1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/optcom.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <sys/sunddi.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <rpc/pmap_prot.h> 126 127 /* 128 * Values for squeue switch: 129 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 130 * IP_SQUEUE_ENTER: squeue_enter 131 * IP_SQUEUE_FILL: squeue_fill 132 */ 133 int ip_squeue_enter = 2; 134 squeue_func_t ip_input_proc; 135 /* 136 * IP statistics. 137 */ 138 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 139 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 typedef struct ip_stat { 143 kstat_named_t ipsec_fanout_proto; 144 kstat_named_t ip_udp_fannorm; 145 kstat_named_t ip_udp_fanmb; 146 kstat_named_t ip_udp_fanothers; 147 kstat_named_t ip_udp_fast_path; 148 kstat_named_t ip_udp_slow_path; 149 kstat_named_t ip_udp_input_err; 150 kstat_named_t ip_tcppullup; 151 kstat_named_t ip_tcpoptions; 152 kstat_named_t ip_multipkttcp; 153 kstat_named_t ip_tcp_fast_path; 154 kstat_named_t ip_tcp_slow_path; 155 kstat_named_t ip_tcp_input_error; 156 kstat_named_t ip_db_ref; 157 kstat_named_t ip_notaligned1; 158 kstat_named_t ip_notaligned2; 159 kstat_named_t ip_multimblk3; 160 kstat_named_t ip_multimblk4; 161 kstat_named_t ip_ipoptions; 162 kstat_named_t ip_classify_fail; 163 kstat_named_t ip_opt; 164 kstat_named_t ip_udp_rput_local; 165 kstat_named_t ipsec_proto_ahesp; 166 kstat_named_t ip_conn_flputbq; 167 kstat_named_t ip_conn_walk_drain; 168 kstat_named_t ip_out_sw_cksum; 169 kstat_named_t ip_in_sw_cksum; 170 kstat_named_t ip_trash_ire_reclaim_calls; 171 kstat_named_t ip_trash_ire_reclaim_success; 172 kstat_named_t ip_ire_arp_timer_expired; 173 kstat_named_t ip_ire_redirect_timer_expired; 174 kstat_named_t ip_ire_pmtu_timer_expired; 175 kstat_named_t ip_input_multi_squeue; 176 kstat_named_t ip_tcp_in_full_hw_cksum_err; 177 kstat_named_t ip_tcp_in_part_hw_cksum_err; 178 kstat_named_t ip_tcp_in_sw_cksum_err; 179 kstat_named_t ip_tcp_out_sw_cksum_bytes; 180 kstat_named_t ip_udp_in_full_hw_cksum_err; 181 kstat_named_t ip_udp_in_part_hw_cksum_err; 182 kstat_named_t ip_udp_in_sw_cksum_err; 183 kstat_named_t ip_udp_out_sw_cksum_bytes; 184 kstat_named_t ip_frag_mdt_pkt_out; 185 kstat_named_t ip_frag_mdt_discarded; 186 kstat_named_t ip_frag_mdt_allocfail; 187 kstat_named_t ip_frag_mdt_addpdescfail; 188 kstat_named_t ip_frag_mdt_allocd; 189 } ip_stat_t; 190 191 static ip_stat_t ip_statistics = { 192 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 194 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 195 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 196 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 197 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 198 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 199 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 200 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 201 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 202 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 203 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 204 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 205 { "ip_db_ref", KSTAT_DATA_UINT64 }, 206 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 207 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 208 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 209 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 210 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 211 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 212 { "ip_opt", KSTAT_DATA_UINT64 }, 213 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 214 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 215 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 216 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 217 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 218 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 219 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 220 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 221 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 222 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 223 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 224 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 230 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 231 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 232 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 235 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 236 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 237 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 238 }; 239 240 static kstat_t *ip_kstat; 241 242 #define TCP6 "tcp6" 243 #define TCP "tcp" 244 #define SCTP "sctp" 245 #define SCTP6 "sctp6" 246 247 major_t TCP6_MAJ; 248 major_t TCP_MAJ; 249 major_t SCTP_MAJ; 250 major_t SCTP6_MAJ; 251 252 int ip_poll_normal_ms = 100; 253 int ip_poll_normal_ticks = 0; 254 255 /* 256 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 257 */ 258 259 struct listptr_s { 260 mblk_t *lp_head; /* pointer to the head of the list */ 261 mblk_t *lp_tail; /* pointer to the tail of the list */ 262 }; 263 264 typedef struct listptr_s listptr_t; 265 266 /* 267 * This is used by ip_snmp_get_mib2_ip_route_media and 268 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 269 */ 270 typedef struct iproutedata_s { 271 uint_t ird_idx; 272 listptr_t ird_route; /* ipRouteEntryTable */ 273 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 274 listptr_t ird_attrs; /* ipRouteAttributeTable */ 275 } iproutedata_t; 276 277 /* 278 * Cluster specific hooks. These should be NULL when booted as a non-cluster 279 */ 280 281 /* 282 * Hook functions to enable cluster networking 283 * On non-clustered systems these vectors must always be NULL. 284 * 285 * Hook function to Check ip specified ip address is a shared ip address 286 * in the cluster 287 * 288 */ 289 int (*cl_inet_isclusterwide)(uint8_t protocol, 290 sa_family_t addr_family, uint8_t *laddrp) = NULL; 291 292 /* 293 * Hook function to generate cluster wide ip fragment identifier 294 */ 295 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 296 uint8_t *laddrp, uint8_t *faddrp) = NULL; 297 298 /* 299 * Synchronization notes: 300 * 301 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 302 * MT level protection given by STREAMS. IP uses a combination of its own 303 * internal serialization mechanism and standard Solaris locking techniques. 304 * The internal serialization is per phyint (no IPMP) or per IPMP group. 305 * This is used to serialize plumbing operations, IPMP operations, certain 306 * multicast operations, most set ioctls, igmp/mld timers etc. 307 * 308 * Plumbing is a long sequence of operations involving message 309 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 310 * involved in plumbing operations. A natural model is to serialize these 311 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 312 * parallel without any interference. But various set ioctls on hme0 are best 313 * serialized. However if the system uses IPMP, the operations are easier if 314 * they are serialized on a per IPMP group basis since IPMP operations 315 * happen across ill's of a group. Thus the lowest common denominator is to 316 * serialize most set ioctls, multicast join/leave operations, IPMP operations 317 * igmp/mld timer operations, and processing of DLPI control messages received 318 * from drivers on a per IPMP group basis. If the system does not employ 319 * IPMP the serialization is on a per phyint basis. This serialization is 320 * provided by the ipsq_t and primitives operating on this. Details can 321 * be found in ip_if.c above the core primitives operating on ipsq_t. 322 * 323 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 324 * Simiarly lookup of an ire by a thread also returns a refheld ire. 325 * In addition ipif's and ill's referenced by the ire are also indirectly 326 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 327 * the ipif's address or netmask change as long as an ipif is refheld 328 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 329 * address of an ipif has to go through the ipsq_t. This ensures that only 330 * 1 such exclusive operation proceeds at any time on the ipif. It then 331 * deletes all ires associated with this ipif, and waits for all refcnts 332 * associated with this ipif to come down to zero. The address is changed 333 * only after the ipif has been quiesced. Then the ipif is brought up again. 334 * More details are described above the comment in ip_sioctl_flags. 335 * 336 * Packet processing is based mostly on IREs and are fully multi-threaded 337 * using standard Solaris MT techniques. 338 * 339 * There are explicit locks in IP to handle: 340 * - The ip_g_head list maintained by mi_open_link() and friends. 341 * 342 * - The reassembly data structures (one lock per hash bucket) 343 * 344 * - conn_lock is meant to protect conn_t fields. The fields actually 345 * protected by conn_lock are documented in the conn_t definition. 346 * 347 * - ire_lock to protect some of the fields of the ire, IRE tables 348 * (one lock per hash bucket). Refer to ip_ire.c for details. 349 * 350 * - ndp_g_lock and nce_lock for protecting NCEs. 351 * 352 * - ill_lock protects fields of the ill and ipif. Details in ip.h 353 * 354 * - ill_g_lock: This is a global reader/writer lock. Protects the following 355 * * The AVL tree based global multi list of all ills. 356 * * The linked list of all ipifs of an ill 357 * * The <ill-ipsq> mapping 358 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 359 * * The illgroup list threaded by ill_group_next. 360 * * <ill-phyint> association 361 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 362 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 363 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 364 * will all have to hold the ill_g_lock as writer for the actual duration 365 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 366 * may be found in the IPMP section. 367 * 368 * - ill_lock: This is a per ill mutex. 369 * It protects some members of the ill and is documented below. 370 * It also protects the <ill-ipsq> mapping 371 * It also protects the illgroup list threaded by ill_group_next. 372 * It also protects the <ill-phyint> assoc. 373 * It also protects the list of ipifs hanging off the ill. 374 * 375 * - ipsq_lock: This is a per ipsq_t mutex lock. 376 * This protects all the other members of the ipsq struct except 377 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 378 * 379 * - illgrp_lock: This is a per ill_group mutex lock. 380 * The only thing it protects is the illgrp_ill_schednext member of ill_group 381 * which dictates which is the next ill in an ill_group that is to be chosen 382 * for sending outgoing packets, through creation of an IRE_CACHE that 383 * references this ill. 384 * 385 * - phyint_lock: This is a per phyint mutex lock. Protects just the 386 * phyint_flags 387 * 388 * - ip_g_nd_lock: This is a global reader/writer lock. 389 * Any call to nd_load to load a new parameter to the ND table must hold the 390 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 391 * as reader. 392 * 393 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 394 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 395 * uniqueness check also done atomically. 396 * 397 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 398 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 399 * as a writer when adding or deleting elements from these lists, and 400 * as a reader when walking these lists to send a SADB update to the 401 * IPsec capable ills. 402 * 403 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 404 * group list linked by ill_usesrc_grp_next. It also protects the 405 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 406 * group is being added or deleted. This lock is taken as a reader when 407 * walking the list/group(eg: to get the number of members in a usesrc group). 408 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 409 * field is changing state i.e from NULL to non-NULL or vice-versa. For 410 * example, it is not necessary to take this lock in the initial portion 411 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 412 * ip_sioctl_flags since the these operations are executed exclusively and 413 * that ensures that the "usesrc group state" cannot change. The "usesrc 414 * group state" change can happen only in the latter part of 415 * ip_sioctl_slifusesrc and in ill_delete. 416 * 417 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 418 * 419 * To change the <ill-phyint> association, the ill_g_lock must be held 420 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 421 * must be held. 422 * 423 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 424 * and the ill_lock of the ill in question must be held. 425 * 426 * To change the <ill-illgroup> association the ill_g_lock must be held as 427 * writer and the ill_lock of the ill in question must be held. 428 * 429 * To add or delete an ipif from the list of ipifs hanging off the ill, 430 * ill_g_lock (writer) and ill_lock must be held and the thread must be 431 * a writer on the associated ipsq,. 432 * 433 * To add or delete an ill to the system, the ill_g_lock must be held as 434 * writer and the thread must be a writer on the associated ipsq. 435 * 436 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 437 * must be a writer on the associated ipsq. 438 * 439 * Lock hierarchy 440 * 441 * Some lock hierarchy scenarios are listed below. 442 * 443 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 444 * ill_g_lock -> illgrp_lock -> ill_lock 445 * ill_g_lock -> ill_lock(s) -> phyint_lock 446 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 447 * ill_g_lock -> ip_addr_avail_lock 448 * conn_lock -> irb_lock -> ill_lock -> ire_lock 449 * ill_g_lock -> ip_g_nd_lock 450 * 451 * When more than 1 ill lock is needed to be held, all ill lock addresses 452 * are sorted on address and locked starting from highest addressed lock 453 * downward. 454 * 455 * Mobile-IP scenarios 456 * 457 * irb_lock -> ill_lock -> ire_mrtun_lock 458 * irb_lock -> ill_lock -> ire_srcif_table_lock 459 * 460 * IPsec scenarios 461 * 462 * ipsa_lock -> ill_g_lock -> ill_lock 463 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 464 * ipsec_capab_ills_lock -> ipsa_lock 465 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 466 * 467 * Trusted Solaris scenarios 468 * 469 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 470 * igsa_lock -> gcdb_lock 471 * gcgrp_rwlock -> ire_lock 472 * gcgrp_rwlock -> gcdb_lock 473 * 474 * 475 * Routing/forwarding table locking notes: 476 * 477 * Lock acquisition order: Radix tree lock, irb_lock. 478 * Requirements: 479 * i. Walker must not hold any locks during the walker callback. 480 * ii Walker must not see a truncated tree during the walk because of any node 481 * deletion. 482 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 483 * in many places in the code to walk the irb list. Thus even if all the 484 * ires in a bucket have been deleted, we still can't free the radix node 485 * until the ires have actually been inactive'd (freed). 486 * 487 * Tree traversal - Need to hold the global tree lock in read mode. 488 * Before dropping the global tree lock, need to either increment the ire_refcnt 489 * to ensure that the radix node can't be deleted. 490 * 491 * Tree add - Need to hold the global tree lock in write mode to add a 492 * radix node. To prevent the node from being deleted, increment the 493 * irb_refcnt, after the node is added to the tree. The ire itself is 494 * added later while holding the irb_lock, but not the tree lock. 495 * 496 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 497 * All associated ires must be inactive (i.e. freed), and irb_refcnt 498 * must be zero. 499 * 500 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 501 * global tree lock (read mode) for traversal. 502 * 503 * IPSEC notes : 504 * 505 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 506 * in front of the actual packet. For outbound datagrams, the M_CTL 507 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 508 * information used by the IPSEC code for applying the right level of 509 * protection. The information initialized by IP in the ipsec_out_t 510 * is determined by the per-socket policy or global policy in the system. 511 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 512 * ipsec_info.h) which starts out with nothing in it. It gets filled 513 * with the right information if it goes through the AH/ESP code, which 514 * happens if the incoming packet is secure. The information initialized 515 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 516 * the policy requirements needed by per-socket policy or global policy 517 * is met or not. 518 * 519 * If there is both per-socket policy (set using setsockopt) and there 520 * is also global policy match for the 5 tuples of the socket, 521 * ipsec_override_policy() makes the decision of which one to use. 522 * 523 * For fully connected sockets i.e dst, src [addr, port] is known, 524 * conn_policy_cached is set indicating that policy has been cached. 525 * conn_in_enforce_policy may or may not be set depending on whether 526 * there is a global policy match or per-socket policy match. 527 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 528 * Once the right policy is set on the conn_t, policy cannot change for 529 * this socket. This makes life simpler for TCP (UDP ?) where 530 * re-transmissions go out with the same policy. For symmetry, policy 531 * is cached for fully connected UDP sockets also. Thus if policy is cached, 532 * it also implies that policy is latched i.e policy cannot change 533 * on these sockets. As we have the right policy on the conn, we don't 534 * have to lookup global policy for every outbound and inbound datagram 535 * and thus serving as an optimization. Note that a global policy change 536 * does not affect fully connected sockets if they have policy. If fully 537 * connected sockets did not have any policy associated with it, global 538 * policy change may affect them. 539 * 540 * IP Flow control notes: 541 * 542 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 543 * cannot be sent down to the driver by IP, because of a canput failure, IP 544 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 545 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 546 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 547 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 548 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 549 * the queued messages, and removes the conn from the drain list, if all 550 * messages were drained. It also qenables the next conn in the drain list to 551 * continue the drain process. 552 * 553 * In reality the drain list is not a single list, but a configurable number 554 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 555 * list. If the ip_wsrv of the next qenabled conn does not run, because the 556 * stream closes, ip_close takes responsibility to qenable the next conn in 557 * the drain list. The directly called ip_wput path always does a putq, if 558 * it cannot putnext. Thus synchronization problems are handled between 559 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 560 * functions that manipulate this drain list. Furthermore conn_drain_insert 561 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 562 * running on a queue at any time. conn_drain_tail can be simultaneously called 563 * from both ip_wsrv and ip_close. 564 * 565 * IPQOS notes: 566 * 567 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 568 * and IPQoS modules. IPPF includes hooks in IP at different control points 569 * (callout positions) which direct packets to IPQoS modules for policy 570 * processing. Policies, if present, are global. 571 * 572 * The callout positions are located in the following paths: 573 * o local_in (packets destined for this host) 574 * o local_out (packets orginating from this host ) 575 * o fwd_in (packets forwarded by this m/c - inbound) 576 * o fwd_out (packets forwarded by this m/c - outbound) 577 * Hooks at these callout points can be enabled/disabled using the ndd variable 578 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 579 * By default all the callout positions are enabled. 580 * 581 * Outbound (local_out) 582 * Hooks are placed in ip_wput_ire and ipsec_out_process. 583 * 584 * Inbound (local_in) 585 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 586 * TCP and UDP fanout routines. 587 * 588 * Forwarding (in and out) 589 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 590 * 591 * IP Policy Framework processing (IPPF processing) 592 * Policy processing for a packet is initiated by ip_process, which ascertains 593 * that the classifier (ipgpc) is loaded and configured, failing which the 594 * packet resumes normal processing in IP. If the clasifier is present, the 595 * packet is acted upon by one or more IPQoS modules (action instances), per 596 * filters configured in ipgpc and resumes normal IP processing thereafter. 597 * An action instance can drop a packet in course of its processing. 598 * 599 * A boolean variable, ip_policy, is used in all the fanout routines that can 600 * invoke ip_process for a packet. This variable indicates if the packet should 601 * to be sent for policy processing. The variable is set to B_TRUE by default, 602 * i.e. when the routines are invoked in the normal ip procesing path for a 603 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 604 * ip_policy is set to B_FALSE for all the routines called in these two 605 * functions because, in the former case, we don't process loopback traffic 606 * currently while in the latter, the packets have already been processed in 607 * icmp_inbound. 608 * 609 * Zones notes: 610 * 611 * The partitioning rules for networking are as follows: 612 * 1) Packets coming from a zone must have a source address belonging to that 613 * zone. 614 * 2) Packets coming from a zone can only be sent on a physical interface on 615 * which the zone has an IP address. 616 * 3) Between two zones on the same machine, packet delivery is only allowed if 617 * there's a matching route for the destination and zone in the forwarding 618 * table. 619 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 620 * different zones can bind to the same port with the wildcard address 621 * (INADDR_ANY). 622 * 623 * The granularity of interface partitioning is at the logical interface level. 624 * Therefore, every zone has its own IP addresses, and incoming packets can be 625 * attributed to a zone unambiguously. A logical interface is placed into a zone 626 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 627 * structure. Rule (1) is implemented by modifying the source address selection 628 * algorithm so that the list of eligible addresses is filtered based on the 629 * sending process zone. 630 * 631 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 632 * across all zones, depending on their type. Here is the break-up: 633 * 634 * IRE type Shared/exclusive 635 * -------- ---------------- 636 * IRE_BROADCAST Exclusive 637 * IRE_DEFAULT (default routes) Shared (*) 638 * IRE_LOCAL Exclusive (x) 639 * IRE_LOOPBACK Exclusive 640 * IRE_PREFIX (net routes) Shared (*) 641 * IRE_CACHE Exclusive 642 * IRE_IF_NORESOLVER (interface routes) Exclusive 643 * IRE_IF_RESOLVER (interface routes) Exclusive 644 * IRE_HOST (host routes) Shared (*) 645 * 646 * (*) A zone can only use a default or off-subnet route if the gateway is 647 * directly reachable from the zone, that is, if the gateway's address matches 648 * one of the zone's logical interfaces. 649 * 650 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 651 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 652 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 653 * address of the zone itself (the destination). Since IRE_LOCAL is used 654 * for communication between zones, ip_wput_ire has special logic to set 655 * the right source address when sending using an IRE_LOCAL. 656 * 657 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 658 * ire_cache_lookup restricts loopback using an IRE_LOCAL 659 * between zone to the case when L2 would have conceptually looped the packet 660 * back, i.e. the loopback which is required since neither Ethernet drivers 661 * nor Ethernet hardware loops them back. This is the case when the normal 662 * routes (ignoring IREs with different zoneids) would send out the packet on 663 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 664 * associated. 665 * 666 * Multiple zones can share a common broadcast address; typically all zones 667 * share the 255.255.255.255 address. Incoming as well as locally originated 668 * broadcast packets must be dispatched to all the zones on the broadcast 669 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 670 * since some zones may not be on the 10.16.72/24 network. To handle this, each 671 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 672 * sent to every zone that has an IRE_BROADCAST entry for the destination 673 * address on the input ill, see conn_wantpacket(). 674 * 675 * Applications in different zones can join the same multicast group address. 676 * For IPv4, group memberships are per-logical interface, so they're already 677 * inherently part of a zone. For IPv6, group memberships are per-physical 678 * interface, so we distinguish IPv6 group memberships based on group address, 679 * interface and zoneid. In both cases, received multicast packets are sent to 680 * every zone for which a group membership entry exists. On IPv6 we need to 681 * check that the target zone still has an address on the receiving physical 682 * interface; it could have been removed since the application issued the 683 * IPV6_JOIN_GROUP. 684 */ 685 686 /* 687 * Squeue Fanout flags: 688 * 0: No fanout. 689 * 1: Fanout across all squeues 690 */ 691 boolean_t ip_squeue_fanout = 0; 692 693 /* 694 * Maximum dups allowed per packet. 695 */ 696 uint_t ip_max_frag_dups = 10; 697 698 #define IS_SIMPLE_IPH(ipha) \ 699 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 700 701 /* RFC1122 Conformance */ 702 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 703 704 #define ILL_MAX_NAMELEN LIFNAMSIZ 705 706 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 707 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 709 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 712 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 713 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 714 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 715 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 716 mblk_t *, int); 717 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 718 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 719 ill_t *, zoneid_t); 720 static void icmp_options_update(ipha_t *); 721 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 722 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 723 zoneid_t zoneid); 724 static mblk_t *icmp_pkt_err_ok(mblk_t *); 725 static void icmp_redirect(mblk_t *); 726 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 727 728 static void ip_arp_news(queue_t *, mblk_t *); 729 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 730 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 731 char *ip_dot_addr(ipaddr_t, char *); 732 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 733 int ip_close(queue_t *, int); 734 static char *ip_dot_saddr(uchar_t *, char *); 735 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 736 boolean_t, boolean_t, ill_t *, zoneid_t); 737 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 738 boolean_t, boolean_t, zoneid_t); 739 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 740 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 741 static void ip_lrput(queue_t *, mblk_t *); 742 ipaddr_t ip_massage_options(ipha_t *); 743 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 744 ipaddr_t ip_net_mask(ipaddr_t); 745 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 746 zoneid_t); 747 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 748 conn_t *, uint32_t, zoneid_t); 749 char *ip_nv_lookup(nv_t *, int); 750 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 751 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 752 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 754 size_t); 755 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 756 void ip_rput(queue_t *, mblk_t *); 757 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 758 void *dummy_arg); 759 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 760 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 761 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 762 ire_t *); 763 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 764 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 765 uint16_t *); 766 int ip_snmp_get(queue_t *, mblk_t *); 767 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 768 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 769 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 771 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 772 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 780 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 781 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 782 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 783 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 784 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 785 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 786 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 787 static boolean_t ip_source_routed(ipha_t *); 788 static boolean_t ip_source_route_included(ipha_t *); 789 790 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 791 zoneid_t); 792 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 793 static void ip_wput_local_options(ipha_t *); 794 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 795 zoneid_t); 796 797 static void conn_drain_init(void); 798 static void conn_drain_fini(void); 799 static void conn_drain_tail(conn_t *connp, boolean_t closing); 800 801 static void conn_walk_drain(void); 802 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 803 zoneid_t); 804 805 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 806 zoneid_t); 807 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 808 void *dummy_arg); 809 810 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 811 812 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 813 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 814 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 815 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 816 817 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 818 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 819 caddr_t, cred_t *); 820 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 821 caddr_t cp, cred_t *cr); 822 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 823 cred_t *); 824 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 825 caddr_t cp, cred_t *cr); 826 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 827 cred_t *); 828 static squeue_func_t ip_squeue_switch(int); 829 830 static void ip_kstat_init(void); 831 static void ip_kstat_fini(void); 832 static int ip_kstat_update(kstat_t *kp, int rw); 833 static void icmp_kstat_init(void); 834 static void icmp_kstat_fini(void); 835 static int icmp_kstat_update(kstat_t *kp, int rw); 836 837 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 838 839 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 840 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 841 842 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 843 ipha_t *, ill_t *, boolean_t); 844 845 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 846 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 847 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 848 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 849 850 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 851 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 852 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 853 854 /* How long, in seconds, we allow frags to hang around. */ 855 #define IP_FRAG_TIMEOUT 60 856 857 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 858 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 859 860 /* 861 * Threshold which determines whether MDT should be used when 862 * generating IP fragments; payload size must be greater than 863 * this threshold for MDT to take place. 864 */ 865 #define IP_WPUT_FRAG_MDT_MIN 32768 866 867 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 868 869 /* Protected by ip_mi_lock */ 870 static void *ip_g_head; /* Instance Data List Head */ 871 kmutex_t ip_mi_lock; /* Lock for list of instances */ 872 873 /* Only modified during _init and _fini thus no locking is needed. */ 874 caddr_t ip_g_nd; /* Named Dispatch List Head */ 875 876 877 static long ip_rput_pullups; 878 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 879 880 vmem_t *ip_minor_arena; 881 882 /* 883 * MIB-2 stuff for SNMP (both IP and ICMP) 884 */ 885 mib2_ip_t ip_mib; 886 mib2_icmp_t icmp_mib; 887 888 #ifdef DEBUG 889 uint32_t ipsechw_debug = 0; 890 #endif 891 892 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 893 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 894 895 uint_t loopback_packets = 0; 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 901 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 902 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 903 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 904 hrtime_t ip_multirt_log_interval = 1000; 905 /* Time since last warning issued. */ 906 static hrtime_t multirt_bad_mtu_last_time = 0; 907 908 kmutex_t ip_trash_timer_lock; 909 krwlock_t ip_g_nd_lock; 910 911 /* 912 * XXX following really should only be in a header. Would need more 913 * header and .c clean up first. 914 */ 915 extern optdb_obj_t ip_opt_obj; 916 917 ulong_t ip_squeue_enter_unbound = 0; 918 919 /* 920 * Named Dispatch Parameter Table. 921 * All of these are alterable, within the min/max values given, at run time. 922 */ 923 static ipparam_t lcl_param_arr[] = { 924 /* min max value name */ 925 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 926 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 927 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 928 { 0, 1, 0, "ip_respond_to_timestamp"}, 929 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 930 { 0, 1, 1, "ip_send_redirects"}, 931 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 932 { 0, 10, 0, "ip_debug"}, 933 { 0, 10, 0, "ip_mrtdebug"}, 934 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 935 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 936 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 937 { 1, 255, 255, "ip_def_ttl" }, 938 { 0, 1, 0, "ip_forward_src_routed"}, 939 { 0, 256, 32, "ip_wroff_extra" }, 940 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 941 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 942 { 0, 1, 1, "ip_path_mtu_discovery" }, 943 { 0, 240, 30, "ip_ignore_delete_time" }, 944 { 0, 1, 0, "ip_ignore_redirect" }, 945 { 0, 1, 1, "ip_output_queue" }, 946 { 1, 254, 1, "ip_broadcast_ttl" }, 947 { 0, 99999, 100, "ip_icmp_err_interval" }, 948 { 1, 99999, 10, "ip_icmp_err_burst" }, 949 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 950 { 0, 1, 0, "ip_strict_dst_multihoming" }, 951 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 952 { 0, 1, 0, "ipsec_override_persocket_policy" }, 953 { 0, 1, 1, "icmp_accept_clear_messages" }, 954 { 0, 1, 1, "igmp_accept_clear_messages" }, 955 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 956 "ip_ndp_delay_first_probe_time"}, 957 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 958 "ip_ndp_max_unicast_solicit"}, 959 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 960 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 961 { 0, 1, 0, "ip6_forward_src_routed"}, 962 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 963 { 0, 1, 1, "ip6_send_redirects"}, 964 { 0, 1, 0, "ip6_ignore_redirect" }, 965 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 966 967 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 968 969 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 970 971 { 0, 1, 1, "pim_accept_clear_messages" }, 972 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 973 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 974 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 975 { 0, 15, 0, "ip_policy_mask" }, 976 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 977 { 0, 255, 1, "ip_multirt_ttl" }, 978 { 0, 1, 1, "ip_multidata_outbound" }, 979 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 980 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 981 { 0, 1000, 1, "ip_max_temp_defend" }, 982 { 0, 1000, 3, "ip_max_defend" }, 983 { 0, 999999, 30, "ip_defend_interval" }, 984 { 0, 3600000, 300000, "ip_dup_recovery" }, 985 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 986 { 0, 1, 1, "ip_lso_outbound" }, 987 #ifdef DEBUG 988 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 989 #endif 990 }; 991 992 ipparam_t *ip_param_arr = lcl_param_arr; 993 994 /* Extended NDP table */ 995 static ipndp_t lcl_ndp_arr[] = { 996 /* getf setf data name */ 997 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 998 "ip_forwarding" }, 999 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 1000 "ip6_forwarding" }, 1001 { ip_ill_report, NULL, NULL, 1002 "ip_ill_status" }, 1003 { ip_ipif_report, NULL, NULL, 1004 "ip_ipif_status" }, 1005 { ip_ire_report, NULL, NULL, 1006 "ipv4_ire_status" }, 1007 { ip_ire_report_mrtun, NULL, NULL, 1008 "ipv4_mrtun_ire_status" }, 1009 { ip_ire_report_srcif, NULL, NULL, 1010 "ipv4_srcif_ire_status" }, 1011 { ip_ire_report_v6, NULL, NULL, 1012 "ipv6_ire_status" }, 1013 { ip_conn_report, NULL, NULL, 1014 "ip_conn_status" }, 1015 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1016 "ip_rput_pullups" }, 1017 { ndp_report, NULL, NULL, 1018 "ip_ndp_cache_report" }, 1019 { ip_srcid_report, NULL, NULL, 1020 "ip_srcid_status" }, 1021 { ip_param_generic_get, ip_squeue_profile_set, 1022 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1023 { ip_param_generic_get, ip_squeue_bind_set, 1024 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1025 { ip_param_generic_get, ip_input_proc_set, 1026 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1027 { ip_param_generic_get, ip_int_set, 1028 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1029 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1030 "ip_cgtp_filter" }, 1031 { ip_param_generic_get, ip_int_set, 1032 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1033 }; 1034 1035 /* 1036 * ip_g_forward controls IP forwarding. It takes two values: 1037 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1038 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1039 * 1040 * RFC1122 says there must be a configuration switch to control forwarding, 1041 * but that the default MUST be to not forward packets ever. Implicit 1042 * control based on configuration of multiple interfaces MUST NOT be 1043 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1044 * and, in fact, it was the default. That capability is now provided in the 1045 * /etc/rc2.d/S69inet script. 1046 */ 1047 int ip_g_forward = IP_FORWARD_DEFAULT; 1048 1049 /* It also has an IPv6 counterpart. */ 1050 1051 int ipv6_forward = IP_FORWARD_DEFAULT; 1052 1053 /* 1054 * Table of IP ioctls encoding the various properties of the ioctl and 1055 * indexed based on the last byte of the ioctl command. Occasionally there 1056 * is a clash, and there is more than 1 ioctl with the same last byte. 1057 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1058 * ioctls are encoded in the misc table. An entry in the ndx table is 1059 * retrieved by indexing on the last byte of the ioctl command and comparing 1060 * the ioctl command with the value in the ndx table. In the event of a 1061 * mismatch the misc table is then searched sequentially for the desired 1062 * ioctl command. 1063 * 1064 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1065 */ 1066 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1067 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 1078 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1079 MISC_CMD, ip_siocaddrt, NULL }, 1080 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1081 MISC_CMD, ip_siocdelrt, NULL }, 1082 1083 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1084 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1085 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1086 IF_CMD, ip_sioctl_get_addr, NULL }, 1087 1088 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1089 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1090 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1091 IPI_GET_CMD | IPI_REPL, 1092 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1093 1094 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1095 IPI_PRIV | IPI_WR | IPI_REPL, 1096 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1097 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1098 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1099 IF_CMD, ip_sioctl_get_flags, NULL }, 1100 1101 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 1104 /* copyin size cannot be coded for SIOCGIFCONF */ 1105 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1106 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1107 1108 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1109 IF_CMD, ip_sioctl_mtu, NULL }, 1110 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1111 IF_CMD, ip_sioctl_get_mtu, NULL }, 1112 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1113 IPI_GET_CMD | IPI_REPL, 1114 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1115 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1116 IF_CMD, ip_sioctl_brdaddr, NULL }, 1117 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1118 IPI_GET_CMD | IPI_REPL, 1119 IF_CMD, ip_sioctl_get_netmask, NULL }, 1120 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1121 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1122 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1123 IPI_GET_CMD | IPI_REPL, 1124 IF_CMD, ip_sioctl_get_metric, NULL }, 1125 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1126 IF_CMD, ip_sioctl_metric, NULL }, 1127 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 1129 /* See 166-168 below for extended SIOC*XARP ioctls */ 1130 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1131 MISC_CMD, ip_sioctl_arp, NULL }, 1132 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1133 MISC_CMD, ip_sioctl_arp, NULL }, 1134 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1135 MISC_CMD, ip_sioctl_arp, NULL }, 1136 1137 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 1159 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1160 MISC_CMD, if_unitsel, if_unitsel_restart }, 1161 1162 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 1181 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1182 IPI_PRIV | IPI_WR | IPI_MODOK, 1183 IF_CMD, ip_sioctl_sifname, NULL }, 1184 1185 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 1199 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1200 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1201 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1202 IF_CMD, ip_sioctl_get_muxid, NULL }, 1203 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1204 IPI_PRIV | IPI_WR | IPI_REPL, 1205 IF_CMD, ip_sioctl_muxid, NULL }, 1206 1207 /* Both if and lif variants share same func */ 1208 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1209 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1210 /* Both if and lif variants share same func */ 1211 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1212 IPI_PRIV | IPI_WR | IPI_REPL, 1213 IF_CMD, ip_sioctl_slifindex, NULL }, 1214 1215 /* copyin size cannot be coded for SIOCGIFCONF */ 1216 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1217 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1218 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 1236 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1237 IPI_PRIV | IPI_WR | IPI_REPL, 1238 LIF_CMD, ip_sioctl_removeif, 1239 ip_sioctl_removeif_restart }, 1240 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1241 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1242 LIF_CMD, ip_sioctl_addif, NULL }, 1243 #define SIOCLIFADDR_NDX 112 1244 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1245 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1246 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1247 IPI_GET_CMD | IPI_REPL, 1248 LIF_CMD, ip_sioctl_get_addr, NULL }, 1249 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1250 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1251 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1252 IPI_GET_CMD | IPI_REPL, 1253 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1254 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1255 IPI_PRIV | IPI_WR | IPI_REPL, 1256 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1257 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1258 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1259 LIF_CMD, ip_sioctl_get_flags, NULL }, 1260 1261 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1262 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1263 1264 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1265 ip_sioctl_get_lifconf, NULL }, 1266 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1267 LIF_CMD, ip_sioctl_mtu, NULL }, 1268 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1269 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1270 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1271 IPI_GET_CMD | IPI_REPL, 1272 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1273 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1274 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1275 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1276 IPI_GET_CMD | IPI_REPL, 1277 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1278 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1279 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1280 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1281 IPI_GET_CMD | IPI_REPL, 1282 LIF_CMD, ip_sioctl_get_metric, NULL }, 1283 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_metric, NULL }, 1285 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1286 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1287 LIF_CMD, ip_sioctl_slifname, 1288 ip_sioctl_slifname_restart }, 1289 1290 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1291 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1292 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1293 IPI_GET_CMD | IPI_REPL, 1294 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1295 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1296 IPI_PRIV | IPI_WR | IPI_REPL, 1297 LIF_CMD, ip_sioctl_muxid, NULL }, 1298 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1299 IPI_GET_CMD | IPI_REPL, 1300 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1301 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1302 IPI_PRIV | IPI_WR | IPI_REPL, 1303 LIF_CMD, ip_sioctl_slifindex, 0 }, 1304 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1305 LIF_CMD, ip_sioctl_token, NULL }, 1306 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1307 IPI_GET_CMD | IPI_REPL, 1308 LIF_CMD, ip_sioctl_get_token, NULL }, 1309 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1310 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1311 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1312 IPI_GET_CMD | IPI_REPL, 1313 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1314 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1315 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1316 1317 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1318 IPI_GET_CMD | IPI_REPL, 1319 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1320 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1321 LIF_CMD, ip_siocdelndp_v6, NULL }, 1322 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1323 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1324 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1325 LIF_CMD, ip_siocsetndp_v6, NULL }, 1326 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1327 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1328 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1329 MISC_CMD, ip_sioctl_tonlink, NULL }, 1330 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1331 MISC_CMD, ip_sioctl_tmysite, NULL }, 1332 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1333 TUN_CMD, ip_sioctl_tunparam, NULL }, 1334 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1335 IPI_PRIV | IPI_WR, 1336 TUN_CMD, ip_sioctl_tunparam, NULL }, 1337 1338 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1339 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1340 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1341 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1342 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1343 1344 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1345 IPI_PRIV | IPI_WR | IPI_REPL, 1346 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1347 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1348 IPI_PRIV | IPI_WR | IPI_REPL, 1349 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1350 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1351 IPI_PRIV | IPI_WR, 1352 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1353 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1354 IPI_GET_CMD | IPI_REPL, 1355 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1356 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1357 IPI_GET_CMD | IPI_REPL, 1358 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1359 1360 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1361 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1362 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1363 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1364 1365 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1366 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1367 1368 /* These are handled in ip_sioctl_copyin_setup itself */ 1369 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1370 MISC_CMD, NULL, NULL }, 1371 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1372 MISC_CMD, NULL, NULL }, 1373 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1374 1375 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1376 ip_sioctl_get_lifconf, NULL }, 1377 1378 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1379 MISC_CMD, ip_sioctl_xarp, NULL }, 1380 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1381 MISC_CMD, ip_sioctl_xarp, NULL }, 1382 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1383 MISC_CMD, ip_sioctl_xarp, NULL }, 1384 1385 /* SIOCPOPSOCKFS is not handled by IP */ 1386 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1387 1388 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1389 IPI_GET_CMD | IPI_REPL, 1390 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1391 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1392 IPI_PRIV | IPI_WR | IPI_REPL, 1393 LIF_CMD, ip_sioctl_slifzone, 1394 ip_sioctl_slifzone_restart }, 1395 /* 172-174 are SCTP ioctls and not handled by IP */ 1396 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1397 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1398 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1399 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1400 IPI_GET_CMD, LIF_CMD, 1401 ip_sioctl_get_lifusesrc, 0 }, 1402 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1403 IPI_PRIV | IPI_WR, 1404 LIF_CMD, ip_sioctl_slifusesrc, 1405 NULL }, 1406 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1407 ip_sioctl_get_lifsrcof, NULL }, 1408 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1409 MISC_CMD, ip_sioctl_msfilter, NULL }, 1410 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1411 MISC_CMD, ip_sioctl_msfilter, NULL }, 1412 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1413 MISC_CMD, ip_sioctl_msfilter, NULL }, 1414 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1415 MISC_CMD, ip_sioctl_msfilter, NULL }, 1416 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1417 ip_sioctl_set_ipmpfailback, NULL } 1418 }; 1419 1420 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1421 1422 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1423 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1424 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1425 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1426 TUN_CMD, ip_sioctl_tunparam, NULL }, 1427 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1428 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1429 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1430 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1431 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1432 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1433 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1434 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1435 MISC_CMD, mrt_ioctl}, 1436 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1437 MISC_CMD, mrt_ioctl}, 1438 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1439 MISC_CMD, mrt_ioctl} 1440 }; 1441 1442 int ip_misc_ioctl_count = 1443 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1444 1445 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1446 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1447 static int conn_drain_list_index; /* Next drain_list to be used */ 1448 int conn_drain_nthreads; /* Number of drainers reqd. */ 1449 /* Settable in /etc/system */ 1450 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1451 1452 /* Defined in ip_ire.c */ 1453 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1454 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1455 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1456 1457 static nv_t ire_nv_arr[] = { 1458 { IRE_BROADCAST, "BROADCAST" }, 1459 { IRE_LOCAL, "LOCAL" }, 1460 { IRE_LOOPBACK, "LOOPBACK" }, 1461 { IRE_CACHE, "CACHE" }, 1462 { IRE_DEFAULT, "DEFAULT" }, 1463 { IRE_PREFIX, "PREFIX" }, 1464 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1465 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1466 { IRE_HOST, "HOST" }, 1467 { 0 } 1468 }; 1469 1470 nv_t *ire_nv_tbl = ire_nv_arr; 1471 1472 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1473 extern krwlock_t ipsec_capab_ills_lock; 1474 1475 /* Defined in ip_netinfo.c */ 1476 extern ddi_taskq_t *eventq_queue_nic; 1477 1478 /* Packet dropper for IP IPsec processing failures */ 1479 ipdropper_t ip_dropper; 1480 1481 /* Simple ICMP IP Header Template */ 1482 static ipha_t icmp_ipha = { 1483 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1484 }; 1485 1486 struct module_info ip_mod_info = { 1487 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1488 }; 1489 1490 /* 1491 * Duplicate static symbols within a module confuses mdb; so we avoid the 1492 * problem by making the symbols here distinct from those in udp.c. 1493 */ 1494 1495 static struct qinit iprinit = { 1496 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1497 &ip_mod_info 1498 }; 1499 1500 static struct qinit ipwinit = { 1501 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1502 &ip_mod_info 1503 }; 1504 1505 static struct qinit iplrinit = { 1506 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1507 &ip_mod_info 1508 }; 1509 1510 static struct qinit iplwinit = { 1511 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1512 &ip_mod_info 1513 }; 1514 1515 struct streamtab ipinfo = { 1516 &iprinit, &ipwinit, &iplrinit, &iplwinit 1517 }; 1518 1519 #ifdef DEBUG 1520 static boolean_t skip_sctp_cksum = B_FALSE; 1521 #endif 1522 1523 /* 1524 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1525 * ip_rput_v6(), ip_output(), etc. If the message 1526 * block already has a M_CTL at the front of it, then simply set the zoneid 1527 * appropriately. 1528 */ 1529 mblk_t * 1530 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1531 { 1532 mblk_t *first_mp; 1533 ipsec_out_t *io; 1534 1535 ASSERT(zoneid != ALL_ZONES); 1536 if (mp->b_datap->db_type == M_CTL) { 1537 io = (ipsec_out_t *)mp->b_rptr; 1538 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1539 io->ipsec_out_zoneid = zoneid; 1540 return (mp); 1541 } 1542 1543 first_mp = ipsec_alloc_ipsec_out(); 1544 if (first_mp == NULL) 1545 return (NULL); 1546 io = (ipsec_out_t *)first_mp->b_rptr; 1547 /* This is not a secure packet */ 1548 io->ipsec_out_secure = B_FALSE; 1549 io->ipsec_out_zoneid = zoneid; 1550 first_mp->b_cont = mp; 1551 return (first_mp); 1552 } 1553 1554 /* 1555 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1556 */ 1557 mblk_t * 1558 ip_copymsg(mblk_t *mp) 1559 { 1560 mblk_t *nmp; 1561 ipsec_info_t *in; 1562 1563 if (mp->b_datap->db_type != M_CTL) 1564 return (copymsg(mp)); 1565 1566 in = (ipsec_info_t *)mp->b_rptr; 1567 1568 /* 1569 * Note that M_CTL is also used for delivering ICMP error messages 1570 * upstream to transport layers. 1571 */ 1572 if (in->ipsec_info_type != IPSEC_OUT && 1573 in->ipsec_info_type != IPSEC_IN) 1574 return (copymsg(mp)); 1575 1576 nmp = copymsg(mp->b_cont); 1577 1578 if (in->ipsec_info_type == IPSEC_OUT) 1579 return (ipsec_out_tag(mp, nmp)); 1580 else 1581 return (ipsec_in_tag(mp, nmp)); 1582 } 1583 1584 /* Generate an ICMP fragmentation needed message. */ 1585 static void 1586 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1587 { 1588 icmph_t icmph; 1589 mblk_t *first_mp; 1590 boolean_t mctl_present; 1591 1592 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1593 1594 if (!(mp = icmp_pkt_err_ok(mp))) { 1595 if (mctl_present) 1596 freeb(first_mp); 1597 return; 1598 } 1599 1600 bzero(&icmph, sizeof (icmph_t)); 1601 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1602 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1603 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1604 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1605 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1606 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1607 } 1608 1609 /* 1610 * icmp_inbound deals with ICMP messages in the following ways. 1611 * 1612 * 1) It needs to send a reply back and possibly delivering it 1613 * to the "interested" upper clients. 1614 * 2) It needs to send it to the upper clients only. 1615 * 3) It needs to change some values in IP only. 1616 * 4) It needs to change some values in IP and upper layers e.g TCP. 1617 * 1618 * We need to accomodate icmp messages coming in clear until we get 1619 * everything secure from the wire. If icmp_accept_clear_messages 1620 * is zero we check with the global policy and act accordingly. If 1621 * it is non-zero, we accept the message without any checks. But 1622 * *this does not mean* that this will be delivered to the upper 1623 * clients. By accepting we might send replies back, change our MTU 1624 * value etc. but delivery to the ULP/clients depends on their policy 1625 * dispositions. 1626 * 1627 * We handle the above 4 cases in the context of IPSEC in the 1628 * following way : 1629 * 1630 * 1) Send the reply back in the same way as the request came in. 1631 * If it came in encrypted, it goes out encrypted. If it came in 1632 * clear, it goes out in clear. Thus, this will prevent chosen 1633 * plain text attack. 1634 * 2) The client may or may not expect things to come in secure. 1635 * If it comes in secure, the policy constraints are checked 1636 * before delivering it to the upper layers. If it comes in 1637 * clear, ipsec_inbound_accept_clear will decide whether to 1638 * accept this in clear or not. In both the cases, if the returned 1639 * message (IP header + 8 bytes) that caused the icmp message has 1640 * AH/ESP headers, it is sent up to AH/ESP for validation before 1641 * sending up. If there are only 8 bytes of returned message, then 1642 * upper client will not be notified. 1643 * 3) Check with global policy to see whether it matches the constaints. 1644 * But this will be done only if icmp_accept_messages_in_clear is 1645 * zero. 1646 * 4) If we need to change both in IP and ULP, then the decision taken 1647 * while affecting the values in IP and while delivering up to TCP 1648 * should be the same. 1649 * 1650 * There are two cases. 1651 * 1652 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1653 * failed), we will not deliver it to the ULP, even though they 1654 * are *willing* to accept in *clear*. This is fine as our global 1655 * disposition to icmp messages asks us reject the datagram. 1656 * 1657 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1658 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1659 * to deliver it to ULP (policy failed), it can lead to 1660 * consistency problems. The cases known at this time are 1661 * ICMP_DESTINATION_UNREACHABLE messages with following code 1662 * values : 1663 * 1664 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1665 * and Upper layer rejects. Then the communication will 1666 * come to a stop. This is solved by making similar decisions 1667 * at both levels. Currently, when we are unable to deliver 1668 * to the Upper Layer (due to policy failures) while IP has 1669 * adjusted ire_max_frag, the next outbound datagram would 1670 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1671 * will be with the right level of protection. Thus the right 1672 * value will be communicated even if we are not able to 1673 * communicate when we get from the wire initially. But this 1674 * assumes there would be at least one outbound datagram after 1675 * IP has adjusted its ire_max_frag value. To make things 1676 * simpler, we accept in clear after the validation of 1677 * AH/ESP headers. 1678 * 1679 * - Other ICMP ERRORS : We may not be able to deliver it to the 1680 * upper layer depending on the level of protection the upper 1681 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1682 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1683 * should be accepted in clear when the Upper layer expects secure. 1684 * Thus the communication may get aborted by some bad ICMP 1685 * packets. 1686 * 1687 * IPQoS Notes: 1688 * The only instance when a packet is sent for processing is when there 1689 * isn't an ICMP client and if we are interested in it. 1690 * If there is a client, IPPF processing will take place in the 1691 * ip_fanout_proto routine. 1692 * 1693 * Zones notes: 1694 * The packet is only processed in the context of the specified zone: typically 1695 * only this zone will reply to an echo request, and only interested clients in 1696 * this zone will receive a copy of the packet. This means that the caller must 1697 * call icmp_inbound() for each relevant zone. 1698 */ 1699 static void 1700 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1701 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1702 ill_t *recv_ill, zoneid_t zoneid) 1703 { 1704 icmph_t *icmph; 1705 ipha_t *ipha; 1706 int iph_hdr_length; 1707 int hdr_length; 1708 boolean_t interested; 1709 uint32_t ts; 1710 uchar_t *wptr; 1711 ipif_t *ipif; 1712 mblk_t *first_mp; 1713 ipsec_in_t *ii; 1714 ire_t *src_ire; 1715 boolean_t onlink; 1716 timestruc_t now; 1717 uint32_t ill_index; 1718 1719 ASSERT(ill != NULL); 1720 1721 first_mp = mp; 1722 if (mctl_present) { 1723 mp = first_mp->b_cont; 1724 ASSERT(mp != NULL); 1725 } 1726 1727 ipha = (ipha_t *)mp->b_rptr; 1728 if (icmp_accept_clear_messages == 0) { 1729 first_mp = ipsec_check_global_policy(first_mp, NULL, 1730 ipha, NULL, mctl_present); 1731 if (first_mp == NULL) 1732 return; 1733 } 1734 1735 /* 1736 * On a labeled system, we have to check whether the zone itself is 1737 * permitted to receive raw traffic. 1738 */ 1739 if (is_system_labeled()) { 1740 if (zoneid == ALL_ZONES) 1741 zoneid = tsol_packet_to_zoneid(mp); 1742 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1743 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1744 zoneid)); 1745 BUMP_MIB(&icmp_mib, icmpInErrors); 1746 freemsg(first_mp); 1747 return; 1748 } 1749 } 1750 1751 /* 1752 * We have accepted the ICMP message. It means that we will 1753 * respond to the packet if needed. It may not be delivered 1754 * to the upper client depending on the policy constraints 1755 * and the disposition in ipsec_inbound_accept_clear. 1756 */ 1757 1758 ASSERT(ill != NULL); 1759 1760 BUMP_MIB(&icmp_mib, icmpInMsgs); 1761 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1762 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1763 /* Last chance to get real. */ 1764 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1765 BUMP_MIB(&icmp_mib, icmpInErrors); 1766 freemsg(first_mp); 1767 return; 1768 } 1769 /* Refresh iph following the pullup. */ 1770 ipha = (ipha_t *)mp->b_rptr; 1771 } 1772 /* ICMP header checksum, including checksum field, should be zero. */ 1773 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1774 IP_CSUM(mp, iph_hdr_length, 0)) { 1775 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1776 freemsg(first_mp); 1777 return; 1778 } 1779 /* The IP header will always be a multiple of four bytes */ 1780 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1781 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1782 icmph->icmph_code)); 1783 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1784 /* We will set "interested" to "true" if we want a copy */ 1785 interested = B_FALSE; 1786 switch (icmph->icmph_type) { 1787 case ICMP_ECHO_REPLY: 1788 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1789 break; 1790 case ICMP_DEST_UNREACHABLE: 1791 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1792 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1793 interested = B_TRUE; /* Pass up to transport */ 1794 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1795 break; 1796 case ICMP_SOURCE_QUENCH: 1797 interested = B_TRUE; /* Pass up to transport */ 1798 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1799 break; 1800 case ICMP_REDIRECT: 1801 if (!ip_ignore_redirect) 1802 interested = B_TRUE; 1803 BUMP_MIB(&icmp_mib, icmpInRedirects); 1804 break; 1805 case ICMP_ECHO_REQUEST: 1806 /* 1807 * Whether to respond to echo requests that come in as IP 1808 * broadcasts or as IP multicast is subject to debate 1809 * (what isn't?). We aim to please, you pick it. 1810 * Default is do it. 1811 */ 1812 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1813 /* unicast: always respond */ 1814 interested = B_TRUE; 1815 } else if (CLASSD(ipha->ipha_dst)) { 1816 /* multicast: respond based on tunable */ 1817 interested = ip_g_resp_to_echo_mcast; 1818 } else if (broadcast) { 1819 /* broadcast: respond based on tunable */ 1820 interested = ip_g_resp_to_echo_bcast; 1821 } 1822 BUMP_MIB(&icmp_mib, icmpInEchos); 1823 break; 1824 case ICMP_ROUTER_ADVERTISEMENT: 1825 case ICMP_ROUTER_SOLICITATION: 1826 break; 1827 case ICMP_TIME_EXCEEDED: 1828 interested = B_TRUE; /* Pass up to transport */ 1829 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1830 break; 1831 case ICMP_PARAM_PROBLEM: 1832 interested = B_TRUE; /* Pass up to transport */ 1833 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1834 break; 1835 case ICMP_TIME_STAMP_REQUEST: 1836 /* Response to Time Stamp Requests is local policy. */ 1837 if (ip_g_resp_to_timestamp && 1838 /* So is whether to respond if it was an IP broadcast. */ 1839 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1840 int tstamp_len = 3 * sizeof (uint32_t); 1841 1842 if (wptr + tstamp_len > mp->b_wptr) { 1843 if (!pullupmsg(mp, wptr + tstamp_len - 1844 mp->b_rptr)) { 1845 BUMP_MIB(&ip_mib, ipInDiscards); 1846 freemsg(first_mp); 1847 return; 1848 } 1849 /* Refresh ipha following the pullup. */ 1850 ipha = (ipha_t *)mp->b_rptr; 1851 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1852 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1853 } 1854 interested = B_TRUE; 1855 } 1856 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1857 break; 1858 case ICMP_TIME_STAMP_REPLY: 1859 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1860 break; 1861 case ICMP_INFO_REQUEST: 1862 /* Per RFC 1122 3.2.2.7, ignore this. */ 1863 case ICMP_INFO_REPLY: 1864 break; 1865 case ICMP_ADDRESS_MASK_REQUEST: 1866 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1867 /* TODO m_pullup of complete header? */ 1868 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1869 interested = B_TRUE; 1870 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1871 break; 1872 case ICMP_ADDRESS_MASK_REPLY: 1873 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1874 break; 1875 default: 1876 interested = B_TRUE; /* Pass up to transport */ 1877 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1878 break; 1879 } 1880 /* See if there is an ICMP client. */ 1881 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1882 /* If there is an ICMP client and we want one too, copy it. */ 1883 mblk_t *first_mp1; 1884 1885 if (!interested) { 1886 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1887 ip_policy, recv_ill, zoneid); 1888 return; 1889 } 1890 first_mp1 = ip_copymsg(first_mp); 1891 if (first_mp1 != NULL) { 1892 ip_fanout_proto(q, first_mp1, ill, ipha, 1893 0, mctl_present, ip_policy, recv_ill, zoneid); 1894 } 1895 } else if (!interested) { 1896 freemsg(first_mp); 1897 return; 1898 } else { 1899 /* 1900 * Initiate policy processing for this packet if ip_policy 1901 * is true. 1902 */ 1903 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1904 ill_index = ill->ill_phyint->phyint_ifindex; 1905 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1906 if (mp == NULL) { 1907 if (mctl_present) { 1908 freeb(first_mp); 1909 } 1910 BUMP_MIB(&icmp_mib, icmpInErrors); 1911 return; 1912 } 1913 } 1914 } 1915 /* We want to do something with it. */ 1916 /* Check db_ref to make sure we can modify the packet. */ 1917 if (mp->b_datap->db_ref > 1) { 1918 mblk_t *first_mp1; 1919 1920 first_mp1 = ip_copymsg(first_mp); 1921 freemsg(first_mp); 1922 if (!first_mp1) { 1923 BUMP_MIB(&icmp_mib, icmpOutDrops); 1924 return; 1925 } 1926 first_mp = first_mp1; 1927 if (mctl_present) { 1928 mp = first_mp->b_cont; 1929 ASSERT(mp != NULL); 1930 } else { 1931 mp = first_mp; 1932 } 1933 ipha = (ipha_t *)mp->b_rptr; 1934 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1935 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1936 } 1937 switch (icmph->icmph_type) { 1938 case ICMP_ADDRESS_MASK_REQUEST: 1939 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1940 if (ipif == NULL) { 1941 freemsg(first_mp); 1942 return; 1943 } 1944 /* 1945 * outging interface must be IPv4 1946 */ 1947 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1948 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1949 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1950 ipif_refrele(ipif); 1951 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1952 break; 1953 case ICMP_ECHO_REQUEST: 1954 icmph->icmph_type = ICMP_ECHO_REPLY; 1955 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1956 break; 1957 case ICMP_TIME_STAMP_REQUEST: { 1958 uint32_t *tsp; 1959 1960 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1961 tsp = (uint32_t *)wptr; 1962 tsp++; /* Skip past 'originate time' */ 1963 /* Compute # of milliseconds since midnight */ 1964 gethrestime(&now); 1965 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1966 now.tv_nsec / (NANOSEC / MILLISEC); 1967 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1968 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1969 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1970 break; 1971 } 1972 default: 1973 ipha = (ipha_t *)&icmph[1]; 1974 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1975 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1976 BUMP_MIB(&ip_mib, ipInDiscards); 1977 freemsg(first_mp); 1978 return; 1979 } 1980 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1981 ipha = (ipha_t *)&icmph[1]; 1982 } 1983 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1984 BUMP_MIB(&ip_mib, ipInDiscards); 1985 freemsg(first_mp); 1986 return; 1987 } 1988 hdr_length = IPH_HDR_LENGTH(ipha); 1989 if (hdr_length < sizeof (ipha_t)) { 1990 BUMP_MIB(&ip_mib, ipInDiscards); 1991 freemsg(first_mp); 1992 return; 1993 } 1994 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1995 if (!pullupmsg(mp, 1996 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1997 BUMP_MIB(&ip_mib, ipInDiscards); 1998 freemsg(first_mp); 1999 return; 2000 } 2001 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2002 ipha = (ipha_t *)&icmph[1]; 2003 } 2004 switch (icmph->icmph_type) { 2005 case ICMP_REDIRECT: 2006 /* 2007 * As there is no upper client to deliver, we don't 2008 * need the first_mp any more. 2009 */ 2010 if (mctl_present) { 2011 freeb(first_mp); 2012 } 2013 icmp_redirect(mp); 2014 return; 2015 case ICMP_DEST_UNREACHABLE: 2016 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2017 if (!icmp_inbound_too_big(icmph, ipha, ill, 2018 zoneid, mp, iph_hdr_length)) { 2019 freemsg(first_mp); 2020 return; 2021 } 2022 /* 2023 * icmp_inbound_too_big() may alter mp. 2024 * Resynch ipha and icmph accordingly. 2025 */ 2026 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2027 ipha = (ipha_t *)&icmph[1]; 2028 } 2029 /* FALLTHRU */ 2030 default : 2031 /* 2032 * IPQoS notes: Since we have already done IPQoS 2033 * processing we don't want to do it again in 2034 * the fanout routines called by 2035 * icmp_inbound_error_fanout, hence the last 2036 * argument, ip_policy, is B_FALSE. 2037 */ 2038 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2039 ipha, iph_hdr_length, hdr_length, mctl_present, 2040 B_FALSE, recv_ill, zoneid); 2041 } 2042 return; 2043 } 2044 /* Send out an ICMP packet */ 2045 icmph->icmph_checksum = 0; 2046 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2047 if (icmph->icmph_checksum == 0) 2048 icmph->icmph_checksum = 0xFFFF; 2049 if (broadcast || CLASSD(ipha->ipha_dst)) { 2050 ipif_t *ipif_chosen; 2051 /* 2052 * Make it look like it was directed to us, so we don't look 2053 * like a fool with a broadcast or multicast source address. 2054 */ 2055 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2056 /* 2057 * Make sure that we haven't grabbed an interface that's DOWN. 2058 */ 2059 if (ipif != NULL) { 2060 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2061 ipha->ipha_src, zoneid); 2062 if (ipif_chosen != NULL) { 2063 ipif_refrele(ipif); 2064 ipif = ipif_chosen; 2065 } 2066 } 2067 if (ipif == NULL) { 2068 ip0dbg(("icmp_inbound: " 2069 "No source for broadcast/multicast:\n" 2070 "\tsrc 0x%x dst 0x%x ill %p " 2071 "ipif_lcl_addr 0x%x\n", 2072 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2073 (void *)ill, 2074 ill->ill_ipif->ipif_lcl_addr)); 2075 freemsg(first_mp); 2076 return; 2077 } 2078 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2079 ipha->ipha_dst = ipif->ipif_src_addr; 2080 ipif_refrele(ipif); 2081 } 2082 /* Reset time to live. */ 2083 ipha->ipha_ttl = ip_def_ttl; 2084 { 2085 /* Swap source and destination addresses */ 2086 ipaddr_t tmp; 2087 2088 tmp = ipha->ipha_src; 2089 ipha->ipha_src = ipha->ipha_dst; 2090 ipha->ipha_dst = tmp; 2091 } 2092 ipha->ipha_ident = 0; 2093 if (!IS_SIMPLE_IPH(ipha)) 2094 icmp_options_update(ipha); 2095 2096 /* 2097 * ICMP echo replies should go out on the same interface 2098 * the request came on as probes used by in.mpathd for detecting 2099 * NIC failures are ECHO packets. We turn-off load spreading 2100 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2101 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2102 * function. This is in turn handled by ip_wput and ip_newroute 2103 * to make sure that the packet goes out on the interface it came 2104 * in on. If we don't turnoff load spreading, the packets might get 2105 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2106 * to go out and in.mpathd would wrongly detect a failure or 2107 * mis-detect a NIC failure for link failure. As load spreading 2108 * can happen only if ill_group is not NULL, we do only for 2109 * that case and this does not affect the normal case. 2110 * 2111 * We turn off load spreading only on echo packets that came from 2112 * on-link hosts. If the interface route has been deleted, this will 2113 * not be enforced as we can't do much. For off-link hosts, as the 2114 * default routes in IPv4 does not typically have an ire_ipif 2115 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2116 * Moreover, expecting a default route through this interface may 2117 * not be correct. We use ipha_dst because of the swap above. 2118 */ 2119 onlink = B_FALSE; 2120 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2121 /* 2122 * First, we need to make sure that it is not one of our 2123 * local addresses. If we set onlink when it is one of 2124 * our local addresses, we will end up creating IRE_CACHES 2125 * for one of our local addresses. Then, we will never 2126 * accept packets for them afterwards. 2127 */ 2128 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2129 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2130 if (src_ire == NULL) { 2131 ipif = ipif_get_next_ipif(NULL, ill); 2132 if (ipif == NULL) { 2133 BUMP_MIB(&ip_mib, ipInDiscards); 2134 freemsg(mp); 2135 return; 2136 } 2137 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2138 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2139 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2140 ipif_refrele(ipif); 2141 if (src_ire != NULL) { 2142 onlink = B_TRUE; 2143 ire_refrele(src_ire); 2144 } 2145 } else { 2146 ire_refrele(src_ire); 2147 } 2148 } 2149 if (!mctl_present) { 2150 /* 2151 * This packet should go out the same way as it 2152 * came in i.e in clear. To make sure that global 2153 * policy will not be applied to this in ip_wput_ire, 2154 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2155 */ 2156 ASSERT(first_mp == mp); 2157 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2158 BUMP_MIB(&ip_mib, ipInDiscards); 2159 freemsg(mp); 2160 return; 2161 } 2162 ii = (ipsec_in_t *)first_mp->b_rptr; 2163 2164 /* This is not a secure packet */ 2165 ii->ipsec_in_secure = B_FALSE; 2166 if (onlink) { 2167 ii->ipsec_in_attach_if = B_TRUE; 2168 ii->ipsec_in_ill_index = 2169 ill->ill_phyint->phyint_ifindex; 2170 ii->ipsec_in_rill_index = 2171 recv_ill->ill_phyint->phyint_ifindex; 2172 } 2173 first_mp->b_cont = mp; 2174 } else if (onlink) { 2175 ii = (ipsec_in_t *)first_mp->b_rptr; 2176 ii->ipsec_in_attach_if = B_TRUE; 2177 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2178 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2179 } else { 2180 ii = (ipsec_in_t *)first_mp->b_rptr; 2181 } 2182 ii->ipsec_in_zoneid = zoneid; 2183 ASSERT(zoneid != ALL_ZONES); 2184 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2185 BUMP_MIB(&ip_mib, ipInDiscards); 2186 return; 2187 } 2188 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2189 put(WR(q), first_mp); 2190 } 2191 2192 static ipaddr_t 2193 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2194 { 2195 conn_t *connp; 2196 connf_t *connfp; 2197 ipaddr_t nexthop_addr = INADDR_ANY; 2198 int hdr_length = IPH_HDR_LENGTH(ipha); 2199 uint16_t *up; 2200 uint32_t ports; 2201 2202 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2203 switch (ipha->ipha_protocol) { 2204 case IPPROTO_TCP: 2205 { 2206 tcph_t *tcph; 2207 2208 /* do a reverse lookup */ 2209 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2210 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2211 TCPS_LISTEN); 2212 break; 2213 } 2214 case IPPROTO_UDP: 2215 { 2216 uint32_t dstport, srcport; 2217 2218 ((uint16_t *)&ports)[0] = up[1]; 2219 ((uint16_t *)&ports)[1] = up[0]; 2220 2221 /* Extract ports in net byte order */ 2222 dstport = htons(ntohl(ports) & 0xFFFF); 2223 srcport = htons(ntohl(ports) >> 16); 2224 2225 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2226 mutex_enter(&connfp->connf_lock); 2227 connp = connfp->connf_head; 2228 2229 /* do a reverse lookup */ 2230 while ((connp != NULL) && 2231 (!IPCL_UDP_MATCH(connp, dstport, 2232 ipha->ipha_src, srcport, ipha->ipha_dst) || 2233 !IPCL_ZONE_MATCH(connp, zoneid))) { 2234 connp = connp->conn_next; 2235 } 2236 if (connp != NULL) 2237 CONN_INC_REF(connp); 2238 mutex_exit(&connfp->connf_lock); 2239 break; 2240 } 2241 case IPPROTO_SCTP: 2242 { 2243 in6_addr_t map_src, map_dst; 2244 2245 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2246 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2247 ((uint16_t *)&ports)[0] = up[1]; 2248 ((uint16_t *)&ports)[1] = up[0]; 2249 2250 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2251 0, zoneid)) == NULL) { 2252 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2253 zoneid, ports, ipha); 2254 } else { 2255 CONN_INC_REF(connp); 2256 SCTP_REFRELE(CONN2SCTP(connp)); 2257 } 2258 break; 2259 } 2260 default: 2261 { 2262 ipha_t ripha; 2263 2264 ripha.ipha_src = ipha->ipha_dst; 2265 ripha.ipha_dst = ipha->ipha_src; 2266 ripha.ipha_protocol = ipha->ipha_protocol; 2267 2268 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2269 mutex_enter(&connfp->connf_lock); 2270 connp = connfp->connf_head; 2271 for (connp = connfp->connf_head; connp != NULL; 2272 connp = connp->conn_next) { 2273 if (IPCL_PROTO_MATCH(connp, 2274 ipha->ipha_protocol, &ripha, ill, 2275 0, zoneid)) { 2276 CONN_INC_REF(connp); 2277 break; 2278 } 2279 } 2280 mutex_exit(&connfp->connf_lock); 2281 } 2282 } 2283 if (connp != NULL) { 2284 if (connp->conn_nexthop_set) 2285 nexthop_addr = connp->conn_nexthop_v4; 2286 CONN_DEC_REF(connp); 2287 } 2288 return (nexthop_addr); 2289 } 2290 2291 /* Table from RFC 1191 */ 2292 static int icmp_frag_size_table[] = 2293 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2294 2295 /* 2296 * Process received ICMP Packet too big. 2297 * After updating any IRE it does the fanout to any matching transport streams. 2298 * Assumes the message has been pulled up till the IP header that caused 2299 * the error. 2300 * 2301 * Returns B_FALSE on failure and B_TRUE on success. 2302 */ 2303 static boolean_t 2304 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2305 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2306 { 2307 ire_t *ire, *first_ire; 2308 int mtu; 2309 int hdr_length; 2310 ipaddr_t nexthop_addr; 2311 2312 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2313 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2314 2315 hdr_length = IPH_HDR_LENGTH(ipha); 2316 2317 /* Drop if the original packet contained a source route */ 2318 if (ip_source_route_included(ipha)) { 2319 return (B_FALSE); 2320 } 2321 /* 2322 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2323 * header. 2324 */ 2325 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2326 mp->b_wptr) { 2327 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2328 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2329 BUMP_MIB(&ip_mib, ipInDiscards); 2330 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2331 return (B_FALSE); 2332 } 2333 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2334 ipha = (ipha_t *)&icmph[1]; 2335 } 2336 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2337 if (nexthop_addr != INADDR_ANY) { 2338 /* nexthop set */ 2339 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2340 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2341 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2342 } else { 2343 /* nexthop not set */ 2344 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2345 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2346 } 2347 2348 if (!first_ire) { 2349 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2350 ntohl(ipha->ipha_dst))); 2351 return (B_FALSE); 2352 } 2353 /* Check for MTU discovery advice as described in RFC 1191 */ 2354 mtu = ntohs(icmph->icmph_du_mtu); 2355 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2356 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2357 ire = ire->ire_next) { 2358 /* 2359 * Look for the connection to which this ICMP message is 2360 * directed. If it has the IP_NEXTHOP option set, then the 2361 * search is limited to IREs with the MATCH_IRE_PRIVATE 2362 * option. Else the search is limited to regular IREs. 2363 */ 2364 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2365 (nexthop_addr != ire->ire_gateway_addr)) || 2366 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2367 (nexthop_addr != INADDR_ANY))) 2368 continue; 2369 2370 mutex_enter(&ire->ire_lock); 2371 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2372 /* Reduce the IRE max frag value as advised. */ 2373 ip1dbg(("Received mtu from router: %d (was %d)\n", 2374 mtu, ire->ire_max_frag)); 2375 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2376 } else { 2377 uint32_t length; 2378 int i; 2379 2380 /* 2381 * Use the table from RFC 1191 to figure out 2382 * the next "plateau" based on the length in 2383 * the original IP packet. 2384 */ 2385 length = ntohs(ipha->ipha_length); 2386 if (ire->ire_max_frag <= length && 2387 ire->ire_max_frag >= length - hdr_length) { 2388 /* 2389 * Handle broken BSD 4.2 systems that 2390 * return the wrong iph_length in ICMP 2391 * errors. 2392 */ 2393 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2394 length, ire->ire_max_frag)); 2395 length -= hdr_length; 2396 } 2397 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2398 if (length > icmp_frag_size_table[i]) 2399 break; 2400 } 2401 if (i == A_CNT(icmp_frag_size_table)) { 2402 /* Smaller than 68! */ 2403 ip1dbg(("Too big for packet size %d\n", 2404 length)); 2405 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2406 ire->ire_frag_flag = 0; 2407 } else { 2408 mtu = icmp_frag_size_table[i]; 2409 ip1dbg(("Calculated mtu %d, packet size %d, " 2410 "before %d", mtu, length, 2411 ire->ire_max_frag)); 2412 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2413 ip1dbg((", after %d\n", ire->ire_max_frag)); 2414 } 2415 /* Record the new max frag size for the ULP. */ 2416 icmph->icmph_du_zero = 0; 2417 icmph->icmph_du_mtu = 2418 htons((uint16_t)ire->ire_max_frag); 2419 } 2420 mutex_exit(&ire->ire_lock); 2421 } 2422 rw_exit(&first_ire->ire_bucket->irb_lock); 2423 ire_refrele(first_ire); 2424 return (B_TRUE); 2425 } 2426 2427 /* 2428 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2429 * calls this function. 2430 */ 2431 static mblk_t * 2432 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2433 { 2434 ipha_t *ipha; 2435 icmph_t *icmph; 2436 ipha_t *in_ipha; 2437 int length; 2438 2439 ASSERT(mp->b_datap->db_type == M_DATA); 2440 2441 /* 2442 * For Self-encapsulated packets, we added an extra IP header 2443 * without the options. Inner IP header is the one from which 2444 * the outer IP header was formed. Thus, we need to remove the 2445 * outer IP header. To do this, we pullup the whole message 2446 * and overlay whatever follows the outer IP header over the 2447 * outer IP header. 2448 */ 2449 2450 if (!pullupmsg(mp, -1)) { 2451 BUMP_MIB(&ip_mib, ipInDiscards); 2452 return (NULL); 2453 } 2454 2455 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2456 ipha = (ipha_t *)&icmph[1]; 2457 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2458 2459 /* 2460 * The length that we want to overlay is following the inner 2461 * IP header. Subtracting the IP header + icmp header + outer 2462 * IP header's length should give us the length that we want to 2463 * overlay. 2464 */ 2465 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2466 hdr_length; 2467 /* 2468 * Overlay whatever follows the inner header over the 2469 * outer header. 2470 */ 2471 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2472 2473 /* Set the wptr to account for the outer header */ 2474 mp->b_wptr -= hdr_length; 2475 return (mp); 2476 } 2477 2478 /* 2479 * Try to pass the ICMP message upstream in case the ULP cares. 2480 * 2481 * If the packet that caused the ICMP error is secure, we send 2482 * it to AH/ESP to make sure that the attached packet has a 2483 * valid association. ipha in the code below points to the 2484 * IP header of the packet that caused the error. 2485 * 2486 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2487 * in the context of IPSEC. Normally we tell the upper layer 2488 * whenever we send the ire (including ip_bind), the IPSEC header 2489 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2490 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2491 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2492 * same thing. As TCP has the IPSEC options size that needs to be 2493 * adjusted, we just pass the MTU unchanged. 2494 * 2495 * IFN could have been generated locally or by some router. 2496 * 2497 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2498 * This happens because IP adjusted its value of MTU on an 2499 * earlier IFN message and could not tell the upper layer, 2500 * the new adjusted value of MTU e.g. Packet was encrypted 2501 * or there was not enough information to fanout to upper 2502 * layers. Thus on the next outbound datagram, ip_wput_ire 2503 * generates the IFN, where IPSEC processing has *not* been 2504 * done. 2505 * 2506 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2507 * could have generated this. This happens because ire_max_frag 2508 * value in IP was set to a new value, while the IPSEC processing 2509 * was being done and after we made the fragmentation check in 2510 * ip_wput_ire. Thus on return from IPSEC processing, 2511 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2512 * and generates the IFN. As IPSEC processing is over, we fanout 2513 * to AH/ESP to remove the header. 2514 * 2515 * In both these cases, ipsec_in_loopback will be set indicating 2516 * that IFN was generated locally. 2517 * 2518 * ROUTER : IFN could be secure or non-secure. 2519 * 2520 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2521 * packet in error has AH/ESP headers to validate the AH/ESP 2522 * headers. AH/ESP will verify whether there is a valid SA or 2523 * not and send it back. We will fanout again if we have more 2524 * data in the packet. 2525 * 2526 * If the packet in error does not have AH/ESP, we handle it 2527 * like any other case. 2528 * 2529 * * NON_SECURE : If the packet in error has AH/ESP headers, 2530 * we attach a dummy ipsec_in and send it up to AH/ESP 2531 * for validation. AH/ESP will verify whether there is a 2532 * valid SA or not and send it back. We will fanout again if 2533 * we have more data in the packet. 2534 * 2535 * If the packet in error does not have AH/ESP, we handle it 2536 * like any other case. 2537 */ 2538 static void 2539 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2540 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2541 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2542 zoneid_t zoneid) 2543 { 2544 uint16_t *up; /* Pointer to ports in ULP header */ 2545 uint32_t ports; /* reversed ports for fanout */ 2546 ipha_t ripha; /* With reversed addresses */ 2547 mblk_t *first_mp; 2548 ipsec_in_t *ii; 2549 tcph_t *tcph; 2550 conn_t *connp; 2551 2552 first_mp = mp; 2553 if (mctl_present) { 2554 mp = first_mp->b_cont; 2555 ASSERT(mp != NULL); 2556 2557 ii = (ipsec_in_t *)first_mp->b_rptr; 2558 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2559 } else { 2560 ii = NULL; 2561 } 2562 2563 switch (ipha->ipha_protocol) { 2564 case IPPROTO_UDP: 2565 /* 2566 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2567 * transport header. 2568 */ 2569 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2570 mp->b_wptr) { 2571 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2572 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2573 BUMP_MIB(&ip_mib, ipInDiscards); 2574 goto drop_pkt; 2575 } 2576 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2577 ipha = (ipha_t *)&icmph[1]; 2578 } 2579 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2580 2581 /* 2582 * Attempt to find a client stream based on port. 2583 * Note that we do a reverse lookup since the header is 2584 * in the form we sent it out. 2585 * The ripha header is only used for the IP_UDP_MATCH and we 2586 * only set the src and dst addresses and protocol. 2587 */ 2588 ripha.ipha_src = ipha->ipha_dst; 2589 ripha.ipha_dst = ipha->ipha_src; 2590 ripha.ipha_protocol = ipha->ipha_protocol; 2591 ((uint16_t *)&ports)[0] = up[1]; 2592 ((uint16_t *)&ports)[1] = up[0]; 2593 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2594 ntohl(ipha->ipha_src), ntohs(up[0]), 2595 ntohl(ipha->ipha_dst), ntohs(up[1]), 2596 icmph->icmph_type, icmph->icmph_code)); 2597 2598 /* Have to change db_type after any pullupmsg */ 2599 DB_TYPE(mp) = M_CTL; 2600 2601 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2602 mctl_present, ip_policy, recv_ill, zoneid); 2603 return; 2604 2605 case IPPROTO_TCP: 2606 /* 2607 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2608 * transport header. 2609 */ 2610 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2611 mp->b_wptr) { 2612 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2613 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2614 BUMP_MIB(&ip_mib, ipInDiscards); 2615 goto drop_pkt; 2616 } 2617 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2618 ipha = (ipha_t *)&icmph[1]; 2619 } 2620 /* 2621 * Find a TCP client stream for this packet. 2622 * Note that we do a reverse lookup since the header is 2623 * in the form we sent it out. 2624 */ 2625 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2626 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2627 if (connp == NULL) { 2628 BUMP_MIB(&ip_mib, ipInDiscards); 2629 goto drop_pkt; 2630 } 2631 2632 /* Have to change db_type after any pullupmsg */ 2633 DB_TYPE(mp) = M_CTL; 2634 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2635 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2636 return; 2637 2638 case IPPROTO_SCTP: 2639 /* 2640 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2641 * transport header. 2642 */ 2643 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2644 mp->b_wptr) { 2645 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2646 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2647 BUMP_MIB(&ip_mib, ipInDiscards); 2648 goto drop_pkt; 2649 } 2650 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2651 ipha = (ipha_t *)&icmph[1]; 2652 } 2653 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2654 /* 2655 * Find a SCTP client stream for this packet. 2656 * Note that we do a reverse lookup since the header is 2657 * in the form we sent it out. 2658 * The ripha header is only used for the matching and we 2659 * only set the src and dst addresses, protocol, and version. 2660 */ 2661 ripha.ipha_src = ipha->ipha_dst; 2662 ripha.ipha_dst = ipha->ipha_src; 2663 ripha.ipha_protocol = ipha->ipha_protocol; 2664 ripha.ipha_version_and_hdr_length = 2665 ipha->ipha_version_and_hdr_length; 2666 ((uint16_t *)&ports)[0] = up[1]; 2667 ((uint16_t *)&ports)[1] = up[0]; 2668 2669 /* Have to change db_type after any pullupmsg */ 2670 DB_TYPE(mp) = M_CTL; 2671 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2672 mctl_present, ip_policy, 0, zoneid); 2673 return; 2674 2675 case IPPROTO_ESP: 2676 case IPPROTO_AH: { 2677 int ipsec_rc; 2678 2679 /* 2680 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2681 * We will re-use the IPSEC_IN if it is already present as 2682 * AH/ESP will not affect any fields in the IPSEC_IN for 2683 * ICMP errors. If there is no IPSEC_IN, allocate a new 2684 * one and attach it in the front. 2685 */ 2686 if (ii != NULL) { 2687 /* 2688 * ip_fanout_proto_again converts the ICMP errors 2689 * that come back from AH/ESP to M_DATA so that 2690 * if it is non-AH/ESP and we do a pullupmsg in 2691 * this function, it would work. Convert it back 2692 * to M_CTL before we send up as this is a ICMP 2693 * error. This could have been generated locally or 2694 * by some router. Validate the inner IPSEC 2695 * headers. 2696 * 2697 * NOTE : ill_index is used by ip_fanout_proto_again 2698 * to locate the ill. 2699 */ 2700 ASSERT(ill != NULL); 2701 ii->ipsec_in_ill_index = 2702 ill->ill_phyint->phyint_ifindex; 2703 ii->ipsec_in_rill_index = 2704 recv_ill->ill_phyint->phyint_ifindex; 2705 DB_TYPE(first_mp->b_cont) = M_CTL; 2706 } else { 2707 /* 2708 * IPSEC_IN is not present. We attach a ipsec_in 2709 * message and send up to IPSEC for validating 2710 * and removing the IPSEC headers. Clear 2711 * ipsec_in_secure so that when we return 2712 * from IPSEC, we don't mistakenly think that this 2713 * is a secure packet came from the network. 2714 * 2715 * NOTE : ill_index is used by ip_fanout_proto_again 2716 * to locate the ill. 2717 */ 2718 ASSERT(first_mp == mp); 2719 first_mp = ipsec_in_alloc(B_TRUE); 2720 if (first_mp == NULL) { 2721 freemsg(mp); 2722 BUMP_MIB(&ip_mib, ipInDiscards); 2723 return; 2724 } 2725 ii = (ipsec_in_t *)first_mp->b_rptr; 2726 2727 /* This is not a secure packet */ 2728 ii->ipsec_in_secure = B_FALSE; 2729 first_mp->b_cont = mp; 2730 DB_TYPE(mp) = M_CTL; 2731 ASSERT(ill != NULL); 2732 ii->ipsec_in_ill_index = 2733 ill->ill_phyint->phyint_ifindex; 2734 ii->ipsec_in_rill_index = 2735 recv_ill->ill_phyint->phyint_ifindex; 2736 } 2737 ip2dbg(("icmp_inbound_error: ipsec\n")); 2738 2739 if (!ipsec_loaded()) { 2740 ip_proto_not_sup(q, first_mp, 0, zoneid); 2741 return; 2742 } 2743 2744 if (ipha->ipha_protocol == IPPROTO_ESP) 2745 ipsec_rc = ipsecesp_icmp_error(first_mp); 2746 else 2747 ipsec_rc = ipsecah_icmp_error(first_mp); 2748 if (ipsec_rc == IPSEC_STATUS_FAILED) 2749 return; 2750 2751 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2752 return; 2753 } 2754 default: 2755 /* 2756 * The ripha header is only used for the lookup and we 2757 * only set the src and dst addresses and protocol. 2758 */ 2759 ripha.ipha_src = ipha->ipha_dst; 2760 ripha.ipha_dst = ipha->ipha_src; 2761 ripha.ipha_protocol = ipha->ipha_protocol; 2762 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2763 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2764 ntohl(ipha->ipha_dst), 2765 icmph->icmph_type, icmph->icmph_code)); 2766 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2767 ipha_t *in_ipha; 2768 2769 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2770 mp->b_wptr) { 2771 if (!pullupmsg(mp, (uchar_t *)ipha + 2772 hdr_length + sizeof (ipha_t) - 2773 mp->b_rptr)) { 2774 2775 BUMP_MIB(&ip_mib, ipInDiscards); 2776 goto drop_pkt; 2777 } 2778 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2779 ipha = (ipha_t *)&icmph[1]; 2780 } 2781 /* 2782 * Caller has verified that length has to be 2783 * at least the size of IP header. 2784 */ 2785 ASSERT(hdr_length >= sizeof (ipha_t)); 2786 /* 2787 * Check the sanity of the inner IP header like 2788 * we did for the outer header. 2789 */ 2790 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2791 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2792 BUMP_MIB(&ip_mib, ipInDiscards); 2793 goto drop_pkt; 2794 } 2795 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2796 BUMP_MIB(&ip_mib, ipInDiscards); 2797 goto drop_pkt; 2798 } 2799 /* Check for Self-encapsulated tunnels */ 2800 if (in_ipha->ipha_src == ipha->ipha_src && 2801 in_ipha->ipha_dst == ipha->ipha_dst) { 2802 2803 mp = icmp_inbound_self_encap_error(mp, 2804 iph_hdr_length, hdr_length); 2805 if (mp == NULL) 2806 goto drop_pkt; 2807 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2808 ipha = (ipha_t *)&icmph[1]; 2809 hdr_length = IPH_HDR_LENGTH(ipha); 2810 /* 2811 * The packet in error is self-encapsualted. 2812 * And we are finding it further encapsulated 2813 * which we could not have possibly generated. 2814 */ 2815 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2816 BUMP_MIB(&ip_mib, ipInDiscards); 2817 goto drop_pkt; 2818 } 2819 icmp_inbound_error_fanout(q, ill, first_mp, 2820 icmph, ipha, iph_hdr_length, hdr_length, 2821 mctl_present, ip_policy, recv_ill, zoneid); 2822 return; 2823 } 2824 } 2825 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2826 ipha->ipha_protocol == IPPROTO_IPV6) && 2827 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2828 ii != NULL && 2829 ii->ipsec_in_loopback && 2830 ii->ipsec_in_secure) { 2831 /* 2832 * For IP tunnels that get a looped-back 2833 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2834 * reported new MTU to take into account the IPsec 2835 * headers protecting this configured tunnel. 2836 * 2837 * This allows the tunnel module (tun.c) to blindly 2838 * accept the MTU reported in an ICMP "too big" 2839 * message. 2840 * 2841 * Non-looped back ICMP messages will just be 2842 * handled by the security protocols (if needed), 2843 * and the first subsequent packet will hit this 2844 * path. 2845 */ 2846 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2847 ipsec_in_extra_length(first_mp)); 2848 } 2849 /* Have to change db_type after any pullupmsg */ 2850 DB_TYPE(mp) = M_CTL; 2851 2852 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2853 ip_policy, recv_ill, zoneid); 2854 return; 2855 } 2856 /* NOTREACHED */ 2857 drop_pkt:; 2858 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2859 freemsg(first_mp); 2860 } 2861 2862 /* 2863 * Common IP options parser. 2864 * 2865 * Setup routine: fill in *optp with options-parsing state, then 2866 * tail-call ipoptp_next to return the first option. 2867 */ 2868 uint8_t 2869 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2870 { 2871 uint32_t totallen; /* total length of all options */ 2872 2873 totallen = ipha->ipha_version_and_hdr_length - 2874 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2875 totallen <<= 2; 2876 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2877 optp->ipoptp_end = optp->ipoptp_next + totallen; 2878 optp->ipoptp_flags = 0; 2879 return (ipoptp_next(optp)); 2880 } 2881 2882 /* 2883 * Common IP options parser: extract next option. 2884 */ 2885 uint8_t 2886 ipoptp_next(ipoptp_t *optp) 2887 { 2888 uint8_t *end = optp->ipoptp_end; 2889 uint8_t *cur = optp->ipoptp_next; 2890 uint8_t opt, len, pointer; 2891 2892 /* 2893 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2894 * has been corrupted. 2895 */ 2896 ASSERT(cur <= end); 2897 2898 if (cur == end) 2899 return (IPOPT_EOL); 2900 2901 opt = cur[IPOPT_OPTVAL]; 2902 2903 /* 2904 * Skip any NOP options. 2905 */ 2906 while (opt == IPOPT_NOP) { 2907 cur++; 2908 if (cur == end) 2909 return (IPOPT_EOL); 2910 opt = cur[IPOPT_OPTVAL]; 2911 } 2912 2913 if (opt == IPOPT_EOL) 2914 return (IPOPT_EOL); 2915 2916 /* 2917 * Option requiring a length. 2918 */ 2919 if ((cur + 1) >= end) { 2920 optp->ipoptp_flags |= IPOPTP_ERROR; 2921 return (IPOPT_EOL); 2922 } 2923 len = cur[IPOPT_OLEN]; 2924 if (len < 2) { 2925 optp->ipoptp_flags |= IPOPTP_ERROR; 2926 return (IPOPT_EOL); 2927 } 2928 optp->ipoptp_cur = cur; 2929 optp->ipoptp_len = len; 2930 optp->ipoptp_next = cur + len; 2931 if (cur + len > end) { 2932 optp->ipoptp_flags |= IPOPTP_ERROR; 2933 return (IPOPT_EOL); 2934 } 2935 2936 /* 2937 * For the options which require a pointer field, make sure 2938 * its there, and make sure it points to either something 2939 * inside this option, or the end of the option. 2940 */ 2941 switch (opt) { 2942 case IPOPT_RR: 2943 case IPOPT_TS: 2944 case IPOPT_LSRR: 2945 case IPOPT_SSRR: 2946 if (len <= IPOPT_OFFSET) { 2947 optp->ipoptp_flags |= IPOPTP_ERROR; 2948 return (opt); 2949 } 2950 pointer = cur[IPOPT_OFFSET]; 2951 if (pointer - 1 > len) { 2952 optp->ipoptp_flags |= IPOPTP_ERROR; 2953 return (opt); 2954 } 2955 break; 2956 } 2957 2958 /* 2959 * Sanity check the pointer field based on the type of the 2960 * option. 2961 */ 2962 switch (opt) { 2963 case IPOPT_RR: 2964 case IPOPT_SSRR: 2965 case IPOPT_LSRR: 2966 if (pointer < IPOPT_MINOFF_SR) 2967 optp->ipoptp_flags |= IPOPTP_ERROR; 2968 break; 2969 case IPOPT_TS: 2970 if (pointer < IPOPT_MINOFF_IT) 2971 optp->ipoptp_flags |= IPOPTP_ERROR; 2972 /* 2973 * Note that the Internet Timestamp option also 2974 * contains two four bit fields (the Overflow field, 2975 * and the Flag field), which follow the pointer 2976 * field. We don't need to check that these fields 2977 * fall within the length of the option because this 2978 * was implicitely done above. We've checked that the 2979 * pointer value is at least IPOPT_MINOFF_IT, and that 2980 * it falls within the option. Since IPOPT_MINOFF_IT > 2981 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2982 */ 2983 ASSERT(len > IPOPT_POS_OV_FLG); 2984 break; 2985 } 2986 2987 return (opt); 2988 } 2989 2990 /* 2991 * Use the outgoing IP header to create an IP_OPTIONS option the way 2992 * it was passed down from the application. 2993 */ 2994 int 2995 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2996 { 2997 ipoptp_t opts; 2998 const uchar_t *opt; 2999 uint8_t optval; 3000 uint8_t optlen; 3001 uint32_t len = 0; 3002 uchar_t *buf1 = buf; 3003 3004 buf += IP_ADDR_LEN; /* Leave room for final destination */ 3005 len += IP_ADDR_LEN; 3006 bzero(buf1, IP_ADDR_LEN); 3007 3008 /* 3009 * OK to cast away const here, as we don't store through the returned 3010 * opts.ipoptp_cur pointer. 3011 */ 3012 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3013 optval != IPOPT_EOL; 3014 optval = ipoptp_next(&opts)) { 3015 int off; 3016 3017 opt = opts.ipoptp_cur; 3018 optlen = opts.ipoptp_len; 3019 switch (optval) { 3020 case IPOPT_SSRR: 3021 case IPOPT_LSRR: 3022 3023 /* 3024 * Insert ipha_dst as the first entry in the source 3025 * route and move down the entries on step. 3026 * The last entry gets placed at buf1. 3027 */ 3028 buf[IPOPT_OPTVAL] = optval; 3029 buf[IPOPT_OLEN] = optlen; 3030 buf[IPOPT_OFFSET] = optlen; 3031 3032 off = optlen - IP_ADDR_LEN; 3033 if (off < 0) { 3034 /* No entries in source route */ 3035 break; 3036 } 3037 /* Last entry in source route */ 3038 bcopy(opt + off, buf1, IP_ADDR_LEN); 3039 off -= IP_ADDR_LEN; 3040 3041 while (off > 0) { 3042 bcopy(opt + off, 3043 buf + off + IP_ADDR_LEN, 3044 IP_ADDR_LEN); 3045 off -= IP_ADDR_LEN; 3046 } 3047 /* ipha_dst into first slot */ 3048 bcopy(&ipha->ipha_dst, 3049 buf + off + IP_ADDR_LEN, 3050 IP_ADDR_LEN); 3051 buf += optlen; 3052 len += optlen; 3053 break; 3054 3055 case IPOPT_COMSEC: 3056 case IPOPT_SECURITY: 3057 /* if passing up a label is not ok, then remove */ 3058 if (is_system_labeled()) 3059 break; 3060 /* FALLTHROUGH */ 3061 default: 3062 bcopy(opt, buf, optlen); 3063 buf += optlen; 3064 len += optlen; 3065 break; 3066 } 3067 } 3068 done: 3069 /* Pad the resulting options */ 3070 while (len & 0x3) { 3071 *buf++ = IPOPT_EOL; 3072 len++; 3073 } 3074 return (len); 3075 } 3076 3077 /* 3078 * Update any record route or timestamp options to include this host. 3079 * Reverse any source route option. 3080 * This routine assumes that the options are well formed i.e. that they 3081 * have already been checked. 3082 */ 3083 static void 3084 icmp_options_update(ipha_t *ipha) 3085 { 3086 ipoptp_t opts; 3087 uchar_t *opt; 3088 uint8_t optval; 3089 ipaddr_t src; /* Our local address */ 3090 ipaddr_t dst; 3091 3092 ip2dbg(("icmp_options_update\n")); 3093 src = ipha->ipha_src; 3094 dst = ipha->ipha_dst; 3095 3096 for (optval = ipoptp_first(&opts, ipha); 3097 optval != IPOPT_EOL; 3098 optval = ipoptp_next(&opts)) { 3099 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3100 opt = opts.ipoptp_cur; 3101 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3102 optval, opts.ipoptp_len)); 3103 switch (optval) { 3104 int off1, off2; 3105 case IPOPT_SSRR: 3106 case IPOPT_LSRR: 3107 /* 3108 * Reverse the source route. The first entry 3109 * should be the next to last one in the current 3110 * source route (the last entry is our address). 3111 * The last entry should be the final destination. 3112 */ 3113 off1 = IPOPT_MINOFF_SR - 1; 3114 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3115 if (off2 < 0) { 3116 /* No entries in source route */ 3117 ip1dbg(( 3118 "icmp_options_update: bad src route\n")); 3119 break; 3120 } 3121 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3122 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3123 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3124 off2 -= IP_ADDR_LEN; 3125 3126 while (off1 < off2) { 3127 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3128 bcopy((char *)opt + off2, (char *)opt + off1, 3129 IP_ADDR_LEN); 3130 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3131 off1 += IP_ADDR_LEN; 3132 off2 -= IP_ADDR_LEN; 3133 } 3134 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3135 break; 3136 } 3137 } 3138 } 3139 3140 /* 3141 * Process received ICMP Redirect messages. 3142 */ 3143 /* ARGSUSED */ 3144 static void 3145 icmp_redirect(mblk_t *mp) 3146 { 3147 ipha_t *ipha; 3148 int iph_hdr_length; 3149 icmph_t *icmph; 3150 ipha_t *ipha_err; 3151 ire_t *ire; 3152 ire_t *prev_ire; 3153 ire_t *save_ire; 3154 ipaddr_t src, dst, gateway; 3155 iulp_t ulp_info = { 0 }; 3156 int error; 3157 3158 ipha = (ipha_t *)mp->b_rptr; 3159 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3160 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3161 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3162 BUMP_MIB(&icmp_mib, icmpInErrors); 3163 freemsg(mp); 3164 return; 3165 } 3166 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3167 ipha_err = (ipha_t *)&icmph[1]; 3168 src = ipha->ipha_src; 3169 dst = ipha_err->ipha_dst; 3170 gateway = icmph->icmph_rd_gateway; 3171 /* Make sure the new gateway is reachable somehow. */ 3172 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3173 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3174 /* 3175 * Make sure we had a route for the dest in question and that 3176 * that route was pointing to the old gateway (the source of the 3177 * redirect packet.) 3178 */ 3179 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3180 NULL, MATCH_IRE_GW); 3181 /* 3182 * Check that 3183 * the redirect was not from ourselves 3184 * the new gateway and the old gateway are directly reachable 3185 */ 3186 if (!prev_ire || 3187 !ire || 3188 ire->ire_type == IRE_LOCAL) { 3189 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3190 freemsg(mp); 3191 if (ire != NULL) 3192 ire_refrele(ire); 3193 if (prev_ire != NULL) 3194 ire_refrele(prev_ire); 3195 return; 3196 } 3197 3198 /* 3199 * Should we use the old ULP info to create the new gateway? From 3200 * a user's perspective, we should inherit the info so that it 3201 * is a "smooth" transition. If we do not do that, then new 3202 * connections going thru the new gateway will have no route metrics, 3203 * which is counter-intuitive to user. From a network point of 3204 * view, this may or may not make sense even though the new gateway 3205 * is still directly connected to us so the route metrics should not 3206 * change much. 3207 * 3208 * But if the old ire_uinfo is not initialized, we do another 3209 * recursive lookup on the dest using the new gateway. There may 3210 * be a route to that. If so, use it to initialize the redirect 3211 * route. 3212 */ 3213 if (prev_ire->ire_uinfo.iulp_set) { 3214 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3215 } else { 3216 ire_t *tmp_ire; 3217 ire_t *sire; 3218 3219 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3220 ALL_ZONES, 0, NULL, 3221 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3222 if (sire != NULL) { 3223 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3224 /* 3225 * If sire != NULL, ire_ftable_lookup() should not 3226 * return a NULL value. 3227 */ 3228 ASSERT(tmp_ire != NULL); 3229 ire_refrele(tmp_ire); 3230 ire_refrele(sire); 3231 } else if (tmp_ire != NULL) { 3232 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3233 sizeof (iulp_t)); 3234 ire_refrele(tmp_ire); 3235 } 3236 } 3237 if (prev_ire->ire_type == IRE_CACHE) 3238 ire_delete(prev_ire); 3239 ire_refrele(prev_ire); 3240 /* 3241 * TODO: more precise handling for cases 0, 2, 3, the latter two 3242 * require TOS routing 3243 */ 3244 switch (icmph->icmph_code) { 3245 case 0: 3246 case 1: 3247 /* TODO: TOS specificity for cases 2 and 3 */ 3248 case 2: 3249 case 3: 3250 break; 3251 default: 3252 freemsg(mp); 3253 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3254 ire_refrele(ire); 3255 return; 3256 } 3257 /* 3258 * Create a Route Association. This will allow us to remember that 3259 * someone we believe told us to use the particular gateway. 3260 */ 3261 save_ire = ire; 3262 ire = ire_create( 3263 (uchar_t *)&dst, /* dest addr */ 3264 (uchar_t *)&ip_g_all_ones, /* mask */ 3265 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3266 (uchar_t *)&gateway, /* gateway addr */ 3267 NULL, /* no in_srcaddr */ 3268 &save_ire->ire_max_frag, /* max frag */ 3269 NULL, /* Fast Path header */ 3270 NULL, /* no rfq */ 3271 NULL, /* no stq */ 3272 IRE_HOST, 3273 NULL, 3274 NULL, 3275 NULL, 3276 0, 3277 0, 3278 0, 3279 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3280 &ulp_info, 3281 NULL, 3282 NULL); 3283 3284 if (ire == NULL) { 3285 freemsg(mp); 3286 ire_refrele(save_ire); 3287 return; 3288 } 3289 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3290 ire_refrele(save_ire); 3291 atomic_inc_32(&ip_redirect_cnt); 3292 3293 if (error == 0) { 3294 ire_refrele(ire); /* Held in ire_add_v4 */ 3295 /* tell routing sockets that we received a redirect */ 3296 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3297 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3298 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3299 } 3300 3301 /* 3302 * Delete any existing IRE_HOST type redirect ires for this destination. 3303 * This together with the added IRE has the effect of 3304 * modifying an existing redirect. 3305 */ 3306 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3307 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3308 if (prev_ire != NULL) { 3309 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3310 ire_delete(prev_ire); 3311 ire_refrele(prev_ire); 3312 } 3313 3314 freemsg(mp); 3315 } 3316 3317 /* 3318 * Generate an ICMP parameter problem message. 