 * so goes thru the serialization primitive ipsq_try_enter. Then the 12620 * appropriate function to handle the ioctl is called based on the entry in 12621 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12622 * which also refreleases the 'conn' that was refheld at the start of the 12623 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12624 * 12625 * Many exclusive ioctls go thru an internal down up sequence as part of 12626 * the operation. For example an attempt to change the IP address of an 12627 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12628 * does all the cleanup such as deleting all ires that use this address. 12629 * Then we need to wait till all references to the interface go away. 12630 */ 12631 void 12632 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12633 { 12634 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12635 ip_ioctl_cmd_t *ipip = arg; 12636 ip_extract_func_t *extract_funcp; 12637 cmd_info_t ci; 12638 int err; 12639 boolean_t entered_ipsq = B_FALSE; 12640 12641 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12642 12643 if (ipip == NULL) 12644 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12645 12646 /* 12647 * SIOCLIFADDIF needs to go thru a special path since the 12648 * ill may not exist yet. This happens in the case of lo0 12649 * which is created using this ioctl. 12650 */ 12651 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12652 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12653 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12654 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12655 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12656 return; 12657 } 12658 12659 ci.ci_ipif = NULL; 12660 switch (ipip->ipi_cmd_type) { 12661 case MISC_CMD: 12662 case MSFILT_CMD: 12663 /* 12664 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12665 */ 12666 if (ipip->ipi_cmd == IF_UNITSEL) { 12667 /* ioctl comes down the ill */ 12668 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12669 ipif_refhold(ci.ci_ipif); 12670 } 12671 err = 0; 12672 ci.ci_sin = NULL; 12673 ci.ci_sin6 = NULL; 12674 ci.ci_lifr = NULL; 12675 extract_funcp = NULL; 12676 break; 12677 12678 case IF_CMD: 12679 case LIF_CMD: 12680 extract_funcp = ip_extract_lifreq; 12681 break; 12682 12683 case ARP_CMD: 12684 case XARP_CMD: 12685 extract_funcp = ip_extract_arpreq; 12686 break; 12687 12688 default: 12689 ASSERT(0); 12690 } 12691 12692 if (extract_funcp != NULL) { 12693 err = (*extract_funcp)(q, mp, ipip, &ci); 12694 if (err != 0) { 12695 DTRACE_PROBE4(ipif__ioctl, 12696 char *, "ip_process_ioctl finish err", 12697 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12698 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12699 return; 12700 } 12701 12702 /* 12703 * All of the extraction functions return a refheld ipif. 12704 */ 12705 ASSERT(ci.ci_ipif != NULL); 12706 } 12707 12708 if (!(ipip->ipi_flags & IPI_WR)) { 12709 /* 12710 * A return value of EINPROGRESS means the ioctl is 12711 * either queued and waiting for some reason or has 12712 * already completed. 12713 */ 12714 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12715 ci.ci_lifr); 12716 if (ci.ci_ipif != NULL) { 12717 DTRACE_PROBE4(ipif__ioctl, 12718 char *, "ip_process_ioctl finish RD", 12719 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12720 ipif_t *, ci.ci_ipif); 12721 ipif_refrele(ci.ci_ipif); 12722 } else { 12723 DTRACE_PROBE4(ipif__ioctl, 12724 char *, "ip_process_ioctl finish RD", 12725 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12726 } 12727 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12728 return; 12729 } 12730 12731 ASSERT(ci.ci_ipif != NULL); 12732 12733 /* 12734 * If ipsq is non-NULL, we are already being called exclusively 12735 */ 12736 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12737 if (ipsq == NULL) { 12738 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12739 NEW_OP, B_TRUE); 12740 if (ipsq == NULL) { 12741 ipif_refrele(ci.ci_ipif); 12742 return; 12743 } 12744 entered_ipsq = B_TRUE; 12745 } 12746 /* 12747 * Release the ipif so that ipif_down and friends that wait for 12748 * references to go away are not misled about the current ipif_refcnt 12749 * values. We are writer so we can access the ipif even after releasing 12750 * the ipif. 12751 */ 12752 ipif_refrele(ci.ci_ipif); 12753 12754 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12755 12756 /* 12757 * A return value of EINPROGRESS means the ioctl is 12758 * either queued and waiting for some reason or has 12759 * already completed. 12760 */ 12761 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12762 12763 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12764 int, ipip->ipi_cmd, 12765 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12766 ipif_t *, ci.ci_ipif); 12767 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12768 12769 if (entered_ipsq) 12770 ipsq_exit(ipsq); 12771 } 12772 12773 /* 12774 * Complete the ioctl. Typically ioctls use the mi package and need to 12775 * do mi_copyout/mi_copy_done. 12776 */ 12777 void 12778 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12779 { 12780 conn_t *connp = NULL; 12781 12782 if (err == EINPROGRESS) 12783 return; 12784 12785 if (CONN_Q(q)) { 12786 connp = Q_TO_CONN(q); 12787 ASSERT(connp->conn_ref >= 2); 12788 } 12789 12790 switch (mode) { 12791 case COPYOUT: 12792 if (err == 0) 12793 mi_copyout(q, mp); 12794 else 12795 mi_copy_done(q, mp, err); 12796 break; 12797 12798 case NO_COPYOUT: 12799 mi_copy_done(q, mp, err); 12800 break; 12801 12802 default: 12803 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12804 break; 12805 } 12806 12807 /* 12808 * The refhold placed at the start of the ioctl is released here. 12809 */ 12810 if (connp != NULL) 12811 CONN_OPER_PENDING_DONE(connp); 12812 12813 if (ipsq != NULL) 12814 ipsq_current_finish(ipsq); 12815 } 12816 12817 /* Handles all non data messages */ 12818 void 12819 ip_wput_nondata(queue_t *q, mblk_t *mp) 12820 { 12821 mblk_t *mp1; 12822 struct iocblk *iocp; 12823 ip_ioctl_cmd_t *ipip; 12824 conn_t *connp; 12825 cred_t *cr; 12826 char *proto_str; 12827 12828 if (CONN_Q(q)) 12829 connp = Q_TO_CONN(q); 12830 else 12831 connp = NULL; 12832 12833 switch (DB_TYPE(mp)) { 12834 case M_IOCTL: 12835 /* 12836 * IOCTL processing begins in ip_sioctl_copyin_setup which 12837 * will arrange to copy in associated control structures. 12838 */ 12839 ip_sioctl_copyin_setup(q, mp); 12840 return; 12841 case M_IOCDATA: 12842 /* 12843 * Ensure that this is associated with one of our trans- 12844 * parent ioctls. If it's not ours, discard it if we're 12845 * running as a driver, or pass it on if we're a module. 12846 */ 12847 iocp = (struct iocblk *)mp->b_rptr; 12848 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12849 if (ipip == NULL) { 12850 if (q->q_next == NULL) { 12851 goto nak; 12852 } else { 12853 putnext(q, mp); 12854 } 12855 return; 12856 } 12857 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12858 /* 12859 * The ioctl is one we recognise, but is not consumed 12860 * by IP as a module and we are a module, so we drop 12861 */ 12862 goto nak; 12863 } 12864 12865 /* IOCTL continuation following copyin or copyout. */ 12866 if (mi_copy_state(q, mp, NULL) == -1) { 12867 /* 12868 * The copy operation failed. mi_copy_state already 12869 * cleaned up, so we're out of here. 12870 */ 12871 return; 12872 } 12873 /* 12874 * If we just completed a copy in, we become writer and 12875 * continue processing in ip_sioctl_copyin_done. If it 12876 * was a copy out, we call mi_copyout again. If there is 12877 * nothing more to copy out, it will complete the IOCTL. 12878 */ 12879 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12880 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12881 mi_copy_done(q, mp, EPROTO); 12882 return; 12883 } 12884 /* 12885 * Check for cases that need more copying. A return 12886 * value of 0 means a second copyin has been started, 12887 * so we return; a return value of 1 means no more 12888 * copying is needed, so we continue. 12889 */ 12890 if (ipip->ipi_cmd_type == MSFILT_CMD && 12891 MI_COPY_COUNT(mp) == 1) { 12892 if (ip_copyin_msfilter(q, mp) == 0) 12893 return; 12894 } 12895 /* 12896 * Refhold the conn, till the ioctl completes. This is 12897 * needed in case the ioctl ends up in the pending mp 12898 * list. Every mp in the ipx_pending_mp list 12899 * must have a refhold on the conn 12900 * to resume processing. The refhold is released when 12901 * the ioctl completes. (normally or abnormally) 12902 * In all cases ip_ioctl_finish is called to finish 12903 * the ioctl. 12904 */ 12905 if (connp != NULL) { 12906 /* This is not a reentry */ 12907 CONN_INC_REF(connp); 12908 } else { 12909 if (!(ipip->ipi_flags & IPI_MODOK)) { 12910 mi_copy_done(q, mp, EINVAL); 12911 return; 12912 } 12913 } 12914 12915 ip_process_ioctl(NULL, q, mp, ipip); 12916 12917 } else { 12918 mi_copyout(q, mp); 12919 } 12920 return; 12921 12922 case M_IOCNAK: 12923 /* 12924 * The only way we could get here is if a resolver didn't like 12925 * an IOCTL we sent it. This shouldn't happen. 12926 */ 12927 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12928 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12929 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12930 freemsg(mp); 12931 return; 12932 case M_IOCACK: 12933 /* /dev/ip shouldn't see this */ 12934 goto nak; 12935 case M_FLUSH: 12936 if (*mp->b_rptr & FLUSHW) 12937 flushq(q, FLUSHALL); 12938 if (q->q_next) { 12939 putnext(q, mp); 12940 return; 12941 } 12942 if (*mp->b_rptr & FLUSHR) { 12943 *mp->b_rptr &= ~FLUSHW; 12944 qreply(q, mp); 12945 return; 12946 } 12947 freemsg(mp); 12948 return; 12949 case M_CTL: 12950 break; 12951 case M_PROTO: 12952 case M_PCPROTO: 12953 /* 12954 * The only PROTO messages we expect are SNMP-related. 12955 */ 12956 switch (((union T_primitives *)mp->b_rptr)->type) { 12957 case T_SVR4_OPTMGMT_REQ: 12958 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12959 "flags %x\n", 12960 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12961 12962 if (connp == NULL) { 12963 proto_str = "T_SVR4_OPTMGMT_REQ"; 12964 goto protonak; 12965 } 12966 12967 /* 12968 * All Solaris components should pass a db_credp 12969 * for this TPI message, hence we ASSERT. 12970 * But in case there is some other M_PROTO that looks 12971 * like a TPI message sent by some other kernel 12972 * component, we check and return an error. 12973 */ 12974 cr = msg_getcred(mp, NULL); 12975 ASSERT(cr != NULL); 12976 if (cr == NULL) { 12977 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12978 if (mp != NULL) 12979 qreply(q, mp); 12980 return; 12981 } 12982 12983 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12984 proto_str = "Bad SNMPCOM request?"; 12985 goto protonak; 12986 } 12987 return; 12988 default: 12989 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12990 (int)*(uint_t *)mp->b_rptr)); 12991 freemsg(mp); 12992 return; 12993 } 12994 default: 12995 break; 12996 } 12997 if (q->q_next) { 12998 putnext(q, mp); 12999 } else 13000 freemsg(mp); 13001 return; 13002 13003 nak: 13004 iocp->ioc_error = EINVAL; 13005 mp->b_datap->db_type = M_IOCNAK; 13006 iocp->ioc_count = 0; 13007 qreply(q, mp); 13008 return; 13009 13010 protonak: 13011 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 13012 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 13013 qreply(q, mp); 13014 } 13015 13016 /* 13017 * Process IP options in an outbound packet. Verify that the nexthop in a 13018 * strict source route is onlink. 