1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/iptun/iptun_impl.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1273 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1274 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1275 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1276 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1277 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1278 1279 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 1281 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1282 LIF_CMD, ip_sioctl_get_binding, NULL }, 1283 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1286 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1287 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1288 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1289 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1290 1291 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1292 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1293 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1294 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1295 1296 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 1298 /* These are handled in ip_sioctl_copyin_setup itself */ 1299 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1300 MISC_CMD, NULL, NULL }, 1301 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1302 MISC_CMD, NULL, NULL }, 1303 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1304 1305 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1306 ip_sioctl_get_lifconf, NULL }, 1307 1308 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1309 XARP_CMD, ip_sioctl_arp, NULL }, 1310 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1311 XARP_CMD, ip_sioctl_arp, NULL }, 1312 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 1315 /* SIOCPOPSOCKFS is not handled by IP */ 1316 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1317 1318 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1319 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1320 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1321 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1322 ip_sioctl_slifzone_restart }, 1323 /* 172-174 are SCTP ioctls and not handled by IP */ 1324 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1325 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1326 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1327 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1328 IPI_GET_CMD, LIF_CMD, 1329 ip_sioctl_get_lifusesrc, 0 }, 1330 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1331 IPI_PRIV | IPI_WR, 1332 LIF_CMD, ip_sioctl_slifusesrc, 1333 NULL }, 1334 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1335 ip_sioctl_get_lifsrcof, NULL }, 1336 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1337 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1338 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1339 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1340 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1345 /* SIOCSENABLESDP is handled by SDP */ 1346 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1347 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1348 }; 1349 1350 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1351 1352 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1353 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1354 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1355 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1356 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1357 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1358 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1359 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1360 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1361 MISC_CMD, mrt_ioctl}, 1362 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1363 MISC_CMD, mrt_ioctl}, 1364 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1365 MISC_CMD, mrt_ioctl} 1366 }; 1367 1368 int ip_misc_ioctl_count = 1369 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1370 1371 int conn_drain_nthreads; /* Number of drainers reqd. */ 1372 /* Settable in /etc/system */ 1373 /* Defined in ip_ire.c */ 1374 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1375 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1376 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1377 1378 static nv_t ire_nv_arr[] = { 1379 { IRE_BROADCAST, "BROADCAST" }, 1380 { IRE_LOCAL, "LOCAL" }, 1381 { IRE_LOOPBACK, "LOOPBACK" }, 1382 { IRE_CACHE, "CACHE" }, 1383 { IRE_DEFAULT, "DEFAULT" }, 1384 { IRE_PREFIX, "PREFIX" }, 1385 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1386 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1387 { IRE_HOST, "HOST" }, 1388 { 0 } 1389 }; 1390 1391 nv_t *ire_nv_tbl = ire_nv_arr; 1392 1393 /* Simple ICMP IP Header Template */ 1394 static ipha_t icmp_ipha = { 1395 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1396 }; 1397 1398 struct module_info ip_mod_info = { 1399 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1400 IP_MOD_LOWAT 1401 }; 1402 1403 /* 1404 * Duplicate static symbols within a module confuses mdb; so we avoid the 1405 * problem by making the symbols here distinct from those in udp.c. 1406 */ 1407 1408 /* 1409 * Entry points for IP as a device and as a module. 1410 * FIXME: down the road we might want a separate module and driver qinit. 1411 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1412 */ 1413 static struct qinit iprinitv4 = { 1414 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1415 &ip_mod_info 1416 }; 1417 1418 struct qinit iprinitv6 = { 1419 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1420 &ip_mod_info 1421 }; 1422 1423 static struct qinit ipwinitv4 = { 1424 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1425 &ip_mod_info 1426 }; 1427 1428 struct qinit ipwinitv6 = { 1429 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1430 &ip_mod_info 1431 }; 1432 1433 static struct qinit iplrinit = { 1434 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1435 &ip_mod_info 1436 }; 1437 1438 static struct qinit iplwinit = { 1439 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1440 &ip_mod_info 1441 }; 1442 1443 /* For AF_INET aka /dev/ip */ 1444 struct streamtab ipinfov4 = { 1445 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1446 }; 1447 1448 /* For AF_INET6 aka /dev/ip6 */ 1449 struct streamtab ipinfov6 = { 1450 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1451 }; 1452 1453 #ifdef DEBUG 1454 static boolean_t skip_sctp_cksum = B_FALSE; 1455 #endif 1456 1457 /* 1458 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1459 * ip_rput_v6(), ip_output(), etc. If the message 1460 * block already has a M_CTL at the front of it, then simply set the zoneid 1461 * appropriately. 1462 */ 1463 mblk_t * 1464 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1465 { 1466 mblk_t *first_mp; 1467 ipsec_out_t *io; 1468 1469 ASSERT(zoneid != ALL_ZONES); 1470 if (mp->b_datap->db_type == M_CTL) { 1471 io = (ipsec_out_t *)mp->b_rptr; 1472 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1473 io->ipsec_out_zoneid = zoneid; 1474 return (mp); 1475 } 1476 1477 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1478 if (first_mp == NULL) 1479 return (NULL); 1480 io = (ipsec_out_t *)first_mp->b_rptr; 1481 /* This is not a secure packet */ 1482 io->ipsec_out_secure = B_FALSE; 1483 io->ipsec_out_zoneid = zoneid; 1484 first_mp->b_cont = mp; 1485 return (first_mp); 1486 } 1487 1488 /* 1489 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1490 */ 1491 mblk_t * 1492 ip_copymsg(mblk_t *mp) 1493 { 1494 mblk_t *nmp; 1495 ipsec_info_t *in; 1496 1497 if (mp->b_datap->db_type != M_CTL) 1498 return (copymsg(mp)); 1499 1500 in = (ipsec_info_t *)mp->b_rptr; 1501 1502 /* 1503 * Note that M_CTL is also used for delivering ICMP error messages 1504 * upstream to transport layers. 1505 */ 1506 if (in->ipsec_info_type != IPSEC_OUT && 1507 in->ipsec_info_type != IPSEC_IN) 1508 return (copymsg(mp)); 1509 1510 nmp = copymsg(mp->b_cont); 1511 1512 if (in->ipsec_info_type == IPSEC_OUT) { 1513 return (ipsec_out_tag(mp, nmp, 1514 ((ipsec_out_t *)in)->ipsec_out_ns)); 1515 } else { 1516 return (ipsec_in_tag(mp, nmp, 1517 ((ipsec_in_t *)in)->ipsec_in_ns)); 1518 } 1519 } 1520 1521 /* Generate an ICMP fragmentation needed message. */ 1522 static void 1523 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1524 ip_stack_t *ipst) 1525 { 1526 icmph_t icmph; 1527 mblk_t *first_mp; 1528 boolean_t mctl_present; 1529 1530 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1531 1532 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1533 if (mctl_present) 1534 freeb(first_mp); 1535 return; 1536 } 1537 1538 bzero(&icmph, sizeof (icmph_t)); 1539 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1540 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1541 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1544 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1545 ipst); 1546 } 1547 1548 /* 1549 * icmp_inbound deals with ICMP messages in the following ways. 1550 * 1551 * 1) It needs to send a reply back and possibly delivering it 1552 * to the "interested" upper clients. 1553 * 2) It needs to send it to the upper clients only. 1554 * 3) It needs to change some values in IP only. 1555 * 4) It needs to change some values in IP and upper layers e.g TCP. 1556 * 1557 * We need to accomodate icmp messages coming in clear until we get 1558 * everything secure from the wire. If icmp_accept_clear_messages 1559 * is zero we check with the global policy and act accordingly. If 1560 * it is non-zero, we accept the message without any checks. But 1561 * *this does not mean* that this will be delivered to the upper 1562 * clients. By accepting we might send replies back, change our MTU 1563 * value etc. but delivery to the ULP/clients depends on their policy 1564 * dispositions. 1565 * 1566 * We handle the above 4 cases in the context of IPsec in the 1567 * following way : 1568 * 1569 * 1) Send the reply back in the same way as the request came in. 1570 * If it came in encrypted, it goes out encrypted. If it came in 1571 * clear, it goes out in clear. Thus, this will prevent chosen 1572 * plain text attack. 1573 * 2) The client may or may not expect things to come in secure. 1574 * If it comes in secure, the policy constraints are checked 1575 * before delivering it to the upper layers. If it comes in 1576 * clear, ipsec_inbound_accept_clear will decide whether to 1577 * accept this in clear or not. In both the cases, if the returned 1578 * message (IP header + 8 bytes) that caused the icmp message has 1579 * AH/ESP headers, it is sent up to AH/ESP for validation before 1580 * sending up. If there are only 8 bytes of returned message, then 1581 * upper client will not be notified. 1582 * 3) Check with global policy to see whether it matches the constaints. 1583 * But this will be done only if icmp_accept_messages_in_clear is 1584 * zero. 1585 * 4) If we need to change both in IP and ULP, then the decision taken 1586 * while affecting the values in IP and while delivering up to TCP 1587 * should be the same. 1588 * 1589 * There are two cases. 1590 * 1591 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1592 * failed), we will not deliver it to the ULP, even though they 1593 * are *willing* to accept in *clear*. This is fine as our global 1594 * disposition to icmp messages asks us reject the datagram. 1595 * 1596 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1597 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1598 * to deliver it to ULP (policy failed), it can lead to 1599 * consistency problems. The cases known at this time are 1600 * ICMP_DESTINATION_UNREACHABLE messages with following code 1601 * values : 1602 * 1603 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1604 * and Upper layer rejects. Then the communication will 1605 * come to a stop. This is solved by making similar decisions 1606 * at both levels. Currently, when we are unable to deliver 1607 * to the Upper Layer (due to policy failures) while IP has 1608 * adjusted ire_max_frag, the next outbound datagram would 1609 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1610 * will be with the right level of protection. Thus the right 1611 * value will be communicated even if we are not able to 1612 * communicate when we get from the wire initially. But this 1613 * assumes there would be at least one outbound datagram after 1614 * IP has adjusted its ire_max_frag value. To make things 1615 * simpler, we accept in clear after the validation of 1616 * AH/ESP headers. 1617 * 1618 * - Other ICMP ERRORS : We may not be able to deliver it to the 1619 * upper layer depending on the level of protection the upper 1620 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1621 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1622 * should be accepted in clear when the Upper layer expects secure. 1623 * Thus the communication may get aborted by some bad ICMP 1624 * packets. 1625 * 1626 * IPQoS Notes: 1627 * The only instance when a packet is sent for processing is when there 1628 * isn't an ICMP client and if we are interested in it. 1629 * If there is a client, IPPF processing will take place in the 1630 * ip_fanout_proto routine. 1631 * 1632 * Zones notes: 1633 * The packet is only processed in the context of the specified zone: typically 1634 * only this zone will reply to an echo request, and only interested clients in 1635 * this zone will receive a copy of the packet. This means that the caller must 1636 * call icmp_inbound() for each relevant zone. 1637 */ 1638 static void 1639 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1640 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1641 ill_t *recv_ill, zoneid_t zoneid) 1642 { 1643 icmph_t *icmph; 1644 ipha_t *ipha; 1645 int iph_hdr_length; 1646 int hdr_length; 1647 boolean_t interested; 1648 uint32_t ts; 1649 uchar_t *wptr; 1650 ipif_t *ipif; 1651 mblk_t *first_mp; 1652 ipsec_in_t *ii; 1653 timestruc_t now; 1654 uint32_t ill_index; 1655 ip_stack_t *ipst; 1656 1657 ASSERT(ill != NULL); 1658 ipst = ill->ill_ipst; 1659 1660 first_mp = mp; 1661 if (mctl_present) { 1662 mp = first_mp->b_cont; 1663 ASSERT(mp != NULL); 1664 } 1665 1666 ipha = (ipha_t *)mp->b_rptr; 1667 if (ipst->ips_icmp_accept_clear_messages == 0) { 1668 first_mp = ipsec_check_global_policy(first_mp, NULL, 1669 ipha, NULL, mctl_present, ipst->ips_netstack); 1670 if (first_mp == NULL) 1671 return; 1672 } 1673 1674 /* 1675 * On a labeled system, we have to check whether the zone itself is 1676 * permitted to receive raw traffic. 1677 */ 1678 if (is_system_labeled()) { 1679 if (zoneid == ALL_ZONES) 1680 zoneid = tsol_packet_to_zoneid(mp); 1681 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1682 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1683 zoneid)); 1684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1685 freemsg(first_mp); 1686 return; 1687 } 1688 } 1689 1690 /* 1691 * We have accepted the ICMP message. It means that we will 1692 * respond to the packet if needed. It may not be delivered 1693 * to the upper client depending on the policy constraints 1694 * and the disposition in ipsec_inbound_accept_clear. 1695 */ 1696 1697 ASSERT(ill != NULL); 1698 1699 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1700 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1701 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1702 /* Last chance to get real. */ 1703 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1705 freemsg(first_mp); 1706 return; 1707 } 1708 /* Refresh iph following the pullup. */ 1709 ipha = (ipha_t *)mp->b_rptr; 1710 } 1711 /* ICMP header checksum, including checksum field, should be zero. */ 1712 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1713 IP_CSUM(mp, iph_hdr_length, 0)) { 1714 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1715 freemsg(first_mp); 1716 return; 1717 } 1718 /* The IP header will always be a multiple of four bytes */ 1719 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1720 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1721 icmph->icmph_code)); 1722 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1723 /* We will set "interested" to "true" if we want a copy */ 1724 interested = B_FALSE; 1725 switch (icmph->icmph_type) { 1726 case ICMP_ECHO_REPLY: 1727 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1728 break; 1729 case ICMP_DEST_UNREACHABLE: 1730 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1732 interested = B_TRUE; /* Pass up to transport */ 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1734 break; 1735 case ICMP_SOURCE_QUENCH: 1736 interested = B_TRUE; /* Pass up to transport */ 1737 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1738 break; 1739 case ICMP_REDIRECT: 1740 if (!ipst->ips_ip_ignore_redirect) 1741 interested = B_TRUE; 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1743 break; 1744 case ICMP_ECHO_REQUEST: 1745 /* 1746 * Whether to respond to echo requests that come in as IP 1747 * broadcasts or as IP multicast is subject to debate 1748 * (what isn't?). We aim to please, you pick it. 1749 * Default is do it. 1750 */ 1751 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1752 /* unicast: always respond */ 1753 interested = B_TRUE; 1754 } else if (CLASSD(ipha->ipha_dst)) { 1755 /* multicast: respond based on tunable */ 1756 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1757 } else if (broadcast) { 1758 /* broadcast: respond based on tunable */ 1759 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1760 } 1761 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1762 break; 1763 case ICMP_ROUTER_ADVERTISEMENT: 1764 case ICMP_ROUTER_SOLICITATION: 1765 break; 1766 case ICMP_TIME_EXCEEDED: 1767 interested = B_TRUE; /* Pass up to transport */ 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1769 break; 1770 case ICMP_PARAM_PROBLEM: 1771 interested = B_TRUE; /* Pass up to transport */ 1772 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1773 break; 1774 case ICMP_TIME_STAMP_REQUEST: 1775 /* Response to Time Stamp Requests is local policy. */ 1776 if (ipst->ips_ip_g_resp_to_timestamp && 1777 /* So is whether to respond if it was an IP broadcast. */ 1778 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1779 int tstamp_len = 3 * sizeof (uint32_t); 1780 1781 if (wptr + tstamp_len > mp->b_wptr) { 1782 if (!pullupmsg(mp, wptr + tstamp_len - 1783 mp->b_rptr)) { 1784 BUMP_MIB(ill->ill_ip_mib, 1785 ipIfStatsInDiscards); 1786 freemsg(first_mp); 1787 return; 1788 } 1789 /* Refresh ipha following the pullup. */ 1790 ipha = (ipha_t *)mp->b_rptr; 1791 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1792 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1793 } 1794 interested = B_TRUE; 1795 } 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1797 break; 1798 case ICMP_TIME_STAMP_REPLY: 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1800 break; 1801 case ICMP_INFO_REQUEST: 1802 /* Per RFC 1122 3.2.2.7, ignore this. */ 1803 case ICMP_INFO_REPLY: 1804 break; 1805 case ICMP_ADDRESS_MASK_REQUEST: 1806 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1807 !broadcast) && 1808 /* TODO m_pullup of complete header? */ 1809 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1810 interested = B_TRUE; 1811 } 1812 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1813 break; 1814 case ICMP_ADDRESS_MASK_REPLY: 1815 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1816 break; 1817 default: 1818 interested = B_TRUE; /* Pass up to transport */ 1819 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1820 break; 1821 } 1822 /* See if there is an ICMP client. */ 1823 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1824 /* If there is an ICMP client and we want one too, copy it. */ 1825 mblk_t *first_mp1; 1826 1827 if (!interested) { 1828 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1829 ip_policy, recv_ill, zoneid); 1830 return; 1831 } 1832 first_mp1 = ip_copymsg(first_mp); 1833 if (first_mp1 != NULL) { 1834 ip_fanout_proto(q, first_mp1, ill, ipha, 1835 0, mctl_present, ip_policy, recv_ill, zoneid); 1836 } 1837 } else if (!interested) { 1838 freemsg(first_mp); 1839 return; 1840 } else { 1841 /* 1842 * Initiate policy processing for this packet if ip_policy 1843 * is true. 1844 */ 1845 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1846 ill_index = ill->ill_phyint->phyint_ifindex; 1847 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1848 if (mp == NULL) { 1849 if (mctl_present) { 1850 freeb(first_mp); 1851 } 1852 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1853 return; 1854 } 1855 } 1856 } 1857 /* We want to do something with it. */ 1858 /* Check db_ref to make sure we can modify the packet. */ 1859 if (mp->b_datap->db_ref > 1) { 1860 mblk_t *first_mp1; 1861 1862 first_mp1 = ip_copymsg(first_mp); 1863 freemsg(first_mp); 1864 if (!first_mp1) { 1865 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1866 return; 1867 } 1868 first_mp = first_mp1; 1869 if (mctl_present) { 1870 mp = first_mp->b_cont; 1871 ASSERT(mp != NULL); 1872 } else { 1873 mp = first_mp; 1874 } 1875 ipha = (ipha_t *)mp->b_rptr; 1876 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1877 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1878 } 1879 switch (icmph->icmph_type) { 1880 case ICMP_ADDRESS_MASK_REQUEST: 1881 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1882 if (ipif == NULL) { 1883 freemsg(first_mp); 1884 return; 1885 } 1886 /* 1887 * outging interface must be IPv4 1888 */ 1889 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1890 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1891 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1892 ipif_refrele(ipif); 1893 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1894 break; 1895 case ICMP_ECHO_REQUEST: 1896 icmph->icmph_type = ICMP_ECHO_REPLY; 1897 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1898 break; 1899 case ICMP_TIME_STAMP_REQUEST: { 1900 uint32_t *tsp; 1901 1902 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1903 tsp = (uint32_t *)wptr; 1904 tsp++; /* Skip past 'originate time' */ 1905 /* Compute # of milliseconds since midnight */ 1906 gethrestime(&now); 1907 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1908 now.tv_nsec / (NANOSEC / MILLISEC); 1909 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1910 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1911 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1912 break; 1913 } 1914 default: 1915 ipha = (ipha_t *)&icmph[1]; 1916 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1917 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1919 freemsg(first_mp); 1920 return; 1921 } 1922 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1923 ipha = (ipha_t *)&icmph[1]; 1924 } 1925 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 hdr_length = IPH_HDR_LENGTH(ipha); 1931 if (hdr_length < sizeof (ipha_t)) { 1932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1933 freemsg(first_mp); 1934 return; 1935 } 1936 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1937 if (!pullupmsg(mp, 1938 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1940 freemsg(first_mp); 1941 return; 1942 } 1943 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1944 ipha = (ipha_t *)&icmph[1]; 1945 } 1946 switch (icmph->icmph_type) { 1947 case ICMP_REDIRECT: 1948 /* 1949 * As there is no upper client to deliver, we don't 1950 * need the first_mp any more. 1951 */ 1952 if (mctl_present) { 1953 freeb(first_mp); 1954 } 1955 icmp_redirect(ill, mp); 1956 return; 1957 case ICMP_DEST_UNREACHABLE: 1958 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1959 if (!icmp_inbound_too_big(icmph, ipha, ill, 1960 zoneid, mp, iph_hdr_length, ipst)) { 1961 freemsg(first_mp); 1962 return; 1963 } 1964 /* 1965 * icmp_inbound_too_big() may alter mp. 1966 * Resynch ipha and icmph accordingly. 1967 */ 1968 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1969 ipha = (ipha_t *)&icmph[1]; 1970 } 1971 /* FALLTHRU */ 1972 default : 1973 /* 1974 * IPQoS notes: Since we have already done IPQoS 1975 * processing we don't want to do it again in 1976 * the fanout routines called by 1977 * icmp_inbound_error_fanout, hence the last 1978 * argument, ip_policy, is B_FALSE. 1979 */ 1980 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1981 ipha, iph_hdr_length, hdr_length, mctl_present, 1982 B_FALSE, recv_ill, zoneid); 1983 } 1984 return; 1985 } 1986 /* Send out an ICMP packet */ 1987 icmph->icmph_checksum = 0; 1988 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1989 if (broadcast || CLASSD(ipha->ipha_dst)) { 1990 ipif_t *ipif_chosen; 1991 /* 1992 * Make it look like it was directed to us, so we don't look 1993 * like a fool with a broadcast or multicast source address. 1994 */ 1995 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1996 /* 1997 * Make sure that we haven't grabbed an interface that's DOWN. 1998 */ 1999 if (ipif != NULL) { 2000 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2001 ipha->ipha_src, zoneid); 2002 if (ipif_chosen != NULL) { 2003 ipif_refrele(ipif); 2004 ipif = ipif_chosen; 2005 } 2006 } 2007 if (ipif == NULL) { 2008 ip0dbg(("icmp_inbound: " 2009 "No source for broadcast/multicast:\n" 2010 "\tsrc 0x%x dst 0x%x ill %p " 2011 "ipif_lcl_addr 0x%x\n", 2012 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2013 (void *)ill, 2014 ill->ill_ipif->ipif_lcl_addr)); 2015 freemsg(first_mp); 2016 return; 2017 } 2018 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2019 ipha->ipha_dst = ipif->ipif_src_addr; 2020 ipif_refrele(ipif); 2021 } 2022 /* Reset time to live. */ 2023 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2024 { 2025 /* Swap source and destination addresses */ 2026 ipaddr_t tmp; 2027 2028 tmp = ipha->ipha_src; 2029 ipha->ipha_src = ipha->ipha_dst; 2030 ipha->ipha_dst = tmp; 2031 } 2032 ipha->ipha_ident = 0; 2033 if (!IS_SIMPLE_IPH(ipha)) 2034 icmp_options_update(ipha); 2035 2036 if (!mctl_present) { 2037 /* 2038 * This packet should go out the same way as it 2039 * came in i.e in clear. To make sure that global 2040 * policy will not be applied to this in ip_wput_ire, 2041 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2042 */ 2043 ASSERT(first_mp == mp); 2044 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2045 if (first_mp == NULL) { 2046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2047 freemsg(mp); 2048 return; 2049 } 2050 ii = (ipsec_in_t *)first_mp->b_rptr; 2051 2052 /* This is not a secure packet */ 2053 ii->ipsec_in_secure = B_FALSE; 2054 first_mp->b_cont = mp; 2055 } else { 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2058 } 2059 ii->ipsec_in_zoneid = zoneid; 2060 ASSERT(zoneid != ALL_ZONES); 2061 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2063 return; 2064 } 2065 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2066 put(WR(q), first_mp); 2067 } 2068 2069 static ipaddr_t 2070 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2071 { 2072 conn_t *connp; 2073 connf_t *connfp; 2074 ipaddr_t nexthop_addr = INADDR_ANY; 2075 int hdr_length = IPH_HDR_LENGTH(ipha); 2076 uint16_t *up; 2077 uint32_t ports; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 2080 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2081 switch (ipha->ipha_protocol) { 2082 case IPPROTO_TCP: 2083 { 2084 tcph_t *tcph; 2085 2086 /* do a reverse lookup */ 2087 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2088 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2089 TCPS_LISTEN, ipst); 2090 break; 2091 } 2092 case IPPROTO_UDP: 2093 { 2094 uint32_t dstport, srcport; 2095 2096 ((uint16_t *)&ports)[0] = up[1]; 2097 ((uint16_t *)&ports)[1] = up[0]; 2098 2099 /* Extract ports in net byte order */ 2100 dstport = htons(ntohl(ports) & 0xFFFF); 2101 srcport = htons(ntohl(ports) >> 16); 2102 2103 connfp = &ipst->ips_ipcl_udp_fanout[ 2104 IPCL_UDP_HASH(dstport, ipst)]; 2105 mutex_enter(&connfp->connf_lock); 2106 connp = connfp->connf_head; 2107 2108 /* do a reverse lookup */ 2109 while ((connp != NULL) && 2110 (!IPCL_UDP_MATCH(connp, dstport, 2111 ipha->ipha_src, srcport, ipha->ipha_dst) || 2112 !IPCL_ZONE_MATCH(connp, zoneid))) { 2113 connp = connp->conn_next; 2114 } 2115 if (connp != NULL) 2116 CONN_INC_REF(connp); 2117 mutex_exit(&connfp->connf_lock); 2118 break; 2119 } 2120 case IPPROTO_SCTP: 2121 { 2122 in6_addr_t map_src, map_dst; 2123 2124 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2125 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2126 ((uint16_t *)&ports)[0] = up[1]; 2127 ((uint16_t *)&ports)[1] = up[0]; 2128 2129 connp = sctp_find_conn(&map_src, &map_dst, ports, 2130 zoneid, ipst->ips_netstack->netstack_sctp); 2131 if (connp == NULL) { 2132 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2133 zoneid, ports, ipha, ipst); 2134 } else { 2135 CONN_INC_REF(connp); 2136 SCTP_REFRELE(CONN2SCTP(connp)); 2137 } 2138 break; 2139 } 2140 default: 2141 { 2142 ipha_t ripha; 2143 2144 ripha.ipha_src = ipha->ipha_dst; 2145 ripha.ipha_dst = ipha->ipha_src; 2146 ripha.ipha_protocol = ipha->ipha_protocol; 2147 2148 connfp = &ipst->ips_ipcl_proto_fanout[ 2149 ipha->ipha_protocol]; 2150 mutex_enter(&connfp->connf_lock); 2151 connp = connfp->connf_head; 2152 for (connp = connfp->connf_head; connp != NULL; 2153 connp = connp->conn_next) { 2154 if (IPCL_PROTO_MATCH(connp, 2155 ipha->ipha_protocol, &ripha, ill, 2156 0, zoneid)) { 2157 CONN_INC_REF(connp); 2158 break; 2159 } 2160 } 2161 mutex_exit(&connfp->connf_lock); 2162 } 2163 } 2164 if (connp != NULL) { 2165 if (connp->conn_nexthop_set) 2166 nexthop_addr = connp->conn_nexthop_v4; 2167 CONN_DEC_REF(connp); 2168 } 2169 return (nexthop_addr); 2170 } 2171 2172 /* Table from RFC 1191 */ 2173 static int icmp_frag_size_table[] = 2174 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2175 2176 /* 2177 * Process received ICMP Packet too big. 2178 * After updating any IRE it does the fanout to any matching transport streams. 2179 * Assumes the message has been pulled up till the IP header that caused 2180 * the error. 2181 * 2182 * Returns B_FALSE on failure and B_TRUE on success. 2183 */ 2184 static boolean_t 2185 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2186 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2187 ip_stack_t *ipst) 2188 { 2189 ire_t *ire, *first_ire; 2190 int mtu, orig_mtu; 2191 int hdr_length; 2192 ipaddr_t nexthop_addr; 2193 boolean_t disable_pmtud; 2194 2195 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2196 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2197 ASSERT(ill != NULL); 2198 2199 hdr_length = IPH_HDR_LENGTH(ipha); 2200 2201 /* Drop if the original packet contained a source route */ 2202 if (ip_source_route_included(ipha)) { 2203 return (B_FALSE); 2204 } 2205 /* 2206 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2207 * header. 2208 */ 2209 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2210 mp->b_wptr) { 2211 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2212 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2213 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2214 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2215 return (B_FALSE); 2216 } 2217 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2218 ipha = (ipha_t *)&icmph[1]; 2219 } 2220 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2221 if (nexthop_addr != INADDR_ANY) { 2222 /* nexthop set */ 2223 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2224 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2225 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2226 } else { 2227 /* nexthop not set */ 2228 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2229 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2230 } 2231 2232 if (!first_ire) { 2233 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2234 ntohl(ipha->ipha_dst))); 2235 return (B_FALSE); 2236 } 2237 2238 /* Check for MTU discovery advice as described in RFC 1191 */ 2239 mtu = ntohs(icmph->icmph_du_mtu); 2240 orig_mtu = mtu; 2241 disable_pmtud = B_FALSE; 2242 2243 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2244 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2245 ire = ire->ire_next) { 2246 /* 2247 * Look for the connection to which this ICMP message is 2248 * directed. If it has the IP_NEXTHOP option set, then the 2249 * search is limited to IREs with the MATCH_IRE_PRIVATE 2250 * option. Else the search is limited to regular IREs. 2251 */ 2252 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2253 (nexthop_addr != ire->ire_gateway_addr)) || 2254 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2255 (nexthop_addr != INADDR_ANY))) 2256 continue; 2257 2258 mutex_enter(&ire->ire_lock); 2259 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2260 uint32_t length; 2261 int i; 2262 2263 /* 2264 * Use the table from RFC 1191 to figure out 2265 * the next "plateau" based on the length in 2266 * the original IP packet. 2267 */ 2268 length = ntohs(ipha->ipha_length); 2269 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2270 uint32_t, length); 2271 if (ire->ire_max_frag <= length && 2272 ire->ire_max_frag >= length - hdr_length) { 2273 /* 2274 * Handle broken BSD 4.2 systems that 2275 * return the wrong iph_length in ICMP 2276 * errors. 2277 */ 2278 length -= hdr_length; 2279 } 2280 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2281 if (length > icmp_frag_size_table[i]) 2282 break; 2283 } 2284 if (i == A_CNT(icmp_frag_size_table)) { 2285 /* Smaller than 68! */ 2286 disable_pmtud = B_TRUE; 2287 mtu = ipst->ips_ip_pmtu_min; 2288 } else { 2289 mtu = icmp_frag_size_table[i]; 2290 if (mtu < ipst->ips_ip_pmtu_min) { 2291 mtu = ipst->ips_ip_pmtu_min; 2292 disable_pmtud = B_TRUE; 2293 } 2294 } 2295 /* Fool the ULP into believing our guessed PMTU. */ 2296 icmph->icmph_du_zero = 0; 2297 icmph->icmph_du_mtu = htons(mtu); 2298 } 2299 if (disable_pmtud) 2300 ire->ire_frag_flag = 0; 2301 /* Reduce the IRE max frag value as advised. */ 2302 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2303 if (ire->ire_max_frag == mtu) { 2304 /* Decreased it */ 2305 ire->ire_marks |= IRE_MARK_PMTU; 2306 } 2307 mutex_exit(&ire->ire_lock); 2308 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2309 ire, int, orig_mtu, int, mtu); 2310 } 2311 rw_exit(&first_ire->ire_bucket->irb_lock); 2312 ire_refrele(first_ire); 2313 return (B_TRUE); 2314 } 2315 2316 /* 2317 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2318 * calls this function. 2319 */ 2320 static mblk_t * 2321 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2322 { 2323 ipha_t *ipha; 2324 icmph_t *icmph; 2325 ipha_t *in_ipha; 2326 int length; 2327 2328 ASSERT(mp->b_datap->db_type == M_DATA); 2329 2330 /* 2331 * For Self-encapsulated packets, we added an extra IP header 2332 * without the options. Inner IP header is the one from which 2333 * the outer IP header was formed. Thus, we need to remove the 2334 * outer IP header. To do this, we pullup the whole message 2335 * and overlay whatever follows the outer IP header over the 2336 * outer IP header. 2337 */ 2338 2339 if (!pullupmsg(mp, -1)) 2340 return (NULL); 2341 2342 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2343 ipha = (ipha_t *)&icmph[1]; 2344 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2345 2346 /* 2347 * The length that we want to overlay is following the inner 2348 * IP header. Subtracting the IP header + icmp header + outer 2349 * IP header's length should give us the length that we want to 2350 * overlay. 2351 */ 2352 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2353 hdr_length; 2354 /* 2355 * Overlay whatever follows the inner header over the 2356 * outer header. 2357 */ 2358 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2359 2360 /* Set the wptr to account for the outer header */ 2361 mp->b_wptr -= hdr_length; 2362 return (mp); 2363 } 2364 2365 /* 2366 * Fanout for ICMP errors containing IP-in-IPv4 packets. Returns B_TRUE if a 2367 * tunnel consumed the message, and B_FALSE otherwise. 2368 */ 2369 static boolean_t 2370 icmp_inbound_iptun_fanout(mblk_t *first_mp, ipha_t *ripha, ill_t *ill, 2371 ip_stack_t *ipst) 2372 { 2373 conn_t *connp; 2374 2375 if ((connp = ipcl_iptun_classify_v4(&ripha->ipha_src, &ripha->ipha_dst, 2376 ipst)) == NULL) 2377 return (B_FALSE); 2378 2379 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 2380 connp->conn_recv(connp, first_mp, NULL); 2381 CONN_DEC_REF(connp); 2382 return (B_TRUE); 2383 } 2384 2385 /* 2386 * Try to pass the ICMP message upstream in case the ULP cares. 2387 * 2388 * If the packet that caused the ICMP error is secure, we send 2389 * it to AH/ESP to make sure that the attached packet has a 2390 * valid association. ipha in the code below points to the 2391 * IP header of the packet that caused the error. 2392 * 2393 * For IPsec cases, we let the next-layer-up (which has access to 2394 * cached policy on the conn_t, or can query the SPD directly) 2395 * subtract out any IPsec overhead if they must. We therefore make no 2396 * adjustments here for IPsec overhead. 2397 * 2398 * IFN could have been generated locally or by some router. 2399 * 2400 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2401 * This happens because IP adjusted its value of MTU on an 2402 * earlier IFN message and could not tell the upper layer, 2403 * the new adjusted value of MTU e.g. Packet was encrypted 2404 * or there was not enough information to fanout to upper 2405 * layers. Thus on the next outbound datagram, ip_wput_ire 2406 * generates the IFN, where IPsec processing has *not* been 2407 * done. 2408 * 2409 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2410 * could have generated this. This happens because ire_max_frag 2411 * value in IP was set to a new value, while the IPsec processing 2412 * was being done and after we made the fragmentation check in 2413 * ip_wput_ire. Thus on return from IPsec processing, 2414 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2415 * and generates the IFN. As IPsec processing is over, we fanout 2416 * to AH/ESP to remove the header. 2417 * 2418 * In both these cases, ipsec_in_loopback will be set indicating 2419 * that IFN was generated locally. 2420 * 2421 * ROUTER : IFN could be secure or non-secure. 2422 * 2423 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2424 * packet in error has AH/ESP headers to validate the AH/ESP 2425 * headers. AH/ESP will verify whether there is a valid SA or 2426 * not and send it back. We will fanout again if we have more 2427 * data in the packet. 2428 * 2429 * If the packet in error does not have AH/ESP, we handle it 2430 * like any other case. 2431 * 2432 * * NON_SECURE : If the packet in error has AH/ESP headers, 2433 * we attach a dummy ipsec_in and send it up to AH/ESP 2434 * for validation. AH/ESP will verify whether there is a 2435 * valid SA or not and send it back. We will fanout again if 2436 * we have more data in the packet. 2437 * 2438 * If the packet in error does not have AH/ESP, we handle it 2439 * like any other case. 2440 */ 2441 static void 2442 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2443 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2444 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2445 zoneid_t zoneid) 2446 { 2447 uint16_t *up; /* Pointer to ports in ULP header */ 2448 uint32_t ports; /* reversed ports for fanout */ 2449 ipha_t ripha; /* With reversed addresses */ 2450 mblk_t *first_mp; 2451 ipsec_in_t *ii; 2452 tcph_t *tcph; 2453 conn_t *connp; 2454 ip_stack_t *ipst; 2455 2456 ASSERT(ill != NULL); 2457 2458 ASSERT(recv_ill != NULL); 2459 ipst = recv_ill->ill_ipst; 2460 2461 first_mp = mp; 2462 if (mctl_present) { 2463 mp = first_mp->b_cont; 2464 ASSERT(mp != NULL); 2465 2466 ii = (ipsec_in_t *)first_mp->b_rptr; 2467 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2468 } else { 2469 ii = NULL; 2470 } 2471 2472 /* 2473 * We need a separate IP header with the source and destination 2474 * addresses reversed to do fanout/classification because the ipha in 2475 * the ICMP error is in the form we sent it out. 2476 */ 2477 ripha.ipha_src = ipha->ipha_dst; 2478 ripha.ipha_dst = ipha->ipha_src; 2479 ripha.ipha_protocol = ipha->ipha_protocol; 2480 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2481 2482 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2483 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2484 ntohl(ipha->ipha_dst), 2485 icmph->icmph_type, icmph->icmph_code)); 2486 2487 switch (ipha->ipha_protocol) { 2488 case IPPROTO_UDP: 2489 /* 2490 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2491 * transport header. 2492 */ 2493 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2494 mp->b_wptr) { 2495 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2496 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2497 goto discard_pkt; 2498 } 2499 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2500 ipha = (ipha_t *)&icmph[1]; 2501 } 2502 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2503 2504 /* Attempt to find a client stream based on port. */ 2505 ((uint16_t *)&ports)[0] = up[1]; 2506 ((uint16_t *)&ports)[1] = up[0]; 2507 ip2dbg(("icmp_inbound_error: UDP ports %d to %d\n", 2508 ntohs(up[0]), ntohs(up[1]))); 2509 2510 /* Have to change db_type after any pullupmsg */ 2511 DB_TYPE(mp) = M_CTL; 2512 2513 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2514 mctl_present, ip_policy, recv_ill, zoneid); 2515 return; 2516 2517 case IPPROTO_TCP: 2518 /* 2519 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2520 * transport header. 2521 */ 2522 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2523 mp->b_wptr) { 2524 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2525 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2526 goto discard_pkt; 2527 } 2528 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2529 ipha = (ipha_t *)&icmph[1]; 2530 } 2531 /* 2532 * Find a TCP client stream for this packet. 2533 * Note that we do a reverse lookup since the header is 2534 * in the form we sent it out. 2535 */ 2536 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2537 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2538 ipst); 2539 if (connp == NULL) 2540 goto discard_pkt; 2541 2542 /* Have to change db_type after any pullupmsg */ 2543 DB_TYPE(mp) = M_CTL; 2544 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2545 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2546 return; 2547 2548 case IPPROTO_SCTP: 2549 /* 2550 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2551 * transport header. 2552 */ 2553 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2554 mp->b_wptr) { 2555 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2556 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2557 goto discard_pkt; 2558 } 2559 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2560 ipha = (ipha_t *)&icmph[1]; 2561 } 2562 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2563 /* Find a SCTP client stream for this packet. */ 2564 ((uint16_t *)&ports)[0] = up[1]; 2565 ((uint16_t *)&ports)[1] = up[0]; 2566 2567 /* Have to change db_type after any pullupmsg */ 2568 DB_TYPE(mp) = M_CTL; 2569 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2570 mctl_present, ip_policy, zoneid); 2571 return; 2572 2573 case IPPROTO_ESP: 2574 case IPPROTO_AH: { 2575 int ipsec_rc; 2576 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2577 2578 /* 2579 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2580 * We will re-use the IPSEC_IN if it is already present as 2581 * AH/ESP will not affect any fields in the IPSEC_IN for 2582 * ICMP errors. If there is no IPSEC_IN, allocate a new 2583 * one and attach it in the front. 2584 */ 2585 if (ii != NULL) { 2586 /* 2587 * ip_fanout_proto_again converts the ICMP errors 2588 * that come back from AH/ESP to M_DATA so that 2589 * if it is non-AH/ESP and we do a pullupmsg in 2590 * this function, it would work. Convert it back 2591 * to M_CTL before we send up as this is a ICMP 2592 * error. This could have been generated locally or 2593 * by some router. Validate the inner IPsec 2594 * headers. 2595 * 2596 * NOTE : ill_index is used by ip_fanout_proto_again 2597 * to locate the ill. 2598 */ 2599 ASSERT(ill != NULL); 2600 ii->ipsec_in_ill_index = 2601 ill->ill_phyint->phyint_ifindex; 2602 ii->ipsec_in_rill_index = 2603 recv_ill->ill_phyint->phyint_ifindex; 2604 DB_TYPE(first_mp->b_cont) = M_CTL; 2605 } else { 2606 /* 2607 * IPSEC_IN is not present. We attach a ipsec_in 2608 * message and send up to IPsec for validating 2609 * and removing the IPsec headers. Clear 2610 * ipsec_in_secure so that when we return 2611 * from IPsec, we don't mistakenly think that this 2612 * is a secure packet came from the network. 2613 * 2614 * NOTE : ill_index is used by ip_fanout_proto_again 2615 * to locate the ill. 2616 */ 2617 ASSERT(first_mp == mp); 2618 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2619 if (first_mp == NULL) { 2620 freemsg(mp); 2621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2622 return; 2623 } 2624 ii = (ipsec_in_t *)first_mp->b_rptr; 2625 2626 /* This is not a secure packet */ 2627 ii->ipsec_in_secure = B_FALSE; 2628 first_mp->b_cont = mp; 2629 DB_TYPE(mp) = M_CTL; 2630 ASSERT(ill != NULL); 2631 ii->ipsec_in_ill_index = 2632 ill->ill_phyint->phyint_ifindex; 2633 ii->ipsec_in_rill_index = 2634 recv_ill->ill_phyint->phyint_ifindex; 2635 } 2636 2637 if (!ipsec_loaded(ipss)) { 2638 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2639 return; 2640 } 2641 2642 if (ipha->ipha_protocol == IPPROTO_ESP) 2643 ipsec_rc = ipsecesp_icmp_error(first_mp); 2644 else 2645 ipsec_rc = ipsecah_icmp_error(first_mp); 2646 if (ipsec_rc == IPSEC_STATUS_FAILED) 2647 return; 2648 2649 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2650 return; 2651 } 2652 case IPPROTO_ENCAP: 2653 case IPPROTO_IPV6: 2654 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2655 ipha_t *in_ipha; 2656 2657 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2658 mp->b_wptr) { 2659 if (!pullupmsg(mp, (uchar_t *)ipha + 2660 hdr_length + sizeof (ipha_t) - 2661 mp->b_rptr)) { 2662 goto discard_pkt; 2663 } 2664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2665 ipha = (ipha_t *)&icmph[1]; 2666 } 2667 /* 2668 * Caller has verified that length has to be 2669 * at least the size of IP header. 2670 */ 2671 ASSERT(hdr_length >= sizeof (ipha_t)); 2672 /* 2673 * Check the sanity of the inner IP header like 2674 * we did for the outer header. 2675 */ 2676 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2677 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION) || 2678 IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) 2679 goto discard_pkt; 2680 /* Check for Self-encapsulated tunnels */ 2681 if (in_ipha->ipha_src == ipha->ipha_src && 2682 in_ipha->ipha_dst == ipha->ipha_dst) { 2683 2684 mp = icmp_inbound_self_encap_error(mp, 2685 iph_hdr_length, hdr_length); 2686 if (mp == NULL) 2687 goto discard_pkt; 2688 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2689 ipha = (ipha_t *)&icmph[1]; 2690 hdr_length = IPH_HDR_LENGTH(ipha); 2691 /* 2692 * The packet in error is self-encapsualted. 2693 * And we are finding it further encapsulated 2694 * which we could not have possibly generated. 2695 */ 2696 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2697 goto discard_pkt; 2698 } 2699 icmp_inbound_error_fanout(q, ill, first_mp, 2700 icmph, ipha, iph_hdr_length, hdr_length, 2701 mctl_present, ip_policy, recv_ill, zoneid); 2702 return; 2703 } 2704 } 2705 2706 DB_TYPE(mp) = M_CTL; 2707 if (icmp_inbound_iptun_fanout(first_mp, &ripha, ill, ipst)) 2708 return; 2709 /* 2710 * No IP tunnel is interested, fallthrough and see 2711 * if a raw socket will want it. 2712 */ 2713 /* FALLTHRU */ 2714 default: 2715 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2716 ip_policy, recv_ill, zoneid); 2717 return; 2718 } 2719 /* NOTREACHED */ 2720 discard_pkt: 2721 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2722 drop_pkt:; 2723 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2724 freemsg(first_mp); 2725 } 2726 2727 /* 2728 * Common IP options parser. 2729 * 2730 * Setup routine: fill in *optp with options-parsing state, then 2731 * tail-call ipoptp_next to return the first option. 2732 */ 2733 uint8_t 2734 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2735 { 2736 uint32_t totallen; /* total length of all options */ 2737 2738 totallen = ipha->ipha_version_and_hdr_length - 2739 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2740 totallen <<= 2; 2741 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2742 optp->ipoptp_end = optp->ipoptp_next + totallen; 2743 optp->ipoptp_flags = 0; 2744 return (ipoptp_next(optp)); 2745 } 2746 2747 /* 2748 * Common IP options parser: extract next option. 2749 */ 2750 uint8_t 2751 ipoptp_next(ipoptp_t *optp) 2752 { 2753 uint8_t *end = optp->ipoptp_end; 2754 uint8_t *cur = optp->ipoptp_next; 2755 uint8_t opt, len, pointer; 2756 2757 /* 2758 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2759 * has been corrupted. 2760 */ 2761 ASSERT(cur <= end); 2762 2763 if (cur == end) 2764 return (IPOPT_EOL); 2765 2766 opt = cur[IPOPT_OPTVAL]; 2767 2768 /* 2769 * Skip any NOP options. 2770 */ 2771 while (opt == IPOPT_NOP) { 2772 cur++; 2773 if (cur == end) 2774 return (IPOPT_EOL); 2775 opt = cur[IPOPT_OPTVAL]; 2776 } 2777 2778 if (opt == IPOPT_EOL) 2779 return (IPOPT_EOL); 2780 2781 /* 2782 * Option requiring a length. 2783 */ 2784 if ((cur + 1) >= end) { 2785 optp->ipoptp_flags |= IPOPTP_ERROR; 2786 return (IPOPT_EOL); 2787 } 2788 len = cur[IPOPT_OLEN]; 2789 if (len < 2) { 2790 optp->ipoptp_flags |= IPOPTP_ERROR; 2791 return (IPOPT_EOL); 2792 } 2793 optp->ipoptp_cur = cur; 2794 optp->ipoptp_len = len; 2795 optp->ipoptp_next = cur + len; 2796 if (cur + len > end) { 2797 optp->ipoptp_flags |= IPOPTP_ERROR; 2798 return (IPOPT_EOL); 2799 } 2800 2801 /* 2802 * For the options which require a pointer field, make sure 2803 * its there, and make sure it points to either something 2804 * inside this option, or the end of the option. 2805 */ 2806 switch (opt) { 2807 case IPOPT_RR: 2808 case IPOPT_TS: 2809 case IPOPT_LSRR: 2810 case IPOPT_SSRR: 2811 if (len <= IPOPT_OFFSET) { 2812 optp->ipoptp_flags |= IPOPTP_ERROR; 2813 return (opt); 2814 } 2815 pointer = cur[IPOPT_OFFSET]; 2816 if (pointer - 1 > len) { 2817 optp->ipoptp_flags |= IPOPTP_ERROR; 2818 return (opt); 2819 } 2820 break; 2821 } 2822 2823 /* 2824 * Sanity check the pointer field based on the type of the 2825 * option. 2826 */ 2827 switch (opt) { 2828 case IPOPT_RR: 2829 case IPOPT_SSRR: 2830 case IPOPT_LSRR: 2831 if (pointer < IPOPT_MINOFF_SR) 2832 optp->ipoptp_flags |= IPOPTP_ERROR; 2833 break; 2834 case IPOPT_TS: 2835 if (pointer < IPOPT_MINOFF_IT) 2836 optp->ipoptp_flags |= IPOPTP_ERROR; 2837 /* 2838 * Note that the Internet Timestamp option also 2839 * contains two four bit fields (the Overflow field, 2840 * and the Flag field), which follow the pointer 2841 * field. We don't need to check that these fields 2842 * fall within the length of the option because this 2843 * was implicitely done above. We've checked that the 2844 * pointer value is at least IPOPT_MINOFF_IT, and that 2845 * it falls within the option. Since IPOPT_MINOFF_IT > 2846 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2847 */ 2848 ASSERT(len > IPOPT_POS_OV_FLG); 2849 break; 2850 } 2851 2852 return (opt); 2853 } 2854 2855 /* 2856 * Use the outgoing IP header to create an IP_OPTIONS option the way 2857 * it was passed down from the application. 2858 */ 2859 int 2860 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2861 { 2862 ipoptp_t opts; 2863 const uchar_t *opt; 2864 uint8_t optval; 2865 uint8_t optlen; 2866 uint32_t len = 0; 2867 uchar_t *buf1 = buf; 2868 2869 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2870 len += IP_ADDR_LEN; 2871 bzero(buf1, IP_ADDR_LEN); 2872 2873 /* 2874 * OK to cast away const here, as we don't store through the returned 2875 * opts.ipoptp_cur pointer. 2876 */ 2877 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2878 optval != IPOPT_EOL; 2879 optval = ipoptp_next(&opts)) { 2880 int off; 2881 2882 opt = opts.ipoptp_cur; 2883 optlen = opts.ipoptp_len; 2884 switch (optval) { 2885 case IPOPT_SSRR: 2886 case IPOPT_LSRR: 2887 2888 /* 2889 * Insert ipha_dst as the first entry in the source 2890 * route and move down the entries on step. 2891 * The last entry gets placed at buf1. 2892 */ 2893 buf[IPOPT_OPTVAL] = optval; 2894 buf[IPOPT_OLEN] = optlen; 2895 buf[IPOPT_OFFSET] = optlen; 2896 2897 off = optlen - IP_ADDR_LEN; 2898 if (off < 0) { 2899 /* No entries in source route */ 2900 break; 2901 } 2902 /* Last entry in source route */ 2903 bcopy(opt + off, buf1, IP_ADDR_LEN); 2904 off -= IP_ADDR_LEN; 2905 2906 while (off > 0) { 2907 bcopy(opt + off, 2908 buf + off + IP_ADDR_LEN, 2909 IP_ADDR_LEN); 2910 off -= IP_ADDR_LEN; 2911 } 2912 /* ipha_dst into first slot */ 2913 bcopy(&ipha->ipha_dst, 2914 buf + off + IP_ADDR_LEN, 2915 IP_ADDR_LEN); 2916 buf += optlen; 2917 len += optlen; 2918 break; 2919 2920 case IPOPT_COMSEC: 2921 case IPOPT_SECURITY: 2922 /* if passing up a label is not ok, then remove */ 2923 if (is_system_labeled()) 2924 break; 2925 /* FALLTHROUGH */ 2926 default: 2927 bcopy(opt, buf, optlen); 2928 buf += optlen; 2929 len += optlen; 2930 break; 2931 } 2932 } 2933 done: 2934 /* Pad the resulting options */ 2935 while (len & 0x3) { 2936 *buf++ = IPOPT_EOL; 2937 len++; 2938 } 2939 return (len); 2940 } 2941 2942 /* 2943 * Update any record route or timestamp options to include this host. 2944 * Reverse any source route option. 2945 * This routine assumes that the options are well formed i.e. that they 2946 * have already been checked. 2947 */ 2948 static void 2949 icmp_options_update(ipha_t *ipha) 2950 { 2951 ipoptp_t opts; 2952 uchar_t *opt; 2953 uint8_t optval; 2954 ipaddr_t src; /* Our local address */ 2955 ipaddr_t dst; 2956 2957 ip2dbg(("icmp_options_update\n")); 2958 src = ipha->ipha_src; 2959 dst = ipha->ipha_dst; 2960 2961 for (optval = ipoptp_first(&opts, ipha); 2962 optval != IPOPT_EOL; 2963 optval = ipoptp_next(&opts)) { 2964 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2965 opt = opts.ipoptp_cur; 2966 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2967 optval, opts.ipoptp_len)); 2968 switch (optval) { 2969 int off1, off2; 2970 case IPOPT_SSRR: 2971 case IPOPT_LSRR: 2972 /* 2973 * Reverse the source route. The first entry 2974 * should be the next to last one in the current 2975 * source route (the last entry is our address). 2976 * The last entry should be the final destination. 2977 */ 2978 off1 = IPOPT_MINOFF_SR - 1; 2979 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2980 if (off2 < 0) { 2981 /* No entries in source route */ 2982 ip1dbg(( 2983 "icmp_options_update: bad src route\n")); 2984 break; 2985 } 2986 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2987 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2988 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2989 off2 -= IP_ADDR_LEN; 2990 2991 while (off1 < off2) { 2992 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2993 bcopy((char *)opt + off2, (char *)opt + off1, 2994 IP_ADDR_LEN); 2995 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2996 off1 += IP_ADDR_LEN; 2997 off2 -= IP_ADDR_LEN; 2998 } 2999 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3000 break; 3001 } 3002 } 3003 } 3004 3005 /* 3006 * Process received ICMP Redirect messages. 3007 */ 3008 static void 3009 icmp_redirect(ill_t *ill, mblk_t *mp) 3010 { 3011 ipha_t *ipha; 3012 int iph_hdr_length; 3013 icmph_t *icmph; 3014 ipha_t *ipha_err; 3015 ire_t *ire; 3016 ire_t *prev_ire; 3017 ire_t *save_ire; 3018 ipaddr_t src, dst, gateway; 3019 iulp_t ulp_info = { 0 }; 3020 int error; 3021 ip_stack_t *ipst; 3022 3023 ASSERT(ill != NULL); 3024 ipst = ill->ill_ipst; 3025 3026 ipha = (ipha_t *)mp->b_rptr; 3027 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3028 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3029 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3030 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3031 freemsg(mp); 3032 return; 3033 } 3034 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3035 ipha_err = (ipha_t *)&icmph[1]; 3036 src = ipha->ipha_src; 3037 dst = ipha_err->ipha_dst; 3038 gateway = icmph->icmph_rd_gateway; 3039 /* Make sure the new gateway is reachable somehow. */ 3040 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3041 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3042 /* 3043 * Make sure we had a route for the dest in question and that 3044 * that route was pointing to the old gateway (the source of the 3045 * redirect packet.) 3046 */ 3047 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3048 NULL, MATCH_IRE_GW, ipst); 3049 /* 3050 * Check that 3051 * the redirect was not from ourselves 3052 * the new gateway and the old gateway are directly reachable 3053 */ 3054 if (!prev_ire || 3055 !ire || 3056 ire->ire_type == IRE_LOCAL) { 3057 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3058 freemsg(mp); 3059 if (ire != NULL) 3060 ire_refrele(ire); 3061 if (prev_ire != NULL) 3062 ire_refrele(prev_ire); 3063 return; 3064 } 3065 3066 /* 3067 * Should we use the old ULP info to create the new gateway? From 3068 * a user's perspective, we should inherit the info so that it 3069 * is a "smooth" transition. If we do not do that, then new 3070 * connections going thru the new gateway will have no route metrics, 3071 * which is counter-intuitive to user. From a network point of 3072 * view, this may or may not make sense even though the new gateway 3073 * is still directly connected to us so the route metrics should not 3074 * change much. 3075 * 3076 * But if the old ire_uinfo is not initialized, we do another 3077 * recursive lookup on the dest using the new gateway. There may 3078 * be a route to that. If so, use it to initialize the redirect 3079 * route. 3080 */ 3081 if (prev_ire->ire_uinfo.iulp_set) { 3082 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3083 } else { 3084 ire_t *tmp_ire; 3085 ire_t *sire; 3086 3087 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3088 ALL_ZONES, 0, NULL, 3089 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3090 ipst); 3091 if (sire != NULL) { 3092 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3093 /* 3094 * If sire != NULL, ire_ftable_lookup() should not 3095 * return a NULL value. 3096 */ 3097 ASSERT(tmp_ire != NULL); 3098 ire_refrele(tmp_ire); 3099 ire_refrele(sire); 3100 } else if (tmp_ire != NULL) { 3101 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3102 sizeof (iulp_t)); 3103 ire_refrele(tmp_ire); 3104 } 3105 } 3106 if (prev_ire->ire_type == IRE_CACHE) 3107 ire_delete(prev_ire); 3108 ire_refrele(prev_ire); 3109 /* 3110 * TODO: more precise handling for cases 0, 2, 3, the latter two 3111 * require TOS routing 3112 */ 3113 switch (icmph->icmph_code) { 3114 case 0: 3115 case 1: 3116 /* TODO: TOS specificity for cases 2 and 3 */ 3117 case 2: 3118 case 3: 3119 break; 3120 default: 3121 freemsg(mp); 3122 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3123 ire_refrele(ire); 3124 return; 3125 } 3126 /* 3127 * Create a Route Association. This will allow us to remember that 3128 * someone we believe told us to use the particular gateway. 3129 */ 3130 save_ire = ire; 3131 ire = ire_create( 3132 (uchar_t *)&dst, /* dest addr */ 3133 (uchar_t *)&ip_g_all_ones, /* mask */ 3134 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3135 (uchar_t *)&gateway, /* gateway addr */ 3136 &save_ire->ire_max_frag, /* max frag */ 3137 NULL, /* no src nce */ 3138 NULL, /* no rfq */ 3139 NULL, /* no stq */ 3140 IRE_HOST, 3141 NULL, /* ipif */ 3142 0, /* cmask */ 3143 0, /* phandle */ 3144 0, /* ihandle */ 3145 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3146 &ulp_info, 3147 NULL, /* tsol_gc_t */ 3148 NULL, /* gcgrp */ 3149 ipst); 3150 3151 if (ire == NULL) { 3152 freemsg(mp); 3153 ire_refrele(save_ire); 3154 return; 3155 } 3156 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3157 ire_refrele(save_ire); 3158 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3159 3160 if (error == 0) { 3161 ire_refrele(ire); /* Held in ire_add_v4 */ 3162 /* tell routing sockets that we received a redirect */ 3163 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3164 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3165 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3166 } 3167 3168 /* 3169 * Delete any existing IRE_HOST type redirect ires for this destination. 3170 * This together with the added IRE has the effect of 3171 * modifying an existing redirect. 3172 */ 3173 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3174 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3175 if (prev_ire != NULL) { 3176 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3177 ire_delete(prev_ire); 3178 ire_refrele(prev_ire); 3179 } 3180 3181 freemsg(mp); 3182 } 3183 3184 /* 3185 * Generate an ICMP parameter problem message. 3186 */ 3187 static void 3188 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3189 ip_stack_t *ipst) 3190 { 3191 icmph_t icmph; 3192 boolean_t mctl_present; 3193 mblk_t *first_mp; 3194 3195 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3196 3197 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3198 if (mctl_present) 3199 freeb(first_mp); 3200 return; 3201 } 3202 3203 bzero(&icmph, sizeof (icmph_t)); 3204 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3205 icmph.icmph_pp_ptr = ptr; 3206 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3207 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3208 ipst); 3209 } 3210 3211 /* 3212 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3213 * the ICMP header pointed to by "stuff". (May be called as writer.) 3214 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3215 * an icmp error packet can be sent. 3216 * Assigns an appropriate source address to the packet. If ipha_dst is 3217 * one of our addresses use it for source. Otherwise pick a source based 3218 * on a route lookup back to ipha_src. 3219 * Note that ipha_src must be set here since the 3220 * packet is likely to arrive on an ill queue in ip_wput() which will 3221 * not set a source address. 3222 */ 3223 static void 3224 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3225 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3226 { 3227 ipaddr_t dst; 3228 icmph_t *icmph; 3229 ipha_t *ipha; 3230 uint_t len_needed; 3231 size_t msg_len; 3232 mblk_t *mp1; 3233 ipaddr_t src; 3234 ire_t *ire; 3235 mblk_t *ipsec_mp; 3236 ipsec_out_t *io = NULL; 3237 3238 if (mctl_present) { 3239 /* 3240 * If it is : 3241 * 3242 * 1) a IPSEC_OUT, then this is caused by outbound 3243 * datagram originating on this host. IPsec processing 3244 * may or may not have been done. Refer to comments above 3245 * icmp_inbound_error_fanout for details. 3246 * 3247 * 2) a IPSEC_IN if we are generating a icmp_message 3248 * for an incoming datagram destined for us i.e called 3249 * from ip_fanout_send_icmp. 3250 */ 3251 ipsec_info_t *in; 3252 ipsec_mp = mp; 3253 mp = ipsec_mp->b_cont; 3254 3255 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3256 ipha = (ipha_t *)mp->b_rptr; 3257 3258 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3259 in->ipsec_info_type == IPSEC_IN); 3260 3261 if (in->ipsec_info_type == IPSEC_IN) { 3262 /* 3263 * Convert the IPSEC_IN to IPSEC_OUT. 3264 */ 3265 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3266 BUMP_MIB(&ipst->ips_ip_mib, 3267 ipIfStatsOutDiscards); 3268 return; 3269 } 3270 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3271 } else { 3272 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3273 io = (ipsec_out_t *)in; 3274 /* 3275 * Clear out ipsec_out_proc_begin, so we do a fresh 3276 * ire lookup. 3277 */ 3278 io->ipsec_out_proc_begin = B_FALSE; 3279 } 3280 ASSERT(zoneid != ALL_ZONES); 3281 /* 3282 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3283 * initialized. We need to do that now. 3284 */ 3285 io->ipsec_out_zoneid = zoneid; 3286 } else { 3287 /* 3288 * This is in clear. The icmp message we are building 3289 * here should go out in clear. 3290 * 3291 * Pardon the convolution of it all, but it's easier to 3292 * allocate a "use cleartext" IPSEC_IN message and convert 3293 * it than it is to allocate a new one. 3294 */ 3295 ipsec_in_t *ii; 3296 ASSERT(DB_TYPE(mp) == M_DATA); 3297 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3298 if (ipsec_mp == NULL) { 3299 freemsg(mp); 3300 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3301 return; 3302 } 3303 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3304 3305 /* This is not a secure packet */ 3306 ii->ipsec_in_secure = B_FALSE; 3307 /* 3308 * For trusted extensions using a shared IP address we can 3309 * send using any zoneid. 