3319 */ 3320 static void 3321 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3322 { 3323 icmph_t icmph; 3324 boolean_t mctl_present; 3325 mblk_t *first_mp; 3326 3327 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3328 3329 if (!(mp = icmp_pkt_err_ok(mp))) { 3330 if (mctl_present) 3331 freeb(first_mp); 3332 return; 3333 } 3334 3335 bzero(&icmph, sizeof (icmph_t)); 3336 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3337 icmph.icmph_pp_ptr = ptr; 3338 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3339 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3340 } 3341 3342 /* 3343 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3344 * the ICMP header pointed to by "stuff". (May be called as writer.) 3345 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3346 * an icmp error packet can be sent. 3347 * Assigns an appropriate source address to the packet. If ipha_dst is 3348 * one of our addresses use it for source. Otherwise pick a source based 3349 * on a route lookup back to ipha_src. 3350 * Note that ipha_src must be set here since the 3351 * packet is likely to arrive on an ill queue in ip_wput() which will 3352 * not set a source address. 3353 */ 3354 static void 3355 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3356 boolean_t mctl_present, zoneid_t zoneid) 3357 { 3358 ipaddr_t dst; 3359 icmph_t *icmph; 3360 ipha_t *ipha; 3361 uint_t len_needed; 3362 size_t msg_len; 3363 mblk_t *mp1; 3364 ipaddr_t src; 3365 ire_t *ire; 3366 mblk_t *ipsec_mp; 3367 ipsec_out_t *io = NULL; 3368 boolean_t xmit_if_on = B_FALSE; 3369 3370 if (mctl_present) { 3371 /* 3372 * If it is : 3373 * 3374 * 1) a IPSEC_OUT, then this is caused by outbound 3375 * datagram originating on this host. IPSEC processing 3376 * may or may not have been done. Refer to comments above 3377 * icmp_inbound_error_fanout for details. 3378 * 3379 * 2) a IPSEC_IN if we are generating a icmp_message 3380 * for an incoming datagram destined for us i.e called 3381 * from ip_fanout_send_icmp. 3382 */ 3383 ipsec_info_t *in; 3384 ipsec_mp = mp; 3385 mp = ipsec_mp->b_cont; 3386 3387 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3388 ipha = (ipha_t *)mp->b_rptr; 3389 3390 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3391 in->ipsec_info_type == IPSEC_IN); 3392 3393 if (in->ipsec_info_type == IPSEC_IN) { 3394 /* 3395 * Convert the IPSEC_IN to IPSEC_OUT. 3396 */ 3397 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3398 BUMP_MIB(&ip_mib, ipOutDiscards); 3399 return; 3400 } 3401 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3402 } else { 3403 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3404 io = (ipsec_out_t *)in; 3405 if (io->ipsec_out_xmit_if) 3406 xmit_if_on = B_TRUE; 3407 /* 3408 * Clear out ipsec_out_proc_begin, so we do a fresh 3409 * ire lookup. 3410 */ 3411 io->ipsec_out_proc_begin = B_FALSE; 3412 } 3413 ASSERT(zoneid == io->ipsec_out_zoneid); 3414 ASSERT(zoneid != ALL_ZONES); 3415 } else { 3416 /* 3417 * This is in clear. The icmp message we are building 3418 * here should go out in clear. 3419 * 3420 * Pardon the convolution of it all, but it's easier to 3421 * allocate a "use cleartext" IPSEC_IN message and convert 3422 * it than it is to allocate a new one. 3423 */ 3424 ipsec_in_t *ii; 3425 ASSERT(DB_TYPE(mp) == M_DATA); 3426 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3427 freemsg(mp); 3428 BUMP_MIB(&ip_mib, ipOutDiscards); 3429 return; 3430 } 3431 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3432 3433 /* This is not a secure packet */ 3434 ii->ipsec_in_secure = B_FALSE; 3435 /* 3436 * For trusted extensions using a shared IP address we can 3437 * send using any zoneid. 3438 */ 3439 if (zoneid == ALL_ZONES) 3440 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3441 else 3442 ii->ipsec_in_zoneid = zoneid; 3443 ipsec_mp->b_cont = mp; 3444 ipha = (ipha_t *)mp->b_rptr; 3445 /* 3446 * Convert the IPSEC_IN to IPSEC_OUT. 3447 */ 3448 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3449 BUMP_MIB(&ip_mib, ipOutDiscards); 3450 return; 3451 } 3452 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3453 } 3454 3455 /* Remember our eventual destination */ 3456 dst = ipha->ipha_src; 3457 3458 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3459 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3460 if (ire != NULL && 3461 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3462 src = ipha->ipha_dst; 3463 } else if (!xmit_if_on) { 3464 if (ire != NULL) 3465 ire_refrele(ire); 3466 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3467 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3468 if (ire == NULL) { 3469 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3470 freemsg(ipsec_mp); 3471 return; 3472 } 3473 src = ire->ire_src_addr; 3474 } else { 3475 ipif_t *ipif = NULL; 3476 ill_t *ill; 3477 /* 3478 * This must be an ICMP error coming from 3479 * ip_mrtun_forward(). The src addr should 3480 * be equal to the IP-addr of the outgoing 3481 * interface. 3482 */ 3483 if (io == NULL) { 3484 /* This is not a IPSEC_OUT type control msg */ 3485 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3486 freemsg(ipsec_mp); 3487 return; 3488 } 3489 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3490 NULL, NULL, NULL, NULL); 3491 if (ill != NULL) { 3492 ipif = ipif_get_next_ipif(NULL, ill); 3493 ill_refrele(ill); 3494 } 3495 if (ipif == NULL) { 3496 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3497 freemsg(ipsec_mp); 3498 return; 3499 } 3500 src = ipif->ipif_src_addr; 3501 ipif_refrele(ipif); 3502 } 3503 3504 if (ire != NULL) 3505 ire_refrele(ire); 3506 3507 /* 3508 * Check if we can send back more then 8 bytes in addition 3509 * to the IP header. We will include as much as 64 bytes. 3510 */ 3511 len_needed = IPH_HDR_LENGTH(ipha); 3512 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3513 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3514 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3515 } 3516 len_needed += ip_icmp_return; 3517 msg_len = msgdsize(mp); 3518 if (msg_len > len_needed) { 3519 (void) adjmsg(mp, len_needed - msg_len); 3520 msg_len = len_needed; 3521 } 3522 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3523 if (mp1 == NULL) { 3524 BUMP_MIB(&icmp_mib, icmpOutErrors); 3525 freemsg(ipsec_mp); 3526 return; 3527 } 3528 /* 3529 * On an unlabeled system, dblks don't necessarily have creds. 3530 */ 3531 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3532 if (DB_CRED(mp) != NULL) 3533 mblk_setcred(mp1, DB_CRED(mp)); 3534 mp1->b_cont = mp; 3535 mp = mp1; 3536 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3537 ipsec_mp->b_rptr == (uint8_t *)io && 3538 io->ipsec_out_type == IPSEC_OUT); 3539 ipsec_mp->b_cont = mp; 3540 3541 /* 3542 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3543 * node generates be accepted in peace by all on-host destinations. 3544 * If we do NOT assume that all on-host destinations trust 3545 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3546 * (Look for ipsec_out_icmp_loopback). 3547 */ 3548 io->ipsec_out_icmp_loopback = B_TRUE; 3549 3550 ipha = (ipha_t *)mp->b_rptr; 3551 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3552 *ipha = icmp_ipha; 3553 ipha->ipha_src = src; 3554 ipha->ipha_dst = dst; 3555 ipha->ipha_ttl = ip_def_ttl; 3556 msg_len += sizeof (icmp_ipha) + len; 3557 if (msg_len > IP_MAXPACKET) { 3558 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3559 msg_len = IP_MAXPACKET; 3560 } 3561 ipha->ipha_length = htons((uint16_t)msg_len); 3562 icmph = (icmph_t *)&ipha[1]; 3563 bcopy(stuff, icmph, len); 3564 icmph->icmph_checksum = 0; 3565 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3566 if (icmph->icmph_checksum == 0) 3567 icmph->icmph_checksum = 0xFFFF; 3568 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3569 put(q, ipsec_mp); 3570 } 3571 3572 /* 3573 * Determine if an ICMP error packet can be sent given the rate limit. 3574 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3575 * in milliseconds) and a burst size. Burst size number of packets can 3576 * be sent arbitrarely closely spaced. 3577 * The state is tracked using two variables to implement an approximate 3578 * token bucket filter: 3579 * icmp_pkt_err_last - lbolt value when the last burst started 3580 * icmp_pkt_err_sent - number of packets sent in current burst 3581 */ 3582 boolean_t 3583 icmp_err_rate_limit(void) 3584 { 3585 clock_t now = TICK_TO_MSEC(lbolt); 3586 uint_t refilled; /* Number of packets refilled in tbf since last */ 3587 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3588 3589 if (err_interval == 0) 3590 return (B_FALSE); 3591 3592 if (icmp_pkt_err_last > now) { 3593 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3594 icmp_pkt_err_last = 0; 3595 icmp_pkt_err_sent = 0; 3596 } 3597 /* 3598 * If we are in a burst update the token bucket filter. 3599 * Update the "last" time to be close to "now" but make sure 3600 * we don't loose precision. 3601 */ 3602 if (icmp_pkt_err_sent != 0) { 3603 refilled = (now - icmp_pkt_err_last)/err_interval; 3604 if (refilled > icmp_pkt_err_sent) { 3605 icmp_pkt_err_sent = 0; 3606 } else { 3607 icmp_pkt_err_sent -= refilled; 3608 icmp_pkt_err_last += refilled * err_interval; 3609 } 3610 } 3611 if (icmp_pkt_err_sent == 0) { 3612 /* Start of new burst */ 3613 icmp_pkt_err_last = now; 3614 } 3615 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3616 icmp_pkt_err_sent++; 3617 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3618 icmp_pkt_err_sent)); 3619 return (B_FALSE); 3620 } 3621 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3622 return (B_TRUE); 3623 } 3624 3625 /* 3626 * Check if it is ok to send an IPv4 ICMP error packet in 3627 * response to the IPv4 packet in mp. 3628 * Free the message and return null if no 3629 * ICMP error packet should be sent. 3630 */ 3631 static mblk_t * 3632 icmp_pkt_err_ok(mblk_t *mp) 3633 { 3634 icmph_t *icmph; 3635 ipha_t *ipha; 3636 uint_t len_needed; 3637 ire_t *src_ire; 3638 ire_t *dst_ire; 3639 3640 if (!mp) 3641 return (NULL); 3642 ipha = (ipha_t *)mp->b_rptr; 3643 if (ip_csum_hdr(ipha)) { 3644 BUMP_MIB(&ip_mib, ipInCksumErrs); 3645 freemsg(mp); 3646 return (NULL); 3647 } 3648 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3649 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3650 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3651 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3652 if (src_ire != NULL || dst_ire != NULL || 3653 CLASSD(ipha->ipha_dst) || 3654 CLASSD(ipha->ipha_src) || 3655 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3656 /* Note: only errors to the fragment with offset 0 */ 3657 BUMP_MIB(&icmp_mib, icmpOutDrops); 3658 freemsg(mp); 3659 if (src_ire != NULL) 3660 ire_refrele(src_ire); 3661 if (dst_ire != NULL) 3662 ire_refrele(dst_ire); 3663 return (NULL); 3664 } 3665 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3666 /* 3667 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3668 * errors in response to any ICMP errors. 3669 */ 3670 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3671 if (mp->b_wptr - mp->b_rptr < len_needed) { 3672 if (!pullupmsg(mp, len_needed)) { 3673 BUMP_MIB(&icmp_mib, icmpInErrors); 3674 freemsg(mp); 3675 return (NULL); 3676 } 3677 ipha = (ipha_t *)mp->b_rptr; 3678 } 3679 icmph = (icmph_t *) 3680 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3681 switch (icmph->icmph_type) { 3682 case ICMP_DEST_UNREACHABLE: 3683 case ICMP_SOURCE_QUENCH: 3684 case ICMP_TIME_EXCEEDED: 3685 case ICMP_PARAM_PROBLEM: 3686 case ICMP_REDIRECT: 3687 BUMP_MIB(&icmp_mib, icmpOutDrops); 3688 freemsg(mp); 3689 return (NULL); 3690 default: 3691 break; 3692 } 3693 } 3694 /* 3695 * If this is a labeled system, then check to see if we're allowed to 3696 * send a response to this particular sender. If not, then just drop. 3697 */ 3698 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3699 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3700 BUMP_MIB(&icmp_mib, icmpOutDrops); 3701 freemsg(mp); 3702 return (NULL); 3703 } 3704 if (icmp_err_rate_limit()) { 3705 /* 3706 * Only send ICMP error packets every so often. 3707 * This should be done on a per port/source basis, 3708 * but for now this will suffice. 3709 */ 3710 freemsg(mp); 3711 return (NULL); 3712 } 3713 return (mp); 3714 } 3715 3716 /* 3717 * Generate an ICMP redirect message. 3718 */ 3719 static void 3720 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3721 { 3722 icmph_t icmph; 3723 3724 /* 3725 * We are called from ip_rput where we could 3726 * not have attached an IPSEC_IN. 3727 */ 3728 ASSERT(mp->b_datap->db_type == M_DATA); 3729 3730 if (!(mp = icmp_pkt_err_ok(mp))) { 3731 return; 3732 } 3733 3734 bzero(&icmph, sizeof (icmph_t)); 3735 icmph.icmph_type = ICMP_REDIRECT; 3736 icmph.icmph_code = 1; 3737 icmph.icmph_rd_gateway = gateway; 3738 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3739 /* Redirects sent by router, and router is global zone */ 3740 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3741 } 3742 3743 /* 3744 * Generate an ICMP time exceeded message. 3745 */ 3746 void 3747 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3748 { 3749 icmph_t icmph; 3750 boolean_t mctl_present; 3751 mblk_t *first_mp; 3752 3753 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3754 3755 if (!(mp = icmp_pkt_err_ok(mp))) { 3756 if (mctl_present) 3757 freeb(first_mp); 3758 return; 3759 } 3760 3761 bzero(&icmph, sizeof (icmph_t)); 3762 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3763 icmph.icmph_code = code; 3764 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3765 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3766 } 3767 3768 /* 3769 * Generate an ICMP unreachable message. 3770 */ 3771 void 3772 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3773 { 3774 icmph_t icmph; 3775 mblk_t *first_mp; 3776 boolean_t mctl_present; 3777 3778 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3779 3780 if (!(mp = icmp_pkt_err_ok(mp))) { 3781 if (mctl_present) 3782 freeb(first_mp); 3783 return; 3784 } 3785 3786 bzero(&icmph, sizeof (icmph_t)); 3787 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3788 icmph.icmph_code = code; 3789 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3790 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3791 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3792 zoneid); 3793 } 3794 3795 /* 3796 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3797 * duplicate. As long as someone else holds the address, the interface will 3798 * stay down. When that conflict goes away, the interface is brought back up. 3799 * This is done so that accidental shutdowns of addresses aren't made 3800 * permanent. Your server will recover from a failure. 3801 * 3802 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3803 * user space process (dhcpagent). 3804 * 3805 * Recovery completes if ARP reports that the address is now ours (via 3806 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3807 * 3808 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3809 */ 3810 static void 3811 ipif_dup_recovery(void *arg) 3812 { 3813 ipif_t *ipif = arg; 3814 ill_t *ill = ipif->ipif_ill; 3815 mblk_t *arp_add_mp; 3816 mblk_t *arp_del_mp; 3817 area_t *area; 3818 3819 ipif->ipif_recovery_id = 0; 3820 3821 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3822 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3823 /* No reason to try to bring this address back. */ 3824 return; 3825 } 3826 3827 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3828 goto alloc_fail; 3829 3830 if (ipif->ipif_arp_del_mp == NULL) { 3831 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3832 goto alloc_fail; 3833 ipif->ipif_arp_del_mp = arp_del_mp; 3834 } 3835 3836 /* Setting the 'unverified' flag restarts DAD */ 3837 area = (area_t *)arp_add_mp->b_rptr; 3838 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3839 ACE_F_UNVERIFIED; 3840 putnext(ill->ill_rq, arp_add_mp); 3841 return; 3842 3843 alloc_fail: 3844 /* On allocation failure, just restart the timer */ 3845 freemsg(arp_add_mp); 3846 if (ip_dup_recovery > 0) { 3847 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3848 MSEC_TO_TICK(ip_dup_recovery)); 3849 } 3850 } 3851 3852 /* 3853 * This is for exclusive changes due to ARP. Either tear down an interface due 3854 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3855 */ 3856 /* ARGSUSED */ 3857 static void 3858 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3859 { 3860 ill_t *ill = rq->q_ptr; 3861 arh_t *arh; 3862 ipaddr_t src; 3863 ipif_t *ipif; 3864 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3865 char hbuf[MAC_STR_LEN]; 3866 char sbuf[INET_ADDRSTRLEN]; 3867 const char *failtype; 3868 boolean_t bring_up; 3869 3870 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3871 case AR_CN_READY: 3872 failtype = NULL; 3873 bring_up = B_TRUE; 3874 break; 3875 case AR_CN_FAILED: 3876 failtype = "in use"; 3877 bring_up = B_FALSE; 3878 break; 3879 default: 3880 failtype = "claimed"; 3881 bring_up = B_FALSE; 3882 break; 3883 } 3884 3885 arh = (arh_t *)mp->b_cont->b_rptr; 3886 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3887 3888 /* Handle failures due to probes */ 3889 if (src == 0) { 3890 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3891 IP_ADDR_LEN); 3892 } 3893 3894 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3895 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3896 sizeof (hbuf)); 3897 (void) ip_dot_addr(src, sbuf); 3898 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3899 3900 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3901 ipif->ipif_lcl_addr != src) { 3902 continue; 3903 } 3904 3905 /* 3906 * If we failed on a recovery probe, then restart the timer to 3907 * try again later. 3908 */ 3909 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3910 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3911 ill->ill_net_type == IRE_IF_RESOLVER && 3912 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3913 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3914 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3915 continue; 3916 } 3917 3918 /* 3919 * If what we're trying to do has already been done, then do 3920 * nothing. 3921 */ 3922 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3923 continue; 3924 3925 if (ipif->ipif_id != 0) { 3926 (void) snprintf(ibuf + ill->ill_name_length - 1, 3927 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3928 ipif->ipif_id); 3929 } 3930 if (failtype == NULL) { 3931 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3932 ibuf); 3933 } else { 3934 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3935 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3936 } 3937 3938 if (bring_up) { 3939 ASSERT(ill->ill_dl_up); 3940 /* 3941 * Free up the ARP delete message so we can allocate 3942 * a fresh one through the normal path. 3943 */ 3944 freemsg(ipif->ipif_arp_del_mp); 3945 ipif->ipif_arp_del_mp = NULL; 3946 if (ipif_resolver_up(ipif, Res_act_initial) != 3947 EINPROGRESS) { 3948 ipif->ipif_addr_ready = 1; 3949 (void) ipif_up_done(ipif); 3950 } 3951 continue; 3952 } 3953 3954 mutex_enter(&ill->ill_lock); 3955 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3956 ipif->ipif_flags |= IPIF_DUPLICATE; 3957 ill->ill_ipif_dup_count++; 3958 mutex_exit(&ill->ill_lock); 3959 /* 3960 * Already exclusive on the ill; no need to handle deferred 3961 * processing here. 3962 */ 3963 (void) ipif_down(ipif, NULL, NULL); 3964 ipif_down_tail(ipif); 3965 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3966 ill->ill_net_type == IRE_IF_RESOLVER && 3967 ip_dup_recovery > 0) { 3968 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3969 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3970 } 3971 } 3972 freemsg(mp); 3973 } 3974 3975 /* ARGSUSED */ 3976 static void 3977 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3978 { 3979 ill_t *ill = rq->q_ptr; 3980 arh_t *arh; 3981 ipaddr_t src; 3982 ipif_t *ipif; 3983 3984 arh = (arh_t *)mp->b_cont->b_rptr; 3985 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3986 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3987 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3988 (void) ipif_resolver_up(ipif, Res_act_defend); 3989 } 3990 freemsg(mp); 3991 } 3992 3993 /* 3994 * News from ARP. ARP sends notification of interesting events down 3995 * to its clients using M_CTL messages with the interesting ARP packet 3996 * attached via b_cont. 3997 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3998 * queue as opposed to ARP sending the message to all the clients, i.e. all 3999 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 4000 * table if a cache IRE is found to delete all the entries for the address in 4001 * the packet. 4002 */ 4003 static void 4004 ip_arp_news(queue_t *q, mblk_t *mp) 4005 { 4006 arcn_t *arcn; 4007 arh_t *arh; 4008 ire_t *ire = NULL; 4009 char hbuf[MAC_STR_LEN]; 4010 char sbuf[INET_ADDRSTRLEN]; 4011 ipaddr_t src; 4012 in6_addr_t v6src; 4013 boolean_t isv6 = B_FALSE; 4014 ipif_t *ipif; 4015 ill_t *ill; 4016 4017 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4018 if (q->q_next) { 4019 putnext(q, mp); 4020 } else 4021 freemsg(mp); 4022 return; 4023 } 4024 arh = (arh_t *)mp->b_cont->b_rptr; 4025 /* Is it one we are interested in? */ 4026 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4027 isv6 = B_TRUE; 4028 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4029 IPV6_ADDR_LEN); 4030 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4031 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4032 IP_ADDR_LEN); 4033 } else { 4034 freemsg(mp); 4035 return; 4036 } 4037 4038 ill = q->q_ptr; 4039 4040 arcn = (arcn_t *)mp->b_rptr; 4041 switch (arcn->arcn_code) { 4042 case AR_CN_BOGON: 4043 /* 4044 * Someone is sending ARP packets with a source protocol 4045 * address that we have published and for which we believe our 4046 * entry is authoritative and (when ill_arp_extend is set) 4047 * verified to be unique on the network. 4048 * 4049 * The ARP module internally handles the cases where the sender 4050 * is just probing (for DAD) and where the hardware address of 4051 * a non-authoritative entry has changed. Thus, these are the 4052 * real conflicts, and we have to do resolution. 4053 * 4054 * We back away quickly from the address if it's from DHCP or 4055 * otherwise temporary and hasn't been used recently (or at 4056 * all). We'd like to include "deprecated" addresses here as 4057 * well (as there's no real reason to defend something we're 4058 * discarding), but IPMP "reuses" this flag to mean something 4059 * other than the standard meaning. 4060 * 4061 * If the ARP module above is not extended (meaning that it 4062 * doesn't know how to defend the address), then we just log 4063 * the problem as we always did and continue on. It's not 4064 * right, but there's little else we can do, and those old ATM 4065 * users are going away anyway. 4066 */ 4067 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4068 hbuf, sizeof (hbuf)); 4069 (void) ip_dot_addr(src, sbuf); 4070 if (isv6) 4071 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4072 else 4073 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4074 4075 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4076 uint32_t now; 4077 uint32_t maxage; 4078 clock_t lused; 4079 uint_t maxdefense; 4080 uint_t defs; 4081 4082 /* 4083 * First, figure out if this address hasn't been used 4084 * in a while. If it hasn't, then it's a better 4085 * candidate for abandoning. 4086 */ 4087 ipif = ire->ire_ipif; 4088 ASSERT(ipif != NULL); 4089 now = gethrestime_sec(); 4090 maxage = now - ire->ire_create_time; 4091 if (maxage > ip_max_temp_idle) 4092 maxage = ip_max_temp_idle; 4093 lused = drv_hztousec(ddi_get_lbolt() - 4094 ire->ire_last_used_time) / MICROSEC + 1; 4095 if (lused >= maxage && (ipif->ipif_flags & 4096 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4097 maxdefense = ip_max_temp_defend; 4098 else 4099 maxdefense = ip_max_defend; 4100 4101 /* 4102 * Now figure out how many times we've defended 4103 * ourselves. Ignore defenses that happened long in 4104 * the past. 4105 */ 4106 mutex_enter(&ire->ire_lock); 4107 if ((defs = ire->ire_defense_count) > 0 && 4108 now - ire->ire_defense_time > ip_defend_interval) { 4109 ire->ire_defense_count = defs = 0; 4110 } 4111 ire->ire_defense_count++; 4112 ire->ire_defense_time = now; 4113 mutex_exit(&ire->ire_lock); 4114 ill_refhold(ill); 4115 ire_refrele(ire); 4116 4117 /* 4118 * If we've defended ourselves too many times already, 4119 * then give up and tear down the interface(s) using 4120 * this address. Otherwise, defend by sending out a 4121 * gratuitous ARP. 4122 */ 4123 if (defs >= maxdefense && ill->ill_arp_extend) { 4124 (void) qwriter_ip(NULL, ill, q, mp, 4125 ip_arp_excl, CUR_OP, B_FALSE); 4126 } else { 4127 cmn_err(CE_WARN, 4128 "node %s is using our IP address %s on %s", 4129 hbuf, sbuf, ill->ill_name); 4130 /* 4131 * If this is an old (ATM) ARP module, then 4132 * don't try to defend the address. Remain 4133 * compatible with the old behavior. Defend 4134 * only with new ARP. 4135 */ 4136 if (ill->ill_arp_extend) { 4137 (void) qwriter_ip(NULL, ill, q, mp, 4138 ip_arp_defend, CUR_OP, B_FALSE); 4139 } else { 4140 ill_refrele(ill); 4141 } 4142 } 4143 return; 4144 } 4145 cmn_err(CE_WARN, 4146 "proxy ARP problem? Node '%s' is using %s on %s", 4147 hbuf, sbuf, ill->ill_name); 4148 if (ire != NULL) 4149 ire_refrele(ire); 4150 break; 4151 case AR_CN_ANNOUNCE: 4152 if (isv6) { 4153 /* 4154 * For XRESOLV interfaces. 4155 * Delete the IRE cache entry and NCE for this 4156 * v6 address 4157 */ 4158 ip_ire_clookup_and_delete_v6(&v6src); 4159 /* 4160 * If v6src is a non-zero, it's a router address 4161 * as below. Do the same sort of thing to clean 4162 * out off-net IRE_CACHE entries that go through 4163 * the router. 4164 */ 4165 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4166 ire_walk_v6(ire_delete_cache_gw_v6, 4167 (char *)&v6src, ALL_ZONES); 4168 } 4169 } else { 4170 nce_hw_map_t hwm; 4171 4172 /* 4173 * ARP gives us a copy of any packet where it thinks 4174 * the address has changed, so that we can update our 4175 * caches. We're responsible for caching known answers 4176 * in the current design. We check whether the 4177 * hardware address really has changed in all of our 4178 * entries that have cached this mapping, and if so, we 4179 * blow them away. This way we will immediately pick 4180 * up the rare case of a host changing hardware 4181 * address. 4182 */ 4183 if (src == 0) 4184 break; 4185 hwm.hwm_addr = src; 4186 hwm.hwm_hwlen = arh->arh_hlen; 4187 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4188 ndp_walk_common(&ndp4, NULL, 4189 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4190 } 4191 break; 4192 case AR_CN_READY: 4193 /* No external v6 resolver has a contract to use this */ 4194 if (isv6) 4195 break; 4196 /* If the link is down, we'll retry this later */ 4197 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4198 break; 4199 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4200 NULL, NULL); 4201 if (ipif != NULL) { 4202 /* 4203 * If this is a duplicate recovery, then we now need to 4204 * go exclusive to bring this thing back up. 4205 */ 4206 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4207 IPIF_DUPLICATE) { 4208 ipif_refrele(ipif); 4209 ill_refhold(ill); 4210 (void) qwriter_ip(NULL, ill, q, mp, 4211 ip_arp_excl, CUR_OP, B_FALSE); 4212 return; 4213 } 4214 /* 4215 * If this is the first notice that this address is 4216 * ready, then let the user know now. 4217 */ 4218 if ((ipif->ipif_flags & IPIF_UP) && 4219 !ipif->ipif_addr_ready) { 4220 ipif_mask_reply(ipif); 4221 ip_rts_ifmsg(ipif); 4222 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4223 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4224 } 4225 ipif->ipif_addr_ready = 1; 4226 ipif_refrele(ipif); 4227 } 4228 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4229 if (ire != NULL) { 4230 ire->ire_defense_count = 0; 4231 ire_refrele(ire); 4232 } 4233 break; 4234 case AR_CN_FAILED: 4235 /* No external v6 resolver has a contract to use this */ 4236 if (isv6) 4237 break; 4238 ill_refhold(ill); 4239 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4240 B_FALSE); 4241 return; 4242 } 4243 freemsg(mp); 4244 } 4245 4246 /* 4247 * Create a mblk suitable for carrying the interface index and/or source link 4248 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4249 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4250 * application. 4251 */ 4252 mblk_t * 4253 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4254 { 4255 mblk_t *mp; 4256 in_pktinfo_t *pinfo; 4257 ipha_t *ipha; 4258 struct ether_header *pether; 4259 4260 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4261 if (mp == NULL) { 4262 ip1dbg(("ip_add_info: allocation failure.\n")); 4263 return (data_mp); 4264 } 4265 4266 ipha = (ipha_t *)data_mp->b_rptr; 4267 pinfo = (in_pktinfo_t *)mp->b_rptr; 4268 bzero(pinfo, sizeof (in_pktinfo_t)); 4269 pinfo->in_pkt_flags = (uchar_t)flags; 4270 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4271 4272 if (flags & IPF_RECVIF) 4273 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4274 4275 pether = (struct ether_header *)((char *)ipha 4276 - sizeof (struct ether_header)); 4277 /* 4278 * Make sure the interface is an ethernet type, since this option 4279 * is currently supported only on this type of interface. Also make 4280 * sure we are pointing correctly above db_base. 4281 */ 4282 4283 if ((flags & IPF_RECVSLLA) && 4284 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4285 (ill->ill_type == IFT_ETHER) && 4286 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4287 4288 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4289 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4290 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4291 } else { 4292 /* 4293 * Clear the bit. Indicate to upper layer that IP is not 4294 * sending this ancillary info. 4295 */ 4296 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4297 } 4298 4299 mp->b_datap->db_type = M_CTL; 4300 mp->b_wptr += sizeof (in_pktinfo_t); 4301 mp->b_cont = data_mp; 4302 4303 return (mp); 4304 } 4305 4306 /* 4307 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4308 * part of the bind request. 4309 */ 4310 4311 boolean_t 4312 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4313 { 4314 ipsec_in_t *ii; 4315 4316 ASSERT(policy_mp != NULL); 4317 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4318 4319 ii = (ipsec_in_t *)policy_mp->b_rptr; 4320 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4321 4322 connp->conn_policy = ii->ipsec_in_policy; 4323 ii->ipsec_in_policy = NULL; 4324 4325 if (ii->ipsec_in_action != NULL) { 4326 if (connp->conn_latch == NULL) { 4327 connp->conn_latch = iplatch_create(); 4328 if (connp->conn_latch == NULL) 4329 return (B_FALSE); 4330 } 4331 ipsec_latch_inbound(connp->conn_latch, ii); 4332 } 4333 return (B_TRUE); 4334 } 4335 4336 /* 4337 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4338 * and to arrange for power-fanout assist. The ULP is identified by 4339 * adding a single byte at the end of the original bind message. 4340 * A ULP other than UDP or TCP that wishes to be recognized passes 4341 * down a bind with a zero length address. 4342 * 4343 * The binding works as follows: 4344 * - A zero byte address means just bind to the protocol. 4345 * - A four byte address is treated as a request to validate 4346 * that the address is a valid local address, appropriate for 4347 * an application to bind to. This does not affect any fanout 4348 * information in IP. 4349 * - A sizeof sin_t byte address is used to bind to only the local address 4350 * and port. 4351 * - A sizeof ipa_conn_t byte address contains complete fanout information 4352 * consisting of local and remote addresses and ports. In 4353 * this case, the addresses are both validated as appropriate 4354 * for this operation, and, if so, the information is retained 4355 * for use in the inbound fanout. 4356 * 4357 * The ULP (except in the zero-length bind) can append an 4358 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4359 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4360 * a copy of the source or destination IRE (source for local bind; 4361 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4362 * policy information contained should be copied on to the conn. 4363 * 4364 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4365 */ 4366 mblk_t * 4367 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4368 { 4369 ssize_t len; 4370 struct T_bind_req *tbr; 4371 sin_t *sin; 4372 ipa_conn_t *ac; 4373 uchar_t *ucp; 4374 mblk_t *mp1; 4375 boolean_t ire_requested; 4376 boolean_t ipsec_policy_set = B_FALSE; 4377 int error = 0; 4378 int protocol; 4379 ipa_conn_x_t *acx; 4380 4381 ASSERT(!connp->conn_af_isv6); 4382 connp->conn_pkt_isv6 = B_FALSE; 4383 4384 len = MBLKL(mp); 4385 if (len < (sizeof (*tbr) + 1)) { 4386 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4387 "ip_bind: bogus msg, len %ld", len); 4388 /* XXX: Need to return something better */ 4389 goto bad_addr; 4390 } 4391 /* Back up and extract the protocol identifier. */ 4392 mp->b_wptr--; 4393 protocol = *mp->b_wptr & 0xFF; 4394 tbr = (struct T_bind_req *)mp->b_rptr; 4395 /* Reset the message type in preparation for shipping it back. */ 4396 DB_TYPE(mp) = M_PCPROTO; 4397 4398 connp->conn_ulp = (uint8_t)protocol; 4399 4400 /* 4401 * Check for a zero length address. This is from a protocol that 4402 * wants to register to receive all packets of its type. 4403 */ 4404 if (tbr->ADDR_length == 0) { 4405 /* 4406 * These protocols are now intercepted in ip_bind_v6(). 4407 * Reject protocol-level binds here for now. 4408 * 4409 * For SCTP raw socket, ICMP sends down a bind with sin_t 4410 * so that the protocol type cannot be SCTP. 4411 */ 4412 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4413 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4414 goto bad_addr; 4415 } 4416 4417 /* 4418 * 4419 * The udp module never sends down a zero-length address, 4420 * and allowing this on a labeled system will break MLP 4421 * functionality. 4422 */ 4423 if (is_system_labeled() && protocol == IPPROTO_UDP) 4424 goto bad_addr; 4425 4426 if (connp->conn_mac_exempt) 4427 goto bad_addr; 4428 4429 /* No hash here really. The table is big enough. */ 4430 connp->conn_srcv6 = ipv6_all_zeros; 4431 4432 ipcl_proto_insert(connp, protocol); 4433 4434 tbr->PRIM_type = T_BIND_ACK; 4435 return (mp); 4436 } 4437 4438 /* Extract the address pointer from the message. */ 4439 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4440 tbr->ADDR_length); 4441 if (ucp == NULL) { 4442 ip1dbg(("ip_bind: no address\n")); 4443 goto bad_addr; 4444 } 4445 if (!OK_32PTR(ucp)) { 4446 ip1dbg(("ip_bind: unaligned address\n")); 4447 goto bad_addr; 4448 } 4449 /* 4450 * Check for trailing mps. 4451 */ 4452 4453 mp1 = mp->b_cont; 4454 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4455 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4456 4457 switch (tbr->ADDR_length) { 4458 default: 4459 ip1dbg(("ip_bind: bad address length %d\n", 4460 (int)tbr->ADDR_length)); 4461 goto bad_addr; 4462 4463 case IP_ADDR_LEN: 4464 /* Verification of local address only */ 4465 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4466 ire_requested, ipsec_policy_set, B_FALSE); 4467 break; 4468 4469 case sizeof (sin_t): 4470 sin = (sin_t *)ucp; 4471 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4472 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4473 break; 4474 4475 case sizeof (ipa_conn_t): 4476 ac = (ipa_conn_t *)ucp; 4477 /* For raw socket, the local port is not set. */ 4478 if (ac->ac_lport == 0) 4479 ac->ac_lport = connp->conn_lport; 4480 /* Always verify destination reachability. */ 4481 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4482 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4483 ipsec_policy_set, B_TRUE, B_TRUE); 4484 break; 4485 4486 case sizeof (ipa_conn_x_t): 4487 acx = (ipa_conn_x_t *)ucp; 4488 /* 4489 * Whether or not to verify destination reachability depends 4490 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4491 */ 4492 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4493 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4494 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4495 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4496 break; 4497 } 4498 if (error == EINPROGRESS) 4499 return (NULL); 4500 else if (error != 0) 4501 goto bad_addr; 4502 /* 4503 * Pass the IPSEC headers size in ire_ipsec_overhead. 4504 * We can't do this in ip_bind_insert_ire because the policy 4505 * may not have been inherited at that point in time and hence 4506 * conn_out_enforce_policy may not be set. 4507 */ 4508 mp1 = mp->b_cont; 4509 if (ire_requested && connp->conn_out_enforce_policy && 4510 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4511 ire_t *ire = (ire_t *)mp1->b_rptr; 4512 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4513 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4514 } 4515 4516 /* Send it home. */ 4517 mp->b_datap->db_type = M_PCPROTO; 4518 tbr->PRIM_type = T_BIND_ACK; 4519 return (mp); 4520 4521 bad_addr: 4522 /* 4523 * If error = -1 then we generate a TBADADDR - otherwise error is 4524 * a unix errno. 4525 */ 4526 if (error > 0) 4527 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4528 else 4529 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4530 return (mp); 4531 } 4532 4533 /* 4534 * Here address is verified to be a valid local address. 4535 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4536 * address is also considered a valid local address. 4537 * In the case of a broadcast/multicast address, however, the 4538 * upper protocol is expected to reset the src address 4539 * to 0 if it sees a IRE_BROADCAST type returned so that 4540 * no packets are emitted with broadcast/multicast address as 4541 * source address (that violates hosts requirements RFC1122) 4542 * The addresses valid for bind are: 4543 * (1) - INADDR_ANY (0) 4544 * (2) - IP address of an UP interface 4545 * (3) - IP address of a DOWN interface 4546 * (4) - valid local IP broadcast addresses. In this case 4547 * the conn will only receive packets destined to 4548 * the specified broadcast address. 4549 * (5) - a multicast address. In this case 4550 * the conn will only receive packets destined to 4551 * the specified multicast address. Note: the 4552 * application still has to issue an 4553 * IP_ADD_MEMBERSHIP socket option. 4554 * 4555 * On error, return -1 for TBADADDR otherwise pass the 4556 * errno with TSYSERR reply. 4557 * 4558 * In all the above cases, the bound address must be valid in the current zone. 4559 * When the address is loopback, multicast or broadcast, there might be many 4560 * matching IREs so bind has to look up based on the zone. 4561 * 4562 * Note: lport is in network byte order. 4563 */ 4564 int 4565 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4566 boolean_t ire_requested, boolean_t ipsec_policy_set, 4567 boolean_t fanout_insert) 4568 { 4569 int error = 0; 4570 ire_t *src_ire; 4571 mblk_t *policy_mp; 4572 ipif_t *ipif; 4573 zoneid_t zoneid; 4574 4575 if (ipsec_policy_set) { 4576 policy_mp = mp->b_cont; 4577 } 4578 4579 /* 4580 * If it was previously connected, conn_fully_bound would have 4581 * been set. 4582 */ 4583 connp->conn_fully_bound = B_FALSE; 4584 4585 src_ire = NULL; 4586 ipif = NULL; 4587 4588 zoneid = IPCL_ZONEID(connp); 4589 4590 if (src_addr) { 4591 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4592 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4593 /* 4594 * If an address other than 0.0.0.0 is requested, 4595 * we verify that it is a valid address for bind 4596 * Note: Following code is in if-else-if form for 4597 * readability compared to a condition check. 4598 */ 4599 /* LINTED - statement has no consequent */ 4600 if (IRE_IS_LOCAL(src_ire)) { 4601 /* 4602 * (2) Bind to address of local UP interface 4603 */ 4604 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4605 /* 4606 * (4) Bind to broadcast address 4607 * Note: permitted only from transports that 4608 * request IRE 4609 */ 4610 if (!ire_requested) 4611 error = EADDRNOTAVAIL; 4612 } else { 4613 /* 4614 * (3) Bind to address of local DOWN interface 4615 * (ipif_lookup_addr() looks up all interfaces 4616 * but we do not get here for UP interfaces 4617 * - case (2) above) 4618 * We put the protocol byte back into the mblk 4619 * since we may come back via ip_wput_nondata() 4620 * later with this mblk if ipif_lookup_addr chooses 4621 * to defer processing. 4622 */ 4623 *mp->b_wptr++ = (char)connp->conn_ulp; 4624 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4625 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4626 &error)) != NULL) { 4627 ipif_refrele(ipif); 4628 } else if (error == EINPROGRESS) { 4629 if (src_ire != NULL) 4630 ire_refrele(src_ire); 4631 return (EINPROGRESS); 4632 } else if (CLASSD(src_addr)) { 4633 error = 0; 4634 if (src_ire != NULL) 4635 ire_refrele(src_ire); 4636 /* 4637 * (5) bind to multicast address. 4638 * Fake out the IRE returned to upper 4639 * layer to be a broadcast IRE. 4640 */ 4641 src_ire = ire_ctable_lookup( 4642 INADDR_BROADCAST, INADDR_ANY, 4643 IRE_BROADCAST, NULL, zoneid, NULL, 4644 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4645 if (src_ire == NULL || !ire_requested) 4646 error = EADDRNOTAVAIL; 4647 } else { 4648 /* 4649 * Not a valid address for bind 4650 */ 4651 error = EADDRNOTAVAIL; 4652 } 4653 /* 4654 * Just to keep it consistent with the processing in 4655 * ip_bind_v4() 4656 */ 4657 mp->b_wptr--; 4658 } 4659 if (error) { 4660 /* Red Alert! Attempting to be a bogon! */ 4661 ip1dbg(("ip_bind: bad src address 0x%x\n", 4662 ntohl(src_addr))); 4663 goto bad_addr; 4664 } 4665 } 4666 4667 /* 4668 * Allow setting new policies. For example, disconnects come 4669 * down as ipa_t bind. As we would have set conn_policy_cached 4670 * to B_TRUE before, we should set it to B_FALSE, so that policy 4671 * can change after the disconnect. 4672 */ 4673 connp->conn_policy_cached = B_FALSE; 4674 4675 /* 4676 * If not fanout_insert this was just an address verification 4677 */ 4678 if (fanout_insert) { 4679 /* 4680 * The addresses have been verified. Time to insert in 4681 * the correct fanout list. 4682 */ 4683 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4684 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4685 connp->conn_lport = lport; 4686 connp->conn_fport = 0; 4687 /* 4688 * Do we need to add a check to reject Multicast packets 4689 * 4690 * We need to make sure that the conn_recv is set to a non-null 4691 * value before we insert the conn into the classifier table. 4692 * This is to avoid a race with an incoming packet which does an 4693 * ipcl_classify(). 4694 */ 4695 if (*mp->b_wptr == IPPROTO_TCP) 4696 connp->conn_recv = tcp_conn_request; 4697 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4698 } 4699 4700 if (error == 0) { 4701 if (ire_requested) { 4702 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4703 error = -1; 4704 /* Falls through to bad_addr */ 4705 } 4706 } else if (ipsec_policy_set) { 4707 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4708 error = -1; 4709 /* Falls through to bad_addr */ 4710 } 4711 } 4712 } else if (connp->conn_ulp == IPPROTO_TCP) { 4713 connp->conn_recv = tcp_input; 4714 } 4715 bad_addr: 4716 if (error != 0) { 4717 if (connp->conn_anon_port) { 4718 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4719 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4720 B_FALSE); 4721 } 4722 connp->conn_mlp_type = mlptSingle; 4723 } 4724 if (src_ire != NULL) 4725 IRE_REFRELE(src_ire); 4726 if (ipsec_policy_set) { 4727 ASSERT(policy_mp == mp->b_cont); 4728 ASSERT(policy_mp != NULL); 4729 freeb(policy_mp); 4730 /* 4731 * As of now assume that nothing else accompanies 4732 * IPSEC_POLICY_SET. 4733 */ 4734 mp->b_cont = NULL; 4735 } 4736 return (error); 4737 } 4738 4739 /* 4740 * Verify that both the source and destination addresses 4741 * are valid. If verify_dst is false, then the destination address may be 4742 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4743 * destination reachability, while tunnels do not. 4744 * Note that we allow connect to broadcast and multicast 4745 * addresses when ire_requested is set. Thus the ULP 4746 * has to check for IRE_BROADCAST and multicast. 4747 * 4748 * Returns zero if ok. 4749 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4750 * (for use with TSYSERR reply). 4751 * 4752 * Note: lport and fport are in network byte order. 4753 */ 4754 int 4755 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4756 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4757 boolean_t ire_requested, boolean_t ipsec_policy_set, 4758 boolean_t fanout_insert, boolean_t verify_dst) 4759 { 4760 ire_t *src_ire; 4761 ire_t *dst_ire; 4762 int error = 0; 4763 int protocol; 4764 mblk_t *policy_mp; 4765 ire_t *sire = NULL; 4766 ire_t *md_dst_ire = NULL; 4767 ire_t *lso_dst_ire = NULL; 4768 ill_t *ill = NULL; 4769 zoneid_t zoneid; 4770 ipaddr_t src_addr = *src_addrp; 4771 4772 src_ire = dst_ire = NULL; 4773 protocol = *mp->b_wptr & 0xFF; 4774 4775 /* 4776 * If we never got a disconnect before, clear it now. 4777 */ 4778 connp->conn_fully_bound = B_FALSE; 4779 4780 if (ipsec_policy_set) { 4781 policy_mp = mp->b_cont; 4782 } 4783 4784 zoneid = IPCL_ZONEID(connp); 4785 4786 if (CLASSD(dst_addr)) { 4787 /* Pick up an IRE_BROADCAST */ 4788 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4789 NULL, zoneid, MBLK_GETLABEL(mp), 4790 (MATCH_IRE_RECURSIVE | 4791 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4792 MATCH_IRE_SECATTR)); 4793 } else { 4794 /* 4795 * If conn_dontroute is set or if conn_nexthop_set is set, 4796 * and onlink ipif is not found set ENETUNREACH error. 4797 */ 4798 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4799 ipif_t *ipif; 4800 4801 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4802 dst_addr : connp->conn_nexthop_v4, 4803 connp->conn_zoneid); 4804 if (ipif == NULL) { 4805 error = ENETUNREACH; 4806 goto bad_addr; 4807 } 4808 ipif_refrele(ipif); 4809 } 4810 4811 if (connp->conn_nexthop_set) { 4812 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4813 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4814 MATCH_IRE_SECATTR); 4815 } else { 4816 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4817 &sire, zoneid, MBLK_GETLABEL(mp), 4818 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4819 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4820 MATCH_IRE_SECATTR)); 4821 } 4822 } 4823 /* 4824 * dst_ire can't be a broadcast when not ire_requested. 4825 * We also prevent ire's with src address INADDR_ANY to 4826 * be used, which are created temporarily for 4827 * sending out packets from endpoints that have 4828 * conn_unspec_src set. If verify_dst is true, the destination must be 4829 * reachable. If verify_dst is false, the destination needn't be 4830 * reachable. 4831 * 4832 * If we match on a reject or black hole, then we've got a 4833 * local failure. May as well fail out the connect() attempt, 4834 * since it's never going to succeed. 4835 */ 4836 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4837 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4838 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4839 /* 4840 * If we're verifying destination reachability, we always want 4841 * to complain here. 4842 * 4843 * If we're not verifying destination reachability but the 4844 * destination has a route, we still want to fail on the 4845 * temporary address and broadcast address tests. 4846 */ 4847 if (verify_dst || (dst_ire != NULL)) { 4848 if (ip_debug > 2) { 4849 pr_addr_dbg("ip_bind_connected: bad connected " 4850 "dst %s\n", AF_INET, &dst_addr); 4851 } 4852 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4853 error = ENETUNREACH; 4854 else 4855 error = EHOSTUNREACH; 4856 goto bad_addr; 4857 } 4858 } 4859 4860 /* 4861 * We now know that routing will allow us to reach the destination. 4862 * Check whether Trusted Solaris policy allows communication with this 4863 * host, and pretend that the destination is unreachable if not. 4864 * 4865 * This is never a problem for TCP, since that transport is known to 4866 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4867 * handling. If the remote is unreachable, it will be detected at that 4868 * point, so there's no reason to check it here. 4869 * 4870 * Note that for sendto (and other datagram-oriented friends), this 4871 * check is done as part of the data path label computation instead. 4872 * The check here is just to make non-TCP connect() report the right 4873 * error. 4874 */ 4875 if (dst_ire != NULL && is_system_labeled() && 4876 !IPCL_IS_TCP(connp) && 4877 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4878 connp->conn_mac_exempt) != 0) { 4879 error = EHOSTUNREACH; 4880 if (ip_debug > 2) { 4881 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4882 AF_INET, &dst_addr); 4883 } 4884 goto bad_addr; 4885 } 4886 4887 /* 4888 * If the app does a connect(), it means that it will most likely 4889 * send more than 1 packet to the destination. It makes sense 4890 * to clear the temporary flag. 4891 */ 4892 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4893 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4894 irb_t *irb = dst_ire->ire_bucket; 4895 4896 rw_enter(&irb->irb_lock, RW_WRITER); 4897 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4898 irb->irb_tmp_ire_cnt--; 4899 rw_exit(&irb->irb_lock); 4900 } 4901 4902 /* 4903 * See if we should notify ULP about LSO/MDT; we do this whether or not 4904 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4905 * eligibility tests for passive connects are handled separately 4906 * through tcp_adapt_ire(). We do this before the source address 4907 * selection, because dst_ire may change after a call to 4908 * ipif_select_source(). This is a best-effort check, as the 4909 * packet for this connection may not actually go through 4910 * dst_ire->ire_stq, and the exact IRE can only be known after 4911 * calling ip_newroute(). This is why we further check on the 4912 * IRE during LSO/Multidata packet transmission in 4913 * tcp_lsosend()/tcp_multisend(). 4914 */ 4915 if (!ipsec_policy_set && dst_ire != NULL && 4916 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4917 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4918 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4919 lso_dst_ire = dst_ire; 4920 IRE_REFHOLD(lso_dst_ire); 4921 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 4922 md_dst_ire = dst_ire; 4923 IRE_REFHOLD(md_dst_ire); 4924 } 4925 } 4926 4927 if (dst_ire != NULL && 4928 dst_ire->ire_type == IRE_LOCAL && 4929 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4930 /* 4931 * If the IRE belongs to a different zone, look for a matching 4932 * route in the forwarding table and use the source address from 4933 * that route. 4934 */ 4935 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4936 zoneid, 0, NULL, 4937 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4938 MATCH_IRE_RJ_BHOLE); 4939 if (src_ire == NULL) { 4940 error = EHOSTUNREACH; 4941 goto bad_addr; 4942 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4943 if (!(src_ire->ire_type & IRE_HOST)) 4944 error = ENETUNREACH; 4945 else 4946 error = EHOSTUNREACH; 4947 goto bad_addr; 4948 } 4949 if (src_addr == INADDR_ANY) 4950 src_addr = src_ire->ire_src_addr; 4951 ire_refrele(src_ire); 4952 src_ire = NULL; 4953 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4954 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4955 src_addr = sire->ire_src_addr; 4956 ire_refrele(dst_ire); 4957 dst_ire = sire; 4958 sire = NULL; 4959 } else { 4960 /* 4961 * Pick a source address so that a proper inbound 4962 * load spreading would happen. 4963 */ 4964 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4965 ipif_t *src_ipif = NULL; 4966 ire_t *ipif_ire; 4967 4968 /* 4969 * Supply a local source address such that inbound 4970 * load spreading happens. 4971 * 4972 * Determine the best source address on this ill for 4973 * the destination. 4974 * 4975 * 1) For broadcast, we should return a broadcast ire 4976 * found above so that upper layers know that the 4977 * destination address is a broadcast address. 4978 * 4979 * 2) If this is part of a group, select a better 4980 * source address so that better inbound load 4981 * balancing happens. Do the same if the ipif 4982 * is DEPRECATED. 4983 * 4984 * 3) If the outgoing interface is part of a usesrc 4985 * group, then try selecting a source address from 4986 * the usesrc ILL. 4987 */ 4988 if ((dst_ire->ire_zoneid != zoneid && 4989 dst_ire->ire_zoneid != ALL_ZONES) || 4990 (!(dst_ire->ire_type & IRE_BROADCAST) && 4991 ((dst_ill->ill_group != NULL) || 4992 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4993 (dst_ill->ill_usesrc_ifindex != 0)))) { 4994 /* 4995 * If the destination is reachable via a 4996 * given gateway, the selected source address 4997 * should be in the same subnet as the gateway. 4998 * Otherwise, the destination is not reachable. 4999 * 5000 * If there are no interfaces on the same subnet 5001 * as the destination, ipif_select_source gives 5002 * first non-deprecated interface which might be 5003 * on a different subnet than the gateway. 5004 * This is not desirable. Hence pass the dst_ire 5005 * source address to ipif_select_source. 5006 * It is sure that the destination is reachable 5007 * with the dst_ire source address subnet. 5008 * So passing dst_ire source address to 5009 * ipif_select_source will make sure that the 5010 * selected source will be on the same subnet 5011 * as dst_ire source address. 5012 */ 5013 ipaddr_t saddr = 5014 dst_ire->ire_ipif->ipif_src_addr; 5015 src_ipif = ipif_select_source(dst_ill, 5016 saddr, zoneid); 5017 if (src_ipif != NULL) { 5018 if (IS_VNI(src_ipif->ipif_ill)) { 5019 /* 5020 * For VNI there is no 5021 * interface route 5022 */ 5023 src_addr = 5024 src_ipif->ipif_src_addr; 5025 } else { 5026 ipif_ire = 5027 ipif_to_ire(src_ipif); 5028 if (ipif_ire != NULL) { 5029 IRE_REFRELE(dst_ire); 5030 dst_ire = ipif_ire; 5031 } 5032 src_addr = 5033 dst_ire->ire_src_addr; 5034 } 5035 ipif_refrele(src_ipif); 5036 } else { 5037 src_addr = dst_ire->ire_src_addr; 5038 } 5039 } else { 5040 src_addr = dst_ire->ire_src_addr; 5041 } 5042 } 5043 } 5044 5045 /* 5046 * We do ire_route_lookup() here (and not 5047 * interface lookup as we assert that 5048 * src_addr should only come from an 5049 * UP interface for hard binding. 5050 */ 5051 ASSERT(src_ire == NULL); 5052 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5053 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5054 /* src_ire must be a local|loopback */ 5055 if (!IRE_IS_LOCAL(src_ire)) { 5056 if (ip_debug > 2) { 5057 pr_addr_dbg("ip_bind_connected: bad connected " 5058 "src %s\n", AF_INET, &src_addr); 5059 } 5060 error = EADDRNOTAVAIL; 5061 goto bad_addr; 5062 } 5063 5064 /* 5065 * If the source address is a loopback address, the 5066 * destination had best be local or multicast. 5067 * The transports that can't handle multicast will reject 5068 * those addresses. 5069 */ 5070 if (src_ire->ire_type == IRE_LOOPBACK && 5071 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5072 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5073 error = -1; 5074 goto bad_addr; 5075 } 5076 5077 /* 5078 * Allow setting new policies. For example, disconnects come 5079 * down as ipa_t bind. As we would have set conn_policy_cached 5080 * to B_TRUE before, we should set it to B_FALSE, so that policy 5081 * can change after the disconnect. 5082 */ 5083 connp->conn_policy_cached = B_FALSE; 5084 5085 /* 5086 * Set the conn addresses/ports immediately, so the IPsec policy calls 5087 * can handle their passed-in conn's. 5088 */ 5089 5090 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5091 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5092 connp->conn_lport = lport; 5093 connp->conn_fport = fport; 5094 *src_addrp = src_addr; 5095 5096 ASSERT(!(ipsec_policy_set && ire_requested)); 5097 if (ire_requested) { 5098 iulp_t *ulp_info = NULL; 5099 5100 /* 5101 * Note that sire will not be NULL if this is an off-link 5102 * connection and there is not cache for that dest yet. 5103 * 5104 * XXX Because of an existing bug, if there are multiple 5105 * default routes, the IRE returned now may not be the actual 5106 * default route used (default routes are chosen in a 5107 * round robin fashion). So if the metrics for different 5108 * default routes are different, we may return the wrong 5109 * metrics. This will not be a problem if the existing 5110 * bug is fixed. 5111 */ 5112 if (sire != NULL) { 5113 ulp_info = &(sire->ire_uinfo); 5114 } 5115 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5116 error = -1; 5117 goto bad_addr; 5118 } 5119 } else if (ipsec_policy_set) { 5120 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5121 error = -1; 5122 goto bad_addr; 5123 } 5124 } 5125 5126 /* 5127 * Cache IPsec policy in this conn. If we have per-socket policy, 5128 * we'll cache that. If we don't, we'll inherit global policy. 5129 * 5130 * We can't insert until the conn reflects the policy. Note that 5131 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5132 * connections where we don't have a policy. This is to prevent 5133 * global policy lookups in the inbound path. 5134 * 5135 * If we insert before we set conn_policy_cached, 5136 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5137 * because global policy cound be non-empty. We normally call 5138 * ipsec_check_policy() for conn_policy_cached connections only if 5139 * ipc_in_enforce_policy is set. But in this case, 5140 * conn_policy_cached can get set anytime since we made the 5141 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5142 * called, which will make the above assumption false. Thus, we 5143 * need to insert after we set conn_policy_cached. 5144 */ 5145 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5146 goto bad_addr; 5147 5148 if (fanout_insert) { 5149 /* 5150 * The addresses have been verified. Time to insert in 5151 * the correct fanout list. 5152 * We need to make sure that the conn_recv is set to a non-null 5153 * value before we insert into the classifier table to avoid a 5154 * race with an incoming packet which does an ipcl_classify(). 5155 */ 5156 if (protocol == IPPROTO_TCP) 5157 connp->conn_recv = tcp_input; 5158 error = ipcl_conn_insert(connp, protocol, src_addr, 5159 dst_addr, connp->conn_ports); 5160 } 5161 5162 if (error == 0) { 5163 connp->conn_fully_bound = B_TRUE; 5164 /* 5165 * Our initial checks for LSO/MDT have passed; the IRE is not 5166 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5167 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5168 * ip_xxinfo_return(), which performs further checks 5169 * against them and upon success, returns the LSO/MDT info 5170 * mblk which we will attach to the bind acknowledgment. 5171 */ 5172 if (lso_dst_ire != NULL) { 5173 mblk_t *lsoinfo_mp; 5174 5175 ASSERT(ill->ill_lso_capab != NULL); 5176 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5177 ill->ill_name, ill->ill_lso_capab)) != NULL) 5178 linkb(mp, lsoinfo_mp); 5179 } else if (md_dst_ire != NULL) { 5180 mblk_t *mdinfo_mp; 5181 5182 ASSERT(ill->ill_mdt_capab != NULL); 5183 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5184 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5185 linkb(mp, mdinfo_mp); 5186 } 5187 } 5188 bad_addr: 5189 if (ipsec_policy_set) { 5190 ASSERT(policy_mp == mp->b_cont); 5191 ASSERT(policy_mp != NULL); 5192 freeb(policy_mp); 5193 /* 5194 * As of now assume that nothing else accompanies 5195 * IPSEC_POLICY_SET. 5196 */ 5197 mp->b_cont = NULL; 5198 } 5199 if (src_ire != NULL) 5200 IRE_REFRELE(src_ire); 5201 if (dst_ire != NULL) 5202 IRE_REFRELE(dst_ire); 5203 if (sire != NULL) 5204 IRE_REFRELE(sire); 5205 if (md_dst_ire != NULL) 5206 IRE_REFRELE(md_dst_ire); 5207 if (lso_dst_ire != NULL) 5208 IRE_REFRELE(lso_dst_ire); 5209 return (error); 5210 } 5211 5212 /* 5213 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5214 * Prefers dst_ire over src_ire. 5215 */ 5216 static boolean_t 5217 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5218 { 5219 mblk_t *mp1; 5220 ire_t *ret_ire = NULL; 5221 5222 mp1 = mp->b_cont; 5223 ASSERT(mp1 != NULL); 5224 5225 if (ire != NULL) { 5226 /* 5227 * mp1 initialized above to IRE_DB_REQ_TYPE 5228 * appended mblk. Its <upper protocol>'s 5229 * job to make sure there is room. 5230 */ 5231 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5232 return (0); 5233 5234 mp1->b_datap->db_type = IRE_DB_TYPE; 5235 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5236 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5237 ret_ire = (ire_t *)mp1->b_rptr; 5238 /* 5239 * Pass the latest setting of the ip_path_mtu_discovery and 5240 * copy the ulp info if any. 5241 */ 5242 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5243 IPH_DF : 0; 5244 if (ulp_info != NULL) { 5245 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5246 sizeof (iulp_t)); 5247 } 5248 ret_ire->ire_mp = mp1; 5249 } else { 5250 /* 5251 * No IRE was found. Remove IRE mblk. 5252 */ 5253 mp->b_cont = mp1->b_cont; 5254 freeb(mp1); 5255 } 5256 5257 return (1); 5258 } 5259 5260 /* 5261 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5262 * the final piece where we don't. Return a pointer to the first mblk in the 5263 * result, and update the pointer to the next mblk to chew on. If anything 5264 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5265 * NULL pointer. 5266 */ 5267 mblk_t * 5268 ip_carve_mp(mblk_t **mpp, ssize_t len) 5269 { 5270 mblk_t *mp0; 5271 mblk_t *mp1; 5272 mblk_t *mp2; 5273 5274 if (!len || !mpp || !(mp0 = *mpp)) 5275 return (NULL); 5276 /* If we aren't going to consume the first mblk, we need a dup. */ 5277 if (mp0->b_wptr - mp0->b_rptr > len) { 5278 mp1 = dupb(mp0); 5279 if (mp1) { 5280 /* Partition the data between the two mblks. */ 5281 mp1->b_wptr = mp1->b_rptr + len; 5282 mp0->b_rptr = mp1->b_wptr; 5283 /* 5284 * after adjustments if mblk not consumed is now 5285 * unaligned, try to align it. If this fails free 5286 * all messages and let upper layer recover. 5287 */ 5288 if (!OK_32PTR(mp0->b_rptr)) { 5289 if (!pullupmsg(mp0, -1)) { 5290 freemsg(mp0); 5291 freemsg(mp1); 5292 *mpp = NULL; 5293 return (NULL); 5294 } 5295 } 5296 } 5297 return (mp1); 5298 } 5299 /* Eat through as many mblks as we need to get len bytes. */ 5300 len -= mp0->b_wptr - mp0->b_rptr; 5301 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5302 if (mp2->b_wptr - mp2->b_rptr > len) { 5303 /* 5304 * We won't consume the entire last mblk. Like 5305 * above, dup and partition it. 5306 */ 5307 mp1->b_cont = dupb(mp2); 5308 mp1 = mp1->b_cont; 5309 if (!mp1) { 5310 /* 5311 * Trouble. Rather than go to a lot of 5312 * trouble to clean up, we free the messages. 5313 * This won't be any worse than losing it on 5314 * the wire. 5315 */ 5316 freemsg(mp0); 5317 freemsg(mp2); 5318 *mpp = NULL; 5319 return (NULL); 5320 } 5321 mp1->b_wptr = mp1->b_rptr + len; 5322 mp2->b_rptr = mp1->b_wptr; 5323 /* 5324 * after adjustments if mblk not consumed is now 5325 * unaligned, try to align it. If this fails free 5326 * all messages and let upper layer recover. 5327 */ 5328 if (!OK_32PTR(mp2->b_rptr)) { 5329 if (!pullupmsg(mp2, -1)) { 5330 freemsg(mp0); 5331 freemsg(mp2); 5332 *mpp = NULL; 5333 return (NULL); 5334 } 5335 } 5336 *mpp = mp2; 5337 return (mp0); 5338 } 5339 /* Decrement len by the amount we just got. */ 5340 len -= mp2->b_wptr - mp2->b_rptr; 5341 } 5342 /* 5343 * len should be reduced to zero now. If not our caller has 5344 * screwed up. 5345 */ 5346 if (len) { 5347 /* Shouldn't happen! */ 5348 freemsg(mp0); 5349 *mpp = NULL; 5350 return (NULL); 5351 } 5352 /* 5353 * We consumed up to exactly the end of an mblk. Detach the part 5354 * we are returning from the rest of the chain. 5355 */ 5356 mp1->b_cont = NULL; 5357 *mpp = mp2; 5358 return (mp0); 5359 } 5360 5361 /* The ill stream is being unplumbed. Called from ip_close */ 5362 int 5363 ip_modclose(ill_t *ill) 5364 { 5365 5366 boolean_t success; 5367 ipsq_t *ipsq; 5368 ipif_t *ipif; 5369 queue_t *q = ill->ill_rq; 5370 hook_nic_event_t *info; 5371 5372 /* 5373 * Forcibly enter the ipsq after some delay. This is to take 5374 * care of the case when some ioctl does not complete because 5375 * we sent a control message to the driver and it did not 5376 * send us a reply. We want to be able to at least unplumb 5377 * and replumb rather than force the user to reboot the system. 5378 */ 5379 success = ipsq_enter(ill, B_FALSE); 5380 5381 /* 5382 * Open/close/push/pop is guaranteed to be single threaded 5383 * per stream by STREAMS. FS guarantees that all references 5384 * from top are gone before close is called. So there can't 5385 * be another close thread that has set CONDEMNED on this ill. 5386 * and cause ipsq_enter to return failure. 5387 */ 5388 ASSERT(success); 5389 ipsq = ill->ill_phyint->phyint_ipsq; 5390 5391 /* 5392 * Mark it condemned. No new reference will be made to this ill. 5393 * Lookup functions will return an error. Threads that try to 5394 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5395 * that the refcnt will drop down to zero. 5396 */ 5397 mutex_enter(&ill->ill_lock); 5398 ill->ill_state_flags |= ILL_CONDEMNED; 5399 for (ipif = ill->ill_ipif; ipif != NULL; 5400 ipif = ipif->ipif_next) { 5401 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5402 } 5403 /* 5404 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5405 * returns error if ILL_CONDEMNED is set 5406 */ 5407 cv_broadcast(&ill->ill_cv); 5408 mutex_exit(&ill->ill_lock); 5409 5410 /* 5411 * Shut down fragmentation reassembly. 5412 * ill_frag_timer won't start a timer again. 5413 * Now cancel any existing timer 5414 */ 5415 (void) untimeout(ill->ill_frag_timer_id); 5416 (void) ill_frag_timeout(ill, 0); 5417 5418 /* 5419 * If MOVE was in progress, clear the 5420 * move_in_progress fields also. 5421 */ 5422 if (ill->ill_move_in_progress) { 5423 ILL_CLEAR_MOVE(ill); 5424 } 5425 5426 /* 5427 * Call ill_delete to bring down the ipifs, ilms and ill on 5428 * this ill. Then wait for the refcnts to drop to zero. 5429 * ill_is_quiescent checks whether the ill is really quiescent. 5430 * Then make sure that threads that are waiting to enter the 5431 * ipsq have seen the error returned by ipsq_enter and have 5432 * gone away. Then we call ill_delete_tail which does the 5433 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5434 */ 5435 ill_delete(ill); 5436 mutex_enter(&ill->ill_lock); 5437 while (!ill_is_quiescent(ill)) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 while (ill->ill_waiters) 5440 cv_wait(&ill->ill_cv, &ill->ill_lock); 5441 5442 mutex_exit(&ill->ill_lock); 5443 5444 /* qprocsoff is called in ill_delete_tail */ 5445 ill_delete_tail(ill); 5446 5447 /* 5448 * Walk through all upper (conn) streams and qenable 5449 * those that have queued data. 5450 * close synchronization needs this to 5451 * be done to ensure that all upper layers blocked 5452 * due to flow control to the closing device 5453 * get unblocked. 5454 */ 5455 ip1dbg(("ip_wsrv: walking\n")); 5456 conn_walk_drain(); 5457 5458 mutex_enter(&ip_mi_lock); 5459 mi_close_unlink(&ip_g_head, (IDP)ill); 5460 mutex_exit(&ip_mi_lock); 5461 5462 /* 5463 * credp could be null if the open didn't succeed and ip_modopen 5464 * itself calls ip_close. 5465 */ 5466 if (ill->ill_credp != NULL) 5467 crfree(ill->ill_credp); 5468 5469 /* 5470 * Unhook the nic event message from the ill and enqueue it into the nic 5471 * event taskq. 5472 */ 5473 if ((info = ill->ill_nic_event_info) != NULL) { 5474 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, 5475 (void *)info, DDI_SLEEP) == DDI_FAILURE) { 5476 ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n")); 5477 if (info->hne_data != NULL) 5478 kmem_free(info->hne_data, info->hne_datalen); 5479 kmem_free(info, sizeof (hook_nic_event_t)); 5480 } 5481 ill->ill_nic_event_info = NULL; 5482 } 5483 5484 mi_close_free((IDP)ill); 5485 q->q_ptr = WR(q)->q_ptr = NULL; 5486 5487 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5488 5489 return (0); 5490 } 5491 5492 /* 5493 * This is called as part of close() for both IP and UDP 5494 * in order to quiesce the conn. 5495 */ 5496 void 5497 ip_quiesce_conn(conn_t *connp) 5498 { 5499 boolean_t drain_cleanup_reqd = B_FALSE; 5500 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5501 boolean_t ilg_cleanup_reqd = B_FALSE; 5502 5503 ASSERT(!IPCL_IS_TCP(connp)); 5504 5505 /* 5506 * Mark the conn as closing, and this conn must not be 5507 * inserted in future into any list. Eg. conn_drain_insert(), 5508 * won't insert this conn into the conn_drain_list. 5509 * Similarly ill_pending_mp_add() will not add any mp to 5510 * the pending mp list, after this conn has started closing. 5511 * 5512 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5513 * cannot get set henceforth. 5514 */ 5515 mutex_enter(&connp->conn_lock); 5516 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5517 connp->conn_state_flags |= CONN_CLOSING; 5518 if (connp->conn_idl != NULL) 5519 drain_cleanup_reqd = B_TRUE; 5520 if (connp->conn_oper_pending_ill != NULL) 5521 conn_ioctl_cleanup_reqd = B_TRUE; 5522 if (connp->conn_ilg_inuse != 0) 5523 ilg_cleanup_reqd = B_TRUE; 5524 mutex_exit(&connp->conn_lock); 5525 5526 if (IPCL_IS_UDP(connp)) 5527 udp_quiesce_conn(connp); 5528 5529 if (conn_ioctl_cleanup_reqd) 5530 conn_ioctl_cleanup(connp); 5531 5532 if (is_system_labeled() && connp->conn_anon_port) { 5533 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5534 connp->conn_mlp_type, connp->conn_ulp, 5535 ntohs(connp->conn_lport), B_FALSE); 5536 connp->conn_anon_port = 0; 5537 } 5538 connp->conn_mlp_type = mlptSingle; 5539 5540 /* 5541 * Remove this conn from any fanout list it is on. 5542 * and then wait for any threads currently operating 5543 * on this endpoint to finish 5544 */ 5545 ipcl_hash_remove(connp); 5546 5547 /* 5548 * Remove this conn from the drain list, and do 5549 * any other cleanup that may be required. 5550 * (Only non-tcp streams may have a non-null conn_idl. 5551 * TCP streams are never flow controlled, and 5552 * conn_idl will be null) 5553 */ 5554 if (drain_cleanup_reqd) 5555 conn_drain_tail(connp, B_TRUE); 5556 5557 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5558 (void) ip_mrouter_done(NULL); 5559 5560 if (ilg_cleanup_reqd) 5561 ilg_delete_all(connp); 5562 5563 conn_delete_ire(connp, NULL); 5564 5565 /* 5566 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5567 * callers from write side can't be there now because close 5568 * is in progress. The only other caller is ipcl_walk 5569 * which checks for the condemned flag. 5570 */ 5571 mutex_enter(&connp->conn_lock); 5572 connp->conn_state_flags |= CONN_CONDEMNED; 5573 while (connp->conn_ref != 1) 5574 cv_wait(&connp->conn_cv, &connp->conn_lock); 5575 connp->conn_state_flags |= CONN_QUIESCED; 5576 mutex_exit(&connp->conn_lock); 5577 } 5578 5579 /* ARGSUSED */ 5580 int 5581 ip_close(queue_t *q, int flags) 5582 { 5583 conn_t *connp; 5584 5585 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5586 5587 /* 5588 * Call the appropriate delete routine depending on whether this is 5589 * a module or device. 5590 */ 5591 if (WR(q)->q_next != NULL) { 5592 /* This is a module close */ 5593 return (ip_modclose((ill_t *)q->q_ptr)); 5594 } 5595 5596 connp = q->q_ptr; 5597 ip_quiesce_conn(connp); 5598 5599 qprocsoff(q); 5600 5601 /* 5602 * Now we are truly single threaded on this stream, and can 5603 * delete the things hanging off the connp, and finally the connp. 5604 * We removed this connp from the fanout list, it cannot be 5605 * accessed thru the fanouts, and we already waited for the 5606 * conn_ref to drop to 0. We are already in close, so 5607 * there cannot be any other thread from the top. qprocsoff 5608 * has completed, and service has completed or won't run in 5609 * future. 5610 */ 5611 ASSERT(connp->conn_ref == 1); 5612 5613 /* 5614 * A conn which was previously marked as IPCL_UDP cannot 5615 * retain the flag because it would have been cleared by 5616 * udp_close(). 5617 */ 5618 ASSERT(!IPCL_IS_UDP(connp)); 5619 5620 if (connp->conn_latch != NULL) { 5621 IPLATCH_REFRELE(connp->conn_latch); 5622 connp->conn_latch = NULL; 5623 } 5624 if (connp->conn_policy != NULL) { 5625 IPPH_REFRELE(connp->conn_policy); 5626 connp->conn_policy = NULL; 5627 } 5628 if (connp->conn_ipsec_opt_mp != NULL) { 5629 freemsg(connp->conn_ipsec_opt_mp); 5630 connp->conn_ipsec_opt_mp = NULL; 5631 } 5632 5633 inet_minor_free(ip_minor_arena, connp->conn_dev); 5634 5635 connp->conn_ref--; 5636 ipcl_conn_destroy(connp); 5637 5638 q->q_ptr = WR(q)->q_ptr = NULL; 5639 return (0); 5640 } 5641 5642 int 5643 ip_snmpmod_close(queue_t *q) 5644 { 5645 conn_t *connp = Q_TO_CONN(q); 5646 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5647 5648 qprocsoff(q); 5649 5650 if (connp->conn_flags & IPCL_UDPMOD) 5651 udp_close_free(connp); 5652 5653 if (connp->conn_cred != NULL) { 5654 crfree(connp->conn_cred); 5655 connp->conn_cred = NULL; 5656 } 5657 CONN_DEC_REF(connp); 5658 q->q_ptr = WR(q)->q_ptr = NULL; 5659 return (0); 5660 } 5661 5662 /* 5663 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5664 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5665 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5666 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5667 * queues as we never enqueue messages there and we don't handle any ioctls. 5668 * Everything else is freed. 5669 */ 5670 void 5671 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5672 { 5673 conn_t *connp = q->q_ptr; 5674 pfi_t setfn; 5675 pfi_t getfn; 5676 5677 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5678 5679 switch (DB_TYPE(mp)) { 5680 case M_PROTO: 5681 case M_PCPROTO: 5682 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5683 ((((union T_primitives *)mp->b_rptr)->type == 5684 T_SVR4_OPTMGMT_REQ) || 5685 (((union T_primitives *)mp->b_rptr)->type == 5686 T_OPTMGMT_REQ))) { 5687 /* 5688 * This is the only TPI primitive supported. Its 5689 * handling does not require tcp_t, but it does require 5690 * conn_t to check permissions. 5691 */ 5692 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5693 5694 if (connp->conn_flags & IPCL_TCPMOD) { 5695 setfn = tcp_snmp_set; 5696 getfn = tcp_snmp_get; 5697 } else { 5698 setfn = udp_snmp_set; 5699 getfn = udp_snmp_get; 5700 } 5701 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5702 freemsg(mp); 5703 return; 5704 } 5705 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5706 != NULL) 5707 qreply(q, mp); 5708 break; 5709 case M_FLUSH: 5710 case M_IOCTL: 5711 putnext(q, mp); 5712 break; 5713 default: 5714 freemsg(mp); 5715 break; 5716 } 5717 } 5718 5719 /* Return the IP checksum for the IP header at "iph". */ 5720 uint16_t 5721 ip_csum_hdr(ipha_t *ipha) 5722 { 5723 uint16_t *uph; 5724 uint32_t sum; 5725 int opt_len; 5726 5727 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5728 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5729 uph = (uint16_t *)ipha; 5730 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5731 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5732 if (opt_len > 0) { 5733 do { 5734 sum += uph[10]; 5735 sum += uph[11]; 5736 uph += 2; 5737 } while (--opt_len); 5738 } 5739 sum = (sum & 0xFFFF) + (sum >> 16); 5740 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5741 if (sum == 0xffff) 5742 sum = 0; 5743 return ((uint16_t)sum); 5744 } 5745 5746 void 5747 ip_ddi_destroy(void) 5748 { 5749 ipv4_hook_destroy(); 5750 ipv6_hook_destroy(); 5751 ip_net_destroy(); 5752 5753 tnet_fini(); 5754 tcp_ddi_destroy(); 5755 sctp_ddi_destroy(); 5756 ipsec_loader_destroy(); 5757 ipsec_policy_destroy(); 5758 ipsec_kstat_destroy(); 5759 nd_free(&ip_g_nd); 5760 mutex_destroy(&igmp_timer_lock); 5761 mutex_destroy(&mld_timer_lock); 5762 mutex_destroy(&igmp_slowtimeout_lock); 5763 mutex_destroy(&mld_slowtimeout_lock); 5764 mutex_destroy(&ip_mi_lock); 5765 mutex_destroy(&rts_clients.connf_lock); 5766 ip_ire_fini(); 5767 ip6_asp_free(); 5768 conn_drain_fini(); 5769 ipcl_destroy(); 5770 inet_minor_destroy(ip_minor_arena); 5771 icmp_kstat_fini(); 5772 ip_kstat_fini(); 5773 rw_destroy(&ipsec_capab_ills_lock); 5774 rw_destroy(&ill_g_usesrc_lock); 5775 ip_drop_unregister(&ip_dropper); 5776 } 5777 5778 5779 void 5780 ip_ddi_init(void) 5781 { 5782 TCP6_MAJ = ddi_name_to_major(TCP6); 5783 TCP_MAJ = ddi_name_to_major(TCP); 5784 SCTP_MAJ = ddi_name_to_major(SCTP); 5785 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5786 5787 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5788 5789 /* IP's IPsec code calls the packet dropper */ 5790 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5791 5792 if (!ip_g_nd) { 5793 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5794 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5795 nd_free(&ip_g_nd); 5796 } 5797 } 5798 5799 ipsec_loader_init(); 5800 ipsec_policy_init(); 5801 ipsec_kstat_init(); 5802 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5803 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5804 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5805 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5806 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5807 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5808 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5809 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5810 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5811 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5812 5813 /* 5814 * For IP and TCP the minor numbers should start from 2 since we have 4 5815 * initial devices: ip, ip6, tcp, tcp6. 5816 */ 5817 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5818 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5819 cmn_err(CE_PANIC, 5820 "ip_ddi_init: ip_minor_arena creation failed\n"); 5821 } 5822 5823 ipcl_init(); 5824 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5825 ip_ire_init(); 5826 ip6_asp_init(); 5827 ipif_init(); 5828 conn_drain_init(); 5829 tcp_ddi_init(); 5830 sctp_ddi_init(); 5831 5832 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5833 5834 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5835 "net", KSTAT_TYPE_NAMED, 5836 sizeof (ip_statistics) / sizeof (kstat_named_t), 5837 KSTAT_FLAG_VIRTUAL)) != NULL) { 5838 ip_kstat->ks_data = &ip_statistics; 5839 kstat_install(ip_kstat); 5840 } 5841 ip_kstat_init(); 5842 ip6_kstat_init(); 5843 icmp_kstat_init(); 5844 ipsec_loader_start(); 5845 tnet_init(); 5846 5847 ip_net_init(); 5848 ipv4_hook_init(); 5849 ipv6_hook_init(); 5850 } 5851 5852 /* 5853 * Allocate and initialize a DLPI template of the specified length. (May be 5854 * called as writer.) 5855 */ 5856 mblk_t * 5857 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5858 { 5859 mblk_t *mp; 5860 5861 mp = allocb(len, BPRI_MED); 5862 if (!mp) 5863 return (NULL); 5864 5865 /* 5866 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5867 * of which we don't seem to use) are sent with M_PCPROTO, and 5868 * that other DLPI are M_PROTO. 5869 */ 5870 if (prim == DL_INFO_REQ) { 5871 mp->b_datap->db_type = M_PCPROTO; 5872 } else { 5873 mp->b_datap->db_type = M_PROTO; 5874 } 5875 5876 mp->b_wptr = mp->b_rptr + len; 5877 bzero(mp->b_rptr, len); 5878 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5879 return (mp); 5880 } 5881 5882 const char * 5883 dlpi_prim_str(int prim) 5884 { 5885 switch (prim) { 5886 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5887 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5888 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5889 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5890 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5891 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5892 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5893 case DL_OK_ACK: return ("DL_OK_ACK"); 5894 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5895 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5896 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5897 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5898 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5899 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5900 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5901 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5902 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5903 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5904 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5905 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5906 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5907 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5908 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5909 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5910 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5911 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5912 default: return ("<unknown primitive>"); 5913 } 5914 } 5915 5916 const char * 5917 dlpi_err_str(int err) 5918 { 5919 switch (err) { 5920 case DL_ACCESS: return ("DL_ACCESS"); 5921 case DL_BADADDR: return ("DL_BADADDR"); 5922 case DL_BADCORR: return ("DL_BADCORR"); 5923 case DL_BADDATA: return ("DL_BADDATA"); 5924 case DL_BADPPA: return ("DL_BADPPA"); 5925 case DL_BADPRIM: return ("DL_BADPRIM"); 5926 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5927 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5928 case DL_BADSAP: return ("DL_BADSAP"); 5929 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5930 case DL_BOUND: return ("DL_BOUND"); 5931 case DL_INITFAILED: return ("DL_INITFAILED"); 5932 case DL_NOADDR: return ("DL_NOADDR"); 5933 case DL_NOTINIT: return ("DL_NOTINIT"); 5934 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5935 case DL_SYSERR: return ("DL_SYSERR"); 5936 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5937 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5938 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5939 case DL_TOOMANY: return ("DL_TOOMANY"); 5940 case DL_NOTENAB: return ("DL_NOTENAB"); 5941 case DL_BUSY: return ("DL_BUSY"); 5942 case DL_NOAUTO: return ("DL_NOAUTO"); 5943 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5944 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5945 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5946 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5947 case DL_PENDING: return ("DL_PENDING"); 5948 default: return ("<unknown error>"); 5949 } 5950 } 5951 5952 /* 5953 * Debug formatting routine. Returns a character string representation of the 5954 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5955 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5956 * 5957 * Once the ndd table-printing interfaces are removed, this can be changed to 5958 * standard dotted-decimal form. 5959 */ 5960 char * 5961 ip_dot_addr(ipaddr_t addr, char *buf) 5962 { 5963 uint8_t *ap = (uint8_t *)&addr; 5964 5965 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5966 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5967 return (buf); 5968 } 5969 5970 /* 5971 * Write the given MAC address as a printable string in the usual colon- 5972 * separated format. 5973 */ 5974 const char * 5975 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 5976 { 5977 char *bp; 5978 5979 if (alen == 0 || buflen < 4) 5980 return ("?"); 5981 bp = buf; 5982 for (;;) { 5983 /* 5984 * If there are more MAC address bytes available, but we won't 5985 * have any room to print them, then add "..." to the string 5986 * instead. See below for the 'magic number' explanation. 5987 */ 5988 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 5989 (void) strcpy(bp, "..."); 5990 break; 5991 } 5992 (void) sprintf(bp, "%02x", *addr++); 5993 bp += 2; 5994 if (--alen == 0) 5995 break; 5996 *bp++ = ':'; 5997 buflen -= 3; 5998 /* 5999 * At this point, based on the first 'if' statement above, 6000 * either alen == 1 and buflen >= 3, or alen > 1 and 6001 * buflen >= 4. The first case leaves room for the final "xx" 6002 * number and trailing NUL byte. The second leaves room for at 6003 * least "...". Thus the apparently 'magic' numbers chosen for 6004 * that statement. 6005 */ 6006 } 6007 return (buf); 6008 } 6009 6010 /* 6011 * Send an ICMP error after patching up the packet appropriately. Returns 6012 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6013 */ 6014 static boolean_t 6015 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6016 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 6017 { 6018 ipha_t *ipha; 6019 mblk_t *first_mp; 6020 boolean_t secure; 6021 unsigned char db_type; 6022 6023 first_mp = mp; 6024 if (mctl_present) { 6025 mp = mp->b_cont; 6026 secure = ipsec_in_is_secure(first_mp); 6027 ASSERT(mp != NULL); 6028 } else { 6029 /* 6030 * If this is an ICMP error being reported - which goes 6031 * up as M_CTLs, we need to convert them to M_DATA till 6032 * we finish checking with global policy because 6033 * ipsec_check_global_policy() assumes M_DATA as clear 6034 * and M_CTL as secure. 6035 */ 6036 db_type = DB_TYPE(mp); 6037 DB_TYPE(mp) = M_DATA; 6038 secure = B_FALSE; 6039 } 6040 /* 6041 * We are generating an icmp error for some inbound packet. 6042 * Called from all ip_fanout_(udp, tcp, proto) functions. 6043 * Before we generate an error, check with global policy 6044 * to see whether this is allowed to enter the system. As 6045 * there is no "conn", we are checking with global policy. 6046 */ 6047 ipha = (ipha_t *)mp->b_rptr; 6048 if (secure || ipsec_inbound_v4_policy_present) { 6049 first_mp = ipsec_check_global_policy(first_mp, NULL, 6050 ipha, NULL, mctl_present); 6051 if (first_mp == NULL) 6052 return (B_FALSE); 6053 } 6054 6055 if (!mctl_present) 6056 DB_TYPE(mp) = db_type; 6057 6058 if (flags & IP_FF_SEND_ICMP) { 6059 if (flags & IP_FF_HDR_COMPLETE) { 6060 if (ip_hdr_complete(ipha, zoneid)) { 6061 freemsg(first_mp); 6062 return (B_TRUE); 6063 } 6064 } 6065 if (flags & IP_FF_CKSUM) { 6066 /* 6067 * Have to correct checksum since 6068 * the packet might have been 6069 * fragmented and the reassembly code in ip_rput 6070 * does not restore the IP checksum. 6071 */ 6072 ipha->ipha_hdr_checksum = 0; 6073 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6074 } 6075 switch (icmp_type) { 6076 case ICMP_DEST_UNREACHABLE: 6077 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6078 break; 6079 default: 6080 freemsg(first_mp); 6081 break; 6082 } 6083 } else { 6084 freemsg(first_mp); 6085 return (B_FALSE); 6086 } 6087 6088 return (B_TRUE); 6089 } 6090 6091 /* 6092 * Used to send an ICMP error message when a packet is received for 6093 * a protocol that is not supported. The mblk passed as argument 6094 * is consumed by this function. 6095 */ 6096 void 6097 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6098 { 6099 mblk_t *mp; 6100 ipha_t *ipha; 6101 ill_t *ill; 6102 ipsec_in_t *ii; 6103 6104 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6105 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6106 6107 mp = ipsec_mp->b_cont; 6108 ipsec_mp->b_cont = NULL; 6109 ipha = (ipha_t *)mp->b_rptr; 6110 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6111 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6112 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6113 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6114 } 6115 } else { 6116 /* Get ill from index in ipsec_in_t. */ 6117 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6118 B_TRUE, NULL, NULL, NULL, NULL); 6119 if (ill != NULL) { 6120 if (ip_fanout_send_icmp_v6(q, mp, flags, 6121 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6122 0, B_FALSE, zoneid)) { 6123 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6124 } 6125 6126 ill_refrele(ill); 6127 } else { /* re-link for the freemsg() below. */ 6128 ipsec_mp->b_cont = mp; 6129 } 6130 } 6131 6132 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6133 freemsg(ipsec_mp); 6134 } 6135 6136 /* 6137 * See if the inbound datagram has had IPsec processing applied to it. 6138 */ 6139 boolean_t 6140 ipsec_in_is_secure(mblk_t *ipsec_mp) 6141 { 6142 ipsec_in_t *ii; 6143 6144 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6145 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6146 6147 if (ii->ipsec_in_loopback) { 6148 return (ii->ipsec_in_secure); 6149 } else { 6150 return (ii->ipsec_in_ah_sa != NULL || 6151 ii->ipsec_in_esp_sa != NULL || 6152 ii->ipsec_in_decaps); 6153 } 6154 } 6155 6156 /* 6157 * Handle protocols with which IP is less intimate. There 6158 * can be more than one stream bound to a particular 6159 * protocol. When this is the case, normally each one gets a copy 6160 * of any incoming packets. 6161 * 6162 * IPSEC NOTE : 6163 * 6164 * Don't allow a secure packet going up a non-secure connection. 6165 * We don't allow this because 6166 * 6167 * 1) Reply might go out in clear which will be dropped at 6168 * the sending side. 6169 * 2) If the reply goes out in clear it will give the 6170 * adversary enough information for getting the key in 6171 * most of the cases. 6172 * 6173 * Moreover getting a secure packet when we expect clear 6174 * implies that SA's were added without checking for 6175 * policy on both ends. This should not happen once ISAKMP 6176 * is used to negotiate SAs as SAs will be added only after 6177 * verifying the policy. 6178 * 6179 * NOTE : If the packet was tunneled and not multicast we only send 6180 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6181 * back to delivering packets to AF_INET6 raw sockets. 6182 * 6183 * IPQoS Notes: 6184 * Once we have determined the client, invoke IPPF processing. 6185 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6186 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6187 * ip_policy will be false. 6188 * 6189 * Zones notes: 6190 * Currently only applications in the global zone can create raw sockets for 6191 * protocols other than ICMP. So unlike the broadcast / multicast case of 6192 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6193 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6194 */ 6195 static void 6196 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6197 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6198 zoneid_t zoneid) 6199 { 6200 queue_t *rq; 6201 mblk_t *mp1, *first_mp1; 6202 uint_t protocol = ipha->ipha_protocol; 6203 ipaddr_t dst; 6204 boolean_t one_only; 6205 mblk_t *first_mp = mp; 6206 boolean_t secure; 6207 uint32_t ill_index; 6208 conn_t *connp, *first_connp, *next_connp; 6209 connf_t *connfp; 6210 boolean_t shared_addr; 6211 6212 if (mctl_present) { 6213 mp = first_mp->b_cont; 6214 secure = ipsec_in_is_secure(first_mp); 6215 ASSERT(mp != NULL); 6216 } else { 6217 secure = B_FALSE; 6218 } 6219 dst = ipha->ipha_dst; 6220 /* 6221 * If the packet was tunneled and not multicast we only send to it 6222 * the first match. 6223 */ 6224 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6225 !CLASSD(dst)); 6226 6227 shared_addr = (zoneid == ALL_ZONES); 6228 if (shared_addr) { 6229 /* 6230 * We don't allow multilevel ports for raw IP, so no need to 6231 * check for that here. 6232 */ 6233 zoneid = tsol_packet_to_zoneid(mp); 6234 } 6235 6236 connfp = &ipcl_proto_fanout[protocol]; 6237 mutex_enter(&connfp->connf_lock); 6238 connp = connfp->connf_head; 6239 for (connp = connfp->connf_head; connp != NULL; 6240 connp = connp->conn_next) { 6241 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6242 zoneid) && 6243 (!is_system_labeled() || 6244 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6245 connp))) 6246 break; 6247 } 6248 6249 if (connp == NULL || connp->conn_upq == NULL) { 6250 /* 6251 * No one bound to these addresses. Is 6252 * there a client that wants all 6253 * unclaimed datagrams? 6254 */ 6255 mutex_exit(&connfp->connf_lock); 6256 /* 6257 * Check for IPPROTO_ENCAP... 6258 */ 6259 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6260 /* 6261 * If an IPsec mblk is here on a multicast 6262 * tunnel (using ip_mroute stuff), check policy here, 6263 * THEN ship off to ip_mroute_decap(). 6264 * 6265 * BTW, If I match a configured IP-in-IP 6266 * tunnel, this path will not be reached, and 6267 * ip_mroute_decap will never be called. 6268 */ 6269 first_mp = ipsec_check_global_policy(first_mp, connp, 6270 ipha, NULL, mctl_present); 6271 if (first_mp != NULL) { 6272 if (mctl_present) 6273 freeb(first_mp); 6274 ip_mroute_decap(q, mp); 6275 } /* Else we already freed everything! */ 6276 } else { 6277 /* 6278 * Otherwise send an ICMP protocol unreachable. 6279 */ 6280 if (ip_fanout_send_icmp(q, first_mp, flags, 6281 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6282 mctl_present, zoneid)) { 6283 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6284 } 6285 } 6286 return; 6287 } 6288 CONN_INC_REF(connp); 6289 first_connp = connp; 6290 6291 /* 6292 * Only send message to one tunnel driver by immediately 6293 * terminating the loop. 6294 */ 6295 connp = one_only ? NULL : connp->conn_next; 6296 6297 for (;;) { 6298 while (connp != NULL) { 6299 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6300 flags, zoneid) && 6301 (!is_system_labeled() || 6302 tsol_receive_local(mp, &dst, IPV4_VERSION, 6303 shared_addr, connp))) 6304 break; 6305 connp = connp->conn_next; 6306 } 6307 6308 /* 6309 * Copy the packet. 6310 */ 6311 if (connp == NULL || connp->conn_upq == NULL || 6312 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6313 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6314 /* 6315 * No more interested clients or memory 6316 * allocation failed 6317 */ 6318 connp = first_connp; 6319 break; 6320 } 6321 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6322 CONN_INC_REF(connp); 6323 mutex_exit(&connfp->connf_lock); 6324 rq = connp->conn_rq; 6325 if (!canputnext(rq)) { 6326 if (flags & IP_FF_RAWIP) { 6327 BUMP_MIB(&ip_mib, rawipInOverflows); 6328 } else { 6329 BUMP_MIB(&icmp_mib, icmpInOverflows); 6330 } 6331 6332 freemsg(first_mp1); 6333 } else { 6334 /* 6335 * Don't enforce here if we're an actual tunnel - 6336 * let "tun" do it instead. 6337 */ 6338 if (!IPCL_IS_IPTUN(connp) && 6339 (CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6340 first_mp1 = ipsec_check_inbound_policy 6341 (first_mp1, connp, ipha, NULL, 6342 mctl_present); 6343 } 6344 if (first_mp1 != NULL) { 6345 /* 6346 * ip_fanout_proto also gets called from 6347 * icmp_inbound_error_fanout, in which case 6348 * the msg type is M_CTL. Don't add info 6349 * in this case for the time being. In future 6350 * when there is a need for knowing the 6351 * inbound iface index for ICMP error msgs, 6352 * then this can be changed. 6353 */ 6354 if ((connp->conn_recvif != 0) && 6355 (mp->b_datap->db_type != M_CTL)) { 6356 /* 6357 * the actual data will be 6358 * contained in b_cont upon 6359 * successful return of the 6360 * following call else 6361 * original mblk is returned 6362 */ 6363 ASSERT(recv_ill != NULL); 6364 mp1 = ip_add_info(mp1, recv_ill, 6365 IPF_RECVIF); 6366 } 6367 BUMP_MIB(&ip_mib, ipInDelivers); 6368 if (mctl_present) 6369 freeb(first_mp1); 6370 putnext(rq, mp1); 6371 } 6372 } 6373 mutex_enter(&connfp->connf_lock); 6374 /* Follow the next pointer before releasing the conn. */ 6375 next_connp = connp->conn_next; 6376 CONN_DEC_REF(connp); 6377 connp = next_connp; 6378 } 6379 6380 /* Last one. Send it upstream. */ 6381 mutex_exit(&connfp->connf_lock); 6382 6383 /* 6384 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6385 * will be set to false. 6386 */ 6387 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6388 ill_index = ill->ill_phyint->phyint_ifindex; 6389 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6390 if (mp == NULL) { 6391 CONN_DEC_REF(connp); 6392 if (mctl_present) { 6393 freeb(first_mp); 6394 } 6395 return; 6396 } 6397 } 6398 6399 rq = connp->conn_rq; 6400 if (!canputnext(rq)) { 6401 if (flags & IP_FF_RAWIP) { 6402 BUMP_MIB(&ip_mib, rawipInOverflows); 6403 } else { 6404 BUMP_MIB(&icmp_mib, icmpInOverflows); 6405 } 6406 6407 freemsg(first_mp); 6408 } else { 6409 if (IPCL_IS_IPTUN(connp)) { 6410 /* 6411 * Tunneled packet. We enforce policy in the tunnel 6412 * module itself. 6413 * 6414 * Send the WHOLE packet up (incl. IPSEC_IN) without 6415 * a policy check. 6416 */ 6417 putnext(rq, first_mp); 6418 CONN_DEC_REF(connp); 6419 return; 6420 } 6421 6422 if ((CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6423 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6424 ipha, NULL, mctl_present); 6425 } 6426 6427 if (first_mp != NULL) { 6428 /* 6429 * ip_fanout_proto also gets called 6430 * from icmp_inbound_error_fanout, in 6431 * which case the msg type is M_CTL. 6432 * Don't add info in this case for time 6433 * being. In future when there is a 6434 * need for knowing the inbound iface 6435 * index for ICMP error msgs, then this 6436 * can be changed 6437 */ 6438 if ((connp->conn_recvif != 0) && 6439 (mp->b_datap->db_type != M_CTL)) { 6440 /* 6441 * the actual data will be contained in 6442 * b_cont upon successful return 6443 * of the following call else original 6444 * mblk is returned 6445 */ 6446 ASSERT(recv_ill != NULL); 6447 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6448 } 6449 BUMP_MIB(&ip_mib, ipInDelivers); 6450 putnext(rq, mp); 6451 if (mctl_present) 6452 freeb(first_mp); 6453 } 6454 } 6455 CONN_DEC_REF(connp); 6456 } 6457 6458 /* 6459 * Fanout for TCP packets 6460 * The caller puts <fport, lport> in the ports parameter. 6461 * 6462 * IPQoS Notes 6463 * Before sending it to the client, invoke IPPF processing. 6464 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6465 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6466 * ip_policy is false. 6467 */ 6468 static void 6469 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6470 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6471 { 6472 mblk_t *first_mp; 6473 boolean_t secure; 6474 uint32_t ill_index; 6475 int ip_hdr_len; 6476 tcph_t *tcph; 6477 boolean_t syn_present = B_FALSE; 6478 conn_t *connp; 6479 6480 first_mp = mp; 6481 if (mctl_present) { 6482 ASSERT(first_mp->b_datap->db_type == M_CTL); 6483 mp = first_mp->b_cont; 6484 secure = ipsec_in_is_secure(first_mp); 6485 ASSERT(mp != NULL); 6486 } else { 6487 secure = B_FALSE; 6488 } 6489 6490 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6491 6492 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6493 NULL) { 6494 /* 6495 * No connected connection or listener. Send a 6496 * TH_RST via tcp_xmit_listeners_reset. 6497 */ 6498 6499 /* Initiate IPPf processing, if needed. */ 6500 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6501 uint32_t ill_index; 6502 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6503 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6504 if (first_mp == NULL) 6505 return; 6506 } 6507 BUMP_MIB(&ip_mib, ipInDelivers); 6508 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6509 zoneid)); 6510 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6511 return; 6512 } 6513 6514 /* 6515 * Allocate the SYN for the TCP connection here itself 6516 */ 6517 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6518 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6519 if (IPCL_IS_TCP(connp)) { 6520 squeue_t *sqp; 6521 6522 /* 6523 * For fused tcp loopback, assign the eager's 6524 * squeue to be that of the active connect's. 6525 * Note that we don't check for IP_FF_LOOPBACK 6526 * here since this routine gets called only 6527 * for loopback (unlike the IPv6 counterpart). 6528 */ 6529 ASSERT(Q_TO_CONN(q) != NULL); 6530 if (do_tcp_fusion && 6531 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6532 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6533 IPCL_IS_TCP(Q_TO_CONN(q))) { 6534 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6535 sqp = Q_TO_CONN(q)->conn_sqp; 6536 } else { 6537 sqp = IP_SQUEUE_GET(lbolt); 6538 } 6539 6540 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6541 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6542 syn_present = B_TRUE; 6543 } 6544 } 6545 6546 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6547 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6548 if ((flags & TH_RST) || (flags & TH_URG)) { 6549 CONN_DEC_REF(connp); 6550 freemsg(first_mp); 6551 return; 6552 } 6553 if (flags & TH_ACK) { 6554 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6555 CONN_DEC_REF(connp); 6556 return; 6557 } 6558 6559 CONN_DEC_REF(connp); 6560 freemsg(first_mp); 6561 return; 6562 } 6563 6564 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6565 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6566 NULL, mctl_present); 6567 if (first_mp == NULL) { 6568 CONN_DEC_REF(connp); 6569 return; 6570 } 6571 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6572 ASSERT(syn_present); 6573 if (mctl_present) { 6574 ASSERT(first_mp != mp); 6575 first_mp->b_datap->db_struioflag |= 6576 STRUIO_POLICY; 6577 } else { 6578 ASSERT(first_mp == mp); 6579 mp->b_datap->db_struioflag &= 6580 ~STRUIO_EAGER; 6581 mp->b_datap->db_struioflag |= 6582 STRUIO_POLICY; 6583 } 6584 } else { 6585 /* 6586 * Discard first_mp early since we're dealing with a 6587 * fully-connected conn_t and tcp doesn't do policy in 6588 * this case. 6589 */ 6590 if (mctl_present) { 6591 freeb(first_mp); 6592 mctl_present = B_FALSE; 6593 } 6594 first_mp = mp; 6595 } 6596 } 6597 6598 /* 6599 * Initiate policy processing here if needed. If we get here from 6600 * icmp_inbound_error_fanout, ip_policy is false. 6601 */ 6602 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6603 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6604 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6605 if (mp == NULL) { 6606 CONN_DEC_REF(connp); 6607 if (mctl_present) 6608 freeb(first_mp); 6609 return; 6610 } else if (mctl_present) { 6611 ASSERT(first_mp != mp); 6612 first_mp->b_cont = mp; 6613 } else { 6614 first_mp = mp; 6615 } 6616 } 6617 6618 6619 6620 /* Handle IPv6 socket options. */ 6621 if (!syn_present && 6622 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6623 /* Add header */ 6624 ASSERT(recv_ill != NULL); 6625 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6626 if (mp == NULL) { 6627 CONN_DEC_REF(connp); 6628 if (mctl_present) 6629 freeb(first_mp); 6630 return; 6631 } else if (mctl_present) { 6632 /* 6633 * ip_add_info might return a new mp. 6634 */ 6635 ASSERT(first_mp != mp); 6636 first_mp->b_cont = mp; 6637 } else { 6638 first_mp = mp; 6639 } 6640 } 6641 6642 BUMP_MIB(&ip_mib, ipInDelivers); 6643 if (IPCL_IS_TCP(connp)) { 6644 (*ip_input_proc)(connp->conn_sqp, first_mp, 6645 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6646 } else { 6647 putnext(connp->conn_rq, first_mp); 6648 CONN_DEC_REF(connp); 6649 } 6650 } 6651 6652 /* 6653 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6654 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6655 * Caller is responsible for dropping references to the conn, and freeing 6656 * first_mp. 6657 * 6658 * IPQoS Notes 6659 * Before sending it to the client, invoke IPPF processing. Policy processing 6660 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6661 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6662 * ip_wput_local, ip_policy is false. 6663 */ 6664 static void 6665 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6666 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6667 boolean_t ip_policy) 6668 { 6669 boolean_t mctl_present = (first_mp != NULL); 6670 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6671 uint32_t ill_index; 6672 6673 if (mctl_present) 6674 first_mp->b_cont = mp; 6675 else 6676 first_mp = mp; 6677 6678 if (CONN_UDP_FLOWCTLD(connp)) { 6679 BUMP_MIB(&ip_mib, udpInOverflows); 6680 freemsg(first_mp); 6681 return; 6682 } 6683 6684 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6685 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6686 NULL, mctl_present); 6687 if (first_mp == NULL) 6688 return; /* Freed by ipsec_check_inbound_policy(). */ 6689 } 6690 if (mctl_present) 6691 freeb(first_mp); 6692 6693 if (connp->conn_recvif) 6694 in_flags = IPF_RECVIF; 6695 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6696 in_flags |= IPF_RECVSLLA; 6697 6698 /* Handle IPv6 options. */ 6699 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6700 in_flags |= IPF_RECVIF; 6701 6702 /* 6703 * Initiate IPPF processing here, if needed. Note first_mp won't be 6704 * freed if the packet is dropped. The caller will do so. 6705 */ 6706 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6707 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6708 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6709 if (mp == NULL) { 6710 return; 6711 } 6712 } 6713 if ((in_flags != 0) && 6714 (mp->b_datap->db_type != M_CTL)) { 6715 /* 6716 * The actual data will be contained in b_cont 6717 * upon successful return of the following call 6718 * else original mblk is returned 6719 */ 6720 ASSERT(recv_ill != NULL); 6721 mp = ip_add_info(mp, recv_ill, in_flags); 6722 } 6723 BUMP_MIB(&ip_mib, ipInDelivers); 6724 6725 /* Send it upstream */ 6726 CONN_UDP_RECV(connp, mp); 6727 } 6728 6729 /* 6730 * Fanout for UDP packets. 6731 * The caller puts <fport, lport> in the ports parameter. 6732 * 6733 * If SO_REUSEADDR is set all multicast and broadcast packets 6734 * will be delivered to all streams bound to the same port. 6735 * 6736 * Zones notes: 6737 * Multicast and broadcast packets will be distributed to streams in all zones. 6738 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6739 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6740 * packets. To maintain this behavior with multiple zones, the conns are grouped 6741 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6742 * each zone. If unset, all the following conns in the same zone are skipped. 6743 */ 6744 static void 6745 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6746 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6747 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6748 { 6749 uint32_t dstport, srcport; 6750 ipaddr_t dst; 6751 mblk_t *first_mp; 6752 boolean_t secure; 6753 in6_addr_t v6src; 6754 conn_t *connp; 6755 connf_t *connfp; 6756 conn_t *first_connp; 6757 conn_t *next_connp; 6758 mblk_t *mp1, *first_mp1; 6759 ipaddr_t src; 6760 zoneid_t last_zoneid; 6761 boolean_t reuseaddr; 6762 boolean_t shared_addr; 6763 6764 first_mp = mp; 6765 if (mctl_present) { 6766 mp = first_mp->b_cont; 6767 first_mp->b_cont = NULL; 6768 secure = ipsec_in_is_secure(first_mp); 6769 ASSERT(mp != NULL); 6770 } else { 6771 first_mp = NULL; 6772 secure = B_FALSE; 6773 } 6774 6775 /* Extract ports in net byte order */ 6776 dstport = htons(ntohl(ports) & 0xFFFF); 6777 srcport = htons(ntohl(ports) >> 16); 6778 dst = ipha->ipha_dst; 6779 src = ipha->ipha_src; 6780 6781 shared_addr = (zoneid == ALL_ZONES); 6782 if (shared_addr) { 6783 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6784 if (zoneid == ALL_ZONES) 6785 zoneid = tsol_packet_to_zoneid(mp); 6786 } 6787 6788 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6789 mutex_enter(&connfp->connf_lock); 6790 connp = connfp->connf_head; 6791 if (!broadcast && !CLASSD(dst)) { 6792 /* 6793 * Not broadcast or multicast. Send to the one (first) 6794 * client we find. No need to check conn_wantpacket() 6795 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6796 * IPv4 unicast packets. 6797 */ 6798 while ((connp != NULL) && 6799 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 6800 !IPCL_ZONE_MATCH(connp, zoneid))) { 6801 connp = connp->conn_next; 6802 } 6803 6804 if (connp == NULL || connp->conn_upq == NULL) 6805 goto notfound; 6806 6807 if (is_system_labeled() && 6808 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6809 connp)) 6810 goto notfound; 6811 6812 CONN_INC_REF(connp); 6813 mutex_exit(&connfp->connf_lock); 6814 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6815 recv_ill, ip_policy); 6816 IP_STAT(ip_udp_fannorm); 6817 CONN_DEC_REF(connp); 6818 return; 6819 } 6820 6821 /* 6822 * Broadcast and multicast case 6823 * 6824 * Need to check conn_wantpacket(). 6825 * If SO_REUSEADDR has been set on the first we send the 6826 * packet to all clients that have joined the group and 6827 * match the port. 6828 */ 6829 6830 while (connp != NULL) { 6831 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6832 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6833 (!is_system_labeled() || 6834 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6835 connp))) 6836 break; 6837 connp = connp->conn_next; 6838 } 6839 6840 if (connp == NULL || connp->conn_upq == NULL) 6841 goto notfound; 6842 6843 first_connp = connp; 6844 /* 6845 * When SO_REUSEADDR is not set, send the packet only to the first 6846 * matching connection in its zone by keeping track of the zoneid. 6847 */ 6848 reuseaddr = first_connp->conn_reuseaddr; 6849 last_zoneid = first_connp->conn_zoneid; 6850 6851 CONN_INC_REF(connp); 6852 connp = connp->conn_next; 6853 for (;;) { 6854 while (connp != NULL) { 6855 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6856 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6857 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6858 (!is_system_labeled() || 6859 tsol_receive_local(mp, &dst, IPV4_VERSION, 6860 shared_addr, connp))) 6861 break; 6862 connp = connp->conn_next; 6863 } 6864 /* 6865 * Just copy the data part alone. The mctl part is 6866 * needed just for verifying policy and it is never 6867 * sent up. 6868 */ 6869 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6870 ((mp1 = copymsg(mp)) == NULL))) { 6871 /* 6872 * No more interested clients or memory 6873 * allocation failed 6874 */ 6875 connp = first_connp; 6876 break; 6877 } 6878 if (connp->conn_zoneid != last_zoneid) { 6879 /* 6880 * Update the zoneid so that the packet isn't sent to 6881 * any more conns in the same zone unless SO_REUSEADDR 6882 * is set. 6883 */ 6884 reuseaddr = connp->conn_reuseaddr; 6885 last_zoneid = connp->conn_zoneid; 6886 } 6887 if (first_mp != NULL) { 6888 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6889 ipsec_info_type == IPSEC_IN); 6890 first_mp1 = ipsec_in_tag(first_mp, NULL); 6891 if (first_mp1 == NULL) { 6892 freemsg(mp1); 6893 connp = first_connp; 6894 break; 6895 } 6896 } else { 6897 first_mp1 = NULL; 6898 } 6899 CONN_INC_REF(connp); 6900 mutex_exit(&connfp->connf_lock); 6901 /* 6902 * IPQoS notes: We don't send the packet for policy 6903 * processing here, will do it for the last one (below). 6904 * i.e. we do it per-packet now, but if we do policy 6905 * processing per-conn, then we would need to do it 6906 * here too. 6907 */ 6908 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6909 ipha, flags, recv_ill, B_FALSE); 6910 mutex_enter(&connfp->connf_lock); 6911 /* Follow the next pointer before releasing the conn. */ 6912 next_connp = connp->conn_next; 6913 IP_STAT(ip_udp_fanmb); 6914 CONN_DEC_REF(connp); 6915 connp = next_connp; 6916 } 6917 6918 /* Last one. Send it upstream. */ 6919 mutex_exit(&connfp->connf_lock); 6920 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6921 ip_policy); 6922 IP_STAT(ip_udp_fanmb); 6923 CONN_DEC_REF(connp); 6924 return; 6925 6926 notfound: 6927 6928 mutex_exit(&connfp->connf_lock); 6929 IP_STAT(ip_udp_fanothers); 6930 /* 6931 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6932 * have already been matched above, since they live in the IPv4 6933 * fanout tables. This implies we only need to 6934 * check for IPv6 in6addr_any endpoints here. 6935 * Thus we compare using ipv6_all_zeros instead of the destination 6936 * address, except for the multicast group membership lookup which 6937 * uses the IPv4 destination. 6938 */ 6939 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6940 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6941 mutex_enter(&connfp->connf_lock); 6942 connp = connfp->connf_head; 6943 if (!broadcast && !CLASSD(dst)) { 6944 while (connp != NULL) { 6945 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6946 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6947 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6948 !connp->conn_ipv6_v6only) 6949 break; 6950 connp = connp->conn_next; 6951 } 6952 6953 if (connp != NULL && is_system_labeled() && 6954 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6955 connp)) 6956 connp = NULL; 6957 6958 if (connp == NULL || connp->conn_upq == NULL) { 6959 /* 6960 * No one bound to this port. Is 6961 * there a client that wants all 6962 * unclaimed datagrams? 6963 */ 6964 mutex_exit(&connfp->connf_lock); 6965 6966 if (mctl_present) 6967 first_mp->b_cont = mp; 6968 else 6969 first_mp = mp; 6970 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6971 ip_fanout_proto(q, first_mp, ill, ipha, 6972 flags | IP_FF_RAWIP, mctl_present, 6973 ip_policy, recv_ill, zoneid); 6974 } else { 6975 if (ip_fanout_send_icmp(q, first_mp, flags, 6976 ICMP_DEST_UNREACHABLE, 6977 ICMP_PORT_UNREACHABLE, 6978 mctl_present, zoneid)) { 6979 BUMP_MIB(&ip_mib, udpNoPorts); 6980 } 6981 } 6982 return; 6983 } 6984 6985 CONN_INC_REF(connp); 6986 mutex_exit(&connfp->connf_lock); 6987 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6988 recv_ill, ip_policy); 6989 CONN_DEC_REF(connp); 6990 return; 6991 } 6992 /* 6993 * IPv4 multicast packet being delivered to an AF_INET6 6994 * in6addr_any endpoint. 6995 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6996 * and not conn_wantpacket_v6() since any multicast membership is 6997 * for an IPv4-mapped multicast address. 6998 * The packet is sent to all clients in all zones that have joined the 6999 * group and match the port. 7000 */ 7001 while (connp != NULL) { 7002 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7003 srcport, v6src) && 7004 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7005 (!is_system_labeled() || 7006 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7007 connp))) 7008 break; 7009 connp = connp->conn_next; 7010 } 7011 7012 if (connp == NULL || connp->conn_upq == NULL) { 7013 /* 7014 * No one bound to this port. Is 7015 * there a client that wants all 7016 * unclaimed datagrams? 