13019 * Returns non-zero if something fails in which case an ICMP error has been 13020 * sent and mp freed. 13021 * 13022 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 13023 */ 13024 int 13025 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 13026 { 13027 ipoptp_t opts; 13028 uchar_t *opt; 13029 uint8_t optval; 13030 uint8_t optlen; 13031 ipaddr_t dst; 13032 intptr_t code = 0; 13033 ire_t *ire; 13034 ip_stack_t *ipst = ixa->ixa_ipst; 13035 ip_recv_attr_t iras; 13036 13037 ip2dbg(("ip_output_options\n")); 13038 13039 dst = ipha->ipha_dst; 13040 for (optval = ipoptp_first(&opts, ipha); 13041 optval != IPOPT_EOL; 13042 optval = ipoptp_next(&opts)) { 13043 opt = opts.ipoptp_cur; 13044 optlen = opts.ipoptp_len; 13045 ip2dbg(("ip_output_options: opt %d, len %d\n", 13046 optval, optlen)); 13047 switch (optval) { 13048 uint32_t off; 13049 case IPOPT_SSRR: 13050 case IPOPT_LSRR: 13051 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13052 ip1dbg(( 13053 "ip_output_options: bad option offset\n")); 13054 code = (char *)&opt[IPOPT_OLEN] - 13055 (char *)ipha; 13056 goto param_prob; 13057 } 13058 off = opt[IPOPT_OFFSET]; 13059 ip1dbg(("ip_output_options: next hop 0x%x\n", 13060 ntohl(dst))); 13061 /* 13062 * For strict: verify that dst is directly 13063 * reachable. 13064 */ 13065 if (optval == IPOPT_SSRR) { 13066 ire = ire_ftable_lookup_v4(dst, 0, 0, 13067 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 13068 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13069 NULL); 13070 if (ire == NULL) { 13071 ip1dbg(("ip_output_options: SSRR not" 13072 " directly reachable: 0x%x\n", 13073 ntohl(dst))); 13074 goto bad_src_route; 13075 } 13076 ire_refrele(ire); 13077 } 13078 break; 13079 case IPOPT_RR: 13080 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13081 ip1dbg(( 13082 "ip_output_options: bad option offset\n")); 13083 code = (char *)&opt[IPOPT_OLEN] - 13084 (char *)ipha; 13085 goto param_prob; 13086 } 13087 break; 13088 case IPOPT_TS: 13089 /* 13090 * Verify that length >=5 and that there is either 13091 * room for another timestamp or that the overflow 13092 * counter is not maxed out. 13093 */ 13094 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13095 if (optlen < IPOPT_MINLEN_IT) { 13096 goto param_prob; 13097 } 13098 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13099 ip1dbg(( 13100 "ip_output_options: bad option offset\n")); 13101 code = (char *)&opt[IPOPT_OFFSET] - 13102 (char *)ipha; 13103 goto param_prob; 13104 } 13105 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13106 case IPOPT_TS_TSONLY: 13107 off = IPOPT_TS_TIMELEN; 13108 break; 13109 case IPOPT_TS_TSANDADDR: 13110 case IPOPT_TS_PRESPEC: 13111 case IPOPT_TS_PRESPEC_RFC791: 13112 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13113 break; 13114 default: 13115 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13116 (char *)ipha; 13117 goto param_prob; 13118 } 13119 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13120 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13121 /* 13122 * No room and the overflow counter is 15 13123 * already. 13124 */ 13125 goto param_prob; 13126 } 13127 break; 13128 } 13129 } 13130 13131 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13132 return (0); 13133 13134 ip1dbg(("ip_output_options: error processing IP options.")); 13135 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13136 13137 param_prob: 13138 bzero(&iras, sizeof (iras)); 13139 iras.ira_ill = iras.ira_rill = ill; 13140 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13141 iras.ira_rifindex = iras.ira_ruifindex; 13142 iras.ira_flags = IRAF_IS_IPV4; 13143 13144 ip_drop_output("ip_output_options", mp, ill); 13145 icmp_param_problem(mp, (uint8_t)code, &iras); 13146 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13147 return (-1); 13148 13149 bad_src_route: 13150 bzero(&iras, sizeof (iras)); 13151 iras.ira_ill = iras.ira_rill = ill; 13152 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13153 iras.ira_rifindex = iras.ira_ruifindex; 13154 iras.ira_flags = IRAF_IS_IPV4; 13155 13156 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13157 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13158 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13159 return (-1); 13160 } 13161 13162 /* 13163 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13164 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13165 * thru /etc/system. 13166 */ 13167 #define CONN_MAXDRAINCNT 64 13168 13169 static void 13170 conn_drain_init(ip_stack_t *ipst) 13171 { 13172 int i, j; 13173 idl_tx_list_t *itl_tx; 13174 13175 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13176 13177 if ((ipst->ips_conn_drain_list_cnt == 0) || 13178 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13179 /* 13180 * Default value of the number of drainers is the 13181 * number of cpus, subject to maximum of 8 drainers. 13182 */ 13183 if (boot_max_ncpus != -1) 13184 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13185 else 13186 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13187 } 13188 13189 ipst->ips_idl_tx_list = 13190 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13191 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13192 itl_tx = &ipst->ips_idl_tx_list[i]; 13193 itl_tx->txl_drain_list = 13194 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13195 sizeof (idl_t), KM_SLEEP); 13196 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13197 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13198 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13199 MUTEX_DEFAULT, NULL); 13200 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13201 } 13202 } 13203 } 13204 13205 static void 13206 conn_drain_fini(ip_stack_t *ipst) 13207 { 13208 int i; 13209 idl_tx_list_t *itl_tx; 13210 13211 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13212 itl_tx = &ipst->ips_idl_tx_list[i]; 13213 kmem_free(itl_tx->txl_drain_list, 13214 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13215 } 13216 kmem_free(ipst->ips_idl_tx_list, 13217 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13218 ipst->ips_idl_tx_list = NULL; 13219 } 13220 13221 /* 13222 * Note: For an overview of how flowcontrol is handled in IP please see the 13223 * IP Flowcontrol notes at the top of this file. 13224 * 13225 * Flow control has blocked us from proceeding. Insert the given conn in one 13226 * of the conn drain lists. These conn wq's will be qenabled later on when 13227 * STREAMS flow control does a backenable. conn_walk_drain will enable 13228 * the first conn in each of these drain lists. Each of these qenabled conns 13229 * in turn enables the next in the list, after it runs, or when it closes, 13230 * thus sustaining the drain process. 13231 */ 13232 void 13233 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13234 { 13235 idl_t *idl = tx_list->txl_drain_list; 13236 uint_t index; 13237 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13238 13239 mutex_enter(&connp->conn_lock); 13240 if (connp->conn_state_flags & CONN_CLOSING) { 13241 /* 13242 * The conn is closing as a result of which CONN_CLOSING 13243 * is set. Return. 13244 */ 13245 mutex_exit(&connp->conn_lock); 13246 return; 13247 } else if (connp->conn_idl == NULL) { 13248 /* 13249 * Assign the next drain list round robin. We dont' use 13250 * a lock, and thus it may not be strictly round robin. 13251 * Atomicity of load/stores is enough to make sure that 13252 * conn_drain_list_index is always within bounds. 13253 */ 13254 index = tx_list->txl_drain_index; 13255 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13256 connp->conn_idl = &tx_list->txl_drain_list[index]; 13257 index++; 13258 if (index == ipst->ips_conn_drain_list_cnt) 13259 index = 0; 13260 tx_list->txl_drain_index = index; 13261 } 13262 mutex_exit(&connp->conn_lock); 13263 13264 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 13265 if ((connp->conn_drain_prev != NULL) || 13266 (connp->conn_state_flags & CONN_CLOSING)) { 13267 /* 13268 * The conn is already in the drain list, OR 13269 * the conn is closing. We need to check again for 13270 * the closing case again since close can happen 13271 * after we drop the conn_lock, and before we 13272 * acquire the CONN_DRAIN_LIST_LOCK. 13273 */ 13274 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 13275 return; 13276 } else { 13277 idl = connp->conn_idl; 13278 } 13279 13280 /* 13281 * The conn is not in the drain list. Insert it at the 13282 * tail of the drain list. The drain list is circular 13283 * and doubly linked. idl_conn points to the 1st element 13284 * in the list. 13285 */ 13286 if (idl->idl_conn == NULL) { 13287 idl->idl_conn = connp; 13288 connp->conn_drain_next = connp; 13289 connp->conn_drain_prev = connp; 13290 } else { 13291 conn_t *head = idl->idl_conn; 13292 13293 connp->conn_drain_next = head; 13294 connp->conn_drain_prev = head->conn_drain_prev; 13295 head->conn_drain_prev->conn_drain_next = connp; 13296 head->conn_drain_prev = connp; 13297 } 13298 /* 13299 * For non streams based sockets assert flow control. 13300 */ 13301 conn_setqfull(connp, NULL); 13302 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 13303 } 13304 13305 static void 13306 conn_idl_remove(conn_t *connp) 13307 { 13308 idl_t *idl = connp->conn_idl; 13309 13310 if (idl != NULL) { 13311 /* 13312 * Remove ourself from the drain list, if we did not do 13313 * a putq, or if the conn is closing. 13314 * Note: It is possible that q->q_first is non-null. It means 13315 * that these messages landed after we did a enableok() in 13316 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 13317 * service them. 13318 */ 13319 if (connp->conn_drain_next == connp) { 13320 /* Singleton in the list */ 13321 ASSERT(connp->conn_drain_prev == connp); 13322 idl->idl_conn = NULL; 13323 } else { 13324 connp->conn_drain_prev->conn_drain_next = 13325 connp->conn_drain_next; 13326 connp->conn_drain_next->conn_drain_prev = 13327 connp->conn_drain_prev; 13328 if (idl->idl_conn == connp) 13329 idl->idl_conn = connp->conn_drain_next; 13330 } 13331 } 13332 connp->conn_drain_next = NULL; 13333 connp->conn_drain_prev = NULL; 13334 13335 conn_clrqfull(connp, NULL); 13336 /* 13337 * For streams based sockets open up flow control. 13338 */ 13339 if (!IPCL_IS_NONSTR(connp)) 13340 enableok(connp->conn_wq); 13341 } 13342 13343 /* 13344 * This conn is closing, and we are called from ip_close. OR 13345 * this conn is draining because flow-control on the ill has been relieved. 13346 * 13347 * We must also need to remove conn's on this idl from the list, and also 13348 * inform the sockfs upcalls about the change in flow-control. 