3310 */ 3311 if (zoneid == ALL_ZONES) 3312 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3313 else 3314 ii->ipsec_in_zoneid = zoneid; 3315 ipsec_mp->b_cont = mp; 3316 ipha = (ipha_t *)mp->b_rptr; 3317 /* 3318 * Convert the IPSEC_IN to IPSEC_OUT. 3319 */ 3320 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3321 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3322 return; 3323 } 3324 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3325 } 3326 3327 /* Remember our eventual destination */ 3328 dst = ipha->ipha_src; 3329 3330 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3331 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3332 if (ire != NULL && 3333 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3334 src = ipha->ipha_dst; 3335 } else { 3336 if (ire != NULL) 3337 ire_refrele(ire); 3338 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3339 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3340 ipst); 3341 if (ire == NULL) { 3342 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3343 freemsg(ipsec_mp); 3344 return; 3345 } 3346 src = ire->ire_src_addr; 3347 } 3348 3349 if (ire != NULL) 3350 ire_refrele(ire); 3351 3352 /* 3353 * Check if we can send back more then 8 bytes in addition to 3354 * the IP header. We try to send 64 bytes of data and the internal 3355 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3356 */ 3357 len_needed = IPH_HDR_LENGTH(ipha); 3358 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3359 ipha->ipha_protocol == IPPROTO_IPV6) { 3360 3361 if (!pullupmsg(mp, -1)) { 3362 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3363 freemsg(ipsec_mp); 3364 return; 3365 } 3366 ipha = (ipha_t *)mp->b_rptr; 3367 3368 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3369 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3370 len_needed)); 3371 } else { 3372 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3373 3374 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3375 len_needed += ip_hdr_length_v6(mp, ip6h); 3376 } 3377 } 3378 len_needed += ipst->ips_ip_icmp_return; 3379 msg_len = msgdsize(mp); 3380 if (msg_len > len_needed) { 3381 (void) adjmsg(mp, len_needed - msg_len); 3382 msg_len = len_needed; 3383 } 3384 /* Make sure we propagate the cred/label for TX */ 3385 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3386 if (mp1 == NULL) { 3387 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3388 freemsg(ipsec_mp); 3389 return; 3390 } 3391 mp1->b_cont = mp; 3392 mp = mp1; 3393 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3394 ipsec_mp->b_rptr == (uint8_t *)io && 3395 io->ipsec_out_type == IPSEC_OUT); 3396 ipsec_mp->b_cont = mp; 3397 3398 /* 3399 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3400 * node generates be accepted in peace by all on-host destinations. 3401 * If we do NOT assume that all on-host destinations trust 3402 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3403 * (Look for ipsec_out_icmp_loopback). 3404 */ 3405 io->ipsec_out_icmp_loopback = B_TRUE; 3406 3407 ipha = (ipha_t *)mp->b_rptr; 3408 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3409 *ipha = icmp_ipha; 3410 ipha->ipha_src = src; 3411 ipha->ipha_dst = dst; 3412 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3413 msg_len += sizeof (icmp_ipha) + len; 3414 if (msg_len > IP_MAXPACKET) { 3415 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3416 msg_len = IP_MAXPACKET; 3417 } 3418 ipha->ipha_length = htons((uint16_t)msg_len); 3419 icmph = (icmph_t *)&ipha[1]; 3420 bcopy(stuff, icmph, len); 3421 icmph->icmph_checksum = 0; 3422 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3423 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3424 put(q, ipsec_mp); 3425 } 3426 3427 /* 3428 * Determine if an ICMP error packet can be sent given the rate limit. 3429 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3430 * in milliseconds) and a burst size. Burst size number of packets can 3431 * be sent arbitrarely closely spaced. 3432 * The state is tracked using two variables to implement an approximate 3433 * token bucket filter: 3434 * icmp_pkt_err_last - lbolt value when the last burst started 3435 * icmp_pkt_err_sent - number of packets sent in current burst 3436 */ 3437 boolean_t 3438 icmp_err_rate_limit(ip_stack_t *ipst) 3439 { 3440 clock_t now = TICK_TO_MSEC(lbolt); 3441 uint_t refilled; /* Number of packets refilled in tbf since last */ 3442 /* Guard against changes by loading into local variable */ 3443 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3444 3445 if (err_interval == 0) 3446 return (B_FALSE); 3447 3448 if (ipst->ips_icmp_pkt_err_last > now) { 3449 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3450 ipst->ips_icmp_pkt_err_last = 0; 3451 ipst->ips_icmp_pkt_err_sent = 0; 3452 } 3453 /* 3454 * If we are in a burst update the token bucket filter. 3455 * Update the "last" time to be close to "now" but make sure 3456 * we don't loose precision. 3457 */ 3458 if (ipst->ips_icmp_pkt_err_sent != 0) { 3459 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3460 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3461 ipst->ips_icmp_pkt_err_sent = 0; 3462 } else { 3463 ipst->ips_icmp_pkt_err_sent -= refilled; 3464 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3465 } 3466 } 3467 if (ipst->ips_icmp_pkt_err_sent == 0) { 3468 /* Start of new burst */ 3469 ipst->ips_icmp_pkt_err_last = now; 3470 } 3471 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3472 ipst->ips_icmp_pkt_err_sent++; 3473 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3474 ipst->ips_icmp_pkt_err_sent)); 3475 return (B_FALSE); 3476 } 3477 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3478 return (B_TRUE); 3479 } 3480 3481 /* 3482 * Check if it is ok to send an IPv4 ICMP error packet in 3483 * response to the IPv4 packet in mp. 3484 * Free the message and return null if no 3485 * ICMP error packet should be sent. 3486 */ 3487 static mblk_t * 3488 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3489 { 3490 icmph_t *icmph; 3491 ipha_t *ipha; 3492 uint_t len_needed; 3493 ire_t *src_ire; 3494 ire_t *dst_ire; 3495 3496 if (!mp) 3497 return (NULL); 3498 ipha = (ipha_t *)mp->b_rptr; 3499 if (ip_csum_hdr(ipha)) { 3500 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3501 freemsg(mp); 3502 return (NULL); 3503 } 3504 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3505 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3506 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3507 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3508 if (src_ire != NULL || dst_ire != NULL || 3509 CLASSD(ipha->ipha_dst) || 3510 CLASSD(ipha->ipha_src) || 3511 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3512 /* Note: only errors to the fragment with offset 0 */ 3513 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3514 freemsg(mp); 3515 if (src_ire != NULL) 3516 ire_refrele(src_ire); 3517 if (dst_ire != NULL) 3518 ire_refrele(dst_ire); 3519 return (NULL); 3520 } 3521 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3522 /* 3523 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3524 * errors in response to any ICMP errors. 3525 */ 3526 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3527 if (mp->b_wptr - mp->b_rptr < len_needed) { 3528 if (!pullupmsg(mp, len_needed)) { 3529 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3530 freemsg(mp); 3531 return (NULL); 3532 } 3533 ipha = (ipha_t *)mp->b_rptr; 3534 } 3535 icmph = (icmph_t *) 3536 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3537 switch (icmph->icmph_type) { 3538 case ICMP_DEST_UNREACHABLE: 3539 case ICMP_SOURCE_QUENCH: 3540 case ICMP_TIME_EXCEEDED: 3541 case ICMP_PARAM_PROBLEM: 3542 case ICMP_REDIRECT: 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 return (NULL); 3546 default: 3547 break; 3548 } 3549 } 3550 /* 3551 * If this is a labeled system, then check to see if we're allowed to 3552 * send a response to this particular sender. If not, then just drop. 3553 */ 3554 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3555 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3556 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3557 freemsg(mp); 3558 return (NULL); 3559 } 3560 if (icmp_err_rate_limit(ipst)) { 3561 /* 3562 * Only send ICMP error packets every so often. 3563 * This should be done on a per port/source basis, 3564 * but for now this will suffice. 3565 */ 3566 freemsg(mp); 3567 return (NULL); 3568 } 3569 return (mp); 3570 } 3571 3572 /* 3573 * Generate an ICMP redirect message. 3574 */ 3575 static void 3576 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3577 { 3578 icmph_t icmph; 3579 3580 /* 3581 * We are called from ip_rput where we could 3582 * not have attached an IPSEC_IN. 3583 */ 3584 ASSERT(mp->b_datap->db_type == M_DATA); 3585 3586 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3587 return; 3588 } 3589 3590 bzero(&icmph, sizeof (icmph_t)); 3591 icmph.icmph_type = ICMP_REDIRECT; 3592 icmph.icmph_code = 1; 3593 icmph.icmph_rd_gateway = gateway; 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3595 /* Redirects sent by router, and router is global zone */ 3596 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3597 } 3598 3599 /* 3600 * Generate an ICMP time exceeded message. 3601 */ 3602 void 3603 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3604 ip_stack_t *ipst) 3605 { 3606 icmph_t icmph; 3607 boolean_t mctl_present; 3608 mblk_t *first_mp; 3609 3610 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3611 3612 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3613 if (mctl_present) 3614 freeb(first_mp); 3615 return; 3616 } 3617 3618 bzero(&icmph, sizeof (icmph_t)); 3619 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3620 icmph.icmph_code = code; 3621 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3622 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3623 ipst); 3624 } 3625 3626 /* 3627 * Generate an ICMP unreachable message. 3628 */ 3629 void 3630 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3631 ip_stack_t *ipst) 3632 { 3633 icmph_t icmph; 3634 mblk_t *first_mp; 3635 boolean_t mctl_present; 3636 3637 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3638 3639 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3640 if (mctl_present) 3641 freeb(first_mp); 3642 return; 3643 } 3644 3645 bzero(&icmph, sizeof (icmph_t)); 3646 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3647 icmph.icmph_code = code; 3648 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3649 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3650 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3651 zoneid, ipst); 3652 } 3653 3654 /* 3655 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3656 * duplicate. As long as someone else holds the address, the interface will 3657 * stay down. When that conflict goes away, the interface is brought back up. 3658 * This is done so that accidental shutdowns of addresses aren't made 3659 * permanent. Your server will recover from a failure. 3660 * 3661 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3662 * user space process (dhcpagent). 3663 * 3664 * Recovery completes if ARP reports that the address is now ours (via 3665 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3666 * 3667 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3668 */ 3669 static void 3670 ipif_dup_recovery(void *arg) 3671 { 3672 ipif_t *ipif = arg; 3673 ill_t *ill = ipif->ipif_ill; 3674 mblk_t *arp_add_mp; 3675 mblk_t *arp_del_mp; 3676 ip_stack_t *ipst = ill->ill_ipst; 3677 3678 ipif->ipif_recovery_id = 0; 3679 3680 /* 3681 * No lock needed for moving or condemned check, as this is just an 3682 * optimization. 3683 */ 3684 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3685 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3686 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3687 /* No reason to try to bring this address back. */ 3688 return; 3689 } 3690 3691 /* ACE_F_UNVERIFIED restarts DAD */ 3692 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3693 goto alloc_fail; 3694 3695 if (ipif->ipif_arp_del_mp == NULL) { 3696 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3697 goto alloc_fail; 3698 ipif->ipif_arp_del_mp = arp_del_mp; 3699 } 3700 3701 putnext(ill->ill_rq, arp_add_mp); 3702 return; 3703 3704 alloc_fail: 3705 /* 3706 * On allocation failure, just restart the timer. Note that the ipif 3707 * is down here, so no other thread could be trying to start a recovery 3708 * timer. The ill_lock protects the condemned flag and the recovery 3709 * timer ID. 3710 */ 3711 freemsg(arp_add_mp); 3712 mutex_enter(&ill->ill_lock); 3713 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3714 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3715 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3716 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3717 } 3718 mutex_exit(&ill->ill_lock); 3719 } 3720 3721 /* 3722 * This is for exclusive changes due to ARP. Either tear down an interface due 3723 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3724 */ 3725 /* ARGSUSED */ 3726 static void 3727 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3728 { 3729 ill_t *ill = rq->q_ptr; 3730 arh_t *arh; 3731 ipaddr_t src; 3732 ipif_t *ipif; 3733 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3734 char hbuf[MAC_STR_LEN]; 3735 char sbuf[INET_ADDRSTRLEN]; 3736 const char *failtype; 3737 boolean_t bring_up; 3738 ip_stack_t *ipst = ill->ill_ipst; 3739 3740 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3741 case AR_CN_READY: 3742 failtype = NULL; 3743 bring_up = B_TRUE; 3744 break; 3745 case AR_CN_FAILED: 3746 failtype = "in use"; 3747 bring_up = B_FALSE; 3748 break; 3749 default: 3750 failtype = "claimed"; 3751 bring_up = B_FALSE; 3752 break; 3753 } 3754 3755 arh = (arh_t *)mp->b_cont->b_rptr; 3756 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3757 3758 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3759 sizeof (hbuf)); 3760 (void) ip_dot_addr(src, sbuf); 3761 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3762 3763 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3764 ipif->ipif_lcl_addr != src) { 3765 continue; 3766 } 3767 3768 /* 3769 * If we failed on a recovery probe, then restart the timer to 3770 * try again later. 3771 */ 3772 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3773 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3774 ill->ill_net_type == IRE_IF_RESOLVER && 3775 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3776 ipst->ips_ip_dup_recovery > 0 && 3777 ipif->ipif_recovery_id == 0) { 3778 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3779 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3780 continue; 3781 } 3782 3783 /* 3784 * If what we're trying to do has already been done, then do 3785 * nothing. 3786 */ 3787 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3788 continue; 3789 3790 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3791 3792 if (failtype == NULL) { 3793 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3794 ibuf); 3795 } else { 3796 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3797 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3798 } 3799 3800 if (bring_up) { 3801 ASSERT(ill->ill_dl_up); 3802 /* 3803 * Free up the ARP delete message so we can allocate 3804 * a fresh one through the normal path. 3805 */ 3806 freemsg(ipif->ipif_arp_del_mp); 3807 ipif->ipif_arp_del_mp = NULL; 3808 if (ipif_resolver_up(ipif, Res_act_initial) != 3809 EINPROGRESS) { 3810 ipif->ipif_addr_ready = 1; 3811 (void) ipif_up_done(ipif); 3812 ASSERT(ill->ill_move_ipif == NULL); 3813 } 3814 continue; 3815 } 3816 3817 mutex_enter(&ill->ill_lock); 3818 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3819 ipif->ipif_flags |= IPIF_DUPLICATE; 3820 ill->ill_ipif_dup_count++; 3821 mutex_exit(&ill->ill_lock); 3822 /* 3823 * Already exclusive on the ill; no need to handle deferred 3824 * processing here. 3825 */ 3826 (void) ipif_down(ipif, NULL, NULL); 3827 ipif_down_tail(ipif); 3828 mutex_enter(&ill->ill_lock); 3829 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3830 ill->ill_net_type == IRE_IF_RESOLVER && 3831 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3832 ipst->ips_ip_dup_recovery > 0) { 3833 ASSERT(ipif->ipif_recovery_id == 0); 3834 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3835 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3836 } 3837 mutex_exit(&ill->ill_lock); 3838 } 3839 freemsg(mp); 3840 } 3841 3842 /* ARGSUSED */ 3843 static void 3844 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3845 { 3846 ill_t *ill = rq->q_ptr; 3847 arh_t *arh; 3848 ipaddr_t src; 3849 ipif_t *ipif; 3850 3851 arh = (arh_t *)mp->b_cont->b_rptr; 3852 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3853 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3854 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3855 (void) ipif_resolver_up(ipif, Res_act_defend); 3856 } 3857 freemsg(mp); 3858 } 3859 3860 /* 3861 * News from ARP. ARP sends notification of interesting events down 3862 * to its clients using M_CTL messages with the interesting ARP packet 3863 * attached via b_cont. 3864 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3865 * queue as opposed to ARP sending the message to all the clients, i.e. all 3866 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3867 * table if a cache IRE is found to delete all the entries for the address in 3868 * the packet. 3869 */ 3870 static void 3871 ip_arp_news(queue_t *q, mblk_t *mp) 3872 { 3873 arcn_t *arcn; 3874 arh_t *arh; 3875 ire_t *ire = NULL; 3876 char hbuf[MAC_STR_LEN]; 3877 char sbuf[INET_ADDRSTRLEN]; 3878 ipaddr_t src; 3879 in6_addr_t v6src; 3880 boolean_t isv6 = B_FALSE; 3881 ipif_t *ipif; 3882 ill_t *ill; 3883 ip_stack_t *ipst; 3884 3885 if (CONN_Q(q)) { 3886 conn_t *connp = Q_TO_CONN(q); 3887 3888 ipst = connp->conn_netstack->netstack_ip; 3889 } else { 3890 ill_t *ill = (ill_t *)q->q_ptr; 3891 3892 ipst = ill->ill_ipst; 3893 } 3894 3895 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3896 if (q->q_next) { 3897 putnext(q, mp); 3898 } else 3899 freemsg(mp); 3900 return; 3901 } 3902 arh = (arh_t *)mp->b_cont->b_rptr; 3903 /* Is it one we are interested in? */ 3904 if (BE16_TO_U16(arh->arh_proto) == ETHERTYPE_IPV6) { 3905 isv6 = B_TRUE; 3906 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3907 IPV6_ADDR_LEN); 3908 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3909 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3910 IP_ADDR_LEN); 3911 } else { 3912 freemsg(mp); 3913 return; 3914 } 3915 3916 ill = q->q_ptr; 3917 3918 arcn = (arcn_t *)mp->b_rptr; 3919 switch (arcn->arcn_code) { 3920 case AR_CN_BOGON: 3921 /* 3922 * Someone is sending ARP packets with a source protocol 3923 * address that we have published and for which we believe our 3924 * entry is authoritative and (when ill_arp_extend is set) 3925 * verified to be unique on the network. 3926 * 3927 * The ARP module internally handles the cases where the sender 3928 * is just probing (for DAD) and where the hardware address of 3929 * a non-authoritative entry has changed. Thus, these are the 3930 * real conflicts, and we have to do resolution. 3931 * 3932 * We back away quickly from the address if it's from DHCP or 3933 * otherwise temporary and hasn't been used recently (or at 3934 * all). We'd like to include "deprecated" addresses here as 3935 * well (as there's no real reason to defend something we're 3936 * discarding), but IPMP "reuses" this flag to mean something 3937 * other than the standard meaning. 3938 * 3939 * If the ARP module above is not extended (meaning that it 3940 * doesn't know how to defend the address), then we just log 3941 * the problem as we always did and continue on. It's not 3942 * right, but there's little else we can do, and those old ATM 3943 * users are going away anyway. 3944 */ 3945 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3946 hbuf, sizeof (hbuf)); 3947 (void) ip_dot_addr(src, sbuf); 3948 if (isv6) { 3949 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3950 ipst); 3951 } else { 3952 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3953 } 3954 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3955 uint32_t now; 3956 uint32_t maxage; 3957 clock_t lused; 3958 uint_t maxdefense; 3959 uint_t defs; 3960 3961 /* 3962 * First, figure out if this address hasn't been used 3963 * in a while. If it hasn't, then it's a better 3964 * candidate for abandoning. 3965 */ 3966 ipif = ire->ire_ipif; 3967 ASSERT(ipif != NULL); 3968 now = gethrestime_sec(); 3969 maxage = now - ire->ire_create_time; 3970 if (maxage > ipst->ips_ip_max_temp_idle) 3971 maxage = ipst->ips_ip_max_temp_idle; 3972 lused = drv_hztousec(ddi_get_lbolt() - 3973 ire->ire_last_used_time) / MICROSEC + 1; 3974 if (lused >= maxage && (ipif->ipif_flags & 3975 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3976 maxdefense = ipst->ips_ip_max_temp_defend; 3977 else 3978 maxdefense = ipst->ips_ip_max_defend; 3979 3980 /* 3981 * Now figure out how many times we've defended 3982 * ourselves. Ignore defenses that happened long in 3983 * the past. 3984 */ 3985 mutex_enter(&ire->ire_lock); 3986 if ((defs = ire->ire_defense_count) > 0 && 3987 now - ire->ire_defense_time > 3988 ipst->ips_ip_defend_interval) { 3989 ire->ire_defense_count = defs = 0; 3990 } 3991 ire->ire_defense_count++; 3992 ire->ire_defense_time = now; 3993 mutex_exit(&ire->ire_lock); 3994 ill_refhold(ill); 3995 ire_refrele(ire); 3996 3997 /* 3998 * If we've defended ourselves too many times already, 3999 * then give up and tear down the interface(s) using 4000 * this address. Otherwise, defend by sending out a 4001 * gratuitous ARP. 4002 */ 4003 if (defs >= maxdefense && ill->ill_arp_extend) { 4004 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4005 B_FALSE); 4006 } else { 4007 cmn_err(CE_WARN, 4008 "node %s is using our IP address %s on %s", 4009 hbuf, sbuf, ill->ill_name); 4010 /* 4011 * If this is an old (ATM) ARP module, then 4012 * don't try to defend the address. Remain 4013 * compatible with the old behavior. Defend 4014 * only with new ARP. 4015 */ 4016 if (ill->ill_arp_extend) { 4017 qwriter_ip(ill, q, mp, ip_arp_defend, 4018 NEW_OP, B_FALSE); 4019 } else { 4020 ill_refrele(ill); 4021 } 4022 } 4023 return; 4024 } 4025 cmn_err(CE_WARN, 4026 "proxy ARP problem? Node '%s' is using %s on %s", 4027 hbuf, sbuf, ill->ill_name); 4028 if (ire != NULL) 4029 ire_refrele(ire); 4030 break; 4031 case AR_CN_ANNOUNCE: 4032 if (isv6) { 4033 /* 4034 * For XRESOLV interfaces. 4035 * Delete the IRE cache entry and NCE for this 4036 * v6 address 4037 */ 4038 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4039 /* 4040 * If v6src is a non-zero, it's a router address 4041 * as below. Do the same sort of thing to clean 4042 * out off-net IRE_CACHE entries that go through 4043 * the router. 4044 */ 4045 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4046 ire_walk_v6(ire_delete_cache_gw_v6, 4047 (char *)&v6src, ALL_ZONES, ipst); 4048 } 4049 } else { 4050 nce_hw_map_t hwm; 4051 4052 /* 4053 * ARP gives us a copy of any packet where it thinks 4054 * the address has changed, so that we can update our 4055 * caches. We're responsible for caching known answers 4056 * in the current design. We check whether the 4057 * hardware address really has changed in all of our 4058 * entries that have cached this mapping, and if so, we 4059 * blow them away. This way we will immediately pick 4060 * up the rare case of a host changing hardware 4061 * address. 4062 */ 4063 if (src == 0) 4064 break; 4065 hwm.hwm_addr = src; 4066 hwm.hwm_hwlen = arh->arh_hlen; 4067 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4068 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4069 ndp_walk_common(ipst->ips_ndp4, NULL, 4070 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4071 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4072 } 4073 break; 4074 case AR_CN_READY: 4075 /* No external v6 resolver has a contract to use this */ 4076 if (isv6) 4077 break; 4078 /* If the link is down, we'll retry this later */ 4079 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4080 break; 4081 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4082 NULL, NULL, ipst); 4083 if (ipif != NULL) { 4084 /* 4085 * If this is a duplicate recovery, then we now need to 4086 * go exclusive to bring this thing back up. 4087 */ 4088 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4089 IPIF_DUPLICATE) { 4090 ipif_refrele(ipif); 4091 ill_refhold(ill); 4092 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4093 B_FALSE); 4094 return; 4095 } 4096 /* 4097 * If this is the first notice that this address is 4098 * ready, then let the user know now. 4099 */ 4100 if ((ipif->ipif_flags & IPIF_UP) && 4101 !ipif->ipif_addr_ready) { 4102 ipif_mask_reply(ipif); 4103 ipif_up_notify(ipif); 4104 } 4105 ipif->ipif_addr_ready = 1; 4106 ipif_refrele(ipif); 4107 } 4108 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4109 if (ire != NULL) { 4110 ire->ire_defense_count = 0; 4111 ire_refrele(ire); 4112 } 4113 break; 4114 case AR_CN_FAILED: 4115 /* No external v6 resolver has a contract to use this */ 4116 if (isv6) 4117 break; 4118 if (!ill->ill_arp_extend) { 4119 (void) mac_colon_addr((uint8_t *)(arh + 1), 4120 arh->arh_hlen, hbuf, sizeof (hbuf)); 4121 (void) ip_dot_addr(src, sbuf); 4122 4123 cmn_err(CE_WARN, 4124 "node %s is using our IP address %s on %s", 4125 hbuf, sbuf, ill->ill_name); 4126 break; 4127 } 4128 ill_refhold(ill); 4129 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4130 return; 4131 } 4132 freemsg(mp); 4133 } 4134 4135 /* 4136 * Create a mblk suitable for carrying the interface index and/or source link 4137 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4138 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4139 * application. 4140 */ 4141 mblk_t * 4142 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4143 ip_stack_t *ipst) 4144 { 4145 mblk_t *mp; 4146 ip_pktinfo_t *pinfo; 4147 ipha_t *ipha; 4148 struct ether_header *pether; 4149 boolean_t ipmp_ill_held = B_FALSE; 4150 4151 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4152 if (mp == NULL) { 4153 ip1dbg(("ip_add_info: allocation failure.\n")); 4154 return (data_mp); 4155 } 4156 4157 ipha = (ipha_t *)data_mp->b_rptr; 4158 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4159 bzero(pinfo, sizeof (ip_pktinfo_t)); 4160 pinfo->ip_pkt_flags = (uchar_t)flags; 4161 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4162 4163 pether = (struct ether_header *)((char *)ipha 4164 - sizeof (struct ether_header)); 4165 4166 /* 4167 * Make sure the interface is an ethernet type, since this option 4168 * is currently supported only on this type of interface. Also make 4169 * sure we are pointing correctly above db_base. 4170 */ 4171 if ((flags & IPF_RECVSLLA) && 4172 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4173 (ill->ill_type == IFT_ETHER) && 4174 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4175 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4176 bcopy(pether->ether_shost.ether_addr_octet, 4177 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4178 } else { 4179 /* 4180 * Clear the bit. Indicate to upper layer that IP is not 4181 * sending this ancillary info. 4182 */ 4183 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4184 } 4185 4186 /* 4187 * If `ill' is in an IPMP group, use the IPMP ill to determine 4188 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4189 * IPF_RECVADDR support on test addresses is not needed.) 4190 * 4191 * Note that `ill' may already be an IPMP ill if e.g. we're 4192 * processing a packet looped back to an IPMP data address 4193 * (since those IRE_LOCALs are tied to IPMP ills). 4194 */ 4195 if (IS_UNDER_IPMP(ill)) { 4196 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4197 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4198 freemsg(mp); 4199 return (data_mp); 4200 } 4201 ipmp_ill_held = B_TRUE; 4202 } 4203 4204 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4205 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4206 if (flags & IPF_RECVADDR) { 4207 ipif_t *ipif; 4208 ire_t *ire; 4209 4210 /* 4211 * Only valid for V4 4212 */ 4213 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4214 (IPV4_VERSION << 4)); 4215 4216 ipif = ipif_get_next_ipif(NULL, ill); 4217 if (ipif != NULL) { 4218 /* 4219 * Since a decision has already been made to deliver the 4220 * packet, there is no need to test for SECATTR and 4221 * ZONEONLY. 4222 * When a multicast packet is transmitted 4223 * a cache entry is created for the multicast address. 4224 * When delivering a copy of the packet or when new 4225 * packets are received we do not want to match on the 4226 * cached entry so explicitly match on 4227 * IRE_LOCAL and IRE_LOOPBACK 4228 */ 4229 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4230 IRE_LOCAL | IRE_LOOPBACK, 4231 ipif, zoneid, NULL, 4232 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4233 if (ire == NULL) { 4234 /* 4235 * packet must have come on a different 4236 * interface. 4237 * Since a decision has already been made to 4238 * deliver the packet, there is no need to test 4239 * for SECATTR and ZONEONLY. 4240 * Only match on local and broadcast ire's. 4241 * See detailed comment above. 4242 */ 4243 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4244 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4245 NULL, MATCH_IRE_TYPE, ipst); 4246 } 4247 4248 if (ire == NULL) { 4249 /* 4250 * This is either a multicast packet or 4251 * the address has been removed since 4252 * the packet was received. 4253 * Return INADDR_ANY so that normal source 4254 * selection occurs for the response. 4255 */ 4256 4257 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4258 } else { 4259 pinfo->ip_pkt_match_addr.s_addr = 4260 ire->ire_src_addr; 4261 ire_refrele(ire); 4262 } 4263 ipif_refrele(ipif); 4264 } else { 4265 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4266 } 4267 } 4268 4269 if (ipmp_ill_held) 4270 ill_refrele(ill); 4271 4272 mp->b_datap->db_type = M_CTL; 4273 mp->b_wptr += sizeof (ip_pktinfo_t); 4274 mp->b_cont = data_mp; 4275 4276 return (mp); 4277 } 4278 4279 /* 4280 * Used to determine the most accurate cred_t to use for TX. 4281 * First priority is SCM_UCRED having set the label in the message, 4282 * which is used for MLP on UDP. Second priority is the open credentials 4283 * with the peer's label (aka conn_effective_cred), which is needed for 4284 * MLP on TCP/SCTP and for MAC-Exempt. Last priority is the open credentials. 4285 */ 4286 cred_t * 4287 ip_best_cred(mblk_t *mp, conn_t *connp, pid_t *pidp) 4288 { 4289 cred_t *cr; 4290 4291 cr = msg_getcred(mp, pidp); 4292 if (cr != NULL && crgetlabel(cr) != NULL) 4293 return (cr); 4294 *pidp = NOPID; 4295 return (CONN_CRED(connp)); 4296 } 4297 4298 /* 4299 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4300 * part of the bind request. 4301 */ 4302 4303 boolean_t 4304 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4305 { 4306 ipsec_in_t *ii; 4307 4308 ASSERT(policy_mp != NULL); 4309 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4310 4311 ii = (ipsec_in_t *)policy_mp->b_rptr; 4312 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4313 4314 connp->conn_policy = ii->ipsec_in_policy; 4315 ii->ipsec_in_policy = NULL; 4316 4317 if (ii->ipsec_in_action != NULL) { 4318 if (connp->conn_latch == NULL) { 4319 connp->conn_latch = iplatch_create(); 4320 if (connp->conn_latch == NULL) 4321 return (B_FALSE); 4322 } 4323 ipsec_latch_inbound(connp->conn_latch, ii); 4324 } 4325 return (B_TRUE); 4326 } 4327 4328 /* 4329 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4330 * and to arrange for power-fanout assist. The ULP is identified by 4331 * adding a single byte at the end of the original bind message. 4332 * A ULP other than UDP or TCP that wishes to be recognized passes 4333 * down a bind with a zero length address. 4334 * 4335 * The binding works as follows: 4336 * - A zero byte address means just bind to the protocol. 4337 * - A four byte address is treated as a request to validate 4338 * that the address is a valid local address, appropriate for 4339 * an application to bind to. This does not affect any fanout 4340 * information in IP. 4341 * - A sizeof sin_t byte address is used to bind to only the local address 4342 * and port. 4343 * - A sizeof ipa_conn_t byte address contains complete fanout information 4344 * consisting of local and remote addresses and ports. In 4345 * this case, the addresses are both validated as appropriate 4346 * for this operation, and, if so, the information is retained 4347 * for use in the inbound fanout. 4348 * 4349 * The ULP (except in the zero-length bind) can append an 4350 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4351 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4352 * a copy of the source or destination IRE (source for local bind; 4353 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4354 * policy information contained should be copied on to the conn. 4355 * 4356 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4357 */ 4358 mblk_t * 4359 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4360 { 4361 ssize_t len; 4362 struct T_bind_req *tbr; 4363 sin_t *sin; 4364 ipa_conn_t *ac; 4365 uchar_t *ucp; 4366 mblk_t *mp1; 4367 int error = 0; 4368 int protocol; 4369 ipa_conn_x_t *acx; 4370 cred_t *cr; 4371 4372 /* 4373 * All Solaris components should pass a db_credp 4374 * for this TPI message, hence we ASSERT. 4375 * But in case there is some other M_PROTO that looks 4376 * like a TPI message sent by some other kernel 4377 * component, we check and return an error. 4378 */ 4379 cr = msg_getcred(mp, NULL); 4380 ASSERT(cr != NULL); 4381 if (cr == NULL) { 4382 error = EINVAL; 4383 goto bad_addr; 4384 } 4385 4386 ASSERT(!connp->conn_af_isv6); 4387 connp->conn_pkt_isv6 = B_FALSE; 4388 4389 len = MBLKL(mp); 4390 if (len < (sizeof (*tbr) + 1)) { 4391 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4392 "ip_bind: bogus msg, len %ld", len); 4393 /* XXX: Need to return something better */ 4394 goto bad_addr; 4395 } 4396 /* Back up and extract the protocol identifier. */ 4397 mp->b_wptr--; 4398 protocol = *mp->b_wptr & 0xFF; 4399 tbr = (struct T_bind_req *)mp->b_rptr; 4400 /* Reset the message type in preparation for shipping it back. */ 4401 DB_TYPE(mp) = M_PCPROTO; 4402 4403 connp->conn_ulp = (uint8_t)protocol; 4404 4405 /* 4406 * Check for a zero length address. This is from a protocol that 4407 * wants to register to receive all packets of its type. 4408 */ 4409 if (tbr->ADDR_length == 0) { 4410 /* 4411 * These protocols are now intercepted in ip_bind_v6(). 4412 * Reject protocol-level binds here for now. 4413 * 4414 * For SCTP raw socket, ICMP sends down a bind with sin_t 4415 * so that the protocol type cannot be SCTP. 4416 */ 4417 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4418 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4419 goto bad_addr; 4420 } 4421 4422 /* 4423 * 4424 * The udp module never sends down a zero-length address, 4425 * and allowing this on a labeled system will break MLP 4426 * functionality. 4427 */ 4428 if (is_system_labeled() && protocol == IPPROTO_UDP) 4429 goto bad_addr; 4430 4431 if (connp->conn_mac_exempt) 4432 goto bad_addr; 4433 4434 /* No hash here really. The table is big enough. */ 4435 connp->conn_srcv6 = ipv6_all_zeros; 4436 4437 ipcl_proto_insert(connp, protocol); 4438 4439 tbr->PRIM_type = T_BIND_ACK; 4440 return (mp); 4441 } 4442 4443 /* Extract the address pointer from the message. */ 4444 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4445 tbr->ADDR_length); 4446 if (ucp == NULL) { 4447 ip1dbg(("ip_bind: no address\n")); 4448 goto bad_addr; 4449 } 4450 if (!OK_32PTR(ucp)) { 4451 ip1dbg(("ip_bind: unaligned address\n")); 4452 goto bad_addr; 4453 } 4454 /* 4455 * Check for trailing mps. 4456 */ 4457 mp1 = mp->b_cont; 4458 4459 switch (tbr->ADDR_length) { 4460 default: 4461 ip1dbg(("ip_bind: bad address length %d\n", 4462 (int)tbr->ADDR_length)); 4463 goto bad_addr; 4464 4465 case IP_ADDR_LEN: 4466 /* Verification of local address only */ 4467 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4468 *(ipaddr_t *)ucp, 0, B_FALSE); 4469 break; 4470 4471 case sizeof (sin_t): 4472 sin = (sin_t *)ucp; 4473 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4474 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4475 break; 4476 4477 case sizeof (ipa_conn_t): 4478 ac = (ipa_conn_t *)ucp; 4479 /* For raw socket, the local port is not set. */ 4480 if (ac->ac_lport == 0) 4481 ac->ac_lport = connp->conn_lport; 4482 /* Always verify destination reachability. */ 4483 error = ip_bind_connected_v4(connp, &mp1, protocol, 4484 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4485 B_TRUE, B_TRUE, cr); 4486 break; 4487 4488 case sizeof (ipa_conn_x_t): 4489 acx = (ipa_conn_x_t *)ucp; 4490 /* 4491 * Whether or not to verify destination reachability depends 4492 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4493 */ 4494 error = ip_bind_connected_v4(connp, &mp1, protocol, 4495 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4496 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4497 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4498 break; 4499 } 4500 ASSERT(error != EINPROGRESS); 4501 if (error != 0) 4502 goto bad_addr; 4503 4504 /* Send it home. */ 4505 mp->b_datap->db_type = M_PCPROTO; 4506 tbr->PRIM_type = T_BIND_ACK; 4507 return (mp); 4508 4509 bad_addr: 4510 /* 4511 * If error = -1 then we generate a TBADADDR - otherwise error is 4512 * a unix errno. 4513 */ 4514 if (error > 0) 4515 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4516 else 4517 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4518 return (mp); 4519 } 4520 4521 /* 4522 * Here address is verified to be a valid local address. 4523 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4524 * address is also considered a valid local address. 4525 * In the case of a broadcast/multicast address, however, the 4526 * upper protocol is expected to reset the src address 4527 * to 0 if it sees a IRE_BROADCAST type returned so that 4528 * no packets are emitted with broadcast/multicast address as 4529 * source address (that violates hosts requirements RFC 1122) 4530 * The addresses valid for bind are: 4531 * (1) - INADDR_ANY (0) 4532 * (2) - IP address of an UP interface 4533 * (3) - IP address of a DOWN interface 4534 * (4) - valid local IP broadcast addresses. In this case 4535 * the conn will only receive packets destined to 4536 * the specified broadcast address. 4537 * (5) - a multicast address. In this case 4538 * the conn will only receive packets destined to 4539 * the specified multicast address. Note: the 4540 * application still has to issue an 4541 * IP_ADD_MEMBERSHIP socket option. 4542 * 4543 * On error, return -1 for TBADADDR otherwise pass the 4544 * errno with TSYSERR reply. 4545 * 4546 * In all the above cases, the bound address must be valid in the current zone. 4547 * When the address is loopback, multicast or broadcast, there might be many 4548 * matching IREs so bind has to look up based on the zone. 4549 * 4550 * Note: lport is in network byte order. 4551 * 4552 */ 4553 int 4554 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4555 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4556 { 4557 int error = 0; 4558 ire_t *src_ire; 4559 zoneid_t zoneid; 4560 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4561 mblk_t *mp = NULL; 4562 boolean_t ire_requested = B_FALSE; 4563 boolean_t ipsec_policy_set = B_FALSE; 4564 4565 if (mpp) 4566 mp = *mpp; 4567 4568 if (mp != NULL) { 4569 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4570 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4571 } 4572 4573 /* 4574 * If it was previously connected, conn_fully_bound would have 4575 * been set. 4576 */ 4577 connp->conn_fully_bound = B_FALSE; 4578 4579 src_ire = NULL; 4580 4581 zoneid = IPCL_ZONEID(connp); 4582 4583 if (src_addr) { 4584 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4585 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4586 /* 4587 * If an address other than 0.0.0.0 is requested, 4588 * we verify that it is a valid address for bind 4589 * Note: Following code is in if-else-if form for 4590 * readability compared to a condition check. 4591 */ 4592 /* LINTED - statement has no consequence */ 4593 if (IRE_IS_LOCAL(src_ire)) { 4594 /* 4595 * (2) Bind to address of local UP interface 4596 */ 4597 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4598 /* 4599 * (4) Bind to broadcast address 4600 * Note: permitted only from transports that 4601 * request IRE 4602 */ 4603 if (!ire_requested) 4604 error = EADDRNOTAVAIL; 4605 } else { 4606 /* 4607 * (3) Bind to address of local DOWN interface 4608 * (ipif_lookup_addr() looks up all interfaces 4609 * but we do not get here for UP interfaces 4610 * - case (2) above) 4611 */ 4612 /* LINTED - statement has no consequent */ 4613 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4614 /* The address exists */ 4615 } else if (CLASSD(src_addr)) { 4616 error = 0; 4617 if (src_ire != NULL) 4618 ire_refrele(src_ire); 4619 /* 4620 * (5) bind to multicast address. 4621 * Fake out the IRE returned to upper 4622 * layer to be a broadcast IRE. 4623 */ 4624 src_ire = ire_ctable_lookup( 4625 INADDR_BROADCAST, INADDR_ANY, 4626 IRE_BROADCAST, NULL, zoneid, NULL, 4627 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4628 ipst); 4629 if (src_ire == NULL || !ire_requested) 4630 error = EADDRNOTAVAIL; 4631 } else { 4632 /* 4633 * Not a valid address for bind 4634 */ 4635 error = EADDRNOTAVAIL; 4636 } 4637 } 4638 if (error) { 4639 /* Red Alert! Attempting to be a bogon! */ 4640 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4641 ntohl(src_addr))); 4642 goto bad_addr; 4643 } 4644 } 4645 4646 /* 4647 * Allow setting new policies. For example, disconnects come 4648 * down as ipa_t bind. As we would have set conn_policy_cached 4649 * to B_TRUE before, we should set it to B_FALSE, so that policy 4650 * can change after the disconnect. 4651 */ 4652 connp->conn_policy_cached = B_FALSE; 4653 4654 /* 4655 * If not fanout_insert this was just an address verification 4656 */ 4657 if (fanout_insert) { 4658 /* 4659 * The addresses have been verified. Time to insert in 4660 * the correct fanout list. 4661 */ 4662 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4663 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4664 connp->conn_lport = lport; 4665 connp->conn_fport = 0; 4666 /* 4667 * Do we need to add a check to reject Multicast packets 4668 */ 4669 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4670 } 4671 4672 if (error == 0) { 4673 if (ire_requested) { 4674 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4675 error = -1; 4676 /* Falls through to bad_addr */ 4677 } 4678 } else if (ipsec_policy_set) { 4679 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4680 error = -1; 4681 /* Falls through to bad_addr */ 4682 } 4683 } 4684 } 4685 bad_addr: 4686 if (error != 0) { 4687 if (connp->conn_anon_port) { 4688 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4689 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4690 B_FALSE); 4691 } 4692 connp->conn_mlp_type = mlptSingle; 4693 } 4694 if (src_ire != NULL) 4695 IRE_REFRELE(src_ire); 4696 return (error); 4697 } 4698 4699 int 4700 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4701 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4702 { 4703 int error; 4704 4705 ASSERT(!connp->conn_af_isv6); 4706 connp->conn_pkt_isv6 = B_FALSE; 4707 connp->conn_ulp = protocol; 4708 4709 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4710 fanout_insert); 4711 if (error < 0) 4712 error = -TBADADDR; 4713 return (error); 4714 } 4715 4716 /* 4717 * Verify that both the source and destination addresses 4718 * are valid. If verify_dst is false, then the destination address may be 4719 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4720 * destination reachability, while tunnels do not. 4721 * Note that we allow connect to broadcast and multicast 4722 * addresses when ire_requested is set. Thus the ULP 4723 * has to check for IRE_BROADCAST and multicast. 4724 * 4725 * Returns zero if ok. 4726 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4727 * (for use with TSYSERR reply). 4728 * 4729 * Note: lport and fport are in network byte order. 4730 */ 4731 int 4732 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4733 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4734 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4735 { 4736 4737 ire_t *src_ire; 4738 ire_t *dst_ire; 4739 int error = 0; 4740 ire_t *sire = NULL; 4741 ire_t *md_dst_ire = NULL; 4742 ire_t *lso_dst_ire = NULL; 4743 ill_t *ill = NULL; 4744 zoneid_t zoneid; 4745 ipaddr_t src_addr = *src_addrp; 4746 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4747 mblk_t *mp = NULL; 4748 boolean_t ire_requested = B_FALSE; 4749 boolean_t ipsec_policy_set = B_FALSE; 4750 ts_label_t *tsl = NULL; 4751 cred_t *effective_cred = NULL; 4752 4753 if (mpp) 4754 mp = *mpp; 4755 4756 if (mp != NULL) { 4757 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4758 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4759 } 4760 4761 src_ire = dst_ire = NULL; 4762 4763 /* 4764 * If we never got a disconnect before, clear it now. 4765 */ 4766 connp->conn_fully_bound = B_FALSE; 4767 4768 zoneid = IPCL_ZONEID(connp); 4769 4770 /* 4771 * Check whether Trusted Solaris policy allows communication with this 4772 * host, and pretend that the destination is unreachable if not. 4773 * 4774 * This is never a problem for TCP, since that transport is known to 4775 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4776 * handling. If the remote is unreachable, it will be detected at that 4777 * point, so there's no reason to check it here. 4778 * 4779 * Note that for sendto (and other datagram-oriented friends), this 4780 * check is done as part of the data path label computation instead. 4781 * The check here is just to make non-TCP connect() report the right 4782 * error. 4783 */ 4784 if (is_system_labeled() && !IPCL_IS_TCP(connp)) { 4785 if ((error = tsol_check_dest(cr, &dst_addr, IPV4_VERSION, 4786 connp->conn_mac_exempt, &effective_cred)) != 0) { 4787 if (ip_debug > 2) { 4788 pr_addr_dbg( 4789 "ip_bind_connected_v4:" 4790 " no label for dst %s\n", 4791 AF_INET, &dst_addr); 4792 } 4793 goto bad_addr; 4794 } 4795 4796 /* 4797 * tsol_check_dest() may have created a new cred with 4798 * a modified security label. Use that cred if it exists 4799 * for ire lookups. 4800 */ 4801 if (effective_cred == NULL) { 4802 tsl = crgetlabel(cr); 4803 } else { 4804 tsl = crgetlabel(effective_cred); 4805 } 4806 } 4807 4808 if (CLASSD(dst_addr)) { 4809 /* Pick up an IRE_BROADCAST */ 4810 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4811 NULL, zoneid, tsl, 4812 (MATCH_IRE_RECURSIVE | 4813 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4814 MATCH_IRE_SECATTR), ipst); 4815 } else { 4816 /* 4817 * If conn_dontroute is set or if conn_nexthop_set is set, 4818 * and onlink ipif is not found set ENETUNREACH error. 4819 */ 4820 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4821 ipif_t *ipif; 4822 4823 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4824 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4825 if (ipif == NULL) { 4826 error = ENETUNREACH; 4827 goto bad_addr; 4828 } 4829 ipif_refrele(ipif); 4830 } 4831 4832 if (connp->conn_nexthop_set) { 4833 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4834 0, 0, NULL, NULL, zoneid, tsl, 4835 MATCH_IRE_SECATTR, ipst); 4836 } else { 4837 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4838 &sire, zoneid, tsl, 4839 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4840 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4841 MATCH_IRE_SECATTR), ipst); 4842 } 4843 } 4844 /* 4845 * dst_ire can't be a broadcast when not ire_requested. 4846 * We also prevent ire's with src address INADDR_ANY to 4847 * be used, which are created temporarily for 4848 * sending out packets from endpoints that have 4849 * conn_unspec_src set. If verify_dst is true, the destination must be 4850 * reachable. If verify_dst is false, the destination needn't be 4851 * reachable. 4852 * 4853 * If we match on a reject or black hole, then we've got a 4854 * local failure. May as well fail out the connect() attempt, 4855 * since it's never going to succeed. 4856 */ 4857 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4858 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4859 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4860 /* 4861 * If we're verifying destination reachability, we always want 4862 * to complain here. 4863 * 4864 * If we're not verifying destination reachability but the 4865 * destination has a route, we still want to fail on the 4866 * temporary address and broadcast address tests. 4867 */ 4868 if (verify_dst || (dst_ire != NULL)) { 4869 if (ip_debug > 2) { 4870 pr_addr_dbg("ip_bind_connected_v4:" 4871 "bad connected dst %s\n", 4872 AF_INET, &dst_addr); 4873 } 4874 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4875 error = ENETUNREACH; 4876 else 4877 error = EHOSTUNREACH; 4878 goto bad_addr; 4879 } 4880 } 4881 4882 /* 4883 * If the app does a connect(), it means that it will most likely 4884 * send more than 1 packet to the destination. It makes sense 4885 * to clear the temporary flag. 4886 */ 4887 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4888 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4889 irb_t *irb = dst_ire->ire_bucket; 4890 4891 rw_enter(&irb->irb_lock, RW_WRITER); 4892 /* 4893 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4894 * the lock to guarantee irb_tmp_ire_cnt. 4895 */ 4896 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4897 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4898 irb->irb_tmp_ire_cnt--; 4899 } 4900 rw_exit(&irb->irb_lock); 4901 } 4902 4903 /* 4904 * See if we should notify ULP about LSO/MDT; we do this whether or not 4905 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4906 * eligibility tests for passive connects are handled separately 4907 * through tcp_adapt_ire(). We do this before the source address 4908 * selection, because dst_ire may change after a call to 4909 * ipif_select_source(). This is a best-effort check, as the 4910 * packet for this connection may not actually go through 4911 * dst_ire->ire_stq, and the exact IRE can only be known after 4912 * calling ip_newroute(). This is why we further check on the 4913 * IRE during LSO/Multidata packet transmission in 4914 * tcp_lsosend()/tcp_multisend(). 4915 */ 4916 if (!ipsec_policy_set && dst_ire != NULL && 4917 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4918 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4919 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4920 lso_dst_ire = dst_ire; 4921 IRE_REFHOLD(lso_dst_ire); 4922 } else if (ipst->ips_ip_multidata_outbound && 4923 ILL_MDT_CAPABLE(ill)) { 4924 md_dst_ire = dst_ire; 4925 IRE_REFHOLD(md_dst_ire); 4926 } 4927 } 4928 4929 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4930 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4931 /* 4932 * If the IRE belongs to a different zone, look for a matching 4933 * route in the forwarding table and use the source address from 4934 * that route. 4935 */ 4936 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4937 zoneid, 0, NULL, 4938 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4939 MATCH_IRE_RJ_BHOLE, ipst); 4940 if (src_ire == NULL) { 4941 error = EHOSTUNREACH; 4942 goto bad_addr; 4943 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4944 if (!(src_ire->ire_type & IRE_HOST)) 4945 error = ENETUNREACH; 4946 else 4947 error = EHOSTUNREACH; 4948 goto bad_addr; 4949 } 4950 if (src_addr == INADDR_ANY) 4951 src_addr = src_ire->ire_src_addr; 4952 ire_refrele(src_ire); 4953 src_ire = NULL; 4954 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4955 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4956 src_addr = sire->ire_src_addr; 4957 ire_refrele(dst_ire); 4958 dst_ire = sire; 4959 sire = NULL; 4960 } else { 4961 /* 4962 * Pick a source address so that a proper inbound 4963 * load spreading would happen. 4964 */ 4965 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 4966 ipif_t *src_ipif = NULL; 4967 ire_t *ipif_ire; 4968 4969 /* 4970 * Supply a local source address such that inbound 4971 * load spreading happens. 4972 * 4973 * Determine the best source address on this ill for 4974 * the destination. 4975 * 4976 * 1) For broadcast, we should return a broadcast ire 4977 * found above so that upper layers know that the 4978 * destination address is a broadcast address. 4979 * 4980 * 2) If the ipif is DEPRECATED, select a better 4981 * source address. Similarly, if the ipif is on 4982 * the IPMP meta-interface, pick a source address 4983 * at random to improve inbound load spreading. 4984 * 4985 * 3) If the outgoing interface is part of a usesrc 4986 * group, then try selecting a source address from 4987 * the usesrc ILL. 4988 */ 4989 if ((dst_ire->ire_zoneid != zoneid && 4990 dst_ire->ire_zoneid != ALL_ZONES) || 4991 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4992 (!(dst_ire->ire_type & IRE_BROADCAST) && 4993 (IS_IPMP(ire_ill) || 4994 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4995 (ire_ill->ill_usesrc_ifindex != 0)))) { 4996 /* 4997 * If the destination is reachable via a 4998 * given gateway, the selected source address 4999 * should be in the same subnet as the gateway. 5000 * Otherwise, the destination is not reachable. 5001 * 5002 * If there are no interfaces on the same subnet 5003 * as the destination, ipif_select_source gives 5004 * first non-deprecated interface which might be 5005 * on a different subnet than the gateway. 5006 * This is not desirable. Hence pass the dst_ire 5007 * source address to ipif_select_source. 5008 * It is sure that the destination is reachable 5009 * with the dst_ire source address subnet. 5010 * So passing dst_ire source address to 5011 * ipif_select_source will make sure that the 5012 * selected source will be on the same subnet 5013 * as dst_ire source address. 5014 */ 5015 ipaddr_t saddr = 5016 dst_ire->ire_ipif->ipif_src_addr; 5017 src_ipif = ipif_select_source(ire_ill, 5018 saddr, zoneid); 5019 if (src_ipif != NULL) { 5020 if (IS_VNI(src_ipif->ipif_ill)) { 5021 /* 5022 * For VNI there is no 5023 * interface route 5024 */ 5025 src_addr = 5026 src_ipif->ipif_src_addr; 5027 } else { 5028 ipif_ire = 5029 ipif_to_ire(src_ipif); 5030 if (ipif_ire != NULL) { 5031 IRE_REFRELE(dst_ire); 5032 dst_ire = ipif_ire; 5033 } 5034 src_addr = 5035 dst_ire->ire_src_addr; 5036 } 5037 ipif_refrele(src_ipif); 5038 } else { 5039 src_addr = dst_ire->ire_src_addr; 5040 } 5041 } else { 5042 src_addr = dst_ire->ire_src_addr; 5043 } 5044 } 5045 } 5046 5047 /* 5048 * We do ire_route_lookup() here (and not 5049 * interface lookup as we assert that 5050 * src_addr should only come from an 5051 * UP interface for hard binding. 5052 */ 5053 ASSERT(src_ire == NULL); 5054 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5055 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5056 /* src_ire must be a local|loopback */ 5057 if (!IRE_IS_LOCAL(src_ire)) { 5058 if (ip_debug > 2) { 5059 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5060 "src %s\n", AF_INET, &src_addr); 5061 } 5062 error = EADDRNOTAVAIL; 5063 goto bad_addr; 5064 } 5065 5066 /* 5067 * If the source address is a loopback address, the 5068 * destination had best be local or multicast. 5069 * The transports that can't handle multicast will reject 5070 * those addresses. 5071 */ 5072 if (src_ire->ire_type == IRE_LOOPBACK && 5073 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5074 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5075 error = -1; 5076 goto bad_addr; 5077 } 5078 5079 /* 5080 * Allow setting new policies. For example, disconnects come 5081 * down as ipa_t bind. As we would have set conn_policy_cached 5082 * to B_TRUE before, we should set it to B_FALSE, so that policy 5083 * can change after the disconnect. 5084 */ 5085 connp->conn_policy_cached = B_FALSE; 5086 5087 /* 5088 * Set the conn addresses/ports immediately, so the IPsec policy calls 5089 * can handle their passed-in conn's. 5090 */ 5091 5092 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5093 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5094 connp->conn_lport = lport; 5095 connp->conn_fport = fport; 5096 *src_addrp = src_addr; 5097 5098 ASSERT(!(ipsec_policy_set && ire_requested)); 5099 if (ire_requested) { 5100 iulp_t *ulp_info = NULL; 5101 5102 /* 5103 * Note that sire will not be NULL if this is an off-link 5104 * connection and there is not cache for that dest yet. 5105 * 5106 * XXX Because of an existing bug, if there are multiple 5107 * default routes, the IRE returned now may not be the actual 5108 * default route used (default routes are chosen in a 5109 * round robin fashion). So if the metrics for different 5110 * default routes are different, we may return the wrong 5111 * metrics. This will not be a problem if the existing 5112 * bug is fixed. 5113 */ 5114 if (sire != NULL) { 5115 ulp_info = &(sire->ire_uinfo); 5116 } 5117 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5118 error = -1; 5119 goto bad_addr; 5120 } 5121 mp = *mpp; 5122 } else if (ipsec_policy_set) { 5123 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5124 error = -1; 5125 goto bad_addr; 5126 } 5127 } 5128 5129 /* 5130 * Cache IPsec policy in this conn. If we have per-socket policy, 5131 * we'll cache that. If we don't, we'll inherit global policy. 5132 * 5133 * We can't insert until the conn reflects the policy. Note that 5134 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5135 * connections where we don't have a policy. This is to prevent 5136 * global policy lookups in the inbound path. 5137 * 5138 * If we insert before we set conn_policy_cached, 5139 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5140 * because global policy cound be non-empty. We normally call 5141 * ipsec_check_policy() for conn_policy_cached connections only if 5142 * ipc_in_enforce_policy is set. But in this case, 5143 * conn_policy_cached can get set anytime since we made the 5144 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5145 * called, which will make the above assumption false. Thus, we 5146 * need to insert after we set conn_policy_cached. 5147 */ 5148 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5149 goto bad_addr; 5150 5151 if (fanout_insert) { 5152 /* 5153 * The addresses have been verified. Time to insert in 5154 * the correct fanout list. 5155 */ 5156 error = ipcl_conn_insert(connp, protocol, src_addr, 5157 dst_addr, connp->conn_ports); 5158 } 5159 5160 if (error == 0) { 5161 connp->conn_fully_bound = B_TRUE; 5162 /* 5163 * Our initial checks for LSO/MDT have passed; the IRE is not 5164 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5165 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5166 * ip_xxinfo_return(), which performs further checks 5167 * against them and upon success, returns the LSO/MDT info 5168 * mblk which we will attach to the bind acknowledgment. 5169 */ 5170 if (lso_dst_ire != NULL) { 5171 mblk_t *lsoinfo_mp; 5172 5173 ASSERT(ill->ill_lso_capab != NULL); 5174 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5175 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5176 if (mp == NULL) { 5177 *mpp = lsoinfo_mp; 5178 } else { 5179 linkb(mp, lsoinfo_mp); 5180 } 5181 } 5182 } else if (md_dst_ire != NULL) { 5183 mblk_t *mdinfo_mp; 5184 5185 ASSERT(ill->ill_mdt_capab != NULL); 5186 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5187 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5188 if (mp == NULL) { 5189 *mpp = mdinfo_mp; 5190 } else { 5191 linkb(mp, mdinfo_mp); 5192 } 5193 } 5194 } 5195 } 5196 bad_addr: 5197 if (ipsec_policy_set) { 5198 ASSERT(mp != NULL); 5199 freeb(mp); 5200 /* 5201 * As of now assume that nothing else accompanies 5202 * IPSEC_POLICY_SET. 5203 */ 5204 *mpp = NULL; 5205 } 5206 if (src_ire != NULL) 5207 IRE_REFRELE(src_ire); 5208 if (dst_ire != NULL) 5209 IRE_REFRELE(dst_ire); 5210 if (sire != NULL) 5211 IRE_REFRELE(sire); 5212 if (md_dst_ire != NULL) 5213 IRE_REFRELE(md_dst_ire); 5214 if (lso_dst_ire != NULL) 5215 IRE_REFRELE(lso_dst_ire); 5216 if (effective_cred != NULL) 5217 crfree(effective_cred); 5218 return (error); 5219 } 5220 5221 int 5222 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5223 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5224 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5225 { 5226 int error; 5227 5228 ASSERT(!connp->conn_af_isv6); 5229 connp->conn_pkt_isv6 = B_FALSE; 5230 connp->conn_ulp = protocol; 5231 5232 /* For raw socket, the local port is not set. */ 5233 if (lport == 0) 5234 lport = connp->conn_lport; 5235 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5236 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5237 if (error < 0) 5238 error = -TBADADDR; 5239 return (error); 5240 } 5241 5242 /* 5243 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5244 * Prefers dst_ire over src_ire. 5245 */ 5246 static boolean_t 5247 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5248 { 5249 mblk_t *mp = *mpp; 5250 ire_t *ret_ire; 5251 5252 ASSERT(mp != NULL); 5253 5254 if (ire != NULL) { 5255 /* 5256 * mp initialized above to IRE_DB_REQ_TYPE 5257 * appended mblk. Its <upper protocol>'s 5258 * job to make sure there is room. 5259 */ 5260 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5261 return (B_FALSE); 5262 5263 mp->b_datap->db_type = IRE_DB_TYPE; 5264 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5265 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5266 ret_ire = (ire_t *)mp->b_rptr; 5267 /* 5268 * Pass the latest setting of the ip_path_mtu_discovery and 5269 * copy the ulp info if any. 5270 */ 5271 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5272 IPH_DF : 0; 5273 if (ulp_info != NULL) { 5274 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5275 sizeof (iulp_t)); 5276 } 5277 ret_ire->ire_mp = mp; 5278 } else { 5279 /* 5280 * No IRE was found. Remove IRE mblk. 5281 */ 5282 *mpp = mp->b_cont; 5283 freeb(mp); 5284 } 5285 return (B_TRUE); 5286 } 5287 5288 /* 5289 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5290 * the final piece where we don't. Return a pointer to the first mblk in the 5291 * result, and update the pointer to the next mblk to chew on. If anything 5292 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5293 * NULL pointer. 5294 */ 5295 mblk_t * 5296 ip_carve_mp(mblk_t **mpp, ssize_t len) 5297 { 5298 mblk_t *mp0; 5299 mblk_t *mp1; 5300 mblk_t *mp2; 5301 5302 if (!len || !mpp || !(mp0 = *mpp)) 5303 return (NULL); 5304 /* If we aren't going to consume the first mblk, we need a dup. */ 5305 if (mp0->b_wptr - mp0->b_rptr > len) { 5306 mp1 = dupb(mp0); 5307 if (mp1) { 5308 /* Partition the data between the two mblks. */ 5309 mp1->b_wptr = mp1->b_rptr + len; 5310 mp0->b_rptr = mp1->b_wptr; 5311 /* 5312 * after adjustments if mblk not consumed is now 5313 * unaligned, try to align it. If this fails free 5314 * all messages and let upper layer recover. 5315 */ 5316 if (!OK_32PTR(mp0->b_rptr)) { 5317 if (!pullupmsg(mp0, -1)) { 5318 freemsg(mp0); 5319 freemsg(mp1); 5320 *mpp = NULL; 5321 return (NULL); 5322 } 5323 } 5324 } 5325 return (mp1); 5326 } 5327 /* Eat through as many mblks as we need to get len bytes. */ 5328 len -= mp0->b_wptr - mp0->b_rptr; 5329 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5330 if (mp2->b_wptr - mp2->b_rptr > len) { 5331 /* 5332 * We won't consume the entire last mblk. Like 5333 * above, dup and partition it. 5334 */ 5335 mp1->b_cont = dupb(mp2); 5336 mp1 = mp1->b_cont; 5337 if (!mp1) { 5338 /* 5339 * Trouble. Rather than go to a lot of 5340 * trouble to clean up, we free the messages. 5341 * This won't be any worse than losing it on 5342 * the wire. 5343 */ 5344 freemsg(mp0); 5345 freemsg(mp2); 5346 *mpp = NULL; 5347 return (NULL); 5348 } 5349 mp1->b_wptr = mp1->b_rptr + len; 5350 mp2->b_rptr = mp1->b_wptr; 5351 /* 5352 * after adjustments if mblk not consumed is now 5353 * unaligned, try to align it. If this fails free 5354 * all messages and let upper layer recover. 5355 */ 5356 if (!OK_32PTR(mp2->b_rptr)) { 5357 if (!pullupmsg(mp2, -1)) { 5358 freemsg(mp0); 5359 freemsg(mp2); 5360 *mpp = NULL; 5361 return (NULL); 5362 } 5363 } 5364 *mpp = mp2; 5365 return (mp0); 5366 } 5367 /* Decrement len by the amount we just got. */ 5368 len -= mp2->b_wptr - mp2->b_rptr; 5369 } 5370 /* 5371 * len should be reduced to zero now. If not our caller has 5372 * screwed up. 5373 */ 5374 if (len) { 5375 /* Shouldn't happen! */ 5376 freemsg(mp0); 5377 *mpp = NULL; 5378 return (NULL); 5379 } 5380 /* 5381 * We consumed up to exactly the end of an mblk. Detach the part 5382 * we are returning from the rest of the chain. 5383 */ 5384 mp1->b_cont = NULL; 5385 *mpp = mp2; 5386 return (mp0); 5387 } 5388 5389 /* The ill stream is being unplumbed. Called from ip_close */ 5390 int 5391 ip_modclose(ill_t *ill) 5392 { 5393 boolean_t success; 5394 ipsq_t *ipsq; 5395 ipif_t *ipif; 5396 queue_t *q = ill->ill_rq; 5397 ip_stack_t *ipst = ill->ill_ipst; 5398 int i; 5399 5400 /* 5401 * The punlink prior to this may have initiated a capability 5402 * negotiation. But ipsq_enter will block until that finishes or 5403 * times out. 5404 */ 5405 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5406 5407 /* 5408 * Open/close/push/pop is guaranteed to be single threaded 5409 * per stream by STREAMS. FS guarantees that all references 5410 * from top are gone before close is called. So there can't 5411 * be another close thread that has set CONDEMNED on this ill. 5412 * and cause ipsq_enter to return failure. 