7017 */ 7018 mutex_exit(&connfp->connf_lock); 7019 7020 if (mctl_present) 7021 first_mp->b_cont = mp; 7022 else 7023 first_mp = mp; 7024 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 7025 ip_fanout_proto(q, first_mp, ill, ipha, 7026 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7027 recv_ill, zoneid); 7028 } else { 7029 /* 7030 * We used to attempt to send an icmp error here, but 7031 * since this is known to be a multicast packet 7032 * and we don't send icmp errors in response to 7033 * multicast, just drop the packet and give up sooner. 7034 */ 7035 BUMP_MIB(&ip_mib, udpNoPorts); 7036 freemsg(first_mp); 7037 } 7038 return; 7039 } 7040 7041 first_connp = connp; 7042 7043 CONN_INC_REF(connp); 7044 connp = connp->conn_next; 7045 for (;;) { 7046 while (connp != NULL) { 7047 if (IPCL_UDP_MATCH_V6(connp, dstport, 7048 ipv6_all_zeros, srcport, v6src) && 7049 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7050 (!is_system_labeled() || 7051 tsol_receive_local(mp, &dst, IPV4_VERSION, 7052 shared_addr, connp))) 7053 break; 7054 connp = connp->conn_next; 7055 } 7056 /* 7057 * Just copy the data part alone. The mctl part is 7058 * needed just for verifying policy and it is never 7059 * sent up. 7060 */ 7061 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7062 ((mp1 = copymsg(mp)) == NULL))) { 7063 /* 7064 * No more intested clients or memory 7065 * allocation failed 7066 */ 7067 connp = first_connp; 7068 break; 7069 } 7070 if (first_mp != NULL) { 7071 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7072 ipsec_info_type == IPSEC_IN); 7073 first_mp1 = ipsec_in_tag(first_mp, NULL); 7074 if (first_mp1 == NULL) { 7075 freemsg(mp1); 7076 connp = first_connp; 7077 break; 7078 } 7079 } else { 7080 first_mp1 = NULL; 7081 } 7082 CONN_INC_REF(connp); 7083 mutex_exit(&connfp->connf_lock); 7084 /* 7085 * IPQoS notes: We don't send the packet for policy 7086 * processing here, will do it for the last one (below). 7087 * i.e. we do it per-packet now, but if we do policy 7088 * processing per-conn, then we would need to do it 7089 * here too. 7090 */ 7091 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 7092 ipha, flags, recv_ill, B_FALSE); 7093 mutex_enter(&connfp->connf_lock); 7094 /* Follow the next pointer before releasing the conn. */ 7095 next_connp = connp->conn_next; 7096 CONN_DEC_REF(connp); 7097 connp = next_connp; 7098 } 7099 7100 /* Last one. Send it upstream. */ 7101 mutex_exit(&connfp->connf_lock); 7102 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 7103 ip_policy); 7104 CONN_DEC_REF(connp); 7105 } 7106 7107 /* 7108 * Complete the ip_wput header so that it 7109 * is possible to generate ICMP 7110 * errors. 7111 */ 7112 int 7113 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7114 { 7115 ire_t *ire; 7116 7117 if (ipha->ipha_src == INADDR_ANY) { 7118 ire = ire_lookup_local(zoneid); 7119 if (ire == NULL) { 7120 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7121 return (1); 7122 } 7123 ipha->ipha_src = ire->ire_addr; 7124 ire_refrele(ire); 7125 } 7126 ipha->ipha_ttl = ip_def_ttl; 7127 ipha->ipha_hdr_checksum = 0; 7128 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7129 return (0); 7130 } 7131 7132 /* 7133 * Nobody should be sending 7134 * packets up this stream 7135 */ 7136 static void 7137 ip_lrput(queue_t *q, mblk_t *mp) 7138 { 7139 mblk_t *mp1; 7140 7141 switch (mp->b_datap->db_type) { 7142 case M_FLUSH: 7143 /* Turn around */ 7144 if (*mp->b_rptr & FLUSHW) { 7145 *mp->b_rptr &= ~FLUSHR; 7146 qreply(q, mp); 7147 return; 7148 } 7149 break; 7150 } 7151 /* Could receive messages that passed through ar_rput */ 7152 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7153 mp1->b_prev = mp1->b_next = NULL; 7154 freemsg(mp); 7155 } 7156 7157 /* Nobody should be sending packets down this stream */ 7158 /* ARGSUSED */ 7159 void 7160 ip_lwput(queue_t *q, mblk_t *mp) 7161 { 7162 freemsg(mp); 7163 } 7164 7165 /* 7166 * Move the first hop in any source route to ipha_dst and remove that part of 7167 * the source route. Called by other protocols. Errors in option formatting 7168 * are ignored - will be handled by ip_wput_options Return the final 7169 * destination (either ipha_dst or the last entry in a source route.) 7170 */ 7171 ipaddr_t 7172 ip_massage_options(ipha_t *ipha) 7173 { 7174 ipoptp_t opts; 7175 uchar_t *opt; 7176 uint8_t optval; 7177 uint8_t optlen; 7178 ipaddr_t dst; 7179 int i; 7180 ire_t *ire; 7181 7182 ip2dbg(("ip_massage_options\n")); 7183 dst = ipha->ipha_dst; 7184 for (optval = ipoptp_first(&opts, ipha); 7185 optval != IPOPT_EOL; 7186 optval = ipoptp_next(&opts)) { 7187 opt = opts.ipoptp_cur; 7188 switch (optval) { 7189 uint8_t off; 7190 case IPOPT_SSRR: 7191 case IPOPT_LSRR: 7192 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7193 ip1dbg(("ip_massage_options: bad src route\n")); 7194 break; 7195 } 7196 optlen = opts.ipoptp_len; 7197 off = opt[IPOPT_OFFSET]; 7198 off--; 7199 redo_srr: 7200 if (optlen < IP_ADDR_LEN || 7201 off > optlen - IP_ADDR_LEN) { 7202 /* End of source route */ 7203 ip1dbg(("ip_massage_options: end of SR\n")); 7204 break; 7205 } 7206 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7207 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7208 ntohl(dst))); 7209 /* 7210 * Check if our address is present more than 7211 * once as consecutive hops in source route. 7212 * XXX verify per-interface ip_forwarding 7213 * for source route? 7214 */ 7215 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7216 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7217 if (ire != NULL) { 7218 ire_refrele(ire); 7219 off += IP_ADDR_LEN; 7220 goto redo_srr; 7221 } 7222 if (dst == htonl(INADDR_LOOPBACK)) { 7223 ip1dbg(("ip_massage_options: loopback addr in " 7224 "source route!\n")); 7225 break; 7226 } 7227 /* 7228 * Update ipha_dst to be the first hop and remove the 7229 * first hop from the source route (by overwriting 7230 * part of the option with NOP options). 7231 */ 7232 ipha->ipha_dst = dst; 7233 /* Put the last entry in dst */ 7234 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7235 3; 7236 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7237 7238 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7239 ntohl(dst))); 7240 /* Move down and overwrite */ 7241 opt[IP_ADDR_LEN] = opt[0]; 7242 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7243 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7244 for (i = 0; i < IP_ADDR_LEN; i++) 7245 opt[i] = IPOPT_NOP; 7246 break; 7247 } 7248 } 7249 return (dst); 7250 } 7251 7252 /* 7253 * This function's job is to forward data to the reverse tunnel (FA->HA) 7254 * after doing a few checks. It is assumed that the incoming interface 7255 * of the packet is always different than the outgoing interface and the 7256 * ire_type of the found ire has to be a non-resolver type. 7257 * 7258 * IPQoS notes 7259 * IP policy is invoked twice for a forwarded packet, once on the read side 7260 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7261 * enabled. 7262 */ 7263 static void 7264 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7265 { 7266 ipha_t *ipha; 7267 queue_t *q; 7268 uint32_t pkt_len; 7269 #define rptr ((uchar_t *)ipha) 7270 uint32_t sum; 7271 uint32_t max_frag; 7272 mblk_t *first_mp; 7273 uint32_t ill_index; 7274 ipxmit_state_t pktxmit_state; 7275 ill_t *out_ill; 7276 7277 ASSERT(ire != NULL); 7278 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7279 ASSERT(ire->ire_stq != NULL); 7280 7281 /* Initiate read side IPPF processing */ 7282 if (IPP_ENABLED(IPP_FWD_IN)) { 7283 ill_index = in_ill->ill_phyint->phyint_ifindex; 7284 ip_process(IPP_FWD_IN, &mp, ill_index); 7285 if (mp == NULL) { 7286 ip2dbg(("ip_mrtun_forward: inbound pkt " 7287 "dropped during IPPF processing\n")); 7288 return; 7289 } 7290 } 7291 7292 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7293 ILLF_ROUTER) == 0) || 7294 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7295 BUMP_MIB(&ip_mib, ipForwProhibits); 7296 ip0dbg(("ip_mrtun_forward: Can't forward :" 7297 "forwarding is not turned on\n")); 7298 goto drop_pkt; 7299 } 7300 7301 /* 7302 * Don't forward if the interface is down 7303 */ 7304 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7305 BUMP_MIB(&ip_mib, ipInDiscards); 7306 goto drop_pkt; 7307 } 7308 7309 ipha = (ipha_t *)mp->b_rptr; 7310 pkt_len = ntohs(ipha->ipha_length); 7311 /* Adjust the checksum to reflect the ttl decrement. */ 7312 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7313 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7314 if (ipha->ipha_ttl-- <= 1) { 7315 if (ip_csum_hdr(ipha)) { 7316 BUMP_MIB(&ip_mib, ipInCksumErrs); 7317 goto drop_pkt; 7318 } 7319 q = ire->ire_stq; 7320 if ((first_mp = allocb(sizeof (ipsec_info_t), 7321 BPRI_HI)) == NULL) { 7322 goto drop_pkt; 7323 } 7324 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7325 /* Sent by forwarding path, and router is global zone */ 7326 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7327 GLOBAL_ZONEID); 7328 return; 7329 } 7330 7331 /* Get the ill_index of the ILL */ 7332 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7333 7334 /* 7335 * This location is chosen for the placement of the forwarding hook 7336 * because at this point we know that we have a path out for the 7337 * packet but haven't yet applied any logic (such as fragmenting) 7338 * that happen as part of transmitting the packet out. 7339 */ 7340 out_ill = ire->ire_ipif->ipif_ill; 7341 7342 DTRACE_PROBE4(ip4__forwarding__start, 7343 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7344 7345 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 7346 in_ill, out_ill, ipha, mp, mp); 7347 7348 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7349 7350 if (mp == NULL) 7351 return; 7352 pkt_len = ntohs(ipha->ipha_length); 7353 7354 /* 7355 * ip_mrtun_forward is only used by foreign agent to reverse 7356 * tunnel the incoming packet. So it does not do any option 7357 * processing for source routing. 7358 */ 7359 max_frag = ire->ire_max_frag; 7360 if (pkt_len > max_frag) { 7361 /* 7362 * It needs fragging on its way out. We haven't 7363 * verified the header checksum yet. Since we 7364 * are going to put a surely good checksum in the 7365 * outgoing header, we have to make sure that it 7366 * was good coming in. 7367 */ 7368 if (ip_csum_hdr(ipha)) { 7369 BUMP_MIB(&ip_mib, ipInCksumErrs); 7370 goto drop_pkt; 7371 } 7372 7373 /* Initiate write side IPPF processing */ 7374 if (IPP_ENABLED(IPP_FWD_OUT)) { 7375 ip_process(IPP_FWD_OUT, &mp, ill_index); 7376 if (mp == NULL) { 7377 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7378 "dropped/deferred during ip policy "\ 7379 "processing\n")); 7380 return; 7381 } 7382 } 7383 if ((first_mp = allocb(sizeof (ipsec_info_t), 7384 BPRI_HI)) == NULL) { 7385 goto drop_pkt; 7386 } 7387 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7388 mp = first_mp; 7389 7390 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7391 return; 7392 } 7393 7394 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7395 7396 ASSERT(ire->ire_ipif != NULL); 7397 7398 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7399 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7400 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 7401 NULL, out_ill, ipha, mp, mp); 7402 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7403 if (mp == NULL) 7404 return; 7405 7406 /* Now send the packet to the tunnel interface */ 7407 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7408 q = ire->ire_stq; 7409 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7410 if ((pktxmit_state == SEND_FAILED) || 7411 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7412 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7413 q->q_ptr)); 7414 } 7415 7416 return; 7417 7418 drop_pkt:; 7419 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7420 freemsg(mp); 7421 #undef rptr 7422 } 7423 7424 /* 7425 * Fills the ipsec_out_t data structure with appropriate fields and 7426 * prepends it to mp which contains the IP hdr + data that was meant 7427 * to be forwarded. Please note that ipsec_out_info data structure 7428 * is used here to communicate the outgoing ill path at ip_wput() 7429 * for the ICMP error packet. This has nothing to do with ipsec IP 7430 * security. ipsec_out_t is really used to pass the info to the module 7431 * IP where this information cannot be extracted from conn. 7432 * This functions is called by ip_mrtun_forward(). 7433 */ 7434 void 7435 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7436 { 7437 ipsec_out_t *io; 7438 7439 ASSERT(xmit_ill != NULL); 7440 first_mp->b_datap->db_type = M_CTL; 7441 first_mp->b_wptr += sizeof (ipsec_info_t); 7442 /* 7443 * This is to pass info to ip_wput in absence of conn. 7444 * ipsec_out_secure will be B_FALSE because of this. 7445 * Thus ipsec_out_secure being B_FALSE indicates that 7446 * this is not IPSEC security related information. 7447 */ 7448 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7449 io = (ipsec_out_t *)first_mp->b_rptr; 7450 io->ipsec_out_type = IPSEC_OUT; 7451 io->ipsec_out_len = sizeof (ipsec_out_t); 7452 first_mp->b_cont = mp; 7453 io->ipsec_out_ill_index = 7454 xmit_ill->ill_phyint->phyint_ifindex; 7455 io->ipsec_out_xmit_if = B_TRUE; 7456 } 7457 7458 /* 7459 * Return the network mask 7460 * associated with the specified address. 7461 */ 7462 ipaddr_t 7463 ip_net_mask(ipaddr_t addr) 7464 { 7465 uchar_t *up = (uchar_t *)&addr; 7466 ipaddr_t mask = 0; 7467 uchar_t *maskp = (uchar_t *)&mask; 7468 7469 #if defined(__i386) || defined(__amd64) 7470 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7471 #endif 7472 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7473 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7474 #endif 7475 if (CLASSD(addr)) { 7476 maskp[0] = 0xF0; 7477 return (mask); 7478 } 7479 if (addr == 0) 7480 return (0); 7481 maskp[0] = 0xFF; 7482 if ((up[0] & 0x80) == 0) 7483 return (mask); 7484 7485 maskp[1] = 0xFF; 7486 if ((up[0] & 0xC0) == 0x80) 7487 return (mask); 7488 7489 maskp[2] = 0xFF; 7490 if ((up[0] & 0xE0) == 0xC0) 7491 return (mask); 7492 7493 /* Must be experimental or multicast, indicate as much */ 7494 return ((ipaddr_t)0); 7495 } 7496 7497 /* 7498 * Select an ill for the packet by considering load spreading across 7499 * a different ill in the group if dst_ill is part of some group. 7500 */ 7501 ill_t * 7502 ip_newroute_get_dst_ill(ill_t *dst_ill) 7503 { 7504 ill_t *ill; 7505 7506 /* 7507 * We schedule irrespective of whether the source address is 7508 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7509 */ 7510 ill = illgrp_scheduler(dst_ill); 7511 if (ill == NULL) 7512 return (NULL); 7513 7514 /* 7515 * For groups with names ip_sioctl_groupname ensures that all 7516 * ills are of same type. For groups without names, ifgrp_insert 7517 * ensures this. 7518 */ 7519 ASSERT(dst_ill->ill_type == ill->ill_type); 7520 7521 return (ill); 7522 } 7523 7524 /* 7525 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7526 */ 7527 ill_t * 7528 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7529 { 7530 ill_t *ret_ill; 7531 7532 ASSERT(ifindex != 0); 7533 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7534 if (ret_ill == NULL || 7535 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7536 if (isv6) { 7537 if (ill != NULL) { 7538 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7539 } else { 7540 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7541 } 7542 ip1dbg(("ip_grab_attach_ill (IPv6): " 7543 "bad ifindex %d.\n", ifindex)); 7544 } else { 7545 BUMP_MIB(&ip_mib, ipOutDiscards); 7546 ip1dbg(("ip_grab_attach_ill (IPv4): " 7547 "bad ifindex %d.\n", ifindex)); 7548 } 7549 if (ret_ill != NULL) 7550 ill_refrele(ret_ill); 7551 freemsg(first_mp); 7552 return (NULL); 7553 } 7554 7555 return (ret_ill); 7556 } 7557 7558 /* 7559 * IPv4 - 7560 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7561 * out a packet to a destination address for which we do not have specific 7562 * (or sufficient) routing information. 7563 * 7564 * NOTE : These are the scopes of some of the variables that point at IRE, 7565 * which needs to be followed while making any future modifications 7566 * to avoid memory leaks. 7567 * 7568 * - ire and sire are the entries looked up initially by 7569 * ire_ftable_lookup. 7570 * - ipif_ire is used to hold the interface ire associated with 7571 * the new cache ire. But it's scope is limited, so we always REFRELE 7572 * it before branching out to error paths. 7573 * - save_ire is initialized before ire_create, so that ire returned 7574 * by ire_create will not over-write the ire. We REFRELE save_ire 7575 * before breaking out of the switch. 7576 * 7577 * Thus on failures, we have to REFRELE only ire and sire, if they 7578 * are not NULL. 7579 */ 7580 void 7581 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7582 zoneid_t zoneid) 7583 { 7584 areq_t *areq; 7585 ipaddr_t gw = 0; 7586 ire_t *ire = NULL; 7587 mblk_t *res_mp; 7588 ipaddr_t *addrp; 7589 ipaddr_t nexthop_addr; 7590 ipif_t *src_ipif = NULL; 7591 ill_t *dst_ill = NULL; 7592 ipha_t *ipha; 7593 ire_t *sire = NULL; 7594 mblk_t *first_mp; 7595 ire_t *save_ire; 7596 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7597 ushort_t ire_marks = 0; 7598 boolean_t mctl_present; 7599 ipsec_out_t *io; 7600 mblk_t *saved_mp; 7601 ire_t *first_sire = NULL; 7602 mblk_t *copy_mp = NULL; 7603 mblk_t *xmit_mp = NULL; 7604 ipaddr_t save_dst; 7605 uint32_t multirt_flags = 7606 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7607 boolean_t multirt_is_resolvable; 7608 boolean_t multirt_resolve_next; 7609 boolean_t do_attach_ill = B_FALSE; 7610 boolean_t ip_nexthop = B_FALSE; 7611 tsol_ire_gw_secattr_t *attrp = NULL; 7612 tsol_gcgrp_t *gcgrp = NULL; 7613 tsol_gcgrp_addr_t ga; 7614 7615 if (ip_debug > 2) { 7616 /* ip1dbg */ 7617 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7618 } 7619 7620 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7621 if (mctl_present) { 7622 io = (ipsec_out_t *)first_mp->b_rptr; 7623 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7624 ASSERT(zoneid == io->ipsec_out_zoneid); 7625 ASSERT(zoneid != ALL_ZONES); 7626 } 7627 7628 ipha = (ipha_t *)mp->b_rptr; 7629 7630 /* All multicast lookups come through ip_newroute_ipif() */ 7631 if (CLASSD(dst)) { 7632 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7633 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7634 freemsg(first_mp); 7635 return; 7636 } 7637 7638 if (mctl_present && io->ipsec_out_attach_if) { 7639 /* ip_grab_attach_ill returns a held ill */ 7640 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7641 io->ipsec_out_ill_index, B_FALSE); 7642 7643 /* Failure case frees things for us. */ 7644 if (attach_ill == NULL) 7645 return; 7646 7647 /* 7648 * Check if we need an ire that will not be 7649 * looked up by anybody else i.e. HIDDEN. 7650 */ 7651 if (ill_is_probeonly(attach_ill)) 7652 ire_marks = IRE_MARK_HIDDEN; 7653 } 7654 if (mctl_present && io->ipsec_out_ip_nexthop) { 7655 ip_nexthop = B_TRUE; 7656 nexthop_addr = io->ipsec_out_nexthop_addr; 7657 } 7658 /* 7659 * If this IRE is created for forwarding or it is not for 7660 * traffic for congestion controlled protocols, mark it as temporary. 7661 */ 7662 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7663 ire_marks |= IRE_MARK_TEMPORARY; 7664 7665 /* 7666 * Get what we can from ire_ftable_lookup which will follow an IRE 7667 * chain until it gets the most specific information available. 7668 * For example, we know that there is no IRE_CACHE for this dest, 7669 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7670 * ire_ftable_lookup will look up the gateway, etc. 7671 * Check if in_ill != NULL. If it is true, the packet must be 7672 * from an incoming interface where RTA_SRCIFP is set. 7673 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7674 * to the destination, of equal netmask length in the forward table, 7675 * will be recursively explored. If no information is available 7676 * for the final gateway of that route, we force the returned ire 7677 * to be equal to sire using MATCH_IRE_PARENT. 7678 * At least, in this case we have a starting point (in the buckets) 7679 * to look for other routes to the destination in the forward table. 7680 * This is actually used only for multirouting, where a list 7681 * of routes has to be processed in sequence. 7682 * 7683 * In the process of coming up with the most specific information, 7684 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7685 * for the gateway (i.e., one for which the ire_nce->nce_state is 7686 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7687 * Two caveats when handling incomplete ire's in ip_newroute: 7688 * - we should be careful when accessing its ire_nce (specifically 7689 * the nce_res_mp) ast it might change underneath our feet, and, 7690 * - not all legacy code path callers are prepared to handle 7691 * incomplete ire's, so we should not create/add incomplete 7692 * ire_cache entries here. (See discussion about temporary solution 7693 * further below). 7694 * 7695 * In order to minimize packet dropping, and to preserve existing 7696 * behavior, we treat this case as if there were no IRE_CACHE for the 7697 * gateway, and instead use the IF_RESOLVER ire to send out 7698 * another request to ARP (this is achieved by passing the 7699 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7700 * arp response comes back in ip_wput_nondata, we will create 7701 * a per-dst ire_cache that has an ND_COMPLETE ire. 7702 * 7703 * Note that this is a temporary solution; the correct solution is 7704 * to create an incomplete per-dst ire_cache entry, and send the 7705 * packet out when the gw's nce is resolved. In order to achieve this, 7706 * all packet processing must have been completed prior to calling 7707 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7708 * to be modified to accomodate this solution. 7709 */ 7710 if (in_ill != NULL) { 7711 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7712 in_ill, MATCH_IRE_TYPE); 7713 } else if (ip_nexthop) { 7714 /* 7715 * The first time we come here, we look for an IRE_INTERFACE 7716 * entry for the specified nexthop, set the dst to be the 7717 * nexthop address and create an IRE_CACHE entry for the 7718 * nexthop. The next time around, we are able to find an 7719 * IRE_CACHE entry for the nexthop, set the gateway to be the 7720 * nexthop address and create an IRE_CACHE entry for the 7721 * destination address via the specified nexthop. 7722 */ 7723 ire = ire_cache_lookup(nexthop_addr, zoneid, 7724 MBLK_GETLABEL(mp)); 7725 if (ire != NULL) { 7726 gw = nexthop_addr; 7727 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7728 } else { 7729 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7730 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7731 MBLK_GETLABEL(mp), 7732 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7733 if (ire != NULL) { 7734 dst = nexthop_addr; 7735 } 7736 } 7737 } else if (attach_ill == NULL) { 7738 ire = ire_ftable_lookup(dst, 0, 0, 0, 7739 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7740 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7741 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7742 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7743 } else { 7744 /* 7745 * attach_ill is set only for communicating with 7746 * on-link hosts. So, don't look for DEFAULT. 7747 */ 7748 ipif_t *attach_ipif; 7749 7750 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7751 if (attach_ipif == NULL) { 7752 ill_refrele(attach_ill); 7753 goto icmp_err_ret; 7754 } 7755 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7756 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7757 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7758 MATCH_IRE_SECATTR); 7759 ipif_refrele(attach_ipif); 7760 } 7761 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7762 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7763 7764 /* 7765 * This loop is run only once in most cases. 7766 * We loop to resolve further routes only when the destination 7767 * can be reached through multiple RTF_MULTIRT-flagged ires. 7768 */ 7769 do { 7770 /* Clear the previous iteration's values */ 7771 if (src_ipif != NULL) { 7772 ipif_refrele(src_ipif); 7773 src_ipif = NULL; 7774 } 7775 if (dst_ill != NULL) { 7776 ill_refrele(dst_ill); 7777 dst_ill = NULL; 7778 } 7779 7780 multirt_resolve_next = B_FALSE; 7781 /* 7782 * We check if packets have to be multirouted. 7783 * In this case, given the current <ire, sire> couple, 7784 * we look for the next suitable <ire, sire>. 7785 * This check is done in ire_multirt_lookup(), 7786 * which applies various criteria to find the next route 7787 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7788 * unchanged if it detects it has not been tried yet. 7789 */ 7790 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7791 ip3dbg(("ip_newroute: starting next_resolution " 7792 "with first_mp %p, tag %d\n", 7793 (void *)first_mp, 7794 MULTIRT_DEBUG_TAGGED(first_mp))); 7795 7796 ASSERT(sire != NULL); 7797 multirt_is_resolvable = 7798 ire_multirt_lookup(&ire, &sire, multirt_flags, 7799 MBLK_GETLABEL(mp)); 7800 7801 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7802 "ire %p, sire %p\n", 7803 multirt_is_resolvable, 7804 (void *)ire, (void *)sire)); 7805 7806 if (!multirt_is_resolvable) { 7807 /* 7808 * No more multirt route to resolve; give up 7809 * (all routes resolved or no more 7810 * resolvable routes). 7811 */ 7812 if (ire != NULL) { 7813 ire_refrele(ire); 7814 ire = NULL; 7815 } 7816 } else { 7817 ASSERT(sire != NULL); 7818 ASSERT(ire != NULL); 7819 /* 7820 * We simply use first_sire as a flag that 7821 * indicates if a resolvable multirt route 7822 * has already been found. 7823 * If it is not the case, we may have to send 7824 * an ICMP error to report that the 7825 * destination is unreachable. 7826 * We do not IRE_REFHOLD first_sire. 7827 */ 7828 if (first_sire == NULL) { 7829 first_sire = sire; 7830 } 7831 } 7832 } 7833 if (ire == NULL) { 7834 if (ip_debug > 3) { 7835 /* ip2dbg */ 7836 pr_addr_dbg("ip_newroute: " 7837 "can't resolve %s\n", AF_INET, &dst); 7838 } 7839 ip3dbg(("ip_newroute: " 7840 "ire %p, sire %p, first_sire %p\n", 7841 (void *)ire, (void *)sire, (void *)first_sire)); 7842 7843 if (sire != NULL) { 7844 ire_refrele(sire); 7845 sire = NULL; 7846 } 7847 7848 if (first_sire != NULL) { 7849 /* 7850 * At least one multirt route has been found 7851 * in the same call to ip_newroute(); 7852 * there is no need to report an ICMP error. 7853 * first_sire was not IRE_REFHOLDed. 7854 */ 7855 MULTIRT_DEBUG_UNTAG(first_mp); 7856 freemsg(first_mp); 7857 return; 7858 } 7859 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7860 RTA_DST); 7861 if (attach_ill != NULL) 7862 ill_refrele(attach_ill); 7863 goto icmp_err_ret; 7864 } 7865 7866 /* 7867 * When RTA_SRCIFP is used to add a route, then an interface 7868 * route is added in the source interface's routing table. 7869 * If the outgoing interface of this route is of type 7870 * IRE_IF_RESOLVER, then upon creation of the ire, 7871 * ire_nce->nce_res_mp is set to NULL. 7872 * Later, when this route is first used for forwarding 7873 * a packet, ip_newroute() is called 7874 * to resolve the hardware address of the outgoing ipif. 7875 * We do not come here for IRE_IF_NORESOLVER entries in the 7876 * source interface based table. We only come here if the 7877 * outgoing interface is a resolver interface and we don't 7878 * have the ire_nce->nce_res_mp information yet. 7879 * If in_ill is not null that means it is called from 7880 * ip_rput. 7881 */ 7882 7883 ASSERT(ire->ire_in_ill == NULL || 7884 (ire->ire_type == IRE_IF_RESOLVER && 7885 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7886 7887 /* 7888 * Verify that the returned IRE does not have either 7889 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7890 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7891 */ 7892 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7893 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7894 if (attach_ill != NULL) 7895 ill_refrele(attach_ill); 7896 goto icmp_err_ret; 7897 } 7898 /* 7899 * Increment the ire_ob_pkt_count field for ire if it is an 7900 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7901 * increment the same for the parent IRE, sire, if it is some 7902 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7903 * and HOST_REDIRECT). 7904 */ 7905 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7906 UPDATE_OB_PKT_COUNT(ire); 7907 ire->ire_last_used_time = lbolt; 7908 } 7909 7910 if (sire != NULL) { 7911 gw = sire->ire_gateway_addr; 7912 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7913 IRE_INTERFACE)) == 0); 7914 UPDATE_OB_PKT_COUNT(sire); 7915 sire->ire_last_used_time = lbolt; 7916 } 7917 /* 7918 * We have a route to reach the destination. 7919 * 7920 * 1) If the interface is part of ill group, try to get a new 7921 * ill taking load spreading into account. 7922 * 7923 * 2) After selecting the ill, get a source address that 7924 * might create good inbound load spreading. 7925 * ipif_select_source does this for us. 7926 * 7927 * If the application specified the ill (ifindex), we still 7928 * load spread. Only if the packets needs to go out 7929 * specifically on a given ill e.g. binding to 7930 * IPIF_NOFAILOVER address, then we don't try to use a 7931 * different ill for load spreading. 7932 */ 7933 if (attach_ill == NULL) { 7934 /* 7935 * Don't perform outbound load spreading in the 7936 * case of an RTF_MULTIRT route, as we actually 7937 * typically want to replicate outgoing packets 7938 * through particular interfaces. 7939 */ 7940 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7941 dst_ill = ire->ire_ipif->ipif_ill; 7942 /* for uniformity */ 7943 ill_refhold(dst_ill); 7944 } else { 7945 /* 7946 * If we are here trying to create an IRE_CACHE 7947 * for an offlink destination and have the 7948 * IRE_CACHE for the next hop and the latter is 7949 * using virtual IP source address selection i.e 7950 * it's ire->ire_ipif is pointing to a virtual 7951 * network interface (vni) then 7952 * ip_newroute_get_dst_ll() will return the vni 7953 * interface as the dst_ill. Since the vni is 7954 * virtual i.e not associated with any physical 7955 * interface, it cannot be the dst_ill, hence 7956 * in such a case call ip_newroute_get_dst_ll() 7957 * with the stq_ill instead of the ire_ipif ILL. 7958 * The function returns a refheld ill. 7959 */ 7960 if ((ire->ire_type == IRE_CACHE) && 7961 IS_VNI(ire->ire_ipif->ipif_ill)) 7962 dst_ill = ip_newroute_get_dst_ill( 7963 ire->ire_stq->q_ptr); 7964 else 7965 dst_ill = ip_newroute_get_dst_ill( 7966 ire->ire_ipif->ipif_ill); 7967 } 7968 if (dst_ill == NULL) { 7969 if (ip_debug > 2) { 7970 pr_addr_dbg("ip_newroute: " 7971 "no dst ill for dst" 7972 " %s\n", AF_INET, &dst); 7973 } 7974 goto icmp_err_ret; 7975 } 7976 } else { 7977 dst_ill = ire->ire_ipif->ipif_ill; 7978 /* for uniformity */ 7979 ill_refhold(dst_ill); 7980 /* 7981 * We should have found a route matching ill as we 7982 * called ire_ftable_lookup with MATCH_IRE_ILL. 7983 * Rather than asserting, when there is a mismatch, 7984 * we just drop the packet. 7985 */ 7986 if (dst_ill != attach_ill) { 7987 ip0dbg(("ip_newroute: Packet dropped as " 7988 "IPIF_NOFAILOVER ill is %s, " 7989 "ire->ire_ipif->ipif_ill is %s\n", 7990 attach_ill->ill_name, 7991 dst_ill->ill_name)); 7992 ill_refrele(attach_ill); 7993 goto icmp_err_ret; 7994 } 7995 } 7996 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7997 if (attach_ill != NULL) { 7998 ill_refrele(attach_ill); 7999 attach_ill = NULL; 8000 do_attach_ill = B_TRUE; 8001 } 8002 ASSERT(dst_ill != NULL); 8003 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8004 8005 /* 8006 * Pick the best source address from dst_ill. 8007 * 8008 * 1) If it is part of a multipathing group, we would 8009 * like to spread the inbound packets across different 8010 * interfaces. ipif_select_source picks a random source 8011 * across the different ills in the group. 8012 * 8013 * 2) If it is not part of a multipathing group, we try 8014 * to pick the source address from the destination 8015 * route. Clustering assumes that when we have multiple 8016 * prefixes hosted on an interface, the prefix of the 8017 * source address matches the prefix of the destination 8018 * route. We do this only if the address is not 8019 * DEPRECATED. 8020 * 8021 * 3) If the conn is in a different zone than the ire, we 8022 * need to pick a source address from the right zone. 8023 * 8024 * NOTE : If we hit case (1) above, the prefix of the source 8025 * address picked may not match the prefix of the 8026 * destination routes prefix as ipif_select_source 8027 * does not look at "dst" while picking a source 8028 * address. 8029 * If we want the same behavior as (2), we will need 8030 * to change the behavior of ipif_select_source. 8031 */ 8032 ASSERT(src_ipif == NULL); 8033 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8034 /* 8035 * The RTF_SETSRC flag is set in the parent ire (sire). 8036 * Check that the ipif matching the requested source 8037 * address still exists. 8038 */ 8039 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8040 zoneid, NULL, NULL, NULL, NULL); 8041 } 8042 if (src_ipif == NULL) { 8043 ire_marks |= IRE_MARK_USESRC_CHECK; 8044 if ((dst_ill->ill_group != NULL) || 8045 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8046 (connp != NULL && ire->ire_zoneid != zoneid && 8047 ire->ire_zoneid != ALL_ZONES) || 8048 (dst_ill->ill_usesrc_ifindex != 0)) { 8049 /* 8050 * If the destination is reachable via a 8051 * given gateway, the selected source address 8052 * should be in the same subnet as the gateway. 8053 * Otherwise, the destination is not reachable. 8054 * 8055 * If there are no interfaces on the same subnet 8056 * as the destination, ipif_select_source gives 8057 * first non-deprecated interface which might be 8058 * on a different subnet than the gateway. 8059 * This is not desirable. Hence pass the dst_ire 8060 * source address to ipif_select_source. 8061 * It is sure that the destination is reachable 8062 * with the dst_ire source address subnet. 8063 * So passing dst_ire source address to 8064 * ipif_select_source will make sure that the 8065 * selected source will be on the same subnet 8066 * as dst_ire source address. 8067 */ 8068 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8069 src_ipif = ipif_select_source(dst_ill, saddr, 8070 zoneid); 8071 if (src_ipif == NULL) { 8072 if (ip_debug > 2) { 8073 pr_addr_dbg("ip_newroute: " 8074 "no src for dst %s ", 8075 AF_INET, &dst); 8076 printf("through interface %s\n", 8077 dst_ill->ill_name); 8078 } 8079 goto icmp_err_ret; 8080 } 8081 } else { 8082 src_ipif = ire->ire_ipif; 8083 ASSERT(src_ipif != NULL); 8084 /* hold src_ipif for uniformity */ 8085 ipif_refhold(src_ipif); 8086 } 8087 } 8088 8089 /* 8090 * Assign a source address while we have the conn. 8091 * We can't have ip_wput_ire pick a source address when the 8092 * packet returns from arp since we need to look at 8093 * conn_unspec_src and conn_zoneid, and we lose the conn when 8094 * going through arp. 8095 * 8096 * NOTE : ip_newroute_v6 does not have this piece of code as 8097 * it uses ip6i to store this information. 8098 */ 8099 if (ipha->ipha_src == INADDR_ANY && 8100 (connp == NULL || !connp->conn_unspec_src)) { 8101 ipha->ipha_src = src_ipif->ipif_src_addr; 8102 } 8103 if (ip_debug > 3) { 8104 /* ip2dbg */ 8105 pr_addr_dbg("ip_newroute: first hop %s\n", 8106 AF_INET, &gw); 8107 } 8108 ip2dbg(("\tire type %s (%d)\n", 8109 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8110 8111 /* 8112 * The TTL of multirouted packets is bounded by the 8113 * ip_multirt_ttl ndd variable. 8114 */ 8115 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8116 /* Force TTL of multirouted packets */ 8117 if ((ip_multirt_ttl > 0) && 8118 (ipha->ipha_ttl > ip_multirt_ttl)) { 8119 ip2dbg(("ip_newroute: forcing multirt TTL " 8120 "to %d (was %d), dst 0x%08x\n", 8121 ip_multirt_ttl, ipha->ipha_ttl, 8122 ntohl(sire->ire_addr))); 8123 ipha->ipha_ttl = ip_multirt_ttl; 8124 } 8125 } 8126 /* 8127 * At this point in ip_newroute(), ire is either the 8128 * IRE_CACHE of the next-hop gateway for an off-subnet 8129 * destination or an IRE_INTERFACE type that should be used 8130 * to resolve an on-subnet destination or an on-subnet 8131 * next-hop gateway. 8132 * 8133 * In the IRE_CACHE case, we have the following : 8134 * 8135 * 1) src_ipif - used for getting a source address. 8136 * 8137 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8138 * means packets using this IRE_CACHE will go out on 8139 * dst_ill. 8140 * 8141 * 3) The IRE sire will point to the prefix that is the 8142 * longest matching route for the destination. These 8143 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8144 * 8145 * The newly created IRE_CACHE entry for the off-subnet 8146 * destination is tied to both the prefix route and the 8147 * interface route used to resolve the next-hop gateway 8148 * via the ire_phandle and ire_ihandle fields, 8149 * respectively. 8150 * 8151 * In the IRE_INTERFACE case, we have the following : 8152 * 8153 * 1) src_ipif - used for getting a source address. 8154 * 8155 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8156 * means packets using the IRE_CACHE that we will build 8157 * here will go out on dst_ill. 8158 * 8159 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8160 * to be created will only be tied to the IRE_INTERFACE 8161 * that was derived from the ire_ihandle field. 8162 * 8163 * If sire is non-NULL, it means the destination is 8164 * off-link and we will first create the IRE_CACHE for the 8165 * gateway. Next time through ip_newroute, we will create 8166 * the IRE_CACHE for the final destination as described 8167 * above. 8168 * 8169 * In both cases, after the current resolution has been 8170 * completed (or possibly initialised, in the IRE_INTERFACE 8171 * case), the loop may be re-entered to attempt the resolution 8172 * of another RTF_MULTIRT route. 8173 * 8174 * When an IRE_CACHE entry for the off-subnet destination is 8175 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8176 * for further processing in emission loops. 8177 */ 8178 save_ire = ire; 8179 switch (ire->ire_type) { 8180 case IRE_CACHE: { 8181 ire_t *ipif_ire; 8182 mblk_t *ire_fp_mp; 8183 8184 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8185 if (gw == 0) 8186 gw = ire->ire_gateway_addr; 8187 /* 8188 * We need 3 ire's to create a new cache ire for an 8189 * off-link destination from the cache ire of the 8190 * gateway. 8191 * 8192 * 1. The prefix ire 'sire' (Note that this does 8193 * not apply to the conn_nexthop_set case) 8194 * 2. The cache ire of the gateway 'ire' 8195 * 3. The interface ire 'ipif_ire' 8196 * 8197 * We have (1) and (2). We lookup (3) below. 8198 * 8199 * If there is no interface route to the gateway, 8200 * it is a race condition, where we found the cache 8201 * but the interface route has been deleted. 8202 */ 8203 if (ip_nexthop) { 8204 ipif_ire = ire_ihandle_lookup_onlink(ire); 8205 } else { 8206 ipif_ire = 8207 ire_ihandle_lookup_offlink(ire, sire); 8208 } 8209 if (ipif_ire == NULL) { 8210 ip1dbg(("ip_newroute: " 8211 "ire_ihandle_lookup_offlink failed\n")); 8212 goto icmp_err_ret; 8213 } 8214 /* 8215 * XXX We are using the same res_mp 8216 * (DL_UNITDATA_REQ) though the save_ire is not 8217 * pointing at the same ill. 8218 * This is incorrect. We need to send it up to the 8219 * resolver to get the right res_mp. For ethernets 8220 * this may be okay (ill_type == DL_ETHER). 8221 */ 8222 res_mp = save_ire->ire_nce->nce_res_mp; 8223 ire_fp_mp = NULL; 8224 /* 8225 * save_ire's nce_fp_mp can't change since it is 8226 * not an IRE_MIPRTUN or IRE_BROADCAST 8227 * LOCK_IRE_FP_MP does not do any useful work in 8228 * the case of IRE_CACHE. So we don't use it below. 8229 */ 8230 if (save_ire->ire_stq == dst_ill->ill_wq) 8231 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8232 8233 /* 8234 * Check cached gateway IRE for any security 8235 * attributes; if found, associate the gateway 8236 * credentials group to the destination IRE. 8237 */ 8238 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8239 mutex_enter(&attrp->igsa_lock); 8240 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8241 GCGRP_REFHOLD(gcgrp); 8242 mutex_exit(&attrp->igsa_lock); 8243 } 8244 8245 ire = ire_create( 8246 (uchar_t *)&dst, /* dest address */ 8247 (uchar_t *)&ip_g_all_ones, /* mask */ 8248 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8249 (uchar_t *)&gw, /* gateway address */ 8250 NULL, 8251 &save_ire->ire_max_frag, 8252 ire_fp_mp, /* Fast Path header */ 8253 dst_ill->ill_rq, /* recv-from queue */ 8254 dst_ill->ill_wq, /* send-to queue */ 8255 IRE_CACHE, /* IRE type */ 8256 res_mp, 8257 src_ipif, 8258 in_ill, /* incoming ill */ 8259 (sire != NULL) ? 8260 sire->ire_mask : 0, /* Parent mask */ 8261 (sire != NULL) ? 8262 sire->ire_phandle : 0, /* Parent handle */ 8263 ipif_ire->ire_ihandle, /* Interface handle */ 8264 (sire != NULL) ? (sire->ire_flags & 8265 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8266 (sire != NULL) ? 8267 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8268 NULL, 8269 gcgrp); 8270 8271 if (ire == NULL) { 8272 if (gcgrp != NULL) { 8273 GCGRP_REFRELE(gcgrp); 8274 gcgrp = NULL; 8275 } 8276 ire_refrele(ipif_ire); 8277 ire_refrele(save_ire); 8278 break; 8279 } 8280 8281 /* reference now held by IRE */ 8282 gcgrp = NULL; 8283 8284 ire->ire_marks |= ire_marks; 8285 8286 /* 8287 * Prevent sire and ipif_ire from getting deleted. 8288 * The newly created ire is tied to both of them via 8289 * the phandle and ihandle respectively. 8290 */ 8291 if (sire != NULL) { 8292 IRB_REFHOLD(sire->ire_bucket); 8293 /* Has it been removed already ? */ 8294 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8295 IRB_REFRELE(sire->ire_bucket); 8296 ire_refrele(ipif_ire); 8297 ire_refrele(save_ire); 8298 break; 8299 } 8300 } 8301 8302 IRB_REFHOLD(ipif_ire->ire_bucket); 8303 /* Has it been removed already ? */ 8304 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8305 IRB_REFRELE(ipif_ire->ire_bucket); 8306 if (sire != NULL) 8307 IRB_REFRELE(sire->ire_bucket); 8308 ire_refrele(ipif_ire); 8309 ire_refrele(save_ire); 8310 break; 8311 } 8312 8313 xmit_mp = first_mp; 8314 /* 8315 * In the case of multirouting, a copy 8316 * of the packet is done before its sending. 8317 * The copy is used to attempt another 8318 * route resolution, in a next loop. 8319 */ 8320 if (ire->ire_flags & RTF_MULTIRT) { 8321 copy_mp = copymsg(first_mp); 8322 if (copy_mp != NULL) { 8323 xmit_mp = copy_mp; 8324 MULTIRT_DEBUG_TAG(first_mp); 8325 } 8326 } 8327 ire_add_then_send(q, ire, xmit_mp); 8328 ire_refrele(save_ire); 8329 8330 /* Assert that sire is not deleted yet. */ 8331 if (sire != NULL) { 8332 ASSERT(sire->ire_ptpn != NULL); 8333 IRB_REFRELE(sire->ire_bucket); 8334 } 8335 8336 /* Assert that ipif_ire is not deleted yet. */ 8337 ASSERT(ipif_ire->ire_ptpn != NULL); 8338 IRB_REFRELE(ipif_ire->ire_bucket); 8339 ire_refrele(ipif_ire); 8340 8341 /* 8342 * If copy_mp is not NULL, multirouting was 8343 * requested. We loop to initiate a next 8344 * route resolution attempt, starting from sire. 8345 */ 8346 if (copy_mp != NULL) { 8347 /* 8348 * Search for the next unresolved 8349 * multirt route. 8350 */ 8351 copy_mp = NULL; 8352 ipif_ire = NULL; 8353 ire = NULL; 8354 multirt_resolve_next = B_TRUE; 8355 continue; 8356 } 8357 if (sire != NULL) 8358 ire_refrele(sire); 8359 ipif_refrele(src_ipif); 8360 ill_refrele(dst_ill); 8361 return; 8362 } 8363 case IRE_IF_NORESOLVER: { 8364 /* 8365 * We have what we need to build an IRE_CACHE. 8366 * 8367 * Create a new res_mp with the IP gateway address 8368 * in destination address in the DLPI hdr if the 8369 * physical length is exactly 4 bytes. 8370 */ 8371 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8372 uchar_t *addr; 8373 8374 if (gw) 8375 addr = (uchar_t *)&gw; 8376 else 8377 addr = (uchar_t *)&dst; 8378 8379 res_mp = ill_dlur_gen(addr, 8380 dst_ill->ill_phys_addr_length, 8381 dst_ill->ill_sap, 8382 dst_ill->ill_sap_length); 8383 8384 if (res_mp == NULL) { 8385 ip1dbg(("ip_newroute: res_mp NULL\n")); 8386 break; 8387 } 8388 } else if (dst_ill->ill_resolver_mp == NULL) { 8389 ip1dbg(("ip_newroute: dst_ill %p " 8390 "for IF_NORESOLV ire %p has " 8391 "no ill_resolver_mp\n", 8392 (void *)dst_ill, (void *)ire)); 8393 break; 8394 } else { 8395 res_mp = NULL; 8396 } 8397 8398 /* 8399 * TSol note: We are creating the ire cache for the 8400 * destination 'dst'. If 'dst' is offlink, going 8401 * through the first hop 'gw', the security attributes 8402 * of 'dst' must be set to point to the gateway 8403 * credentials of gateway 'gw'. If 'dst' is onlink, it 8404 * is possible that 'dst' is a potential gateway that is 8405 * referenced by some route that has some security 8406 * attributes. Thus in the former case, we need to do a 8407 * gcgrp_lookup of 'gw' while in the latter case we 8408 * need to do gcgrp_lookup of 'dst' itself. 8409 */ 8410 ga.ga_af = AF_INET; 8411 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8412 &ga.ga_addr); 8413 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8414 8415 ire = ire_create( 8416 (uchar_t *)&dst, /* dest address */ 8417 (uchar_t *)&ip_g_all_ones, /* mask */ 8418 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8419 (uchar_t *)&gw, /* gateway address */ 8420 NULL, 8421 &save_ire->ire_max_frag, 8422 NULL, /* Fast Path header */ 8423 dst_ill->ill_rq, /* recv-from queue */ 8424 dst_ill->ill_wq, /* send-to queue */ 8425 IRE_CACHE, 8426 res_mp, 8427 src_ipif, 8428 in_ill, /* Incoming ill */ 8429 save_ire->ire_mask, /* Parent mask */ 8430 (sire != NULL) ? /* Parent handle */ 8431 sire->ire_phandle : 0, 8432 save_ire->ire_ihandle, /* Interface handle */ 8433 (sire != NULL) ? sire->ire_flags & 8434 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8435 &(save_ire->ire_uinfo), 8436 NULL, 8437 gcgrp); 8438 8439 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8440 freeb(res_mp); 8441 8442 if (ire == NULL) { 8443 if (gcgrp != NULL) { 8444 GCGRP_REFRELE(gcgrp); 8445 gcgrp = NULL; 8446 } 8447 ire_refrele(save_ire); 8448 break; 8449 } 8450 8451 /* reference now held by IRE */ 8452 gcgrp = NULL; 8453 8454 ire->ire_marks |= ire_marks; 8455 8456 /* Prevent save_ire from getting deleted */ 8457 IRB_REFHOLD(save_ire->ire_bucket); 8458 /* Has it been removed already ? */ 8459 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8460 IRB_REFRELE(save_ire->ire_bucket); 8461 ire_refrele(save_ire); 8462 break; 8463 } 8464 8465 /* 8466 * In the case of multirouting, a copy 8467 * of the packet is made before it is sent. 8468 * The copy is used in the next 8469 * loop to attempt another resolution. 8470 */ 8471 xmit_mp = first_mp; 8472 if ((sire != NULL) && 8473 (sire->ire_flags & RTF_MULTIRT)) { 8474 copy_mp = copymsg(first_mp); 8475 if (copy_mp != NULL) { 8476 xmit_mp = copy_mp; 8477 MULTIRT_DEBUG_TAG(first_mp); 8478 } 8479 } 8480 ire_add_then_send(q, ire, xmit_mp); 8481 8482 /* Assert that it is not deleted yet. */ 8483 ASSERT(save_ire->ire_ptpn != NULL); 8484 IRB_REFRELE(save_ire->ire_bucket); 8485 ire_refrele(save_ire); 8486 8487 if (copy_mp != NULL) { 8488 /* 8489 * If we found a (no)resolver, we ignore any 8490 * trailing top priority IRE_CACHE in further 8491 * loops. This ensures that we do not omit any 8492 * (no)resolver. 8493 * This IRE_CACHE, if any, will be processed 8494 * by another thread entering ip_newroute(). 8495 * IRE_CACHE entries, if any, will be processed 8496 * by another thread entering ip_newroute(), 8497 * (upon resolver response, for instance). 8498 * This aims to force parallel multirt 8499 * resolutions as soon as a packet must be sent. 8500 * In the best case, after the tx of only one 8501 * packet, all reachable routes are resolved. 8502 * Otherwise, the resolution of all RTF_MULTIRT 8503 * routes would require several emissions. 8504 */ 8505 multirt_flags &= ~MULTIRT_CACHEGW; 8506 8507 /* 8508 * Search for the next unresolved multirt 8509 * route. 8510 */ 8511 copy_mp = NULL; 8512 save_ire = NULL; 8513 ire = NULL; 8514 multirt_resolve_next = B_TRUE; 8515 continue; 8516 } 8517 8518 /* 8519 * Don't need sire anymore 8520 */ 8521 if (sire != NULL) 8522 ire_refrele(sire); 8523 8524 ipif_refrele(src_ipif); 8525 ill_refrele(dst_ill); 8526 return; 8527 } 8528 case IRE_IF_RESOLVER: 8529 /* 8530 * We can't build an IRE_CACHE yet, but at least we 8531 * found a resolver that can help. 8532 */ 8533 res_mp = dst_ill->ill_resolver_mp; 8534 if (!OK_RESOLVER_MP(res_mp)) 8535 break; 8536 8537 /* 8538 * To be at this point in the code with a non-zero gw 8539 * means that dst is reachable through a gateway that 8540 * we have never resolved. By changing dst to the gw 8541 * addr we resolve the gateway first. 8542 * When ire_add_then_send() tries to put the IP dg 8543 * to dst, it will reenter ip_newroute() at which 8544 * time we will find the IRE_CACHE for the gw and 8545 * create another IRE_CACHE in case IRE_CACHE above. 8546 */ 8547 if (gw != INADDR_ANY) { 8548 /* 8549 * The source ipif that was determined above was 8550 * relative to the destination address, not the 8551 * gateway's. If src_ipif was not taken out of 8552 * the IRE_IF_RESOLVER entry, we'll need to call 8553 * ipif_select_source() again. 8554 */ 8555 if (src_ipif != ire->ire_ipif) { 8556 ipif_refrele(src_ipif); 8557 src_ipif = ipif_select_source(dst_ill, 8558 gw, zoneid); 8559 if (src_ipif == NULL) { 8560 if (ip_debug > 2) { 8561 pr_addr_dbg( 8562 "ip_newroute: no " 8563 "src for gw %s ", 8564 AF_INET, &gw); 8565 printf("through " 8566 "interface %s\n", 8567 dst_ill->ill_name); 8568 } 8569 goto icmp_err_ret; 8570 } 8571 } 8572 save_dst = dst; 8573 dst = gw; 8574 gw = INADDR_ANY; 8575 } 8576 8577 /* 8578 * We obtain a partial IRE_CACHE which we will pass 8579 * along with the resolver query. When the response 8580 * comes back it will be there ready for us to add. 8581 * The ire_max_frag is atomically set under the 8582 * irebucket lock in ire_add_v[46]. 8583 */ 8584 8585 ire = ire_create_mp( 8586 (uchar_t *)&dst, /* dest address */ 8587 (uchar_t *)&ip_g_all_ones, /* mask */ 8588 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8589 (uchar_t *)&gw, /* gateway address */ 8590 NULL, /* no in_src_addr */ 8591 NULL, /* ire_max_frag */ 8592 NULL, /* Fast Path header */ 8593 dst_ill->ill_rq, /* recv-from queue */ 8594 dst_ill->ill_wq, /* send-to queue */ 8595 IRE_CACHE, 8596 NULL, 8597 src_ipif, /* Interface ipif */ 8598 in_ill, /* Incoming ILL */ 8599 save_ire->ire_mask, /* Parent mask */ 8600 0, 8601 save_ire->ire_ihandle, /* Interface handle */ 8602 0, /* flags if any */ 8603 &(save_ire->ire_uinfo), 8604 NULL, 8605 NULL); 8606 8607 if (ire == NULL) { 8608 ire_refrele(save_ire); 8609 break; 8610 } 8611 8612 if ((sire != NULL) && 8613 (sire->ire_flags & RTF_MULTIRT)) { 8614 copy_mp = copymsg(first_mp); 8615 if (copy_mp != NULL) 8616 MULTIRT_DEBUG_TAG(copy_mp); 8617 } 8618 8619 ire->ire_marks |= ire_marks; 8620 8621 /* 8622 * Construct message chain for the resolver 8623 * of the form: 8624 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8625 * Packet could contain a IPSEC_OUT mp. 8626 * 8627 * NOTE : ire will be added later when the response 8628 * comes back from ARP. If the response does not 8629 * come back, ARP frees the packet. For this reason, 8630 * we can't REFHOLD the bucket of save_ire to prevent 8631 * deletions. We may not be able to REFRELE the bucket 8632 * if the response never comes back. Thus, before 8633 * adding the ire, ire_add_v4 will make sure that the 8634 * interface route does not get deleted. This is the 8635 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8636 * where we can always prevent deletions because of 8637 * the synchronous nature of adding IRES i.e 8638 * ire_add_then_send is called after creating the IRE. 8639 */ 8640 ASSERT(ire->ire_mp != NULL); 8641 ire->ire_mp->b_cont = first_mp; 8642 /* Have saved_mp handy, for cleanup if canput fails */ 8643 saved_mp = mp; 8644 mp = copyb(res_mp); 8645 if (mp == NULL) { 8646 /* Prepare for cleanup */ 8647 mp = saved_mp; /* pkt */ 8648 ire_delete(ire); /* ire_mp */ 8649 ire = NULL; 8650 ire_refrele(save_ire); 8651 if (copy_mp != NULL) { 8652 MULTIRT_DEBUG_UNTAG(copy_mp); 8653 freemsg(copy_mp); 8654 copy_mp = NULL; 8655 } 8656 break; 8657 } 8658 linkb(mp, ire->ire_mp); 8659 8660 /* 8661 * Fill in the source and dest addrs for the resolver. 8662 * NOTE: this depends on memory layouts imposed by 8663 * ill_init(). 8664 */ 8665 areq = (areq_t *)mp->b_rptr; 8666 addrp = (ipaddr_t *)((char *)areq + 8667 areq->areq_sender_addr_offset); 8668 if (do_attach_ill) { 8669 /* 8670 * This is bind to no failover case. 8671 * arp packet also must go out on attach_ill. 8672 */ 8673 ASSERT(ipha->ipha_src != NULL); 8674 *addrp = ipha->ipha_src; 8675 } else { 8676 *addrp = save_ire->ire_src_addr; 8677 } 8678 8679 ire_refrele(save_ire); 8680 addrp = (ipaddr_t *)((char *)areq + 8681 areq->areq_target_addr_offset); 8682 *addrp = dst; 8683 /* Up to the resolver. */ 8684 if (canputnext(dst_ill->ill_rq) && 8685 !(dst_ill->ill_arp_closing)) { 8686 putnext(dst_ill->ill_rq, mp); 8687 ire = NULL; 8688 if (copy_mp != NULL) { 8689 /* 8690 * If we found a resolver, we ignore 8691 * any trailing top priority IRE_CACHE 8692 * in the further loops. This ensures 8693 * that we do not omit any resolver. 8694 * IRE_CACHE entries, if any, will be 8695 * processed next time we enter 8696 * ip_newroute(). 8697 */ 8698 multirt_flags &= ~MULTIRT_CACHEGW; 8699 /* 8700 * Search for the next unresolved 8701 * multirt route. 8702 */ 8703 first_mp = copy_mp; 8704 copy_mp = NULL; 8705 /* Prepare the next resolution loop. */ 8706 mp = first_mp; 8707 EXTRACT_PKT_MP(mp, first_mp, 8708 mctl_present); 8709 if (mctl_present) 8710 io = (ipsec_out_t *) 8711 first_mp->b_rptr; 8712 ipha = (ipha_t *)mp->b_rptr; 8713 8714 ASSERT(sire != NULL); 8715 8716 dst = save_dst; 8717 multirt_resolve_next = B_TRUE; 8718 continue; 8719 } 8720 8721 if (sire != NULL) 8722 ire_refrele(sire); 8723 8724 /* 8725 * The response will come back in ip_wput 8726 * with db_type IRE_DB_TYPE. 8727 */ 8728 ipif_refrele(src_ipif); 8729 ill_refrele(dst_ill); 8730 return; 8731 } else { 8732 /* Prepare for cleanup */ 8733 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8734 mp); 8735 mp->b_cont = NULL; 8736 freeb(mp); /* areq */ 8737 /* 8738 * this is an ire that is not added to the 8739 * cache. ire_freemblk will handle the release 8740 * of any resources associated with the ire. 8741 */ 8742 ire_delete(ire); /* ire_mp */ 8743 mp = saved_mp; /* pkt */ 8744 ire = NULL; 8745 if (copy_mp != NULL) { 8746 MULTIRT_DEBUG_UNTAG(copy_mp); 8747 freemsg(copy_mp); 8748 copy_mp = NULL; 8749 } 8750 break; 8751 } 8752 default: 8753 break; 8754 } 8755 } while (multirt_resolve_next); 8756 8757 ip1dbg(("ip_newroute: dropped\n")); 8758 /* Did this packet originate externally? */ 8759 if (mp->b_prev) { 8760 mp->b_next = NULL; 8761 mp->b_prev = NULL; 8762 BUMP_MIB(&ip_mib, ipInDiscards); 8763 } else { 8764 BUMP_MIB(&ip_mib, ipOutDiscards); 8765 } 8766 ASSERT(copy_mp == NULL); 8767 MULTIRT_DEBUG_UNTAG(first_mp); 8768 freemsg(first_mp); 8769 if (ire != NULL) 8770 ire_refrele(ire); 8771 if (sire != NULL) 8772 ire_refrele(sire); 8773 if (src_ipif != NULL) 8774 ipif_refrele(src_ipif); 8775 if (dst_ill != NULL) 8776 ill_refrele(dst_ill); 8777 return; 8778 8779 icmp_err_ret: 8780 ip1dbg(("ip_newroute: no route\n")); 8781 if (src_ipif != NULL) 8782 ipif_refrele(src_ipif); 8783 if (dst_ill != NULL) 8784 ill_refrele(dst_ill); 8785 if (sire != NULL) 8786 ire_refrele(sire); 8787 /* Did this packet originate externally? */ 8788 if (mp->b_prev) { 8789 mp->b_next = NULL; 8790 mp->b_prev = NULL; 8791 /* XXX ipInNoRoutes */ 8792 q = WR(q); 8793 } else { 8794 /* 8795 * Since ip_wput() isn't close to finished, we fill 8796 * in enough of the header for credible error reporting. 8797 */ 8798 if (ip_hdr_complete(ipha, zoneid)) { 8799 /* Failed */ 8800 MULTIRT_DEBUG_UNTAG(first_mp); 8801 freemsg(first_mp); 8802 if (ire != NULL) 8803 ire_refrele(ire); 8804 return; 8805 } 8806 } 8807 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8808 8809 /* 8810 * At this point we will have ire only if RTF_BLACKHOLE 8811 * or RTF_REJECT flags are set on the IRE. It will not 8812 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8813 */ 8814 if (ire != NULL) { 8815 if (ire->ire_flags & RTF_BLACKHOLE) { 8816 ire_refrele(ire); 8817 MULTIRT_DEBUG_UNTAG(first_mp); 8818 freemsg(first_mp); 8819 return; 8820 } 8821 ire_refrele(ire); 8822 } 8823 if (ip_source_routed(ipha)) { 8824 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8825 zoneid); 8826 return; 8827 } 8828 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8829 } 8830 8831 /* 8832 * IPv4 - 8833 * ip_newroute_ipif is called by ip_wput_multicast and 8834 * ip_rput_forward_multicast whenever we need to send 8835 * out a packet to a destination address for which we do not have specific 8836 * routing information. It is used when the packet will be sent out 8837 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8838 * socket option is set or icmp error message wants to go out on a particular 8839 * interface for a unicast packet. 8840 * 8841 * In most cases, the destination address is resolved thanks to the ipif 8842 * intrinsic resolver. However, there are some cases where the call to 8843 * ip_newroute_ipif must take into account the potential presence of 8844 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8845 * that uses the interface. This is specified through flags, 8846 * which can be a combination of: 8847 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8848 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8849 * and flags. Additionally, the packet source address has to be set to 8850 * the specified address. The caller is thus expected to set this flag 8851 * if the packet has no specific source address yet. 8852 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8853 * flag, the resulting ire will inherit the flag. All unresolved routes 8854 * to the destination must be explored in the same call to 8855 * ip_newroute_ipif(). 8856 */ 8857 static void 8858 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8859 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8860 { 8861 areq_t *areq; 8862 ire_t *ire = NULL; 8863 mblk_t *res_mp; 8864 ipaddr_t *addrp; 8865 mblk_t *first_mp; 8866 ire_t *save_ire = NULL; 8867 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8868 ipif_t *src_ipif = NULL; 8869 ushort_t ire_marks = 0; 8870 ill_t *dst_ill = NULL; 8871 boolean_t mctl_present; 8872 ipsec_out_t *io; 8873 ipha_t *ipha; 8874 int ihandle = 0; 8875 mblk_t *saved_mp; 8876 ire_t *fire = NULL; 8877 mblk_t *copy_mp = NULL; 8878 boolean_t multirt_resolve_next; 8879 ipaddr_t ipha_dst; 8880 8881 /* 8882 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8883 * here for uniformity 8884 */ 8885 ipif_refhold(ipif); 8886 8887 /* 8888 * This loop is run only once in most cases. 8889 * We loop to resolve further routes only when the destination 8890 * can be reached through multiple RTF_MULTIRT-flagged ires. 8891 */ 8892 do { 8893 if (dst_ill != NULL) { 8894 ill_refrele(dst_ill); 8895 dst_ill = NULL; 8896 } 8897 if (src_ipif != NULL) { 8898 ipif_refrele(src_ipif); 8899 src_ipif = NULL; 8900 } 8901 multirt_resolve_next = B_FALSE; 8902 8903 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8904 ipif->ipif_ill->ill_name)); 8905 8906 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8907 if (mctl_present) 8908 io = (ipsec_out_t *)first_mp->b_rptr; 8909 8910 ipha = (ipha_t *)mp->b_rptr; 8911 8912 /* 8913 * Save the packet destination address, we may need it after 8914 * the packet has been consumed. 8915 */ 8916 ipha_dst = ipha->ipha_dst; 8917 8918 /* 8919 * If the interface is a pt-pt interface we look for an 8920 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8921 * local_address and the pt-pt destination address. Otherwise 8922 * we just match the local address. 8923 * NOTE: dst could be different than ipha->ipha_dst in case 8924 * of sending igmp multicast packets over a point-to-point 8925 * connection. 8926 * Thus we must be careful enough to check ipha_dst to be a 8927 * multicast address, otherwise it will take xmit_if path for 8928 * multicast packets resulting into kernel stack overflow by 8929 * repeated calls to ip_newroute_ipif from ire_send(). 8930 */ 8931 if (CLASSD(ipha_dst) && 8932 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8933 goto err_ret; 8934 } 8935 8936 /* 8937 * We check if an IRE_OFFSUBNET for the addr that goes through 8938 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8939 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8940 * propagate its flags to the new ire. 8941 */ 8942 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8943 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8944 ip2dbg(("ip_newroute_ipif: " 8945 "ipif_lookup_multi_ire(" 8946 "ipif %p, dst %08x) = fire %p\n", 8947 (void *)ipif, ntohl(dst), (void *)fire)); 8948 } 8949 8950 if (mctl_present && io->ipsec_out_attach_if) { 8951 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8952 io->ipsec_out_ill_index, B_FALSE); 8953 8954 /* Failure case frees things for us. */ 8955 if (attach_ill == NULL) { 8956 ipif_refrele(ipif); 8957 if (fire != NULL) 8958 ire_refrele(fire); 8959 return; 8960 } 8961 8962 /* 8963 * Check if we need an ire that will not be 8964 * looked up by anybody else i.e. HIDDEN. 8965 */ 8966 if (ill_is_probeonly(attach_ill)) { 8967 ire_marks = IRE_MARK_HIDDEN; 8968 } 8969 /* 8970 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8971 * case. 8972 */ 8973 dst_ill = ipif->ipif_ill; 8974 /* attach_ill has been refheld by ip_grab_attach_ill */ 8975 ASSERT(dst_ill == attach_ill); 8976 } else { 8977 /* 8978 * If this is set by IP_XMIT_IF, then make sure that 8979 * ipif is pointing to the same ill as the IP_XMIT_IF 8980 * specified ill. 8981 */ 8982 ASSERT((connp == NULL) || 8983 (connp->conn_xmit_if_ill == NULL) || 8984 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8985 /* 8986 * If the interface belongs to an interface group, 8987 * make sure the next possible interface in the group 8988 * is used. This encourages load spreading among 8989 * peers in an interface group. 8990 * Note: load spreading is disabled for RTF_MULTIRT 8991 * routes. 8992 */ 8993 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8994 (fire->ire_flags & RTF_MULTIRT)) { 8995 /* 8996 * Don't perform outbound load spreading 8997 * in the case of an RTF_MULTIRT issued route, 8998 * we actually typically want to replicate 8999 * outgoing packets through particular 9000 * interfaces. 9001 */ 9002 dst_ill = ipif->ipif_ill; 9003 ill_refhold(dst_ill); 9004 } else { 9005 dst_ill = ip_newroute_get_dst_ill( 9006 ipif->ipif_ill); 9007 } 9008 if (dst_ill == NULL) { 9009 if (ip_debug > 2) { 9010 pr_addr_dbg("ip_newroute_ipif: " 9011 "no dst ill for dst %s\n", 9012 AF_INET, &dst); 9013 } 9014 goto err_ret; 9015 } 9016 } 9017 9018 /* 9019 * Pick a source address preferring non-deprecated ones. 9020 * Unlike ip_newroute, we don't do any source address 9021 * selection here since for multicast it really does not help 9022 * in inbound load spreading as in the unicast case. 9023 */ 9024 if ((flags & RTF_SETSRC) && (fire != NULL) && 9025 (fire->ire_flags & RTF_SETSRC)) { 9026 /* 9027 * As requested by flags, an IRE_OFFSUBNET was looked up 9028 * on that interface. This ire has RTF_SETSRC flag, so 9029 * the source address of the packet must be changed. 9030 * Check that the ipif matching the requested source 9031 * address still exists. 9032 */ 9033 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9034 zoneid, NULL, NULL, NULL, NULL); 9035 } 9036 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9037 (connp != NULL && ipif->ipif_zoneid != zoneid && 9038 ipif->ipif_zoneid != ALL_ZONES)) && 9039 (src_ipif == NULL)) { 9040 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9041 if (src_ipif == NULL) { 9042 if (ip_debug > 2) { 9043 /* ip1dbg */ 9044 pr_addr_dbg("ip_newroute_ipif: " 9045 "no src for dst %s", 9046 AF_INET, &dst); 9047 } 9048 ip1dbg((" through interface %s\n", 9049 dst_ill->ill_name)); 9050 goto err_ret; 9051 } 9052 ipif_refrele(ipif); 9053 ipif = src_ipif; 9054 ipif_refhold(ipif); 9055 } 9056 if (src_ipif == NULL) { 9057 src_ipif = ipif; 9058 ipif_refhold(src_ipif); 9059 } 9060 9061 /* 9062 * Assign a source address while we have the conn. 9063 * We can't have ip_wput_ire pick a source address when the 9064 * packet returns from arp since conn_unspec_src might be set 9065 * and we loose the conn when going through arp. 9066 */ 9067 if (ipha->ipha_src == INADDR_ANY && 9068 (connp == NULL || !connp->conn_unspec_src)) { 9069 ipha->ipha_src = src_ipif->ipif_src_addr; 9070 } 9071 9072 /* 9073 * In case of IP_XMIT_IF, it is possible that the outgoing 9074 * interface does not have an interface ire. 9075 * Example: Thousands of mobileip PPP interfaces to mobile 9076 * nodes. We don't want to create interface ires because 9077 * packets from other mobile nodes must not take the route 9078 * via interface ires to the visiting mobile node without 9079 * going through the home agent, in absence of mobileip 9080 * route optimization. 9081 */ 9082 if (CLASSD(ipha_dst) && (connp == NULL || 9083 connp->conn_xmit_if_ill == NULL)) { 9084 /* ipif_to_ire returns an held ire */ 9085 ire = ipif_to_ire(ipif); 9086 if (ire == NULL) 9087 goto err_ret; 9088 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9089 goto err_ret; 9090 /* 9091 * ihandle is needed when the ire is added to 9092 * cache table. 9093 */ 9094 save_ire = ire; 9095 ihandle = save_ire->ire_ihandle; 9096 9097 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9098 "flags %04x\n", 9099 (void *)ire, (void *)ipif, flags)); 9100 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9101 (fire->ire_flags & RTF_MULTIRT)) { 9102 /* 9103 * As requested by flags, an IRE_OFFSUBNET was 9104 * looked up on that interface. This ire has 9105 * RTF_MULTIRT flag, so the resolution loop will 9106 * be re-entered to resolve additional routes on 9107 * other interfaces. For that purpose, a copy of 9108 * the packet is performed at this point. 9109 */ 9110 fire->ire_last_used_time = lbolt; 9111 copy_mp = copymsg(first_mp); 9112 if (copy_mp) { 9113 MULTIRT_DEBUG_TAG(copy_mp); 9114 } 9115 } 9116 if ((flags & RTF_SETSRC) && (fire != NULL) && 9117 (fire->ire_flags & RTF_SETSRC)) { 9118 /* 9119 * As requested by flags, an IRE_OFFSUBET was 9120 * looked up on that interface. This ire has 9121 * RTF_SETSRC flag, so the source address of the 9122 * packet must be changed. 9123 */ 9124 ipha->ipha_src = fire->ire_src_addr; 9125 } 9126 } else { 9127 ASSERT((connp == NULL) || 9128 (connp->conn_xmit_if_ill != NULL) || 9129 (connp->conn_dontroute)); 9130 /* 9131 * The only ways we can come here are: 9132 * 1) IP_XMIT_IF socket option is set 9133 * 2) ICMP error message generated from 9134 * ip_mrtun_forward() routine and it needs 9135 * to go through the specified ill. 9136 * 3) SO_DONTROUTE socket option is set 9137 * In all cases, the new ire will not be added 9138 * into cache table. 9139 */ 9140 ire_marks |= IRE_MARK_NOADD; 9141 } 9142 9143 switch (ipif->ipif_net_type) { 9144 case IRE_IF_NORESOLVER: { 9145 /* We have what we need to build an IRE_CACHE. */ 9146 mblk_t *res_mp; 9147 9148 /* 9149 * Create a new res_mp with the 9150 * IP gateway address as destination address in the 9151 * DLPI hdr if the physical length is exactly 4 bytes. 9152 */ 9153 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9154 res_mp = ill_dlur_gen((uchar_t *)&dst, 9155 dst_ill->ill_phys_addr_length, 9156 dst_ill->ill_sap, 9157 dst_ill->ill_sap_length); 9158 } else if (dst_ill->ill_resolver_mp == NULL) { 9159 ip1dbg(("ip_newroute: dst_ill %p " 9160 "for IF_NORESOLV ire %p has " 9161 "no ill_resolver_mp\n", 9162 (void *)dst_ill, (void *)ire)); 9163 break; 9164 } else { 9165 /* use the value set in ip_ll_subnet_defaults */ 9166 res_mp = ill_dlur_gen(NULL, 9167 dst_ill->ill_phys_addr_length, 9168 dst_ill->ill_sap, 9169 dst_ill->ill_sap_length); 9170 } 9171 9172 if (res_mp == NULL) 9173 break; 9174 /* 9175 * The new ire inherits the IRE_OFFSUBNET flags 9176 * and source address, if this was requested. 9177 */ 9178 ire = ire_create( 9179 (uchar_t *)&dst, /* dest address */ 9180 (uchar_t *)&ip_g_all_ones, /* mask */ 9181 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9182 NULL, /* gateway address */ 9183 NULL, 9184 &ipif->ipif_mtu, 9185 NULL, /* Fast Path header */ 9186 dst_ill->ill_rq, /* recv-from queue */ 9187 dst_ill->ill_wq, /* send-to queue */ 9188 IRE_CACHE, 9189 res_mp, 9190 src_ipif, 9191 NULL, 9192 (save_ire != NULL ? save_ire->ire_mask : 0), 9193 (fire != NULL) ? /* Parent handle */ 9194 fire->ire_phandle : 0, 9195 ihandle, /* Interface handle */ 9196 (fire != NULL) ? 9197 (fire->ire_flags & 9198 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9199 (save_ire == NULL ? &ire_uinfo_null : 9200 &save_ire->ire_uinfo), 9201 NULL, 9202 NULL); 9203 9204 freeb(res_mp); 9205 9206 if (ire == NULL) { 9207 if (save_ire != NULL) 9208 ire_refrele(save_ire); 9209 break; 9210 } 9211 9212 ire->ire_marks |= ire_marks; 9213 9214 /* 9215 * If IRE_MARK_NOADD is set then we need to convert 9216 * the max_fragp to a useable value now. This is 9217 * normally done in ire_add_v[46]. We also need to 9218 * associate the ire with an nce (normally would be 9219 * done in ip_wput_nondata()). 9220 * 9221 * Note that IRE_MARK_NOADD packets created here 9222 * do not have a non-null ire_mp pointer. The null 9223 * value of ire_bucket indicates that they were 9224 * never added. 9225 */ 9226 if (ire->ire_marks & IRE_MARK_NOADD) { 9227 uint_t max_frag; 9228 9229 max_frag = *ire->ire_max_fragp; 9230 ire->ire_max_fragp = NULL; 9231 ire->ire_max_frag = max_frag; 9232 9233 if ((ire->ire_nce = ndp_lookup_v4( 9234 ire_to_ill(ire), 9235 (ire->ire_gateway_addr != INADDR_ANY ? 9236 &ire->ire_gateway_addr : &ire->ire_addr), 9237 B_FALSE)) == NULL) { 9238 if (save_ire != NULL) 9239 ire_refrele(save_ire); 9240 break; 9241 } 9242 ASSERT(ire->ire_nce->nce_state == 9243 ND_REACHABLE); 9244 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9245 } 9246 9247 /* Prevent save_ire from getting deleted */ 9248 if (save_ire != NULL) { 9249 IRB_REFHOLD(save_ire->ire_bucket); 9250 /* Has it been removed already ? */ 9251 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9252 IRB_REFRELE(save_ire->ire_bucket); 9253 ire_refrele(save_ire); 9254 break; 9255 } 9256 } 9257 9258 ire_add_then_send(q, ire, first_mp); 9259 9260 /* Assert that save_ire is not deleted yet. */ 9261 if (save_ire != NULL) { 9262 ASSERT(save_ire->ire_ptpn != NULL); 9263 IRB_REFRELE(save_ire->ire_bucket); 9264 ire_refrele(save_ire); 9265 save_ire = NULL; 9266 } 9267 if (fire != NULL) { 9268 ire_refrele(fire); 9269 fire = NULL; 9270 } 9271 9272 /* 9273 * the resolution loop is re-entered if this 9274 * was requested through flags and if we 9275 * actually are in a multirouting case. 9276 */ 9277 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9278 boolean_t need_resolve = 9279 ire_multirt_need_resolve(ipha_dst, 9280 MBLK_GETLABEL(copy_mp)); 9281 if (!need_resolve) { 9282 MULTIRT_DEBUG_UNTAG(copy_mp); 9283 freemsg(copy_mp); 9284 copy_mp = NULL; 9285 } else { 9286 /* 9287 * ipif_lookup_group() calls 9288 * ire_lookup_multi() that uses 9289 * ire_ftable_lookup() to find 9290 * an IRE_INTERFACE for the group. 9291 * In the multirt case, 9292 * ire_lookup_multi() then invokes 9293 * ire_multirt_lookup() to find 9294 * the next resolvable ire. 9295 * As a result, we obtain an new 9296 * interface, derived from the 9297 * next ire. 9298 */ 9299 ipif_refrele(ipif); 9300 ipif = ipif_lookup_group(ipha_dst, 9301 zoneid); 9302 ip2dbg(("ip_newroute_ipif: " 9303 "multirt dst %08x, ipif %p\n", 9304 htonl(dst), (void *)ipif)); 9305 if (ipif != NULL) { 9306 mp = copy_mp; 9307 copy_mp = NULL; 9308 multirt_resolve_next = B_TRUE; 9309 continue; 9310 } else { 9311 freemsg(copy_mp); 9312 } 9313 } 9314 } 9315 if (ipif != NULL) 9316 ipif_refrele(ipif); 9317 ill_refrele(dst_ill); 9318 ipif_refrele(src_ipif); 9319 return; 9320 } 9321 case IRE_IF_RESOLVER: 9322 /* 9323 * We can't build an IRE_CACHE yet, but at least 9324 * we found a resolver that can help. 9325 */ 9326 res_mp = dst_ill->ill_resolver_mp; 9327 if (!OK_RESOLVER_MP(res_mp)) 9328 break; 9329 9330 /* 9331 * We obtain a partial IRE_CACHE which we will pass 9332 * along with the resolver query. When the response 9333 * comes back it will be there ready for us to add. 9334 * The new ire inherits the IRE_OFFSUBNET flags 9335 * and source address, if this was requested. 9336 * The ire_max_frag is atomically set under the 9337 * irebucket lock in ire_add_v[46]. Only in the 9338 * case of IRE_MARK_NOADD, we set it here itself. 9339 */ 9340 ire = ire_create_mp( 9341 (uchar_t *)&dst, /* dest address */ 9342 (uchar_t *)&ip_g_all_ones, /* mask */ 9343 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9344 NULL, /* gateway address */ 9345 NULL, /* no in_src_addr */ 9346 (ire_marks & IRE_MARK_NOADD) ? 9347 ipif->ipif_mtu : 0, /* max_frag */ 9348 NULL, /* Fast path header */ 9349 dst_ill->ill_rq, /* recv-from queue */ 9350 dst_ill->ill_wq, /* send-to queue */ 9351 IRE_CACHE, 9352 NULL, /* let ire_nce_init figure res_mp out */ 9353 src_ipif, 9354 NULL, 9355 (save_ire != NULL ? save_ire->ire_mask : 0), 9356 (fire != NULL) ? /* Parent handle */ 9357 fire->ire_phandle : 0, 9358 ihandle, /* Interface handle */ 9359 (fire != NULL) ? /* flags if any */ 9360 (fire->ire_flags & 9361 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9362 (save_ire == NULL ? &ire_uinfo_null : 9363 &save_ire->ire_uinfo), 9364 NULL, 9365 NULL); 9366 9367 if (save_ire != NULL) { 9368 ire_refrele(save_ire); 9369 save_ire = NULL; 9370 } 9371 if (ire == NULL) 9372 break; 9373 9374 ire->ire_marks |= ire_marks; 9375 /* 9376 * Construct message chain for the resolver of the 9377 * form: 9378 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9379 * 9380 * NOTE : ire will be added later when the response 9381 * comes back from ARP. If the response does not 9382 * come back, ARP frees the packet. For this reason, 9383 * we can't REFHOLD the bucket of save_ire to prevent 9384 * deletions. We may not be able to REFRELE the 9385 * bucket if the response never comes back. 9386 * Thus, before adding the ire, ire_add_v4 will make 9387 * sure that the interface route does not get deleted. 9388 * This is the only case unlike ip_newroute_v6, 9389 * ip_newroute_ipif_v6 where we can always prevent 9390 * deletions because ire_add_then_send is called after 9391 * creating the IRE. 9392 * If IRE_MARK_NOADD is set, then ire_add_then_send 9393 * does not add this IRE into the IRE CACHE. 9394 */ 9395 ASSERT(ire->ire_mp != NULL); 9396 ire->ire_mp->b_cont = first_mp; 9397 /* Have saved_mp handy, for cleanup if canput fails */ 9398 saved_mp = mp; 9399 mp = copyb(res_mp); 9400 if (mp == NULL) { 9401 /* Prepare for cleanup */ 9402 mp = saved_mp; /* pkt */ 9403 ire_delete(ire); /* ire_mp */ 9404 ire = NULL; 9405 if (copy_mp != NULL) { 9406 MULTIRT_DEBUG_UNTAG(copy_mp); 9407 freemsg(copy_mp); 9408 copy_mp = NULL; 9409 } 9410 break; 9411 } 9412 linkb(mp, ire->ire_mp); 9413 9414 /* 9415 * Fill in the source and dest addrs for the resolver. 9416 * NOTE: this depends on memory layouts imposed by 9417 * ill_init(). 9418 */ 9419 areq = (areq_t *)mp->b_rptr; 9420 addrp = (ipaddr_t *)((char *)areq + 9421 areq->areq_sender_addr_offset); 9422 *addrp = ire->ire_src_addr; 9423 addrp = (ipaddr_t *)((char *)areq + 9424 areq->areq_target_addr_offset); 9425 *addrp = dst; 9426 /* Up to the resolver. */ 9427 if (canputnext(dst_ill->ill_rq) && 9428 !(dst_ill->ill_arp_closing)) { 9429 putnext(dst_ill->ill_rq, mp); 9430 /* 9431 * The response will come back in ip_wput 9432 * with db_type IRE_DB_TYPE. 9433 */ 9434 } else { 9435 mp->b_cont = NULL; 9436 freeb(mp); /* areq */ 9437 ire_delete(ire); /* ire_mp */ 9438 saved_mp->b_next = NULL; 9439 saved_mp->b_prev = NULL; 9440 freemsg(first_mp); /* pkt */ 9441 ip2dbg(("ip_newroute_ipif: dropped\n")); 9442 } 9443 9444 if (fire != NULL) { 9445 ire_refrele(fire); 9446 fire = NULL; 9447 } 9448 9449 9450 /* 9451 * The resolution loop is re-entered if this was 9452 * requested through flags and we actually are 9453 * in a multirouting case. 9454 */ 9455 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9456 boolean_t need_resolve = 9457 ire_multirt_need_resolve(ipha_dst, 9458 MBLK_GETLABEL(copy_mp)); 9459 if (!need_resolve) { 9460 MULTIRT_DEBUG_UNTAG(copy_mp); 9461 freemsg(copy_mp); 9462 copy_mp = NULL; 9463 } else { 9464 /* 9465 * ipif_lookup_group() calls 9466 * ire_lookup_multi() that uses 9467 * ire_ftable_lookup() to find 9468 * an IRE_INTERFACE for the group. 9469 * In the multirt case, 9470 * ire_lookup_multi() then invokes 9471 * ire_multirt_lookup() to find 9472 * the next resolvable ire. 9473 * As a result, we obtain an new 9474 * interface, derived from the 9475 * next ire. 9476 */ 9477 ipif_refrele(ipif); 9478 ipif = ipif_lookup_group(ipha_dst, 9479 zoneid); 9480 if (ipif != NULL) { 9481 mp = copy_mp; 9482 copy_mp = NULL; 9483 multirt_resolve_next = B_TRUE; 9484 continue; 9485 } else { 9486 freemsg(copy_mp); 9487 } 9488 } 9489 } 9490 if (ipif != NULL) 9491 ipif_refrele(ipif); 9492 ill_refrele(dst_ill); 9493 ipif_refrele(src_ipif); 9494 return; 9495 default: 9496 break; 9497 } 9498 } while (multirt_resolve_next); 9499 9500 err_ret: 9501 ip2dbg(("ip_newroute_ipif: dropped\n")); 9502 if (fire != NULL) 9503 ire_refrele(fire); 9504 ipif_refrele(ipif); 9505 /* Did this packet originate externally? */ 9506 if (dst_ill != NULL) 9507 ill_refrele(dst_ill); 9508 if (src_ipif != NULL) 9509 ipif_refrele(src_ipif); 9510 if (mp->b_prev || mp->b_next) { 9511 mp->b_next = NULL; 9512 mp->b_prev = NULL; 9513 } else { 9514 /* 9515 * Since ip_wput() isn't close to finished, we fill 9516 * in enough of the header for credible error reporting. 9517 */ 9518 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9519 /* Failed */ 9520 freemsg(first_mp); 9521 if (ire != NULL) 9522 ire_refrele(ire); 9523 return; 9524 } 9525 } 9526 /* 9527 * At this point we will have ire only if RTF_BLACKHOLE 9528 * or RTF_REJECT flags are set on the IRE. It will not 9529 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9530 */ 9531 if (ire != NULL) { 9532 if (ire->ire_flags & RTF_BLACKHOLE) { 9533 ire_refrele(ire); 9534 freemsg(first_mp); 9535 return; 9536 } 9537 ire_refrele(ire); 9538 } 9539 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9540 } 9541 9542 /* Name/Value Table Lookup Routine */ 9543 char * 9544 ip_nv_lookup(nv_t *nv, int value) 9545 { 9546 if (!nv) 9547 return (NULL); 9548 for (; nv->nv_name; nv++) { 9549 if (nv->nv_value == value) 9550 return (nv->nv_name); 9551 } 9552 return ("unknown"); 9553 } 9554 9555 /* 9556 * one day it can be patched to 1 from /etc/system for machines that have few 9557 * fast network interfaces feeding multiple cpus. 9558 */ 9559 int ill_stream_putlocks = 0; 9560 9561 /* 9562 * This is a module open, i.e. this is a control stream for access 9563 * to a DLPI device. We allocate an ill_t as the instance data in 9564 * this case. 9565 */ 9566 int 9567 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9568 { 9569 uint32_t mem_cnt; 9570 uint32_t cpu_cnt; 9571 uint32_t min_cnt; 9572 pgcnt_t mem_avail; 9573 ill_t *ill; 9574 int err; 9575 9576 /* 9577 * Prevent unprivileged processes from pushing IP so that 9578 * they can't send raw IP. 9579 */ 9580 if (secpolicy_net_rawaccess(credp) != 0) 9581 return (EPERM); 9582 9583 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9584 q->q_ptr = WR(q)->q_ptr = ill; 9585 9586 /* 9587 * ill_init initializes the ill fields and then sends down 9588 * down a DL_INFO_REQ after calling qprocson. 9589 */ 9590 err = ill_init(q, ill); 9591 if (err != 0) { 9592 mi_free(ill); 9593 q->q_ptr = NULL; 9594 WR(q)->q_ptr = NULL; 9595 return (err); 9596 } 9597 9598 /* ill_init initializes the ipsq marking this thread as writer */ 9599 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9600 /* Wait for the DL_INFO_ACK */ 9601 mutex_enter(&ill->ill_lock); 9602 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9603 /* 9604 * Return value of 0 indicates a pending signal. 9605 */ 9606 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9607 if (err == 0) { 9608 mutex_exit(&ill->ill_lock); 9609 (void) ip_close(q, 0); 9610 return (EINTR); 9611 } 9612 } 9613 mutex_exit(&ill->ill_lock); 9614 9615 /* 9616 * ip_rput_other could have set an error in ill_error on 9617 * receipt of M_ERROR. 9618 */ 9619 9620 err = ill->ill_error; 9621 if (err != 0) { 9622 (void) ip_close(q, 0); 9623 return (err); 9624 } 9625 9626 /* 9627 * ip_ire_max_bucket_cnt is sized below based on the memory 9628 * size and the cpu speed of the machine. This is upper 9629 * bounded by the compile time value of ip_ire_max_bucket_cnt 9630 * and is lower bounded by the compile time value of 9631 * ip_ire_min_bucket_cnt. Similar logic applies to 9632 * ip6_ire_max_bucket_cnt. 9633 */ 9634 mem_avail = kmem_avail(); 9635 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9636 ip_cache_table_size / sizeof (ire_t); 9637 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9638 9639 min_cnt = MIN(cpu_cnt, mem_cnt); 9640 if (min_cnt < ip_ire_min_bucket_cnt) 9641 min_cnt = ip_ire_min_bucket_cnt; 9642 if (ip_ire_max_bucket_cnt > min_cnt) { 9643 ip_ire_max_bucket_cnt = min_cnt; 9644 } 9645 9646 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9647 ip6_cache_table_size / sizeof (ire_t); 9648 min_cnt = MIN(cpu_cnt, mem_cnt); 9649 if (min_cnt < ip6_ire_min_bucket_cnt) 9650 min_cnt = ip6_ire_min_bucket_cnt; 9651 if (ip6_ire_max_bucket_cnt > min_cnt) { 9652 ip6_ire_max_bucket_cnt = min_cnt; 9653 } 9654 9655 ill->ill_credp = credp; 9656 crhold(credp); 9657 9658 mutex_enter(&ip_mi_lock); 9659 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9660 mutex_exit(&ip_mi_lock); 9661 if (err) { 9662 (void) ip_close(q, 0); 9663 return (err); 9664 } 9665 return (0); 9666 } 9667 9668 /* IP open routine. */ 9669 int 9670 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9671 { 9672 conn_t *connp; 9673 major_t maj; 9674 9675 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9676 9677 /* Allow reopen. */ 9678 if (q->q_ptr != NULL) 9679 return (0); 9680 9681 if (sflag & MODOPEN) { 9682 /* This is a module open */ 9683 return (ip_modopen(q, devp, flag, sflag, credp)); 9684 } 9685 9686 /* 9687 * We are opening as a device. This is an IP client stream, and we 9688 * allocate an conn_t as the instance data. 9689 */ 9690 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9691 connp->conn_upq = q; 9692 q->q_ptr = WR(q)->q_ptr = connp; 9693 9694 if (flag & SO_SOCKSTR) 9695 connp->conn_flags |= IPCL_SOCKET; 9696 9697 /* Minor tells us which /dev entry was opened */ 9698 if (geteminor(*devp) == IPV6_MINOR) { 9699 connp->conn_flags |= IPCL_ISV6; 9700 connp->conn_af_isv6 = B_TRUE; 9701 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9702 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9703 } else { 9704 connp->conn_af_isv6 = B_FALSE; 9705 connp->conn_pkt_isv6 = B_FALSE; 9706 } 9707 9708 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9709 q->q_ptr = WR(q)->q_ptr = NULL; 9710 CONN_DEC_REF(connp); 9711 return (EBUSY); 9712 } 9713 9714 maj = getemajor(*devp); 9715 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9716 9717 /* 9718 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9719 */ 9720 connp->conn_cred = credp; 9721 crhold(connp->conn_cred); 9722 9723 /* 9724 * If the caller has the process-wide flag set, then default to MAC 9725 * exempt mode. This allows read-down to unlabeled hosts. 9726 */ 9727 if (getpflags(NET_MAC_AWARE, credp) != 0) 9728 connp->conn_mac_exempt = B_TRUE; 9729 9730 connp->conn_zoneid = getzoneid(); 9731 9732 /* 9733 * This should only happen for ndd, netstat, raw socket or other SCTP 9734 * administrative ops. In these cases, we just need a normal conn_t 9735 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9736 * an error will be returned. 9737 */ 9738 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9739 connp->conn_rq = q; 9740 connp->conn_wq = WR(q); 9741 } else { 9742 connp->conn_ulp = IPPROTO_SCTP; 9743 connp->conn_rq = connp->conn_wq = NULL; 9744 } 9745 /* Non-zero default values */ 9746 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9747 9748 /* 9749 * Make the conn globally visible to walkers 9750 */ 9751 mutex_enter(&connp->conn_lock); 9752 connp->conn_state_flags &= ~CONN_INCIPIENT; 9753 mutex_exit(&connp->conn_lock); 9754 ASSERT(connp->conn_ref == 1); 9755 9756 qprocson(q); 9757 9758 return (0); 9759 } 9760 9761 /* 9762 * Change q_qinfo based on the value of isv6. 9763 * This can not called on an ill queue. 9764 * Note that there is no race since either q_qinfo works for conn queues - it 9765 * is just an optimization to enter the best wput routine directly. 9766 */ 9767 void 9768 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9769 { 9770 ASSERT(q->q_flag & QREADR); 9771 ASSERT(WR(q)->q_next == NULL); 9772 ASSERT(q->q_ptr != NULL); 9773 9774 if (minor == IPV6_MINOR) { 9775 if (bump_mib) 9776 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9777 q->q_qinfo = &rinit_ipv6; 9778 WR(q)->q_qinfo = &winit_ipv6; 9779 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9780 } else { 9781 if (bump_mib) 9782 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9783 q->q_qinfo = &iprinit; 9784 WR(q)->q_qinfo = &ipwinit; 9785 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9786 } 9787 9788 } 9789 9790 /* 9791 * See if IPsec needs loading because of the options in mp. 9792 */ 9793 static boolean_t 9794 ipsec_opt_present(mblk_t *mp) 9795 { 9796 uint8_t *optcp, *next_optcp, *opt_endcp; 9797 struct opthdr *opt; 9798 struct T_opthdr *topt; 9799 int opthdr_len; 9800 t_uscalar_t optname, optlevel; 9801 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9802 ipsec_req_t *ipsr; 9803 9804 /* 9805 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9806 * return TRUE. 9807 */ 9808 9809 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9810 opt_endcp = optcp + tor->OPT_length; 9811 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9812 opthdr_len = sizeof (struct T_opthdr); 9813 } else { /* O_OPTMGMT_REQ */ 9814 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9815 opthdr_len = sizeof (struct opthdr); 9816 } 9817 for (; optcp < opt_endcp; optcp = next_optcp) { 9818 if (optcp + opthdr_len > opt_endcp) 9819 return (B_FALSE); /* Not enough option header. */ 9820 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9821 topt = (struct T_opthdr *)optcp; 9822 optlevel = topt->level; 9823 optname = topt->name; 9824 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9825 } else { 9826 opt = (struct opthdr *)optcp; 9827 optlevel = opt->level; 9828 optname = opt->name; 9829 next_optcp = optcp + opthdr_len + 9830 _TPI_ALIGN_OPT(opt->len); 9831 } 9832 if ((next_optcp < optcp) || /* wraparound pointer space */ 9833 ((next_optcp >= opt_endcp) && /* last option bad len */ 9834 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9835 return (B_FALSE); /* bad option buffer */ 9836 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9837 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9838 /* 9839 * Check to see if it's an all-bypass or all-zeroes 9840 * IPsec request. Don't bother loading IPsec if 9841 * the socket doesn't want to use it. (A good example 9842 * is a bypass request.) 9843 * 9844 * Basically, if any of the non-NEVER bits are set, 9845 * load IPsec. 9846 */ 9847 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9848 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9849 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9850 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9851 != 0) 9852 return (B_TRUE); 9853 } 9854 } 9855 return (B_FALSE); 9856 } 9857 9858 /* 9859 * If conn is is waiting for ipsec to finish loading, kick it. 9860 */ 9861 /* ARGSUSED */ 9862 static void 9863 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9864 { 9865 t_scalar_t optreq_prim; 9866 mblk_t *mp; 9867 cred_t *cr; 9868 int err = 0; 9869 9870 /* 9871 * This function is called, after ipsec loading is complete. 9872 * Since IP checks exclusively and atomically (i.e it prevents 9873 * ipsec load from completing until ip_optcom_req completes) 9874 * whether ipsec load is complete, there cannot be a race with IP 9875 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9876 */ 9877 mutex_enter(&connp->conn_lock); 9878 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9879 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9880 mp = connp->conn_ipsec_opt_mp; 9881 connp->conn_ipsec_opt_mp = NULL; 9882 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9883 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9884 mutex_exit(&connp->conn_lock); 9885 9886 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9887 9888 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9889 if (optreq_prim == T_OPTMGMT_REQ) { 9890 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9891 &ip_opt_obj); 9892 } else { 9893 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9894 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9895 &ip_opt_obj); 9896 } 9897 if (err != EINPROGRESS) 9898 CONN_OPER_PENDING_DONE(connp); 9899 return; 9900 } 9901 mutex_exit(&connp->conn_lock); 9902 } 9903 9904 /* 9905 * Called from the ipsec_loader thread, outside any perimeter, to tell 9906 * ip qenable any of the queues waiting for the ipsec loader to 9907 * complete. 9908 * 9909 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9910 * are done with this lock held, so it's guaranteed that none of the 9911 * links will change along the way. 9912 */ 9913 void 9914 ip_ipsec_load_complete() 9915 { 9916 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9917 } 9918 9919 /* 9920 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9921 * determines the grp on which it has to become exclusive, queues the mp 9922 * and sq draining restarts the optmgmt 9923 */ 9924 static boolean_t 9925 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9926 { 9927 conn_t *connp; 9928 9929 /* 9930 * Take IPsec requests and treat them special. 9931 */ 9932 if (ipsec_opt_present(mp)) { 9933 /* First check if IPsec is loaded. */ 9934 mutex_enter(&ipsec_loader_lock); 9935 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9936 mutex_exit(&ipsec_loader_lock); 9937 return (B_FALSE); 9938 } 9939 connp = Q_TO_CONN(q); 9940 mutex_enter(&connp->conn_lock); 9941 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9942 9943 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9944 connp->conn_ipsec_opt_mp = mp; 9945 mutex_exit(&connp->conn_lock); 9946 mutex_exit(&ipsec_loader_lock); 9947 9948 ipsec_loader_loadnow(); 9949 return (B_TRUE); 9950 } 9951 return (B_FALSE); 9952 } 9953 9954 /* 9955 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9956 * all of them are copied to the conn_t. If the req is "zero", the policy is 9957 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9958 * fields. 9959 * We keep only the latest setting of the policy and thus policy setting 9960 * is not incremental/cumulative. 9961 * 9962 * Requests to set policies with multiple alternative actions will 9963 * go through a different API. 9964 */ 9965 int 9966 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9967 { 9968 uint_t ah_req = 0; 9969 uint_t esp_req = 0; 9970 uint_t se_req = 0; 9971 ipsec_selkey_t sel; 9972 ipsec_act_t *actp = NULL; 9973 uint_t nact; 9974 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9975 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9976 ipsec_policy_root_t *pr; 9977 ipsec_policy_head_t *ph; 9978 int fam; 9979 boolean_t is_pol_reset; 9980 int error = 0; 9981 9982 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9983 9984 /* 9985 * The IP_SEC_OPT option does not allow variable length parameters, 9986 * hence a request cannot be NULL. 9987 */ 9988 if (req == NULL) 9989 return (EINVAL); 9990 9991 ah_req = req->ipsr_ah_req; 9992 esp_req = req->ipsr_esp_req; 9993 se_req = req->ipsr_self_encap_req; 9994 9995 /* 9996 * Are we dealing with a request to reset the policy (i.e. 9997 * zero requests). 9998 */ 9999 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10000 (esp_req & REQ_MASK) == 0 && 10001 (se_req & REQ_MASK) == 0); 10002 10003 if (!is_pol_reset) { 10004 /* 10005 * If we couldn't load IPsec, fail with "protocol 10006 * not supported". 10007 * IPsec may not have been loaded for a request with zero 10008 * policies, so we don't fail in this case. 10009 */ 10010 mutex_enter(&ipsec_loader_lock); 10011 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10012 mutex_exit(&ipsec_loader_lock); 10013 return (EPROTONOSUPPORT); 10014 } 10015 mutex_exit(&ipsec_loader_lock); 10016 10017 /* 10018 * Test for valid requests. Invalid algorithms 10019 * need to be tested by IPSEC code because new 10020 * algorithms can be added dynamically. 10021 */ 10022 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10023 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10024 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10025 return (EINVAL); 10026 } 10027 10028 /* 10029 * Only privileged users can issue these 10030 * requests. 10031 */ 10032 if (((ah_req & IPSEC_PREF_NEVER) || 10033 (esp_req & IPSEC_PREF_NEVER) || 10034 (se_req & IPSEC_PREF_NEVER)) && 10035 secpolicy_net_config(cr, B_FALSE) != 0) { 10036 return (EPERM); 10037 } 10038 10039 /* 10040 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10041 * are mutually exclusive. 10042 */ 10043 if (((ah_req & REQ_MASK) == REQ_MASK) || 10044 ((esp_req & REQ_MASK) == REQ_MASK) || 10045 ((se_req & REQ_MASK) == REQ_MASK)) { 10046 /* Both of them are set */ 10047 return (EINVAL); 10048 } 10049 } 10050 10051 mutex_enter(&connp->conn_lock); 10052 10053 /* 10054 * If we have already cached policies in ip_bind_connected*(), don't 10055 * let them change now. We cache policies for connections 10056 * whose src,dst [addr, port] is known. 10057 */ 10058 if (connp->conn_policy_cached) { 10059 mutex_exit(&connp->conn_lock); 10060 return (EINVAL); 10061 } 10062 10063 /* 10064 * We have a zero policies, reset the connection policy if already 10065 * set. This will cause the connection to inherit the 10066 * global policy, if any. 10067 */ 10068 if (is_pol_reset) { 10069 if (connp->conn_policy != NULL) { 10070 IPPH_REFRELE(connp->conn_policy); 10071 connp->conn_policy = NULL; 10072 } 10073 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10074 connp->conn_in_enforce_policy = B_FALSE; 10075 connp->conn_out_enforce_policy = B_FALSE; 10076 mutex_exit(&connp->conn_lock); 10077 return (0); 10078 } 10079 10080 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 10081 if (ph == NULL) 10082 goto enomem; 10083 10084 ipsec_actvec_from_req(req, &actp, &nact); 10085 if (actp == NULL) 10086 goto enomem; 10087 10088 /* 10089 * Always allocate IPv4 policy entries, since they can also 10090 * apply to ipv6 sockets being used in ipv4-compat mode. 10091 */ 10092 bzero(&sel, sizeof (sel)); 10093 sel.ipsl_valid = IPSL_IPV4; 10094 10095 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10096 if (pin4 == NULL) 10097 goto enomem; 10098 10099 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10100 if (pout4 == NULL) 10101 goto enomem; 10102 10103 if (connp->conn_pkt_isv6) { 10104 /* 10105 * We're looking at a v6 socket, also allocate the 10106 * v6-specific entries... 10107 */ 10108 sel.ipsl_valid = IPSL_IPV6; 10109 pin6 = ipsec_policy_create(&sel, actp, nact, 10110 IPSEC_PRIO_SOCKET, NULL); 10111 if (pin6 == NULL) 10112 goto enomem; 10113 10114 pout6 = ipsec_policy_create(&sel, actp, nact, 10115 IPSEC_PRIO_SOCKET, NULL); 10116 if (pout6 == NULL) 10117 goto enomem; 10118 10119 /* 10120 * .. and file them away in the right place. 10121 */ 10122 fam = IPSEC_AF_V6; 10123 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10124 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10125 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10126 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10127 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10128 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10129 } 10130 10131 ipsec_actvec_free(actp, nact); 10132 10133 /* 10134 * File the v4 policies. 10135 */ 10136 fam = IPSEC_AF_V4; 10137 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10138 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10139 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10140 10141 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10142 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10143 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10144 10145 /* 10146 * If the requests need security, set enforce_policy. 10147 * If the requests are IPSEC_PREF_NEVER, one should 10148 * still set conn_out_enforce_policy so that an ipsec_out 10149 * gets attached in ip_wput. This is needed so that 10150 * for connections that we don't cache policy in ip_bind, 10151 * if global policy matches in ip_wput_attach_policy, we 10152 * don't wrongly inherit global policy. Similarly, we need 10153 * to set conn_in_enforce_policy also so that we don't verify 10154 * policy wrongly. 10155 */ 10156 if ((ah_req & REQ_MASK) != 0 || 10157 (esp_req & REQ_MASK) != 0 || 10158 (se_req & REQ_MASK) != 0) { 10159 connp->conn_in_enforce_policy = B_TRUE; 10160 connp->conn_out_enforce_policy = B_TRUE; 10161 connp->conn_flags |= IPCL_CHECK_POLICY; 10162 } 10163 10164 mutex_exit(&connp->conn_lock); 10165 return (error); 10166 #undef REQ_MASK 10167 10168 /* 10169 * Common memory-allocation-failure exit path. 10170 */ 10171 enomem: 10172 mutex_exit(&connp->conn_lock); 10173 if (actp != NULL) 10174 ipsec_actvec_free(actp, nact); 10175 if (pin4 != NULL) 10176 IPPOL_REFRELE(pin4); 10177 if (pout4 != NULL) 10178 IPPOL_REFRELE(pout4); 10179 if (pin6 != NULL) 10180 IPPOL_REFRELE(pin6); 10181 if (pout6 != NULL) 10182 IPPOL_REFRELE(pout6); 10183 return (ENOMEM); 10184 } 10185 10186 /* 10187 * Only for options that pass in an IP addr. Currently only V4 options 10188 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10189 * So this function assumes level is IPPROTO_IP 10190 */ 10191 int 10192 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10193 mblk_t *first_mp) 10194 { 10195 ipif_t *ipif = NULL; 10196 int error; 10197 ill_t *ill; 10198 int zoneid; 10199 10200 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10201 10202 if (addr != INADDR_ANY || checkonly) { 10203 ASSERT(connp != NULL); 10204 zoneid = IPCL_ZONEID(connp); 10205 if (option == IP_NEXTHOP) { 10206 ipif = ipif_lookup_onlink_addr(addr, 10207 connp->conn_zoneid); 10208 } else { 10209 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10210 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10211 &error); 10212 } 10213 if (ipif == NULL) { 10214 if (error == EINPROGRESS) 10215 return (error); 10216 else if ((option == IP_MULTICAST_IF) || 10217 (option == IP_NEXTHOP)) 10218 return (EHOSTUNREACH); 10219 else 10220 return (EINVAL); 10221 } else if (checkonly) { 10222 if (option == IP_MULTICAST_IF) { 10223 ill = ipif->ipif_ill; 10224 /* not supported by the virtual network iface */ 10225 if (IS_VNI(ill)) { 10226 ipif_refrele(ipif); 10227 return (EINVAL); 10228 } 10229 } 10230 ipif_refrele(ipif); 10231 return (0); 10232 } 10233 ill = ipif->ipif_ill; 10234 mutex_enter(&connp->conn_lock); 10235 mutex_enter(&ill->ill_lock); 10236 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10237 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10238 mutex_exit(&ill->ill_lock); 10239 mutex_exit(&connp->conn_lock); 10240 ipif_refrele(ipif); 10241 return (option == IP_MULTICAST_IF ? 10242 EHOSTUNREACH : EINVAL); 10243 } 10244 } else { 10245 mutex_enter(&connp->conn_lock); 10246 } 10247 10248 /* None of the options below are supported on the VNI */ 10249 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10250 mutex_exit(&ill->ill_lock); 10251 mutex_exit(&connp->conn_lock); 10252 ipif_refrele(ipif); 10253 return (EINVAL); 10254 } 10255 10256 switch (option) { 10257 case IP_DONTFAILOVER_IF: 10258 /* 10259 * This option is used by in.mpathd to ensure 10260 * that IPMP probe packets only go out on the 10261 * test interfaces. in.mpathd sets this option 10262 * on the non-failover interfaces. 10263 * For backward compatibility, this option 10264 * implicitly sets IP_MULTICAST_IF, as used 10265 * be done in bind(), so that ip_wput gets 10266 * this ipif to send mcast packets. 10267 */ 10268 if (ipif != NULL) { 10269 ASSERT(addr != INADDR_ANY); 10270 connp->conn_nofailover_ill = ipif->ipif_ill; 10271 connp->conn_multicast_ipif = ipif; 10272 } else { 10273 ASSERT(addr == INADDR_ANY); 10274 connp->conn_nofailover_ill = NULL; 10275 connp->conn_multicast_ipif = NULL; 10276 } 10277 break; 10278 10279 case IP_MULTICAST_IF: 10280 connp->conn_multicast_ipif = ipif; 10281 break; 10282 case IP_NEXTHOP: 10283 connp->conn_nexthop_v4 = addr; 10284 connp->conn_nexthop_set = B_TRUE; 10285 break; 10286 } 10287 10288 if (ipif != NULL) { 10289 mutex_exit(&ill->ill_lock); 10290 mutex_exit(&connp->conn_lock); 10291 ipif_refrele(ipif); 10292 return (0); 10293 } 10294 mutex_exit(&connp->conn_lock); 10295 /* We succeded in cleared the option */ 10296 return (0); 10297 } 10298 10299 /* 10300 * For options that pass in an ifindex specifying the ill. V6 options always 10301 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10302 */ 10303 int 10304 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10305 int level, int option, mblk_t *first_mp) 10306 { 10307 ill_t *ill = NULL; 10308 int error = 0; 10309 10310 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10311 if (ifindex != 0) { 10312 ASSERT(connp != NULL); 10313 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10314 first_mp, ip_restart_optmgmt, &error); 10315 if (ill != NULL) { 10316 if (checkonly) { 10317 /* not supported by the virtual network iface */ 10318 if (IS_VNI(ill)) { 10319 ill_refrele(ill); 10320 return (EINVAL); 10321 } 10322 ill_refrele(ill); 10323 return (0); 10324 } 10325 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10326 0, NULL)) { 10327 ill_refrele(ill); 10328 ill = NULL; 10329 mutex_enter(&connp->conn_lock); 10330 goto setit; 10331 } 10332 mutex_enter(&connp->conn_lock); 10333 mutex_enter(&ill->ill_lock); 10334 if (ill->ill_state_flags & ILL_CONDEMNED) { 10335 mutex_exit(&ill->ill_lock); 10336 mutex_exit(&connp->conn_lock); 10337 ill_refrele(ill); 10338 ill = NULL; 10339 mutex_enter(&connp->conn_lock); 10340 } 10341 goto setit; 10342 } else if (error == EINPROGRESS) { 10343 return (error); 10344 } else { 10345 error = 0; 10346 } 10347 } 10348 mutex_enter(&connp->conn_lock); 10349 setit: 10350 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10351 10352 /* 10353 * The options below assume that the ILL (if any) transmits and/or 10354 * receives traffic. Neither of which is true for the virtual network 10355 * interface, so fail setting these on a VNI. 10356 */ 10357 if (IS_VNI(ill)) { 10358 ASSERT(ill != NULL); 10359 mutex_exit(&ill->ill_lock); 10360 mutex_exit(&connp->conn_lock); 10361 ill_refrele(ill); 10362 return (EINVAL); 10363 } 10364 10365 if (level == IPPROTO_IP) { 10366 switch (option) { 10367 case IP_BOUND_IF: 10368 connp->conn_incoming_ill = ill; 10369 connp->conn_outgoing_ill = ill; 10370 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10371 0 : ifindex; 10372 break; 10373 10374 case IP_XMIT_IF: 10375 /* 10376 * Similar to IP_BOUND_IF, but this only 10377 * determines the outgoing interface for 10378 * unicast packets. Also no IRE_CACHE entry 10379 * is added for the destination of the 10380 * outgoing packets. This feature is needed 10381 * for mobile IP. 10382 */ 10383 connp->conn_xmit_if_ill = ill; 10384 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10385 0 : ifindex; 10386 break; 10387 10388 case IP_MULTICAST_IF: 10389 /* 10390 * This option is an internal special. The socket 10391 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10392 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10393 * specifies an ifindex and we try first on V6 ill's. 10394 * If we don't find one, we they try using on v4 ill's 10395 * intenally and we come here. 10396 */ 10397 if (!checkonly && ill != NULL) { 10398 ipif_t *ipif; 10399 ipif = ill->ill_ipif; 10400 10401 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10402 mutex_exit(&ill->ill_lock); 10403 mutex_exit(&connp->conn_lock); 10404 ill_refrele(ill); 10405 ill = NULL; 10406 mutex_enter(&connp->conn_lock); 10407 } else { 10408 connp->conn_multicast_ipif = ipif; 10409 } 10410 } 10411 break; 10412 } 10413 } else { 10414 switch (option) { 10415 case IPV6_BOUND_IF: 10416 connp->conn_incoming_ill = ill; 10417 connp->conn_outgoing_ill = ill; 10418 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10419 0 : ifindex; 10420 break; 10421 10422 case IPV6_BOUND_PIF: 10423 /* 10424 * Limit all transmit to this ill. 10425 * Unlike IPV6_BOUND_IF, using this option 10426 * prevents load spreading and failover from 10427 * happening when the interface is part of the 10428 * group. That's why we don't need to remember 10429 * the ifindex in orig_bound_ifindex as in 10430 * IPV6_BOUND_IF. 10431 */ 10432 connp->conn_outgoing_pill = ill; 10433 break; 10434 10435 case IPV6_DONTFAILOVER_IF: 10436 /* 10437 * This option is used by in.mpathd to ensure 10438 * that IPMP probe packets only go out on the 10439 * test interfaces. in.mpathd sets this option 10440 * on the non-failover interfaces. 10441 */ 10442 connp->conn_nofailover_ill = ill; 10443 /* 10444 * For backward compatibility, this option 10445 * implicitly sets ip_multicast_ill as used in 10446 * IP_MULTICAST_IF so that ip_wput gets 10447 * this ipif to send mcast packets. 10448 */ 10449 connp->conn_multicast_ill = ill; 10450 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10451 0 : ifindex; 10452 break; 10453 10454 case IPV6_MULTICAST_IF: 10455 /* 10456 * Set conn_multicast_ill to be the IPv6 ill. 10457 * Set conn_multicast_ipif to be an IPv4 ipif 10458 * for ifindex to make IPv4 mapped addresses 10459 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10460 * Even if no IPv6 ill exists for the ifindex 10461 * we need to check for an IPv4 ifindex in order 10462 * for this to work with mapped addresses. In that 10463 * case only set conn_multicast_ipif. 10464 */ 10465 if (!checkonly) { 10466 if (ifindex == 0) { 10467 connp->conn_multicast_ill = NULL; 10468 connp->conn_orig_multicast_ifindex = 0; 10469 connp->conn_multicast_ipif = NULL; 10470 } else if (ill != NULL) { 10471 connp->conn_multicast_ill = ill; 10472 connp->conn_orig_multicast_ifindex = 10473 ifindex; 10474 } 10475 } 10476 break; 10477 } 10478 } 10479 10480 if (ill != NULL) { 10481 mutex_exit(&ill->ill_lock); 10482 mutex_exit(&connp->conn_lock); 10483 ill_refrele(ill); 10484 return (0); 10485 } 10486 mutex_exit(&connp->conn_lock); 10487 /* 10488 * We succeeded in clearing the option (ifindex == 0) or failed to 10489 * locate the ill and could not set the option (ifindex != 0) 10490 */ 10491 return (ifindex == 0 ? 0 : EINVAL); 10492 } 10493 10494 /* This routine sets socket options. */ 10495 /* ARGSUSED */ 10496 int 10497 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10498 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10499 void *dummy, cred_t *cr, mblk_t *first_mp) 10500 { 10501 int *i1 = (int *)invalp; 10502 conn_t *connp = Q_TO_CONN(q); 10503 int error = 0; 10504 boolean_t checkonly; 10505 ire_t *ire; 10506 boolean_t found; 10507 10508 switch (optset_context) { 10509 10510 case SETFN_OPTCOM_CHECKONLY: 10511 checkonly = B_TRUE; 10512 /* 10513 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10514 * inlen != 0 implies value supplied and 10515 * we have to "pretend" to set it. 10516 * inlen == 0 implies that there is no 10517 * value part in T_CHECK request and just validation 10518 * done elsewhere should be enough, we just return here. 10519 */ 10520 if (inlen == 0) { 10521 *outlenp = 0; 10522 return (0); 10523 } 10524 break; 10525 case SETFN_OPTCOM_NEGOTIATE: 10526 case SETFN_UD_NEGOTIATE: 10527 case SETFN_CONN_NEGOTIATE: 10528 checkonly = B_FALSE; 10529 break; 10530 default: 10531 /* 10532 * We should never get here 10533 */ 10534 *outlenp = 0; 10535 return (EINVAL); 10536 } 10537 10538 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10539 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10540 10541 /* 10542 * For fixed length options, no sanity check 10543 * of passed in length is done. It is assumed *_optcom_req() 10544 * routines do the right thing. 10545 */ 10546 10547 switch (level) { 10548 case SOL_SOCKET: 10549 /* 10550 * conn_lock protects the bitfields, and is used to 10551 * set the fields atomically. 10552 */ 10553 switch (name) { 10554 case SO_BROADCAST: 10555 if (!checkonly) { 10556 /* TODO: use value someplace? */ 10557 mutex_enter(&connp->conn_lock); 10558 connp->conn_broadcast = *i1 ? 1 : 0; 10559 mutex_exit(&connp->conn_lock); 10560 } 10561 break; /* goto sizeof (int) option return */ 10562 case SO_USELOOPBACK: 10563 if (!checkonly) { 10564 /* TODO: use value someplace? */ 10565 mutex_enter(&connp->conn_lock); 10566 connp->conn_loopback = *i1 ? 1 : 0; 10567 mutex_exit(&connp->conn_lock); 10568 } 10569 break; /* goto sizeof (int) option return */ 10570 case SO_DONTROUTE: 10571 if (!checkonly) { 10572 mutex_enter(&connp->conn_lock); 10573 connp->conn_dontroute = *i1 ? 1 : 0; 10574 mutex_exit(&connp->conn_lock); 10575 } 10576 break; /* goto sizeof (int) option return */ 10577 case SO_REUSEADDR: 10578 if (!checkonly) { 10579 mutex_enter(&connp->conn_lock); 10580 connp->conn_reuseaddr = *i1 ? 1 : 0; 10581 mutex_exit(&connp->conn_lock); 10582 } 10583 break; /* goto sizeof (int) option return */ 10584 case SO_PROTOTYPE: 10585 if (!checkonly) { 10586 mutex_enter(&connp->conn_lock); 10587 connp->conn_proto = *i1; 10588 mutex_exit(&connp->conn_lock); 10589 } 10590 break; /* goto sizeof (int) option return */ 10591 case SO_ALLZONES: 10592 if (!checkonly) { 10593 mutex_enter(&connp->conn_lock); 10594 if (IPCL_IS_BOUND(connp)) { 10595 mutex_exit(&connp->conn_lock); 10596 return (EINVAL); 10597 } 10598 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10599 mutex_exit(&connp->conn_lock); 10600 } 10601 break; /* goto sizeof (int) option return */ 10602 case SO_ANON_MLP: 10603 if (!checkonly) { 10604 mutex_enter(&connp->conn_lock); 10605 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10606 mutex_exit(&connp->conn_lock); 10607 } 10608 break; /* goto sizeof (int) option return */ 10609 case SO_MAC_EXEMPT: 10610 if (secpolicy_net_mac_aware(cr) != 0 || 10611 IPCL_IS_BOUND(connp)) 10612 return (EACCES); 10613 if (!checkonly) { 10614 mutex_enter(&connp->conn_lock); 10615 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10616 mutex_exit(&connp->conn_lock); 10617 } 10618 break; /* goto sizeof (int) option return */ 10619 default: 10620 /* 10621 * "soft" error (negative) 10622 * option not handled at this level 10623 * Note: Do not modify *outlenp 10624 */ 10625 return (-EINVAL); 10626 } 10627 break; 10628 case IPPROTO_IP: 10629 switch (name) { 10630 case IP_NEXTHOP: 10631 if (secpolicy_net_config(cr, B_FALSE) != 0) 10632 return (EPERM); 10633 /* FALLTHRU */ 10634 case IP_MULTICAST_IF: 10635 case IP_DONTFAILOVER_IF: { 10636 ipaddr_t addr = *i1; 10637 10638 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10639 first_mp); 10640 if (error != 0) 10641 return (error); 10642 break; /* goto sizeof (int) option return */ 10643 } 10644 10645 case IP_MULTICAST_TTL: 10646 /* Recorded in transport above IP */ 10647 *outvalp = *invalp; 10648 *outlenp = sizeof (uchar_t); 10649 return (0); 10650 case IP_MULTICAST_LOOP: 10651 if (!checkonly) { 10652 mutex_enter(&connp->conn_lock); 10653 connp->conn_multicast_loop = *invalp ? 1 : 0; 10654 mutex_exit(&connp->conn_lock); 10655 } 10656 *outvalp = *invalp; 10657 *outlenp = sizeof (uchar_t); 10658 return (0); 10659 case IP_ADD_MEMBERSHIP: 10660 case MCAST_JOIN_GROUP: 10661 case IP_DROP_MEMBERSHIP: 10662 case MCAST_LEAVE_GROUP: { 10663 struct ip_mreq *mreqp; 10664 struct group_req *greqp; 10665 ire_t *ire; 10666 boolean_t done = B_FALSE; 10667 ipaddr_t group, ifaddr; 10668 struct sockaddr_in *sin; 10669 uint32_t *ifindexp; 10670 boolean_t mcast_opt = B_TRUE; 10671 mcast_record_t fmode; 10672 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10673 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10674 10675 switch (name) { 10676 case IP_ADD_MEMBERSHIP: 10677 mcast_opt = B_FALSE; 10678 /* FALLTHRU */ 10679 case MCAST_JOIN_GROUP: 10680 fmode = MODE_IS_EXCLUDE; 10681 optfn = ip_opt_add_group; 10682 break; 10683 10684 case IP_DROP_MEMBERSHIP: 10685 mcast_opt = B_FALSE; 10686 /* FALLTHRU */ 10687 case MCAST_LEAVE_GROUP: 10688 fmode = MODE_IS_INCLUDE; 10689 optfn = ip_opt_delete_group; 10690 break; 10691 } 10692 10693 if (mcast_opt) { 10694 greqp = (struct group_req *)i1; 10695 sin = (struct sockaddr_in *)&greqp->gr_group; 10696 if (sin->sin_family != AF_INET) { 10697 *outlenp = 0; 10698 return (ENOPROTOOPT); 10699 } 10700 group = (ipaddr_t)sin->sin_addr.s_addr; 10701 ifaddr = INADDR_ANY; 10702 ifindexp = &greqp->gr_interface; 10703 } else { 10704 mreqp = (struct ip_mreq *)i1; 10705 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10706 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10707 ifindexp = NULL; 10708 } 10709 10710 /* 10711 * In the multirouting case, we need to replicate 10712 * the request on all interfaces that will take part 10713 * in replication. We do so because multirouting is 10714 * reflective, thus we will probably receive multi- 10715 * casts on those interfaces. 10716 * The ip_multirt_apply_membership() succeeds if the 10717 * operation succeeds on at least one interface. 