13349 */ 13350 static void 13351 conn_drain_tail(conn_t *connp, boolean_t closing) 13352 { 13353 idl_t *idl; 13354 conn_t *next_connp; 13355 13356 /* 13357 * connp->conn_idl is stable at this point, and no lock is needed 13358 * to check it. If we are called from ip_close, close has already 13359 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13360 * called us only because conn_idl is non-null. If we are called thru 13361 * service, conn_idl could be null, but it cannot change because 13362 * service is single-threaded per queue, and there cannot be another 13363 * instance of service trying to call conn_drain_insert on this conn 13364 * now. 13365 */ 13366 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13367 13368 /* 13369 * If connp->conn_idl is null, the conn has not been inserted into any 13370 * drain list even once since creation of the conn. Just return. 13371 */ 13372 if (connp == NULL || connp->conn_idl == NULL) 13373 return; 13374 13375 if (connp->conn_drain_prev == NULL) { 13376 /* This conn is currently not in the drain list. */ 13377 return; 13378 } 13379 idl = connp->conn_idl; 13380 if (!closing) { 13381 /* 13382 * This conn is the current drainer. If this is the last conn 13383 * in the drain list, we need to do more checks, in the 'if' 13384 * below. Otherwwise we need to just qenable the next conn, 13385 * to sustain the draining, and is handled in the 'else' 13386 * below. 13387 */ 13388 next_connp = connp->conn_drain_next; 13389 while (next_connp != connp) { 13390 conn_t *delconnp = next_connp; 13391 13392 next_connp = next_connp->conn_drain_next; 13393 conn_idl_remove(delconnp); 13394 } 13395 ASSERT(connp->conn_drain_next == idl->idl_conn); 13396 } 13397 conn_idl_remove(connp); 13398 13399 } 13400 13401 /* 13402 * Write service routine. Shared perimeter entry point. 13403 * The device queue's messages has fallen below the low water mark and STREAMS 13404 * has backenabled the ill_wq. Send sockfs notification about flow-control onx 13405 * each waiting conn. 13406 */ 13407 void 13408 ip_wsrv(queue_t *q) 13409 { 13410 ill_t *ill; 13411 13412 ill = (ill_t *)q->q_ptr; 13413 if (ill->ill_state_flags == 0) { 13414 ip_stack_t *ipst = ill->ill_ipst; 13415 13416 /* 13417 * The device flow control has opened up. 13418 * Walk through conn drain lists and qenable the 13419 * first conn in each list. This makes sense only 13420 * if the stream is fully plumbed and setup. 13421 * Hence the ill_state_flags check above. 13422 */ 13423 ip1dbg(("ip_wsrv: walking\n")); 13424 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13425 enableok(ill->ill_wq); 13426 } 13427 } 13428 13429 /* 13430 * Callback to disable flow control in IP. 13431 * 13432 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13433 * is enabled. 13434 * 13435 * When MAC_TX() is not able to send any more packets, dld sets its queue 13436 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13437 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13438 * function and wakes up corresponding mac worker threads, which in turn 13439 * calls this callback function, and disables flow control. 13440 */ 13441 void 13442 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13443 { 13444 ill_t *ill = (ill_t *)arg; 13445 ip_stack_t *ipst = ill->ill_ipst; 13446 idl_tx_list_t *idl_txl; 13447 13448 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13449 mutex_enter(&idl_txl->txl_lock); 13450 /* add code to to set a flag to indicate idl_txl is enabled */ 13451 conn_walk_drain(ipst, idl_txl); 13452 mutex_exit(&idl_txl->txl_lock); 13453 } 13454 13455 /* 13456 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 13457 * of conns that need to be drained, check if drain is already in progress. 13458 * If so set the idl_repeat bit, indicating that the last conn in the list 13459 * needs to reinitiate the drain once again, for the list. If drain is not 13460 * in progress for the list, initiate the draining, by qenabling the 1st 13461 * conn in the list. The drain is self-sustaining, each qenabled conn will 13462 * in turn qenable the next conn, when it is done/blocked/closing. 13463 */ 13464 static void 13465 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13466 { 13467 int i; 13468 idl_t *idl; 13469 13470 IP_STAT(ipst, ip_conn_walk_drain); 13471 13472 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13473 idl = &tx_list->txl_drain_list[i]; 13474 mutex_enter(&idl->idl_lock); 13475 conn_drain_tail(idl->idl_conn, B_FALSE); 13476 mutex_exit(&idl->idl_lock); 13477 } 13478 } 13479 13480 /* 13481 * Determine if the ill and multicast aspects of that packets 13482 * "matches" the conn. 13483 */ 13484 boolean_t 13485 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13486 { 13487 ill_t *ill = ira->ira_rill; 13488 zoneid_t zoneid = ira->ira_zoneid; 13489 uint_t in_ifindex; 13490 ipaddr_t dst, src; 13491 13492 dst = ipha->ipha_dst; 13493 src = ipha->ipha_src; 13494 13495 /* 13496 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13497 * unicast, broadcast and multicast reception to 13498 * conn_incoming_ifindex. 13499 * conn_wantpacket is called for unicast, broadcast and 13500 * multicast packets. 13501 */ 13502 in_ifindex = connp->conn_incoming_ifindex; 13503 13504 /* mpathd can bind to the under IPMP interface, which we allow */ 13505 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13506 if (!IS_UNDER_IPMP(ill)) 13507 return (B_FALSE); 13508 13509 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13510 return (B_FALSE); 13511 } 13512 13513 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13514 return (B_FALSE); 13515 13516 if (!(ira->ira_flags & IRAF_MULTICAST)) 13517 return (B_TRUE); 13518 13519 if (connp->conn_multi_router) { 13520 /* multicast packet and multicast router socket: send up */ 13521 return (B_TRUE); 13522 } 13523 13524 if (ipha->ipha_protocol == IPPROTO_PIM || 13525 ipha->ipha_protocol == IPPROTO_RSVP) 13526 return (B_TRUE); 13527 13528 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13529 } 13530 13531 void 13532 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13533 { 13534 if (IPCL_IS_NONSTR(connp)) { 13535 (*connp->conn_upcalls->su_txq_full) 13536 (connp->conn_upper_handle, B_TRUE); 13537 if (flow_stopped != NULL) 13538 *flow_stopped = B_TRUE; 13539 } else { 13540 queue_t *q = connp->conn_wq; 13541 13542 ASSERT(q != NULL); 13543 if (!(q->q_flag & QFULL)) { 13544 mutex_enter(QLOCK(q)); 13545 if (!(q->q_flag & QFULL)) { 13546 /* still need to set QFULL */ 13547 q->q_flag |= QFULL; 13548 /* set flow_stopped to true under QLOCK */ 13549 if (flow_stopped != NULL) 13550 *flow_stopped = B_TRUE; 13551 mutex_exit(QLOCK(q)); 13552 } else { 13553 /* flow_stopped is left unchanged */ 13554 mutex_exit(QLOCK(q)); 13555 } 13556 } 13557 } 13558 } 13559 13560 void 13561 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13562 { 13563 if (IPCL_IS_NONSTR(connp)) { 13564 (*connp->conn_upcalls->su_txq_full) 13565 (connp->conn_upper_handle, B_FALSE); 13566 if (flow_stopped != NULL) 13567 *flow_stopped = B_FALSE; 13568 } else { 13569 queue_t *q = connp->conn_wq; 13570 13571 ASSERT(q != NULL); 13572 if (q->q_flag & QFULL) { 13573 mutex_enter(QLOCK(q)); 13574 if (q->q_flag & QFULL) { 13575 q->q_flag &= ~QFULL; 13576 /* set flow_stopped to false under QLOCK */ 13577 if (flow_stopped != NULL) 13578 *flow_stopped = B_FALSE; 13579 mutex_exit(QLOCK(q)); 13580 if (q->q_flag & QWANTW) 13581 qbackenable(q, 0); 13582 } else { 13583 /* flow_stopped is left unchanged */ 13584 mutex_exit(QLOCK(q)); 13585 } 13586 } 13587 } 13588 connp->conn_direct_blocked = B_FALSE; 13589 } 13590 13591 /* 13592 * Return the length in bytes of the IPv4 headers (base header, label, and 13593 * other IP options) that will be needed based on the 13594 * ip_pkt_t structure passed by the caller. 13595 * 13596 * The returned length does not include the length of the upper level 13597 * protocol (ULP) header. 13598 * The caller needs to check that the length doesn't exceed the max for IPv4. 13599 */ 13600 int 13601 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13602 { 13603 int len; 13604 13605 len = IP_SIMPLE_HDR_LENGTH; 13606 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13607 ASSERT(ipp->ipp_label_len_v4 != 0); 13608 /* We need to round up here */ 13609 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13610 } 13611 13612 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13613 ASSERT(ipp->ipp_ipv4_options_len != 0); 13614 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13615 len += ipp->ipp_ipv4_options_len; 13616 } 13617 return (len); 13618 } 13619 13620 /* 13621 * All-purpose routine to build an IPv4 header with options based 13622 * on the abstract ip_pkt_t. 13623 * 13624 * The caller has to set the source and destination address as well as 13625 * ipha_length. The caller has to massage any source route and compensate 13626 * for the ULP pseudo-header checksum due to the source route. 13627 */ 13628 void 13629 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13630 uint8_t protocol) 13631 { 13632 ipha_t *ipha = (ipha_t *)buf; 13633 uint8_t *cp; 13634 13635 /* Initialize IPv4 header */ 13636 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13637 ipha->ipha_length = 0; /* Caller will set later */ 13638 ipha->ipha_ident = 0; 13639 ipha->ipha_fragment_offset_and_flags = 0; 13640 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13641 ipha->ipha_protocol = protocol; 13642 ipha->ipha_hdr_checksum = 0; 13643 13644 if ((ipp->ipp_fields & IPPF_ADDR) && 13645 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13646 ipha->ipha_src = ipp->ipp_addr_v4; 13647 13648 cp = (uint8_t *)&ipha[1]; 13649 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13650 ASSERT(ipp->ipp_label_len_v4 != 0); 13651 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13652 cp += ipp->ipp_label_len_v4; 13653 /* We need to round up here */ 13654 while ((uintptr_t)cp & 0x3) { 13655 *cp++ = IPOPT_NOP; 13656 } 13657 } 13658 13659 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13660 ASSERT(ipp->ipp_ipv4_options_len != 0); 13661 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13662 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13663 cp += ipp->ipp_ipv4_options_len; 13664 } 13665 ipha->ipha_version_and_hdr_length = 13666 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13667 13668 ASSERT((int)(cp - buf) == buf_len); 13669 } 13670 13671 /* Allocate the private structure */ 13672 static int 13673 ip_priv_alloc(void **bufp) 13674 { 13675 void *buf; 13676 13677 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13678 return (ENOMEM); 13679 13680 *bufp = buf; 13681 return (0); 13682 } 13683 13684 /* Function to delete the private structure */ 13685 void 13686 ip_priv_free(void *buf) 13687 { 13688 ASSERT(buf != NULL); 13689 kmem_free(buf, sizeof (ip_priv_t)); 13690 } 13691 13692 /* 13693 * The entry point for IPPF processing. 13694 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13695 * routine just returns. 