5413 */ 5414 ASSERT(success); 5415 ipsq = ill->ill_phyint->phyint_ipsq; 5416 5417 /* 5418 * Mark it condemned. No new reference will be made to this ill. 5419 * Lookup functions will return an error. Threads that try to 5420 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5421 * that the refcnt will drop down to zero. 5422 */ 5423 mutex_enter(&ill->ill_lock); 5424 ill->ill_state_flags |= ILL_CONDEMNED; 5425 for (ipif = ill->ill_ipif; ipif != NULL; 5426 ipif = ipif->ipif_next) { 5427 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5428 } 5429 /* 5430 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5431 * returns error if ILL_CONDEMNED is set 5432 */ 5433 cv_broadcast(&ill->ill_cv); 5434 mutex_exit(&ill->ill_lock); 5435 5436 /* 5437 * Send all the deferred DLPI messages downstream which came in 5438 * during the small window right before ipsq_enter(). We do this 5439 * without waiting for the ACKs because all the ACKs for M_PROTO 5440 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5441 */ 5442 ill_dlpi_send_deferred(ill); 5443 5444 /* 5445 * Shut down fragmentation reassembly. 5446 * ill_frag_timer won't start a timer again. 5447 * Now cancel any existing timer 5448 */ 5449 (void) untimeout(ill->ill_frag_timer_id); 5450 (void) ill_frag_timeout(ill, 0); 5451 5452 /* 5453 * Call ill_delete to bring down the ipifs, ilms and ill on 5454 * this ill. Then wait for the refcnts to drop to zero. 5455 * ill_is_freeable checks whether the ill is really quiescent. 5456 * Then make sure that threads that are waiting to enter the 5457 * ipsq have seen the error returned by ipsq_enter and have 5458 * gone away. Then we call ill_delete_tail which does the 5459 * DL_UNBIND_REQ with the driver and then qprocsoff. 5460 */ 5461 ill_delete(ill); 5462 mutex_enter(&ill->ill_lock); 5463 while (!ill_is_freeable(ill)) 5464 cv_wait(&ill->ill_cv, &ill->ill_lock); 5465 while (ill->ill_waiters) 5466 cv_wait(&ill->ill_cv, &ill->ill_lock); 5467 5468 mutex_exit(&ill->ill_lock); 5469 5470 /* 5471 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5472 * it held until the end of the function since the cleanup 5473 * below needs to be able to use the ip_stack_t. 5474 */ 5475 netstack_hold(ipst->ips_netstack); 5476 5477 /* qprocsoff is done via ill_delete_tail */ 5478 ill_delete_tail(ill); 5479 ASSERT(ill->ill_ipst == NULL); 5480 5481 /* 5482 * Walk through all upper (conn) streams and qenable 5483 * those that have queued data. 5484 * close synchronization needs this to 5485 * be done to ensure that all upper layers blocked 5486 * due to flow control to the closing device 5487 * get unblocked. 5488 */ 5489 ip1dbg(("ip_wsrv: walking\n")); 5490 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5491 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5492 } 5493 5494 mutex_enter(&ipst->ips_ip_mi_lock); 5495 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5496 mutex_exit(&ipst->ips_ip_mi_lock); 5497 5498 /* 5499 * credp could be null if the open didn't succeed and ip_modopen 5500 * itself calls ip_close. 5501 */ 5502 if (ill->ill_credp != NULL) 5503 crfree(ill->ill_credp); 5504 5505 /* 5506 * Now we are done with the module close pieces that 5507 * need the netstack_t. 5508 */ 5509 netstack_rele(ipst->ips_netstack); 5510 5511 mi_close_free((IDP)ill); 5512 q->q_ptr = WR(q)->q_ptr = NULL; 5513 5514 ipsq_exit(ipsq); 5515 5516 return (0); 5517 } 5518 5519 /* 5520 * This is called as part of close() for IP, UDP, ICMP, and RTS 5521 * in order to quiesce the conn. 5522 */ 5523 void 5524 ip_quiesce_conn(conn_t *connp) 5525 { 5526 boolean_t drain_cleanup_reqd = B_FALSE; 5527 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5528 boolean_t ilg_cleanup_reqd = B_FALSE; 5529 ip_stack_t *ipst; 5530 5531 ASSERT(!IPCL_IS_TCP(connp)); 5532 ipst = connp->conn_netstack->netstack_ip; 5533 5534 /* 5535 * Mark the conn as closing, and this conn must not be 5536 * inserted in future into any list. Eg. conn_drain_insert(), 5537 * won't insert this conn into the conn_drain_list. 5538 * Similarly ill_pending_mp_add() will not add any mp to 5539 * the pending mp list, after this conn has started closing. 5540 * 5541 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5542 * cannot get set henceforth. 5543 */ 5544 mutex_enter(&connp->conn_lock); 5545 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5546 connp->conn_state_flags |= CONN_CLOSING; 5547 if (connp->conn_idl != NULL) 5548 drain_cleanup_reqd = B_TRUE; 5549 if (connp->conn_oper_pending_ill != NULL) 5550 conn_ioctl_cleanup_reqd = B_TRUE; 5551 if (connp->conn_dhcpinit_ill != NULL) { 5552 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5553 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5554 connp->conn_dhcpinit_ill = NULL; 5555 } 5556 if (connp->conn_ilg_inuse != 0) 5557 ilg_cleanup_reqd = B_TRUE; 5558 mutex_exit(&connp->conn_lock); 5559 5560 if (conn_ioctl_cleanup_reqd) 5561 conn_ioctl_cleanup(connp); 5562 5563 if (is_system_labeled() && connp->conn_anon_port) { 5564 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5565 connp->conn_mlp_type, connp->conn_ulp, 5566 ntohs(connp->conn_lport), B_FALSE); 5567 connp->conn_anon_port = 0; 5568 } 5569 connp->conn_mlp_type = mlptSingle; 5570 5571 /* 5572 * Remove this conn from any fanout list it is on. 5573 * and then wait for any threads currently operating 5574 * on this endpoint to finish 5575 */ 5576 ipcl_hash_remove(connp); 5577 5578 /* 5579 * Remove this conn from the drain list, and do 5580 * any other cleanup that may be required. 5581 * (Only non-tcp streams may have a non-null conn_idl. 5582 * TCP streams are never flow controlled, and 5583 * conn_idl will be null) 5584 */ 5585 if (drain_cleanup_reqd) 5586 conn_drain_tail(connp, B_TRUE); 5587 5588 if (connp == ipst->ips_ip_g_mrouter) 5589 (void) ip_mrouter_done(NULL, ipst); 5590 5591 if (ilg_cleanup_reqd) 5592 ilg_delete_all(connp); 5593 5594 conn_delete_ire(connp, NULL); 5595 5596 /* 5597 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5598 * callers from write side can't be there now because close 5599 * is in progress. The only other caller is ipcl_walk 5600 * which checks for the condemned flag. 5601 */ 5602 mutex_enter(&connp->conn_lock); 5603 connp->conn_state_flags |= CONN_CONDEMNED; 5604 while (connp->conn_ref != 1) 5605 cv_wait(&connp->conn_cv, &connp->conn_lock); 5606 connp->conn_state_flags |= CONN_QUIESCED; 5607 mutex_exit(&connp->conn_lock); 5608 } 5609 5610 /* ARGSUSED */ 5611 int 5612 ip_close(queue_t *q, int flags) 5613 { 5614 conn_t *connp; 5615 5616 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5617 5618 /* 5619 * Call the appropriate delete routine depending on whether this is 5620 * a module or device. 5621 */ 5622 if (WR(q)->q_next != NULL) { 5623 /* This is a module close */ 5624 return (ip_modclose((ill_t *)q->q_ptr)); 5625 } 5626 5627 connp = q->q_ptr; 5628 ip_quiesce_conn(connp); 5629 5630 qprocsoff(q); 5631 5632 /* 5633 * Now we are truly single threaded on this stream, and can 5634 * delete the things hanging off the connp, and finally the connp. 5635 * We removed this connp from the fanout list, it cannot be 5636 * accessed thru the fanouts, and we already waited for the 5637 * conn_ref to drop to 0. We are already in close, so 5638 * there cannot be any other thread from the top. qprocsoff 5639 * has completed, and service has completed or won't run in 5640 * future. 5641 */ 5642 ASSERT(connp->conn_ref == 1); 5643 5644 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5645 5646 connp->conn_ref--; 5647 ipcl_conn_destroy(connp); 5648 5649 q->q_ptr = WR(q)->q_ptr = NULL; 5650 return (0); 5651 } 5652 5653 /* 5654 * Wapper around putnext() so that ip_rts_request can merely use 5655 * conn_recv. 5656 */ 5657 /*ARGSUSED2*/ 5658 static void 5659 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5660 { 5661 conn_t *connp = (conn_t *)arg1; 5662 5663 putnext(connp->conn_rq, mp); 5664 } 5665 5666 /* 5667 * Called when the module is about to be unloaded 5668 */ 5669 void 5670 ip_ddi_destroy(void) 5671 { 5672 tnet_fini(); 5673 5674 icmp_ddi_g_destroy(); 5675 rts_ddi_g_destroy(); 5676 udp_ddi_g_destroy(); 5677 sctp_ddi_g_destroy(); 5678 tcp_ddi_g_destroy(); 5679 ipsec_policy_g_destroy(); 5680 ipcl_g_destroy(); 5681 ip_net_g_destroy(); 5682 ip_ire_g_fini(); 5683 inet_minor_destroy(ip_minor_arena_sa); 5684 #if defined(_LP64) 5685 inet_minor_destroy(ip_minor_arena_la); 5686 #endif 5687 5688 #ifdef DEBUG 5689 list_destroy(&ip_thread_list); 5690 rw_destroy(&ip_thread_rwlock); 5691 tsd_destroy(&ip_thread_data); 5692 #endif 5693 5694 netstack_unregister(NS_IP); 5695 } 5696 5697 /* 5698 * First step in cleanup. 5699 */ 5700 /* ARGSUSED */ 5701 static void 5702 ip_stack_shutdown(netstackid_t stackid, void *arg) 5703 { 5704 ip_stack_t *ipst = (ip_stack_t *)arg; 5705 5706 #ifdef NS_DEBUG 5707 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5708 #endif 5709 5710 /* 5711 * Perform cleanup for special interfaces (loopback and IPMP). 5712 */ 5713 ip_interface_cleanup(ipst); 5714 5715 /* 5716 * The *_hook_shutdown()s start the process of notifying any 5717 * consumers that things are going away.... nothing is destroyed. 5718 */ 5719 ipv4_hook_shutdown(ipst); 5720 ipv6_hook_shutdown(ipst); 5721 5722 mutex_enter(&ipst->ips_capab_taskq_lock); 5723 ipst->ips_capab_taskq_quit = B_TRUE; 5724 cv_signal(&ipst->ips_capab_taskq_cv); 5725 mutex_exit(&ipst->ips_capab_taskq_lock); 5726 5727 mutex_enter(&ipst->ips_mrt_lock); 5728 ipst->ips_mrt_flags |= IP_MRT_STOP; 5729 cv_signal(&ipst->ips_mrt_cv); 5730 mutex_exit(&ipst->ips_mrt_lock); 5731 } 5732 5733 /* 5734 * Free the IP stack instance. 5735 */ 5736 static void 5737 ip_stack_fini(netstackid_t stackid, void *arg) 5738 { 5739 ip_stack_t *ipst = (ip_stack_t *)arg; 5740 int ret; 5741 5742 #ifdef NS_DEBUG 5743 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5744 #endif 5745 /* 5746 * At this point, all of the notifications that the events and 5747 * protocols are going away have been run, meaning that we can 5748 * now set about starting to clean things up. 5749 */ 5750 ipobs_fini(ipst); 5751 ipv4_hook_destroy(ipst); 5752 ipv6_hook_destroy(ipst); 5753 ip_net_destroy(ipst); 5754 5755 mutex_destroy(&ipst->ips_capab_taskq_lock); 5756 cv_destroy(&ipst->ips_capab_taskq_cv); 5757 5758 mutex_enter(&ipst->ips_mrt_lock); 5759 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5760 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5761 mutex_destroy(&ipst->ips_mrt_lock); 5762 cv_destroy(&ipst->ips_mrt_cv); 5763 cv_destroy(&ipst->ips_mrt_done_cv); 5764 5765 ipmp_destroy(ipst); 5766 rw_destroy(&ipst->ips_srcid_lock); 5767 5768 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5769 ipst->ips_ip_mibkp = NULL; 5770 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5771 ipst->ips_icmp_mibkp = NULL; 5772 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5773 ipst->ips_ip_kstat = NULL; 5774 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5775 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5776 ipst->ips_ip6_kstat = NULL; 5777 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5778 5779 nd_free(&ipst->ips_ip_g_nd); 5780 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5781 ipst->ips_param_arr = NULL; 5782 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5783 ipst->ips_ndp_arr = NULL; 5784 5785 ip_mrouter_stack_destroy(ipst); 5786 5787 mutex_destroy(&ipst->ips_ip_mi_lock); 5788 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5789 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5790 rw_destroy(&ipst->ips_ip_g_nd_lock); 5791 5792 ret = untimeout(ipst->ips_igmp_timeout_id); 5793 if (ret == -1) { 5794 ASSERT(ipst->ips_igmp_timeout_id == 0); 5795 } else { 5796 ASSERT(ipst->ips_igmp_timeout_id != 0); 5797 ipst->ips_igmp_timeout_id = 0; 5798 } 5799 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5800 if (ret == -1) { 5801 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5802 } else { 5803 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5804 ipst->ips_igmp_slowtimeout_id = 0; 5805 } 5806 ret = untimeout(ipst->ips_mld_timeout_id); 5807 if (ret == -1) { 5808 ASSERT(ipst->ips_mld_timeout_id == 0); 5809 } else { 5810 ASSERT(ipst->ips_mld_timeout_id != 0); 5811 ipst->ips_mld_timeout_id = 0; 5812 } 5813 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5814 if (ret == -1) { 5815 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5816 } else { 5817 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5818 ipst->ips_mld_slowtimeout_id = 0; 5819 } 5820 ret = untimeout(ipst->ips_ip_ire_expire_id); 5821 if (ret == -1) { 5822 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5823 } else { 5824 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5825 ipst->ips_ip_ire_expire_id = 0; 5826 } 5827 5828 mutex_destroy(&ipst->ips_igmp_timer_lock); 5829 mutex_destroy(&ipst->ips_mld_timer_lock); 5830 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5831 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5832 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5833 rw_destroy(&ipst->ips_ill_g_lock); 5834 5835 ip_ire_fini(ipst); 5836 ip6_asp_free(ipst); 5837 conn_drain_fini(ipst); 5838 ipcl_destroy(ipst); 5839 5840 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5841 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5842 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5843 ipst->ips_ndp4 = NULL; 5844 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5845 ipst->ips_ndp6 = NULL; 5846 5847 if (ipst->ips_loopback_ksp != NULL) { 5848 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5849 ipst->ips_loopback_ksp = NULL; 5850 } 5851 5852 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5853 ipst->ips_phyint_g_list = NULL; 5854 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5855 ipst->ips_ill_g_heads = NULL; 5856 5857 ldi_ident_release(ipst->ips_ldi_ident); 5858 kmem_free(ipst, sizeof (*ipst)); 5859 } 5860 5861 /* 5862 * This function is called from the TSD destructor, and is used to debug 5863 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5864 * details. 5865 */ 5866 static void 5867 ip_thread_exit(void *phash) 5868 { 5869 th_hash_t *thh = phash; 5870 5871 rw_enter(&ip_thread_rwlock, RW_WRITER); 5872 list_remove(&ip_thread_list, thh); 5873 rw_exit(&ip_thread_rwlock); 5874 mod_hash_destroy_hash(thh->thh_hash); 5875 kmem_free(thh, sizeof (*thh)); 5876 } 5877 5878 /* 5879 * Called when the IP kernel module is loaded into the kernel 5880 */ 5881 void 5882 ip_ddi_init(void) 5883 { 5884 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5885 5886 /* 5887 * For IP and TCP the minor numbers should start from 2 since we have 4 5888 * initial devices: ip, ip6, tcp, tcp6. 5889 */ 5890 /* 5891 * If this is a 64-bit kernel, then create two separate arenas - 5892 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5893 * other for socket apps in the range 2^^18 through 2^^32-1. 5894 */ 5895 ip_minor_arena_la = NULL; 5896 ip_minor_arena_sa = NULL; 5897 #if defined(_LP64) 5898 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5899 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5900 cmn_err(CE_PANIC, 5901 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5902 } 5903 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5904 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5905 cmn_err(CE_PANIC, 5906 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5907 } 5908 #else 5909 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5910 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5911 cmn_err(CE_PANIC, 5912 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5913 } 5914 #endif 5915 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5916 5917 ipcl_g_init(); 5918 ip_ire_g_init(); 5919 ip_net_g_init(); 5920 5921 #ifdef DEBUG 5922 tsd_create(&ip_thread_data, ip_thread_exit); 5923 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5924 list_create(&ip_thread_list, sizeof (th_hash_t), 5925 offsetof(th_hash_t, thh_link)); 5926 #endif 5927 5928 /* 5929 * We want to be informed each time a stack is created or 5930 * destroyed in the kernel, so we can maintain the 5931 * set of udp_stack_t's. 5932 */ 5933 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5934 ip_stack_fini); 5935 5936 ipsec_policy_g_init(); 5937 tcp_ddi_g_init(); 5938 sctp_ddi_g_init(); 5939 5940 tnet_init(); 5941 5942 udp_ddi_g_init(); 5943 rts_ddi_g_init(); 5944 icmp_ddi_g_init(); 5945 } 5946 5947 /* 5948 * Initialize the IP stack instance. 5949 */ 5950 static void * 5951 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5952 { 5953 ip_stack_t *ipst; 5954 ipparam_t *pa; 5955 ipndp_t *na; 5956 major_t major; 5957 5958 #ifdef NS_DEBUG 5959 printf("ip_stack_init(stack %d)\n", stackid); 5960 #endif 5961 5962 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5963 ipst->ips_netstack = ns; 5964 5965 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5966 KM_SLEEP); 5967 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5968 KM_SLEEP); 5969 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5970 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5971 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5972 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5973 5974 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5975 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5976 ipst->ips_igmp_deferred_next = INFINITY; 5977 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5978 ipst->ips_mld_deferred_next = INFINITY; 5979 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5980 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5981 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5982 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5983 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5984 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5985 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5986 5987 ipcl_init(ipst); 5988 ip_ire_init(ipst); 5989 ip6_asp_init(ipst); 5990 ipif_init(ipst); 5991 conn_drain_init(ipst); 5992 ip_mrouter_stack_init(ipst); 5993 5994 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5995 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5996 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 5997 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 5998 5999 ipst->ips_ip_multirt_log_interval = 1000; 6000 6001 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6002 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6003 ipst->ips_ill_index = 1; 6004 6005 ipst->ips_saved_ip_g_forward = -1; 6006 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6007 6008 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6009 ipst->ips_param_arr = pa; 6010 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6011 6012 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6013 ipst->ips_ndp_arr = na; 6014 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6015 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6016 (caddr_t)&ipst->ips_ip_g_forward; 6017 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6018 (caddr_t)&ipst->ips_ipv6_forward; 6019 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6020 "ip_cgtp_filter") == 0); 6021 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6022 (caddr_t)&ipst->ips_ip_cgtp_filter; 6023 6024 (void) ip_param_register(&ipst->ips_ip_g_nd, 6025 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6026 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6027 6028 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6029 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6030 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6031 ipst->ips_ip6_kstat = 6032 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6033 6034 ipst->ips_ip_src_id = 1; 6035 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6036 6037 ip_net_init(ipst, ns); 6038 ipv4_hook_init(ipst); 6039 ipv6_hook_init(ipst); 6040 ipmp_init(ipst); 6041 ipobs_init(ipst); 6042 6043 /* 6044 * Create the taskq dispatcher thread and initialize related stuff. 6045 */ 6046 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6047 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6048 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6049 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6050 6051 /* 6052 * Create the mcast_restart_timers_thread() worker thread. 6053 */ 6054 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6055 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6056 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6057 ipst->ips_mrt_thread = thread_create(NULL, 0, 6058 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6059 6060 major = mod_name_to_major(INET_NAME); 6061 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6062 return (ipst); 6063 } 6064 6065 /* 6066 * Allocate and initialize a DLPI template of the specified length. (May be 6067 * called as writer.) 6068 */ 6069 mblk_t * 6070 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6071 { 6072 mblk_t *mp; 6073 6074 mp = allocb(len, BPRI_MED); 6075 if (!mp) 6076 return (NULL); 6077 6078 /* 6079 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6080 * of which we don't seem to use) are sent with M_PCPROTO, and 6081 * that other DLPI are M_PROTO. 6082 */ 6083 if (prim == DL_INFO_REQ) { 6084 mp->b_datap->db_type = M_PCPROTO; 6085 } else { 6086 mp->b_datap->db_type = M_PROTO; 6087 } 6088 6089 mp->b_wptr = mp->b_rptr + len; 6090 bzero(mp->b_rptr, len); 6091 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6092 return (mp); 6093 } 6094 6095 /* 6096 * Allocate and initialize a DLPI notification. (May be called as writer.) 6097 */ 6098 mblk_t * 6099 ip_dlnotify_alloc(uint_t notification, uint_t data) 6100 { 6101 dl_notify_ind_t *notifyp; 6102 mblk_t *mp; 6103 6104 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6105 return (NULL); 6106 6107 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6108 notifyp->dl_notification = notification; 6109 notifyp->dl_data = data; 6110 return (mp); 6111 } 6112 6113 /* 6114 * Debug formatting routine. Returns a character string representation of the 6115 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6116 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6117 * 6118 * Once the ndd table-printing interfaces are removed, this can be changed to 6119 * standard dotted-decimal form. 6120 */ 6121 char * 6122 ip_dot_addr(ipaddr_t addr, char *buf) 6123 { 6124 uint8_t *ap = (uint8_t *)&addr; 6125 6126 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6127 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6128 return (buf); 6129 } 6130 6131 /* 6132 * Write the given MAC address as a printable string in the usual colon- 6133 * separated format. 6134 */ 6135 const char * 6136 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6137 { 6138 char *bp; 6139 6140 if (alen == 0 || buflen < 4) 6141 return ("?"); 6142 bp = buf; 6143 for (;;) { 6144 /* 6145 * If there are more MAC address bytes available, but we won't 6146 * have any room to print them, then add "..." to the string 6147 * instead. See below for the 'magic number' explanation. 6148 */ 6149 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6150 (void) strcpy(bp, "..."); 6151 break; 6152 } 6153 (void) sprintf(bp, "%02x", *addr++); 6154 bp += 2; 6155 if (--alen == 0) 6156 break; 6157 *bp++ = ':'; 6158 buflen -= 3; 6159 /* 6160 * At this point, based on the first 'if' statement above, 6161 * either alen == 1 and buflen >= 3, or alen > 1 and 6162 * buflen >= 4. The first case leaves room for the final "xx" 6163 * number and trailing NUL byte. The second leaves room for at 6164 * least "...". Thus the apparently 'magic' numbers chosen for 6165 * that statement. 6166 */ 6167 } 6168 return (buf); 6169 } 6170 6171 /* 6172 * Send an ICMP error after patching up the packet appropriately. Returns 6173 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6174 */ 6175 static boolean_t 6176 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6177 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6178 zoneid_t zoneid, ip_stack_t *ipst) 6179 { 6180 ipha_t *ipha; 6181 mblk_t *first_mp; 6182 boolean_t secure; 6183 unsigned char db_type; 6184 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6185 6186 first_mp = mp; 6187 if (mctl_present) { 6188 mp = mp->b_cont; 6189 secure = ipsec_in_is_secure(first_mp); 6190 ASSERT(mp != NULL); 6191 } else { 6192 /* 6193 * If this is an ICMP error being reported - which goes 6194 * up as M_CTLs, we need to convert them to M_DATA till 6195 * we finish checking with global policy because 6196 * ipsec_check_global_policy() assumes M_DATA as clear 6197 * and M_CTL as secure. 6198 */ 6199 db_type = DB_TYPE(mp); 6200 DB_TYPE(mp) = M_DATA; 6201 secure = B_FALSE; 6202 } 6203 /* 6204 * We are generating an icmp error for some inbound packet. 6205 * Called from all ip_fanout_(udp, tcp, proto) functions. 6206 * Before we generate an error, check with global policy 6207 * to see whether this is allowed to enter the system. As 6208 * there is no "conn", we are checking with global policy. 6209 */ 6210 ipha = (ipha_t *)mp->b_rptr; 6211 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6212 first_mp = ipsec_check_global_policy(first_mp, NULL, 6213 ipha, NULL, mctl_present, ipst->ips_netstack); 6214 if (first_mp == NULL) 6215 return (B_FALSE); 6216 } 6217 6218 if (!mctl_present) 6219 DB_TYPE(mp) = db_type; 6220 6221 if (flags & IP_FF_SEND_ICMP) { 6222 if (flags & IP_FF_HDR_COMPLETE) { 6223 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6224 freemsg(first_mp); 6225 return (B_TRUE); 6226 } 6227 } 6228 if (flags & IP_FF_CKSUM) { 6229 /* 6230 * Have to correct checksum since 6231 * the packet might have been 6232 * fragmented and the reassembly code in ip_rput 6233 * does not restore the IP checksum. 6234 */ 6235 ipha->ipha_hdr_checksum = 0; 6236 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6237 } 6238 switch (icmp_type) { 6239 case ICMP_DEST_UNREACHABLE: 6240 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6241 ipst); 6242 break; 6243 default: 6244 freemsg(first_mp); 6245 break; 6246 } 6247 } else { 6248 freemsg(first_mp); 6249 return (B_FALSE); 6250 } 6251 6252 return (B_TRUE); 6253 } 6254 6255 /* 6256 * Used to send an ICMP error message when a packet is received for 6257 * a protocol that is not supported. The mblk passed as argument 6258 * is consumed by this function. 6259 */ 6260 void 6261 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6262 ip_stack_t *ipst) 6263 { 6264 mblk_t *mp; 6265 ipha_t *ipha; 6266 ill_t *ill; 6267 ipsec_in_t *ii; 6268 6269 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6270 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6271 6272 mp = ipsec_mp->b_cont; 6273 ipsec_mp->b_cont = NULL; 6274 ipha = (ipha_t *)mp->b_rptr; 6275 /* Get ill from index in ipsec_in_t. */ 6276 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6277 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6278 ipst); 6279 if (ill != NULL) { 6280 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6281 if (ip_fanout_send_icmp(q, mp, flags, 6282 ICMP_DEST_UNREACHABLE, 6283 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6284 BUMP_MIB(ill->ill_ip_mib, 6285 ipIfStatsInUnknownProtos); 6286 } 6287 } else { 6288 if (ip_fanout_send_icmp_v6(q, mp, flags, 6289 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6290 0, B_FALSE, zoneid, ipst)) { 6291 BUMP_MIB(ill->ill_ip_mib, 6292 ipIfStatsInUnknownProtos); 6293 } 6294 } 6295 ill_refrele(ill); 6296 } else { /* re-link for the freemsg() below. */ 6297 ipsec_mp->b_cont = mp; 6298 } 6299 6300 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6301 freemsg(ipsec_mp); 6302 } 6303 6304 /* 6305 * See if the inbound datagram has had IPsec processing applied to it. 6306 */ 6307 boolean_t 6308 ipsec_in_is_secure(mblk_t *ipsec_mp) 6309 { 6310 ipsec_in_t *ii; 6311 6312 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6313 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6314 6315 if (ii->ipsec_in_loopback) { 6316 return (ii->ipsec_in_secure); 6317 } else { 6318 return (ii->ipsec_in_ah_sa != NULL || 6319 ii->ipsec_in_esp_sa != NULL || 6320 ii->ipsec_in_decaps); 6321 } 6322 } 6323 6324 /* 6325 * Handle protocols with which IP is less intimate. There 6326 * can be more than one stream bound to a particular 6327 * protocol. When this is the case, normally each one gets a copy 6328 * of any incoming packets. 6329 * 6330 * IPsec NOTE : 6331 * 6332 * Don't allow a secure packet going up a non-secure connection. 6333 * We don't allow this because 6334 * 6335 * 1) Reply might go out in clear which will be dropped at 6336 * the sending side. 6337 * 2) If the reply goes out in clear it will give the 6338 * adversary enough information for getting the key in 6339 * most of the cases. 6340 * 6341 * Moreover getting a secure packet when we expect clear 6342 * implies that SA's were added without checking for 6343 * policy on both ends. This should not happen once ISAKMP 6344 * is used to negotiate SAs as SAs will be added only after 6345 * verifying the policy. 6346 * 6347 * IPQoS Notes: 6348 * Once we have determined the client, invoke IPPF processing. 6349 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6350 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6351 * ip_policy will be false. 6352 * 6353 * Zones notes: 6354 * Currently only applications in the global zone can create raw sockets for 6355 * protocols other than ICMP. So unlike the broadcast / multicast case of 6356 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6357 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6358 */ 6359 static void 6360 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6361 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6362 zoneid_t zoneid) 6363 { 6364 queue_t *rq; 6365 mblk_t *mp1, *first_mp1; 6366 uint_t protocol = ipha->ipha_protocol; 6367 ipaddr_t dst; 6368 mblk_t *first_mp = mp; 6369 boolean_t secure; 6370 uint32_t ill_index; 6371 conn_t *connp, *first_connp, *next_connp; 6372 connf_t *connfp; 6373 boolean_t shared_addr; 6374 mib2_ipIfStatsEntry_t *mibptr; 6375 ip_stack_t *ipst = recv_ill->ill_ipst; 6376 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6377 6378 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6379 if (mctl_present) { 6380 mp = first_mp->b_cont; 6381 secure = ipsec_in_is_secure(first_mp); 6382 ASSERT(mp != NULL); 6383 } else { 6384 secure = B_FALSE; 6385 } 6386 dst = ipha->ipha_dst; 6387 shared_addr = (zoneid == ALL_ZONES); 6388 if (shared_addr) { 6389 /* 6390 * We don't allow multilevel ports for raw IP, so no need to 6391 * check for that here. 6392 */ 6393 zoneid = tsol_packet_to_zoneid(mp); 6394 } 6395 6396 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6397 mutex_enter(&connfp->connf_lock); 6398 connp = connfp->connf_head; 6399 for (connp = connfp->connf_head; connp != NULL; 6400 connp = connp->conn_next) { 6401 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6402 zoneid) && 6403 (!is_system_labeled() || 6404 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6405 connp))) { 6406 break; 6407 } 6408 } 6409 6410 if (connp == NULL) { 6411 /* 6412 * No one bound to these addresses. Is 6413 * there a client that wants all 6414 * unclaimed datagrams? 6415 */ 6416 mutex_exit(&connfp->connf_lock); 6417 /* 6418 * Check for IPPROTO_ENCAP... 6419 */ 6420 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6421 /* 6422 * If an IPsec mblk is here on a multicast 6423 * tunnel (using ip_mroute stuff), check policy here, 6424 * THEN ship off to ip_mroute_decap(). 6425 * 6426 * BTW, If I match a configured IP-in-IP 6427 * tunnel, this path will not be reached, and 6428 * ip_mroute_decap will never be called. 6429 */ 6430 first_mp = ipsec_check_global_policy(first_mp, connp, 6431 ipha, NULL, mctl_present, ipst->ips_netstack); 6432 if (first_mp != NULL) { 6433 if (mctl_present) 6434 freeb(first_mp); 6435 ip_mroute_decap(q, mp, ill); 6436 } /* Else we already freed everything! */ 6437 } else { 6438 /* 6439 * Otherwise send an ICMP protocol unreachable. 6440 */ 6441 if (ip_fanout_send_icmp(q, first_mp, flags, 6442 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6443 mctl_present, zoneid, ipst)) { 6444 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6445 } 6446 } 6447 return; 6448 } 6449 6450 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6451 6452 CONN_INC_REF(connp); 6453 first_connp = connp; 6454 connp = connp->conn_next; 6455 6456 for (;;) { 6457 while (connp != NULL) { 6458 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6459 flags, zoneid) && 6460 (!is_system_labeled() || 6461 tsol_receive_local(mp, &dst, IPV4_VERSION, 6462 shared_addr, connp))) 6463 break; 6464 connp = connp->conn_next; 6465 } 6466 6467 /* 6468 * Copy the packet. 6469 */ 6470 if (connp == NULL || 6471 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6472 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6473 /* 6474 * No more interested clients or memory 6475 * allocation failed 6476 */ 6477 connp = first_connp; 6478 break; 6479 } 6480 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6481 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6482 CONN_INC_REF(connp); 6483 mutex_exit(&connfp->connf_lock); 6484 rq = connp->conn_rq; 6485 6486 /* 6487 * Check flow control 6488 */ 6489 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6490 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6491 if (flags & IP_FF_RAWIP) { 6492 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6493 } else { 6494 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6495 } 6496 6497 freemsg(first_mp1); 6498 } else { 6499 /* 6500 * Enforce policy like any other conn_t. Note that 6501 * IP-in-IP packets don't come through here, but 6502 * through ip_iptun_input() or 6503 * icmp_inbound_iptun_fanout(). IPsec policy for such 6504 * packets is enforced in the iptun module. 6505 */ 6506 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6507 secure) { 6508 first_mp1 = ipsec_check_inbound_policy 6509 (first_mp1, connp, ipha, NULL, 6510 mctl_present); 6511 } 6512 if (first_mp1 != NULL) { 6513 int in_flags = 0; 6514 /* 6515 * ip_fanout_proto also gets called from 6516 * icmp_inbound_error_fanout, in which case 6517 * the msg type is M_CTL. Don't add info 6518 * in this case for the time being. In future 6519 * when there is a need for knowing the 6520 * inbound iface index for ICMP error msgs, 6521 * then this can be changed. 6522 */ 6523 if (connp->conn_recvif) 6524 in_flags = IPF_RECVIF; 6525 /* 6526 * The ULP may support IP_RECVPKTINFO for both 6527 * IP v4 and v6 so pass the appropriate argument 6528 * based on conn IP version. 6529 */ 6530 if (connp->conn_ip_recvpktinfo) { 6531 if (connp->conn_af_isv6) { 6532 /* 6533 * V6 only needs index 6534 */ 6535 in_flags |= IPF_RECVIF; 6536 } else { 6537 /* 6538 * V4 needs index + 6539 * matching address. 6540 */ 6541 in_flags |= IPF_RECVADDR; 6542 } 6543 } 6544 if ((in_flags != 0) && 6545 (mp->b_datap->db_type != M_CTL)) { 6546 /* 6547 * the actual data will be 6548 * contained in b_cont upon 6549 * successful return of the 6550 * following call else 6551 * original mblk is returned 6552 */ 6553 ASSERT(recv_ill != NULL); 6554 mp1 = ip_add_info(mp1, recv_ill, 6555 in_flags, IPCL_ZONEID(connp), ipst); 6556 } 6557 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6558 if (mctl_present) 6559 freeb(first_mp1); 6560 (connp->conn_recv)(connp, mp1, NULL); 6561 } 6562 } 6563 mutex_enter(&connfp->connf_lock); 6564 /* Follow the next pointer before releasing the conn. */ 6565 next_connp = connp->conn_next; 6566 CONN_DEC_REF(connp); 6567 connp = next_connp; 6568 } 6569 6570 /* Last one. Send it upstream. */ 6571 mutex_exit(&connfp->connf_lock); 6572 6573 /* 6574 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6575 * will be set to false. 6576 */ 6577 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6578 ill_index = ill->ill_phyint->phyint_ifindex; 6579 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6580 if (mp == NULL) { 6581 CONN_DEC_REF(connp); 6582 if (mctl_present) { 6583 freeb(first_mp); 6584 } 6585 return; 6586 } 6587 } 6588 6589 rq = connp->conn_rq; 6590 /* 6591 * Check flow control 6592 */ 6593 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6594 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6595 if (flags & IP_FF_RAWIP) { 6596 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6597 } else { 6598 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6599 } 6600 6601 freemsg(first_mp); 6602 } else { 6603 ASSERT(!IPCL_IS_IPTUN(connp)); 6604 6605 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6606 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6607 ipha, NULL, mctl_present); 6608 } 6609 6610 if (first_mp != NULL) { 6611 int in_flags = 0; 6612 6613 /* 6614 * ip_fanout_proto also gets called 6615 * from icmp_inbound_error_fanout, in 6616 * which case the msg type is M_CTL. 6617 * Don't add info in this case for time 6618 * being. In future when there is a 6619 * need for knowing the inbound iface 6620 * index for ICMP error msgs, then this 6621 * can be changed 6622 */ 6623 if (connp->conn_recvif) 6624 in_flags = IPF_RECVIF; 6625 if (connp->conn_ip_recvpktinfo) { 6626 if (connp->conn_af_isv6) { 6627 /* 6628 * V6 only needs index 6629 */ 6630 in_flags |= IPF_RECVIF; 6631 } else { 6632 /* 6633 * V4 needs index + 6634 * matching address. 6635 */ 6636 in_flags |= IPF_RECVADDR; 6637 } 6638 } 6639 if ((in_flags != 0) && 6640 (mp->b_datap->db_type != M_CTL)) { 6641 6642 /* 6643 * the actual data will be contained in 6644 * b_cont upon successful return 6645 * of the following call else original 6646 * mblk is returned 6647 */ 6648 ASSERT(recv_ill != NULL); 6649 mp = ip_add_info(mp, recv_ill, 6650 in_flags, IPCL_ZONEID(connp), ipst); 6651 } 6652 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6653 (connp->conn_recv)(connp, mp, NULL); 6654 if (mctl_present) 6655 freeb(first_mp); 6656 } 6657 } 6658 CONN_DEC_REF(connp); 6659 } 6660 6661 /* 6662 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6663 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6664 * the correct squeue, in this case the same squeue as a valid listener with 6665 * no current connection state for the packet we are processing. The function 6666 * is called for synchronizing both IPv4 and IPv6. 6667 */ 6668 void 6669 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6670 tcp_stack_t *tcps, conn_t *connp) 6671 { 6672 mblk_t *rst_mp; 6673 tcp_xmit_reset_event_t *eventp; 6674 6675 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6676 6677 if (rst_mp == NULL) { 6678 freemsg(mp); 6679 return; 6680 } 6681 6682 rst_mp->b_datap->db_type = M_PROTO; 6683 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6684 6685 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6686 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6687 eventp->tcp_xre_iphdrlen = hdrlen; 6688 eventp->tcp_xre_zoneid = zoneid; 6689 eventp->tcp_xre_tcps = tcps; 6690 6691 rst_mp->b_cont = mp; 6692 mp = rst_mp; 6693 6694 /* 6695 * Increment the connref, this ref will be released by the squeue 6696 * framework. 6697 */ 6698 CONN_INC_REF(connp); 6699 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6700 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6701 } 6702 6703 /* 6704 * Fanout for TCP packets 6705 * The caller puts <fport, lport> in the ports parameter. 6706 * 6707 * IPQoS Notes 6708 * Before sending it to the client, invoke IPPF processing. 6709 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6710 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6711 * ip_policy is false. 6712 */ 6713 static void 6714 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6715 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6716 { 6717 mblk_t *first_mp; 6718 boolean_t secure; 6719 uint32_t ill_index; 6720 int ip_hdr_len; 6721 tcph_t *tcph; 6722 boolean_t syn_present = B_FALSE; 6723 conn_t *connp; 6724 ip_stack_t *ipst = recv_ill->ill_ipst; 6725 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6726 6727 ASSERT(recv_ill != NULL); 6728 6729 first_mp = mp; 6730 if (mctl_present) { 6731 ASSERT(first_mp->b_datap->db_type == M_CTL); 6732 mp = first_mp->b_cont; 6733 secure = ipsec_in_is_secure(first_mp); 6734 ASSERT(mp != NULL); 6735 } else { 6736 secure = B_FALSE; 6737 } 6738 6739 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6740 6741 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6742 zoneid, ipst)) == NULL) { 6743 /* 6744 * No connected connection or listener. Send a 6745 * TH_RST via tcp_xmit_listeners_reset. 6746 */ 6747 6748 /* Initiate IPPf processing, if needed. */ 6749 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6750 uint32_t ill_index; 6751 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6752 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6753 if (first_mp == NULL) 6754 return; 6755 } 6756 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6757 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6758 zoneid)); 6759 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6760 ipst->ips_netstack->netstack_tcp, NULL); 6761 return; 6762 } 6763 6764 /* 6765 * Allocate the SYN for the TCP connection here itself 6766 */ 6767 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6768 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6769 if (IPCL_IS_TCP(connp)) { 6770 squeue_t *sqp; 6771 6772 /* 6773 * If the queue belongs to a conn, and fused tcp 6774 * loopback is enabled, assign the eager's squeue 6775 * to be that of the active connect's. Note that 6776 * we don't check for IP_FF_LOOPBACK here since this 6777 * routine gets called only for loopback (unlike the 6778 * IPv6 counterpart). 6779 */ 6780 if (do_tcp_fusion && 6781 CONN_Q(q) && IPCL_IS_TCP(Q_TO_CONN(q)) && 6782 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6783 !secure && 6784 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy) { 6785 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6786 sqp = Q_TO_CONN(q)->conn_sqp; 6787 } else { 6788 sqp = IP_SQUEUE_GET(lbolt); 6789 } 6790 6791 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6792 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6793 syn_present = B_TRUE; 6794 } 6795 } 6796 6797 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6798 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6799 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6800 if ((flags & TH_RST) || (flags & TH_URG)) { 6801 CONN_DEC_REF(connp); 6802 freemsg(first_mp); 6803 return; 6804 } 6805 if (flags & TH_ACK) { 6806 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6807 ipst->ips_netstack->netstack_tcp, connp); 6808 CONN_DEC_REF(connp); 6809 return; 6810 } 6811 6812 CONN_DEC_REF(connp); 6813 freemsg(first_mp); 6814 return; 6815 } 6816 6817 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6818 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6819 NULL, mctl_present); 6820 if (first_mp == NULL) { 6821 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6822 CONN_DEC_REF(connp); 6823 return; 6824 } 6825 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6826 ASSERT(syn_present); 6827 if (mctl_present) { 6828 ASSERT(first_mp != mp); 6829 first_mp->b_datap->db_struioflag |= 6830 STRUIO_POLICY; 6831 } else { 6832 ASSERT(first_mp == mp); 6833 mp->b_datap->db_struioflag &= 6834 ~STRUIO_EAGER; 6835 mp->b_datap->db_struioflag |= 6836 STRUIO_POLICY; 6837 } 6838 } else { 6839 /* 6840 * Discard first_mp early since we're dealing with a 6841 * fully-connected conn_t and tcp doesn't do policy in 6842 * this case. 6843 */ 6844 if (mctl_present) { 6845 freeb(first_mp); 6846 mctl_present = B_FALSE; 6847 } 6848 first_mp = mp; 6849 } 6850 } 6851 6852 /* 6853 * Initiate policy processing here if needed. If we get here from 6854 * icmp_inbound_error_fanout, ip_policy is false. 6855 */ 6856 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6857 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6858 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6859 if (mp == NULL) { 6860 CONN_DEC_REF(connp); 6861 if (mctl_present) 6862 freeb(first_mp); 6863 return; 6864 } else if (mctl_present) { 6865 ASSERT(first_mp != mp); 6866 first_mp->b_cont = mp; 6867 } else { 6868 first_mp = mp; 6869 } 6870 } 6871 6872 /* Handle socket options. */ 6873 if (!syn_present && 6874 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6875 /* Add header */ 6876 ASSERT(recv_ill != NULL); 6877 /* 6878 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6879 * IPF_RECVIF. 6880 */ 6881 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6882 ipst); 6883 if (mp == NULL) { 6884 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6885 CONN_DEC_REF(connp); 6886 if (mctl_present) 6887 freeb(first_mp); 6888 return; 6889 } else if (mctl_present) { 6890 /* 6891 * ip_add_info might return a new mp. 6892 */ 6893 ASSERT(first_mp != mp); 6894 first_mp->b_cont = mp; 6895 } else { 6896 first_mp = mp; 6897 } 6898 } 6899 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6900 if (IPCL_IS_TCP(connp)) { 6901 /* do not drain, certain use cases can blow the stack */ 6902 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6903 connp, SQ_NODRAIN, SQTAG_IP_FANOUT_TCP); 6904 } else { 6905 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6906 (connp->conn_recv)(connp, first_mp, NULL); 6907 CONN_DEC_REF(connp); 6908 } 6909 } 6910 6911 /* 6912 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6913 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6914 * is not consumed. 6915 * 6916 * One of four things can happen, all of which affect the passed-in mblk: 6917 * 6918 * 1.) ICMP messages that go through here just get returned TRUE. 6919 * 6920 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6921 * 6922 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6923 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6924 * 6925 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6926 */ 6927 static boolean_t 6928 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6929 ipsec_stack_t *ipss) 6930 { 6931 int shift, plen, iph_len; 6932 ipha_t *ipha; 6933 udpha_t *udpha; 6934 uint32_t *spi; 6935 uint32_t esp_ports; 6936 uint8_t *orptr; 6937 boolean_t free_ire; 6938 6939 if (DB_TYPE(mp) == M_CTL) { 6940 /* 6941 * ICMP message with UDP inside. Don't bother stripping, just 6942 * send it up. 6943 * 6944 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6945 * to ignore errors set by ICMP anyway ('cause they might be 6946 * forged), but that's the app's decision, not ours. 6947 */ 6948 6949 /* Bunch of reality checks for DEBUG kernels... */ 6950 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6951 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6952 6953 return (B_TRUE); 6954 } 6955 6956 ipha = (ipha_t *)mp->b_rptr; 6957 iph_len = IPH_HDR_LENGTH(ipha); 6958 plen = ntohs(ipha->ipha_length); 6959 6960 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6961 /* 6962 * Most likely a keepalive for the benefit of an intervening 6963 * NAT. These aren't for us, per se, so drop it. 6964 * 6965 * RFC 3947/8 doesn't say for sure what to do for 2-3 6966 * byte packets (keepalives are 1-byte), but we'll drop them 6967 * also. 6968 */ 6969 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6970 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6971 return (B_FALSE); 6972 } 6973 6974 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6975 /* might as well pull it all up - it might be ESP. */ 6976 if (!pullupmsg(mp, -1)) { 6977 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6978 DROPPER(ipss, ipds_esp_nomem), 6979 &ipss->ipsec_dropper); 6980 return (B_FALSE); 6981 } 6982 6983 ipha = (ipha_t *)mp->b_rptr; 6984 } 6985 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6986 if (*spi == 0) { 6987 /* UDP packet - remove 0-spi. */ 6988 shift = sizeof (uint32_t); 6989 } else { 6990 /* ESP-in-UDP packet - reduce to ESP. */ 6991 ipha->ipha_protocol = IPPROTO_ESP; 6992 shift = sizeof (udpha_t); 6993 } 6994 6995 /* Fix IP header */ 6996 ipha->ipha_length = htons(plen - shift); 6997 ipha->ipha_hdr_checksum = 0; 6998 6999 orptr = mp->b_rptr; 7000 mp->b_rptr += shift; 7001 7002 udpha = (udpha_t *)(orptr + iph_len); 7003 if (*spi == 0) { 7004 ASSERT((uint8_t *)ipha == orptr); 7005 udpha->uha_length = htons(plen - shift - iph_len); 7006 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7007 esp_ports = 0; 7008 } else { 7009 esp_ports = *((uint32_t *)udpha); 7010 ASSERT(esp_ports != 0); 7011 } 7012 ovbcopy(orptr, orptr + shift, iph_len); 7013 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7014 ipha = (ipha_t *)(orptr + shift); 7015 7016 free_ire = (ire == NULL); 7017 if (free_ire) { 7018 /* Re-acquire ire. */ 7019 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7020 ipss->ipsec_netstack->netstack_ip); 7021 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7022 if (ire != NULL) 7023 ire_refrele(ire); 7024 /* 7025 * Do a regular freemsg(), as this is an IP 7026 * error (no local route) not an IPsec one. 7027 */ 7028 freemsg(mp); 7029 } 7030 } 7031 7032 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7033 if (free_ire) 7034 ire_refrele(ire); 7035 } 7036 7037 return (esp_ports == 0); 7038 } 7039 7040 /* 7041 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7042 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7043 * Caller is responsible for dropping references to the conn, and freeing 7044 * first_mp. 7045 * 7046 * IPQoS Notes 7047 * Before sending it to the client, invoke IPPF processing. Policy processing 7048 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7049 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7050 * ip_wput_local, ip_policy is false. 7051 */ 7052 static void 7053 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7054 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7055 boolean_t ip_policy) 7056 { 7057 boolean_t mctl_present = (first_mp != NULL); 7058 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7059 uint32_t ill_index; 7060 ip_stack_t *ipst = recv_ill->ill_ipst; 7061 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7062 7063 ASSERT(ill != NULL); 7064 7065 if (mctl_present) 7066 first_mp->b_cont = mp; 7067 else 7068 first_mp = mp; 7069 7070 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7071 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7072 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7073 freemsg(first_mp); 7074 return; 7075 } 7076 7077 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7078 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7079 NULL, mctl_present); 7080 /* Freed by ipsec_check_inbound_policy(). */ 7081 if (first_mp == NULL) { 7082 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7083 return; 7084 } 7085 } 7086 if (mctl_present) 7087 freeb(first_mp); 7088 7089 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7090 if (connp->conn_udp->udp_nat_t_endpoint) { 7091 if (mctl_present) { 7092 /* mctl_present *shouldn't* happen. */ 7093 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7094 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7095 &ipss->ipsec_dropper); 7096 return; 7097 } 7098 7099 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7100 return; 7101 } 7102 7103 /* Handle options. */ 7104 if (connp->conn_recvif) 7105 in_flags = IPF_RECVIF; 7106 /* 7107 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7108 * passed to ip_add_info is based on IP version of connp. 7109 */ 7110 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7111 if (connp->conn_af_isv6) { 7112 /* 7113 * V6 only needs index 7114 */ 7115 in_flags |= IPF_RECVIF; 7116 } else { 7117 /* 7118 * V4 needs index + matching address. 7119 */ 7120 in_flags |= IPF_RECVADDR; 7121 } 7122 } 7123 7124 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7125 in_flags |= IPF_RECVSLLA; 7126 7127 /* 7128 * Initiate IPPF processing here, if needed. Note first_mp won't be 7129 * freed if the packet is dropped. The caller will do so. 7130 */ 7131 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7132 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7133 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7134 if (mp == NULL) { 7135 return; 7136 } 7137 } 7138 if ((in_flags != 0) && 7139 (mp->b_datap->db_type != M_CTL)) { 7140 /* 7141 * The actual data will be contained in b_cont 7142 * upon successful return of the following call 7143 * else original mblk is returned 7144 */ 7145 ASSERT(recv_ill != NULL); 7146 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7147 ipst); 7148 } 7149 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7150 /* Send it upstream */ 7151 (connp->conn_recv)(connp, mp, NULL); 7152 } 7153 7154 /* 7155 * Fanout for UDP packets. 7156 * The caller puts <fport, lport> in the ports parameter. 7157 * 7158 * If SO_REUSEADDR is set all multicast and broadcast packets 7159 * will be delivered to all streams bound to the same port. 7160 * 7161 * Zones notes: 7162 * Multicast and broadcast packets will be distributed to streams in all zones. 7163 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7164 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7165 * packets. To maintain this behavior with multiple zones, the conns are grouped 7166 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7167 * each zone. If unset, all the following conns in the same zone are skipped. 7168 */ 7169 static void 7170 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7171 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7172 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7173 { 7174 uint32_t dstport, srcport; 7175 ipaddr_t dst; 7176 mblk_t *first_mp; 7177 boolean_t secure; 7178 in6_addr_t v6src; 7179 conn_t *connp; 7180 connf_t *connfp; 7181 conn_t *first_connp; 7182 conn_t *next_connp; 7183 mblk_t *mp1, *first_mp1; 7184 ipaddr_t src; 7185 zoneid_t last_zoneid; 7186 boolean_t reuseaddr; 7187 boolean_t shared_addr; 7188 boolean_t unlabeled; 7189 ip_stack_t *ipst; 7190 7191 ASSERT(recv_ill != NULL); 7192 ipst = recv_ill->ill_ipst; 7193 7194 first_mp = mp; 7195 if (mctl_present) { 7196 mp = first_mp->b_cont; 7197 first_mp->b_cont = NULL; 7198 secure = ipsec_in_is_secure(first_mp); 7199 ASSERT(mp != NULL); 7200 } else { 7201 first_mp = NULL; 7202 secure = B_FALSE; 7203 } 7204 7205 /* Extract ports in net byte order */ 7206 dstport = htons(ntohl(ports) & 0xFFFF); 7207 srcport = htons(ntohl(ports) >> 16); 7208 dst = ipha->ipha_dst; 7209 src = ipha->ipha_src; 7210 7211 unlabeled = B_FALSE; 7212 if (is_system_labeled()) 7213 /* Cred cannot be null on IPv4 */ 7214 unlabeled = (msg_getlabel(mp)->tsl_flags & 7215 TSLF_UNLABELED) != 0; 7216 shared_addr = (zoneid == ALL_ZONES); 7217 if (shared_addr) { 7218 /* 7219 * No need to handle exclusive-stack zones since ALL_ZONES 7220 * only applies to the shared stack. 7221 */ 7222 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7223 /* 7224 * If no shared MLP is found, tsol_mlp_findzone returns 7225 * ALL_ZONES. In that case, we assume it's SLP, and 7226 * search for the zone based on the packet label. 7227 * 7228 * If there is such a zone, we prefer to find a 7229 * connection in it. Otherwise, we look for a 7230 * MAC-exempt connection in any zone whose label 7231 * dominates the default label on the packet. 7232 */ 7233 if (zoneid == ALL_ZONES) 7234 zoneid = tsol_packet_to_zoneid(mp); 7235 else 7236 unlabeled = B_FALSE; 7237 } 7238 7239 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7240 mutex_enter(&connfp->connf_lock); 7241 connp = connfp->connf_head; 7242 if (!broadcast && !CLASSD(dst)) { 7243 /* 7244 * Not broadcast or multicast. Send to the one (first) 7245 * client we find. No need to check conn_wantpacket() 7246 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7247 * IPv4 unicast packets. 7248 */ 7249 while ((connp != NULL) && 7250 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7251 (!IPCL_ZONE_MATCH(connp, zoneid) && 7252 !(unlabeled && connp->conn_mac_exempt && shared_addr)))) { 7253 /* 7254 * We keep searching since the conn did not match, 7255 * or its zone did not match and it is not either 7256 * an allzones conn or a mac exempt conn (if the 7257 * sender is unlabeled.) 7258 */ 7259 connp = connp->conn_next; 7260 } 7261 7262 if (connp == NULL || 7263 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7264 goto notfound; 7265 7266 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7267 7268 if (is_system_labeled() && 7269 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7270 connp)) 7271 goto notfound; 7272 7273 CONN_INC_REF(connp); 7274 mutex_exit(&connfp->connf_lock); 7275 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7276 flags, recv_ill, ip_policy); 7277 IP_STAT(ipst, ip_udp_fannorm); 7278 CONN_DEC_REF(connp); 7279 return; 7280 } 7281 7282 /* 7283 * Broadcast and multicast case 7284 * 7285 * Need to check conn_wantpacket(). 7286 * If SO_REUSEADDR has been set on the first we send the 7287 * packet to all clients that have joined the group and 7288 * match the port. 7289 */ 7290 7291 while (connp != NULL) { 7292 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7293 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7294 (!is_system_labeled() || 7295 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7296 connp))) 7297 break; 7298 connp = connp->conn_next; 7299 } 7300 7301 if (connp == NULL || 7302 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7303 goto notfound; 7304 7305 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7306 7307 first_connp = connp; 7308 /* 7309 * When SO_REUSEADDR is not set, send the packet only to the first 7310 * matching connection in its zone by keeping track of the zoneid. 7311 */ 7312 reuseaddr = first_connp->conn_reuseaddr; 7313 last_zoneid = first_connp->conn_zoneid; 7314 7315 CONN_INC_REF(connp); 7316 connp = connp->conn_next; 7317 for (;;) { 7318 while (connp != NULL) { 7319 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7320 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7321 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7322 (!is_system_labeled() || 7323 tsol_receive_local(mp, &dst, IPV4_VERSION, 7324 shared_addr, connp))) 7325 break; 7326 connp = connp->conn_next; 7327 } 7328 /* 7329 * Just copy the data part alone. The mctl part is 7330 * needed just for verifying policy and it is never 7331 * sent up. 7332 */ 7333 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7334 ((mp1 = copymsg(mp)) == NULL))) { 7335 /* 7336 * No more interested clients or memory 7337 * allocation failed 7338 */ 7339 connp = first_connp; 7340 break; 7341 } 7342 if (connp->conn_zoneid != last_zoneid) { 7343 /* 7344 * Update the zoneid so that the packet isn't sent to 7345 * any more conns in the same zone unless SO_REUSEADDR 7346 * is set. 7347 */ 7348 reuseaddr = connp->conn_reuseaddr; 7349 last_zoneid = connp->conn_zoneid; 7350 } 7351 if (first_mp != NULL) { 7352 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7353 ipsec_info_type == IPSEC_IN); 7354 first_mp1 = ipsec_in_tag(first_mp, NULL, 7355 ipst->ips_netstack); 7356 if (first_mp1 == NULL) { 7357 freemsg(mp1); 7358 connp = first_connp; 7359 break; 7360 } 7361 } else { 7362 first_mp1 = NULL; 7363 } 7364 CONN_INC_REF(connp); 7365 mutex_exit(&connfp->connf_lock); 7366 /* 7367 * IPQoS notes: We don't send the packet for policy 7368 * processing here, will do it for the last one (below). 7369 * i.e. we do it per-packet now, but if we do policy 7370 * processing per-conn, then we would need to do it 7371 * here too. 7372 */ 7373 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7374 ipha, flags, recv_ill, B_FALSE); 7375 mutex_enter(&connfp->connf_lock); 7376 /* Follow the next pointer before releasing the conn. */ 7377 next_connp = connp->conn_next; 7378 IP_STAT(ipst, ip_udp_fanmb); 7379 CONN_DEC_REF(connp); 7380 connp = next_connp; 7381 } 7382 7383 /* Last one. Send it upstream. */ 7384 mutex_exit(&connfp->connf_lock); 7385 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7386 recv_ill, ip_policy); 7387 IP_STAT(ipst, ip_udp_fanmb); 7388 CONN_DEC_REF(connp); 7389 return; 7390 7391 notfound: 7392 7393 mutex_exit(&connfp->connf_lock); 7394 IP_STAT(ipst, ip_udp_fanothers); 7395 /* 7396 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7397 * have already been matched above, since they live in the IPv4 7398 * fanout tables. This implies we only need to 7399 * check for IPv6 in6addr_any endpoints here. 7400 * Thus we compare using ipv6_all_zeros instead of the destination 7401 * address, except for the multicast group membership lookup which 7402 * uses the IPv4 destination. 7403 */ 7404 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7405 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7406 mutex_enter(&connfp->connf_lock); 7407 connp = connfp->connf_head; 7408 if (!broadcast && !CLASSD(dst)) { 7409 while (connp != NULL) { 7410 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7411 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7412 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7413 !connp->conn_ipv6_v6only) 7414 break; 7415 connp = connp->conn_next; 7416 } 7417 7418 if (connp != NULL && is_system_labeled() && 7419 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7420 connp)) 7421 connp = NULL; 7422 7423 if (connp == NULL || 7424 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7425 /* 7426 * No one bound to this port. Is 7427 * there a client that wants all 7428 * unclaimed datagrams? 7429 */ 7430 mutex_exit(&connfp->connf_lock); 7431 7432 if (mctl_present) 7433 first_mp->b_cont = mp; 7434 else 7435 first_mp = mp; 7436 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7437 connf_head != NULL) { 7438 ip_fanout_proto(q, first_mp, ill, ipha, 7439 flags | IP_FF_RAWIP, mctl_present, 7440 ip_policy, recv_ill, zoneid); 7441 } else { 7442 if (ip_fanout_send_icmp(q, first_mp, flags, 7443 ICMP_DEST_UNREACHABLE, 7444 ICMP_PORT_UNREACHABLE, 7445 mctl_present, zoneid, ipst)) { 7446 BUMP_MIB(ill->ill_ip_mib, 7447 udpIfStatsNoPorts); 7448 } 7449 } 7450 return; 7451 } 7452 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7453 7454 CONN_INC_REF(connp); 7455 mutex_exit(&connfp->connf_lock); 7456 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7457 flags, recv_ill, ip_policy); 7458 CONN_DEC_REF(connp); 7459 return; 7460 } 7461 /* 7462 * IPv4 multicast packet being delivered to an AF_INET6 7463 * in6addr_any endpoint. 7464 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7465 * and not conn_wantpacket_v6() since any multicast membership is 7466 * for an IPv4-mapped multicast address. 7467 * The packet is sent to all clients in all zones that have joined the 7468 * group and match the port. 7469 */ 7470 while (connp != NULL) { 7471 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7472 srcport, v6src) && 7473 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7474 (!is_system_labeled() || 7475 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7476 connp))) 7477 break; 7478 connp = connp->conn_next; 7479 } 7480 7481 if (connp == NULL || 7482 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7483 /* 7484 * No one bound to this port. Is 7485 * there a client that wants all 7486 * unclaimed datagrams? 7487 */ 7488 mutex_exit(&connfp->connf_lock); 7489 7490 if (mctl_present) 7491 first_mp->b_cont = mp; 7492 else 7493 first_mp = mp; 7494 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7495 NULL) { 7496 ip_fanout_proto(q, first_mp, ill, ipha, 7497 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7498 recv_ill, zoneid); 7499 } else { 7500 /* 7501 * We used to attempt to send an icmp error here, but 7502 * since this is known to be a multicast packet 7503 * and we don't send icmp errors in response to 7504 * multicast, just drop the packet and give up sooner. 7505 */ 7506 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7507 freemsg(first_mp); 7508 } 7509 return; 7510 } 7511 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7512 7513 first_connp = connp; 7514 7515 CONN_INC_REF(connp); 7516 connp = connp->conn_next; 7517 for (;;) { 7518 while (connp != NULL) { 7519 if (IPCL_UDP_MATCH_V6(connp, dstport, 7520 ipv6_all_zeros, srcport, v6src) && 7521 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7522 (!is_system_labeled() || 7523 tsol_receive_local(mp, &dst, IPV4_VERSION, 7524 shared_addr, connp))) 7525 break; 7526 connp = connp->conn_next; 7527 } 7528 /* 7529 * Just copy the data part alone. The mctl part is 7530 * needed just for verifying policy and it is never 7531 * sent up. 7532 */ 7533 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7534 ((mp1 = copymsg(mp)) == NULL))) { 7535 /* 7536 * No more intested clients or memory 7537 * allocation failed 7538 */ 7539 connp = first_connp; 7540 break; 7541 } 7542 if (first_mp != NULL) { 7543 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7544 ipsec_info_type == IPSEC_IN); 7545 first_mp1 = ipsec_in_tag(first_mp, NULL, 7546 ipst->ips_netstack); 7547 if (first_mp1 == NULL) { 7548 freemsg(mp1); 7549 connp = first_connp; 7550 break; 7551 } 7552 } else { 7553 first_mp1 = NULL; 7554 } 7555 CONN_INC_REF(connp); 7556 mutex_exit(&connfp->connf_lock); 7557 /* 7558 * IPQoS notes: We don't send the packet for policy 7559 * processing here, will do it for the last one (below). 