10718 */ 10719 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10720 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10721 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10722 if (ire != NULL) { 10723 if (ire->ire_flags & RTF_MULTIRT) { 10724 error = ip_multirt_apply_membership( 10725 optfn, ire, connp, checkonly, group, 10726 fmode, INADDR_ANY, first_mp); 10727 done = B_TRUE; 10728 } 10729 ire_refrele(ire); 10730 } 10731 if (!done) { 10732 error = optfn(connp, checkonly, group, ifaddr, 10733 ifindexp, fmode, INADDR_ANY, first_mp); 10734 } 10735 if (error) { 10736 /* 10737 * EINPROGRESS is a soft error, needs retry 10738 * so don't make *outlenp zero. 10739 */ 10740 if (error != EINPROGRESS) 10741 *outlenp = 0; 10742 return (error); 10743 } 10744 /* OK return - copy input buffer into output buffer */ 10745 if (invalp != outvalp) { 10746 /* don't trust bcopy for identical src/dst */ 10747 bcopy(invalp, outvalp, inlen); 10748 } 10749 *outlenp = inlen; 10750 return (0); 10751 } 10752 case IP_BLOCK_SOURCE: 10753 case IP_UNBLOCK_SOURCE: 10754 case IP_ADD_SOURCE_MEMBERSHIP: 10755 case IP_DROP_SOURCE_MEMBERSHIP: 10756 case MCAST_BLOCK_SOURCE: 10757 case MCAST_UNBLOCK_SOURCE: 10758 case MCAST_JOIN_SOURCE_GROUP: 10759 case MCAST_LEAVE_SOURCE_GROUP: { 10760 struct ip_mreq_source *imreqp; 10761 struct group_source_req *gsreqp; 10762 in_addr_t grp, src, ifaddr = INADDR_ANY; 10763 uint32_t ifindex = 0; 10764 mcast_record_t fmode; 10765 struct sockaddr_in *sin; 10766 ire_t *ire; 10767 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10768 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10769 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10770 10771 switch (name) { 10772 case IP_BLOCK_SOURCE: 10773 mcast_opt = B_FALSE; 10774 /* FALLTHRU */ 10775 case MCAST_BLOCK_SOURCE: 10776 fmode = MODE_IS_EXCLUDE; 10777 optfn = ip_opt_add_group; 10778 break; 10779 10780 case IP_UNBLOCK_SOURCE: 10781 mcast_opt = B_FALSE; 10782 /* FALLTHRU */ 10783 case MCAST_UNBLOCK_SOURCE: 10784 fmode = MODE_IS_EXCLUDE; 10785 optfn = ip_opt_delete_group; 10786 break; 10787 10788 case IP_ADD_SOURCE_MEMBERSHIP: 10789 mcast_opt = B_FALSE; 10790 /* FALLTHRU */ 10791 case MCAST_JOIN_SOURCE_GROUP: 10792 fmode = MODE_IS_INCLUDE; 10793 optfn = ip_opt_add_group; 10794 break; 10795 10796 case IP_DROP_SOURCE_MEMBERSHIP: 10797 mcast_opt = B_FALSE; 10798 /* FALLTHRU */ 10799 case MCAST_LEAVE_SOURCE_GROUP: 10800 fmode = MODE_IS_INCLUDE; 10801 optfn = ip_opt_delete_group; 10802 break; 10803 } 10804 10805 if (mcast_opt) { 10806 gsreqp = (struct group_source_req *)i1; 10807 if (gsreqp->gsr_group.ss_family != AF_INET) { 10808 *outlenp = 0; 10809 return (ENOPROTOOPT); 10810 } 10811 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10812 grp = (ipaddr_t)sin->sin_addr.s_addr; 10813 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10814 src = (ipaddr_t)sin->sin_addr.s_addr; 10815 ifindex = gsreqp->gsr_interface; 10816 } else { 10817 imreqp = (struct ip_mreq_source *)i1; 10818 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10819 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10820 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10821 } 10822 10823 /* 10824 * In the multirouting case, we need to replicate 10825 * the request as noted in the mcast cases above. 10826 */ 10827 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10828 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10829 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10830 if (ire != NULL) { 10831 if (ire->ire_flags & RTF_MULTIRT) { 10832 error = ip_multirt_apply_membership( 10833 optfn, ire, connp, checkonly, grp, 10834 fmode, src, first_mp); 10835 done = B_TRUE; 10836 } 10837 ire_refrele(ire); 10838 } 10839 if (!done) { 10840 error = optfn(connp, checkonly, grp, ifaddr, 10841 &ifindex, fmode, src, first_mp); 10842 } 10843 if (error != 0) { 10844 /* 10845 * EINPROGRESS is a soft error, needs retry 10846 * so don't make *outlenp zero. 10847 */ 10848 if (error != EINPROGRESS) 10849 *outlenp = 0; 10850 return (error); 10851 } 10852 /* OK return - copy input buffer into output buffer */ 10853 if (invalp != outvalp) { 10854 bcopy(invalp, outvalp, inlen); 10855 } 10856 *outlenp = inlen; 10857 return (0); 10858 } 10859 case IP_SEC_OPT: 10860 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10861 if (error != 0) { 10862 *outlenp = 0; 10863 return (error); 10864 } 10865 break; 10866 case IP_HDRINCL: 10867 case IP_OPTIONS: 10868 case T_IP_OPTIONS: 10869 case IP_TOS: 10870 case T_IP_TOS: 10871 case IP_TTL: 10872 case IP_RECVDSTADDR: 10873 case IP_RECVOPTS: 10874 /* OK return - copy input buffer into output buffer */ 10875 if (invalp != outvalp) { 10876 /* don't trust bcopy for identical src/dst */ 10877 bcopy(invalp, outvalp, inlen); 10878 } 10879 *outlenp = inlen; 10880 return (0); 10881 case IP_RECVIF: 10882 /* Retrieve the inbound interface index */ 10883 if (!checkonly) { 10884 mutex_enter(&connp->conn_lock); 10885 connp->conn_recvif = *i1 ? 1 : 0; 10886 mutex_exit(&connp->conn_lock); 10887 } 10888 break; /* goto sizeof (int) option return */ 10889 case IP_RECVSLLA: 10890 /* Retrieve the source link layer address */ 10891 if (!checkonly) { 10892 mutex_enter(&connp->conn_lock); 10893 connp->conn_recvslla = *i1 ? 1 : 0; 10894 mutex_exit(&connp->conn_lock); 10895 } 10896 break; /* goto sizeof (int) option return */ 10897 case MRT_INIT: 10898 case MRT_DONE: 10899 case MRT_ADD_VIF: 10900 case MRT_DEL_VIF: 10901 case MRT_ADD_MFC: 10902 case MRT_DEL_MFC: 10903 case MRT_ASSERT: 10904 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10905 *outlenp = 0; 10906 return (error); 10907 } 10908 error = ip_mrouter_set((int)name, q, checkonly, 10909 (uchar_t *)invalp, inlen, first_mp); 10910 if (error) { 10911 *outlenp = 0; 10912 return (error); 10913 } 10914 /* OK return - copy input buffer into output buffer */ 10915 if (invalp != outvalp) { 10916 /* don't trust bcopy for identical src/dst */ 10917 bcopy(invalp, outvalp, inlen); 10918 } 10919 *outlenp = inlen; 10920 return (0); 10921 case IP_BOUND_IF: 10922 case IP_XMIT_IF: 10923 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10924 level, name, first_mp); 10925 if (error != 0) 10926 return (error); 10927 break; /* goto sizeof (int) option return */ 10928 10929 case IP_UNSPEC_SRC: 10930 /* Allow sending with a zero source address */ 10931 if (!checkonly) { 10932 mutex_enter(&connp->conn_lock); 10933 connp->conn_unspec_src = *i1 ? 1 : 0; 10934 mutex_exit(&connp->conn_lock); 10935 } 10936 break; /* goto sizeof (int) option return */ 10937 default: 10938 /* 10939 * "soft" error (negative) 10940 * option not handled at this level 10941 * Note: Do not modify *outlenp 10942 */ 10943 return (-EINVAL); 10944 } 10945 break; 10946 case IPPROTO_IPV6: 10947 switch (name) { 10948 case IPV6_BOUND_IF: 10949 case IPV6_BOUND_PIF: 10950 case IPV6_DONTFAILOVER_IF: 10951 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10952 level, name, first_mp); 10953 if (error != 0) 10954 return (error); 10955 break; /* goto sizeof (int) option return */ 10956 10957 case IPV6_MULTICAST_IF: 10958 /* 10959 * The only possible errors are EINPROGRESS and 10960 * EINVAL. EINPROGRESS will be restarted and is not 10961 * a hard error. We call this option on both V4 and V6 10962 * If both return EINVAL, then this call returns 10963 * EINVAL. If at least one of them succeeds we 10964 * return success. 10965 */ 10966 found = B_FALSE; 10967 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10968 level, name, first_mp); 10969 if (error == EINPROGRESS) 10970 return (error); 10971 if (error == 0) 10972 found = B_TRUE; 10973 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10974 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10975 if (error == 0) 10976 found = B_TRUE; 10977 if (!found) 10978 return (error); 10979 break; /* goto sizeof (int) option return */ 10980 10981 case IPV6_MULTICAST_HOPS: 10982 /* Recorded in transport above IP */ 10983 break; /* goto sizeof (int) option return */ 10984 case IPV6_MULTICAST_LOOP: 10985 if (!checkonly) { 10986 mutex_enter(&connp->conn_lock); 10987 connp->conn_multicast_loop = *i1; 10988 mutex_exit(&connp->conn_lock); 10989 } 10990 break; /* goto sizeof (int) option return */ 10991 case IPV6_JOIN_GROUP: 10992 case MCAST_JOIN_GROUP: 10993 case IPV6_LEAVE_GROUP: 10994 case MCAST_LEAVE_GROUP: { 10995 struct ipv6_mreq *ip_mreqp; 10996 struct group_req *greqp; 10997 ire_t *ire; 10998 boolean_t done = B_FALSE; 10999 in6_addr_t groupv6; 11000 uint32_t ifindex; 11001 boolean_t mcast_opt = B_TRUE; 11002 mcast_record_t fmode; 11003 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11004 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11005 11006 switch (name) { 11007 case IPV6_JOIN_GROUP: 11008 mcast_opt = B_FALSE; 11009 /* FALLTHRU */ 11010 case MCAST_JOIN_GROUP: 11011 fmode = MODE_IS_EXCLUDE; 11012 optfn = ip_opt_add_group_v6; 11013 break; 11014 11015 case IPV6_LEAVE_GROUP: 11016 mcast_opt = B_FALSE; 11017 /* FALLTHRU */ 11018 case MCAST_LEAVE_GROUP: 11019 fmode = MODE_IS_INCLUDE; 11020 optfn = ip_opt_delete_group_v6; 11021 break; 11022 } 11023 11024 if (mcast_opt) { 11025 struct sockaddr_in *sin; 11026 struct sockaddr_in6 *sin6; 11027 greqp = (struct group_req *)i1; 11028 if (greqp->gr_group.ss_family == AF_INET) { 11029 sin = (struct sockaddr_in *) 11030 &(greqp->gr_group); 11031 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11032 &groupv6); 11033 } else { 11034 sin6 = (struct sockaddr_in6 *) 11035 &(greqp->gr_group); 11036 groupv6 = sin6->sin6_addr; 11037 } 11038 ifindex = greqp->gr_interface; 11039 } else { 11040 ip_mreqp = (struct ipv6_mreq *)i1; 11041 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11042 ifindex = ip_mreqp->ipv6mr_interface; 11043 } 11044 /* 11045 * In the multirouting case, we need to replicate 11046 * the request on all interfaces that will take part 11047 * in replication. We do so because multirouting is 11048 * reflective, thus we will probably receive multi- 11049 * casts on those interfaces. 11050 * The ip_multirt_apply_membership_v6() succeeds if 11051 * the operation succeeds on at least one interface. 11052 */ 11053 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11054 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11055 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11056 if (ire != NULL) { 11057 if (ire->ire_flags & RTF_MULTIRT) { 11058 error = ip_multirt_apply_membership_v6( 11059 optfn, ire, connp, checkonly, 11060 &groupv6, fmode, &ipv6_all_zeros, 11061 first_mp); 11062 done = B_TRUE; 11063 } 11064 ire_refrele(ire); 11065 } 11066 if (!done) { 11067 error = optfn(connp, checkonly, &groupv6, 11068 ifindex, fmode, &ipv6_all_zeros, first_mp); 11069 } 11070 if (error) { 11071 /* 11072 * EINPROGRESS is a soft error, needs retry 11073 * so don't make *outlenp zero. 11074 */ 11075 if (error != EINPROGRESS) 11076 *outlenp = 0; 11077 return (error); 11078 } 11079 /* OK return - copy input buffer into output buffer */ 11080 if (invalp != outvalp) { 11081 /* don't trust bcopy for identical src/dst */ 11082 bcopy(invalp, outvalp, inlen); 11083 } 11084 *outlenp = inlen; 11085 return (0); 11086 } 11087 case MCAST_BLOCK_SOURCE: 11088 case MCAST_UNBLOCK_SOURCE: 11089 case MCAST_JOIN_SOURCE_GROUP: 11090 case MCAST_LEAVE_SOURCE_GROUP: { 11091 struct group_source_req *gsreqp; 11092 in6_addr_t v6grp, v6src; 11093 uint32_t ifindex; 11094 mcast_record_t fmode; 11095 ire_t *ire; 11096 boolean_t done = B_FALSE; 11097 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11098 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11099 11100 switch (name) { 11101 case MCAST_BLOCK_SOURCE: 11102 fmode = MODE_IS_EXCLUDE; 11103 optfn = ip_opt_add_group_v6; 11104 break; 11105 case MCAST_UNBLOCK_SOURCE: 11106 fmode = MODE_IS_EXCLUDE; 11107 optfn = ip_opt_delete_group_v6; 11108 break; 11109 case MCAST_JOIN_SOURCE_GROUP: 11110 fmode = MODE_IS_INCLUDE; 11111 optfn = ip_opt_add_group_v6; 11112 break; 11113 case MCAST_LEAVE_SOURCE_GROUP: 11114 fmode = MODE_IS_INCLUDE; 11115 optfn = ip_opt_delete_group_v6; 11116 break; 11117 } 11118 11119 gsreqp = (struct group_source_req *)i1; 11120 ifindex = gsreqp->gsr_interface; 11121 if (gsreqp->gsr_group.ss_family == AF_INET) { 11122 struct sockaddr_in *s; 11123 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11124 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11125 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11126 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11127 } else { 11128 struct sockaddr_in6 *s6; 11129 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11130 v6grp = s6->sin6_addr; 11131 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11132 v6src = s6->sin6_addr; 11133 } 11134 11135 /* 11136 * In the multirouting case, we need to replicate 11137 * the request as noted in the mcast cases above. 11138 */ 11139 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11140 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11141 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11142 if (ire != NULL) { 11143 if (ire->ire_flags & RTF_MULTIRT) { 11144 error = ip_multirt_apply_membership_v6( 11145 optfn, ire, connp, checkonly, 11146 &v6grp, fmode, &v6src, first_mp); 11147 done = B_TRUE; 11148 } 11149 ire_refrele(ire); 11150 } 11151 if (!done) { 11152 error = optfn(connp, checkonly, &v6grp, 11153 ifindex, fmode, &v6src, first_mp); 11154 } 11155 if (error != 0) { 11156 /* 11157 * EINPROGRESS is a soft error, needs retry 11158 * so don't make *outlenp zero. 11159 */ 11160 if (error != EINPROGRESS) 11161 *outlenp = 0; 11162 return (error); 11163 } 11164 /* OK return - copy input buffer into output buffer */ 11165 if (invalp != outvalp) { 11166 bcopy(invalp, outvalp, inlen); 11167 } 11168 *outlenp = inlen; 11169 return (0); 11170 } 11171 case IPV6_UNICAST_HOPS: 11172 /* Recorded in transport above IP */ 11173 break; /* goto sizeof (int) option return */ 11174 case IPV6_UNSPEC_SRC: 11175 /* Allow sending with a zero source address */ 11176 if (!checkonly) { 11177 mutex_enter(&connp->conn_lock); 11178 connp->conn_unspec_src = *i1 ? 1 : 0; 11179 mutex_exit(&connp->conn_lock); 11180 } 11181 break; /* goto sizeof (int) option return */ 11182 case IPV6_RECVPKTINFO: 11183 if (!checkonly) { 11184 mutex_enter(&connp->conn_lock); 11185 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11186 mutex_exit(&connp->conn_lock); 11187 } 11188 break; /* goto sizeof (int) option return */ 11189 case IPV6_RECVTCLASS: 11190 if (!checkonly) { 11191 if (*i1 < 0 || *i1 > 1) { 11192 return (EINVAL); 11193 } 11194 mutex_enter(&connp->conn_lock); 11195 connp->conn_ipv6_recvtclass = *i1; 11196 mutex_exit(&connp->conn_lock); 11197 } 11198 break; 11199 case IPV6_RECVPATHMTU: 11200 if (!checkonly) { 11201 if (*i1 < 0 || *i1 > 1) { 11202 return (EINVAL); 11203 } 11204 mutex_enter(&connp->conn_lock); 11205 connp->conn_ipv6_recvpathmtu = *i1; 11206 mutex_exit(&connp->conn_lock); 11207 } 11208 break; 11209 case IPV6_RECVHOPLIMIT: 11210 if (!checkonly) { 11211 mutex_enter(&connp->conn_lock); 11212 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11213 mutex_exit(&connp->conn_lock); 11214 } 11215 break; /* goto sizeof (int) option return */ 11216 case IPV6_RECVHOPOPTS: 11217 if (!checkonly) { 11218 mutex_enter(&connp->conn_lock); 11219 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11220 mutex_exit(&connp->conn_lock); 11221 } 11222 break; /* goto sizeof (int) option return */ 11223 case IPV6_RECVDSTOPTS: 11224 if (!checkonly) { 11225 mutex_enter(&connp->conn_lock); 11226 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11227 mutex_exit(&connp->conn_lock); 11228 } 11229 break; /* goto sizeof (int) option return */ 11230 case IPV6_RECVRTHDR: 11231 if (!checkonly) { 11232 mutex_enter(&connp->conn_lock); 11233 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11234 mutex_exit(&connp->conn_lock); 11235 } 11236 break; /* goto sizeof (int) option return */ 11237 case IPV6_RECVRTHDRDSTOPTS: 11238 if (!checkonly) { 11239 mutex_enter(&connp->conn_lock); 11240 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11241 mutex_exit(&connp->conn_lock); 11242 } 11243 break; /* goto sizeof (int) option return */ 11244 case IPV6_PKTINFO: 11245 if (inlen == 0) 11246 return (-EINVAL); /* clearing option */ 11247 error = ip6_set_pktinfo(cr, connp, 11248 (struct in6_pktinfo *)invalp, first_mp); 11249 if (error != 0) 11250 *outlenp = 0; 11251 else 11252 *outlenp = inlen; 11253 return (error); 11254 case IPV6_NEXTHOP: { 11255 struct sockaddr_in6 *sin6; 11256 11257 /* Verify that the nexthop is reachable */ 11258 if (inlen == 0) 11259 return (-EINVAL); /* clearing option */ 11260 11261 sin6 = (struct sockaddr_in6 *)invalp; 11262 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11263 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11264 NULL, MATCH_IRE_DEFAULT); 11265 11266 if (ire == NULL) { 11267 *outlenp = 0; 11268 return (EHOSTUNREACH); 11269 } 11270 ire_refrele(ire); 11271 return (-EINVAL); 11272 } 11273 case IPV6_SEC_OPT: 11274 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11275 if (error != 0) { 11276 *outlenp = 0; 11277 return (error); 11278 } 11279 break; 11280 case IPV6_SRC_PREFERENCES: { 11281 /* 11282 * This is implemented strictly in the ip module 11283 * (here and in tcp_opt_*() to accomodate tcp 11284 * sockets). Modules above ip pass this option 11285 * down here since ip is the only one that needs to 11286 * be aware of source address preferences. 11287 * 11288 * This socket option only affects connected 11289 * sockets that haven't already bound to a specific 11290 * IPv6 address. In other words, sockets that 11291 * don't call bind() with an address other than the 11292 * unspecified address and that call connect(). 11293 * ip_bind_connected_v6() passes these preferences 11294 * to the ipif_select_source_v6() function. 11295 */ 11296 if (inlen != sizeof (uint32_t)) 11297 return (EINVAL); 11298 error = ip6_set_src_preferences(connp, 11299 *(uint32_t *)invalp); 11300 if (error != 0) { 11301 *outlenp = 0; 11302 return (error); 11303 } else { 11304 *outlenp = sizeof (uint32_t); 11305 } 11306 break; 11307 } 11308 case IPV6_V6ONLY: 11309 if (*i1 < 0 || *i1 > 1) { 11310 return (EINVAL); 11311 } 11312 mutex_enter(&connp->conn_lock); 11313 connp->conn_ipv6_v6only = *i1; 11314 mutex_exit(&connp->conn_lock); 11315 break; 11316 default: 11317 return (-EINVAL); 11318 } 11319 break; 11320 default: 11321 /* 11322 * "soft" error (negative) 11323 * option not handled at this level 11324 * Note: Do not modify *outlenp 11325 */ 11326 return (-EINVAL); 11327 } 11328 /* 11329 * Common case of return from an option that is sizeof (int) 11330 */ 11331 *(int *)outvalp = *i1; 11332 *outlenp = sizeof (int); 11333 return (0); 11334 } 11335 11336 /* 11337 * This routine gets default values of certain options whose default 11338 * values are maintained by protocol specific code 11339 */ 11340 /* ARGSUSED */ 11341 int 11342 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11343 { 11344 int *i1 = (int *)ptr; 11345 11346 switch (level) { 11347 case IPPROTO_IP: 11348 switch (name) { 11349 case IP_MULTICAST_TTL: 11350 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11351 return (sizeof (uchar_t)); 11352 case IP_MULTICAST_LOOP: 11353 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11354 return (sizeof (uchar_t)); 11355 default: 11356 return (-1); 11357 } 11358 case IPPROTO_IPV6: 11359 switch (name) { 11360 case IPV6_UNICAST_HOPS: 11361 *i1 = ipv6_def_hops; 11362 return (sizeof (int)); 11363 case IPV6_MULTICAST_HOPS: 11364 *i1 = IP_DEFAULT_MULTICAST_TTL; 11365 return (sizeof (int)); 11366 case IPV6_MULTICAST_LOOP: 11367 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11368 return (sizeof (int)); 11369 case IPV6_V6ONLY: 11370 *i1 = 1; 11371 return (sizeof (int)); 11372 default: 11373 return (-1); 11374 } 11375 default: 11376 return (-1); 11377 } 11378 /* NOTREACHED */ 11379 } 11380 11381 /* 11382 * Given a destination address and a pointer to where to put the information 11383 * this routine fills in the mtuinfo. 11384 */ 11385 int 11386 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11387 struct ip6_mtuinfo *mtuinfo) 11388 { 11389 ire_t *ire; 11390 11391 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11392 return (-1); 11393 11394 bzero(mtuinfo, sizeof (*mtuinfo)); 11395 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11396 mtuinfo->ip6m_addr.sin6_port = port; 11397 mtuinfo->ip6m_addr.sin6_addr = *in6; 11398 11399 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11400 if (ire != NULL) { 11401 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11402 ire_refrele(ire); 11403 } else { 11404 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11405 } 11406 return (sizeof (struct ip6_mtuinfo)); 11407 } 11408 11409 /* 11410 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11411 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11412 * isn't. This doesn't matter as the error checking is done properly for the 11413 * other MRT options coming in through ip_opt_set. 11414 */ 11415 int 11416 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11417 { 11418 conn_t *connp = Q_TO_CONN(q); 11419 ipsec_req_t *req = (ipsec_req_t *)ptr; 11420 11421 switch (level) { 11422 case IPPROTO_IP: 11423 switch (name) { 11424 case MRT_VERSION: 11425 case MRT_ASSERT: 11426 (void) ip_mrouter_get(name, q, ptr); 11427 return (sizeof (int)); 11428 case IP_SEC_OPT: 11429 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11430 case IP_NEXTHOP: 11431 if (connp->conn_nexthop_set) { 11432 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11433 return (sizeof (ipaddr_t)); 11434 } else 11435 return (0); 11436 default: 11437 break; 11438 } 11439 break; 11440 case IPPROTO_IPV6: 11441 switch (name) { 11442 case IPV6_SEC_OPT: 11443 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11444 case IPV6_SRC_PREFERENCES: { 11445 return (ip6_get_src_preferences(connp, 11446 (uint32_t *)ptr)); 11447 } 11448 case IPV6_V6ONLY: 11449 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11450 return (sizeof (int)); 11451 case IPV6_PATHMTU: 11452 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11453 (struct ip6_mtuinfo *)ptr)); 11454 default: 11455 break; 11456 } 11457 break; 11458 default: 11459 break; 11460 } 11461 return (-1); 11462 } 11463 11464 /* Named Dispatch routine to get a current value out of our parameter table. */ 11465 /* ARGSUSED */ 11466 static int 11467 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11468 { 11469 ipparam_t *ippa = (ipparam_t *)cp; 11470 11471 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11472 return (0); 11473 } 11474 11475 /* ARGSUSED */ 11476 static int 11477 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11478 { 11479 11480 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11481 return (0); 11482 } 11483 11484 /* 11485 * Set ip{,6}_forwarding values. This means walking through all of the 11486 * ill's and toggling their forwarding values. 11487 */ 11488 /* ARGSUSED */ 11489 static int 11490 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11491 { 11492 long new_value; 11493 int *forwarding_value = (int *)cp; 11494 ill_t *walker; 11495 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11496 ill_walk_context_t ctx; 11497 11498 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11499 new_value < 0 || new_value > 1) { 11500 return (EINVAL); 11501 } 11502 11503 *forwarding_value = new_value; 11504 11505 /* 11506 * Regardless of the current value of ip_forwarding, set all per-ill 11507 * values of ip_forwarding to the value being set. 11508 * 11509 * Bring all the ill's up to date with the new global value. 11510 */ 11511 rw_enter(&ill_g_lock, RW_READER); 11512 11513 if (isv6) 11514 walker = ILL_START_WALK_V6(&ctx); 11515 else 11516 walker = ILL_START_WALK_V4(&ctx); 11517 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11518 (void) ill_forward_set(q, mp, (new_value != 0), 11519 (caddr_t)walker); 11520 } 11521 rw_exit(&ill_g_lock); 11522 11523 return (0); 11524 } 11525 11526 /* 11527 * Walk through the param array specified registering each element with the 11528 * Named Dispatch handler. This is called only during init. So it is ok 11529 * not to acquire any locks 11530 */ 11531 static boolean_t 11532 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11533 ipndp_t *ipnd, size_t ipnd_cnt) 11534 { 11535 for (; ippa_cnt-- > 0; ippa++) { 11536 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11537 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11538 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11539 nd_free(&ip_g_nd); 11540 return (B_FALSE); 11541 } 11542 } 11543 } 11544 11545 for (; ipnd_cnt-- > 0; ipnd++) { 11546 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11547 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11548 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11549 ipnd->ip_ndp_data)) { 11550 nd_free(&ip_g_nd); 11551 return (B_FALSE); 11552 } 11553 } 11554 } 11555 11556 return (B_TRUE); 11557 } 11558 11559 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11560 /* ARGSUSED */ 11561 static int 11562 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11563 { 11564 long new_value; 11565 ipparam_t *ippa = (ipparam_t *)cp; 11566 11567 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11568 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11569 return (EINVAL); 11570 } 11571 ippa->ip_param_value = new_value; 11572 return (0); 11573 } 11574 11575 /* 11576 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11577 * When an ipf is passed here for the first time, if 11578 * we already have in-order fragments on the queue, we convert from the fast- 11579 * path reassembly scheme to the hard-case scheme. From then on, additional 11580 * fragments are reassembled here. We keep track of the start and end offsets 11581 * of each piece, and the number of holes in the chain. When the hole count 11582 * goes to zero, we are done! 11583 * 11584 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11585 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11586 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11587 * after the call to ip_reassemble(). 11588 */ 11589 int 11590 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11591 size_t msg_len) 11592 { 11593 uint_t end; 11594 mblk_t *next_mp; 11595 mblk_t *mp1; 11596 uint_t offset; 11597 boolean_t incr_dups = B_TRUE; 11598 boolean_t offset_zero_seen = B_FALSE; 11599 boolean_t pkt_boundary_checked = B_FALSE; 11600 11601 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11602 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11603 11604 /* Add in byte count */ 11605 ipf->ipf_count += msg_len; 11606 if (ipf->ipf_end) { 11607 /* 11608 * We were part way through in-order reassembly, but now there 11609 * is a hole. We walk through messages already queued, and 11610 * mark them for hard case reassembly. We know that up till 11611 * now they were in order starting from offset zero. 11612 */ 11613 offset = 0; 11614 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11615 IP_REASS_SET_START(mp1, offset); 11616 if (offset == 0) { 11617 ASSERT(ipf->ipf_nf_hdr_len != 0); 11618 offset = -ipf->ipf_nf_hdr_len; 11619 } 11620 offset += mp1->b_wptr - mp1->b_rptr; 11621 IP_REASS_SET_END(mp1, offset); 11622 } 11623 /* One hole at the end. */ 11624 ipf->ipf_hole_cnt = 1; 11625 /* Brand it as a hard case, forever. */ 11626 ipf->ipf_end = 0; 11627 } 11628 /* Walk through all the new pieces. */ 11629 do { 11630 end = start + (mp->b_wptr - mp->b_rptr); 11631 /* 11632 * If start is 0, decrease 'end' only for the first mblk of 11633 * the fragment. Otherwise 'end' can get wrong value in the 11634 * second pass of the loop if first mblk is exactly the 11635 * size of ipf_nf_hdr_len. 11636 */ 11637 if (start == 0 && !offset_zero_seen) { 11638 /* First segment */ 11639 ASSERT(ipf->ipf_nf_hdr_len != 0); 11640 end -= ipf->ipf_nf_hdr_len; 11641 offset_zero_seen = B_TRUE; 11642 } 11643 next_mp = mp->b_cont; 11644 /* 11645 * We are checking to see if there is any interesing data 11646 * to process. If there isn't and the mblk isn't the 11647 * one which carries the unfragmentable header then we 11648 * drop it. It's possible to have just the unfragmentable 11649 * header come through without any data. That needs to be 11650 * saved. 11651 * 11652 * If the assert at the top of this function holds then the 11653 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11654 * is infrequently traveled enough that the test is left in 11655 * to protect against future code changes which break that 11656 * invariant. 11657 */ 11658 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11659 /* Empty. Blast it. */ 11660 IP_REASS_SET_START(mp, 0); 11661 IP_REASS_SET_END(mp, 0); 11662 /* 11663 * If the ipf points to the mblk we are about to free, 11664 * update ipf to point to the next mblk (or NULL 11665 * if none). 11666 */ 11667 if (ipf->ipf_mp->b_cont == mp) 11668 ipf->ipf_mp->b_cont = next_mp; 11669 freeb(mp); 11670 continue; 11671 } 11672 mp->b_cont = NULL; 11673 IP_REASS_SET_START(mp, start); 11674 IP_REASS_SET_END(mp, end); 11675 if (!ipf->ipf_tail_mp) { 11676 ipf->ipf_tail_mp = mp; 11677 ipf->ipf_mp->b_cont = mp; 11678 if (start == 0 || !more) { 11679 ipf->ipf_hole_cnt = 1; 11680 /* 11681 * if the first fragment comes in more than one 11682 * mblk, this loop will be executed for each 11683 * mblk. Need to adjust hole count so exiting 11684 * this routine will leave hole count at 1. 11685 */ 11686 if (next_mp) 11687 ipf->ipf_hole_cnt++; 11688 } else 11689 ipf->ipf_hole_cnt = 2; 11690 continue; 11691 } else if (ipf->ipf_last_frag_seen && !more && 11692 !pkt_boundary_checked) { 11693 /* 11694 * We check datagram boundary only if this fragment 11695 * claims to be the last fragment and we have seen a 11696 * last fragment in the past too. We do this only 11697 * once for a given fragment. 11698 * 11699 * start cannot be 0 here as fragments with start=0 11700 * and MF=0 gets handled as a complete packet. These 11701 * fragments should not reach here. 11702 */ 11703 11704 if (start + msgdsize(mp) != 11705 IP_REASS_END(ipf->ipf_tail_mp)) { 11706 /* 11707 * We have two fragments both of which claim 11708 * to be the last fragment but gives conflicting 11709 * information about the whole datagram size. 11710 * Something fishy is going on. Drop the 11711 * fragment and free up the reassembly list. 11712 */ 11713 return (IP_REASS_FAILED); 11714 } 11715 11716 /* 11717 * We shouldn't come to this code block again for this 11718 * particular fragment. 11719 */ 11720 pkt_boundary_checked = B_TRUE; 11721 } 11722 11723 /* New stuff at or beyond tail? */ 11724 offset = IP_REASS_END(ipf->ipf_tail_mp); 11725 if (start >= offset) { 11726 if (ipf->ipf_last_frag_seen) { 11727 /* current fragment is beyond last fragment */ 11728 return (IP_REASS_FAILED); 11729 } 11730 /* Link it on end. */ 11731 ipf->ipf_tail_mp->b_cont = mp; 11732 ipf->ipf_tail_mp = mp; 11733 if (more) { 11734 if (start != offset) 11735 ipf->ipf_hole_cnt++; 11736 } else if (start == offset && next_mp == NULL) 11737 ipf->ipf_hole_cnt--; 11738 continue; 11739 } 11740 mp1 = ipf->ipf_mp->b_cont; 11741 offset = IP_REASS_START(mp1); 11742 /* New stuff at the front? */ 11743 if (start < offset) { 11744 if (start == 0) { 11745 if (end >= offset) { 11746 /* Nailed the hole at the begining. */ 11747 ipf->ipf_hole_cnt--; 11748 } 11749 } else if (end < offset) { 11750 /* 11751 * A hole, stuff, and a hole where there used 11752 * to be just a hole. 11753 */ 11754 ipf->ipf_hole_cnt++; 11755 } 11756 mp->b_cont = mp1; 11757 /* Check for overlap. */ 11758 while (end > offset) { 11759 if (end < IP_REASS_END(mp1)) { 11760 mp->b_wptr -= end - offset; 11761 IP_REASS_SET_END(mp, offset); 11762 if (ill->ill_isv6) { 11763 BUMP_MIB(ill->ill_ip6_mib, 11764 ipv6ReasmPartDups); 11765 } else { 11766 BUMP_MIB(&ip_mib, 11767 ipReasmPartDups); 11768 } 11769 break; 11770 } 11771 /* Did we cover another hole? */ 11772 if ((mp1->b_cont && 11773 IP_REASS_END(mp1) != 11774 IP_REASS_START(mp1->b_cont) && 11775 end >= IP_REASS_START(mp1->b_cont)) || 11776 (!ipf->ipf_last_frag_seen && !more)) { 11777 ipf->ipf_hole_cnt--; 11778 } 11779 /* Clip out mp1. */ 11780 if ((mp->b_cont = mp1->b_cont) == NULL) { 11781 /* 11782 * After clipping out mp1, this guy 11783 * is now hanging off the end. 11784 */ 11785 ipf->ipf_tail_mp = mp; 11786 } 11787 IP_REASS_SET_START(mp1, 0); 11788 IP_REASS_SET_END(mp1, 0); 11789 /* Subtract byte count */ 11790 ipf->ipf_count -= mp1->b_datap->db_lim - 11791 mp1->b_datap->db_base; 11792 freeb(mp1); 11793 if (ill->ill_isv6) { 11794 BUMP_MIB(ill->ill_ip6_mib, 11795 ipv6ReasmPartDups); 11796 } else { 11797 BUMP_MIB(&ip_mib, ipReasmPartDups); 11798 } 11799 mp1 = mp->b_cont; 11800 if (!mp1) 11801 break; 11802 offset = IP_REASS_START(mp1); 11803 } 11804 ipf->ipf_mp->b_cont = mp; 11805 continue; 11806 } 11807 /* 11808 * The new piece starts somewhere between the start of the head 11809 * and before the end of the tail. 11810 */ 11811 for (; mp1; mp1 = mp1->b_cont) { 11812 offset = IP_REASS_END(mp1); 11813 if (start < offset) { 11814 if (end <= offset) { 11815 /* Nothing new. */ 11816 IP_REASS_SET_START(mp, 0); 11817 IP_REASS_SET_END(mp, 0); 11818 /* Subtract byte count */ 11819 ipf->ipf_count -= mp->b_datap->db_lim - 11820 mp->b_datap->db_base; 11821 if (incr_dups) { 11822 ipf->ipf_num_dups++; 11823 incr_dups = B_FALSE; 11824 } 11825 freeb(mp); 11826 if (ill->ill_isv6) { 11827 BUMP_MIB(ill->ill_ip6_mib, 11828 ipv6ReasmDuplicates); 11829 } else { 11830 BUMP_MIB(&ip_mib, 11831 ipReasmDuplicates); 11832 } 11833 break; 11834 } 11835 /* 11836 * Trim redundant stuff off beginning of new 11837 * piece. 11838 */ 11839 IP_REASS_SET_START(mp, offset); 11840 mp->b_rptr += offset - start; 11841 if (ill->ill_isv6) { 11842 BUMP_MIB(ill->ill_ip6_mib, 11843 ipv6ReasmPartDups); 11844 } else { 11845 BUMP_MIB(&ip_mib, ipReasmPartDups); 11846 } 11847 start = offset; 11848 if (!mp1->b_cont) { 11849 /* 11850 * After trimming, this guy is now 11851 * hanging off the end. 11852 */ 11853 mp1->b_cont = mp; 11854 ipf->ipf_tail_mp = mp; 11855 if (!more) { 11856 ipf->ipf_hole_cnt--; 11857 } 11858 break; 11859 } 11860 } 11861 if (start >= IP_REASS_START(mp1->b_cont)) 11862 continue; 11863 /* Fill a hole */ 11864 if (start > offset) 11865 ipf->ipf_hole_cnt++; 11866 mp->b_cont = mp1->b_cont; 11867 mp1->b_cont = mp; 11868 mp1 = mp->b_cont; 11869 offset = IP_REASS_START(mp1); 11870 if (end >= offset) { 11871 ipf->ipf_hole_cnt--; 11872 /* Check for overlap. */ 11873 while (end > offset) { 11874 if (end < IP_REASS_END(mp1)) { 11875 mp->b_wptr -= end - offset; 11876 IP_REASS_SET_END(mp, offset); 11877 /* 11878 * TODO we might bump 11879 * this up twice if there is 11880 * overlap at both ends. 11881 */ 11882 if (ill->ill_isv6) { 11883 BUMP_MIB( 11884 ill->ill_ip6_mib, 11885 ipv6ReasmPartDups); 11886 } else { 11887 BUMP_MIB(&ip_mib, 11888 ipReasmPartDups); 11889 } 11890 break; 11891 } 11892 /* Did we cover another hole? */ 11893 if ((mp1->b_cont && 11894 IP_REASS_END(mp1) 11895 != IP_REASS_START(mp1->b_cont) && 11896 end >= 11897 IP_REASS_START(mp1->b_cont)) || 11898 (!ipf->ipf_last_frag_seen && 11899 !more)) { 11900 ipf->ipf_hole_cnt--; 11901 } 11902 /* Clip out mp1. */ 11903 if ((mp->b_cont = mp1->b_cont) == 11904 NULL) { 11905 /* 11906 * After clipping out mp1, 11907 * this guy is now hanging 11908 * off the end. 11909 */ 11910 ipf->ipf_tail_mp = mp; 11911 } 11912 IP_REASS_SET_START(mp1, 0); 11913 IP_REASS_SET_END(mp1, 0); 11914 /* Subtract byte count */ 11915 ipf->ipf_count -= 11916 mp1->b_datap->db_lim - 11917 mp1->b_datap->db_base; 11918 freeb(mp1); 11919 if (ill->ill_isv6) { 11920 BUMP_MIB(ill->ill_ip6_mib, 11921 ipv6ReasmPartDups); 11922 } else { 11923 BUMP_MIB(&ip_mib, 11924 ipReasmPartDups); 11925 } 11926 mp1 = mp->b_cont; 11927 if (!mp1) 11928 break; 11929 offset = IP_REASS_START(mp1); 11930 } 11931 } 11932 break; 11933 } 11934 } while (start = end, mp = next_mp); 11935 11936 /* Fragment just processed could be the last one. Remember this fact */ 11937 if (!more) 11938 ipf->ipf_last_frag_seen = B_TRUE; 11939 11940 /* Still got holes? */ 11941 if (ipf->ipf_hole_cnt) 11942 return (IP_REASS_PARTIAL); 11943 /* Clean up overloaded fields to avoid upstream disasters. */ 11944 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11945 IP_REASS_SET_START(mp1, 0); 11946 IP_REASS_SET_END(mp1, 0); 11947 } 11948 return (IP_REASS_COMPLETE); 11949 } 11950 11951 /* 11952 * ipsec processing for the fast path, used for input UDP Packets 11953 */ 11954 static boolean_t 11955 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11956 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11957 { 11958 uint32_t ill_index; 11959 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11960 11961 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11962 /* The ill_index of the incoming ILL */ 11963 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11964 11965 /* pass packet up to the transport */ 11966 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11967 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11968 NULL, mctl_present); 11969 if (*first_mpp == NULL) { 11970 return (B_FALSE); 11971 } 11972 } 11973 11974 /* Initiate IPPF processing for fastpath UDP */ 11975 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11976 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11977 if (*mpp == NULL) { 11978 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11979 "deferred/dropped during IPPF processing\n")); 11980 return (B_FALSE); 11981 } 11982 } 11983 /* 11984 * We make the checks as below since we are in the fast path 11985 * and want to minimize the number of checks if the IP_RECVIF and/or 11986 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11987 */ 11988 if (connp->conn_recvif || connp->conn_recvslla || 11989 connp->conn_ipv6_recvpktinfo) { 11990 if (connp->conn_recvif || 11991 connp->conn_ipv6_recvpktinfo) { 11992 in_flags = IPF_RECVIF; 11993 } 11994 if (connp->conn_recvslla) { 11995 in_flags |= IPF_RECVSLLA; 11996 } 11997 /* 11998 * since in_flags are being set ill will be 11999 * referenced in ip_add_info, so it better not 12000 * be NULL. 12001 */ 12002 /* 12003 * the actual data will be contained in b_cont 12004 * upon successful return of the following call. 12005 * If the call fails then the original mblk is 12006 * returned. 12007 */ 12008 *mpp = ip_add_info(*mpp, ill, in_flags); 12009 } 12010 12011 return (B_TRUE); 12012 } 12013 12014 /* 12015 * Fragmentation reassembly. Each ILL has a hash table for 12016 * queuing packets undergoing reassembly for all IPIFs 12017 * associated with the ILL. The hash is based on the packet 12018 * IP ident field. The ILL frag hash table was allocated 12019 * as a timer block at the time the ILL was created. Whenever 12020 * there is anything on the reassembly queue, the timer will 12021 * be running. Returns B_TRUE if successful else B_FALSE; 12022 * frees mp on failure. 12023 */ 12024 static boolean_t 12025 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12026 uint32_t *cksum_val, uint16_t *cksum_flags) 12027 { 12028 uint32_t frag_offset_flags; 12029 ill_t *ill = (ill_t *)q->q_ptr; 12030 mblk_t *mp = *mpp; 12031 mblk_t *t_mp; 12032 ipaddr_t dst; 12033 uint8_t proto = ipha->ipha_protocol; 12034 uint32_t sum_val; 12035 uint16_t sum_flags; 12036 ipf_t *ipf; 12037 ipf_t **ipfp; 12038 ipfb_t *ipfb; 12039 uint16_t ident; 12040 uint32_t offset; 12041 ipaddr_t src; 12042 uint_t hdr_length; 12043 uint32_t end; 12044 mblk_t *mp1; 12045 mblk_t *tail_mp; 12046 size_t count; 12047 size_t msg_len; 12048 uint8_t ecn_info = 0; 12049 uint32_t packet_size; 12050 boolean_t pruned = B_FALSE; 12051 12052 if (cksum_val != NULL) 12053 *cksum_val = 0; 12054 if (cksum_flags != NULL) 12055 *cksum_flags = 0; 12056 12057 /* 12058 * Drop the fragmented as early as possible, if 12059 * we don't have resource(s) to re-assemble. 12060 */ 12061 if (ip_reass_queue_bytes == 0) { 12062 freemsg(mp); 12063 return (B_FALSE); 12064 } 12065 12066 /* Check for fragmentation offset; return if there's none */ 12067 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12068 (IPH_MF | IPH_OFFSET)) == 0) 12069 return (B_TRUE); 12070 12071 /* 12072 * We utilize hardware computed checksum info only for UDP since 12073 * IP fragmentation is a normal occurence for the protocol. In 12074 * addition, checksum offload support for IP fragments carrying 12075 * UDP payload is commonly implemented across network adapters. 12076 */ 12077 ASSERT(ill != NULL); 12078 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12079 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12080 mblk_t *mp1 = mp->b_cont; 12081 int32_t len; 12082 12083 /* Record checksum information from the packet */ 12084 sum_val = (uint32_t)DB_CKSUM16(mp); 12085 sum_flags = DB_CKSUMFLAGS(mp); 12086 12087 /* IP payload offset from beginning of mblk */ 12088 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12089 12090 if ((sum_flags & HCK_PARTIALCKSUM) && 12091 (mp1 == NULL || mp1->b_cont == NULL) && 12092 offset >= DB_CKSUMSTART(mp) && 12093 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12094 uint32_t adj; 12095 /* 12096 * Partial checksum has been calculated by hardware 12097 * and attached to the packet; in addition, any 12098 * prepended extraneous data is even byte aligned. 12099 * If any such data exists, we adjust the checksum; 12100 * this would also handle any postpended data. 12101 */ 12102 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12103 mp, mp1, len, adj); 12104 12105 /* One's complement subtract extraneous checksum */ 12106 if (adj >= sum_val) 12107 sum_val = ~(adj - sum_val) & 0xFFFF; 12108 else 12109 sum_val -= adj; 12110 } 12111 } else { 12112 sum_val = 0; 12113 sum_flags = 0; 12114 } 12115 12116 /* Clear hardware checksumming flag */ 12117 DB_CKSUMFLAGS(mp) = 0; 12118 12119 ident = ipha->ipha_ident; 12120 offset = (frag_offset_flags << 3) & 0xFFFF; 12121 src = ipha->ipha_src; 12122 dst = ipha->ipha_dst; 12123 hdr_length = IPH_HDR_LENGTH(ipha); 12124 end = ntohs(ipha->ipha_length) - hdr_length; 12125 12126 /* If end == 0 then we have a packet with no data, so just free it */ 12127 if (end == 0) { 12128 freemsg(mp); 12129 return (B_FALSE); 12130 } 12131 12132 /* Record the ECN field info. */ 12133 ecn_info = (ipha->ipha_type_of_service & 0x3); 12134 if (offset != 0) { 12135 /* 12136 * If this isn't the first piece, strip the header, and 12137 * add the offset to the end value. 12138 */ 12139 mp->b_rptr += hdr_length; 12140 end += offset; 12141 } 12142 12143 msg_len = MBLKSIZE(mp); 12144 tail_mp = mp; 12145 while (tail_mp->b_cont != NULL) { 12146 tail_mp = tail_mp->b_cont; 12147 msg_len += MBLKSIZE(tail_mp); 12148 } 12149 12150 /* If the reassembly list for this ILL will get too big, prune it */ 12151 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12152 ip_reass_queue_bytes) { 12153 ill_frag_prune(ill, 12154 (ip_reass_queue_bytes < msg_len) ? 0 : 12155 (ip_reass_queue_bytes - msg_len)); 12156 pruned = B_TRUE; 12157 } 12158 12159 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12160 mutex_enter(&ipfb->ipfb_lock); 12161 12162 ipfp = &ipfb->ipfb_ipf; 12163 /* Try to find an existing fragment queue for this packet. */ 12164 for (;;) { 12165 ipf = ipfp[0]; 12166 if (ipf != NULL) { 12167 /* 12168 * It has to match on ident and src/dst address. 12169 */ 12170 if (ipf->ipf_ident == ident && 12171 ipf->ipf_src == src && 12172 ipf->ipf_dst == dst && 12173 ipf->ipf_protocol == proto) { 12174 /* 12175 * If we have received too many 12176 * duplicate fragments for this packet 12177 * free it. 12178 */ 12179 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12180 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12181 freemsg(mp); 12182 mutex_exit(&ipfb->ipfb_lock); 12183 return (B_FALSE); 12184 } 12185 /* Found it. */ 12186 break; 12187 } 12188 ipfp = &ipf->ipf_hash_next; 12189 continue; 12190 } 12191 12192 /* 12193 * If we pruned the list, do we want to store this new 12194 * fragment?. We apply an optimization here based on the 12195 * fact that most fragments will be received in order. 12196 * So if the offset of this incoming fragment is zero, 12197 * it is the first fragment of a new packet. We will 12198 * keep it. Otherwise drop the fragment, as we have 12199 * probably pruned the packet already (since the 12200 * packet cannot be found). 12201 */ 12202 if (pruned && offset != 0) { 12203 mutex_exit(&ipfb->ipfb_lock); 12204 freemsg(mp); 12205 return (B_FALSE); 12206 } 12207 12208 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12209 /* 12210 * Too many fragmented packets in this hash 12211 * bucket. Free the oldest. 12212 */ 12213 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12214 } 12215 12216 /* New guy. Allocate a frag message. */ 12217 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12218 if (mp1 == NULL) { 12219 BUMP_MIB(&ip_mib, ipInDiscards); 12220 freemsg(mp); 12221 reass_done: 12222 mutex_exit(&ipfb->ipfb_lock); 12223 return (B_FALSE); 12224 } 12225 12226 12227 BUMP_MIB(&ip_mib, ipReasmReqds); 12228 mp1->b_cont = mp; 12229 12230 /* Initialize the fragment header. */ 12231 ipf = (ipf_t *)mp1->b_rptr; 12232 ipf->ipf_mp = mp1; 12233 ipf->ipf_ptphn = ipfp; 12234 ipfp[0] = ipf; 12235 ipf->ipf_hash_next = NULL; 12236 ipf->ipf_ident = ident; 12237 ipf->ipf_protocol = proto; 12238 ipf->ipf_src = src; 12239 ipf->ipf_dst = dst; 12240 ipf->ipf_nf_hdr_len = 0; 12241 /* Record reassembly start time. */ 12242 ipf->ipf_timestamp = gethrestime_sec(); 12243 /* Record ipf generation and account for frag header */ 12244 ipf->ipf_gen = ill->ill_ipf_gen++; 12245 ipf->ipf_count = MBLKSIZE(mp1); 12246 ipf->ipf_last_frag_seen = B_FALSE; 12247 ipf->ipf_ecn = ecn_info; 12248 ipf->ipf_num_dups = 0; 12249 ipfb->ipfb_frag_pkts++; 12250 ipf->ipf_checksum = 0; 12251 ipf->ipf_checksum_flags = 0; 12252 12253 /* Store checksum value in fragment header */ 12254 if (sum_flags != 0) { 12255 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12256 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12257 ipf->ipf_checksum = sum_val; 12258 ipf->ipf_checksum_flags = sum_flags; 12259 } 12260 12261 /* 12262 * We handle reassembly two ways. In the easy case, 12263 * where all the fragments show up in order, we do 12264 * minimal bookkeeping, and just clip new pieces on 12265 * the end. If we ever see a hole, then we go off 12266 * to ip_reassemble which has to mark the pieces and 12267 * keep track of the number of holes, etc. Obviously, 12268 * the point of having both mechanisms is so we can 12269 * handle the easy case as efficiently as possible. 12270 */ 12271 if (offset == 0) { 12272 /* Easy case, in-order reassembly so far. */ 12273 ipf->ipf_count += msg_len; 12274 ipf->ipf_tail_mp = tail_mp; 12275 /* 12276 * Keep track of next expected offset in 12277 * ipf_end. 12278 */ 12279 ipf->ipf_end = end; 12280 ipf->ipf_nf_hdr_len = hdr_length; 12281 } else { 12282 /* Hard case, hole at the beginning. */ 12283 ipf->ipf_tail_mp = NULL; 12284 /* 12285 * ipf_end == 0 means that we have given up 12286 * on easy reassembly. 12287 */ 12288 ipf->ipf_end = 0; 12289 12290 /* Forget checksum offload from now on */ 12291 ipf->ipf_checksum_flags = 0; 12292 12293 /* 12294 * ipf_hole_cnt is set by ip_reassemble. 12295 * ipf_count is updated by ip_reassemble. 12296 * No need to check for return value here 12297 * as we don't expect reassembly to complete 12298 * or fail for the first fragment itself. 12299 */ 12300 (void) ip_reassemble(mp, ipf, 12301 (frag_offset_flags & IPH_OFFSET) << 3, 12302 (frag_offset_flags & IPH_MF), ill, msg_len); 12303 } 12304 /* Update per ipfb and ill byte counts */ 12305 ipfb->ipfb_count += ipf->ipf_count; 12306 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12307 ill->ill_frag_count += ipf->ipf_count; 12308 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12309 /* If the frag timer wasn't already going, start it. */ 12310 mutex_enter(&ill->ill_lock); 12311 ill_frag_timer_start(ill); 12312 mutex_exit(&ill->ill_lock); 12313 goto reass_done; 12314 } 12315 12316 /* 12317 * If the packet's flag has changed (it could be coming up 12318 * from an interface different than the previous, therefore 12319 * possibly different checksum capability), then forget about 12320 * any stored checksum states. Otherwise add the value to 12321 * the existing one stored in the fragment header. 12322 */ 12323 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12324 sum_val += ipf->ipf_checksum; 12325 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12326 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12327 ipf->ipf_checksum = sum_val; 12328 } else if (ipf->ipf_checksum_flags != 0) { 12329 /* Forget checksum offload from now on */ 12330 ipf->ipf_checksum_flags = 0; 12331 } 12332 12333 /* 12334 * We have a new piece of a datagram which is already being 12335 * reassembled. Update the ECN info if all IP fragments 12336 * are ECN capable. If there is one which is not, clear 12337 * all the info. If there is at least one which has CE 12338 * code point, IP needs to report that up to transport. 12339 */ 12340 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12341 if (ecn_info == IPH_ECN_CE) 12342 ipf->ipf_ecn = IPH_ECN_CE; 12343 } else { 12344 ipf->ipf_ecn = IPH_ECN_NECT; 12345 } 12346 if (offset && ipf->ipf_end == offset) { 12347 /* The new fragment fits at the end */ 12348 ipf->ipf_tail_mp->b_cont = mp; 12349 /* Update the byte count */ 12350 ipf->ipf_count += msg_len; 12351 /* Update per ipfb and ill byte counts */ 12352 ipfb->ipfb_count += msg_len; 12353 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12354 ill->ill_frag_count += msg_len; 12355 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12356 if (frag_offset_flags & IPH_MF) { 12357 /* More to come. */ 12358 ipf->ipf_end = end; 12359 ipf->ipf_tail_mp = tail_mp; 12360 goto reass_done; 12361 } 12362 } else { 12363 /* Go do the hard cases. */ 12364 int ret; 12365 12366 if (offset == 0) 12367 ipf->ipf_nf_hdr_len = hdr_length; 12368 12369 /* Save current byte count */ 12370 count = ipf->ipf_count; 12371 ret = ip_reassemble(mp, ipf, 12372 (frag_offset_flags & IPH_OFFSET) << 3, 12373 (frag_offset_flags & IPH_MF), ill, msg_len); 12374 /* Count of bytes added and subtracted (freeb()ed) */ 12375 count = ipf->ipf_count - count; 12376 if (count) { 12377 /* Update per ipfb and ill byte counts */ 12378 ipfb->ipfb_count += count; 12379 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12380 ill->ill_frag_count += count; 12381 ASSERT(ill->ill_frag_count > 0); 12382 } 12383 if (ret == IP_REASS_PARTIAL) { 12384 goto reass_done; 12385 } else if (ret == IP_REASS_FAILED) { 12386 /* Reassembly failed. Free up all resources */ 12387 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12388 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12389 IP_REASS_SET_START(t_mp, 0); 12390 IP_REASS_SET_END(t_mp, 0); 12391 } 12392 freemsg(mp); 12393 goto reass_done; 12394 } 12395 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12396 } 12397 /* 12398 * We have completed reassembly. Unhook the frag header from 12399 * the reassembly list. 12400 * 12401 * Before we free the frag header, record the ECN info 12402 * to report back to the transport. 12403 */ 12404 ecn_info = ipf->ipf_ecn; 12405 BUMP_MIB(&ip_mib, ipReasmOKs); 12406 ipfp = ipf->ipf_ptphn; 12407 12408 /* We need to supply these to caller */ 12409 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12410 sum_val = ipf->ipf_checksum; 12411 else 12412 sum_val = 0; 12413 12414 mp1 = ipf->ipf_mp; 12415 count = ipf->ipf_count; 12416 ipf = ipf->ipf_hash_next; 12417 if (ipf != NULL) 12418 ipf->ipf_ptphn = ipfp; 12419 ipfp[0] = ipf; 12420 ill->ill_frag_count -= count; 12421 ASSERT(ipfb->ipfb_count >= count); 12422 ipfb->ipfb_count -= count; 12423 ipfb->ipfb_frag_pkts--; 12424 mutex_exit(&ipfb->ipfb_lock); 12425 /* Ditch the frag header. */ 12426 mp = mp1->b_cont; 12427 12428 freeb(mp1); 12429 12430 /* Restore original IP length in header. */ 12431 packet_size = (uint32_t)msgdsize(mp); 12432 if (packet_size > IP_MAXPACKET) { 12433 freemsg(mp); 12434 BUMP_MIB(&ip_mib, ipInHdrErrors); 12435 return (B_FALSE); 12436 } 12437 12438 if (DB_REF(mp) > 1) { 12439 mblk_t *mp2 = copymsg(mp); 12440 12441 freemsg(mp); 12442 if (mp2 == NULL) { 12443 BUMP_MIB(&ip_mib, ipInDiscards); 12444 return (B_FALSE); 12445 } 12446 mp = mp2; 12447 } 12448 ipha = (ipha_t *)mp->b_rptr; 12449 12450 ipha->ipha_length = htons((uint16_t)packet_size); 12451 /* We're now complete, zip the frag state */ 12452 ipha->ipha_fragment_offset_and_flags = 0; 12453 /* Record the ECN info. */ 12454 ipha->ipha_type_of_service &= 0xFC; 12455 ipha->ipha_type_of_service |= ecn_info; 12456 *mpp = mp; 12457 12458 /* Reassembly is successful; return checksum information if needed */ 12459 if (cksum_val != NULL) 12460 *cksum_val = sum_val; 12461 if (cksum_flags != NULL) 12462 *cksum_flags = sum_flags; 12463 12464 return (B_TRUE); 12465 } 12466 12467 /* 12468 * Perform ip header check sum update local options. 12469 * return B_TRUE if all is well, else return B_FALSE and release 12470 * the mp. caller is responsible for decrementing ire ref cnt. 12471 */ 12472 static boolean_t 12473 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12474 { 12475 mblk_t *first_mp; 12476 boolean_t mctl_present; 12477 uint16_t sum; 12478 12479 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12480 /* 12481 * Don't do the checksum if it has gone through AH/ESP 12482 * processing. 12483 */ 12484 if (!mctl_present) { 12485 sum = ip_csum_hdr(ipha); 12486 if (sum != 0) { 12487 BUMP_MIB(&ip_mib, ipInCksumErrs); 12488 freemsg(first_mp); 12489 return (B_FALSE); 12490 } 12491 } 12492 12493 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12494 if (mctl_present) 12495 freeb(first_mp); 12496 return (B_FALSE); 12497 } 12498 12499 return (B_TRUE); 12500 } 12501 12502 /* 12503 * All udp packet are delivered to the local host via this routine. 12504 */ 12505 void 12506 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12507 ill_t *recv_ill) 12508 { 12509 uint32_t sum; 12510 uint32_t u1; 12511 boolean_t mctl_present; 12512 conn_t *connp; 12513 mblk_t *first_mp; 12514 uint16_t *up; 12515 ill_t *ill = (ill_t *)q->q_ptr; 12516 uint16_t reass_hck_flags = 0; 12517 12518 #define rptr ((uchar_t *)ipha) 12519 12520 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12521 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12522 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12523 12524 /* 12525 * FAST PATH for udp packets 12526 */ 12527 12528 /* u1 is # words of IP options */ 12529 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12530 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12531 12532 /* IP options present */ 12533 if (u1 != 0) 12534 goto ipoptions; 12535 12536 /* Check the IP header checksum. */ 12537 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12538 /* Clear the IP header h/w cksum flag */ 12539 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12540 } else { 12541 #define uph ((uint16_t *)ipha) 12542 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12543 uph[6] + uph[7] + uph[8] + uph[9]; 12544 #undef uph 12545 /* finish doing IP checksum */ 12546 sum = (sum & 0xFFFF) + (sum >> 16); 12547 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12548 /* 12549 * Don't verify header checksum if this packet is coming 12550 * back from AH/ESP as we already did it. 12551 */ 12552 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12553 BUMP_MIB(&ip_mib, ipInCksumErrs); 12554 freemsg(first_mp); 12555 return; 12556 } 12557 } 12558 12559 /* 12560 * Count for SNMP of inbound packets for ire. 12561 * if mctl is present this might be a secure packet and 12562 * has already been counted for in ip_proto_input(). 12563 */ 12564 if (!mctl_present) { 12565 UPDATE_IB_PKT_COUNT(ire); 12566 ire->ire_last_used_time = lbolt; 12567 } 12568 12569 /* packet part of fragmented IP packet? */ 12570 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12571 if (u1 & (IPH_MF | IPH_OFFSET)) { 12572 goto fragmented; 12573 } 12574 12575 /* u1 = IP header length (20 bytes) */ 12576 u1 = IP_SIMPLE_HDR_LENGTH; 12577 12578 /* packet does not contain complete IP & UDP headers */ 12579 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12580 goto udppullup; 12581 12582 /* up points to UDP header */ 12583 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12584 #define iphs ((uint16_t *)ipha) 12585 12586 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12587 if (up[3] != 0) { 12588 mblk_t *mp1 = mp->b_cont; 12589 boolean_t cksum_err; 12590 uint16_t hck_flags = 0; 12591 12592 /* Pseudo-header checksum */ 12593 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12594 iphs[9] + up[2]; 12595 12596 /* 12597 * Revert to software checksum calculation if the interface 12598 * isn't capable of checksum offload or if IPsec is present. 12599 */ 12600 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12601 hck_flags = DB_CKSUMFLAGS(mp); 12602 12603 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12604 IP_STAT(ip_in_sw_cksum); 12605 12606 IP_CKSUM_RECV(hck_flags, u1, 12607 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12608 (int32_t)((uchar_t *)up - rptr), 12609 mp, mp1, cksum_err); 12610 12611 if (cksum_err) { 12612 BUMP_MIB(&ip_mib, udpInCksumErrs); 12613 12614 if (hck_flags & HCK_FULLCKSUM) 12615 IP_STAT(ip_udp_in_full_hw_cksum_err); 12616 else if (hck_flags & HCK_PARTIALCKSUM) 12617 IP_STAT(ip_udp_in_part_hw_cksum_err); 12618 else 12619 IP_STAT(ip_udp_in_sw_cksum_err); 12620 12621 freemsg(first_mp); 12622 return; 12623 } 12624 } 12625 12626 /* Non-fragmented broadcast or multicast packet? */ 12627 if (ire->ire_type == IRE_BROADCAST) 12628 goto udpslowpath; 12629 12630 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12631 ire->ire_zoneid)) != NULL) { 12632 ASSERT(connp->conn_upq != NULL); 12633 IP_STAT(ip_udp_fast_path); 12634 12635 if (CONN_UDP_FLOWCTLD(connp)) { 12636 freemsg(mp); 12637 BUMP_MIB(&ip_mib, udpInOverflows); 12638 } else { 12639 if (!mctl_present) { 12640 BUMP_MIB(&ip_mib, ipInDelivers); 12641 } 12642 /* 12643 * mp and first_mp can change. 12644 */ 12645 if (ip_udp_check(q, connp, recv_ill, 12646 ipha, &mp, &first_mp, mctl_present)) { 12647 /* Send it upstream */ 12648 CONN_UDP_RECV(connp, mp); 12649 } 12650 } 12651 /* 12652 * freeb() cannot deal with null mblk being passed 12653 * in and first_mp can be set to null in the call 12654 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12655 */ 12656 if (mctl_present && first_mp != NULL) { 12657 freeb(first_mp); 12658 } 12659 CONN_DEC_REF(connp); 12660 return; 12661 } 12662 12663 /* 12664 * if we got here we know the packet is not fragmented and 12665 * has no options. The classifier could not find a conn_t and 12666 * most likely its an icmp packet so send it through slow path. 12667 */ 12668 12669 goto udpslowpath; 12670 12671 ipoptions: 12672 if (!ip_options_cksum(q, mp, ipha, ire)) { 12673 goto slow_done; 12674 } 12675 12676 UPDATE_IB_PKT_COUNT(ire); 12677 ire->ire_last_used_time = lbolt; 12678 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12679 if (u1 & (IPH_MF | IPH_OFFSET)) { 12680 fragmented: 12681 /* 12682 * "sum" and "reass_hck_flags" are non-zero if the 12683 * reassembled packet has a valid hardware computed 12684 * checksum information associated with it. 12685 */ 12686 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12687 goto slow_done; 12688 /* 12689 * Make sure that first_mp points back to mp as 12690 * the mp we came in with could have changed in 12691 * ip_rput_fragment(). 12692 */ 12693 ASSERT(!mctl_present); 12694 ipha = (ipha_t *)mp->b_rptr; 12695 first_mp = mp; 12696 } 12697 12698 /* Now we have a complete datagram, destined for this machine. */ 12699 u1 = IPH_HDR_LENGTH(ipha); 12700 /* Pull up the UDP header, if necessary. */ 12701 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12702 udppullup: 12703 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12704 BUMP_MIB(&ip_mib, ipInDiscards); 12705 freemsg(first_mp); 12706 goto slow_done; 12707 } 12708 ipha = (ipha_t *)mp->b_rptr; 12709 } 12710 12711 /* 12712 * Validate the checksum for the reassembled packet; for the 12713 * pullup case we calculate the payload checksum in software. 12714 */ 12715 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12716 if (up[3] != 0) { 12717 boolean_t cksum_err; 12718 12719 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12720 IP_STAT(ip_in_sw_cksum); 12721 12722 IP_CKSUM_RECV_REASS(reass_hck_flags, 12723 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12724 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12725 iphs[9] + up[2], sum, cksum_err); 12726 12727 if (cksum_err) { 12728 BUMP_MIB(&ip_mib, udpInCksumErrs); 12729 12730 if (reass_hck_flags & HCK_FULLCKSUM) 12731 IP_STAT(ip_udp_in_full_hw_cksum_err); 12732 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12733 IP_STAT(ip_udp_in_part_hw_cksum_err); 12734 else 12735 IP_STAT(ip_udp_in_sw_cksum_err); 12736 12737 freemsg(first_mp); 12738 goto slow_done; 12739 } 12740 } 12741 udpslowpath: 12742 12743 /* Clear hardware checksum flag to be safe */ 12744 DB_CKSUMFLAGS(mp) = 0; 12745 12746 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12747 (ire->ire_type == IRE_BROADCAST), 12748 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12749 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12750 12751 slow_done: 12752 IP_STAT(ip_udp_slow_path); 12753 return; 12754 12755 #undef iphs 12756 #undef rptr 12757 } 12758 12759 /* ARGSUSED */ 12760 static mblk_t * 12761 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12762 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12763 ill_rx_ring_t *ill_ring) 12764 { 12765 conn_t *connp; 12766 uint32_t sum; 12767 uint32_t u1; 12768 uint16_t *up; 12769 int offset; 12770 ssize_t len; 12771 mblk_t *mp1; 12772 boolean_t syn_present = B_FALSE; 12773 tcph_t *tcph; 12774 uint_t ip_hdr_len; 12775 ill_t *ill = (ill_t *)q->q_ptr; 12776 zoneid_t zoneid = ire->ire_zoneid; 12777 boolean_t cksum_err; 12778 uint16_t hck_flags = 0; 12779 12780 #define rptr ((uchar_t *)ipha) 12781 12782 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12783 12784 /* 12785 * FAST PATH for tcp packets 12786 */ 12787 12788 /* u1 is # words of IP options */ 12789 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12790 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12791 12792 /* IP options present */ 12793 if (u1) { 12794 goto ipoptions; 12795 } else { 12796 /* Check the IP header checksum. */ 12797 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12798 /* Clear the IP header h/w cksum flag */ 12799 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12800 } else { 12801 #define uph ((uint16_t *)ipha) 12802 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12803 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12804 #undef uph 12805 /* finish doing IP checksum */ 12806 sum = (sum & 0xFFFF) + (sum >> 16); 12807 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12808 /* 12809 * Don't verify header checksum if this packet 12810 * is coming back from AH/ESP as we already did it. 12811 */ 12812 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12813 BUMP_MIB(&ip_mib, ipInCksumErrs); 12814 goto error; 12815 } 12816 } 12817 } 12818 12819 if (!mctl_present) { 12820 UPDATE_IB_PKT_COUNT(ire); 12821 ire->ire_last_used_time = lbolt; 12822 } 12823 12824 /* packet part of fragmented IP packet? */ 12825 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12826 if (u1 & (IPH_MF | IPH_OFFSET)) { 12827 goto fragmented; 12828 } 12829 12830 /* u1 = IP header length (20 bytes) */ 12831 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12832 12833 /* does packet contain IP+TCP headers? */ 12834 len = mp->b_wptr - rptr; 12835 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12836 IP_STAT(ip_tcppullup); 12837 goto tcppullup; 12838 } 12839 12840 /* TCP options present? */ 12841 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12842 12843 /* 12844 * If options need to be pulled up, then goto tcpoptions. 12845 * otherwise we are still in the fast path 12846 */ 12847 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12848 IP_STAT(ip_tcpoptions); 12849 goto tcpoptions; 12850 } 12851 12852 /* multiple mblks of tcp data? */ 12853 if ((mp1 = mp->b_cont) != NULL) { 12854 /* more then two? */ 12855 if (mp1->b_cont != NULL) { 12856 IP_STAT(ip_multipkttcp); 12857 goto multipkttcp; 12858 } 12859 len += mp1->b_wptr - mp1->b_rptr; 12860 } 12861 12862 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12863 12864 /* part of pseudo checksum */ 12865 12866 /* TCP datagram length */ 12867 u1 = len - IP_SIMPLE_HDR_LENGTH; 12868 12869 #define iphs ((uint16_t *)ipha) 12870 12871 #ifdef _BIG_ENDIAN 12872 u1 += IPPROTO_TCP; 12873 #else 12874 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12875 #endif 12876 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12877 12878 /* 12879 * Revert to software checksum calculation if the interface 12880 * isn't capable of checksum offload or if IPsec is present. 12881 */ 12882 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12883 hck_flags = DB_CKSUMFLAGS(mp); 12884 12885 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12886 IP_STAT(ip_in_sw_cksum); 12887 12888 IP_CKSUM_RECV(hck_flags, u1, 12889 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12890 (int32_t)((uchar_t *)up - rptr), 12891 mp, mp1, cksum_err); 12892 12893 if (cksum_err) { 12894 BUMP_MIB(&ip_mib, tcpInErrs); 12895 12896 if (hck_flags & HCK_FULLCKSUM) 12897 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12898 else if (hck_flags & HCK_PARTIALCKSUM) 12899 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12900 else 12901 IP_STAT(ip_tcp_in_sw_cksum_err); 12902 12903 goto error; 12904 } 12905 12906 try_again: 12907 12908 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12909 NULL) { 12910 /* Send the TH_RST */ 12911 goto no_conn; 12912 } 12913 12914 /* 12915 * TCP FAST PATH for AF_INET socket. 12916 * 12917 * TCP fast path to avoid extra work. An AF_INET socket type 12918 * does not have facility to receive extra information via 12919 * ip_process or ip_add_info. Also, when the connection was 12920 * established, we made a check if this connection is impacted 12921 * by any global IPSec policy or per connection policy (a 12922 * policy that comes in effect later will not apply to this 12923 * connection). Since all this can be determined at the 12924 * connection establishment time, a quick check of flags 12925 * can avoid extra work. 12926 */ 12927 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12928 !IPP_ENABLED(IPP_LOCAL_IN)) { 12929 ASSERT(first_mp == mp); 12930 SET_SQUEUE(mp, tcp_rput_data, connp); 12931 return (mp); 12932 } 12933 12934 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12935 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12936 if (IPCL_IS_TCP(connp)) { 12937 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12938 DB_CKSUMSTART(mp) = 12939 (intptr_t)ip_squeue_get(ill_ring); 12940 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12941 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12942 SET_SQUEUE(mp, connp->conn_recv, connp); 12943 return (mp); 12944 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12945 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12946 ip_squeue_enter_unbound++; 12947 SET_SQUEUE(mp, tcp_conn_request_unbound, 12948 connp); 12949 return (mp); 12950 } 12951 syn_present = B_TRUE; 12952 } 12953 12954 } 12955 12956 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12957 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12958 12959 /* No need to send this packet to TCP */ 12960 if ((flags & TH_RST) || (flags & TH_URG)) { 12961 CONN_DEC_REF(connp); 12962 freemsg(first_mp); 12963 return (NULL); 12964 } 12965 if (flags & TH_ACK) { 12966 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 12967 CONN_DEC_REF(connp); 12968 return (NULL); 12969 } 12970 12971 CONN_DEC_REF(connp); 12972 freemsg(first_mp); 12973 return (NULL); 12974 } 12975 12976 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12977 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12978 ipha, NULL, mctl_present); 12979 if (first_mp == NULL) { 12980 CONN_DEC_REF(connp); 12981 return (NULL); 12982 } 12983 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12984 ASSERT(syn_present); 12985 if (mctl_present) { 12986 ASSERT(first_mp != mp); 12987 first_mp->b_datap->db_struioflag |= 12988 STRUIO_POLICY; 12989 } else { 12990 ASSERT(first_mp == mp); 12991 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12992 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12993 } 12994 } else { 12995 /* 12996 * Discard first_mp early since we're dealing with a 12997 * fully-connected conn_t and tcp doesn't do policy in 12998 * this case. 12999 */ 13000 if (mctl_present) { 13001 freeb(first_mp); 13002 mctl_present = B_FALSE; 13003 } 13004 first_mp = mp; 13005 } 13006 } 13007 13008 /* Initiate IPPF processing for fastpath */ 13009 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13010 uint32_t ill_index; 13011 13012 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13013 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13014 if (mp == NULL) { 13015 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13016 "deferred/dropped during IPPF processing\n")); 13017 CONN_DEC_REF(connp); 13018 if (mctl_present) 13019 freeb(first_mp); 13020 return (NULL); 13021 } else if (mctl_present) { 13022 /* 13023 * ip_process might return a new mp. 13024 */ 13025 ASSERT(first_mp != mp); 13026 first_mp->b_cont = mp; 13027 } else { 13028 first_mp = mp; 13029 } 13030 13031 } 13032 13033 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 13034 mp = ip_add_info(mp, recv_ill, flags); 13035 if (mp == NULL) { 13036 CONN_DEC_REF(connp); 13037 if (mctl_present) 13038 freeb(first_mp); 13039 return (NULL); 13040 } else if (mctl_present) { 13041 /* 13042 * ip_add_info might return a new mp. 13043 */ 13044 ASSERT(first_mp != mp); 13045 first_mp->b_cont = mp; 13046 } else { 13047 first_mp = mp; 13048 } 13049 } 13050 13051 if (IPCL_IS_TCP(connp)) { 13052 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13053 return (first_mp); 13054 } else { 13055 putnext(connp->conn_rq, first_mp); 13056 CONN_DEC_REF(connp); 13057 return (NULL); 13058 } 13059 13060 no_conn: 13061 /* Initiate IPPf processing, if needed. */ 13062 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13063 uint32_t ill_index; 13064 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13065 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13066 if (first_mp == NULL) { 13067 return (NULL); 13068 } 13069 } 13070 BUMP_MIB(&ip_mib, ipInDelivers); 13071 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 13072 return (NULL); 13073 ipoptions: 13074 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 13075 goto slow_done; 13076 } 13077 13078 UPDATE_IB_PKT_COUNT(ire); 13079 ire->ire_last_used_time = lbolt; 13080 13081 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13082 if (u1 & (IPH_MF | IPH_OFFSET)) { 13083 fragmented: 13084 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13085 if (mctl_present) 13086 freeb(first_mp); 13087 goto slow_done; 13088 } 13089 /* 13090 * Make sure that first_mp points back to mp as 13091 * the mp we came in with could have changed in 13092 * ip_rput_fragment(). 13093 */ 13094 ASSERT(!mctl_present); 13095 ipha = (ipha_t *)mp->b_rptr; 13096 first_mp = mp; 13097 } 13098 13099 /* Now we have a complete datagram, destined for this machine. */ 13100 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13101 13102 len = mp->b_wptr - mp->b_rptr; 13103 /* Pull up a minimal TCP header, if necessary. */ 13104 if (len < (u1 + 20)) { 13105 tcppullup: 13106 if (!pullupmsg(mp, u1 + 20)) { 13107 BUMP_MIB(&ip_mib, ipInDiscards); 13108 goto error; 13109 } 13110 ipha = (ipha_t *)mp->b_rptr; 13111 len = mp->b_wptr - mp->b_rptr; 13112 } 13113 13114 /* 13115 * Extract the offset field from the TCP header. As usual, we 13116 * try to help the compiler more than the reader. 13117 */ 13118 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13119 if (offset != 5) { 13120 tcpoptions: 13121 if (offset < 5) { 13122 BUMP_MIB(&ip_mib, ipInDiscards); 13123 goto error; 13124 } 13125 /* 13126 * There must be TCP options. 13127 * Make sure we can grab them. 13128 */ 13129 offset <<= 2; 13130 offset += u1; 13131 if (len < offset) { 13132 if (!pullupmsg(mp, offset)) { 13133 BUMP_MIB(&ip_mib, ipInDiscards); 13134 goto error; 13135 } 13136 ipha = (ipha_t *)mp->b_rptr; 13137 len = mp->b_wptr - rptr; 13138 } 13139 } 13140 13141 /* Get the total packet length in len, including headers. */ 13142 if (mp->b_cont) { 13143 multipkttcp: 13144 len = msgdsize(mp); 13145 } 13146 13147 /* 13148 * Check the TCP checksum by pulling together the pseudo- 13149 * header checksum, and passing it to ip_csum to be added in 13150 * with the TCP datagram. 13151 * 13152 * Since we are not using the hwcksum if available we must 13153 * clear the flag. We may come here via tcppullup or tcpoptions. 13154 * If either of these fails along the way the mblk is freed. 13155 * If this logic ever changes and mblk is reused to say send 13156 * ICMP's back, then this flag may need to be cleared in 13157 * other places as well. 13158 */ 13159 DB_CKSUMFLAGS(mp) = 0; 13160 13161 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13162 13163 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13164 #ifdef _BIG_ENDIAN 13165 u1 += IPPROTO_TCP; 13166 #else 13167 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13168 #endif 13169 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13170 /* 13171 * Not M_DATA mblk or its a dup, so do the checksum now. 13172 */ 13173 IP_STAT(ip_in_sw_cksum); 13174 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13175 BUMP_MIB(&ip_mib, tcpInErrs); 13176 goto error; 13177 } 13178 13179 IP_STAT(ip_tcp_slow_path); 13180 goto try_again; 13181 #undef iphs 13182 #undef rptr 13183 13184 error: 13185 freemsg(first_mp); 13186 slow_done: 13187 return (NULL); 13188 } 13189 13190 /* ARGSUSED */ 13191 static void 13192 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13193 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13194 { 13195 conn_t *connp; 13196 uint32_t sum; 13197 uint32_t u1; 13198 ssize_t len; 13199 sctp_hdr_t *sctph; 13200 zoneid_t zoneid = ire->ire_zoneid; 13201 uint32_t pktsum; 13202 uint32_t calcsum; 13203 uint32_t ports; 13204 uint_t ipif_seqid; 13205 in6_addr_t map_src, map_dst; 13206 ill_t *ill = (ill_t *)q->q_ptr; 13207 13208 #define rptr ((uchar_t *)ipha) 13209 13210 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13211 13212 /* u1 is # words of IP options */ 13213 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13214 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13215 13216 /* IP options present */ 13217 if (u1 > 0) { 13218 goto ipoptions; 13219 } else { 13220 /* Check the IP header checksum. */ 13221 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13222 #define uph ((uint16_t *)ipha) 13223 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13224 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13225 #undef uph 13226 /* finish doing IP checksum */ 13227 sum = (sum & 0xFFFF) + (sum >> 16); 13228 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13229 /* 13230 * Don't verify header checksum if this packet 13231 * is coming back from AH/ESP as we already did it. 13232 */ 13233 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13234 BUMP_MIB(&ip_mib, ipInCksumErrs); 13235 goto error; 13236 } 13237 } 13238 /* 13239 * Since there is no SCTP h/w cksum support yet, just 13240 * clear the flag. 13241 */ 13242 DB_CKSUMFLAGS(mp) = 0; 13243 } 13244 13245 /* 13246 * Don't verify header checksum if this packet is coming 13247 * back from AH/ESP as we already did it. 13248 */ 13249 if (!mctl_present) { 13250 UPDATE_IB_PKT_COUNT(ire); 13251 ire->ire_last_used_time = lbolt; 13252 } 13253 13254 /* packet part of fragmented IP packet? */ 13255 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13256 if (u1 & (IPH_MF | IPH_OFFSET)) 13257 goto fragmented; 13258 13259 /* u1 = IP header length (20 bytes) */ 13260 u1 = IP_SIMPLE_HDR_LENGTH; 13261 13262 find_sctp_client: 13263 /* Pullup if we don't have the sctp common header. */ 13264 len = MBLKL(mp); 13265 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13266 if (mp->b_cont == NULL || 13267 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13268 BUMP_MIB(&ip_mib, ipInDiscards); 13269 goto error; 13270 } 13271 ipha = (ipha_t *)mp->b_rptr; 13272 len = MBLKL(mp); 13273 } 13274 13275 sctph = (sctp_hdr_t *)(rptr + u1); 13276 #ifdef DEBUG 13277 if (!skip_sctp_cksum) { 13278 #endif 13279 pktsum = sctph->sh_chksum; 13280 sctph->sh_chksum = 0; 13281 calcsum = sctp_cksum(mp, u1); 13282 if (calcsum != pktsum) { 13283 BUMP_MIB(&sctp_mib, sctpChecksumError); 13284 goto error; 13285 } 13286 sctph->sh_chksum = pktsum; 13287 #ifdef DEBUG /* skip_sctp_cksum */ 13288 } 13289 #endif 13290 /* get the ports */ 13291 ports = *(uint32_t *)&sctph->sh_sport; 13292 13293 ipif_seqid = ire->ire_ipif->ipif_seqid; 13294 IRE_REFRELE(ire); 13295 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13296 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13297 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13298 mp)) == NULL) { 13299 /* Check for raw socket or OOTB handling */ 13300 goto no_conn; 13301 } 13302 13303 /* Found a client; up it goes */ 13304 BUMP_MIB(&ip_mib, ipInDelivers); 13305 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13306 return; 13307 13308 no_conn: 13309 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13310 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13311 return; 13312 13313 ipoptions: 13314 DB_CKSUMFLAGS(mp) = 0; 13315 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13316 goto slow_done; 13317 13318 UPDATE_IB_PKT_COUNT(ire); 13319 ire->ire_last_used_time = lbolt; 13320 13321 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13322 if (u1 & (IPH_MF | IPH_OFFSET)) { 13323 fragmented: 13324 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13325 goto slow_done; 13326 /* 13327 * Make sure that first_mp points back to mp as 13328 * the mp we came in with could have changed in 13329 * ip_rput_fragment(). 13330 */ 13331 ASSERT(!mctl_present); 13332 ipha = (ipha_t *)mp->b_rptr; 13333 first_mp = mp; 13334 } 13335 13336 /* Now we have a complete datagram, destined for this machine. */ 13337 u1 = IPH_HDR_LENGTH(ipha); 13338 goto find_sctp_client; 13339 #undef iphs 13340 #undef rptr 13341 13342 error: 13343 freemsg(first_mp); 13344 slow_done: 13345 IRE_REFRELE(ire); 13346 } 13347 13348 #define VER_BITS 0xF0 13349 #define VERSION_6 0x60 13350 13351 static boolean_t 13352 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13353 ipaddr_t *dstp) 13354 { 13355 uint_t opt_len; 13356 ipha_t *ipha; 13357 ssize_t len; 13358 uint_t pkt_len; 13359 13360 IP_STAT(ip_ipoptions); 13361 ipha = *iphapp; 13362 13363 #define rptr ((uchar_t *)ipha) 13364 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13365 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13366 BUMP_MIB(&ip_mib, ipInIPv6); 13367 freemsg(mp); 13368 return (B_FALSE); 13369 } 13370 13371 /* multiple mblk or too short */ 13372 pkt_len = ntohs(ipha->ipha_length); 13373 13374 /* Get the number of words of IP options in the IP header. */ 13375 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13376 if (opt_len) { 13377 /* IP Options present! Validate and process. */ 13378 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13379 BUMP_MIB(&ip_mib, ipInHdrErrors); 13380 goto done; 13381 } 13382 /* 13383 * Recompute complete header length and make sure we 13384 * have access to all of it. 13385 */ 13386 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13387 if (len > (mp->b_wptr - rptr)) { 13388 if (len > pkt_len) { 13389 BUMP_MIB(&ip_mib, ipInHdrErrors); 13390 goto done; 13391 } 13392 if (!pullupmsg(mp, len)) { 13393 BUMP_MIB(&ip_mib, ipInDiscards); 13394 goto done; 13395 } 13396 ipha = (ipha_t *)mp->b_rptr; 13397 } 13398 /* 13399 * Go off to ip_rput_options which returns the next hop 13400 * destination address, which may have been affected 13401 * by source routing. 13402 */ 13403 IP_STAT(ip_opt); 13404 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13405 return (B_FALSE); 13406 } 13407 } 13408 *iphapp = ipha; 13409 return (B_TRUE); 13410 done: 13411 /* clear b_prev - used by ip_mroute_decap */ 13412 mp->b_prev = NULL; 13413 freemsg(mp); 13414 return (B_FALSE); 13415 #undef rptr 13416 } 13417 13418 /* 13419 * Deal with the fact that there is no ire for the destination. 13420 * The incoming ill (in_ill) is passed in to ip_newroute only 13421 * in the case of packets coming from mobile ip forward tunnel. 13422 * It must be null otherwise. 13423 */ 13424 static ire_t * 13425 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13426 ipaddr_t dst) 13427 { 13428 ipha_t *ipha; 13429 ill_t *ill; 13430 ire_t *ire; 13431 boolean_t check_multirt = B_FALSE; 13432 13433 ipha = (ipha_t *)mp->b_rptr; 13434 ill = (ill_t *)q->q_ptr; 13435 13436 ASSERT(ill != NULL); 13437 /* 13438 * No IRE for this destination, so it can't be for us. 13439 * Unless we are forwarding, drop the packet. 13440 * We have to let source routed packets through 13441 * since we don't yet know if they are 'ping -l' 13442 * packets i.e. if they will go out over the 13443 * same interface as they came in on. 13444 */ 13445 if (ll_multicast) { 13446 freemsg(mp); 13447 return (NULL); 13448 } 13449 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13450 BUMP_MIB(&ip_mib, ipForwProhibits); 13451 freemsg(mp); 13452 return (NULL); 13453 } 13454 13455 /* 13456 * Mark this packet as having originated externally. 13457 * 13458 * For non-forwarding code path, ire_send later double 13459 * checks this interface to see if it is still exists 13460 * post-ARP resolution. 13461 * 13462 * Also, IPQOS uses this to differentiate between 13463 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13464 * QOS packet processing in ip_wput_attach_llhdr(). 13465 * The QoS module can mark the b_band for a fastpath message 13466 * or the dl_priority field in a unitdata_req header for 13467 * CoS marking. This info can only be found in 13468 * ip_wput_attach_llhdr(). 13469 */ 13470 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13471 /* 13472 * Clear the indication that this may have a hardware checksum 13473 * as we are not using it 13474 */ 13475 DB_CKSUMFLAGS(mp) = 0; 13476 13477 if (in_ill != NULL) { 13478 /* 13479 * Now hand the packet to ip_newroute. 13480 */ 13481 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13482 return (NULL); 13483 } 13484 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13485 MBLK_GETLABEL(mp)); 13486 13487 if (ire == NULL && check_multirt) { 13488 /* Let ip_newroute handle CGTP */ 13489 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13490 return (NULL); 13491 } 13492 13493 if (ire != NULL) 13494 return (ire); 13495 13496 mp->b_prev = mp->b_next = 0; 13497 /* send icmp unreachable */ 13498 q = WR(q); 13499 /* Sent by forwarding path, and router is global zone */ 13500 if (ip_source_routed(ipha)) { 13501 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13502 GLOBAL_ZONEID); 13503 } else { 13504 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13505 } 13506 13507 return (NULL); 13508 13509 } 13510 13511 /* 13512 * check ip header length and align it. 13513 */ 13514 static boolean_t 13515 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13516 { 13517 ssize_t len; 13518 ill_t *ill; 13519 ipha_t *ipha; 13520 13521 len = MBLKL(mp); 13522 13523 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13524 if (!OK_32PTR(mp->b_rptr)) 13525 IP_STAT(ip_notaligned1); 13526 else 13527 IP_STAT(ip_notaligned2); 13528 /* Guard against bogus device drivers */ 13529 if (len < 0) { 13530 /* clear b_prev - used by ip_mroute_decap */ 13531 mp->b_prev = NULL; 13532 BUMP_MIB(&ip_mib, ipInHdrErrors); 13533 freemsg(mp); 13534 return (B_FALSE); 13535 } 13536 13537 if (ip_rput_pullups++ == 0) { 13538 ill = (ill_t *)q->q_ptr; 13539 ipha = (ipha_t *)mp->b_rptr; 13540 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13541 "ip_check_and_align_header: %s forced us to " 13542 " pullup pkt, hdr len %ld, hdr addr %p", 13543 ill->ill_name, len, ipha); 13544 } 13545 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13546 /* clear b_prev - used by ip_mroute_decap */ 13547 mp->b_prev = NULL; 13548 BUMP_MIB(&ip_mib, ipInDiscards); 13549 freemsg(mp); 13550 return (B_FALSE); 13551 } 13552 } 13553 return (B_TRUE); 13554 } 13555 13556 static boolean_t 13557 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13558 { 13559 ill_group_t *ill_group; 13560 ill_group_t *ire_group; 13561 queue_t *q; 13562 ill_t *ire_ill; 13563 uint_t ill_ifindex; 13564 13565 q = *qp; 13566 /* 13567 * We need to check to make sure the packet came in 13568 * on the queue associated with the destination IRE. 13569 * Note that for multicast packets and broadcast packets sent to 13570 * a broadcast address which is shared between multiple interfaces 13571 * we should not do this since we just got a random broadcast ire. 13572 */ 13573 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13574 boolean_t check_multi = B_TRUE; 13575 13576 /* 13577 * This packet came in on an interface other than the 13578 * one associated with the destination address. 13579 * "Gateway" it to the appropriate interface here. 13580 * As long as the ills belong to the same group, 13581 * we don't consider them to arriving on the wrong 13582 * interface. Thus, when the switch is doing inbound 13583 * load spreading, we won't drop packets when we 13584 * are doing strict multihoming checks. Note, the 13585 * same holds true for 'usesrc groups' where the 13586 * destination address may belong to another interface 13587 * to allow multipathing to happen 13588 */ 13589 ill_group = ill->ill_group; 13590 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13591 ill_ifindex = ill->ill_usesrc_ifindex; 13592 ire_group = ire_ill->ill_group; 13593 13594 /* 13595 * If it's part of the same IPMP group, or if it's a legal 13596 * address on the 'usesrc' interface, then bypass strict 13597 * checks. 13598 */ 13599 if (ill_group != NULL && ill_group == ire_group) { 13600 check_multi = B_FALSE; 13601 } else if (ill_ifindex != 0 && 13602 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13603 check_multi = B_FALSE; 13604 } 13605 13606 if (check_multi && 13607 ip_strict_dst_multihoming && 13608 ((ill->ill_flags & 13609 ire->ire_ipif->ipif_ill->ill_flags & 13610 ILLF_ROUTER) == 0)) { 13611 /* Drop packet */ 13612 BUMP_MIB(&ip_mib, ipForwProhibits); 13613 freemsg(mp); 13614 return (B_TRUE); 13615 } 13616 13617 /* 13618 * Change the queue (for non-virtual destination network 13619 * interfaces) and ip_rput_local will be called with the right 13620 * queue 13621 */ 13622 q = ire->ire_rfq; 13623 } 13624 /* Must be broadcast. We'll take it. */ 13625 *qp = q; 13626 return (B_FALSE); 13627 } 13628 13629 ire_t * 13630 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13631 { 13632 ipha_t *ipha; 13633 ipaddr_t ip_dst, ip_src; 13634 ire_t *src_ire = NULL; 13635 ill_t *stq_ill; 13636 uint_t hlen; 13637 uint32_t sum; 13638 queue_t *dev_q; 13639 boolean_t check_multirt = B_FALSE; 13640 13641 13642 ipha = (ipha_t *)mp->b_rptr; 13643 13644 /* 13645 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13646 * The loopback address check for both src and dst has already 13647 * been checked in ip_input 13648 */ 13649 ip_dst = ntohl(dst); 13650 ip_src = ntohl(ipha->ipha_src); 13651 13652 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13653 IN_CLASSD(ip_src)) { 13654 BUMP_MIB(&ip_mib, ipForwProhibits); 13655 goto drop; 13656 } 13657 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13658 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13659 13660 if (src_ire != NULL) { 13661 BUMP_MIB(&ip_mib, ipForwProhibits); 13662 goto drop; 13663 } 13664 13665 /* No ire cache of nexthop. So first create one */ 13666 if (ire == NULL) { 13667 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13668 /* 13669 * We only come to ip_fast_forward if ip_cgtp_filter is 13670 * is not set. So upon return from ire_forward 13671 * check_multirt should remain as false. 13672 */ 13673 ASSERT(!check_multirt); 13674 if (ire == NULL) { 13675 BUMP_MIB(&ip_mib, ipInDiscards); 13676 mp->b_prev = mp->b_next = 0; 13677 /* send icmp unreachable */ 13678 /* Sent by forwarding path, and router is global zone */ 13679 if (ip_source_routed(ipha)) { 13680 icmp_unreachable(ill->ill_wq, mp, 13681 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13682 } else { 13683 icmp_unreachable(ill->ill_wq, mp, 13684 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13685 } 13686 return (ire); 13687 } 13688 } 13689 13690 /* 13691 * Forwarding fastpath exception case: 13692 * If either of the follwoing case is true, we take 13693 * the slowpath 13694 * o forwarding is not enabled 13695 * o incoming and outgoing interface are the same, or the same 13696 * IPMP group 13697 * o corresponding ire is in incomplete state 13698 * o packet needs fragmentation 13699 * 13700 * The codeflow from here on is thus: 13701 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13702 */ 13703 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13704 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13705 !(ill->ill_flags & ILLF_ROUTER) || 13706 (ill == stq_ill) || 13707 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13708 (ire->ire_nce == NULL) || 13709 (ire->ire_nce->nce_state != ND_REACHABLE) || 13710 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13711 ipha->ipha_ttl <= 1) { 13712 ip_rput_process_forward(ill->ill_rq, mp, ire, 13713 ipha, ill, B_FALSE); 13714 return (ire); 13715 } 13716 13717 DTRACE_PROBE4(ip4__forwarding__start, 13718 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13719 13720 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 13721 ill, stq_ill, ipha, mp, mp); 13722 13723 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13724 13725 if (mp == NULL) 13726 goto drop; 13727 13728 mp->b_datap->db_struioun.cksum.flags = 0; 13729 /* Adjust the checksum to reflect the ttl decrement. */ 13730 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13731 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13732 ipha->ipha_ttl--; 13733 13734 dev_q = ire->ire_stq->q_next; 13735 if ((dev_q->q_next != NULL || 13736 dev_q->q_first != NULL) && !canput(dev_q)) { 13737 goto indiscard; 13738 } 13739 13740 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13741 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13742 13743 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13744 mblk_t *mpip = mp; 13745 13746 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13747 if (mp != NULL) { 13748 DTRACE_PROBE4(ip4__physical__out__start, 13749 ill_t *, NULL, ill_t *, stq_ill, 13750 ipha_t *, ipha, mblk_t *, mp); 13751 FW_HOOKS(ip4_physical_out_event, 13752 ipv4firewall_physical_out, 13753 NULL, stq_ill, ipha, mp, mpip); 13754 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13755 mp); 13756 if (mp == NULL) 13757 goto drop; 13758 13759 UPDATE_IB_PKT_COUNT(ire); 13760 ire->ire_last_used_time = lbolt; 13761 BUMP_MIB(&ip_mib, ipForwDatagrams); 13762 putnext(ire->ire_stq, mp); 13763 return (ire); 13764 } 13765 } 13766 13767 indiscard: 13768 BUMP_MIB(&ip_mib, ipInDiscards); 13769 drop: 13770 if (mp != NULL) 13771 freemsg(mp); 13772 if (src_ire != NULL) 13773 ire_refrele(src_ire); 13774 return (ire); 13775 13776 } 13777 13778 /* 13779 * This function is called in the forwarding slowpath, when 13780 * either the ire lacks the link-layer address, or the packet needs 13781 * further processing(eg. fragmentation), before transmission. 13782 */ 13783 13784 static void 13785 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13786 ill_t *ill, boolean_t ll_multicast) 13787 { 13788 ill_group_t *ill_group; 13789 ill_group_t *ire_group; 13790 queue_t *dev_q; 13791 ire_t *src_ire; 13792 13793 ASSERT(ire->ire_stq != NULL); 13794 13795 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13796 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13797 13798 if (ll_multicast != 0) 13799 goto drop_pkt; 13800 13801 /* 13802 * check if ipha_src is a broadcast address. Note that this 13803 * check is redundant when we get here from ip_fast_forward() 13804 * which has already done this check. However, since we can 13805 * also get here from ip_rput_process_broadcast() or, for 13806 * for the slow path through ip_fast_forward(), we perform 13807 * the check again for code-reusability 13808 */ 13809 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13810 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13811 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13812 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13813 if (src_ire != NULL) 13814 ire_refrele(src_ire); 13815 BUMP_MIB(&ip_mib, ipForwProhibits); 13816 ip2dbg(("ip_rput_process_forward: Received packet with" 13817 " bad src/dst address on %s\n", ill->ill_name)); 13818 goto drop_pkt; 13819 } 13820 13821 ill_group = ill->ill_group; 13822 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13823 /* 13824 * Check if we want to forward this one at this time. 13825 * We allow source routed packets on a host provided that 13826 * they go out the same interface or same interface group 13827 * as they came in on. 13828 * 13829 * XXX To be quicker, we may wish to not chase pointers to 13830 * get the ILLF_ROUTER flag and instead store the 13831 * forwarding policy in the ire. An unfortunate 13832 * side-effect of that would be requiring an ire flush 13833 * whenever the ILLF_ROUTER flag changes. 13834 */ 13835 if (((ill->ill_flags & 13836 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13837 ILLF_ROUTER) == 0) && 13838 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13839 (ill_group != NULL && ill_group == ire_group)))) { 13840 BUMP_MIB(&ip_mib, ipForwProhibits); 13841 if (ip_source_routed(ipha)) { 13842 q = WR(q); 13843 /* 13844 * Clear the indication that this may have 13845 * hardware checksum as we are not using it. 13846 */ 13847 DB_CKSUMFLAGS(mp) = 0; 13848 /* Sent by forwarding path, and router is global zone */ 13849 icmp_unreachable(q, mp, 13850 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13851 return; 13852 } 13853 goto drop_pkt; 13854 } 13855 13856 /* Packet is being forwarded. Turning off hwcksum flag. */ 13857 DB_CKSUMFLAGS(mp) = 0; 13858 if (ip_g_send_redirects) { 13859 /* 13860 * Check whether the incoming interface and outgoing 13861 * interface is part of the same group. If so, 13862 * send redirects. 13863 * 13864 * Check the source address to see if it originated 13865 * on the same logical subnet it is going back out on. 13866 * If so, we should be able to send it a redirect. 13867 * Avoid sending a redirect if the destination 13868 * is directly connected (i.e., ipha_dst is the same 13869 * as ire_gateway_addr or the ire_addr of the 13870 * nexthop IRE_CACHE ), or if the packet was source 13871 * routed out this interface. 13872 */ 13873 ipaddr_t src, nhop; 13874 mblk_t *mp1; 13875 ire_t *nhop_ire = NULL; 13876 13877 /* 13878 * Check whether ire_rfq and q are from the same ill 13879 * or if they are not same, they at least belong 13880 * to the same group. If so, send redirects. 13881 */ 13882 if ((ire->ire_rfq == q || 13883 (ill_group != NULL && ill_group == ire_group)) && 13884 !ip_source_routed(ipha)) { 13885 13886 nhop = (ire->ire_gateway_addr != 0 ? 13887 ire->ire_gateway_addr : ire->ire_addr); 13888 13889 if (ipha->ipha_dst == nhop) { 13890 /* 13891 * We avoid sending a redirect if the 13892 * destination is directly connected 13893 * because it is possible that multiple 13894 * IP subnets may have been configured on 13895 * the link, and the source may not 13896 * be on the same subnet as ip destination, 13897 * even though they are on the same 13898 * physical link. 13899 */ 13900 goto sendit; 13901 } 13902 13903 src = ipha->ipha_src; 13904 13905 /* 13906 * We look up the interface ire for the nexthop, 13907 * to see if ipha_src is in the same subnet 13908 * as the nexthop. 13909 * 13910 * Note that, if, in the future, IRE_CACHE entries 13911 * are obsoleted, this lookup will not be needed, 13912 * as the ire passed to this function will be the 13913 * same as the nhop_ire computed below. 13914 */ 13915 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 13916 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 13917 0, NULL, MATCH_IRE_TYPE); 13918 13919 if (nhop_ire != NULL) { 13920 if ((src & nhop_ire->ire_mask) == 13921 (nhop & nhop_ire->ire_mask)) { 13922 /* 13923 * The source is directly connected. 13924 * Just copy the ip header (which is 13925 * in the first mblk) 13926 */ 13927 mp1 = copyb(mp); 13928 if (mp1 != NULL) { 13929 icmp_send_redirect(WR(q), mp1, 13930 nhop); 13931 } 13932 } 13933 ire_refrele(nhop_ire); 13934 } 13935 } 13936 } 13937 sendit: 13938 dev_q = ire->ire_stq->q_next; 13939 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13940 BUMP_MIB(&ip_mib, ipInDiscards); 13941 freemsg(mp); 13942 return; 13943 } 13944 13945 ip_rput_forward(ire, ipha, mp, ill); 13946 return; 13947 13948 drop_pkt: 13949 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 13950 freemsg(mp); 13951 } 13952 13953 ire_t * 13954 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13955 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13956 { 13957 queue_t *q; 13958 uint16_t hcksumflags; 13959 13960 q = *qp; 13961 13962 /* 13963 * Clear the indication that this may have hardware 13964 * checksum as we are not using it for forwarding. 13965 */ 13966 hcksumflags = DB_CKSUMFLAGS(mp); 13967 DB_CKSUMFLAGS(mp) = 0; 13968 13969 /* 13970 * Directed broadcast forwarding: if the packet came in over a 13971 * different interface then it is routed out over we can forward it. 13972 */ 13973 if (ipha->ipha_protocol == IPPROTO_TCP) { 13974 ire_refrele(ire); 13975 freemsg(mp); 13976 BUMP_MIB(&ip_mib, ipInDiscards); 13977 return (NULL); 13978 } 13979 /* 13980 * For multicast we have set dst to be INADDR_BROADCAST 13981 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13982 * only for broadcast packets. 13983 */ 13984 if (!CLASSD(ipha->ipha_dst)) { 13985 ire_t *new_ire; 13986 ipif_t *ipif; 13987 /* 13988 * For ill groups, as the switch duplicates broadcasts 13989 * across all the ports, we need to filter out and 13990 * send up only one copy. There is one copy for every 13991 * broadcast address on each ill. Thus, we look for a 13992 * specific IRE on this ill and look at IRE_MARK_NORECV 13993 * later to see whether this ill is eligible to receive 13994 * them or not. ill_nominate_bcast_rcv() nominates only 13995 * one set of IREs for receiving. 13996 */ 13997 13998 ipif = ipif_get_next_ipif(NULL, ill); 13999 if (ipif == NULL) { 14000 ire_refrele(ire); 14001 freemsg(mp); 14002 BUMP_MIB(&ip_mib, ipInDiscards); 14003 return (NULL); 14004 } 14005 new_ire = ire_ctable_lookup(dst, 0, 0, 14006 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 14007 ipif_refrele(ipif); 14008 14009 if (new_ire != NULL) { 14010 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14011 ire_refrele(ire); 14012 ire_refrele(new_ire); 14013 freemsg(mp); 14014 BUMP_MIB(&ip_mib, ipInDiscards); 14015 return (NULL); 14016 } 14017 /* 14018 * In the special case of multirouted broadcast 14019 * packets, we unconditionally need to "gateway" 14020 * them to the appropriate interface here. 14021 * In the normal case, this cannot happen, because 14022 * there is no broadcast IRE tagged with the 14023 * RTF_MULTIRT flag. 14024 */ 14025 if (new_ire->ire_flags & RTF_MULTIRT) { 14026 ire_refrele(new_ire); 14027 if (ire->ire_rfq != NULL) { 14028 q = ire->ire_rfq; 14029 *qp = q; 14030 } 14031 } else { 14032 ire_refrele(ire); 14033 ire = new_ire; 14034 } 14035 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14036 if (!ip_g_forward_directed_bcast) { 14037 /* 14038 * Free the message if 14039 * ip_g_forward_directed_bcast is turned 14040 * off for non-local broadcast. 14041 */ 14042 ire_refrele(ire); 14043 freemsg(mp); 14044 BUMP_MIB(&ip_mib, ipInDiscards); 14045 return (NULL); 14046 } 14047 } else { 14048 /* 14049 * This CGTP packet successfully passed the 14050 * CGTP filter, but the related CGTP 14051 * broadcast IRE has not been found, 14052 * meaning that the redundant ipif is 14053 * probably down. However, if we discarded 14054 * this packet, its duplicate would be 14055 * filtered out by the CGTP filter so none 14056 * of them would get through. So we keep 14057 * going with this one. 14058 */ 14059 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14060 if (ire->ire_rfq != NULL) { 14061 q = ire->ire_rfq; 14062 *qp = q; 14063 } 14064 } 14065 } 14066 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 14067 /* 14068 * Verify that there are not more then one 14069 * IRE_BROADCAST with this broadcast address which 14070 * has ire_stq set. 14071 * TODO: simplify, loop over all IRE's 14072 */ 14073 ire_t *ire1; 14074 int num_stq = 0; 14075 mblk_t *mp1; 14076 14077 /* Find the first one with ire_stq set */ 14078 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14079 for (ire1 = ire; ire1 && 14080 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14081 ire1 = ire1->ire_next) 14082 ; 14083 if (ire1) { 14084 ire_refrele(ire); 14085 ire = ire1; 14086 IRE_REFHOLD(ire); 14087 } 14088 14089 /* Check if there are additional ones with stq set */ 14090 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14091 if (ire->ire_addr != ire1->ire_addr) 14092 break; 14093 if (ire1->ire_stq) { 14094 num_stq++; 14095 break; 14096 } 14097 } 14098 rw_exit(&ire->ire_bucket->irb_lock); 14099 if (num_stq == 1 && ire->ire_stq != NULL) { 14100 ip1dbg(("ip_rput_process_broadcast: directed " 14101 "broadcast to 0x%x\n", 14102 ntohl(ire->ire_addr))); 14103 mp1 = copymsg(mp); 14104 if (mp1) { 14105 switch (ipha->ipha_protocol) { 14106 case IPPROTO_UDP: 14107 ip_udp_input(q, mp1, ipha, ire, ill); 14108 break; 14109 default: 14110 ip_proto_input(q, mp1, ipha, ire, ill); 14111 break; 14112 } 14113 } 14114 /* 14115 * Adjust ttl to 2 (1+1 - the forward engine 14116 * will decrement it by one. 14117 */ 14118 if (ip_csum_hdr(ipha)) { 14119 BUMP_MIB(&ip_mib, ipInCksumErrs); 14120 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14121 freemsg(mp); 14122 ire_refrele(ire); 14123 return (NULL); 14124 } 14125 ipha->ipha_ttl = ip_broadcast_ttl + 1; 14126 ipha->ipha_hdr_checksum = 0; 14127 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14128 ip_rput_process_forward(q, mp, ire, ipha, 14129 ill, ll_multicast); 14130 ire_refrele(ire); 14131 return (NULL); 14132 } 14133 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14134 ntohl(ire->ire_addr))); 14135 } 14136 14137 14138 /* Restore any hardware checksum flags */ 14139 DB_CKSUMFLAGS(mp) = hcksumflags; 14140 return (ire); 14141 } 14142 14143 /* ARGSUSED */ 14144 static boolean_t 14145 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14146 int *ll_multicast, ipaddr_t *dstp) 14147 { 14148 /* 14149 * Forward packets only if we have joined the allmulti 14150 * group on this interface. 14151 */ 14152 if (ip_g_mrouter && ill->ill_join_allmulti) { 14153 int retval; 14154 14155 /* 14156 * Clear the indication that this may have hardware 14157 * checksum as we are not using it. 14158 */ 14159 DB_CKSUMFLAGS(mp) = 0; 14160 retval = ip_mforward(ill, ipha, mp); 14161 /* ip_mforward updates mib variables if needed */ 14162 /* clear b_prev - used by ip_mroute_decap */ 14163 mp->b_prev = NULL; 14164 14165 switch (retval) { 14166 case 0: 14167 /* 14168 * pkt is okay and arrived on phyint. 14169 * 14170 * If we are running as a multicast router 14171 * we need to see all IGMP and/or PIM packets. 14172 */ 14173 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14174 (ipha->ipha_protocol == IPPROTO_PIM)) { 14175 goto done; 14176 } 14177 break; 14178 case -1: 14179 /* pkt is mal-formed, toss it */ 14180 goto drop_pkt; 14181 case 1: 14182 /* pkt is okay and arrived on a tunnel */ 14183 /* 14184 * If we are running a multicast router 14185 * we need to see all igmp packets. 14186 */ 14187 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14188 *dstp = INADDR_BROADCAST; 14189 *ll_multicast = 1; 14190 return (B_FALSE); 14191 } 14192 14193 goto drop_pkt; 14194 } 14195 } 14196 14197 ILM_WALKER_HOLD(ill); 14198 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14199 /* 14200 * This might just be caused by the fact that 14201 * multiple IP Multicast addresses map to the same 14202 * link layer multicast - no need to increment counter! 14203 */ 14204 ILM_WALKER_RELE(ill); 14205 freemsg(mp); 14206 return (B_TRUE); 14207 } 14208 ILM_WALKER_RELE(ill); 14209 done: 14210 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14211 /* 14212 * This assumes the we deliver to all streams for multicast 14213 * and broadcast packets. 14214 */ 14215 *dstp = INADDR_BROADCAST; 14216 *ll_multicast = 1; 14217 return (B_FALSE); 14218 drop_pkt: 14219 ip2dbg(("ip_rput: drop pkt\n")); 14220 freemsg(mp); 14221 return (B_TRUE); 14222 } 14223 14224 static boolean_t 14225 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14226 int *ll_multicast, mblk_t **mpp) 14227 { 14228 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14229 boolean_t must_copy = B_FALSE; 14230 struct iocblk *iocp; 14231 ipha_t *ipha; 14232 14233 #define rptr ((uchar_t *)ipha) 14234 14235 first_mp = *first_mpp; 14236 mp = *mpp; 14237 14238 ASSERT(first_mp == mp); 14239 14240 /* 14241 * if db_ref > 1 then copymsg and free original. Packet may be 14242 * changed and do not want other entity who has a reference to this 14243 * message to trip over the changes. This is a blind change because 14244 * trying to catch all places that might change packet is too 14245 * difficult (since it may be a module above this one) 14246 * 14247 * This corresponds to the non-fast path case. We walk down the full 14248 * chain in this case, and check the db_ref count of all the dblks, 14249 * and do a copymsg if required. It is possible that the db_ref counts 14250 * of the data blocks in the mblk chain can be different. 14251 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14252 * count of 1, followed by a M_DATA block with a ref count of 2, if 14253 * 'snoop' is running. 14254 */ 14255 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14256 if (mp1->b_datap->db_ref > 1) { 14257 must_copy = B_TRUE; 14258 break; 14259 } 14260 } 14261 14262 if (must_copy) { 14263 mp1 = copymsg(mp); 14264 if (mp1 == NULL) { 14265 for (mp1 = mp; mp1 != NULL; 14266 mp1 = mp1->b_cont) { 14267 mp1->b_next = NULL; 14268 mp1->b_prev = NULL; 14269 } 14270 freemsg(mp); 14271 BUMP_MIB(&ip_mib, ipInDiscards); 14272 return (B_TRUE); 14273 } 14274 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14275 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14276 /* Copy b_prev - used by ip_mroute_decap */ 14277 to_mp->b_prev = from_mp->b_prev; 14278 from_mp->b_prev = NULL; 14279 } 14280 *first_mpp = first_mp = mp1; 14281 freemsg(mp); 14282 mp = mp1; 14283 *mpp = mp1; 14284 } 14285 14286 ipha = (ipha_t *)mp->b_rptr; 14287 14288 /* 14289 * previous code has a case for M_DATA. 14290 * We want to check how that happens. 14291 */ 14292 ASSERT(first_mp->b_datap->db_type != M_DATA); 14293 switch (first_mp->b_datap->db_type) { 14294 case M_PROTO: 14295 case M_PCPROTO: 14296 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14297 DL_UNITDATA_IND) { 14298 /* Go handle anything other than data elsewhere. */ 14299 ip_rput_dlpi(q, mp); 14300 return (B_TRUE); 14301 } 14302 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14303 /* Ditch the DLPI header. */ 14304 mp1 = mp->b_cont; 14305 ASSERT(first_mp == mp); 14306 *first_mpp = mp1; 14307 freeb(mp); 14308 *mpp = mp1; 14309 return (B_FALSE); 14310 case M_IOCACK: 14311 ip1dbg(("got iocack ")); 14312 iocp = (struct iocblk *)mp->b_rptr; 14313 switch (iocp->ioc_cmd) { 14314 case DL_IOC_HDR_INFO: 14315 ill = (ill_t *)q->q_ptr; 14316 ill_fastpath_ack(ill, mp); 14317 return (B_TRUE); 14318 case SIOCSTUNPARAM: 14319 case OSIOCSTUNPARAM: 14320 /* Go through qwriter_ip */ 14321 break; 14322 case SIOCGTUNPARAM: 14323 case OSIOCGTUNPARAM: 14324 ip_rput_other(NULL, q, mp, NULL); 14325 return (B_TRUE); 14326 default: 14327 putnext(q, mp); 14328 return (B_TRUE); 14329 } 14330 /* FALLTHRU */ 14331 case M_ERROR: 14332 case M_HANGUP: 14333 /* 14334 * Since this is on the ill stream we unconditionally 14335 * bump up the refcount 14336 */ 14337 ill_refhold(ill); 14338 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14339 B_FALSE); 14340 return (B_TRUE); 14341 case M_CTL: 14342 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14343 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14344 IPHADA_M_CTL)) { 14345 /* 14346 * It's an IPsec accelerated packet. 14347 * Make sure that the ill from which we received the 14348 * packet has enabled IPsec hardware acceleration. 14349 */ 14350 if (!(ill->ill_capabilities & 14351 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14352 /* IPsec kstats: bean counter */ 14353 freemsg(mp); 14354 return (B_TRUE); 14355 } 14356 14357 /* 14358 * Make mp point to the mblk following the M_CTL, 14359 * then process according to type of mp. 14360 * After this processing, first_mp will point to 14361 * the data-attributes and mp to the pkt following 14362 * the M_CTL. 14363 */ 14364 mp = first_mp->b_cont; 14365 if (mp == NULL) { 14366 freemsg(first_mp); 14367 return (B_TRUE); 14368 } 14369 /* 14370 * A Hardware Accelerated packet can only be M_DATA 14371 * ESP or AH packet. 14372 */ 14373 if (mp->b_datap->db_type != M_DATA) { 14374 /* non-M_DATA IPsec accelerated packet */ 14375 IPSECHW_DEBUG(IPSECHW_PKT, 14376 ("non-M_DATA IPsec accelerated pkt\n")); 14377 freemsg(first_mp); 14378 return (B_TRUE); 14379 } 14380 ipha = (ipha_t *)mp->b_rptr; 14381 if (ipha->ipha_protocol != IPPROTO_AH && 14382 ipha->ipha_protocol != IPPROTO_ESP) { 14383 IPSECHW_DEBUG(IPSECHW_PKT, 14384 ("non-M_DATA IPsec accelerated pkt\n")); 14385 freemsg(first_mp); 14386 return (B_TRUE); 14387 } 14388 *mpp = mp; 14389 return (B_FALSE); 14390 } 14391 putnext(q, mp); 14392 return (B_TRUE); 14393 case M_FLUSH: 14394 if (*mp->b_rptr & FLUSHW) { 14395 *mp->b_rptr &= ~FLUSHR; 14396 qreply(q, mp); 14397 return (B_TRUE); 14398 } 14399 freemsg(mp); 14400 return (B_TRUE); 14401 case M_IOCNAK: 14402 ip1dbg(("got iocnak ")); 14403 iocp = (struct iocblk *)mp->b_rptr; 14404 switch (iocp->ioc_cmd) { 14405 case DL_IOC_HDR_INFO: 14406 case SIOCSTUNPARAM: 14407 case OSIOCSTUNPARAM: 14408 /* 14409 * Since this is on the ill stream we unconditionally 14410 * bump up the refcount 14411 */ 14412 ill_refhold(ill); 14413 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14414 CUR_OP, B_FALSE); 14415 return (B_TRUE); 14416 case SIOCGTUNPARAM: 14417 case OSIOCGTUNPARAM: 14418 ip_rput_other(NULL, q, mp, NULL); 14419 return (B_TRUE); 14420 default: 14421 break; 14422 } 14423 /* FALLTHRU */ 14424 default: 14425 putnext(q, mp); 14426 return (B_TRUE); 14427 } 14428 } 14429 14430 /* Read side put procedure. Packets coming from the wire arrive here. */ 14431 void 14432 ip_rput(queue_t *q, mblk_t *mp) 14433 { 14434 ill_t *ill; 14435 mblk_t *dmp = NULL; 14436 14437 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14438 14439 ill = (ill_t *)q->q_ptr; 14440 14441 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14442 union DL_primitives *dl; 14443 14444 /* 14445 * Things are opening or closing. Only accept DLPI control 14446 * messages. In the open case, the ill->ill_ipif has not yet 14447 * been created. In the close case, things hanging off the 14448 * ill could have been freed already. In either case it 14449 * may not be safe to proceed further. 14450 */ 14451 14452 dl = (union DL_primitives *)mp->b_rptr; 14453 if ((mp->b_datap->db_type != M_PCPROTO) || 14454 (dl->dl_primitive == DL_UNITDATA_IND)) { 14455 /* 14456 * Also SIOC[GS]TUN* ioctls can come here. 14457 */ 14458 inet_freemsg(mp); 14459 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14460 "ip_input_end: q %p (%S)", q, "uninit"); 14461 return; 14462 } 14463 } 14464 14465 /* 14466 * if db_ref > 1 then copymsg and free original. Packet may be 14467 * changed and we do not want the other entity who has a reference to 14468 * this message to trip over the changes. This is a blind change because 14469 * trying to catch all places that might change the packet is too 14470 * difficult. 14471 * 14472 * This corresponds to the fast path case, where we have a chain of 14473 * M_DATA mblks. We check the db_ref count of only the 1st data block 14474 * in the mblk chain. There doesn't seem to be a reason why a device 14475 * driver would send up data with varying db_ref counts in the mblk 14476 * chain. In any case the Fast path is a private interface, and our 14477 * drivers don't do such a thing. Given the above assumption, there is 14478 * no need to walk down the entire mblk chain (which could have a 14479 * potential performance problem) 14480 */ 14481 if (mp->b_datap->db_ref > 1) { 14482 mblk_t *mp1; 14483 boolean_t adjusted = B_FALSE; 14484 IP_STAT(ip_db_ref); 14485 14486 /* 14487 * The IP_RECVSLLA option depends on having the link layer 14488 * header. First check that: 14489 * a> the underlying device is of type ether, since this 14490 * option is currently supported only over ethernet. 14491 * b> there is enough room to copy over the link layer header. 14492 * 14493 * Once the checks are done, adjust rptr so that the link layer 14494 * header will be copied via copymsg. Note that, IFT_ETHER may 14495 * be returned by some non-ethernet drivers but in this case the 14496 * second check will fail. 14497 */ 14498 if (ill->ill_type == IFT_ETHER && 14499 (mp->b_rptr - mp->b_datap->db_base) >= 14500 sizeof (struct ether_header)) { 14501 mp->b_rptr -= sizeof (struct ether_header); 14502 adjusted = B_TRUE; 14503 } 14504 mp1 = copymsg(mp); 14505 if (mp1 == NULL) { 14506 mp->b_next = NULL; 14507 /* clear b_prev - used by ip_mroute_decap */ 14508 mp->b_prev = NULL; 14509 freemsg(mp); 14510 BUMP_MIB(&ip_mib, ipInDiscards); 14511 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14512 "ip_rput_end: q %p (%S)", q, "copymsg"); 14513 return; 14514 } 14515 if (adjusted) { 14516 /* 14517 * Copy is done. Restore the pointer in the _new_ mblk 14518 */ 14519 mp1->b_rptr += sizeof (struct ether_header); 14520 } 14521 /* Copy b_prev - used by ip_mroute_decap */ 14522 mp1->b_prev = mp->b_prev; 14523 mp->b_prev = NULL; 14524 freemsg(mp); 14525 mp = mp1; 14526 } 14527 if (DB_TYPE(mp) == M_DATA) { 14528 dmp = mp; 14529 } else if (DB_TYPE(mp) == M_PROTO && 14530 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14531 dmp = mp->b_cont; 14532 } 14533 if (dmp != NULL) { 14534 /* 14535 * IP header ptr not aligned? 