13696 * 13697 * When called, ip_process generates an ipp_packet_t structure 13698 * which holds the state information for this packet and invokes the 13699 * the classifier (via ipp_packet_process). The classification, depending on 13700 * configured filters, results in a list of actions for this packet. Invoking 13701 * an action may cause the packet to be dropped, in which case we return NULL. 13702 * proc indicates the callout position for 13703 * this packet and ill is the interface this packet arrived on or will leave 13704 * on (inbound and outbound resp.). 13705 * 13706 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13707 * on the ill corrsponding to the destination IP address. 13708 */ 13709 mblk_t * 13710 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13711 { 13712 ip_priv_t *priv; 13713 ipp_action_id_t aid; 13714 int rc = 0; 13715 ipp_packet_t *pp; 13716 13717 /* If the classifier is not loaded, return */ 13718 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13719 return (mp); 13720 } 13721 13722 ASSERT(mp != NULL); 13723 13724 /* Allocate the packet structure */ 13725 rc = ipp_packet_alloc(&pp, "ip", aid); 13726 if (rc != 0) 13727 goto drop; 13728 13729 /* Allocate the private structure */ 13730 rc = ip_priv_alloc((void **)&priv); 13731 if (rc != 0) { 13732 ipp_packet_free(pp); 13733 goto drop; 13734 } 13735 priv->proc = proc; 13736 priv->ill_index = ill_get_upper_ifindex(rill); 13737 13738 ipp_packet_set_private(pp, priv, ip_priv_free); 13739 ipp_packet_set_data(pp, mp); 13740 13741 /* Invoke the classifier */ 13742 rc = ipp_packet_process(&pp); 13743 if (pp != NULL) { 13744 mp = ipp_packet_get_data(pp); 13745 ipp_packet_free(pp); 13746 if (rc != 0) 13747 goto drop; 13748 return (mp); 13749 } else { 13750 /* No mp to trace in ip_drop_input/ip_drop_output */ 13751 mp = NULL; 13752 } 13753 drop: 13754 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13755 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13756 ip_drop_input("ip_process", mp, ill); 13757 } else { 13758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13759 ip_drop_output("ip_process", mp, ill); 13760 } 13761 freemsg(mp); 13762 return (NULL); 13763 } 13764 13765 /* 13766 * Propagate a multicast group membership operation (add/drop) on 13767 * all the interfaces crossed by the related multirt routes. 13768 * The call is considered successful if the operation succeeds 13769 * on at least one interface. 13770 * 13771 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13772 * multicast addresses with the ire argument being the first one. 13773 * We walk the bucket to find all the of those. 13774 * 13775 * Common to IPv4 and IPv6. 13776 */ 13777 static int 13778 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13779 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13780 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13781 mcast_record_t fmode, const in6_addr_t *v6src) 13782 { 13783 ire_t *ire_gw; 13784 irb_t *irb; 13785 int ifindex; 13786 int error = 0; 13787 int result; 13788 ip_stack_t *ipst = ire->ire_ipst; 13789 ipaddr_t group; 13790 boolean_t isv6; 13791 int match_flags; 13792 13793 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13794 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13795 isv6 = B_FALSE; 13796 } else { 13797 isv6 = B_TRUE; 13798 } 13799 13800 irb = ire->ire_bucket; 13801 ASSERT(irb != NULL); 13802 13803 result = 0; 13804 irb_refhold(irb); 13805 for (; ire != NULL; ire = ire->ire_next) { 13806 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13807 continue; 13808 13809 /* We handle -ifp routes by matching on the ill if set */ 13810 match_flags = MATCH_IRE_TYPE; 13811 if (ire->ire_ill != NULL) 13812 match_flags |= MATCH_IRE_ILL; 13813 13814 if (isv6) { 13815 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13816 continue; 13817 13818 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13819 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13820 match_flags, 0, ipst, NULL); 13821 } else { 13822 if (ire->ire_addr != group) 13823 continue; 13824 13825 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13826 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13827 match_flags, 0, ipst, NULL); 13828 } 13829 /* No interface route exists for the gateway; skip this ire. */ 13830 if (ire_gw == NULL) 13831 continue; 13832 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13833 ire_refrele(ire_gw); 13834 continue; 13835 } 13836 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13837 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13838 13839 /* 13840 * The operation is considered a success if 13841 * it succeeds at least once on any one interface. 13842 */ 13843 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13844 fmode, v6src); 13845 if (error == 0) 13846 result = CGTP_MCAST_SUCCESS; 13847 13848 ire_refrele(ire_gw); 13849 } 13850 irb_refrele(irb); 13851 /* 13852 * Consider the call as successful if we succeeded on at least 13853 * one interface. Otherwise, return the last encountered error. 13854 */ 13855 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13856 } 13857 13858 /* 13859 * Get the CGTP (multirouting) filtering status. 13860 * If 0, the CGTP hooks are transparent. 13861 */ 13862 /* ARGSUSED */ 13863 static int 13864 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 13865 { 13866 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 13867 13868 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 13869 return (0); 13870 } 13871 13872 /* 13873 * Set the CGTP (multirouting) filtering status. 13874 * If the status is changed from active to transparent 13875 * or from transparent to active, forward the new status 13876 * to the filtering module (if loaded). 13877 */ 13878 /* ARGSUSED */ 13879 static int 13880 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 13881 cred_t *ioc_cr) 13882 { 13883 long new_value; 13884 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 13885 ip_stack_t *ipst = CONNQ_TO_IPST(q); 13886 13887 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 13888 return (EPERM); 13889 13890 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 13891 new_value < 0 || new_value > 1) { 13892 return (EINVAL); 13893 } 13894 13895 if ((!*ip_cgtp_filter_value) && new_value) { 13896 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 13897 ipst->ips_ip_cgtp_filter_ops == NULL ? 13898 " (module not loaded)" : ""); 13899 } 13900 if (*ip_cgtp_filter_value && (!new_value)) { 13901 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 13902 ipst->ips_ip_cgtp_filter_ops == NULL ? 13903 " (module not loaded)" : ""); 13904 } 13905 13906 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13907 int res; 13908 netstackid_t stackid; 13909 13910 stackid = ipst->ips_netstack->netstack_stackid; 13911 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 13912 new_value); 13913 if (res) 13914 return (res); 13915 } 13916 13917 *ip_cgtp_filter_value = (boolean_t)new_value; 13918 13919 ill_set_inputfn_all(ipst); 13920 return (0); 13921 } 13922 13923 /* 13924 * Return the expected CGTP hooks version number. 13925 */ 13926 int 13927 ip_cgtp_filter_supported(void) 13928 { 13929 return (ip_cgtp_filter_rev); 13930 } 13931 13932 /* 13933 * CGTP hooks can be registered by invoking this function. 13934 * Checks that the version number matches. 13935 */ 13936 int 13937 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13938 { 13939 netstack_t *ns; 13940 ip_stack_t *ipst; 13941 13942 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13943 return (ENOTSUP); 13944 13945 ns = netstack_find_by_stackid(stackid); 13946 if (ns == NULL) 13947 return (EINVAL); 13948 ipst = ns->netstack_ip; 13949 ASSERT(ipst != NULL); 13950 13951 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13952 netstack_rele(ns); 13953 return (EALREADY); 13954 } 13955 13956 ipst->ips_ip_cgtp_filter_ops = ops; 13957 13958 ill_set_inputfn_all(ipst); 13959 13960 netstack_rele(ns); 13961 return (0); 13962 } 13963 13964 /* 13965 * CGTP hooks can be unregistered by invoking this function. 13966 * Returns ENXIO if there was no registration. 13967 * Returns EBUSY if the ndd variable has not been turned off. 13968 */ 13969 int 13970 ip_cgtp_filter_unregister(netstackid_t stackid) 13971 { 13972 netstack_t *ns; 13973 ip_stack_t *ipst; 13974 13975 ns = netstack_find_by_stackid(stackid); 13976 if (ns == NULL) 13977 return (EINVAL); 13978 ipst = ns->netstack_ip; 13979 ASSERT(ipst != NULL); 13980 13981 if (ipst->ips_ip_cgtp_filter) { 13982 netstack_rele(ns); 13983 return (EBUSY); 13984 } 13985 13986 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13987 netstack_rele(ns); 13988 return (ENXIO); 13989 } 13990 ipst->ips_ip_cgtp_filter_ops = NULL; 13991 13992 ill_set_inputfn_all(ipst); 13993 13994 netstack_rele(ns); 13995 return (0); 13996 } 13997 13998 /* 13999 * Check whether there is a CGTP filter registration. 14000 * Returns non-zero if there is a registration, otherwise returns zero. 14001 * Note: returns zero if bad stackid. 14002 */ 14003 int 14004 ip_cgtp_filter_is_registered(netstackid_t stackid) 14005 { 14006 netstack_t *ns; 14007 ip_stack_t *ipst; 14008 int ret; 14009 14010 ns = netstack_find_by_stackid(stackid); 14011 if (ns == NULL) 14012 return (0); 14013 ipst = ns->netstack_ip; 14014 ASSERT(ipst != NULL); 14015 14016 if (ipst->ips_ip_cgtp_filter_ops != NULL) 14017 ret = 1; 14018 else 14019 ret = 0; 14020 14021 netstack_rele(ns); 14022 return (ret); 14023 } 14024 14025 static int 14026 ip_squeue_switch(int val) 14027 { 14028 int rval; 14029 14030 switch (val) { 14031 case IP_SQUEUE_ENTER_NODRAIN: 14032 rval = SQ_NODRAIN; 14033 break; 14034 case IP_SQUEUE_ENTER: 14035 rval = SQ_PROCESS; 14036 break; 14037 case IP_SQUEUE_FILL: 14038 default: 14039 rval = SQ_FILL; 14040 break; 14041 } 14042 return (rval); 14043 } 14044 14045 /* ARGSUSED */ 14046 static int 14047 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 14048 caddr_t addr, cred_t *cr) 14049 { 14050 int *v = (int *)addr; 14051 long new_value; 14052 14053 if (secpolicy_net_config(cr, B_FALSE) != 0) 14054 return (EPERM); 14055 14056 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 14057 return (EINVAL); 14058 14059 ip_squeue_flag = ip_squeue_switch(new_value); 14060 *v = new_value; 14061 return (0); 14062 } 14063 14064 /* 14065 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 14066 * ip_debug. 