7560 * i.e. we do it per-packet now, but if we do policy 7561 * processing per-conn, then we would need to do it 7562 * here too. 7563 */ 7564 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7565 ipha, flags, recv_ill, B_FALSE); 7566 mutex_enter(&connfp->connf_lock); 7567 /* Follow the next pointer before releasing the conn. */ 7568 next_connp = connp->conn_next; 7569 CONN_DEC_REF(connp); 7570 connp = next_connp; 7571 } 7572 7573 /* Last one. Send it upstream. */ 7574 mutex_exit(&connfp->connf_lock); 7575 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7576 recv_ill, ip_policy); 7577 CONN_DEC_REF(connp); 7578 } 7579 7580 /* 7581 * Complete the ip_wput header so that it 7582 * is possible to generate ICMP 7583 * errors. 7584 */ 7585 int 7586 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7587 { 7588 ire_t *ire; 7589 7590 if (ipha->ipha_src == INADDR_ANY) { 7591 ire = ire_lookup_local(zoneid, ipst); 7592 if (ire == NULL) { 7593 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7594 return (1); 7595 } 7596 ipha->ipha_src = ire->ire_addr; 7597 ire_refrele(ire); 7598 } 7599 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7600 ipha->ipha_hdr_checksum = 0; 7601 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7602 return (0); 7603 } 7604 7605 /* 7606 * Nobody should be sending 7607 * packets up this stream 7608 */ 7609 static void 7610 ip_lrput(queue_t *q, mblk_t *mp) 7611 { 7612 mblk_t *mp1; 7613 7614 switch (mp->b_datap->db_type) { 7615 case M_FLUSH: 7616 /* Turn around */ 7617 if (*mp->b_rptr & FLUSHW) { 7618 *mp->b_rptr &= ~FLUSHR; 7619 qreply(q, mp); 7620 return; 7621 } 7622 break; 7623 } 7624 /* Could receive messages that passed through ar_rput */ 7625 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7626 mp1->b_prev = mp1->b_next = NULL; 7627 freemsg(mp); 7628 } 7629 7630 /* Nobody should be sending packets down this stream */ 7631 /* ARGSUSED */ 7632 void 7633 ip_lwput(queue_t *q, mblk_t *mp) 7634 { 7635 freemsg(mp); 7636 } 7637 7638 /* 7639 * Move the first hop in any source route to ipha_dst and remove that part of 7640 * the source route. Called by other protocols. Errors in option formatting 7641 * are ignored - will be handled by ip_wput_options Return the final 7642 * destination (either ipha_dst or the last entry in a source route.) 7643 */ 7644 ipaddr_t 7645 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7646 { 7647 ipoptp_t opts; 7648 uchar_t *opt; 7649 uint8_t optval; 7650 uint8_t optlen; 7651 ipaddr_t dst; 7652 int i; 7653 ire_t *ire; 7654 ip_stack_t *ipst = ns->netstack_ip; 7655 7656 ip2dbg(("ip_massage_options\n")); 7657 dst = ipha->ipha_dst; 7658 for (optval = ipoptp_first(&opts, ipha); 7659 optval != IPOPT_EOL; 7660 optval = ipoptp_next(&opts)) { 7661 opt = opts.ipoptp_cur; 7662 switch (optval) { 7663 uint8_t off; 7664 case IPOPT_SSRR: 7665 case IPOPT_LSRR: 7666 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7667 ip1dbg(("ip_massage_options: bad src route\n")); 7668 break; 7669 } 7670 optlen = opts.ipoptp_len; 7671 off = opt[IPOPT_OFFSET]; 7672 off--; 7673 redo_srr: 7674 if (optlen < IP_ADDR_LEN || 7675 off > optlen - IP_ADDR_LEN) { 7676 /* End of source route */ 7677 ip1dbg(("ip_massage_options: end of SR\n")); 7678 break; 7679 } 7680 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7681 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7682 ntohl(dst))); 7683 /* 7684 * Check if our address is present more than 7685 * once as consecutive hops in source route. 7686 * XXX verify per-interface ip_forwarding 7687 * for source route? 7688 */ 7689 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7690 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7691 if (ire != NULL) { 7692 ire_refrele(ire); 7693 off += IP_ADDR_LEN; 7694 goto redo_srr; 7695 } 7696 if (dst == htonl(INADDR_LOOPBACK)) { 7697 ip1dbg(("ip_massage_options: loopback addr in " 7698 "source route!\n")); 7699 break; 7700 } 7701 /* 7702 * Update ipha_dst to be the first hop and remove the 7703 * first hop from the source route (by overwriting 7704 * part of the option with NOP options). 7705 */ 7706 ipha->ipha_dst = dst; 7707 /* Put the last entry in dst */ 7708 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7709 3; 7710 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7711 7712 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7713 ntohl(dst))); 7714 /* Move down and overwrite */ 7715 opt[IP_ADDR_LEN] = opt[0]; 7716 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7717 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7718 for (i = 0; i < IP_ADDR_LEN; i++) 7719 opt[i] = IPOPT_NOP; 7720 break; 7721 } 7722 } 7723 return (dst); 7724 } 7725 7726 /* 7727 * Return the network mask 7728 * associated with the specified address. 7729 */ 7730 ipaddr_t 7731 ip_net_mask(ipaddr_t addr) 7732 { 7733 uchar_t *up = (uchar_t *)&addr; 7734 ipaddr_t mask = 0; 7735 uchar_t *maskp = (uchar_t *)&mask; 7736 7737 #if defined(__i386) || defined(__amd64) 7738 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7739 #endif 7740 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7741 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7742 #endif 7743 if (CLASSD(addr)) { 7744 maskp[0] = 0xF0; 7745 return (mask); 7746 } 7747 7748 /* We assume Class E default netmask to be 32 */ 7749 if (CLASSE(addr)) 7750 return (0xffffffffU); 7751 7752 if (addr == 0) 7753 return (0); 7754 maskp[0] = 0xFF; 7755 if ((up[0] & 0x80) == 0) 7756 return (mask); 7757 7758 maskp[1] = 0xFF; 7759 if ((up[0] & 0xC0) == 0x80) 7760 return (mask); 7761 7762 maskp[2] = 0xFF; 7763 if ((up[0] & 0xE0) == 0xC0) 7764 return (mask); 7765 7766 /* Otherwise return no mask */ 7767 return ((ipaddr_t)0); 7768 } 7769 7770 /* 7771 * Helper ill lookup function used by IPsec. 7772 */ 7773 ill_t * 7774 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7775 { 7776 ill_t *ret_ill; 7777 7778 ASSERT(ifindex != 0); 7779 7780 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7781 ipst); 7782 if (ret_ill == NULL) { 7783 if (isv6) { 7784 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7785 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7786 ifindex)); 7787 } else { 7788 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7789 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7790 ifindex)); 7791 } 7792 freemsg(first_mp); 7793 return (NULL); 7794 } 7795 return (ret_ill); 7796 } 7797 7798 /* 7799 * IPv4 - 7800 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7801 * out a packet to a destination address for which we do not have specific 7802 * (or sufficient) routing information. 7803 * 7804 * NOTE : These are the scopes of some of the variables that point at IRE, 7805 * which needs to be followed while making any future modifications 7806 * to avoid memory leaks. 7807 * 7808 * - ire and sire are the entries looked up initially by 7809 * ire_ftable_lookup. 7810 * - ipif_ire is used to hold the interface ire associated with 7811 * the new cache ire. But it's scope is limited, so we always REFRELE 7812 * it before branching out to error paths. 7813 * - save_ire is initialized before ire_create, so that ire returned 7814 * by ire_create will not over-write the ire. We REFRELE save_ire 7815 * before breaking out of the switch. 7816 * 7817 * Thus on failures, we have to REFRELE only ire and sire, if they 7818 * are not NULL. 7819 */ 7820 void 7821 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7822 zoneid_t zoneid, ip_stack_t *ipst) 7823 { 7824 areq_t *areq; 7825 ipaddr_t gw = 0; 7826 ire_t *ire = NULL; 7827 mblk_t *res_mp; 7828 ipaddr_t *addrp; 7829 ipaddr_t nexthop_addr; 7830 ipif_t *src_ipif = NULL; 7831 ill_t *dst_ill = NULL; 7832 ipha_t *ipha; 7833 ire_t *sire = NULL; 7834 mblk_t *first_mp; 7835 ire_t *save_ire; 7836 ushort_t ire_marks = 0; 7837 boolean_t mctl_present; 7838 ipsec_out_t *io; 7839 mblk_t *saved_mp; 7840 mblk_t *copy_mp = NULL; 7841 mblk_t *xmit_mp = NULL; 7842 ipaddr_t save_dst; 7843 uint32_t multirt_flags = 7844 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7845 boolean_t multirt_is_resolvable; 7846 boolean_t multirt_resolve_next; 7847 boolean_t unspec_src; 7848 boolean_t ip_nexthop = B_FALSE; 7849 tsol_ire_gw_secattr_t *attrp = NULL; 7850 tsol_gcgrp_t *gcgrp = NULL; 7851 tsol_gcgrp_addr_t ga; 7852 int multirt_res_failures = 0; 7853 int multirt_res_attempts = 0; 7854 int multirt_already_resolved = 0; 7855 boolean_t multirt_no_icmp_error = B_FALSE; 7856 7857 if (ip_debug > 2) { 7858 /* ip1dbg */ 7859 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7860 } 7861 7862 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7863 if (mctl_present) { 7864 io = (ipsec_out_t *)first_mp->b_rptr; 7865 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7866 ASSERT(zoneid == io->ipsec_out_zoneid); 7867 ASSERT(zoneid != ALL_ZONES); 7868 } 7869 7870 ipha = (ipha_t *)mp->b_rptr; 7871 7872 /* All multicast lookups come through ip_newroute_ipif() */ 7873 if (CLASSD(dst)) { 7874 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7875 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7876 freemsg(first_mp); 7877 return; 7878 } 7879 7880 if (mctl_present && io->ipsec_out_ip_nexthop) { 7881 ip_nexthop = B_TRUE; 7882 nexthop_addr = io->ipsec_out_nexthop_addr; 7883 } 7884 /* 7885 * If this IRE is created for forwarding or it is not for 7886 * traffic for congestion controlled protocols, mark it as temporary. 7887 */ 7888 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7889 ire_marks |= IRE_MARK_TEMPORARY; 7890 7891 /* 7892 * Get what we can from ire_ftable_lookup which will follow an IRE 7893 * chain until it gets the most specific information available. 7894 * For example, we know that there is no IRE_CACHE for this dest, 7895 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7896 * ire_ftable_lookup will look up the gateway, etc. 7897 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7898 * to the destination, of equal netmask length in the forward table, 7899 * will be recursively explored. If no information is available 7900 * for the final gateway of that route, we force the returned ire 7901 * to be equal to sire using MATCH_IRE_PARENT. 7902 * At least, in this case we have a starting point (in the buckets) 7903 * to look for other routes to the destination in the forward table. 7904 * This is actually used only for multirouting, where a list 7905 * of routes has to be processed in sequence. 7906 * 7907 * In the process of coming up with the most specific information, 7908 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7909 * for the gateway (i.e., one for which the ire_nce->nce_state is 7910 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7911 * Two caveats when handling incomplete ire's in ip_newroute: 7912 * - we should be careful when accessing its ire_nce (specifically 7913 * the nce_res_mp) ast it might change underneath our feet, and, 7914 * - not all legacy code path callers are prepared to handle 7915 * incomplete ire's, so we should not create/add incomplete 7916 * ire_cache entries here. (See discussion about temporary solution 7917 * further below). 7918 * 7919 * In order to minimize packet dropping, and to preserve existing 7920 * behavior, we treat this case as if there were no IRE_CACHE for the 7921 * gateway, and instead use the IF_RESOLVER ire to send out 7922 * another request to ARP (this is achieved by passing the 7923 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7924 * arp response comes back in ip_wput_nondata, we will create 7925 * a per-dst ire_cache that has an ND_COMPLETE ire. 7926 * 7927 * Note that this is a temporary solution; the correct solution is 7928 * to create an incomplete per-dst ire_cache entry, and send the 7929 * packet out when the gw's nce is resolved. In order to achieve this, 7930 * all packet processing must have been completed prior to calling 7931 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7932 * to be modified to accomodate this solution. 7933 */ 7934 if (ip_nexthop) { 7935 /* 7936 * The first time we come here, we look for an IRE_INTERFACE 7937 * entry for the specified nexthop, set the dst to be the 7938 * nexthop address and create an IRE_CACHE entry for the 7939 * nexthop. The next time around, we are able to find an 7940 * IRE_CACHE entry for the nexthop, set the gateway to be the 7941 * nexthop address and create an IRE_CACHE entry for the 7942 * destination address via the specified nexthop. 7943 */ 7944 ire = ire_cache_lookup(nexthop_addr, zoneid, 7945 msg_getlabel(mp), ipst); 7946 if (ire != NULL) { 7947 gw = nexthop_addr; 7948 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7949 } else { 7950 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7951 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7952 msg_getlabel(mp), 7953 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7954 ipst); 7955 if (ire != NULL) { 7956 dst = nexthop_addr; 7957 } 7958 } 7959 } else { 7960 ire = ire_ftable_lookup(dst, 0, 0, 0, 7961 NULL, &sire, zoneid, 0, msg_getlabel(mp), 7962 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7963 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7964 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7965 ipst); 7966 } 7967 7968 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7969 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7970 7971 /* 7972 * This loop is run only once in most cases. 7973 * We loop to resolve further routes only when the destination 7974 * can be reached through multiple RTF_MULTIRT-flagged ires. 7975 */ 7976 do { 7977 /* Clear the previous iteration's values */ 7978 if (src_ipif != NULL) { 7979 ipif_refrele(src_ipif); 7980 src_ipif = NULL; 7981 } 7982 if (dst_ill != NULL) { 7983 ill_refrele(dst_ill); 7984 dst_ill = NULL; 7985 } 7986 7987 multirt_resolve_next = B_FALSE; 7988 /* 7989 * We check if packets have to be multirouted. 7990 * In this case, given the current <ire, sire> couple, 7991 * we look for the next suitable <ire, sire>. 7992 * This check is done in ire_multirt_lookup(), 7993 * which applies various criteria to find the next route 7994 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7995 * unchanged if it detects it has not been tried yet. 7996 */ 7997 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7998 ip3dbg(("ip_newroute: starting next_resolution " 7999 "with first_mp %p, tag %d\n", 8000 (void *)first_mp, 8001 MULTIRT_DEBUG_TAGGED(first_mp))); 8002 8003 ASSERT(sire != NULL); 8004 multirt_is_resolvable = 8005 ire_multirt_lookup(&ire, &sire, multirt_flags, 8006 &multirt_already_resolved, msg_getlabel(mp), ipst); 8007 8008 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8009 "multirt_already_resolved %d, " 8010 "multirt_res_attempts %d, multirt_res_failures %d, " 8011 "ire %p, sire %p\n", multirt_is_resolvable, 8012 multirt_already_resolved, multirt_res_attempts, 8013 multirt_res_failures, (void *)ire, (void *)sire)); 8014 8015 if (!multirt_is_resolvable) { 8016 /* 8017 * No more multirt route to resolve; give up 8018 * (all routes resolved or no more 8019 * resolvable routes). 8020 */ 8021 if (ire != NULL) { 8022 ire_refrele(ire); 8023 ire = NULL; 8024 } 8025 /* 8026 * Generate ICMP error only if all attempts to 8027 * resolve multirt route failed and there is no 8028 * already resolved one. Don't generate ICMP 8029 * error when: 8030 * 8031 * 1) there was no attempt to resolve 8032 * 2) at least one attempt passed 8033 * 3) a multirt route is already resolved 8034 * 8035 * Case 1) may occur due to multiple 8036 * resolution attempts during single 8037 * ip_multirt_resolution_interval. 8038 * 8039 * Case 2-3) means that CGTP destination is 8040 * reachable via one link so we don't want to 8041 * generate ICMP host unreachable error. 8042 */ 8043 if (multirt_res_attempts == 0 || 8044 multirt_res_failures < 8045 multirt_res_attempts || 8046 multirt_already_resolved > 0) 8047 multirt_no_icmp_error = B_TRUE; 8048 } else { 8049 ASSERT(sire != NULL); 8050 ASSERT(ire != NULL); 8051 8052 multirt_res_attempts++; 8053 } 8054 } 8055 8056 if (ire == NULL) { 8057 if (ip_debug > 3) { 8058 /* ip2dbg */ 8059 pr_addr_dbg("ip_newroute: " 8060 "can't resolve %s\n", AF_INET, &dst); 8061 } 8062 ip3dbg(("ip_newroute: " 8063 "ire %p, sire %p, multirt_no_icmp_error %d\n", 8064 (void *)ire, (void *)sire, 8065 (int)multirt_no_icmp_error)); 8066 8067 if (sire != NULL) { 8068 ire_refrele(sire); 8069 sire = NULL; 8070 } 8071 8072 if (multirt_no_icmp_error) { 8073 /* There is no need to report an ICMP error. */ 8074 MULTIRT_DEBUG_UNTAG(first_mp); 8075 freemsg(first_mp); 8076 return; 8077 } 8078 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8079 RTA_DST, ipst); 8080 goto icmp_err_ret; 8081 } 8082 8083 /* 8084 * Verify that the returned IRE does not have either 8085 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8086 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8087 */ 8088 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8089 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8090 goto icmp_err_ret; 8091 } 8092 /* 8093 * Increment the ire_ob_pkt_count field for ire if it is an 8094 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8095 * increment the same for the parent IRE, sire, if it is some 8096 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8097 */ 8098 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8099 UPDATE_OB_PKT_COUNT(ire); 8100 ire->ire_last_used_time = lbolt; 8101 } 8102 8103 if (sire != NULL) { 8104 gw = sire->ire_gateway_addr; 8105 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8106 IRE_INTERFACE)) == 0); 8107 UPDATE_OB_PKT_COUNT(sire); 8108 sire->ire_last_used_time = lbolt; 8109 } 8110 /* 8111 * We have a route to reach the destination. Find the 8112 * appropriate ill, then get a source address using 8113 * ipif_select_source(). 8114 * 8115 * If we are here trying to create an IRE_CACHE for an offlink 8116 * destination and have an IRE_CACHE entry for VNI, then use 8117 * ire_stq instead since VNI's queue is a black hole. 8118 */ 8119 if ((ire->ire_type == IRE_CACHE) && 8120 IS_VNI(ire->ire_ipif->ipif_ill)) { 8121 dst_ill = ire->ire_stq->q_ptr; 8122 ill_refhold(dst_ill); 8123 } else { 8124 ill_t *ill = ire->ire_ipif->ipif_ill; 8125 8126 if (IS_IPMP(ill)) { 8127 dst_ill = 8128 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8129 } else { 8130 dst_ill = ill; 8131 ill_refhold(dst_ill); 8132 } 8133 } 8134 8135 if (dst_ill == NULL) { 8136 if (ip_debug > 2) { 8137 pr_addr_dbg("ip_newroute: no dst " 8138 "ill for dst %s\n", AF_INET, &dst); 8139 } 8140 goto icmp_err_ret; 8141 } 8142 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8143 8144 /* 8145 * Pick the best source address from dst_ill. 8146 * 8147 * 1) Try to pick the source address from the destination 8148 * route. Clustering assumes that when we have multiple 8149 * prefixes hosted on an interface, the prefix of the 8150 * source address matches the prefix of the destination 8151 * route. We do this only if the address is not 8152 * DEPRECATED. 8153 * 8154 * 2) If the conn is in a different zone than the ire, we 8155 * need to pick a source address from the right zone. 8156 */ 8157 ASSERT(src_ipif == NULL); 8158 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8159 /* 8160 * The RTF_SETSRC flag is set in the parent ire (sire). 8161 * Check that the ipif matching the requested source 8162 * address still exists. 8163 */ 8164 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8165 zoneid, NULL, NULL, NULL, NULL, ipst); 8166 } 8167 8168 unspec_src = (connp != NULL && connp->conn_unspec_src); 8169 8170 if (src_ipif == NULL && 8171 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8172 ire_marks |= IRE_MARK_USESRC_CHECK; 8173 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8174 IS_IPMP(ire->ire_ipif->ipif_ill) || 8175 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8176 (connp != NULL && ire->ire_zoneid != zoneid && 8177 ire->ire_zoneid != ALL_ZONES) || 8178 (dst_ill->ill_usesrc_ifindex != 0)) { 8179 /* 8180 * If the destination is reachable via a 8181 * given gateway, the selected source address 8182 * should be in the same subnet as the gateway. 8183 * Otherwise, the destination is not reachable. 8184 * 8185 * If there are no interfaces on the same subnet 8186 * as the destination, ipif_select_source gives 8187 * first non-deprecated interface which might be 8188 * on a different subnet than the gateway. 8189 * This is not desirable. Hence pass the dst_ire 8190 * source address to ipif_select_source. 8191 * It is sure that the destination is reachable 8192 * with the dst_ire source address subnet. 8193 * So passing dst_ire source address to 8194 * ipif_select_source will make sure that the 8195 * selected source will be on the same subnet 8196 * as dst_ire source address. 8197 */ 8198 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8199 8200 src_ipif = ipif_select_source(dst_ill, saddr, 8201 zoneid); 8202 if (src_ipif == NULL) { 8203 /* 8204 * In the case of multirouting, it may 8205 * happen that ipif_select_source fails 8206 * as DAD may disallow use of the 8207 * particular source interface. Anyway, 8208 * we need to continue and attempt to 8209 * resolve other multirt routes. 8210 */ 8211 if ((sire != NULL) && 8212 (sire->ire_flags & RTF_MULTIRT)) { 8213 ire_refrele(ire); 8214 ire = NULL; 8215 multirt_resolve_next = B_TRUE; 8216 multirt_res_failures++; 8217 continue; 8218 } 8219 8220 if (ip_debug > 2) { 8221 pr_addr_dbg("ip_newroute: " 8222 "no src for dst %s ", 8223 AF_INET, &dst); 8224 printf("on interface %s\n", 8225 dst_ill->ill_name); 8226 } 8227 goto icmp_err_ret; 8228 } 8229 } else { 8230 src_ipif = ire->ire_ipif; 8231 ASSERT(src_ipif != NULL); 8232 /* hold src_ipif for uniformity */ 8233 ipif_refhold(src_ipif); 8234 } 8235 } 8236 8237 /* 8238 * Assign a source address while we have the conn. 8239 * We can't have ip_wput_ire pick a source address when the 8240 * packet returns from arp since we need to look at 8241 * conn_unspec_src and conn_zoneid, and we lose the conn when 8242 * going through arp. 8243 * 8244 * NOTE : ip_newroute_v6 does not have this piece of code as 8245 * it uses ip6i to store this information. 8246 */ 8247 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8248 ipha->ipha_src = src_ipif->ipif_src_addr; 8249 8250 if (ip_debug > 3) { 8251 /* ip2dbg */ 8252 pr_addr_dbg("ip_newroute: first hop %s\n", 8253 AF_INET, &gw); 8254 } 8255 ip2dbg(("\tire type %s (%d)\n", 8256 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8257 8258 /* 8259 * The TTL of multirouted packets is bounded by the 8260 * ip_multirt_ttl ndd variable. 8261 */ 8262 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8263 /* Force TTL of multirouted packets */ 8264 if ((ipst->ips_ip_multirt_ttl > 0) && 8265 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8266 ip2dbg(("ip_newroute: forcing multirt TTL " 8267 "to %d (was %d), dst 0x%08x\n", 8268 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8269 ntohl(sire->ire_addr))); 8270 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8271 } 8272 } 8273 /* 8274 * At this point in ip_newroute(), ire is either the 8275 * IRE_CACHE of the next-hop gateway for an off-subnet 8276 * destination or an IRE_INTERFACE type that should be used 8277 * to resolve an on-subnet destination or an on-subnet 8278 * next-hop gateway. 8279 * 8280 * In the IRE_CACHE case, we have the following : 8281 * 8282 * 1) src_ipif - used for getting a source address. 8283 * 8284 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8285 * means packets using this IRE_CACHE will go out on 8286 * dst_ill. 8287 * 8288 * 3) The IRE sire will point to the prefix that is the 8289 * longest matching route for the destination. These 8290 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8291 * 8292 * The newly created IRE_CACHE entry for the off-subnet 8293 * destination is tied to both the prefix route and the 8294 * interface route used to resolve the next-hop gateway 8295 * via the ire_phandle and ire_ihandle fields, 8296 * respectively. 8297 * 8298 * In the IRE_INTERFACE case, we have the following : 8299 * 8300 * 1) src_ipif - used for getting a source address. 8301 * 8302 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8303 * means packets using the IRE_CACHE that we will build 8304 * here will go out on dst_ill. 8305 * 8306 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8307 * to be created will only be tied to the IRE_INTERFACE 8308 * that was derived from the ire_ihandle field. 8309 * 8310 * If sire is non-NULL, it means the destination is 8311 * off-link and we will first create the IRE_CACHE for the 8312 * gateway. Next time through ip_newroute, we will create 8313 * the IRE_CACHE for the final destination as described 8314 * above. 8315 * 8316 * In both cases, after the current resolution has been 8317 * completed (or possibly initialised, in the IRE_INTERFACE 8318 * case), the loop may be re-entered to attempt the resolution 8319 * of another RTF_MULTIRT route. 8320 * 8321 * When an IRE_CACHE entry for the off-subnet destination is 8322 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8323 * for further processing in emission loops. 8324 */ 8325 save_ire = ire; 8326 switch (ire->ire_type) { 8327 case IRE_CACHE: { 8328 ire_t *ipif_ire; 8329 8330 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8331 if (gw == 0) 8332 gw = ire->ire_gateway_addr; 8333 /* 8334 * We need 3 ire's to create a new cache ire for an 8335 * off-link destination from the cache ire of the 8336 * gateway. 8337 * 8338 * 1. The prefix ire 'sire' (Note that this does 8339 * not apply to the conn_nexthop_set case) 8340 * 2. The cache ire of the gateway 'ire' 8341 * 3. The interface ire 'ipif_ire' 8342 * 8343 * We have (1) and (2). We lookup (3) below. 8344 * 8345 * If there is no interface route to the gateway, 8346 * it is a race condition, where we found the cache 8347 * but the interface route has been deleted. 8348 */ 8349 if (ip_nexthop) { 8350 ipif_ire = ire_ihandle_lookup_onlink(ire); 8351 } else { 8352 ipif_ire = 8353 ire_ihandle_lookup_offlink(ire, sire); 8354 } 8355 if (ipif_ire == NULL) { 8356 ip1dbg(("ip_newroute: " 8357 "ire_ihandle_lookup_offlink failed\n")); 8358 goto icmp_err_ret; 8359 } 8360 8361 /* 8362 * Check cached gateway IRE for any security 8363 * attributes; if found, associate the gateway 8364 * credentials group to the destination IRE. 8365 */ 8366 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8367 mutex_enter(&attrp->igsa_lock); 8368 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8369 GCGRP_REFHOLD(gcgrp); 8370 mutex_exit(&attrp->igsa_lock); 8371 } 8372 8373 /* 8374 * XXX For the source of the resolver mp, 8375 * we are using the same DL_UNITDATA_REQ 8376 * (from save_ire->ire_nce->nce_res_mp) 8377 * though the save_ire is not pointing at the same ill. 8378 * This is incorrect. We need to send it up to the 8379 * resolver to get the right res_mp. For ethernets 8380 * this may be okay (ill_type == DL_ETHER). 8381 */ 8382 8383 ire = ire_create( 8384 (uchar_t *)&dst, /* dest address */ 8385 (uchar_t *)&ip_g_all_ones, /* mask */ 8386 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8387 (uchar_t *)&gw, /* gateway address */ 8388 &save_ire->ire_max_frag, 8389 save_ire->ire_nce, /* src nce */ 8390 dst_ill->ill_rq, /* recv-from queue */ 8391 dst_ill->ill_wq, /* send-to queue */ 8392 IRE_CACHE, /* IRE type */ 8393 src_ipif, 8394 (sire != NULL) ? 8395 sire->ire_mask : 0, /* Parent mask */ 8396 (sire != NULL) ? 8397 sire->ire_phandle : 0, /* Parent handle */ 8398 ipif_ire->ire_ihandle, /* Interface handle */ 8399 (sire != NULL) ? (sire->ire_flags & 8400 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8401 (sire != NULL) ? 8402 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8403 NULL, 8404 gcgrp, 8405 ipst); 8406 8407 if (ire == NULL) { 8408 if (gcgrp != NULL) { 8409 GCGRP_REFRELE(gcgrp); 8410 gcgrp = NULL; 8411 } 8412 ire_refrele(ipif_ire); 8413 ire_refrele(save_ire); 8414 break; 8415 } 8416 8417 /* reference now held by IRE */ 8418 gcgrp = NULL; 8419 8420 ire->ire_marks |= ire_marks; 8421 8422 /* 8423 * Prevent sire and ipif_ire from getting deleted. 8424 * The newly created ire is tied to both of them via 8425 * the phandle and ihandle respectively. 8426 */ 8427 if (sire != NULL) { 8428 IRB_REFHOLD(sire->ire_bucket); 8429 /* Has it been removed already ? */ 8430 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8431 IRB_REFRELE(sire->ire_bucket); 8432 ire_refrele(ipif_ire); 8433 ire_refrele(save_ire); 8434 break; 8435 } 8436 } 8437 8438 IRB_REFHOLD(ipif_ire->ire_bucket); 8439 /* Has it been removed already ? */ 8440 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8441 IRB_REFRELE(ipif_ire->ire_bucket); 8442 if (sire != NULL) 8443 IRB_REFRELE(sire->ire_bucket); 8444 ire_refrele(ipif_ire); 8445 ire_refrele(save_ire); 8446 break; 8447 } 8448 8449 xmit_mp = first_mp; 8450 /* 8451 * In the case of multirouting, a copy 8452 * of the packet is done before its sending. 8453 * The copy is used to attempt another 8454 * route resolution, in a next loop. 8455 */ 8456 if (ire->ire_flags & RTF_MULTIRT) { 8457 copy_mp = copymsg(first_mp); 8458 if (copy_mp != NULL) { 8459 xmit_mp = copy_mp; 8460 MULTIRT_DEBUG_TAG(first_mp); 8461 } 8462 } 8463 8464 ire_add_then_send(q, ire, xmit_mp); 8465 ire_refrele(save_ire); 8466 8467 /* Assert that sire is not deleted yet. */ 8468 if (sire != NULL) { 8469 ASSERT(sire->ire_ptpn != NULL); 8470 IRB_REFRELE(sire->ire_bucket); 8471 } 8472 8473 /* Assert that ipif_ire is not deleted yet. */ 8474 ASSERT(ipif_ire->ire_ptpn != NULL); 8475 IRB_REFRELE(ipif_ire->ire_bucket); 8476 ire_refrele(ipif_ire); 8477 8478 /* 8479 * If copy_mp is not NULL, multirouting was 8480 * requested. We loop to initiate a next 8481 * route resolution attempt, starting from sire. 8482 */ 8483 if (copy_mp != NULL) { 8484 /* 8485 * Search for the next unresolved 8486 * multirt route. 8487 */ 8488 copy_mp = NULL; 8489 ipif_ire = NULL; 8490 ire = NULL; 8491 multirt_resolve_next = B_TRUE; 8492 continue; 8493 } 8494 if (sire != NULL) 8495 ire_refrele(sire); 8496 ipif_refrele(src_ipif); 8497 ill_refrele(dst_ill); 8498 return; 8499 } 8500 case IRE_IF_NORESOLVER: { 8501 if (dst_ill->ill_resolver_mp == NULL) { 8502 ip1dbg(("ip_newroute: dst_ill %p " 8503 "for IRE_IF_NORESOLVER ire %p has " 8504 "no ill_resolver_mp\n", 8505 (void *)dst_ill, (void *)ire)); 8506 break; 8507 } 8508 8509 /* 8510 * TSol note: We are creating the ire cache for the 8511 * destination 'dst'. If 'dst' is offlink, going 8512 * through the first hop 'gw', the security attributes 8513 * of 'dst' must be set to point to the gateway 8514 * credentials of gateway 'gw'. If 'dst' is onlink, it 8515 * is possible that 'dst' is a potential gateway that is 8516 * referenced by some route that has some security 8517 * attributes. Thus in the former case, we need to do a 8518 * gcgrp_lookup of 'gw' while in the latter case we 8519 * need to do gcgrp_lookup of 'dst' itself. 8520 */ 8521 ga.ga_af = AF_INET; 8522 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8523 &ga.ga_addr); 8524 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8525 8526 ire = ire_create( 8527 (uchar_t *)&dst, /* dest address */ 8528 (uchar_t *)&ip_g_all_ones, /* mask */ 8529 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8530 (uchar_t *)&gw, /* gateway address */ 8531 &save_ire->ire_max_frag, 8532 NULL, /* no src nce */ 8533 dst_ill->ill_rq, /* recv-from queue */ 8534 dst_ill->ill_wq, /* send-to queue */ 8535 IRE_CACHE, 8536 src_ipif, 8537 save_ire->ire_mask, /* Parent mask */ 8538 (sire != NULL) ? /* Parent handle */ 8539 sire->ire_phandle : 0, 8540 save_ire->ire_ihandle, /* Interface handle */ 8541 (sire != NULL) ? sire->ire_flags & 8542 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8543 &(save_ire->ire_uinfo), 8544 NULL, 8545 gcgrp, 8546 ipst); 8547 8548 if (ire == NULL) { 8549 if (gcgrp != NULL) { 8550 GCGRP_REFRELE(gcgrp); 8551 gcgrp = NULL; 8552 } 8553 ire_refrele(save_ire); 8554 break; 8555 } 8556 8557 /* reference now held by IRE */ 8558 gcgrp = NULL; 8559 8560 ire->ire_marks |= ire_marks; 8561 8562 /* Prevent save_ire from getting deleted */ 8563 IRB_REFHOLD(save_ire->ire_bucket); 8564 /* Has it been removed already ? */ 8565 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8566 IRB_REFRELE(save_ire->ire_bucket); 8567 ire_refrele(save_ire); 8568 break; 8569 } 8570 8571 /* 8572 * In the case of multirouting, a copy 8573 * of the packet is made before it is sent. 8574 * The copy is used in the next 8575 * loop to attempt another resolution. 8576 */ 8577 xmit_mp = first_mp; 8578 if ((sire != NULL) && 8579 (sire->ire_flags & RTF_MULTIRT)) { 8580 copy_mp = copymsg(first_mp); 8581 if (copy_mp != NULL) { 8582 xmit_mp = copy_mp; 8583 MULTIRT_DEBUG_TAG(first_mp); 8584 } 8585 } 8586 ire_add_then_send(q, ire, xmit_mp); 8587 8588 /* Assert that it is not deleted yet. */ 8589 ASSERT(save_ire->ire_ptpn != NULL); 8590 IRB_REFRELE(save_ire->ire_bucket); 8591 ire_refrele(save_ire); 8592 8593 if (copy_mp != NULL) { 8594 /* 8595 * If we found a (no)resolver, we ignore any 8596 * trailing top priority IRE_CACHE in further 8597 * loops. This ensures that we do not omit any 8598 * (no)resolver. 8599 * This IRE_CACHE, if any, will be processed 8600 * by another thread entering ip_newroute(). 8601 * IRE_CACHE entries, if any, will be processed 8602 * by another thread entering ip_newroute(), 8603 * (upon resolver response, for instance). 8604 * This aims to force parallel multirt 8605 * resolutions as soon as a packet must be sent. 8606 * In the best case, after the tx of only one 8607 * packet, all reachable routes are resolved. 8608 * Otherwise, the resolution of all RTF_MULTIRT 8609 * routes would require several emissions. 8610 */ 8611 multirt_flags &= ~MULTIRT_CACHEGW; 8612 8613 /* 8614 * Search for the next unresolved multirt 8615 * route. 8616 */ 8617 copy_mp = NULL; 8618 save_ire = NULL; 8619 ire = NULL; 8620 multirt_resolve_next = B_TRUE; 8621 continue; 8622 } 8623 8624 /* 8625 * Don't need sire anymore 8626 */ 8627 if (sire != NULL) 8628 ire_refrele(sire); 8629 8630 ipif_refrele(src_ipif); 8631 ill_refrele(dst_ill); 8632 return; 8633 } 8634 case IRE_IF_RESOLVER: 8635 /* 8636 * We can't build an IRE_CACHE yet, but at least we 8637 * found a resolver that can help. 8638 */ 8639 res_mp = dst_ill->ill_resolver_mp; 8640 if (!OK_RESOLVER_MP(res_mp)) 8641 break; 8642 8643 /* 8644 * To be at this point in the code with a non-zero gw 8645 * means that dst is reachable through a gateway that 8646 * we have never resolved. By changing dst to the gw 8647 * addr we resolve the gateway first. 8648 * When ire_add_then_send() tries to put the IP dg 8649 * to dst, it will reenter ip_newroute() at which 8650 * time we will find the IRE_CACHE for the gw and 8651 * create another IRE_CACHE in case IRE_CACHE above. 8652 */ 8653 if (gw != INADDR_ANY) { 8654 /* 8655 * The source ipif that was determined above was 8656 * relative to the destination address, not the 8657 * gateway's. If src_ipif was not taken out of 8658 * the IRE_IF_RESOLVER entry, we'll need to call 8659 * ipif_select_source() again. 8660 */ 8661 if (src_ipif != ire->ire_ipif) { 8662 ipif_refrele(src_ipif); 8663 src_ipif = ipif_select_source(dst_ill, 8664 gw, zoneid); 8665 /* 8666 * In the case of multirouting, it may 8667 * happen that ipif_select_source fails 8668 * as DAD may disallow use of the 8669 * particular source interface. Anyway, 8670 * we need to continue and attempt to 8671 * resolve other multirt routes. 8672 */ 8673 if (src_ipif == NULL) { 8674 if (sire != NULL && 8675 (sire->ire_flags & 8676 RTF_MULTIRT)) { 8677 ire_refrele(ire); 8678 ire = NULL; 8679 multirt_resolve_next = 8680 B_TRUE; 8681 multirt_res_failures++; 8682 continue; 8683 } 8684 if (ip_debug > 2) { 8685 pr_addr_dbg( 8686 "ip_newroute: no " 8687 "src for gw %s ", 8688 AF_INET, &gw); 8689 printf("on " 8690 "interface %s\n", 8691 dst_ill->ill_name); 8692 } 8693 goto icmp_err_ret; 8694 } 8695 } 8696 save_dst = dst; 8697 dst = gw; 8698 gw = INADDR_ANY; 8699 } 8700 8701 /* 8702 * We obtain a partial IRE_CACHE which we will pass 8703 * along with the resolver query. When the response 8704 * comes back it will be there ready for us to add. 8705 * The ire_max_frag is atomically set under the 8706 * irebucket lock in ire_add_v[46]. 8707 */ 8708 8709 ire = ire_create_mp( 8710 (uchar_t *)&dst, /* dest address */ 8711 (uchar_t *)&ip_g_all_ones, /* mask */ 8712 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8713 (uchar_t *)&gw, /* gateway address */ 8714 NULL, /* ire_max_frag */ 8715 NULL, /* no src nce */ 8716 dst_ill->ill_rq, /* recv-from queue */ 8717 dst_ill->ill_wq, /* send-to queue */ 8718 IRE_CACHE, 8719 src_ipif, /* Interface ipif */ 8720 save_ire->ire_mask, /* Parent mask */ 8721 0, 8722 save_ire->ire_ihandle, /* Interface handle */ 8723 0, /* flags if any */ 8724 &(save_ire->ire_uinfo), 8725 NULL, 8726 NULL, 8727 ipst); 8728 8729 if (ire == NULL) { 8730 ire_refrele(save_ire); 8731 break; 8732 } 8733 8734 if ((sire != NULL) && 8735 (sire->ire_flags & RTF_MULTIRT)) { 8736 copy_mp = copymsg(first_mp); 8737 if (copy_mp != NULL) 8738 MULTIRT_DEBUG_TAG(copy_mp); 8739 } 8740 8741 ire->ire_marks |= ire_marks; 8742 8743 /* 8744 * Construct message chain for the resolver 8745 * of the form: 8746 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8747 * Packet could contain a IPSEC_OUT mp. 8748 * 8749 * NOTE : ire will be added later when the response 8750 * comes back from ARP. If the response does not 8751 * come back, ARP frees the packet. For this reason, 8752 * we can't REFHOLD the bucket of save_ire to prevent 8753 * deletions. We may not be able to REFRELE the bucket 8754 * if the response never comes back. Thus, before 8755 * adding the ire, ire_add_v4 will make sure that the 8756 * interface route does not get deleted. This is the 8757 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8758 * where we can always prevent deletions because of 8759 * the synchronous nature of adding IRES i.e 8760 * ire_add_then_send is called after creating the IRE. 8761 */ 8762 ASSERT(ire->ire_mp != NULL); 8763 ire->ire_mp->b_cont = first_mp; 8764 /* Have saved_mp handy, for cleanup if canput fails */ 8765 saved_mp = mp; 8766 mp = copyb(res_mp); 8767 if (mp == NULL) { 8768 /* Prepare for cleanup */ 8769 mp = saved_mp; /* pkt */ 8770 ire_delete(ire); /* ire_mp */ 8771 ire = NULL; 8772 ire_refrele(save_ire); 8773 if (copy_mp != NULL) { 8774 MULTIRT_DEBUG_UNTAG(copy_mp); 8775 freemsg(copy_mp); 8776 copy_mp = NULL; 8777 } 8778 break; 8779 } 8780 linkb(mp, ire->ire_mp); 8781 8782 /* 8783 * Fill in the source and dest addrs for the resolver. 8784 * NOTE: this depends on memory layouts imposed by 8785 * ill_init(). 8786 */ 8787 areq = (areq_t *)mp->b_rptr; 8788 addrp = (ipaddr_t *)((char *)areq + 8789 areq->areq_sender_addr_offset); 8790 *addrp = save_ire->ire_src_addr; 8791 8792 ire_refrele(save_ire); 8793 addrp = (ipaddr_t *)((char *)areq + 8794 areq->areq_target_addr_offset); 8795 *addrp = dst; 8796 /* Up to the resolver. */ 8797 if (canputnext(dst_ill->ill_rq) && 8798 !(dst_ill->ill_arp_closing)) { 8799 putnext(dst_ill->ill_rq, mp); 8800 ire = NULL; 8801 if (copy_mp != NULL) { 8802 /* 8803 * If we found a resolver, we ignore 8804 * any trailing top priority IRE_CACHE 8805 * in the further loops. This ensures 8806 * that we do not omit any resolver. 8807 * IRE_CACHE entries, if any, will be 8808 * processed next time we enter 8809 * ip_newroute(). 8810 */ 8811 multirt_flags &= ~MULTIRT_CACHEGW; 8812 /* 8813 * Search for the next unresolved 8814 * multirt route. 8815 */ 8816 first_mp = copy_mp; 8817 copy_mp = NULL; 8818 /* Prepare the next resolution loop. */ 8819 mp = first_mp; 8820 EXTRACT_PKT_MP(mp, first_mp, 8821 mctl_present); 8822 if (mctl_present) 8823 io = (ipsec_out_t *) 8824 first_mp->b_rptr; 8825 ipha = (ipha_t *)mp->b_rptr; 8826 8827 ASSERT(sire != NULL); 8828 8829 dst = save_dst; 8830 multirt_resolve_next = B_TRUE; 8831 continue; 8832 } 8833 8834 if (sire != NULL) 8835 ire_refrele(sire); 8836 8837 /* 8838 * The response will come back in ip_wput 8839 * with db_type IRE_DB_TYPE. 8840 */ 8841 ipif_refrele(src_ipif); 8842 ill_refrele(dst_ill); 8843 return; 8844 } else { 8845 /* Prepare for cleanup */ 8846 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8847 mp); 8848 mp->b_cont = NULL; 8849 freeb(mp); /* areq */ 8850 /* 8851 * this is an ire that is not added to the 8852 * cache. ire_freemblk will handle the release 8853 * of any resources associated with the ire. 8854 */ 8855 ire_delete(ire); /* ire_mp */ 8856 mp = saved_mp; /* pkt */ 8857 ire = NULL; 8858 if (copy_mp != NULL) { 8859 MULTIRT_DEBUG_UNTAG(copy_mp); 8860 freemsg(copy_mp); 8861 copy_mp = NULL; 8862 } 8863 break; 8864 } 8865 default: 8866 break; 8867 } 8868 } while (multirt_resolve_next); 8869 8870 ip1dbg(("ip_newroute: dropped\n")); 8871 /* Did this packet originate externally? */ 8872 if (mp->b_prev) { 8873 mp->b_next = NULL; 8874 mp->b_prev = NULL; 8875 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8876 } else { 8877 if (dst_ill != NULL) { 8878 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8879 } else { 8880 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8881 } 8882 } 8883 ASSERT(copy_mp == NULL); 8884 MULTIRT_DEBUG_UNTAG(first_mp); 8885 freemsg(first_mp); 8886 if (ire != NULL) 8887 ire_refrele(ire); 8888 if (sire != NULL) 8889 ire_refrele(sire); 8890 if (src_ipif != NULL) 8891 ipif_refrele(src_ipif); 8892 if (dst_ill != NULL) 8893 ill_refrele(dst_ill); 8894 return; 8895 8896 icmp_err_ret: 8897 ip1dbg(("ip_newroute: no route\n")); 8898 if (src_ipif != NULL) 8899 ipif_refrele(src_ipif); 8900 if (dst_ill != NULL) 8901 ill_refrele(dst_ill); 8902 if (sire != NULL) 8903 ire_refrele(sire); 8904 /* Did this packet originate externally? */ 8905 if (mp->b_prev) { 8906 mp->b_next = NULL; 8907 mp->b_prev = NULL; 8908 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8909 q = WR(q); 8910 } else { 8911 /* 8912 * There is no outgoing ill, so just increment the 8913 * system MIB. 8914 */ 8915 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8916 /* 8917 * Since ip_wput() isn't close to finished, we fill 8918 * in enough of the header for credible error reporting. 8919 */ 8920 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8921 /* Failed */ 8922 MULTIRT_DEBUG_UNTAG(first_mp); 8923 freemsg(first_mp); 8924 if (ire != NULL) 8925 ire_refrele(ire); 8926 return; 8927 } 8928 } 8929 8930 /* 8931 * At this point we will have ire only if RTF_BLACKHOLE 8932 * or RTF_REJECT flags are set on the IRE. It will not 8933 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8934 */ 8935 if (ire != NULL) { 8936 if (ire->ire_flags & RTF_BLACKHOLE) { 8937 ire_refrele(ire); 8938 MULTIRT_DEBUG_UNTAG(first_mp); 8939 freemsg(first_mp); 8940 return; 8941 } 8942 ire_refrele(ire); 8943 } 8944 if (ip_source_routed(ipha, ipst)) { 8945 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8946 zoneid, ipst); 8947 return; 8948 } 8949 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8950 } 8951 8952 ip_opt_info_t zero_info; 8953 8954 /* 8955 * IPv4 - 8956 * ip_newroute_ipif is called by ip_wput_multicast and 8957 * ip_rput_forward_multicast whenever we need to send 8958 * out a packet to a destination address for which we do not have specific 8959 * routing information. It is used when the packet will be sent out 8960 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8961 * socket option is set or icmp error message wants to go out on a particular 8962 * interface for a unicast packet. 8963 * 8964 * In most cases, the destination address is resolved thanks to the ipif 8965 * intrinsic resolver. However, there are some cases where the call to 8966 * ip_newroute_ipif must take into account the potential presence of 8967 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8968 * that uses the interface. This is specified through flags, 8969 * which can be a combination of: 8970 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8971 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8972 * and flags. Additionally, the packet source address has to be set to 8973 * the specified address. The caller is thus expected to set this flag 8974 * if the packet has no specific source address yet. 8975 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8976 * flag, the resulting ire will inherit the flag. All unresolved routes 8977 * to the destination must be explored in the same call to 8978 * ip_newroute_ipif(). 8979 */ 8980 static void 8981 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8982 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8983 { 8984 areq_t *areq; 8985 ire_t *ire = NULL; 8986 mblk_t *res_mp; 8987 ipaddr_t *addrp; 8988 mblk_t *first_mp; 8989 ire_t *save_ire = NULL; 8990 ipif_t *src_ipif = NULL; 8991 ushort_t ire_marks = 0; 8992 ill_t *dst_ill = NULL; 8993 ipha_t *ipha; 8994 mblk_t *saved_mp; 8995 ire_t *fire = NULL; 8996 mblk_t *copy_mp = NULL; 8997 boolean_t multirt_resolve_next; 8998 boolean_t unspec_src; 8999 ipaddr_t ipha_dst; 9000 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9001 9002 /* 9003 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9004 * here for uniformity 9005 */ 9006 ipif_refhold(ipif); 9007 9008 /* 9009 * This loop is run only once in most cases. 9010 * We loop to resolve further routes only when the destination 9011 * can be reached through multiple RTF_MULTIRT-flagged ires. 9012 */ 9013 do { 9014 if (dst_ill != NULL) { 9015 ill_refrele(dst_ill); 9016 dst_ill = NULL; 9017 } 9018 if (src_ipif != NULL) { 9019 ipif_refrele(src_ipif); 9020 src_ipif = NULL; 9021 } 9022 multirt_resolve_next = B_FALSE; 9023 9024 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9025 ipif->ipif_ill->ill_name)); 9026 9027 first_mp = mp; 9028 if (DB_TYPE(mp) == M_CTL) 9029 mp = mp->b_cont; 9030 ipha = (ipha_t *)mp->b_rptr; 9031 9032 /* 9033 * Save the packet destination address, we may need it after 9034 * the packet has been consumed. 9035 */ 9036 ipha_dst = ipha->ipha_dst; 9037 9038 /* 9039 * If the interface is a pt-pt interface we look for an 9040 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9041 * local_address and the pt-pt destination address. Otherwise 9042 * we just match the local address. 9043 * NOTE: dst could be different than ipha->ipha_dst in case 9044 * of sending igmp multicast packets over a point-to-point 9045 * connection. 9046 * Thus we must be careful enough to check ipha_dst to be a 9047 * multicast address, otherwise it will take xmit_if path for 9048 * multicast packets resulting into kernel stack overflow by 9049 * repeated calls to ip_newroute_ipif from ire_send(). 9050 */ 9051 if (CLASSD(ipha_dst) && 9052 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9053 goto err_ret; 9054 } 9055 9056 /* 9057 * We check if an IRE_OFFSUBNET for the addr that goes through 9058 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9059 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9060 * propagate its flags to the new ire. 9061 */ 9062 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9063 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9064 ip2dbg(("ip_newroute_ipif: " 9065 "ipif_lookup_multi_ire(" 9066 "ipif %p, dst %08x) = fire %p\n", 9067 (void *)ipif, ntohl(dst), (void *)fire)); 9068 } 9069 9070 /* 9071 * Note: While we pick a dst_ill we are really only 9072 * interested in the ill for load spreading. The source 9073 * ipif is determined by source address selection below. 9074 */ 9075 if (IS_IPMP(ipif->ipif_ill)) { 9076 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9077 9078 if (CLASSD(ipha_dst)) 9079 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9080 else 9081 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9082 } else { 9083 dst_ill = ipif->ipif_ill; 9084 ill_refhold(dst_ill); 9085 } 9086 9087 if (dst_ill == NULL) { 9088 if (ip_debug > 2) { 9089 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9090 "for dst %s\n", AF_INET, &dst); 9091 } 9092 goto err_ret; 9093 } 9094 9095 /* 9096 * Pick a source address preferring non-deprecated ones. 9097 * Unlike ip_newroute, we don't do any source address 9098 * selection here since for multicast it really does not help 9099 * in inbound load spreading as in the unicast case. 9100 */ 9101 if ((flags & RTF_SETSRC) && (fire != NULL) && 9102 (fire->ire_flags & RTF_SETSRC)) { 9103 /* 9104 * As requested by flags, an IRE_OFFSUBNET was looked up 9105 * on that interface. This ire has RTF_SETSRC flag, so 9106 * the source address of the packet must be changed. 9107 * Check that the ipif matching the requested source 9108 * address still exists. 9109 */ 9110 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9111 zoneid, NULL, NULL, NULL, NULL, ipst); 9112 } 9113 9114 unspec_src = (connp != NULL && connp->conn_unspec_src); 9115 9116 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9117 (IS_IPMP(ipif->ipif_ill) || 9118 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9119 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9120 (connp != NULL && ipif->ipif_zoneid != zoneid && 9121 ipif->ipif_zoneid != ALL_ZONES)) && 9122 (src_ipif == NULL) && 9123 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9124 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9125 if (src_ipif == NULL) { 9126 if (ip_debug > 2) { 9127 /* ip1dbg */ 9128 pr_addr_dbg("ip_newroute_ipif: " 9129 "no src for dst %s", 9130 AF_INET, &dst); 9131 } 9132 ip1dbg((" on interface %s\n", 9133 dst_ill->ill_name)); 9134 goto err_ret; 9135 } 9136 ipif_refrele(ipif); 9137 ipif = src_ipif; 9138 ipif_refhold(ipif); 9139 } 9140 if (src_ipif == NULL) { 9141 src_ipif = ipif; 9142 ipif_refhold(src_ipif); 9143 } 9144 9145 /* 9146 * Assign a source address while we have the conn. 9147 * We can't have ip_wput_ire pick a source address when the 9148 * packet returns from arp since conn_unspec_src might be set 9149 * and we lose the conn when going through arp. 9150 */ 9151 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9152 ipha->ipha_src = src_ipif->ipif_src_addr; 9153 9154 /* 9155 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9156 * that the outgoing interface does not have an interface ire. 9157 */ 9158 if (CLASSD(ipha_dst) && (connp == NULL || 9159 connp->conn_outgoing_ill == NULL) && 9160 infop->ip_opt_ill_index == 0) { 9161 /* ipif_to_ire returns an held ire */ 9162 ire = ipif_to_ire(ipif); 9163 if (ire == NULL) 9164 goto err_ret; 9165 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9166 goto err_ret; 9167 save_ire = ire; 9168 9169 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9170 "flags %04x\n", 9171 (void *)ire, (void *)ipif, flags)); 9172 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9173 (fire->ire_flags & RTF_MULTIRT)) { 9174 /* 9175 * As requested by flags, an IRE_OFFSUBNET was 9176 * looked up on that interface. This ire has 9177 * RTF_MULTIRT flag, so the resolution loop will 9178 * be re-entered to resolve additional routes on 9179 * other interfaces. For that purpose, a copy of 9180 * the packet is performed at this point. 9181 */ 9182 fire->ire_last_used_time = lbolt; 9183 copy_mp = copymsg(first_mp); 9184 if (copy_mp) { 9185 MULTIRT_DEBUG_TAG(copy_mp); 9186 } 9187 } 9188 if ((flags & RTF_SETSRC) && (fire != NULL) && 9189 (fire->ire_flags & RTF_SETSRC)) { 9190 /* 9191 * As requested by flags, an IRE_OFFSUBET was 9192 * looked up on that interface. This ire has 9193 * RTF_SETSRC flag, so the source address of the 9194 * packet must be changed. 9195 */ 9196 ipha->ipha_src = fire->ire_src_addr; 9197 } 9198 } else { 9199 /* 9200 * The only ways we can come here are: 9201 * 1) IP_BOUND_IF socket option is set 9202 * 2) SO_DONTROUTE socket option is set 9203 * 3) IP_PKTINFO option is passed in as ancillary data. 9204 * In all cases, the new ire will not be added 9205 * into cache table. 9206 */ 9207 ASSERT(connp == NULL || connp->conn_dontroute || 9208 connp->conn_outgoing_ill != NULL || 9209 infop->ip_opt_ill_index != 0); 9210 ire_marks |= IRE_MARK_NOADD; 9211 } 9212 9213 switch (ipif->ipif_net_type) { 9214 case IRE_IF_NORESOLVER: { 9215 /* We have what we need to build an IRE_CACHE. */ 9216 9217 if (dst_ill->ill_resolver_mp == NULL) { 9218 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9219 "for IRE_IF_NORESOLVER ire %p has " 9220 "no ill_resolver_mp\n", 9221 (void *)dst_ill, (void *)ire)); 9222 break; 9223 } 9224 9225 /* 9226 * The new ire inherits the IRE_OFFSUBNET flags 9227 * and source address, if this was requested. 9228 */ 9229 ire = ire_create( 9230 (uchar_t *)&dst, /* dest address */ 9231 (uchar_t *)&ip_g_all_ones, /* mask */ 9232 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9233 NULL, /* gateway address */ 9234 &ipif->ipif_mtu, 9235 NULL, /* no src nce */ 9236 dst_ill->ill_rq, /* recv-from queue */ 9237 dst_ill->ill_wq, /* send-to queue */ 9238 IRE_CACHE, 9239 src_ipif, 9240 (save_ire != NULL ? save_ire->ire_mask : 0), 9241 (fire != NULL) ? /* Parent handle */ 9242 fire->ire_phandle : 0, 9243 (save_ire != NULL) ? /* Interface handle */ 9244 save_ire->ire_ihandle : 0, 9245 (fire != NULL) ? 9246 (fire->ire_flags & 9247 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9248 (save_ire == NULL ? &ire_uinfo_null : 9249 &save_ire->ire_uinfo), 9250 NULL, 9251 NULL, 9252 ipst); 9253 9254 if (ire == NULL) { 9255 if (save_ire != NULL) 9256 ire_refrele(save_ire); 9257 break; 9258 } 9259 9260 ire->ire_marks |= ire_marks; 9261 9262 /* 9263 * If IRE_MARK_NOADD is set then we need to convert 9264 * the max_fragp to a useable value now. This is 9265 * normally done in ire_add_v[46]. We also need to 9266 * associate the ire with an nce (normally would be 9267 * done in ip_wput_nondata()). 9268 * 9269 * Note that IRE_MARK_NOADD packets created here 9270 * do not have a non-null ire_mp pointer. The null 9271 * value of ire_bucket indicates that they were 9272 * never added. 9273 */ 9274 if (ire->ire_marks & IRE_MARK_NOADD) { 9275 uint_t max_frag; 9276 9277 max_frag = *ire->ire_max_fragp; 9278 ire->ire_max_fragp = NULL; 9279 ire->ire_max_frag = max_frag; 9280 9281 if ((ire->ire_nce = ndp_lookup_v4( 9282 ire_to_ill(ire), 9283 (ire->ire_gateway_addr != INADDR_ANY ? 9284 &ire->ire_gateway_addr : &ire->ire_addr), 9285 B_FALSE)) == NULL) { 9286 if (save_ire != NULL) 9287 ire_refrele(save_ire); 9288 break; 9289 } 9290 ASSERT(ire->ire_nce->nce_state == 9291 ND_REACHABLE); 9292 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9293 } 9294 9295 /* Prevent save_ire from getting deleted */ 9296 if (save_ire != NULL) { 9297 IRB_REFHOLD(save_ire->ire_bucket); 9298 /* Has it been removed already ? */ 9299 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9300 IRB_REFRELE(save_ire->ire_bucket); 9301 ire_refrele(save_ire); 9302 break; 9303 } 9304 } 9305 9306 ire_add_then_send(q, ire, first_mp); 9307 9308 /* Assert that save_ire is not deleted yet. */ 9309 if (save_ire != NULL) { 9310 ASSERT(save_ire->ire_ptpn != NULL); 9311 IRB_REFRELE(save_ire->ire_bucket); 9312 ire_refrele(save_ire); 9313 save_ire = NULL; 9314 } 9315 if (fire != NULL) { 9316 ire_refrele(fire); 9317 fire = NULL; 9318 } 9319 9320 /* 9321 * the resolution loop is re-entered if this 9322 * was requested through flags and if we 9323 * actually are in a multirouting case. 9324 */ 9325 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9326 boolean_t need_resolve = 9327 ire_multirt_need_resolve(ipha_dst, 9328 msg_getlabel(copy_mp), ipst); 9329 if (!need_resolve) { 9330 MULTIRT_DEBUG_UNTAG(copy_mp); 9331 freemsg(copy_mp); 9332 copy_mp = NULL; 9333 } else { 9334 /* 9335 * ipif_lookup_group() calls 9336 * ire_lookup_multi() that uses 9337 * ire_ftable_lookup() to find 9338 * an IRE_INTERFACE for the group. 9339 * In the multirt case, 9340 * ire_lookup_multi() then invokes 9341 * ire_multirt_lookup() to find 9342 * the next resolvable ire. 9343 * As a result, we obtain an new 9344 * interface, derived from the 9345 * next ire. 9346 */ 9347 ipif_refrele(ipif); 9348 ipif = ipif_lookup_group(ipha_dst, 9349 zoneid, ipst); 9350 ip2dbg(("ip_newroute_ipif: " 9351 "multirt dst %08x, ipif %p\n", 9352 htonl(dst), (void *)ipif)); 9353 if (ipif != NULL) { 9354 mp = copy_mp; 9355 copy_mp = NULL; 9356 multirt_resolve_next = B_TRUE; 9357 continue; 9358 } else { 9359 freemsg(copy_mp); 9360 } 9361 } 9362 } 9363 if (ipif != NULL) 9364 ipif_refrele(ipif); 9365 ill_refrele(dst_ill); 9366 ipif_refrele(src_ipif); 9367 return; 9368 } 9369 case IRE_IF_RESOLVER: 9370 /* 9371 * We can't build an IRE_CACHE yet, but at least 9372 * we found a resolver that can help. 9373 */ 9374 res_mp = dst_ill->ill_resolver_mp; 9375 if (!OK_RESOLVER_MP(res_mp)) 9376 break; 9377 9378 /* 9379 * We obtain a partial IRE_CACHE which we will pass 9380 * along with the resolver query. When the response 9381 * comes back it will be there ready for us to add. 9382 * The new ire inherits the IRE_OFFSUBNET flags 9383 * and source address, if this was requested. 9384 * The ire_max_frag is atomically set under the 9385 * irebucket lock in ire_add_v[46]. Only in the 9386 * case of IRE_MARK_NOADD, we set it here itself. 9387 */ 9388 ire = ire_create_mp( 9389 (uchar_t *)&dst, /* dest address */ 9390 (uchar_t *)&ip_g_all_ones, /* mask */ 9391 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9392 NULL, /* gateway address */ 9393 (ire_marks & IRE_MARK_NOADD) ? 9394 ipif->ipif_mtu : 0, /* max_frag */ 9395 NULL, /* no src nce */ 9396 dst_ill->ill_rq, /* recv-from queue */ 9397 dst_ill->ill_wq, /* send-to queue */ 9398 IRE_CACHE, 9399 src_ipif, 9400 (save_ire != NULL ? save_ire->ire_mask : 0), 9401 (fire != NULL) ? /* Parent handle */ 9402 fire->ire_phandle : 0, 9403 (save_ire != NULL) ? /* Interface handle */ 9404 save_ire->ire_ihandle : 0, 9405 (fire != NULL) ? /* flags if any */ 9406 (fire->ire_flags & 9407 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9408 (save_ire == NULL ? &ire_uinfo_null : 9409 &save_ire->ire_uinfo), 9410 NULL, 9411 NULL, 9412 ipst); 9413 9414 if (save_ire != NULL) { 9415 ire_refrele(save_ire); 9416 save_ire = NULL; 9417 } 9418 if (ire == NULL) 9419 break; 9420 9421 ire->ire_marks |= ire_marks; 9422 /* 9423 * Construct message chain for the resolver of the 9424 * form: 9425 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9426 * 9427 * NOTE : ire will be added later when the response 9428 * comes back from ARP. If the response does not 9429 * come back, ARP frees the packet. For this reason, 9430 * we can't REFHOLD the bucket of save_ire to prevent 9431 * deletions. We may not be able to REFRELE the 9432 * bucket if the response never comes back. 9433 * Thus, before adding the ire, ire_add_v4 will make 9434 * sure that the interface route does not get deleted. 9435 * This is the only case unlike ip_newroute_v6, 9436 * ip_newroute_ipif_v6 where we can always prevent 9437 * deletions because ire_add_then_send is called after 9438 * creating the IRE. 9439 * If IRE_MARK_NOADD is set, then ire_add_then_send 9440 * does not add this IRE into the IRE CACHE. 9441 */ 9442 ASSERT(ire->ire_mp != NULL); 9443 ire->ire_mp->b_cont = first_mp; 9444 /* Have saved_mp handy, for cleanup if canput fails */ 9445 saved_mp = mp; 9446 mp = copyb(res_mp); 9447 if (mp == NULL) { 9448 /* Prepare for cleanup */ 9449 mp = saved_mp; /* pkt */ 9450 ire_delete(ire); /* ire_mp */ 9451 ire = NULL; 9452 if (copy_mp != NULL) { 9453 MULTIRT_DEBUG_UNTAG(copy_mp); 9454 freemsg(copy_mp); 9455 copy_mp = NULL; 9456 } 9457 break; 9458 } 9459 linkb(mp, ire->ire_mp); 9460 9461 /* 9462 * Fill in the source and dest addrs for the resolver. 9463 * NOTE: this depends on memory layouts imposed by 9464 * ill_init(). There are corner cases above where we 9465 * might've created the IRE with an INADDR_ANY source 9466 * address (e.g., if the zeroth ipif on an underlying 9467 * ill in an IPMP group is 0.0.0.0, but another ipif 9468 * on the ill has a usable test address). If so, tell 9469 * ARP to use ipha_src as its sender address. 9470 */ 9471 areq = (areq_t *)mp->b_rptr; 9472 addrp = (ipaddr_t *)((char *)areq + 9473 areq->areq_sender_addr_offset); 9474 if (ire->ire_src_addr != INADDR_ANY) 9475 *addrp = ire->ire_src_addr; 9476 else 9477 *addrp = ipha->ipha_src; 9478 addrp = (ipaddr_t *)((char *)areq + 9479 areq->areq_target_addr_offset); 9480 *addrp = dst; 9481 /* Up to the resolver. */ 9482 if (canputnext(dst_ill->ill_rq) && 9483 !(dst_ill->ill_arp_closing)) { 9484 putnext(dst_ill->ill_rq, mp); 9485 /* 9486 * The response will come back in ip_wput 9487 * with db_type IRE_DB_TYPE. 9488 */ 9489 } else { 9490 mp->b_cont = NULL; 9491 freeb(mp); /* areq */ 9492 ire_delete(ire); /* ire_mp */ 9493 saved_mp->b_next = NULL; 9494 saved_mp->b_prev = NULL; 9495 freemsg(first_mp); /* pkt */ 9496 ip2dbg(("ip_newroute_ipif: dropped\n")); 9497 } 9498 9499 if (fire != NULL) { 9500 ire_refrele(fire); 9501 fire = NULL; 9502 } 9503 9504 /* 9505 * The resolution loop is re-entered if this was 9506 * requested through flags and we actually are 9507 * in a multirouting case. 9508 */ 9509 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9510 boolean_t need_resolve = 9511 ire_multirt_need_resolve(ipha_dst, 9512 msg_getlabel(copy_mp), ipst); 9513 if (!need_resolve) { 9514 MULTIRT_DEBUG_UNTAG(copy_mp); 9515 freemsg(copy_mp); 9516 copy_mp = NULL; 9517 } else { 9518 /* 9519 * ipif_lookup_group() calls 9520 * ire_lookup_multi() that uses 9521 * ire_ftable_lookup() to find 9522 * an IRE_INTERFACE for the group. 9523 * In the multirt case, 9524 * ire_lookup_multi() then invokes 9525 * ire_multirt_lookup() to find 9526 * the next resolvable ire. 9527 * As a result, we obtain an new 9528 * interface, derived from the 9529 * next ire. 9530 */ 9531 ipif_refrele(ipif); 9532 ipif = ipif_lookup_group(ipha_dst, 9533 zoneid, ipst); 9534 if (ipif != NULL) { 9535 mp = copy_mp; 9536 copy_mp = NULL; 9537 multirt_resolve_next = B_TRUE; 9538 continue; 9539 } else { 9540 freemsg(copy_mp); 9541 } 9542 } 9543 } 9544 if (ipif != NULL) 9545 ipif_refrele(ipif); 9546 ill_refrele(dst_ill); 9547 ipif_refrele(src_ipif); 9548 return; 9549 default: 9550 break; 9551 } 9552 } while (multirt_resolve_next); 9553 9554 err_ret: 9555 ip2dbg(("ip_newroute_ipif: dropped\n")); 9556 if (fire != NULL) 9557 ire_refrele(fire); 9558 ipif_refrele(ipif); 9559 /* Did this packet originate externally? */ 9560 if (dst_ill != NULL) 9561 ill_refrele(dst_ill); 9562 if (src_ipif != NULL) 9563 ipif_refrele(src_ipif); 9564 if (mp->b_prev || mp->b_next) { 9565 mp->b_next = NULL; 9566 mp->b_prev = NULL; 9567 } else { 9568 /* 9569 * Since ip_wput() isn't close to finished, we fill 9570 * in enough of the header for credible error reporting. 9571 */ 9572 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9573 /* Failed */ 9574 freemsg(first_mp); 9575 if (ire != NULL) 9576 ire_refrele(ire); 9577 return; 9578 } 9579 } 9580 /* 9581 * At this point we will have ire only if RTF_BLACKHOLE 9582 * or RTF_REJECT flags are set on the IRE. It will not 9583 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9584 */ 9585 if (ire != NULL) { 9586 if (ire->ire_flags & RTF_BLACKHOLE) { 9587 ire_refrele(ire); 9588 freemsg(first_mp); 9589 return; 9590 } 9591 ire_refrele(ire); 9592 } 9593 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9594 } 9595 9596 /* Name/Value Table Lookup Routine */ 9597 char * 9598 ip_nv_lookup(nv_t *nv, int value) 9599 { 9600 if (!nv) 9601 return (NULL); 9602 for (; nv->nv_name; nv++) { 9603 if (nv->nv_value == value) 9604 return (nv->nv_name); 9605 } 9606 return ("unknown"); 9607 } 9608 9609 /* 9610 * This is a module open, i.e. this is a control stream for access 9611 * to a DLPI device. We allocate an ill_t as the instance data in 9612 * this case. 9613 */ 9614 int 9615 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9616 { 9617 ill_t *ill; 9618 int err; 9619 zoneid_t zoneid; 9620 netstack_t *ns; 9621 ip_stack_t *ipst; 9622 9623 /* 9624 * Prevent unprivileged processes from pushing IP so that 9625 * they can't send raw IP. 9626 */ 9627 if (secpolicy_net_rawaccess(credp) != 0) 9628 return (EPERM); 9629 9630 ns = netstack_find_by_cred(credp); 9631 ASSERT(ns != NULL); 9632 ipst = ns->netstack_ip; 9633 ASSERT(ipst != NULL); 9634 9635 /* 9636 * For exclusive stacks we set the zoneid to zero 9637 * to make IP operate as if in the global zone. 9638 */ 9639 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9640 zoneid = GLOBAL_ZONEID; 9641 else 9642 zoneid = crgetzoneid(credp); 9643 9644 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9645 q->q_ptr = WR(q)->q_ptr = ill; 9646 ill->ill_ipst = ipst; 9647 ill->ill_zoneid = zoneid; 9648 9649 /* 9650 * ill_init initializes the ill fields and then sends down 9651 * down a DL_INFO_REQ after calling qprocson. 9652 */ 9653 err = ill_init(q, ill); 9654 if (err != 0) { 9655 mi_free(ill); 9656 netstack_rele(ipst->ips_netstack); 9657 q->q_ptr = NULL; 9658 WR(q)->q_ptr = NULL; 9659 return (err); 9660 } 9661 9662 /* ill_init initializes the ipsq marking this thread as writer */ 9663 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9664 /* Wait for the DL_INFO_ACK */ 9665 mutex_enter(&ill->ill_lock); 9666 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9667 /* 9668 * Return value of 0 indicates a pending signal. 9669 */ 9670 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9671 if (err == 0) { 9672 mutex_exit(&ill->ill_lock); 9673 (void) ip_close(q, 0); 9674 return (EINTR); 9675 } 9676 } 9677 mutex_exit(&ill->ill_lock); 9678 9679 /* 9680 * ip_rput_other could have set an error in ill_error on 9681 * receipt of M_ERROR. 