14536 * OR IP header not complete in first mblk 14537 */ 14538 if (!OK_32PTR(dmp->b_rptr) || 14539 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14540 if (!ip_check_and_align_header(q, dmp)) 14541 return; 14542 } 14543 } 14544 14545 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14546 "ip_rput_end: q %p (%S)", q, "end"); 14547 14548 ip_input(ill, NULL, mp, NULL); 14549 } 14550 14551 /* 14552 * Direct read side procedure capable of dealing with chains. GLDv3 based 14553 * drivers call this function directly with mblk chains while STREAMS 14554 * read side procedure ip_rput() calls this for single packet with ip_ring 14555 * set to NULL to process one packet at a time. 14556 * 14557 * The ill will always be valid if this function is called directly from 14558 * the driver. 14559 * 14560 * If ip_input() is called from GLDv3: 14561 * 14562 * - This must be a non-VLAN IP stream. 14563 * - 'mp' is either an untagged or a special priority-tagged packet. 14564 * - Any VLAN tag that was in the MAC header has been stripped. 14565 * 14566 * Thus, there is no need to adjust b_rptr in this function. 14567 */ 14568 /* ARGSUSED */ 14569 void 14570 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14571 struct mac_header_info_s *mhip) 14572 { 14573 ipaddr_t dst = NULL; 14574 ipaddr_t prev_dst; 14575 ire_t *ire = NULL; 14576 ipha_t *ipha; 14577 uint_t pkt_len; 14578 ssize_t len; 14579 uint_t opt_len; 14580 int ll_multicast; 14581 int cgtp_flt_pkt; 14582 queue_t *q = ill->ill_rq; 14583 squeue_t *curr_sqp = NULL; 14584 mblk_t *head = NULL; 14585 mblk_t *tail = NULL; 14586 mblk_t *first_mp; 14587 mblk_t *mp; 14588 int cnt = 0; 14589 14590 ASSERT(mp_chain != NULL); 14591 ASSERT(ill != NULL); 14592 14593 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14594 14595 #define rptr ((uchar_t *)ipha) 14596 14597 while (mp_chain != NULL) { 14598 first_mp = mp = mp_chain; 14599 mp_chain = mp_chain->b_next; 14600 mp->b_next = NULL; 14601 ll_multicast = 0; 14602 14603 /* 14604 * We do ire caching from one iteration to 14605 * another. In the event the packet chain contains 14606 * all packets from the same dst, this caching saves 14607 * an ire_cache_lookup for each of the succeeding 14608 * packets in a packet chain. 14609 */ 14610 prev_dst = dst; 14611 14612 /* 14613 * ip_input fast path 14614 */ 14615 14616 /* mblk type is not M_DATA */ 14617 if (mp->b_datap->db_type != M_DATA) { 14618 if (ip_rput_process_notdata(q, &first_mp, ill, 14619 &ll_multicast, &mp)) 14620 continue; 14621 } 14622 14623 /* Make sure its an M_DATA and that its aligned */ 14624 ASSERT(mp->b_datap->db_type == M_DATA); 14625 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14626 14627 ipha = (ipha_t *)mp->b_rptr; 14628 len = mp->b_wptr - rptr; 14629 14630 BUMP_MIB(&ip_mib, ipInReceives); 14631 14632 14633 /* multiple mblk or too short */ 14634 pkt_len = ntohs(ipha->ipha_length); 14635 len -= pkt_len; 14636 if (len != 0) { 14637 /* 14638 * Make sure we have data length consistent 14639 * with the IP header. 14640 */ 14641 if (mp->b_cont == NULL) { 14642 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14643 BUMP_MIB(&ip_mib, ipInHdrErrors); 14644 ip2dbg(("ip_input: drop pkt\n")); 14645 freemsg(mp); 14646 continue; 14647 } 14648 mp->b_wptr = rptr + pkt_len; 14649 } else if (len += msgdsize(mp->b_cont)) { 14650 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14651 BUMP_MIB(&ip_mib, ipInHdrErrors); 14652 ip2dbg(("ip_input: drop pkt\n")); 14653 freemsg(mp); 14654 continue; 14655 } 14656 (void) adjmsg(mp, -len); 14657 IP_STAT(ip_multimblk3); 14658 } 14659 } 14660 14661 /* Obtain the dst of the current packet */ 14662 dst = ipha->ipha_dst; 14663 14664 if (IP_LOOPBACK_ADDR(dst) || 14665 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14666 BUMP_MIB(&ip_mib, ipInAddrErrors); 14667 cmn_err(CE_CONT, "dst %X src %X\n", 14668 dst, ipha->ipha_src); 14669 freemsg(mp); 14670 continue; 14671 } 14672 14673 /* 14674 * The event for packets being received from a 'physical' 14675 * interface is placed after validation of the source and/or 14676 * destination address as being local so that packets can be 14677 * redirected to loopback addresses using ipnat. 14678 */ 14679 DTRACE_PROBE4(ip4__physical__in__start, 14680 ill_t *, ill, ill_t *, NULL, 14681 ipha_t *, ipha, mblk_t *, first_mp); 14682 14683 FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in, 14684 ill, NULL, ipha, first_mp, mp); 14685 14686 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14687 14688 if (first_mp == NULL) { 14689 continue; 14690 } 14691 dst = ipha->ipha_dst; 14692 14693 /* 14694 * Attach any necessary label information to 14695 * this packet 14696 */ 14697 if (is_system_labeled() && 14698 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14699 BUMP_MIB(&ip_mib, ipInDiscards); 14700 freemsg(mp); 14701 continue; 14702 } 14703 14704 /* 14705 * Reuse the cached ire only if the ipha_dst of the previous 14706 * packet is the same as the current packet AND it is not 14707 * INADDR_ANY. 14708 */ 14709 if (!(dst == prev_dst && dst != INADDR_ANY) && 14710 (ire != NULL)) { 14711 ire_refrele(ire); 14712 ire = NULL; 14713 } 14714 opt_len = ipha->ipha_version_and_hdr_length - 14715 IP_SIMPLE_HDR_VERSION; 14716 14717 /* 14718 * Check to see if we can take the fastpath. 14719 * That is possible if the following conditions are met 14720 * o Tsol disabled 14721 * o CGTP disabled 14722 * o ipp_action_count is 0 14723 * o Mobile IP not running 14724 * o no options in the packet 14725 * o not a RSVP packet 14726 * o not a multicast packet 14727 */ 14728 if (!is_system_labeled() && 14729 !ip_cgtp_filter && ipp_action_count == 0 && 14730 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14731 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14732 !ll_multicast && !CLASSD(dst)) { 14733 if (ire == NULL) 14734 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14735 14736 /* incoming packet is for forwarding */ 14737 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14738 ire = ip_fast_forward(ire, dst, ill, mp); 14739 continue; 14740 } 14741 /* incoming packet is for local consumption */ 14742 if (ire->ire_type & IRE_LOCAL) 14743 goto local; 14744 } 14745 14746 /* 14747 * Disable ire caching for anything more complex 14748 * than the simple fast path case we checked for above. 14749 */ 14750 if (ire != NULL) { 14751 ire_refrele(ire); 14752 ire = NULL; 14753 } 14754 14755 /* Full-blown slow path */ 14756 if (opt_len != 0) { 14757 if (len != 0) 14758 IP_STAT(ip_multimblk4); 14759 else 14760 IP_STAT(ip_ipoptions); 14761 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14762 continue; 14763 } 14764 14765 /* 14766 * Invoke the CGTP (multirouting) filtering module to process 14767 * the incoming packet. Packets identified as duplicates 14768 * must be discarded. Filtering is active only if the 14769 * the ip_cgtp_filter ndd variable is non-zero. 14770 */ 14771 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14772 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14773 cgtp_flt_pkt = 14774 ip_cgtp_filter_ops->cfo_filter(q, mp); 14775 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14776 freemsg(first_mp); 14777 continue; 14778 } 14779 } 14780 14781 /* 14782 * If rsvpd is running, let RSVP daemon handle its processing 14783 * and forwarding of RSVP multicast/unicast packets. 14784 * If rsvpd is not running but mrouted is running, RSVP 14785 * multicast packets are forwarded as multicast traffic 14786 * and RSVP unicast packets are forwarded by unicast router. 14787 * If neither rsvpd nor mrouted is running, RSVP multicast 14788 * packets are not forwarded, but the unicast packets are 14789 * forwarded like unicast traffic. 14790 */ 14791 if (ipha->ipha_protocol == IPPROTO_RSVP && 14792 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14793 /* RSVP packet and rsvpd running. Treat as ours */ 14794 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14795 /* 14796 * This assumes that we deliver to all streams for 14797 * multicast and broadcast packets. 14798 * We have to force ll_multicast to 1 to handle the 14799 * M_DATA messages passed in from ip_mroute_decap. 14800 */ 14801 dst = INADDR_BROADCAST; 14802 ll_multicast = 1; 14803 } else if (CLASSD(dst)) { 14804 /* packet is multicast */ 14805 mp->b_next = NULL; 14806 if (ip_rput_process_multicast(q, mp, ill, ipha, 14807 &ll_multicast, &dst)) 14808 continue; 14809 } 14810 14811 14812 /* 14813 * Check if the packet is coming from the Mobile IP 14814 * forward tunnel interface 14815 */ 14816 if (ill->ill_srcif_refcnt > 0) { 14817 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14818 NULL, ill, MATCH_IRE_TYPE); 14819 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14820 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14821 14822 /* We need to resolve the link layer info */ 14823 ire_refrele(ire); 14824 ire = NULL; 14825 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14826 ll_multicast, dst); 14827 continue; 14828 } 14829 } 14830 14831 if (ire == NULL) { 14832 ire = ire_cache_lookup(dst, ALL_ZONES, 14833 MBLK_GETLABEL(mp)); 14834 } 14835 14836 /* 14837 * If mipagent is running and reverse tunnel is created as per 14838 * mobile node request, then any packet coming through the 14839 * incoming interface from the mobile-node, should be reverse 14840 * tunneled to it's home agent except those that are destined 14841 * to foreign agent only. 14842 * This needs source address based ire lookup. The routing 14843 * entries for source address based lookup are only created by 14844 * mipagent program only when a reverse tunnel is created. 14845 * Reference : RFC2002, RFC2344 14846 */ 14847 if (ill->ill_mrtun_refcnt > 0) { 14848 ipaddr_t srcaddr; 14849 ire_t *tmp_ire; 14850 14851 tmp_ire = ire; /* Save, we might need it later */ 14852 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14853 ire->ire_type != IRE_BROADCAST)) { 14854 srcaddr = ipha->ipha_src; 14855 ire = ire_mrtun_lookup(srcaddr, ill); 14856 if (ire != NULL) { 14857 /* 14858 * Should not be getting iphada packet 14859 * here. we should only get those for 14860 * IRE_LOCAL traffic, excluded above. 14861 * Fail-safe (drop packet) in the event 14862 * hardware is misbehaving. 14863 */ 14864 if (first_mp != mp) { 14865 /* IPsec KSTATS: beancount me */ 14866 freemsg(first_mp); 14867 } else { 14868 /* 14869 * This packet must be forwarded 14870 * to Reverse Tunnel 14871 */ 14872 ip_mrtun_forward(ire, ill, mp); 14873 } 14874 ire_refrele(ire); 14875 ire = NULL; 14876 if (tmp_ire != NULL) { 14877 ire_refrele(tmp_ire); 14878 tmp_ire = NULL; 14879 } 14880 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14881 "ip_input_end: q %p (%S)", 14882 q, "uninit"); 14883 continue; 14884 } 14885 } 14886 /* 14887 * If this packet is from a non-mobilenode or a 14888 * mobile-node which does not request reverse 14889 * tunnel service 14890 */ 14891 ire = tmp_ire; 14892 } 14893 14894 14895 /* 14896 * If we reach here that means the incoming packet satisfies 14897 * one of the following conditions: 14898 * - packet is from a mobile node which does not request 14899 * reverse tunnel 14900 * - packet is from a non-mobile node, which is the most 14901 * common case 14902 * - packet is from a reverse tunnel enabled mobile node 14903 * and destined to foreign agent only 14904 */ 14905 14906 if (ire == NULL) { 14907 /* 14908 * No IRE for this destination, so it can't be for us. 14909 * Unless we are forwarding, drop the packet. 14910 * We have to let source routed packets through 14911 * since we don't yet know if they are 'ping -l' 14912 * packets i.e. if they will go out over the 14913 * same interface as they came in on. 14914 */ 14915 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14916 if (ire == NULL) 14917 continue; 14918 } 14919 14920 /* 14921 * Broadcast IRE may indicate either broadcast or 14922 * multicast packet 14923 */ 14924 if (ire->ire_type == IRE_BROADCAST) { 14925 /* 14926 * Skip broadcast checks if packet is UDP multicast; 14927 * we'd rather not enter ip_rput_process_broadcast() 14928 * unless the packet is broadcast for real, since 14929 * that routine is a no-op for multicast. 14930 */ 14931 if (ipha->ipha_protocol != IPPROTO_UDP || 14932 !CLASSD(ipha->ipha_dst)) { 14933 ire = ip_rput_process_broadcast(&q, mp, 14934 ire, ipha, ill, dst, cgtp_flt_pkt, 14935 ll_multicast); 14936 if (ire == NULL) 14937 continue; 14938 } 14939 } else if (ire->ire_stq != NULL) { 14940 /* fowarding? */ 14941 ip_rput_process_forward(q, mp, ire, ipha, ill, 14942 ll_multicast); 14943 /* ip_rput_process_forward consumed the packet */ 14944 continue; 14945 } 14946 14947 local: 14948 /* packet not for us */ 14949 if (ire->ire_rfq != q) { 14950 if (ip_rput_notforus(&q, mp, ire, ill)) 14951 continue; 14952 } 14953 14954 switch (ipha->ipha_protocol) { 14955 case IPPROTO_TCP: 14956 ASSERT(first_mp == mp); 14957 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14958 mp, 0, q, ip_ring)) != NULL) { 14959 if (curr_sqp == NULL) { 14960 curr_sqp = GET_SQUEUE(mp); 14961 ASSERT(cnt == 0); 14962 cnt++; 14963 head = tail = mp; 14964 } else if (curr_sqp == GET_SQUEUE(mp)) { 14965 ASSERT(tail != NULL); 14966 cnt++; 14967 tail->b_next = mp; 14968 tail = mp; 14969 } else { 14970 /* 14971 * A different squeue. Send the 14972 * chain for the previous squeue on 14973 * its way. This shouldn't happen 14974 * often unless interrupt binding 14975 * changes. 14976 */ 14977 IP_STAT(ip_input_multi_squeue); 14978 squeue_enter_chain(curr_sqp, head, 14979 tail, cnt, SQTAG_IP_INPUT); 14980 curr_sqp = GET_SQUEUE(mp); 14981 head = mp; 14982 tail = mp; 14983 cnt = 1; 14984 } 14985 } 14986 continue; 14987 case IPPROTO_UDP: 14988 ASSERT(first_mp == mp); 14989 ip_udp_input(q, mp, ipha, ire, ill); 14990 continue; 14991 case IPPROTO_SCTP: 14992 ASSERT(first_mp == mp); 14993 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14994 q, dst); 14995 /* ire has been released by ip_sctp_input */ 14996 ire = NULL; 14997 continue; 14998 default: 14999 ip_proto_input(q, first_mp, ipha, ire, ill); 15000 continue; 15001 } 15002 } 15003 15004 if (ire != NULL) 15005 ire_refrele(ire); 15006 15007 if (head != NULL) 15008 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15009 15010 /* 15011 * This code is there just to make netperf/ttcp look good. 15012 * 15013 * Its possible that after being in polling mode (and having cleared 15014 * the backlog), squeues have turned the interrupt frequency higher 15015 * to improve latency at the expense of more CPU utilization (less 15016 * packets per interrupts or more number of interrupts). Workloads 15017 * like ttcp/netperf do manage to tickle polling once in a while 15018 * but for the remaining time, stay in higher interrupt mode since 15019 * their packet arrival rate is pretty uniform and this shows up 15020 * as higher CPU utilization. Since people care about CPU utilization 15021 * while running netperf/ttcp, turn the interrupt frequency back to 15022 * normal/default if polling has not been used in ip_poll_normal_ticks. 15023 */ 15024 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15025 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15026 ip_ring->rr_poll_state &= ~ILL_POLLING; 15027 ip_ring->rr_blank(ip_ring->rr_handle, 15028 ip_ring->rr_normal_blank_time, 15029 ip_ring->rr_normal_pkt_cnt); 15030 } 15031 } 15032 15033 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15034 "ip_input_end: q %p (%S)", q, "end"); 15035 #undef rptr 15036 } 15037 15038 static void 15039 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15040 t_uscalar_t err) 15041 { 15042 if (dl_err == DL_SYSERR) { 15043 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15044 "%s: %s failed: DL_SYSERR (errno %u)\n", 15045 ill->ill_name, dlpi_prim_str(prim), err); 15046 return; 15047 } 15048 15049 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15050 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15051 dlpi_err_str(dl_err)); 15052 } 15053 15054 /* 15055 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15056 * than DL_UNITDATA_IND messages. If we need to process this message 15057 * exclusively, we call qwriter_ip, in which case we also need to call 15058 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15059 */ 15060 void 15061 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15062 { 15063 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15064 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15065 ill_t *ill; 15066 15067 ip1dbg(("ip_rput_dlpi")); 15068 ill = (ill_t *)q->q_ptr; 15069 switch (dloa->dl_primitive) { 15070 case DL_ERROR_ACK: 15071 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15072 "%s (0x%x), unix %u\n", ill->ill_name, 15073 dlpi_prim_str(dlea->dl_error_primitive), 15074 dlea->dl_error_primitive, 15075 dlpi_err_str(dlea->dl_errno), 15076 dlea->dl_errno, 15077 dlea->dl_unix_errno)); 15078 switch (dlea->dl_error_primitive) { 15079 case DL_UNBIND_REQ: 15080 mutex_enter(&ill->ill_lock); 15081 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15082 cv_signal(&ill->ill_cv); 15083 mutex_exit(&ill->ill_lock); 15084 /* FALLTHRU */ 15085 case DL_NOTIFY_REQ: 15086 case DL_ATTACH_REQ: 15087 case DL_DETACH_REQ: 15088 case DL_INFO_REQ: 15089 case DL_BIND_REQ: 15090 case DL_ENABMULTI_REQ: 15091 case DL_PHYS_ADDR_REQ: 15092 case DL_CAPABILITY_REQ: 15093 case DL_CONTROL_REQ: 15094 /* 15095 * Refhold the ill to match qwriter_ip which does a 15096 * refrele. Since this is on the ill stream we 15097 * unconditionally bump up the refcount without 15098 * checking for ILL_CAN_LOOKUP 15099 */ 15100 ill_refhold(ill); 15101 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15102 CUR_OP, B_FALSE); 15103 return; 15104 case DL_DISABMULTI_REQ: 15105 freemsg(mp); /* Don't want to pass this up */ 15106 return; 15107 default: 15108 break; 15109 } 15110 ip_dlpi_error(ill, dlea->dl_error_primitive, 15111 dlea->dl_errno, dlea->dl_unix_errno); 15112 freemsg(mp); 15113 return; 15114 case DL_INFO_ACK: 15115 case DL_BIND_ACK: 15116 case DL_PHYS_ADDR_ACK: 15117 case DL_NOTIFY_ACK: 15118 case DL_CAPABILITY_ACK: 15119 case DL_CONTROL_ACK: 15120 /* 15121 * Refhold the ill to match qwriter_ip which does a refrele 15122 * Since this is on the ill stream we unconditionally 15123 * bump up the refcount without doing ILL_CAN_LOOKUP. 15124 */ 15125 ill_refhold(ill); 15126 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15127 CUR_OP, B_FALSE); 15128 return; 15129 case DL_NOTIFY_IND: 15130 ill_refhold(ill); 15131 /* 15132 * The DL_NOTIFY_IND is an asynchronous message that has no 15133 * relation to the current ioctl in progress (if any). Hence we 15134 * pass in NEW_OP in this case. 15135 */ 15136 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15137 NEW_OP, B_FALSE); 15138 return; 15139 case DL_OK_ACK: 15140 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15141 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15142 switch (dloa->dl_correct_primitive) { 15143 case DL_UNBIND_REQ: 15144 mutex_enter(&ill->ill_lock); 15145 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15146 cv_signal(&ill->ill_cv); 15147 mutex_exit(&ill->ill_lock); 15148 /* FALLTHRU */ 15149 case DL_ATTACH_REQ: 15150 case DL_DETACH_REQ: 15151 /* 15152 * Refhold the ill to match qwriter_ip which does a 15153 * refrele. Since this is on the ill stream we 15154 * unconditionally bump up the refcount 15155 */ 15156 ill_refhold(ill); 15157 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15158 CUR_OP, B_FALSE); 15159 return; 15160 case DL_ENABMULTI_REQ: 15161 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15162 ill->ill_dlpi_multicast_state = IDS_OK; 15163 break; 15164 15165 } 15166 break; 15167 default: 15168 break; 15169 } 15170 freemsg(mp); 15171 } 15172 15173 /* 15174 * Handling of DLPI messages that require exclusive access to the ipsq. 15175 * 15176 * Need to do ill_pending_mp_release on ioctl completion, which could 15177 * happen here. (along with mi_copy_done) 15178 */ 15179 /* ARGSUSED */ 15180 static void 15181 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15182 { 15183 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15184 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15185 int err = 0; 15186 ill_t *ill; 15187 ipif_t *ipif = NULL; 15188 mblk_t *mp1 = NULL; 15189 conn_t *connp = NULL; 15190 t_uscalar_t physaddr_req; 15191 mblk_t *mp_hw; 15192 union DL_primitives *dlp; 15193 boolean_t success; 15194 boolean_t ioctl_aborted = B_FALSE; 15195 boolean_t log = B_TRUE; 15196 hook_nic_event_t *info; 15197 15198 ip1dbg(("ip_rput_dlpi_writer ..")); 15199 ill = (ill_t *)q->q_ptr; 15200 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15201 15202 ASSERT(IAM_WRITER_ILL(ill)); 15203 15204 /* 15205 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15206 * both are null or non-null. However we can assert that only 15207 * after grabbing the ipsq_lock. So we don't make any assertion 15208 * here and in other places in the code. 15209 */ 15210 ipif = ipsq->ipsq_pending_ipif; 15211 /* 15212 * The current ioctl could have been aborted by the user and a new 15213 * ioctl to bring up another ill could have started. We could still 15214 * get a response from the driver later. 15215 */ 15216 if (ipif != NULL && ipif->ipif_ill != ill) 15217 ioctl_aborted = B_TRUE; 15218 15219 switch (dloa->dl_primitive) { 15220 case DL_ERROR_ACK: 15221 switch (dlea->dl_error_primitive) { 15222 case DL_UNBIND_REQ: 15223 case DL_ATTACH_REQ: 15224 case DL_DETACH_REQ: 15225 case DL_INFO_REQ: 15226 ill_dlpi_done(ill, dlea->dl_error_primitive); 15227 break; 15228 case DL_NOTIFY_REQ: 15229 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15230 log = B_FALSE; 15231 break; 15232 case DL_PHYS_ADDR_REQ: 15233 /* 15234 * For IPv6 only, there are two additional 15235 * phys_addr_req's sent to the driver to get the 15236 * IPv6 token and lla. This allows IP to acquire 15237 * the hardware address format for a given interface 15238 * without having built in knowledge of the hardware 15239 * address. ill_phys_addr_pend keeps track of the last 15240 * DL_PAR sent so we know which response we are 15241 * dealing with. ill_dlpi_done will update 15242 * ill_phys_addr_pend when it sends the next req. 15243 * We don't complete the IOCTL until all three DL_PARs 15244 * have been attempted, so set *_len to 0 and break. 15245 */ 15246 physaddr_req = ill->ill_phys_addr_pend; 15247 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15248 if (physaddr_req == DL_IPV6_TOKEN) { 15249 ill->ill_token_length = 0; 15250 log = B_FALSE; 15251 break; 15252 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15253 ill->ill_nd_lla_len = 0; 15254 log = B_FALSE; 15255 break; 15256 } 15257 /* 15258 * Something went wrong with the DL_PHYS_ADDR_REQ. 15259 * We presumably have an IOCTL hanging out waiting 15260 * for completion. Find it and complete the IOCTL 15261 * with the error noted. 15262 * However, ill_dl_phys was called on an ill queue 15263 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15264 * set. But the ioctl is known to be pending on ill_wq. 15265 */ 15266 if (!ill->ill_ifname_pending) 15267 break; 15268 ill->ill_ifname_pending = 0; 15269 if (!ioctl_aborted) 15270 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15271 if (mp1 != NULL) { 15272 /* 15273 * This operation (SIOCSLIFNAME) must have 15274 * happened on the ill. Assert there is no conn 15275 */ 15276 ASSERT(connp == NULL); 15277 q = ill->ill_wq; 15278 } 15279 break; 15280 case DL_BIND_REQ: 15281 ill_dlpi_done(ill, DL_BIND_REQ); 15282 if (ill->ill_ifname_pending) 15283 break; 15284 /* 15285 * Something went wrong with the bind. We presumably 15286 * have an IOCTL hanging out waiting for completion. 15287 * Find it, take down the interface that was coming 15288 * up, and complete the IOCTL with the error noted. 15289 */ 15290 if (!ioctl_aborted) 15291 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15292 if (mp1 != NULL) { 15293 /* 15294 * This operation (SIOCSLIFFLAGS) must have 15295 * happened from a conn. 15296 */ 15297 ASSERT(connp != NULL); 15298 q = CONNP_TO_WQ(connp); 15299 if (ill->ill_move_in_progress) { 15300 ILL_CLEAR_MOVE(ill); 15301 } 15302 (void) ipif_down(ipif, NULL, NULL); 15303 /* error is set below the switch */ 15304 } 15305 break; 15306 case DL_ENABMULTI_REQ: 15307 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15308 15309 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15310 ill->ill_dlpi_multicast_state = IDS_FAILED; 15311 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15312 ipif_t *ipif; 15313 15314 log = B_FALSE; 15315 printf("ip: joining multicasts failed (%d)" 15316 " on %s - will use link layer " 15317 "broadcasts for multicast\n", 15318 dlea->dl_errno, ill->ill_name); 15319 15320 /* 15321 * Set up the multicast mapping alone. 15322 * writer, so ok to access ill->ill_ipif 15323 * without any lock. 15324 */ 15325 ipif = ill->ill_ipif; 15326 mutex_enter(&ill->ill_phyint->phyint_lock); 15327 ill->ill_phyint->phyint_flags |= 15328 PHYI_MULTI_BCAST; 15329 mutex_exit(&ill->ill_phyint->phyint_lock); 15330 15331 if (!ill->ill_isv6) { 15332 (void) ipif_arp_setup_multicast(ipif, 15333 NULL); 15334 } else { 15335 (void) ipif_ndp_setup_multicast(ipif, 15336 NULL); 15337 } 15338 } 15339 freemsg(mp); /* Don't want to pass this up */ 15340 return; 15341 case DL_CAPABILITY_REQ: 15342 case DL_CONTROL_REQ: 15343 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15344 "DL_CAPABILITY/CONTROL REQ\n")); 15345 ill_dlpi_done(ill, dlea->dl_error_primitive); 15346 ill->ill_dlpi_capab_state = IDS_FAILED; 15347 freemsg(mp); 15348 return; 15349 } 15350 /* 15351 * Note the error for IOCTL completion (mp1 is set when 15352 * ready to complete ioctl). If ill_ifname_pending_err is 15353 * set, an error occured during plumbing (ill_ifname_pending), 15354 * so we want to report that error. 15355 * 15356 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15357 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15358 * expected to get errack'd if the driver doesn't support 15359 * these flags (e.g. ethernet). log will be set to B_FALSE 15360 * if these error conditions are encountered. 15361 */ 15362 if (mp1 != NULL) { 15363 if (ill->ill_ifname_pending_err != 0) { 15364 err = ill->ill_ifname_pending_err; 15365 ill->ill_ifname_pending_err = 0; 15366 } else { 15367 err = dlea->dl_unix_errno ? 15368 dlea->dl_unix_errno : ENXIO; 15369 } 15370 /* 15371 * If we're plumbing an interface and an error hasn't already 15372 * been saved, set ill_ifname_pending_err to the error passed 15373 * up. Ignore the error if log is B_FALSE (see comment above). 15374 */ 15375 } else if (log && ill->ill_ifname_pending && 15376 ill->ill_ifname_pending_err == 0) { 15377 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15378 dlea->dl_unix_errno : ENXIO; 15379 } 15380 15381 if (log) 15382 ip_dlpi_error(ill, dlea->dl_error_primitive, 15383 dlea->dl_errno, dlea->dl_unix_errno); 15384 break; 15385 case DL_CAPABILITY_ACK: { 15386 boolean_t reneg_flag = B_FALSE; 15387 /* Call a routine to handle this one. */ 15388 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15389 /* 15390 * Check if the ACK is due to renegotiation case since we 15391 * will need to send a new CAPABILITY_REQ later. 15392 */ 15393 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15394 /* This is the ack for a renogiation case */ 15395 reneg_flag = B_TRUE; 15396 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15397 } 15398 ill_capability_ack(ill, mp); 15399 if (reneg_flag) 15400 ill_capability_probe(ill); 15401 break; 15402 } 15403 case DL_CONTROL_ACK: 15404 /* We treat all of these as "fire and forget" */ 15405 ill_dlpi_done(ill, DL_CONTROL_REQ); 15406 break; 15407 case DL_INFO_ACK: 15408 /* Call a routine to handle this one. */ 15409 ill_dlpi_done(ill, DL_INFO_REQ); 15410 ip_ll_subnet_defaults(ill, mp); 15411 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15412 return; 15413 case DL_BIND_ACK: 15414 /* 15415 * We should have an IOCTL waiting on this unless 15416 * sent by ill_dl_phys, in which case just return 15417 */ 15418 ill_dlpi_done(ill, DL_BIND_REQ); 15419 if (ill->ill_ifname_pending) 15420 break; 15421 15422 if (!ioctl_aborted) 15423 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15424 if (mp1 == NULL) 15425 break; 15426 ASSERT(connp != NULL); 15427 q = CONNP_TO_WQ(connp); 15428 15429 /* 15430 * We are exclusive. So nothing can change even after 15431 * we get the pending mp. If need be we can put it back 15432 * and restart, as in calling ipif_arp_up() below. 15433 */ 15434 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15435 15436 mutex_enter(&ill->ill_lock); 15437 15438 ill->ill_dl_up = 1; 15439 15440 if ((info = ill->ill_nic_event_info) != NULL) { 15441 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15442 "attached for %s\n", info->hne_event, 15443 ill->ill_name)); 15444 if (info->hne_data != NULL) 15445 kmem_free(info->hne_data, info->hne_datalen); 15446 kmem_free(info, sizeof (hook_nic_event_t)); 15447 } 15448 15449 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15450 if (info != NULL) { 15451 info->hne_nic = ill->ill_phyint->phyint_ifindex; 15452 info->hne_lif = 0; 15453 info->hne_event = NE_UP; 15454 info->hne_data = NULL; 15455 info->hne_datalen = 0; 15456 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 15457 } else 15458 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15459 "event information for %s (ENOMEM)\n", 15460 ill->ill_name)); 15461 15462 ill->ill_nic_event_info = info; 15463 15464 mutex_exit(&ill->ill_lock); 15465 15466 /* 15467 * Now bring up the resolver; when that is complete, we'll 15468 * create IREs. Note that we intentionally mirror what 15469 * ipif_up() would have done, because we got here by way of 15470 * ill_dl_up(), which stopped ipif_up()'s processing. 15471 */ 15472 if (ill->ill_isv6) { 15473 /* 15474 * v6 interfaces. 15475 * Unlike ARP which has to do another bind 15476 * and attach, once we get here we are 15477 * done with NDP. Except in the case of 15478 * ILLF_XRESOLV, in which case we send an 15479 * AR_INTERFACE_UP to the external resolver. 15480 * If all goes well, the ioctl will complete 15481 * in ip_rput(). If there's an error, we 15482 * complete it here. 15483 */ 15484 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15485 B_FALSE); 15486 if (err == 0) { 15487 if (ill->ill_flags & ILLF_XRESOLV) { 15488 mutex_enter(&connp->conn_lock); 15489 mutex_enter(&ill->ill_lock); 15490 success = ipsq_pending_mp_add( 15491 connp, ipif, q, mp1, 0); 15492 mutex_exit(&ill->ill_lock); 15493 mutex_exit(&connp->conn_lock); 15494 if (success) { 15495 err = ipif_resolver_up(ipif, 15496 Res_act_initial); 15497 if (err == EINPROGRESS) { 15498 freemsg(mp); 15499 return; 15500 } 15501 ASSERT(err != 0); 15502 mp1 = ipsq_pending_mp_get(ipsq, 15503 &connp); 15504 ASSERT(mp1 != NULL); 15505 } else { 15506 /* conn has started closing */ 15507 err = EINTR; 15508 } 15509 } else { /* Non XRESOLV interface */ 15510 (void) ipif_resolver_up(ipif, 15511 Res_act_initial); 15512 err = ipif_up_done_v6(ipif); 15513 } 15514 } 15515 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15516 /* 15517 * ARP and other v4 external resolvers. 15518 * Leave the pending mblk intact so that 15519 * the ioctl completes in ip_rput(). 15520 */ 15521 mutex_enter(&connp->conn_lock); 15522 mutex_enter(&ill->ill_lock); 15523 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15524 mutex_exit(&ill->ill_lock); 15525 mutex_exit(&connp->conn_lock); 15526 if (success) { 15527 err = ipif_resolver_up(ipif, Res_act_initial); 15528 if (err == EINPROGRESS) { 15529 freemsg(mp); 15530 return; 15531 } 15532 ASSERT(err != 0); 15533 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15534 } else { 15535 /* The conn has started closing */ 15536 err = EINTR; 15537 } 15538 } else { 15539 /* 15540 * This one is complete. Reply to pending ioctl. 15541 */ 15542 (void) ipif_resolver_up(ipif, Res_act_initial); 15543 err = ipif_up_done(ipif); 15544 } 15545 15546 if ((err == 0) && (ill->ill_up_ipifs)) { 15547 err = ill_up_ipifs(ill, q, mp1); 15548 if (err == EINPROGRESS) { 15549 freemsg(mp); 15550 return; 15551 } 15552 } 15553 15554 if (ill->ill_up_ipifs) { 15555 ill_group_cleanup(ill); 15556 } 15557 15558 break; 15559 case DL_NOTIFY_IND: { 15560 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15561 ire_t *ire; 15562 boolean_t need_ire_walk_v4 = B_FALSE; 15563 boolean_t need_ire_walk_v6 = B_FALSE; 15564 15565 /* 15566 * Change the address everywhere we need to. 15567 * What we're getting here is a link-level addr or phys addr. 15568 * The new addr is at notify + notify->dl_addr_offset 15569 * The address length is notify->dl_addr_length; 15570 */ 15571 switch (notify->dl_notification) { 15572 case DL_NOTE_PHYS_ADDR: 15573 mp_hw = copyb(mp); 15574 if (mp_hw == NULL) { 15575 err = ENOMEM; 15576 break; 15577 } 15578 dlp = (union DL_primitives *)mp_hw->b_rptr; 15579 /* 15580 * We currently don't support changing 15581 * the token via DL_NOTIFY_IND. 15582 * When we do support it, we have to consider 15583 * what the implications are with respect to 15584 * the token and the link local address. 15585 */ 15586 mutex_enter(&ill->ill_lock); 15587 if (dlp->notify_ind.dl_data == 15588 DL_IPV6_LINK_LAYER_ADDR) { 15589 if (ill->ill_nd_lla_mp != NULL) 15590 freemsg(ill->ill_nd_lla_mp); 15591 ill->ill_nd_lla_mp = mp_hw; 15592 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15593 dlp->notify_ind.dl_addr_offset; 15594 ill->ill_nd_lla_len = 15595 dlp->notify_ind.dl_addr_length - 15596 ABS(ill->ill_sap_length); 15597 mutex_exit(&ill->ill_lock); 15598 break; 15599 } else if (dlp->notify_ind.dl_data == 15600 DL_CURR_PHYS_ADDR) { 15601 if (ill->ill_phys_addr_mp != NULL) 15602 freemsg(ill->ill_phys_addr_mp); 15603 ill->ill_phys_addr_mp = mp_hw; 15604 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15605 dlp->notify_ind.dl_addr_offset; 15606 ill->ill_phys_addr_length = 15607 dlp->notify_ind.dl_addr_length - 15608 ABS(ill->ill_sap_length); 15609 if (ill->ill_isv6 && 15610 !(ill->ill_flags & ILLF_XRESOLV)) { 15611 if (ill->ill_nd_lla_mp != NULL) 15612 freemsg(ill->ill_nd_lla_mp); 15613 ill->ill_nd_lla_mp = copyb(mp_hw); 15614 ill->ill_nd_lla = (uchar_t *) 15615 ill->ill_nd_lla_mp->b_rptr + 15616 dlp->notify_ind.dl_addr_offset; 15617 ill->ill_nd_lla_len = 15618 ill->ill_phys_addr_length; 15619 } 15620 } 15621 mutex_exit(&ill->ill_lock); 15622 /* 15623 * Send out gratuitous arp request for our new 15624 * hardware address. 15625 */ 15626 for (ipif = ill->ill_ipif; ipif != NULL; 15627 ipif = ipif->ipif_next) { 15628 if (!(ipif->ipif_flags & IPIF_UP)) 15629 continue; 15630 if (ill->ill_isv6) { 15631 ipif_ndp_down(ipif); 15632 /* 15633 * Set B_TRUE to enable 15634 * ipif_ndp_up() to send out 15635 * unsolicited advertisements. 15636 */ 15637 err = ipif_ndp_up(ipif, 15638 &ipif->ipif_v6lcl_addr, 15639 B_TRUE); 15640 if (err) { 15641 ip1dbg(( 15642 "ip_rput_dlpi_writer: " 15643 "Failed to update ndp " 15644 "err %d\n", err)); 15645 } 15646 } else { 15647 /* 15648 * IPv4 ARP case 15649 * 15650 * Set Res_act_move, as we only want 15651 * ipif_resolver_up to send an 15652 * AR_ENTRY_ADD request up to 15653 * ARP. 15654 */ 15655 err = ipif_resolver_up(ipif, 15656 Res_act_move); 15657 if (err) { 15658 ip1dbg(( 15659 "ip_rput_dlpi_writer: " 15660 "Failed to update arp " 15661 "err %d\n", err)); 15662 } 15663 } 15664 } 15665 /* 15666 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15667 * case so that all old fastpath information can be 15668 * purged from IRE caches. 15669 */ 15670 /* FALLTHRU */ 15671 case DL_NOTE_FASTPATH_FLUSH: 15672 /* 15673 * Any fastpath probe sent henceforth will get the 15674 * new fp mp. So we first delete any ires that are 15675 * waiting for the fastpath. Then walk all ires and 15676 * delete the ire or delete the fp mp. In the case of 15677 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15678 * recreate the ire's without going through a complex 15679 * ipif up/down dance. So we don't delete the ire 15680 * itself, but just the nce_fp_mp for these 2 ire's 15681 * In the case of the other ire's we delete the ire's 15682 * themselves. Access to nce_fp_mp is completely 15683 * protected by ire_lock for IRE_MIPRTUN and 15684 * IRE_BROADCAST. Deleting the ire is preferable in the 15685 * other cases for performance. 15686 */ 15687 if (ill->ill_isv6) { 15688 nce_fastpath_list_dispatch(ill, NULL, NULL); 15689 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15690 NULL); 15691 } else { 15692 ire_fastpath_list_dispatch(ill, NULL, NULL); 15693 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15694 IRE_CACHE | IRE_BROADCAST, 15695 ire_fastpath_flush, NULL, ill); 15696 mutex_enter(&ire_mrtun_lock); 15697 if (ire_mrtun_count != 0) { 15698 mutex_exit(&ire_mrtun_lock); 15699 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15700 IRE_MIPRTUN, ire_fastpath_flush, 15701 NULL, ill); 15702 } else { 15703 mutex_exit(&ire_mrtun_lock); 15704 } 15705 } 15706 break; 15707 case DL_NOTE_SDU_SIZE: 15708 /* 15709 * Change the MTU size of the interface, of all 15710 * attached ipif's, and of all relevant ire's. The 15711 * new value's a uint32_t at notify->dl_data. 15712 * Mtu change Vs. new ire creation - protocol below. 15713 * 15714 * a Mark the ipif as IPIF_CHANGING. 15715 * b Set the new mtu in the ipif. 15716 * c Change the ire_max_frag on all affected ires 15717 * d Unmark the IPIF_CHANGING 15718 * 15719 * To see how the protocol works, assume an interface 15720 * route is also being added simultaneously by 15721 * ip_rt_add and let 'ipif' be the ipif referenced by 15722 * the ire. If the ire is created before step a, 15723 * it will be cleaned up by step c. If the ire is 15724 * created after step d, it will see the new value of 15725 * ipif_mtu. Any attempt to create the ire between 15726 * steps a to d will fail because of the IPIF_CHANGING 15727 * flag. Note that ire_create() is passed a pointer to 15728 * the ipif_mtu, and not the value. During ire_add 15729 * under the bucket lock, the ire_max_frag of the 15730 * new ire being created is set from the ipif/ire from 15731 * which it is being derived. 15732 */ 15733 mutex_enter(&ill->ill_lock); 15734 ill->ill_max_frag = (uint_t)notify->dl_data; 15735 15736 /* 15737 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15738 * leave it alone 15739 */ 15740 if (ill->ill_mtu_userspecified) { 15741 mutex_exit(&ill->ill_lock); 15742 break; 15743 } 15744 ill->ill_max_mtu = ill->ill_max_frag; 15745 if (ill->ill_isv6) { 15746 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15747 ill->ill_max_mtu = IPV6_MIN_MTU; 15748 } else { 15749 if (ill->ill_max_mtu < IP_MIN_MTU) 15750 ill->ill_max_mtu = IP_MIN_MTU; 15751 } 15752 for (ipif = ill->ill_ipif; ipif != NULL; 15753 ipif = ipif->ipif_next) { 15754 /* 15755 * Don't override the mtu if the user 15756 * has explicitly set it. 15757 */ 15758 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15759 continue; 15760 ipif->ipif_mtu = (uint_t)notify->dl_data; 15761 if (ipif->ipif_isv6) 15762 ire = ipif_to_ire_v6(ipif); 15763 else 15764 ire = ipif_to_ire(ipif); 15765 if (ire != NULL) { 15766 ire->ire_max_frag = ipif->ipif_mtu; 15767 ire_refrele(ire); 15768 } 15769 if (ipif->ipif_flags & IPIF_UP) { 15770 if (ill->ill_isv6) 15771 need_ire_walk_v6 = B_TRUE; 15772 else 15773 need_ire_walk_v4 = B_TRUE; 15774 } 15775 } 15776 mutex_exit(&ill->ill_lock); 15777 if (need_ire_walk_v4) 15778 ire_walk_v4(ill_mtu_change, (char *)ill, 15779 ALL_ZONES); 15780 if (need_ire_walk_v6) 15781 ire_walk_v6(ill_mtu_change, (char *)ill, 15782 ALL_ZONES); 15783 break; 15784 case DL_NOTE_LINK_UP: 15785 case DL_NOTE_LINK_DOWN: { 15786 /* 15787 * We are writer. ill / phyint / ipsq assocs stable. 15788 * The RUNNING flag reflects the state of the link. 15789 */ 15790 phyint_t *phyint = ill->ill_phyint; 15791 uint64_t new_phyint_flags; 15792 boolean_t changed = B_FALSE; 15793 boolean_t went_up; 15794 15795 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15796 mutex_enter(&phyint->phyint_lock); 15797 new_phyint_flags = went_up ? 15798 phyint->phyint_flags | PHYI_RUNNING : 15799 phyint->phyint_flags & ~PHYI_RUNNING; 15800 if (new_phyint_flags != phyint->phyint_flags) { 15801 phyint->phyint_flags = new_phyint_flags; 15802 changed = B_TRUE; 15803 } 15804 mutex_exit(&phyint->phyint_lock); 15805 /* 15806 * ill_restart_dad handles the DAD restart and routing 15807 * socket notification logic. 15808 */ 15809 if (changed) { 15810 ill_restart_dad(phyint->phyint_illv4, went_up); 15811 ill_restart_dad(phyint->phyint_illv6, went_up); 15812 } 15813 break; 15814 } 15815 case DL_NOTE_PROMISC_ON_PHYS: 15816 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15817 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15818 mutex_enter(&ill->ill_lock); 15819 ill->ill_promisc_on_phys = B_TRUE; 15820 mutex_exit(&ill->ill_lock); 15821 break; 15822 case DL_NOTE_PROMISC_OFF_PHYS: 15823 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15824 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15825 mutex_enter(&ill->ill_lock); 15826 ill->ill_promisc_on_phys = B_FALSE; 15827 mutex_exit(&ill->ill_lock); 15828 break; 15829 case DL_NOTE_CAPAB_RENEG: 15830 /* 15831 * Something changed on the driver side. 15832 * It wants us to renegotiate the capabilities 15833 * on this ill. The most likely cause is the 15834 * aggregation interface under us where a 15835 * port got added or went away. 15836 * 15837 * We reset the capabilities and set the 15838 * state to IDS_RENG so that when the ack 15839 * comes back, we can start the 15840 * renegotiation process. 15841 */ 15842 ill_capability_reset(ill); 15843 ill->ill_dlpi_capab_state = IDS_RENEG; 15844 break; 15845 default: 15846 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15847 "type 0x%x for DL_NOTIFY_IND\n", 15848 notify->dl_notification)); 15849 break; 15850 } 15851 15852 /* 15853 * As this is an asynchronous operation, we 15854 * should not call ill_dlpi_done 15855 */ 15856 break; 15857 } 15858 case DL_NOTIFY_ACK: { 15859 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15860 15861 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15862 ill->ill_note_link = 1; 15863 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15864 break; 15865 } 15866 case DL_PHYS_ADDR_ACK: { 15867 /* 15868 * We should have an IOCTL waiting on this when request 15869 * sent by ill_dl_phys. 15870 * However, ill_dl_phys was called on an ill queue (from 15871 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15872 * ioctl is known to be pending on ill_wq. 15873 * There are two additional phys_addr_req's sent to the 15874 * driver to get the token and lla. ill_phys_addr_pend 15875 * keeps track of the last one sent so we know which 15876 * response we are dealing with. ill_dlpi_done will 15877 * update ill_phys_addr_pend when it sends the next req. 15878 * We don't complete the IOCTL until all three DL_PARs 15879 * have been attempted. 15880 * 15881 * We don't need any lock to update ill_nd_lla* fields, 15882 * since the ill is not yet up, We grab the lock just 15883 * for uniformity with other code that accesses ill_nd_lla. 15884 */ 15885 physaddr_req = ill->ill_phys_addr_pend; 15886 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15887 if (physaddr_req == DL_IPV6_TOKEN || 15888 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15889 if (physaddr_req == DL_IPV6_TOKEN) { 15890 /* 15891 * bcopy to low-order bits of ill_token 15892 * 15893 * XXX Temporary hack - currently, 15894 * all known tokens are 64 bits, 15895 * so I'll cheat for the moment. 15896 */ 15897 dlp = (union DL_primitives *)mp->b_rptr; 15898 15899 mutex_enter(&ill->ill_lock); 15900 bcopy((uchar_t *)(mp->b_rptr + 15901 dlp->physaddr_ack.dl_addr_offset), 15902 (void *)&ill->ill_token.s6_addr32[2], 15903 dlp->physaddr_ack.dl_addr_length); 15904 ill->ill_token_length = 15905 dlp->physaddr_ack.dl_addr_length; 15906 mutex_exit(&ill->ill_lock); 15907 } else { 15908 ASSERT(ill->ill_nd_lla_mp == NULL); 15909 mp_hw = copyb(mp); 15910 if (mp_hw == NULL) { 15911 err = ENOMEM; 15912 break; 15913 } 15914 dlp = (union DL_primitives *)mp_hw->b_rptr; 15915 mutex_enter(&ill->ill_lock); 15916 ill->ill_nd_lla_mp = mp_hw; 15917 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15918 dlp->physaddr_ack.dl_addr_offset; 15919 ill->ill_nd_lla_len = 15920 dlp->physaddr_ack.dl_addr_length; 15921 mutex_exit(&ill->ill_lock); 15922 } 15923 break; 15924 } 15925 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15926 ASSERT(ill->ill_phys_addr_mp == NULL); 15927 if (!ill->ill_ifname_pending) 15928 break; 15929 ill->ill_ifname_pending = 0; 15930 if (!ioctl_aborted) 15931 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15932 if (mp1 != NULL) { 15933 ASSERT(connp == NULL); 15934 q = ill->ill_wq; 15935 } 15936 /* 15937 * If any error acks received during the plumbing sequence, 15938 * ill_ifname_pending_err will be set. Break out and send up 15939 * the error to the pending ioctl. 15940 */ 15941 if (ill->ill_ifname_pending_err != 0) { 15942 err = ill->ill_ifname_pending_err; 15943 ill->ill_ifname_pending_err = 0; 15944 break; 15945 } 15946 /* 15947 * Get the interface token. If the zeroth interface 15948 * address is zero then set the address to the link local 15949 * address 15950 */ 15951 mp_hw = copyb(mp); 15952 if (mp_hw == NULL) { 15953 err = ENOMEM; 15954 break; 15955 } 15956 dlp = (union DL_primitives *)mp_hw->b_rptr; 15957 ill->ill_phys_addr_mp = mp_hw; 15958 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15959 dlp->physaddr_ack.dl_addr_offset; 15960 if (dlp->physaddr_ack.dl_addr_length == 0 || 15961 ill->ill_phys_addr_length == 0 || 15962 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15963 /* 15964 * Compatibility: atun driver returns a length of 0. 15965 * ipdptp has an ill_phys_addr_length of zero(from 15966 * DL_BIND_ACK) but a non-zero length here. 15967 * ipd has an ill_phys_addr_length of 4(from 15968 * DL_BIND_ACK) but a non-zero length here. 15969 */ 15970 ill->ill_phys_addr = NULL; 15971 } else if (dlp->physaddr_ack.dl_addr_length != 15972 ill->ill_phys_addr_length) { 15973 ip0dbg(("DL_PHYS_ADDR_ACK: " 15974 "Address length mismatch %d %d\n", 15975 dlp->physaddr_ack.dl_addr_length, 15976 ill->ill_phys_addr_length)); 15977 err = EINVAL; 15978 break; 15979 } 15980 mutex_enter(&ill->ill_lock); 15981 if (ill->ill_nd_lla_mp == NULL) { 15982 ill->ill_nd_lla_mp = copyb(mp_hw); 15983 if (ill->ill_nd_lla_mp == NULL) { 15984 err = ENOMEM; 15985 mutex_exit(&ill->ill_lock); 15986 break; 15987 } 15988 ill->ill_nd_lla = 15989 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15990 dlp->physaddr_ack.dl_addr_offset; 15991 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15992 } 15993 mutex_exit(&ill->ill_lock); 15994 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15995 (void) ill_setdefaulttoken(ill); 15996 15997 /* 15998 * If the ill zero interface has a zero address assign 15999 * it the proper link local address. 16000 */ 16001 ASSERT(ill->ill_ipif->ipif_id == 0); 16002 if (ipif != NULL && 16003 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 16004 (void) ipif_setlinklocal(ipif); 16005 break; 16006 } 16007 case DL_OK_ACK: 16008 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16009 dlpi_prim_str((int)dloa->dl_correct_primitive), 16010 dloa->dl_correct_primitive)); 16011 switch (dloa->dl_correct_primitive) { 16012 case DL_UNBIND_REQ: 16013 case DL_ATTACH_REQ: 16014 case DL_DETACH_REQ: 16015 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16016 break; 16017 } 16018 break; 16019 default: 16020 break; 16021 } 16022 16023 freemsg(mp); 16024 if (mp1) { 16025 struct iocblk *iocp; 16026 int mode; 16027 16028 /* 16029 * Complete the waiting IOCTL. For SIOCLIFADDIF or 16030 * SIOCSLIFNAME do a copyout. 16031 */ 16032 iocp = (struct iocblk *)mp1->b_rptr; 16033 16034 if (iocp->ioc_cmd == SIOCLIFADDIF || 16035 iocp->ioc_cmd == SIOCSLIFNAME) 16036 mode = COPYOUT; 16037 else 16038 mode = NO_COPYOUT; 16039 /* 16040 * The ioctl must complete now without EINPROGRESS 16041 * since ipsq_pending_mp_get has removed the ioctl mblk 16042 * from ipsq_pending_mp. Otherwise the ioctl will be 16043 * stuck for ever in the ipsq. 16044 */ 16045 ASSERT(err != EINPROGRESS); 16046 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 16047 16048 } 16049 } 16050 16051 /* 16052 * ip_rput_other is called by ip_rput to handle messages modifying the global 16053 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16054 */ 16055 /* ARGSUSED */ 16056 void 16057 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16058 { 16059 ill_t *ill; 16060 struct iocblk *iocp; 16061 mblk_t *mp1; 16062 conn_t *connp = NULL; 16063 16064 ip1dbg(("ip_rput_other ")); 16065 ill = (ill_t *)q->q_ptr; 16066 /* 16067 * This routine is not a writer in the case of SIOCGTUNPARAM 16068 * in which case ipsq is NULL. 16069 */ 16070 if (ipsq != NULL) { 16071 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16072 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16073 } 16074 16075 switch (mp->b_datap->db_type) { 16076 case M_ERROR: 16077 case M_HANGUP: 16078 /* 16079 * The device has a problem. We force the ILL down. It can 16080 * be brought up again manually using SIOCSIFFLAGS (via 16081 * ifconfig or equivalent). 16082 */ 16083 ASSERT(ipsq != NULL); 16084 if (mp->b_rptr < mp->b_wptr) 16085 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16086 if (ill->ill_error == 0) 16087 ill->ill_error = ENXIO; 16088 if (!ill_down_start(q, mp)) 16089 return; 16090 ipif_all_down_tail(ipsq, q, mp, NULL); 16091 break; 16092 case M_IOCACK: 16093 iocp = (struct iocblk *)mp->b_rptr; 16094 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16095 switch (iocp->ioc_cmd) { 16096 case SIOCSTUNPARAM: 16097 case OSIOCSTUNPARAM: 16098 ASSERT(ipsq != NULL); 16099 /* 16100 * Finish socket ioctl passed through to tun. 16101 * We should have an IOCTL waiting on this. 16102 */ 16103 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16104 if (ill->ill_isv6) { 16105 struct iftun_req *ta; 16106 16107 /* 16108 * if a source or destination is 16109 * being set, try and set the link 16110 * local address for the tunnel 16111 */ 16112 ta = (struct iftun_req *)mp->b_cont-> 16113 b_cont->b_rptr; 16114 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16115 ipif_set_tun_llink(ill, ta); 16116 } 16117 16118 } 16119 if (mp1 != NULL) { 16120 /* 16121 * Now copy back the b_next/b_prev used by 16122 * mi code for the mi_copy* functions. 16123 * See ip_sioctl_tunparam() for the reason. 16124 * Also protect against missing b_cont. 16125 */ 16126 if (mp->b_cont != NULL) { 16127 mp->b_cont->b_next = 16128 mp1->b_cont->b_next; 16129 mp->b_cont->b_prev = 16130 mp1->b_cont->b_prev; 16131 } 16132 inet_freemsg(mp1); 16133 ASSERT(ipsq->ipsq_current_ipif != NULL); 16134 ASSERT(connp != NULL); 16135 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16136 iocp->ioc_error, NO_COPYOUT, 16137 ipsq->ipsq_current_ipif, ipsq); 16138 } else { 16139 ASSERT(connp == NULL); 16140 putnext(q, mp); 16141 } 16142 break; 16143 case SIOCGTUNPARAM: 16144 case OSIOCGTUNPARAM: 16145 /* 16146 * This is really M_IOCDATA from the tunnel driver. 16147 * convert back and complete the ioctl. 16148 * We should have an IOCTL waiting on this. 16149 */ 16150 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16151 if (mp1) { 16152 /* 16153 * Now copy back the b_next/b_prev used by 16154 * mi code for the mi_copy* functions. 16155 * See ip_sioctl_tunparam() for the reason. 16156 * Also protect against missing b_cont. 16157 */ 16158 if (mp->b_cont != NULL) { 16159 mp->b_cont->b_next = 16160 mp1->b_cont->b_next; 16161 mp->b_cont->b_prev = 16162 mp1->b_cont->b_prev; 16163 } 16164 inet_freemsg(mp1); 16165 if (iocp->ioc_error == 0) 16166 mp->b_datap->db_type = M_IOCDATA; 16167 ASSERT(connp != NULL); 16168 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16169 iocp->ioc_error, COPYOUT, NULL, NULL); 16170 } else { 16171 ASSERT(connp == NULL); 16172 putnext(q, mp); 16173 } 16174 break; 16175 default: 16176 break; 16177 } 16178 break; 16179 case M_IOCNAK: 16180 iocp = (struct iocblk *)mp->b_rptr; 16181 16182 switch (iocp->ioc_cmd) { 16183 int mode; 16184 ipif_t *ipif; 16185 16186 case DL_IOC_HDR_INFO: 16187 /* 16188 * If this was the first attempt turn of the 16189 * fastpath probing. 16190 */ 16191 mutex_enter(&ill->ill_lock); 16192 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16193 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16194 mutex_exit(&ill->ill_lock); 16195 ill_fastpath_nack(ill); 16196 ip1dbg(("ip_rput: DLPI fastpath off on " 16197 "interface %s\n", 16198 ill->ill_name)); 16199 } else { 16200 mutex_exit(&ill->ill_lock); 16201 } 16202 freemsg(mp); 16203 break; 16204 case SIOCSTUNPARAM: 16205 case OSIOCSTUNPARAM: 16206 ASSERT(ipsq != NULL); 16207 /* 16208 * Finish socket ioctl passed through to tun 16209 * We should have an IOCTL waiting on this. 16210 */ 16211 /* FALLTHRU */ 16212 case SIOCGTUNPARAM: 16213 case OSIOCGTUNPARAM: 16214 /* 16215 * This is really M_IOCDATA from the tunnel driver. 16216 * convert back and complete the ioctl. 16217 * We should have an IOCTL waiting on this. 16218 */ 16219 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16220 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16221 mp1 = ill_pending_mp_get(ill, &connp, 16222 iocp->ioc_id); 16223 mode = COPYOUT; 16224 ipsq = NULL; 16225 ipif = NULL; 16226 } else { 16227 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16228 mode = NO_COPYOUT; 16229 ASSERT(ipsq->ipsq_current_ipif != NULL); 16230 ipif = ipsq->ipsq_current_ipif; 16231 } 16232 if (mp1 != NULL) { 16233 /* 16234 * Now copy back the b_next/b_prev used by 16235 * mi code for the mi_copy* functions. 16236 * See ip_sioctl_tunparam() for the reason. 16237 * Also protect against missing b_cont. 16238 */ 16239 if (mp->b_cont != NULL) { 16240 mp->b_cont->b_next = 16241 mp1->b_cont->b_next; 16242 mp->b_cont->b_prev = 16243 mp1->b_cont->b_prev; 16244 } 16245 inet_freemsg(mp1); 16246 if (iocp->ioc_error == 0) 16247 iocp->ioc_error = EINVAL; 16248 ASSERT(connp != NULL); 16249 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16250 iocp->ioc_error, mode, ipif, ipsq); 16251 } else { 16252 ASSERT(connp == NULL); 16253 putnext(q, mp); 16254 } 16255 break; 16256 default: 16257 break; 16258 } 16259 default: 16260 break; 16261 } 16262 } 16263 16264 /* 16265 * NOTE : This function does not ire_refrele the ire argument passed in. 16266 * 16267 * IPQoS notes 16268 * IP policy is invoked twice for a forwarded packet, once on the read side 16269 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16270 * enabled. An additional parameter, in_ill, has been added for this purpose. 16271 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16272 * because ip_mroute drops this information. 16273 * 16274 */ 16275 void 16276 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16277 { 16278 uint32_t pkt_len; 16279 queue_t *q; 16280 uint32_t sum; 16281 #define rptr ((uchar_t *)ipha) 16282 uint32_t max_frag; 16283 uint32_t ill_index; 16284 ill_t *out_ill; 16285 16286 /* Get the ill_index of the incoming ILL */ 16287 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16288 16289 /* Initiate Read side IPPF processing */ 16290 if (IPP_ENABLED(IPP_FWD_IN)) { 16291 ip_process(IPP_FWD_IN, &mp, ill_index); 16292 if (mp == NULL) { 16293 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16294 "during IPPF processing\n")); 16295 return; 16296 } 16297 } 16298 16299 pkt_len = ntohs(ipha->ipha_length); 16300 16301 /* Adjust the checksum to reflect the ttl decrement. */ 16302 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16303 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16304 16305 if (ipha->ipha_ttl-- <= 1) { 16306 if (ip_csum_hdr(ipha)) { 16307 BUMP_MIB(&ip_mib, ipInCksumErrs); 16308 goto drop_pkt; 16309 } 16310 /* 16311 * Note: ire_stq this will be NULL for multicast 16312 * datagrams using the long path through arp (the IRE 16313 * is not an IRE_CACHE). This should not cause 16314 * problems since we don't generate ICMP errors for 16315 * multicast packets. 16316 */ 16317 q = ire->ire_stq; 16318 if (q != NULL) { 16319 /* Sent by forwarding path, and router is global zone */ 16320 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16321 GLOBAL_ZONEID); 16322 } else 16323 freemsg(mp); 16324 return; 16325 } 16326 16327 /* 16328 * Don't forward if the interface is down 16329 */ 16330 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16331 BUMP_MIB(&ip_mib, ipInDiscards); 16332 ip2dbg(("ip_rput_forward:interface is down\n")); 16333 goto drop_pkt; 16334 } 16335 16336 /* Get the ill_index of the outgoing ILL */ 16337 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16338 16339 out_ill = ire->ire_ipif->ipif_ill; 16340 16341 DTRACE_PROBE4(ip4__forwarding__start, 16342 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16343 16344 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 16345 in_ill, out_ill, ipha, mp, mp); 16346 16347 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16348 16349 if (mp == NULL) 16350 return; 16351 pkt_len = ntohs(ipha->ipha_length); 16352 16353 if (is_system_labeled()) { 16354 mblk_t *mp1; 16355 16356 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16357 BUMP_MIB(&ip_mib, ipForwProhibits); 16358 goto drop_pkt; 16359 } 16360 /* Size may have changed */ 16361 mp = mp1; 16362 ipha = (ipha_t *)mp->b_rptr; 16363 pkt_len = ntohs(ipha->ipha_length); 16364 } 16365 16366 /* Check if there are options to update */ 16367 if (!IS_SIMPLE_IPH(ipha)) { 16368 if (ip_csum_hdr(ipha)) { 16369 BUMP_MIB(&ip_mib, ipInCksumErrs); 16370 goto drop_pkt; 16371 } 16372 if (ip_rput_forward_options(mp, ipha, ire)) { 16373 return; 16374 } 16375 16376 ipha->ipha_hdr_checksum = 0; 16377 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16378 } 16379 max_frag = ire->ire_max_frag; 16380 if (pkt_len > max_frag) { 16381 /* 16382 * It needs fragging on its way out. We haven't 16383 * verified the header checksum yet. Since we 16384 * are going to put a surely good checksum in the 16385 * outgoing header, we have to make sure that it 16386 * was good coming in. 16387 */ 16388 if (ip_csum_hdr(ipha)) { 16389 BUMP_MIB(&ip_mib, ipInCksumErrs); 16390 goto drop_pkt; 16391 } 16392 /* Initiate Write side IPPF processing */ 16393 if (IPP_ENABLED(IPP_FWD_OUT)) { 16394 ip_process(IPP_FWD_OUT, &mp, ill_index); 16395 if (mp == NULL) { 16396 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16397 " during IPPF processing\n")); 16398 return; 16399 } 16400 } 16401 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16402 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16403 return; 16404 } 16405 16406 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16407 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16408 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 16409 NULL, out_ill, ipha, mp, mp); 16410 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16411 if (mp == NULL) 16412 return; 16413 16414 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16415 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16416 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16417 /* ip_xmit_v4 always consumes the packet */ 16418 return; 16419 16420 drop_pkt:; 16421 ip1dbg(("ip_rput_forward: drop pkt\n")); 16422 freemsg(mp); 16423 #undef rptr 16424 } 16425 16426 void 16427 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16428 { 16429 ire_t *ire; 16430 16431 ASSERT(!ipif->ipif_isv6); 16432 /* 16433 * Find an IRE which matches the destination and the outgoing 16434 * queue in the cache table. All we need is an IRE_CACHE which 16435 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16436 * then it is enough to have some IRE_CACHE in the group. 16437 */ 16438 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16439 dst = ipif->ipif_pp_dst_addr; 16440 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16441 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16442 if (ire == NULL) { 16443 /* 16444 * Mark this packet to make it be delivered to 16445 * ip_rput_forward after the new ire has been 16446 * created. 16447 */ 16448 mp->b_prev = NULL; 16449 mp->b_next = mp; 16450 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16451 NULL, 0, GLOBAL_ZONEID); 16452 } else { 16453 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16454 IRE_REFRELE(ire); 16455 } 16456 } 16457 16458 /* Update any source route, record route or timestamp options */ 16459 static int 16460 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16461 { 16462 ipoptp_t opts; 16463 uchar_t *opt; 16464 uint8_t optval; 16465 uint8_t optlen; 16466 ipaddr_t dst; 16467 uint32_t ts; 16468 ire_t *dst_ire = NULL; 16469 ire_t *tmp_ire = NULL; 16470 timestruc_t now; 16471 16472 ip2dbg(("ip_rput_forward_options\n")); 16473 dst = ipha->ipha_dst; 16474 for (optval = ipoptp_first(&opts, ipha); 16475 optval != IPOPT_EOL; 16476 optval = ipoptp_next(&opts)) { 16477 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16478 opt = opts.ipoptp_cur; 16479 optlen = opts.ipoptp_len; 16480 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16481 optval, opts.ipoptp_len)); 16482 switch (optval) { 16483 uint32_t off; 16484 case IPOPT_SSRR: 16485 case IPOPT_LSRR: 16486 /* Check if adminstratively disabled */ 16487 if (!ip_forward_src_routed) { 16488 BUMP_MIB(&ip_mib, ipForwProhibits); 16489 if (ire->ire_stq != NULL) { 16490 /* 16491 * Sent by forwarding path, and router 16492 * is global zone 16493 */ 16494 icmp_unreachable(ire->ire_stq, mp, 16495 ICMP_SOURCE_ROUTE_FAILED, 16496 GLOBAL_ZONEID); 16497 } else { 16498 ip0dbg(("ip_rput_forward_options: " 16499 "unable to send unreach\n")); 16500 freemsg(mp); 16501 } 16502 return (-1); 16503 } 16504 16505 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16506 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16507 if (dst_ire == NULL) { 16508 /* 16509 * Must be partial since ip_rput_options 16510 * checked for strict. 16511 */ 16512 break; 16513 } 16514 off = opt[IPOPT_OFFSET]; 16515 off--; 16516 redo_srr: 16517 if (optlen < IP_ADDR_LEN || 16518 off > optlen - IP_ADDR_LEN) { 16519 /* End of source route */ 16520 ip1dbg(( 16521 "ip_rput_forward_options: end of SR\n")); 16522 ire_refrele(dst_ire); 16523 break; 16524 } 16525 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16526 bcopy(&ire->ire_src_addr, (char *)opt + off, 16527 IP_ADDR_LEN); 16528 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16529 ntohl(dst))); 16530 16531 /* 16532 * Check if our address is present more than 16533 * once as consecutive hops in source route. 16534 */ 16535 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16536 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16537 if (tmp_ire != NULL) { 16538 ire_refrele(tmp_ire); 16539 off += IP_ADDR_LEN; 16540 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16541 goto redo_srr; 16542 } 16543 ipha->ipha_dst = dst; 16544 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16545 ire_refrele(dst_ire); 16546 break; 16547 case IPOPT_RR: 16548 off = opt[IPOPT_OFFSET]; 16549 off--; 16550 if (optlen < IP_ADDR_LEN || 16551 off > optlen - IP_ADDR_LEN) { 16552 /* No more room - ignore */ 16553 ip1dbg(( 16554 "ip_rput_forward_options: end of RR\n")); 16555 break; 16556 } 16557 bcopy(&ire->ire_src_addr, (char *)opt + off, 16558 IP_ADDR_LEN); 16559 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16560 break; 16561 case IPOPT_TS: 16562 /* Insert timestamp if there is room */ 16563 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16564 case IPOPT_TS_TSONLY: 16565 off = IPOPT_TS_TIMELEN; 16566 break; 16567 case IPOPT_TS_PRESPEC: 16568 case IPOPT_TS_PRESPEC_RFC791: 16569 /* Verify that the address matched */ 16570 off = opt[IPOPT_OFFSET] - 1; 16571 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16572 dst_ire = ire_ctable_lookup(dst, 0, 16573 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16574 MATCH_IRE_TYPE); 16575 16576 if (dst_ire == NULL) { 16577 /* Not for us */ 16578 break; 16579 } 16580 ire_refrele(dst_ire); 16581 /* FALLTHRU */ 16582 case IPOPT_TS_TSANDADDR: 16583 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16584 break; 16585 default: 16586 /* 16587 * ip_*put_options should have already 16588 * dropped this packet. 16589 */ 16590 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16591 "unknown IT - bug in ip_rput_options?\n"); 16592 return (0); /* Keep "lint" happy */ 16593 } 16594 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16595 /* Increase overflow counter */ 16596 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16597 opt[IPOPT_POS_OV_FLG] = 16598 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16599 (off << 4)); 16600 break; 16601 } 16602 off = opt[IPOPT_OFFSET] - 1; 16603 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16604 case IPOPT_TS_PRESPEC: 16605 case IPOPT_TS_PRESPEC_RFC791: 16606 case IPOPT_TS_TSANDADDR: 16607 bcopy(&ire->ire_src_addr, 16608 (char *)opt + off, IP_ADDR_LEN); 16609 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16610 /* FALLTHRU */ 16611 case IPOPT_TS_TSONLY: 16612 off = opt[IPOPT_OFFSET] - 1; 16613 /* Compute # of milliseconds since midnight */ 16614 gethrestime(&now); 16615 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16616 now.tv_nsec / (NANOSEC / MILLISEC); 16617 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16618 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16619 break; 16620 } 16621 break; 16622 } 16623 } 16624 return (0); 16625 } 16626 16627 /* 16628 * This is called after processing at least one of AH/ESP headers. 16629 * 16630 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16631 * the actual, physical interface on which the packet was received, 16632 * but, when ip_strict_dst_multihoming is set to 1, could be the 16633 * interface which had the ipha_dst configured when the packet went 16634 * through ip_rput. The ill_index corresponding to the recv_ill 16635 * is saved in ipsec_in_rill_index 16636 */ 16637 void 16638 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16639 { 16640 mblk_t *mp; 16641 ipaddr_t dst; 16642 in6_addr_t *v6dstp; 16643 ipha_t *ipha; 16644 ip6_t *ip6h; 16645 ipsec_in_t *ii; 16646 boolean_t ill_need_rele = B_FALSE; 16647 boolean_t rill_need_rele = B_FALSE; 16648 boolean_t ire_need_rele = B_FALSE; 16649 16650 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16651 ASSERT(ii->ipsec_in_ill_index != 0); 16652 16653 mp = ipsec_mp->b_cont; 16654 ASSERT(mp != NULL); 16655 16656 16657 if (ill == NULL) { 16658 ASSERT(recv_ill == NULL); 16659 /* 16660 * We need to get the original queue on which ip_rput_local 16661 * or ip_rput_data_v6 was called. 16662 */ 16663 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16664 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16665 ill_need_rele = B_TRUE; 16666 16667 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16668 recv_ill = ill_lookup_on_ifindex( 16669 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16670 NULL, NULL, NULL, NULL); 16671 rill_need_rele = B_TRUE; 16672 } else { 16673 recv_ill = ill; 16674 } 16675 16676 if ((ill == NULL) || (recv_ill == NULL)) { 16677 ip0dbg(("ip_fanout_proto_again: interface " 16678 "disappeared\n")); 16679 if (ill != NULL) 16680 ill_refrele(ill); 16681 if (recv_ill != NULL) 16682 ill_refrele(recv_ill); 16683 freemsg(ipsec_mp); 16684 return; 16685 } 16686 } 16687 16688 ASSERT(ill != NULL && recv_ill != NULL); 16689 16690 if (mp->b_datap->db_type == M_CTL) { 16691 /* 16692 * AH/ESP is returning the ICMP message after 16693 * removing their headers. Fanout again till 16694 * it gets to the right protocol. 16695 */ 16696 if (ii->ipsec_in_v4) { 16697 icmph_t *icmph; 16698 int iph_hdr_length; 16699 int hdr_length; 16700 16701 ipha = (ipha_t *)mp->b_rptr; 16702 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16703 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16704 ipha = (ipha_t *)&icmph[1]; 16705 hdr_length = IPH_HDR_LENGTH(ipha); 16706 /* 16707 * icmp_inbound_error_fanout may need to do pullupmsg. 16708 * Reset the type to M_DATA. 16709 */ 16710 mp->b_datap->db_type = M_DATA; 16711 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16712 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16713 B_FALSE, ill, ii->ipsec_in_zoneid); 16714 } else { 16715 icmp6_t *icmp6; 16716 int hdr_length; 16717 16718 ip6h = (ip6_t *)mp->b_rptr; 16719 /* Don't call hdr_length_v6() unless you have to. */ 16720 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16721 hdr_length = ip_hdr_length_v6(mp, ip6h); 16722 else 16723 hdr_length = IPV6_HDR_LEN; 16724 16725 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16726 /* 16727 * icmp_inbound_error_fanout_v6 may need to do 16728 * pullupmsg. Reset the type to M_DATA. 16729 */ 16730 mp->b_datap->db_type = M_DATA; 16731 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16732 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16733 } 16734 if (ill_need_rele) 16735 ill_refrele(ill); 16736 if (rill_need_rele) 16737 ill_refrele(recv_ill); 16738 return; 16739 } 16740 16741 if (ii->ipsec_in_v4) { 16742 ipha = (ipha_t *)mp->b_rptr; 16743 dst = ipha->ipha_dst; 16744 if (CLASSD(dst)) { 16745 /* 16746 * Multicast has to be delivered to all streams. 16747 */ 16748 dst = INADDR_BROADCAST; 16749 } 16750 16751 if (ire == NULL) { 16752 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16753 MBLK_GETLABEL(mp)); 16754 if (ire == NULL) { 16755 if (ill_need_rele) 16756 ill_refrele(ill); 16757 if (rill_need_rele) 16758 ill_refrele(recv_ill); 16759 ip1dbg(("ip_fanout_proto_again: " 16760 "IRE not found")); 16761 freemsg(ipsec_mp); 16762 return; 16763 } 16764 ire_need_rele = B_TRUE; 16765 } 16766 16767 switch (ipha->ipha_protocol) { 16768 case IPPROTO_UDP: 16769 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16770 recv_ill); 16771 if (ire_need_rele) 16772 ire_refrele(ire); 16773 break; 16774 case IPPROTO_TCP: 16775 if (!ire_need_rele) 16776 IRE_REFHOLD(ire); 16777 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16778 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16779 IRE_REFRELE(ire); 16780 if (mp != NULL) 16781 squeue_enter_chain(GET_SQUEUE(mp), mp, 16782 mp, 1, SQTAG_IP_PROTO_AGAIN); 16783 break; 16784 case IPPROTO_SCTP: 16785 if (!ire_need_rele) 16786 IRE_REFHOLD(ire); 16787 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16788 ipsec_mp, 0, ill->ill_rq, dst); 16789 break; 16790 default: 16791 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16792 recv_ill); 16793 if (ire_need_rele) 16794 ire_refrele(ire); 16795 break; 16796 } 16797 } else { 16798 uint32_t rput_flags = 0; 16799 16800 ip6h = (ip6_t *)mp->b_rptr; 16801 v6dstp = &ip6h->ip6_dst; 16802 /* 16803 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16804 * address. 16805 * 16806 * Currently, we don't store that state in the IPSEC_IN 16807 * message, and we may need to. 16808 */ 16809 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16810 IP6_IN_LLMCAST : 0); 16811 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16812 NULL, NULL); 16813 } 16814 if (ill_need_rele) 16815 ill_refrele(ill); 16816 if (rill_need_rele) 16817 ill_refrele(recv_ill); 16818 } 16819 16820 /* 16821 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16822 * returns 'true' if there are still fragments left on the queue, in 16823 * which case we restart the timer. 16824 */ 16825 void 16826 ill_frag_timer(void *arg) 16827 { 16828 ill_t *ill = (ill_t *)arg; 16829 boolean_t frag_pending; 16830 16831 mutex_enter(&ill->ill_lock); 16832 ASSERT(!ill->ill_fragtimer_executing); 16833 if (ill->ill_state_flags & ILL_CONDEMNED) { 16834 ill->ill_frag_timer_id = 0; 16835 mutex_exit(&ill->ill_lock); 16836 return; 16837 } 16838 ill->ill_fragtimer_executing = 1; 16839 mutex_exit(&ill->ill_lock); 16840 16841 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16842 16843 /* 16844 * Restart the timer, if we have fragments pending or if someone 16845 * wanted us to be scheduled again. 16846 */ 16847 mutex_enter(&ill->ill_lock); 16848 ill->ill_fragtimer_executing = 0; 16849 ill->ill_frag_timer_id = 0; 16850 if (frag_pending || ill->ill_fragtimer_needrestart) 16851 ill_frag_timer_start(ill); 16852 mutex_exit(&ill->ill_lock); 16853 } 16854 16855 void 16856 ill_frag_timer_start(ill_t *ill) 16857 { 16858 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16859 16860 /* If the ill is closing or opening don't proceed */ 16861 if (ill->ill_state_flags & ILL_CONDEMNED) 16862 return; 16863 16864 if (ill->ill_fragtimer_executing) { 16865 /* 16866 * ill_frag_timer is currently executing. Just record the 16867 * the fact that we want the timer to be restarted. 16868 * ill_frag_timer will post a timeout before it returns, 16869 * ensuring it will be called again. 16870 */ 16871 ill->ill_fragtimer_needrestart = 1; 16872 return; 16873 } 16874 16875 if (ill->ill_frag_timer_id == 0) { 16876 /* 16877 * The timer is neither running nor is the timeout handler 16878 * executing. Post a timeout so that ill_frag_timer will be 16879 * called 16880 */ 16881 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16882 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16883 ill->ill_fragtimer_needrestart = 0; 16884 } 16885 } 16886 16887 /* 16888 * This routine is needed for loopback when forwarding multicasts. 16889 * 16890 * IPQoS Notes: 16891 * IPPF processing is done in fanout routines. 16892 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16893 * processing for IPSec packets is done when it comes back in clear. 16894 * NOTE : The callers of this function need to do the ire_refrele for the 16895 * ire that is being passed in. 16896 */ 16897 void 16898 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16899 ill_t *recv_ill) 16900 { 16901 ill_t *ill = (ill_t *)q->q_ptr; 16902 uint32_t sum; 16903 uint32_t u1; 16904 uint32_t u2; 16905 int hdr_length; 16906 boolean_t mctl_present; 16907 mblk_t *first_mp = mp; 16908 mblk_t *hada_mp = NULL; 16909 ipha_t *inner_ipha; 16910 16911 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16912 "ip_rput_locl_start: q %p", q); 16913 16914 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16915 16916 16917 #define rptr ((uchar_t *)ipha) 16918 #define iphs ((uint16_t *)ipha) 16919 16920 /* 16921 * no UDP or TCP packet should come here anymore. 16922 */ 16923 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16924 (ipha->ipha_protocol != IPPROTO_UDP)); 16925 16926 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16927 if (mctl_present && 16928 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16929 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16930 16931 /* 16932 * It's an IPsec accelerated packet. 16933 * Keep a pointer to the data attributes around until 16934 * we allocate the ipsec_info_t. 16935 */ 16936 IPSECHW_DEBUG(IPSECHW_PKT, 16937 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16938 hada_mp = first_mp; 16939 hada_mp->b_cont = NULL; 16940 /* 16941 * Since it is accelerated, it comes directly from 16942 * the ill and the data attributes is followed by 16943 * the packet data. 16944 */ 16945 ASSERT(mp->b_datap->db_type != M_CTL); 16946 first_mp = mp; 16947 mctl_present = B_FALSE; 16948 } 16949 16950 /* 16951 * IF M_CTL is not present, then ipsec_in_is_secure 16952 * should return B_TRUE. There is a case where loopback 16953 * packets has an M_CTL in the front with all the 16954 * IPSEC options set to IPSEC_PREF_NEVER - which means 16955 * ipsec_in_is_secure will return B_FALSE. As loopback 16956 * packets never comes here, it is safe to ASSERT the 16957 * following. 16958 */ 16959 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16960 16961 16962 /* u1 is # words of IP options */ 16963 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16964 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16965 16966 if (u1) { 16967 if (!ip_options_cksum(q, mp, ipha, ire)) { 16968 if (hada_mp != NULL) 16969 freemsg(hada_mp); 16970 return; 16971 } 16972 } else { 16973 /* Check the IP header checksum. */ 16974 #define uph ((uint16_t *)ipha) 16975 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16976 uph[6] + uph[7] + uph[8] + uph[9]; 16977 #undef uph 16978 /* finish doing IP checksum */ 16979 sum = (sum & 0xFFFF) + (sum >> 16); 16980 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16981 /* 16982 * Don't verify header checksum if this packet is coming 16983 * back from AH/ESP as we already did it. 16984 */ 16985 if (!mctl_present && (sum && sum != 0xFFFF)) { 16986 BUMP_MIB(&ip_mib, ipInCksumErrs); 16987 goto drop_pkt; 16988 } 16989 } 16990 16991 /* 16992 * Count for SNMP of inbound packets for ire. As ip_proto_input 16993 * might be called more than once for secure packets, count only 16994 * the first time. 16995 */ 16996 if (!mctl_present) { 16997 UPDATE_IB_PKT_COUNT(ire); 16998 ire->ire_last_used_time = lbolt; 16999 } 17000 17001 /* Check for fragmentation offset. */ 17002 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17003 u1 = u2 & (IPH_MF | IPH_OFFSET); 17004 if (u1) { 17005 /* 17006 * We re-assemble fragments before we do the AH/ESP 17007 * processing. Thus, M_CTL should not be present 17008 * while we are re-assembling. 17009 */ 17010 ASSERT(!mctl_present); 17011 ASSERT(first_mp == mp); 17012 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17013 return; 17014 } 17015 /* 17016 * Make sure that first_mp points back to mp as 17017 * the mp we came in with could have changed in 17018 * ip_rput_fragment(). 17019 */ 17020 ipha = (ipha_t *)mp->b_rptr; 17021 first_mp = mp; 17022 } 17023 17024 /* 17025 * Clear hardware checksumming flag as it is currently only 17026 * used by TCP and UDP. 17027 */ 17028 DB_CKSUMFLAGS(mp) = 0; 17029 17030 /* Now we have a complete datagram, destined for this machine. */ 17031 u1 = IPH_HDR_LENGTH(ipha); 17032 switch (ipha->ipha_protocol) { 17033 case IPPROTO_ICMP: { 17034 ire_t *ire_zone; 17035 ilm_t *ilm; 17036 mblk_t *mp1; 17037 zoneid_t last_zoneid; 17038 17039 if (CLASSD(ipha->ipha_dst) && 17040 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17041 ASSERT(ire->ire_type == IRE_BROADCAST); 17042 /* 17043 * In the multicast case, applications may have joined 17044 * the group from different zones, so we need to deliver 17045 * the packet to each of them. Loop through the 17046 * multicast memberships structures (ilm) on the receive 17047 * ill and send a copy of the packet up each matching 17048 * one. However, we don't do this for multicasts sent on 17049 * the loopback interface (PHYI_LOOPBACK flag set) as 17050 * they must stay in the sender's zone. 17051 * 17052 * ilm_add_v6() ensures that ilms in the same zone are 17053 * contiguous in the ill_ilm list. We use this property 17054 * to avoid sending duplicates needed when two 17055 * applications in the same zone join the same group on 17056 * different logical interfaces: we ignore the ilm if 17057 * its zoneid is the same as the last matching one. 17058 * In addition, the sending of the packet for 17059 * ire_zoneid is delayed until all of the other ilms 17060 * have been exhausted. 17061 */ 17062 last_zoneid = -1; 17063 ILM_WALKER_HOLD(recv_ill); 17064 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17065 ilm = ilm->ilm_next) { 17066 if ((ilm->ilm_flags & ILM_DELETED) || 17067 ipha->ipha_dst != ilm->ilm_addr || 17068 ilm->ilm_zoneid == last_zoneid || 17069 ilm->ilm_zoneid == ire->ire_zoneid || 17070 ilm->ilm_zoneid == ALL_ZONES || 17071 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17072 continue; 17073 mp1 = ip_copymsg(first_mp); 17074 if (mp1 == NULL) 17075 continue; 17076 icmp_inbound(q, mp1, B_TRUE, ill, 17077 0, sum, mctl_present, B_TRUE, 17078 recv_ill, ilm->ilm_zoneid); 17079 last_zoneid = ilm->ilm_zoneid; 17080 } 17081 ILM_WALKER_RELE(recv_ill); 17082 } else if (ire->ire_type == IRE_BROADCAST) { 17083 /* 17084 * In the broadcast case, there may be many zones 17085 * which need a copy of the packet delivered to them. 17086 * There is one IRE_BROADCAST per broadcast address 17087 * and per zone; we walk those using a helper function. 17088 * In addition, the sending of the packet for ire is 17089 * delayed until all of the other ires have been 17090 * processed. 17091 */ 17092 IRB_REFHOLD(ire->ire_bucket); 17093 ire_zone = NULL; 17094 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17095 ire)) != NULL) { 17096 mp1 = ip_copymsg(first_mp); 17097 if (mp1 == NULL) 17098 continue; 17099 17100 UPDATE_IB_PKT_COUNT(ire_zone); 17101 ire_zone->ire_last_used_time = lbolt; 17102 icmp_inbound(q, mp1, B_TRUE, ill, 17103 0, sum, mctl_present, B_TRUE, 17104 recv_ill, ire_zone->ire_zoneid); 17105 } 17106 IRB_REFRELE(ire->ire_bucket); 17107 } 17108 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17109 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17110 ire->ire_zoneid); 17111 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17112 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17113 return; 17114 } 17115 case IPPROTO_IGMP: 17116 /* 17117 * If we are not willing to accept IGMP packets in clear, 17118 * then check with global policy. 17119 */ 17120 if (igmp_accept_clear_messages == 0) { 17121 first_mp = ipsec_check_global_policy(first_mp, NULL, 17122 ipha, NULL, mctl_present); 17123 if (first_mp == NULL) 17124 return; 17125 } 17126 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17127 freemsg(first_mp); 17128 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17129 BUMP_MIB(&ip_mib, ipInDiscards); 17130 return; 17131 } 17132 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17133 /* Bad packet - discarded by igmp_input */ 17134 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17135 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17136 if (mctl_present) 17137 freeb(first_mp); 17138 return; 17139 } 17140 /* 17141 * igmp_input() may have returned the pulled up message. 17142 * So first_mp and ipha need to be reinitialized. 17143 */ 17144 ipha = (ipha_t *)mp->b_rptr; 17145 if (mctl_present) 17146 first_mp->b_cont = mp; 17147 else 17148 first_mp = mp; 17149 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17150 /* No user-level listener for IGMP packets */ 17151 goto drop_pkt; 17152 } 17153 /* deliver to local raw users */ 17154 break; 17155 case IPPROTO_PIM: 17156 /* 17157 * If we are not willing to accept PIM packets in clear, 17158 * then check with global policy. 17159 */ 17160 if (pim_accept_clear_messages == 0) { 17161 first_mp = ipsec_check_global_policy(first_mp, NULL, 17162 ipha, NULL, mctl_present); 17163 if (first_mp == NULL) 17164 return; 17165 } 17166 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17167 freemsg(first_mp); 17168 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17169 BUMP_MIB(&ip_mib, ipInDiscards); 17170 return; 17171 } 17172 if (pim_input(q, mp) != 0) { 17173 /* Bad packet - discarded by pim_input */ 17174 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17175 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17176 if (mctl_present) 17177 freeb(first_mp); 17178 return; 17179 } 17180 17181 /* 17182 * pim_input() may have pulled up the message so ipha needs to 17183 * be reinitialized. 17184 */ 17185 ipha = (ipha_t *)mp->b_rptr; 17186 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17187 /* No user-level listener for PIM packets */ 17188 goto drop_pkt; 17189 } 17190 /* deliver to local raw users */ 17191 break; 17192 case IPPROTO_ENCAP: 17193 /* 17194 * Handle self-encapsulated packets (IP-in-IP where 17195 * the inner addresses == the outer addresses). 17196 */ 17197 hdr_length = IPH_HDR_LENGTH(ipha); 17198 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17199 mp->b_wptr) { 17200 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17201 sizeof (ipha_t) - mp->b_rptr)) { 17202 BUMP_MIB(&ip_mib, ipInDiscards); 17203 freemsg(first_mp); 17204 return; 17205 } 17206 ipha = (ipha_t *)mp->b_rptr; 17207 } 17208 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17209 /* 17210 * Check the sanity of the inner IP header. 17211 */ 17212 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17213 BUMP_MIB(&ip_mib, ipInDiscards); 17214 freemsg(first_mp); 17215 return; 17216 } 17217 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17218 BUMP_MIB(&ip_mib, ipInDiscards); 17219 freemsg(first_mp); 17220 return; 17221 } 17222 if (inner_ipha->ipha_src == ipha->ipha_src && 17223 inner_ipha->ipha_dst == ipha->ipha_dst) { 17224 ipsec_in_t *ii; 17225 17226 /* 17227 * Self-encapsulated tunnel packet. Remove 17228 * the outer IP header and fanout again. 17229 * We also need to make sure that the inner 17230 * header is pulled up until options. 17231 */ 17232 mp->b_rptr = (uchar_t *)inner_ipha; 17233 ipha = inner_ipha; 17234 hdr_length = IPH_HDR_LENGTH(ipha); 17235 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17236 if (!pullupmsg(mp, (uchar_t *)ipha + 17237 + hdr_length - mp->b_rptr)) { 17238 freemsg(first_mp); 17239 return; 17240 } 17241 ipha = (ipha_t *)mp->b_rptr; 17242 } 17243 if (!mctl_present) { 17244 ASSERT(first_mp == mp); 17245 /* 17246 * This means that somebody is sending 17247 * Self-encapsualted packets without AH/ESP. 17248 * If AH/ESP was present, we would have already 17249 * allocated the first_mp. 17250 */ 17251 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 17252 NULL) { 17253 ip1dbg(("ip_proto_input: IPSEC_IN " 17254 "allocation failure.\n")); 17255 BUMP_MIB(&ip_mib, ipInDiscards); 17256 freemsg(mp); 17257 return; 17258 } 17259 first_mp->b_cont = mp; 17260 } 17261 /* 17262 * We generally store the ill_index if we need to 17263 * do IPSEC processing as we lose the ill queue when 17264 * we come back. But in this case, we never should 17265 * have to store the ill_index here as it should have 17266 * been stored previously when we processed the 17267 * AH/ESP header in this routine or for non-ipsec 17268 * cases, we still have the queue. But for some bad 17269 * packets from the wire, we can get to IPSEC after 17270 * this and we better store the index for that case. 17271 */ 17272 ill = (ill_t *)q->q_ptr; 17273 ii = (ipsec_in_t *)first_mp->b_rptr; 17274 ii->ipsec_in_ill_index = 17275 ill->ill_phyint->phyint_ifindex; 17276 ii->ipsec_in_rill_index = 17277 recv_ill->ill_phyint->phyint_ifindex; 17278 if (ii->ipsec_in_decaps) { 17279 /* 17280 * This packet is self-encapsulated multiple 17281 * times. We don't want to recurse infinitely. 17282 * To keep it simple, drop the packet. 17283 */ 17284 BUMP_MIB(&ip_mib, ipInDiscards); 17285 freemsg(first_mp); 17286 return; 17287 } 17288 ii->ipsec_in_decaps = B_TRUE; 17289 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17290 ire); 17291 return; 17292 } 17293 break; 17294 case IPPROTO_AH: 17295 case IPPROTO_ESP: { 17296 /* 17297 * Fast path for AH/ESP. If this is the first time 17298 * we are sending a datagram to AH/ESP, allocate 17299 * a IPSEC_IN message and prepend it. Otherwise, 17300 * just fanout. 17301 */ 17302 17303 int ipsec_rc; 17304 ipsec_in_t *ii; 17305 17306 IP_STAT(ipsec_proto_ahesp); 17307 if (!mctl_present) { 17308 ASSERT(first_mp == mp); 17309 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17310 ip1dbg(("ip_proto_input: IPSEC_IN " 17311 "allocation failure.\n")); 17312 freemsg(hada_mp); /* okay ifnull */ 17313 BUMP_MIB(&ip_mib, ipInDiscards); 17314 freemsg(mp); 17315 return; 17316 } 17317 /* 17318 * Store the ill_index so that when we come back 17319 * from IPSEC we ride on the same queue. 17320 */ 17321 ill = (ill_t *)q->q_ptr; 17322 ii = (ipsec_in_t *)first_mp->b_rptr; 17323 ii->ipsec_in_ill_index = 17324 ill->ill_phyint->phyint_ifindex; 17325 ii->ipsec_in_rill_index = 17326 recv_ill->ill_phyint->phyint_ifindex; 17327 first_mp->b_cont = mp; 17328 /* 17329 * Cache hardware acceleration info. 17330 */ 17331 if (hada_mp != NULL) { 17332 IPSECHW_DEBUG(IPSECHW_PKT, 17333 ("ip_rput_local: caching data attr.\n")); 17334 ii->ipsec_in_accelerated = B_TRUE; 17335 ii->ipsec_in_da = hada_mp; 17336 hada_mp = NULL; 17337 } 17338 } else { 17339 ii = (ipsec_in_t *)first_mp->b_rptr; 17340 } 17341 17342 if (!ipsec_loaded()) { 17343 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17344 ire->ire_zoneid); 17345 return; 17346 } 17347 17348 /* select inbound SA and have IPsec process the pkt */ 17349 if (ipha->ipha_protocol == IPPROTO_ESP) { 17350 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17351 if (esph == NULL) 17352 return; 17353 ASSERT(ii->ipsec_in_esp_sa != NULL); 17354 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17355 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17356 first_mp, esph); 17357 } else { 17358 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17359 if (ah == NULL) 17360 return; 17361 ASSERT(ii->ipsec_in_ah_sa != NULL); 17362 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17363 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17364 first_mp, ah); 17365 } 17366 17367 switch (ipsec_rc) { 17368 case IPSEC_STATUS_SUCCESS: 17369 break; 17370 case IPSEC_STATUS_FAILED: 17371 BUMP_MIB(&ip_mib, ipInDiscards); 17372 /* FALLTHRU */ 17373 case IPSEC_STATUS_PENDING: 17374 return; 17375 } 17376 /* we're done with IPsec processing, send it up */ 17377 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17378 return; 17379 } 17380 default: 17381 break; 17382 } 17383 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17384 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17385 ire->ire_zoneid)); 17386 goto drop_pkt; 17387 } 17388 /* 17389 * Handle protocols with which IP is less intimate. There 17390 * can be more than one stream bound to a particular 17391 * protocol. When this is the case, each one gets a copy 17392 * of any incoming packets. 17393 */ 17394 ip_fanout_proto(q, first_mp, ill, ipha, 17395 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17396 B_TRUE, recv_ill, ire->ire_zoneid); 17397 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17398 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17399 return; 17400 17401 drop_pkt: 17402 freemsg(first_mp); 17403 if (hada_mp != NULL) 17404 freeb(hada_mp); 17405 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17406 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17407 #undef rptr 17408 #undef iphs 17409 17410 } 17411 17412 /* 17413 * Update any source route, record route or timestamp options. 17414 * Check that we are at end of strict source route. 17415 * The options have already been checked for sanity in ip_rput_options(). 17416 */ 17417 static boolean_t 17418 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17419 { 17420 ipoptp_t opts; 17421 uchar_t *opt; 17422 uint8_t optval; 17423 uint8_t optlen; 17424 ipaddr_t dst; 17425 uint32_t ts; 17426 ire_t *dst_ire; 17427 timestruc_t now; 17428 zoneid_t zoneid; 17429 ill_t *ill; 17430 17431 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17432 17433 ip2dbg(("ip_rput_local_options\n")); 17434 17435 for (optval = ipoptp_first(&opts, ipha); 17436 optval != IPOPT_EOL; 17437 optval = ipoptp_next(&opts)) { 17438 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17439 opt = opts.ipoptp_cur; 17440 optlen = opts.ipoptp_len; 17441 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17442 optval, optlen)); 17443 switch (optval) { 17444 uint32_t off; 17445 case IPOPT_SSRR: 17446 case IPOPT_LSRR: 17447 off = opt[IPOPT_OFFSET]; 17448 off--; 17449 if (optlen < IP_ADDR_LEN || 17450 off > optlen - IP_ADDR_LEN) { 17451 /* End of source route */ 17452 ip1dbg(("ip_rput_local_options: end of SR\n")); 17453 break; 17454 } 17455 /* 17456 * This will only happen if two consecutive entries 17457 * in the source route contains our address or if 17458 * it is a packet with a loose source route which 17459 * reaches us before consuming the whole source route 17460 */ 17461 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17462 if (optval == IPOPT_SSRR) { 17463 goto bad_src_route; 17464 } 17465 /* 17466 * Hack: instead of dropping the packet truncate the 17467 * source route to what has been used by filling the 17468 * rest with IPOPT_NOP. 17469 */ 17470 opt[IPOPT_OLEN] = (uint8_t)off; 17471 while (off < optlen) { 17472 opt[off++] = IPOPT_NOP; 17473 } 17474 break; 17475 case IPOPT_RR: 17476 off = opt[IPOPT_OFFSET]; 17477 off--; 17478 if (optlen < IP_ADDR_LEN || 17479 off > optlen - IP_ADDR_LEN) { 17480 /* No more room - ignore */ 17481 ip1dbg(( 17482 "ip_rput_local_options: end of RR\n")); 17483 break; 17484 } 17485 bcopy(&ire->ire_src_addr, (char *)opt + off, 17486 IP_ADDR_LEN); 17487 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17488 break; 17489 case IPOPT_TS: 17490 /* Insert timestamp if there is romm */ 17491 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17492 case IPOPT_TS_TSONLY: 17493 off = IPOPT_TS_TIMELEN; 17494 break; 17495 case IPOPT_TS_PRESPEC: 17496 case IPOPT_TS_PRESPEC_RFC791: 17497 /* Verify that the address matched */ 17498 off = opt[IPOPT_OFFSET] - 1; 17499 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17500 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17501 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17502 if (dst_ire == NULL) { 17503 /* Not for us */ 17504 break; 17505 } 17506 ire_refrele(dst_ire); 17507 /* FALLTHRU */ 17508 case IPOPT_TS_TSANDADDR: 17509 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17510 break; 17511 default: 17512 /* 17513 * ip_*put_options should have already 17514 * dropped this packet. 17515 */ 17516 cmn_err(CE_PANIC, "ip_rput_local_options: " 17517 "unknown IT - bug in ip_rput_options?\n"); 17518 return (B_TRUE); /* Keep "lint" happy */ 17519 } 17520 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17521 /* Increase overflow counter */ 17522 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17523 opt[IPOPT_POS_OV_FLG] = 17524 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17525 (off << 4)); 17526 break; 17527 } 17528 off = opt[IPOPT_OFFSET] - 1; 17529 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17530 case IPOPT_TS_PRESPEC: 17531 case IPOPT_TS_PRESPEC_RFC791: 17532 case IPOPT_TS_TSANDADDR: 17533 bcopy(&ire->ire_src_addr, (char *)opt + off, 17534 IP_ADDR_LEN); 17535 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17536 /* FALLTHRU */ 17537 case IPOPT_TS_TSONLY: 17538 off = opt[IPOPT_OFFSET] - 1; 17539 /* Compute # of milliseconds since midnight */ 17540 gethrestime(&now); 17541 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17542 now.tv_nsec / (NANOSEC / MILLISEC); 17543 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17544 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17545 break; 17546 } 17547 break; 17548 } 17549 } 17550 return (B_TRUE); 17551 17552 bad_src_route: 17553 q = WR(q); 17554 if (q->q_next != NULL) 17555 ill = q->q_ptr; 17556 else 17557 ill = NULL; 17558 17559 /* make sure we clear any indication of a hardware checksum */ 17560 DB_CKSUMFLAGS(mp) = 0; 17561 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17562 if (zoneid == ALL_ZONES) 17563 freemsg(mp); 17564 else 17565 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17566 return (B_FALSE); 17567 17568 } 17569 17570 /* 17571 * Process IP options in an inbound packet. If an option affects the 17572 * effective destination address, return the next hop address via dstp. 17573 * Returns -1 if something fails in which case an ICMP error has been sent 17574 * and mp freed. 17575 */ 17576 static int 17577 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17578 { 17579 ipoptp_t opts; 17580 uchar_t *opt; 17581 uint8_t optval; 17582 uint8_t optlen; 17583 ipaddr_t dst; 17584 intptr_t code = 0; 17585 ire_t *ire = NULL; 17586 zoneid_t zoneid; 17587 ill_t *ill; 17588 17589 ip2dbg(("ip_rput_options\n")); 17590 dst = ipha->ipha_dst; 17591 for (optval = ipoptp_first(&opts, ipha); 17592 optval != IPOPT_EOL; 17593 optval = ipoptp_next(&opts)) { 17594 opt = opts.ipoptp_cur; 17595 optlen = opts.ipoptp_len; 17596 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17597 optval, optlen)); 17598 /* 17599 * Note: we need to verify the checksum before we 17600 * modify anything thus this routine only extracts the next 17601 * hop dst from any source route. 17602 */ 17603 switch (optval) { 17604 uint32_t off; 17605 case IPOPT_SSRR: 17606 case IPOPT_LSRR: 17607 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17608 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17609 if (ire == NULL) { 17610 if (optval == IPOPT_SSRR) { 17611 ip1dbg(("ip_rput_options: not next" 17612 " strict source route 0x%x\n", 17613 ntohl(dst))); 17614 code = (char *)&ipha->ipha_dst - 17615 (char *)ipha; 17616 goto param_prob; /* RouterReq's */ 17617 } 17618 ip2dbg(("ip_rput_options: " 17619 "not next source route 0x%x\n", 17620 ntohl(dst))); 17621 break; 17622 } 17623 ire_refrele(ire); 17624 17625 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17626 ip1dbg(( 17627 "ip_rput_options: bad option offset\n")); 17628 code = (char *)&opt[IPOPT_OLEN] - 17629 (char *)ipha; 17630 goto param_prob; 17631 } 17632 off = opt[IPOPT_OFFSET]; 17633 off--; 17634 redo_srr: 17635 if (optlen < IP_ADDR_LEN || 17636 off > optlen - IP_ADDR_LEN) { 17637 /* End of source route */ 17638 ip1dbg(("ip_rput_options: end of SR\n")); 17639 break; 17640 } 17641 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17642 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17643 ntohl(dst))); 17644 17645 /* 17646 * Check if our address is present more than 17647 * once as consecutive hops in source route. 17648 * XXX verify per-interface ip_forwarding 17649 * for source route? 17650 */ 17651 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17652 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17653 17654 if (ire != NULL) { 17655 ire_refrele(ire); 17656 off += IP_ADDR_LEN; 17657 goto redo_srr; 17658 } 17659 17660 if (dst == htonl(INADDR_LOOPBACK)) { 17661 ip1dbg(("ip_rput_options: loopback addr in " 17662 "source route!\n")); 17663 goto bad_src_route; 17664 } 17665 /* 17666 * For strict: verify that dst is directly 17667 * reachable. 17668 */ 17669 if (optval == IPOPT_SSRR) { 17670 ire = ire_ftable_lookup(dst, 0, 0, 17671 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17672 MBLK_GETLABEL(mp), 17673 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17674 if (ire == NULL) { 17675 ip1dbg(("ip_rput_options: SSRR not " 17676 "directly reachable: 0x%x\n", 17677 ntohl(dst))); 17678 goto bad_src_route; 17679 } 17680 ire_refrele(ire); 17681 } 17682 /* 17683 * Defer update of the offset and the record route 17684 * until the packet is forwarded. 17685 */ 17686 break; 17687 case IPOPT_RR: 17688 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17689 ip1dbg(( 17690 "ip_rput_options: bad option offset\n")); 17691 code = (char *)&opt[IPOPT_OLEN] - 17692 (char *)ipha; 17693 goto param_prob; 17694 } 17695 break; 17696 case IPOPT_TS: 17697 /* 17698 * Verify that length >= 5 and that there is either 17699 * room for another timestamp or that the overflow 17700 * counter is not maxed out. 17701 */ 17702 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17703 if (optlen < IPOPT_MINLEN_IT) { 17704 goto param_prob; 17705 } 17706 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17707 ip1dbg(( 17708 "ip_rput_options: bad option offset\n")); 17709 code = (char *)&opt[IPOPT_OFFSET] - 17710 (char *)ipha; 17711 goto param_prob; 17712 } 17713 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17714 case IPOPT_TS_TSONLY: 17715 off = IPOPT_TS_TIMELEN; 17716 break; 17717 case IPOPT_TS_TSANDADDR: 17718 case IPOPT_TS_PRESPEC: 17719 case IPOPT_TS_PRESPEC_RFC791: 17720 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17721 break; 17722 default: 17723 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17724 (char *)ipha; 17725 goto param_prob; 17726 } 17727 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17728 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17729 /* 17730 * No room and the overflow counter is 15 17731 * already. 17732 */ 17733 goto param_prob; 17734 } 17735 break; 17736 } 17737 } 17738 17739 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17740 *dstp = dst; 17741 return (0); 17742 } 17743 17744 ip1dbg(("ip_rput_options: error processing IP options.")); 17745 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17746 17747 param_prob: 17748 q = WR(q); 17749 if (q->q_next != NULL) 17750 ill = q->q_ptr; 17751 else 17752 ill = NULL; 17753 17754 /* make sure we clear any indication of a hardware checksum */ 17755 DB_CKSUMFLAGS(mp) = 0; 17756 /* Don't know whether this is for non-global or global/forwarding */ 17757 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17758 if (zoneid == ALL_ZONES) 17759 freemsg(mp); 17760 else 17761 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17762 return (-1); 17763 17764 bad_src_route: 17765 q = WR(q); 17766 if (q->q_next != NULL) 17767 ill = q->q_ptr; 17768 else 17769 ill = NULL; 17770 17771 /* make sure we clear any indication of a hardware checksum */ 17772 DB_CKSUMFLAGS(mp) = 0; 17773 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17774 if (zoneid == ALL_ZONES) 17775 freemsg(mp); 17776 else 17777 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17778 return (-1); 17779 } 17780 17781 /* 17782 * IP & ICMP info in >=14 msg's ... 17783 * - ip fixed part (mib2_ip_t) 17784 * - icmp fixed part (mib2_icmp_t) 17785 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17786 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17787 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17788 * - ipRouteAttributeTable (ip 102) labeled routes 17789 * - ip multicast membership (ip_member_t) 17790 * - ip multicast source filtering (ip_grpsrc_t) 17791 * - igmp fixed part (struct igmpstat) 17792 * - multicast routing stats (struct mrtstat) 17793 * - multicast routing vifs (array of struct vifctl) 17794 * - multicast routing routes (array of struct mfcctl) 17795 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17796 * One per ill plus one generic 17797 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17798 * One per ill plus one generic 17799 * - ipv6RouteEntry all IPv6 IREs 17800 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17801 * - ipv6NetToMediaEntry all Neighbor Cache entries 17802 * - ipv6AddrEntry all IPv6 ipifs 17803 * - ipv6 multicast membership (ipv6_member_t) 17804 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17805 * 17806 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17807 * 17808 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17809 * already filled in by the caller. 17810 * Return value of 0 indicates that no messages were sent and caller 17811 * should free mpctl. 17812 */ 17813 int 17814 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17815 { 17816 17817 if (mpctl == NULL || mpctl->b_cont == NULL) { 17818 return (0); 17819 } 17820 17821 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17822 return (1); 17823 } 17824 17825 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17826 return (1); 17827 } 17828 17829 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17830 return (1); 17831 } 17832 17833 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17834 return (1); 17835 } 17836 17837 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17838 return (1); 17839 } 17840 17841 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17842 return (1); 17843 } 17844 17845 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17846 return (1); 17847 } 17848 17849 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17850 return (1); 17851 } 17852 17853 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17854 return (1); 17855 } 17856 17857 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17858 return (1); 17859 } 17860 17861 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17862 return (1); 17863 } 17864 17865 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17866 return (1); 17867 } 17868 17869 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17870 return (1); 17871 } 17872 17873 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17874 return (1); 17875 } 17876 17877 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17878 return (1); 17879 } 17880 17881 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17882 return (1); 17883 } 17884 17885 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17886 return (1); 17887 } 17888 freemsg(mpctl); 17889 return (1); 17890 } 17891 17892 17893 /* Get global IPv4 statistics */ 17894 static mblk_t * 17895 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17896 { 17897 struct opthdr *optp; 17898 mblk_t *mp2ctl; 17899 17900 /* 17901 * make a copy of the original message 17902 */ 17903 mp2ctl = copymsg(mpctl); 17904 17905 /* fixed length IP structure... */ 17906 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17907 optp->level = MIB2_IP; 17908 optp->name = 0; 17909 SET_MIB(ip_mib.ipForwarding, 17910 (WE_ARE_FORWARDING ? 1 : 2)); 17911 SET_MIB(ip_mib.ipDefaultTTL, 17912 (uint32_t)ip_def_ttl); 17913 SET_MIB(ip_mib.ipReasmTimeout, 17914 ip_g_frag_timeout); 17915 SET_MIB(ip_mib.ipAddrEntrySize, 17916 sizeof (mib2_ipAddrEntry_t)); 17917 SET_MIB(ip_mib.ipRouteEntrySize, 17918 sizeof (mib2_ipRouteEntry_t)); 17919 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17920 sizeof (mib2_ipNetToMediaEntry_t)); 17921 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17922 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17923 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17924 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17925 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17926 (int)sizeof (ip_mib))) { 17927 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17928 (uint_t)sizeof (ip_mib))); 17929 } 17930 17931 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17932 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17933 (int)optp->level, (int)optp->name, (int)optp->len)); 17934 qreply(q, mpctl); 17935 return (mp2ctl); 17936 } 17937 17938 /* Global IPv4 ICMP statistics */ 17939 static mblk_t * 17940 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17941 { 17942 struct opthdr *optp; 17943 mblk_t *mp2ctl; 17944 17945 /* 17946 * Make a copy of the original message 17947 */ 17948 mp2ctl = copymsg(mpctl); 17949 17950 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17951 optp->level = MIB2_ICMP; 17952 optp->name = 0; 17953 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17954 (int)sizeof (icmp_mib))) { 17955 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17956 (uint_t)sizeof (icmp_mib))); 17957 } 17958 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17959 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17960 (int)optp->level, (int)optp->name, (int)optp->len)); 17961 qreply(q, mpctl); 17962 return (mp2ctl); 17963 } 17964 17965 /* Global IPv4 IGMP statistics */ 17966 static mblk_t * 17967 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17968 { 17969 struct opthdr *optp; 17970 mblk_t *mp2ctl; 17971 17972 /* 17973 * make a copy of the original message 17974 */ 17975 mp2ctl = copymsg(mpctl); 17976 17977 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17978 optp->level = EXPER_IGMP; 17979 optp->name = 0; 17980 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17981 (int)sizeof (igmpstat))) { 17982 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17983 (uint_t)sizeof (igmpstat))); 17984 } 17985 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17986 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17987 (int)optp->level, (int)optp->name, (int)optp->len)); 17988 qreply(q, mpctl); 17989 return (mp2ctl); 17990 } 17991 17992 /* Global IPv4 Multicast Routing statistics */ 17993 static mblk_t * 17994 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17995 { 17996 struct opthdr *optp; 17997 mblk_t *mp2ctl; 17998 17999 /* 18000 * make a copy of the original message 18001 */ 18002 mp2ctl = copymsg(mpctl); 18003 18004 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18005 optp->level = EXPER_DVMRP; 18006 optp->name = 0; 18007 if (!ip_mroute_stats(mpctl->b_cont)) { 18008 ip0dbg(("ip_mroute_stats: failed\n")); 18009 } 18010 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18011 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18012 (int)optp->level, (int)optp->name, (int)optp->len)); 18013 qreply(q, mpctl); 18014 return (mp2ctl); 18015 } 18016 18017 /* IPv4 address information */ 18018 static mblk_t * 18019 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 18020 { 18021 struct opthdr *optp; 18022 mblk_t *mp2ctl; 18023 mblk_t *mp_tail = NULL; 18024 ill_t *ill; 18025 ipif_t *ipif; 18026 uint_t bitval; 18027 mib2_ipAddrEntry_t mae; 18028 zoneid_t zoneid; 18029 ill_walk_context_t ctx; 18030 18031 /* 18032 * make a copy of the original message 18033 */ 18034 mp2ctl = copymsg(mpctl); 18035 18036 /* ipAddrEntryTable */ 18037 18038 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18039 optp->level = MIB2_IP; 18040 optp->name = MIB2_IP_ADDR; 18041 zoneid = Q_TO_CONN(q)->conn_zoneid; 18042 18043 rw_enter(&ill_g_lock, RW_READER); 18044 ill = ILL_START_WALK_V4(&ctx); 18045 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18046 for (ipif = ill->ill_ipif; ipif != NULL; 18047 ipif = ipif->ipif_next) { 18048 if (ipif->ipif_zoneid != zoneid && 18049 ipif->ipif_zoneid != ALL_ZONES) 18050 continue; 18051 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18052 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18053 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18054 18055 (void) ipif_get_name(ipif, 18056 mae.ipAdEntIfIndex.o_bytes, 18057 OCTET_LENGTH); 18058 mae.ipAdEntIfIndex.o_length = 18059 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18060 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18061 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18062 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18063 mae.ipAdEntInfo.ae_subnet_len = 18064 ip_mask_to_plen(ipif->ipif_net_mask); 18065 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18066 for (bitval = 1; 18067 bitval && 18068 !