14067 */ 14068 /* ARGSUSED */ 14069 static int 14070 ip_int_set(queue_t *q, mblk_t *mp, char *value, 14071 caddr_t addr, cred_t *cr) 14072 { 14073 int *v = (int *)addr; 14074 long new_value; 14075 14076 if (secpolicy_net_config(cr, B_FALSE) != 0) 14077 return (EPERM); 14078 14079 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 14080 return (EINVAL); 14081 14082 *v = new_value; 14083 return (0); 14084 } 14085 14086 static void * 14087 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 14088 { 14089 kstat_t *ksp; 14090 14091 ip_stat_t template = { 14092 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 14093 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 14094 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 14095 { "ip_db_ref", KSTAT_DATA_UINT64 }, 14096 { "ip_notaligned", KSTAT_DATA_UINT64 }, 14097 { "ip_multimblk", KSTAT_DATA_UINT64 }, 14098 { "ip_opt", KSTAT_DATA_UINT64 }, 14099 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 14100 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 14101 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 14102 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 14103 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 14104 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 14105 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 14106 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 14107 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 14108 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 14109 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 14110 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 14111 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14112 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14113 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14114 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14115 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14116 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14117 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 14118 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 14119 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 14120 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 14121 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 14122 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 14123 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 14124 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 14125 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 14126 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 14127 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 14128 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 14129 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 14130 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 14131 }; 14132 14133 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 14134 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 14135 KSTAT_FLAG_VIRTUAL, stackid); 14136 14137 if (ksp == NULL) 14138 return (NULL); 14139 14140 bcopy(&template, ip_statisticsp, sizeof (template)); 14141 ksp->ks_data = (void *)ip_statisticsp; 14142 ksp->ks_private = (void *)(uintptr_t)stackid; 14143 14144 kstat_install(ksp); 14145 return (ksp); 14146 } 14147 14148 static void 14149 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 14150 { 14151 if (ksp != NULL) { 14152 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14153 kstat_delete_netstack(ksp, stackid); 14154 } 14155 } 14156 14157 static void * 14158 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14159 { 14160 kstat_t *ksp; 14161 14162 ip_named_kstat_t template = { 14163 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14164 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14165 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14166 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14167 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14168 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14169 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14170 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14171 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14172 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14173 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14174 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14175 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14176 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14177 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14178 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14179 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14180 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14181 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14182 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14183 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14184 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14185 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14186 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14187 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14188 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14189 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14190 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14191 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14192 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14193 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14194 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14195 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14196 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14197 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14198 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14199 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14200 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14201 }; 14202 14203 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14204 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14205 if (ksp == NULL || ksp->ks_data == NULL) 14206 return (NULL); 14207 14208 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14209 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14210 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 14211 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14212 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14213 14214 template.netToMediaEntrySize.value.i32 = 14215 sizeof (mib2_ipNetToMediaEntry_t); 14216 14217 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14218 14219 bcopy(&template, ksp->ks_data, sizeof (template)); 14220 ksp->ks_update = ip_kstat_update; 14221 ksp->ks_private = (void *)(uintptr_t)stackid; 14222 14223 kstat_install(ksp); 14224 return (ksp); 14225 } 14226 14227 static void 14228 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14229 { 14230 if (ksp != NULL) { 14231 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14232 kstat_delete_netstack(ksp, stackid); 14233 } 14234 } 14235 14236 static int 14237 ip_kstat_update(kstat_t *kp, int rw) 14238 { 14239 ip_named_kstat_t *ipkp; 14240 mib2_ipIfStatsEntry_t ipmib; 14241 ill_walk_context_t ctx; 14242 ill_t *ill; 14243 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14244 netstack_t *ns; 14245 ip_stack_t *ipst; 14246 14247 if (kp == NULL || kp->ks_data == NULL) 14248 return (EIO); 14249 14250 if (rw == KSTAT_WRITE) 14251 return (EACCES); 14252 14253 ns = netstack_find_by_stackid(stackid); 14254 if (ns == NULL) 14255 return (-1); 14256 ipst = ns->netstack_ip; 14257 if (ipst == NULL) { 14258 netstack_rele(ns); 14259 return (-1); 14260 } 14261 ipkp = (ip_named_kstat_t *)kp->ks_data; 14262 14263 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14264 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14265 ill = ILL_START_WALK_V4(&ctx, ipst); 14266 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14267 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14268 rw_exit(&ipst->ips_ill_g_lock); 14269 14270 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14271 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14272 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14273 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14274 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14275 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14276 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14277 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14278 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14279 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14280 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14281 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14282 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 14283 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14284 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14285 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14286 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14287 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14288 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14289 14290 ipkp->routingDiscards.value.ui32 = 0; 14291 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14292 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14293 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14294 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14295 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14296 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14297 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14298 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14299 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14300 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14301 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14302 14303 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14304 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14305 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14306 14307 netstack_rele(ns); 14308 14309 return (0); 14310 } 14311 14312 static void * 14313 icmp_kstat_init(netstackid_t stackid) 14314 { 14315 kstat_t *ksp; 14316 14317 icmp_named_kstat_t template = { 14318 { "inMsgs", KSTAT_DATA_UINT32 }, 14319 { "inErrors", KSTAT_DATA_UINT32 }, 14320 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14321 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14322 { "inParmProbs", KSTAT_DATA_UINT32 }, 14323 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14324 { "inRedirects", KSTAT_DATA_UINT32 }, 14325 { "inEchos", KSTAT_DATA_UINT32 }, 14326 { "inEchoReps", KSTAT_DATA_UINT32 }, 14327 { "inTimestamps", KSTAT_DATA_UINT32 }, 14328 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14329 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14330 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14331 { "outMsgs", KSTAT_DATA_UINT32 }, 14332 { "outErrors", KSTAT_DATA_UINT32 }, 14333 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14334 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14335 { "outParmProbs", KSTAT_DATA_UINT32 }, 14336 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14337 { "outRedirects", KSTAT_DATA_UINT32 }, 14338 { "outEchos", KSTAT_DATA_UINT32 }, 14339 { "outEchoReps", KSTAT_DATA_UINT32 }, 14340 { "outTimestamps", KSTAT_DATA_UINT32 }, 14341 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14342 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14343 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14344 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14345 { "inUnknowns", KSTAT_DATA_UINT32 }, 14346 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14347 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14348 { "outDrops", KSTAT_DATA_UINT32 }, 14349 { "inOverFlows", KSTAT_DATA_UINT32 }, 14350 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14351 }; 14352 14353 