9682 */ 9683 9684 err = ill->ill_error; 9685 if (err != 0) { 9686 (void) ip_close(q, 0); 9687 return (err); 9688 } 9689 9690 ill->ill_credp = credp; 9691 crhold(credp); 9692 9693 mutex_enter(&ipst->ips_ip_mi_lock); 9694 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9695 credp); 9696 mutex_exit(&ipst->ips_ip_mi_lock); 9697 if (err) { 9698 (void) ip_close(q, 0); 9699 return (err); 9700 } 9701 return (0); 9702 } 9703 9704 /* For /dev/ip aka AF_INET open */ 9705 int 9706 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9707 { 9708 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9709 } 9710 9711 /* For /dev/ip6 aka AF_INET6 open */ 9712 int 9713 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9714 { 9715 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9716 } 9717 9718 /* IP open routine. */ 9719 int 9720 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9721 boolean_t isv6) 9722 { 9723 conn_t *connp; 9724 major_t maj; 9725 zoneid_t zoneid; 9726 netstack_t *ns; 9727 ip_stack_t *ipst; 9728 9729 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9730 9731 /* Allow reopen. */ 9732 if (q->q_ptr != NULL) 9733 return (0); 9734 9735 if (sflag & MODOPEN) { 9736 /* This is a module open */ 9737 return (ip_modopen(q, devp, flag, sflag, credp)); 9738 } 9739 9740 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9741 /* 9742 * Non streams based socket looking for a stream 9743 * to access IP 9744 */ 9745 return (ip_helper_stream_setup(q, devp, flag, sflag, 9746 credp, isv6)); 9747 } 9748 9749 ns = netstack_find_by_cred(credp); 9750 ASSERT(ns != NULL); 9751 ipst = ns->netstack_ip; 9752 ASSERT(ipst != NULL); 9753 9754 /* 9755 * For exclusive stacks we set the zoneid to zero 9756 * to make IP operate as if in the global zone. 9757 */ 9758 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9759 zoneid = GLOBAL_ZONEID; 9760 else 9761 zoneid = crgetzoneid(credp); 9762 9763 /* 9764 * We are opening as a device. This is an IP client stream, and we 9765 * allocate an conn_t as the instance data. 9766 */ 9767 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9768 9769 /* 9770 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9771 * done by netstack_find_by_cred() 9772 */ 9773 netstack_rele(ipst->ips_netstack); 9774 9775 connp->conn_zoneid = zoneid; 9776 connp->conn_sqp = NULL; 9777 connp->conn_initial_sqp = NULL; 9778 connp->conn_final_sqp = NULL; 9779 9780 connp->conn_upq = q; 9781 q->q_ptr = WR(q)->q_ptr = connp; 9782 9783 if (flag & SO_SOCKSTR) 9784 connp->conn_flags |= IPCL_SOCKET; 9785 9786 /* Minor tells us which /dev entry was opened */ 9787 if (isv6) { 9788 connp->conn_af_isv6 = B_TRUE; 9789 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9790 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9791 } else { 9792 connp->conn_af_isv6 = B_FALSE; 9793 connp->conn_pkt_isv6 = B_FALSE; 9794 } 9795 9796 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9797 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9798 connp->conn_minor_arena = ip_minor_arena_la; 9799 } else { 9800 /* 9801 * Either minor numbers in the large arena were exhausted 9802 * or a non socket application is doing the open. 9803 * Try to allocate from the small arena. 9804 */ 9805 if ((connp->conn_dev = 9806 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9807 /* CONN_DEC_REF takes care of netstack_rele() */ 9808 q->q_ptr = WR(q)->q_ptr = NULL; 9809 CONN_DEC_REF(connp); 9810 return (EBUSY); 9811 } 9812 connp->conn_minor_arena = ip_minor_arena_sa; 9813 } 9814 9815 maj = getemajor(*devp); 9816 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9817 9818 /* 9819 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9820 */ 9821 connp->conn_cred = credp; 9822 9823 /* 9824 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9825 */ 9826 connp->conn_recv = ip_conn_input; 9827 9828 crhold(connp->conn_cred); 9829 9830 /* 9831 * If the caller has the process-wide flag set, then default to MAC 9832 * exempt mode. This allows read-down to unlabeled hosts. 9833 */ 9834 if (getpflags(NET_MAC_AWARE, credp) != 0) 9835 connp->conn_mac_exempt = B_TRUE; 9836 9837 connp->conn_rq = q; 9838 connp->conn_wq = WR(q); 9839 9840 /* Non-zero default values */ 9841 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9842 9843 /* 9844 * Make the conn globally visible to walkers 9845 */ 9846 ASSERT(connp->conn_ref == 1); 9847 mutex_enter(&connp->conn_lock); 9848 connp->conn_state_flags &= ~CONN_INCIPIENT; 9849 mutex_exit(&connp->conn_lock); 9850 9851 qprocson(q); 9852 9853 return (0); 9854 } 9855 9856 /* 9857 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9858 * Note that there is no race since either ip_output function works - it 9859 * is just an optimization to enter the best ip_output routine directly. 9860 */ 9861 void 9862 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9863 ip_stack_t *ipst) 9864 { 9865 if (isv6) { 9866 if (bump_mib) { 9867 BUMP_MIB(&ipst->ips_ip6_mib, 9868 ipIfStatsOutSwitchIPVersion); 9869 } 9870 connp->conn_send = ip_output_v6; 9871 connp->conn_pkt_isv6 = B_TRUE; 9872 } else { 9873 if (bump_mib) { 9874 BUMP_MIB(&ipst->ips_ip_mib, 9875 ipIfStatsOutSwitchIPVersion); 9876 } 9877 connp->conn_send = ip_output; 9878 connp->conn_pkt_isv6 = B_FALSE; 9879 } 9880 9881 } 9882 9883 /* 9884 * See if IPsec needs loading because of the options in mp. 9885 */ 9886 static boolean_t 9887 ipsec_opt_present(mblk_t *mp) 9888 { 9889 uint8_t *optcp, *next_optcp, *opt_endcp; 9890 struct opthdr *opt; 9891 struct T_opthdr *topt; 9892 int opthdr_len; 9893 t_uscalar_t optname, optlevel; 9894 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9895 ipsec_req_t *ipsr; 9896 9897 /* 9898 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9899 * return TRUE. 9900 */ 9901 9902 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9903 opt_endcp = optcp + tor->OPT_length; 9904 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9905 opthdr_len = sizeof (struct T_opthdr); 9906 } else { /* O_OPTMGMT_REQ */ 9907 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9908 opthdr_len = sizeof (struct opthdr); 9909 } 9910 for (; optcp < opt_endcp; optcp = next_optcp) { 9911 if (optcp + opthdr_len > opt_endcp) 9912 return (B_FALSE); /* Not enough option header. */ 9913 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9914 topt = (struct T_opthdr *)optcp; 9915 optlevel = topt->level; 9916 optname = topt->name; 9917 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9918 } else { 9919 opt = (struct opthdr *)optcp; 9920 optlevel = opt->level; 9921 optname = opt->name; 9922 next_optcp = optcp + opthdr_len + 9923 _TPI_ALIGN_OPT(opt->len); 9924 } 9925 if ((next_optcp < optcp) || /* wraparound pointer space */ 9926 ((next_optcp >= opt_endcp) && /* last option bad len */ 9927 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9928 return (B_FALSE); /* bad option buffer */ 9929 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9930 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9931 /* 9932 * Check to see if it's an all-bypass or all-zeroes 9933 * IPsec request. Don't bother loading IPsec if 9934 * the socket doesn't want to use it. (A good example 9935 * is a bypass request.) 9936 * 9937 * Basically, if any of the non-NEVER bits are set, 9938 * load IPsec. 9939 */ 9940 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9941 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9942 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9943 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9944 != 0) 9945 return (B_TRUE); 9946 } 9947 } 9948 return (B_FALSE); 9949 } 9950 9951 /* 9952 * If conn is is waiting for ipsec to finish loading, kick it. 9953 */ 9954 /* ARGSUSED */ 9955 static void 9956 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9957 { 9958 t_scalar_t optreq_prim; 9959 mblk_t *mp; 9960 cred_t *cr; 9961 int err = 0; 9962 9963 /* 9964 * This function is called, after ipsec loading is complete. 9965 * Since IP checks exclusively and atomically (i.e it prevents 9966 * ipsec load from completing until ip_optcom_req completes) 9967 * whether ipsec load is complete, there cannot be a race with IP 9968 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9969 */ 9970 mutex_enter(&connp->conn_lock); 9971 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9972 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9973 mp = connp->conn_ipsec_opt_mp; 9974 connp->conn_ipsec_opt_mp = NULL; 9975 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9976 mutex_exit(&connp->conn_lock); 9977 9978 /* 9979 * All Solaris components should pass a db_credp 9980 * for this TPI message, hence we ASSERT. 9981 * But in case there is some other M_PROTO that looks 9982 * like a TPI message sent by some other kernel 9983 * component, we check and return an error. 9984 */ 9985 cr = msg_getcred(mp, NULL); 9986 ASSERT(cr != NULL); 9987 if (cr == NULL) { 9988 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 9989 if (mp != NULL) 9990 qreply(connp->conn_wq, mp); 9991 return; 9992 } 9993 9994 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9995 9996 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9997 if (optreq_prim == T_OPTMGMT_REQ) { 9998 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9999 &ip_opt_obj, B_FALSE); 10000 } else { 10001 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10002 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10003 &ip_opt_obj, B_FALSE); 10004 } 10005 if (err != EINPROGRESS) 10006 CONN_OPER_PENDING_DONE(connp); 10007 return; 10008 } 10009 mutex_exit(&connp->conn_lock); 10010 } 10011 10012 /* 10013 * Called from the ipsec_loader thread, outside any perimeter, to tell 10014 * ip qenable any of the queues waiting for the ipsec loader to 10015 * complete. 10016 */ 10017 void 10018 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10019 { 10020 netstack_t *ns = ipss->ipsec_netstack; 10021 10022 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10023 } 10024 10025 /* 10026 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10027 * determines the grp on which it has to become exclusive, queues the mp 10028 * and IPSQ draining restarts the optmgmt 10029 */ 10030 static boolean_t 10031 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10032 { 10033 conn_t *connp = Q_TO_CONN(q); 10034 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10035 10036 /* 10037 * Take IPsec requests and treat them special. 10038 */ 10039 if (ipsec_opt_present(mp)) { 10040 /* First check if IPsec is loaded. */ 10041 mutex_enter(&ipss->ipsec_loader_lock); 10042 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10043 mutex_exit(&ipss->ipsec_loader_lock); 10044 return (B_FALSE); 10045 } 10046 mutex_enter(&connp->conn_lock); 10047 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10048 10049 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10050 connp->conn_ipsec_opt_mp = mp; 10051 mutex_exit(&connp->conn_lock); 10052 mutex_exit(&ipss->ipsec_loader_lock); 10053 10054 ipsec_loader_loadnow(ipss); 10055 return (B_TRUE); 10056 } 10057 return (B_FALSE); 10058 } 10059 10060 /* 10061 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10062 * all of them are copied to the conn_t. If the req is "zero", the policy is 10063 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10064 * fields. 10065 * We keep only the latest setting of the policy and thus policy setting 10066 * is not incremental/cumulative. 10067 * 10068 * Requests to set policies with multiple alternative actions will 10069 * go through a different API. 10070 */ 10071 int 10072 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10073 { 10074 uint_t ah_req = 0; 10075 uint_t esp_req = 0; 10076 uint_t se_req = 0; 10077 ipsec_act_t *actp = NULL; 10078 uint_t nact; 10079 ipsec_policy_head_t *ph; 10080 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 10081 int error = 0; 10082 netstack_t *ns = connp->conn_netstack; 10083 ip_stack_t *ipst = ns->netstack_ip; 10084 ipsec_stack_t *ipss = ns->netstack_ipsec; 10085 10086 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10087 10088 /* 10089 * The IP_SEC_OPT option does not allow variable length parameters, 10090 * hence a request cannot be NULL. 10091 */ 10092 if (req == NULL) 10093 return (EINVAL); 10094 10095 ah_req = req->ipsr_ah_req; 10096 esp_req = req->ipsr_esp_req; 10097 se_req = req->ipsr_self_encap_req; 10098 10099 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10100 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10101 return (EINVAL); 10102 10103 /* 10104 * Are we dealing with a request to reset the policy (i.e. 10105 * zero requests). 10106 */ 10107 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10108 (esp_req & REQ_MASK) == 0 && 10109 (se_req & REQ_MASK) == 0); 10110 10111 if (!is_pol_reset) { 10112 /* 10113 * If we couldn't load IPsec, fail with "protocol 10114 * not supported". 10115 * IPsec may not have been loaded for a request with zero 10116 * policies, so we don't fail in this case. 10117 */ 10118 mutex_enter(&ipss->ipsec_loader_lock); 10119 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10120 mutex_exit(&ipss->ipsec_loader_lock); 10121 return (EPROTONOSUPPORT); 10122 } 10123 mutex_exit(&ipss->ipsec_loader_lock); 10124 10125 /* 10126 * Test for valid requests. Invalid algorithms 10127 * need to be tested by IPsec code because new 10128 * algorithms can be added dynamically. 10129 */ 10130 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10131 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10132 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10133 return (EINVAL); 10134 } 10135 10136 /* 10137 * Only privileged users can issue these 10138 * requests. 10139 */ 10140 if (((ah_req & IPSEC_PREF_NEVER) || 10141 (esp_req & IPSEC_PREF_NEVER) || 10142 (se_req & IPSEC_PREF_NEVER)) && 10143 secpolicy_ip_config(cr, B_FALSE) != 0) { 10144 return (EPERM); 10145 } 10146 10147 /* 10148 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10149 * are mutually exclusive. 10150 */ 10151 if (((ah_req & REQ_MASK) == REQ_MASK) || 10152 ((esp_req & REQ_MASK) == REQ_MASK) || 10153 ((se_req & REQ_MASK) == REQ_MASK)) { 10154 /* Both of them are set */ 10155 return (EINVAL); 10156 } 10157 } 10158 10159 mutex_enter(&connp->conn_lock); 10160 10161 /* 10162 * If we have already cached policies in ip_bind_connected*(), don't 10163 * let them change now. We cache policies for connections 10164 * whose src,dst [addr, port] is known. 10165 */ 10166 if (connp->conn_policy_cached) { 10167 mutex_exit(&connp->conn_lock); 10168 return (EINVAL); 10169 } 10170 10171 /* 10172 * We have a zero policies, reset the connection policy if already 10173 * set. This will cause the connection to inherit the 10174 * global policy, if any. 10175 */ 10176 if (is_pol_reset) { 10177 if (connp->conn_policy != NULL) { 10178 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10179 connp->conn_policy = NULL; 10180 } 10181 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10182 connp->conn_in_enforce_policy = B_FALSE; 10183 connp->conn_out_enforce_policy = B_FALSE; 10184 mutex_exit(&connp->conn_lock); 10185 return (0); 10186 } 10187 10188 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10189 ipst->ips_netstack); 10190 if (ph == NULL) 10191 goto enomem; 10192 10193 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10194 if (actp == NULL) 10195 goto enomem; 10196 10197 /* 10198 * Always insert IPv4 policy entries, since they can also apply to 10199 * ipv6 sockets being used in ipv4-compat mode. 10200 */ 10201 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10202 IPSEC_TYPE_INBOUND, ns)) 10203 goto enomem; 10204 is_pol_inserted = B_TRUE; 10205 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 10206 IPSEC_TYPE_OUTBOUND, ns)) 10207 goto enomem; 10208 10209 /* 10210 * We're looking at a v6 socket, also insert the v6-specific 10211 * entries. 10212 */ 10213 if (connp->conn_af_isv6) { 10214 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10215 IPSEC_TYPE_INBOUND, ns)) 10216 goto enomem; 10217 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 10218 IPSEC_TYPE_OUTBOUND, ns)) 10219 goto enomem; 10220 } 10221 10222 ipsec_actvec_free(actp, nact); 10223 10224 /* 10225 * If the requests need security, set enforce_policy. 10226 * If the requests are IPSEC_PREF_NEVER, one should 10227 * still set conn_out_enforce_policy so that an ipsec_out 10228 * gets attached in ip_wput. This is needed so that 10229 * for connections that we don't cache policy in ip_bind, 10230 * if global policy matches in ip_wput_attach_policy, we 10231 * don't wrongly inherit global policy. Similarly, we need 10232 * to set conn_in_enforce_policy also so that we don't verify 10233 * policy wrongly. 10234 */ 10235 if ((ah_req & REQ_MASK) != 0 || 10236 (esp_req & REQ_MASK) != 0 || 10237 (se_req & REQ_MASK) != 0) { 10238 connp->conn_in_enforce_policy = B_TRUE; 10239 connp->conn_out_enforce_policy = B_TRUE; 10240 connp->conn_flags |= IPCL_CHECK_POLICY; 10241 } 10242 10243 mutex_exit(&connp->conn_lock); 10244 return (error); 10245 #undef REQ_MASK 10246 10247 /* 10248 * Common memory-allocation-failure exit path. 10249 */ 10250 enomem: 10251 mutex_exit(&connp->conn_lock); 10252 if (actp != NULL) 10253 ipsec_actvec_free(actp, nact); 10254 if (is_pol_inserted) 10255 ipsec_polhead_flush(ph, ns); 10256 return (ENOMEM); 10257 } 10258 10259 /* 10260 * Only for options that pass in an IP addr. Currently only V4 options 10261 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10262 * So this function assumes level is IPPROTO_IP 10263 */ 10264 int 10265 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10266 mblk_t *first_mp) 10267 { 10268 ipif_t *ipif = NULL; 10269 int error; 10270 ill_t *ill; 10271 int zoneid; 10272 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10273 10274 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10275 10276 if (addr != INADDR_ANY || checkonly) { 10277 ASSERT(connp != NULL); 10278 zoneid = IPCL_ZONEID(connp); 10279 if (option == IP_NEXTHOP) { 10280 ipif = ipif_lookup_onlink_addr(addr, 10281 connp->conn_zoneid, ipst); 10282 } else { 10283 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10284 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10285 &error, ipst); 10286 } 10287 if (ipif == NULL) { 10288 if (error == EINPROGRESS) 10289 return (error); 10290 if ((option == IP_MULTICAST_IF) || 10291 (option == IP_NEXTHOP)) 10292 return (EHOSTUNREACH); 10293 else 10294 return (EINVAL); 10295 } else if (checkonly) { 10296 if (option == IP_MULTICAST_IF) { 10297 ill = ipif->ipif_ill; 10298 /* not supported by the virtual network iface */ 10299 if (IS_VNI(ill)) { 10300 ipif_refrele(ipif); 10301 return (EINVAL); 10302 } 10303 } 10304 ipif_refrele(ipif); 10305 return (0); 10306 } 10307 ill = ipif->ipif_ill; 10308 mutex_enter(&connp->conn_lock); 10309 mutex_enter(&ill->ill_lock); 10310 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10311 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10312 mutex_exit(&ill->ill_lock); 10313 mutex_exit(&connp->conn_lock); 10314 ipif_refrele(ipif); 10315 return (option == IP_MULTICAST_IF ? 10316 EHOSTUNREACH : EINVAL); 10317 } 10318 } else { 10319 mutex_enter(&connp->conn_lock); 10320 } 10321 10322 /* None of the options below are supported on the VNI */ 10323 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10324 mutex_exit(&ill->ill_lock); 10325 mutex_exit(&connp->conn_lock); 10326 ipif_refrele(ipif); 10327 return (EINVAL); 10328 } 10329 10330 switch (option) { 10331 case IP_MULTICAST_IF: 10332 connp->conn_multicast_ipif = ipif; 10333 break; 10334 case IP_NEXTHOP: 10335 connp->conn_nexthop_v4 = addr; 10336 connp->conn_nexthop_set = B_TRUE; 10337 break; 10338 } 10339 10340 if (ipif != NULL) { 10341 mutex_exit(&ill->ill_lock); 10342 mutex_exit(&connp->conn_lock); 10343 ipif_refrele(ipif); 10344 return (0); 10345 } 10346 mutex_exit(&connp->conn_lock); 10347 /* We succeded in cleared the option */ 10348 return (0); 10349 } 10350 10351 /* 10352 * For options that pass in an ifindex specifying the ill. V6 options always 10353 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10354 */ 10355 int 10356 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10357 int level, int option, mblk_t *first_mp) 10358 { 10359 ill_t *ill = NULL; 10360 int error = 0; 10361 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10362 10363 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10364 if (ifindex != 0) { 10365 ASSERT(connp != NULL); 10366 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10367 first_mp, ip_restart_optmgmt, &error, ipst); 10368 if (ill != NULL) { 10369 if (checkonly) { 10370 /* not supported by the virtual network iface */ 10371 if (IS_VNI(ill)) { 10372 ill_refrele(ill); 10373 return (EINVAL); 10374 } 10375 ill_refrele(ill); 10376 return (0); 10377 } 10378 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10379 0, NULL)) { 10380 ill_refrele(ill); 10381 ill = NULL; 10382 mutex_enter(&connp->conn_lock); 10383 goto setit; 10384 } 10385 mutex_enter(&connp->conn_lock); 10386 mutex_enter(&ill->ill_lock); 10387 if (ill->ill_state_flags & ILL_CONDEMNED) { 10388 mutex_exit(&ill->ill_lock); 10389 mutex_exit(&connp->conn_lock); 10390 ill_refrele(ill); 10391 ill = NULL; 10392 mutex_enter(&connp->conn_lock); 10393 } 10394 goto setit; 10395 } else if (error == EINPROGRESS) { 10396 return (error); 10397 } else { 10398 error = 0; 10399 } 10400 } 10401 mutex_enter(&connp->conn_lock); 10402 setit: 10403 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10404 10405 /* 10406 * The options below assume that the ILL (if any) transmits and/or 10407 * receives traffic. Neither of which is true for the virtual network 10408 * interface, so fail setting these on a VNI. 10409 */ 10410 if (IS_VNI(ill)) { 10411 ASSERT(ill != NULL); 10412 mutex_exit(&ill->ill_lock); 10413 mutex_exit(&connp->conn_lock); 10414 ill_refrele(ill); 10415 return (EINVAL); 10416 } 10417 10418 if (level == IPPROTO_IP) { 10419 switch (option) { 10420 case IP_BOUND_IF: 10421 connp->conn_incoming_ill = ill; 10422 connp->conn_outgoing_ill = ill; 10423 break; 10424 10425 case IP_MULTICAST_IF: 10426 /* 10427 * This option is an internal special. The socket 10428 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10429 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10430 * specifies an ifindex and we try first on V6 ill's. 10431 * If we don't find one, we they try using on v4 ill's 10432 * intenally and we come here. 10433 */ 10434 if (!checkonly && ill != NULL) { 10435 ipif_t *ipif; 10436 ipif = ill->ill_ipif; 10437 10438 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10439 mutex_exit(&ill->ill_lock); 10440 mutex_exit(&connp->conn_lock); 10441 ill_refrele(ill); 10442 ill = NULL; 10443 mutex_enter(&connp->conn_lock); 10444 } else { 10445 connp->conn_multicast_ipif = ipif; 10446 } 10447 } 10448 break; 10449 10450 case IP_DHCPINIT_IF: 10451 if (connp->conn_dhcpinit_ill != NULL) { 10452 /* 10453 * We've locked the conn so conn_cleanup_ill() 10454 * cannot clear conn_dhcpinit_ill -- so it's 10455 * safe to access the ill. 10456 */ 10457 ill_t *oill = connp->conn_dhcpinit_ill; 10458 10459 ASSERT(oill->ill_dhcpinit != 0); 10460 atomic_dec_32(&oill->ill_dhcpinit); 10461 connp->conn_dhcpinit_ill = NULL; 10462 } 10463 10464 if (ill != NULL) { 10465 connp->conn_dhcpinit_ill = ill; 10466 atomic_inc_32(&ill->ill_dhcpinit); 10467 } 10468 break; 10469 } 10470 } else { 10471 switch (option) { 10472 case IPV6_BOUND_IF: 10473 connp->conn_incoming_ill = ill; 10474 connp->conn_outgoing_ill = ill; 10475 break; 10476 10477 case IPV6_MULTICAST_IF: 10478 /* 10479 * Set conn_multicast_ill to be the IPv6 ill. 10480 * Set conn_multicast_ipif to be an IPv4 ipif 10481 * for ifindex to make IPv4 mapped addresses 10482 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10483 * Even if no IPv6 ill exists for the ifindex 10484 * we need to check for an IPv4 ifindex in order 10485 * for this to work with mapped addresses. In that 10486 * case only set conn_multicast_ipif. 10487 */ 10488 if (!checkonly) { 10489 if (ifindex == 0) { 10490 connp->conn_multicast_ill = NULL; 10491 connp->conn_multicast_ipif = NULL; 10492 } else if (ill != NULL) { 10493 connp->conn_multicast_ill = ill; 10494 } 10495 } 10496 break; 10497 } 10498 } 10499 10500 if (ill != NULL) { 10501 mutex_exit(&ill->ill_lock); 10502 mutex_exit(&connp->conn_lock); 10503 ill_refrele(ill); 10504 return (0); 10505 } 10506 mutex_exit(&connp->conn_lock); 10507 /* 10508 * We succeeded in clearing the option (ifindex == 0) or failed to 10509 * locate the ill and could not set the option (ifindex != 0) 10510 */ 10511 return (ifindex == 0 ? 0 : EINVAL); 10512 } 10513 10514 /* This routine sets socket options. */ 10515 /* ARGSUSED */ 10516 int 10517 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10518 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10519 void *dummy, cred_t *cr, mblk_t *first_mp) 10520 { 10521 int *i1 = (int *)invalp; 10522 conn_t *connp = Q_TO_CONN(q); 10523 int error = 0; 10524 boolean_t checkonly; 10525 ire_t *ire; 10526 boolean_t found; 10527 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10528 10529 switch (optset_context) { 10530 10531 case SETFN_OPTCOM_CHECKONLY: 10532 checkonly = B_TRUE; 10533 /* 10534 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10535 * inlen != 0 implies value supplied and 10536 * we have to "pretend" to set it. 10537 * inlen == 0 implies that there is no 10538 * value part in T_CHECK request and just validation 10539 * done elsewhere should be enough, we just return here. 10540 */ 10541 if (inlen == 0) { 10542 *outlenp = 0; 10543 return (0); 10544 } 10545 break; 10546 case SETFN_OPTCOM_NEGOTIATE: 10547 case SETFN_UD_NEGOTIATE: 10548 case SETFN_CONN_NEGOTIATE: 10549 checkonly = B_FALSE; 10550 break; 10551 default: 10552 /* 10553 * We should never get here 10554 */ 10555 *outlenp = 0; 10556 return (EINVAL); 10557 } 10558 10559 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10560 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10561 10562 /* 10563 * For fixed length options, no sanity check 10564 * of passed in length is done. It is assumed *_optcom_req() 10565 * routines do the right thing. 10566 */ 10567 10568 switch (level) { 10569 case SOL_SOCKET: 10570 /* 10571 * conn_lock protects the bitfields, and is used to 10572 * set the fields atomically. 10573 */ 10574 switch (name) { 10575 case SO_BROADCAST: 10576 if (!checkonly) { 10577 /* TODO: use value someplace? */ 10578 mutex_enter(&connp->conn_lock); 10579 connp->conn_broadcast = *i1 ? 1 : 0; 10580 mutex_exit(&connp->conn_lock); 10581 } 10582 break; /* goto sizeof (int) option return */ 10583 case SO_USELOOPBACK: 10584 if (!checkonly) { 10585 /* TODO: use value someplace? */ 10586 mutex_enter(&connp->conn_lock); 10587 connp->conn_loopback = *i1 ? 1 : 0; 10588 mutex_exit(&connp->conn_lock); 10589 } 10590 break; /* goto sizeof (int) option return */ 10591 case SO_DONTROUTE: 10592 if (!checkonly) { 10593 mutex_enter(&connp->conn_lock); 10594 connp->conn_dontroute = *i1 ? 1 : 0; 10595 mutex_exit(&connp->conn_lock); 10596 } 10597 break; /* goto sizeof (int) option return */ 10598 case SO_REUSEADDR: 10599 if (!checkonly) { 10600 mutex_enter(&connp->conn_lock); 10601 connp->conn_reuseaddr = *i1 ? 1 : 0; 10602 mutex_exit(&connp->conn_lock); 10603 } 10604 break; /* goto sizeof (int) option return */ 10605 case SO_PROTOTYPE: 10606 if (!checkonly) { 10607 mutex_enter(&connp->conn_lock); 10608 connp->conn_proto = *i1; 10609 mutex_exit(&connp->conn_lock); 10610 } 10611 break; /* goto sizeof (int) option return */ 10612 case SO_ALLZONES: 10613 if (!checkonly) { 10614 mutex_enter(&connp->conn_lock); 10615 if (IPCL_IS_BOUND(connp)) { 10616 mutex_exit(&connp->conn_lock); 10617 return (EINVAL); 10618 } 10619 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10620 mutex_exit(&connp->conn_lock); 10621 } 10622 break; /* goto sizeof (int) option return */ 10623 case SO_ANON_MLP: 10624 if (!checkonly) { 10625 mutex_enter(&connp->conn_lock); 10626 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10627 mutex_exit(&connp->conn_lock); 10628 } 10629 break; /* goto sizeof (int) option return */ 10630 case SO_MAC_EXEMPT: 10631 if (secpolicy_net_mac_aware(cr) != 0 || 10632 IPCL_IS_BOUND(connp)) 10633 return (EACCES); 10634 if (!checkonly) { 10635 mutex_enter(&connp->conn_lock); 10636 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10637 mutex_exit(&connp->conn_lock); 10638 } 10639 break; /* goto sizeof (int) option return */ 10640 default: 10641 /* 10642 * "soft" error (negative) 10643 * option not handled at this level 10644 * Note: Do not modify *outlenp 10645 */ 10646 return (-EINVAL); 10647 } 10648 break; 10649 case IPPROTO_IP: 10650 switch (name) { 10651 case IP_NEXTHOP: 10652 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10653 return (EPERM); 10654 /* FALLTHRU */ 10655 case IP_MULTICAST_IF: { 10656 ipaddr_t addr = *i1; 10657 10658 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10659 first_mp); 10660 if (error != 0) 10661 return (error); 10662 break; /* goto sizeof (int) option return */ 10663 } 10664 10665 case IP_MULTICAST_TTL: 10666 /* Recorded in transport above IP */ 10667 *outvalp = *invalp; 10668 *outlenp = sizeof (uchar_t); 10669 return (0); 10670 case IP_MULTICAST_LOOP: 10671 if (!checkonly) { 10672 mutex_enter(&connp->conn_lock); 10673 connp->conn_multicast_loop = *invalp ? 1 : 0; 10674 mutex_exit(&connp->conn_lock); 10675 } 10676 *outvalp = *invalp; 10677 *outlenp = sizeof (uchar_t); 10678 return (0); 10679 case IP_ADD_MEMBERSHIP: 10680 case MCAST_JOIN_GROUP: 10681 case IP_DROP_MEMBERSHIP: 10682 case MCAST_LEAVE_GROUP: { 10683 struct ip_mreq *mreqp; 10684 struct group_req *greqp; 10685 ire_t *ire; 10686 boolean_t done = B_FALSE; 10687 ipaddr_t group, ifaddr; 10688 struct sockaddr_in *sin; 10689 uint32_t *ifindexp; 10690 boolean_t mcast_opt = B_TRUE; 10691 mcast_record_t fmode; 10692 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10693 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10694 10695 switch (name) { 10696 case IP_ADD_MEMBERSHIP: 10697 mcast_opt = B_FALSE; 10698 /* FALLTHRU */ 10699 case MCAST_JOIN_GROUP: 10700 fmode = MODE_IS_EXCLUDE; 10701 optfn = ip_opt_add_group; 10702 break; 10703 10704 case IP_DROP_MEMBERSHIP: 10705 mcast_opt = B_FALSE; 10706 /* FALLTHRU */ 10707 case MCAST_LEAVE_GROUP: 10708 fmode = MODE_IS_INCLUDE; 10709 optfn = ip_opt_delete_group; 10710 break; 10711 } 10712 10713 if (mcast_opt) { 10714 greqp = (struct group_req *)i1; 10715 sin = (struct sockaddr_in *)&greqp->gr_group; 10716 if (sin->sin_family != AF_INET) { 10717 *outlenp = 0; 10718 return (ENOPROTOOPT); 10719 } 10720 group = (ipaddr_t)sin->sin_addr.s_addr; 10721 ifaddr = INADDR_ANY; 10722 ifindexp = &greqp->gr_interface; 10723 } else { 10724 mreqp = (struct ip_mreq *)i1; 10725 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10726 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10727 ifindexp = NULL; 10728 } 10729 10730 /* 10731 * In the multirouting case, we need to replicate 10732 * the request on all interfaces that will take part 10733 * in replication. We do so because multirouting is 10734 * reflective, thus we will probably receive multi- 10735 * casts on those interfaces. 10736 * The ip_multirt_apply_membership() succeeds if the 10737 * operation succeeds on at least one interface. 10738 */ 10739 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10740 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10741 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10742 if (ire != NULL) { 10743 if (ire->ire_flags & RTF_MULTIRT) { 10744 error = ip_multirt_apply_membership( 10745 optfn, ire, connp, checkonly, group, 10746 fmode, INADDR_ANY, first_mp); 10747 done = B_TRUE; 10748 } 10749 ire_refrele(ire); 10750 } 10751 if (!done) { 10752 error = optfn(connp, checkonly, group, ifaddr, 10753 ifindexp, fmode, INADDR_ANY, first_mp); 10754 } 10755 if (error) { 10756 /* 10757 * EINPROGRESS is a soft error, needs retry 10758 * so don't make *outlenp zero. 10759 */ 10760 if (error != EINPROGRESS) 10761 *outlenp = 0; 10762 return (error); 10763 } 10764 /* OK return - copy input buffer into output buffer */ 10765 if (invalp != outvalp) { 10766 /* don't trust bcopy for identical src/dst */ 10767 bcopy(invalp, outvalp, inlen); 10768 } 10769 *outlenp = inlen; 10770 return (0); 10771 } 10772 case IP_BLOCK_SOURCE: 10773 case IP_UNBLOCK_SOURCE: 10774 case IP_ADD_SOURCE_MEMBERSHIP: 10775 case IP_DROP_SOURCE_MEMBERSHIP: 10776 case MCAST_BLOCK_SOURCE: 10777 case MCAST_UNBLOCK_SOURCE: 10778 case MCAST_JOIN_SOURCE_GROUP: 10779 case MCAST_LEAVE_SOURCE_GROUP: { 10780 struct ip_mreq_source *imreqp; 10781 struct group_source_req *gsreqp; 10782 in_addr_t grp, src, ifaddr = INADDR_ANY; 10783 uint32_t ifindex = 0; 10784 mcast_record_t fmode; 10785 struct sockaddr_in *sin; 10786 ire_t *ire; 10787 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10788 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10789 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10790 10791 switch (name) { 10792 case IP_BLOCK_SOURCE: 10793 mcast_opt = B_FALSE; 10794 /* FALLTHRU */ 10795 case MCAST_BLOCK_SOURCE: 10796 fmode = MODE_IS_EXCLUDE; 10797 optfn = ip_opt_add_group; 10798 break; 10799 10800 case IP_UNBLOCK_SOURCE: 10801 mcast_opt = B_FALSE; 10802 /* FALLTHRU */ 10803 case MCAST_UNBLOCK_SOURCE: 10804 fmode = MODE_IS_EXCLUDE; 10805 optfn = ip_opt_delete_group; 10806 break; 10807 10808 case IP_ADD_SOURCE_MEMBERSHIP: 10809 mcast_opt = B_FALSE; 10810 /* FALLTHRU */ 10811 case MCAST_JOIN_SOURCE_GROUP: 10812 fmode = MODE_IS_INCLUDE; 10813 optfn = ip_opt_add_group; 10814 break; 10815 10816 case IP_DROP_SOURCE_MEMBERSHIP: 10817 mcast_opt = B_FALSE; 10818 /* FALLTHRU */ 10819 case MCAST_LEAVE_SOURCE_GROUP: 10820 fmode = MODE_IS_INCLUDE; 10821 optfn = ip_opt_delete_group; 10822 break; 10823 } 10824 10825 if (mcast_opt) { 10826 gsreqp = (struct group_source_req *)i1; 10827 if (gsreqp->gsr_group.ss_family != AF_INET) { 10828 *outlenp = 0; 10829 return (ENOPROTOOPT); 10830 } 10831 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10832 grp = (ipaddr_t)sin->sin_addr.s_addr; 10833 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10834 src = (ipaddr_t)sin->sin_addr.s_addr; 10835 ifindex = gsreqp->gsr_interface; 10836 } else { 10837 imreqp = (struct ip_mreq_source *)i1; 10838 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10839 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10840 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10841 } 10842 10843 /* 10844 * In the multirouting case, we need to replicate 10845 * the request as noted in the mcast cases above. 10846 */ 10847 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10848 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10849 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10850 if (ire != NULL) { 10851 if (ire->ire_flags & RTF_MULTIRT) { 10852 error = ip_multirt_apply_membership( 10853 optfn, ire, connp, checkonly, grp, 10854 fmode, src, first_mp); 10855 done = B_TRUE; 10856 } 10857 ire_refrele(ire); 10858 } 10859 if (!done) { 10860 error = optfn(connp, checkonly, grp, ifaddr, 10861 &ifindex, fmode, src, first_mp); 10862 } 10863 if (error != 0) { 10864 /* 10865 * EINPROGRESS is a soft error, needs retry 10866 * so don't make *outlenp zero. 10867 */ 10868 if (error != EINPROGRESS) 10869 *outlenp = 0; 10870 return (error); 10871 } 10872 /* OK return - copy input buffer into output buffer */ 10873 if (invalp != outvalp) { 10874 bcopy(invalp, outvalp, inlen); 10875 } 10876 *outlenp = inlen; 10877 return (0); 10878 } 10879 case IP_SEC_OPT: 10880 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10881 if (error != 0) { 10882 *outlenp = 0; 10883 return (error); 10884 } 10885 break; 10886 case IP_HDRINCL: 10887 case IP_OPTIONS: 10888 case T_IP_OPTIONS: 10889 case IP_TOS: 10890 case T_IP_TOS: 10891 case IP_TTL: 10892 case IP_RECVDSTADDR: 10893 case IP_RECVOPTS: 10894 /* OK return - copy input buffer into output buffer */ 10895 if (invalp != outvalp) { 10896 /* don't trust bcopy for identical src/dst */ 10897 bcopy(invalp, outvalp, inlen); 10898 } 10899 *outlenp = inlen; 10900 return (0); 10901 case IP_RECVIF: 10902 /* Retrieve the inbound interface index */ 10903 if (!checkonly) { 10904 mutex_enter(&connp->conn_lock); 10905 connp->conn_recvif = *i1 ? 1 : 0; 10906 mutex_exit(&connp->conn_lock); 10907 } 10908 break; /* goto sizeof (int) option return */ 10909 case IP_RECVPKTINFO: 10910 if (!checkonly) { 10911 mutex_enter(&connp->conn_lock); 10912 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10913 mutex_exit(&connp->conn_lock); 10914 } 10915 break; /* goto sizeof (int) option return */ 10916 case IP_RECVSLLA: 10917 /* Retrieve the source link layer address */ 10918 if (!checkonly) { 10919 mutex_enter(&connp->conn_lock); 10920 connp->conn_recvslla = *i1 ? 1 : 0; 10921 mutex_exit(&connp->conn_lock); 10922 } 10923 break; /* goto sizeof (int) option return */ 10924 case MRT_INIT: 10925 case MRT_DONE: 10926 case MRT_ADD_VIF: 10927 case MRT_DEL_VIF: 10928 case MRT_ADD_MFC: 10929 case MRT_DEL_MFC: 10930 case MRT_ASSERT: 10931 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10932 *outlenp = 0; 10933 return (error); 10934 } 10935 error = ip_mrouter_set((int)name, q, checkonly, 10936 (uchar_t *)invalp, inlen, first_mp); 10937 if (error) { 10938 *outlenp = 0; 10939 return (error); 10940 } 10941 /* OK return - copy input buffer into output buffer */ 10942 if (invalp != outvalp) { 10943 /* don't trust bcopy for identical src/dst */ 10944 bcopy(invalp, outvalp, inlen); 10945 } 10946 *outlenp = inlen; 10947 return (0); 10948 case IP_BOUND_IF: 10949 case IP_DHCPINIT_IF: 10950 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10951 level, name, first_mp); 10952 if (error != 0) 10953 return (error); 10954 break; /* goto sizeof (int) option return */ 10955 10956 case IP_UNSPEC_SRC: 10957 /* Allow sending with a zero source address */ 10958 if (!checkonly) { 10959 mutex_enter(&connp->conn_lock); 10960 connp->conn_unspec_src = *i1 ? 1 : 0; 10961 mutex_exit(&connp->conn_lock); 10962 } 10963 break; /* goto sizeof (int) option return */ 10964 default: 10965 /* 10966 * "soft" error (negative) 10967 * option not handled at this level 10968 * Note: Do not modify *outlenp 10969 */ 10970 return (-EINVAL); 10971 } 10972 break; 10973 case IPPROTO_IPV6: 10974 switch (name) { 10975 case IPV6_BOUND_IF: 10976 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10977 level, name, first_mp); 10978 if (error != 0) 10979 return (error); 10980 break; /* goto sizeof (int) option return */ 10981 10982 case IPV6_MULTICAST_IF: 10983 /* 10984 * The only possible errors are EINPROGRESS and 10985 * EINVAL. EINPROGRESS will be restarted and is not 10986 * a hard error. We call this option on both V4 and V6 10987 * If both return EINVAL, then this call returns 10988 * EINVAL. If at least one of them succeeds we 10989 * return success. 10990 */ 10991 found = B_FALSE; 10992 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10993 level, name, first_mp); 10994 if (error == EINPROGRESS) 10995 return (error); 10996 if (error == 0) 10997 found = B_TRUE; 10998 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10999 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11000 if (error == 0) 11001 found = B_TRUE; 11002 if (!found) 11003 return (error); 11004 break; /* goto sizeof (int) option return */ 11005 11006 case IPV6_MULTICAST_HOPS: 11007 /* Recorded in transport above IP */ 11008 break; /* goto sizeof (int) option return */ 11009 case IPV6_MULTICAST_LOOP: 11010 if (!checkonly) { 11011 mutex_enter(&connp->conn_lock); 11012 connp->conn_multicast_loop = *i1; 11013 mutex_exit(&connp->conn_lock); 11014 } 11015 break; /* goto sizeof (int) option return */ 11016 case IPV6_JOIN_GROUP: 11017 case MCAST_JOIN_GROUP: 11018 case IPV6_LEAVE_GROUP: 11019 case MCAST_LEAVE_GROUP: { 11020 struct ipv6_mreq *ip_mreqp; 11021 struct group_req *greqp; 11022 ire_t *ire; 11023 boolean_t done = B_FALSE; 11024 in6_addr_t groupv6; 11025 uint32_t ifindex; 11026 boolean_t mcast_opt = B_TRUE; 11027 mcast_record_t fmode; 11028 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11029 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11030 11031 switch (name) { 11032 case IPV6_JOIN_GROUP: 11033 mcast_opt = B_FALSE; 11034 /* FALLTHRU */ 11035 case MCAST_JOIN_GROUP: 11036 fmode = MODE_IS_EXCLUDE; 11037 optfn = ip_opt_add_group_v6; 11038 break; 11039 11040 case IPV6_LEAVE_GROUP: 11041 mcast_opt = B_FALSE; 11042 /* FALLTHRU */ 11043 case MCAST_LEAVE_GROUP: 11044 fmode = MODE_IS_INCLUDE; 11045 optfn = ip_opt_delete_group_v6; 11046 break; 11047 } 11048 11049 if (mcast_opt) { 11050 struct sockaddr_in *sin; 11051 struct sockaddr_in6 *sin6; 11052 greqp = (struct group_req *)i1; 11053 if (greqp->gr_group.ss_family == AF_INET) { 11054 sin = (struct sockaddr_in *) 11055 &(greqp->gr_group); 11056 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11057 &groupv6); 11058 } else { 11059 sin6 = (struct sockaddr_in6 *) 11060 &(greqp->gr_group); 11061 groupv6 = sin6->sin6_addr; 11062 } 11063 ifindex = greqp->gr_interface; 11064 } else { 11065 ip_mreqp = (struct ipv6_mreq *)i1; 11066 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11067 ifindex = ip_mreqp->ipv6mr_interface; 11068 } 11069 /* 11070 * In the multirouting case, we need to replicate 11071 * the request on all interfaces that will take part 11072 * in replication. We do so because multirouting is 11073 * reflective, thus we will probably receive multi- 11074 * casts on those interfaces. 11075 * The ip_multirt_apply_membership_v6() succeeds if 11076 * the operation succeeds on at least one interface. 11077 */ 11078 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11079 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11080 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11081 if (ire != NULL) { 11082 if (ire->ire_flags & RTF_MULTIRT) { 11083 error = ip_multirt_apply_membership_v6( 11084 optfn, ire, connp, checkonly, 11085 &groupv6, fmode, &ipv6_all_zeros, 11086 first_mp); 11087 done = B_TRUE; 11088 } 11089 ire_refrele(ire); 11090 } 11091 if (!done) { 11092 error = optfn(connp, checkonly, &groupv6, 11093 ifindex, fmode, &ipv6_all_zeros, first_mp); 11094 } 11095 if (error) { 11096 /* 11097 * EINPROGRESS is a soft error, needs retry 11098 * so don't make *outlenp zero. 11099 */ 11100 if (error != EINPROGRESS) 11101 *outlenp = 0; 11102 return (error); 11103 } 11104 /* OK return - copy input buffer into output buffer */ 11105 if (invalp != outvalp) { 11106 /* don't trust bcopy for identical src/dst */ 11107 bcopy(invalp, outvalp, inlen); 11108 } 11109 *outlenp = inlen; 11110 return (0); 11111 } 11112 case MCAST_BLOCK_SOURCE: 11113 case MCAST_UNBLOCK_SOURCE: 11114 case MCAST_JOIN_SOURCE_GROUP: 11115 case MCAST_LEAVE_SOURCE_GROUP: { 11116 struct group_source_req *gsreqp; 11117 in6_addr_t v6grp, v6src; 11118 uint32_t ifindex; 11119 mcast_record_t fmode; 11120 ire_t *ire; 11121 boolean_t done = B_FALSE; 11122 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11123 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11124 11125 switch (name) { 11126 case MCAST_BLOCK_SOURCE: 11127 fmode = MODE_IS_EXCLUDE; 11128 optfn = ip_opt_add_group_v6; 11129 break; 11130 case MCAST_UNBLOCK_SOURCE: 11131 fmode = MODE_IS_EXCLUDE; 11132 optfn = ip_opt_delete_group_v6; 11133 break; 11134 case MCAST_JOIN_SOURCE_GROUP: 11135 fmode = MODE_IS_INCLUDE; 11136 optfn = ip_opt_add_group_v6; 11137 break; 11138 case MCAST_LEAVE_SOURCE_GROUP: 11139 fmode = MODE_IS_INCLUDE; 11140 optfn = ip_opt_delete_group_v6; 11141 break; 11142 } 11143 11144 gsreqp = (struct group_source_req *)i1; 11145 ifindex = gsreqp->gsr_interface; 11146 if (gsreqp->gsr_group.ss_family == AF_INET) { 11147 struct sockaddr_in *s; 11148 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11149 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11150 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11151 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11152 } else { 11153 struct sockaddr_in6 *s6; 11154 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11155 v6grp = s6->sin6_addr; 11156 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11157 v6src = s6->sin6_addr; 11158 } 11159 11160 /* 11161 * In the multirouting case, we need to replicate 11162 * the request as noted in the mcast cases above. 11163 */ 11164 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11165 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11166 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11167 if (ire != NULL) { 11168 if (ire->ire_flags & RTF_MULTIRT) { 11169 error = ip_multirt_apply_membership_v6( 11170 optfn, ire, connp, checkonly, 11171 &v6grp, fmode, &v6src, first_mp); 11172 done = B_TRUE; 11173 } 11174 ire_refrele(ire); 11175 } 11176 if (!done) { 11177 error = optfn(connp, checkonly, &v6grp, 11178 ifindex, fmode, &v6src, first_mp); 11179 } 11180 if (error != 0) { 11181 /* 11182 * EINPROGRESS is a soft error, needs retry 11183 * so don't make *outlenp zero. 11184 */ 11185 if (error != EINPROGRESS) 11186 *outlenp = 0; 11187 return (error); 11188 } 11189 /* OK return - copy input buffer into output buffer */ 11190 if (invalp != outvalp) { 11191 bcopy(invalp, outvalp, inlen); 11192 } 11193 *outlenp = inlen; 11194 return (0); 11195 } 11196 case IPV6_UNICAST_HOPS: 11197 /* Recorded in transport above IP */ 11198 break; /* goto sizeof (int) option return */ 11199 case IPV6_UNSPEC_SRC: 11200 /* Allow sending with a zero source address */ 11201 if (!checkonly) { 11202 mutex_enter(&connp->conn_lock); 11203 connp->conn_unspec_src = *i1 ? 1 : 0; 11204 mutex_exit(&connp->conn_lock); 11205 } 11206 break; /* goto sizeof (int) option return */ 11207 case IPV6_RECVPKTINFO: 11208 if (!checkonly) { 11209 mutex_enter(&connp->conn_lock); 11210 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11211 mutex_exit(&connp->conn_lock); 11212 } 11213 break; /* goto sizeof (int) option return */ 11214 case IPV6_RECVTCLASS: 11215 if (!checkonly) { 11216 if (*i1 < 0 || *i1 > 1) { 11217 return (EINVAL); 11218 } 11219 mutex_enter(&connp->conn_lock); 11220 connp->conn_ipv6_recvtclass = *i1; 11221 mutex_exit(&connp->conn_lock); 11222 } 11223 break; 11224 case IPV6_RECVPATHMTU: 11225 if (!checkonly) { 11226 if (*i1 < 0 || *i1 > 1) { 11227 return (EINVAL); 11228 } 11229 mutex_enter(&connp->conn_lock); 11230 connp->conn_ipv6_recvpathmtu = *i1; 11231 mutex_exit(&connp->conn_lock); 11232 } 11233 break; 11234 case IPV6_RECVHOPLIMIT: 11235 if (!checkonly) { 11236 mutex_enter(&connp->conn_lock); 11237 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11238 mutex_exit(&connp->conn_lock); 11239 } 11240 break; /* goto sizeof (int) option return */ 11241 case IPV6_RECVHOPOPTS: 11242 if (!checkonly) { 11243 mutex_enter(&connp->conn_lock); 11244 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11245 mutex_exit(&connp->conn_lock); 11246 } 11247 break; /* goto sizeof (int) option return */ 11248 case IPV6_RECVDSTOPTS: 11249 if (!checkonly) { 11250 mutex_enter(&connp->conn_lock); 11251 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11252 mutex_exit(&connp->conn_lock); 11253 } 11254 break; /* goto sizeof (int) option return */ 11255 case IPV6_RECVRTHDR: 11256 if (!checkonly) { 11257 mutex_enter(&connp->conn_lock); 11258 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11259 mutex_exit(&connp->conn_lock); 11260 } 11261 break; /* goto sizeof (int) option return */ 11262 case IPV6_RECVRTHDRDSTOPTS: 11263 if (!checkonly) { 11264 mutex_enter(&connp->conn_lock); 11265 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11266 mutex_exit(&connp->conn_lock); 11267 } 11268 break; /* goto sizeof (int) option return */ 11269 case IPV6_PKTINFO: 11270 if (inlen == 0) 11271 return (-EINVAL); /* clearing option */ 11272 error = ip6_set_pktinfo(cr, connp, 11273 (struct in6_pktinfo *)invalp); 11274 if (error != 0) 11275 *outlenp = 0; 11276 else 11277 *outlenp = inlen; 11278 return (error); 11279 case IPV6_NEXTHOP: { 11280 struct sockaddr_in6 *sin6; 11281 11282 /* Verify that the nexthop is reachable */ 11283 if (inlen == 0) 11284 return (-EINVAL); /* clearing option */ 11285 11286 sin6 = (struct sockaddr_in6 *)invalp; 11287 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11288 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11289 NULL, MATCH_IRE_DEFAULT, ipst); 11290 11291 if (ire == NULL) { 11292 *outlenp = 0; 11293 return (EHOSTUNREACH); 11294 } 11295 ire_refrele(ire); 11296 return (-EINVAL); 11297 } 11298 case IPV6_SEC_OPT: 11299 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11300 if (error != 0) { 11301 *outlenp = 0; 11302 return (error); 11303 } 11304 break; 11305 case IPV6_SRC_PREFERENCES: { 11306 /* 11307 * This is implemented strictly in the ip module 11308 * (here and in tcp_opt_*() to accomodate tcp 11309 * sockets). Modules above ip pass this option 11310 * down here since ip is the only one that needs to 11311 * be aware of source address preferences. 11312 * 11313 * This socket option only affects connected 11314 * sockets that haven't already bound to a specific 11315 * IPv6 address. In other words, sockets that 11316 * don't call bind() with an address other than the 11317 * unspecified address and that call connect(). 11318 * ip_bind_connected_v6() passes these preferences 11319 * to the ipif_select_source_v6() function. 11320 */ 11321 if (inlen != sizeof (uint32_t)) 11322 return (EINVAL); 11323 error = ip6_set_src_preferences(connp, 11324 *(uint32_t *)invalp); 11325 if (error != 0) { 11326 *outlenp = 0; 11327 return (error); 11328 } else { 11329 *outlenp = sizeof (uint32_t); 11330 } 11331 break; 11332 } 11333 case IPV6_V6ONLY: 11334 if (*i1 < 0 || *i1 > 1) { 11335 return (EINVAL); 11336 } 11337 mutex_enter(&connp->conn_lock); 11338 connp->conn_ipv6_v6only = *i1; 11339 mutex_exit(&connp->conn_lock); 11340 break; 11341 default: 11342 return (-EINVAL); 11343 } 11344 break; 11345 default: 11346 /* 11347 * "soft" error (negative) 11348 * option not handled at this level 11349 * Note: Do not modify *outlenp 11350 */ 11351 return (-EINVAL); 11352 } 11353 /* 11354 * Common case of return from an option that is sizeof (int) 11355 */ 11356 *(int *)outvalp = *i1; 11357 *outlenp = sizeof (int); 11358 return (0); 11359 } 11360 11361 /* 11362 * This routine gets default values of certain options whose default 11363 * values are maintained by protocol specific code 11364 */ 11365 /* ARGSUSED */ 11366 int 11367 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11368 { 11369 int *i1 = (int *)ptr; 11370 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11371 11372 switch (level) { 11373 case IPPROTO_IP: 11374 switch (name) { 11375 case IP_MULTICAST_TTL: 11376 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11377 return (sizeof (uchar_t)); 11378 case IP_MULTICAST_LOOP: 11379 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11380 return (sizeof (uchar_t)); 11381 default: 11382 return (-1); 11383 } 11384 case IPPROTO_IPV6: 11385 switch (name) { 11386 case IPV6_UNICAST_HOPS: 11387 *i1 = ipst->ips_ipv6_def_hops; 11388 return (sizeof (int)); 11389 case IPV6_MULTICAST_HOPS: 11390 *i1 = IP_DEFAULT_MULTICAST_TTL; 11391 return (sizeof (int)); 11392 case IPV6_MULTICAST_LOOP: 11393 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11394 return (sizeof (int)); 11395 case IPV6_V6ONLY: 11396 *i1 = 1; 11397 return (sizeof (int)); 11398 default: 11399 return (-1); 11400 } 11401 default: 11402 return (-1); 11403 } 11404 /* NOTREACHED */ 11405 } 11406 11407 /* 11408 * Given a destination address and a pointer to where to put the information 11409 * this routine fills in the mtuinfo. 11410 */ 11411 int 11412 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11413 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11414 { 11415 ire_t *ire; 11416 ip_stack_t *ipst = ns->netstack_ip; 11417 11418 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11419 return (-1); 11420 11421 bzero(mtuinfo, sizeof (*mtuinfo)); 11422 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11423 mtuinfo->ip6m_addr.sin6_port = port; 11424 mtuinfo->ip6m_addr.sin6_addr = *in6; 11425 11426 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11427 if (ire != NULL) { 11428 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11429 ire_refrele(ire); 11430 } else { 11431 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11432 } 11433 return (sizeof (struct ip6_mtuinfo)); 11434 } 11435 11436 /* 11437 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11438 * checking of cred and that ip_g_mrouter is set should be done and 11439 * isn't. This doesn't matter as the error checking is done properly for the 11440 * other MRT options coming in through ip_opt_set. 11441 */ 11442 int 11443 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11444 { 11445 conn_t *connp = Q_TO_CONN(q); 11446 ipsec_req_t *req = (ipsec_req_t *)ptr; 11447 11448 switch (level) { 11449 case IPPROTO_IP: 11450 switch (name) { 11451 case MRT_VERSION: 11452 case MRT_ASSERT: 11453 (void) ip_mrouter_get(name, q, ptr); 11454 return (sizeof (int)); 11455 case IP_SEC_OPT: 11456 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11457 case IP_NEXTHOP: 11458 if (connp->conn_nexthop_set) { 11459 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11460 return (sizeof (ipaddr_t)); 11461 } else 11462 return (0); 11463 case IP_RECVPKTINFO: 11464 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11465 return (sizeof (int)); 11466 default: 11467 break; 11468 } 11469 break; 11470 case IPPROTO_IPV6: 11471 switch (name) { 11472 case IPV6_SEC_OPT: 11473 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11474 case IPV6_SRC_PREFERENCES: { 11475 return (ip6_get_src_preferences(connp, 11476 (uint32_t *)ptr)); 11477 } 11478 case IPV6_V6ONLY: 11479 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11480 return (sizeof (int)); 11481 case IPV6_PATHMTU: 11482 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11483 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11484 default: 11485 break; 11486 } 11487 break; 11488 default: 11489 break; 11490 } 11491 return (-1); 11492 } 11493 /* Named Dispatch routine to get a current value out of our parameter table. */ 11494 /* ARGSUSED */ 11495 static int 11496 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11497 { 11498 ipparam_t *ippa = (ipparam_t *)cp; 11499 11500 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11501 return (0); 11502 } 11503 11504 /* ARGSUSED */ 11505 static int 11506 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11507 { 11508 11509 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11510 return (0); 11511 } 11512 11513 /* 11514 * Set ip{,6}_forwarding values. This means walking through all of the 11515 * ill's and toggling their forwarding values. 11516 */ 11517 /* ARGSUSED */ 11518 static int 11519 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11520 { 11521 long new_value; 11522 int *forwarding_value = (int *)cp; 11523 ill_t *ill; 11524 boolean_t isv6; 11525 ill_walk_context_t ctx; 11526 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11527 11528 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11529 11530 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11531 new_value < 0 || new_value > 1) { 11532 return (EINVAL); 11533 } 11534 11535 *forwarding_value = new_value; 11536 11537 /* 11538 * Regardless of the current value of ip_forwarding, set all per-ill 11539 * values of ip_forwarding to the value being set. 11540 * 11541 * Bring all the ill's up to date with the new global value. 11542 */ 11543 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11544 11545 if (isv6) 11546 ill = ILL_START_WALK_V6(&ctx, ipst); 11547 else 11548 ill = ILL_START_WALK_V4(&ctx, ipst); 11549 11550 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11551 (void) ill_forward_set(ill, new_value != 0); 11552 11553 rw_exit(&ipst->ips_ill_g_lock); 11554 return (0); 11555 } 11556 11557 /* 11558 * Walk through the param array specified registering each element with the 11559 * Named Dispatch handler. This is called only during init. So it is ok 11560 * not to acquire any locks 11561 */ 11562 static boolean_t 11563 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11564 ipndp_t *ipnd, size_t ipnd_cnt) 11565 { 11566 for (; ippa_cnt-- > 0; ippa++) { 11567 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11568 if (!nd_load(ndp, ippa->ip_param_name, 11569 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11570 nd_free(ndp); 11571 return (B_FALSE); 11572 } 11573 } 11574 } 11575 11576 for (; ipnd_cnt-- > 0; ipnd++) { 11577 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11578 if (!nd_load(ndp, ipnd->ip_ndp_name, 11579 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11580 ipnd->ip_ndp_data)) { 11581 nd_free(ndp); 11582 return (B_FALSE); 11583 } 11584 } 11585 } 11586 11587 return (B_TRUE); 11588 } 11589 11590 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11591 /* ARGSUSED */ 11592 static int 11593 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11594 { 11595 long new_value; 11596 ipparam_t *ippa = (ipparam_t *)cp; 11597 11598 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11599 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11600 return (EINVAL); 11601 } 11602 ippa->ip_param_value = new_value; 11603 return (0); 11604 } 11605 11606 /* 11607 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11608 * When an ipf is passed here for the first time, if 11609 * we already have in-order fragments on the queue, we convert from the fast- 11610 * path reassembly scheme to the hard-case scheme. From then on, additional 11611 * fragments are reassembled here. We keep track of the start and end offsets 11612 * of each piece, and the number of holes in the chain. When the hole count 11613 * goes to zero, we are done! 11614 * 11615 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11616 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11617 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11618 * after the call to ip_reassemble(). 11619 */ 11620 int 11621 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11622 size_t msg_len) 11623 { 11624 uint_t end; 11625 mblk_t *next_mp; 11626 mblk_t *mp1; 11627 uint_t offset; 11628 boolean_t incr_dups = B_TRUE; 11629 boolean_t offset_zero_seen = B_FALSE; 11630 boolean_t pkt_boundary_checked = B_FALSE; 11631 11632 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11633 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11634 11635 /* Add in byte count */ 11636 ipf->ipf_count += msg_len; 11637 if (ipf->ipf_end) { 11638 /* 11639 * We were part way through in-order reassembly, but now there 11640 * is a hole. We walk through messages already queued, and 11641 * mark them for hard case reassembly. We know that up till 11642 * now they were in order starting from offset zero. 11643 */ 11644 offset = 0; 11645 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11646 IP_REASS_SET_START(mp1, offset); 11647 if (offset == 0) { 11648 ASSERT(ipf->ipf_nf_hdr_len != 0); 11649 offset = -ipf->ipf_nf_hdr_len; 11650 } 11651 offset += mp1->b_wptr - mp1->b_rptr; 11652 IP_REASS_SET_END(mp1, offset); 11653 } 11654 /* One hole at the end. */ 11655 ipf->ipf_hole_cnt = 1; 11656 /* Brand it as a hard case, forever. */ 11657 ipf->ipf_end = 0; 11658 } 11659 /* Walk through all the new pieces. */ 11660 do { 11661 end = start + (mp->b_wptr - mp->b_rptr); 11662 /* 11663 * If start is 0, decrease 'end' only for the first mblk of 11664 * the fragment. Otherwise 'end' can get wrong value in the 11665 * second pass of the loop if first mblk is exactly the 11666 * size of ipf_nf_hdr_len. 11667 */ 11668 if (start == 0 && !offset_zero_seen) { 11669 /* First segment */ 11670 ASSERT(ipf->ipf_nf_hdr_len != 0); 11671 end -= ipf->ipf_nf_hdr_len; 11672 offset_zero_seen = B_TRUE; 11673 } 11674 next_mp = mp->b_cont; 11675 /* 11676 * We are checking to see if there is any interesing data 11677 * to process. If there isn't and the mblk isn't the 11678 * one which carries the unfragmentable header then we 11679 * drop it. It's possible to have just the unfragmentable 11680 * header come through without any data. That needs to be 11681 * saved. 11682 * 11683 * If the assert at the top of this function holds then the 11684 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11685 * is infrequently traveled enough that the test is left in 11686 * to protect against future code changes which break that 11687 * invariant. 11688 */ 11689 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11690 /* Empty. Blast it. */ 11691 IP_REASS_SET_START(mp, 0); 11692 IP_REASS_SET_END(mp, 0); 11693 /* 11694 * If the ipf points to the mblk we are about to free, 11695 * update ipf to point to the next mblk (or NULL 11696 * if none). 11697 */ 11698 if (ipf->ipf_mp->b_cont == mp) 11699 ipf->ipf_mp->b_cont = next_mp; 11700 freeb(mp); 11701 continue; 11702 } 11703 mp->b_cont = NULL; 11704 IP_REASS_SET_START(mp, start); 11705 IP_REASS_SET_END(mp, end); 11706 if (!ipf->ipf_tail_mp) { 11707 ipf->ipf_tail_mp = mp; 11708 ipf->ipf_mp->b_cont = mp; 11709 if (start == 0 || !more) { 11710 ipf->ipf_hole_cnt = 1; 11711 /* 11712 * if the first fragment comes in more than one 11713 * mblk, this loop will be executed for each 11714 * mblk. Need to adjust hole count so exiting 11715 * this routine will leave hole count at 1. 11716 */ 11717 if (next_mp) 11718 ipf->ipf_hole_cnt++; 11719 } else 11720 ipf->ipf_hole_cnt = 2; 11721 continue; 11722 } else if (ipf->ipf_last_frag_seen && !more && 11723 !pkt_boundary_checked) { 11724 /* 11725 * We check datagram boundary only if this fragment 11726 * claims to be the last fragment and we have seen a 11727 * last fragment in the past too. We do this only 11728 * once for a given fragment. 11729 * 11730 * start cannot be 0 here as fragments with start=0 11731 * and MF=0 gets handled as a complete packet. These 11732 * fragments should not reach here. 11733 */ 11734 11735 if (start + msgdsize(mp) != 11736 IP_REASS_END(ipf->ipf_tail_mp)) { 11737 /* 11738 * We have two fragments both of which claim 11739 * to be the last fragment but gives conflicting 11740 * information about the whole datagram size. 11741 * Something fishy is going on. Drop the 11742 * fragment and free up the reassembly list. 11743 */ 11744 return (IP_REASS_FAILED); 11745 } 11746 11747 /* 11748 * We shouldn't come to this code block again for this 11749 * particular fragment. 11750 */ 11751 pkt_boundary_checked = B_TRUE; 11752 } 11753 11754 /* New stuff at or beyond tail? */ 11755 offset = IP_REASS_END(ipf->ipf_tail_mp); 11756 if (start >= offset) { 11757 if (ipf->ipf_last_frag_seen) { 11758 /* current fragment is beyond last fragment */ 11759 return (IP_REASS_FAILED); 11760 } 11761 /* Link it on end. */ 11762 ipf->ipf_tail_mp->b_cont = mp; 11763 ipf->ipf_tail_mp = mp; 11764 if (more) { 11765 if (start != offset) 11766 ipf->ipf_hole_cnt++; 11767 } else if (start == offset && next_mp == NULL) 11768 ipf->ipf_hole_cnt--; 11769 continue; 11770 } 11771 mp1 = ipf->ipf_mp->b_cont; 11772 offset = IP_REASS_START(mp1); 11773 /* New stuff at the front? */ 11774 if (start < offset) { 11775 if (start == 0) { 11776 if (end >= offset) { 11777 /* Nailed the hole at the begining. */ 11778 ipf->ipf_hole_cnt--; 11779 } 11780 } else if (end < offset) { 11781 /* 11782 * A hole, stuff, and a hole where there used 11783 * to be just a hole. 11784 */ 11785 ipf->ipf_hole_cnt++; 11786 } 11787 mp->b_cont = mp1; 11788 /* Check for overlap. */ 11789 while (end > offset) { 11790 if (end < IP_REASS_END(mp1)) { 11791 mp->b_wptr -= end - offset; 11792 IP_REASS_SET_END(mp, offset); 11793 BUMP_MIB(ill->ill_ip_mib, 11794 ipIfStatsReasmPartDups); 11795 break; 11796 } 11797 /* Did we cover another hole? */ 11798 if ((mp1->b_cont && 11799 IP_REASS_END(mp1) != 11800 IP_REASS_START(mp1->b_cont) && 11801 end >= IP_REASS_START(mp1->b_cont)) || 11802 (!ipf->ipf_last_frag_seen && !more)) { 11803 ipf->ipf_hole_cnt--; 11804 } 11805 /* Clip out mp1. */ 11806 if ((mp->b_cont = mp1->b_cont) == NULL) { 11807 /* 11808 * After clipping out mp1, this guy 11809 * is now hanging off the end. 11810 */ 11811 ipf->ipf_tail_mp = mp; 11812 } 11813 IP_REASS_SET_START(mp1, 0); 11814 IP_REASS_SET_END(mp1, 0); 11815 /* Subtract byte count */ 11816 ipf->ipf_count -= mp1->b_datap->db_lim - 11817 mp1->b_datap->db_base; 11818 freeb(mp1); 11819 BUMP_MIB(ill->ill_ip_mib, 11820 ipIfStatsReasmPartDups); 11821 mp1 = mp->b_cont; 11822 if (!mp1) 11823 break; 11824 offset = IP_REASS_START(mp1); 11825 } 11826 ipf->ipf_mp->b_cont = mp; 11827 continue; 11828 } 11829 /* 11830 * The new piece starts somewhere between the start of the head 11831 * and before the end of the tail. 11832 */ 11833 for (; mp1; mp1 = mp1->b_cont) { 11834 offset = IP_REASS_END(mp1); 11835 if (start < offset) { 11836 if (end <= offset) { 11837 /* Nothing new. */ 11838 IP_REASS_SET_START(mp, 0); 11839 IP_REASS_SET_END(mp, 0); 11840 /* Subtract byte count */ 11841 ipf->ipf_count -= mp->b_datap->db_lim - 11842 mp->b_datap->db_base; 11843 if (incr_dups) { 11844 ipf->ipf_num_dups++; 11845 incr_dups = B_FALSE; 11846 } 11847 freeb(mp); 11848 BUMP_MIB(ill->ill_ip_mib, 11849 ipIfStatsReasmDuplicates); 11850 break; 11851 } 11852 /* 11853 * Trim redundant stuff off beginning of new 11854 * piece. 