(bitval & ipif->ipif_brd_addr); 18069 bitval <<= 1) 18070 noop; 18071 mae.ipAdEntBcastAddr = bitval; 18072 mae.ipAdEntReasmMaxSize = 65535; 18073 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18074 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18075 mae.ipAdEntInfo.ae_broadcast_addr = 18076 ipif->ipif_brd_addr; 18077 mae.ipAdEntInfo.ae_pp_dst_addr = 18078 ipif->ipif_pp_dst_addr; 18079 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18080 ill->ill_flags | ill->ill_phyint->phyint_flags; 18081 18082 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18083 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18084 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18085 "allocate %u bytes\n", 18086 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18087 } 18088 } 18089 } 18090 rw_exit(&ill_g_lock); 18091 18092 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18093 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18094 (int)optp->level, (int)optp->name, (int)optp->len)); 18095 qreply(q, mpctl); 18096 return (mp2ctl); 18097 } 18098 18099 /* IPv6 address information */ 18100 static mblk_t * 18101 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 18102 { 18103 struct opthdr *optp; 18104 mblk_t *mp2ctl; 18105 mblk_t *mp_tail = NULL; 18106 ill_t *ill; 18107 ipif_t *ipif; 18108 mib2_ipv6AddrEntry_t mae6; 18109 zoneid_t zoneid; 18110 ill_walk_context_t ctx; 18111 18112 /* 18113 * make a copy of the original message 18114 */ 18115 mp2ctl = copymsg(mpctl); 18116 18117 /* ipv6AddrEntryTable */ 18118 18119 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18120 optp->level = MIB2_IP6; 18121 optp->name = MIB2_IP6_ADDR; 18122 zoneid = Q_TO_CONN(q)->conn_zoneid; 18123 18124 rw_enter(&ill_g_lock, RW_READER); 18125 ill = ILL_START_WALK_V6(&ctx); 18126 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18127 for (ipif = ill->ill_ipif; ipif != NULL; 18128 ipif = ipif->ipif_next) { 18129 if (ipif->ipif_zoneid != zoneid && 18130 ipif->ipif_zoneid != ALL_ZONES) 18131 continue; 18132 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18133 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18134 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18135 18136 (void) ipif_get_name(ipif, 18137 mae6.ipv6AddrIfIndex.o_bytes, 18138 OCTET_LENGTH); 18139 mae6.ipv6AddrIfIndex.o_length = 18140 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18141 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18142 mae6.ipv6AddrPfxLength = 18143 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18144 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18145 mae6.ipv6AddrInfo.ae_subnet_len = 18146 mae6.ipv6AddrPfxLength; 18147 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18148 18149 /* Type: stateless(1), stateful(2), unknown(3) */ 18150 if (ipif->ipif_flags & IPIF_ADDRCONF) 18151 mae6.ipv6AddrType = 1; 18152 else 18153 mae6.ipv6AddrType = 2; 18154 /* Anycast: true(1), false(2) */ 18155 if (ipif->ipif_flags & IPIF_ANYCAST) 18156 mae6.ipv6AddrAnycastFlag = 1; 18157 else 18158 mae6.ipv6AddrAnycastFlag = 2; 18159 18160 /* 18161 * Address status: preferred(1), deprecated(2), 18162 * invalid(3), inaccessible(4), unknown(5) 18163 */ 18164 if (ipif->ipif_flags & IPIF_NOLOCAL) 18165 mae6.ipv6AddrStatus = 3; 18166 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18167 mae6.ipv6AddrStatus = 2; 18168 else 18169 mae6.ipv6AddrStatus = 1; 18170 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18171 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18172 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18173 ipif->ipif_v6pp_dst_addr; 18174 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18175 ill->ill_flags | ill->ill_phyint->phyint_flags; 18176 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18177 (char *)&mae6, 18178 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18179 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18180 "allocate %u bytes\n", 18181 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18182 } 18183 } 18184 } 18185 rw_exit(&ill_g_lock); 18186 18187 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18188 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18189 (int)optp->level, (int)optp->name, (int)optp->len)); 18190 qreply(q, mpctl); 18191 return (mp2ctl); 18192 } 18193 18194 /* IPv4 multicast group membership. */ 18195 static mblk_t * 18196 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 18197 { 18198 struct opthdr *optp; 18199 mblk_t *mp2ctl; 18200 ill_t *ill; 18201 ipif_t *ipif; 18202 ilm_t *ilm; 18203 ip_member_t ipm; 18204 mblk_t *mp_tail = NULL; 18205 ill_walk_context_t ctx; 18206 zoneid_t zoneid; 18207 18208 /* 18209 * make a copy of the original message 18210 */ 18211 mp2ctl = copymsg(mpctl); 18212 zoneid = Q_TO_CONN(q)->conn_zoneid; 18213 18214 /* ipGroupMember table */ 18215 optp = (struct opthdr *)&mpctl->b_rptr[ 18216 sizeof (struct T_optmgmt_ack)]; 18217 optp->level = MIB2_IP; 18218 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18219 18220 rw_enter(&ill_g_lock, RW_READER); 18221 ill = ILL_START_WALK_V4(&ctx); 18222 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18223 ILM_WALKER_HOLD(ill); 18224 for (ipif = ill->ill_ipif; ipif != NULL; 18225 ipif = ipif->ipif_next) { 18226 if (ipif->ipif_zoneid != zoneid && 18227 ipif->ipif_zoneid != ALL_ZONES) 18228 continue; /* not this zone */ 18229 (void) ipif_get_name(ipif, 18230 ipm.ipGroupMemberIfIndex.o_bytes, 18231 OCTET_LENGTH); 18232 ipm.ipGroupMemberIfIndex.o_length = 18233 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18234 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18235 ASSERT(ilm->ilm_ipif != NULL); 18236 ASSERT(ilm->ilm_ill == NULL); 18237 if (ilm->ilm_ipif != ipif) 18238 continue; 18239 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18240 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18241 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18242 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18243 (char *)&ipm, (int)sizeof (ipm))) { 18244 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18245 "failed to allocate %u bytes\n", 18246 (uint_t)sizeof (ipm))); 18247 } 18248 } 18249 } 18250 ILM_WALKER_RELE(ill); 18251 } 18252 rw_exit(&ill_g_lock); 18253 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18254 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18255 (int)optp->level, (int)optp->name, (int)optp->len)); 18256 qreply(q, mpctl); 18257 return (mp2ctl); 18258 } 18259 18260 /* IPv6 multicast group membership. */ 18261 static mblk_t * 18262 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 18263 { 18264 struct opthdr *optp; 18265 mblk_t *mp2ctl; 18266 ill_t *ill; 18267 ilm_t *ilm; 18268 ipv6_member_t ipm6; 18269 mblk_t *mp_tail = NULL; 18270 ill_walk_context_t ctx; 18271 zoneid_t zoneid; 18272 18273 /* 18274 * make a copy of the original message 18275 */ 18276 mp2ctl = copymsg(mpctl); 18277 zoneid = Q_TO_CONN(q)->conn_zoneid; 18278 18279 /* ip6GroupMember table */ 18280 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18281 optp->level = MIB2_IP6; 18282 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18283 18284 rw_enter(&ill_g_lock, RW_READER); 18285 ill = ILL_START_WALK_V6(&ctx); 18286 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18287 ILM_WALKER_HOLD(ill); 18288 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18289 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18290 ASSERT(ilm->ilm_ipif == NULL); 18291 ASSERT(ilm->ilm_ill != NULL); 18292 if (ilm->ilm_zoneid != zoneid) 18293 continue; /* not this zone */ 18294 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18295 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18296 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18297 if (!snmp_append_data2(mpctl->b_cont, 18298 &mp_tail, 18299 (char *)&ipm6, (int)sizeof (ipm6))) { 18300 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18301 "failed to allocate %u bytes\n", 18302 (uint_t)sizeof (ipm6))); 18303 } 18304 } 18305 ILM_WALKER_RELE(ill); 18306 } 18307 rw_exit(&ill_g_lock); 18308 18309 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18310 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18311 (int)optp->level, (int)optp->name, (int)optp->len)); 18312 qreply(q, mpctl); 18313 return (mp2ctl); 18314 } 18315 18316 /* IP multicast filtered sources */ 18317 static mblk_t * 18318 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18319 { 18320 struct opthdr *optp; 18321 mblk_t *mp2ctl; 18322 ill_t *ill; 18323 ipif_t *ipif; 18324 ilm_t *ilm; 18325 ip_grpsrc_t ips; 18326 mblk_t *mp_tail = NULL; 18327 ill_walk_context_t ctx; 18328 zoneid_t zoneid; 18329 int i; 18330 slist_t *sl; 18331 18332 /* 18333 * make a copy of the original message 18334 */ 18335 mp2ctl = copymsg(mpctl); 18336 zoneid = Q_TO_CONN(q)->conn_zoneid; 18337 18338 /* ipGroupSource table */ 18339 optp = (struct opthdr *)&mpctl->b_rptr[ 18340 sizeof (struct T_optmgmt_ack)]; 18341 optp->level = MIB2_IP; 18342 optp->name = EXPER_IP_GROUP_SOURCES; 18343 18344 rw_enter(&ill_g_lock, RW_READER); 18345 ill = ILL_START_WALK_V4(&ctx); 18346 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18347 ILM_WALKER_HOLD(ill); 18348 for (ipif = ill->ill_ipif; ipif != NULL; 18349 ipif = ipif->ipif_next) { 18350 if (ipif->ipif_zoneid != zoneid) 18351 continue; /* not this zone */ 18352 (void) ipif_get_name(ipif, 18353 ips.ipGroupSourceIfIndex.o_bytes, 18354 OCTET_LENGTH); 18355 ips.ipGroupSourceIfIndex.o_length = 18356 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18357 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18358 ASSERT(ilm->ilm_ipif != NULL); 18359 ASSERT(ilm->ilm_ill == NULL); 18360 sl = ilm->ilm_filter; 18361 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18362 continue; 18363 ips.ipGroupSourceGroup = ilm->ilm_addr; 18364 for (i = 0; i < sl->sl_numsrc; i++) { 18365 if (!IN6_IS_ADDR_V4MAPPED( 18366 &sl->sl_addr[i])) 18367 continue; 18368 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18369 ips.ipGroupSourceAddress); 18370 if (snmp_append_data2(mpctl->b_cont, 18371 &mp_tail, (char *)&ips, 18372 (int)sizeof (ips)) == 0) { 18373 ip1dbg(("ip_snmp_get_mib2_" 18374 "ip_group_src: failed to " 18375 "allocate %u bytes\n", 18376 (uint_t)sizeof (ips))); 18377 } 18378 } 18379 } 18380 } 18381 ILM_WALKER_RELE(ill); 18382 } 18383 rw_exit(&ill_g_lock); 18384 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18385 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18386 (int)optp->level, (int)optp->name, (int)optp->len)); 18387 qreply(q, mpctl); 18388 return (mp2ctl); 18389 } 18390 18391 /* IPv6 multicast filtered sources. */ 18392 static mblk_t * 18393 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18394 { 18395 struct opthdr *optp; 18396 mblk_t *mp2ctl; 18397 ill_t *ill; 18398 ilm_t *ilm; 18399 ipv6_grpsrc_t ips6; 18400 mblk_t *mp_tail = NULL; 18401 ill_walk_context_t ctx; 18402 zoneid_t zoneid; 18403 int i; 18404 slist_t *sl; 18405 18406 /* 18407 * make a copy of the original message 18408 */ 18409 mp2ctl = copymsg(mpctl); 18410 zoneid = Q_TO_CONN(q)->conn_zoneid; 18411 18412 /* ip6GroupMember table */ 18413 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18414 optp->level = MIB2_IP6; 18415 optp->name = EXPER_IP6_GROUP_SOURCES; 18416 18417 rw_enter(&ill_g_lock, RW_READER); 18418 ill = ILL_START_WALK_V6(&ctx); 18419 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18420 ILM_WALKER_HOLD(ill); 18421 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18422 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18423 ASSERT(ilm->ilm_ipif == NULL); 18424 ASSERT(ilm->ilm_ill != NULL); 18425 sl = ilm->ilm_filter; 18426 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18427 continue; 18428 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18429 for (i = 0; i < sl->sl_numsrc; i++) { 18430 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18431 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18432 (char *)&ips6, (int)sizeof (ips6))) { 18433 ip1dbg(("ip_snmp_get_mib2_ip6_" 18434 "group_src: failed to allocate " 18435 "%u bytes\n", 18436 (uint_t)sizeof (ips6))); 18437 } 18438 } 18439 } 18440 ILM_WALKER_RELE(ill); 18441 } 18442 rw_exit(&ill_g_lock); 18443 18444 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18445 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18446 (int)optp->level, (int)optp->name, (int)optp->len)); 18447 qreply(q, mpctl); 18448 return (mp2ctl); 18449 } 18450 18451 /* Multicast routing virtual interface table. */ 18452 static mblk_t * 18453 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18454 { 18455 struct opthdr *optp; 18456 mblk_t *mp2ctl; 18457 18458 /* 18459 * make a copy of the original message 18460 */ 18461 mp2ctl = copymsg(mpctl); 18462 18463 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18464 optp->level = EXPER_DVMRP; 18465 optp->name = EXPER_DVMRP_VIF; 18466 if (!ip_mroute_vif(mpctl->b_cont)) { 18467 ip0dbg(("ip_mroute_vif: failed\n")); 18468 } 18469 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18470 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18471 (int)optp->level, (int)optp->name, (int)optp->len)); 18472 qreply(q, mpctl); 18473 return (mp2ctl); 18474 } 18475 18476 /* Multicast routing table. */ 18477 static mblk_t * 18478 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18479 { 18480 struct opthdr *optp; 18481 mblk_t *mp2ctl; 18482 18483 /* 18484 * make a copy of the original message 18485 */ 18486 mp2ctl = copymsg(mpctl); 18487 18488 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18489 optp->level = EXPER_DVMRP; 18490 optp->name = EXPER_DVMRP_MRT; 18491 if (!ip_mroute_mrt(mpctl->b_cont)) { 18492 ip0dbg(("ip_mroute_mrt: failed\n")); 18493 } 18494 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18495 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18496 (int)optp->level, (int)optp->name, (int)optp->len)); 18497 qreply(q, mpctl); 18498 return (mp2ctl); 18499 } 18500 18501 /* 18502 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18503 * in one IRE walk. 18504 */ 18505 static mblk_t * 18506 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18507 { 18508 struct opthdr *optp; 18509 mblk_t *mp2ctl; /* Returned */ 18510 mblk_t *mp3ctl; /* nettomedia */ 18511 mblk_t *mp4ctl; /* routeattrs */ 18512 iproutedata_t ird; 18513 zoneid_t zoneid; 18514 18515 /* 18516 * make copies of the original message 18517 * - mp2ctl is returned unchanged to the caller for his use 18518 * - mpctl is sent upstream as ipRouteEntryTable 18519 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18520 * - mp4ctl is sent upstream as ipRouteAttributeTable 18521 */ 18522 mp2ctl = copymsg(mpctl); 18523 mp3ctl = copymsg(mpctl); 18524 mp4ctl = copymsg(mpctl); 18525 if (mp3ctl == NULL || mp4ctl == NULL) { 18526 freemsg(mp4ctl); 18527 freemsg(mp3ctl); 18528 freemsg(mp2ctl); 18529 freemsg(mpctl); 18530 return (NULL); 18531 } 18532 18533 bzero(&ird, sizeof (ird)); 18534 18535 ird.ird_route.lp_head = mpctl->b_cont; 18536 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18537 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18538 18539 zoneid = Q_TO_CONN(q)->conn_zoneid; 18540 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18541 if (zoneid == GLOBAL_ZONEID) { 18542 /* 18543 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18544 * the sys_net_config privilege, it can only run in the global 18545 * zone, so we don't display these IREs in the other zones. 18546 */ 18547 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18548 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18549 } 18550 18551 /* ipRouteEntryTable in mpctl */ 18552 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18553 optp->level = MIB2_IP; 18554 optp->name = MIB2_IP_ROUTE; 18555 optp->len = msgdsize(ird.ird_route.lp_head); 18556 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18557 (int)optp->level, (int)optp->name, (int)optp->len)); 18558 qreply(q, mpctl); 18559 18560 /* ipNetToMediaEntryTable in mp3ctl */ 18561 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18562 optp->level = MIB2_IP; 18563 optp->name = MIB2_IP_MEDIA; 18564 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18565 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18566 (int)optp->level, (int)optp->name, (int)optp->len)); 18567 qreply(q, mp3ctl); 18568 18569 /* ipRouteAttributeTable in mp4ctl */ 18570 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18571 optp->level = MIB2_IP; 18572 optp->name = EXPER_IP_RTATTR; 18573 optp->len = msgdsize(ird.ird_attrs.lp_head); 18574 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18575 (int)optp->level, (int)optp->name, (int)optp->len)); 18576 if (optp->len == 0) 18577 freemsg(mp4ctl); 18578 else 18579 qreply(q, mp4ctl); 18580 18581 return (mp2ctl); 18582 } 18583 18584 /* 18585 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18586 * ipv6NetToMediaEntryTable in an NDP walk. 18587 */ 18588 static mblk_t * 18589 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18590 { 18591 struct opthdr *optp; 18592 mblk_t *mp2ctl; /* Returned */ 18593 mblk_t *mp3ctl; /* nettomedia */ 18594 mblk_t *mp4ctl; /* routeattrs */ 18595 iproutedata_t ird; 18596 zoneid_t zoneid; 18597 18598 /* 18599 * make copies of the original message 18600 * - mp2ctl is returned unchanged to the caller for his use 18601 * - mpctl is sent upstream as ipv6RouteEntryTable 18602 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18603 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18604 */ 18605 mp2ctl = copymsg(mpctl); 18606 mp3ctl = copymsg(mpctl); 18607 mp4ctl = copymsg(mpctl); 18608 if (mp3ctl == NULL || mp4ctl == NULL) { 18609 freemsg(mp4ctl); 18610 freemsg(mp3ctl); 18611 freemsg(mp2ctl); 18612 freemsg(mpctl); 18613 return (NULL); 18614 } 18615 18616 bzero(&ird, sizeof (ird)); 18617 18618 ird.ird_route.lp_head = mpctl->b_cont; 18619 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18620 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18621 18622 zoneid = Q_TO_CONN(q)->conn_zoneid; 18623 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18624 18625 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18626 optp->level = MIB2_IP6; 18627 optp->name = MIB2_IP6_ROUTE; 18628 optp->len = msgdsize(ird.ird_route.lp_head); 18629 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18630 (int)optp->level, (int)optp->name, (int)optp->len)); 18631 qreply(q, mpctl); 18632 18633 /* ipv6NetToMediaEntryTable in mp3ctl */ 18634 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18635 18636 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18637 optp->level = MIB2_IP6; 18638 optp->name = MIB2_IP6_MEDIA; 18639 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18640 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18641 (int)optp->level, (int)optp->name, (int)optp->len)); 18642 qreply(q, mp3ctl); 18643 18644 /* ipv6RouteAttributeTable in mp4ctl */ 18645 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18646 optp->level = MIB2_IP6; 18647 optp->name = EXPER_IP_RTATTR; 18648 optp->len = msgdsize(ird.ird_attrs.lp_head); 18649 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18650 (int)optp->level, (int)optp->name, (int)optp->len)); 18651 if (optp->len == 0) 18652 freemsg(mp4ctl); 18653 else 18654 qreply(q, mp4ctl); 18655 18656 return (mp2ctl); 18657 } 18658 18659 /* 18660 * ICMPv6 mib: One per ill 18661 */ 18662 static mblk_t * 18663 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18664 { 18665 struct opthdr *optp; 18666 mblk_t *mp2ctl; 18667 ill_t *ill; 18668 ill_walk_context_t ctx; 18669 mblk_t *mp_tail = NULL; 18670 18671 /* 18672 * Make a copy of the original message 18673 */ 18674 mp2ctl = copymsg(mpctl); 18675 18676 /* fixed length IPv6 structure ... */ 18677 18678 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18679 optp->level = MIB2_IP6; 18680 optp->name = 0; 18681 /* Include "unknown interface" ip6_mib */ 18682 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18683 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18684 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18685 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18686 sizeof (mib2_ipv6IfStatsEntry_t)); 18687 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18688 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18689 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18690 sizeof (mib2_ipv6NetToMediaEntry_t)); 18691 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18692 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18693 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18694 (int)sizeof (ip6_mib))) { 18695 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18696 (uint_t)sizeof (ip6_mib))); 18697 } 18698 18699 rw_enter(&ill_g_lock, RW_READER); 18700 ill = ILL_START_WALK_V6(&ctx); 18701 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18702 ill->ill_ip6_mib->ipv6IfIndex = 18703 ill->ill_phyint->phyint_ifindex; 18704 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18705 ipv6_forward ? 1 : 2); 18706 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18707 ill->ill_max_hops); 18708 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18709 sizeof (mib2_ipv6IfStatsEntry_t)); 18710 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18711 sizeof (mib2_ipv6AddrEntry_t)); 18712 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18713 sizeof (mib2_ipv6RouteEntry_t)); 18714 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18715 sizeof (mib2_ipv6NetToMediaEntry_t)); 18716 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18717 sizeof (ipv6_member_t)); 18718 18719 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18720 (char *)ill->ill_ip6_mib, 18721 (int)sizeof (*ill->ill_ip6_mib))) { 18722 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18723 "%u bytes\n", 18724 (uint_t)sizeof (*ill->ill_ip6_mib))); 18725 } 18726 } 18727 rw_exit(&ill_g_lock); 18728 18729 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18730 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18731 (int)optp->level, (int)optp->name, (int)optp->len)); 18732 qreply(q, mpctl); 18733 return (mp2ctl); 18734 } 18735 18736 /* 18737 * ICMPv6 mib: One per ill 18738 */ 18739 static mblk_t * 18740 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18741 { 18742 struct opthdr *optp; 18743 mblk_t *mp2ctl; 18744 ill_t *ill; 18745 ill_walk_context_t ctx; 18746 mblk_t *mp_tail = NULL; 18747 /* 18748 * Make a copy of the original message 18749 */ 18750 mp2ctl = copymsg(mpctl); 18751 18752 /* fixed length ICMPv6 structure ... */ 18753 18754 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18755 optp->level = MIB2_ICMP6; 18756 optp->name = 0; 18757 /* Include "unknown interface" icmp6_mib */ 18758 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18759 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18760 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18761 (int)sizeof (icmp6_mib))) { 18762 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18763 (uint_t)sizeof (icmp6_mib))); 18764 } 18765 18766 rw_enter(&ill_g_lock, RW_READER); 18767 ill = ILL_START_WALK_V6(&ctx); 18768 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18769 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18770 ill->ill_phyint->phyint_ifindex; 18771 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18772 sizeof (mib2_ipv6IfIcmpEntry_t); 18773 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18774 (char *)ill->ill_icmp6_mib, 18775 (int)sizeof (*ill->ill_icmp6_mib))) { 18776 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18777 "%u bytes\n", 18778 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18779 } 18780 } 18781 rw_exit(&ill_g_lock); 18782 18783 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18784 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18785 (int)optp->level, (int)optp->name, (int)optp->len)); 18786 qreply(q, mpctl); 18787 return (mp2ctl); 18788 } 18789 18790 /* 18791 * ire_walk routine to create both ipRouteEntryTable and 18792 * ipRouteAttributeTable in one IRE walk 18793 */ 18794 static void 18795 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18796 { 18797 ill_t *ill; 18798 ipif_t *ipif; 18799 mib2_ipRouteEntry_t *re; 18800 mib2_ipAttributeEntry_t *iae, *iaeptr; 18801 ipaddr_t gw_addr; 18802 tsol_ire_gw_secattr_t *attrp; 18803 tsol_gc_t *gc = NULL; 18804 tsol_gcgrp_t *gcgrp = NULL; 18805 uint_t sacnt = 0; 18806 int i; 18807 18808 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18809 18810 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18811 return; 18812 18813 if ((attrp = ire->ire_gw_secattr) != NULL) { 18814 mutex_enter(&attrp->igsa_lock); 18815 if ((gc = attrp->igsa_gc) != NULL) { 18816 gcgrp = gc->gc_grp; 18817 ASSERT(gcgrp != NULL); 18818 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18819 sacnt = 1; 18820 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18821 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18822 gc = gcgrp->gcgrp_head; 18823 sacnt = gcgrp->gcgrp_count; 18824 } 18825 mutex_exit(&attrp->igsa_lock); 18826 18827 /* do nothing if there's no gc to report */ 18828 if (gc == NULL) { 18829 ASSERT(sacnt == 0); 18830 if (gcgrp != NULL) { 18831 /* we might as well drop the lock now */ 18832 rw_exit(&gcgrp->gcgrp_rwlock); 18833 gcgrp = NULL; 18834 } 18835 attrp = NULL; 18836 } 18837 18838 ASSERT(gc == NULL || (gcgrp != NULL && 18839 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18840 } 18841 ASSERT(sacnt == 0 || gc != NULL); 18842 18843 if (sacnt != 0 && 18844 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18845 kmem_free(re, sizeof (*re)); 18846 rw_exit(&gcgrp->gcgrp_rwlock); 18847 return; 18848 } 18849 18850 /* 18851 * Return all IRE types for route table... let caller pick and choose 18852 */ 18853 re->ipRouteDest = ire->ire_addr; 18854 ipif = ire->ire_ipif; 18855 re->ipRouteIfIndex.o_length = 0; 18856 if (ire->ire_type == IRE_CACHE) { 18857 ill = (ill_t *)ire->ire_stq->q_ptr; 18858 re->ipRouteIfIndex.o_length = 18859 ill->ill_name_length == 0 ? 0 : 18860 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18861 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18862 re->ipRouteIfIndex.o_length); 18863 } else if (ipif != NULL) { 18864 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18865 OCTET_LENGTH); 18866 re->ipRouteIfIndex.o_length = 18867 mi_strlen(re->ipRouteIfIndex.o_bytes); 18868 } 18869 re->ipRouteMetric1 = -1; 18870 re->ipRouteMetric2 = -1; 18871 re->ipRouteMetric3 = -1; 18872 re->ipRouteMetric4 = -1; 18873 18874 gw_addr = ire->ire_gateway_addr; 18875 18876 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18877 re->ipRouteNextHop = ire->ire_src_addr; 18878 else 18879 re->ipRouteNextHop = gw_addr; 18880 /* indirect(4), direct(3), or invalid(2) */ 18881 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18882 re->ipRouteType = 2; 18883 else 18884 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18885 re->ipRouteProto = -1; 18886 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18887 re->ipRouteMask = ire->ire_mask; 18888 re->ipRouteMetric5 = -1; 18889 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18890 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18891 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18892 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18893 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18894 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18895 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18896 re->ipRouteInfo.re_flags = ire->ire_flags; 18897 re->ipRouteInfo.re_in_ill.o_length = 0; 18898 18899 if (ire->ire_flags & RTF_DYNAMIC) { 18900 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 18901 } else { 18902 re->ipRouteInfo.re_ire_type = ire->ire_type; 18903 } 18904 18905 if (ire->ire_in_ill != NULL) { 18906 re->ipRouteInfo.re_in_ill.o_length = 18907 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18908 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18909 bcopy(ire->ire_in_ill->ill_name, 18910 re->ipRouteInfo.re_in_ill.o_bytes, 18911 re->ipRouteInfo.re_in_ill.o_length); 18912 } 18913 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18914 18915 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18916 (char *)re, (int)sizeof (*re))) { 18917 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18918 (uint_t)sizeof (*re))); 18919 } 18920 18921 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18922 iaeptr->iae_routeidx = ird->ird_idx; 18923 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18924 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18925 } 18926 18927 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18928 (char *)iae, sacnt * sizeof (*iae))) { 18929 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18930 (unsigned)(sacnt * sizeof (*iae)))); 18931 } 18932 18933 /* bump route index for next pass */ 18934 ird->ird_idx++; 18935 18936 kmem_free(re, sizeof (*re)); 18937 if (sacnt != 0) 18938 kmem_free(iae, sacnt * sizeof (*iae)); 18939 18940 if (gcgrp != NULL) 18941 rw_exit(&gcgrp->gcgrp_rwlock); 18942 } 18943 18944 /* 18945 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18946 */ 18947 static void 18948 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18949 { 18950 ill_t *ill; 18951 ipif_t *ipif; 18952 mib2_ipv6RouteEntry_t *re; 18953 mib2_ipAttributeEntry_t *iae, *iaeptr; 18954 in6_addr_t gw_addr_v6; 18955 tsol_ire_gw_secattr_t *attrp; 18956 tsol_gc_t *gc = NULL; 18957 tsol_gcgrp_t *gcgrp = NULL; 18958 uint_t sacnt = 0; 18959 int i; 18960 18961 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18962 18963 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18964 return; 18965 18966 if ((attrp = ire->ire_gw_secattr) != NULL) { 18967 mutex_enter(&attrp->igsa_lock); 18968 if ((gc = attrp->igsa_gc) != NULL) { 18969 gcgrp = gc->gc_grp; 18970 ASSERT(gcgrp != NULL); 18971 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18972 sacnt = 1; 18973 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18974 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18975 gc = gcgrp->gcgrp_head; 18976 sacnt = gcgrp->gcgrp_count; 18977 } 18978 mutex_exit(&attrp->igsa_lock); 18979 18980 /* do nothing if there's no gc to report */ 18981 if (gc == NULL) { 18982 ASSERT(sacnt == 0); 18983 if (gcgrp != NULL) { 18984 /* we might as well drop the lock now */ 18985 rw_exit(&gcgrp->gcgrp_rwlock); 18986 gcgrp = NULL; 18987 } 18988 attrp = NULL; 18989 } 18990 18991 ASSERT(gc == NULL || (gcgrp != NULL && 18992 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18993 } 18994 ASSERT(sacnt == 0 || gc != NULL); 18995 18996 if (sacnt != 0 && 18997 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18998 kmem_free(re, sizeof (*re)); 18999 rw_exit(&gcgrp->gcgrp_rwlock); 19000 return; 19001 } 19002 19003 /* 19004 * Return all IRE types for route table... let caller pick and choose 19005 */ 19006 re->ipv6RouteDest = ire->ire_addr_v6; 19007 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19008 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19009 re->ipv6RouteIfIndex.o_length = 0; 19010 ipif = ire->ire_ipif; 19011 if (ire->ire_type == IRE_CACHE) { 19012 ill = (ill_t *)ire->ire_stq->q_ptr; 19013 re->ipv6RouteIfIndex.o_length = 19014 ill->ill_name_length == 0 ? 0 : 19015 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19016 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19017 re->ipv6RouteIfIndex.o_length); 19018 } else if (ipif != NULL) { 19019 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19020 OCTET_LENGTH); 19021 re->ipv6RouteIfIndex.o_length = 19022 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19023 } 19024 19025 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19026 19027 mutex_enter(&ire->ire_lock); 19028 gw_addr_v6 = ire->ire_gateway_addr_v6; 19029 mutex_exit(&ire->ire_lock); 19030 19031 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19032 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19033 else 19034 re->ipv6RouteNextHop = gw_addr_v6; 19035 19036 /* remote(4), local(3), or discard(2) */ 19037 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19038 re->ipv6RouteType = 2; 19039 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19040 re->ipv6RouteType = 3; 19041 else 19042 re->ipv6RouteType = 4; 19043 19044 re->ipv6RouteProtocol = -1; 19045 re->ipv6RoutePolicy = 0; 19046 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19047 re->ipv6RouteNextHopRDI = 0; 19048 re->ipv6RouteWeight = 0; 19049 re->ipv6RouteMetric = 0; 19050 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19051 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19052 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19053 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19054 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19055 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19056 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19057 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19058 19059 if (ire->ire_flags & RTF_DYNAMIC) { 19060 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19061 } else { 19062 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19063 } 19064 19065 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19066 (char *)re, (int)sizeof (*re))) { 19067 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19068 (uint_t)sizeof (*re))); 19069 } 19070 19071 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19072 iaeptr->iae_routeidx = ird->ird_idx; 19073 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19074 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19075 } 19076 19077 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19078 (char *)iae, sacnt * sizeof (*iae))) { 19079 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19080 (unsigned)(sacnt * sizeof (*iae)))); 19081 } 19082 19083 /* bump route index for next pass */ 19084 ird->ird_idx++; 19085 19086 kmem_free(re, sizeof (*re)); 19087 if (sacnt != 0) 19088 kmem_free(iae, sacnt * sizeof (*iae)); 19089 19090 if (gcgrp != NULL) 19091 rw_exit(&gcgrp->gcgrp_rwlock); 19092 } 19093 19094 /* 19095 * ndp_walk routine to create ipv6NetToMediaEntryTable 19096 */ 19097 static int 19098 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19099 { 19100 ill_t *ill; 19101 mib2_ipv6NetToMediaEntry_t ntme; 19102 dl_unitdata_req_t *dl; 19103 19104 ill = nce->nce_ill; 19105 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19106 return (0); 19107 19108 /* 19109 * Neighbor cache entry attached to IRE with on-link 19110 * destination. 19111 */ 19112 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19113 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19114 if ((ill->ill_flags & ILLF_XRESOLV) && 19115 (nce->nce_res_mp != NULL)) { 19116 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19117 ntme.ipv6NetToMediaPhysAddress.o_length = 19118 dl->dl_dest_addr_length; 19119 } else { 19120 ntme.ipv6NetToMediaPhysAddress.o_length = 19121 ill->ill_phys_addr_length; 19122 } 19123 if (nce->nce_res_mp != NULL) { 19124 bcopy((char *)nce->nce_res_mp->b_rptr + 19125 NCE_LL_ADDR_OFFSET(ill), 19126 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19127 ntme.ipv6NetToMediaPhysAddress.o_length); 19128 } else { 19129 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19130 ill->ill_phys_addr_length); 19131 } 19132 /* 19133 * Note: Returns ND_* states. Should be: 19134 * reachable(1), stale(2), delay(3), probe(4), 19135 * invalid(5), unknown(6) 19136 */ 19137 ntme.ipv6NetToMediaState = nce->nce_state; 19138 ntme.ipv6NetToMediaLastUpdated = 0; 19139 19140 /* other(1), dynamic(2), static(3), local(4) */ 19141 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19142 ntme.ipv6NetToMediaType = 4; 19143 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19144 ntme.ipv6NetToMediaType = 1; 19145 } else { 19146 ntme.ipv6NetToMediaType = 2; 19147 } 19148 19149 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19150 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19151 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19152 (uint_t)sizeof (ntme))); 19153 } 19154 return (0); 19155 } 19156 19157 /* 19158 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19159 */ 19160 /* ARGSUSED */ 19161 int 19162 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19163 { 19164 switch (level) { 19165 case MIB2_IP: 19166 case MIB2_ICMP: 19167 switch (name) { 19168 default: 19169 break; 19170 } 19171 return (1); 19172 default: 19173 return (1); 19174 } 19175 } 19176 19177 /* 19178 * Called before the options are updated to check if this packet will 19179 * be source routed from here. 19180 * This routine assumes that the options are well formed i.e. that they 19181 * have already been checked. 19182 */ 19183 static boolean_t 19184 ip_source_routed(ipha_t *ipha) 19185 { 19186 ipoptp_t opts; 19187 uchar_t *opt; 19188 uint8_t optval; 19189 uint8_t optlen; 19190 ipaddr_t dst; 19191 ire_t *ire; 19192 19193 if (IS_SIMPLE_IPH(ipha)) { 19194 ip2dbg(("not source routed\n")); 19195 return (B_FALSE); 19196 } 19197 dst = ipha->ipha_dst; 19198 for (optval = ipoptp_first(&opts, ipha); 19199 optval != IPOPT_EOL; 19200 optval = ipoptp_next(&opts)) { 19201 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19202 opt = opts.ipoptp_cur; 19203 optlen = opts.ipoptp_len; 19204 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19205 optval, optlen)); 19206 switch (optval) { 19207 uint32_t off; 19208 case IPOPT_SSRR: 19209 case IPOPT_LSRR: 19210 /* 19211 * If dst is one of our addresses and there are some 19212 * entries left in the source route return (true). 19213 */ 19214 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19215 ALL_ZONES, NULL, MATCH_IRE_TYPE); 19216 if (ire == NULL) { 19217 ip2dbg(("ip_source_routed: not next" 19218 " source route 0x%x\n", 19219 ntohl(dst))); 19220 return (B_FALSE); 19221 } 19222 ire_refrele(ire); 19223 off = opt[IPOPT_OFFSET]; 19224 off--; 19225 if (optlen < IP_ADDR_LEN || 19226 off > optlen - IP_ADDR_LEN) { 19227 /* End of source route */ 19228 ip1dbg(("ip_source_routed: end of SR\n")); 19229 return (B_FALSE); 19230 } 19231 return (B_TRUE); 19232 } 19233 } 19234 ip2dbg(("not source routed\n")); 19235 return (B_FALSE); 19236 } 19237 19238 /* 19239 * Check if the packet contains any source route. 19240 */ 19241 static boolean_t 19242 ip_source_route_included(ipha_t *ipha) 19243 { 19244 ipoptp_t opts; 19245 uint8_t optval; 19246 19247 if (IS_SIMPLE_IPH(ipha)) 19248 return (B_FALSE); 19249 for (optval = ipoptp_first(&opts, ipha); 19250 optval != IPOPT_EOL; 19251 optval = ipoptp_next(&opts)) { 19252 switch (optval) { 19253 case IPOPT_SSRR: 19254 case IPOPT_LSRR: 19255 return (B_TRUE); 19256 } 19257 } 19258 return (B_FALSE); 19259 } 19260 19261 /* 19262 * Called when the IRE expiration timer fires. 19263 */ 19264 /* ARGSUSED */ 19265 void 19266 ip_trash_timer_expire(void *args) 19267 { 19268 int flush_flag = 0; 19269 19270 /* 19271 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19272 * This lock makes sure that a new invocation of this function 19273 * that occurs due to an almost immediate timer firing will not 19274 * progress beyond this point until the current invocation is done 19275 */ 19276 mutex_enter(&ip_trash_timer_lock); 19277 ip_ire_expire_id = 0; 19278 mutex_exit(&ip_trash_timer_lock); 19279 19280 /* Periodic timer */ 19281 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19282 /* 19283 * Remove all IRE_CACHE entries since they might 19284 * contain arp information. 19285 */ 19286 flush_flag |= FLUSH_ARP_TIME; 19287 ip_ire_arp_time_elapsed = 0; 19288 IP_STAT(ip_ire_arp_timer_expired); 19289 } 19290 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19291 /* Remove all redirects */ 19292 flush_flag |= FLUSH_REDIRECT_TIME; 19293 ip_ire_rd_time_elapsed = 0; 19294 IP_STAT(ip_ire_redirect_timer_expired); 19295 } 19296 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19297 /* Increase path mtu */ 19298 flush_flag |= FLUSH_MTU_TIME; 19299 ip_ire_pmtu_time_elapsed = 0; 19300 IP_STAT(ip_ire_pmtu_timer_expired); 19301 } 19302 19303 /* 19304 * Optimize for the case when there are no redirects in the 19305 * ftable, that is, no need to walk the ftable in that case. 19306 */ 19307 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19308 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19309 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19310 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19311 } 19312 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19313 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19314 ire_expire, (char *)(uintptr_t)flush_flag, 19315 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19316 } 19317 if (flush_flag & FLUSH_MTU_TIME) { 19318 /* 19319 * Walk all IPv6 IRE's and update them 19320 * Note that ARP and redirect timers are not 19321 * needed since NUD handles stale entries. 19322 */ 19323 flush_flag = FLUSH_MTU_TIME; 19324 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19325 ALL_ZONES); 19326 } 19327 19328 ip_ire_arp_time_elapsed += ip_timer_interval; 19329 ip_ire_rd_time_elapsed += ip_timer_interval; 19330 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19331 19332 /* 19333 * Hold the lock to serialize timeout calls and prevent 19334 * stale values in ip_ire_expire_id. Otherwise it is possible 19335 * for the timer to fire and a new invocation of this function 19336 * to start before the return value of timeout has been stored 19337 * in ip_ire_expire_id by the current invocation. 19338 */ 19339 mutex_enter(&ip_trash_timer_lock); 19340 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19341 MSEC_TO_TICK(ip_timer_interval)); 19342 mutex_exit(&ip_trash_timer_lock); 19343 } 19344 19345 /* 19346 * Called by the memory allocator subsystem directly, when the system 19347 * is running low on memory. 19348 */ 19349 /* ARGSUSED */ 19350 void 19351 ip_trash_ire_reclaim(void *args) 19352 { 19353 ire_cache_count_t icc; 19354 ire_cache_reclaim_t icr; 19355 ncc_cache_count_t ncc; 19356 nce_cache_reclaim_t ncr; 19357 uint_t delete_cnt; 19358 /* 19359 * Memory reclaim call back. 19360 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19361 * Then, with a target of freeing 1/Nth of IRE_CACHE 19362 * entries, determine what fraction to free for 19363 * each category of IRE_CACHE entries giving absolute priority 19364 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19365 * entry will be freed unless all offlink entries are freed). 19366 */ 19367 icc.icc_total = 0; 19368 icc.icc_unused = 0; 19369 icc.icc_offlink = 0; 19370 icc.icc_pmtu = 0; 19371 icc.icc_onlink = 0; 19372 ire_walk(ire_cache_count, (char *)&icc); 19373 19374 /* 19375 * Free NCEs for IPv6 like the onlink ires. 19376 */ 19377 ncc.ncc_total = 0; 19378 ncc.ncc_host = 0; 19379 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19380 19381 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19382 icc.icc_pmtu + icc.icc_onlink); 19383 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19384 IP_STAT(ip_trash_ire_reclaim_calls); 19385 if (delete_cnt == 0) 19386 return; 19387 IP_STAT(ip_trash_ire_reclaim_success); 19388 /* Always delete all unused offlink entries */ 19389 icr.icr_unused = 1; 19390 if (delete_cnt <= icc.icc_unused) { 19391 /* 19392 * Only need to free unused entries. In other words, 19393 * there are enough unused entries to free to meet our 19394 * target number of freed ire cache entries. 19395 */ 19396 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19397 ncr.ncr_host = 0; 19398 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19399 /* 19400 * Only need to free unused entries, plus a fraction of offlink 19401 * entries. It follows from the first if statement that 19402 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19403 */ 19404 delete_cnt -= icc.icc_unused; 19405 /* Round up # deleted by truncating fraction */ 19406 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19407 icr.icr_pmtu = icr.icr_onlink = 0; 19408 ncr.ncr_host = 0; 19409 } else if (delete_cnt <= 19410 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19411 /* 19412 * Free all unused and offlink entries, plus a fraction of 19413 * pmtu entries. It follows from the previous if statement 19414 * that icc_pmtu is non-zero, and that 19415 * delete_cnt != icc_unused + icc_offlink. 19416 */ 19417 icr.icr_offlink = 1; 19418 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19419 /* Round up # deleted by truncating fraction */ 19420 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19421 icr.icr_onlink = 0; 19422 ncr.ncr_host = 0; 19423 } else { 19424 /* 19425 * Free all unused, offlink, and pmtu entries, plus a fraction 19426 * of onlink entries. If we're here, then we know that 19427 * icc_onlink is non-zero, and that 19428 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19429 */ 19430 icr.icr_offlink = icr.icr_pmtu = 1; 19431 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19432 icc.icc_pmtu; 19433 /* Round up # deleted by truncating fraction */ 19434 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19435 /* Using the same delete fraction as for onlink IREs */ 19436 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19437 } 19438 #ifdef DEBUG 19439 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19440 "fractions %d/%d/%d/%d\n", 19441 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19442 icc.icc_unused, icc.icc_offlink, 19443 icc.icc_pmtu, icc.icc_onlink, 19444 icr.icr_unused, icr.icr_offlink, 19445 icr.icr_pmtu, icr.icr_onlink)); 19446 #endif 19447 ire_walk(ire_cache_reclaim, (char *)&icr); 19448 if (ncr.ncr_host != 0) 19449 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19450 (uchar_t *)&ncr); 19451 #ifdef DEBUG 19452 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19453 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19454 ire_walk(ire_cache_count, (char *)&icc); 19455 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19456 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19457 icc.icc_pmtu, icc.icc_onlink)); 19458 #endif 19459 } 19460 19461 /* 19462 * ip_unbind is called when a copy of an unbind request is received from the 19463 * upper level protocol. We remove this conn from any fanout hash list it is 19464 * on, and zero out the bind information. No reply is expected up above. 19465 */ 19466 mblk_t * 19467 ip_unbind(queue_t *q, mblk_t *mp) 19468 { 19469 conn_t *connp = Q_TO_CONN(q); 19470 19471 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19472 19473 if (is_system_labeled() && connp->conn_anon_port) { 19474 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19475 connp->conn_mlp_type, connp->conn_ulp, 19476 ntohs(connp->conn_lport), B_FALSE); 19477 connp->conn_anon_port = 0; 19478 } 19479 connp->conn_mlp_type = mlptSingle; 19480 19481 ipcl_hash_remove(connp); 19482 19483 ASSERT(mp->b_cont == NULL); 19484 /* 19485 * Convert mp into a T_OK_ACK 19486 */ 19487 mp = mi_tpi_ok_ack_alloc(mp); 19488 19489 /* 19490 * should not happen in practice... T_OK_ACK is smaller than the 19491 * original message. 19492 */ 19493 if (mp == NULL) 19494 return (NULL); 19495 19496 /* 19497 * Don't bzero the ports if its TCP since TCP still needs the 19498 * lport to remove it from its own bind hash. TCP will do the 19499 * cleanup. 19500 */ 19501 if (!IPCL_IS_TCP(connp)) 19502 bzero(&connp->u_port, sizeof (connp->u_port)); 19503 19504 return (mp); 19505 } 19506 19507 /* 19508 * Write side put procedure. Outbound data, IOCTLs, responses from 19509 * resolvers, etc, come down through here. 19510 * 19511 * arg2 is always a queue_t *. 19512 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19513 * the zoneid. 19514 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19515 */ 19516 void 19517 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19518 { 19519 conn_t *connp = NULL; 19520 queue_t *q = (queue_t *)arg2; 19521 ipha_t *ipha; 19522 #define rptr ((uchar_t *)ipha) 19523 ire_t *ire = NULL; 19524 ire_t *sctp_ire = NULL; 19525 uint32_t v_hlen_tos_len; 19526 ipaddr_t dst; 19527 mblk_t *first_mp = NULL; 19528 boolean_t mctl_present; 19529 ipsec_out_t *io; 19530 int match_flags; 19531 ill_t *attach_ill = NULL; 19532 /* Bind to IPIF_NOFAILOVER ill etc. */ 19533 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19534 ipif_t *dst_ipif; 19535 boolean_t multirt_need_resolve = B_FALSE; 19536 mblk_t *copy_mp = NULL; 19537 int err; 19538 zoneid_t zoneid; 19539 int adjust; 19540 uint16_t iplen; 19541 boolean_t need_decref = B_FALSE; 19542 boolean_t ignore_dontroute = B_FALSE; 19543 boolean_t ignore_nexthop = B_FALSE; 19544 boolean_t ip_nexthop = B_FALSE; 19545 ipaddr_t nexthop_addr; 19546 19547 #ifdef _BIG_ENDIAN 19548 #define V_HLEN (v_hlen_tos_len >> 24) 19549 #else 19550 #define V_HLEN (v_hlen_tos_len & 0xFF) 19551 #endif 19552 19553 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19554 "ip_wput_start: q %p", q); 19555 19556 /* 19557 * ip_wput fast path 19558 */ 19559 19560 /* is packet from ARP ? */ 19561 if (q->q_next != NULL) { 19562 zoneid = (zoneid_t)(uintptr_t)arg; 19563 goto qnext; 19564 } 19565 19566 connp = (conn_t *)arg; 19567 ASSERT(connp != NULL); 19568 zoneid = connp->conn_zoneid; 19569 19570 /* is queue flow controlled? */ 19571 if ((q->q_first != NULL || connp->conn_draining) && 19572 (caller == IP_WPUT)) { 19573 ASSERT(!need_decref); 19574 (void) putq(q, mp); 19575 return; 19576 } 19577 19578 /* Multidata transmit? */ 19579 if (DB_TYPE(mp) == M_MULTIDATA) { 19580 /* 19581 * We should never get here, since all Multidata messages 19582 * originating from tcp should have been directed over to 19583 * tcp_multisend() in the first place. 19584 */ 19585 BUMP_MIB(&ip_mib, ipOutDiscards); 19586 freemsg(mp); 19587 return; 19588 } else if (DB_TYPE(mp) != M_DATA) 19589 goto notdata; 19590 19591 if (mp->b_flag & MSGHASREF) { 19592 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19593 mp->b_flag &= ~MSGHASREF; 19594 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19595 need_decref = B_TRUE; 19596 } 19597 ipha = (ipha_t *)mp->b_rptr; 19598 19599 /* is IP header non-aligned or mblk smaller than basic IP header */ 19600 #ifndef SAFETY_BEFORE_SPEED 19601 if (!OK_32PTR(rptr) || 19602 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19603 goto hdrtoosmall; 19604 #endif 19605 19606 ASSERT(OK_32PTR(ipha)); 19607 19608 /* 19609 * This function assumes that mp points to an IPv4 packet. If it's the 19610 * wrong version, we'll catch it again in ip_output_v6. 19611 * 19612 * Note that this is *only* locally-generated output here, and never 19613 * forwarded data, and that we need to deal only with transports that 19614 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19615 * label.) 19616 */ 19617 if (is_system_labeled() && 19618 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19619 !connp->conn_ulp_labeled) { 19620 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19621 connp->conn_mac_exempt); 19622 ipha = (ipha_t *)mp->b_rptr; 19623 if (err != 0) { 19624 first_mp = mp; 19625 if (err == EINVAL) 19626 goto icmp_parameter_problem; 19627 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19628 goto drop_pkt; 19629 } 19630 iplen = ntohs(ipha->ipha_length) + adjust; 19631 ipha->ipha_length = htons(iplen); 19632 } 19633 19634 /* 19635 * If there is a policy, try to attach an ipsec_out in 19636 * the front. At the end, first_mp either points to a 19637 * M_DATA message or IPSEC_OUT message linked to a 19638 * M_DATA message. We have to do it now as we might 19639 * lose the "conn" if we go through ip_newroute. 19640 */ 19641 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19642 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19643 ipha->ipha_protocol)) == NULL)) { 19644 if (need_decref) 19645 CONN_DEC_REF(connp); 19646 return; 19647 } else { 19648 ASSERT(mp->b_datap->db_type == M_CTL); 19649 first_mp = mp; 19650 mp = mp->b_cont; 19651 mctl_present = B_TRUE; 19652 } 19653 } else { 19654 first_mp = mp; 19655 mctl_present = B_FALSE; 19656 } 19657 19658 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19659 19660 /* is wrong version or IP options present */ 19661 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19662 goto version_hdrlen_check; 19663 dst = ipha->ipha_dst; 19664 19665 if (connp->conn_nofailover_ill != NULL) { 19666 attach_ill = conn_get_held_ill(connp, 19667 &connp->conn_nofailover_ill, &err); 19668 if (err == ILL_LOOKUP_FAILED) { 19669 if (need_decref) 19670 CONN_DEC_REF(connp); 19671 freemsg(first_mp); 19672 return; 19673 } 19674 } 19675 19676 /* is packet multicast? */ 19677 if (CLASSD(dst)) 19678 goto multicast; 19679 19680 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19681 (connp->conn_nexthop_set)) { 19682 /* 19683 * If the destination is a broadcast or a loopback 19684 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19685 * through the standard path. But in the case of local 19686 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19687 * the standard path not IP_XMIT_IF. 19688 */ 19689 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19690 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19691 (ire->ire_type != IRE_LOOPBACK))) { 19692 if ((connp->conn_dontroute || 19693 connp->conn_nexthop_set) && (ire != NULL) && 19694 (ire->ire_type == IRE_LOCAL)) 19695 goto standard_path; 19696 19697 if (ire != NULL) { 19698 ire_refrele(ire); 19699 /* No more access to ire */ 19700 ire = NULL; 19701 } 19702 /* 19703 * bypass routing checks and go directly to 19704 * interface. 19705 */ 19706 if (connp->conn_dontroute) { 19707 goto dontroute; 19708 } else if (connp->conn_nexthop_set) { 19709 ip_nexthop = B_TRUE; 19710 nexthop_addr = connp->conn_nexthop_v4; 19711 goto send_from_ill; 19712 } 19713 19714 /* 19715 * If IP_XMIT_IF socket option is set, 19716 * then we allow unicast and multicast 19717 * packets to go through the ill. It is 19718 * quite possible that the destination 19719 * is not in the ire cache table and we 19720 * do not want to go to ip_newroute() 19721 * instead we call ip_newroute_ipif. 19722 */ 19723 xmit_ill = conn_get_held_ill(connp, 19724 &connp->conn_xmit_if_ill, &err); 19725 if (err == ILL_LOOKUP_FAILED) { 19726 if (attach_ill != NULL) 19727 ill_refrele(attach_ill); 19728 if (need_decref) 19729 CONN_DEC_REF(connp); 19730 freemsg(first_mp); 19731 return; 19732 } 19733 goto send_from_ill; 19734 } 19735 standard_path: 19736 /* Must be a broadcast, a loopback or a local ire */ 19737 if (ire != NULL) { 19738 ire_refrele(ire); 19739 /* No more access to ire */ 19740 ire = NULL; 19741 } 19742 } 19743 19744 if (attach_ill != NULL) 19745 goto send_from_ill; 19746 19747 /* 19748 * We cache IRE_CACHEs to avoid lookups. We don't do 19749 * this for the tcp global queue and listen end point 19750 * as it does not really have a real destination to 19751 * talk to. This is also true for SCTP. 19752 */ 19753 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19754 !connp->conn_fully_bound) { 19755 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19756 if (ire == NULL) 19757 goto noirefound; 19758 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19759 "ip_wput_end: q %p (%S)", q, "end"); 19760 19761 /* 19762 * Check if the ire has the RTF_MULTIRT flag, inherited 19763 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19764 */ 19765 if (ire->ire_flags & RTF_MULTIRT) { 19766 19767 /* 19768 * Force the TTL of multirouted packets if required. 19769 * The TTL of such packets is bounded by the 19770 * ip_multirt_ttl ndd variable. 19771 */ 19772 if ((ip_multirt_ttl > 0) && 19773 (ipha->ipha_ttl > ip_multirt_ttl)) { 19774 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19775 "(was %d), dst 0x%08x\n", 19776 ip_multirt_ttl, ipha->ipha_ttl, 19777 ntohl(ire->ire_addr))); 19778 ipha->ipha_ttl = ip_multirt_ttl; 19779 } 19780 /* 19781 * We look at this point if there are pending 19782 * unresolved routes. ire_multirt_resolvable() 19783 * checks in O(n) that all IRE_OFFSUBNET ire 19784 * entries for the packet's destination and 19785 * flagged RTF_MULTIRT are currently resolved. 19786 * If some remain unresolved, we make a copy 19787 * of the current message. It will be used 19788 * to initiate additional route resolutions. 19789 */ 19790 multirt_need_resolve = 19791 ire_multirt_need_resolve(ire->ire_addr, 19792 MBLK_GETLABEL(first_mp)); 19793 ip2dbg(("ip_wput[TCP]: ire %p, " 19794 "multirt_need_resolve %d, first_mp %p\n", 19795 (void *)ire, multirt_need_resolve, 19796 (void *)first_mp)); 19797 if (multirt_need_resolve) { 19798 copy_mp = copymsg(first_mp); 19799 if (copy_mp != NULL) { 19800 MULTIRT_DEBUG_TAG(copy_mp); 19801 } 19802 } 19803 } 19804 19805 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19806 19807 /* 19808 * Try to resolve another multiroute if 19809 * ire_multirt_need_resolve() deemed it necessary. 19810 */ 19811 if (copy_mp != NULL) { 19812 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19813 } 19814 if (need_decref) 19815 CONN_DEC_REF(connp); 19816 return; 19817 } 19818 19819 /* 19820 * Access to conn_ire_cache. (protected by conn_lock) 19821 * 19822 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19823 * the ire bucket lock here to check for CONDEMNED as it is okay to 19824 * send a packet or two with the IRE_CACHE that is going away. 19825 * Access to the ire requires an ire refhold on the ire prior to 19826 * its use since an interface unplumb thread may delete the cached 19827 * ire and release the refhold at any time. 19828 * 19829 * Caching an ire in the conn_ire_cache 19830 * 19831 * o Caching an ire pointer in the conn requires a strict check for 19832 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19833 * ires before cleaning up the conns. So the caching of an ire pointer 19834 * in the conn is done after making sure under the bucket lock that the 19835 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19836 * caching an ire after the unplumb thread has cleaned up the conn. 19837 * If the conn does not send a packet subsequently the unplumb thread 19838 * will be hanging waiting for the ire count to drop to zero. 19839 * 19840 * o We also need to atomically test for a null conn_ire_cache and 19841 * set the conn_ire_cache under the the protection of the conn_lock 19842 * to avoid races among concurrent threads trying to simultaneously 19843 * cache an ire in the conn_ire_cache. 19844 */ 19845 mutex_enter(&connp->conn_lock); 19846 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19847 19848 if (ire != NULL && ire->ire_addr == dst && 19849 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19850 19851 IRE_REFHOLD(ire); 19852 mutex_exit(&connp->conn_lock); 19853 19854 } else { 19855 boolean_t cached = B_FALSE; 19856 connp->conn_ire_cache = NULL; 19857 mutex_exit(&connp->conn_lock); 19858 /* Release the old ire */ 19859 if (ire != NULL && sctp_ire == NULL) 19860 IRE_REFRELE_NOTR(ire); 19861 19862 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19863 if (ire == NULL) 19864 goto noirefound; 19865 IRE_REFHOLD_NOTR(ire); 19866 19867 mutex_enter(&connp->conn_lock); 19868 if (!(connp->conn_state_flags & CONN_CLOSING) && 19869 connp->conn_ire_cache == NULL) { 19870 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19871 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19872 connp->conn_ire_cache = ire; 19873 cached = B_TRUE; 19874 } 19875 rw_exit(&ire->ire_bucket->irb_lock); 19876 } 19877 mutex_exit(&connp->conn_lock); 19878 19879 /* 19880 * We can continue to use the ire but since it was 19881 * not cached, we should drop the extra reference. 19882 */ 19883 if (!cached) 19884 IRE_REFRELE_NOTR(ire); 19885 } 19886 19887 19888 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19889 "ip_wput_end: q %p (%S)", q, "end"); 19890 19891 /* 19892 * Check if the ire has the RTF_MULTIRT flag, inherited 19893 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19894 */ 19895 if (ire->ire_flags & RTF_MULTIRT) { 19896 19897 /* 19898 * Force the TTL of multirouted packets if required. 19899 * The TTL of such packets is bounded by the 19900 * ip_multirt_ttl ndd variable. 19901 */ 19902 if ((ip_multirt_ttl > 0) && 19903 (ipha->ipha_ttl > ip_multirt_ttl)) { 19904 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19905 "(was %d), dst 0x%08x\n", 19906 ip_multirt_ttl, ipha->ipha_ttl, 19907 ntohl(ire->ire_addr))); 19908 ipha->ipha_ttl = ip_multirt_ttl; 19909 } 19910 19911 /* 19912 * At this point, we check to see if there are any pending 19913 * unresolved routes. ire_multirt_resolvable() 19914 * checks in O(n) that all IRE_OFFSUBNET ire 19915 * entries for the packet's destination and 19916 * flagged RTF_MULTIRT are currently resolved. 19917 * If some remain unresolved, we make a copy 19918 * of the current message. It will be used 19919 * to initiate additional route resolutions. 19920 */ 19921 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19922 MBLK_GETLABEL(first_mp)); 19923 ip2dbg(("ip_wput[not TCP]: ire %p, " 19924 "multirt_need_resolve %d, first_mp %p\n", 19925 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19926 if (multirt_need_resolve) { 19927 copy_mp = copymsg(first_mp); 19928 if (copy_mp != NULL) { 19929 MULTIRT_DEBUG_TAG(copy_mp); 19930 } 19931 } 19932 } 19933 19934 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19935 19936 /* 19937 * Try to resolve another multiroute if 19938 * ire_multirt_resolvable() deemed it necessary 19939 */ 19940 if (copy_mp != NULL) { 19941 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19942 } 19943 if (need_decref) 19944 CONN_DEC_REF(connp); 19945 return; 19946 19947 qnext: 19948 /* 19949 * Upper Level Protocols pass down complete IP datagrams 19950 * as M_DATA messages. Everything else is a sideshow. 19951 * 19952 * 1) We could be re-entering ip_wput because of ip_neworute 19953 * in which case we could have a IPSEC_OUT message. We 19954 * need to pass through ip_wput like other datagrams and 19955 * hence cannot branch to ip_wput_nondata. 19956 * 19957 * 2) ARP, AH, ESP, and other clients who are on the module 19958 * instance of IP stream, give us something to deal with. 19959 * We will handle AH and ESP here and rest in ip_wput_nondata. 19960 * 19961 * 3) ICMP replies also could come here. 19962 */ 19963 if (DB_TYPE(mp) != M_DATA) { 19964 notdata: 19965 if (DB_TYPE(mp) == M_CTL) { 19966 /* 19967 * M_CTL messages are used by ARP, AH and ESP to 19968 * communicate with IP. We deal with IPSEC_IN and 19969 * IPSEC_OUT here. ip_wput_nondata handles other 19970 * cases. 19971 */ 19972 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19973 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19974 first_mp = mp->b_cont; 19975 first_mp->b_flag &= ~MSGHASREF; 19976 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19977 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19978 CONN_DEC_REF(connp); 19979 connp = NULL; 19980 } 19981 if (ii->ipsec_info_type == IPSEC_IN) { 19982 /* 19983 * Either this message goes back to 19984 * IPSEC for further processing or to 19985 * ULP after policy checks. 19986 */ 19987 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19988 return; 19989 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19990 io = (ipsec_out_t *)ii; 19991 if (io->ipsec_out_proc_begin) { 19992 /* 19993 * IPSEC processing has already started. 19994 * Complete it. 19995 * IPQoS notes: We don't care what is 19996 * in ipsec_out_ill_index since this 19997 * won't be processed for IPQoS policies 19998 * in ipsec_out_process. 19999 */ 20000 ipsec_out_process(q, mp, NULL, 20001 io->ipsec_out_ill_index); 20002 return; 20003 } else { 20004 connp = (q->q_next != NULL) ? 20005 NULL : Q_TO_CONN(q); 20006 first_mp = mp; 20007 mp = mp->b_cont; 20008 mctl_present = B_TRUE; 20009 } 20010 zoneid = io->ipsec_out_zoneid; 20011 ASSERT(zoneid != ALL_ZONES); 20012 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20013 /* 20014 * It's an IPsec control message requesting 20015 * an SADB update to be sent to the IPsec 20016 * hardware acceleration capable ills. 20017 */ 20018 ipsec_ctl_t *ipsec_ctl = 20019 (ipsec_ctl_t *)mp->b_rptr; 20020 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20021 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20022 mblk_t *cmp = mp->b_cont; 20023 20024 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20025 ASSERT(cmp != NULL); 20026 20027 freeb(mp); 20028 ill_ipsec_capab_send_all(satype, cmp, sa); 20029 return; 20030 } else { 20031 /* 20032 * This must be ARP or special TSOL signaling. 20033 */ 20034 ip_wput_nondata(NULL, q, mp, NULL); 20035 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20036 "ip_wput_end: q %p (%S)", q, "nondata"); 20037 return; 20038 } 20039 } else { 20040 /* 20041 * This must be non-(ARP/AH/ESP) messages. 20042 */ 20043 ASSERT(!need_decref); 20044 ip_wput_nondata(NULL, q, mp, NULL); 20045 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20046 "ip_wput_end: q %p (%S)", q, "nondata"); 20047 return; 20048 } 20049 } else { 20050 first_mp = mp; 20051 mctl_present = B_FALSE; 20052 } 20053 20054 ASSERT(first_mp != NULL); 20055 /* 20056 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20057 * to make sure that this packet goes out on the same interface it 20058 * came in. We handle that here. 20059 */ 20060 if (mctl_present) { 20061 uint_t ifindex; 20062 20063 io = (ipsec_out_t *)first_mp->b_rptr; 20064 if (io->ipsec_out_attach_if || 20065 io->ipsec_out_xmit_if || 20066 io->ipsec_out_ip_nexthop) { 20067 ill_t *ill; 20068 20069 /* 20070 * We may have lost the conn context if we are 20071 * coming here from ip_newroute(). Copy the 20072 * nexthop information. 20073 */ 20074 if (io->ipsec_out_ip_nexthop) { 20075 ip_nexthop = B_TRUE; 20076 nexthop_addr = io->ipsec_out_nexthop_addr; 20077 20078 ipha = (ipha_t *)mp->b_rptr; 20079 dst = ipha->ipha_dst; 20080 goto send_from_ill; 20081 } else { 20082 ASSERT(io->ipsec_out_ill_index != 0); 20083 ifindex = io->ipsec_out_ill_index; 20084 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20085 NULL, NULL, NULL, NULL); 20086 /* 20087 * ipsec_out_xmit_if bit is used to tell 20088 * ip_wput to use the ill to send outgoing data 20089 * as we have no conn when data comes from ICMP 20090 * error msg routines. Currently this feature is 20091 * only used by ip_mrtun_forward routine. 20092 */ 20093 if (io->ipsec_out_xmit_if) { 20094 xmit_ill = ill; 20095 if (xmit_ill == NULL) { 20096 ip1dbg(("ip_output:bad ifindex " 20097 "for xmit_ill %d\n", 20098 ifindex)); 20099 freemsg(first_mp); 20100 BUMP_MIB(&ip_mib, 20101 ipOutDiscards); 20102 ASSERT(!need_decref); 20103 return; 20104 } 20105 /* Free up the ipsec_out_t mblk */ 20106 ASSERT(first_mp->b_cont == mp); 20107 first_mp->b_cont = NULL; 20108 freeb(first_mp); 20109 /* Just send the IP header+ICMP+data */ 20110 first_mp = mp; 20111 ipha = (ipha_t *)mp->b_rptr; 20112 dst = ipha->ipha_dst; 20113 goto send_from_ill; 20114 } else { 20115 attach_ill = ill; 20116 } 20117 20118 if (attach_ill == NULL) { 20119 ASSERT(xmit_ill == NULL); 20120 ip1dbg(("ip_output: bad ifindex for " 20121 "(BIND TO IPIF_NOFAILOVER) %d\n", 20122 ifindex)); 20123 freemsg(first_mp); 20124 BUMP_MIB(&ip_mib, ipOutDiscards); 20125 ASSERT(!need_decref); 20126 return; 20127 } 20128 } 20129 } 20130 } 20131 20132 ASSERT(xmit_ill == NULL); 20133 20134 /* We have a complete IP datagram heading outbound. */ 20135 ipha = (ipha_t *)mp->b_rptr; 20136 20137 #ifndef SPEED_BEFORE_SAFETY 20138 /* 20139 * Make sure we have a full-word aligned message and that at least 20140 * a simple IP header is accessible in the first message. If not, 20141 * try a pullup. 20142 */ 20143 if (!OK_32PTR(rptr) || 20144 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20145 hdrtoosmall: 20146 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20147 BUMP_MIB(&ip_mib, ipOutDiscards); 20148 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20149 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20150 if (first_mp == NULL) 20151 first_mp = mp; 20152 goto drop_pkt; 20153 } 20154 20155 /* This function assumes that mp points to an IPv4 packet. */ 20156 if (is_system_labeled() && q->q_next == NULL && 20157 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20158 !connp->conn_ulp_labeled) { 20159 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20160 &adjust, connp->conn_mac_exempt); 20161 ipha = (ipha_t *)mp->b_rptr; 20162 if (first_mp != NULL) 20163 first_mp->b_cont = mp; 20164 if (err != 0) { 20165 if (first_mp == NULL) 20166 first_mp = mp; 20167 if (err == EINVAL) 20168 goto icmp_parameter_problem; 20169 ip2dbg(("ip_wput: label check failed (%d)\n", 20170 err)); 20171 goto drop_pkt; 20172 } 20173 iplen = ntohs(ipha->ipha_length) + adjust; 20174 ipha->ipha_length = htons(iplen); 20175 } 20176 20177 ipha = (ipha_t *)mp->b_rptr; 20178 if (first_mp == NULL) { 20179 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20180 /* 20181 * If we got here because of "goto hdrtoosmall" 20182 * We need to attach a IPSEC_OUT. 20183 */ 20184 if (connp->conn_out_enforce_policy) { 20185 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20186 NULL, ipha->ipha_protocol)) == NULL)) { 20187 if (need_decref) 20188 CONN_DEC_REF(connp); 20189 return; 20190 } else { 20191 ASSERT(mp->b_datap->db_type == M_CTL); 20192 first_mp = mp; 20193 mp = mp->b_cont; 20194 mctl_present = B_TRUE; 20195 } 20196 } else { 20197 first_mp = mp; 20198 mctl_present = B_FALSE; 20199 } 20200 } 20201 } 20202 #endif 20203 20204 /* Most of the code below is written for speed, not readability */ 20205 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20206 20207 /* 20208 * If ip_newroute() fails, we're going to need a full 20209 * header for the icmp wraparound. 20210 */ 20211 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20212 uint_t v_hlen; 20213 version_hdrlen_check: 20214 ASSERT(first_mp != NULL); 20215 v_hlen = V_HLEN; 20216 /* 20217 * siphon off IPv6 packets coming down from transport 20218 * layer modules here. 20219 * Note: high-order bit carries NUD reachability confirmation 20220 */ 20221 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20222 /* 20223 * XXX implement a IPv4 and IPv6 packet counter per 20224 * conn and switch when ratio exceeds e.g. 10:1 20225 */ 20226 #ifdef notyet 20227 if (q->q_next == NULL) /* Avoid ill queue */ 20228 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20229 #endif 20230 BUMP_MIB(&ip_mib, ipOutIPv6); 20231 ASSERT(xmit_ill == NULL); 20232 if (attach_ill != NULL) 20233 ill_refrele(attach_ill); 20234 if (need_decref) 20235 mp->b_flag |= MSGHASREF; 20236 (void) ip_output_v6(arg, first_mp, arg2, caller); 20237 return; 20238 } 20239 20240 if ((v_hlen >> 4) != IP_VERSION) { 20241 BUMP_MIB(&ip_mib, ipOutDiscards); 20242 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20243 "ip_wput_end: q %p (%S)", q, "badvers"); 20244 goto drop_pkt; 20245 } 20246 /* 20247 * Is the header length at least 20 bytes? 20248 * 20249 * Are there enough bytes accessible in the header? If 20250 * not, try a pullup. 20251 */ 20252 v_hlen &= 0xF; 20253 v_hlen <<= 2; 20254 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20255 BUMP_MIB(&ip_mib, ipOutDiscards); 20256 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20257 "ip_wput_end: q %p (%S)", q, "badlen"); 20258 goto drop_pkt; 20259 } 20260 if (v_hlen > (mp->b_wptr - rptr)) { 20261 if (!pullupmsg(mp, v_hlen)) { 20262 BUMP_MIB(&ip_mib, ipOutDiscards); 20263 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20264 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20265 goto drop_pkt; 20266 } 20267 ipha = (ipha_t *)mp->b_rptr; 20268 } 20269 /* 20270 * Move first entry from any source route into ipha_dst and 20271 * verify the options 20272 */ 20273 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20274 ASSERT(xmit_ill == NULL); 20275 if (attach_ill != NULL) 20276 ill_refrele(attach_ill); 20277 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20278 "ip_wput_end: q %p (%S)", q, "badopts"); 20279 if (need_decref) 20280 CONN_DEC_REF(connp); 20281 return; 20282 } 20283 } 20284 dst = ipha->ipha_dst; 20285 20286 /* 20287 * Try to get an IRE_CACHE for the destination address. If we can't, 20288 * we have to run the packet through ip_newroute which will take 20289 * the appropriate action to arrange for an IRE_CACHE, such as querying 20290 * a resolver, or assigning a default gateway, etc. 20291 */ 20292 if (CLASSD(dst)) { 20293 ipif_t *ipif; 20294 uint32_t setsrc = 0; 20295 20296 multicast: 20297 ASSERT(first_mp != NULL); 20298 ASSERT(xmit_ill == NULL); 20299 ip2dbg(("ip_wput: CLASSD\n")); 20300 if (connp == NULL) { 20301 /* 20302 * Use the first good ipif on the ill. 20303 * XXX Should this ever happen? (Appears 20304 * to show up with just ppp and no ethernet due 20305 * to in.rdisc.) 20306 * However, ire_send should be able to 20307 * call ip_wput_ire directly. 20308 * 20309 * XXX Also, this can happen for ICMP and other packets 20310 * with multicast source addresses. Perhaps we should 20311 * fix things so that we drop the packet in question, 20312 * but for now, just run with it. 20313 */ 20314 ill_t *ill = (ill_t *)q->q_ptr; 20315 20316 /* 20317 * Don't honor attach_if for this case. If ill 20318 * is part of the group, ipif could belong to 20319 * any ill and we cannot maintain attach_ill 20320 * and ipif_ill same anymore and the assert 20321 * below would fail. 20322 */ 20323 if (mctl_present && io->ipsec_out_attach_if) { 20324 io->ipsec_out_ill_index = 0; 20325 io->ipsec_out_attach_if = B_FALSE; 20326 ASSERT(attach_ill != NULL); 20327 ill_refrele(attach_ill); 20328 attach_ill = NULL; 20329 } 20330 20331 ASSERT(attach_ill == NULL); 20332 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20333 if (ipif == NULL) { 20334 if (need_decref) 20335 CONN_DEC_REF(connp); 20336 freemsg(first_mp); 20337 return; 20338 } 20339 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20340 ntohl(dst), ill->ill_name)); 20341 } else { 20342 /* 20343 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20344 * IP_XMIT_IF is honoured. 20345 * Block comment above this function explains the 20346 * locking mechanism used here 20347 */ 20348 xmit_ill = conn_get_held_ill(connp, 20349 &connp->conn_xmit_if_ill, &err); 20350 if (err == ILL_LOOKUP_FAILED) { 20351 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20352 goto drop_pkt; 20353 } 20354 if (xmit_ill == NULL) { 20355 ipif = conn_get_held_ipif(connp, 20356 &connp->conn_multicast_ipif, &err); 20357 if (err == IPIF_LOOKUP_FAILED) { 20358 ip1dbg(("ip_wput: No ipif for " 20359 "multicast\n")); 20360 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20361 goto drop_pkt; 20362 } 20363 } 20364 if (xmit_ill != NULL) { 20365 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20366 if (ipif == NULL) { 20367 ip1dbg(("ip_wput: No ipif for " 20368 "IP_XMIT_IF\n")); 20369 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20370 goto drop_pkt; 20371 } 20372 } else if (ipif == NULL || ipif->ipif_isv6) { 20373 /* 20374 * We must do this ipif determination here 20375 * else we could pass through ip_newroute 20376 * and come back here without the conn context. 20377 * 20378 * Note: we do late binding i.e. we bind to 20379 * the interface when the first packet is sent. 20380 * For performance reasons we do not rebind on 20381 * each packet but keep the binding until the 20382 * next IP_MULTICAST_IF option. 20383 * 20384 * conn_multicast_{ipif,ill} are shared between 20385 * IPv4 and IPv6 and AF_INET6 sockets can 20386 * send both IPv4 and IPv6 packets. Hence 20387 * we have to check that "isv6" matches above. 20388 */ 20389 if (ipif != NULL) 20390 ipif_refrele(ipif); 20391 ipif = ipif_lookup_group(dst, zoneid); 20392 if (ipif == NULL) { 20393 ip1dbg(("ip_wput: No ipif for " 20394 "multicast\n")); 20395 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20396 goto drop_pkt; 20397 } 20398 err = conn_set_held_ipif(connp, 20399 &connp->conn_multicast_ipif, ipif); 20400 if (err == IPIF_LOOKUP_FAILED) { 20401 ipif_refrele(ipif); 20402 ip1dbg(("ip_wput: No ipif for " 20403 "multicast\n")); 20404 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20405 goto drop_pkt; 20406 } 20407 } 20408 } 20409 ASSERT(!ipif->ipif_isv6); 20410 /* 20411 * As we may lose the conn by the time we reach ip_wput_ire, 20412 * we copy conn_multicast_loop and conn_dontroute on to an 20413 * ipsec_out. In case if this datagram goes out secure, 20414 * we need the ill_index also. Copy that also into the 20415 * ipsec_out. 20416 */ 20417 if (mctl_present) { 20418 io = (ipsec_out_t *)first_mp->b_rptr; 20419 ASSERT(first_mp->b_datap->db_type == M_CTL); 20420 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20421 } else { 20422 ASSERT(mp == first_mp); 20423 if ((first_mp = allocb(sizeof (ipsec_info_t), 20424 BPRI_HI)) == NULL) { 20425 ipif_refrele(ipif); 20426 first_mp = mp; 20427 goto drop_pkt; 20428 } 20429 first_mp->b_datap->db_type = M_CTL; 20430 first_mp->b_wptr += sizeof (ipsec_info_t); 20431 /* ipsec_out_secure is B_FALSE now */ 20432 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20433 io = (ipsec_out_t *)first_mp->b_rptr; 20434 io->ipsec_out_type = IPSEC_OUT; 20435 io->ipsec_out_len = sizeof (ipsec_out_t); 20436 io->ipsec_out_use_global_policy = B_TRUE; 20437 first_mp->b_cont = mp; 20438 mctl_present = B_TRUE; 20439 } 20440 if (attach_ill != NULL) { 20441 ASSERT(attach_ill == ipif->ipif_ill); 20442 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20443 20444 /* 20445 * Check if we need an ire that will not be 20446 * looked up by anybody else i.e. HIDDEN. 20447 */ 20448 if (ill_is_probeonly(attach_ill)) { 20449 match_flags |= MATCH_IRE_MARK_HIDDEN; 20450 } 20451 io->ipsec_out_ill_index = 20452 attach_ill->ill_phyint->phyint_ifindex; 20453 io->ipsec_out_attach_if = B_TRUE; 20454 } else { 20455 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20456 io->ipsec_out_ill_index = 20457 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20458 } 20459 if (connp != NULL) { 20460 io->ipsec_out_multicast_loop = 20461 connp->conn_multicast_loop; 20462 io->ipsec_out_dontroute = connp->conn_dontroute; 20463 io->ipsec_out_zoneid = connp->conn_zoneid; 20464 } 20465 /* 20466 * If the application uses IP_MULTICAST_IF with 20467 * different logical addresses of the same ILL, we 20468 * need to make sure that the soruce address of 20469 * the packet matches the logical IP address used 20470 * in the option. We do it by initializing ipha_src 20471 * here. This should keep IPSEC also happy as 20472 * when we return from IPSEC processing, we don't 20473 * have to worry about getting the right address on 20474 * the packet. Thus it is sufficient to look for 20475 * IRE_CACHE using MATCH_IRE_ILL rathen than 20476 * MATCH_IRE_IPIF. 20477 * 20478 * NOTE : We need to do it for non-secure case also as 20479 * this might go out secure if there is a global policy 20480 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20481 * address, the source should be initialized already and 20482 * hence we won't be initializing here. 20483 * 20484 * As we do not have the ire yet, it is possible that 20485 * we set the source address here and then later discover 20486 * that the ire implies the source address to be assigned 20487 * through the RTF_SETSRC flag. 20488 * In that case, the setsrc variable will remind us 20489 * that overwritting the source address by the one 20490 * of the RTF_SETSRC-flagged ire is allowed. 20491 */ 20492 if (ipha->ipha_src == INADDR_ANY && 20493 (connp == NULL || !connp->conn_unspec_src)) { 20494 ipha->ipha_src = ipif->ipif_src_addr; 20495 setsrc = RTF_SETSRC; 20496 } 20497 /* 20498 * Find an IRE which matches the destination and the outgoing 20499 * queue (i.e. the outgoing interface.) 20500 * For loopback use a unicast IP address for 20501 * the ire lookup. 20502 */ 20503 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20504 PHYI_LOOPBACK) { 20505 dst = ipif->ipif_lcl_addr; 20506 } 20507 /* 20508 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20509 * We don't need to lookup ire in ctable as the packet 20510 * needs to be sent to the destination through the specified 20511 * ill irrespective of ires in the cache table. 20512 */ 20513 ire = NULL; 20514 if (xmit_ill == NULL) { 20515 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20516 zoneid, MBLK_GETLABEL(mp), match_flags); 20517 } 20518 20519 /* 20520 * refrele attach_ill as its not needed anymore. 20521 */ 20522 if (attach_ill != NULL) { 20523 ill_refrele(attach_ill); 20524 attach_ill = NULL; 20525 } 20526 20527 if (ire == NULL) { 20528 /* 20529 * Multicast loopback and multicast forwarding is 20530 * done in ip_wput_ire. 20531 * 20532 * Mark this packet to make it be delivered to 20533 * ip_wput_ire after the new ire has been 20534 * created. 20535 * 20536 * The call to ip_newroute_ipif takes into account 20537 * the setsrc reminder. In any case, we take care 20538 * of the RTF_MULTIRT flag. 20539 */ 20540 mp->b_prev = mp->b_next = NULL; 20541 if (xmit_ill == NULL || 20542 xmit_ill->ill_ipif_up_count > 0) { 20543 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20544 setsrc | RTF_MULTIRT, zoneid); 20545 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20546 "ip_wput_end: q %p (%S)", q, "noire"); 20547 } else { 20548 freemsg(first_mp); 20549 } 20550 ipif_refrele(ipif); 20551 if (xmit_ill != NULL) 20552 ill_refrele(xmit_ill); 20553 if (need_decref) 20554 CONN_DEC_REF(connp); 20555 return; 20556 } 20557 20558 ipif_refrele(ipif); 20559 ipif = NULL; 20560 ASSERT(xmit_ill == NULL); 20561 20562 /* 20563 * Honor the RTF_SETSRC flag for multicast packets, 20564 * if allowed by the setsrc reminder. 20565 */ 20566 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20567 ipha->ipha_src = ire->ire_src_addr; 20568 } 20569 20570 /* 20571 * Unconditionally force the TTL to 1 for 20572 * multirouted multicast packets: 20573 * multirouted multicast should not cross 20574 * multicast routers. 20575 */ 20576 if (ire->ire_flags & RTF_MULTIRT) { 20577 if (ipha->ipha_ttl > 1) { 20578 ip2dbg(("ip_wput: forcing multicast " 20579 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20580 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20581 ipha->ipha_ttl = 1; 20582 } 20583 } 20584 } else { 20585 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20586 if ((ire != NULL) && (ire->ire_type & 20587 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20588 ignore_dontroute = B_TRUE; 20589 ignore_nexthop = B_TRUE; 20590 } 20591 if (ire != NULL) { 20592 ire_refrele(ire); 20593 ire = NULL; 20594 } 20595 /* 20596 * Guard against coming in from arp in which case conn is NULL. 20597 * Also guard against non M_DATA with dontroute set but 20598 * destined to local, loopback or broadcast addresses. 20599 */ 20600 if (connp != NULL && connp->conn_dontroute && 20601 !ignore_dontroute) { 20602 dontroute: 20603 /* 20604 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20605 * routing protocols from seeing false direct 20606 * connectivity. 20607 */ 20608 ipha->ipha_ttl = 1; 20609 /* 20610 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20611 * along with SO_DONTROUTE, higher precedence is 20612 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20613 */ 20614 if (connp->conn_xmit_if_ill == NULL) { 20615 /* If suitable ipif not found, drop packet */ 20616 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20617 if (dst_ipif == NULL) { 20618 ip1dbg(("ip_wput: no route for " 20619 "dst using SO_DONTROUTE\n")); 20620 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20621 mp->b_prev = mp->b_next = NULL; 20622 if (first_mp == NULL) 20623 first_mp = mp; 20624 goto drop_pkt; 20625 } else { 20626 /* 20627 * If suitable ipif has been found, set 20628 * xmit_ill to the corresponding 20629 * ipif_ill because we'll be following 20630 * the IP_XMIT_IF logic. 20631 */ 20632 ASSERT(xmit_ill == NULL); 20633 xmit_ill = dst_ipif->ipif_ill; 20634 mutex_enter(&xmit_ill->ill_lock); 20635 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20636 mutex_exit(&xmit_ill->ill_lock); 20637 xmit_ill = NULL; 20638 ipif_refrele(dst_ipif); 20639 ip1dbg(("ip_wput: no route for" 20640 " dst using" 20641 " SO_DONTROUTE\n")); 20642 BUMP_MIB(&ip_mib, 20643 ipOutNoRoutes); 20644 mp->b_prev = mp->b_next = NULL; 20645 if (first_mp == NULL) 20646 first_mp = mp; 20647 goto drop_pkt; 20648 } 20649 ill_refhold_locked(xmit_ill); 20650 mutex_exit(&xmit_ill->ill_lock); 20651 ipif_refrele(dst_ipif); 20652 } 20653 } 20654 20655 } 20656 /* 20657 * If we are bound to IPIF_NOFAILOVER address, look for 20658 * an IRE_CACHE matching the ill. 20659 */ 20660 send_from_ill: 20661 if (attach_ill != NULL) { 20662 ipif_t *attach_ipif; 20663 20664 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20665 20666 /* 20667 * Check if we need an ire that will not be 20668 * looked up by anybody else i.e. HIDDEN. 20669 */ 20670 if (ill_is_probeonly(attach_ill)) { 20671 match_flags |= MATCH_IRE_MARK_HIDDEN; 20672 } 20673 20674 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20675 if (attach_ipif == NULL) { 20676 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20677 goto drop_pkt; 20678 } 20679 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20680 zoneid, MBLK_GETLABEL(mp), match_flags); 20681 ipif_refrele(attach_ipif); 20682 } else if (xmit_ill != NULL || (connp != NULL && 20683 connp->conn_xmit_if_ill != NULL)) { 20684 /* 20685 * Mark this packet as originated locally 20686 */ 20687 mp->b_prev = mp->b_next = NULL; 20688 /* 20689 * xmit_ill could be NULL if SO_DONTROUTE 20690 * is also set. 20691 */ 20692 if (xmit_ill == NULL) { 20693 xmit_ill = conn_get_held_ill(connp, 20694 &connp->conn_xmit_if_ill, &err); 20695 if (err == ILL_LOOKUP_FAILED) { 20696 if (need_decref) 20697 CONN_DEC_REF(connp); 20698 freemsg(first_mp); 20699 return; 20700 } 20701 if (xmit_ill == NULL) { 20702 if (connp->conn_dontroute) 20703 goto dontroute; 20704 goto send_from_ill; 20705 } 20706 } 20707 /* 20708 * could be SO_DONTROUTE case also. 20709 * check at least one interface is UP as 20710 * spcified by this ILL, and then call 20711 * ip_newroute_ipif() 20712 */ 20713 if (xmit_ill->ill_ipif_up_count > 0) { 20714 ipif_t *ipif; 20715 20716 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20717 if (ipif != NULL) { 20718 ip_newroute_ipif(q, first_mp, ipif, 20719 dst, connp, 0, zoneid); 20720 ipif_refrele(ipif); 20721 ip1dbg(("ip_wput: ip_unicast_if\n")); 20722 } 20723 } else { 20724 freemsg(first_mp); 20725 } 20726 ill_refrele(xmit_ill); 20727 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20728 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20729 if (need_decref) 20730 CONN_DEC_REF(connp); 20731 return; 20732 } else if (ip_nexthop || (connp != NULL && 20733 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20734 if (!ip_nexthop) { 20735 ip_nexthop = B_TRUE; 20736 nexthop_addr = connp->conn_nexthop_v4; 20737 } 20738 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20739 MATCH_IRE_GW; 20740 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20741 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20742 } else { 20743 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20744 } 20745 if (!ire) { 20746 /* 20747 * Make sure we don't load spread if this 20748 * is IPIF_NOFAILOVER case. 20749 */ 20750 if ((attach_ill != NULL) || 20751 (ip_nexthop && !ignore_nexthop)) { 20752 if (mctl_present) { 20753 io = (ipsec_out_t *)first_mp->b_rptr; 20754 ASSERT(first_mp->b_datap->db_type == 20755 M_CTL); 20756 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20757 } else { 20758 ASSERT(mp == first_mp); 20759 first_mp = allocb( 20760 sizeof (ipsec_info_t), BPRI_HI); 20761 if (first_mp == NULL) { 20762 first_mp = mp; 20763 goto drop_pkt; 20764 } 20765 first_mp->b_datap->db_type = M_CTL; 20766 first_mp->b_wptr += 20767 sizeof (ipsec_info_t); 20768 /* ipsec_out_secure is B_FALSE now */ 20769 bzero(first_mp->b_rptr, 20770 sizeof (ipsec_info_t)); 20771 io = (ipsec_out_t *)first_mp->b_rptr; 20772 io->ipsec_out_type = IPSEC_OUT; 20773 io->ipsec_out_len = 20774 sizeof (ipsec_out_t); 20775 io->ipsec_out_use_global_policy = 20776 B_TRUE; 20777 first_mp->b_cont = mp; 20778 mctl_present = B_TRUE; 20779 } 20780 if (attach_ill != NULL) { 20781 io->ipsec_out_ill_index = attach_ill-> 20782 ill_phyint->phyint_ifindex; 20783 io->ipsec_out_attach_if = B_TRUE; 20784 } else { 20785 io->ipsec_out_ip_nexthop = ip_nexthop; 20786 io->ipsec_out_nexthop_addr = 20787 nexthop_addr; 20788 } 20789 } 20790 noirefound: 20791 /* 20792 * Mark this packet as having originated on 20793 * this machine. This will be noted in 20794 * ire_add_then_send, which needs to know 20795 * whether to run it back through ip_wput or 20796 * ip_rput following successful resolution. 20797 */ 20798 mp->b_prev = NULL; 20799 mp->b_next = NULL; 20800 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 20801 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20802 "ip_wput_end: q %p (%S)", q, "newroute"); 20803 if (attach_ill != NULL) 20804 ill_refrele(attach_ill); 20805 if (xmit_ill != NULL) 20806 ill_refrele(xmit_ill); 20807 if (need_decref) 20808 CONN_DEC_REF(connp); 20809 return; 20810 } 20811 } 20812 20813 /* We now know where we are going with it. */ 20814 20815 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20816 "ip_wput_end: q %p (%S)", q, "end"); 20817 20818 /* 20819 * Check if the ire has the RTF_MULTIRT flag, inherited 20820 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20821 */ 20822 if (ire->ire_flags & RTF_MULTIRT) { 20823 /* 20824 * Force the TTL of multirouted packets if required. 20825 * The TTL of such packets is bounded by the 20826 * ip_multirt_ttl ndd variable. 20827 */ 20828 if ((ip_multirt_ttl > 0) && 20829 (ipha->ipha_ttl > ip_multirt_ttl)) { 20830 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20831 "(was %d), dst 0x%08x\n", 20832 ip_multirt_ttl, ipha->ipha_ttl, 20833 ntohl(ire->ire_addr))); 20834 ipha->ipha_ttl = ip_multirt_ttl; 20835 } 20836 /* 20837 * At this point, we check to see if there are any pending 20838 * unresolved routes. ire_multirt_resolvable() 20839 * checks in O(n) that all IRE_OFFSUBNET ire 20840 * entries for the packet's destination and 20841 * flagged RTF_MULTIRT are currently resolved. 20842 * If some remain unresolved, we make a copy 20843 * of the current message. It will be used 20844 * to initiate additional route resolutions. 20845 */ 20846 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20847 MBLK_GETLABEL(first_mp)); 20848 ip2dbg(("ip_wput[noirefound]: ire %p, " 20849 "multirt_need_resolve %d, first_mp %p\n", 20850 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20851 if (multirt_need_resolve) { 20852 copy_mp = copymsg(first_mp); 20853 if (copy_mp != NULL) { 20854 MULTIRT_DEBUG_TAG(copy_mp); 20855 } 20856 } 20857 } 20858 20859 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20860 /* 20861 * Try to resolve another multiroute if 20862 * ire_multirt_resolvable() deemed it necessary. 20863 * At this point, we need to distinguish 20864 * multicasts from other packets. For multicasts, 20865 * we call ip_newroute_ipif() and request that both 20866 * multirouting and setsrc flags are checked. 20867 */ 20868 if (copy_mp != NULL) { 20869 if (CLASSD(dst)) { 20870 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20871 if (ipif) { 20872 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20873 RTF_SETSRC | RTF_MULTIRT, zoneid); 20874 ipif_refrele(ipif); 20875 } else { 20876 MULTIRT_DEBUG_UNTAG(copy_mp); 20877 freemsg(copy_mp); 20878 copy_mp = NULL; 20879 } 20880 } else { 20881 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20882 } 20883 } 20884 if (attach_ill != NULL) 20885 ill_refrele(attach_ill); 20886 if (xmit_ill != NULL) 20887 ill_refrele(xmit_ill); 20888 if (need_decref) 20889 CONN_DEC_REF(connp); 20890 return; 20891 20892 icmp_parameter_problem: 20893 /* could not have originated externally */ 20894 ASSERT(mp->b_prev == NULL); 20895 if (ip_hdr_complete(ipha, zoneid) == 0) { 20896 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20897 /* it's the IP header length that's in trouble */ 20898 icmp_param_problem(q, first_mp, 0, zoneid); 20899 first_mp = NULL; 20900 } 20901 20902 drop_pkt: 20903 ip1dbg(("ip_wput: dropped packet\n")); 20904 if (ire != NULL) 20905 ire_refrele(ire); 20906 if (need_decref) 20907 CONN_DEC_REF(connp); 20908 freemsg(first_mp); 20909 if (attach_ill != NULL) 20910 ill_refrele(attach_ill); 20911 if (xmit_ill != NULL) 20912 ill_refrele(xmit_ill); 20913 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20914 "ip_wput_end: q %p (%S)", q, "droppkt"); 20915 } 20916 20917 /* 20918 * If this is a conn_t queue, then we pass in the conn. This includes the 20919 * zoneid. 20920 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 20921 * in which case we use the global zoneid since those are all part of 20922 * the global zone. 20923 */ 20924 void 20925 ip_wput(queue_t *q, mblk_t *mp) 20926 { 20927 if (CONN_Q(q)) 20928 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20929 else 20930 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 20931 } 20932 20933 /* 20934 * 20935 * The following rules must be observed when accessing any ipif or ill 20936 * that has been cached in the conn. Typically conn_nofailover_ill, 20937 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20938 * 20939 * Access: The ipif or ill pointed to from the conn can be accessed under 20940 * the protection of the conn_lock or after it has been refheld under the 20941 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20942 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20943 * The reason for this is that a concurrent unplumb could actually be 20944 * cleaning up these cached pointers by walking the conns and might have 20945 * finished cleaning up the conn in question. The macros check that an 20946 * unplumb has not yet started on the ipif or ill. 20947 * 20948 * Caching: An ipif or ill pointer may be cached in the conn only after 20949 * making sure that an unplumb has not started. So the caching is done 20950 * while holding both the conn_lock and the ill_lock and after using the 20951 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20952 * flag before starting the cleanup of conns. 20953 * 20954 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20955 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20956 * or a reference to the ipif or a reference to an ire that references the 20957 * ipif. An ipif does not change its ill except for failover/failback. Since 20958 * failover/failback happens only after bringing down the ipif and making sure 20959 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20960 * the above holds. 20961 */ 20962 ipif_t * 20963 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20964 { 20965 ipif_t *ipif; 20966 ill_t *ill; 20967 20968 *err = 0; 20969 rw_enter(&ill_g_lock, RW_READER); 20970 mutex_enter(&connp->conn_lock); 20971 ipif = *ipifp; 20972 if (ipif != NULL) { 20973 ill = ipif->ipif_ill; 20974 mutex_enter(&ill->ill_lock); 20975 if (IPIF_CAN_LOOKUP(ipif)) { 20976 ipif_refhold_locked(ipif); 20977 mutex_exit(&ill->ill_lock); 20978 mutex_exit(&connp->conn_lock); 20979 rw_exit(&ill_g_lock); 20980 return (ipif); 20981 } else { 20982 *err = IPIF_LOOKUP_FAILED; 20983 } 20984 mutex_exit(&ill->ill_lock); 20985 } 20986 mutex_exit(&connp->conn_lock); 20987 rw_exit(&ill_g_lock); 20988 return (NULL); 20989 } 20990 20991 ill_t * 20992 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20993 { 20994 ill_t *ill; 20995 20996 *err = 0; 20997 mutex_enter(&connp->conn_lock); 20998 ill = *illp; 20999 if (ill != NULL) { 21000 mutex_enter(&ill->ill_lock); 21001 if (ILL_CAN_LOOKUP(ill)) { 21002 ill_refhold_locked(ill); 21003 mutex_exit(&ill->ill_lock); 21004 mutex_exit(&connp->conn_lock); 21005 return (ill); 21006 } else { 21007 *err = ILL_LOOKUP_FAILED; 21008 } 21009 mutex_exit(&ill->ill_lock); 21010 } 21011 mutex_exit(&connp->conn_lock); 21012 return (NULL); 21013 } 21014 21015 static int 21016 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21017 { 21018 ill_t *ill; 21019 21020 ill = ipif->ipif_ill; 21021 mutex_enter(&connp->conn_lock); 21022 mutex_enter(&ill->ill_lock); 21023 if (IPIF_CAN_LOOKUP(ipif)) { 21024 *ipifp = ipif; 21025 mutex_exit(&ill->ill_lock); 21026 mutex_exit(&connp->conn_lock); 21027 return (0); 21028 } 21029 mutex_exit(&ill->ill_lock); 21030 mutex_exit(&connp->conn_lock); 21031 return (IPIF_LOOKUP_FAILED); 21032 } 21033 21034 /* 21035 * This is called if the outbound datagram needs fragmentation. 21036 * 21037 * NOTE : This function does not ire_refrele the ire argument passed in. 21038 */ 21039 static void 21040 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 21041 { 21042 ipha_t *ipha; 21043 mblk_t *mp; 21044 uint32_t v_hlen_tos_len; 21045 uint32_t max_frag; 21046 uint32_t frag_flag; 21047 boolean_t dont_use; 21048 21049 if (ipsec_mp->b_datap->db_type == M_CTL) { 21050 mp = ipsec_mp->b_cont; 21051 } else { 21052 mp = ipsec_mp; 21053 } 21054 21055 ipha = (ipha_t *)mp->b_rptr; 21056 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21057 21058 #ifdef _BIG_ENDIAN 21059 #define V_HLEN (v_hlen_tos_len >> 24) 21060 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21061 #else 21062 #define V_HLEN (v_hlen_tos_len & 0xFF) 21063 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21064 #endif 21065 21066 #ifndef SPEED_BEFORE_SAFETY 21067 /* 21068 * Check that ipha_length is consistent with 21069 * the mblk length 21070 */ 21071 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21072 ip0dbg(("Packet length mismatch: %d, %ld\n", 21073 LENGTH, msgdsize(mp))); 21074 freemsg(ipsec_mp); 21075 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21076 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21077 "packet length mismatch"); 21078 return; 21079 } 21080 #endif 21081 /* 21082 * Don't use frag_flag if pre-built packet or source 21083 * routed or if multicast (since multicast packets do not solicit 21084 * ICMP "packet too big" messages). Get the values of 21085 * max_frag and frag_flag atomically by acquiring the 21086 * ire_lock. 21087 */ 21088 mutex_enter(&ire->ire_lock); 21089 max_frag = ire->ire_max_frag; 21090 frag_flag = ire->ire_frag_flag; 21091 mutex_exit(&ire->ire_lock); 21092 21093 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21094 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21095 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21096 21097 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21098 (dont_use ? 0 : frag_flag), zoneid); 21099 } 21100 21101 /* 21102 * Used for deciding the MSS size for the upper layer. Thus 21103 * we need to check the outbound policy values in the conn. 21104 */ 21105 int 21106 conn_ipsec_length(conn_t *connp) 21107 { 21108 ipsec_latch_t *ipl; 21109 21110 ipl = connp->conn_latch; 21111 if (ipl == NULL) 21112 return (0); 21113 21114 if (ipl->ipl_out_policy == NULL) 21115 return (0); 21116 21117 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21118 } 21119 21120 /* 21121 * Returns an estimate of the IPSEC headers size. This is used if 21122 * we don't want to call into IPSEC to get the exact size. 21123 */ 21124 int 21125 ipsec_out_extra_length(mblk_t *ipsec_mp) 21126 { 21127 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21128 ipsec_action_t *a; 21129 21130 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21131 if (!io->ipsec_out_secure) 21132 return (0); 21133 21134 a = io->ipsec_out_act; 21135 21136 if (a == NULL) { 21137 ASSERT(io->ipsec_out_policy != NULL); 21138 a = io->ipsec_out_policy->ipsp_act; 21139 } 21140 ASSERT(a != NULL); 21141 21142 return (a->ipa_ovhd); 21143 } 21144 21145 /* 21146 * Returns an estimate of the IPSEC headers size. This is used if 21147 * we don't want to call into IPSEC to get the exact size. 21148 */ 21149 int 21150 ipsec_in_extra_length(mblk_t *ipsec_mp) 21151 { 21152 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21153 ipsec_action_t *a; 21154 21155 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21156 21157 a = ii->ipsec_in_action; 21158 return (a == NULL ? 0 : a->ipa_ovhd); 21159 } 21160 21161 /* 21162 * If there are any source route options, return the true final 21163 * destination. Otherwise, return the destination. 21164 */ 21165 ipaddr_t 21166 ip_get_dst(ipha_t *ipha) 21167 { 21168 ipoptp_t opts; 21169 uchar_t *opt; 21170 uint8_t optval; 21171 uint8_t optlen; 21172 ipaddr_t dst; 21173 uint32_t off; 21174 21175 dst = ipha->ipha_dst; 21176 21177 if (IS_SIMPLE_IPH(ipha)) 21178 return (dst); 21179 21180 for (optval = ipoptp_first(&opts, ipha); 21181 optval != IPOPT_EOL; 21182 optval = ipoptp_next(&opts)) { 21183 opt = opts.ipoptp_cur; 21184 optlen = opts.ipoptp_len; 21185 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21186 switch (optval) { 21187 case IPOPT_SSRR: 21188 case IPOPT_LSRR: 21189 off = opt[IPOPT_OFFSET]; 21190 /* 21191 * If one of the conditions is true, it means 21192 * end of options and dst already has the right 21193 * value. 21194 */ 21195 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21196 off = optlen - IP_ADDR_LEN; 21197 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21198 } 21199 return (dst); 21200 default: 21201 break; 21202 } 21203 } 21204 21205 return (dst); 21206 } 21207 21208 mblk_t * 21209 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21210 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21211 { 21212 ipsec_out_t *io; 21213 mblk_t *first_mp; 21214 boolean_t policy_present; 21215 21216 first_mp = mp; 21217 if (mp->b_datap->db_type == M_CTL) { 21218 io = (ipsec_out_t *)first_mp->b_rptr; 21219 /* 21220 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21221 * 21222 * 1) There is per-socket policy (including cached global 21223 * policy) or a policy on the IP-in-IP tunnel. 21224 * 2) There is no per-socket policy, but it is 21225 * a multicast packet that needs to go out 21226 * on a specific interface. This is the case 21227 * where (ip_wput and ip_wput_multicast) attaches 21228 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21229 * 21230 * In case (2) we check with global policy to 21231 * see if there is a match and set the ill_index 21232 * appropriately so that we can lookup the ire 21233 * properly in ip_wput_ipsec_out. 21234 */ 21235 21236 /* 21237 * ipsec_out_use_global_policy is set to B_FALSE 21238 * in ipsec_in_to_out(). Refer to that function for 21239 * details. 21240 */ 21241 if ((io->ipsec_out_latch == NULL) && 21242 (io->ipsec_out_use_global_policy)) { 21243 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21244 ire, connp, unspec_src, zoneid)); 21245 } 21246 if (!io->ipsec_out_secure) { 21247 /* 21248 * If this is not a secure packet, drop 21249 * the IPSEC_OUT mp and treat it as a clear 21250 * packet. This happens when we are sending 21251 * a ICMP reply back to a clear packet. See 21252 * ipsec_in_to_out() for details. 21253 */ 21254 mp = first_mp->b_cont; 21255 freeb(first_mp); 21256 } 21257 return (mp); 21258 } 21259 /* 21260 * See whether we need to attach a global policy here. We 21261 * don't depend on the conn (as it could be null) for deciding 21262 * what policy this datagram should go through because it 21263 * should have happened in ip_wput if there was some 21264 * policy. This normally happens for connections which are not 21265 * fully bound preventing us from caching policies in 21266 * ip_bind. Packets coming from the TCP listener/global queue 21267 * - which are non-hard_bound - could also be affected by 21268 * applying policy here. 21269 * 21270 * If this packet is coming from tcp global queue or listener, 21271 * we will be applying policy here. This may not be *right* 21272 * if these packets are coming from the detached connection as 21273 * it could have gone in clear before. This happens only if a 21274 * TCP connection started when there is no policy and somebody 21275 * added policy before it became detached. Thus packets of the 21276 * detached connection could go out secure and the other end 21277 * would drop it because it will be expecting in clear. The 21278 * converse is not true i.e if somebody starts a TCP 21279 * connection and deletes the policy, all the packets will 21280 * still go out with the policy that existed before deleting 21281 * because ip_unbind sends up policy information which is used 21282 * by TCP on subsequent ip_wputs. The right solution is to fix 21283 * TCP to attach a dummy IPSEC_OUT and set 21284 * ipsec_out_use_global_policy to B_FALSE. As this might 21285 * affect performance for normal cases, we are not doing it. 21286 * Thus, set policy before starting any TCP connections. 21287 * 21288 * NOTE - We might apply policy even for a hard bound connection 21289 * - for which we cached policy in ip_bind - if somebody added 21290 * global policy after we inherited the policy in ip_bind. 21291 * This means that the packets that were going out in clear 21292 * previously would start going secure and hence get dropped 21293 * on the other side. To fix this, TCP attaches a dummy 21294 * ipsec_out and make sure that we don't apply global policy. 21295 */ 21296 if (ipha != NULL) 21297 policy_present = ipsec_outbound_v4_policy_present; 21298 else 21299 policy_present = ipsec_outbound_v6_policy_present; 21300 if (!policy_present) 21301 return (mp); 21302 21303 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21304 zoneid)); 21305 } 21306 21307 ire_t * 21308 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21309 { 21310 ipaddr_t addr; 21311 ire_t *save_ire; 21312 irb_t *irb; 21313 ill_group_t *illgrp; 21314 int err; 21315 21316 save_ire = ire; 21317 addr = ire->ire_addr; 21318 21319 ASSERT(ire->ire_type == IRE_BROADCAST); 21320 21321 illgrp = connp->conn_outgoing_ill->ill_group; 21322 if (illgrp == NULL) { 21323 *conn_outgoing_ill = conn_get_held_ill(connp, 21324 &connp->conn_outgoing_ill, &err); 21325 if (err == ILL_LOOKUP_FAILED) { 21326 ire_refrele(save_ire); 21327 return (NULL); 21328 } 21329 return (save_ire); 21330 } 21331 /* 21332 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21333 * If it is part of the group, we need to send on the ire 21334 * that has been cleared of IRE_MARK_NORECV and that belongs 21335 * to this group. This is okay as IP_BOUND_IF really means 21336 * any ill in the group. We depend on the fact that the 21337 * first ire in the group is always cleared of IRE_MARK_NORECV 21338 * if such an ire exists. This is possible only if you have 21339 * at least one ill in the group that has not failed. 21340 * 21341 * First get to the ire that matches the address and group. 21342 * 21343 * We don't look for an ire with a matching zoneid because a given zone 21344 * won't always have broadcast ires on all ills in the group. 21345 */ 21346 irb = ire->ire_bucket; 21347 rw_enter(&irb->irb_lock, RW_READER); 21348 if (ire->ire_marks & IRE_MARK_NORECV) { 21349 /* 21350 * If the current zone only has an ire broadcast for this 21351 * address marked NORECV, the ire we want is ahead in the 21352 * bucket, so we look it up deliberately ignoring the zoneid. 21353 */ 21354 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21355 if (ire->ire_addr != addr) 21356 continue; 21357 /* skip over deleted ires */ 21358 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21359 continue; 21360 } 21361 } 21362 while (ire != NULL) { 21363 /* 21364 * If a new interface is coming up, we could end up 21365 * seeing the loopback ire and the non-loopback ire 21366 * may not have been added yet. So check for ire_stq 21367 */ 21368 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21369 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21370 break; 21371 } 21372 ire = ire->ire_next; 21373 } 21374 if (ire != NULL && ire->ire_addr == addr && 21375 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21376 IRE_REFHOLD(ire); 21377 rw_exit(&irb->irb_lock); 21378 ire_refrele(save_ire); 21379 *conn_outgoing_ill = ire_to_ill(ire); 21380 /* 21381 * Refhold the ill to make the conn_outgoing_ill 21382 * independent of the ire. ip_wput_ire goes in a loop 21383 * and may refrele the ire. Since we have an ire at this 21384 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21385 */ 21386 ill_refhold(*conn_outgoing_ill); 21387 return (ire); 21388 } 21389 rw_exit(&irb->irb_lock); 21390 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21391 /* 21392 * If we can't find a suitable ire, return the original ire. 21393 */ 21394 return (save_ire); 21395 } 21396 21397 /* 21398 * This function does the ire_refrele of the ire passed in as the 21399 * argument. As this function looks up more ires i.e broadcast ires, 21400 * it needs to REFRELE them. Currently, for simplicity we don't 21401 * differentiate the one passed in and looked up here. We always 21402 * REFRELE. 21403 * IPQoS Notes: 21404 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21405 * IPSec packets are done in ipsec_out_process. 21406 * 21407 */ 21408 void 21409 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21410 zoneid_t zoneid) 21411 { 21412 ipha_t *ipha; 21413 #define rptr ((uchar_t *)ipha) 21414 queue_t *stq; 21415 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21416 uint32_t v_hlen_tos_len; 21417 uint32_t ttl_protocol; 21418 ipaddr_t src; 21419 ipaddr_t dst; 21420 uint32_t cksum; 21421 ipaddr_t orig_src; 21422 ire_t *ire1; 21423 mblk_t *next_mp; 21424 uint_t hlen; 21425 uint16_t *up; 21426 uint32_t max_frag = ire->ire_max_frag; 21427 ill_t *ill = ire_to_ill(ire); 21428 int clusterwide; 21429 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21430 int ipsec_len; 21431 mblk_t *first_mp; 21432 ipsec_out_t *io; 21433 boolean_t conn_dontroute; /* conn value for multicast */ 21434 boolean_t conn_multicast_loop; /* conn value for multicast */ 21435 boolean_t multicast_forward; /* Should we forward ? */ 21436 boolean_t unspec_src; 21437 ill_t *conn_outgoing_ill = NULL; 21438 ill_t *ire_ill; 21439 ill_t *ire1_ill; 21440 ill_t *out_ill; 21441 uint32_t ill_index = 0; 21442 boolean_t multirt_send = B_FALSE; 21443 int err; 21444 ipxmit_state_t pktxmit_state; 21445 21446 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21447 "ip_wput_ire_start: q %p", q); 21448 21449 multicast_forward = B_FALSE; 21450 unspec_src = (connp != NULL && connp->conn_unspec_src); 21451 21452 if (ire->ire_flags & RTF_MULTIRT) { 21453 /* 21454 * Multirouting case. The bucket where ire is stored 21455 * probably holds other RTF_MULTIRT flagged ire 21456 * to the destination. In this call to ip_wput_ire, 21457 * we attempt to send the packet through all 21458 * those ires. Thus, we first ensure that ire is the 21459 * first RTF_MULTIRT ire in the bucket, 21460 * before walking the ire list. 21461 */ 21462 ire_t *first_ire; 21463 irb_t *irb = ire->ire_bucket; 21464 ASSERT(irb != NULL); 21465 21466 /* Make sure we do not omit any multiroute ire. */ 21467 IRB_REFHOLD(irb); 21468 for (first_ire = irb->irb_ire; 21469 first_ire != NULL; 21470 first_ire = first_ire->ire_next) { 21471 if ((first_ire->ire_flags & RTF_MULTIRT) && 21472 (first_ire->ire_addr == ire->ire_addr) && 21473 !(first_ire->ire_marks & 21474 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21475 break; 21476 } 21477 21478 if ((first_ire != NULL) && (first_ire != ire)) { 21479 IRE_REFHOLD(first_ire); 21480 ire_refrele(ire); 21481 ire = first_ire; 21482 ill = ire_to_ill(ire); 21483 } 21484 IRB_REFRELE(irb); 21485 } 21486 21487 /* 21488 * conn_outgoing_ill is used only in the broadcast loop. 21489 * for performance we don't grab the mutexs in the fastpath 21490 */ 21491 if ((connp != NULL) && 21492 (connp->conn_xmit_if_ill == NULL) && 21493 (ire->ire_type == IRE_BROADCAST) && 21494 ((connp->conn_nofailover_ill != NULL) || 21495 (connp->conn_outgoing_ill != NULL))) { 21496 /* 21497 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21498 * option. So, see if this endpoint is bound to a 21499 * IPIF_NOFAILOVER address. If so, honor it. This implies 21500 * that if the interface is failed, we will still send 21501 * the packet on the same ill which is what we want. 21502 */ 21503 conn_outgoing_ill = conn_get_held_ill(connp, 21504 &connp->conn_nofailover_ill, &err); 21505 if (err == ILL_LOOKUP_FAILED) { 21506 ire_refrele(ire); 21507 freemsg(mp); 21508 return; 21509 } 21510 if (conn_outgoing_ill == NULL) { 21511 /* 21512 * Choose a good ill in the group to send the 21513 * packets on. 21514 */ 21515 ire = conn_set_outgoing_ill(connp, ire, 21516 &conn_outgoing_ill); 21517 if (ire == NULL) { 21518 freemsg(mp); 21519 return; 21520 } 21521 } 21522 } 21523 21524 if (mp->b_datap->db_type != M_CTL) { 21525 ipha = (ipha_t *)mp->b_rptr; 21526 } else { 21527 io = (ipsec_out_t *)mp->b_rptr; 21528 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21529 ASSERT(zoneid == io->ipsec_out_zoneid); 21530 ASSERT(zoneid != ALL_ZONES); 21531 ipha = (ipha_t *)mp->b_cont->b_rptr; 21532 dst = ipha->ipha_dst; 21533 /* 21534 * For the multicast case, ipsec_out carries conn_dontroute and 21535 * conn_multicast_loop as conn may not be available here. We 21536 * need this for multicast loopback and forwarding which is done 21537 * later in the code. 21538 */ 21539 if (CLASSD(dst)) { 21540 conn_dontroute = io->ipsec_out_dontroute; 21541 conn_multicast_loop = io->ipsec_out_multicast_loop; 21542 /* 21543 * If conn_dontroute is not set or conn_multicast_loop 21544 * is set, we need to do forwarding/loopback. For 21545 * datagrams from ip_wput_multicast, conn_dontroute is 21546 * set to B_TRUE and conn_multicast_loop is set to 21547 * B_FALSE so that we neither do forwarding nor 21548 * loopback. 21549 */ 21550 if (!conn_dontroute || conn_multicast_loop) 21551 multicast_forward = B_TRUE; 21552 } 21553 } 21554 21555 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21556 ire->ire_zoneid != ALL_ZONES) { 21557 /* 21558 * When a zone sends a packet to another zone, we try to deliver 21559 * the packet under the same conditions as if the destination 21560 * was a real node on the network. To do so, we look for a 21561 * matching route in the forwarding table. 21562 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21563 * ip_newroute() does. 21564 * Note that IRE_LOCAL are special, since they are used 21565 * when the zoneid doesn't match in some cases. This means that 21566 * we need to handle ipha_src differently since ire_src_addr 21567 * belongs to the receiving zone instead of the sending zone. 21568 * When ip_restrict_interzone_loopback is set, then 21569 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21570 * for loopback between zones when the logical "Ethernet" would 21571 * have looped them back. 21572 */ 21573 ire_t *src_ire; 21574 21575 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21576 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21577 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21578 if (src_ire != NULL && 21579 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21580 (!ip_restrict_interzone_loopback || 21581 ire_local_same_ill_group(ire, src_ire))) { 21582 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21583 ipha->ipha_src = src_ire->ire_src_addr; 21584 ire_refrele(src_ire); 21585 } else { 21586 ire_refrele(ire); 21587 if (conn_outgoing_ill != NULL) 21588 ill_refrele(conn_outgoing_ill); 21589 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21590 if (src_ire != NULL) { 21591 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21592 ire_refrele(src_ire); 21593 freemsg(mp); 21594 return; 21595 } 21596 ire_refrele(src_ire); 21597 } 21598 if (ip_hdr_complete(ipha, zoneid)) { 21599 /* Failed */ 21600 freemsg(mp); 21601 return; 21602 } 21603 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21604 return; 21605 } 21606 } 21607 21608 if (mp->b_datap->db_type == M_CTL || 21609 ipsec_outbound_v4_policy_present) { 21610 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21611 unspec_src, zoneid); 21612 if (mp == NULL) { 21613 ire_refrele(ire); 21614 if (conn_outgoing_ill != NULL) 21615 ill_refrele(conn_outgoing_ill); 21616 return; 21617 } 21618 } 21619 21620 first_mp = mp; 21621 ipsec_len = 0; 21622 21623 if (first_mp->b_datap->db_type == M_CTL) { 21624 io = (ipsec_out_t *)first_mp->b_rptr; 21625 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21626 mp = first_mp->b_cont; 21627 ipsec_len = ipsec_out_extra_length(first_mp); 21628 ASSERT(ipsec_len >= 0); 21629 /* We already picked up the zoneid from the M_CTL above */ 21630 ASSERT(zoneid == io->ipsec_out_zoneid); 21631 ASSERT(zoneid != ALL_ZONES); 21632 21633 /* 21634 * Drop M_CTL here if IPsec processing is not needed. 21635 * (Non-IPsec use of M_CTL extracted any information it 21636 * needed above). 21637 */ 21638 if (ipsec_len == 0) { 21639 freeb(first_mp); 21640 first_mp = mp; 21641 } 21642 } 21643 21644 /* 21645 * Fast path for ip_wput_ire 21646 */ 21647 21648 ipha = (ipha_t *)mp->b_rptr; 21649 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21650 dst = ipha->ipha_dst; 21651 21652 /* 21653 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21654 * if the socket is a SOCK_RAW type. The transport checksum should 21655 * be provided in the pre-built packet, so we don't need to compute it. 21656 * Also, other application set flags, like DF, should not be altered. 21657 * Other transport MUST pass down zero. 21658 */ 21659 ip_hdr_included = ipha->ipha_ident; 21660 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21661 21662 if (CLASSD(dst)) { 21663 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21664 ntohl(dst), 21665 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21666 ntohl(ire->ire_addr))); 21667 } 21668 21669 /* Macros to extract header fields from data already in registers */ 21670 #ifdef _BIG_ENDIAN 21671 #define V_HLEN (v_hlen_tos_len >> 24) 21672 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21673 #define PROTO (ttl_protocol & 0xFF) 21674 #else 21675 #define V_HLEN (v_hlen_tos_len & 0xFF) 21676 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21677 #define PROTO (ttl_protocol >> 8) 21678 #endif 21679 21680 21681 orig_src = src = ipha->ipha_src; 21682 /* (The loop back to "another" is explained down below.) */ 21683 another:; 21684 /* 21685 * Assign an ident value for this packet. We assign idents on 21686 * a per destination basis out of the IRE. There could be 21687 * other threads targeting the same destination, so we have to 21688 * arrange for a atomic increment. Note that we use a 32-bit 21689 * atomic add because it has better performance than its 21690 * 16-bit sibling. 21691 * 21692 * If running in cluster mode and if the source address 21693 * belongs to a replicated service then vector through 21694 * cl_inet_ipident vector to allocate ip identifier 21695 * NOTE: This is a contract private interface with the 21696 * clustering group. 