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14354 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14355 if (ksp == NULL || ksp->ks_data == NULL) 14356 return (NULL); 14357 14358 bcopy(&template, ksp->ks_data, sizeof (template)); 14359 14360 ksp->ks_update = icmp_kstat_update; 14361 ksp->ks_private = (void *)(uintptr_t)stackid; 14362 14363 kstat_install(ksp); 14364 return (ksp); 14365 } 14366 14367 static void 14368 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14369 { 14370 if (ksp != NULL) { 14371 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14372 kstat_delete_netstack(ksp, stackid); 14373 } 14374 } 14375 14376 static int 14377 icmp_kstat_update(kstat_t *kp, int rw) 14378 { 14379 icmp_named_kstat_t *icmpkp; 14380 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14381 netstack_t *ns; 14382 ip_stack_t *ipst; 14383 14384 if ((kp == NULL) || (kp->ks_data == NULL)) 14385 return (EIO); 14386 14387 if (rw == KSTAT_WRITE) 14388 return (EACCES); 14389 14390 ns = netstack_find_by_stackid(stackid); 14391 if (ns == NULL) 14392 return (-1); 14393 ipst = ns->netstack_ip; 14394 if (ipst == NULL) { 14395 netstack_rele(ns); 14396 return (-1); 14397 } 14398 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14399 14400 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14401 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14402 icmpkp->inDestUnreachs.value.ui32 = 14403 ipst->ips_icmp_mib.icmpInDestUnreachs; 14404 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14405 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14406 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14407 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14408 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14409 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14410 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14411 icmpkp->inTimestampReps.value.ui32 = 14412 ipst->ips_icmp_mib.icmpInTimestampReps; 14413 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14414 icmpkp->inAddrMaskReps.value.ui32 = 14415 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14416 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14417 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14418 icmpkp->outDestUnreachs.value.ui32 = 14419 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14420 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14421 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14422 icmpkp->outSrcQuenchs.value.ui32 = 14423 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14424 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14425 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14426 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14427 icmpkp->outTimestamps.value.ui32 = 14428 ipst->ips_icmp_mib.icmpOutTimestamps; 14429 icmpkp->outTimestampReps.value.ui32 = 14430 ipst->ips_icmp_mib.icmpOutTimestampReps; 14431 icmpkp->outAddrMasks.value.ui32 = 14432 ipst->ips_icmp_mib.icmpOutAddrMasks; 14433 icmpkp->outAddrMaskReps.value.ui32 = 14434 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14435 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14436 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14437 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14438 icmpkp->outFragNeeded.value.ui32 = 14439 ipst->ips_icmp_mib.icmpOutFragNeeded; 14440 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14441 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14442 icmpkp->inBadRedirects.value.ui32 = 14443 ipst->ips_icmp_mib.icmpInBadRedirects; 14444 14445 netstack_rele(ns); 14446 return (0); 14447 } 14448 14449 /* 14450 * This is the fanout function for raw socket opened for SCTP. Note 14451 * that it is called after SCTP checks that there is no socket which 14452 * wants a packet. Then before SCTP handles this out of the blue packet, 14453 * this function is called to see if there is any raw socket for SCTP. 14454 * If there is and it is bound to the correct address, the packet will 14455 * be sent to that socket. Note that only one raw socket can be bound to 14456 * a port. This is assured in ipcl_sctp_hash_insert(); 14457 */ 14458 void 14459 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14460 ip_recv_attr_t *ira) 14461 { 14462 conn_t *connp; 14463 queue_t *rq; 14464 boolean_t secure; 14465 ill_t *ill = ira->ira_ill; 14466 ip_stack_t *ipst = ill->ill_ipst; 14467 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14468 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14469 iaflags_t iraflags = ira->ira_flags; 14470 ill_t *rill = ira->ira_rill; 14471 14472 secure = iraflags & IRAF_IPSEC_SECURE; 14473 14474 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14475 ira, ipst); 14476 if (connp == NULL) { 14477 /* 14478 * Although raw sctp is not summed, OOB chunks must be. 14479 * Drop the packet here if the sctp checksum failed. 14480 */ 14481 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14482 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 14483 freemsg(mp); 14484 return; 14485 } 14486 ira->ira_ill = ira->ira_rill = NULL; 14487 sctp_ootb_input(mp, ira, ipst); 14488 ira->ira_ill = ill; 14489 ira->ira_rill = rill; 14490 return; 14491 } 14492 rq = connp->conn_rq; 14493 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14494 CONN_DEC_REF(connp); 14495 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14496 freemsg(mp); 14497 return; 14498 } 14499 if (((iraflags & IRAF_IS_IPV4) ? 14500 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14501 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14502 secure) { 14503 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14504 ip6h, ira); 14505 if (mp == NULL) { 14506 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14507 /* Note that mp is NULL */ 14508 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14509 CONN_DEC_REF(connp); 14510 return; 14511 } 14512 } 14513 14514 if (iraflags & IRAF_ICMP_ERROR) { 14515 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14516 } else { 14517 ill_t *rill = ira->ira_rill; 14518 14519 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14520 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14521 ira->ira_ill = ira->ira_rill = NULL; 14522 (connp->conn_recv)(connp, mp, NULL, ira); 14523 ira->ira_ill = ill; 14524 ira->ira_rill = rill; 14525 } 14526 CONN_DEC_REF(connp); 14527 } 14528 14529 /* 14530 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14531 * header before the ip payload. 14532 */ 14533 static void 14534 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14535 { 14536 int len = (mp->b_wptr - mp->b_rptr); 14537 mblk_t *ip_mp; 14538 14539 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14540 if (is_fp_mp || len != fp_mp_len) { 14541 if (len > fp_mp_len) { 14542 /* 14543 * fastpath header and ip header in the first mblk 14544 */ 14545 mp->b_rptr += fp_mp_len; 14546 } else { 14547 /* 14548 * ip_xmit_attach_llhdr had to prepend an mblk to 14549 * attach the fastpath header before ip header. 14550 */ 14551 ip_mp = mp->b_cont; 14552 freeb(mp); 14553 mp = ip_mp; 14554 mp->b_rptr += (fp_mp_len - len); 14555 } 14556 } else { 14557 ip_mp = mp->b_cont; 14558 freeb(mp); 14559 mp = ip_mp; 14560 } 14561 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14562 freemsg(mp); 14563 } 14564 14565 /* 14566 * Normal post fragmentation function. 14567 * 14568 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14569 * using the same state machine. 14570 * 14571 * We return an error on failure. In particular we return EWOULDBLOCK 14572 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14573 * (currently by canputnext failure resulting in backenabling from GLD.) 14574 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14575 * indication that they can flow control until ip_wsrv() tells then to restart. 14576 * 14577 * If the nce passed by caller is incomplete, this function 14578 * queues the packet and if necessary, sends ARP request and bails. 14579 * If the Neighbor Cache passed is fully resolved, we simply prepend 14580 * the link-layer header to the packet, do ipsec hw acceleration 14581 * work if necessary, and send the packet out on the wire. 14582 */ 14583 /* ARGSUSED6 */ 14584 int 14585 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14586 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14587 { 14588 queue_t *wq; 14589 ill_t *ill = nce->nce_ill; 14590 ip_stack_t *ipst = ill->ill_ipst; 14591 uint64_t delta; 14592 boolean_t isv6 = ill->ill_isv6; 14593 boolean_t fp_mp; 14594 ncec_t *ncec = nce->nce_common; 14595 int64_t now = LBOLT_FASTPATH64; 14596 boolean_t is_probe; 14597 14598 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14599 14600 ASSERT(mp != NULL); 14601 ASSERT(mp->b_datap->db_type == M_DATA); 14602 ASSERT(pkt_len == msgdsize(mp)); 14603 14604 /* 14605 * If we have already been here and are coming back after ARP/ND. 14606 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14607 * in that case since they have seen the packet when it came here 14608 * the first time. 14609 */ 14610 if (ixaflags & IXAF_NO_TRACE) 14611 goto sendit; 14612 14613 if (ixaflags & IXAF_IS_IPV4) { 14614 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14615 14616 ASSERT(!isv6); 14617 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14618 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14619 !(ixaflags & IXAF_NO_PFHOOK)) { 14620 int error; 14621 14622 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14623 ipst->ips_ipv4firewall_physical_out, 14624 NULL, ill, ipha, mp, mp, 0, ipst, error); 14625 DTRACE_PROBE1(ip4__physical__out__end, 14626 mblk_t *, mp); 14627 if (mp == NULL) 14628 return (error); 14629 14630 /* The length could have changed */ 14631 pkt_len = msgdsize(mp); 14632 } 14633 if (ipst->ips_ip4_observe.he_interested) { 14634 /* 14635 * Note that for TX the zoneid is the sending 14636 * zone, whether or not MLP is in play. 14637 * Since the szone argument is the IP zoneid (i.e., 14638 * zero for exclusive-IP zones) and ipobs wants 14639 * the system zoneid, we map it here. 14640 */ 14641 szone = IP_REAL_ZONEID(szone, ipst); 14642 14643 /* 14644 * On the outbound path the destination zone will be 14645 * unknown as we're sending this packet out on the 14646 * wire. 14647 */ 14648 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14649 ill, ipst); 14650 } 14651 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14652 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14653 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14654 } else { 14655 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14656 14657 ASSERT(isv6); 14658 ASSERT(pkt_len == 14659 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14660 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14661 !