11855 */ 11856 IP_REASS_SET_START(mp, offset); 11857 mp->b_rptr += offset - start; 11858 BUMP_MIB(ill->ill_ip_mib, 11859 ipIfStatsReasmPartDups); 11860 start = offset; 11861 if (!mp1->b_cont) { 11862 /* 11863 * After trimming, this guy is now 11864 * hanging off the end. 11865 */ 11866 mp1->b_cont = mp; 11867 ipf->ipf_tail_mp = mp; 11868 if (!more) { 11869 ipf->ipf_hole_cnt--; 11870 } 11871 break; 11872 } 11873 } 11874 if (start >= IP_REASS_START(mp1->b_cont)) 11875 continue; 11876 /* Fill a hole */ 11877 if (start > offset) 11878 ipf->ipf_hole_cnt++; 11879 mp->b_cont = mp1->b_cont; 11880 mp1->b_cont = mp; 11881 mp1 = mp->b_cont; 11882 offset = IP_REASS_START(mp1); 11883 if (end >= offset) { 11884 ipf->ipf_hole_cnt--; 11885 /* Check for overlap. */ 11886 while (end > offset) { 11887 if (end < IP_REASS_END(mp1)) { 11888 mp->b_wptr -= end - offset; 11889 IP_REASS_SET_END(mp, offset); 11890 /* 11891 * TODO we might bump 11892 * this up twice if there is 11893 * overlap at both ends. 11894 */ 11895 BUMP_MIB(ill->ill_ip_mib, 11896 ipIfStatsReasmPartDups); 11897 break; 11898 } 11899 /* Did we cover another hole? */ 11900 if ((mp1->b_cont && 11901 IP_REASS_END(mp1) 11902 != IP_REASS_START(mp1->b_cont) && 11903 end >= 11904 IP_REASS_START(mp1->b_cont)) || 11905 (!ipf->ipf_last_frag_seen && 11906 !more)) { 11907 ipf->ipf_hole_cnt--; 11908 } 11909 /* Clip out mp1. */ 11910 if ((mp->b_cont = mp1->b_cont) == 11911 NULL) { 11912 /* 11913 * After clipping out mp1, 11914 * this guy is now hanging 11915 * off the end. 11916 */ 11917 ipf->ipf_tail_mp = mp; 11918 } 11919 IP_REASS_SET_START(mp1, 0); 11920 IP_REASS_SET_END(mp1, 0); 11921 /* Subtract byte count */ 11922 ipf->ipf_count -= 11923 mp1->b_datap->db_lim - 11924 mp1->b_datap->db_base; 11925 freeb(mp1); 11926 BUMP_MIB(ill->ill_ip_mib, 11927 ipIfStatsReasmPartDups); 11928 mp1 = mp->b_cont; 11929 if (!mp1) 11930 break; 11931 offset = IP_REASS_START(mp1); 11932 } 11933 } 11934 break; 11935 } 11936 } while (start = end, mp = next_mp); 11937 11938 /* Fragment just processed could be the last one. Remember this fact */ 11939 if (!more) 11940 ipf->ipf_last_frag_seen = B_TRUE; 11941 11942 /* Still got holes? */ 11943 if (ipf->ipf_hole_cnt) 11944 return (IP_REASS_PARTIAL); 11945 /* Clean up overloaded fields to avoid upstream disasters. */ 11946 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11947 IP_REASS_SET_START(mp1, 0); 11948 IP_REASS_SET_END(mp1, 0); 11949 } 11950 return (IP_REASS_COMPLETE); 11951 } 11952 11953 /* 11954 * ipsec processing for the fast path, used for input UDP Packets 11955 * Returns true if ready for passup to UDP. 11956 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 11957 * was an ESP-in-UDP packet, etc.). 11958 */ 11959 static boolean_t 11960 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11961 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 11962 { 11963 uint32_t ill_index; 11964 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11965 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11966 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11967 udp_t *udp = connp->conn_udp; 11968 11969 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11970 /* The ill_index of the incoming ILL */ 11971 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11972 11973 /* pass packet up to the transport */ 11974 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11975 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11976 NULL, mctl_present); 11977 if (*first_mpp == NULL) { 11978 return (B_FALSE); 11979 } 11980 } 11981 11982 /* Initiate IPPF processing for fastpath UDP */ 11983 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11984 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11985 if (*mpp == NULL) { 11986 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11987 "deferred/dropped during IPPF processing\n")); 11988 return (B_FALSE); 11989 } 11990 } 11991 /* 11992 * Remove 0-spi if it's 0, or move everything behind 11993 * the UDP header over it and forward to ESP via 11994 * ip_proto_input(). 11995 */ 11996 if (udp->udp_nat_t_endpoint) { 11997 if (mctl_present) { 11998 /* mctl_present *shouldn't* happen. */ 11999 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12000 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12001 &ipss->ipsec_dropper); 12002 *first_mpp = NULL; 12003 return (B_FALSE); 12004 } 12005 12006 /* "ill" is "recv_ill" in actuality. */ 12007 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12008 return (B_FALSE); 12009 12010 /* Else continue like a normal UDP packet. */ 12011 } 12012 12013 /* 12014 * We make the checks as below since we are in the fast path 12015 * and want to minimize the number of checks if the IP_RECVIF and/or 12016 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12017 */ 12018 if (connp->conn_recvif || connp->conn_recvslla || 12019 connp->conn_ip_recvpktinfo) { 12020 if (connp->conn_recvif) { 12021 in_flags = IPF_RECVIF; 12022 } 12023 /* 12024 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12025 * so the flag passed to ip_add_info is based on IP version 12026 * of connp. 12027 */ 12028 if (connp->conn_ip_recvpktinfo) { 12029 if (connp->conn_af_isv6) { 12030 /* 12031 * V6 only needs index 12032 */ 12033 in_flags |= IPF_RECVIF; 12034 } else { 12035 /* 12036 * V4 needs index + matching address. 12037 */ 12038 in_flags |= IPF_RECVADDR; 12039 } 12040 } 12041 if (connp->conn_recvslla) { 12042 in_flags |= IPF_RECVSLLA; 12043 } 12044 /* 12045 * since in_flags are being set ill will be 12046 * referenced in ip_add_info, so it better not 12047 * be NULL. 12048 */ 12049 /* 12050 * the actual data will be contained in b_cont 12051 * upon successful return of the following call. 12052 * If the call fails then the original mblk is 12053 * returned. 12054 */ 12055 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12056 ipst); 12057 } 12058 12059 return (B_TRUE); 12060 } 12061 12062 /* 12063 * Fragmentation reassembly. Each ILL has a hash table for 12064 * queuing packets undergoing reassembly for all IPIFs 12065 * associated with the ILL. The hash is based on the packet 12066 * IP ident field. The ILL frag hash table was allocated 12067 * as a timer block at the time the ILL was created. Whenever 12068 * there is anything on the reassembly queue, the timer will 12069 * be running. Returns B_TRUE if successful else B_FALSE; 12070 * frees mp on failure. 12071 */ 12072 static boolean_t 12073 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12074 uint32_t *cksum_val, uint16_t *cksum_flags) 12075 { 12076 uint32_t frag_offset_flags; 12077 mblk_t *mp = *mpp; 12078 mblk_t *t_mp; 12079 ipaddr_t dst; 12080 uint8_t proto = ipha->ipha_protocol; 12081 uint32_t sum_val; 12082 uint16_t sum_flags; 12083 ipf_t *ipf; 12084 ipf_t **ipfp; 12085 ipfb_t *ipfb; 12086 uint16_t ident; 12087 uint32_t offset; 12088 ipaddr_t src; 12089 uint_t hdr_length; 12090 uint32_t end; 12091 mblk_t *mp1; 12092 mblk_t *tail_mp; 12093 size_t count; 12094 size_t msg_len; 12095 uint8_t ecn_info = 0; 12096 uint32_t packet_size; 12097 boolean_t pruned = B_FALSE; 12098 ip_stack_t *ipst = ill->ill_ipst; 12099 12100 if (cksum_val != NULL) 12101 *cksum_val = 0; 12102 if (cksum_flags != NULL) 12103 *cksum_flags = 0; 12104 12105 /* 12106 * Drop the fragmented as early as possible, if 12107 * we don't have resource(s) to re-assemble. 12108 */ 12109 if (ipst->ips_ip_reass_queue_bytes == 0) { 12110 freemsg(mp); 12111 return (B_FALSE); 12112 } 12113 12114 /* Check for fragmentation offset; return if there's none */ 12115 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12116 (IPH_MF | IPH_OFFSET)) == 0) 12117 return (B_TRUE); 12118 12119 /* 12120 * We utilize hardware computed checksum info only for UDP since 12121 * IP fragmentation is a normal occurrence for the protocol. In 12122 * addition, checksum offload support for IP fragments carrying 12123 * UDP payload is commonly implemented across network adapters. 12124 */ 12125 ASSERT(recv_ill != NULL); 12126 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12127 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12128 mblk_t *mp1 = mp->b_cont; 12129 int32_t len; 12130 12131 /* Record checksum information from the packet */ 12132 sum_val = (uint32_t)DB_CKSUM16(mp); 12133 sum_flags = DB_CKSUMFLAGS(mp); 12134 12135 /* IP payload offset from beginning of mblk */ 12136 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12137 12138 if ((sum_flags & HCK_PARTIALCKSUM) && 12139 (mp1 == NULL || mp1->b_cont == NULL) && 12140 offset >= DB_CKSUMSTART(mp) && 12141 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12142 uint32_t adj; 12143 /* 12144 * Partial checksum has been calculated by hardware 12145 * and attached to the packet; in addition, any 12146 * prepended extraneous data is even byte aligned. 12147 * If any such data exists, we adjust the checksum; 12148 * this would also handle any postpended data. 12149 */ 12150 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12151 mp, mp1, len, adj); 12152 12153 /* One's complement subtract extraneous checksum */ 12154 if (adj >= sum_val) 12155 sum_val = ~(adj - sum_val) & 0xFFFF; 12156 else 12157 sum_val -= adj; 12158 } 12159 } else { 12160 sum_val = 0; 12161 sum_flags = 0; 12162 } 12163 12164 /* Clear hardware checksumming flag */ 12165 DB_CKSUMFLAGS(mp) = 0; 12166 12167 ident = ipha->ipha_ident; 12168 offset = (frag_offset_flags << 3) & 0xFFFF; 12169 src = ipha->ipha_src; 12170 dst = ipha->ipha_dst; 12171 hdr_length = IPH_HDR_LENGTH(ipha); 12172 end = ntohs(ipha->ipha_length) - hdr_length; 12173 12174 /* If end == 0 then we have a packet with no data, so just free it */ 12175 if (end == 0) { 12176 freemsg(mp); 12177 return (B_FALSE); 12178 } 12179 12180 /* Record the ECN field info. */ 12181 ecn_info = (ipha->ipha_type_of_service & 0x3); 12182 if (offset != 0) { 12183 /* 12184 * If this isn't the first piece, strip the header, and 12185 * add the offset to the end value. 12186 */ 12187 mp->b_rptr += hdr_length; 12188 end += offset; 12189 } 12190 12191 msg_len = MBLKSIZE(mp); 12192 tail_mp = mp; 12193 while (tail_mp->b_cont != NULL) { 12194 tail_mp = tail_mp->b_cont; 12195 msg_len += MBLKSIZE(tail_mp); 12196 } 12197 12198 /* If the reassembly list for this ILL will get too big, prune it */ 12199 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12200 ipst->ips_ip_reass_queue_bytes) { 12201 ill_frag_prune(ill, 12202 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12203 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12204 pruned = B_TRUE; 12205 } 12206 12207 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12208 mutex_enter(&ipfb->ipfb_lock); 12209 12210 ipfp = &ipfb->ipfb_ipf; 12211 /* Try to find an existing fragment queue for this packet. */ 12212 for (;;) { 12213 ipf = ipfp[0]; 12214 if (ipf != NULL) { 12215 /* 12216 * It has to match on ident and src/dst address. 12217 */ 12218 if (ipf->ipf_ident == ident && 12219 ipf->ipf_src == src && 12220 ipf->ipf_dst == dst && 12221 ipf->ipf_protocol == proto) { 12222 /* 12223 * If we have received too many 12224 * duplicate fragments for this packet 12225 * free it. 12226 */ 12227 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12228 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12229 freemsg(mp); 12230 mutex_exit(&ipfb->ipfb_lock); 12231 return (B_FALSE); 12232 } 12233 /* Found it. */ 12234 break; 12235 } 12236 ipfp = &ipf->ipf_hash_next; 12237 continue; 12238 } 12239 12240 /* 12241 * If we pruned the list, do we want to store this new 12242 * fragment?. We apply an optimization here based on the 12243 * fact that most fragments will be received in order. 12244 * So if the offset of this incoming fragment is zero, 12245 * it is the first fragment of a new packet. We will 12246 * keep it. Otherwise drop the fragment, as we have 12247 * probably pruned the packet already (since the 12248 * packet cannot be found). 12249 */ 12250 if (pruned && offset != 0) { 12251 mutex_exit(&ipfb->ipfb_lock); 12252 freemsg(mp); 12253 return (B_FALSE); 12254 } 12255 12256 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12257 /* 12258 * Too many fragmented packets in this hash 12259 * bucket. Free the oldest. 12260 */ 12261 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12262 } 12263 12264 /* New guy. Allocate a frag message. */ 12265 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12266 if (mp1 == NULL) { 12267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12268 freemsg(mp); 12269 reass_done: 12270 mutex_exit(&ipfb->ipfb_lock); 12271 return (B_FALSE); 12272 } 12273 12274 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12275 mp1->b_cont = mp; 12276 12277 /* Initialize the fragment header. */ 12278 ipf = (ipf_t *)mp1->b_rptr; 12279 ipf->ipf_mp = mp1; 12280 ipf->ipf_ptphn = ipfp; 12281 ipfp[0] = ipf; 12282 ipf->ipf_hash_next = NULL; 12283 ipf->ipf_ident = ident; 12284 ipf->ipf_protocol = proto; 12285 ipf->ipf_src = src; 12286 ipf->ipf_dst = dst; 12287 ipf->ipf_nf_hdr_len = 0; 12288 /* Record reassembly start time. */ 12289 ipf->ipf_timestamp = gethrestime_sec(); 12290 /* Record ipf generation and account for frag header */ 12291 ipf->ipf_gen = ill->ill_ipf_gen++; 12292 ipf->ipf_count = MBLKSIZE(mp1); 12293 ipf->ipf_last_frag_seen = B_FALSE; 12294 ipf->ipf_ecn = ecn_info; 12295 ipf->ipf_num_dups = 0; 12296 ipfb->ipfb_frag_pkts++; 12297 ipf->ipf_checksum = 0; 12298 ipf->ipf_checksum_flags = 0; 12299 12300 /* Store checksum value in fragment header */ 12301 if (sum_flags != 0) { 12302 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12303 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12304 ipf->ipf_checksum = sum_val; 12305 ipf->ipf_checksum_flags = sum_flags; 12306 } 12307 12308 /* 12309 * We handle reassembly two ways. In the easy case, 12310 * where all the fragments show up in order, we do 12311 * minimal bookkeeping, and just clip new pieces on 12312 * the end. If we ever see a hole, then we go off 12313 * to ip_reassemble which has to mark the pieces and 12314 * keep track of the number of holes, etc. Obviously, 12315 * the point of having both mechanisms is so we can 12316 * handle the easy case as efficiently as possible. 12317 */ 12318 if (offset == 0) { 12319 /* Easy case, in-order reassembly so far. */ 12320 ipf->ipf_count += msg_len; 12321 ipf->ipf_tail_mp = tail_mp; 12322 /* 12323 * Keep track of next expected offset in 12324 * ipf_end. 12325 */ 12326 ipf->ipf_end = end; 12327 ipf->ipf_nf_hdr_len = hdr_length; 12328 } else { 12329 /* Hard case, hole at the beginning. */ 12330 ipf->ipf_tail_mp = NULL; 12331 /* 12332 * ipf_end == 0 means that we have given up 12333 * on easy reassembly. 12334 */ 12335 ipf->ipf_end = 0; 12336 12337 /* Forget checksum offload from now on */ 12338 ipf->ipf_checksum_flags = 0; 12339 12340 /* 12341 * ipf_hole_cnt is set by ip_reassemble. 12342 * ipf_count is updated by ip_reassemble. 12343 * No need to check for return value here 12344 * as we don't expect reassembly to complete 12345 * or fail for the first fragment itself. 12346 */ 12347 (void) ip_reassemble(mp, ipf, 12348 (frag_offset_flags & IPH_OFFSET) << 3, 12349 (frag_offset_flags & IPH_MF), ill, msg_len); 12350 } 12351 /* Update per ipfb and ill byte counts */ 12352 ipfb->ipfb_count += ipf->ipf_count; 12353 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12354 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12355 /* If the frag timer wasn't already going, start it. */ 12356 mutex_enter(&ill->ill_lock); 12357 ill_frag_timer_start(ill); 12358 mutex_exit(&ill->ill_lock); 12359 goto reass_done; 12360 } 12361 12362 /* 12363 * If the packet's flag has changed (it could be coming up 12364 * from an interface different than the previous, therefore 12365 * possibly different checksum capability), then forget about 12366 * any stored checksum states. Otherwise add the value to 12367 * the existing one stored in the fragment header. 12368 */ 12369 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12370 sum_val += ipf->ipf_checksum; 12371 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12372 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12373 ipf->ipf_checksum = sum_val; 12374 } else if (ipf->ipf_checksum_flags != 0) { 12375 /* Forget checksum offload from now on */ 12376 ipf->ipf_checksum_flags = 0; 12377 } 12378 12379 /* 12380 * We have a new piece of a datagram which is already being 12381 * reassembled. Update the ECN info if all IP fragments 12382 * are ECN capable. If there is one which is not, clear 12383 * all the info. If there is at least one which has CE 12384 * code point, IP needs to report that up to transport. 12385 */ 12386 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12387 if (ecn_info == IPH_ECN_CE) 12388 ipf->ipf_ecn = IPH_ECN_CE; 12389 } else { 12390 ipf->ipf_ecn = IPH_ECN_NECT; 12391 } 12392 if (offset && ipf->ipf_end == offset) { 12393 /* The new fragment fits at the end */ 12394 ipf->ipf_tail_mp->b_cont = mp; 12395 /* Update the byte count */ 12396 ipf->ipf_count += msg_len; 12397 /* Update per ipfb and ill byte counts */ 12398 ipfb->ipfb_count += msg_len; 12399 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12400 atomic_add_32(&ill->ill_frag_count, msg_len); 12401 if (frag_offset_flags & IPH_MF) { 12402 /* More to come. */ 12403 ipf->ipf_end = end; 12404 ipf->ipf_tail_mp = tail_mp; 12405 goto reass_done; 12406 } 12407 } else { 12408 /* Go do the hard cases. */ 12409 int ret; 12410 12411 if (offset == 0) 12412 ipf->ipf_nf_hdr_len = hdr_length; 12413 12414 /* Save current byte count */ 12415 count = ipf->ipf_count; 12416 ret = ip_reassemble(mp, ipf, 12417 (frag_offset_flags & IPH_OFFSET) << 3, 12418 (frag_offset_flags & IPH_MF), ill, msg_len); 12419 /* Count of bytes added and subtracted (freeb()ed) */ 12420 count = ipf->ipf_count - count; 12421 if (count) { 12422 /* Update per ipfb and ill byte counts */ 12423 ipfb->ipfb_count += count; 12424 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12425 atomic_add_32(&ill->ill_frag_count, count); 12426 } 12427 if (ret == IP_REASS_PARTIAL) { 12428 goto reass_done; 12429 } else if (ret == IP_REASS_FAILED) { 12430 /* Reassembly failed. Free up all resources */ 12431 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12432 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12433 IP_REASS_SET_START(t_mp, 0); 12434 IP_REASS_SET_END(t_mp, 0); 12435 } 12436 freemsg(mp); 12437 goto reass_done; 12438 } 12439 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12440 } 12441 /* 12442 * We have completed reassembly. Unhook the frag header from 12443 * the reassembly list. 12444 * 12445 * Before we free the frag header, record the ECN info 12446 * to report back to the transport. 12447 */ 12448 ecn_info = ipf->ipf_ecn; 12449 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12450 ipfp = ipf->ipf_ptphn; 12451 12452 /* We need to supply these to caller */ 12453 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12454 sum_val = ipf->ipf_checksum; 12455 else 12456 sum_val = 0; 12457 12458 mp1 = ipf->ipf_mp; 12459 count = ipf->ipf_count; 12460 ipf = ipf->ipf_hash_next; 12461 if (ipf != NULL) 12462 ipf->ipf_ptphn = ipfp; 12463 ipfp[0] = ipf; 12464 atomic_add_32(&ill->ill_frag_count, -count); 12465 ASSERT(ipfb->ipfb_count >= count); 12466 ipfb->ipfb_count -= count; 12467 ipfb->ipfb_frag_pkts--; 12468 mutex_exit(&ipfb->ipfb_lock); 12469 /* Ditch the frag header. */ 12470 mp = mp1->b_cont; 12471 12472 freeb(mp1); 12473 12474 /* Restore original IP length in header. */ 12475 packet_size = (uint32_t)msgdsize(mp); 12476 if (packet_size > IP_MAXPACKET) { 12477 freemsg(mp); 12478 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12479 return (B_FALSE); 12480 } 12481 12482 if (DB_REF(mp) > 1) { 12483 mblk_t *mp2 = copymsg(mp); 12484 12485 freemsg(mp); 12486 if (mp2 == NULL) { 12487 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12488 return (B_FALSE); 12489 } 12490 mp = mp2; 12491 } 12492 ipha = (ipha_t *)mp->b_rptr; 12493 12494 ipha->ipha_length = htons((uint16_t)packet_size); 12495 /* We're now complete, zip the frag state */ 12496 ipha->ipha_fragment_offset_and_flags = 0; 12497 /* Record the ECN info. */ 12498 ipha->ipha_type_of_service &= 0xFC; 12499 ipha->ipha_type_of_service |= ecn_info; 12500 *mpp = mp; 12501 12502 /* Reassembly is successful; return checksum information if needed */ 12503 if (cksum_val != NULL) 12504 *cksum_val = sum_val; 12505 if (cksum_flags != NULL) 12506 *cksum_flags = sum_flags; 12507 12508 return (B_TRUE); 12509 } 12510 12511 /* 12512 * Perform ip header check sum update local options. 12513 * return B_TRUE if all is well, else return B_FALSE and release 12514 * the mp. caller is responsible for decrementing ire ref cnt. 12515 */ 12516 static boolean_t 12517 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12518 ip_stack_t *ipst) 12519 { 12520 mblk_t *first_mp; 12521 boolean_t mctl_present; 12522 uint16_t sum; 12523 12524 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12525 /* 12526 * Don't do the checksum if it has gone through AH/ESP 12527 * processing. 12528 */ 12529 if (!mctl_present) { 12530 sum = ip_csum_hdr(ipha); 12531 if (sum != 0) { 12532 if (ill != NULL) { 12533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12534 } else { 12535 BUMP_MIB(&ipst->ips_ip_mib, 12536 ipIfStatsInCksumErrs); 12537 } 12538 freemsg(first_mp); 12539 return (B_FALSE); 12540 } 12541 } 12542 12543 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12544 if (mctl_present) 12545 freeb(first_mp); 12546 return (B_FALSE); 12547 } 12548 12549 return (B_TRUE); 12550 } 12551 12552 /* 12553 * All udp packet are delivered to the local host via this routine. 12554 */ 12555 void 12556 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12557 ill_t *recv_ill) 12558 { 12559 uint32_t sum; 12560 uint32_t u1; 12561 boolean_t mctl_present; 12562 conn_t *connp; 12563 mblk_t *first_mp; 12564 uint16_t *up; 12565 ill_t *ill = (ill_t *)q->q_ptr; 12566 uint16_t reass_hck_flags = 0; 12567 ip_stack_t *ipst; 12568 12569 ASSERT(recv_ill != NULL); 12570 ipst = recv_ill->ill_ipst; 12571 12572 #define rptr ((uchar_t *)ipha) 12573 12574 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12575 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12576 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12577 ASSERT(ill != NULL); 12578 12579 /* 12580 * FAST PATH for udp packets 12581 */ 12582 12583 /* u1 is # words of IP options */ 12584 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12585 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12586 12587 /* IP options present */ 12588 if (u1 != 0) 12589 goto ipoptions; 12590 12591 /* Check the IP header checksum. */ 12592 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12593 /* Clear the IP header h/w cksum flag */ 12594 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12595 } else if (!mctl_present) { 12596 /* 12597 * Don't verify header checksum if this packet is coming 12598 * back from AH/ESP as we already did it. 12599 */ 12600 #define uph ((uint16_t *)ipha) 12601 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12602 uph[6] + uph[7] + uph[8] + uph[9]; 12603 #undef uph 12604 /* finish doing IP checksum */ 12605 sum = (sum & 0xFFFF) + (sum >> 16); 12606 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12607 if (sum != 0 && sum != 0xFFFF) { 12608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12609 freemsg(first_mp); 12610 return; 12611 } 12612 } 12613 12614 /* 12615 * Count for SNMP of inbound packets for ire. 12616 * if mctl is present this might be a secure packet and 12617 * has already been counted for in ip_proto_input(). 12618 */ 12619 if (!mctl_present) { 12620 UPDATE_IB_PKT_COUNT(ire); 12621 ire->ire_last_used_time = lbolt; 12622 } 12623 12624 /* packet part of fragmented IP packet? */ 12625 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12626 if (u1 & (IPH_MF | IPH_OFFSET)) { 12627 goto fragmented; 12628 } 12629 12630 /* u1 = IP header length (20 bytes) */ 12631 u1 = IP_SIMPLE_HDR_LENGTH; 12632 12633 /* packet does not contain complete IP & UDP headers */ 12634 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12635 goto udppullup; 12636 12637 /* up points to UDP header */ 12638 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12639 #define iphs ((uint16_t *)ipha) 12640 12641 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12642 if (up[3] != 0) { 12643 mblk_t *mp1 = mp->b_cont; 12644 boolean_t cksum_err; 12645 uint16_t hck_flags = 0; 12646 12647 /* Pseudo-header checksum */ 12648 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12649 iphs[9] + up[2]; 12650 12651 /* 12652 * Revert to software checksum calculation if the interface 12653 * isn't capable of checksum offload or if IPsec is present. 12654 */ 12655 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12656 hck_flags = DB_CKSUMFLAGS(mp); 12657 12658 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12659 IP_STAT(ipst, ip_in_sw_cksum); 12660 12661 IP_CKSUM_RECV(hck_flags, u1, 12662 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12663 (int32_t)((uchar_t *)up - rptr), 12664 mp, mp1, cksum_err); 12665 12666 if (cksum_err) { 12667 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12668 if (hck_flags & HCK_FULLCKSUM) 12669 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12670 else if (hck_flags & HCK_PARTIALCKSUM) 12671 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12672 else 12673 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12674 12675 freemsg(first_mp); 12676 return; 12677 } 12678 } 12679 12680 /* Non-fragmented broadcast or multicast packet? */ 12681 if (ire->ire_type == IRE_BROADCAST) 12682 goto udpslowpath; 12683 12684 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12685 ire->ire_zoneid, ipst)) != NULL) { 12686 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12687 IP_STAT(ipst, ip_udp_fast_path); 12688 12689 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12690 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12691 freemsg(mp); 12692 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12693 } else { 12694 if (!mctl_present) { 12695 BUMP_MIB(ill->ill_ip_mib, 12696 ipIfStatsHCInDelivers); 12697 } 12698 /* 12699 * mp and first_mp can change. 12700 */ 12701 if (ip_udp_check(q, connp, recv_ill, 12702 ipha, &mp, &first_mp, mctl_present, ire)) { 12703 /* Send it upstream */ 12704 (connp->conn_recv)(connp, mp, NULL); 12705 } 12706 } 12707 /* 12708 * freeb() cannot deal with null mblk being passed 12709 * in and first_mp can be set to null in the call 12710 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12711 */ 12712 if (mctl_present && first_mp != NULL) { 12713 freeb(first_mp); 12714 } 12715 CONN_DEC_REF(connp); 12716 return; 12717 } 12718 12719 /* 12720 * if we got here we know the packet is not fragmented and 12721 * has no options. The classifier could not find a conn_t and 12722 * most likely its an icmp packet so send it through slow path. 12723 */ 12724 12725 goto udpslowpath; 12726 12727 ipoptions: 12728 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12729 goto slow_done; 12730 } 12731 12732 UPDATE_IB_PKT_COUNT(ire); 12733 ire->ire_last_used_time = lbolt; 12734 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12735 if (u1 & (IPH_MF | IPH_OFFSET)) { 12736 fragmented: 12737 /* 12738 * "sum" and "reass_hck_flags" are non-zero if the 12739 * reassembled packet has a valid hardware computed 12740 * checksum information associated with it. 12741 */ 12742 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12743 &reass_hck_flags)) { 12744 goto slow_done; 12745 } 12746 12747 /* 12748 * Make sure that first_mp points back to mp as 12749 * the mp we came in with could have changed in 12750 * ip_rput_fragment(). 12751 */ 12752 ASSERT(!mctl_present); 12753 ipha = (ipha_t *)mp->b_rptr; 12754 first_mp = mp; 12755 } 12756 12757 /* Now we have a complete datagram, destined for this machine. */ 12758 u1 = IPH_HDR_LENGTH(ipha); 12759 /* Pull up the UDP header, if necessary. */ 12760 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12761 udppullup: 12762 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12763 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12764 freemsg(first_mp); 12765 goto slow_done; 12766 } 12767 ipha = (ipha_t *)mp->b_rptr; 12768 } 12769 12770 /* 12771 * Validate the checksum for the reassembled packet; for the 12772 * pullup case we calculate the payload checksum in software. 12773 */ 12774 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12775 if (up[3] != 0) { 12776 boolean_t cksum_err; 12777 12778 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12779 IP_STAT(ipst, ip_in_sw_cksum); 12780 12781 IP_CKSUM_RECV_REASS(reass_hck_flags, 12782 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12783 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12784 iphs[9] + up[2], sum, cksum_err); 12785 12786 if (cksum_err) { 12787 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12788 12789 if (reass_hck_flags & HCK_FULLCKSUM) 12790 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12791 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12792 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12793 else 12794 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12795 12796 freemsg(first_mp); 12797 goto slow_done; 12798 } 12799 } 12800 udpslowpath: 12801 12802 /* Clear hardware checksum flag to be safe */ 12803 DB_CKSUMFLAGS(mp) = 0; 12804 12805 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12806 (ire->ire_type == IRE_BROADCAST), 12807 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12808 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12809 12810 slow_done: 12811 IP_STAT(ipst, ip_udp_slow_path); 12812 return; 12813 12814 #undef iphs 12815 #undef rptr 12816 } 12817 12818 static boolean_t 12819 ip_iptun_input(mblk_t *ipsec_mp, mblk_t *data_mp, ipha_t *ipha, ill_t *ill, 12820 ire_t *ire, ip_stack_t *ipst) 12821 { 12822 conn_t *connp; 12823 12824 ASSERT(ipsec_mp == NULL || ipsec_mp->b_cont == data_mp); 12825 12826 if ((connp = ipcl_classify_v4(data_mp, ipha->ipha_protocol, 12827 IP_SIMPLE_HDR_LENGTH, ire->ire_zoneid, ipst)) != NULL) { 12828 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12829 connp->conn_recv(connp, ipsec_mp != NULL ? ipsec_mp : data_mp, 12830 NULL); 12831 CONN_DEC_REF(connp); 12832 return (B_TRUE); 12833 } 12834 return (B_FALSE); 12835 } 12836 12837 /* ARGSUSED */ 12838 static mblk_t * 12839 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12840 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12841 ill_rx_ring_t *ill_ring) 12842 { 12843 conn_t *connp; 12844 uint32_t sum; 12845 uint32_t u1; 12846 uint16_t *up; 12847 int offset; 12848 ssize_t len; 12849 mblk_t *mp1; 12850 boolean_t syn_present = B_FALSE; 12851 tcph_t *tcph; 12852 uint_t tcph_flags; 12853 uint_t ip_hdr_len; 12854 ill_t *ill = (ill_t *)q->q_ptr; 12855 zoneid_t zoneid = ire->ire_zoneid; 12856 boolean_t cksum_err; 12857 uint16_t hck_flags = 0; 12858 ip_stack_t *ipst = recv_ill->ill_ipst; 12859 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12860 12861 #define rptr ((uchar_t *)ipha) 12862 12863 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12864 ASSERT(ill != NULL); 12865 12866 /* 12867 * FAST PATH for tcp packets 12868 */ 12869 12870 /* u1 is # words of IP options */ 12871 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12872 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12873 12874 /* IP options present */ 12875 if (u1) { 12876 goto ipoptions; 12877 } else if (!mctl_present) { 12878 /* Check the IP header checksum. */ 12879 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12880 /* Clear the IP header h/w cksum flag */ 12881 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12882 } else if (!mctl_present) { 12883 /* 12884 * Don't verify header checksum if this packet 12885 * is coming back from AH/ESP as we already did it. 12886 */ 12887 #define uph ((uint16_t *)ipha) 12888 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12889 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12890 #undef uph 12891 /* finish doing IP checksum */ 12892 sum = (sum & 0xFFFF) + (sum >> 16); 12893 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12894 if (sum != 0 && sum != 0xFFFF) { 12895 BUMP_MIB(ill->ill_ip_mib, 12896 ipIfStatsInCksumErrs); 12897 goto error; 12898 } 12899 } 12900 } 12901 12902 if (!mctl_present) { 12903 UPDATE_IB_PKT_COUNT(ire); 12904 ire->ire_last_used_time = lbolt; 12905 } 12906 12907 /* packet part of fragmented IP packet? */ 12908 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12909 if (u1 & (IPH_MF | IPH_OFFSET)) { 12910 goto fragmented; 12911 } 12912 12913 /* u1 = IP header length (20 bytes) */ 12914 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12915 12916 /* does packet contain IP+TCP headers? */ 12917 len = mp->b_wptr - rptr; 12918 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12919 IP_STAT(ipst, ip_tcppullup); 12920 goto tcppullup; 12921 } 12922 12923 /* TCP options present? */ 12924 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12925 12926 /* 12927 * If options need to be pulled up, then goto tcpoptions. 12928 * otherwise we are still in the fast path 12929 */ 12930 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12931 IP_STAT(ipst, ip_tcpoptions); 12932 goto tcpoptions; 12933 } 12934 12935 /* multiple mblks of tcp data? */ 12936 if ((mp1 = mp->b_cont) != NULL) { 12937 IP_STAT(ipst, ip_multipkttcp); 12938 len += msgdsize(mp1); 12939 } 12940 12941 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12942 12943 /* part of pseudo checksum */ 12944 12945 /* TCP datagram length */ 12946 u1 = len - IP_SIMPLE_HDR_LENGTH; 12947 12948 #define iphs ((uint16_t *)ipha) 12949 12950 #ifdef _BIG_ENDIAN 12951 u1 += IPPROTO_TCP; 12952 #else 12953 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12954 #endif 12955 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12956 12957 /* 12958 * Revert to software checksum calculation if the interface 12959 * isn't capable of checksum offload or if IPsec is present. 12960 */ 12961 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12962 hck_flags = DB_CKSUMFLAGS(mp); 12963 12964 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12965 IP_STAT(ipst, ip_in_sw_cksum); 12966 12967 IP_CKSUM_RECV(hck_flags, u1, 12968 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12969 (int32_t)((uchar_t *)up - rptr), 12970 mp, mp1, cksum_err); 12971 12972 if (cksum_err) { 12973 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12974 12975 if (hck_flags & HCK_FULLCKSUM) 12976 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12977 else if (hck_flags & HCK_PARTIALCKSUM) 12978 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12979 else 12980 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12981 12982 goto error; 12983 } 12984 12985 try_again: 12986 12987 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12988 zoneid, ipst)) == NULL) { 12989 /* Send the TH_RST */ 12990 goto no_conn; 12991 } 12992 12993 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12994 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 12995 12996 /* 12997 * TCP FAST PATH for AF_INET socket. 12998 * 12999 * TCP fast path to avoid extra work. An AF_INET socket type 13000 * does not have facility to receive extra information via 13001 * ip_process or ip_add_info. Also, when the connection was 13002 * established, we made a check if this connection is impacted 13003 * by any global IPsec policy or per connection policy (a 13004 * policy that comes in effect later will not apply to this 13005 * connection). Since all this can be determined at the 13006 * connection establishment time, a quick check of flags 13007 * can avoid extra work. 13008 */ 13009 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13010 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13011 ASSERT(first_mp == mp); 13012 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13013 if (tcph_flags != (TH_SYN | TH_ACK)) { 13014 SET_SQUEUE(mp, tcp_rput_data, connp); 13015 return (mp); 13016 } 13017 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13018 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13019 SET_SQUEUE(mp, tcp_input, connp); 13020 return (mp); 13021 } 13022 13023 if (tcph_flags == TH_SYN) { 13024 if (IPCL_IS_TCP(connp)) { 13025 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13026 DB_CKSUMSTART(mp) = 13027 (intptr_t)ip_squeue_get(ill_ring); 13028 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13029 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13030 BUMP_MIB(ill->ill_ip_mib, 13031 ipIfStatsHCInDelivers); 13032 SET_SQUEUE(mp, connp->conn_recv, connp); 13033 return (mp); 13034 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13035 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13036 BUMP_MIB(ill->ill_ip_mib, 13037 ipIfStatsHCInDelivers); 13038 ip_squeue_enter_unbound++; 13039 SET_SQUEUE(mp, tcp_conn_request_unbound, 13040 connp); 13041 return (mp); 13042 } 13043 syn_present = B_TRUE; 13044 } 13045 } 13046 13047 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13048 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13049 13050 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13051 /* No need to send this packet to TCP */ 13052 if ((flags & TH_RST) || (flags & TH_URG)) { 13053 CONN_DEC_REF(connp); 13054 freemsg(first_mp); 13055 return (NULL); 13056 } 13057 if (flags & TH_ACK) { 13058 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13059 ipst->ips_netstack->netstack_tcp, connp); 13060 CONN_DEC_REF(connp); 13061 return (NULL); 13062 } 13063 13064 CONN_DEC_REF(connp); 13065 freemsg(first_mp); 13066 return (NULL); 13067 } 13068 13069 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13070 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13071 ipha, NULL, mctl_present); 13072 if (first_mp == NULL) { 13073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13074 CONN_DEC_REF(connp); 13075 return (NULL); 13076 } 13077 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13078 ASSERT(syn_present); 13079 if (mctl_present) { 13080 ASSERT(first_mp != mp); 13081 first_mp->b_datap->db_struioflag |= 13082 STRUIO_POLICY; 13083 } else { 13084 ASSERT(first_mp == mp); 13085 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13086 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13087 } 13088 } else { 13089 /* 13090 * Discard first_mp early since we're dealing with a 13091 * fully-connected conn_t and tcp doesn't do policy in 13092 * this case. 13093 */ 13094 if (mctl_present) { 13095 freeb(first_mp); 13096 mctl_present = B_FALSE; 13097 } 13098 first_mp = mp; 13099 } 13100 } 13101 13102 /* Initiate IPPF processing for fastpath */ 13103 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13104 uint32_t ill_index; 13105 13106 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13107 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13108 if (mp == NULL) { 13109 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13110 "deferred/dropped during IPPF processing\n")); 13111 CONN_DEC_REF(connp); 13112 if (mctl_present) 13113 freeb(first_mp); 13114 return (NULL); 13115 } else if (mctl_present) { 13116 /* 13117 * ip_process might return a new mp. 13118 */ 13119 ASSERT(first_mp != mp); 13120 first_mp->b_cont = mp; 13121 } else { 13122 first_mp = mp; 13123 } 13124 13125 } 13126 13127 if (!syn_present && connp->conn_ip_recvpktinfo) { 13128 /* 13129 * TCP does not support IP_RECVPKTINFO for v4 so lets 13130 * make sure IPF_RECVIF is passed to ip_add_info. 13131 */ 13132 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13133 IPCL_ZONEID(connp), ipst); 13134 if (mp == NULL) { 13135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13136 CONN_DEC_REF(connp); 13137 if (mctl_present) 13138 freeb(first_mp); 13139 return (NULL); 13140 } else if (mctl_present) { 13141 /* 13142 * ip_add_info might return a new mp. 13143 */ 13144 ASSERT(first_mp != mp); 13145 first_mp->b_cont = mp; 13146 } else { 13147 first_mp = mp; 13148 } 13149 } 13150 13151 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13152 if (IPCL_IS_TCP(connp)) { 13153 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13154 return (first_mp); 13155 } else { 13156 /* SOCK_RAW, IPPROTO_TCP case */ 13157 (connp->conn_recv)(connp, first_mp, NULL); 13158 CONN_DEC_REF(connp); 13159 return (NULL); 13160 } 13161 13162 no_conn: 13163 /* Initiate IPPf processing, if needed. */ 13164 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13165 uint32_t ill_index; 13166 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13167 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13168 if (first_mp == NULL) { 13169 return (NULL); 13170 } 13171 } 13172 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13173 13174 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13175 ipst->ips_netstack->netstack_tcp, NULL); 13176 return (NULL); 13177 ipoptions: 13178 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13179 goto slow_done; 13180 } 13181 13182 UPDATE_IB_PKT_COUNT(ire); 13183 ire->ire_last_used_time = lbolt; 13184 13185 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13186 if (u1 & (IPH_MF | IPH_OFFSET)) { 13187 fragmented: 13188 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13189 if (mctl_present) 13190 freeb(first_mp); 13191 goto slow_done; 13192 } 13193 /* 13194 * Make sure that first_mp points back to mp as 13195 * the mp we came in with could have changed in 13196 * ip_rput_fragment(). 13197 */ 13198 ASSERT(!mctl_present); 13199 ipha = (ipha_t *)mp->b_rptr; 13200 first_mp = mp; 13201 } 13202 13203 /* Now we have a complete datagram, destined for this machine. */ 13204 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13205 13206 len = mp->b_wptr - mp->b_rptr; 13207 /* Pull up a minimal TCP header, if necessary. */ 13208 if (len < (u1 + 20)) { 13209 tcppullup: 13210 if (!pullupmsg(mp, u1 + 20)) { 13211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13212 goto error; 13213 } 13214 ipha = (ipha_t *)mp->b_rptr; 13215 len = mp->b_wptr - mp->b_rptr; 13216 } 13217 13218 /* 13219 * Extract the offset field from the TCP header. As usual, we 13220 * try to help the compiler more than the reader. 13221 */ 13222 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13223 if (offset != 5) { 13224 tcpoptions: 13225 if (offset < 5) { 13226 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13227 goto error; 13228 } 13229 /* 13230 * There must be TCP options. 13231 * Make sure we can grab them. 13232 */ 13233 offset <<= 2; 13234 offset += u1; 13235 if (len < offset) { 13236 if (!pullupmsg(mp, offset)) { 13237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13238 goto error; 13239 } 13240 ipha = (ipha_t *)mp->b_rptr; 13241 len = mp->b_wptr - rptr; 13242 } 13243 } 13244 13245 /* Get the total packet length in len, including headers. */ 13246 if (mp->b_cont) 13247 len = msgdsize(mp); 13248 13249 /* 13250 * Check the TCP checksum by pulling together the pseudo- 13251 * header checksum, and passing it to ip_csum to be added in 13252 * with the TCP datagram. 13253 * 13254 * Since we are not using the hwcksum if available we must 13255 * clear the flag. We may come here via tcppullup or tcpoptions. 13256 * If either of these fails along the way the mblk is freed. 13257 * If this logic ever changes and mblk is reused to say send 13258 * ICMP's back, then this flag may need to be cleared in 13259 * other places as well. 13260 */ 13261 DB_CKSUMFLAGS(mp) = 0; 13262 13263 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13264 13265 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13266 #ifdef _BIG_ENDIAN 13267 u1 += IPPROTO_TCP; 13268 #else 13269 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13270 #endif 13271 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13272 /* 13273 * Not M_DATA mblk or its a dup, so do the checksum now. 13274 */ 13275 IP_STAT(ipst, ip_in_sw_cksum); 13276 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13277 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13278 goto error; 13279 } 13280 13281 IP_STAT(ipst, ip_tcp_slow_path); 13282 goto try_again; 13283 #undef iphs 13284 #undef rptr 13285 13286 error: 13287 freemsg(first_mp); 13288 slow_done: 13289 return (NULL); 13290 } 13291 13292 /* ARGSUSED */ 13293 static void 13294 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13295 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13296 { 13297 conn_t *connp; 13298 uint32_t sum; 13299 uint32_t u1; 13300 ssize_t len; 13301 sctp_hdr_t *sctph; 13302 zoneid_t zoneid = ire->ire_zoneid; 13303 uint32_t pktsum; 13304 uint32_t calcsum; 13305 uint32_t ports; 13306 in6_addr_t map_src, map_dst; 13307 ill_t *ill = (ill_t *)q->q_ptr; 13308 ip_stack_t *ipst; 13309 sctp_stack_t *sctps; 13310 boolean_t sctp_csum_err = B_FALSE; 13311 13312 ASSERT(recv_ill != NULL); 13313 ipst = recv_ill->ill_ipst; 13314 sctps = ipst->ips_netstack->netstack_sctp; 13315 13316 #define rptr ((uchar_t *)ipha) 13317 13318 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13319 ASSERT(ill != NULL); 13320 13321 /* u1 is # words of IP options */ 13322 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13323 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13324 13325 /* IP options present */ 13326 if (u1 > 0) { 13327 goto ipoptions; 13328 } else { 13329 /* Check the IP header checksum. */ 13330 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13331 !mctl_present) { 13332 #define uph ((uint16_t *)ipha) 13333 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13334 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13335 #undef uph 13336 /* finish doing IP checksum */ 13337 sum = (sum & 0xFFFF) + (sum >> 16); 13338 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13339 /* 13340 * Don't verify header checksum if this packet 13341 * is coming back from AH/ESP as we already did it. 13342 */ 13343 if (sum != 0 && sum != 0xFFFF) { 13344 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13345 goto error; 13346 } 13347 } 13348 /* 13349 * Since there is no SCTP h/w cksum support yet, just 13350 * clear the flag. 13351 */ 13352 DB_CKSUMFLAGS(mp) = 0; 13353 } 13354 13355 /* 13356 * Don't verify header checksum if this packet is coming 13357 * back from AH/ESP as we already did it. 13358 */ 13359 if (!mctl_present) { 13360 UPDATE_IB_PKT_COUNT(ire); 13361 ire->ire_last_used_time = lbolt; 13362 } 13363 13364 /* packet part of fragmented IP packet? */ 13365 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13366 if (u1 & (IPH_MF | IPH_OFFSET)) 13367 goto fragmented; 13368 13369 /* u1 = IP header length (20 bytes) */ 13370 u1 = IP_SIMPLE_HDR_LENGTH; 13371 13372 find_sctp_client: 13373 /* Pullup if we don't have the sctp common header. */ 13374 len = MBLKL(mp); 13375 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13376 if (mp->b_cont == NULL || 13377 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13378 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13379 goto error; 13380 } 13381 ipha = (ipha_t *)mp->b_rptr; 13382 len = MBLKL(mp); 13383 } 13384 13385 sctph = (sctp_hdr_t *)(rptr + u1); 13386 #ifdef DEBUG 13387 if (!skip_sctp_cksum) { 13388 #endif 13389 pktsum = sctph->sh_chksum; 13390 sctph->sh_chksum = 0; 13391 calcsum = sctp_cksum(mp, u1); 13392 sctph->sh_chksum = pktsum; 13393 if (calcsum != pktsum) 13394 sctp_csum_err = B_TRUE; 13395 #ifdef DEBUG /* skip_sctp_cksum */ 13396 } 13397 #endif 13398 /* get the ports */ 13399 ports = *(uint32_t *)&sctph->sh_sport; 13400 13401 IRE_REFRELE(ire); 13402 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13403 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13404 if (sctp_csum_err) { 13405 /* 13406 * No potential sctp checksum errors go to the Sun 13407 * sctp stack however they might be Adler-32 summed 13408 * packets a userland stack bound to a raw IP socket 13409 * could reasonably use. Note though that Adler-32 is 13410 * a long deprecated algorithm and customer sctp 13411 * networks should eventually migrate to CRC-32 at 13412 * which time this facility should be removed. 13413 */ 13414 flags |= IP_FF_SCTP_CSUM_ERR; 13415 goto no_conn; 13416 } 13417 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13418 sctps)) == NULL) { 13419 /* Check for raw socket or OOTB handling */ 13420 goto no_conn; 13421 } 13422 13423 /* Found a client; up it goes */ 13424 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13425 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13426 return; 13427 13428 no_conn: 13429 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13430 ports, mctl_present, flags, B_TRUE, zoneid); 13431 return; 13432 13433 ipoptions: 13434 DB_CKSUMFLAGS(mp) = 0; 13435 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13436 goto slow_done; 13437 13438 UPDATE_IB_PKT_COUNT(ire); 13439 ire->ire_last_used_time = lbolt; 13440 13441 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13442 if (u1 & (IPH_MF | IPH_OFFSET)) { 13443 fragmented: 13444 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13445 goto slow_done; 13446 /* 13447 * Make sure that first_mp points back to mp as 13448 * the mp we came in with could have changed in 13449 * ip_rput_fragment(). 13450 */ 13451 ASSERT(!mctl_present); 13452 ipha = (ipha_t *)mp->b_rptr; 13453 first_mp = mp; 13454 } 13455 13456 /* Now we have a complete datagram, destined for this machine. */ 13457 u1 = IPH_HDR_LENGTH(ipha); 13458 goto find_sctp_client; 13459 #undef iphs 13460 #undef rptr 13461 13462 error: 13463 freemsg(first_mp); 13464 slow_done: 13465 IRE_REFRELE(ire); 13466 } 13467 13468 #define VER_BITS 0xF0 13469 #define VERSION_6 0x60 13470 13471 static boolean_t 13472 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13473 ipaddr_t *dstp, ip_stack_t *ipst) 13474 { 13475 uint_t opt_len; 13476 ipha_t *ipha; 13477 ssize_t len; 13478 uint_t pkt_len; 13479 13480 ASSERT(ill != NULL); 13481 IP_STAT(ipst, ip_ipoptions); 13482 ipha = *iphapp; 13483 13484 #define rptr ((uchar_t *)ipha) 13485 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13486 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13487 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13488 freemsg(mp); 13489 return (B_FALSE); 13490 } 13491 13492 /* multiple mblk or too short */ 13493 pkt_len = ntohs(ipha->ipha_length); 13494 13495 /* Get the number of words of IP options in the IP header. */ 13496 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13497 if (opt_len) { 13498 /* IP Options present! Validate and process. */ 13499 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13500 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13501 goto done; 13502 } 13503 /* 13504 * Recompute complete header length and make sure we 13505 * have access to all of it. 13506 */ 13507 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13508 if (len > (mp->b_wptr - rptr)) { 13509 if (len > pkt_len) { 13510 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13511 goto done; 13512 } 13513 if (!pullupmsg(mp, len)) { 13514 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13515 goto done; 13516 } 13517 ipha = (ipha_t *)mp->b_rptr; 13518 } 13519 /* 13520 * Go off to ip_rput_options which returns the next hop 13521 * destination address, which may have been affected 13522 * by source routing. 13523 */ 13524 IP_STAT(ipst, ip_opt); 13525 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13526 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13527 return (B_FALSE); 13528 } 13529 } 13530 *iphapp = ipha; 13531 return (B_TRUE); 13532 done: 13533 /* clear b_prev - used by ip_mroute_decap */ 13534 mp->b_prev = NULL; 13535 freemsg(mp); 13536 return (B_FALSE); 13537 #undef rptr 13538 } 13539 13540 /* 13541 * Deal with the fact that there is no ire for the destination. 13542 */ 13543 static ire_t * 13544 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13545 { 13546 ipha_t *ipha; 13547 ill_t *ill; 13548 ire_t *ire; 13549 ip_stack_t *ipst; 13550 enum ire_forward_action ret_action; 13551 13552 ipha = (ipha_t *)mp->b_rptr; 13553 ill = (ill_t *)q->q_ptr; 13554 13555 ASSERT(ill != NULL); 13556 ipst = ill->ill_ipst; 13557 13558 /* 13559 * No IRE for this destination, so it can't be for us. 13560 * Unless we are forwarding, drop the packet. 13561 * We have to let source routed packets through 13562 * since we don't yet know if they are 'ping -l' 13563 * packets i.e. if they will go out over the 13564 * same interface as they came in on. 13565 */ 13566 if (ll_multicast) { 13567 freemsg(mp); 13568 return (NULL); 13569 } 13570 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13572 freemsg(mp); 13573 return (NULL); 13574 } 13575 13576 /* 13577 * Mark this packet as having originated externally. 13578 * 13579 * For non-forwarding code path, ire_send later double 13580 * checks this interface to see if it is still exists 13581 * post-ARP resolution. 13582 * 13583 * Also, IPQOS uses this to differentiate between 13584 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13585 * QOS packet processing in ip_wput_attach_llhdr(). 13586 * The QoS module can mark the b_band for a fastpath message 13587 * or the dl_priority field in a unitdata_req header for 13588 * CoS marking. This info can only be found in 13589 * ip_wput_attach_llhdr(). 13590 */ 13591 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13592 /* 13593 * Clear the indication that this may have a hardware checksum 13594 * as we are not using it 13595 */ 13596 DB_CKSUMFLAGS(mp) = 0; 13597 13598 ire = ire_forward(dst, &ret_action, NULL, NULL, 13599 msg_getlabel(mp), ipst); 13600 13601 if (ire == NULL && ret_action == Forward_check_multirt) { 13602 /* Let ip_newroute handle CGTP */ 13603 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13604 return (NULL); 13605 } 13606 13607 if (ire != NULL) 13608 return (ire); 13609 13610 mp->b_prev = mp->b_next = 0; 13611 13612 if (ret_action == Forward_blackhole) { 13613 freemsg(mp); 13614 return (NULL); 13615 } 13616 /* send icmp unreachable */ 13617 q = WR(q); 13618 /* Sent by forwarding path, and router is global zone */ 13619 if (ip_source_routed(ipha, ipst)) { 13620 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13621 GLOBAL_ZONEID, ipst); 13622 } else { 13623 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13624 ipst); 13625 } 13626 13627 return (NULL); 13628 13629 } 13630 13631 /* 13632 * check ip header length and align it. 13633 */ 13634 static boolean_t 13635 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13636 { 13637 ssize_t len; 13638 ill_t *ill; 13639 ipha_t *ipha; 13640 13641 len = MBLKL(mp); 13642 13643 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13644 ill = (ill_t *)q->q_ptr; 13645 13646 if (!OK_32PTR(mp->b_rptr)) 13647 IP_STAT(ipst, ip_notaligned1); 13648 else 13649 IP_STAT(ipst, ip_notaligned2); 13650 /* Guard against bogus device drivers */ 13651 if (len < 0) { 13652 /* clear b_prev - used by ip_mroute_decap */ 13653 mp->b_prev = NULL; 13654 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13655 freemsg(mp); 13656 return (B_FALSE); 13657 } 13658 13659 if (ip_rput_pullups++ == 0) { 13660 ipha = (ipha_t *)mp->b_rptr; 13661 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13662 "ip_check_and_align_header: %s forced us to " 13663 " pullup pkt, hdr len %ld, hdr addr %p", 13664 ill->ill_name, len, (void *)ipha); 13665 } 13666 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13667 /* clear b_prev - used by ip_mroute_decap */ 13668 mp->b_prev = NULL; 13669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13670 freemsg(mp); 13671 return (B_FALSE); 13672 } 13673 } 13674 return (B_TRUE); 13675 } 13676 13677 /* 13678 * Handle the situation where a packet came in on `ill' but matched an IRE 13679 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13680 * for interface statistics. 13681 */ 13682 ire_t * 13683 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13684 { 13685 ire_t *new_ire; 13686 ill_t *ire_ill; 13687 uint_t ifindex; 13688 ip_stack_t *ipst = ill->ill_ipst; 13689 boolean_t strict_check = B_FALSE; 13690 13691 /* 13692 * IPMP common case: if IRE and ILL are in the same group, there's no 13693 * issue (e.g. packet received on an underlying interface matched an 13694 * IRE_LOCAL on its associated group interface). 13695 */ 13696 if (ire->ire_rfq != NULL && 13697 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13698 return (ire); 13699 } 13700 13701 /* 13702 * Do another ire lookup here, using the ingress ill, to see if the 13703 * interface is in a usesrc group. 13704 * As long as the ills belong to the same group, we don't consider 13705 * them to be arriving on the wrong interface. Thus, if the switch 13706 * is doing inbound load spreading, we won't drop packets when the 13707 * ip*_strict_dst_multihoming switch is on. 13708 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13709 * where the local address may not be unique. In this case we were 13710 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13711 * actually returned. The new lookup, which is more specific, should 13712 * only find the IRE_LOCAL associated with the ingress ill if one 13713 * exists. 13714 */ 13715 13716 if (ire->ire_ipversion == IPV4_VERSION) { 13717 if (ipst->ips_ip_strict_dst_multihoming) 13718 strict_check = B_TRUE; 13719 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13720 ill->ill_ipif, ALL_ZONES, NULL, 13721 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13722 } else { 13723 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13724 if (ipst->ips_ipv6_strict_dst_multihoming) 13725 strict_check = B_TRUE; 13726 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13727 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13728 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13729 } 13730 /* 13731 * If the same ire that was returned in ip_input() is found then this 13732 * is an indication that usesrc groups are in use. The packet 13733 * arrived on a different ill in the group than the one associated with 13734 * the destination address. If a different ire was found then the same 13735 * IP address must be hosted on multiple ills. This is possible with 13736 * unnumbered point2point interfaces. We switch to use this new ire in 13737 * order to have accurate interface statistics. 13738 */ 13739 if (new_ire != NULL) { 13740 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13741 ire_refrele(ire); 13742 ire = new_ire; 13743 } else { 13744 ire_refrele(new_ire); 13745 } 13746 return (ire); 13747 } else if ((ire->ire_rfq == NULL) && 13748 (ire->ire_ipversion == IPV4_VERSION)) { 13749 /* 13750 * The best match could have been the original ire which 13751 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13752 * the strict multihoming checks are irrelevant as we consider 13753 * local addresses hosted on lo0 to be interface agnostic. We 13754 * only expect a null ire_rfq on IREs which are associated with 13755 * lo0 hence we can return now. 13756 */ 13757 return (ire); 13758 } 13759 13760 /* 13761 * Chase pointers once and store locally. 13762 */ 13763 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13764 (ill_t *)(ire->ire_rfq->q_ptr); 13765 ifindex = ill->ill_usesrc_ifindex; 13766 13767 /* 13768 * Check if it's a legal address on the 'usesrc' interface. 13769 */ 13770 if ((ifindex != 0) && (ire_ill != NULL) && 13771 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13772 return (ire); 13773 } 13774 13775 /* 13776 * If the ip*_strict_dst_multihoming switch is on then we can 13777 * only accept this packet if the interface is marked as routing. 13778 */ 13779 if (!(strict_check)) 13780 return (ire); 13781 13782 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13783 ILLF_ROUTER) != 0) { 13784 return (ire); 13785 } 13786 13787 ire_refrele(ire); 13788 return (NULL); 13789 } 13790 13791 /* 13792 * 13793 * This is the fast forward path. If we are here, we dont need to 13794 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13795 * needed to find the nexthop in this case is much simpler 13796 */ 13797 ire_t * 13798 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13799 { 13800 ipha_t *ipha; 13801 ire_t *src_ire; 13802 ill_t *stq_ill; 13803 uint_t hlen; 13804 uint_t pkt_len; 13805 uint32_t sum; 13806 queue_t *dev_q; 13807 ip_stack_t *ipst = ill->ill_ipst; 13808 mblk_t *fpmp; 13809 enum ire_forward_action ret_action; 13810 13811 ipha = (ipha_t *)mp->b_rptr; 13812 13813 if (ire != NULL && 13814 ire->ire_zoneid != GLOBAL_ZONEID && 13815 ire->ire_zoneid != ALL_ZONES) { 13816 /* 13817 * Should only use IREs that are visible to the global 13818 * zone for forwarding. 13819 */ 13820 ire_refrele(ire); 13821 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13822 /* 13823 * ire_cache_lookup() can return ire of IRE_LOCAL in 13824 * transient cases. In such case, just drop the packet 13825 */ 13826 if (ire != NULL && ire->ire_type != IRE_CACHE) 13827 goto indiscard; 13828 } 13829 13830 /* 13831 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13832 * The loopback address check for both src and dst has already 13833 * been checked in ip_input 13834 */ 13835 13836 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13837 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13838 goto drop; 13839 } 13840 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13841 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13842 13843 if (src_ire != NULL) { 13844 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13845 ire_refrele(src_ire); 13846 goto drop; 13847 } 13848 13849 /* No ire cache of nexthop. So first create one */ 13850 if (ire == NULL) { 13851 13852 ire = ire_forward_simple(dst, &ret_action, ipst); 13853 13854 /* 13855 * We only come to ip_fast_forward if ip_cgtp_filter 13856 * is not set. So ire_forward() should not return with 13857 * Forward_check_multirt as the next action. 13858 */ 13859 ASSERT(ret_action != Forward_check_multirt); 13860 if (ire == NULL) { 13861 /* An attempt was made to forward the packet */ 13862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13864 mp->b_prev = mp->b_next = 0; 13865 /* send icmp unreachable */ 13866 /* Sent by forwarding path, and router is global zone */ 13867 if (ret_action == Forward_ret_icmp_err) { 13868 if (ip_source_routed(ipha, ipst)) { 13869 icmp_unreachable(ill->ill_wq, mp, 13870 ICMP_SOURCE_ROUTE_FAILED, 13871 GLOBAL_ZONEID, ipst); 13872 } else { 13873 icmp_unreachable(ill->ill_wq, mp, 13874 ICMP_HOST_UNREACHABLE, 13875 GLOBAL_ZONEID, ipst); 13876 } 13877 } else { 13878 freemsg(mp); 13879 } 13880 return (NULL); 13881 } 13882 } 13883 13884 /* 13885 * Forwarding fastpath exception case: 13886 * If any of the following are true, we take the slowpath: 13887 * o forwarding is not enabled 13888 * o incoming and outgoing interface are the same, or in the same 13889 * IPMP group. 13890 * o corresponding ire is in incomplete state 13891 * o packet needs fragmentation 13892 * o ARP cache is not resolved 13893 * 13894 * The codeflow from here on is thus: 13895 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13896 */ 13897 pkt_len = ntohs(ipha->ipha_length); 13898 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13899 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13900 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13901 (ire->ire_nce == NULL) || 13902 (pkt_len > ire->ire_max_frag) || 13903 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13904 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13905 ipha->ipha_ttl <= 1) { 13906 ip_rput_process_forward(ill->ill_rq, mp, ire, 13907 ipha, ill, B_FALSE, B_TRUE); 13908 return (ire); 13909 } 13910 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13911 13912 DTRACE_PROBE4(ip4__forwarding__start, 13913 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13914 13915 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13916 ipst->ips_ipv4firewall_forwarding, 13917 ill, stq_ill, ipha, mp, mp, 0, ipst); 13918 13919 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13920 13921 if (mp == NULL) 13922 goto drop; 13923 13924 mp->b_datap->db_struioun.cksum.flags = 0; 13925 /* Adjust the checksum to reflect the ttl decrement. */ 13926 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13927 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13928 ipha->ipha_ttl--; 13929 13930 /* 13931 * Write the link layer header. We can do this safely here, 13932 * because we have already tested to make sure that the IP 13933 * policy is not set, and that we have a fast path destination 13934 * header. 13935 */ 13936 mp->b_rptr -= hlen; 13937 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13938 13939 UPDATE_IB_PKT_COUNT(ire); 13940 ire->ire_last_used_time = lbolt; 13941 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13942 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13943 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13944 13945 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 13946 dev_q = ire->ire_stq->q_next; 13947 if (DEV_Q_FLOW_BLOCKED(dev_q)) 13948 goto indiscard; 13949 } 13950 13951 DTRACE_PROBE4(ip4__physical__out__start, 13952 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13953 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13954 ipst->ips_ipv4firewall_physical_out, 13955 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13956 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13957 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 13958 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 13959 ip6_t *, NULL, int, 0); 13960 13961 if (mp != NULL) { 13962 if (ipst->ips_ip4_observe.he_interested) { 13963 zoneid_t szone; 13964 13965 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 13966 ipst, ALL_ZONES); 13967 /* 13968 * The IP observability hook expects b_rptr to be 13969 * where the IP header starts, so advance past the 13970 * link layer header. 