21697 */ 21698 clusterwide = 0; 21699 if (cl_inet_ipident) { 21700 ASSERT(cl_inet_isclusterwide); 21701 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21702 AF_INET, (uint8_t *)(uintptr_t)src)) { 21703 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21704 AF_INET, (uint8_t *)(uintptr_t)src, 21705 (uint8_t *)(uintptr_t)dst); 21706 clusterwide = 1; 21707 } 21708 } 21709 if (!clusterwide) { 21710 ipha->ipha_ident = 21711 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21712 } 21713 21714 #ifndef _BIG_ENDIAN 21715 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21716 #endif 21717 21718 /* 21719 * Set source address unless sent on an ill or conn_unspec_src is set. 21720 * This is needed to obey conn_unspec_src when packets go through 21721 * ip_newroute + arp. 21722 * Assumes ip_newroute{,_multi} sets the source address as well. 21723 */ 21724 if (src == INADDR_ANY && !unspec_src) { 21725 /* 21726 * Assign the appropriate source address from the IRE if none 21727 * was specified. 21728 */ 21729 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21730 21731 /* 21732 * With IP multipathing, broadcast packets are sent on the ire 21733 * that has been cleared of IRE_MARK_NORECV and that belongs to 21734 * the group. However, this ire might not be in the same zone so 21735 * we can't always use its source address. We look for a 21736 * broadcast ire in the same group and in the right zone. 21737 */ 21738 if (ire->ire_type == IRE_BROADCAST && 21739 ire->ire_zoneid != zoneid) { 21740 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21741 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21742 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21743 if (src_ire != NULL) { 21744 src = src_ire->ire_src_addr; 21745 ire_refrele(src_ire); 21746 } else { 21747 ire_refrele(ire); 21748 if (conn_outgoing_ill != NULL) 21749 ill_refrele(conn_outgoing_ill); 21750 freemsg(first_mp); 21751 BUMP_MIB(&ip_mib, ipOutDiscards); 21752 return; 21753 } 21754 } else { 21755 src = ire->ire_src_addr; 21756 } 21757 21758 if (connp == NULL) { 21759 ip1dbg(("ip_wput_ire: no connp and no src " 21760 "address for dst 0x%x, using src 0x%x\n", 21761 ntohl(dst), 21762 ntohl(src))); 21763 } 21764 ipha->ipha_src = src; 21765 } 21766 stq = ire->ire_stq; 21767 21768 /* 21769 * We only allow ire chains for broadcasts since there will 21770 * be multiple IRE_CACHE entries for the same multicast 21771 * address (one per ipif). 21772 */ 21773 next_mp = NULL; 21774 21775 /* broadcast packet */ 21776 if (ire->ire_type == IRE_BROADCAST) 21777 goto broadcast; 21778 21779 /* loopback ? */ 21780 if (stq == NULL) 21781 goto nullstq; 21782 21783 /* The ill_index for outbound ILL */ 21784 ill_index = Q_TO_INDEX(stq); 21785 21786 BUMP_MIB(&ip_mib, ipOutRequests); 21787 ttl_protocol = ((uint16_t *)ipha)[4]; 21788 21789 /* pseudo checksum (do it in parts for IP header checksum) */ 21790 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21791 21792 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21793 queue_t *dev_q = stq->q_next; 21794 21795 /* flow controlled */ 21796 if ((dev_q->q_next || dev_q->q_first) && 21797 !canput(dev_q)) 21798 goto blocked; 21799 if ((PROTO == IPPROTO_UDP) && 21800 (ip_hdr_included != IP_HDR_INCLUDED)) { 21801 hlen = (V_HLEN & 0xF) << 2; 21802 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21803 if (*up != 0) { 21804 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21805 hlen, LENGTH, max_frag, ipsec_len, cksum); 21806 /* Software checksum? */ 21807 if (DB_CKSUMFLAGS(mp) == 0) { 21808 IP_STAT(ip_out_sw_cksum); 21809 IP_STAT_UPDATE( 21810 ip_udp_out_sw_cksum_bytes, 21811 LENGTH - hlen); 21812 } 21813 } 21814 } 21815 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21816 hlen = (V_HLEN & 0xF) << 2; 21817 if (PROTO == IPPROTO_TCP) { 21818 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21819 /* 21820 * The packet header is processed once and for all, even 21821 * in the multirouting case. We disable hardware 21822 * checksum if the packet is multirouted, as it will be 21823 * replicated via several interfaces, and not all of 21824 * them may have this capability. 21825 */ 21826 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21827 LENGTH, max_frag, ipsec_len, cksum); 21828 /* Software checksum? */ 21829 if (DB_CKSUMFLAGS(mp) == 0) { 21830 IP_STAT(ip_out_sw_cksum); 21831 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21832 LENGTH - hlen); 21833 } 21834 } else { 21835 sctp_hdr_t *sctph; 21836 21837 ASSERT(PROTO == IPPROTO_SCTP); 21838 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21839 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21840 /* 21841 * Zero out the checksum field to ensure proper 21842 * checksum calculation. 21843 */ 21844 sctph->sh_chksum = 0; 21845 #ifdef DEBUG 21846 if (!skip_sctp_cksum) 21847 #endif 21848 sctph->sh_chksum = sctp_cksum(mp, hlen); 21849 } 21850 } 21851 21852 /* 21853 * If this is a multicast packet and originated from ip_wput 21854 * we need to do loopback and forwarding checks. If it comes 21855 * from ip_wput_multicast, we SHOULD not do this. 21856 */ 21857 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21858 21859 /* checksum */ 21860 cksum += ttl_protocol; 21861 21862 /* fragment the packet */ 21863 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21864 goto fragmentit; 21865 /* 21866 * Don't use frag_flag if packet is pre-built or source 21867 * routed or if multicast (since multicast packets do 21868 * not solicit ICMP "packet too big" messages). 21869 */ 21870 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21871 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21872 !ip_source_route_included(ipha)) && 21873 !CLASSD(ipha->ipha_dst)) 21874 ipha->ipha_fragment_offset_and_flags |= 21875 htons(ire->ire_frag_flag); 21876 21877 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21878 /* calculate IP header checksum */ 21879 cksum += ipha->ipha_ident; 21880 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21881 cksum += ipha->ipha_fragment_offset_and_flags; 21882 21883 /* IP options present */ 21884 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21885 if (hlen) 21886 goto checksumoptions; 21887 21888 /* calculate hdr checksum */ 21889 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21890 cksum = ~(cksum + (cksum >> 16)); 21891 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21892 } 21893 if (ipsec_len != 0) { 21894 /* 21895 * We will do the rest of the processing after 21896 * we come back from IPSEC in ip_wput_ipsec_out(). 21897 */ 21898 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21899 21900 io = (ipsec_out_t *)first_mp->b_rptr; 21901 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21902 ill_phyint->phyint_ifindex; 21903 21904 ipsec_out_process(q, first_mp, ire, ill_index); 21905 ire_refrele(ire); 21906 if (conn_outgoing_ill != NULL) 21907 ill_refrele(conn_outgoing_ill); 21908 return; 21909 } 21910 21911 /* 21912 * In most cases, the emission loop below is entered only 21913 * once. Only in the case where the ire holds the 21914 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21915 * flagged ires in the bucket, and send the packet 21916 * through all crossed RTF_MULTIRT routes. 21917 */ 21918 if (ire->ire_flags & RTF_MULTIRT) { 21919 multirt_send = B_TRUE; 21920 } 21921 do { 21922 if (multirt_send) { 21923 irb_t *irb; 21924 /* 21925 * We are in a multiple send case, need to get 21926 * the next ire and make a duplicate of the packet. 21927 * ire1 holds here the next ire to process in the 21928 * bucket. If multirouting is expected, 21929 * any non-RTF_MULTIRT ire that has the 21930 * right destination address is ignored. 21931 */ 21932 irb = ire->ire_bucket; 21933 ASSERT(irb != NULL); 21934 21935 IRB_REFHOLD(irb); 21936 for (ire1 = ire->ire_next; 21937 ire1 != NULL; 21938 ire1 = ire1->ire_next) { 21939 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21940 continue; 21941 if (ire1->ire_addr != ire->ire_addr) 21942 continue; 21943 if (ire1->ire_marks & 21944 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21945 continue; 21946 21947 /* Got one */ 21948 IRE_REFHOLD(ire1); 21949 break; 21950 } 21951 IRB_REFRELE(irb); 21952 21953 if (ire1 != NULL) { 21954 next_mp = copyb(mp); 21955 if ((next_mp == NULL) || 21956 ((mp->b_cont != NULL) && 21957 ((next_mp->b_cont = 21958 dupmsg(mp->b_cont)) == NULL))) { 21959 freemsg(next_mp); 21960 next_mp = NULL; 21961 ire_refrele(ire1); 21962 ire1 = NULL; 21963 } 21964 } 21965 21966 /* Last multiroute ire; don't loop anymore. */ 21967 if (ire1 == NULL) { 21968 multirt_send = B_FALSE; 21969 } 21970 } 21971 21972 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 21973 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 21974 mblk_t *, mp); 21975 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 21976 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp); 21977 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21978 if (mp == NULL) 21979 goto release_ire_and_ill; 21980 21981 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21982 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21983 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21984 if ((pktxmit_state == SEND_FAILED) || 21985 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21986 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21987 "- packet dropped\n")); 21988 release_ire_and_ill: 21989 ire_refrele(ire); 21990 if (next_mp != NULL) { 21991 freemsg(next_mp); 21992 ire_refrele(ire1); 21993 } 21994 if (conn_outgoing_ill != NULL) 21995 ill_refrele(conn_outgoing_ill); 21996 return; 21997 } 21998 21999 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22000 "ip_wput_ire_end: q %p (%S)", 22001 q, "last copy out"); 22002 IRE_REFRELE(ire); 22003 22004 if (multirt_send) { 22005 ASSERT(ire1); 22006 /* 22007 * Proceed with the next RTF_MULTIRT ire, 22008 * Also set up the send-to queue accordingly. 22009 */ 22010 ire = ire1; 22011 ire1 = NULL; 22012 stq = ire->ire_stq; 22013 mp = next_mp; 22014 next_mp = NULL; 22015 ipha = (ipha_t *)mp->b_rptr; 22016 ill_index = Q_TO_INDEX(stq); 22017 } 22018 } while (multirt_send); 22019 if (conn_outgoing_ill != NULL) 22020 ill_refrele(conn_outgoing_ill); 22021 return; 22022 22023 /* 22024 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22025 */ 22026 broadcast: 22027 { 22028 /* 22029 * Avoid broadcast storms by setting the ttl to 1 22030 * for broadcasts. This parameter can be set 22031 * via ndd, so make sure that for the SO_DONTROUTE 22032 * case that ipha_ttl is always set to 1. 22033 * In the event that we are replying to incoming 22034 * ICMP packets, conn could be NULL. 22035 */ 22036 if ((connp != NULL) && connp->conn_dontroute) 22037 ipha->ipha_ttl = 1; 22038 else 22039 ipha->ipha_ttl = ip_broadcast_ttl; 22040 22041 /* 22042 * Note that we are not doing a IRB_REFHOLD here. 22043 * Actually we don't care if the list changes i.e 22044 * if somebody deletes an IRE from the list while 22045 * we drop the lock, the next time we come around 22046 * ire_next will be NULL and hence we won't send 22047 * out multiple copies which is fine. 22048 */ 22049 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22050 ire1 = ire->ire_next; 22051 if (conn_outgoing_ill != NULL) { 22052 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22053 ASSERT(ire1 == ire->ire_next); 22054 if (ire1 != NULL && ire1->ire_addr == dst) { 22055 ire_refrele(ire); 22056 ire = ire1; 22057 IRE_REFHOLD(ire); 22058 ire1 = ire->ire_next; 22059 continue; 22060 } 22061 rw_exit(&ire->ire_bucket->irb_lock); 22062 /* Did not find a matching ill */ 22063 ip1dbg(("ip_wput_ire: broadcast with no " 22064 "matching IP_BOUND_IF ill %s\n", 22065 conn_outgoing_ill->ill_name)); 22066 freemsg(first_mp); 22067 if (ire != NULL) 22068 ire_refrele(ire); 22069 ill_refrele(conn_outgoing_ill); 22070 return; 22071 } 22072 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22073 /* 22074 * If the next IRE has the same address and is not one 22075 * of the two copies that we need to send, try to see 22076 * whether this copy should be sent at all. This 22077 * assumes that we insert loopbacks first and then 22078 * non-loopbacks. This is acheived by inserting the 22079 * loopback always before non-loopback. 22080 * This is used to send a single copy of a broadcast 22081 * packet out all physical interfaces that have an 22082 * matching IRE_BROADCAST while also looping 22083 * back one copy (to ip_wput_local) for each 22084 * matching physical interface. However, we avoid 22085 * sending packets out different logical that match by 22086 * having ipif_up/ipif_down supress duplicate 22087 * IRE_BROADCASTS. 22088 * 22089 * This feature is currently used to get broadcasts 22090 * sent to multiple interfaces, when the broadcast 22091 * address being used applies to multiple interfaces. 22092 * For example, a whole net broadcast will be 22093 * replicated on every connected subnet of 22094 * the target net. 22095 * 22096 * Each zone has its own set of IRE_BROADCASTs, so that 22097 * we're able to distribute inbound packets to multiple 22098 * zones who share a broadcast address. We avoid looping 22099 * back outbound packets in different zones but on the 22100 * same ill, as the application would see duplicates. 22101 * 22102 * If the interfaces are part of the same group, 22103 * we would want to send only one copy out for 22104 * whole group. 22105 * 22106 * This logic assumes that ire_add_v4() groups the 22107 * IRE_BROADCAST entries so that those with the same 22108 * ire_addr and ill_group are kept together. 22109 */ 22110 ire_ill = ire->ire_ipif->ipif_ill; 22111 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22112 if (ire_ill->ill_group != NULL && 22113 (ire->ire_marks & IRE_MARK_NORECV)) { 22114 /* 22115 * If the current zone only has an ire 22116 * broadcast for this address marked 22117 * NORECV, the ire we want is ahead in 22118 * the bucket, so we look it up 22119 * deliberately ignoring the zoneid. 22120 */ 22121 for (ire1 = ire->ire_bucket->irb_ire; 22122 ire1 != NULL; 22123 ire1 = ire1->ire_next) { 22124 ire1_ill = 22125 ire1->ire_ipif->ipif_ill; 22126 if (ire1->ire_addr != dst) 22127 continue; 22128 /* skip over the current ire */ 22129 if (ire1 == ire) 22130 continue; 22131 /* skip over deleted ires */ 22132 if (ire1->ire_marks & 22133 IRE_MARK_CONDEMNED) 22134 continue; 22135 /* 22136 * non-loopback ire in our 22137 * group: use it for the next 22138 * pass in the loop 22139 */ 22140 if (ire1->ire_stq != NULL && 22141 ire1_ill->ill_group == 22142 ire_ill->ill_group) 22143 break; 22144 } 22145 } 22146 } else { 22147 while (ire1 != NULL && ire1->ire_addr == dst) { 22148 ire1_ill = ire1->ire_ipif->ipif_ill; 22149 /* 22150 * We can have two broadcast ires on the 22151 * same ill in different zones; here 22152 * we'll send a copy of the packet on 22153 * each ill and the fanout code will 22154 * call conn_wantpacket() to check that 22155 * the zone has the broadcast address 22156 * configured on the ill. If the two 22157 * ires are in the same group we only 22158 * send one copy up. 22159 */ 22160 if (ire1_ill != ire_ill && 22161 (ire1_ill->ill_group == NULL || 22162 ire_ill->ill_group == NULL || 22163 ire1_ill->ill_group != 22164 ire_ill->ill_group)) { 22165 break; 22166 } 22167 ire1 = ire1->ire_next; 22168 } 22169 } 22170 } 22171 ASSERT(multirt_send == B_FALSE); 22172 if (ire1 != NULL && ire1->ire_addr == dst) { 22173 if ((ire->ire_flags & RTF_MULTIRT) && 22174 (ire1->ire_flags & RTF_MULTIRT)) { 22175 /* 22176 * We are in the multirouting case. 22177 * The message must be sent at least 22178 * on both ires. These ires have been 22179 * inserted AFTER the standard ones 22180 * in ip_rt_add(). There are thus no 22181 * other ire entries for the destination 22182 * address in the rest of the bucket 22183 * that do not have the RTF_MULTIRT 22184 * flag. We don't process a copy 22185 * of the message here. This will be 22186 * done in the final sending loop. 22187 */ 22188 multirt_send = B_TRUE; 22189 } else { 22190 next_mp = ip_copymsg(first_mp); 22191 if (next_mp != NULL) 22192 IRE_REFHOLD(ire1); 22193 } 22194 } 22195 rw_exit(&ire->ire_bucket->irb_lock); 22196 } 22197 22198 if (stq) { 22199 /* 22200 * A non-NULL send-to queue means this packet is going 22201 * out of this machine. 22202 */ 22203 22204 BUMP_MIB(&ip_mib, ipOutRequests); 22205 ttl_protocol = ((uint16_t *)ipha)[4]; 22206 /* 22207 * We accumulate the pseudo header checksum in cksum. 22208 * This is pretty hairy code, so watch close. One 22209 * thing to keep in mind is that UDP and TCP have 22210 * stored their respective datagram lengths in their 22211 * checksum fields. This lines things up real nice. 22212 */ 22213 cksum = (dst >> 16) + (dst & 0xFFFF) + 22214 (src >> 16) + (src & 0xFFFF); 22215 /* 22216 * We assume the udp checksum field contains the 22217 * length, so to compute the pseudo header checksum, 22218 * all we need is the protocol number and src/dst. 22219 */ 22220 /* Provide the checksums for UDP and TCP. */ 22221 if ((PROTO == IPPROTO_TCP) && 22222 (ip_hdr_included != IP_HDR_INCLUDED)) { 22223 /* hlen gets the number of uchar_ts in the IP header */ 22224 hlen = (V_HLEN & 0xF) << 2; 22225 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22226 IP_STAT(ip_out_sw_cksum); 22227 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22228 LENGTH - hlen); 22229 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22230 if (*up == 0) 22231 *up = 0xFFFF; 22232 } else if (PROTO == IPPROTO_SCTP && 22233 (ip_hdr_included != IP_HDR_INCLUDED)) { 22234 sctp_hdr_t *sctph; 22235 22236 hlen = (V_HLEN & 0xF) << 2; 22237 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22238 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22239 sctph->sh_chksum = 0; 22240 #ifdef DEBUG 22241 if (!skip_sctp_cksum) 22242 #endif 22243 sctph->sh_chksum = sctp_cksum(mp, hlen); 22244 } else { 22245 queue_t *dev_q = stq->q_next; 22246 22247 if ((dev_q->q_next || dev_q->q_first) && 22248 !canput(dev_q)) { 22249 blocked: 22250 ipha->ipha_ident = ip_hdr_included; 22251 /* 22252 * If we don't have a conn to apply 22253 * backpressure, free the message. 22254 * In the ire_send path, we don't know 22255 * the position to requeue the packet. Rather 22256 * than reorder packets, we just drop this 22257 * packet. 22258 */ 22259 if (ip_output_queue && connp != NULL && 22260 caller != IRE_SEND) { 22261 if (caller == IP_WSRV) { 22262 connp->conn_did_putbq = 1; 22263 (void) putbq(connp->conn_wq, 22264 first_mp); 22265 conn_drain_insert(connp); 22266 /* 22267 * This is the service thread, 22268 * and the queue is already 22269 * noenabled. The check for 22270 * canput and the putbq is not 22271 * atomic. So we need to check 22272 * again. 22273 */ 22274 if (canput(stq->q_next)) 22275 connp->conn_did_putbq 22276 = 0; 22277 IP_STAT(ip_conn_flputbq); 22278 } else { 22279 /* 22280 * We are not the service proc. 22281 * ip_wsrv will be scheduled or 22282 * is already running. 22283 */ 22284 (void) putq(connp->conn_wq, 22285 first_mp); 22286 } 22287 } else { 22288 BUMP_MIB(&ip_mib, ipOutDiscards); 22289 freemsg(first_mp); 22290 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22291 "ip_wput_ire_end: q %p (%S)", 22292 q, "discard"); 22293 } 22294 ire_refrele(ire); 22295 if (next_mp) { 22296 ire_refrele(ire1); 22297 freemsg(next_mp); 22298 } 22299 if (conn_outgoing_ill != NULL) 22300 ill_refrele(conn_outgoing_ill); 22301 return; 22302 } 22303 if ((PROTO == IPPROTO_UDP) && 22304 (ip_hdr_included != IP_HDR_INCLUDED)) { 22305 /* 22306 * hlen gets the number of uchar_ts in the 22307 * IP header 22308 */ 22309 hlen = (V_HLEN & 0xF) << 2; 22310 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22311 max_frag = ire->ire_max_frag; 22312 if (*up != 0) { 22313 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22314 up, PROTO, hlen, LENGTH, max_frag, 22315 ipsec_len, cksum); 22316 /* Software checksum? */ 22317 if (DB_CKSUMFLAGS(mp) == 0) { 22318 IP_STAT(ip_out_sw_cksum); 22319 IP_STAT_UPDATE( 22320 ip_udp_out_sw_cksum_bytes, 22321 LENGTH - hlen); 22322 } 22323 } 22324 } 22325 } 22326 /* 22327 * Need to do this even when fragmenting. The local 22328 * loopback can be done without computing checksums 22329 * but forwarding out other interface must be done 22330 * after the IP checksum (and ULP checksums) have been 22331 * computed. 22332 * 22333 * NOTE : multicast_forward is set only if this packet 22334 * originated from ip_wput. For packets originating from 22335 * ip_wput_multicast, it is not set. 22336 */ 22337 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22338 multi_loopback: 22339 ip2dbg(("ip_wput: multicast, loop %d\n", 22340 conn_multicast_loop)); 22341 22342 /* Forget header checksum offload */ 22343 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22344 22345 /* 22346 * Local loopback of multicasts? Check the 22347 * ill. 22348 * 22349 * Note that the loopback function will not come 22350 * in through ip_rput - it will only do the 22351 * client fanout thus we need to do an mforward 22352 * as well. The is different from the BSD 22353 * logic. 22354 */ 22355 if (ill != NULL) { 22356 ilm_t *ilm; 22357 22358 ILM_WALKER_HOLD(ill); 22359 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22360 ALL_ZONES); 22361 ILM_WALKER_RELE(ill); 22362 if (ilm != NULL) { 22363 /* 22364 * Pass along the virtual output q. 22365 * ip_wput_local() will distribute the 22366 * packet to all the matching zones, 22367 * except the sending zone when 22368 * IP_MULTICAST_LOOP is false. 22369 */ 22370 ip_multicast_loopback(q, ill, first_mp, 22371 conn_multicast_loop ? 0 : 22372 IP_FF_NO_MCAST_LOOP, zoneid); 22373 } 22374 } 22375 if (ipha->ipha_ttl == 0) { 22376 /* 22377 * 0 => only to this host i.e. we are 22378 * done. We are also done if this was the 22379 * loopback interface since it is sufficient 22380 * to loopback one copy of a multicast packet. 22381 */ 22382 freemsg(first_mp); 22383 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22384 "ip_wput_ire_end: q %p (%S)", 22385 q, "loopback"); 22386 ire_refrele(ire); 22387 if (conn_outgoing_ill != NULL) 22388 ill_refrele(conn_outgoing_ill); 22389 return; 22390 } 22391 /* 22392 * ILLF_MULTICAST is checked in ip_newroute 22393 * i.e. we don't need to check it here since 22394 * all IRE_CACHEs come from ip_newroute. 22395 * For multicast traffic, SO_DONTROUTE is interpreted 22396 * to mean only send the packet out the interface 22397 * (optionally specified with IP_MULTICAST_IF) 22398 * and do not forward it out additional interfaces. 22399 * RSVP and the rsvp daemon is an example of a 22400 * protocol and user level process that 22401 * handles it's own routing. Hence, it uses the 22402 * SO_DONTROUTE option to accomplish this. 22403 */ 22404 22405 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22406 /* Unconditionally redo the checksum */ 22407 ipha->ipha_hdr_checksum = 0; 22408 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22409 22410 /* 22411 * If this needs to go out secure, we need 22412 * to wait till we finish the IPSEC 22413 * processing. 22414 */ 22415 if (ipsec_len == 0 && 22416 ip_mforward(ill, ipha, mp)) { 22417 freemsg(first_mp); 22418 ip1dbg(("ip_wput: mforward failed\n")); 22419 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22420 "ip_wput_ire_end: q %p (%S)", 22421 q, "mforward failed"); 22422 ire_refrele(ire); 22423 if (conn_outgoing_ill != NULL) 22424 ill_refrele(conn_outgoing_ill); 22425 return; 22426 } 22427 } 22428 } 22429 max_frag = ire->ire_max_frag; 22430 cksum += ttl_protocol; 22431 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22432 /* No fragmentation required for this one. */ 22433 /* 22434 * Don't use frag_flag if packet is pre-built or source 22435 * routed or if multicast (since multicast packets do 22436 * not solicit ICMP "packet too big" messages). 22437 */ 22438 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22439 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22440 !ip_source_route_included(ipha)) && 22441 !CLASSD(ipha->ipha_dst)) 22442 ipha->ipha_fragment_offset_and_flags |= 22443 htons(ire->ire_frag_flag); 22444 22445 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22446 /* Complete the IP header checksum. */ 22447 cksum += ipha->ipha_ident; 22448 cksum += (v_hlen_tos_len >> 16)+ 22449 (v_hlen_tos_len & 0xFFFF); 22450 cksum += ipha->ipha_fragment_offset_and_flags; 22451 hlen = (V_HLEN & 0xF) - 22452 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22453 if (hlen) { 22454 checksumoptions: 22455 /* 22456 * Account for the IP Options in the IP 22457 * header checksum. 22458 */ 22459 up = (uint16_t *)(rptr+ 22460 IP_SIMPLE_HDR_LENGTH); 22461 do { 22462 cksum += up[0]; 22463 cksum += up[1]; 22464 up += 2; 22465 } while (--hlen); 22466 } 22467 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22468 cksum = ~(cksum + (cksum >> 16)); 22469 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22470 } 22471 if (ipsec_len != 0) { 22472 ipsec_out_process(q, first_mp, ire, ill_index); 22473 if (!next_mp) { 22474 ire_refrele(ire); 22475 if (conn_outgoing_ill != NULL) 22476 ill_refrele(conn_outgoing_ill); 22477 return; 22478 } 22479 goto next; 22480 } 22481 22482 /* 22483 * multirt_send has already been handled 22484 * for broadcast, but not yet for multicast 22485 * or IP options. 22486 */ 22487 if (next_mp == NULL) { 22488 if (ire->ire_flags & RTF_MULTIRT) { 22489 multirt_send = B_TRUE; 22490 } 22491 } 22492 22493 /* 22494 * In most cases, the emission loop below is 22495 * entered only once. Only in the case where 22496 * the ire holds the RTF_MULTIRT flag, do we loop 22497 * to process all RTF_MULTIRT ires in the bucket, 22498 * and send the packet through all crossed 22499 * RTF_MULTIRT routes. 22500 */ 22501 do { 22502 if (multirt_send) { 22503 irb_t *irb; 22504 22505 irb = ire->ire_bucket; 22506 ASSERT(irb != NULL); 22507 /* 22508 * We are in a multiple send case, 22509 * need to get the next IRE and make 22510 * a duplicate of the packet. 22511 */ 22512 IRB_REFHOLD(irb); 22513 for (ire1 = ire->ire_next; 22514 ire1 != NULL; 22515 ire1 = ire1->ire_next) { 22516 if (!(ire1->ire_flags & 22517 RTF_MULTIRT)) 22518 continue; 22519 if (ire1->ire_addr != 22520 ire->ire_addr) 22521 continue; 22522 if (ire1->ire_marks & 22523 (IRE_MARK_CONDEMNED| 22524 IRE_MARK_HIDDEN)) 22525 continue; 22526 22527 /* Got one */ 22528 IRE_REFHOLD(ire1); 22529 break; 22530 } 22531 IRB_REFRELE(irb); 22532 22533 if (ire1 != NULL) { 22534 next_mp = copyb(mp); 22535 if ((next_mp == NULL) || 22536 ((mp->b_cont != NULL) && 22537 ((next_mp->b_cont = 22538 dupmsg(mp->b_cont)) 22539 == NULL))) { 22540 freemsg(next_mp); 22541 next_mp = NULL; 22542 ire_refrele(ire1); 22543 ire1 = NULL; 22544 } 22545 } 22546 22547 /* 22548 * Last multiroute ire; don't loop 22549 * anymore. The emission is over 22550 * and next_mp is NULL. 22551 */ 22552 if (ire1 == NULL) { 22553 multirt_send = B_FALSE; 22554 } 22555 } 22556 22557 out_ill = ire->ire_ipif->ipif_ill; 22558 DTRACE_PROBE4(ip4__physical__out__start, 22559 ill_t *, NULL, 22560 ill_t *, out_ill, 22561 ipha_t *, ipha, mblk_t *, mp); 22562 FW_HOOKS(ip4_physical_out_event, 22563 ipv4firewall_physical_out, 22564 NULL, out_ill, ipha, mp, mp); 22565 DTRACE_PROBE1(ip4__physical__out__end, 22566 mblk_t *, mp); 22567 if (mp == NULL) 22568 goto release_ire_and_ill_2; 22569 22570 ASSERT(ipsec_len == 0); 22571 mp->b_prev = 22572 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22573 DTRACE_PROBE2(ip__xmit__2, 22574 mblk_t *, mp, ire_t *, ire); 22575 pktxmit_state = ip_xmit_v4(mp, ire, 22576 NULL, B_TRUE); 22577 if ((pktxmit_state == SEND_FAILED) || 22578 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22579 release_ire_and_ill_2: 22580 if (next_mp) { 22581 freemsg(next_mp); 22582 ire_refrele(ire1); 22583 } 22584 ire_refrele(ire); 22585 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22586 "ip_wput_ire_end: q %p (%S)", 22587 q, "discard MDATA"); 22588 if (conn_outgoing_ill != NULL) 22589 ill_refrele(conn_outgoing_ill); 22590 return; 22591 } 22592 22593 if (multirt_send) { 22594 /* 22595 * We are in a multiple send case, 22596 * need to re-enter the sending loop 22597 * using the next ire. 22598 */ 22599 ire_refrele(ire); 22600 ire = ire1; 22601 stq = ire->ire_stq; 22602 mp = next_mp; 22603 next_mp = NULL; 22604 ipha = (ipha_t *)mp->b_rptr; 22605 ill_index = Q_TO_INDEX(stq); 22606 } 22607 } while (multirt_send); 22608 22609 if (!next_mp) { 22610 /* 22611 * Last copy going out (the ultra-common 22612 * case). Note that we intentionally replicate 22613 * the putnext rather than calling it before 22614 * the next_mp check in hopes of a little 22615 * tail-call action out of the compiler. 22616 */ 22617 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22618 "ip_wput_ire_end: q %p (%S)", 22619 q, "last copy out(1)"); 22620 ire_refrele(ire); 22621 if (conn_outgoing_ill != NULL) 22622 ill_refrele(conn_outgoing_ill); 22623 return; 22624 } 22625 /* More copies going out below. */ 22626 } else { 22627 int offset; 22628 fragmentit: 22629 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22630 /* 22631 * If this would generate a icmp_frag_needed message, 22632 * we need to handle it before we do the IPSEC 22633 * processing. Otherwise, we need to strip the IPSEC 22634 * headers before we send up the message to the ULPs 22635 * which becomes messy and difficult. 22636 */ 22637 if (ipsec_len != 0) { 22638 if ((max_frag < (unsigned int)(LENGTH + 22639 ipsec_len)) && (offset & IPH_DF)) { 22640 22641 BUMP_MIB(&ip_mib, ipFragFails); 22642 ipha->ipha_hdr_checksum = 0; 22643 ipha->ipha_hdr_checksum = 22644 (uint16_t)ip_csum_hdr(ipha); 22645 icmp_frag_needed(ire->ire_stq, first_mp, 22646 max_frag, zoneid); 22647 if (!next_mp) { 22648 ire_refrele(ire); 22649 if (conn_outgoing_ill != NULL) { 22650 ill_refrele( 22651 conn_outgoing_ill); 22652 } 22653 return; 22654 } 22655 } else { 22656 /* 22657 * This won't cause a icmp_frag_needed 22658 * message. to be gnerated. Send it on 22659 * the wire. Note that this could still 22660 * cause fragmentation and all we 22661 * do is the generation of the message 22662 * to the ULP if needed before IPSEC. 22663 */ 22664 if (!next_mp) { 22665 ipsec_out_process(q, first_mp, 22666 ire, ill_index); 22667 TRACE_2(TR_FAC_IP, 22668 TR_IP_WPUT_IRE_END, 22669 "ip_wput_ire_end: q %p " 22670 "(%S)", q, 22671 "last ipsec_out_process"); 22672 ire_refrele(ire); 22673 if (conn_outgoing_ill != NULL) { 22674 ill_refrele( 22675 conn_outgoing_ill); 22676 } 22677 return; 22678 } 22679 ipsec_out_process(q, first_mp, 22680 ire, ill_index); 22681 } 22682 } else { 22683 /* 22684 * Initiate IPPF processing. For 22685 * fragmentable packets we finish 22686 * all QOS packet processing before 22687 * calling: 22688 * ip_wput_ire_fragmentit->ip_wput_frag 22689 */ 22690 22691 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22692 ip_process(IPP_LOCAL_OUT, &mp, 22693 ill_index); 22694 if (mp == NULL) { 22695 BUMP_MIB(&ip_mib, 22696 ipOutDiscards); 22697 if (next_mp != NULL) { 22698 freemsg(next_mp); 22699 ire_refrele(ire1); 22700 } 22701 ire_refrele(ire); 22702 TRACE_2(TR_FAC_IP, 22703 TR_IP_WPUT_IRE_END, 22704 "ip_wput_ire: q %p (%S)", 22705 q, "discard MDATA"); 22706 if (conn_outgoing_ill != NULL) { 22707 ill_refrele( 22708 conn_outgoing_ill); 22709 } 22710 return; 22711 } 22712 } 22713 if (!next_mp) { 22714 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22715 "ip_wput_ire_end: q %p (%S)", 22716 q, "last fragmentation"); 22717 ip_wput_ire_fragmentit(mp, ire, 22718 zoneid); 22719 ire_refrele(ire); 22720 if (conn_outgoing_ill != NULL) 22721 ill_refrele(conn_outgoing_ill); 22722 return; 22723 } 22724 ip_wput_ire_fragmentit(mp, ire, zoneid); 22725 } 22726 } 22727 } else { 22728 nullstq: 22729 /* A NULL stq means the destination address is local. */ 22730 UPDATE_OB_PKT_COUNT(ire); 22731 ire->ire_last_used_time = lbolt; 22732 ASSERT(ire->ire_ipif != NULL); 22733 if (!next_mp) { 22734 /* 22735 * Is there an "in" and "out" for traffic local 22736 * to a host (loopback)? The code in Solaris doesn't 22737 * explicitly draw a line in its code for in vs out, 22738 * so we've had to draw a line in the sand: ip_wput_ire 22739 * is considered to be the "output" side and 22740 * ip_wput_local to be the "input" side. 22741 */ 22742 out_ill = ire->ire_ipif->ipif_ill; 22743 22744 DTRACE_PROBE4(ip4__loopback__out__start, 22745 ill_t *, NULL, ill_t *, out_ill, 22746 ipha_t *, ipha, mblk_t *, first_mp); 22747 22748 FW_HOOKS(ip4_loopback_out_event, 22749 ipv4firewall_loopback_out, 22750 NULL, out_ill, ipha, first_mp, mp); 22751 22752 DTRACE_PROBE1(ip4__loopback__out_end, 22753 mblk_t *, first_mp); 22754 22755 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22756 "ip_wput_ire_end: q %p (%S)", 22757 q, "local address"); 22758 22759 if (first_mp != NULL) 22760 ip_wput_local(q, out_ill, ipha, 22761 first_mp, ire, 0, ire->ire_zoneid); 22762 ire_refrele(ire); 22763 if (conn_outgoing_ill != NULL) 22764 ill_refrele(conn_outgoing_ill); 22765 return; 22766 } 22767 22768 out_ill = ire->ire_ipif->ipif_ill; 22769 22770 DTRACE_PROBE4(ip4__loopback__out__start, 22771 ill_t *, NULL, ill_t *, out_ill, 22772 ipha_t *, ipha, mblk_t *, first_mp); 22773 22774 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 22775 NULL, out_ill, ipha, first_mp, mp); 22776 22777 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 22778 22779 if (first_mp != NULL) 22780 ip_wput_local(q, out_ill, ipha, 22781 first_mp, ire, 0, ire->ire_zoneid); 22782 } 22783 next: 22784 /* 22785 * More copies going out to additional interfaces. 22786 * ire1 has already been held. We don't need the 22787 * "ire" anymore. 22788 */ 22789 ire_refrele(ire); 22790 ire = ire1; 22791 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22792 mp = next_mp; 22793 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22794 ill = ire_to_ill(ire); 22795 first_mp = mp; 22796 if (ipsec_len != 0) { 22797 ASSERT(first_mp->b_datap->db_type == M_CTL); 22798 mp = mp->b_cont; 22799 } 22800 dst = ire->ire_addr; 22801 ipha = (ipha_t *)mp->b_rptr; 22802 /* 22803 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22804 * Restore ipha_ident "no checksum" flag. 22805 */ 22806 src = orig_src; 22807 ipha->ipha_ident = ip_hdr_included; 22808 goto another; 22809 22810 #undef rptr 22811 #undef Q_TO_INDEX 22812 } 22813 22814 /* 22815 * Routine to allocate a message that is used to notify the ULP about MDT. 22816 * The caller may provide a pointer to the link-layer MDT capabilities, 22817 * or NULL if MDT is to be disabled on the stream. 22818 */ 22819 mblk_t * 22820 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22821 { 22822 mblk_t *mp; 22823 ip_mdt_info_t *mdti; 22824 ill_mdt_capab_t *idst; 22825 22826 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22827 DB_TYPE(mp) = M_CTL; 22828 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22829 mdti = (ip_mdt_info_t *)mp->b_rptr; 22830 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22831 idst = &(mdti->mdt_capab); 22832 22833 /* 22834 * If the caller provides us with the capability, copy 22835 * it over into our notification message; otherwise 22836 * we zero out the capability portion. 22837 */ 22838 if (isrc != NULL) 22839 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22840 else 22841 bzero((caddr_t)idst, sizeof (*idst)); 22842 } 22843 return (mp); 22844 } 22845 22846 /* 22847 * Routine which determines whether MDT can be enabled on the destination 22848 * IRE and IPC combination, and if so, allocates and returns the MDT 22849 * notification mblk that may be used by ULP. We also check if we need to 22850 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22851 * MDT usage in the past have been lifted. This gets called during IP 22852 * and ULP binding. 22853 */ 22854 mblk_t * 22855 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22856 ill_mdt_capab_t *mdt_cap) 22857 { 22858 mblk_t *mp; 22859 boolean_t rc = B_FALSE; 22860 22861 ASSERT(dst_ire != NULL); 22862 ASSERT(connp != NULL); 22863 ASSERT(mdt_cap != NULL); 22864 22865 /* 22866 * Currently, we only support simple TCP/{IPv4,IPv6} with 22867 * Multidata, which is handled in tcp_multisend(). This 22868 * is the reason why we do all these checks here, to ensure 22869 * that we don't enable Multidata for the cases which we 22870 * can't handle at the moment. 22871 */ 22872 do { 22873 /* Only do TCP at the moment */ 22874 if (connp->conn_ulp != IPPROTO_TCP) 22875 break; 22876 22877 /* 22878 * IPSEC outbound policy present? Note that we get here 22879 * after calling ipsec_conn_cache_policy() where the global 22880 * policy checking is performed. conn_latch will be 22881 * non-NULL as long as there's a policy defined, 22882 * i.e. conn_out_enforce_policy may be NULL in such case 22883 * when the connection is non-secure, and hence we check 22884 * further if the latch refers to an outbound policy. 22885 */ 22886 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22887 break; 22888 22889 /* CGTP (multiroute) is enabled? */ 22890 if (dst_ire->ire_flags & RTF_MULTIRT) 22891 break; 22892 22893 /* Outbound IPQoS enabled? */ 22894 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22895 /* 22896 * In this case, we disable MDT for this and all 22897 * future connections going over the interface. 22898 */ 22899 mdt_cap->ill_mdt_on = 0; 22900 break; 22901 } 22902 22903 /* socket option(s) present? */ 22904 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 22905 break; 22906 22907 rc = B_TRUE; 22908 /* CONSTCOND */ 22909 } while (0); 22910 22911 /* Remember the result */ 22912 connp->conn_mdt_ok = rc; 22913 22914 if (!rc) 22915 return (NULL); 22916 else if (!mdt_cap->ill_mdt_on) { 22917 /* 22918 * If MDT has been previously turned off in the past, and we 22919 * currently can do MDT (due to IPQoS policy removal, etc.) 22920 * then enable it for this interface. 22921 */ 22922 mdt_cap->ill_mdt_on = 1; 22923 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22924 "interface %s\n", ill_name)); 22925 } 22926 22927 /* Allocate the MDT info mblk */ 22928 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22929 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22930 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22931 return (NULL); 22932 } 22933 return (mp); 22934 } 22935 22936 /* 22937 * Routine to allocate a message that is used to notify the ULP about LSO. 22938 * The caller may provide a pointer to the link-layer LSO capabilities, 22939 * or NULL if LSO is to be disabled on the stream. 22940 */ 22941 mblk_t * 22942 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 22943 { 22944 mblk_t *mp; 22945 ip_lso_info_t *lsoi; 22946 ill_lso_capab_t *idst; 22947 22948 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 22949 DB_TYPE(mp) = M_CTL; 22950 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 22951 lsoi = (ip_lso_info_t *)mp->b_rptr; 22952 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 22953 idst = &(lsoi->lso_capab); 22954 22955 /* 22956 * If the caller provides us with the capability, copy 22957 * it over into our notification message; otherwise 22958 * we zero out the capability portion. 22959 */ 22960 if (isrc != NULL) 22961 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22962 else 22963 bzero((caddr_t)idst, sizeof (*idst)); 22964 } 22965 return (mp); 22966 } 22967 22968 /* 22969 * Routine which determines whether LSO can be enabled on the destination 22970 * IRE and IPC combination, and if so, allocates and returns the LSO 22971 * notification mblk that may be used by ULP. We also check if we need to 22972 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 22973 * LSO usage in the past have been lifted. This gets called during IP 22974 * and ULP binding. 22975 */ 22976 mblk_t * 22977 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22978 ill_lso_capab_t *lso_cap) 22979 { 22980 mblk_t *mp; 22981 22982 ASSERT(dst_ire != NULL); 22983 ASSERT(connp != NULL); 22984 ASSERT(lso_cap != NULL); 22985 22986 connp->conn_lso_ok = B_TRUE; 22987 22988 if ((connp->conn_ulp != IPPROTO_TCP) || 22989 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 22990 (dst_ire->ire_flags & RTF_MULTIRT) || 22991 !CONN_IS_LSO_MD_FASTPATH(connp) || 22992 (IPP_ENABLED(IPP_LOCAL_OUT))) { 22993 connp->conn_lso_ok = B_FALSE; 22994 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22995 /* 22996 * Disable LSO for this and all future connections going 22997 * over the interface. 22998 */ 22999 lso_cap->ill_lso_on = 0; 23000 } 23001 } 23002 23003 if (!connp->conn_lso_ok) 23004 return (NULL); 23005 else if (!lso_cap->ill_lso_on) { 23006 /* 23007 * If LSO has been previously turned off in the past, and we 23008 * currently can do LSO (due to IPQoS policy removal, etc.) 23009 * then enable it for this interface. 23010 */ 23011 lso_cap->ill_lso_on = 1; 23012 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23013 ill_name)); 23014 } 23015 23016 /* Allocate the LSO info mblk */ 23017 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23018 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23019 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23020 23021 return (mp); 23022 } 23023 23024 /* 23025 * Create destination address attribute, and fill it with the physical 23026 * destination address and SAP taken from the template DL_UNITDATA_REQ 23027 * message block. 23028 */ 23029 boolean_t 23030 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23031 { 23032 dl_unitdata_req_t *dlurp; 23033 pattr_t *pa; 23034 pattrinfo_t pa_info; 23035 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23036 uint_t das_len, das_off; 23037 23038 ASSERT(dlmp != NULL); 23039 23040 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23041 das_len = dlurp->dl_dest_addr_length; 23042 das_off = dlurp->dl_dest_addr_offset; 23043 23044 pa_info.type = PATTR_DSTADDRSAP; 23045 pa_info.len = sizeof (**das) + das_len - 1; 23046 23047 /* create and associate the attribute */ 23048 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23049 if (pa != NULL) { 23050 ASSERT(*das != NULL); 23051 (*das)->addr_is_group = 0; 23052 (*das)->addr_len = (uint8_t)das_len; 23053 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23054 } 23055 23056 return (pa != NULL); 23057 } 23058 23059 /* 23060 * Create hardware checksum attribute and fill it with the values passed. 23061 */ 23062 boolean_t 23063 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23064 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23065 { 23066 pattr_t *pa; 23067 pattrinfo_t pa_info; 23068 23069 ASSERT(mmd != NULL); 23070 23071 pa_info.type = PATTR_HCKSUM; 23072 pa_info.len = sizeof (pattr_hcksum_t); 23073 23074 /* create and associate the attribute */ 23075 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23076 if (pa != NULL) { 23077 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23078 23079 hck->hcksum_start_offset = start_offset; 23080 hck->hcksum_stuff_offset = stuff_offset; 23081 hck->hcksum_end_offset = end_offset; 23082 hck->hcksum_flags = flags; 23083 } 23084 return (pa != NULL); 23085 } 23086 23087 /* 23088 * Create zerocopy attribute and fill it with the specified flags 23089 */ 23090 boolean_t 23091 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23092 { 23093 pattr_t *pa; 23094 pattrinfo_t pa_info; 23095 23096 ASSERT(mmd != NULL); 23097 pa_info.type = PATTR_ZCOPY; 23098 pa_info.len = sizeof (pattr_zcopy_t); 23099 23100 /* create and associate the attribute */ 23101 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23102 if (pa != NULL) { 23103 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23104 23105 zcopy->zcopy_flags = flags; 23106 } 23107 return (pa != NULL); 23108 } 23109 23110 /* 23111 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23112 * block chain. We could rewrite to handle arbitrary message block chains but 23113 * that would make the code complicated and slow. Right now there three 23114 * restrictions: 23115 * 23116 * 1. The first message block must contain the complete IP header and 23117 * at least 1 byte of payload data. 23118 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23119 * so that we can use a single Multidata message. 23120 * 3. No frag must be distributed over two or more message blocks so 23121 * that we don't need more than two packet descriptors per frag. 23122 * 23123 * The above restrictions allow us to support userland applications (which 23124 * will send down a single message block) and NFS over UDP (which will 23125 * send down a chain of at most three message blocks). 23126 * 23127 * We also don't use MDT for payloads with less than or equal to 23128 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23129 */ 23130 boolean_t 23131 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23132 { 23133 int blocks; 23134 ssize_t total, missing, size; 23135 23136 ASSERT(mp != NULL); 23137 ASSERT(hdr_len > 0); 23138 23139 size = MBLKL(mp) - hdr_len; 23140 if (size <= 0) 23141 return (B_FALSE); 23142 23143 /* The first mblk contains the header and some payload. */ 23144 blocks = 1; 23145 total = size; 23146 size %= len; 23147 missing = (size == 0) ? 0 : (len - size); 23148 mp = mp->b_cont; 23149 23150 while (mp != NULL) { 23151 /* 23152 * Give up if we encounter a zero length message block. 23153 * In practice, this should rarely happen and therefore 23154 * not worth the trouble of freeing and re-linking the 23155 * mblk from the chain to handle such case. 23156 */ 23157 if ((size = MBLKL(mp)) == 0) 23158 return (B_FALSE); 23159 23160 /* Too many payload buffers for a single Multidata message? */ 23161 if (++blocks > MULTIDATA_MAX_PBUFS) 23162 return (B_FALSE); 23163 23164 total += size; 23165 /* Is a frag distributed over two or more message blocks? */ 23166 if (missing > size) 23167 return (B_FALSE); 23168 size -= missing; 23169 23170 size %= len; 23171 missing = (size == 0) ? 0 : (len - size); 23172 23173 mp = mp->b_cont; 23174 } 23175 23176 return (total > ip_wput_frag_mdt_min); 23177 } 23178 23179 /* 23180 * Outbound IPv4 fragmentation routine using MDT. 23181 */ 23182 static void 23183 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23184 uint32_t frag_flag, int offset) 23185 { 23186 ipha_t *ipha_orig; 23187 int i1, ip_data_end; 23188 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23189 mblk_t *hdr_mp, *md_mp = NULL; 23190 unsigned char *hdr_ptr, *pld_ptr; 23191 multidata_t *mmd; 23192 ip_pdescinfo_t pdi; 23193 23194 ASSERT(DB_TYPE(mp) == M_DATA); 23195 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23196 23197 ipha_orig = (ipha_t *)mp->b_rptr; 23198 mp->b_rptr += sizeof (ipha_t); 23199 23200 /* Calculate how many packets we will send out */ 23201 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23202 pkts = (i1 + len - 1) / len; 23203 ASSERT(pkts > 1); 23204 23205 /* Allocate a message block which will hold all the IP Headers. */ 23206 wroff = ip_wroff_extra; 23207 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23208 23209 i1 = pkts * hdr_chunk_len; 23210 /* 23211 * Create the header buffer, Multidata and destination address 23212 * and SAP attribute that should be associated with it. 23213 */ 23214 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23215 ((hdr_mp->b_wptr += i1), 23216 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23217 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23218 freemsg(mp); 23219 if (md_mp == NULL) { 23220 freemsg(hdr_mp); 23221 } else { 23222 free_mmd: IP_STAT(ip_frag_mdt_discarded); 23223 freemsg(md_mp); 23224 } 23225 IP_STAT(ip_frag_mdt_allocfail); 23226 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 23227 return; 23228 } 23229 IP_STAT(ip_frag_mdt_allocd); 23230 23231 /* 23232 * Add a payload buffer to the Multidata; this operation must not 23233 * fail, or otherwise our logic in this routine is broken. There 23234 * is no memory allocation done by the routine, so any returned 23235 * failure simply tells us that we've done something wrong. 23236 * 23237 * A failure tells us that either we're adding the same payload 23238 * buffer more than once, or we're trying to add more buffers than 23239 * allowed. None of the above cases should happen, and we panic 23240 * because either there's horrible heap corruption, and/or 23241 * programming mistake. 23242 */ 23243 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23244 goto pbuf_panic; 23245 23246 hdr_ptr = hdr_mp->b_rptr; 23247 pld_ptr = mp->b_rptr; 23248 23249 /* Establish the ending byte offset, based on the starting offset. */ 23250 offset <<= 3; 23251 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23252 IP_SIMPLE_HDR_LENGTH; 23253 23254 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23255 23256 while (pld_ptr < mp->b_wptr) { 23257 ipha_t *ipha; 23258 uint16_t offset_and_flags; 23259 uint16_t ip_len; 23260 int error; 23261 23262 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23263 ipha = (ipha_t *)(hdr_ptr + wroff); 23264 ASSERT(OK_32PTR(ipha)); 23265 *ipha = *ipha_orig; 23266 23267 if (ip_data_end - offset > len) { 23268 offset_and_flags = IPH_MF; 23269 } else { 23270 /* 23271 * Last frag. Set len to the length of this last piece. 23272 */ 23273 len = ip_data_end - offset; 23274 /* A frag of a frag might have IPH_MF non-zero */ 23275 offset_and_flags = 23276 ntohs(ipha->ipha_fragment_offset_and_flags) & 23277 IPH_MF; 23278 } 23279 offset_and_flags |= (uint16_t)(offset >> 3); 23280 offset_and_flags |= (uint16_t)frag_flag; 23281 /* Store the offset and flags in the IP header. */ 23282 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23283 23284 /* Store the length in the IP header. */ 23285 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23286 ipha->ipha_length = htons(ip_len); 23287 23288 /* 23289 * Set the IP header checksum. Note that mp is just 23290 * the header, so this is easy to pass to ip_csum. 23291 */ 23292 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23293 23294 /* 23295 * Record offset and size of header and data of the next packet 23296 * in the multidata message. 23297 */ 23298 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23299 PDESC_PLD_INIT(&pdi); 23300 i1 = MIN(mp->b_wptr - pld_ptr, len); 23301 ASSERT(i1 > 0); 23302 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23303 if (i1 == len) { 23304 pld_ptr += len; 23305 } else { 23306 i1 = len - i1; 23307 mp = mp->b_cont; 23308 ASSERT(mp != NULL); 23309 ASSERT(MBLKL(mp) >= i1); 23310 /* 23311 * Attach the next payload message block to the 23312 * multidata message. 23313 */ 23314 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23315 goto pbuf_panic; 23316 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23317 pld_ptr = mp->b_rptr + i1; 23318 } 23319 23320 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23321 KM_NOSLEEP)) == NULL) { 23322 /* 23323 * Any failure other than ENOMEM indicates that we 23324 * have passed in invalid pdesc info or parameters 23325 * to mmd_addpdesc, which must not happen. 23326 * 23327 * EINVAL is a result of failure on boundary checks 23328 * against the pdesc info contents. It should not 23329 * happen, and we panic because either there's 23330 * horrible heap corruption, and/or programming 23331 * mistake. 23332 */ 23333 if (error != ENOMEM) { 23334 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23335 "pdesc logic error detected for " 23336 "mmd %p pinfo %p (%d)\n", 23337 (void *)mmd, (void *)&pdi, error); 23338 /* NOTREACHED */ 23339 } 23340 IP_STAT(ip_frag_mdt_addpdescfail); 23341 /* Free unattached payload message blocks as well */ 23342 md_mp->b_cont = mp->b_cont; 23343 goto free_mmd; 23344 } 23345 23346 /* Advance fragment offset. */ 23347 offset += len; 23348 23349 /* Advance to location for next header in the buffer. */ 23350 hdr_ptr += hdr_chunk_len; 23351 23352 /* Did we reach the next payload message block? */ 23353 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23354 mp = mp->b_cont; 23355 /* 23356 * Attach the next message block with payload 23357 * data to the multidata message. 23358 */ 23359 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23360 goto pbuf_panic; 23361 pld_ptr = mp->b_rptr; 23362 } 23363 } 23364 23365 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23366 ASSERT(mp->b_wptr == pld_ptr); 23367 23368 /* Update IP statistics */ 23369 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 23370 BUMP_MIB(&ip_mib, ipFragOKs); 23371 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23372 23373 if (pkt_type == OB_PKT) { 23374 ire->ire_ob_pkt_count += pkts; 23375 if (ire->ire_ipif != NULL) 23376 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23377 } else { 23378 /* 23379 * The type is IB_PKT in the forwarding path and in 23380 * the mobile IP case when the packet is being reverse- 23381 * tunneled to the home agent. 23382 */ 23383 ire->ire_ib_pkt_count += pkts; 23384 ASSERT(!IRE_IS_LOCAL(ire)); 23385 if (ire->ire_type & IRE_BROADCAST) 23386 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23387 else 23388 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23389 } 23390 ire->ire_last_used_time = lbolt; 23391 /* Send it down */ 23392 putnext(ire->ire_stq, md_mp); 23393 return; 23394 23395 pbuf_panic: 23396 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23397 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23398 pbuf_idx); 23399 /* NOTREACHED */ 23400 } 23401 23402 /* 23403 * Outbound IP fragmentation routine. 23404 * 23405 * NOTE : This routine does not ire_refrele the ire that is passed in 23406 * as the argument. 23407 */ 23408 static void 23409 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23410 uint32_t frag_flag, zoneid_t zoneid) 23411 { 23412 int i1; 23413 mblk_t *ll_hdr_mp; 23414 int ll_hdr_len; 23415 int hdr_len; 23416 mblk_t *hdr_mp; 23417 ipha_t *ipha; 23418 int ip_data_end; 23419 int len; 23420 mblk_t *mp = mp_orig, *mp1; 23421 int offset; 23422 queue_t *q; 23423 uint32_t v_hlen_tos_len; 23424 mblk_t *first_mp; 23425 boolean_t mctl_present; 23426 ill_t *ill; 23427 ill_t *out_ill; 23428 mblk_t *xmit_mp; 23429 mblk_t *carve_mp; 23430 ire_t *ire1 = NULL; 23431 ire_t *save_ire = NULL; 23432 mblk_t *next_mp = NULL; 23433 boolean_t last_frag = B_FALSE; 23434 boolean_t multirt_send = B_FALSE; 23435 ire_t *first_ire = NULL; 23436 irb_t *irb = NULL; 23437 23438 /* 23439 * IPSEC does not allow hw accelerated packets to be fragmented 23440 * This check is made in ip_wput_ipsec_out prior to coming here 23441 * via ip_wput_ire_fragmentit. 23442 * 23443 * If at this point we have an ire whose ARP request has not 23444 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23445 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23446 * This packet and all fragmentable packets for this ire will 23447 * continue to get dropped while ire_nce->nce_state remains in 23448 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23449 * ND_REACHABLE, all subsquent large packets for this ire will 23450 * get fragemented and sent out by this function. 23451 */ 23452 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23453 /* If nce_state is ND_INITIAL, trigger ARP query */ 23454 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23455 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23456 " - dropping packet\n")); 23457 BUMP_MIB(&ip_mib, ipFragFails); 23458 freemsg(mp); 23459 return; 23460 } 23461 23462 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23463 "ip_wput_frag_start:"); 23464 23465 if (mp->b_datap->db_type == M_CTL) { 23466 first_mp = mp; 23467 mp_orig = mp = mp->b_cont; 23468 mctl_present = B_TRUE; 23469 } else { 23470 first_mp = mp; 23471 mctl_present = B_FALSE; 23472 } 23473 23474 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23475 ipha = (ipha_t *)mp->b_rptr; 23476 23477 /* 23478 * If the Don't Fragment flag is on, generate an ICMP destination 23479 * unreachable, fragmentation needed. 23480 */ 23481 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23482 if (offset & IPH_DF) { 23483 BUMP_MIB(&ip_mib, ipFragFails); 23484 /* 23485 * Need to compute hdr checksum if called from ip_wput_ire. 23486 * Note that ip_rput_forward verifies the checksum before 23487 * calling this routine so in that case this is a noop. 23488 */ 23489 ipha->ipha_hdr_checksum = 0; 23490 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23491 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23492 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23493 "ip_wput_frag_end:(%S)", 23494 "don't fragment"); 23495 return; 23496 } 23497 if (mctl_present) 23498 freeb(first_mp); 23499 /* 23500 * Establish the starting offset. May not be zero if we are fragging 23501 * a fragment that is being forwarded. 23502 */ 23503 offset = offset & IPH_OFFSET; 23504 23505 /* TODO why is this test needed? */ 23506 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23507 if (((max_frag - LENGTH) & ~7) < 8) { 23508 /* TODO: notify ulp somehow */ 23509 BUMP_MIB(&ip_mib, ipFragFails); 23510 freemsg(mp); 23511 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23512 "ip_wput_frag_end:(%S)", 23513 "len < 8"); 23514 return; 23515 } 23516 23517 hdr_len = (V_HLEN & 0xF) << 2; 23518 23519 ipha->ipha_hdr_checksum = 0; 23520 23521 /* 23522 * Establish the number of bytes maximum per frag, after putting 23523 * in the header. 23524 */ 23525 len = (max_frag - hdr_len) & ~7; 23526 23527 /* Check if we can use MDT to send out the frags. */ 23528 ASSERT(!IRE_IS_LOCAL(ire)); 23529 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23530 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23531 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23532 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23533 ASSERT(ill->ill_mdt_capab != NULL); 23534 if (!ill->ill_mdt_capab->ill_mdt_on) { 23535 /* 23536 * If MDT has been previously turned off in the past, 23537 * and we currently can do MDT (due to IPQoS policy 23538 * removal, etc.) then enable it for this interface. 23539 */ 23540 ill->ill_mdt_capab->ill_mdt_on = 1; 23541 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23542 ill->ill_name)); 23543 } 23544 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23545 offset); 23546 return; 23547 } 23548 23549 /* Get a copy of the header for the trailing frags */ 23550 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23551 if (!hdr_mp) { 23552 BUMP_MIB(&ip_mib, ipOutDiscards); 23553 freemsg(mp); 23554 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23555 "ip_wput_frag_end:(%S)", 23556 "couldn't copy hdr"); 23557 return; 23558 } 23559 if (DB_CRED(mp) != NULL) 23560 mblk_setcred(hdr_mp, DB_CRED(mp)); 23561 23562 /* Store the starting offset, with the MoreFrags flag. */ 23563 i1 = offset | IPH_MF | frag_flag; 23564 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23565 23566 /* Establish the ending byte offset, based on the starting offset. */ 23567 offset <<= 3; 23568 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23569 23570 /* Store the length of the first fragment in the IP header. */ 23571 i1 = len + hdr_len; 23572 ASSERT(i1 <= IP_MAXPACKET); 23573 ipha->ipha_length = htons((uint16_t)i1); 23574 23575 /* 23576 * Compute the IP header checksum for the first frag. We have to 23577 * watch out that we stop at the end of the header. 23578 */ 23579 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23580 23581 /* 23582 * Now carve off the first frag. Note that this will include the 23583 * original IP header. 23584 */ 23585 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23586 BUMP_MIB(&ip_mib, ipOutDiscards); 23587 freeb(hdr_mp); 23588 freemsg(mp_orig); 23589 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23590 "ip_wput_frag_end:(%S)", 23591 "couldn't carve first"); 23592 return; 23593 } 23594 23595 /* 23596 * Multirouting case. Each fragment is replicated 23597 * via all non-condemned RTF_MULTIRT routes 23598 * currently resolved. 23599 * We ensure that first_ire is the first RTF_MULTIRT 23600 * ire in the bucket. 23601 */ 23602 if (ire->ire_flags & RTF_MULTIRT) { 23603 irb = ire->ire_bucket; 23604 ASSERT(irb != NULL); 23605 23606 multirt_send = B_TRUE; 23607 23608 /* Make sure we do not omit any multiroute ire. */ 23609 IRB_REFHOLD(irb); 23610 for (first_ire = irb->irb_ire; 23611 first_ire != NULL; 23612 first_ire = first_ire->ire_next) { 23613 if ((first_ire->ire_flags & RTF_MULTIRT) && 23614 (first_ire->ire_addr == ire->ire_addr) && 23615 !(first_ire->ire_marks & 23616 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23617 break; 23618 } 23619 23620 if (first_ire != NULL) { 23621 if (first_ire != ire) { 23622 IRE_REFHOLD(first_ire); 23623 /* 23624 * Do not release the ire passed in 23625 * as the argument. 23626 */ 23627 ire = first_ire; 23628 } else { 23629 first_ire = NULL; 23630 } 23631 } 23632 IRB_REFRELE(irb); 23633 23634 /* 23635 * Save the first ire; we will need to restore it 23636 * for the trailing frags. 23637 * We REFHOLD save_ire, as each iterated ire will be 23638 * REFRELEd. 23639 */ 23640 save_ire = ire; 23641 IRE_REFHOLD(save_ire); 23642 } 23643 23644 /* 23645 * First fragment emission loop. 23646 * In most cases, the emission loop below is entered only 23647 * once. Only in the case where the ire holds the RTF_MULTIRT 23648 * flag, do we loop to process all RTF_MULTIRT ires in the 23649 * bucket, and send the fragment through all crossed 23650 * RTF_MULTIRT routes. 23651 */ 23652 do { 23653 if (ire->ire_flags & RTF_MULTIRT) { 23654 /* 23655 * We are in a multiple send case, need to get 23656 * the next ire and make a copy of the packet. 23657 * ire1 holds here the next ire to process in the 23658 * bucket. If multirouting is expected, 23659 * any non-RTF_MULTIRT ire that has the 23660 * right destination address is ignored. 23661 * 23662 * We have to take into account the MTU of 23663 * each walked ire. max_frag is set by the 23664 * the caller and generally refers to 23665 * the primary ire entry. Here we ensure that 23666 * no route with a lower MTU will be used, as 23667 * fragments are carved once for all ires, 23668 * then replicated. 23669 */ 23670 ASSERT(irb != NULL); 23671 IRB_REFHOLD(irb); 23672 for (ire1 = ire->ire_next; 23673 ire1 != NULL; 23674 ire1 = ire1->ire_next) { 23675 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23676 continue; 23677 if (ire1->ire_addr != ire->ire_addr) 23678 continue; 23679 if (ire1->ire_marks & 23680 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23681 continue; 23682 /* 23683 * Ensure we do not exceed the MTU 23684 * of the next route. 23685 */ 23686 if (ire1->ire_max_frag < max_frag) { 23687 ip_multirt_bad_mtu(ire1, max_frag); 23688 continue; 23689 } 23690 23691 /* Got one. */ 23692 IRE_REFHOLD(ire1); 23693 break; 23694 } 23695 IRB_REFRELE(irb); 23696 23697 if (ire1 != NULL) { 23698 next_mp = copyb(mp); 23699 if ((next_mp == NULL) || 23700 ((mp->b_cont != NULL) && 23701 ((next_mp->b_cont = 23702 dupmsg(mp->b_cont)) == NULL))) { 23703 freemsg(next_mp); 23704 next_mp = NULL; 23705 ire_refrele(ire1); 23706 ire1 = NULL; 23707 } 23708 } 23709 23710 /* Last multiroute ire; don't loop anymore. */ 23711 if (ire1 == NULL) { 23712 multirt_send = B_FALSE; 23713 } 23714 } 23715 23716 ll_hdr_len = 0; 23717 LOCK_IRE_FP_MP(ire); 23718 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23719 if (ll_hdr_mp != NULL) { 23720 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23721 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23722 } else { 23723 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23724 } 23725 23726 /* If there is a transmit header, get a copy for this frag. */ 23727 /* 23728 * TODO: should check db_ref before calling ip_carve_mp since 23729 * it might give us a dup. 23730 */ 23731 if (!ll_hdr_mp) { 23732 /* No xmit header. */ 23733 xmit_mp = mp; 23734 23735 /* We have a link-layer header that can fit in our mblk. */ 23736 } else if (mp->b_datap->db_ref == 1 && 23737 ll_hdr_len != 0 && 23738 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23739 /* M_DATA fastpath */ 23740 mp->b_rptr -= ll_hdr_len; 23741 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23742 xmit_mp = mp; 23743 23744 /* Corner case if copyb has failed */ 23745 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23746 UNLOCK_IRE_FP_MP(ire); 23747 BUMP_MIB(&ip_mib, ipOutDiscards); 23748 freeb(hdr_mp); 23749 freemsg(mp); 23750 freemsg(mp_orig); 23751 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23752 "ip_wput_frag_end:(%S)", 23753 "discard"); 23754 23755 if (multirt_send) { 23756 ASSERT(ire1); 23757 ASSERT(next_mp); 23758 23759 freemsg(next_mp); 23760 ire_refrele(ire1); 23761 } 23762 if (save_ire != NULL) 23763 IRE_REFRELE(save_ire); 23764 23765 if (first_ire != NULL) 23766 ire_refrele(first_ire); 23767 return; 23768 23769 /* 23770 * Case of res_mp OR the fastpath mp can't fit 23771 * in the mblk 23772 */ 23773 } else { 23774 xmit_mp->b_cont = mp; 23775 if (DB_CRED(mp) != NULL) 23776 mblk_setcred(xmit_mp, DB_CRED(mp)); 23777 /* 23778 * Get priority marking, if any. 23779 * We propagate the CoS marking from the 23780 * original packet that went to QoS processing 23781 * in ip_wput_ire to the newly carved mp. 23782 */ 23783 if (DB_TYPE(xmit_mp) == M_DATA) 23784 xmit_mp->b_band = mp->b_band; 23785 } 23786 UNLOCK_IRE_FP_MP(ire); 23787 q = ire->ire_stq; 23788 BUMP_MIB(&ip_mib, ipFragCreates); 23789 23790 out_ill = (ill_t *)q->q_ptr; 23791 23792 DTRACE_PROBE4(ip4__physical__out__start, 23793 ill_t *, NULL, ill_t *, out_ill, 23794 ipha_t *, ipha, mblk_t *, xmit_mp); 23795 23796 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 23797 NULL, out_ill, ipha, xmit_mp, mp); 23798 23799 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 23800 23801 if (xmit_mp != NULL) { 23802 putnext(q, xmit_mp); 23803 if (pkt_type != OB_PKT) { 23804 /* 23805 * Update the packet count of trailing 23806 * RTF_MULTIRT ires. 23807 */ 23808 UPDATE_OB_PKT_COUNT(ire); 23809 } 23810 } 23811 23812 if (multirt_send) { 23813 /* 23814 * We are in a multiple send case; look for 23815 * the next ire and re-enter the loop. 23816 */ 23817 ASSERT(ire1); 23818 ASSERT(next_mp); 23819 /* REFRELE the current ire before looping */ 23820 ire_refrele(ire); 23821 ire = ire1; 23822 ire1 = NULL; 23823 mp = next_mp; 23824 next_mp = NULL; 23825 } 23826 } while (multirt_send); 23827 23828 ASSERT(ire1 == NULL); 23829 23830 /* Restore the original ire; we need it for the trailing frags */ 23831 if (save_ire != NULL) { 23832 /* REFRELE the last iterated ire */ 23833 ire_refrele(ire); 23834 /* save_ire has been REFHOLDed */ 23835 ire = save_ire; 23836 save_ire = NULL; 23837 q = ire->ire_stq; 23838 } 23839 23840 if (pkt_type == OB_PKT) { 23841 UPDATE_OB_PKT_COUNT(ire); 23842 } else { 23843 UPDATE_IB_PKT_COUNT(ire); 23844 } 23845 23846 /* Advance the offset to the second frag starting point. */ 23847 offset += len; 23848 /* 23849 * Update hdr_len from the copied header - there might be less options 23850 * in the later fragments. 23851 */ 23852 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23853 /* Loop until done. */ 23854 for (;;) { 23855 uint16_t offset_and_flags; 23856 uint16_t ip_len; 23857 23858 if (ip_data_end - offset > len) { 23859 /* 23860 * Carve off the appropriate amount from the original 23861 * datagram. 23862 */ 23863 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23864 mp = NULL; 23865 break; 23866 } 23867 /* 23868 * More frags after this one. Get another copy 23869 * of the header. 23870 */ 23871 if (carve_mp->b_datap->db_ref == 1 && 23872 hdr_mp->b_wptr - hdr_mp->b_rptr < 23873 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23874 /* Inline IP header */ 23875 carve_mp->b_rptr -= hdr_mp->b_wptr - 23876 hdr_mp->b_rptr; 23877 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23878 hdr_mp->b_wptr - hdr_mp->b_rptr); 23879 mp = carve_mp; 23880 } else { 23881 if (!(mp = copyb(hdr_mp))) { 23882 freemsg(carve_mp); 23883 break; 23884 } 23885 /* Get priority marking, if any. */ 23886 mp->b_band = carve_mp->b_band; 23887 mp->b_cont = carve_mp; 23888 } 23889 ipha = (ipha_t *)mp->b_rptr; 23890 offset_and_flags = IPH_MF; 23891 } else { 23892 /* 23893 * Last frag. Consume the header. Set len to 23894 * the length of this last piece. 23895 */ 23896 len = ip_data_end - offset; 23897 23898 /* 23899 * Carve off the appropriate amount from the original 23900 * datagram. 23901 */ 23902 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23903 mp = NULL; 23904 break; 23905 } 23906 if (carve_mp->b_datap->db_ref == 1 && 23907 hdr_mp->b_wptr - hdr_mp->b_rptr < 23908 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23909 /* Inline IP header */ 23910 carve_mp->b_rptr -= hdr_mp->b_wptr - 23911 hdr_mp->b_rptr; 23912 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23913 hdr_mp->b_wptr - hdr_mp->b_rptr); 23914 mp = carve_mp; 23915 freeb(hdr_mp); 23916 hdr_mp = mp; 23917 } else { 23918 mp = hdr_mp; 23919 /* Get priority marking, if any. */ 23920 mp->b_band = carve_mp->b_band; 23921 mp->b_cont = carve_mp; 23922 } 23923 ipha = (ipha_t *)mp->b_rptr; 23924 /* A frag of a frag might have IPH_MF non-zero */ 23925 offset_and_flags = 23926 ntohs(ipha->ipha_fragment_offset_and_flags) & 23927 IPH_MF; 23928 } 23929 offset_and_flags |= (uint16_t)(offset >> 3); 23930 offset_and_flags |= (uint16_t)frag_flag; 23931 /* Store the offset and flags in the IP header. */ 23932 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23933 23934 /* Store the length in the IP header. */ 23935 ip_len = (uint16_t)(len + hdr_len); 23936 ipha->ipha_length = htons(ip_len); 23937 23938 /* 23939 * Set the IP header checksum. Note that mp is just 23940 * the header, so this is easy to pass to ip_csum. 23941 */ 23942 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23943 23944 /* Attach a transmit header, if any, and ship it. */ 23945 if (pkt_type == OB_PKT) { 23946 UPDATE_OB_PKT_COUNT(ire); 23947 } else { 23948 UPDATE_IB_PKT_COUNT(ire); 23949 } 23950 23951 if (ire->ire_flags & RTF_MULTIRT) { 23952 irb = ire->ire_bucket; 23953 ASSERT(irb != NULL); 23954 23955 multirt_send = B_TRUE; 23956 23957 /* 23958 * Save the original ire; we will need to restore it 23959 * for the tailing frags. 23960 */ 23961 save_ire = ire; 23962 IRE_REFHOLD(save_ire); 23963 } 23964 /* 23965 * Emission loop for this fragment, similar 23966 * to what is done for the first fragment. 23967 */ 23968 do { 23969 if (multirt_send) { 23970 /* 23971 * We are in a multiple send case, need to get 23972 * the next ire and make a copy of the packet. 23973 */ 23974 ASSERT(irb != NULL); 23975 IRB_REFHOLD(irb); 23976 for (ire1 = ire->ire_next; 23977 ire1 != NULL; 23978 ire1 = ire1->ire_next) { 23979 if (!(ire1->ire_flags & RTF_MULTIRT)) 23980 continue; 23981 if (ire1->ire_addr != ire->ire_addr) 23982 continue; 23983 if (ire1->ire_marks & 23984 (IRE_MARK_CONDEMNED| 23985 IRE_MARK_HIDDEN)) 23986 continue; 23987 /* 23988 * Ensure we do not exceed the MTU 23989 * of the next route. 23990 */ 23991 if (ire1->ire_max_frag < max_frag) { 23992 ip_multirt_bad_mtu(ire1, 23993 max_frag); 23994 continue; 23995 } 23996 23997 /* Got one. */ 23998 IRE_REFHOLD(ire1); 23999 break; 24000 } 24001 IRB_REFRELE(irb); 24002 24003 if (ire1 != NULL) { 24004 next_mp = copyb(mp); 24005 if ((next_mp == NULL) || 24006 ((mp->b_cont != NULL) && 24007 ((next_mp->b_cont = 24008 dupmsg(mp->b_cont)) == NULL))) { 24009 freemsg(next_mp); 24010 next_mp = NULL; 24011 ire_refrele(ire1); 24012 ire1 = NULL; 24013 } 24014 } 24015 24016 /* Last multiroute ire; don't loop anymore. */ 24017 if (ire1 == NULL) { 24018 multirt_send = B_FALSE; 24019 } 24020 } 24021 24022 /* Update transmit header */ 24023 ll_hdr_len = 0; 24024 LOCK_IRE_FP_MP(ire); 24025 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24026 if (ll_hdr_mp != NULL) { 24027 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24028 ll_hdr_len = MBLKL(ll_hdr_mp); 24029 } else { 24030 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24031 } 24032 24033 if (!ll_hdr_mp) { 24034 xmit_mp = mp; 24035 24036 /* 24037 * We have link-layer header that can fit in 24038 * our mblk. 24039 */ 24040 } else if (mp->b_datap->db_ref == 1 && 24041 ll_hdr_len != 0 && 24042 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24043 /* M_DATA fastpath */ 24044 mp->b_rptr -= ll_hdr_len; 24045 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24046 ll_hdr_len); 24047 xmit_mp = mp; 24048 24049 /* 24050 * Case of res_mp OR the fastpath mp can't fit 24051 * in the mblk 24052 */ 24053 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24054 xmit_mp->b_cont = mp; 24055 if (DB_CRED(mp) != NULL) 24056 mblk_setcred(xmit_mp, DB_CRED(mp)); 24057 /* Get priority marking, if any. */ 24058 if (DB_TYPE(xmit_mp) == M_DATA) 24059 xmit_mp->b_band = mp->b_band; 24060 24061 /* Corner case if copyb failed */ 24062 } else { 24063 /* 24064 * Exit both the replication and 24065 * fragmentation loops. 24066 */ 24067 UNLOCK_IRE_FP_MP(ire); 24068 goto drop_pkt; 24069 } 24070 UNLOCK_IRE_FP_MP(ire); 24071 BUMP_MIB(&ip_mib, ipFragCreates); 24072 24073 mp1 = mp; 24074 out_ill = (ill_t *)q->q_ptr; 24075 24076 DTRACE_PROBE4(ip4__physical__out__start, 24077 ill_t *, NULL, ill_t *, out_ill, 24078 ipha_t *, ipha, mblk_t *, xmit_mp); 24079 24080 FW_HOOKS(ip4_physical_out_event, 24081 ipv4firewall_physical_out, 24082 NULL, out_ill, ipha, xmit_mp, mp); 24083 24084 DTRACE_PROBE1(ip4__physical__out__end, 24085 mblk_t *, xmit_mp); 24086 24087 if (mp != mp1 && hdr_mp == mp1) 24088 hdr_mp = mp; 24089 if (mp != mp1 && mp_orig == mp1) 24090 mp_orig = mp; 24091 24092 if (xmit_mp != NULL) { 24093 putnext(q, xmit_mp); 24094 24095 if (pkt_type != OB_PKT) { 24096 /* 24097 * Update the packet count of trailing 24098 * RTF_MULTIRT ires. 24099 */ 24100 UPDATE_OB_PKT_COUNT(ire); 24101 } 24102 } 24103 24104 /* All done if we just consumed the hdr_mp. */ 24105 if (mp == hdr_mp) { 24106 last_frag = B_TRUE; 24107 } 24108 24109 if (multirt_send) { 24110 /* 24111 * We are in a multiple send case; look for 24112 * the next ire and re-enter the loop. 24113 */ 24114 ASSERT(ire1); 24115 ASSERT(next_mp); 24116 /* REFRELE the current ire before looping */ 24117 ire_refrele(ire); 24118 ire = ire1; 24119 ire1 = NULL; 24120 q = ire->ire_stq; 24121 mp = next_mp; 24122 next_mp = NULL; 24123 } 24124 } while (multirt_send); 24125 /* 24126 * Restore the original ire; we need it for the 24127 * trailing frags 24128 */ 24129 if (save_ire != NULL) { 24130 ASSERT(ire1 == NULL); 24131 /* REFRELE the last iterated ire */ 24132 ire_refrele(ire); 24133 /* save_ire has been REFHOLDed */ 24134 ire = save_ire; 24135 q = ire->ire_stq; 24136 save_ire = NULL; 24137 } 24138 24139 if (last_frag) { 24140 BUMP_MIB(&ip_mib, ipFragOKs); 24141 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24142 "ip_wput_frag_end:(%S)", 24143 "consumed hdr_mp"); 24144 24145 if (first_ire != NULL) 24146 ire_refrele(first_ire); 24147 return; 24148 } 24149 /* Otherwise, advance and loop. */ 24150 offset += len; 24151 } 24152 24153 drop_pkt: 24154 /* Clean up following allocation failure. */ 24155 BUMP_MIB(&ip_mib, ipOutDiscards); 24156 freemsg(mp); 24157 if (mp != hdr_mp) 24158 freeb(hdr_mp); 24159 if (mp != mp_orig) 24160 freemsg(mp_orig); 24161 24162 if (save_ire != NULL) 24163 IRE_REFRELE(save_ire); 24164 if (first_ire != NULL) 24165 ire_refrele(first_ire); 24166 24167 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24168 "ip_wput_frag_end:(%S)", 24169 "end--alloc failure"); 24170 } 24171 24172 /* 24173 * Copy the header plus those options which have the copy bit set 24174 */ 24175 static mblk_t * 24176 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 24177 { 24178 mblk_t *mp; 24179 uchar_t *up; 24180 24181 /* 24182 * Quick check if we need to look for options without the copy bit 24183 * set 24184 */ 24185 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 24186 if (!mp) 24187 return (mp); 24188 mp->b_rptr += ip_wroff_extra; 24189 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24190 bcopy(rptr, mp->b_rptr, hdr_len); 24191 mp->b_wptr += hdr_len + ip_wroff_extra; 24192 return (mp); 24193 } 24194 up = mp->b_rptr; 24195 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24196 up += IP_SIMPLE_HDR_LENGTH; 24197 rptr += IP_SIMPLE_HDR_LENGTH; 24198 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24199 while (hdr_len > 0) { 24200 uint32_t optval; 24201 uint32_t optlen; 24202 24203 optval = *rptr; 24204 if (optval == IPOPT_EOL) 24205 break; 24206 if (optval == IPOPT_NOP) 24207 optlen = 1; 24208 else 24209 optlen = rptr[1]; 24210 if (optval & IPOPT_COPY) { 24211 bcopy(rptr, up, optlen); 24212 up += optlen; 24213 } 24214 rptr += optlen; 24215 hdr_len -= optlen; 24216 } 24217 /* 24218 * Make sure that we drop an even number of words by filling 24219 * with EOL to the next word boundary. 24220 */ 24221 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24222 hdr_len & 0x3; hdr_len++) 24223 *up++ = IPOPT_EOL; 24224 mp->b_wptr = up; 24225 /* Update header length */ 24226 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24227 return (mp); 24228 } 24229 24230 /* 24231 * Delivery to local recipients including fanout to multiple recipients. 24232 * Does not do checksumming of UDP/TCP. 24233 * Note: q should be the read side queue for either the ill or conn. 24234 * Note: rq should be the read side q for the lower (ill) stream. 24235 * We don't send packets to IPPF processing, thus the last argument 24236 * to all the fanout calls are B_FALSE. 24237 */ 24238 void 24239 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24240 int fanout_flags, zoneid_t zoneid) 24241 { 24242 uint32_t protocol; 24243 mblk_t *first_mp; 24244 boolean_t mctl_present; 24245 int ire_type; 24246 #define rptr ((uchar_t *)ipha) 24247 24248 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24249 "ip_wput_local_start: q %p", q); 24250 24251 if (ire != NULL) { 24252 ire_type = ire->ire_type; 24253 } else { 24254 /* 24255 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24256 * packet is not multicast, we can't tell the ire type. 24257 */ 24258 ASSERT(CLASSD(ipha->ipha_dst)); 24259 ire_type = IRE_BROADCAST; 24260 } 24261 24262 first_mp = mp; 24263 if (first_mp->b_datap->db_type == M_CTL) { 24264 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24265 if (!io->ipsec_out_secure) { 24266 /* 24267 * This ipsec_out_t was allocated in ip_wput 24268 * for multicast packets to store the ill_index. 24269 * As this is being delivered locally, we don't 24270 * need this anymore. 24271 */ 24272 mp = first_mp->b_cont; 24273 freeb(first_mp); 24274 first_mp = mp; 24275 mctl_present = B_FALSE; 24276 } else { 24277 /* 24278 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24279 * security properties for the looped-back packet. 24280 */ 24281 mctl_present = B_TRUE; 24282 mp = first_mp->b_cont; 24283 ASSERT(mp != NULL); 24284 ipsec_out_to_in(first_mp); 24285 } 24286 } else { 24287 mctl_present = B_FALSE; 24288 } 24289 24290 DTRACE_PROBE4(ip4__loopback__in__start, 24291 ill_t *, ill, ill_t *, NULL, 24292 ipha_t *, ipha, mblk_t *, first_mp); 24293 24294 FW_HOOKS(ip4_loopback_in_event, ipv4firewall_loopback_in, 24295 ill, NULL, ipha, first_mp, mp); 24296 24297 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24298 24299 if (first_mp == NULL) 24300 return; 24301 24302 loopback_packets++; 24303 24304 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24305 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24306 if (!IS_SIMPLE_IPH(ipha)) { 24307 ip_wput_local_options(ipha); 24308 } 24309 24310 protocol = ipha->ipha_protocol; 24311 switch (protocol) { 24312 case IPPROTO_ICMP: { 24313 ire_t *ire_zone; 24314 ilm_t *ilm; 24315 mblk_t *mp1; 24316 zoneid_t last_zoneid; 24317 24318 if (CLASSD(ipha->ipha_dst) && 24319 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 24320 ASSERT(ire_type == IRE_BROADCAST); 24321 /* 24322 * In the multicast case, applications may have joined 24323 * the group from different zones, so we need to deliver 24324 * the packet to each of them. Loop through the 24325 * multicast memberships structures (ilm) on the receive 24326 * ill and send a copy of the packet up each matching 24327 * one. However, we don't do this for multicasts sent on 24328 * the loopback interface (PHYI_LOOPBACK flag set) as 24329 * they must stay in the sender's zone. 24330 * 24331 * ilm_add_v6() ensures that ilms in the same zone are 24332 * contiguous in the ill_ilm list. We use this property 24333 * to avoid sending duplicates needed when two 24334 * applications in the same zone join the same group on 24335 * different logical interfaces: we ignore the ilm if 24336 * it's zoneid is the same as the last matching one. 24337 * In addition, the sending of the packet for 24338 * ire_zoneid is delayed until all of the other ilms 24339 * have been exhausted. 24340 */ 24341 last_zoneid = -1; 24342 ILM_WALKER_HOLD(ill); 24343 for (ilm = ill->ill_ilm; ilm != NULL; 24344 ilm = ilm->ilm_next) { 24345 if ((ilm->ilm_flags & ILM_DELETED) || 24346 ipha->ipha_dst != ilm->ilm_addr || 24347 ilm->ilm_zoneid == last_zoneid || 24348 ilm->ilm_zoneid == zoneid || 24349 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24350 continue; 24351 mp1 = ip_copymsg(first_mp); 24352 if (mp1 == NULL) 24353 continue; 24354 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24355 mctl_present, B_FALSE, ill, 24356 ilm->ilm_zoneid); 24357 last_zoneid = ilm->ilm_zoneid; 24358 } 24359 ILM_WALKER_RELE(ill); 24360 /* 24361 * Loopback case: the sending endpoint has 24362 * IP_MULTICAST_LOOP disabled, therefore we don't 24363 * dispatch the multicast packet to the sending zone. 24364 */ 24365 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24366 freemsg(first_mp); 24367 return; 24368 } 24369 } else if (ire_type == IRE_BROADCAST) { 24370 /* 24371 * In the broadcast case, there may be many zones 24372 * which need a copy of the packet delivered to them. 24373 * There is one IRE_BROADCAST per broadcast address 24374 * and per zone; we walk those using a helper function. 24375 * In addition, the sending of the packet for zoneid is 24376 * delayed until all of the other ires have been 24377 * processed. 24378 */ 24379 IRB_REFHOLD(ire->ire_bucket); 24380 ire_zone = NULL; 24381 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24382 ire)) != NULL) { 24383 mp1 = ip_copymsg(first_mp); 24384 if (mp1 == NULL) 24385 continue; 24386 24387 UPDATE_IB_PKT_COUNT(ire_zone); 24388 ire_zone->ire_last_used_time = lbolt; 24389 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24390 mctl_present, B_FALSE, ill, 24391 ire_zone->ire_zoneid); 24392 } 24393 IRB_REFRELE(ire->ire_bucket); 24394 } 24395 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24396 0, mctl_present, B_FALSE, ill, zoneid); 24397 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24398 "ip_wput_local_end: q %p (%S)", 24399 q, "icmp"); 24400 return; 24401 } 24402 case IPPROTO_IGMP: 24403 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24404 /* Bad packet - discarded by igmp_input */ 24405 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24406 "ip_wput_local_end: q %p (%S)", 24407 q, "igmp_input--bad packet"); 24408 if (mctl_present) 24409 freeb(first_mp); 24410 return; 24411 } 24412 /* 24413 * igmp_input() may have returned the pulled up message. 24414 * So first_mp and ipha need to be reinitialized. 24415 */ 24416 ipha = (ipha_t *)mp->b_rptr; 24417 if (mctl_present) 24418 first_mp->b_cont = mp; 24419 else 24420 first_mp = mp; 24421 /* deliver to local raw users */ 24422 break; 24423 case IPPROTO_ENCAP: 24424 /* 24425 * This case is covered by either ip_fanout_proto, or by 24426 * the above security processing for self-tunneled packets. 24427 */ 24428 break; 24429 case IPPROTO_UDP: { 24430 uint16_t *up; 24431 uint32_t ports; 24432 24433 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24434 UDP_PORTS_OFFSET); 24435 /* Force a 'valid' checksum. */ 24436 up[3] = 0; 24437 24438 ports = *(uint32_t *)up; 24439 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24440 (ire_type == IRE_BROADCAST), 24441 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24442 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24443 ill, zoneid); 24444 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24445 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24446 return; 24447 } 24448 case IPPROTO_TCP: { 24449 24450 /* 24451 * For TCP, discard broadcast packets. 24452 */ 24453 if ((ushort_t)ire_type == IRE_BROADCAST) { 24454 freemsg(first_mp); 24455 BUMP_MIB(&ip_mib, ipInDiscards); 24456 ip2dbg(("ip_wput_local: discard broadcast\n")); 24457 return; 24458 } 24459 24460 if (mp->b_datap->db_type == M_DATA) { 24461 /* 24462 * M_DATA mblk, so init mblk (chain) for no struio(). 24463 */ 24464 mblk_t *mp1 = mp; 24465 24466 do 24467 mp1->b_datap->db_struioflag = 0; 24468 while ((mp1 = mp1->b_cont) != NULL); 24469 } 24470 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24471 <= mp->b_wptr); 24472 ip_fanout_tcp(q, first_mp, ill, ipha, 24473 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24474 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24475 mctl_present, B_FALSE, zoneid); 24476 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24477 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24478 return; 24479 } 24480 case IPPROTO_SCTP: 24481 { 24482 uint32_t ports; 24483 24484 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24485 ip_fanout_sctp(first_mp, ill, ipha, ports, 24486 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24487 IP_FF_IP6INFO, 24488 mctl_present, B_FALSE, 0, zoneid); 24489 return; 24490 } 24491 24492 default: 24493 break; 24494 } 24495 /* 24496 * Find a client for some other protocol. We give 24497 * copies to multiple clients, if more than one is 24498 * bound. 24499 */ 24500 ip_fanout_proto(q, first_mp, ill, ipha, 24501 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24502 mctl_present, B_FALSE, ill, zoneid); 24503 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24504 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24505 #undef rptr 24506 } 24507 24508 /* 24509 * Update any source route, record route, or timestamp options. 24510 * Check that we are at end of strict source route. 24511 * The options have been sanity checked by ip_wput_options(). 24512 */ 24513 static void 24514 ip_wput_local_options(ipha_t *ipha) 24515 { 24516 ipoptp_t opts; 24517 uchar_t *opt; 24518 uint8_t optval; 24519 uint8_t optlen; 24520 ipaddr_t dst; 24521 uint32_t ts; 24522 ire_t *ire; 24523 timestruc_t now; 24524 24525 ip2dbg(("ip_wput_local_options\n")); 24526 for (optval = ipoptp_first(&opts, ipha); 24527 optval != IPOPT_EOL; 24528 optval = ipoptp_next(&opts)) { 24529 opt = opts.ipoptp_cur; 24530 optlen = opts.ipoptp_len; 24531 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24532 switch (optval) { 24533 uint32_t off; 24534 case IPOPT_SSRR: 24535 case IPOPT_LSRR: 24536 off = opt[IPOPT_OFFSET]; 24537 off--; 24538 if (optlen < IP_ADDR_LEN || 24539 off > optlen - IP_ADDR_LEN) { 24540 /* End of source route */ 24541 break; 24542 } 24543 /* 24544 * This will only happen if two consecutive entries 24545 * in the source route contains our address or if 24546 * it is a packet with a loose source route which 24547 * reaches us before consuming the whole source route 24548 */ 24549 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24550 if (optval == IPOPT_SSRR) { 24551 return; 24552 } 24553 /* 24554 * Hack: instead of dropping the packet truncate the 24555 * source route to what has been used by filling the 24556 * rest with IPOPT_NOP. 24557 */ 24558 opt[IPOPT_OLEN] = (uint8_t)off; 24559 while (off < optlen) { 24560 opt[off++] = IPOPT_NOP; 24561 } 24562 break; 24563 case IPOPT_RR: 24564 off = opt[IPOPT_OFFSET]; 24565 off--; 24566 if (optlen < IP_ADDR_LEN || 24567 off > optlen - IP_ADDR_LEN) { 24568 /* No more room - ignore */ 24569 ip1dbg(( 24570 "ip_wput_forward_options: end of RR\n")); 24571 break; 24572 } 24573 dst = htonl(INADDR_LOOPBACK); 24574 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24575 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24576 break; 24577 case IPOPT_TS: 24578 /* Insert timestamp if there is romm */ 24579 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24580 case IPOPT_TS_TSONLY: 24581 off = IPOPT_TS_TIMELEN; 24582 break; 24583 case IPOPT_TS_PRESPEC: 24584 case IPOPT_TS_PRESPEC_RFC791: 24585 /* Verify that the address matched */ 24586 off = opt[IPOPT_OFFSET] - 1; 24587 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24588 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24589 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24590 if (ire == NULL) { 24591 /* Not for us */ 24592 break; 24593 } 24594 ire_refrele(ire); 24595 /* FALLTHRU */ 24596 case IPOPT_TS_TSANDADDR: 24597 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24598 break; 24599 default: 24600 /* 24601 * ip_*put_options should have already 24602 * dropped this packet. 24603 */ 24604 cmn_err(CE_PANIC, "ip_wput_local_options: " 24605 "unknown IT - bug in ip_wput_options?\n"); 24606 return; /* Keep "lint" happy */ 24607 } 24608 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24609 /* Increase overflow counter */ 24610 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24611 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24612 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24613 (off << 4); 24614 break; 24615 } 24616 off = opt[IPOPT_OFFSET] - 1; 24617 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24618 case IPOPT_TS_PRESPEC: 24619 case IPOPT_TS_PRESPEC_RFC791: 24620 case IPOPT_TS_TSANDADDR: 24621 dst = htonl(INADDR_LOOPBACK); 24622 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24623 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24624 /* FALLTHRU */ 24625 case IPOPT_TS_TSONLY: 24626 off = opt[IPOPT_OFFSET] - 1; 24627 /* Compute # of milliseconds since midnight */ 24628 gethrestime(&now); 24629 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24630 now.tv_nsec / (NANOSEC / MILLISEC); 24631 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24632 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24633 break; 24634 } 24635 break; 24636 } 24637 } 24638 } 24639 24640 /* 24641 * Send out a multicast packet on interface ipif. 24642 * The sender does not have an conn. 24643 * Caller verifies that this isn't a PHYI_LOOPBACK. 24644 */ 24645 void 24646 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 24647 { 24648 ipha_t *ipha; 24649 ire_t *ire; 24650 ipaddr_t dst; 24651 mblk_t *first_mp; 24652 24653 /* igmp_sendpkt always allocates a ipsec_out_t */ 24654 ASSERT(mp->b_datap->db_type == M_CTL); 24655 ASSERT(!ipif->ipif_isv6); 24656 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24657 24658 first_mp = mp; 24659 mp = first_mp->b_cont; 24660 ASSERT(mp->b_datap->db_type == M_DATA); 24661 ipha = (ipha_t *)mp->b_rptr; 24662 24663 /* 24664 * Find an IRE which matches the destination and the outgoing 24665 * queue (i.e. the outgoing interface.) 24666 */ 24667 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24668 dst = ipif->ipif_pp_dst_addr; 24669 else 24670 dst = ipha->ipha_dst; 24671 /* 24672 * The source address has already been initialized by the 24673 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24674 * be sufficient rather than MATCH_IRE_IPIF. 24675 * 24676 * This function is used for sending IGMP packets. We need 24677 * to make sure that we send the packet out of the interface 24678 * (ipif->ipif_ill) where we joined the group. This is to 24679 * prevent from switches doing IGMP snooping to send us multicast 24680 * packets for a given group on the interface we have joined. 24681 * If we can't find an ire, igmp_sendpkt has already initialized 24682 * ipsec_out_attach_if so that this will not be load spread in 24683 * ip_newroute_ipif. 24684 */ 24685 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 24686 MATCH_IRE_ILL); 24687 if (!ire) { 24688 /* 24689 * Mark this packet to make it be delivered to 24690 * ip_wput_ire after the new ire has been 24691 * created. 24692 */ 24693 mp->b_prev = NULL; 24694 mp->b_next = NULL; 24695 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 24696 zoneid); 24697 return; 24698 } 24699 24700 /* 24701 * Honor the RTF_SETSRC flag; this is the only case 24702 * where we force this addr whatever the current src addr is, 24703 * because this address is set by igmp_sendpkt(), and 24704 * cannot be specified by any user. 24705 */ 24706 if (ire->ire_flags & RTF_SETSRC) { 24707 ipha->ipha_src = ire->ire_src_addr; 24708 } 24709 24710 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 24711 } 24712 24713 /* 24714 * NOTE : This function does not ire_refrele the ire argument passed in. 24715 * 24716 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24717 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24718 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24719 * the ire_lock to access the nce_fp_mp in this case. 24720 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24721 * prepending a fastpath message IPQoS processing must precede it, we also set 24722 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24723 * (IPQoS might have set the b_band for CoS marking). 24724 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24725 * must follow it so that IPQoS can mark the dl_priority field for CoS 24726 * marking, if needed. 24727 */ 24728 static mblk_t * 24729 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24730 { 24731 uint_t hlen; 24732 ipha_t *ipha; 24733 mblk_t *mp1; 24734 boolean_t qos_done = B_FALSE; 24735 uchar_t *ll_hdr; 24736 24737 #define rptr ((uchar_t *)ipha) 24738 24739 ipha = (ipha_t *)mp->b_rptr; 24740 hlen = 0; 24741 LOCK_IRE_FP_MP(ire); 24742 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24743 ASSERT(DB_TYPE(mp1) == M_DATA); 24744 /* Initiate IPPF processing */ 24745 if ((proc != 0) && IPP_ENABLED(proc)) { 24746 UNLOCK_IRE_FP_MP(ire); 24747 ip_process(proc, &mp, ill_index); 24748 if (mp == NULL) 24749 return (NULL); 24750 24751 ipha = (ipha_t *)mp->b_rptr; 24752 LOCK_IRE_FP_MP(ire); 24753 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24754 qos_done = B_TRUE; 24755 goto no_fp_mp; 24756 } 24757 ASSERT(DB_TYPE(mp1) == M_DATA); 24758 } 24759 hlen = MBLKL(mp1); 24760 /* 24761 * Check if we have enough room to prepend fastpath 24762 * header 24763 */ 24764 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24765 ll_hdr = rptr - hlen; 24766 bcopy(mp1->b_rptr, ll_hdr, hlen); 24767 /* 24768 * Set the b_rptr to the start of the link layer 24769 * header 24770 */ 24771 mp->b_rptr = ll_hdr; 24772 mp1 = mp; 24773 } else { 24774 mp1 = copyb(mp1); 24775 if (mp1 == NULL) 24776 goto unlock_err; 24777 mp1->b_band = mp->b_band; 24778 mp1->b_cont = mp; 24779 /* 24780 * certain system generated traffic may not 24781 * have cred/label in ip header block. This 24782 * is true even for a labeled system. But for 24783 * labeled traffic, inherit the label in the 24784 * new header. 24785 */ 24786 if (DB_CRED(mp) != NULL) 24787 mblk_setcred(mp1, DB_CRED(mp)); 24788 /* 24789 * XXX disable ICK_VALID and compute checksum 24790 * here; can happen if nce_fp_mp changes and 24791 * it can't be copied now due to insufficient 24792 * space. (unlikely, fp mp can change, but it 24793 * does not increase in length) 24794 */ 24795 } 24796 UNLOCK_IRE_FP_MP(ire); 24797 } else { 24798 no_fp_mp: 24799 mp1 = copyb(ire->ire_nce->nce_res_mp); 24800 if (mp1 == NULL) { 24801 unlock_err: 24802 UNLOCK_IRE_FP_MP(ire); 24803 freemsg(mp); 24804 return (NULL); 24805 } 24806 UNLOCK_IRE_FP_MP(ire); 24807 mp1->b_cont = mp; 24808 /* 24809 * certain system generated traffic may not 24810 * have cred/label in ip header block. This 24811 * is true even for a labeled system. But for 24812 * labeled traffic, inherit the label in the 24813 * new header. 24814 */ 24815 if (DB_CRED(mp) != NULL) 24816 mblk_setcred(mp1, DB_CRED(mp)); 24817 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24818 ip_process(proc, &mp1, ill_index); 24819 if (mp1 == NULL) 24820 return (NULL); 24821 } 24822 } 24823 return (mp1); 24824 #undef rptr 24825 } 24826 24827 /* 24828 * Finish the outbound IPsec processing for an IPv6 packet. This function 24829 * is called from ipsec_out_process() if the IPsec packet was processed 24830 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24831 * asynchronously. 24832 */ 24833 void 24834 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24835 ire_t *ire_arg) 24836 { 24837 in6_addr_t *v6dstp; 24838 ire_t *ire; 24839 mblk_t *mp; 24840 ip6_t *ip6h1; 24841 uint_t ill_index; 24842 ipsec_out_t *io; 24843 boolean_t attach_if, hwaccel; 24844 uint32_t flags = IP6_NO_IPPOLICY; 24845 int match_flags; 24846 zoneid_t zoneid; 24847 boolean_t ill_need_rele = B_FALSE; 24848 boolean_t ire_need_rele = B_FALSE; 24849 24850 mp = ipsec_mp->b_cont; 24851 ip6h1 = (ip6_t *)mp->b_rptr; 24852 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24853 ill_index = io->ipsec_out_ill_index; 24854 if (io->ipsec_out_reachable) { 24855 flags |= IPV6_REACHABILITY_CONFIRMATION; 24856 } 24857 attach_if = io->ipsec_out_attach_if; 24858 hwaccel = io->ipsec_out_accelerated; 24859 zoneid = io->ipsec_out_zoneid; 24860 ASSERT(zoneid != ALL_ZONES); 24861 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24862 /* Multicast addresses should have non-zero ill_index. */ 24863 v6dstp = &ip6h->ip6_dst; 24864 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24865 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24866 ASSERT(!attach_if || ill_index != 0); 24867 if (ill_index != 0) { 24868 if (ill == NULL) { 24869 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24870 B_TRUE); 24871 24872 /* Failure case frees things for us. */ 24873 if (ill == NULL) 24874 return; 24875 24876 ill_need_rele = B_TRUE; 24877 } 24878 /* 24879 * If this packet needs to go out on a particular interface 24880 * honor it. 24881 */ 24882 if (attach_if) { 24883 match_flags = MATCH_IRE_ILL; 24884 24885 /* 24886 * Check if we need an ire that will not be 24887 * looked up by anybody else i.e. HIDDEN. 24888 */ 24889 if (ill_is_probeonly(ill)) { 24890 match_flags |= MATCH_IRE_MARK_HIDDEN; 24891 } 24892 } 24893 } 24894 ASSERT(mp != NULL); 24895 24896 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24897 boolean_t unspec_src; 24898 ipif_t *ipif; 24899 24900 /* 24901 * Use the ill_index to get the right ill. 24902 */ 24903 unspec_src = io->ipsec_out_unspec_src; 24904 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24905 if (ipif == NULL) { 24906 if (ill_need_rele) 24907 ill_refrele(ill); 24908 freemsg(ipsec_mp); 24909 return; 24910 } 24911 24912 if (ire_arg != NULL) { 24913 ire = ire_arg; 24914 } else { 24915 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24916 zoneid, MBLK_GETLABEL(mp), match_flags); 24917 ire_need_rele = B_TRUE; 24918 } 24919 if (ire != NULL) { 24920 ipif_refrele(ipif); 24921 /* 24922 * XXX Do the multicast forwarding now, as the IPSEC 24923 * processing has been done. 24924 */ 24925 goto send; 24926 } 24927 24928 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24929 mp->b_prev = NULL; 24930 mp->b_next = NULL; 24931 24932 /* 24933 * If the IPsec packet was processed asynchronously, 24934 * drop it now. 24935 */ 24936 if (q == NULL) { 24937 if (ill_need_rele) 24938 ill_refrele(ill); 24939 freemsg(ipsec_mp); 24940 return; 24941 } 24942 24943 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24944 unspec_src, zoneid); 24945 ipif_refrele(ipif); 24946 } else { 24947 if (attach_if) { 24948 ipif_t *ipif; 24949 24950 ipif = ipif_get_next_ipif(NULL, ill); 24951 if (ipif == NULL) { 24952 if (ill_need_rele) 24953 ill_refrele(ill); 24954 freemsg(ipsec_mp); 24955 return; 24956 } 24957 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24958 zoneid, MBLK_GETLABEL(mp), match_flags); 24959 ire_need_rele = B_TRUE; 24960 ipif_refrele(ipif); 24961 } else { 24962 if (ire_arg != NULL) { 24963 ire = ire_arg; 24964 } else { 24965 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24966 ire_need_rele = B_TRUE; 24967 } 24968 } 24969 if (ire != NULL) 24970 goto send; 24971 /* 24972 * ire disappeared underneath. 24973 * 24974 * What we need to do here is the ip_newroute 24975 * logic to get the ire without doing the IPSEC 24976 * processing. Follow the same old path. But this 24977 * time, ip_wput or ire_add_then_send will call us 24978 * directly as all the IPSEC operations are done. 24979 */ 24980 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24981 mp->b_prev = NULL; 24982 mp->b_next = NULL; 24983 24984 /* 24985 * If the IPsec packet was processed asynchronously, 24986 * drop it now. 24987 */ 24988 if (q == NULL) { 24989 if (ill_need_rele) 24990 ill_refrele(ill); 24991 freemsg(ipsec_mp); 24992 return; 24993 } 24994 24995 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24996 zoneid); 24997 } 24998 if (ill != NULL && ill_need_rele) 24999 ill_refrele(ill); 25000 return; 25001 send: 25002 if (ill != NULL && ill_need_rele) 25003 ill_refrele(ill); 25004 25005 /* Local delivery */ 25006 if (ire->ire_stq == NULL) { 25007 ill_t *out_ill; 25008 ASSERT(q != NULL); 25009 25010 /* PFHooks: LOOPBACK_OUT */ 25011 out_ill = ire->ire_ipif->ipif_ill; 25012 25013 DTRACE_PROBE4(ip6__loopback__out__start, 25014 ill_t *, NULL, ill_t *, out_ill, 25015 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25016 25017 FW_HOOKS6(ip6_loopback_out_event, ipv6firewall_loopback_out, 25018 NULL, out_ill, ip6h1, ipsec_mp, mp); 25019 25020 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25021 25022 if (ipsec_mp != NULL) 25023 ip_wput_local_v6(RD(q), out_ill, 25024 ip6h, ipsec_mp, ire, 0); 25025 if (ire_need_rele) 25026 ire_refrele(ire); 25027 return; 25028 } 25029 /* 25030 * Everything is done. Send it out on the wire. 25031 * We force the insertion of a fragment header using the 25032 * IPH_FRAG_HDR flag in two cases: 25033 * - after reception of an ICMPv6 "packet too big" message 25034 * with a MTU < 1280 (cf. RFC 2460 section 5) 25035 * - for multirouted IPv6 packets, so that the receiver can 25036 * discard duplicates according to their fragment identifier 25037 */ 25038 /* XXX fix flow control problems. */ 25039 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25040 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25041 if (hwaccel) { 25042 /* 25043 * hardware acceleration does not handle these 25044 * "slow path" cases. 25045 */ 25046 /* IPsec KSTATS: should bump bean counter here. */ 25047 if (ire_need_rele) 25048 ire_refrele(ire); 25049 freemsg(ipsec_mp); 25050 return; 25051 } 25052 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25053 (mp->b_cont ? msgdsize(mp) : 25054 mp->b_wptr - (uchar_t *)ip6h)) { 25055 /* IPsec KSTATS: should bump bean counter here. */ 25056 ip0dbg(("Packet length mismatch: %d, %ld\n", 25057 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25058 msgdsize(mp))); 25059 if (ire_need_rele) 25060 ire_refrele(ire); 25061 freemsg(ipsec_mp); 25062 return; 25063 } 25064 ASSERT(mp->b_prev == NULL); 25065 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25066 ntohs(ip6h->ip6_plen) + 25067 IPV6_HDR_LEN, ire->ire_max_frag)); 25068 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25069 ire->ire_max_frag); 25070 } else { 25071 UPDATE_OB_PKT_COUNT(ire); 25072 ire->ire_last_used_time = lbolt; 25073 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25074 } 25075 if (ire_need_rele) 25076 ire_refrele(ire); 25077 freeb(ipsec_mp); 25078 } 25079 25080 void 25081 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25082 { 25083 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25084 da_ipsec_t *hada; /* data attributes */ 25085 ill_t *ill = (ill_t *)q->q_ptr; 25086 25087 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25088 25089 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25090 /* IPsec KSTATS: Bump lose counter here! */ 25091 freemsg(mp); 25092 return; 25093 } 25094 25095 /* 25096 * It's an IPsec packet that must be 25097 * accelerated by the Provider, and the 25098 * outbound ill is IPsec acceleration capable. 25099 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25100 * to the ill. 25101 * IPsec KSTATS: should bump packet counter here. 25102 */ 25103 25104 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25105 if (hada_mp == NULL) { 25106 /* IPsec KSTATS: should bump packet counter here. */ 25107 freemsg(mp); 25108 return; 25109 } 25110 25111 hada_mp->b_datap->db_type = M_CTL; 25112 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25113 hada_mp->b_cont = mp; 25114 25115 hada = (da_ipsec_t *)hada_mp->b_rptr; 25116 bzero(hada, sizeof (da_ipsec_t)); 25117 hada->da_type = IPHADA_M_CTL; 25118 25119 putnext(q, hada_mp); 25120 } 25121 25122 /* 25123 * Finish the outbound IPsec processing. This function is called from 25124 * ipsec_out_process() if the IPsec packet was processed 25125 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25126 * asynchronously. 25127 */ 25128 void 25129 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25130 ire_t *ire_arg) 25131 { 25132 uint32_t v_hlen_tos_len; 25133 ipaddr_t dst; 25134 ipif_t *ipif = NULL; 25135 ire_t *ire; 25136 ire_t *ire1 = NULL; 25137 mblk_t *next_mp = NULL; 25138 uint32_t max_frag; 25139 boolean_t multirt_send = B_FALSE; 25140 mblk_t *mp; 25141 mblk_t *mp1; 25142 ipha_t *ipha1; 25143 uint_t ill_index; 25144 ipsec_out_t *io; 25145 boolean_t attach_if; 25146 int match_flags, offset; 25147 irb_t *irb = NULL; 25148 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25149 zoneid_t zoneid; 25150 uint32_t cksum; 25151 uint16_t *up; 25152 ipxmit_state_t pktxmit_state; 25153 #ifdef _BIG_ENDIAN 25154 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25155 #else 25156 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25157 #endif 25158 25159 mp = ipsec_mp->b_cont; 25160 ipha1 = (ipha_t *)mp->b_rptr; 25161 ASSERT(mp != NULL); 25162 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25163 dst = ipha->ipha_dst; 25164 25165 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25166 ill_index = io->ipsec_out_ill_index; 25167 attach_if = io->ipsec_out_attach_if; 25168 zoneid = io->ipsec_out_zoneid; 25169 ASSERT(zoneid != ALL_ZONES); 25170 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25171 if (ill_index != 0) { 25172 if (ill == NULL) { 25173 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25174 ill_index, B_FALSE); 25175 25176 /* Failure case frees things for us. */ 25177 if (ill == NULL) 25178 return; 25179 25180 ill_need_rele = B_TRUE; 25181 } 25182 /* 25183 * If this packet needs to go out on a particular interface 25184 * honor it. 25185 */ 25186 if (attach_if) { 25187 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25188 25189 /* 25190 * Check if we need an ire that will not be 25191 * looked up by anybody else i.e. HIDDEN. 25192 */ 25193 if (ill_is_probeonly(ill)) { 25194 match_flags |= MATCH_IRE_MARK_HIDDEN; 25195 } 25196 } 25197 } 25198 25199 if (CLASSD(dst)) { 25200 boolean_t conn_dontroute; 25201 /* 25202 * Use the ill_index to get the right ipif. 25203 */ 25204 conn_dontroute = io->ipsec_out_dontroute; 25205 if (ill_index == 0) 25206 ipif = ipif_lookup_group(dst, zoneid); 25207 else 25208 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25209 if (ipif == NULL) { 25210 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25211 " multicast\n")); 25212 BUMP_MIB(&ip_mib, ipOutNoRoutes); 25213 freemsg(ipsec_mp); 25214 goto done; 25215 } 25216 /* 25217 * ipha_src has already been intialized with the 25218 * value of the ipif in ip_wput. All we need now is 25219 * an ire to send this downstream. 25220 */ 25221 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25222 MBLK_GETLABEL(mp), match_flags); 25223 if (ire != NULL) { 25224 ill_t *ill1; 25225 /* 25226 * Do the multicast forwarding now, as the IPSEC 25227 * processing has been done. 25228 */ 25229 if (ip_g_mrouter && !conn_dontroute && 25230 (ill1 = ire_to_ill(ire))) { 25231 if (ip_mforward(ill1, ipha, mp)) { 25232 freemsg(ipsec_mp); 25233 ip1dbg(("ip_wput_ipsec_out: mforward " 25234 "failed\n")); 25235 ire_refrele(ire); 25236 goto done; 25237 } 25238 } 25239 goto send; 25240 } 25241 25242 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25243 mp->b_prev = NULL; 25244 mp->b_next = NULL; 25245 25246 /* 25247 * If the IPsec packet was processed asynchronously, 25248 * drop it now. 25249 */ 25250 if (q == NULL) { 25251 freemsg(ipsec_mp); 25252 goto done; 25253 } 25254 25255 /* 25256 * We may be using a wrong ipif to create the ire. 25257 * But it is okay as the source address is assigned 25258 * for the packet already. Next outbound packet would 25259 * create the IRE with the right IPIF in ip_wput. 25260 * 25261 * Also handle RTF_MULTIRT routes. 25262 */ 25263 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25264 zoneid); 25265 } else { 25266 if (attach_if) { 25267 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25268 zoneid, MBLK_GETLABEL(mp), match_flags); 25269 } else { 25270 if (ire_arg != NULL) { 25271 ire = ire_arg; 25272 ire_need_rele = B_FALSE; 25273 } else { 25274 ire = ire_cache_lookup(dst, zoneid, 25275 MBLK_GETLABEL(mp)); 25276 } 25277 } 25278 if (ire != NULL) { 25279 goto send; 25280 } 25281 25282 /* 25283 * ire disappeared underneath. 25284 * 25285 * What we need to do here is the ip_newroute 25286 * logic to get the ire without doing the IPSEC 25287 * processing. Follow the same old path. But this 25288 * time, ip_wput or ire_add_then_put will call us 25289 * directly as all the IPSEC operations are done. 25290 */ 25291 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25292 mp->b_prev = NULL; 25293 mp->b_next = NULL; 25294 25295 /* 25296 * If the IPsec packet was processed asynchronously, 25297 * drop it now. 25298 */ 25299 if (q == NULL) { 25300 freemsg(ipsec_mp); 25301 goto done; 25302 } 25303 25304 /* 25305 * Since we're going through ip_newroute() again, we 25306 * need to make sure we don't: 25307 * 25308 * 1.) Trigger the ASSERT() with the ipha_ident 25309 * overloading. 25310 * 2.) Redo transport-layer checksumming, since we've 25311 * already done all that to get this far. 25312 * 25313 * The easiest way not do either of the above is to set 25314 * the ipha_ident field to IP_HDR_INCLUDED. 25315 */ 25316 ipha->ipha_ident = IP_HDR_INCLUDED; 25317 ip_newroute(q, ipsec_mp, dst, NULL, 25318 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 25319 } 25320 goto done; 25321 send: 25322 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 25323 /* 25324 * ESP NAT-Traversal packet. 25325 * 25326 * Just do software checksum for now. 25327 */ 25328 25329 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25330 IP_STAT(ip_out_sw_cksum); 25331 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 25332 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25333 #define iphs ((uint16_t *)ipha) 25334 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25335 iphs[9] + ntohs(htons(ipha->ipha_length) - 25336 IP_SIMPLE_HDR_LENGTH); 25337 #undef iphs 25338 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 25339 cksum = 0xFFFF; 25340 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25341 if (mp1->b_wptr - mp1->b_rptr >= 25342 offset + sizeof (uint16_t)) { 25343 up = (uint16_t *)(mp1->b_rptr + offset); 25344 *up = cksum; 25345 break; /* out of for loop */ 25346 } else { 25347 offset -= (mp->b_wptr - mp->b_rptr); 25348 } 25349 } /* Otherwise, just keep the all-zero checksum. */ 25350 25351 if (ire->ire_stq == NULL) { 25352 ill_t *out_ill; 25353 /* 25354 * Loopbacks go through ip_wput_local except for one case. 25355 * We come here if we generate a icmp_frag_needed message 25356 * after IPSEC processing is over. When this function calls 25357 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25358 * icmp_frag_needed. The message generated comes back here 25359 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25360 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25361 * source address as it is usually set in ip_wput_ire. As 25362 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25363 * and we end up here. We can't enter ip_wput_ire once the 25364 * IPSEC processing is over and hence we need to do it here. 25365 */ 25366 ASSERT(q != NULL); 25367 UPDATE_OB_PKT_COUNT(ire); 25368 ire->ire_last_used_time = lbolt; 25369 if (ipha->ipha_src == 0) 25370 ipha->ipha_src = ire->ire_src_addr; 25371 25372 /* PFHooks: LOOPBACK_OUT */ 25373 out_ill = ire->ire_ipif->ipif_ill; 25374 25375 DTRACE_PROBE4(ip4__loopback__out__start, 25376 ill_t *, NULL, ill_t *, out_ill, 25377 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25378 25379 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 25380 NULL, out_ill, ipha1, ipsec_mp, mp); 25381 25382 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25383 25384 if (ipsec_mp != NULL) 25385 ip_wput_local(RD(q), out_ill, 25386 ipha, ipsec_mp, ire, 0, zoneid); 25387 if (ire_need_rele) 25388 ire_refrele(ire); 25389 goto done; 25390 } 25391 25392 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25393 /* 25394 * We are through with IPSEC processing. 25395 * Fragment this and send it on the wire. 25396 */ 25397 if (io->ipsec_out_accelerated) { 25398 /* 25399 * The packet has been accelerated but must 25400 * be fragmented. This should not happen 25401 * since AH and ESP must not accelerate 25402 * packets that need fragmentation, however 25403 * the configuration could have changed 25404 * since the AH or ESP processing. 25405 * Drop packet. 25406 * IPsec KSTATS: bump bean counter here. 25407 */ 25408 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25409 "fragmented accelerated packet!\n")); 25410 freemsg(ipsec_mp); 25411 } else { 25412 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 25413 } 25414 if (ire_need_rele) 25415 ire_refrele(ire); 25416 goto done; 25417 } 25418 25419 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25420 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25421 (void *)ire->ire_ipif, (void *)ipif)); 25422 25423 /* 25424 * Multiroute the secured packet, unless IPsec really 25425 * requires the packet to go out only through a particular 25426 * interface. 25427 */ 25428 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25429 ire_t *first_ire; 25430 irb = ire->ire_bucket; 25431 ASSERT(irb != NULL); 25432 /* 25433 * This ire has been looked up as the one that 25434 * goes through the given ipif; 25435 * make sure we do not omit any other multiroute ire 25436 * that may be present in the bucket before this one. 25437 */ 25438 IRB_REFHOLD(irb); 25439 for (first_ire = irb->irb_ire; 25440 first_ire != NULL; 25441 first_ire = first_ire->ire_next) { 25442 if ((first_ire->ire_flags & RTF_MULTIRT) && 25443 (first_ire->ire_addr == ire->ire_addr) && 25444 !