(ixaflags & IXAF_NO_PFHOOK)) { 14662 int error; 14663 14664 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14665 ipst->ips_ipv6firewall_physical_out, 14666 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14667 DTRACE_PROBE1(ip6__physical__out__end, 14668 mblk_t *, mp); 14669 if (mp == NULL) 14670 return (error); 14671 14672 /* The length could have changed */ 14673 pkt_len = msgdsize(mp); 14674 } 14675 if (ipst->ips_ip6_observe.he_interested) { 14676 /* See above */ 14677 szone = IP_REAL_ZONEID(szone, ipst); 14678 14679 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14680 ill, ipst); 14681 } 14682 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14683 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14684 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14685 } 14686 14687 sendit: 14688 /* 14689 * We check the state without a lock because the state can never 14690 * move "backwards" to initial or incomplete. 14691 */ 14692 switch (ncec->ncec_state) { 14693 case ND_REACHABLE: 14694 case ND_STALE: 14695 case ND_DELAY: 14696 case ND_PROBE: 14697 mp = ip_xmit_attach_llhdr(mp, nce); 14698 if (mp == NULL) { 14699 /* 14700 * ip_xmit_attach_llhdr has increased 14701 * ipIfStatsOutDiscards and called ip_drop_output() 14702 */ 14703 return (ENOBUFS); 14704 } 14705 /* 14706 * check if nce_fastpath completed and we tagged on a 14707 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14708 */ 14709 fp_mp = (mp->b_datap->db_type == M_DATA); 14710 14711 if (fp_mp && 14712 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14713 ill_dld_direct_t *idd; 14714 14715 idd = &ill->ill_dld_capab->idc_direct; 14716 /* 14717 * Send the packet directly to DLD, where it 14718 * may be queued depending on the availability 14719 * of transmit resources at the media layer. 14720 * Return value should be taken into 14721 * account and flow control the TCP. 14722 */ 14723 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14724 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14725 pkt_len); 14726 14727 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14728 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14729 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14730 } else { 14731 uintptr_t cookie; 14732 14733 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14734 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14735 if (ixacookie != NULL) 14736 *ixacookie = cookie; 14737 return (EWOULDBLOCK); 14738 } 14739 } 14740 } else { 14741 wq = ill->ill_wq; 14742 14743 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14744 !canputnext(wq)) { 14745 if (ixacookie != NULL) 14746 *ixacookie = 0; 14747 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14748 nce->nce_fp_mp != NULL ? 14749 MBLKL(nce->nce_fp_mp) : 0); 14750 return (EWOULDBLOCK); 14751 } 14752 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14753 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14754 pkt_len); 14755 putnext(wq, mp); 14756 } 14757 14758 /* 14759 * The rest of this function implements Neighbor Unreachability 14760 * detection. Determine if the ncec is eligible for NUD. 14761 */ 14762 if (ncec->ncec_flags & NCE_F_NONUD) 14763 return (0); 14764 14765 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14766 14767 /* 14768 * Check for upper layer advice 14769 */ 14770 if (ixaflags & IXAF_REACH_CONF) { 14771 timeout_id_t tid; 14772 14773 /* 14774 * It should be o.k. to check the state without 14775 * a lock here, at most we lose an advice. 14776 */ 14777 ncec->ncec_last = TICK_TO_MSEC(now); 14778 if (ncec->ncec_state != ND_REACHABLE) { 14779 mutex_enter(&ncec->ncec_lock); 14780 ncec->ncec_state = ND_REACHABLE; 14781 tid = ncec->ncec_timeout_id; 14782 ncec->ncec_timeout_id = 0; 14783 mutex_exit(&ncec->ncec_lock); 14784 (void) untimeout(tid); 14785 if (ip_debug > 2) { 14786 /* ip1dbg */ 14787 pr_addr_dbg("ip_xmit: state" 14788 " for %s changed to" 14789 " REACHABLE\n", AF_INET6, 14790 &ncec->ncec_addr); 14791 } 14792 } 14793 return (0); 14794 } 14795 14796 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14797 ip1dbg(("ip_xmit: delta = %" PRId64 14798 " ill_reachable_time = %d \n", delta, 14799 ill->ill_reachable_time)); 14800 if (delta > (uint64_t)ill->ill_reachable_time) { 14801 mutex_enter(&ncec->ncec_lock); 14802 switch (ncec->ncec_state) { 14803 case ND_REACHABLE: 14804 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14805 /* FALLTHROUGH */ 14806 case ND_STALE: 14807 /* 14808 * ND_REACHABLE is identical to 14809 * ND_STALE in this specific case. If 14810 * reachable time has expired for this 14811 * neighbor (delta is greater than 14812 * reachable time), conceptually, the 14813 * neighbor cache is no longer in 14814 * REACHABLE state, but already in 14815 * STALE state. So the correct 14816 * transition here is to ND_DELAY. 14817 */ 14818 ncec->ncec_state = ND_DELAY; 14819 mutex_exit(&ncec->ncec_lock); 14820 nce_restart_timer(ncec, 14821 ipst->ips_delay_first_probe_time); 14822 if (ip_debug > 3) { 14823 /* ip2dbg */ 14824 pr_addr_dbg("ip_xmit: state" 14825 " for %s changed to" 14826 " DELAY\n", AF_INET6, 14827 &ncec->ncec_addr); 14828 } 14829 break; 14830 case ND_DELAY: 14831 case ND_PROBE: 14832 mutex_exit(&ncec->ncec_lock); 14833 /* Timers have already started */ 14834 break; 14835 case ND_UNREACHABLE: 14836 /* 14837 * nce_timer has detected that this ncec 14838 * is unreachable and initiated deleting 14839 * this ncec. 14840 * This is a harmless race where we found the 14841 * ncec before it was deleted and have 14842 * just sent out a packet using this 14843 * unreachable ncec. 14844 */ 14845 mutex_exit(&ncec->ncec_lock); 14846 break; 14847 default: 14848 ASSERT(0); 14849 mutex_exit(&ncec->ncec_lock); 14850 } 14851 } 14852 return (0); 14853 14854 case ND_INCOMPLETE: 14855 /* 14856 * the state could have changed since we didn't hold the lock. 14857 * Re-verify state under lock. 14858 */ 14859 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14860 mutex_enter(&ncec->ncec_lock); 14861 if (NCE_ISREACHABLE(ncec)) { 14862 mutex_exit(&ncec->ncec_lock); 14863 goto sendit; 14864 } 14865 /* queue the packet */ 14866 nce_queue_mp(ncec, mp, is_probe); 14867 mutex_exit(&ncec->ncec_lock); 14868 DTRACE_PROBE2(ip__xmit__incomplete, 14869 (ncec_t *), ncec, (mblk_t *), mp); 14870 return (0); 14871 14872 case ND_INITIAL: 14873 /* 14874 * State could have changed since we didn't hold the lock, so 14875 * re-verify state. 14876 */ 14877 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14878 mutex_enter(&ncec->ncec_lock); 14879 if (NCE_ISREACHABLE(ncec)) { 14880 mutex_exit(&ncec->ncec_lock); 14881 goto sendit; 14882 } 14883 nce_queue_mp(ncec, mp, is_probe); 14884 if (ncec->ncec_state == ND_INITIAL) { 14885 ncec->ncec_state = ND_INCOMPLETE; 14886 mutex_exit(&ncec->ncec_lock); 14887 /* 14888 * figure out the source we want to use 14889 * and resolve it. 14890 */ 14891 ip_ndp_resolve(ncec); 14892 } else { 14893 mutex_exit(&ncec->ncec_lock); 14894 } 14895 return (0); 14896 14897 case ND_UNREACHABLE: 14898 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14899 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14900 mp, ill); 14901 freemsg(mp); 14902 return (0); 14903 14904 default: 14905 ASSERT(0); 14906 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14907 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14908 mp, ill); 14909 freemsg(mp); 14910 return (ENETUNREACH); 14911 } 14912 } 14913 14914 /* 14915 * Return B_TRUE if the buffers differ in length or content. 14916 * This is used for comparing extension header buffers. 14917 * Note that an extension header would be declared different 14918 * even if all that changed was the next header value in that header i.e. 14919 * what really changed is the next extension header. 14920 */ 14921 boolean_t 14922 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14923 uint_t blen) 14924 { 14925 if (!b_valid) 14926 blen = 0; 14927 14928 if (alen != blen) 14929 return (B_TRUE); 14930 if (alen == 0) 14931 return (B_FALSE); /* Both zero length */ 14932 return (bcmp(abuf, bbuf, alen)); 14933 } 14934 14935 /* 14936 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14937 * Return B_FALSE if memory allocation fails - don't change any state! 14938 */ 14939 boolean_t 14940 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14941 const void *src, uint_t srclen) 14942 { 14943 void *dst; 14944 14945 if (!src_valid) 14946 srclen = 0; 14947 14948 ASSERT(*dstlenp == 0); 14949 if (src != NULL && srclen != 0) { 14950 dst = mi_alloc(srclen, BPRI_MED); 14951 if (dst == NULL) 14952 return (B_FALSE); 14953 } else { 14954 dst = NULL; 14955 } 14956 if (*dstp != NULL) 14957 mi_free(*dstp); 14958 *dstp = dst; 14959 *dstlenp = dst == NULL ? 0 : srclen; 14960 return (B_TRUE); 14961 } 14962 14963 /* 14964 * Replace what is in *dst, *dstlen with the source. 14965 * Assumes ip_allocbuf has already been called. 14966 */ 14967 void 14968 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14969 const void *src, uint_t srclen) 14970 { 14971 if (!src_valid) 14972 srclen = 0; 14973 14974 ASSERT(*dstlenp == srclen); 14975 if (src != NULL && srclen != 0) 14976 bcopy(src, *dstp, srclen); 14977 } 14978 14979 /* 14980 * Free the storage pointed to by the members of an ip_pkt_t. 14981 */ 14982 void 14983 ip_pkt_free(ip_pkt_t *ipp) 14984 { 14985 uint_t fields = ipp->ipp_fields; 14986 14987 if (fields & IPPF_HOPOPTS) { 14988 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14989 ipp->ipp_hopopts = NULL; 14990 ipp->ipp_hopoptslen = 0; 14991 } 14992 if (fields & IPPF_RTHDRDSTOPTS) { 14993 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14994 ipp->ipp_rthdrdstopts = NULL; 14995 ipp->ipp_rthdrdstoptslen = 0; 14996 } 14997 if (fields & IPPF_DSTOPTS) { 14998 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14999 ipp->ipp_dstopts = NULL; 15000 ipp->ipp_dstoptslen = 0; 15001 } 15002 if (fields & IPPF_RTHDR) { 15003 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15004 ipp->ipp_rthdr = NULL; 15005 ipp->ipp_rthdrlen = 0; 15006 } 15007 if (fields & IPPF_IPV4_OPTIONS) { 15008 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 15009 ipp->ipp_ipv4_options = NULL; 15010 ipp->ipp_ipv4_options_len = 0; 15011 } 15012 if (fields & IPPF_LABEL_V4) { 15013 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 15014 ipp->ipp_label_v4 = NULL; 15015 ipp->ipp_label_len_v4 = 0; 15016 } 15017 if (fields & IPPF_LABEL_V6) { 15018 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 15019 ipp->ipp_label_v6 = NULL; 15020 ipp->ipp_label_len_v6 = 0; 15021 } 15022 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 15023 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 15024 } 15025 15026 /* 15027 * Copy from src to dst and allocate as needed. 15028 * Returns zero or ENOMEM. 