13971 */ 13972 mp->b_rptr += hlen; 13973 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 13974 ALL_ZONES, ill, ipst); 13975 mp->b_rptr -= hlen; 13976 } 13977 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 13978 } 13979 return (ire); 13980 13981 indiscard: 13982 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13983 drop: 13984 if (mp != NULL) 13985 freemsg(mp); 13986 return (ire); 13987 13988 } 13989 13990 /* 13991 * This function is called in the forwarding slowpath, when 13992 * either the ire lacks the link-layer address, or the packet needs 13993 * further processing(eg. fragmentation), before transmission. 13994 */ 13995 13996 static void 13997 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13998 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 13999 { 14000 queue_t *dev_q; 14001 ire_t *src_ire; 14002 ip_stack_t *ipst = ill->ill_ipst; 14003 boolean_t same_illgrp = B_FALSE; 14004 14005 ASSERT(ire->ire_stq != NULL); 14006 14007 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14008 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14009 14010 /* 14011 * If the caller of this function is ip_fast_forward() skip the 14012 * next three checks as it does not apply. 14013 */ 14014 if (from_ip_fast_forward) 14015 goto skip; 14016 14017 if (ll_multicast != 0) { 14018 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14019 goto drop_pkt; 14020 } 14021 14022 /* 14023 * check if ipha_src is a broadcast address. Note that this 14024 * check is redundant when we get here from ip_fast_forward() 14025 * which has already done this check. However, since we can 14026 * also get here from ip_rput_process_broadcast() or, for 14027 * for the slow path through ip_fast_forward(), we perform 14028 * the check again for code-reusability 14029 */ 14030 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14031 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14032 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14033 if (src_ire != NULL) 14034 ire_refrele(src_ire); 14035 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14036 ip2dbg(("ip_rput_process_forward: Received packet with" 14037 " bad src/dst address on %s\n", ill->ill_name)); 14038 goto drop_pkt; 14039 } 14040 14041 /* 14042 * Check if we want to forward this one at this time. 14043 * We allow source routed packets on a host provided that 14044 * they go out the same ill or illgrp as they came in on. 14045 * 14046 * XXX To be quicker, we may wish to not chase pointers to 14047 * get the ILLF_ROUTER flag and instead store the 14048 * forwarding policy in the ire. An unfortunate 14049 * side-effect of that would be requiring an ire flush 14050 * whenever the ILLF_ROUTER flag changes. 14051 */ 14052 skip: 14053 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14054 14055 if (((ill->ill_flags & 14056 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14057 !(ip_source_routed(ipha, ipst) && 14058 (ire->ire_rfq == q || same_illgrp))) { 14059 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14060 if (ip_source_routed(ipha, ipst)) { 14061 q = WR(q); 14062 /* 14063 * Clear the indication that this may have 14064 * hardware checksum as we are not using it. 14065 */ 14066 DB_CKSUMFLAGS(mp) = 0; 14067 /* Sent by forwarding path, and router is global zone */ 14068 icmp_unreachable(q, mp, 14069 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14070 return; 14071 } 14072 goto drop_pkt; 14073 } 14074 14075 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14076 14077 /* Packet is being forwarded. Turning off hwcksum flag. */ 14078 DB_CKSUMFLAGS(mp) = 0; 14079 if (ipst->ips_ip_g_send_redirects) { 14080 /* 14081 * Check whether the incoming interface and outgoing 14082 * interface is part of the same group. If so, 14083 * send redirects. 14084 * 14085 * Check the source address to see if it originated 14086 * on the same logical subnet it is going back out on. 14087 * If so, we should be able to send it a redirect. 14088 * Avoid sending a redirect if the destination 14089 * is directly connected (i.e., ipha_dst is the same 14090 * as ire_gateway_addr or the ire_addr of the 14091 * nexthop IRE_CACHE ), or if the packet was source 14092 * routed out this interface. 14093 */ 14094 ipaddr_t src, nhop; 14095 mblk_t *mp1; 14096 ire_t *nhop_ire = NULL; 14097 14098 /* 14099 * Check whether ire_rfq and q are from the same ill or illgrp. 14100 * If so, send redirects. 14101 */ 14102 if ((ire->ire_rfq == q || same_illgrp) && 14103 !ip_source_routed(ipha, ipst)) { 14104 14105 nhop = (ire->ire_gateway_addr != 0 ? 14106 ire->ire_gateway_addr : ire->ire_addr); 14107 14108 if (ipha->ipha_dst == nhop) { 14109 /* 14110 * We avoid sending a redirect if the 14111 * destination is directly connected 14112 * because it is possible that multiple 14113 * IP subnets may have been configured on 14114 * the link, and the source may not 14115 * be on the same subnet as ip destination, 14116 * even though they are on the same 14117 * physical link. 14118 */ 14119 goto sendit; 14120 } 14121 14122 src = ipha->ipha_src; 14123 14124 /* 14125 * We look up the interface ire for the nexthop, 14126 * to see if ipha_src is in the same subnet 14127 * as the nexthop. 14128 * 14129 * Note that, if, in the future, IRE_CACHE entries 14130 * are obsoleted, this lookup will not be needed, 14131 * as the ire passed to this function will be the 14132 * same as the nhop_ire computed below. 14133 */ 14134 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14135 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14136 0, NULL, MATCH_IRE_TYPE, ipst); 14137 14138 if (nhop_ire != NULL) { 14139 if ((src & nhop_ire->ire_mask) == 14140 (nhop & nhop_ire->ire_mask)) { 14141 /* 14142 * The source is directly connected. 14143 * Just copy the ip header (which is 14144 * in the first mblk) 14145 */ 14146 mp1 = copyb(mp); 14147 if (mp1 != NULL) { 14148 icmp_send_redirect(WR(q), mp1, 14149 nhop, ipst); 14150 } 14151 } 14152 ire_refrele(nhop_ire); 14153 } 14154 } 14155 } 14156 sendit: 14157 dev_q = ire->ire_stq->q_next; 14158 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14159 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14160 freemsg(mp); 14161 return; 14162 } 14163 14164 ip_rput_forward(ire, ipha, mp, ill); 14165 return; 14166 14167 drop_pkt: 14168 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14169 freemsg(mp); 14170 } 14171 14172 ire_t * 14173 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14174 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14175 { 14176 queue_t *q; 14177 uint16_t hcksumflags; 14178 ip_stack_t *ipst = ill->ill_ipst; 14179 14180 q = *qp; 14181 14182 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14183 14184 /* 14185 * Clear the indication that this may have hardware 14186 * checksum as we are not using it for forwarding. 14187 */ 14188 hcksumflags = DB_CKSUMFLAGS(mp); 14189 DB_CKSUMFLAGS(mp) = 0; 14190 14191 /* 14192 * Directed broadcast forwarding: if the packet came in over a 14193 * different interface then it is routed out over we can forward it. 14194 */ 14195 if (ipha->ipha_protocol == IPPROTO_TCP) { 14196 ire_refrele(ire); 14197 freemsg(mp); 14198 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14199 return (NULL); 14200 } 14201 /* 14202 * For multicast we have set dst to be INADDR_BROADCAST 14203 * for delivering to all STREAMS. 14204 */ 14205 if (!CLASSD(ipha->ipha_dst)) { 14206 ire_t *new_ire; 14207 ipif_t *ipif; 14208 14209 ipif = ipif_get_next_ipif(NULL, ill); 14210 if (ipif == NULL) { 14211 discard: ire_refrele(ire); 14212 freemsg(mp); 14213 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14214 return (NULL); 14215 } 14216 new_ire = ire_ctable_lookup(dst, 0, 0, 14217 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14218 ipif_refrele(ipif); 14219 14220 if (new_ire != NULL) { 14221 /* 14222 * If the matching IRE_BROADCAST is part of an IPMP 14223 * group, then drop the packet unless our ill has been 14224 * nominated to receive for the group. 14225 */ 14226 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14227 new_ire->ire_rfq != q) { 14228 ire_refrele(new_ire); 14229 goto discard; 14230 } 14231 14232 /* 14233 * In the special case of multirouted broadcast 14234 * packets, we unconditionally need to "gateway" 14235 * them to the appropriate interface here. 14236 * In the normal case, this cannot happen, because 14237 * there is no broadcast IRE tagged with the 14238 * RTF_MULTIRT flag. 14239 */ 14240 if (new_ire->ire_flags & RTF_MULTIRT) { 14241 ire_refrele(new_ire); 14242 if (ire->ire_rfq != NULL) { 14243 q = ire->ire_rfq; 14244 *qp = q; 14245 } 14246 } else { 14247 ire_refrele(ire); 14248 ire = new_ire; 14249 } 14250 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14251 if (!ipst->ips_ip_g_forward_directed_bcast) { 14252 /* 14253 * Free the message if 14254 * ip_g_forward_directed_bcast is turned 14255 * off for non-local broadcast. 14256 */ 14257 ire_refrele(ire); 14258 freemsg(mp); 14259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14260 return (NULL); 14261 } 14262 } else { 14263 /* 14264 * This CGTP packet successfully passed the 14265 * CGTP filter, but the related CGTP 14266 * broadcast IRE has not been found, 14267 * meaning that the redundant ipif is 14268 * probably down. However, if we discarded 14269 * this packet, its duplicate would be 14270 * filtered out by the CGTP filter so none 14271 * of them would get through. So we keep 14272 * going with this one. 14273 */ 14274 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14275 if (ire->ire_rfq != NULL) { 14276 q = ire->ire_rfq; 14277 *qp = q; 14278 } 14279 } 14280 } 14281 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14282 /* 14283 * Verify that there are not more then one 14284 * IRE_BROADCAST with this broadcast address which 14285 * has ire_stq set. 14286 * TODO: simplify, loop over all IRE's 14287 */ 14288 ire_t *ire1; 14289 int num_stq = 0; 14290 mblk_t *mp1; 14291 14292 /* Find the first one with ire_stq set */ 14293 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14294 for (ire1 = ire; ire1 && 14295 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14296 ire1 = ire1->ire_next) 14297 ; 14298 if (ire1) { 14299 ire_refrele(ire); 14300 ire = ire1; 14301 IRE_REFHOLD(ire); 14302 } 14303 14304 /* Check if there are additional ones with stq set */ 14305 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14306 if (ire->ire_addr != ire1->ire_addr) 14307 break; 14308 if (ire1->ire_stq) { 14309 num_stq++; 14310 break; 14311 } 14312 } 14313 rw_exit(&ire->ire_bucket->irb_lock); 14314 if (num_stq == 1 && ire->ire_stq != NULL) { 14315 ip1dbg(("ip_rput_process_broadcast: directed " 14316 "broadcast to 0x%x\n", 14317 ntohl(ire->ire_addr))); 14318 mp1 = copymsg(mp); 14319 if (mp1) { 14320 switch (ipha->ipha_protocol) { 14321 case IPPROTO_UDP: 14322 ip_udp_input(q, mp1, ipha, ire, ill); 14323 break; 14324 default: 14325 ip_proto_input(q, mp1, ipha, ire, ill, 14326 0); 14327 break; 14328 } 14329 } 14330 /* 14331 * Adjust ttl to 2 (1+1 - the forward engine 14332 * will decrement it by one. 14333 */ 14334 if (ip_csum_hdr(ipha)) { 14335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14336 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14337 freemsg(mp); 14338 ire_refrele(ire); 14339 return (NULL); 14340 } 14341 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14342 ipha->ipha_hdr_checksum = 0; 14343 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14344 ip_rput_process_forward(q, mp, ire, ipha, 14345 ill, ll_multicast, B_FALSE); 14346 ire_refrele(ire); 14347 return (NULL); 14348 } 14349 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14350 ntohl(ire->ire_addr))); 14351 } 14352 14353 /* Restore any hardware checksum flags */ 14354 DB_CKSUMFLAGS(mp) = hcksumflags; 14355 return (ire); 14356 } 14357 14358 /* ARGSUSED */ 14359 static boolean_t 14360 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14361 int *ll_multicast, ipaddr_t *dstp) 14362 { 14363 ip_stack_t *ipst = ill->ill_ipst; 14364 14365 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14366 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14367 ntohs(ipha->ipha_length)); 14368 14369 /* 14370 * So that we don't end up with dups, only one ill in an IPMP group is 14371 * nominated to receive multicast traffic. 14372 */ 14373 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14374 goto drop_pkt; 14375 14376 /* 14377 * Forward packets only if we have joined the allmulti 14378 * group on this interface. 14379 */ 14380 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14381 int retval; 14382 14383 /* 14384 * Clear the indication that this may have hardware 14385 * checksum as we are not using it. 14386 */ 14387 DB_CKSUMFLAGS(mp) = 0; 14388 retval = ip_mforward(ill, ipha, mp); 14389 /* ip_mforward updates mib variables if needed */ 14390 /* clear b_prev - used by ip_mroute_decap */ 14391 mp->b_prev = NULL; 14392 14393 switch (retval) { 14394 case 0: 14395 /* 14396 * pkt is okay and arrived on phyint. 14397 * 14398 * If we are running as a multicast router 14399 * we need to see all IGMP and/or PIM packets. 14400 */ 14401 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14402 (ipha->ipha_protocol == IPPROTO_PIM)) { 14403 goto done; 14404 } 14405 break; 14406 case -1: 14407 /* pkt is mal-formed, toss it */ 14408 goto drop_pkt; 14409 case 1: 14410 /* pkt is okay and arrived on a tunnel */ 14411 /* 14412 * If we are running a multicast router 14413 * we need to see all igmp packets. 14414 */ 14415 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14416 *dstp = INADDR_BROADCAST; 14417 *ll_multicast = 1; 14418 return (B_FALSE); 14419 } 14420 14421 goto drop_pkt; 14422 } 14423 } 14424 14425 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14426 /* 14427 * This might just be caused by the fact that 14428 * multiple IP Multicast addresses map to the same 14429 * link layer multicast - no need to increment counter! 14430 */ 14431 freemsg(mp); 14432 return (B_TRUE); 14433 } 14434 done: 14435 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14436 /* 14437 * This assumes the we deliver to all streams for multicast 14438 * and broadcast packets. 14439 */ 14440 *dstp = INADDR_BROADCAST; 14441 *ll_multicast = 1; 14442 return (B_FALSE); 14443 drop_pkt: 14444 ip2dbg(("ip_rput: drop pkt\n")); 14445 freemsg(mp); 14446 return (B_TRUE); 14447 } 14448 14449 /* 14450 * This function is used to both return an indication of whether or not 14451 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14452 * and in doing so, determine whether or not it is broadcast vs multicast. 14453 * For it to be a broadcast packet, we must have the appropriate mblk_t 14454 * hanging off the ill_t. If this is either not present or doesn't match 14455 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14456 * to be multicast. Thus NICs that have no broadcast address (or no 14457 * capability for one, such as point to point links) cannot return as 14458 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14459 * the return values simplifies the current use of the return value of this 14460 * function, which is to pass through the multicast/broadcast characteristic 14461 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14462 * changing the return value to some other symbol demands the appropriate 14463 * "translation" when hpe_flags is set prior to calling hook_run() for 14464 * packet events. 14465 */ 14466 int 14467 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14468 { 14469 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14470 mblk_t *bmp; 14471 14472 if (ind->dl_group_address) { 14473 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14474 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14475 MBLKL(mb) && 14476 (bmp = ill->ill_bcast_mp) != NULL) { 14477 dl_unitdata_req_t *dlur; 14478 uint8_t *bphys_addr; 14479 14480 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14481 if (ill->ill_sap_length < 0) 14482 bphys_addr = (uchar_t *)dlur + 14483 dlur->dl_dest_addr_offset; 14484 else 14485 bphys_addr = (uchar_t *)dlur + 14486 dlur->dl_dest_addr_offset + 14487 ill->ill_sap_length; 14488 14489 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14490 bphys_addr, ind->dl_dest_addr_length) == 0) { 14491 return (HPE_BROADCAST); 14492 } 14493 return (HPE_MULTICAST); 14494 } 14495 return (HPE_MULTICAST); 14496 } 14497 return (0); 14498 } 14499 14500 static boolean_t 14501 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14502 int *ll_multicast, mblk_t **mpp) 14503 { 14504 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14505 boolean_t must_copy = B_FALSE; 14506 struct iocblk *iocp; 14507 ipha_t *ipha; 14508 ip_stack_t *ipst = ill->ill_ipst; 14509 14510 #define rptr ((uchar_t *)ipha) 14511 14512 first_mp = *first_mpp; 14513 mp = *mpp; 14514 14515 ASSERT(first_mp == mp); 14516 14517 /* 14518 * if db_ref > 1 then copymsg and free original. Packet may be 14519 * changed and do not want other entity who has a reference to this 14520 * message to trip over the changes. This is a blind change because 14521 * trying to catch all places that might change packet is too 14522 * difficult (since it may be a module above this one) 14523 * 14524 * This corresponds to the non-fast path case. We walk down the full 14525 * chain in this case, and check the db_ref count of all the dblks, 14526 * and do a copymsg if required. It is possible that the db_ref counts 14527 * of the data blocks in the mblk chain can be different. 14528 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14529 * count of 1, followed by a M_DATA block with a ref count of 2, if 14530 * 'snoop' is running. 14531 */ 14532 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14533 if (mp1->b_datap->db_ref > 1) { 14534 must_copy = B_TRUE; 14535 break; 14536 } 14537 } 14538 14539 if (must_copy) { 14540 mp1 = copymsg(mp); 14541 if (mp1 == NULL) { 14542 for (mp1 = mp; mp1 != NULL; 14543 mp1 = mp1->b_cont) { 14544 mp1->b_next = NULL; 14545 mp1->b_prev = NULL; 14546 } 14547 freemsg(mp); 14548 if (ill != NULL) { 14549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14550 } else { 14551 BUMP_MIB(&ipst->ips_ip_mib, 14552 ipIfStatsInDiscards); 14553 } 14554 return (B_TRUE); 14555 } 14556 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14557 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14558 /* Copy b_prev - used by ip_mroute_decap */ 14559 to_mp->b_prev = from_mp->b_prev; 14560 from_mp->b_prev = NULL; 14561 } 14562 *first_mpp = first_mp = mp1; 14563 freemsg(mp); 14564 mp = mp1; 14565 *mpp = mp1; 14566 } 14567 14568 ipha = (ipha_t *)mp->b_rptr; 14569 14570 /* 14571 * previous code has a case for M_DATA. 14572 * We want to check how that happens. 14573 */ 14574 ASSERT(first_mp->b_datap->db_type != M_DATA); 14575 switch (first_mp->b_datap->db_type) { 14576 case M_PROTO: 14577 case M_PCPROTO: 14578 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14579 DL_UNITDATA_IND) { 14580 /* Go handle anything other than data elsewhere. */ 14581 ip_rput_dlpi(q, mp); 14582 return (B_TRUE); 14583 } 14584 14585 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14586 /* Ditch the DLPI header. */ 14587 mp1 = mp->b_cont; 14588 ASSERT(first_mp == mp); 14589 *first_mpp = mp1; 14590 freeb(mp); 14591 *mpp = mp1; 14592 return (B_FALSE); 14593 case M_IOCACK: 14594 ip1dbg(("got iocack ")); 14595 iocp = (struct iocblk *)mp->b_rptr; 14596 switch (iocp->ioc_cmd) { 14597 case DL_IOC_HDR_INFO: 14598 ill = (ill_t *)q->q_ptr; 14599 ill_fastpath_ack(ill, mp); 14600 return (B_TRUE); 14601 default: 14602 putnext(q, mp); 14603 return (B_TRUE); 14604 } 14605 /* FALLTHRU */ 14606 case M_ERROR: 14607 case M_HANGUP: 14608 /* 14609 * Since this is on the ill stream we unconditionally 14610 * bump up the refcount 14611 */ 14612 ill_refhold(ill); 14613 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14614 return (B_TRUE); 14615 case M_CTL: 14616 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14617 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14618 IPHADA_M_CTL)) { 14619 /* 14620 * It's an IPsec accelerated packet. 14621 * Make sure that the ill from which we received the 14622 * packet has enabled IPsec hardware acceleration. 14623 */ 14624 if (!(ill->ill_capabilities & 14625 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14626 /* IPsec kstats: bean counter */ 14627 freemsg(mp); 14628 return (B_TRUE); 14629 } 14630 14631 /* 14632 * Make mp point to the mblk following the M_CTL, 14633 * then process according to type of mp. 14634 * After this processing, first_mp will point to 14635 * the data-attributes and mp to the pkt following 14636 * the M_CTL. 14637 */ 14638 mp = first_mp->b_cont; 14639 if (mp == NULL) { 14640 freemsg(first_mp); 14641 return (B_TRUE); 14642 } 14643 /* 14644 * A Hardware Accelerated packet can only be M_DATA 14645 * ESP or AH packet. 14646 */ 14647 if (mp->b_datap->db_type != M_DATA) { 14648 /* non-M_DATA IPsec accelerated packet */ 14649 IPSECHW_DEBUG(IPSECHW_PKT, 14650 ("non-M_DATA IPsec accelerated pkt\n")); 14651 freemsg(first_mp); 14652 return (B_TRUE); 14653 } 14654 ipha = (ipha_t *)mp->b_rptr; 14655 if (ipha->ipha_protocol != IPPROTO_AH && 14656 ipha->ipha_protocol != IPPROTO_ESP) { 14657 IPSECHW_DEBUG(IPSECHW_PKT, 14658 ("non-M_DATA IPsec accelerated pkt\n")); 14659 freemsg(first_mp); 14660 return (B_TRUE); 14661 } 14662 *mpp = mp; 14663 return (B_FALSE); 14664 } 14665 putnext(q, mp); 14666 return (B_TRUE); 14667 case M_IOCNAK: 14668 ip1dbg(("got iocnak ")); 14669 iocp = (struct iocblk *)mp->b_rptr; 14670 switch (iocp->ioc_cmd) { 14671 case DL_IOC_HDR_INFO: 14672 ip_rput_other(NULL, q, mp, NULL); 14673 return (B_TRUE); 14674 default: 14675 break; 14676 } 14677 /* FALLTHRU */ 14678 default: 14679 putnext(q, mp); 14680 return (B_TRUE); 14681 } 14682 } 14683 14684 /* Read side put procedure. Packets coming from the wire arrive here. */ 14685 void 14686 ip_rput(queue_t *q, mblk_t *mp) 14687 { 14688 ill_t *ill; 14689 union DL_primitives *dl; 14690 14691 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14692 14693 ill = (ill_t *)q->q_ptr; 14694 14695 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14696 /* 14697 * If things are opening or closing, only accept high-priority 14698 * DLPI messages. (On open ill->ill_ipif has not yet been 14699 * created; on close, things hanging off the ill may have been 14700 * freed already.) 14701 */ 14702 dl = (union DL_primitives *)mp->b_rptr; 14703 if (DB_TYPE(mp) != M_PCPROTO || 14704 dl->dl_primitive == DL_UNITDATA_IND) { 14705 inet_freemsg(mp); 14706 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14707 "ip_rput_end: q %p (%S)", q, "uninit"); 14708 return; 14709 } 14710 } 14711 14712 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14713 "ip_rput_end: q %p (%S)", q, "end"); 14714 14715 ip_input(ill, NULL, mp, NULL); 14716 } 14717 14718 static mblk_t * 14719 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14720 { 14721 mblk_t *mp1; 14722 boolean_t adjusted = B_FALSE; 14723 ip_stack_t *ipst = ill->ill_ipst; 14724 14725 IP_STAT(ipst, ip_db_ref); 14726 /* 14727 * The IP_RECVSLLA option depends on having the 14728 * link layer header. First check that: 14729 * a> the underlying device is of type ether, 14730 * since this option is currently supported only 14731 * over ethernet. 14732 * b> there is enough room to copy over the link 14733 * layer header. 14734 * 14735 * Once the checks are done, adjust rptr so that 14736 * the link layer header will be copied via 14737 * copymsg. Note that, IFT_ETHER may be returned 14738 * by some non-ethernet drivers but in this case 14739 * the second check will fail. 14740 */ 14741 if (ill->ill_type == IFT_ETHER && 14742 (mp->b_rptr - mp->b_datap->db_base) >= 14743 sizeof (struct ether_header)) { 14744 mp->b_rptr -= sizeof (struct ether_header); 14745 adjusted = B_TRUE; 14746 } 14747 mp1 = copymsg(mp); 14748 14749 if (mp1 == NULL) { 14750 mp->b_next = NULL; 14751 /* clear b_prev - used by ip_mroute_decap */ 14752 mp->b_prev = NULL; 14753 freemsg(mp); 14754 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14755 return (NULL); 14756 } 14757 14758 if (adjusted) { 14759 /* 14760 * Copy is done. Restore the pointer in 14761 * the _new_ mblk 14762 */ 14763 mp1->b_rptr += sizeof (struct ether_header); 14764 } 14765 14766 /* Copy b_prev - used by ip_mroute_decap */ 14767 mp1->b_prev = mp->b_prev; 14768 mp->b_prev = NULL; 14769 14770 /* preserve the hardware checksum flags and data, if present */ 14771 if (DB_CKSUMFLAGS(mp) != 0) { 14772 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14773 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14774 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14775 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14776 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14777 } 14778 14779 freemsg(mp); 14780 return (mp1); 14781 } 14782 14783 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14784 if (tail != NULL) \ 14785 tail->b_next = mp; \ 14786 else \ 14787 head = mp; \ 14788 tail = mp; \ 14789 cnt++; \ 14790 } 14791 14792 /* 14793 * Direct read side procedure capable of dealing with chains. GLDv3 based 14794 * drivers call this function directly with mblk chains while STREAMS 14795 * read side procedure ip_rput() calls this for single packet with ip_ring 14796 * set to NULL to process one packet at a time. 14797 * 14798 * The ill will always be valid if this function is called directly from 14799 * the driver. 14800 * 14801 * If ip_input() is called from GLDv3: 14802 * 14803 * - This must be a non-VLAN IP stream. 14804 * - 'mp' is either an untagged or a special priority-tagged packet. 14805 * - Any VLAN tag that was in the MAC header has been stripped. 14806 * 14807 * If the IP header in packet is not 32-bit aligned, every message in the 14808 * chain will be aligned before further operations. This is required on SPARC 14809 * platform. 14810 */ 14811 /* ARGSUSED */ 14812 void 14813 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14814 struct mac_header_info_s *mhip) 14815 { 14816 ipaddr_t dst = NULL; 14817 ipaddr_t prev_dst; 14818 ire_t *ire = NULL; 14819 ipha_t *ipha; 14820 uint_t pkt_len; 14821 ssize_t len; 14822 uint_t opt_len; 14823 int ll_multicast; 14824 int cgtp_flt_pkt; 14825 queue_t *q = ill->ill_rq; 14826 squeue_t *curr_sqp = NULL; 14827 mblk_t *head = NULL; 14828 mblk_t *tail = NULL; 14829 mblk_t *first_mp; 14830 int cnt = 0; 14831 ip_stack_t *ipst = ill->ill_ipst; 14832 mblk_t *mp; 14833 mblk_t *dmp; 14834 uint8_t tag; 14835 14836 ASSERT(mp_chain != NULL); 14837 ASSERT(ill != NULL); 14838 14839 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14840 14841 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14842 14843 #define rptr ((uchar_t *)ipha) 14844 14845 while (mp_chain != NULL) { 14846 mp = mp_chain; 14847 mp_chain = mp_chain->b_next; 14848 mp->b_next = NULL; 14849 ll_multicast = 0; 14850 14851 /* 14852 * We do ire caching from one iteration to 14853 * another. In the event the packet chain contains 14854 * all packets from the same dst, this caching saves 14855 * an ire_cache_lookup for each of the succeeding 14856 * packets in a packet chain. 14857 */ 14858 prev_dst = dst; 14859 14860 /* 14861 * if db_ref > 1 then copymsg and free original. Packet 14862 * may be changed and we do not want the other entity 14863 * who has a reference to this message to trip over the 14864 * changes. This is a blind change because trying to 14865 * catch all places that might change the packet is too 14866 * difficult. 14867 * 14868 * This corresponds to the fast path case, where we have 14869 * a chain of M_DATA mblks. We check the db_ref count 14870 * of only the 1st data block in the mblk chain. There 14871 * doesn't seem to be a reason why a device driver would 14872 * send up data with varying db_ref counts in the mblk 14873 * chain. In any case the Fast path is a private 14874 * interface, and our drivers don't do such a thing. 14875 * Given the above assumption, there is no need to walk 14876 * down the entire mblk chain (which could have a 14877 * potential performance problem) 14878 * 14879 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14880 * to here because of exclusive ip stacks and vnics. 14881 * Packets transmitted from exclusive stack over vnic 14882 * can have db_ref > 1 and when it gets looped back to 14883 * another vnic in a different zone, you have ip_input() 14884 * getting dblks with db_ref > 1. So if someone 14885 * complains of TCP performance under this scenario, 14886 * take a serious look here on the impact of copymsg(). 14887 */ 14888 14889 if (DB_REF(mp) > 1) { 14890 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14891 continue; 14892 } 14893 14894 /* 14895 * Check and align the IP header. 14896 */ 14897 first_mp = mp; 14898 if (DB_TYPE(mp) == M_DATA) { 14899 dmp = mp; 14900 } else if (DB_TYPE(mp) == M_PROTO && 14901 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14902 dmp = mp->b_cont; 14903 } else { 14904 dmp = NULL; 14905 } 14906 if (dmp != NULL) { 14907 /* 14908 * IP header ptr not aligned? 14909 * OR IP header not complete in first mblk 14910 */ 14911 if (!OK_32PTR(dmp->b_rptr) || 14912 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14913 if (!ip_check_and_align_header(q, dmp, ipst)) 14914 continue; 14915 } 14916 } 14917 14918 /* 14919 * ip_input fast path 14920 */ 14921 14922 /* mblk type is not M_DATA */ 14923 if (DB_TYPE(mp) != M_DATA) { 14924 if (ip_rput_process_notdata(q, &first_mp, ill, 14925 &ll_multicast, &mp)) 14926 continue; 14927 14928 /* 14929 * The only way we can get here is if we had a 14930 * packet that was either a DL_UNITDATA_IND or 14931 * an M_CTL for an IPsec accelerated packet. 14932 * 14933 * In either case, the first_mp will point to 14934 * the leading M_PROTO or M_CTL. 14935 */ 14936 ASSERT(first_mp != NULL); 14937 } else if (mhip != NULL) { 14938 /* 14939 * ll_multicast is set here so that it is ready 14940 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14941 * manipulates ll_multicast in the same fashion when 14942 * called from ip_rput_process_notdata. 14943 */ 14944 switch (mhip->mhi_dsttype) { 14945 case MAC_ADDRTYPE_MULTICAST : 14946 ll_multicast = HPE_MULTICAST; 14947 break; 14948 case MAC_ADDRTYPE_BROADCAST : 14949 ll_multicast = HPE_BROADCAST; 14950 break; 14951 default : 14952 break; 14953 } 14954 } 14955 14956 /* Only M_DATA can come here and it is always aligned */ 14957 ASSERT(DB_TYPE(mp) == M_DATA); 14958 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14959 14960 ipha = (ipha_t *)mp->b_rptr; 14961 len = mp->b_wptr - rptr; 14962 pkt_len = ntohs(ipha->ipha_length); 14963 14964 /* 14965 * We must count all incoming packets, even if they end 14966 * up being dropped later on. 14967 */ 14968 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14969 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14970 14971 /* multiple mblk or too short */ 14972 len -= pkt_len; 14973 if (len != 0) { 14974 /* 14975 * Make sure we have data length consistent 14976 * with the IP header. 14977 */ 14978 if (mp->b_cont == NULL) { 14979 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14980 BUMP_MIB(ill->ill_ip_mib, 14981 ipIfStatsInHdrErrors); 14982 ip2dbg(("ip_input: drop pkt\n")); 14983 freemsg(mp); 14984 continue; 14985 } 14986 mp->b_wptr = rptr + pkt_len; 14987 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14988 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14989 BUMP_MIB(ill->ill_ip_mib, 14990 ipIfStatsInHdrErrors); 14991 ip2dbg(("ip_input: drop pkt\n")); 14992 freemsg(mp); 14993 continue; 14994 } 14995 (void) adjmsg(mp, -len); 14996 /* 14997 * adjmsg may have freed an mblk from the chain, 14998 * hence invalidate any hw checksum here. This 14999 * will force IP to calculate the checksum in 15000 * sw, but only for this packet. 15001 */ 15002 DB_CKSUMFLAGS(mp) = 0; 15003 IP_STAT(ipst, ip_multimblk3); 15004 } 15005 } 15006 15007 /* Obtain the dst of the current packet */ 15008 dst = ipha->ipha_dst; 15009 15010 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15011 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15012 ipha, ip6_t *, NULL, int, 0); 15013 15014 /* 15015 * The following test for loopback is faster than 15016 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15017 * operations. 15018 * Note that these addresses are always in network byte order 15019 */ 15020 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15021 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15022 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15023 freemsg(mp); 15024 continue; 15025 } 15026 15027 /* 15028 * The event for packets being received from a 'physical' 15029 * interface is placed after validation of the source and/or 15030 * destination address as being local so that packets can be 15031 * redirected to loopback addresses using ipnat. 15032 */ 15033 DTRACE_PROBE4(ip4__physical__in__start, 15034 ill_t *, ill, ill_t *, NULL, 15035 ipha_t *, ipha, mblk_t *, first_mp); 15036 15037 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15038 ipst->ips_ipv4firewall_physical_in, 15039 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15040 15041 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15042 15043 if (first_mp == NULL) { 15044 continue; 15045 } 15046 dst = ipha->ipha_dst; 15047 /* 15048 * Attach any necessary label information to 15049 * this packet 15050 */ 15051 if (is_system_labeled() && 15052 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15054 freemsg(mp); 15055 continue; 15056 } 15057 15058 if (ipst->ips_ip4_observe.he_interested) { 15059 zoneid_t dzone; 15060 15061 /* 15062 * On the inbound path the src zone will be unknown as 15063 * this packet has come from the wire. 15064 */ 15065 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15066 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15067 ill, ipst); 15068 } 15069 15070 /* 15071 * Reuse the cached ire only if the ipha_dst of the previous 15072 * packet is the same as the current packet AND it is not 15073 * INADDR_ANY. 15074 */ 15075 if (!(dst == prev_dst && dst != INADDR_ANY) && 15076 (ire != NULL)) { 15077 ire_refrele(ire); 15078 ire = NULL; 15079 } 15080 15081 opt_len = ipha->ipha_version_and_hdr_length - 15082 IP_SIMPLE_HDR_VERSION; 15083 15084 /* 15085 * Check to see if we can take the fastpath. 15086 * That is possible if the following conditions are met 15087 * o Tsol disabled 15088 * o CGTP disabled 15089 * o ipp_action_count is 0 15090 * o no options in the packet 15091 * o not a RSVP packet 15092 * o not a multicast packet 15093 * o ill not in IP_DHCPINIT_IF mode 15094 */ 15095 if (!is_system_labeled() && 15096 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15097 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15098 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15099 if (ire == NULL) 15100 ire = ire_cache_lookup_simple(dst, ipst); 15101 /* 15102 * Unless forwarding is enabled, dont call 15103 * ip_fast_forward(). Incoming packet is for forwarding 15104 */ 15105 if ((ill->ill_flags & ILLF_ROUTER) && 15106 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15107 ire = ip_fast_forward(ire, dst, ill, mp); 15108 continue; 15109 } 15110 /* incoming packet is for local consumption */ 15111 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15112 goto local; 15113 } 15114 15115 /* 15116 * Disable ire caching for anything more complex 15117 * than the simple fast path case we checked for above. 15118 */ 15119 if (ire != NULL) { 15120 ire_refrele(ire); 15121 ire = NULL; 15122 } 15123 15124 /* 15125 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15126 * server to unicast DHCP packets to a DHCP client using the 15127 * IP address it is offering to the client. This can be 15128 * disabled through the "broadcast bit", but not all DHCP 15129 * servers honor that bit. Therefore, to interoperate with as 15130 * many DHCP servers as possible, the DHCP client allows the 15131 * server to unicast, but we treat those packets as broadcast 15132 * here. Note that we don't rewrite the packet itself since 15133 * (a) that would mess up the checksums and (b) the DHCP 15134 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15135 * hand it the packet regardless. 15136 */ 15137 if (ill->ill_dhcpinit != 0 && 15138 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15139 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15140 udpha_t *udpha; 15141 15142 /* 15143 * Reload ipha since pullupmsg() can change b_rptr. 15144 */ 15145 ipha = (ipha_t *)mp->b_rptr; 15146 udpha = (udpha_t *)&ipha[1]; 15147 15148 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15149 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15150 mblk_t *, mp); 15151 dst = INADDR_BROADCAST; 15152 } 15153 } 15154 15155 /* Full-blown slow path */ 15156 if (opt_len != 0) { 15157 if (len != 0) 15158 IP_STAT(ipst, ip_multimblk4); 15159 else 15160 IP_STAT(ipst, ip_ipoptions); 15161 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15162 &dst, ipst)) 15163 continue; 15164 } 15165 15166 /* 15167 * Invoke the CGTP (multirouting) filtering module to process 15168 * the incoming packet. Packets identified as duplicates 15169 * must be discarded. Filtering is active only if the 15170 * the ip_cgtp_filter ndd variable is non-zero. 15171 */ 15172 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15173 if (ipst->ips_ip_cgtp_filter && 15174 ipst->ips_ip_cgtp_filter_ops != NULL) { 15175 netstackid_t stackid; 15176 15177 stackid = ipst->ips_netstack->netstack_stackid; 15178 cgtp_flt_pkt = 15179 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15180 ill->ill_phyint->phyint_ifindex, mp); 15181 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15182 freemsg(first_mp); 15183 continue; 15184 } 15185 } 15186 15187 /* 15188 * If rsvpd is running, let RSVP daemon handle its processing 15189 * and forwarding of RSVP multicast/unicast packets. 15190 * If rsvpd is not running but mrouted is running, RSVP 15191 * multicast packets are forwarded as multicast traffic 15192 * and RSVP unicast packets are forwarded by unicast router. 15193 * If neither rsvpd nor mrouted is running, RSVP multicast 15194 * packets are not forwarded, but the unicast packets are 15195 * forwarded like unicast traffic. 15196 */ 15197 if (ipha->ipha_protocol == IPPROTO_RSVP && 15198 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15199 NULL) { 15200 /* RSVP packet and rsvpd running. Treat as ours */ 15201 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15202 /* 15203 * This assumes that we deliver to all streams for 15204 * multicast and broadcast packets. 15205 * We have to force ll_multicast to 1 to handle the 15206 * M_DATA messages passed in from ip_mroute_decap. 15207 */ 15208 dst = INADDR_BROADCAST; 15209 ll_multicast = 1; 15210 } else if (CLASSD(dst)) { 15211 /* packet is multicast */ 15212 mp->b_next = NULL; 15213 if (ip_rput_process_multicast(q, mp, ill, ipha, 15214 &ll_multicast, &dst)) 15215 continue; 15216 } 15217 15218 if (ire == NULL) { 15219 ire = ire_cache_lookup(dst, ALL_ZONES, 15220 msg_getlabel(mp), ipst); 15221 } 15222 15223 if (ire != NULL && ire->ire_stq != NULL && 15224 ire->ire_zoneid != GLOBAL_ZONEID && 15225 ire->ire_zoneid != ALL_ZONES) { 15226 /* 15227 * Should only use IREs that are visible from the 15228 * global zone for forwarding. 15229 */ 15230 ire_refrele(ire); 15231 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15232 msg_getlabel(mp), ipst); 15233 } 15234 15235 if (ire == NULL) { 15236 /* 15237 * No IRE for this destination, so it can't be for us. 15238 * Unless we are forwarding, drop the packet. 15239 * We have to let source routed packets through 15240 * since we don't yet know if they are 'ping -l' 15241 * packets i.e. if they will go out over the 15242 * same interface as they came in on. 15243 */ 15244 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15245 if (ire == NULL) 15246 continue; 15247 } 15248 15249 /* 15250 * Broadcast IRE may indicate either broadcast or 15251 * multicast packet 15252 */ 15253 if (ire->ire_type == IRE_BROADCAST) { 15254 /* 15255 * Skip broadcast checks if packet is UDP multicast; 15256 * we'd rather not enter ip_rput_process_broadcast() 15257 * unless the packet is broadcast for real, since 15258 * that routine is a no-op for multicast. 15259 */ 15260 if (ipha->ipha_protocol != IPPROTO_UDP || 15261 !CLASSD(ipha->ipha_dst)) { 15262 ire = ip_rput_process_broadcast(&q, mp, 15263 ire, ipha, ill, dst, cgtp_flt_pkt, 15264 ll_multicast); 15265 if (ire == NULL) 15266 continue; 15267 } 15268 } else if (ire->ire_stq != NULL) { 15269 /* fowarding? */ 15270 ip_rput_process_forward(q, mp, ire, ipha, ill, 15271 ll_multicast, B_FALSE); 15272 /* ip_rput_process_forward consumed the packet */ 15273 continue; 15274 } 15275 15276 local: 15277 /* 15278 * If the queue in the ire is different to the ingress queue 15279 * then we need to check to see if we can accept the packet. 15280 * Note that for multicast packets and broadcast packets sent 15281 * to a broadcast address which is shared between multiple 15282 * interfaces we should not do this since we just got a random 15283 * broadcast ire. 15284 */ 15285 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15286 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15287 if (ire == NULL) { 15288 /* Drop packet */ 15289 BUMP_MIB(ill->ill_ip_mib, 15290 ipIfStatsForwProhibits); 15291 freemsg(mp); 15292 continue; 15293 } 15294 if (ire->ire_rfq != NULL) 15295 q = ire->ire_rfq; 15296 } 15297 15298 switch (ipha->ipha_protocol) { 15299 case IPPROTO_TCP: 15300 ASSERT(first_mp == mp); 15301 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15302 mp, 0, q, ip_ring)) != NULL) { 15303 if (curr_sqp == NULL) { 15304 curr_sqp = GET_SQUEUE(mp); 15305 ASSERT(cnt == 0); 15306 cnt++; 15307 head = tail = mp; 15308 } else if (curr_sqp == GET_SQUEUE(mp)) { 15309 ASSERT(tail != NULL); 15310 cnt++; 15311 tail->b_next = mp; 15312 tail = mp; 15313 } else { 15314 /* 15315 * A different squeue. Send the 15316 * chain for the previous squeue on 15317 * its way. This shouldn't happen 15318 * often unless interrupt binding 15319 * changes. 15320 */ 15321 IP_STAT(ipst, ip_input_multi_squeue); 15322 SQUEUE_ENTER(curr_sqp, head, 15323 tail, cnt, SQ_PROCESS, tag); 15324 curr_sqp = GET_SQUEUE(mp); 15325 head = mp; 15326 tail = mp; 15327 cnt = 1; 15328 } 15329 } 15330 continue; 15331 case IPPROTO_UDP: 15332 ASSERT(first_mp == mp); 15333 ip_udp_input(q, mp, ipha, ire, ill); 15334 continue; 15335 case IPPROTO_SCTP: 15336 ASSERT(first_mp == mp); 15337 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15338 q, dst); 15339 /* ire has been released by ip_sctp_input */ 15340 ire = NULL; 15341 continue; 15342 case IPPROTO_ENCAP: 15343 case IPPROTO_IPV6: 15344 ASSERT(first_mp == mp); 15345 if (ip_iptun_input(NULL, mp, ipha, ill, ire, ipst)) 15346 break; 15347 /* 15348 * If there was no IP tunnel data-link bound to 15349 * receive this packet, then we fall through to 15350 * allow potential raw sockets bound to either of 15351 * these protocols to pick it up. 15352 */ 15353 default: 15354 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15355 continue; 15356 } 15357 } 15358 15359 if (ire != NULL) 15360 ire_refrele(ire); 15361 15362 if (head != NULL) 15363 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15364 15365 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15366 "ip_input_end: q %p (%S)", q, "end"); 15367 #undef rptr 15368 } 15369 15370 /* 15371 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15372 * a chain of packets in the poll mode. The packets have gone through the 15373 * data link processing but not IP processing. For performance and latency 15374 * reasons, the squeue wants to process the chain in line instead of feeding 15375 * it back via ip_input path. 15376 * 15377 * So this is a light weight function which checks to see if the packets 15378 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15379 * but we still do the paranoid check) meant for local machine and we don't 15380 * have labels etc enabled. Packets that meet the criterion are returned to 15381 * the squeue and processed inline while the rest go via ip_input path. 15382 */ 15383 /*ARGSUSED*/ 15384 mblk_t * 15385 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15386 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15387 { 15388 mblk_t *mp; 15389 ipaddr_t dst = NULL; 15390 ipaddr_t prev_dst; 15391 ire_t *ire = NULL; 15392 ipha_t *ipha; 15393 uint_t pkt_len; 15394 ssize_t len; 15395 uint_t opt_len; 15396 queue_t *q = ill->ill_rq; 15397 squeue_t *curr_sqp; 15398 mblk_t *ahead = NULL; /* Accepted head */ 15399 mblk_t *atail = NULL; /* Accepted tail */ 15400 uint_t acnt = 0; /* Accepted count */ 15401 mblk_t *utail = NULL; /* Unaccepted head */ 15402 mblk_t *uhead = NULL; /* Unaccepted tail */ 15403 uint_t ucnt = 0; /* Unaccepted cnt */ 15404 ip_stack_t *ipst = ill->ill_ipst; 15405 15406 *cnt = 0; 15407 15408 ASSERT(ill != NULL); 15409 ASSERT(ip_ring != NULL); 15410 15411 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15412 15413 #define rptr ((uchar_t *)ipha) 15414 15415 while (mp_chain != NULL) { 15416 mp = mp_chain; 15417 mp_chain = mp_chain->b_next; 15418 mp->b_next = NULL; 15419 15420 /* 15421 * We do ire caching from one iteration to 15422 * another. In the event the packet chain contains 15423 * all packets from the same dst, this caching saves 15424 * an ire_cache_lookup for each of the succeeding 15425 * packets in a packet chain. 15426 */ 15427 prev_dst = dst; 15428 15429 ipha = (ipha_t *)mp->b_rptr; 15430 len = mp->b_wptr - rptr; 15431 15432 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15433 15434 /* 15435 * If it is a non TCP packet, or doesn't have H/W cksum, 15436 * or doesn't have min len, reject. 15437 */ 15438 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15439 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15440 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15441 continue; 15442 } 15443 15444 pkt_len = ntohs(ipha->ipha_length); 15445 if (len != pkt_len) { 15446 if (len > pkt_len) { 15447 mp->b_wptr = rptr + pkt_len; 15448 } else { 15449 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15450 continue; 15451 } 15452 } 15453 15454 opt_len = ipha->ipha_version_and_hdr_length - 15455 IP_SIMPLE_HDR_VERSION; 15456 dst = ipha->ipha_dst; 15457 15458 /* IP version bad or there are IP options */ 15459 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15460 mp, &ipha, &dst, ipst))) 15461 continue; 15462 15463 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15464 (ipst->ips_ip_cgtp_filter && 15465 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15466 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15467 continue; 15468 } 15469 15470 /* 15471 * Reuse the cached ire only if the ipha_dst of the previous 15472 * packet is the same as the current packet AND it is not 15473 * INADDR_ANY. 15474 */ 15475 if (!(dst == prev_dst && dst != INADDR_ANY) && 15476 (ire != NULL)) { 15477 ire_refrele(ire); 15478 ire = NULL; 15479 } 15480 15481 if (ire == NULL) 15482 ire = ire_cache_lookup_simple(dst, ipst); 15483 15484 /* 15485 * Unless forwarding is enabled, dont call 15486 * ip_fast_forward(). Incoming packet is for forwarding 15487 */ 15488 if ((ill->ill_flags & ILLF_ROUTER) && 15489 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15490 15491 DTRACE_PROBE4(ip4__physical__in__start, 15492 ill_t *, ill, ill_t *, NULL, 15493 ipha_t *, ipha, mblk_t *, mp); 15494 15495 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15496 ipst->ips_ipv4firewall_physical_in, 15497 ill, NULL, ipha, mp, mp, 0, ipst); 15498 15499 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15500 15501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15502 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15503 pkt_len); 15504 15505 if (mp != NULL) 15506 ire = ip_fast_forward(ire, dst, ill, mp); 15507 continue; 15508 } 15509 15510 /* incoming packet is for local consumption */ 15511 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15512 goto local_accept; 15513 15514 /* 15515 * Disable ire caching for anything more complex 15516 * than the simple fast path case we checked for above. 15517 */ 15518 if (ire != NULL) { 15519 ire_refrele(ire); 15520 ire = NULL; 15521 } 15522 15523 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15524 ipst); 15525 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15526 ire->ire_stq != NULL) { 15527 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15528 if (ire != NULL) { 15529 ire_refrele(ire); 15530 ire = NULL; 15531 } 15532 continue; 15533 } 15534 15535 local_accept: 15536 15537 if (ire->ire_rfq != q) { 15538 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15539 if (ire != NULL) { 15540 ire_refrele(ire); 15541 ire = NULL; 15542 } 15543 continue; 15544 } 15545 15546 /* 15547 * The event for packets being received from a 'physical' 15548 * interface is placed after validation of the source and/or 15549 * destination address as being local so that packets can be 15550 * redirected to loopback addresses using ipnat. 15551 */ 15552 DTRACE_PROBE4(ip4__physical__in__start, 15553 ill_t *, ill, ill_t *, NULL, 15554 ipha_t *, ipha, mblk_t *, mp); 15555 15556 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15557 ipst->ips_ipv4firewall_physical_in, 15558 ill, NULL, ipha, mp, mp, 0, ipst); 15559 15560 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15561 15562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15563 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15564 15565 if (mp != NULL && 15566 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15567 0, q, ip_ring)) != NULL) { 15568 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15569 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15570 } else { 15571 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15572 SQ_FILL, SQTAG_IP_INPUT); 15573 } 15574 } 15575 } 15576 15577 if (ire != NULL) 15578 ire_refrele(ire); 15579 15580 if (uhead != NULL) 15581 ip_input(ill, ip_ring, uhead, NULL); 15582 15583 if (ahead != NULL) { 15584 *last = atail; 15585 *cnt = acnt; 15586 return (ahead); 15587 } 15588 15589 return (NULL); 15590 #undef rptr 15591 } 15592 15593 static void 15594 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15595 t_uscalar_t err) 15596 { 15597 if (dl_err == DL_SYSERR) { 15598 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15599 "%s: %s failed: DL_SYSERR (errno %u)\n", 15600 ill->ill_name, dl_primstr(prim), err); 15601 return; 15602 } 15603 15604 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15605 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15606 dl_errstr(dl_err)); 15607 } 15608 15609 /* 15610 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15611 * than DL_UNITDATA_IND messages. If we need to process this message 15612 * exclusively, we call qwriter_ip, in which case we also need to call 15613 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15614 */ 15615 void 15616 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15617 { 15618 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15619 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15620 ill_t *ill = q->q_ptr; 15621 t_uscalar_t prim = dloa->dl_primitive; 15622 t_uscalar_t reqprim = DL_PRIM_INVAL; 15623 15624 ip1dbg(("ip_rput_dlpi")); 15625 15626 /* 15627 * If we received an ACK but didn't send a request for it, then it 15628 * can't be part of any pending operation; discard up-front. 15629 */ 15630 switch (prim) { 15631 case DL_ERROR_ACK: 15632 reqprim = dlea->dl_error_primitive; 15633 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15634 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15635 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15636 dlea->dl_unix_errno)); 15637 break; 15638 case DL_OK_ACK: 15639 reqprim = dloa->dl_correct_primitive; 15640 break; 15641 case DL_INFO_ACK: 15642 reqprim = DL_INFO_REQ; 15643 break; 15644 case DL_BIND_ACK: 15645 reqprim = DL_BIND_REQ; 15646 break; 15647 case DL_PHYS_ADDR_ACK: 15648 reqprim = DL_PHYS_ADDR_REQ; 15649 break; 15650 case DL_NOTIFY_ACK: 15651 reqprim = DL_NOTIFY_REQ; 15652 break; 15653 case DL_CONTROL_ACK: 15654 reqprim = DL_CONTROL_REQ; 15655 break; 15656 case DL_CAPABILITY_ACK: 15657 reqprim = DL_CAPABILITY_REQ; 15658 break; 15659 } 15660 15661 if (prim != DL_NOTIFY_IND) { 15662 if (reqprim == DL_PRIM_INVAL || 15663 !ill_dlpi_pending(ill, reqprim)) { 15664 /* Not a DLPI message we support or expected */ 15665 freemsg(mp); 15666 return; 15667 } 15668 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15669 dl_primstr(reqprim))); 15670 } 15671 15672 switch (reqprim) { 15673 case DL_UNBIND_REQ: 15674 /* 15675 * NOTE: we mark the unbind as complete even if we got a 15676 * DL_ERROR_ACK, since there's not much else we can do. 15677 */ 15678 mutex_enter(&ill->ill_lock); 15679 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15680 cv_signal(&ill->ill_cv); 15681 mutex_exit(&ill->ill_lock); 15682 break; 15683 15684 case DL_ENABMULTI_REQ: 15685 if (prim == DL_OK_ACK) { 15686 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15687 ill->ill_dlpi_multicast_state = IDS_OK; 15688 } 15689 break; 15690 } 15691 15692 /* 15693 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15694 * need to become writer to continue to process it. Because an 15695 * exclusive operation doesn't complete until replies to all queued 15696 * DLPI messages have been received, we know we're in the middle of an 15697 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15698 * 15699 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15700 * Since this is on the ill stream we unconditionally bump up the 15701 * refcount without doing ILL_CAN_LOOKUP(). 15702 */ 15703 ill_refhold(ill); 15704 if (prim == DL_NOTIFY_IND) 15705 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15706 else 15707 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15708 } 15709 15710 /* 15711 * Handling of DLPI messages that require exclusive access to the ipsq. 15712 * 15713 * Need to do ill_pending_mp_release on ioctl completion, which could 15714 * happen here. (along with mi_copy_done) 15715 */ 15716 /* ARGSUSED */ 15717 static void 15718 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15719 { 15720 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15721 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15722 int err = 0; 15723 ill_t *ill; 15724 ipif_t *ipif = NULL; 15725 mblk_t *mp1 = NULL; 15726 conn_t *connp = NULL; 15727 t_uscalar_t paddrreq; 15728 mblk_t *mp_hw; 15729 boolean_t success; 15730 boolean_t ioctl_aborted = B_FALSE; 15731 boolean_t log = B_TRUE; 15732 ip_stack_t *ipst; 15733 15734 ip1dbg(("ip_rput_dlpi_writer ..")); 15735 ill = (ill_t *)q->q_ptr; 15736 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15737 ASSERT(IAM_WRITER_ILL(ill)); 15738 15739 ipst = ill->ill_ipst; 15740 15741 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15742 /* 15743 * The current ioctl could have been aborted by the user and a new 15744 * ioctl to bring up another ill could have started. We could still 15745 * get a response from the driver later. 15746 */ 15747 if (ipif != NULL && ipif->ipif_ill != ill) 15748 ioctl_aborted = B_TRUE; 15749 15750 switch (dloa->dl_primitive) { 15751 case DL_ERROR_ACK: 15752 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15753 dl_primstr(dlea->dl_error_primitive))); 15754 15755 switch (dlea->dl_error_primitive) { 15756 case DL_DISABMULTI_REQ: 15757 ill_dlpi_done(ill, dlea->dl_error_primitive); 15758 break; 15759 case DL_PROMISCON_REQ: 15760 case DL_PROMISCOFF_REQ: 15761 case DL_UNBIND_REQ: 15762 case DL_ATTACH_REQ: 15763 case DL_INFO_REQ: 15764 ill_dlpi_done(ill, dlea->dl_error_primitive); 15765 break; 15766 case DL_NOTIFY_REQ: 15767 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15768 log = B_FALSE; 15769 break; 15770 case DL_PHYS_ADDR_REQ: 15771 /* 15772 * For IPv6 only, there are two additional 15773 * phys_addr_req's sent to the driver to get the 15774 * IPv6 token and lla. This allows IP to acquire 15775 * the hardware address format for a given interface 15776 * without having built in knowledge of the hardware 15777 * address. ill_phys_addr_pend keeps track of the last 15778 * DL_PAR sent so we know which response we are 15779 * dealing with. ill_dlpi_done will update 15780 * ill_phys_addr_pend when it sends the next req. 15781 * We don't complete the IOCTL until all three DL_PARs 15782 * have been attempted, so set *_len to 0 and break. 15783 */ 15784 paddrreq = ill->ill_phys_addr_pend; 15785 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15786 if (paddrreq == DL_IPV6_TOKEN) { 15787 ill->ill_token_length = 0; 15788 log = B_FALSE; 15789 break; 15790 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15791 ill->ill_nd_lla_len = 0; 15792 log = B_FALSE; 15793 break; 15794 } 15795 /* 15796 * Something went wrong with the DL_PHYS_ADDR_REQ. 15797 * We presumably have an IOCTL hanging out waiting 15798 * for completion. Find it and complete the IOCTL 15799 * with the error noted. 15800 * However, ill_dl_phys was called on an ill queue 15801 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15802 * set. But the ioctl is known to be pending on ill_wq. 15803 */ 15804 if (!ill->ill_ifname_pending) 15805 break; 15806 ill->ill_ifname_pending = 0; 15807 if (!ioctl_aborted) 15808 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15809 if (mp1 != NULL) { 15810 /* 15811 * This operation (SIOCSLIFNAME) must have 15812 * happened on the ill. Assert there is no conn 15813 */ 15814 ASSERT(connp == NULL); 15815 q = ill->ill_wq; 15816 } 15817 break; 15818 case DL_BIND_REQ: 15819 ill_dlpi_done(ill, DL_BIND_REQ); 15820 if (ill->ill_ifname_pending) 15821 break; 15822 /* 15823 * Something went wrong with the bind. We presumably 15824 * have an IOCTL hanging out waiting for completion. 15825 * Find it, take down the interface that was coming 15826 * up, and complete the IOCTL with the error noted. 15827 */ 15828 if (!ioctl_aborted) 15829 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15830 if (mp1 != NULL) { 15831 /* 15832 * This might be a result of a DL_NOTE_REPLUMB 15833 * notification. In that case, connp is NULL. 15834 */ 15835 if (connp != NULL) 15836 q = CONNP_TO_WQ(connp); 15837 15838 (void) ipif_down(ipif, NULL, NULL); 15839 /* error is set below the switch */ 15840 } 15841 break; 15842 case DL_ENABMULTI_REQ: 15843 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15844 15845 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15846 ill->ill_dlpi_multicast_state = IDS_FAILED; 15847 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15848 ipif_t *ipif; 15849 15850 printf("ip: joining multicasts failed (%d)" 15851 " on %s - will use link layer " 15852 "broadcasts for multicast\n", 15853 dlea->dl_errno, ill->ill_name); 15854 15855 /* 15856 * Set up the multicast mapping alone. 15857 * writer, so ok to access ill->ill_ipif 15858 * without any lock. 15859 */ 15860 ipif = ill->ill_ipif; 15861 mutex_enter(&ill->ill_phyint->phyint_lock); 15862 ill->ill_phyint->phyint_flags |= 15863 PHYI_MULTI_BCAST; 15864 mutex_exit(&ill->ill_phyint->phyint_lock); 15865 15866 if (!ill->ill_isv6) { 15867 (void) ipif_arp_setup_multicast(ipif, 15868 NULL); 15869 } else { 15870 (void) ipif_ndp_setup_multicast(ipif, 15871 NULL); 15872 } 15873 } 15874 freemsg(mp); /* Don't want to pass this up */ 15875 return; 15876 case DL_CONTROL_REQ: 15877 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15878 "DL_CONTROL_REQ\n")); 15879 ill_dlpi_done(ill, dlea->dl_error_primitive); 15880 freemsg(mp); 15881 return; 15882 case DL_CAPABILITY_REQ: 15883 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15884 "DL_CAPABILITY REQ\n")); 15885 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15886 ill->ill_dlpi_capab_state = IDCS_FAILED; 15887 ill_capability_done(ill); 15888 freemsg(mp); 15889 return; 15890 } 15891 /* 15892 * Note the error for IOCTL completion (mp1 is set when 15893 * ready to complete ioctl). If ill_ifname_pending_err is 15894 * set, an error occured during plumbing (ill_ifname_pending), 15895 * so we want to report that error. 15896 * 15897 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15898 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15899 * expected to get errack'd if the driver doesn't support 15900 * these flags (e.g. ethernet). log will be set to B_FALSE 15901 * if these error conditions are encountered. 15902 */ 15903 if (mp1 != NULL) { 15904 if (ill->ill_ifname_pending_err != 0) { 15905 err = ill->ill_ifname_pending_err; 15906 ill->ill_ifname_pending_err = 0; 15907 } else { 15908 err = dlea->dl_unix_errno ? 15909 dlea->dl_unix_errno : ENXIO; 15910 } 15911 /* 15912 * If we're plumbing an interface and an error hasn't already 15913 * been saved, set ill_ifname_pending_err to the error passed 15914 * up. Ignore the error if log is B_FALSE (see comment above). 15915 */ 15916 } else if (log && ill->ill_ifname_pending && 15917 ill->ill_ifname_pending_err == 0) { 15918 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15919 dlea->dl_unix_errno : ENXIO; 15920 } 15921 15922 if (log) 15923 ip_dlpi_error(ill, dlea->dl_error_primitive, 15924 dlea->dl_errno, dlea->dl_unix_errno); 15925 break; 15926 case DL_CAPABILITY_ACK: 15927 ill_capability_ack(ill, mp); 15928 /* 15929 * The message has been handed off to ill_capability_ack 15930 * and must not be freed below 15931 */ 15932 mp = NULL; 15933 break; 15934 15935 case DL_CONTROL_ACK: 15936 /* We treat all of these as "fire and forget" */ 15937 ill_dlpi_done(ill, DL_CONTROL_REQ); 15938 break; 15939 case DL_INFO_ACK: 15940 /* Call a routine to handle this one. */ 15941 ill_dlpi_done(ill, DL_INFO_REQ); 15942 ip_ll_subnet_defaults(ill, mp); 15943 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15944 return; 15945 case DL_BIND_ACK: 15946 /* 15947 * We should have an IOCTL waiting on this unless 15948 * sent by ill_dl_phys, in which case just return 15949 */ 15950 ill_dlpi_done(ill, DL_BIND_REQ); 15951 if (ill->ill_ifname_pending) 15952 break; 15953 15954 if (!ioctl_aborted) 15955 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15956 if (mp1 == NULL) 15957 break; 15958 /* 15959 * mp1 was added by ill_dl_up(). if that is a result of 15960 * a DL_NOTE_REPLUMB notification, connp could be NULL. 15961 */ 15962 if (connp != NULL) 15963 q = CONNP_TO_WQ(connp); 15964 15965 /* 15966 * We are exclusive. So nothing can change even after 15967 * we get the pending mp. If need be we can put it back 15968 * and restart, as in calling ipif_arp_up() below. 15969 */ 15970 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15971 15972 mutex_enter(&ill->ill_lock); 15973 ill->ill_dl_up = 1; 15974 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 15975 mutex_exit(&ill->ill_lock); 15976 15977 /* 15978 * Now bring up the resolver; when that is complete, we'll 15979 * create IREs. Note that we intentionally mirror what 15980 * ipif_up() would have done, because we got here by way of 15981 * ill_dl_up(), which stopped ipif_up()'s processing. 15982 */ 15983 if (ill->ill_isv6) { 15984 if (ill->ill_flags & ILLF_XRESOLV) { 15985 if (connp != NULL) 15986 mutex_enter(&connp->conn_lock); 15987 mutex_enter(&ill->ill_lock); 15988 success = ipsq_pending_mp_add(connp, ipif, q, 15989 mp1, 0); 15990 mutex_exit(&ill->ill_lock); 15991 if (connp != NULL) 15992 mutex_exit(&connp->conn_lock); 15993 if (success) { 15994 err = ipif_resolver_up(ipif, 15995 Res_act_initial); 15996 if (err == EINPROGRESS) { 15997 freemsg(mp); 15998 return; 15999 } 16000 ASSERT(err != 0); 16001 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16002 ASSERT(mp1 != NULL); 16003 } else { 16004 /* conn has started closing */ 16005 err = EINTR; 16006 } 16007 } else { /* Non XRESOLV interface */ 16008 (void) ipif_resolver_up(ipif, Res_act_initial); 16009 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16010 err = ipif_up_done_v6(ipif); 16011 } 16012 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16013 /* 16014 * ARP and other v4 external resolvers. 16015 * Leave the pending mblk intact so that 16016 * the ioctl completes in ip_rput(). 16017 */ 16018 if (connp != NULL) 16019 mutex_enter(&connp->conn_lock); 16020 mutex_enter(&ill->ill_lock); 16021 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16022 mutex_exit(&ill->ill_lock); 16023 if (connp != NULL) 16024 mutex_exit(&connp->conn_lock); 16025 if (success) { 16026 err = ipif_resolver_up(ipif, Res_act_initial); 16027 if (err == EINPROGRESS) { 16028 freemsg(mp); 16029 return; 16030 } 16031 ASSERT(err != 0); 16032 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16033 } else { 16034 /* The conn has started closing */ 16035 err = EINTR; 16036 } 16037 } else { 16038 /* 16039 * This one is complete. Reply to pending ioctl. 