(first_ire->ire_marks & 25445 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 25446 break; 25447 } 25448 25449 if ((first_ire != NULL) && (first_ire != ire)) { 25450 /* 25451 * Don't change the ire if the packet must 25452 * be fragmented if sent via this new one. 25453 */ 25454 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25455 IRE_REFHOLD(first_ire); 25456 if (ire_need_rele) 25457 ire_refrele(ire); 25458 else 25459 ire_need_rele = B_TRUE; 25460 ire = first_ire; 25461 } 25462 } 25463 IRB_REFRELE(irb); 25464 25465 multirt_send = B_TRUE; 25466 max_frag = ire->ire_max_frag; 25467 } else { 25468 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25469 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25470 "flag, attach_if %d\n", attach_if)); 25471 } 25472 } 25473 25474 /* 25475 * In most cases, the emission loop below is entered only once. 25476 * Only in the case where the ire holds the RTF_MULTIRT 25477 * flag, we loop to process all RTF_MULTIRT ires in the 25478 * bucket, and send the packet through all crossed 25479 * RTF_MULTIRT routes. 25480 */ 25481 do { 25482 if (multirt_send) { 25483 /* 25484 * ire1 holds here the next ire to process in the 25485 * bucket. If multirouting is expected, 25486 * any non-RTF_MULTIRT ire that has the 25487 * right destination address is ignored. 25488 */ 25489 ASSERT(irb != NULL); 25490 IRB_REFHOLD(irb); 25491 for (ire1 = ire->ire_next; 25492 ire1 != NULL; 25493 ire1 = ire1->ire_next) { 25494 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25495 continue; 25496 if (ire1->ire_addr != ire->ire_addr) 25497 continue; 25498 if (ire1->ire_marks & 25499 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25500 continue; 25501 /* No loopback here */ 25502 if (ire1->ire_stq == NULL) 25503 continue; 25504 /* 25505 * Ensure we do not exceed the MTU 25506 * of the next route. 25507 */ 25508 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25509 ip_multirt_bad_mtu(ire1, max_frag); 25510 continue; 25511 } 25512 25513 IRE_REFHOLD(ire1); 25514 break; 25515 } 25516 IRB_REFRELE(irb); 25517 if (ire1 != NULL) { 25518 /* 25519 * We are in a multiple send case, need to 25520 * make a copy of the packet. 25521 */ 25522 next_mp = copymsg(ipsec_mp); 25523 if (next_mp == NULL) { 25524 ire_refrele(ire1); 25525 ire1 = NULL; 25526 } 25527 } 25528 } 25529 /* 25530 * Everything is done. Send it out on the wire 25531 * 25532 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25533 * either send it on the wire or, in the case of 25534 * HW acceleration, call ipsec_hw_putnext. 25535 */ 25536 if (ire->ire_nce && 25537 ire->ire_nce->nce_state != ND_REACHABLE) { 25538 DTRACE_PROBE2(ip__wput__ipsec__bail, 25539 (ire_t *), ire, (mblk_t *), ipsec_mp); 25540 /* 25541 * If ire's link-layer is unresolved (this 25542 * would only happen if the incomplete ire 25543 * was added to cachetable via forwarding path) 25544 * don't bother going to ip_xmit_v4. Just drop the 25545 * packet. 25546 * There is a slight risk here, in that, if we 25547 * have the forwarding path create an incomplete 25548 * IRE, then until the IRE is completed, any 25549 * transmitted IPSEC packets will be dropped 25550 * instead of being queued waiting for resolution. 25551 * 25552 * But the likelihood of a forwarding packet and a wput 25553 * packet sending to the same dst at the same time 25554 * and there not yet be an ARP entry for it is small. 25555 * Furthermore, if this actually happens, it might 25556 * be likely that wput would generate multiple 25557 * packets (and forwarding would also have a train 25558 * of packets) for that destination. If this is 25559 * the case, some of them would have been dropped 25560 * anyway, since ARP only queues a few packets while 25561 * waiting for resolution 25562 * 25563 * NOTE: We should really call ip_xmit_v4, 25564 * and let it queue the packet and send the 25565 * ARP query and have ARP come back thus: 25566 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 25567 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 25568 * hw accel work. But it's too complex to get 25569 * the IPsec hw acceleration approach to fit 25570 * well with ip_xmit_v4 doing ARP without 25571 * doing IPSEC simplification. For now, we just 25572 * poke ip_xmit_v4 to trigger the arp resolve, so 25573 * that we can continue with the send on the next 25574 * attempt. 25575 * 25576 * XXX THis should be revisited, when 25577 * the IPsec/IP interaction is cleaned up 25578 */ 25579 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 25580 " - dropping packet\n")); 25581 freemsg(ipsec_mp); 25582 /* 25583 * Call ip_xmit_v4() to trigger ARP query 25584 * in case the nce_state is ND_INITIAL 25585 */ 25586 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 25587 goto drop_pkt; 25588 } 25589 25590 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 25591 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 25592 mblk_t *, mp); 25593 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 25594 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp); 25595 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 25596 if (mp == NULL) 25597 goto drop_pkt; 25598 25599 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 25600 pktxmit_state = ip_xmit_v4(mp, ire, 25601 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 25602 25603 if ((pktxmit_state == SEND_FAILED) || 25604 (pktxmit_state == LLHDR_RESLV_FAILED)) { 25605 25606 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 25607 drop_pkt: 25608 BUMP_MIB(&ip_mib, ipOutDiscards); 25609 if (ire_need_rele) 25610 ire_refrele(ire); 25611 if (ire1 != NULL) { 25612 ire_refrele(ire1); 25613 freemsg(next_mp); 25614 } 25615 goto done; 25616 } 25617 25618 freeb(ipsec_mp); 25619 if (ire_need_rele) 25620 ire_refrele(ire); 25621 25622 if (ire1 != NULL) { 25623 ire = ire1; 25624 ire_need_rele = B_TRUE; 25625 ASSERT(next_mp); 25626 ipsec_mp = next_mp; 25627 mp = ipsec_mp->b_cont; 25628 ire1 = NULL; 25629 next_mp = NULL; 25630 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25631 } else { 25632 multirt_send = B_FALSE; 25633 } 25634 } while (multirt_send); 25635 done: 25636 if (ill != NULL && ill_need_rele) 25637 ill_refrele(ill); 25638 if (ipif != NULL) 25639 ipif_refrele(ipif); 25640 } 25641 25642 /* 25643 * Get the ill corresponding to the specified ire, and compare its 25644 * capabilities with the protocol and algorithms specified by the 25645 * the SA obtained from ipsec_out. If they match, annotate the 25646 * ipsec_out structure to indicate that the packet needs acceleration. 25647 * 25648 * 25649 * A packet is eligible for outbound hardware acceleration if the 25650 * following conditions are satisfied: 25651 * 25652 * 1. the packet will not be fragmented 25653 * 2. the provider supports the algorithm 25654 * 3. there is no pending control message being exchanged 25655 * 4. snoop is not attached 25656 * 5. the destination address is not a broadcast or multicast address. 25657 * 25658 * Rationale: 25659 * - Hardware drivers do not support fragmentation with 25660 * the current interface. 25661 * - snoop, multicast, and broadcast may result in exposure of 25662 * a cleartext datagram. 25663 * We check all five of these conditions here. 25664 * 25665 * XXX would like to nuke "ire_t *" parameter here; problem is that 25666 * IRE is only way to figure out if a v4 address is a broadcast and 25667 * thus ineligible for acceleration... 25668 */ 25669 static void 25670 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25671 { 25672 ipsec_out_t *io; 25673 mblk_t *data_mp; 25674 uint_t plen, overhead; 25675 25676 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25677 return; 25678 25679 if (ill == NULL) 25680 return; 25681 25682 /* 25683 * Destination address is a broadcast or multicast. Punt. 25684 */ 25685 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25686 IRE_LOCAL))) 25687 return; 25688 25689 data_mp = ipsec_mp->b_cont; 25690 25691 if (ill->ill_isv6) { 25692 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25693 25694 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25695 return; 25696 25697 plen = ip6h->ip6_plen; 25698 } else { 25699 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25700 25701 if (CLASSD(ipha->ipha_dst)) 25702 return; 25703 25704 plen = ipha->ipha_length; 25705 } 25706 /* 25707 * Is there a pending DLPI control message being exchanged 25708 * between IP/IPsec and the DLS Provider? If there is, it 25709 * could be a SADB update, and the state of the DLS Provider 25710 * SADB might not be in sync with the SADB maintained by 25711 * IPsec. To avoid dropping packets or using the wrong keying 25712 * material, we do not accelerate this packet. 25713 */ 25714 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25715 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25716 "ill_dlpi_pending! don't accelerate packet\n")); 25717 return; 25718 } 25719 25720 /* 25721 * Is the Provider in promiscous mode? If it does, we don't 25722 * accelerate the packet since it will bounce back up to the 25723 * listeners in the clear. 25724 */ 25725 if (ill->ill_promisc_on_phys) { 25726 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25727 "ill in promiscous mode, don't accelerate packet\n")); 25728 return; 25729 } 25730 25731 /* 25732 * Will the packet require fragmentation? 25733 */ 25734 25735 /* 25736 * IPsec ESP note: this is a pessimistic estimate, but the same 25737 * as is used elsewhere. 25738 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25739 * + 2-byte trailer 25740 */ 25741 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25742 IPSEC_BASE_ESP_HDR_SIZE(sa); 25743 25744 if ((plen + overhead) > ill->ill_max_mtu) 25745 return; 25746 25747 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25748 25749 /* 25750 * Can the ill accelerate this IPsec protocol and algorithm 25751 * specified by the SA? 25752 */ 25753 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25754 ill->ill_isv6, sa)) { 25755 return; 25756 } 25757 25758 /* 25759 * Tell AH or ESP that the outbound ill is capable of 25760 * accelerating this packet. 25761 */ 25762 io->ipsec_out_is_capab_ill = B_TRUE; 25763 } 25764 25765 /* 25766 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25767 * 25768 * If this function returns B_TRUE, the requested SA's have been filled 25769 * into the ipsec_out_*_sa pointers. 25770 * 25771 * If the function returns B_FALSE, the packet has been "consumed", most 25772 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25773 * 25774 * The SA references created by the protocol-specific "select" 25775 * function will be released when the ipsec_mp is freed, thanks to the 25776 * ipsec_out_free destructor -- see spd.c. 25777 */ 25778 static boolean_t 25779 ipsec_out_select_sa(mblk_t *ipsec_mp) 25780 { 25781 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25782 ipsec_out_t *io; 25783 ipsec_policy_t *pp; 25784 ipsec_action_t *ap; 25785 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25786 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25787 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25788 25789 if (!io->ipsec_out_secure) { 25790 /* 25791 * We came here by mistake. 25792 * Don't bother with ipsec processing 25793 * We should "discourage" this path in the future. 25794 */ 25795 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25796 return (B_FALSE); 25797 } 25798 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25799 ASSERT((io->ipsec_out_policy != NULL) || 25800 (io->ipsec_out_act != NULL)); 25801 25802 ASSERT(io->ipsec_out_failed == B_FALSE); 25803 25804 /* 25805 * IPSEC processing has started. 25806 */ 25807 io->ipsec_out_proc_begin = B_TRUE; 25808 ap = io->ipsec_out_act; 25809 if (ap == NULL) { 25810 pp = io->ipsec_out_policy; 25811 ASSERT(pp != NULL); 25812 ap = pp->ipsp_act; 25813 ASSERT(ap != NULL); 25814 } 25815 25816 /* 25817 * We have an action. now, let's select SA's. 25818 * (In the future, we can cache this in the conn_t..) 25819 */ 25820 if (ap->ipa_want_esp) { 25821 if (io->ipsec_out_esp_sa == NULL) { 25822 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25823 IPPROTO_ESP); 25824 } 25825 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25826 } 25827 25828 if (ap->ipa_want_ah) { 25829 if (io->ipsec_out_ah_sa == NULL) { 25830 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25831 IPPROTO_AH); 25832 } 25833 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25834 /* 25835 * The ESP and AH processing order needs to be preserved 25836 * when both protocols are required (ESP should be applied 25837 * before AH for an outbound packet). Force an ESP ACQUIRE 25838 * when both ESP and AH are required, and an AH ACQUIRE 25839 * is needed. 25840 */ 25841 if (ap->ipa_want_esp && need_ah_acquire) 25842 need_esp_acquire = B_TRUE; 25843 } 25844 25845 /* 25846 * Send an ACQUIRE (extended, regular, or both) if we need one. 25847 * Release SAs that got referenced, but will not be used until we 25848 * acquire _all_ of the SAs we need. 25849 */ 25850 if (need_ah_acquire || need_esp_acquire) { 25851 if (io->ipsec_out_ah_sa != NULL) { 25852 IPSA_REFRELE(io->ipsec_out_ah_sa); 25853 io->ipsec_out_ah_sa = NULL; 25854 } 25855 if (io->ipsec_out_esp_sa != NULL) { 25856 IPSA_REFRELE(io->ipsec_out_esp_sa); 25857 io->ipsec_out_esp_sa = NULL; 25858 } 25859 25860 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25861 return (B_FALSE); 25862 } 25863 25864 return (B_TRUE); 25865 } 25866 25867 /* 25868 * Process an IPSEC_OUT message and see what you can 25869 * do with it. 25870 * IPQoS Notes: 25871 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25872 * IPSec. 25873 * XXX would like to nuke ire_t. 25874 * XXX ill_index better be "real" 25875 */ 25876 void 25877 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25878 { 25879 ipsec_out_t *io; 25880 ipsec_policy_t *pp; 25881 ipsec_action_t *ap; 25882 ipha_t *ipha; 25883 ip6_t *ip6h; 25884 mblk_t *mp; 25885 ill_t *ill; 25886 zoneid_t zoneid; 25887 ipsec_status_t ipsec_rc; 25888 boolean_t ill_need_rele = B_FALSE; 25889 25890 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25891 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25892 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25893 mp = ipsec_mp->b_cont; 25894 25895 /* 25896 * Initiate IPPF processing. We do it here to account for packets 25897 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25898 * We can check for ipsec_out_proc_begin even for such packets, as 25899 * they will always be false (asserted below). 25900 */ 25901 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25902 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25903 io->ipsec_out_ill_index : ill_index); 25904 if (mp == NULL) { 25905 ip2dbg(("ipsec_out_process: packet dropped "\ 25906 "during IPPF processing\n")); 25907 freeb(ipsec_mp); 25908 BUMP_MIB(&ip_mib, ipOutDiscards); 25909 return; 25910 } 25911 } 25912 25913 if (!io->ipsec_out_secure) { 25914 /* 25915 * We came here by mistake. 25916 * Don't bother with ipsec processing 25917 * Should "discourage" this path in the future. 25918 */ 25919 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25920 goto done; 25921 } 25922 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25923 ASSERT((io->ipsec_out_policy != NULL) || 25924 (io->ipsec_out_act != NULL)); 25925 ASSERT(io->ipsec_out_failed == B_FALSE); 25926 25927 if (!ipsec_loaded()) { 25928 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25929 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25930 BUMP_MIB(&ip_mib, ipOutDiscards); 25931 } else { 25932 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25933 } 25934 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25935 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25936 return; 25937 } 25938 25939 /* 25940 * IPSEC processing has started. 25941 */ 25942 io->ipsec_out_proc_begin = B_TRUE; 25943 ap = io->ipsec_out_act; 25944 if (ap == NULL) { 25945 pp = io->ipsec_out_policy; 25946 ASSERT(pp != NULL); 25947 ap = pp->ipsp_act; 25948 ASSERT(ap != NULL); 25949 } 25950 25951 /* 25952 * Save the outbound ill index. When the packet comes back 25953 * from IPsec, we make sure the ill hasn't changed or disappeared 25954 * before sending it the accelerated packet. 25955 */ 25956 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25957 int ifindex; 25958 ill = ire_to_ill(ire); 25959 ifindex = ill->ill_phyint->phyint_ifindex; 25960 io->ipsec_out_capab_ill_index = ifindex; 25961 } 25962 25963 /* 25964 * The order of processing is first insert a IP header if needed. 25965 * Then insert the ESP header and then the AH header. 25966 */ 25967 if ((io->ipsec_out_se_done == B_FALSE) && 25968 (ap->ipa_want_se)) { 25969 /* 25970 * First get the outer IP header before sending 25971 * it to ESP. 25972 */ 25973 ipha_t *oipha, *iipha; 25974 mblk_t *outer_mp, *inner_mp; 25975 25976 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25977 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25978 "ipsec_out_process: " 25979 "Self-Encapsulation failed: Out of memory\n"); 25980 freemsg(ipsec_mp); 25981 BUMP_MIB(&ip_mib, ipOutDiscards); 25982 return; 25983 } 25984 inner_mp = ipsec_mp->b_cont; 25985 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25986 oipha = (ipha_t *)outer_mp->b_rptr; 25987 iipha = (ipha_t *)inner_mp->b_rptr; 25988 *oipha = *iipha; 25989 outer_mp->b_wptr += sizeof (ipha_t); 25990 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25991 sizeof (ipha_t)); 25992 oipha->ipha_protocol = IPPROTO_ENCAP; 25993 oipha->ipha_version_and_hdr_length = 25994 IP_SIMPLE_HDR_VERSION; 25995 oipha->ipha_hdr_checksum = 0; 25996 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25997 outer_mp->b_cont = inner_mp; 25998 ipsec_mp->b_cont = outer_mp; 25999 26000 io->ipsec_out_se_done = B_TRUE; 26001 io->ipsec_out_tunnel = B_TRUE; 26002 } 26003 26004 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26005 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26006 !ipsec_out_select_sa(ipsec_mp)) 26007 return; 26008 26009 /* 26010 * By now, we know what SA's to use. Toss over to ESP & AH 26011 * to do the heavy lifting. 26012 */ 26013 zoneid = io->ipsec_out_zoneid; 26014 ASSERT(zoneid != ALL_ZONES); 26015 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26016 ASSERT(io->ipsec_out_esp_sa != NULL); 26017 io->ipsec_out_esp_done = B_TRUE; 26018 /* 26019 * Note that since hw accel can only apply one transform, 26020 * not two, we skip hw accel for ESP if we also have AH 26021 * This is an design limitation of the interface 26022 * which should be revisited. 26023 */ 26024 ASSERT(ire != NULL); 26025 if (io->ipsec_out_ah_sa == NULL) { 26026 ill = (ill_t *)ire->ire_stq->q_ptr; 26027 ipsec_out_is_accelerated(ipsec_mp, 26028 io->ipsec_out_esp_sa, ill, ire); 26029 } 26030 26031 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26032 switch (ipsec_rc) { 26033 case IPSEC_STATUS_SUCCESS: 26034 break; 26035 case IPSEC_STATUS_FAILED: 26036 BUMP_MIB(&ip_mib, ipOutDiscards); 26037 /* FALLTHRU */ 26038 case IPSEC_STATUS_PENDING: 26039 return; 26040 } 26041 } 26042 26043 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26044 ASSERT(io->ipsec_out_ah_sa != NULL); 26045 io->ipsec_out_ah_done = B_TRUE; 26046 if (ire == NULL) { 26047 int idx = io->ipsec_out_capab_ill_index; 26048 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26049 NULL, NULL, NULL, NULL); 26050 ill_need_rele = B_TRUE; 26051 } else { 26052 ill = (ill_t *)ire->ire_stq->q_ptr; 26053 } 26054 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26055 ire); 26056 26057 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26058 switch (ipsec_rc) { 26059 case IPSEC_STATUS_SUCCESS: 26060 break; 26061 case IPSEC_STATUS_FAILED: 26062 BUMP_MIB(&ip_mib, ipOutDiscards); 26063 /* FALLTHRU */ 26064 case IPSEC_STATUS_PENDING: 26065 if (ill != NULL && ill_need_rele) 26066 ill_refrele(ill); 26067 return; 26068 } 26069 } 26070 /* 26071 * We are done with IPSEC processing. Send it over 26072 * the wire. 26073 */ 26074 done: 26075 mp = ipsec_mp->b_cont; 26076 ipha = (ipha_t *)mp->b_rptr; 26077 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26078 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26079 } else { 26080 ip6h = (ip6_t *)ipha; 26081 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26082 } 26083 if (ill != NULL && ill_need_rele) 26084 ill_refrele(ill); 26085 } 26086 26087 /* ARGSUSED */ 26088 void 26089 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26090 { 26091 opt_restart_t *or; 26092 int err; 26093 conn_t *connp; 26094 26095 ASSERT(CONN_Q(q)); 26096 connp = Q_TO_CONN(q); 26097 26098 ASSERT(first_mp->b_datap->db_type == M_CTL); 26099 or = (opt_restart_t *)first_mp->b_rptr; 26100 /* 26101 * We don't need to pass any credentials here since this is just 26102 * a restart. The credentials are passed in when svr4_optcom_req 26103 * is called the first time (from ip_wput_nondata). 26104 */ 26105 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26106 err = svr4_optcom_req(q, first_mp, NULL, 26107 &ip_opt_obj); 26108 } else { 26109 ASSERT(or->or_type == T_OPTMGMT_REQ); 26110 err = tpi_optcom_req(q, first_mp, NULL, 26111 &ip_opt_obj); 26112 } 26113 if (err != EINPROGRESS) { 26114 /* operation is done */ 26115 CONN_OPER_PENDING_DONE(connp); 26116 } 26117 } 26118 26119 /* 26120 * ioctls that go through a down/up sequence may need to wait for the down 26121 * to complete. This involves waiting for the ire and ipif refcnts to go down 26122 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26123 */ 26124 /* ARGSUSED */ 26125 void 26126 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26127 { 26128 struct iocblk *iocp; 26129 mblk_t *mp1; 26130 ipif_t *ipif; 26131 ip_ioctl_cmd_t *ipip; 26132 int err; 26133 sin_t *sin; 26134 struct lifreq *lifr; 26135 struct ifreq *ifr; 26136 26137 iocp = (struct iocblk *)mp->b_rptr; 26138 ASSERT(ipsq != NULL); 26139 /* Existence of mp1 verified in ip_wput_nondata */ 26140 mp1 = mp->b_cont->b_cont; 26141 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26142 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26143 ill_t *ill; 26144 /* 26145 * Special case where ipsq_current_ipif may not be set. 26146 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26147 * ill could also have become part of a ipmp group in the 26148 * process, we are here as were not able to complete the 26149 * operation in ipif_set_values because we could not become 26150 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26151 * will not be set so we need to set it. 26152 */ 26153 ill = (ill_t *)q->q_ptr; 26154 ipsq->ipsq_current_ipif = ill->ill_ipif; 26155 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26156 } 26157 26158 ipif = ipsq->ipsq_current_ipif; 26159 ASSERT(ipif != NULL); 26160 if (ipip->ipi_cmd_type == IF_CMD) { 26161 /* This a old style SIOC[GS]IF* command */ 26162 ifr = (struct ifreq *)mp1->b_rptr; 26163 sin = (sin_t *)&ifr->ifr_addr; 26164 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26165 /* This a new style SIOC[GS]LIF* command */ 26166 lifr = (struct lifreq *)mp1->b_rptr; 26167 sin = (sin_t *)&lifr->lifr_addr; 26168 } else { 26169 sin = NULL; 26170 } 26171 26172 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 26173 (void *)mp1->b_rptr); 26174 26175 /* SIOCLIFREMOVEIF could have removed the ipif */ 26176 ip_ioctl_finish(q, mp, err, 26177 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26178 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 26179 } 26180 26181 /* 26182 * ioctl processing 26183 * 26184 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 26185 * the ioctl command in the ioctl tables and determines the copyin data size 26186 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 26187 * size. 26188 * 26189 * ioctl processing then continues when the M_IOCDATA makes its way down. 26190 * Now the ioctl is looked up again in the ioctl table, and its properties are 26191 * extracted. The associated 'conn' is then refheld till the end of the ioctl 26192 * and the general ioctl processing function ip_process_ioctl is called. 26193 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26194 * so goes thru the serialization primitive ipsq_try_enter. Then the 26195 * appropriate function to handle the ioctl is called based on the entry in 26196 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26197 * which also refreleases the 'conn' that was refheld at the start of the 26198 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26199 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 26200 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 26201 * 26202 * Many exclusive ioctls go thru an internal down up sequence as part of 26203 * the operation. For example an attempt to change the IP address of an 26204 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26205 * does all the cleanup such as deleting all ires that use this address. 26206 * Then we need to wait till all references to the interface go away. 26207 */ 26208 void 26209 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26210 { 26211 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26212 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 26213 cmd_info_t ci; 26214 int err; 26215 boolean_t entered_ipsq = B_FALSE; 26216 26217 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26218 26219 if (ipip == NULL) 26220 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26221 26222 /* 26223 * SIOCLIFADDIF needs to go thru a special path since the 26224 * ill may not exist yet. This happens in the case of lo0 26225 * which is created using this ioctl. 26226 */ 26227 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26228 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26229 ip_ioctl_finish(q, mp, err, 26230 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26231 NULL, NULL); 26232 return; 26233 } 26234 26235 ci.ci_ipif = NULL; 26236 switch (ipip->ipi_cmd_type) { 26237 case IF_CMD: 26238 case LIF_CMD: 26239 /* 26240 * ioctls that pass in a [l]ifreq appear here. 26241 * ip_extract_lifreq_cmn returns a refheld ipif in 26242 * ci.ci_ipif 26243 */ 26244 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 26245 ipip->ipi_flags, &ci, ip_process_ioctl); 26246 if (err != 0) { 26247 ip_ioctl_finish(q, mp, err, 26248 ipip->ipi_flags & IPI_GET_CMD ? 26249 COPYOUT : NO_COPYOUT, NULL, NULL); 26250 return; 26251 } 26252 ASSERT(ci.ci_ipif != NULL); 26253 break; 26254 26255 case TUN_CMD: 26256 /* 26257 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 26258 * a refheld ipif in ci.ci_ipif 26259 */ 26260 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 26261 if (err != 0) { 26262 ip_ioctl_finish(q, mp, err, 26263 ipip->ipi_flags & IPI_GET_CMD ? 26264 COPYOUT : NO_COPYOUT, NULL, NULL); 26265 return; 26266 } 26267 ASSERT(ci.ci_ipif != NULL); 26268 break; 26269 26270 case MISC_CMD: 26271 /* 26272 * ioctls that neither pass in [l]ifreq or iftun_req come here 26273 * For eg. SIOCGLIFCONF will appear here. 26274 */ 26275 switch (ipip->ipi_cmd) { 26276 case IF_UNITSEL: 26277 /* ioctl comes down the ill */ 26278 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26279 ipif_refhold(ci.ci_ipif); 26280 break; 26281 case SIOCGMSFILTER: 26282 case SIOCSMSFILTER: 26283 case SIOCGIPMSFILTER: 26284 case SIOCSIPMSFILTER: 26285 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 26286 ip_process_ioctl); 26287 if (err != 0) { 26288 ip_ioctl_finish(q, mp, err, 26289 ipip->ipi_flags & IPI_GET_CMD ? 26290 COPYOUT : NO_COPYOUT, NULL, NULL); 26291 return; 26292 } 26293 break; 26294 } 26295 err = 0; 26296 ci.ci_sin = NULL; 26297 ci.ci_sin6 = NULL; 26298 ci.ci_lifr = NULL; 26299 break; 26300 } 26301 26302 /* 26303 * If ipsq is non-null, we are already being called exclusively 26304 */ 26305 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26306 if (!(ipip->ipi_flags & IPI_WR)) { 26307 /* 26308 * A return value of EINPROGRESS means the ioctl is 26309 * either queued and waiting for some reason or has 26310 * already completed. 26311 */ 26312 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26313 ci.ci_lifr); 26314 if (ci.ci_ipif != NULL) 26315 ipif_refrele(ci.ci_ipif); 26316 ip_ioctl_finish(q, mp, err, 26317 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26318 NULL, NULL); 26319 return; 26320 } 26321 26322 ASSERT(ci.ci_ipif != NULL); 26323 26324 if (ipsq == NULL) { 26325 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26326 ip_process_ioctl, NEW_OP, B_TRUE); 26327 entered_ipsq = B_TRUE; 26328 } 26329 /* 26330 * Release the ipif so that ipif_down and friends that wait for 26331 * references to go away are not misled about the current ipif_refcnt 26332 * values. We are writer so we can access the ipif even after releasing 26333 * the ipif. 26334 */ 26335 ipif_refrele(ci.ci_ipif); 26336 if (ipsq == NULL) 26337 return; 26338 26339 mutex_enter(&ipsq->ipsq_lock); 26340 ASSERT(ipsq->ipsq_current_ipif == NULL); 26341 ipsq->ipsq_current_ipif = ci.ci_ipif; 26342 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26343 mutex_exit(&ipsq->ipsq_lock); 26344 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26345 /* 26346 * For most set ioctls that come here, this serves as a single point 26347 * where we set the IPIF_CHANGING flag. This ensures that there won't 26348 * be any new references to the ipif. This helps functions that go 26349 * through this path and end up trying to wait for the refcnts 26350 * associated with the ipif to go down to zero. Some exceptions are 26351 * Failover, Failback, and Groupname commands that operate on more than 26352 * just the ci.ci_ipif. These commands internally determine the 26353 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26354 * flags on that set. Another exception is the Removeif command that 26355 * sets the IPIF_CONDEMNED flag internally after identifying the right 26356 * ipif to operate on. 26357 */ 26358 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26359 ipip->ipi_cmd != SIOCLIFFAILOVER && 26360 ipip->ipi_cmd != SIOCLIFFAILBACK && 26361 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26362 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26363 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26364 26365 /* 26366 * A return value of EINPROGRESS means the ioctl is 26367 * either queued and waiting for some reason or has 26368 * already completed. 26369 */ 26370 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26371 ci.ci_lifr); 26372 26373 /* SIOCLIFREMOVEIF could have removed the ipif */ 26374 ip_ioctl_finish(q, mp, err, 26375 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26376 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 26377 26378 if (entered_ipsq) 26379 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26380 } 26381 26382 /* 26383 * Complete the ioctl. Typically ioctls use the mi package and need to 26384 * do mi_copyout/mi_copy_done. 26385 */ 26386 void 26387 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 26388 ipif_t *ipif, ipsq_t *ipsq) 26389 { 26390 conn_t *connp = NULL; 26391 hook_nic_event_t *info; 26392 26393 if (err == EINPROGRESS) 26394 return; 26395 26396 if (CONN_Q(q)) { 26397 connp = Q_TO_CONN(q); 26398 ASSERT(connp->conn_ref >= 2); 26399 } 26400 26401 switch (mode) { 26402 case COPYOUT: 26403 if (err == 0) 26404 mi_copyout(q, mp); 26405 else 26406 mi_copy_done(q, mp, err); 26407 break; 26408 26409 case NO_COPYOUT: 26410 mi_copy_done(q, mp, err); 26411 break; 26412 26413 default: 26414 /* An ioctl aborted through a conn close would take this path */ 26415 break; 26416 } 26417 26418 /* 26419 * The refhold placed at the start of the ioctl is released here. 26420 */ 26421 if (connp != NULL) 26422 CONN_OPER_PENDING_DONE(connp); 26423 26424 /* 26425 * If the ioctl were an exclusive ioctl it would have set 26426 * IPIF_CHANGING at the start of the ioctl which is undone here. 26427 */ 26428 if (ipif != NULL) { 26429 mutex_enter(&(ipif)->ipif_ill->ill_lock); 26430 ipif->ipif_state_flags &= ~IPIF_CHANGING; 26431 26432 /* 26433 * Unhook the nic event message from the ill and enqueue it into 26434 * the nic event taskq. 26435 */ 26436 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 26437 if (ddi_taskq_dispatch(eventq_queue_nic, 26438 ip_ne_queue_func, (void *)info, DDI_SLEEP) 26439 == DDI_FAILURE) { 26440 ip2dbg(("ip_ioctl_finish: ddi_taskq_dispatch" 26441 "failed\n")); 26442 if (info->hne_data != NULL) 26443 kmem_free(info->hne_data, 26444 info->hne_datalen); 26445 kmem_free(info, sizeof (hook_nic_event_t)); 26446 } 26447 26448 ipif->ipif_ill->ill_nic_event_info = NULL; 26449 } 26450 26451 mutex_exit(&(ipif)->ipif_ill->ill_lock); 26452 } 26453 26454 /* 26455 * Clear the current ipif in the ipsq at the completion of the ioctl. 26456 * Note that a non-null ipsq_current_ipif prevents new ioctls from 26457 * entering the ipsq 26458 */ 26459 if (ipsq != NULL) { 26460 mutex_enter(&ipsq->ipsq_lock); 26461 ipsq->ipsq_current_ipif = NULL; 26462 mutex_exit(&ipsq->ipsq_lock); 26463 } 26464 } 26465 26466 /* 26467 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26468 */ 26469 /* ARGSUSED */ 26470 void 26471 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26472 { 26473 conn_t *connp = arg; 26474 tcp_t *tcp; 26475 26476 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26477 tcp = connp->conn_tcp; 26478 26479 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26480 freemsg(mp); 26481 else 26482 tcp_rput_other(tcp, mp); 26483 CONN_OPER_PENDING_DONE(connp); 26484 } 26485 26486 /* Called from ip_wput for all non data messages */ 26487 /* ARGSUSED */ 26488 void 26489 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26490 { 26491 mblk_t *mp1; 26492 ire_t *ire, *fake_ire; 26493 ill_t *ill; 26494 struct iocblk *iocp; 26495 ip_ioctl_cmd_t *ipip; 26496 cred_t *cr; 26497 conn_t *connp = NULL; 26498 int cmd, err; 26499 nce_t *nce; 26500 ipif_t *ipif; 26501 26502 if (CONN_Q(q)) 26503 connp = Q_TO_CONN(q); 26504 26505 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26506 26507 /* Check if it is a queue to /dev/sctp. */ 26508 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26509 connp->conn_rq == NULL) { 26510 sctp_wput(q, mp); 26511 return; 26512 } 26513 26514 switch (DB_TYPE(mp)) { 26515 case M_IOCTL: 26516 /* 26517 * IOCTL processing begins in ip_sioctl_copyin_setup which 26518 * will arrange to copy in associated control structures. 26519 */ 26520 ip_sioctl_copyin_setup(q, mp); 26521 return; 26522 case M_IOCDATA: 26523 /* 26524 * Ensure that this is associated with one of our trans- 26525 * parent ioctls. If it's not ours, discard it if we're 26526 * running as a driver, or pass it on if we're a module. 26527 */ 26528 iocp = (struct iocblk *)mp->b_rptr; 26529 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26530 if (ipip == NULL) { 26531 if (q->q_next == NULL) { 26532 goto nak; 26533 } else { 26534 putnext(q, mp); 26535 } 26536 return; 26537 } else if ((q->q_next != NULL) && 26538 !(ipip->ipi_flags & IPI_MODOK)) { 26539 /* 26540 * the ioctl is one we recognise, but is not 26541 * consumed by IP as a module, pass M_IOCDATA 26542 * for processing downstream, but only for 26543 * common Streams ioctls. 26544 */ 26545 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26546 putnext(q, mp); 26547 return; 26548 } else { 26549 goto nak; 26550 } 26551 } 26552 26553 /* IOCTL continuation following copyin or copyout. */ 26554 if (mi_copy_state(q, mp, NULL) == -1) { 26555 /* 26556 * The copy operation failed. mi_copy_state already 26557 * cleaned up, so we're out of here. 26558 */ 26559 return; 26560 } 26561 /* 26562 * If we just completed a copy in, we become writer and 26563 * continue processing in ip_sioctl_copyin_done. If it 26564 * was a copy out, we call mi_copyout again. If there is 26565 * nothing more to copy out, it will complete the IOCTL. 26566 */ 26567 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26568 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26569 mi_copy_done(q, mp, EPROTO); 26570 return; 26571 } 26572 /* 26573 * Check for cases that need more copying. A return 26574 * value of 0 means a second copyin has been started, 26575 * so we return; a return value of 1 means no more 26576 * copying is needed, so we continue. 26577 */ 26578 cmd = iocp->ioc_cmd; 26579 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 26580 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 26581 MI_COPY_COUNT(mp) == 1) { 26582 if (ip_copyin_msfilter(q, mp) == 0) 26583 return; 26584 } 26585 /* 26586 * Refhold the conn, till the ioctl completes. This is 26587 * needed in case the ioctl ends up in the pending mp 26588 * list. Every mp in the ill_pending_mp list and 26589 * the ipsq_pending_mp must have a refhold on the conn 26590 * to resume processing. The refhold is released when 26591 * the ioctl completes. (normally or abnormally) 26592 * In all cases ip_ioctl_finish is called to finish 26593 * the ioctl. 26594 */ 26595 if (connp != NULL) { 26596 /* This is not a reentry */ 26597 ASSERT(ipsq == NULL); 26598 CONN_INC_REF(connp); 26599 } else { 26600 if (!(ipip->ipi_flags & IPI_MODOK)) { 26601 mi_copy_done(q, mp, EINVAL); 26602 return; 26603 } 26604 } 26605 26606 ip_process_ioctl(ipsq, q, mp, ipip); 26607 26608 } else { 26609 mi_copyout(q, mp); 26610 } 26611 return; 26612 nak: 26613 iocp->ioc_error = EINVAL; 26614 mp->b_datap->db_type = M_IOCNAK; 26615 iocp->ioc_count = 0; 26616 qreply(q, mp); 26617 return; 26618 26619 case M_IOCNAK: 26620 /* 26621 * The only way we could get here is if a resolver didn't like 26622 * an IOCTL we sent it. This shouldn't happen. 26623 */ 26624 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 26625 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 26626 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 26627 freemsg(mp); 26628 return; 26629 case M_IOCACK: 26630 /* Finish socket ioctls passed through to ARP. */ 26631 ip_sioctl_iocack(q, mp); 26632 return; 26633 case M_FLUSH: 26634 if (*mp->b_rptr & FLUSHW) 26635 flushq(q, FLUSHALL); 26636 if (q->q_next) { 26637 /* 26638 * M_FLUSH is sent up to IP by some drivers during 26639 * unbind. ip_rput has already replied to it. We are 26640 * here for the M_FLUSH that we originated in IP 26641 * before sending the unbind request to the driver. 26642 * Just free it as we don't queue packets in IP 26643 * on the write side of the device instance. 26644 */ 26645 freemsg(mp); 26646 return; 26647 } 26648 if (*mp->b_rptr & FLUSHR) { 26649 *mp->b_rptr &= ~FLUSHW; 26650 qreply(q, mp); 26651 return; 26652 } 26653 freemsg(mp); 26654 return; 26655 case IRE_DB_REQ_TYPE: 26656 /* An Upper Level Protocol wants a copy of an IRE. */ 26657 ip_ire_req(q, mp); 26658 return; 26659 case M_CTL: 26660 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26661 break; 26662 26663 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 26664 TUN_HELLO) { 26665 ASSERT(connp != NULL); 26666 connp->conn_flags |= IPCL_IPTUN; 26667 freeb(mp); 26668 return; 26669 } 26670 26671 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26672 IP_ULP_OUT_LABELED) { 26673 out_labeled_t *olp; 26674 26675 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26676 break; 26677 olp = (out_labeled_t *)mp->b_rptr; 26678 connp->conn_ulp_labeled = olp->out_qnext == q; 26679 freemsg(mp); 26680 return; 26681 } 26682 26683 /* M_CTL messages are used by ARP to tell us things. */ 26684 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26685 break; 26686 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26687 case AR_ENTRY_SQUERY: 26688 ip_wput_ctl(q, mp); 26689 return; 26690 case AR_CLIENT_NOTIFY: 26691 ip_arp_news(q, mp); 26692 return; 26693 case AR_DLPIOP_DONE: 26694 ASSERT(q->q_next != NULL); 26695 ill = (ill_t *)q->q_ptr; 26696 /* qwriter_ip releases the refhold */ 26697 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26698 ill_refhold(ill); 26699 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26700 CUR_OP, B_FALSE); 26701 return; 26702 case AR_ARP_CLOSING: 26703 /* 26704 * ARP (above us) is closing. If no ARP bringup is 26705 * currently pending, ack the message so that ARP 26706 * can complete its close. Also mark ill_arp_closing 26707 * so that new ARP bringups will fail. If any 26708 * ARP bringup is currently in progress, we will 26709 * ack this when the current ARP bringup completes. 26710 */ 26711 ASSERT(q->q_next != NULL); 26712 ill = (ill_t *)q->q_ptr; 26713 mutex_enter(&ill->ill_lock); 26714 ill->ill_arp_closing = 1; 26715 if (!ill->ill_arp_bringup_pending) { 26716 mutex_exit(&ill->ill_lock); 26717 qreply(q, mp); 26718 } else { 26719 mutex_exit(&ill->ill_lock); 26720 freemsg(mp); 26721 } 26722 return; 26723 case AR_ARP_EXTEND: 26724 /* 26725 * The ARP module above us is capable of duplicate 26726 * address detection. Old ATM drivers will not send 26727 * this message. 26728 */ 26729 ASSERT(q->q_next != NULL); 26730 ill = (ill_t *)q->q_ptr; 26731 ill->ill_arp_extend = B_TRUE; 26732 freemsg(mp); 26733 return; 26734 default: 26735 break; 26736 } 26737 break; 26738 case M_PROTO: 26739 case M_PCPROTO: 26740 /* 26741 * The only PROTO messages we expect are ULP binds and 26742 * copies of option negotiation acknowledgements. 26743 */ 26744 switch (((union T_primitives *)mp->b_rptr)->type) { 26745 case O_T_BIND_REQ: 26746 case T_BIND_REQ: { 26747 /* Request can get queued in bind */ 26748 ASSERT(connp != NULL); 26749 /* 26750 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26751 * instead of going through this path. We only get 26752 * here in the following cases: 26753 * 26754 * a. Bind retries, where ipsq is non-NULL. 26755 * b. T_BIND_REQ is issued from non TCP/UDP 26756 * transport, e.g. icmp for raw socket, 26757 * in which case ipsq will be NULL. 26758 */ 26759 ASSERT(ipsq != NULL || 26760 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26761 26762 /* Don't increment refcnt if this is a re-entry */ 26763 if (ipsq == NULL) 26764 CONN_INC_REF(connp); 26765 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26766 connp, NULL) : ip_bind_v4(q, mp, connp); 26767 if (mp == NULL) 26768 return; 26769 if (IPCL_IS_TCP(connp)) { 26770 /* 26771 * In the case of TCP endpoint we 26772 * come here only for bind retries 26773 */ 26774 ASSERT(ipsq != NULL); 26775 CONN_INC_REF(connp); 26776 squeue_fill(connp->conn_sqp, mp, 26777 ip_resume_tcp_bind, connp, 26778 SQTAG_BIND_RETRY); 26779 return; 26780 } else if (IPCL_IS_UDP(connp)) { 26781 /* 26782 * In the case of UDP endpoint we 26783 * come here only for bind retries 26784 */ 26785 ASSERT(ipsq != NULL); 26786 udp_resume_bind(connp, mp); 26787 return; 26788 } 26789 qreply(q, mp); 26790 CONN_OPER_PENDING_DONE(connp); 26791 return; 26792 } 26793 case T_SVR4_OPTMGMT_REQ: 26794 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26795 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26796 26797 ASSERT(connp != NULL); 26798 if (!snmpcom_req(q, mp, ip_snmp_set, 26799 ip_snmp_get, cr)) { 26800 /* 26801 * Call svr4_optcom_req so that it can 26802 * generate the ack. We don't come here 26803 * if this operation is being restarted. 26804 * ip_restart_optmgmt will drop the conn ref. 26805 * In the case of ipsec option after the ipsec 26806 * load is complete conn_restart_ipsec_waiter 26807 * drops the conn ref. 26808 */ 26809 ASSERT(ipsq == NULL); 26810 CONN_INC_REF(connp); 26811 if (ip_check_for_ipsec_opt(q, mp)) 26812 return; 26813 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26814 if (err != EINPROGRESS) { 26815 /* Operation is done */ 26816 CONN_OPER_PENDING_DONE(connp); 26817 } 26818 } 26819 return; 26820 case T_OPTMGMT_REQ: 26821 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26822 /* 26823 * Note: No snmpcom_req support through new 26824 * T_OPTMGMT_REQ. 26825 * Call tpi_optcom_req so that it can 26826 * generate the ack. 26827 */ 26828 ASSERT(connp != NULL); 26829 ASSERT(ipsq == NULL); 26830 /* 26831 * We don't come here for restart. ip_restart_optmgmt 26832 * will drop the conn ref. In the case of ipsec option 26833 * after the ipsec load is complete 26834 * conn_restart_ipsec_waiter drops the conn ref. 26835 */ 26836 CONN_INC_REF(connp); 26837 if (ip_check_for_ipsec_opt(q, mp)) 26838 return; 26839 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26840 if (err != EINPROGRESS) { 26841 /* Operation is done */ 26842 CONN_OPER_PENDING_DONE(connp); 26843 } 26844 return; 26845 case T_UNBIND_REQ: 26846 mp = ip_unbind(q, mp); 26847 qreply(q, mp); 26848 return; 26849 default: 26850 /* 26851 * Have to drop any DLPI messages coming down from 26852 * arp (such as an info_req which would cause ip 26853 * to receive an extra info_ack if it was passed 26854 * through. 26855 */ 26856 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26857 (int)*(uint_t *)mp->b_rptr)); 26858 freemsg(mp); 26859 return; 26860 } 26861 /* NOTREACHED */ 26862 case IRE_DB_TYPE: { 26863 nce_t *nce; 26864 ill_t *ill; 26865 in6_addr_t gw_addr_v6; 26866 26867 26868 /* 26869 * This is a response back from a resolver. It 26870 * consists of a message chain containing: 26871 * IRE_MBLK-->LL_HDR_MBLK->pkt 26872 * The IRE_MBLK is the one we allocated in ip_newroute. 26873 * The LL_HDR_MBLK is the DLPI header to use to get 26874 * the attached packet, and subsequent ones for the 26875 * same destination, transmitted. 26876 */ 26877 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26878 break; 26879 /* 26880 * First, check to make sure the resolution succeeded. 26881 * If it failed, the second mblk will be empty. 26882 * If it is, free the chain, dropping the packet. 26883 * (We must ire_delete the ire; that frees the ire mblk) 26884 * We're doing this now to support PVCs for ATM; it's 26885 * a partial xresolv implementation. When we fully implement 26886 * xresolv interfaces, instead of freeing everything here 26887 * we'll initiate neighbor discovery. 26888 * 26889 * For v4 (ARP and other external resolvers) the resolver 26890 * frees the message, so no check is needed. This check 26891 * is required, though, for a full xresolve implementation. 26892 * Including this code here now both shows how external 26893 * resolvers can NACK a resolution request using an 26894 * existing design that has no specific provisions for NACKs, 26895 * and also takes into account that the current non-ARP 26896 * external resolver has been coded to use this method of 26897 * NACKing for all IPv6 (xresolv) cases, 26898 * whether our xresolv implementation is complete or not. 26899 * 26900 */ 26901 ire = (ire_t *)mp->b_rptr; 26902 ill = ire_to_ill(ire); 26903 mp1 = mp->b_cont; /* dl_unitdata_req */ 26904 if (mp1->b_rptr == mp1->b_wptr) { 26905 if (ire->ire_ipversion == IPV6_VERSION) { 26906 /* 26907 * XRESOLV interface. 26908 */ 26909 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26910 mutex_enter(&ire->ire_lock); 26911 gw_addr_v6 = ire->ire_gateway_addr_v6; 26912 mutex_exit(&ire->ire_lock); 26913 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26914 nce = ndp_lookup_v6(ill, 26915 &ire->ire_addr_v6, B_FALSE); 26916 } else { 26917 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26918 B_FALSE); 26919 } 26920 if (nce != NULL) { 26921 nce_resolv_failed(nce); 26922 ndp_delete(nce); 26923 NCE_REFRELE(nce); 26924 } 26925 } 26926 mp->b_cont = NULL; 26927 freemsg(mp1); /* frees the pkt as well */ 26928 ASSERT(ire->ire_nce == NULL); 26929 ire_delete((ire_t *)mp->b_rptr); 26930 return; 26931 } 26932 26933 /* 26934 * Split them into IRE_MBLK and pkt and feed it into 26935 * ire_add_then_send. Then in ire_add_then_send 26936 * the IRE will be added, and then the packet will be 26937 * run back through ip_wput. This time it will make 26938 * it to the wire. 26939 */ 26940 mp->b_cont = NULL; 26941 mp = mp1->b_cont; /* now, mp points to pkt */ 26942 mp1->b_cont = NULL; 26943 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26944 if (ire->ire_ipversion == IPV6_VERSION) { 26945 /* 26946 * XRESOLV interface. Find the nce and put a copy 26947 * of the dl_unitdata_req in nce_res_mp 26948 */ 26949 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26950 mutex_enter(&ire->ire_lock); 26951 gw_addr_v6 = ire->ire_gateway_addr_v6; 26952 mutex_exit(&ire->ire_lock); 26953 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26954 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26955 B_FALSE); 26956 } else { 26957 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26958 } 26959 if (nce != NULL) { 26960 /* 26961 * We have to protect nce_res_mp here 26962 * from being accessed by other threads 26963 * while we change the mblk pointer. 26964 * Other functions will also lock the nce when 26965 * accessing nce_res_mp. 26966 * 26967 * The reason we change the mblk pointer 26968 * here rather than copying the resolved address 26969 * into the template is that, unlike with 26970 * ethernet, we have no guarantee that the 26971 * resolved address length will be 26972 * smaller than or equal to the lla length 26973 * with which the template was allocated, 26974 * (for ethernet, they're equal) 26975 * so we have to use the actual resolved 26976 * address mblk - which holds the real 26977 * dl_unitdata_req with the resolved address. 26978 * 26979 * Doing this is the same behavior as was 26980 * previously used in the v4 ARP case. 26981 */ 26982 mutex_enter(&nce->nce_lock); 26983 if (nce->nce_res_mp != NULL) 26984 freemsg(nce->nce_res_mp); 26985 nce->nce_res_mp = mp1; 26986 mutex_exit(&nce->nce_lock); 26987 /* 26988 * We do a fastpath probe here because 26989 * we have resolved the address without 26990 * using Neighbor Discovery. 26991 * In the non-XRESOLV v6 case, the fastpath 26992 * probe is done right after neighbor 26993 * discovery completes. 26994 */ 26995 if (nce->nce_res_mp != NULL) { 26996 int res; 26997 nce_fastpath_list_add(nce); 26998 res = ill_fastpath_probe(ill, 26999 nce->nce_res_mp); 27000 if (res != 0 && res != EAGAIN) 27001 nce_fastpath_list_delete(nce); 27002 } 27003 27004 ire_add_then_send(q, ire, mp); 27005 /* 27006 * Now we have to clean out any packets 27007 * that may have been queued on the nce 27008 * while it was waiting for address resolution 27009 * to complete. 27010 */ 27011 mutex_enter(&nce->nce_lock); 27012 mp1 = nce->nce_qd_mp; 27013 nce->nce_qd_mp = NULL; 27014 mutex_exit(&nce->nce_lock); 27015 while (mp1 != NULL) { 27016 mblk_t *nxt_mp; 27017 queue_t *fwdq = NULL; 27018 ill_t *inbound_ill; 27019 uint_t ifindex; 27020 27021 nxt_mp = mp1->b_next; 27022 mp1->b_next = NULL; 27023 /* 27024 * Retrieve ifindex stored in 27025 * ip_rput_data_v6() 27026 */ 27027 ifindex = 27028 (uint_t)(uintptr_t)mp1->b_prev; 27029 inbound_ill = 27030 ill_lookup_on_ifindex(ifindex, 27031 B_TRUE, NULL, NULL, NULL, 27032 NULL); 27033 mp1->b_prev = NULL; 27034 if (inbound_ill != NULL) 27035 fwdq = inbound_ill->ill_rq; 27036 27037 if (fwdq != NULL) { 27038 put(fwdq, mp1); 27039 ill_refrele(inbound_ill); 27040 } else 27041 put(WR(ill->ill_rq), mp1); 27042 mp1 = nxt_mp; 27043 } 27044 NCE_REFRELE(nce); 27045 } else { /* nce is NULL; clean up */ 27046 ire_delete(ire); 27047 freemsg(mp); 27048 freemsg(mp1); 27049 return; 27050 } 27051 } else { 27052 nce_t *arpce; 27053 /* 27054 * Link layer resolution succeeded. Recompute the 27055 * ire_nce. 27056 */ 27057 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27058 if ((arpce = ndp_lookup_v4(ill, 27059 (ire->ire_gateway_addr != INADDR_ANY ? 27060 &ire->ire_gateway_addr : &ire->ire_addr), 27061 B_FALSE)) == NULL) { 27062 freeb(ire->ire_mp); 27063 freeb(mp1); 27064 freemsg(mp); 27065 return; 27066 } 27067 mutex_enter(&arpce->nce_lock); 27068 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27069 if (arpce->nce_state == ND_REACHABLE) { 27070 /* 27071 * Someone resolved this before us; 27072 * cleanup the res_mp. Since ire has 27073 * not been added yet, the call to ire_add_v4 27074 * from ire_add_then_send (when a dup is 27075 * detected) will clean up the ire. 27076 */ 27077 freeb(mp1); 27078 } else { 27079 if (arpce->nce_res_mp != NULL) 27080 freemsg(arpce->nce_res_mp); 27081 arpce->nce_res_mp = mp1; 27082 arpce->nce_state = ND_REACHABLE; 27083 } 27084 mutex_exit(&arpce->nce_lock); 27085 if (ire->ire_marks & IRE_MARK_NOADD) { 27086 /* 27087 * this ire will not be added to the ire 27088 * cache table, so we can set the ire_nce 27089 * here, as there are no atomicity constraints. 27090 */ 27091 ire->ire_nce = arpce; 27092 /* 27093 * We are associating this nce with the ire 27094 * so change the nce ref taken in 27095 * ndp_lookup_v4() from 27096 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27097 */ 27098 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27099 } else { 27100 NCE_REFRELE(arpce); 27101 } 27102 ire_add_then_send(q, ire, mp); 27103 } 27104 return; /* All is well, the packet has been sent. */ 27105 } 27106 case IRE_ARPRESOLVE_TYPE: { 27107 27108 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27109 break; 27110 mp1 = mp->b_cont; /* dl_unitdata_req */ 27111 mp->b_cont = NULL; 27112 /* 27113 * First, check to make sure the resolution succeeded. 27114 * If it failed, the second mblk will be empty. 27115 */ 27116 if (mp1->b_rptr == mp1->b_wptr) { 27117 /* cleanup the incomplete ire, free queued packets */ 27118 freemsg(mp); /* fake ire */ 27119 freeb(mp1); /* dl_unitdata response */ 27120 return; 27121 } 27122 27123 /* 27124 * update any incomplete nce_t found. we lookup the ctable 27125 * and find the nce from the ire->ire_nce because we need 27126 * to pass the ire to ip_xmit_v4 later, and can find both 27127 * ire and nce in one lookup from the ctable. 27128 */ 27129 fake_ire = (ire_t *)mp->b_rptr; 27130 /* 27131 * By the time we come back here from ARP 27132 * the logical outgoing interface of the incomplete ire 27133 * we added in ire_forward could have disappeared, 27134 * causing the incomplete ire to also have 27135 * dissapeared. So we need to retreive the 27136 * proper ipif for the ire before looking 27137 * in ctable; do the ctablelookup based on ire_ipif_seqid 27138 */ 27139 ill = q->q_ptr; 27140 27141 /* Get the outgoing ipif */ 27142 mutex_enter(&ill->ill_lock); 27143 if (ill->ill_state_flags & ILL_CONDEMNED) { 27144 mutex_exit(&ill->ill_lock); 27145 freemsg(mp); /* fake ire */ 27146 freeb(mp1); /* dl_unitdata response */ 27147 return; 27148 } 27149 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27150 27151 if (ipif == NULL) { 27152 mutex_exit(&ill->ill_lock); 27153 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27154 freemsg(mp); 27155 freeb(mp1); 27156 return; 27157 } 27158 ipif_refhold_locked(ipif); 27159 mutex_exit(&ill->ill_lock); 27160 ire = ire_ctable_lookup(fake_ire->ire_addr, 27161 fake_ire->ire_gateway_addr, IRE_CACHE, 27162 ipif, fake_ire->ire_zoneid, NULL, 27163 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 27164 ipif_refrele(ipif); 27165 if (ire == NULL) { 27166 /* 27167 * no ire was found; check if there is an nce 27168 * for this lookup; if it has no ire's pointing at it 27169 * cleanup. 27170 */ 27171 if ((nce = ndp_lookup_v4(ill, 27172 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27173 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27174 B_FALSE)) != NULL) { 27175 /* 27176 * cleanup: just reset nce. 27177 * We check for refcnt 2 (one for the nce 27178 * hash list + 1 for the ref taken by 27179 * ndp_lookup_v4) to ensure that there are 27180 * no ire's pointing at the nce. 27181 */ 27182 if (nce->nce_refcnt == 2) { 27183 nce = nce_reinit(nce); 27184 } 27185 if (nce != NULL) 27186 NCE_REFRELE(nce); 27187 } 27188 freeb(mp1); /* dl_unitdata response */ 27189 freemsg(mp); /* fake ire */ 27190 return; 27191 } 27192 nce = ire->ire_nce; 27193 DTRACE_PROBE2(ire__arpresolve__type, 27194 ire_t *, ire, nce_t *, nce); 27195 ASSERT(nce->nce_state != ND_INITIAL); 27196 mutex_enter(&nce->nce_lock); 27197 nce->nce_last = TICK_TO_MSEC(lbolt64); 27198 if (nce->nce_state == ND_REACHABLE) { 27199 /* 27200 * Someone resolved this before us; 27201 * our response is not needed any more. 27202 */ 27203 mutex_exit(&nce->nce_lock); 27204 freeb(mp1); /* dl_unitdata response */ 27205 } else { 27206 if (nce->nce_res_mp != NULL) { 27207 freemsg(nce->nce_res_mp); 27208 /* existing dl_unitdata template */ 27209 } 27210 nce->nce_res_mp = mp1; 27211 nce->nce_state = ND_REACHABLE; 27212 mutex_exit(&nce->nce_lock); 27213 ire_fastpath(ire); 27214 } 27215 /* 27216 * The cached nce_t has been updated to be reachable; 27217 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 27218 */ 27219 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27220 freemsg(mp); 27221 /* 27222 * send out queued packets. 27223 */ 27224 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27225 27226 IRE_REFRELE(ire); 27227 return; 27228 } 27229 default: 27230 break; 27231 } 27232 if (q->q_next) { 27233 putnext(q, mp); 27234 } else 27235 freemsg(mp); 27236 } 27237 27238 /* 27239 * Process IP options in an outbound packet. Modify the destination if there 27240 * is a source route option. 27241 * Returns non-zero if something fails in which case an ICMP error has been 27242 * sent and mp freed. 27243 */ 27244 static int 27245 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27246 boolean_t mctl_present, zoneid_t zoneid) 27247 { 27248 ipoptp_t opts; 27249 uchar_t *opt; 27250 uint8_t optval; 27251 uint8_t optlen; 27252 ipaddr_t dst; 27253 intptr_t code = 0; 27254 mblk_t *mp; 27255 ire_t *ire = NULL; 27256 27257 ip2dbg(("ip_wput_options\n")); 27258 mp = ipsec_mp; 27259 if (mctl_present) { 27260 mp = ipsec_mp->b_cont; 27261 } 27262 27263 dst = ipha->ipha_dst; 27264 for (optval = ipoptp_first(&opts, ipha); 27265 optval != IPOPT_EOL; 27266 optval = ipoptp_next(&opts)) { 27267 opt = opts.ipoptp_cur; 27268 optlen = opts.ipoptp_len; 27269 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27270 optval, optlen)); 27271 switch (optval) { 27272 uint32_t off; 27273 case IPOPT_SSRR: 27274 case IPOPT_LSRR: 27275 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27276 ip1dbg(( 27277 "ip_wput_options: bad option offset\n")); 27278 code = (char *)&opt[IPOPT_OLEN] - 27279 (char *)ipha; 27280 goto param_prob; 27281 } 27282 off = opt[IPOPT_OFFSET]; 27283 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27284 ntohl(dst))); 27285 /* 27286 * For strict: verify that dst is directly 27287 * reachable. 27288 */ 27289 if (optval == IPOPT_SSRR) { 27290 ire = ire_ftable_lookup(dst, 0, 0, 27291 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27292 MBLK_GETLABEL(mp), 27293 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 27294 if (ire == NULL) { 27295 ip1dbg(("ip_wput_options: SSRR not" 27296 " directly reachable: 0x%x\n", 27297 ntohl(dst))); 27298 goto bad_src_route; 27299 } 27300 ire_refrele(ire); 27301 } 27302 break; 27303 case IPOPT_RR: 27304 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27305 ip1dbg(( 27306 "ip_wput_options: bad option offset\n")); 27307 code = (char *)&opt[IPOPT_OLEN] - 27308 (char *)ipha; 27309 goto param_prob; 27310 } 27311 break; 27312 case IPOPT_TS: 27313 /* 27314 * Verify that length >=5 and that there is either 27315 * room for another timestamp or that the overflow 27316 * counter is not maxed out. 27317 */ 27318 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27319 if (optlen < IPOPT_MINLEN_IT) { 27320 goto param_prob; 27321 } 27322 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27323 ip1dbg(( 27324 "ip_wput_options: bad option offset\n")); 27325 code = (char *)&opt[IPOPT_OFFSET] - 27326 (char *)ipha; 27327 goto param_prob; 27328 } 27329 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27330 case IPOPT_TS_TSONLY: 27331 off = IPOPT_TS_TIMELEN; 27332 break; 27333 case IPOPT_TS_TSANDADDR: 27334 case IPOPT_TS_PRESPEC: 27335 case IPOPT_TS_PRESPEC_RFC791: 27336 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27337 break; 27338 default: 27339 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27340 (char *)ipha; 27341 goto param_prob; 27342 } 27343 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27344 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27345 /* 27346 * No room and the overflow counter is 15 27347 * already. 27348 */ 27349 goto param_prob; 27350 } 27351 break; 27352 } 27353 } 27354 27355 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27356 return (0); 27357 27358 ip1dbg(("ip_wput_options: error processing IP options.")); 27359 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27360 27361 param_prob: 27362 /* 27363 * Since ip_wput() isn't close to finished, we fill 27364 * in enough of the header for credible error reporting. 27365 */ 27366 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27367 /* Failed */ 27368 freemsg(ipsec_mp); 27369 return (-1); 27370 } 27371 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 27372 return (-1); 27373 27374 bad_src_route: 27375 /* 27376 * Since ip_wput() isn't close to finished, we fill 27377 * in enough of the header for credible error reporting. 27378 */ 27379 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27380 /* Failed */ 27381 freemsg(ipsec_mp); 27382 return (-1); 27383 } 27384 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 27385 return (-1); 27386 } 27387 27388 /* 27389 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27390 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27391 * thru /etc/system. 27392 */ 27393 #define CONN_MAXDRAINCNT 64 27394 27395 static void 27396 conn_drain_init(void) 27397 { 27398 int i; 27399 27400 conn_drain_list_cnt = conn_drain_nthreads; 27401 27402 if ((conn_drain_list_cnt == 0) || 27403 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27404 /* 27405 * Default value of the number of drainers is the 27406 * number of cpus, subject to maximum of 8 drainers. 27407 */ 27408 if (boot_max_ncpus != -1) 27409 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27410 else 27411 conn_drain_list_cnt = MIN(max_ncpus, 8); 27412 } 27413 27414 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 27415 KM_SLEEP); 27416 27417 for (i = 0; i < conn_drain_list_cnt; i++) { 27418 mutex_init(&conn_drain_list[i].idl_lock, NULL, 27419 MUTEX_DEFAULT, NULL); 27420 } 27421 } 27422 27423 static void 27424 conn_drain_fini(void) 27425 { 27426 int i; 27427 27428 for (i = 0; i < conn_drain_list_cnt; i++) 27429 mutex_destroy(&conn_drain_list[i].idl_lock); 27430 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 27431 conn_drain_list = NULL; 27432 } 27433 27434 /* 27435 * Note: For an overview of how flowcontrol is handled in IP please see the 27436 * IP Flowcontrol notes at the top of this file. 27437 * 27438 * Flow control has blocked us from proceeding. Insert the given conn in one 27439 * of the conn drain lists. These conn wq's will be qenabled later on when 27440 * STREAMS flow control does a backenable. conn_walk_drain will enable 27441 * the first conn in each of these drain lists. Each of these qenabled conns 27442 * in turn enables the next in the list, after it runs, or when it closes, 27443 * thus sustaining the drain process. 27444 * 27445 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27446 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27447 * running at any time, on a given conn, since there can be only 1 service proc 27448 * running on a queue at any time. 27449 */ 27450 void 27451 conn_drain_insert(conn_t *connp) 27452 { 27453 idl_t *idl; 27454 uint_t index; 27455 27456 mutex_enter(&connp->conn_lock); 27457 if (connp->conn_state_flags & CONN_CLOSING) { 27458 /* 27459 * The conn is closing as a result of which CONN_CLOSING 27460 * is set. Return. 27461 */ 27462 mutex_exit(&connp->conn_lock); 27463 return; 27464 } else if (connp->conn_idl == NULL) { 27465 /* 27466 * Assign the next drain list round robin. We dont' use 27467 * a lock, and thus it may not be strictly round robin. 27468 * Atomicity of load/stores is enough to make sure that 27469 * conn_drain_list_index is always within bounds. 27470 */ 27471 index = conn_drain_list_index; 27472 ASSERT(index < conn_drain_list_cnt); 27473 connp->conn_idl = &conn_drain_list[index]; 27474 index++; 27475 if (index == conn_drain_list_cnt) 27476 index = 0; 27477 conn_drain_list_index = index; 27478 } 27479 mutex_exit(&connp->conn_lock); 27480 27481 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27482 if ((connp->conn_drain_prev != NULL) || 27483 (connp->conn_state_flags & CONN_CLOSING)) { 27484 /* 27485 * The conn is already in the drain list, OR 27486 * the conn is closing. We need to check again for 27487 * the closing case again since close can happen 27488 * after we drop the conn_lock, and before we 27489 * acquire the CONN_DRAIN_LIST_LOCK. 27490 */ 27491 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27492 return; 27493 } else { 27494 idl = connp->conn_idl; 27495 } 27496 27497 /* 27498 * The conn is not in the drain list. Insert it at the 27499 * tail of the drain list. The drain list is circular 27500 * and doubly linked. idl_conn points to the 1st element 27501 * in the list. 27502 */ 27503 if (idl->idl_conn == NULL) { 27504 idl->idl_conn = connp; 27505 connp->conn_drain_next = connp; 27506 connp->conn_drain_prev = connp; 27507 } else { 27508 conn_t *head = idl->idl_conn; 27509 27510 connp->conn_drain_next = head; 27511 connp->conn_drain_prev = head->conn_drain_prev; 27512 head->conn_drain_prev->conn_drain_next = connp; 27513 head->conn_drain_prev = connp; 27514 } 27515 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27516 } 27517 27518 /* 27519 * This conn is closing, and we are called from ip_close. OR 27520 * This conn has been serviced by ip_wsrv, and we need to do the tail 27521 * processing. 27522 * If this conn is part of the drain list, we may need to sustain the drain 27523 * process by qenabling the next conn in the drain list. We may also need to 27524 * remove this conn from the list, if it is done. 27525 */ 27526 static void 27527 conn_drain_tail(conn_t *connp, boolean_t closing) 27528 { 27529 idl_t *idl; 27530 27531 /* 27532 * connp->conn_idl is stable at this point, and no lock is needed 27533 * to check it. If we are called from ip_close, close has already 27534 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27535 * called us only because conn_idl is non-null. If we are called thru 27536 * service, conn_idl could be null, but it cannot change because 27537 * service is single-threaded per queue, and there cannot be another 27538 * instance of service trying to call conn_drain_insert on this conn 27539 * now. 27540 */ 27541 ASSERT(!closing || (connp->conn_idl != NULL)); 27542 27543 /* 27544 * If connp->conn_idl is null, the conn has not been inserted into any 27545 * drain list even once since creation of the conn. Just return. 27546 */ 27547 if (connp->conn_idl == NULL) 27548 return; 27549 27550 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27551 27552 if (connp->conn_drain_prev == NULL) { 27553 /* This conn is currently not in the drain list. */ 27554 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27555 return; 27556 } 27557 idl = connp->conn_idl; 27558 if (idl->idl_conn_draining == connp) { 27559 /* 27560 * This conn is the current drainer. If this is the last conn 27561 * in the drain list, we need to do more checks, in the 'if' 27562 * below. Otherwwise we need to just qenable the next conn, 27563 * to sustain the draining, and is handled in the 'else' 27564 * below. 27565 */ 27566 if (connp->conn_drain_next == idl->idl_conn) { 27567 /* 27568 * This conn is the last in this list. This round 27569 * of draining is complete. If idl_repeat is set, 27570 * it means another flow enabling has happened from 27571 * the driver/streams and we need to another round 27572 * of draining. 27573 * If there are more than 2 conns in the drain list, 27574 * do a left rotate by 1, so that all conns except the 27575 * conn at the head move towards the head by 1, and the 27576 * the conn at the head goes to the tail. This attempts 27577 * a more even share for all queues that are being 27578 * drained. 27579 */ 27580 if ((connp->conn_drain_next != connp) && 27581 (idl->idl_conn->conn_drain_next != connp)) { 27582 idl->idl_conn = idl->idl_conn->conn_drain_next; 27583 } 27584 if (idl->idl_repeat) { 27585 qenable(idl->idl_conn->conn_wq); 27586 idl->idl_conn_draining = idl->idl_conn; 27587 idl->idl_repeat = 0; 27588 } else { 27589 idl->idl_conn_draining = NULL; 27590 } 27591 } else { 27592 /* 27593 * If the next queue that we are now qenable'ing, 27594 * is closing, it will remove itself from this list 27595 * and qenable the subsequent queue in ip_close(). 27596 * Serialization is acheived thru idl_lock. 27597 */ 27598 qenable(connp->conn_drain_next->conn_wq); 27599 idl->idl_conn_draining = connp->conn_drain_next; 27600 } 27601 } 27602 if (!connp->conn_did_putbq || closing) { 27603 /* 27604 * Remove ourself from the drain list, if we did not do 27605 * a putbq, or if the conn is closing. 27606 * Note: It is possible that q->q_first is non-null. It means 27607 * that these messages landed after we did a enableok() in 27608 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 27609 * service them. 27610 */ 27611 if (connp->conn_drain_next == connp) { 27612 /* Singleton in the list */ 27613 ASSERT(connp->conn_drain_prev == connp); 27614 idl->idl_conn = NULL; 27615 idl->idl_conn_draining = NULL; 27616 } else { 27617 connp->conn_drain_prev->conn_drain_next = 27618 connp->conn_drain_next; 27619 connp->conn_drain_next->conn_drain_prev = 27620 connp->conn_drain_prev; 27621 if (idl->idl_conn == connp) 27622 idl->idl_conn = connp->conn_drain_next; 27623 ASSERT(idl->idl_conn_draining != connp); 27624 27625 } 27626 connp->conn_drain_next = NULL; 27627 connp->conn_drain_prev = NULL; 27628 } 27629 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27630 } 27631 27632 /* 27633 * Write service routine. Shared perimeter entry point. 27634 * ip_wsrv can be called in any of the following ways. 27635 * 1. The device queue's messages has fallen below the low water mark 27636 * and STREAMS has backenabled the ill_wq. We walk thru all the 27637 * the drain lists and backenable the first conn in each list. 27638 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27639 * qenabled non-tcp upper layers. We start dequeing messages and call 27640 * ip_wput for each message. 27641 */ 27642 27643 void 27644 ip_wsrv(queue_t *q) 27645 { 27646 conn_t *connp; 27647 ill_t *ill; 27648 mblk_t *mp; 27649 27650 if (q->q_next) { 27651 ill = (ill_t *)q->q_ptr; 27652 if (ill->ill_state_flags == 0) { 27653 /* 27654 * The device flow control has opened up. 27655 * Walk through conn drain lists and qenable the 27656 * first conn in each list. This makes sense only 27657 * if the stream is fully plumbed and setup. 27658 * Hence the if check above. 27659 */ 27660 ip1dbg(("ip_wsrv: walking\n")); 27661 conn_walk_drain(); 27662 } 27663 return; 27664 } 27665 27666 connp = Q_TO_CONN(q); 27667 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27668 27669 /* 27670 * 1. Set conn_draining flag to signal that service is active. 27671 * 27672 * 2. ip_output determines whether it has been called from service, 27673 * based on the last parameter. If it is IP_WSRV it concludes it 27674 * has been called from service. 27675 * 27676 * 3. Message ordering is preserved by the following logic. 27677 * i. A directly called ip_output (i.e. not thru service) will queue 27678 * the message at the tail, if conn_draining is set (i.e. service 27679 * is running) or if q->q_first is non-null. 27680 * 27681 * ii. If ip_output is called from service, and if ip_output cannot 27682 * putnext due to flow control, it does a putbq. 27683 * 27684 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27685 * (causing an infinite loop). 27686 */ 27687 ASSERT(!connp->conn_did_putbq); 27688 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27689 connp->conn_draining = 1; 27690 noenable(q); 27691 while ((mp = getq(q)) != NULL) { 27692 ASSERT(CONN_Q(q)); 27693 27694 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27695 if (connp->conn_did_putbq) { 27696 /* ip_wput did a putbq */ 27697 break; 27698 } 27699 } 27700 /* 27701 * At this point, a thread coming down from top, calling 27702 * ip_wput, may end up queueing the message. We have not yet 27703 * enabled the queue, so ip_wsrv won't be called again. 27704 * To avoid this race, check q->q_first again (in the loop) 27705 * If the other thread queued the message before we call 27706 * enableok(), we will catch it in the q->q_first check. 27707 * If the other thread queues the message after we call 27708 * enableok(), ip_wsrv will be called again by STREAMS. 27709 */ 27710 connp->conn_draining = 0; 27711 enableok(q); 27712 } 27713 27714 /* Enable the next conn for draining */ 27715 conn_drain_tail(connp, B_FALSE); 27716 27717 connp->conn_did_putbq = 0; 27718 } 27719 27720 /* 27721 * Walk the list of all conn's calling the function provided with the 27722 * specified argument for each. Note that this only walks conn's that 27723 * have been bound. 27724 * Applies to both IPv4 and IPv6. 27725 */ 27726 static void 27727 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27728 { 27729 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27730 func, arg, zoneid); 27731 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27732 func, arg, zoneid); 27733 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27734 func, arg, zoneid); 27735 conn_walk_fanout_table(ipcl_proto_fanout, 27736 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27737 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27738 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27739 } 27740 27741 /* 27742 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27743 * of conns that need to be drained, check if drain is already in progress. 27744 * If so set the idl_repeat bit, indicating that the last conn in the list 27745 * needs to reinitiate the drain once again, for the list. If drain is not 27746 * in progress for the list, initiate the draining, by qenabling the 1st 27747 * conn in the list. The drain is self-sustaining, each qenabled conn will 27748 * in turn qenable the next conn, when it is done/blocked/closing. 27749 */ 27750 static void 27751 conn_walk_drain(void) 27752 { 27753 int i; 27754 idl_t *idl; 27755 27756 IP_STAT(ip_conn_walk_drain); 27757 27758 for (i = 0; i < conn_drain_list_cnt; i++) { 27759 idl = &conn_drain_list[i]; 27760 mutex_enter(&idl->idl_lock); 27761 if (idl->idl_conn == NULL) { 27762 mutex_exit(&idl->idl_lock); 27763 continue; 27764 } 27765 /* 27766 * If this list is not being drained currently by 27767 * an ip_wsrv thread, start the process. 27768 */ 27769 if (idl->idl_conn_draining == NULL) { 27770 ASSERT(idl->idl_repeat == 0); 27771 qenable(idl->idl_conn->conn_wq); 27772 idl->idl_conn_draining = idl->idl_conn; 27773 } else { 27774 idl->idl_repeat = 1; 27775 } 27776 mutex_exit(&idl->idl_lock); 27777 } 27778 } 27779 27780 /* 27781 * Walk an conn hash table of `count' buckets, calling func for each entry. 27782 */ 27783 static void 27784 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27785 zoneid_t zoneid) 27786 { 27787 conn_t *connp; 27788 27789 while (count-- > 0) { 27790 mutex_enter(&connfp->connf_lock); 27791 for (connp = connfp->connf_head; connp != NULL; 27792 connp = connp->conn_next) { 27793 if (zoneid == GLOBAL_ZONEID || 27794 zoneid == connp->conn_zoneid) { 27795 CONN_INC_REF(connp); 27796 mutex_exit(&connfp->connf_lock); 27797 (*func)(connp, arg); 27798 mutex_enter(&connfp->connf_lock); 27799 CONN_DEC_REF(connp); 27800 } 27801 } 27802 mutex_exit(&connfp->connf_lock); 27803 connfp++; 27804 } 27805 } 27806 27807 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27808 static void 27809 conn_report1(conn_t *connp, void *mp) 27810 { 27811 char buf1[INET6_ADDRSTRLEN]; 27812 char buf2[INET6_ADDRSTRLEN]; 27813 uint_t print_len, buf_len; 27814 27815 ASSERT(connp != NULL); 27816 27817 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27818 if (buf_len <= 0) 27819 return; 27820 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27821 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27822 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27823 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27824 "%5d %s/%05d %s/%05d\n", 27825 (void *)connp, (void *)CONNP_TO_RQ(connp), 27826 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27827 buf1, connp->conn_lport, 27828 buf2, connp->conn_fport); 27829 if (print_len < buf_len) { 27830 ((mblk_t *)mp)->b_wptr += print_len; 27831 } else { 27832 ((mblk_t *)mp)->b_wptr += buf_len; 27833 } 27834 } 27835 27836 /* 27837 * Named Dispatch routine to produce a formatted report on all conns 27838 * that are listed in one of the fanout tables. 27839 * This report is accessed by using the ndd utility to "get" ND variable 27840 * "ip_conn_status". 27841 */ 27842 /* ARGSUSED */ 27843 static int 27844 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27845 { 27846 (void) mi_mpprintf(mp, 27847 "CONN " MI_COL_HDRPAD_STR 27848 "rfq " MI_COL_HDRPAD_STR 27849 "stq " MI_COL_HDRPAD_STR 27850 " zone local remote"); 27851 27852 /* 27853 * Because of the ndd constraint, at most we can have 64K buffer 27854 * to put in all conn info. So to be more efficient, just 27855 * allocate a 64K buffer here, assuming we need that large buffer. 27856 * This should be OK as only privileged processes can do ndd /dev/ip. 27857 */ 27858 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27859 /* The following may work even if we cannot get a large buf. */ 27860 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27861 return (0); 27862 } 27863 27864 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27865 return (0); 27866 } 27867 27868 /* 27869 * Determine if the ill and multicast aspects of that packets 27870 * "matches" the conn. 27871 */ 27872 boolean_t 27873 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27874 zoneid_t zoneid) 27875 { 27876 ill_t *in_ill; 27877 boolean_t found; 27878 ipif_t *ipif; 27879 ire_t *ire; 27880 ipaddr_t dst, src; 27881 27882 dst = ipha->ipha_dst; 27883 src = ipha->ipha_src; 27884 27885 /* 27886 * conn_incoming_ill is set by IP_BOUND_IF which limits 27887 * unicast, broadcast and multicast reception to 27888 * conn_incoming_ill. conn_wantpacket itself is called 27889 * only for BROADCAST and multicast. 27890 * 27891 * 1) ip_rput supresses duplicate broadcasts if the ill 27892 * is part of a group. Hence, we should be receiving 27893 * just one copy of broadcast for the whole group. 27894 * Thus, if it is part of the group the packet could 27895 * come on any ill of the group and hence we need a 27896 * match on the group. Otherwise, match on ill should 27897 * be sufficient. 27898 * 27899 * 2) ip_rput does not suppress duplicate multicast packets. 27900 * If there are two interfaces in a ill group and we have 27901 * 2 applications (conns) joined a multicast group G on 27902 * both the interfaces, ilm_lookup_ill filter in ip_rput 27903 * will give us two packets because we join G on both the 27904 * interfaces rather than nominating just one interface 27905 * for receiving multicast like broadcast above. So, 27906 * we have to call ilg_lookup_ill to filter out duplicate 27907 * copies, if ill is part of a group. 27908 */ 27909 in_ill = connp->conn_incoming_ill; 27910 if (in_ill != NULL) { 27911 if (in_ill->ill_group == NULL) { 27912 if (in_ill != ill) 27913 return (B_FALSE); 27914 } else if (in_ill->ill_group != ill->ill_group) { 27915 return (B_FALSE); 27916 } 27917 } 27918 27919 if (!CLASSD(dst)) { 27920 if (IPCL_ZONE_MATCH(connp, zoneid)) 27921 return (B_TRUE); 27922 /* 27923 * The conn is in a different zone; we need to check that this 27924 * broadcast address is configured in the application's zone and 27925 * on one ill in the group. 27926 */ 27927 ipif = ipif_get_next_ipif(NULL, ill); 27928 if (ipif == NULL) 27929 return (B_FALSE); 27930 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27931 connp->conn_zoneid, NULL, 27932 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27933 ipif_refrele(ipif); 27934 if (ire != NULL) { 27935 ire_refrele(ire); 27936 return (B_TRUE); 27937 } else { 27938 return (B_FALSE); 27939 } 27940 } 27941 27942 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27943 connp->conn_zoneid == zoneid) { 27944 /* 27945 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27946 * disabled, therefore we don't dispatch the multicast packet to 27947 * the sending zone. 27948 */ 27949 return (B_FALSE); 27950 } 27951 27952 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27953 connp->conn_zoneid != zoneid) { 27954 /* 27955 * Multicast packet on the loopback interface: we only match 27956 * conns who joined the group in the specified zone. 27957 */ 27958 return (B_FALSE); 27959 } 27960 27961 if (connp->conn_multi_router) { 27962 /* multicast packet and multicast router socket: send up */ 27963 return (B_TRUE); 27964 } 27965 27966 mutex_enter(&connp->conn_lock); 27967 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27968 mutex_exit(&connp->conn_lock); 27969 return (found); 27970 } 27971 27972 /* 27973 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27974 */ 27975 /* ARGSUSED */ 27976 static void 27977 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27978 { 27979 ill_t *ill = (ill_t *)q->q_ptr; 27980 mblk_t *mp1, *mp2; 27981 ipif_t *ipif; 27982 int err = 0; 27983 conn_t *connp = NULL; 27984 ipsq_t *ipsq; 27985 arc_t *arc; 27986 27987 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27988 27989 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27990 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27991 27992 ASSERT(IAM_WRITER_ILL(ill)); 27993 mp2 = mp->b_cont; 27994 mp->b_cont = NULL; 27995 27996 /* 27997 * We have now received the arp bringup completion message 27998 * from ARP. Mark the arp bringup as done. Also if the arp 27999 * stream has already started closing, send up the AR_ARP_CLOSING 28000 * ack now since ARP is waiting in close for this ack. 28001 */ 28002 mutex_enter(&ill->ill_lock); 28003 ill->ill_arp_bringup_pending = 0; 28004 if (ill->ill_arp_closing) { 28005 mutex_exit(&ill->ill_lock); 28006 /* Let's reuse the mp for sending the ack */ 28007 arc = (arc_t *)mp->b_rptr; 28008 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28009 arc->arc_cmd = AR_ARP_CLOSING; 28010 qreply(q, mp); 28011 } else { 28012 mutex_exit(&ill->ill_lock); 28013 freeb(mp); 28014 } 28015 28016 /* We should have an IOCTL waiting on this. */ 28017 ipsq = ill->ill_phyint->phyint_ipsq; 28018 ipif = ipsq->ipsq_pending_ipif; 28019 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28020 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28021 if (mp1 == NULL) { 28022 /* bringup was aborted by the user */ 28023 freemsg(mp2); 28024 return; 28025 } 28026 ASSERT(connp != NULL); 28027 q = CONNP_TO_WQ(connp); 28028 /* 28029 * If the DL_BIND_REQ fails, it is noted 28030 * in arc_name_offset. 28031 */ 28032 err = *((int *)mp2->b_rptr); 28033 if (err == 0) { 28034 if (ipif->ipif_isv6) { 28035 if ((err = ipif_up_done_v6(ipif)) != 0) 28036 ip0dbg(("ip_arp_done: init failed\n")); 28037 } else { 28038 if ((err = ipif_up_done(ipif)) != 0) 28039 ip0dbg(("ip_arp_done: init failed\n")); 28040 } 28041 } else { 28042 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28043 } 28044 28045 freemsg(mp2); 28046 28047 if ((err == 0) && (ill->ill_up_ipifs)) { 28048 err = ill_up_ipifs(ill, q, mp1); 28049 if (err == EINPROGRESS) 28050 return; 28051 } 28052 28053 if (ill->ill_up_ipifs) { 28054 ill_group_cleanup(ill); 28055 } 28056 28057 /* 28058 * The ioctl must complete now without EINPROGRESS 28059 * since ipsq_pending_mp_get has removed the ioctl mblk 28060 * from ipsq_pending_mp. Otherwise the ioctl will be 28061 * stuck for ever in the ipsq. 28062 */ 28063 ASSERT(err != EINPROGRESS); 28064 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 28065 } 28066 28067 /* Allocate the private structure */ 28068 static int 28069 ip_priv_alloc(void **bufp) 28070 { 28071 void *buf; 28072 28073 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28074 return (ENOMEM); 28075 28076 *bufp = buf; 28077 return (0); 28078 } 28079 28080 /* Function to delete the private structure */ 28081 void 28082 ip_priv_free(void *buf) 28083 { 28084 ASSERT(buf != NULL); 28085 kmem_free(buf, sizeof (ip_priv_t)); 28086 } 28087 28088 /* 28089 * The entry point for IPPF processing. 28090 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28091 * routine just returns. 28092 * 28093 * When called, ip_process generates an ipp_packet_t structure 28094 * which holds the state information for this packet and invokes the 28095 * the classifier (via ipp_packet_process). The classification, depending on 28096 * configured filters, results in a list of actions for this packet. Invoking 28097 * an action may cause the packet to be dropped, in which case the resulting 28098 * mblk (*mpp) is NULL. proc indicates the callout position for 28099 * this packet and ill_index is the interface this packet on or will leave 28100 * on (inbound and outbound resp.). 28101 */ 28102 void 28103 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28104 { 28105 mblk_t *mp; 28106 ip_priv_t *priv; 28107 ipp_action_id_t aid; 28108 int rc = 0; 28109 ipp_packet_t *pp; 28110 #define IP_CLASS "ip" 28111 28112 /* If the classifier is not loaded, return */ 28113 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28114 return; 28115 } 28116 28117 mp = *mpp; 28118 ASSERT(mp != NULL); 28119 28120 /* Allocate the packet structure */ 28121 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28122 if (rc != 0) { 28123 *mpp = NULL; 28124 freemsg(mp); 28125 return; 28126 } 28127 28128 /* Allocate the private structure */ 28129 rc = ip_priv_alloc((void **)&priv); 28130 if (rc != 0) { 28131 *mpp = NULL; 28132 freemsg(mp); 28133 ipp_packet_free(pp); 28134 return; 28135 } 28136 priv->proc = proc; 28137 priv->ill_index = ill_index; 28138 ipp_packet_set_private(pp, priv, ip_priv_free); 28139 ipp_packet_set_data(pp, mp); 28140 28141 /* Invoke the classifier */ 28142 rc = ipp_packet_process(&pp); 28143 if (pp != NULL) { 28144 mp = ipp_packet_get_data(pp); 28145 ipp_packet_free(pp); 28146 if (rc != 0) { 28147 freemsg(mp); 28148 *mpp = NULL; 28149 } 28150 } else { 28151 *mpp = NULL; 28152 } 28153 #undef IP_CLASS 28154 } 28155 28156 /* 28157 * Propagate a multicast group membership operation (add/drop) on 28158 * all the interfaces crossed by the related multirt routes. 28159 * The call is considered successful if the operation succeeds 28160 * on at least one interface. 28161 */ 28162 static int 28163 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28164 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28165 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28166 mblk_t *first_mp) 28167 { 28168 ire_t *ire_gw; 28169 irb_t *irb; 28170 int error = 0; 28171 opt_restart_t *or; 28172 28173 irb = ire->ire_bucket; 28174 ASSERT(irb != NULL); 28175 28176 ASSERT(DB_TYPE(first_mp) == M_CTL); 28177 28178 or = (opt_restart_t *)first_mp->b_rptr; 28179 IRB_REFHOLD(irb); 28180 for (; ire != NULL; ire = ire->ire_next) { 28181 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28182 continue; 28183 if (ire->ire_addr != group) 28184 continue; 28185 28186 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28187 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28188 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 28189 /* No resolver exists for the gateway; skip this ire. */ 28190 if (ire_gw == NULL) 28191 continue; 28192 28193 /* 28194 * This function can return EINPROGRESS. If so the operation 28195 * will be restarted from ip_restart_optmgmt which will 28196 * call ip_opt_set and option processing will restart for 28197 * this option. So we may end up calling 'fn' more than once. 28198 * This requires that 'fn' is idempotent except for the 28199 * return value. The operation is considered a success if 28200 * it succeeds at least once on any one interface. 28201 */ 28202 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28203 NULL, fmode, src, first_mp); 28204 if (error == 0) 28205 or->or_private = CGTP_MCAST_SUCCESS; 28206 28207 if (ip_debug > 0) { 28208 ulong_t off; 28209 char *ksym; 28210 ksym = kobj_getsymname((uintptr_t)fn, &off); 28211 ip2dbg(("ip_multirt_apply_membership: " 28212 "called %s, multirt group 0x%08x via itf 0x%08x, " 28213 "error %d [success %u]\n", 28214 ksym ? ksym : "?", 28215 ntohl(group), ntohl(ire_gw->ire_src_addr), 28216 error, or->or_private)); 28217 } 28218 28219 ire_refrele(ire_gw); 28220 if (error == EINPROGRESS) { 28221 IRB_REFRELE(irb); 28222 return (error); 28223 } 28224 } 28225 IRB_REFRELE(irb); 28226 /* 28227 * Consider the call as successful if we succeeded on at least 28228 * one interface. Otherwise, return the last encountered error. 28229 */ 28230 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28231 } 28232 28233 28234 /* 28235 * Issue a warning regarding a route crossing an interface with an 28236 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28237 * amount of time is logged. 28238 */ 28239 static void 28240 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28241 { 28242 hrtime_t current = gethrtime(); 28243 char buf[INET_ADDRSTRLEN]; 28244 28245 /* Convert interval in ms to hrtime in ns */ 28246 if (multirt_bad_mtu_last_time + 28247 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 28248 current) { 28249 cmn_err(CE_WARN, "ip: ignoring multiroute " 28250 "to %s, incorrect MTU %u (expected %u)\n", 28251 ip_dot_addr(ire->ire_addr, buf), 28252 ire->ire_max_frag, max_frag); 28253 28254 multirt_bad_mtu_last_time = current; 28255 } 28256 } 28257 28258 28259 /* 28260 * Get the CGTP (multirouting) filtering status. 28261 * If 0, the CGTP hooks are transparent. 28262 */ 28263 /* ARGSUSED */ 28264 static int 28265 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28266 { 28267 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28268 28269 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28270 return (0); 28271 } 28272 28273 28274 /* 28275 * Set the CGTP (multirouting) filtering status. 28276 * If the status is changed from active to transparent 28277 * or from transparent to active, forward the new status 28278 * to the filtering module (if loaded). 28279 */ 28280 /* ARGSUSED */ 28281 static int 28282 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28283 cred_t *ioc_cr) 28284 { 28285 long new_value; 28286 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28287 28288 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28289 new_value < 0 || new_value > 1) { 28290 return (EINVAL); 28291 } 28292 28293 /* 28294 * Do not enable CGTP filtering - thus preventing the hooks 28295 * from being invoked - if the version number of the 28296 * filtering module hooks does not match. 28297 */ 28298 if ((ip_cgtp_filter_ops != NULL) && 28299 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 28300 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 28301 "(module hooks version %d, expecting %d)\n", 28302 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 28303 return (ENOTSUP); 28304 } 28305 28306 if ((!*ip_cgtp_filter_value) && new_value) { 28307 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28308 ip_cgtp_filter_ops == NULL ? 28309 " (module not loaded)" : ""); 28310 } 28311 if (*ip_cgtp_filter_value && (!new_value)) { 28312 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28313 ip_cgtp_filter_ops == NULL ? 28314 " (module not loaded)" : ""); 28315 } 28316 28317 if (ip_cgtp_filter_ops != NULL) { 28318 int res; 28319 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 28320 return (res); 28321 } 28322 } 28323 28324 *ip_cgtp_filter_value = (boolean_t)new_value; 28325 28326 return (0); 28327 } 28328 28329 28330 /* 28331 * Return the expected CGTP hooks version number. 28332 */ 28333 int 28334 ip_cgtp_filter_supported(void) 28335 { 28336 return (ip_cgtp_filter_rev); 28337 } 28338 28339 28340 /* 28341 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 28342 * or by invoking this function. In the first case, the version number 28343 * of the registered structure is checked at hooks activation time 28344 * in ip_cgtp_filter_set(). 28345 */ 28346 int 28347 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 28348 { 28349 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28350 return (ENOTSUP); 28351 28352 ip_cgtp_filter_ops = ops; 28353 return (0); 28354 } 28355 28356 static squeue_func_t 28357 ip_squeue_switch(int val) 28358 { 28359 squeue_func_t rval = squeue_fill; 28360 28361 switch (val) { 28362 case IP_SQUEUE_ENTER_NODRAIN: 28363 rval = squeue_enter_nodrain; 28364 break; 28365 case IP_SQUEUE_ENTER: 28366 rval = squeue_enter; 28367 break; 28368 default: 28369 break; 28370 } 28371 return (rval); 28372 } 28373 28374 /* ARGSUSED */ 28375 static int 28376 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28377 caddr_t addr, cred_t *cr) 28378 { 28379 int *v = (int *)addr; 28380 long new_value; 28381 28382 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28383 return (EINVAL); 28384 28385 ip_input_proc = ip_squeue_switch(new_value); 28386 *v = new_value; 28387 return (0); 28388 } 28389 28390 /* ARGSUSED */ 28391 static int 28392 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28393 caddr_t addr, cred_t *cr) 28394 { 28395 int *v = (int *)addr; 28396 long new_value; 28397 28398 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28399 return (EINVAL); 28400 28401 *v = new_value; 28402 return (0); 28403 } 28404 28405 static void 28406 ip_kstat_init(void) 28407 { 28408 ip_named_kstat_t template = { 28409 { "forwarding", KSTAT_DATA_UINT32, 0 }, 28410 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 28411 { "inReceives", KSTAT_DATA_UINT32, 0 }, 28412 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 28413 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 28414 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 28415 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 28416 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 28417 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 28418 { "outRequests", KSTAT_DATA_UINT32, 0 }, 28419 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 28420 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 28421 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 28422 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 28423 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 28424 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 28425 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 28426 { "fragFails", KSTAT_DATA_UINT32, 0 }, 28427 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 28428 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 28429 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 28430 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 28431 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 28432 { "inErrs", KSTAT_DATA_UINT32, 0 }, 28433 { "noPorts", KSTAT_DATA_UINT32, 0 }, 28434 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 28435 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 28436 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 28437 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 28438 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 28439 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 28440 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 28441 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 28442 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 28443 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 28444 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 28445 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 28446 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 28447 }; 28448 28449 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 28450 NUM_OF_FIELDS(ip_named_kstat_t), 28451 0); 28452 if (!ip_mibkp) 28453 return; 28454 28455 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 28456 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 28457 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 28458 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 28459 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 28460 28461 template.netToMediaEntrySize.value.i32 = 28462 sizeof (mib2_ipNetToMediaEntry_t); 28463 28464 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 28465 28466 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 28467 28468 ip_mibkp->ks_update = ip_kstat_update; 28469 28470 kstat_install(ip_mibkp); 28471 } 28472 28473 static void 28474 ip_kstat_fini(void) 28475 { 28476 28477 if (ip_mibkp != NULL) { 28478 kstat_delete(ip_mibkp); 28479 ip_mibkp = NULL; 28480 } 28481 } 28482 28483 static int 28484 ip_kstat_update(kstat_t *kp, int rw) 28485 { 28486 ip_named_kstat_t *ipkp; 28487 28488 if (!kp || !kp->ks_data) 28489 return (EIO); 28490 28491 if (rw == KSTAT_WRITE) 28492 return (EACCES); 28493 28494 ipkp = (ip_named_kstat_t *)kp->ks_data; 28495 28496 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 28497 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 28498 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 28499 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 28500 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 28501 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 28502 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 28503 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 28504 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 28505 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 28506 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 28507 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 28508 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 28509 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 28510 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 28511 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 28512 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 28513 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 28514 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 28515 28516 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 28517 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 28518 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 28519 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 28520 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 28521 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 28522 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 28523 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 28524 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 28525 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 28526 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 28527 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 28528 28529 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 28530 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 28531 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 28532 28533 return (0); 28534 } 28535 28536 static void 28537 icmp_kstat_init(void) 28538 { 28539 icmp_named_kstat_t template = { 28540 { "inMsgs", KSTAT_DATA_UINT32 }, 28541 { "inErrors", KSTAT_DATA_UINT32 }, 28542 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 28543 { "inTimeExcds", KSTAT_DATA_UINT32 }, 28544 { "inParmProbs", KSTAT_DATA_UINT32 }, 28545 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 28546 { "inRedirects", KSTAT_DATA_UINT32 }, 28547 { "inEchos", KSTAT_DATA_UINT32 }, 28548 { "inEchoReps", KSTAT_DATA_UINT32 }, 28549 { "inTimestamps", KSTAT_DATA_UINT32 }, 28550 { "inTimestampReps", KSTAT_DATA_UINT32 }, 28551 { "inAddrMasks", KSTAT_DATA_UINT32 }, 28552 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 28553 { "outMsgs", KSTAT_DATA_UINT32 }, 28554 { "outErrors", KSTAT_DATA_UINT32 }, 28555 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 28556 { "outTimeExcds", KSTAT_DATA_UINT32 }, 28557 { "outParmProbs", KSTAT_DATA_UINT32 }, 28558 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 28559 { "outRedirects", KSTAT_DATA_UINT32 }, 28560 { "outEchos", KSTAT_DATA_UINT32 }, 28561 { "outEchoReps", KSTAT_DATA_UINT32 }, 28562 { "outTimestamps", KSTAT_DATA_UINT32 }, 28563 { "outTimestampReps", KSTAT_DATA_UINT32 }, 28564 { "outAddrMasks", KSTAT_DATA_UINT32 }, 28565 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 28566 { "inChksumErrs", KSTAT_DATA_UINT32 }, 28567 { "inUnknowns", KSTAT_DATA_UINT32 }, 28568 { "inFragNeeded", KSTAT_DATA_UINT32 }, 28569 { "outFragNeeded", KSTAT_DATA_UINT32 }, 28570 { "outDrops", KSTAT_DATA_UINT32 }, 28571 { "inOverFlows", KSTAT_DATA_UINT32 }, 28572 { "inBadRedirects", KSTAT_DATA_UINT32 }, 28573 }; 28574 28575 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 28576 NUM_OF_FIELDS(icmp_named_kstat_t), 28577 0); 28578 if (icmp_mibkp == NULL) 28579 return; 28580 28581 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 28582 28583 icmp_mibkp->ks_update = icmp_kstat_update; 28584 28585 kstat_install(icmp_mibkp); 28586 } 28587 28588 static void 28589 icmp_kstat_fini(void) 28590 { 28591 28592 if (icmp_mibkp != NULL) { 28593 kstat_delete(icmp_mibkp); 28594 icmp_mibkp = NULL; 28595 } 28596 } 28597 28598 static int 28599 icmp_kstat_update(kstat_t *kp, int rw) 28600 { 28601 icmp_named_kstat_t *icmpkp; 28602 28603 if ((kp == NULL) || (kp->ks_data == NULL)) 28604 return (EIO); 28605 28606 if (rw == KSTAT_WRITE) 28607 return (EACCES); 28608 28609 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 28610 28611 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 28612 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 28613 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 28614 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 28615 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 28616 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 28617 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 28618 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 28619 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 28620 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 28621 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 28622 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 28623 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 28624 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 28625 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 28626 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 28627 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 28628 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 28629 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 28630 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 28631 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 28632 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 28633 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 28634 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 28635 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 28636 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 28637 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 28638 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 28639 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 28640 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28641 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28642 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28643 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28644 28645 return (0); 28646 } 28647 28648 /* 28649 * This is the fanout function for raw socket opened for SCTP. Note 28650 * that it is called after SCTP checks that there is no socket which 28651 * wants a packet. Then before SCTP handles this out of the blue packet, 28652 * this function is called to see if there is any raw socket for SCTP. 28653 * If there is and it is bound to the correct address, the packet will 28654 * be sent to that socket. Note that only one raw socket can be bound to 28655 * a port. This is assured in ipcl_sctp_hash_insert(); 28656 */ 28657 void 28658 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28659 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28660 uint_t ipif_seqid, zoneid_t zoneid) 28661 { 28662 conn_t *connp; 28663 queue_t *rq; 28664 mblk_t *first_mp; 28665 boolean_t secure; 28666 ip6_t *ip6h; 28667 28668 first_mp = mp; 28669 if (mctl_present) { 28670 mp = first_mp->b_cont; 28671 secure = ipsec_in_is_secure(first_mp); 28672 ASSERT(mp != NULL); 28673 } else { 28674 secure = B_FALSE; 28675 } 28676 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28677 28678 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28679 if (connp == NULL) { 28680 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28681 mctl_present); 28682 return; 28683 } 28684 rq = connp->conn_rq; 28685 if (!canputnext(rq)) { 28686 CONN_DEC_REF(connp); 28687 BUMP_MIB(&ip_mib, rawipInOverflows); 28688 freemsg(first_mp); 28689 return; 28690 } 28691 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28692 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28693 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28694 (isv4 ? ipha : NULL), ip6h, mctl_present); 28695 if (first_mp == NULL) { 28696 CONN_DEC_REF(connp); 28697 return; 28698 } 28699 } 28700 /* 28701 * We probably should not send M_CTL message up to 28702 * raw socket. 28703 */ 28704 if (mctl_present) 28705 freeb(first_mp); 28706 28707 /* Initiate IPPF processing here if needed. */ 28708 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28709 (!isv4 && IP6_IN_IPP(flags))) { 28710 ip_process(IPP_LOCAL_IN, &mp, 28711 recv_ill->ill_phyint->phyint_ifindex); 28712 if (mp == NULL) { 28713 CONN_DEC_REF(connp); 28714 return; 28715 } 28716 } 28717 28718 if (connp->conn_recvif || connp->conn_recvslla || 28719 ((connp->conn_ipv6_recvpktinfo || 28720 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28721 (flags & IP_FF_IP6INFO))) { 28722 int in_flags = 0; 28723 28724 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28725 in_flags = IPF_RECVIF; 28726 } 28727 if (connp->conn_recvslla) { 28728 in_flags |= IPF_RECVSLLA; 28729 } 28730 if (isv4) { 28731 mp = ip_add_info(mp, recv_ill, in_flags); 28732 } else { 28733 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28734 if (mp == NULL) { 28735 CONN_DEC_REF(connp); 28736 return; 28737 } 28738 } 28739 } 28740 28741 BUMP_MIB(&ip_mib, ipInDelivers); 28742 /* 28743 * We are sending the IPSEC_IN message also up. Refer 28744 * to comments above this function. 28745 */ 28746 putnext(rq, mp); 28747 CONN_DEC_REF(connp); 28748 } 28749 28750 /* 28751 * This function should be called only if all packet processing 28752 * including fragmentation is complete. Callers of this function 28753 * must set mp->b_prev to one of these values: 28754 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28755 * prior to handing over the mp as first argument to this function. 28756 * 28757 * If the ire passed by caller is incomplete, this function 28758 * queues the packet and if necessary, sends ARP request and bails. 28759 * If the ire passed is fully resolved, we simply prepend 28760 * the link-layer header to the packet, do ipsec hw acceleration 28761 * work if necessary, and send the packet out on the wire. 28762 * 28763 * NOTE: IPSEC will only call this function with fully resolved 28764 * ires if hw acceleration is involved. 28765 * TODO list : 28766 * a Handle M_MULTIDATA so that 28767 * tcp_multisend->tcp_multisend_data can 28768 * call ip_xmit_v4 directly 28769 * b Handle post-ARP work for fragments so that 28770 * ip_wput_frag can call this function. 28771 */ 28772 ipxmit_state_t 28773 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28774 { 28775 nce_t *arpce; 28776 queue_t *q; 28777 int ill_index; 28778 mblk_t *nxt_mp, *first_mp; 28779 boolean_t xmit_drop = B_FALSE; 28780 ip_proc_t proc; 28781 ill_t *out_ill; 28782 28783 arpce = ire->ire_nce; 28784 ASSERT(arpce != NULL); 28785 28786 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28787 28788 mutex_enter(&arpce->nce_lock); 28789 switch (arpce->nce_state) { 28790 case ND_REACHABLE: 28791 /* If there are other queued packets, queue this packet */ 28792 if (arpce->nce_qd_mp != NULL) { 28793 if (mp != NULL) 28794 nce_queue_mp_common(arpce, mp, B_FALSE); 28795 mp = arpce->nce_qd_mp; 28796 } 28797 arpce->nce_qd_mp = NULL; 28798 mutex_exit(&arpce->nce_lock); 28799 28800 /* 28801 * Flush the queue. In the common case, where the 28802 * ARP is already resolved, it will go through the 28803 * while loop only once. 28804 */ 28805 while (mp != NULL) { 28806 28807 nxt_mp = mp->b_next; 28808 mp->b_next = NULL; 28809 /* 28810 * This info is needed for IPQOS to do COS marking 28811 * in ip_wput_attach_llhdr->ip_process. 28812 */ 28813 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28814 mp->b_prev = NULL; 28815 28816 /* set up ill index for outbound qos processing */ 28817 out_ill = ire->ire_ipif->ipif_ill; 28818 ill_index = out_ill->ill_phyint->phyint_ifindex; 28819 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 28820 ill_index); 28821 if (first_mp == NULL) { 28822 xmit_drop = B_TRUE; 28823 if (proc == IPP_FWD_OUT) { 28824 BUMP_MIB(&ip_mib, ipInDiscards); 28825 } else { 28826 BUMP_MIB(&ip_mib, ipOutDiscards); 28827 } 28828 goto next_mp; 28829 } 28830 /* non-ipsec hw accel case */ 28831 if (io == NULL || !io->ipsec_out_accelerated) { 28832 /* send it */ 28833 q = ire->ire_stq; 28834 if (proc == IPP_FWD_OUT) { 28835 UPDATE_IB_PKT_COUNT(ire); 28836 } else { 28837 UPDATE_OB_PKT_COUNT(ire); 28838 } 28839 ire->ire_last_used_time = lbolt; 28840 28841 if (flow_ctl_enabled || canputnext(q)) { 28842 if (proc == IPP_FWD_OUT) { 28843 BUMP_MIB(&ip_mib, 28844 ipForwDatagrams); 28845 } 28846 28847 if (mp == NULL) 28848 goto next_mp; 28849 putnext(q, first_mp); 28850 } else { 28851 BUMP_MIB(&ip_mib, 28852 ipOutDiscards); 28853 xmit_drop = B_TRUE; 28854 freemsg(first_mp); 28855 } 28856 } else { 28857 /* 28858 * Safety Pup says: make sure this 28859 * is going to the right interface! 28860 */ 28861 ill_t *ill1 = 28862 (ill_t *)ire->ire_stq->q_ptr; 28863 int ifindex = 28864 ill1->ill_phyint->phyint_ifindex; 28865 if (ifindex != 28866 io->ipsec_out_capab_ill_index) { 28867 xmit_drop = B_TRUE; 28868 freemsg(mp); 28869 } else { 28870 ipsec_hw_putnext(ire->ire_stq, 28871 mp); 28872 } 28873 } 28874 next_mp: 28875 mp = nxt_mp; 28876 } /* while (mp != NULL) */ 28877 if (xmit_drop) 28878 return (SEND_FAILED); 28879 else 28880 return (SEND_PASSED); 28881 28882 case ND_INITIAL: 28883 case ND_INCOMPLETE: 28884 28885 /* 28886 * While we do send off packets to dests that 28887 * use fully-resolved CGTP routes, we do not 28888 * handle unresolved CGTP routes. 28889 */ 28890 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28891 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28892 28893 if (mp != NULL) { 28894 /* queue the packet */ 28895 nce_queue_mp_common(arpce, mp, B_FALSE); 28896 } 28897 28898 if (arpce->nce_state == ND_INCOMPLETE) { 28899 mutex_exit(&arpce->nce_lock); 28900 DTRACE_PROBE3(ip__xmit__incomplete, 28901 (ire_t *), ire, (mblk_t *), mp, 28902 (ipsec_out_t *), io); 28903 return (LOOKUP_IN_PROGRESS); 28904 } 28905 28906 arpce->nce_state = ND_INCOMPLETE; 28907 mutex_exit(&arpce->nce_lock); 28908 /* 28909 * Note that ire_add() (called from ire_forward()) 28910 * holds a ref on the ire until ARP is completed. 28911 */ 28912 28913 ire_arpresolve(ire, ire_to_ill(ire)); 28914 return (LOOKUP_IN_PROGRESS); 28915 default: 28916 ASSERT(0); 28917 mutex_exit(&arpce->nce_lock); 28918 return (LLHDR_RESLV_FAILED); 28919 } 28920 } 28921 28922 /* 28923 * Return B_TRUE if the buffers differ in length or content. 28924 * This is used for comparing extension header buffers. 28925 * Note that an extension header would be declared different 28926 * even if all that changed was the next header value in that header i.e. 28927 * what really changed is the next extension header. 28928 */ 28929 boolean_t 28930 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28931 uint_t blen) 28932 { 28933 if (!b_valid) 28934 blen = 0; 28935 28936 if (alen != blen) 28937 return (B_TRUE); 28938 if (alen == 0) 28939 return (B_FALSE); /* Both zero length */ 28940 return (bcmp(abuf, bbuf, alen)); 28941 } 28942 28943 /* 28944 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28945 * Return B_FALSE if memory allocation fails - don't change any state! 28946 */ 28947 boolean_t 28948 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28949 const void *src, uint_t srclen) 28950 { 28951 void *dst; 28952 28953 if (!src_valid) 28954 srclen = 0; 28955 28956 ASSERT(*dstlenp == 0); 28957 if (src != NULL && srclen != 0) { 28958 dst = mi_alloc(srclen, BPRI_MED); 28959 if (dst == NULL) 28960 return (B_FALSE); 28961 } else { 28962 dst = NULL; 28963 } 28964 if (*dstp != NULL) 28965 mi_free(*dstp); 28966 *dstp = dst; 28967 *dstlenp = dst == NULL ? 0 : srclen; 28968 return (B_TRUE); 28969 } 28970 28971 /* 28972 * Replace what is in *dst, *dstlen with the source. 28973 * Assumes ip_allocbuf has already been called. 28974 */ 28975 void 28976 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28977 const void *src, uint_t srclen) 28978 { 28979 if (!src_valid) 28980 srclen = 0; 28981 28982 ASSERT(*dstlenp == srclen); 28983 if (src != NULL && srclen != 0) 28984 bcopy(src, *dstp, srclen); 28985 } 28986 28987 /* 28988 * Free the storage pointed to by the members of an ip6_pkt_t. 28989 */ 28990 void 28991 ip6_pkt_free(ip6_pkt_t *ipp) 28992 { 28993 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28994 28995 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28996 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28997 ipp->ipp_hopopts = NULL; 28998 ipp->ipp_hopoptslen = 0; 28999 } 29000 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29001 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29002 ipp->ipp_rtdstopts = NULL; 29003 ipp->ipp_rtdstoptslen = 0; 29004 } 29005 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29006 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29007 ipp->ipp_dstopts = NULL; 29008 ipp->ipp_dstoptslen = 0; 29009 } 29010 if (ipp->ipp_fields & IPPF_RTHDR) { 29011 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29012 ipp->ipp_rthdr = NULL; 29013 ipp->ipp_rthdrlen = 0; 29014 } 29015 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29016 IPPF_RTHDR); 29017 } 29018