15029 * 15030 * The caller must initialize dst to zero. 15031 */ 15032 int 15033 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 15034 { 15035 uint_t fields = src->ipp_fields; 15036 15037 /* Start with fields that don't require memory allocation */ 15038 dst->ipp_fields = fields & 15039 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 15040 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 15041 15042 dst->ipp_addr = src->ipp_addr; 15043 dst->ipp_unicast_hops = src->ipp_unicast_hops; 15044 dst->ipp_hoplimit = src->ipp_hoplimit; 15045 dst->ipp_tclass = src->ipp_tclass; 15046 dst->ipp_type_of_service = src->ipp_type_of_service; 15047 15048 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 15049 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 15050 return (0); 15051 15052 if (fields & IPPF_HOPOPTS) { 15053 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 15054 if (dst->ipp_hopopts == NULL) { 15055 ip_pkt_free(dst); 15056 return (ENOMEM); 15057 } 15058 dst->ipp_fields |= IPPF_HOPOPTS; 15059 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 15060 src->ipp_hopoptslen); 15061 dst->ipp_hopoptslen = src->ipp_hopoptslen; 15062 } 15063 if (fields & IPPF_RTHDRDSTOPTS) { 15064 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 15065 kmflag); 15066 if (dst->ipp_rthdrdstopts == NULL) { 15067 ip_pkt_free(dst); 15068 return (ENOMEM); 15069 } 15070 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 15071 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 15072 src->ipp_rthdrdstoptslen); 15073 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 15074 } 15075 if (fields & IPPF_DSTOPTS) { 15076 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 15077 if (dst->ipp_dstopts == NULL) { 15078 ip_pkt_free(dst); 15079 return (ENOMEM); 15080 } 15081 dst->ipp_fields |= IPPF_DSTOPTS; 15082 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 15083 src->ipp_dstoptslen); 15084 dst->ipp_dstoptslen = src->ipp_dstoptslen; 15085 } 15086 if (fields & IPPF_RTHDR) { 15087 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 15088 if (dst->ipp_rthdr == NULL) { 15089 ip_pkt_free(dst); 15090 return (ENOMEM); 15091 } 15092 dst->ipp_fields |= IPPF_RTHDR; 15093 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 15094 src->ipp_rthdrlen); 15095 dst->ipp_rthdrlen = src->ipp_rthdrlen; 15096 } 15097 if (fields & IPPF_IPV4_OPTIONS) { 15098 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 15099 kmflag); 15100 if (dst->ipp_ipv4_options == NULL) { 15101 ip_pkt_free(dst); 15102 return (ENOMEM); 15103 } 15104 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 15105 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 15106 src->ipp_ipv4_options_len); 15107 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 15108 } 15109 if (fields & IPPF_LABEL_V4) { 15110 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 15111 if (dst->ipp_label_v4 == NULL) { 15112 ip_pkt_free(dst); 15113 return (ENOMEM); 15114 } 15115 dst->ipp_fields |= IPPF_LABEL_V4; 15116 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 15117 src->ipp_label_len_v4); 15118 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 15119 } 15120 if (fields & IPPF_LABEL_V6) { 15121 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 15122 if (dst->ipp_label_v6 == NULL) { 15123 ip_pkt_free(dst); 15124 return (ENOMEM); 15125 } 15126 dst->ipp_fields |= IPPF_LABEL_V6; 15127 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 15128 src->ipp_label_len_v6); 15129 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 15130 } 15131 if (fields & IPPF_FRAGHDR) { 15132 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 15133 if (dst->ipp_fraghdr == NULL) { 15134 ip_pkt_free(dst); 15135 return (ENOMEM); 15136 } 15137 dst->ipp_fields |= IPPF_FRAGHDR; 15138 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 15139 src->ipp_fraghdrlen); 15140 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 15141 } 15142 return (0); 15143 } 15144 15145 /* 15146 * Returns INADDR_ANY if no source route 15147 */ 15148 ipaddr_t 15149 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 15150 { 15151 ipaddr_t nexthop = INADDR_ANY; 15152 ipoptp_t opts; 15153 uchar_t *opt; 15154 uint8_t optval; 15155 uint8_t optlen; 15156 uint32_t totallen; 15157 15158 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15159 return (INADDR_ANY); 15160 15161 totallen = ipp->ipp_ipv4_options_len; 15162 if (totallen & 0x3) 15163 return (INADDR_ANY); 15164 15165 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15166 optval != IPOPT_EOL; 15167 optval = ipoptp_next(&opts)) { 15168 opt = opts.ipoptp_cur; 15169 switch (optval) { 15170 uint8_t off; 15171 case IPOPT_SSRR: 15172 case IPOPT_LSRR: 15173 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15174 break; 15175 } 15176 optlen = opts.ipoptp_len; 15177 off = opt[IPOPT_OFFSET]; 15178 off--; 15179 if (optlen < IP_ADDR_LEN || 15180 off > optlen - IP_ADDR_LEN) { 15181 /* End of source route */ 15182 break; 15183 } 15184 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15185 if (nexthop == htonl(INADDR_LOOPBACK)) { 15186 /* Ignore */ 15187 nexthop = INADDR_ANY; 15188 break; 15189 } 15190 break; 15191 } 15192 } 15193 return (nexthop); 15194 } 15195 15196 /* 15197 * Reverse a source route. 15198 */ 15199 void 15200 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15201 { 15202 ipaddr_t tmp; 15203 ipoptp_t opts; 15204 uchar_t *opt; 15205 uint8_t optval; 15206 uint32_t totallen; 15207 15208 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15209 return; 15210 15211 totallen = ipp->ipp_ipv4_options_len; 15212 if (totallen & 0x3) 15213 return; 15214 15215 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15216 optval != IPOPT_EOL; 15217 optval = ipoptp_next(&opts)) { 15218 uint8_t off1, off2; 15219 15220 opt = opts.ipoptp_cur; 15221 switch (optval) { 15222 case IPOPT_SSRR: 15223 case IPOPT_LSRR: 15224 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15225 break; 15226 } 15227 off1 = IPOPT_MINOFF_SR - 1; 15228 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15229 while (off2 > off1) { 15230 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15231 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15232 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15233 off2 -= IP_ADDR_LEN; 15234 off1 += IP_ADDR_LEN; 15235 } 15236 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15237 break; 15238 } 15239 } 15240 } 15241 15242 /* 15243 * Returns NULL if no routing header 15244 */ 15245 in6_addr_t * 15246 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15247 { 15248 in6_addr_t *nexthop = NULL; 15249 ip6_rthdr0_t *rthdr; 15250 15251 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15252 return (NULL); 15253 15254 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15255 if (rthdr->ip6r0_segleft == 0) 15256 return (NULL); 15257 15258 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15259 return (nexthop); 15260 } 15261 15262 zoneid_t 15263 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15264 zoneid_t lookup_zoneid) 15265 { 15266 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15267 ire_t *ire; 15268 int ire_flags = MATCH_IRE_TYPE; 15269 zoneid_t zoneid = ALL_ZONES; 15270 15271 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15272 return (ALL_ZONES); 15273 15274 if (lookup_zoneid != ALL_ZONES) 15275 ire_flags |= MATCH_IRE_ZONEONLY; 15276 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15277 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15278 if (ire != NULL) { 15279 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15280 ire_refrele(ire); 15281 } 15282 return (zoneid); 15283 } 15284 15285 zoneid_t 15286 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15287 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15288 { 15289 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15290 ire_t *ire; 15291 int ire_flags = MATCH_IRE_TYPE; 15292 zoneid_t zoneid = ALL_ZONES; 15293 15294 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15295 return (ALL_ZONES); 15296 15297 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15298 ire_flags |= MATCH_IRE_ILL; 15299 15300 if (lookup_zoneid != ALL_ZONES) 15301 ire_flags |= MATCH_IRE_ZONEONLY; 15302 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15303 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15304 if (ire != NULL) { 15305 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15306 ire_refrele(ire); 15307 } 15308 return (zoneid); 15309 } 15310 15311 /* 15312 * IP obserability hook support functions. 15313 */ 15314 static void 15315 ipobs_init(ip_stack_t *ipst) 15316 { 15317 netid_t id; 15318 15319 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15320 15321 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15322 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15323 15324 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15325 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15326 } 15327 15328 static void 15329 ipobs_fini(ip_stack_t *ipst) 15330 { 15331 15332 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15333 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15334 } 15335 15336 /* 15337 * hook_pkt_observe_t is composed in network byte order so that the 15338 * entire mblk_t chain handed into hook_run can be used as-is. 15339 * The caveat is that use of the fields, such as the zone fields, 15340 * requires conversion into host byte order first. 15341 */ 15342 void 15343 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15344 const ill_t *ill, ip_stack_t *ipst) 15345 { 15346 hook_pkt_observe_t *hdr; 15347 uint64_t grifindex; 15348 mblk_t *imp; 15349 15350 imp = allocb(sizeof (*hdr), BPRI_HI); 15351 if (imp == NULL) 15352 return; 15353 15354 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15355 /* 15356 * b_wptr is set to make the apparent size of the data in the mblk_t 15357 * to exclude the pointers at the end of hook_pkt_observer_t. 15358 */ 15359 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15360 imp->b_cont = mp; 15361 15362 ASSERT(DB_TYPE(mp) == M_DATA); 15363 15364 if (IS_UNDER_IPMP(ill)) 15365 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15366 else 15367 grifindex = 0; 15368 15369 hdr->hpo_version = 1; 15370 hdr->hpo_htype = htons(htype); 15371 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15372 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15373 hdr->hpo_grifindex = htonl(grifindex); 15374 hdr->hpo_zsrc = htonl(zsrc); 15375 hdr->hpo_zdst = htonl(zdst); 15376 hdr->hpo_pkt = imp; 15377 hdr->hpo_ctx = ipst->ips_netstack; 15378 15379 if (ill->ill_isv6) { 15380 hdr->hpo_family = AF_INET6; 15381 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15382 ipst->ips_ipv6observing, (hook_data_t)hdr); 15383 } else { 15384 hdr->hpo_family = AF_INET; 15385 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15386 ipst->ips_ipv4observing, (hook_data_t)hdr); 15387 } 15388 15389 imp->b_cont = NULL; 15390 freemsg(imp); 15391 } 15392 15393 /* 15394 * Utility routine that checks if `v4srcp' is a valid address on underlying 15395 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15396 * associated with `v4srcp' on success. NOTE: if this is not called from 15397 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15398 * group during or after this lookup. 15399 */ 15400 boolean_t 15401 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15402 { 15403 ipif_t *ipif; 15404 15405 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15406 if (ipif != NULL) { 15407 if (ipifp != NULL) 15408 *ipifp = ipif; 15409 else 15410 ipif_refrele(ipif); 15411 return (B_TRUE); 15412 } 15413 15414 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15415 *v4srcp)); 15416 return (B_FALSE); 15417 } 15418