16040 */ 16041 (void) ipif_resolver_up(ipif, Res_act_initial); 16042 err = ipif_up_done(ipif); 16043 } 16044 16045 if ((err == 0) && (ill->ill_up_ipifs)) { 16046 err = ill_up_ipifs(ill, q, mp1); 16047 if (err == EINPROGRESS) { 16048 freemsg(mp); 16049 return; 16050 } 16051 } 16052 16053 /* 16054 * If we have a moved ipif to bring up, and everything has 16055 * succeeded to this point, bring it up on the IPMP ill. 16056 * Otherwise, leave it down -- the admin can try to bring it 16057 * up by hand if need be. 16058 */ 16059 if (ill->ill_move_ipif != NULL) { 16060 if (err != 0) { 16061 ill->ill_move_ipif = NULL; 16062 } else { 16063 ipif = ill->ill_move_ipif; 16064 ill->ill_move_ipif = NULL; 16065 err = ipif_up(ipif, q, mp1); 16066 if (err == EINPROGRESS) { 16067 freemsg(mp); 16068 return; 16069 } 16070 } 16071 } 16072 break; 16073 16074 case DL_NOTIFY_IND: { 16075 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16076 ire_t *ire; 16077 uint_t orig_mtu; 16078 boolean_t need_ire_walk_v4 = B_FALSE; 16079 boolean_t need_ire_walk_v6 = B_FALSE; 16080 16081 switch (notify->dl_notification) { 16082 case DL_NOTE_PHYS_ADDR: 16083 err = ill_set_phys_addr(ill, mp); 16084 break; 16085 16086 case DL_NOTE_REPLUMB: 16087 /* 16088 * Directly return after calling ill_replumb(). 16089 * Note that we should not free mp as it is reused 16090 * in the ill_replumb() function. 16091 */ 16092 err = ill_replumb(ill, mp); 16093 return; 16094 16095 case DL_NOTE_FASTPATH_FLUSH: 16096 ill_fastpath_flush(ill); 16097 break; 16098 16099 case DL_NOTE_SDU_SIZE: 16100 /* 16101 * Change the MTU size of the interface, of all 16102 * attached ipif's, and of all relevant ire's. The 16103 * new value's a uint32_t at notify->dl_data. 16104 * Mtu change Vs. new ire creation - protocol below. 16105 * 16106 * a Mark the ipif as IPIF_CHANGING. 16107 * b Set the new mtu in the ipif. 16108 * c Change the ire_max_frag on all affected ires 16109 * d Unmark the IPIF_CHANGING 16110 * 16111 * To see how the protocol works, assume an interface 16112 * route is also being added simultaneously by 16113 * ip_rt_add and let 'ipif' be the ipif referenced by 16114 * the ire. If the ire is created before step a, 16115 * it will be cleaned up by step c. If the ire is 16116 * created after step d, it will see the new value of 16117 * ipif_mtu. Any attempt to create the ire between 16118 * steps a to d will fail because of the IPIF_CHANGING 16119 * flag. Note that ire_create() is passed a pointer to 16120 * the ipif_mtu, and not the value. During ire_add 16121 * under the bucket lock, the ire_max_frag of the 16122 * new ire being created is set from the ipif/ire from 16123 * which it is being derived. 16124 */ 16125 mutex_enter(&ill->ill_lock); 16126 16127 orig_mtu = ill->ill_max_mtu; 16128 ill->ill_max_frag = (uint_t)notify->dl_data; 16129 ill->ill_max_mtu = (uint_t)notify->dl_data; 16130 16131 /* 16132 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16133 * clamp ill_max_mtu at it. 16134 */ 16135 if (ill->ill_user_mtu != 0 && 16136 ill->ill_user_mtu < ill->ill_max_mtu) 16137 ill->ill_max_mtu = ill->ill_user_mtu; 16138 16139 /* 16140 * If the MTU is unchanged, we're done. 16141 */ 16142 if (orig_mtu == ill->ill_max_mtu) { 16143 mutex_exit(&ill->ill_lock); 16144 break; 16145 } 16146 16147 if (ill->ill_isv6) { 16148 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16149 ill->ill_max_mtu = IPV6_MIN_MTU; 16150 } else { 16151 if (ill->ill_max_mtu < IP_MIN_MTU) 16152 ill->ill_max_mtu = IP_MIN_MTU; 16153 } 16154 for (ipif = ill->ill_ipif; ipif != NULL; 16155 ipif = ipif->ipif_next) { 16156 /* 16157 * Don't override the mtu if the user 16158 * has explicitly set it. 16159 */ 16160 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16161 continue; 16162 ipif->ipif_mtu = (uint_t)notify->dl_data; 16163 if (ipif->ipif_isv6) 16164 ire = ipif_to_ire_v6(ipif); 16165 else 16166 ire = ipif_to_ire(ipif); 16167 if (ire != NULL) { 16168 ire->ire_max_frag = ipif->ipif_mtu; 16169 ire_refrele(ire); 16170 } 16171 if (ipif->ipif_flags & IPIF_UP) { 16172 if (ill->ill_isv6) 16173 need_ire_walk_v6 = B_TRUE; 16174 else 16175 need_ire_walk_v4 = B_TRUE; 16176 } 16177 } 16178 mutex_exit(&ill->ill_lock); 16179 if (need_ire_walk_v4) 16180 ire_walk_v4(ill_mtu_change, (char *)ill, 16181 ALL_ZONES, ipst); 16182 if (need_ire_walk_v6) 16183 ire_walk_v6(ill_mtu_change, (char *)ill, 16184 ALL_ZONES, ipst); 16185 16186 /* 16187 * Refresh IPMP meta-interface MTU if necessary. 16188 */ 16189 if (IS_UNDER_IPMP(ill)) 16190 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16191 break; 16192 16193 case DL_NOTE_LINK_UP: 16194 case DL_NOTE_LINK_DOWN: { 16195 /* 16196 * We are writer. ill / phyint / ipsq assocs stable. 16197 * The RUNNING flag reflects the state of the link. 16198 */ 16199 phyint_t *phyint = ill->ill_phyint; 16200 uint64_t new_phyint_flags; 16201 boolean_t changed = B_FALSE; 16202 boolean_t went_up; 16203 16204 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16205 mutex_enter(&phyint->phyint_lock); 16206 16207 new_phyint_flags = went_up ? 16208 phyint->phyint_flags | PHYI_RUNNING : 16209 phyint->phyint_flags & ~PHYI_RUNNING; 16210 16211 if (IS_IPMP(ill)) { 16212 new_phyint_flags = went_up ? 16213 new_phyint_flags & ~PHYI_FAILED : 16214 new_phyint_flags | PHYI_FAILED; 16215 } 16216 16217 if (new_phyint_flags != phyint->phyint_flags) { 16218 phyint->phyint_flags = new_phyint_flags; 16219 changed = B_TRUE; 16220 } 16221 mutex_exit(&phyint->phyint_lock); 16222 /* 16223 * ill_restart_dad handles the DAD restart and routing 16224 * socket notification logic. 16225 */ 16226 if (changed) { 16227 ill_restart_dad(phyint->phyint_illv4, went_up); 16228 ill_restart_dad(phyint->phyint_illv6, went_up); 16229 } 16230 break; 16231 } 16232 case DL_NOTE_PROMISC_ON_PHYS: { 16233 phyint_t *phyint = ill->ill_phyint; 16234 16235 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16236 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16237 mutex_enter(&phyint->phyint_lock); 16238 phyint->phyint_flags |= PHYI_PROMISC; 16239 mutex_exit(&phyint->phyint_lock); 16240 break; 16241 } 16242 case DL_NOTE_PROMISC_OFF_PHYS: { 16243 phyint_t *phyint = ill->ill_phyint; 16244 16245 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16246 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16247 mutex_enter(&phyint->phyint_lock); 16248 phyint->phyint_flags &= ~PHYI_PROMISC; 16249 mutex_exit(&phyint->phyint_lock); 16250 break; 16251 } 16252 case DL_NOTE_CAPAB_RENEG: 16253 /* 16254 * Something changed on the driver side. 16255 * It wants us to renegotiate the capabilities 16256 * on this ill. One possible cause is the aggregation 16257 * interface under us where a port got added or 16258 * went away. 16259 * 16260 * If the capability negotiation is already done 16261 * or is in progress, reset the capabilities and 16262 * mark the ill's ill_capab_reneg to be B_TRUE, 16263 * so that when the ack comes back, we can start 16264 * the renegotiation process. 16265 * 16266 * Note that if ill_capab_reneg is already B_TRUE 16267 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16268 * the capability resetting request has been sent 16269 * and the renegotiation has not been started yet; 16270 * nothing needs to be done in this case. 16271 */ 16272 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16273 ill_capability_reset(ill, B_TRUE); 16274 ipsq_current_finish(ipsq); 16275 break; 16276 default: 16277 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16278 "type 0x%x for DL_NOTIFY_IND\n", 16279 notify->dl_notification)); 16280 break; 16281 } 16282 16283 /* 16284 * As this is an asynchronous operation, we 16285 * should not call ill_dlpi_done 16286 */ 16287 break; 16288 } 16289 case DL_NOTIFY_ACK: { 16290 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16291 16292 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16293 ill->ill_note_link = 1; 16294 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16295 break; 16296 } 16297 case DL_PHYS_ADDR_ACK: { 16298 /* 16299 * As part of plumbing the interface via SIOCSLIFNAME, 16300 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16301 * whose answers we receive here. As each answer is received, 16302 * we call ill_dlpi_done() to dispatch the next request as 16303 * we're processing the current one. Once all answers have 16304 * been received, we use ipsq_pending_mp_get() to dequeue the 16305 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16306 * is invoked from an ill queue, conn_oper_pending_ill is not 16307 * available, but we know the ioctl is pending on ill_wq.) 16308 */ 16309 uint_t paddrlen, paddroff; 16310 uint8_t *addr; 16311 16312 paddrreq = ill->ill_phys_addr_pend; 16313 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16314 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16315 addr = mp->b_rptr + paddroff; 16316 16317 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16318 if (paddrreq == DL_IPV6_TOKEN) { 16319 /* 16320 * bcopy to low-order bits of ill_token 16321 * 16322 * XXX Temporary hack - currently, all known tokens 16323 * are 64 bits, so I'll cheat for the moment. 16324 */ 16325 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 16326 ill->ill_token_length = paddrlen; 16327 break; 16328 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16329 ASSERT(ill->ill_nd_lla_mp == NULL); 16330 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16331 mp = NULL; 16332 break; 16333 } else if (paddrreq == DL_CURR_DEST_ADDR) { 16334 ASSERT(ill->ill_dest_addr_mp == NULL); 16335 ill->ill_dest_addr_mp = mp; 16336 ill->ill_dest_addr = addr; 16337 mp = NULL; 16338 if (ill->ill_isv6) { 16339 ill_setdesttoken(ill); 16340 ipif_setdestlinklocal(ill->ill_ipif); 16341 } 16342 break; 16343 } 16344 16345 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16346 ASSERT(ill->ill_phys_addr_mp == NULL); 16347 if (!ill->ill_ifname_pending) 16348 break; 16349 ill->ill_ifname_pending = 0; 16350 if (!ioctl_aborted) 16351 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16352 if (mp1 != NULL) { 16353 ASSERT(connp == NULL); 16354 q = ill->ill_wq; 16355 } 16356 /* 16357 * If any error acks received during the plumbing sequence, 16358 * ill_ifname_pending_err will be set. Break out and send up 16359 * the error to the pending ioctl. 16360 */ 16361 if (ill->ill_ifname_pending_err != 0) { 16362 err = ill->ill_ifname_pending_err; 16363 ill->ill_ifname_pending_err = 0; 16364 break; 16365 } 16366 16367 ill->ill_phys_addr_mp = mp; 16368 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 16369 mp = NULL; 16370 16371 /* 16372 * If paddrlen or ill_phys_addr_length is zero, the DLPI 16373 * provider doesn't support physical addresses. We check both 16374 * paddrlen and ill_phys_addr_length because sppp (PPP) does 16375 * not have physical addresses, but historically adversises a 16376 * physical address length of 0 in its DL_INFO_ACK, but 6 in 16377 * its DL_PHYS_ADDR_ACK. 16378 */ 16379 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 16380 ill->ill_phys_addr = NULL; 16381 } else if (paddrlen != ill->ill_phys_addr_length) { 16382 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16383 paddrlen, ill->ill_phys_addr_length)); 16384 err = EINVAL; 16385 break; 16386 } 16387 16388 if (ill->ill_nd_lla_mp == NULL) { 16389 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16390 err = ENOMEM; 16391 break; 16392 } 16393 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16394 } 16395 16396 if (ill->ill_isv6) { 16397 ill_setdefaulttoken(ill); 16398 ipif_setlinklocal(ill->ill_ipif); 16399 } 16400 break; 16401 } 16402 case DL_OK_ACK: 16403 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16404 dl_primstr((int)dloa->dl_correct_primitive), 16405 dloa->dl_correct_primitive)); 16406 switch (dloa->dl_correct_primitive) { 16407 case DL_ENABMULTI_REQ: 16408 case DL_DISABMULTI_REQ: 16409 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16410 break; 16411 case DL_PROMISCON_REQ: 16412 case DL_PROMISCOFF_REQ: 16413 case DL_UNBIND_REQ: 16414 case DL_ATTACH_REQ: 16415 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16416 break; 16417 } 16418 break; 16419 default: 16420 break; 16421 } 16422 16423 freemsg(mp); 16424 if (mp1 == NULL) 16425 return; 16426 16427 /* 16428 * The operation must complete without EINPROGRESS since 16429 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16430 * the operation will be stuck forever inside the IPSQ. 16431 */ 16432 ASSERT(err != EINPROGRESS); 16433 16434 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16435 case 0: 16436 ipsq_current_finish(ipsq); 16437 break; 16438 16439 case SIOCSLIFNAME: 16440 case IF_UNITSEL: { 16441 ill_t *ill_other = ILL_OTHER(ill); 16442 16443 /* 16444 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16445 * ill has a peer which is in an IPMP group, then place ill 16446 * into the same group. One catch: although ifconfig plumbs 16447 * the appropriate IPMP meta-interface prior to plumbing this 16448 * ill, it is possible for multiple ifconfig applications to 16449 * race (or for another application to adjust plumbing), in 16450 * which case the IPMP meta-interface we need will be missing. 16451 * If so, kick the phyint out of the group. 16452 */ 16453 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16454 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16455 ipmp_illgrp_t *illg; 16456 16457 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16458 if (illg == NULL) 16459 ipmp_phyint_leave_grp(ill->ill_phyint); 16460 else 16461 ipmp_ill_join_illgrp(ill, illg); 16462 } 16463 16464 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16465 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16466 else 16467 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16468 break; 16469 } 16470 case SIOCLIFADDIF: 16471 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16472 break; 16473 16474 default: 16475 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16476 break; 16477 } 16478 } 16479 16480 /* 16481 * ip_rput_other is called by ip_rput to handle messages modifying the global 16482 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 16483 */ 16484 /* ARGSUSED */ 16485 void 16486 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16487 { 16488 ill_t *ill = q->q_ptr; 16489 struct iocblk *iocp; 16490 16491 ip1dbg(("ip_rput_other ")); 16492 if (ipsq != NULL) { 16493 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16494 ASSERT(ipsq->ipsq_xop == 16495 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16496 } 16497 16498 switch (mp->b_datap->db_type) { 16499 case M_ERROR: 16500 case M_HANGUP: 16501 /* 16502 * The device has a problem. We force the ILL down. It can 16503 * be brought up again manually using SIOCSIFFLAGS (via 16504 * ifconfig or equivalent). 16505 */ 16506 ASSERT(ipsq != NULL); 16507 if (mp->b_rptr < mp->b_wptr) 16508 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16509 if (ill->ill_error == 0) 16510 ill->ill_error = ENXIO; 16511 if (!ill_down_start(q, mp)) 16512 return; 16513 ipif_all_down_tail(ipsq, q, mp, NULL); 16514 break; 16515 case M_IOCNAK: { 16516 iocp = (struct iocblk *)mp->b_rptr; 16517 16518 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 16519 /* 16520 * If this was the first attempt, turn off the fastpath 16521 * probing. 16522 */ 16523 mutex_enter(&ill->ill_lock); 16524 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16525 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16526 mutex_exit(&ill->ill_lock); 16527 ill_fastpath_nack(ill); 16528 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 16529 ill->ill_name)); 16530 } else { 16531 mutex_exit(&ill->ill_lock); 16532 } 16533 freemsg(mp); 16534 break; 16535 } 16536 default: 16537 ASSERT(0); 16538 break; 16539 } 16540 } 16541 16542 /* 16543 * NOTE : This function does not ire_refrele the ire argument passed in. 16544 * 16545 * IPQoS notes 16546 * IP policy is invoked twice for a forwarded packet, once on the read side 16547 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16548 * enabled. An additional parameter, in_ill, has been added for this purpose. 16549 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16550 * because ip_mroute drops this information. 16551 * 16552 */ 16553 void 16554 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16555 { 16556 uint32_t old_pkt_len; 16557 uint32_t pkt_len; 16558 queue_t *q; 16559 uint32_t sum; 16560 #define rptr ((uchar_t *)ipha) 16561 uint32_t max_frag; 16562 uint32_t ill_index; 16563 ill_t *out_ill; 16564 mib2_ipIfStatsEntry_t *mibptr; 16565 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16566 16567 /* Get the ill_index of the incoming ILL */ 16568 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16569 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16570 16571 /* Initiate Read side IPPF processing */ 16572 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16573 ip_process(IPP_FWD_IN, &mp, ill_index); 16574 if (mp == NULL) { 16575 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16576 "during IPPF processing\n")); 16577 return; 16578 } 16579 } 16580 16581 /* Adjust the checksum to reflect the ttl decrement. */ 16582 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16583 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16584 16585 if (ipha->ipha_ttl-- <= 1) { 16586 if (ip_csum_hdr(ipha)) { 16587 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16588 goto drop_pkt; 16589 } 16590 /* 16591 * Note: ire_stq this will be NULL for multicast 16592 * datagrams using the long path through arp (the IRE 16593 * is not an IRE_CACHE). This should not cause 16594 * problems since we don't generate ICMP errors for 16595 * multicast packets. 16596 */ 16597 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16598 q = ire->ire_stq; 16599 if (q != NULL) { 16600 /* Sent by forwarding path, and router is global zone */ 16601 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16602 GLOBAL_ZONEID, ipst); 16603 } else 16604 freemsg(mp); 16605 return; 16606 } 16607 16608 /* 16609 * Don't forward if the interface is down 16610 */ 16611 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16612 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16613 ip2dbg(("ip_rput_forward:interface is down\n")); 16614 goto drop_pkt; 16615 } 16616 16617 /* Get the ill_index of the outgoing ILL */ 16618 out_ill = ire_to_ill(ire); 16619 ill_index = out_ill->ill_phyint->phyint_ifindex; 16620 16621 DTRACE_PROBE4(ip4__forwarding__start, 16622 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16623 16624 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16625 ipst->ips_ipv4firewall_forwarding, 16626 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16627 16628 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16629 16630 if (mp == NULL) 16631 return; 16632 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16633 16634 if (is_system_labeled()) { 16635 mblk_t *mp1; 16636 16637 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16638 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16639 goto drop_pkt; 16640 } 16641 /* Size may have changed */ 16642 mp = mp1; 16643 ipha = (ipha_t *)mp->b_rptr; 16644 pkt_len = ntohs(ipha->ipha_length); 16645 } 16646 16647 /* Check if there are options to update */ 16648 if (!IS_SIMPLE_IPH(ipha)) { 16649 if (ip_csum_hdr(ipha)) { 16650 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16651 goto drop_pkt; 16652 } 16653 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16654 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16655 return; 16656 } 16657 16658 ipha->ipha_hdr_checksum = 0; 16659 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16660 } 16661 max_frag = ire->ire_max_frag; 16662 if (pkt_len > max_frag) { 16663 /* 16664 * It needs fragging on its way out. We haven't 16665 * verified the header checksum yet. Since we 16666 * are going to put a surely good checksum in the 16667 * outgoing header, we have to make sure that it 16668 * was good coming in. 16669 */ 16670 if (ip_csum_hdr(ipha)) { 16671 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16672 goto drop_pkt; 16673 } 16674 /* Initiate Write side IPPF processing */ 16675 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16676 ip_process(IPP_FWD_OUT, &mp, ill_index); 16677 if (mp == NULL) { 16678 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16679 " during IPPF processing\n")); 16680 return; 16681 } 16682 } 16683 /* 16684 * Handle labeled packet resizing. 16685 * 16686 * If we have added a label, inform ip_wput_frag() of its 16687 * effect on the MTU for ICMP messages. 16688 */ 16689 if (pkt_len > old_pkt_len) { 16690 uint32_t secopt_size; 16691 16692 secopt_size = pkt_len - old_pkt_len; 16693 if (secopt_size < max_frag) 16694 max_frag -= secopt_size; 16695 } 16696 16697 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16698 GLOBAL_ZONEID, ipst, NULL); 16699 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16700 return; 16701 } 16702 16703 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16704 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16705 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16706 ipst->ips_ipv4firewall_physical_out, 16707 NULL, out_ill, ipha, mp, mp, 0, ipst); 16708 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16709 if (mp == NULL) 16710 return; 16711 16712 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16713 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16714 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16715 /* ip_xmit_v4 always consumes the packet */ 16716 return; 16717 16718 drop_pkt:; 16719 ip1dbg(("ip_rput_forward: drop pkt\n")); 16720 freemsg(mp); 16721 #undef rptr 16722 } 16723 16724 void 16725 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16726 { 16727 ire_t *ire; 16728 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16729 16730 ASSERT(!ipif->ipif_isv6); 16731 /* 16732 * Find an IRE which matches the destination and the outgoing 16733 * queue in the cache table. All we need is an IRE_CACHE which 16734 * is pointing at ipif->ipif_ill. 16735 */ 16736 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16737 dst = ipif->ipif_pp_dst_addr; 16738 16739 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16740 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16741 if (ire == NULL) { 16742 /* 16743 * Mark this packet to make it be delivered to 16744 * ip_rput_forward after the new ire has been 16745 * created. 16746 */ 16747 mp->b_prev = NULL; 16748 mp->b_next = mp; 16749 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16750 NULL, 0, GLOBAL_ZONEID, &zero_info); 16751 } else { 16752 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16753 IRE_REFRELE(ire); 16754 } 16755 } 16756 16757 /* Update any source route, record route or timestamp options */ 16758 static int 16759 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16760 { 16761 ipoptp_t opts; 16762 uchar_t *opt; 16763 uint8_t optval; 16764 uint8_t optlen; 16765 ipaddr_t dst; 16766 uint32_t ts; 16767 ire_t *dst_ire = NULL; 16768 ire_t *tmp_ire = NULL; 16769 timestruc_t now; 16770 16771 ip2dbg(("ip_rput_forward_options\n")); 16772 dst = ipha->ipha_dst; 16773 for (optval = ipoptp_first(&opts, ipha); 16774 optval != IPOPT_EOL; 16775 optval = ipoptp_next(&opts)) { 16776 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16777 opt = opts.ipoptp_cur; 16778 optlen = opts.ipoptp_len; 16779 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16780 optval, opts.ipoptp_len)); 16781 switch (optval) { 16782 uint32_t off; 16783 case IPOPT_SSRR: 16784 case IPOPT_LSRR: 16785 /* Check if adminstratively disabled */ 16786 if (!ipst->ips_ip_forward_src_routed) { 16787 if (ire->ire_stq != NULL) { 16788 /* 16789 * Sent by forwarding path, and router 16790 * is global zone 16791 */ 16792 icmp_unreachable(ire->ire_stq, mp, 16793 ICMP_SOURCE_ROUTE_FAILED, 16794 GLOBAL_ZONEID, ipst); 16795 } else { 16796 ip0dbg(("ip_rput_forward_options: " 16797 "unable to send unreach\n")); 16798 freemsg(mp); 16799 } 16800 return (-1); 16801 } 16802 16803 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16804 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16805 if (dst_ire == NULL) { 16806 /* 16807 * Must be partial since ip_rput_options 16808 * checked for strict. 16809 */ 16810 break; 16811 } 16812 off = opt[IPOPT_OFFSET]; 16813 off--; 16814 redo_srr: 16815 if (optlen < IP_ADDR_LEN || 16816 off > optlen - IP_ADDR_LEN) { 16817 /* End of source route */ 16818 ip1dbg(( 16819 "ip_rput_forward_options: end of SR\n")); 16820 ire_refrele(dst_ire); 16821 break; 16822 } 16823 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16824 bcopy(&ire->ire_src_addr, (char *)opt + off, 16825 IP_ADDR_LEN); 16826 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16827 ntohl(dst))); 16828 16829 /* 16830 * Check if our address is present more than 16831 * once as consecutive hops in source route. 16832 */ 16833 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16834 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16835 if (tmp_ire != NULL) { 16836 ire_refrele(tmp_ire); 16837 off += IP_ADDR_LEN; 16838 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16839 goto redo_srr; 16840 } 16841 ipha->ipha_dst = dst; 16842 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16843 ire_refrele(dst_ire); 16844 break; 16845 case IPOPT_RR: 16846 off = opt[IPOPT_OFFSET]; 16847 off--; 16848 if (optlen < IP_ADDR_LEN || 16849 off > optlen - IP_ADDR_LEN) { 16850 /* No more room - ignore */ 16851 ip1dbg(( 16852 "ip_rput_forward_options: end of RR\n")); 16853 break; 16854 } 16855 bcopy(&ire->ire_src_addr, (char *)opt + off, 16856 IP_ADDR_LEN); 16857 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16858 break; 16859 case IPOPT_TS: 16860 /* Insert timestamp if there is room */ 16861 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16862 case IPOPT_TS_TSONLY: 16863 off = IPOPT_TS_TIMELEN; 16864 break; 16865 case IPOPT_TS_PRESPEC: 16866 case IPOPT_TS_PRESPEC_RFC791: 16867 /* Verify that the address matched */ 16868 off = opt[IPOPT_OFFSET] - 1; 16869 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16870 dst_ire = ire_ctable_lookup(dst, 0, 16871 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16872 MATCH_IRE_TYPE, ipst); 16873 if (dst_ire == NULL) { 16874 /* Not for us */ 16875 break; 16876 } 16877 ire_refrele(dst_ire); 16878 /* FALLTHRU */ 16879 case IPOPT_TS_TSANDADDR: 16880 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16881 break; 16882 default: 16883 /* 16884 * ip_*put_options should have already 16885 * dropped this packet. 16886 */ 16887 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16888 "unknown IT - bug in ip_rput_options?\n"); 16889 return (0); /* Keep "lint" happy */ 16890 } 16891 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16892 /* Increase overflow counter */ 16893 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16894 opt[IPOPT_POS_OV_FLG] = 16895 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16896 (off << 4)); 16897 break; 16898 } 16899 off = opt[IPOPT_OFFSET] - 1; 16900 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16901 case IPOPT_TS_PRESPEC: 16902 case IPOPT_TS_PRESPEC_RFC791: 16903 case IPOPT_TS_TSANDADDR: 16904 bcopy(&ire->ire_src_addr, 16905 (char *)opt + off, IP_ADDR_LEN); 16906 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16907 /* FALLTHRU */ 16908 case IPOPT_TS_TSONLY: 16909 off = opt[IPOPT_OFFSET] - 1; 16910 /* Compute # of milliseconds since midnight */ 16911 gethrestime(&now); 16912 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16913 now.tv_nsec / (NANOSEC / MILLISEC); 16914 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16915 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16916 break; 16917 } 16918 break; 16919 } 16920 } 16921 return (0); 16922 } 16923 16924 /* 16925 * This is called after processing at least one of AH/ESP headers. 16926 * 16927 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16928 * the actual, physical interface on which the packet was received, 16929 * but, when ip_strict_dst_multihoming is set to 1, could be the 16930 * interface which had the ipha_dst configured when the packet went 16931 * through ip_rput. The ill_index corresponding to the recv_ill 16932 * is saved in ipsec_in_rill_index 16933 * 16934 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16935 * cannot assume "ire" points to valid data for any IPv6 cases. 16936 */ 16937 void 16938 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16939 { 16940 mblk_t *mp; 16941 ipaddr_t dst; 16942 in6_addr_t *v6dstp; 16943 ipha_t *ipha; 16944 ip6_t *ip6h; 16945 ipsec_in_t *ii; 16946 boolean_t ill_need_rele = B_FALSE; 16947 boolean_t rill_need_rele = B_FALSE; 16948 boolean_t ire_need_rele = B_FALSE; 16949 netstack_t *ns; 16950 ip_stack_t *ipst; 16951 16952 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16953 ASSERT(ii->ipsec_in_ill_index != 0); 16954 ns = ii->ipsec_in_ns; 16955 ASSERT(ii->ipsec_in_ns != NULL); 16956 ipst = ns->netstack_ip; 16957 16958 mp = ipsec_mp->b_cont; 16959 ASSERT(mp != NULL); 16960 16961 if (ill == NULL) { 16962 ASSERT(recv_ill == NULL); 16963 /* 16964 * We need to get the original queue on which ip_rput_local 16965 * or ip_rput_data_v6 was called. 16966 */ 16967 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16968 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16969 ill_need_rele = B_TRUE; 16970 16971 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16972 recv_ill = ill_lookup_on_ifindex( 16973 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16974 NULL, NULL, NULL, NULL, ipst); 16975 rill_need_rele = B_TRUE; 16976 } else { 16977 recv_ill = ill; 16978 } 16979 16980 if ((ill == NULL) || (recv_ill == NULL)) { 16981 ip0dbg(("ip_fanout_proto_again: interface " 16982 "disappeared\n")); 16983 if (ill != NULL) 16984 ill_refrele(ill); 16985 if (recv_ill != NULL) 16986 ill_refrele(recv_ill); 16987 freemsg(ipsec_mp); 16988 return; 16989 } 16990 } 16991 16992 ASSERT(ill != NULL && recv_ill != NULL); 16993 16994 if (mp->b_datap->db_type == M_CTL) { 16995 /* 16996 * AH/ESP is returning the ICMP message after 16997 * removing their headers. Fanout again till 16998 * it gets to the right protocol. 16999 */ 17000 if (ii->ipsec_in_v4) { 17001 icmph_t *icmph; 17002 int iph_hdr_length; 17003 int hdr_length; 17004 17005 ipha = (ipha_t *)mp->b_rptr; 17006 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17007 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17008 ipha = (ipha_t *)&icmph[1]; 17009 hdr_length = IPH_HDR_LENGTH(ipha); 17010 /* 17011 * icmp_inbound_error_fanout may need to do pullupmsg. 17012 * Reset the type to M_DATA. 17013 */ 17014 mp->b_datap->db_type = M_DATA; 17015 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17016 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17017 B_FALSE, ill, ii->ipsec_in_zoneid); 17018 } else { 17019 icmp6_t *icmp6; 17020 int hdr_length; 17021 17022 ip6h = (ip6_t *)mp->b_rptr; 17023 /* Don't call hdr_length_v6() unless you have to. */ 17024 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17025 hdr_length = ip_hdr_length_v6(mp, ip6h); 17026 else 17027 hdr_length = IPV6_HDR_LEN; 17028 17029 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17030 /* 17031 * icmp_inbound_error_fanout_v6 may need to do 17032 * pullupmsg. Reset the type to M_DATA. 17033 */ 17034 mp->b_datap->db_type = M_DATA; 17035 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17036 ip6h, icmp6, ill, recv_ill, B_TRUE, 17037 ii->ipsec_in_zoneid); 17038 } 17039 if (ill_need_rele) 17040 ill_refrele(ill); 17041 if (rill_need_rele) 17042 ill_refrele(recv_ill); 17043 return; 17044 } 17045 17046 if (ii->ipsec_in_v4) { 17047 ipha = (ipha_t *)mp->b_rptr; 17048 dst = ipha->ipha_dst; 17049 if (CLASSD(dst)) { 17050 /* 17051 * Multicast has to be delivered to all streams. 17052 */ 17053 dst = INADDR_BROADCAST; 17054 } 17055 17056 if (ire == NULL) { 17057 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17058 msg_getlabel(mp), ipst); 17059 if (ire == NULL) { 17060 if (ill_need_rele) 17061 ill_refrele(ill); 17062 if (rill_need_rele) 17063 ill_refrele(recv_ill); 17064 ip1dbg(("ip_fanout_proto_again: " 17065 "IRE not found")); 17066 freemsg(ipsec_mp); 17067 return; 17068 } 17069 ire_need_rele = B_TRUE; 17070 } 17071 17072 switch (ipha->ipha_protocol) { 17073 case IPPROTO_UDP: 17074 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17075 recv_ill); 17076 if (ire_need_rele) 17077 ire_refrele(ire); 17078 break; 17079 case IPPROTO_TCP: 17080 if (!ire_need_rele) 17081 IRE_REFHOLD(ire); 17082 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17083 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17084 IRE_REFRELE(ire); 17085 if (mp != NULL) { 17086 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17087 mp, 1, SQ_PROCESS, 17088 SQTAG_IP_PROTO_AGAIN); 17089 } 17090 break; 17091 case IPPROTO_SCTP: 17092 if (!ire_need_rele) 17093 IRE_REFHOLD(ire); 17094 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17095 ipsec_mp, 0, ill->ill_rq, dst); 17096 break; 17097 case IPPROTO_ENCAP: 17098 case IPPROTO_IPV6: 17099 if (ip_iptun_input(ipsec_mp, mp, ipha, ill, ire, 17100 ill->ill_ipst)) { 17101 /* 17102 * If we made it here, we don't need to worry 17103 * about the raw-socket/protocol fanout. 17104 */ 17105 if (ire_need_rele) 17106 ire_refrele(ire); 17107 break; 17108 } 17109 /* else FALLTHRU */ 17110 default: 17111 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17112 recv_ill, 0); 17113 if (ire_need_rele) 17114 ire_refrele(ire); 17115 break; 17116 } 17117 } else { 17118 uint32_t rput_flags = 0; 17119 17120 ip6h = (ip6_t *)mp->b_rptr; 17121 v6dstp = &ip6h->ip6_dst; 17122 /* 17123 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17124 * address. 17125 * 17126 * Currently, we don't store that state in the IPSEC_IN 17127 * message, and we may need to. 17128 */ 17129 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17130 IP6_IN_LLMCAST : 0); 17131 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17132 NULL, NULL); 17133 } 17134 if (ill_need_rele) 17135 ill_refrele(ill); 17136 if (rill_need_rele) 17137 ill_refrele(recv_ill); 17138 } 17139 17140 /* 17141 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17142 * returns 'true' if there are still fragments left on the queue, in 17143 * which case we restart the timer. 17144 */ 17145 void 17146 ill_frag_timer(void *arg) 17147 { 17148 ill_t *ill = (ill_t *)arg; 17149 boolean_t frag_pending; 17150 ip_stack_t *ipst = ill->ill_ipst; 17151 time_t timeout; 17152 17153 mutex_enter(&ill->ill_lock); 17154 ASSERT(!ill->ill_fragtimer_executing); 17155 if (ill->ill_state_flags & ILL_CONDEMNED) { 17156 ill->ill_frag_timer_id = 0; 17157 mutex_exit(&ill->ill_lock); 17158 return; 17159 } 17160 ill->ill_fragtimer_executing = 1; 17161 mutex_exit(&ill->ill_lock); 17162 17163 if (ill->ill_isv6) 17164 timeout = ipst->ips_ipv6_frag_timeout; 17165 else 17166 timeout = ipst->ips_ip_g_frag_timeout; 17167 17168 frag_pending = ill_frag_timeout(ill, timeout); 17169 17170 /* 17171 * Restart the timer, if we have fragments pending or if someone 17172 * wanted us to be scheduled again. 17173 */ 17174 mutex_enter(&ill->ill_lock); 17175 ill->ill_fragtimer_executing = 0; 17176 ill->ill_frag_timer_id = 0; 17177 if (frag_pending || ill->ill_fragtimer_needrestart) 17178 ill_frag_timer_start(ill); 17179 mutex_exit(&ill->ill_lock); 17180 } 17181 17182 void 17183 ill_frag_timer_start(ill_t *ill) 17184 { 17185 ip_stack_t *ipst = ill->ill_ipst; 17186 clock_t timeo_ms; 17187 17188 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17189 17190 /* If the ill is closing or opening don't proceed */ 17191 if (ill->ill_state_flags & ILL_CONDEMNED) 17192 return; 17193 17194 if (ill->ill_fragtimer_executing) { 17195 /* 17196 * ill_frag_timer is currently executing. Just record the 17197 * the fact that we want the timer to be restarted. 17198 * ill_frag_timer will post a timeout before it returns, 17199 * ensuring it will be called again. 17200 */ 17201 ill->ill_fragtimer_needrestart = 1; 17202 return; 17203 } 17204 17205 if (ill->ill_frag_timer_id == 0) { 17206 if (ill->ill_isv6) 17207 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17208 else 17209 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17210 /* 17211 * The timer is neither running nor is the timeout handler 17212 * executing. Post a timeout so that ill_frag_timer will be 17213 * called 17214 */ 17215 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17216 MSEC_TO_TICK(timeo_ms >> 1)); 17217 ill->ill_fragtimer_needrestart = 0; 17218 } 17219 } 17220 17221 /* 17222 * This routine is needed for loopback when forwarding multicasts. 17223 * 17224 * IPQoS Notes: 17225 * IPPF processing is done in fanout routines. 17226 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17227 * processing for IPsec packets is done when it comes back in clear. 17228 * NOTE : The callers of this function need to do the ire_refrele for the 17229 * ire that is being passed in. 17230 */ 17231 void 17232 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17233 ill_t *recv_ill, uint32_t esp_udp_ports) 17234 { 17235 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17236 ill_t *ill = (ill_t *)q->q_ptr; 17237 uint32_t sum; 17238 uint32_t u1; 17239 uint32_t u2; 17240 int hdr_length; 17241 boolean_t mctl_present; 17242 mblk_t *first_mp = mp; 17243 mblk_t *hada_mp = NULL; 17244 ipha_t *inner_ipha; 17245 ip_stack_t *ipst; 17246 17247 ASSERT(recv_ill != NULL); 17248 ipst = recv_ill->ill_ipst; 17249 17250 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17251 "ip_rput_locl_start: q %p", q); 17252 17253 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17254 ASSERT(ill != NULL); 17255 17256 #define rptr ((uchar_t *)ipha) 17257 #define iphs ((uint16_t *)ipha) 17258 17259 /* 17260 * no UDP or TCP packet should come here anymore. 17261 */ 17262 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17263 ipha->ipha_protocol != IPPROTO_UDP); 17264 17265 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17266 if (mctl_present && 17267 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17268 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17269 17270 /* 17271 * It's an IPsec accelerated packet. 17272 * Keep a pointer to the data attributes around until 17273 * we allocate the ipsec_info_t. 17274 */ 17275 IPSECHW_DEBUG(IPSECHW_PKT, 17276 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17277 hada_mp = first_mp; 17278 hada_mp->b_cont = NULL; 17279 /* 17280 * Since it is accelerated, it comes directly from 17281 * the ill and the data attributes is followed by 17282 * the packet data. 17283 */ 17284 ASSERT(mp->b_datap->db_type != M_CTL); 17285 first_mp = mp; 17286 mctl_present = B_FALSE; 17287 } 17288 17289 /* 17290 * IF M_CTL is not present, then ipsec_in_is_secure 17291 * should return B_TRUE. There is a case where loopback 17292 * packets has an M_CTL in the front with all the 17293 * IPsec options set to IPSEC_PREF_NEVER - which means 17294 * ipsec_in_is_secure will return B_FALSE. As loopback 17295 * packets never comes here, it is safe to ASSERT the 17296 * following. 17297 */ 17298 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17299 17300 /* 17301 * Also, we should never have an mctl_present if this is an 17302 * ESP-in-UDP packet. 17303 */ 17304 ASSERT(!mctl_present || !esp_in_udp_packet); 17305 17306 /* u1 is # words of IP options */ 17307 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17308 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17309 17310 /* 17311 * Don't verify header checksum if we just removed UDP header or 17312 * packet is coming back from AH/ESP. 17313 */ 17314 if (!esp_in_udp_packet && !mctl_present) { 17315 if (u1) { 17316 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17317 if (hada_mp != NULL) 17318 freemsg(hada_mp); 17319 return; 17320 } 17321 } else { 17322 /* Check the IP header checksum. */ 17323 #define uph ((uint16_t *)ipha) 17324 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17325 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17326 #undef uph 17327 /* finish doing IP checksum */ 17328 sum = (sum & 0xFFFF) + (sum >> 16); 17329 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17330 if (sum && sum != 0xFFFF) { 17331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17332 goto drop_pkt; 17333 } 17334 } 17335 } 17336 17337 /* 17338 * Count for SNMP of inbound packets for ire. As ip_proto_input 17339 * might be called more than once for secure packets, count only 17340 * the first time. 17341 */ 17342 if (!mctl_present) { 17343 UPDATE_IB_PKT_COUNT(ire); 17344 ire->ire_last_used_time = lbolt; 17345 } 17346 17347 /* Check for fragmentation offset. */ 17348 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17349 u1 = u2 & (IPH_MF | IPH_OFFSET); 17350 if (u1) { 17351 /* 17352 * We re-assemble fragments before we do the AH/ESP 17353 * processing. Thus, M_CTL should not be present 17354 * while we are re-assembling. 17355 */ 17356 ASSERT(!mctl_present); 17357 ASSERT(first_mp == mp); 17358 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17359 return; 17360 17361 /* 17362 * Make sure that first_mp points back to mp as 17363 * the mp we came in with could have changed in 17364 * ip_rput_fragment(). 17365 */ 17366 ipha = (ipha_t *)mp->b_rptr; 17367 first_mp = mp; 17368 } 17369 17370 /* 17371 * Clear hardware checksumming flag as it is currently only 17372 * used by TCP and UDP. 17373 */ 17374 DB_CKSUMFLAGS(mp) = 0; 17375 17376 /* Now we have a complete datagram, destined for this machine. */ 17377 u1 = IPH_HDR_LENGTH(ipha); 17378 switch (ipha->ipha_protocol) { 17379 case IPPROTO_ICMP: { 17380 ire_t *ire_zone; 17381 ilm_t *ilm; 17382 mblk_t *mp1; 17383 zoneid_t last_zoneid; 17384 ilm_walker_t ilw; 17385 17386 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17387 ASSERT(ire->ire_type == IRE_BROADCAST); 17388 17389 /* 17390 * In the multicast case, applications may have joined 17391 * the group from different zones, so we need to deliver 17392 * the packet to each of them. Loop through the 17393 * multicast memberships structures (ilm) on the receive 17394 * ill and send a copy of the packet up each matching 17395 * one. However, we don't do this for multicasts sent on 17396 * the loopback interface (PHYI_LOOPBACK flag set) as 17397 * they must stay in the sender's zone. 17398 * 17399 * ilm_add_v6() ensures that ilms in the same zone are 17400 * contiguous in the ill_ilm list. We use this property 17401 * to avoid sending duplicates needed when two 17402 * applications in the same zone join the same group on 17403 * different logical interfaces: we ignore the ilm if 17404 * its zoneid is the same as the last matching one. 17405 * In addition, the sending of the packet for 17406 * ire_zoneid is delayed until all of the other ilms 17407 * have been exhausted. 17408 */ 17409 last_zoneid = -1; 17410 ilm = ilm_walker_start(&ilw, recv_ill); 17411 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17412 if (ipha->ipha_dst != ilm->ilm_addr || 17413 ilm->ilm_zoneid == last_zoneid || 17414 ilm->ilm_zoneid == ire->ire_zoneid || 17415 ilm->ilm_zoneid == ALL_ZONES || 17416 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17417 continue; 17418 mp1 = ip_copymsg(first_mp); 17419 if (mp1 == NULL) 17420 continue; 17421 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17422 0, sum, mctl_present, B_TRUE, 17423 recv_ill, ilm->ilm_zoneid); 17424 last_zoneid = ilm->ilm_zoneid; 17425 } 17426 ilm_walker_finish(&ilw); 17427 } else if (ire->ire_type == IRE_BROADCAST) { 17428 /* 17429 * In the broadcast case, there may be many zones 17430 * which need a copy of the packet delivered to them. 17431 * There is one IRE_BROADCAST per broadcast address 17432 * and per zone; we walk those using a helper function. 17433 * In addition, the sending of the packet for ire is 17434 * delayed until all of the other ires have been 17435 * processed. 17436 */ 17437 IRB_REFHOLD(ire->ire_bucket); 17438 ire_zone = NULL; 17439 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17440 ire)) != NULL) { 17441 mp1 = ip_copymsg(first_mp); 17442 if (mp1 == NULL) 17443 continue; 17444 17445 UPDATE_IB_PKT_COUNT(ire_zone); 17446 ire_zone->ire_last_used_time = lbolt; 17447 icmp_inbound(q, mp1, B_TRUE, ill, 17448 0, sum, mctl_present, B_TRUE, 17449 recv_ill, ire_zone->ire_zoneid); 17450 } 17451 IRB_REFRELE(ire->ire_bucket); 17452 } 17453 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17454 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17455 ire->ire_zoneid); 17456 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17457 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17458 return; 17459 } 17460 case IPPROTO_IGMP: 17461 /* 17462 * If we are not willing to accept IGMP packets in clear, 17463 * then check with global policy. 17464 */ 17465 if (ipst->ips_igmp_accept_clear_messages == 0) { 17466 first_mp = ipsec_check_global_policy(first_mp, NULL, 17467 ipha, NULL, mctl_present, ipst->ips_netstack); 17468 if (first_mp == NULL) 17469 return; 17470 } 17471 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17472 freemsg(first_mp); 17473 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17474 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17475 return; 17476 } 17477 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17478 /* Bad packet - discarded by igmp_input */ 17479 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17480 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17481 if (mctl_present) 17482 freeb(first_mp); 17483 return; 17484 } 17485 /* 17486 * igmp_input() may have returned the pulled up message. 17487 * So first_mp and ipha need to be reinitialized. 17488 */ 17489 ipha = (ipha_t *)mp->b_rptr; 17490 if (mctl_present) 17491 first_mp->b_cont = mp; 17492 else 17493 first_mp = mp; 17494 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17495 connf_head != NULL) { 17496 /* No user-level listener for IGMP packets */ 17497 goto drop_pkt; 17498 } 17499 /* deliver to local raw users */ 17500 break; 17501 case IPPROTO_PIM: 17502 /* 17503 * If we are not willing to accept PIM packets in clear, 17504 * then check with global policy. 17505 */ 17506 if (ipst->ips_pim_accept_clear_messages == 0) { 17507 first_mp = ipsec_check_global_policy(first_mp, NULL, 17508 ipha, NULL, mctl_present, ipst->ips_netstack); 17509 if (first_mp == NULL) 17510 return; 17511 } 17512 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17513 freemsg(first_mp); 17514 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17515 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17516 return; 17517 } 17518 if (pim_input(q, mp, ill) != 0) { 17519 /* Bad packet - discarded by pim_input */ 17520 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17521 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17522 if (mctl_present) 17523 freeb(first_mp); 17524 return; 17525 } 17526 17527 /* 17528 * pim_input() may have pulled up the message so ipha needs to 17529 * be reinitialized. 17530 */ 17531 ipha = (ipha_t *)mp->b_rptr; 17532 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17533 connf_head != NULL) { 17534 /* No user-level listener for PIM packets */ 17535 goto drop_pkt; 17536 } 17537 /* deliver to local raw users */ 17538 break; 17539 case IPPROTO_ENCAP: 17540 /* 17541 * Handle self-encapsulated packets (IP-in-IP where 17542 * the inner addresses == the outer addresses). 17543 */ 17544 hdr_length = IPH_HDR_LENGTH(ipha); 17545 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17546 mp->b_wptr) { 17547 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17548 sizeof (ipha_t) - mp->b_rptr)) { 17549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17550 freemsg(first_mp); 17551 return; 17552 } 17553 ipha = (ipha_t *)mp->b_rptr; 17554 } 17555 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17556 /* 17557 * Check the sanity of the inner IP header. 17558 */ 17559 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17561 freemsg(first_mp); 17562 return; 17563 } 17564 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17566 freemsg(first_mp); 17567 return; 17568 } 17569 if (inner_ipha->ipha_src == ipha->ipha_src && 17570 inner_ipha->ipha_dst == ipha->ipha_dst) { 17571 ipsec_in_t *ii; 17572 17573 /* 17574 * Self-encapsulated tunnel packet. Remove 17575 * the outer IP header and fanout again. 17576 * We also need to make sure that the inner 17577 * header is pulled up until options. 17578 */ 17579 mp->b_rptr = (uchar_t *)inner_ipha; 17580 ipha = inner_ipha; 17581 hdr_length = IPH_HDR_LENGTH(ipha); 17582 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17583 if (!pullupmsg(mp, (uchar_t *)ipha + 17584 + hdr_length - mp->b_rptr)) { 17585 freemsg(first_mp); 17586 return; 17587 } 17588 ipha = (ipha_t *)mp->b_rptr; 17589 } 17590 if (hdr_length > sizeof (ipha_t)) { 17591 /* We got options on the inner packet. */ 17592 ipaddr_t dst = ipha->ipha_dst; 17593 17594 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17595 -1) { 17596 /* Bad options! */ 17597 return; 17598 } 17599 if (dst != ipha->ipha_dst) { 17600 /* 17601 * Someone put a source-route in 17602 * the inside header of a self- 17603 * encapsulated packet. Drop it 17604 * with extreme prejudice and let 17605 * the sender know. 17606 */ 17607 icmp_unreachable(q, first_mp, 17608 ICMP_SOURCE_ROUTE_FAILED, 17609 recv_ill->ill_zoneid, ipst); 17610 return; 17611 } 17612 } 17613 if (!mctl_present) { 17614 ASSERT(first_mp == mp); 17615 /* 17616 * This means that somebody is sending 17617 * Self-encapsualted packets without AH/ESP. 17618 * If AH/ESP was present, we would have already 17619 * allocated the first_mp. 17620 * 17621 * Send this packet to find a tunnel endpoint. 17622 * if I can't find one, an ICMP 17623 * PROTOCOL_UNREACHABLE will get sent. 17624 */ 17625 goto fanout; 17626 } 17627 /* 17628 * We generally store the ill_index if we need to 17629 * do IPsec processing as we lose the ill queue when 17630 * we come back. But in this case, we never should 17631 * have to store the ill_index here as it should have 17632 * been stored previously when we processed the 17633 * AH/ESP header in this routine or for non-ipsec 17634 * cases, we still have the queue. But for some bad 17635 * packets from the wire, we can get to IPsec after 17636 * this and we better store the index for that case. 17637 */ 17638 ill = (ill_t *)q->q_ptr; 17639 ii = (ipsec_in_t *)first_mp->b_rptr; 17640 ii->ipsec_in_ill_index = 17641 ill->ill_phyint->phyint_ifindex; 17642 ii->ipsec_in_rill_index = 17643 recv_ill->ill_phyint->phyint_ifindex; 17644 if (ii->ipsec_in_decaps) { 17645 /* 17646 * This packet is self-encapsulated multiple 17647 * times. We don't want to recurse infinitely. 17648 * To keep it simple, drop the packet. 17649 */ 17650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17651 freemsg(first_mp); 17652 return; 17653 } 17654 ii->ipsec_in_decaps = B_TRUE; 17655 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17656 ire); 17657 return; 17658 } 17659 break; 17660 case IPPROTO_AH: 17661 case IPPROTO_ESP: { 17662 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17663 17664 /* 17665 * Fast path for AH/ESP. If this is the first time 17666 * we are sending a datagram to AH/ESP, allocate 17667 * a IPSEC_IN message and prepend it. Otherwise, 17668 * just fanout. 17669 */ 17670 17671 int ipsec_rc; 17672 ipsec_in_t *ii; 17673 netstack_t *ns = ipst->ips_netstack; 17674 17675 IP_STAT(ipst, ipsec_proto_ahesp); 17676 if (!mctl_present) { 17677 ASSERT(first_mp == mp); 17678 first_mp = ipsec_in_alloc(B_TRUE, ns); 17679 if (first_mp == NULL) { 17680 ip1dbg(("ip_proto_input: IPSEC_IN " 17681 "allocation failure.\n")); 17682 freemsg(hada_mp); /* okay ifnull */ 17683 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17684 freemsg(mp); 17685 return; 17686 } 17687 /* 17688 * Store the ill_index so that when we come back 17689 * from IPsec we ride on the same queue. 17690 */ 17691 ill = (ill_t *)q->q_ptr; 17692 ii = (ipsec_in_t *)first_mp->b_rptr; 17693 ii->ipsec_in_ill_index = 17694 ill->ill_phyint->phyint_ifindex; 17695 ii->ipsec_in_rill_index = 17696 recv_ill->ill_phyint->phyint_ifindex; 17697 first_mp->b_cont = mp; 17698 /* 17699 * Cache hardware acceleration info. 17700 */ 17701 if (hada_mp != NULL) { 17702 IPSECHW_DEBUG(IPSECHW_PKT, 17703 ("ip_rput_local: caching data attr.\n")); 17704 ii->ipsec_in_accelerated = B_TRUE; 17705 ii->ipsec_in_da = hada_mp; 17706 hada_mp = NULL; 17707 } 17708 } else { 17709 ii = (ipsec_in_t *)first_mp->b_rptr; 17710 } 17711 17712 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17713 17714 if (!ipsec_loaded(ipss)) { 17715 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17716 ire->ire_zoneid, ipst); 17717 return; 17718 } 17719 17720 ns = ipst->ips_netstack; 17721 /* select inbound SA and have IPsec process the pkt */ 17722 if (ipha->ipha_protocol == IPPROTO_ESP) { 17723 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17724 boolean_t esp_in_udp_sa; 17725 if (esph == NULL) 17726 return; 17727 ASSERT(ii->ipsec_in_esp_sa != NULL); 17728 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17729 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17730 IPSA_F_NATT) != 0); 17731 /* 17732 * The following is a fancy, but quick, way of saying: 17733 * ESP-in-UDP SA and Raw ESP packet --> drop 17734 * OR 17735 * ESP SA and ESP-in-UDP packet --> drop 17736 */ 17737 if (esp_in_udp_sa != esp_in_udp_packet) { 17738 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17739 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17740 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17741 &ns->netstack_ipsec->ipsec_dropper); 17742 return; 17743 } 17744 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17745 first_mp, esph); 17746 } else { 17747 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17748 if (ah == NULL) 17749 return; 17750 ASSERT(ii->ipsec_in_ah_sa != NULL); 17751 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17752 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17753 first_mp, ah); 17754 } 17755 17756 switch (ipsec_rc) { 17757 case IPSEC_STATUS_SUCCESS: 17758 break; 17759 case IPSEC_STATUS_FAILED: 17760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17761 /* FALLTHRU */ 17762 case IPSEC_STATUS_PENDING: 17763 return; 17764 } 17765 /* we're done with IPsec processing, send it up */ 17766 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17767 return; 17768 } 17769 default: 17770 break; 17771 } 17772 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17773 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17774 ire->ire_zoneid)); 17775 goto drop_pkt; 17776 } 17777 /* 17778 * Handle protocols with which IP is less intimate. There 17779 * can be more than one stream bound to a particular 17780 * protocol. When this is the case, each one gets a copy 17781 * of any incoming packets. 17782 */ 17783 fanout: 17784 ip_fanout_proto(q, first_mp, ill, ipha, 17785 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17786 B_TRUE, recv_ill, ire->ire_zoneid); 17787 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17788 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17789 return; 17790 17791 drop_pkt: 17792 freemsg(first_mp); 17793 if (hada_mp != NULL) 17794 freeb(hada_mp); 17795 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17796 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17797 #undef rptr 17798 #undef iphs 17799 17800 } 17801 17802 /* 17803 * Update any source route, record route or timestamp options. 17804 * Check that we are at end of strict source route. 17805 * The options have already been checked for sanity in ip_rput_options(). 17806 */ 17807 static boolean_t 17808 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17809 ip_stack_t *ipst) 17810 { 17811 ipoptp_t opts; 17812 uchar_t *opt; 17813 uint8_t optval; 17814 uint8_t optlen; 17815 ipaddr_t dst; 17816 uint32_t ts; 17817 ire_t *dst_ire; 17818 timestruc_t now; 17819 zoneid_t zoneid; 17820 ill_t *ill; 17821 17822 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17823 17824 ip2dbg(("ip_rput_local_options\n")); 17825 17826 for (optval = ipoptp_first(&opts, ipha); 17827 optval != IPOPT_EOL; 17828 optval = ipoptp_next(&opts)) { 17829 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17830 opt = opts.ipoptp_cur; 17831 optlen = opts.ipoptp_len; 17832 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17833 optval, optlen)); 17834 switch (optval) { 17835 uint32_t off; 17836 case IPOPT_SSRR: 17837 case IPOPT_LSRR: 17838 off = opt[IPOPT_OFFSET]; 17839 off--; 17840 if (optlen < IP_ADDR_LEN || 17841 off > optlen - IP_ADDR_LEN) { 17842 /* End of source route */ 17843 ip1dbg(("ip_rput_local_options: end of SR\n")); 17844 break; 17845 } 17846 /* 17847 * This will only happen if two consecutive entries 17848 * in the source route contains our address or if 17849 * it is a packet with a loose source route which 17850 * reaches us before consuming the whole source route 17851 */ 17852 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17853 if (optval == IPOPT_SSRR) { 17854 goto bad_src_route; 17855 } 17856 /* 17857 * Hack: instead of dropping the packet truncate the 17858 * source route to what has been used by filling the 17859 * rest with IPOPT_NOP. 17860 */ 17861 opt[IPOPT_OLEN] = (uint8_t)off; 17862 while (off < optlen) { 17863 opt[off++] = IPOPT_NOP; 17864 } 17865 break; 17866 case IPOPT_RR: 17867 off = opt[IPOPT_OFFSET]; 17868 off--; 17869 if (optlen < IP_ADDR_LEN || 17870 off > optlen - IP_ADDR_LEN) { 17871 /* No more room - ignore */ 17872 ip1dbg(( 17873 "ip_rput_local_options: end of RR\n")); 17874 break; 17875 } 17876 bcopy(&ire->ire_src_addr, (char *)opt + off, 17877 IP_ADDR_LEN); 17878 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17879 break; 17880 case IPOPT_TS: 17881 /* Insert timestamp if there is romm */ 17882 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17883 case IPOPT_TS_TSONLY: 17884 off = IPOPT_TS_TIMELEN; 17885 break; 17886 case IPOPT_TS_PRESPEC: 17887 case IPOPT_TS_PRESPEC_RFC791: 17888 /* Verify that the address matched */ 17889 off = opt[IPOPT_OFFSET] - 1; 17890 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17891 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17892 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17893 ipst); 17894 if (dst_ire == NULL) { 17895 /* Not for us */ 17896 break; 17897 } 17898 ire_refrele(dst_ire); 17899 /* FALLTHRU */ 17900 case IPOPT_TS_TSANDADDR: 17901 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17902 break; 17903 default: 17904 /* 17905 * ip_*put_options should have already 17906 * dropped this packet. 17907 */ 17908 cmn_err(CE_PANIC, "ip_rput_local_options: " 17909 "unknown IT - bug in ip_rput_options?\n"); 17910 return (B_TRUE); /* Keep "lint" happy */ 17911 } 17912 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17913 /* Increase overflow counter */ 17914 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17915 opt[IPOPT_POS_OV_FLG] = 17916 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17917 (off << 4)); 17918 break; 17919 } 17920 off = opt[IPOPT_OFFSET] - 1; 17921 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17922 case IPOPT_TS_PRESPEC: 17923 case IPOPT_TS_PRESPEC_RFC791: 17924 case IPOPT_TS_TSANDADDR: 17925 bcopy(&ire->ire_src_addr, (char *)opt + off, 17926 IP_ADDR_LEN); 17927 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17928 /* FALLTHRU */ 17929 case IPOPT_TS_TSONLY: 17930 off = opt[IPOPT_OFFSET] - 1; 17931 /* Compute # of milliseconds since midnight */ 17932 gethrestime(&now); 17933 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17934 now.tv_nsec / (NANOSEC / MILLISEC); 17935 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17936 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17937 break; 17938 } 17939 break; 17940 } 17941 } 17942 return (B_TRUE); 17943 17944 bad_src_route: 17945 q = WR(q); 17946 if (q->q_next != NULL) 17947 ill = q->q_ptr; 17948 else 17949 ill = NULL; 17950 17951 /* make sure we clear any indication of a hardware checksum */ 17952 DB_CKSUMFLAGS(mp) = 0; 17953 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17954 if (zoneid == ALL_ZONES) 17955 freemsg(mp); 17956 else 17957 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17958 return (B_FALSE); 17959 17960 } 17961 17962 /* 17963 * Process IP options in an inbound packet. If an option affects the 17964 * effective destination address, return the next hop address via dstp. 17965 * Returns -1 if something fails in which case an ICMP error has been sent 17966 * and mp freed. 17967 */ 17968 static int 17969 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17970 ip_stack_t *ipst) 17971 { 17972 ipoptp_t opts; 17973 uchar_t *opt; 17974 uint8_t optval; 17975 uint8_t optlen; 17976 ipaddr_t dst; 17977 intptr_t code = 0; 17978 ire_t *ire = NULL; 17979 zoneid_t zoneid; 17980 ill_t *ill; 17981 17982 ip2dbg(("ip_rput_options\n")); 17983 dst = ipha->ipha_dst; 17984 for (optval = ipoptp_first(&opts, ipha); 17985 optval != IPOPT_EOL; 17986 optval = ipoptp_next(&opts)) { 17987 opt = opts.ipoptp_cur; 17988 optlen = opts.ipoptp_len; 17989 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17990 optval, optlen)); 17991 /* 17992 * Note: we need to verify the checksum before we 17993 * modify anything thus this routine only extracts the next 17994 * hop dst from any source route. 17995 */ 17996 switch (optval) { 17997 uint32_t off; 17998 case IPOPT_SSRR: 17999 case IPOPT_LSRR: 18000 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18001 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18002 if (ire == NULL) { 18003 if (optval == IPOPT_SSRR) { 18004 ip1dbg(("ip_rput_options: not next" 18005 " strict source route 0x%x\n", 18006 ntohl(dst))); 18007 code = (char *)&ipha->ipha_dst - 18008 (char *)ipha; 18009 goto param_prob; /* RouterReq's */ 18010 } 18011 ip2dbg(("ip_rput_options: " 18012 "not next source route 0x%x\n", 18013 ntohl(dst))); 18014 break; 18015 } 18016 ire_refrele(ire); 18017 18018 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18019 ip1dbg(( 18020 "ip_rput_options: bad option offset\n")); 18021 code = (char *)&opt[IPOPT_OLEN] - 18022 (char *)ipha; 18023 goto param_prob; 18024 } 18025 off = opt[IPOPT_OFFSET]; 18026 off--; 18027 redo_srr: 18028 if (optlen < IP_ADDR_LEN || 18029 off > optlen - IP_ADDR_LEN) { 18030 /* End of source route */ 18031 ip1dbg(("ip_rput_options: end of SR\n")); 18032 break; 18033 } 18034 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18035 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18036 ntohl(dst))); 18037 18038 /* 18039 * Check if our address is present more than 18040 * once as consecutive hops in source route. 18041 * XXX verify per-interface ip_forwarding 18042 * for source route? 18043 */ 18044 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18045 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18046 18047 if (ire != NULL) { 18048 ire_refrele(ire); 18049 off += IP_ADDR_LEN; 18050 goto redo_srr; 18051 } 18052 18053 if (dst == htonl(INADDR_LOOPBACK)) { 18054 ip1dbg(("ip_rput_options: loopback addr in " 18055 "source route!\n")); 18056 goto bad_src_route; 18057 } 18058 /* 18059 * For strict: verify that dst is directly 18060 * reachable. 18061 */ 18062 if (optval == IPOPT_SSRR) { 18063 ire = ire_ftable_lookup(dst, 0, 0, 18064 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18065 msg_getlabel(mp), 18066 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18067 if (ire == NULL) { 18068 ip1dbg(("ip_rput_options: SSRR not " 18069 "directly reachable: 0x%x\n", 18070 ntohl(dst))); 18071 goto bad_src_route; 18072 } 18073 ire_refrele(ire); 18074 } 18075 /* 18076 * Defer update of the offset and the record route 18077 * until the packet is forwarded. 18078 */ 18079 break; 18080 case IPOPT_RR: 18081 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18082 ip1dbg(( 18083 "ip_rput_options: bad option offset\n")); 18084 code = (char *)&opt[IPOPT_OLEN] - 18085 (char *)ipha; 18086 goto param_prob; 18087 } 18088 break; 18089 case IPOPT_TS: 18090 /* 18091 * Verify that length >= 5 and that there is either 18092 * room for another timestamp or that the overflow 18093 * counter is not maxed out. 18094 */ 18095 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18096 if (optlen < IPOPT_MINLEN_IT) { 18097 goto param_prob; 18098 } 18099 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18100 ip1dbg(( 18101 "ip_rput_options: bad option offset\n")); 18102 code = (char *)&opt[IPOPT_OFFSET] - 18103 (char *)ipha; 18104 goto param_prob; 18105 } 18106 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18107 case IPOPT_TS_TSONLY: 18108 off = IPOPT_TS_TIMELEN; 18109 break; 18110 case IPOPT_TS_TSANDADDR: 18111 case IPOPT_TS_PRESPEC: 18112 case IPOPT_TS_PRESPEC_RFC791: 18113 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18114 break; 18115 default: 18116 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18117 (char *)ipha; 18118 goto param_prob; 18119 } 18120 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18121 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18122 /* 18123 * No room and the overflow counter is 15 18124 * already. 18125 */ 18126 goto param_prob; 18127 } 18128 break; 18129 } 18130 } 18131 18132 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18133 *dstp = dst; 18134 return (0); 18135 } 18136 18137 ip1dbg(("ip_rput_options: error processing IP options.")); 18138 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18139 18140 param_prob: 18141 q = WR(q); 18142 if (q->q_next != NULL) 18143 ill = q->q_ptr; 18144 else 18145 ill = NULL; 18146 18147 /* make sure we clear any indication of a hardware checksum */ 18148 DB_CKSUMFLAGS(mp) = 0; 18149 /* Don't know whether this is for non-global or global/forwarding */ 18150 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18151 if (zoneid == ALL_ZONES) 18152 freemsg(mp); 18153 else 18154 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18155 return (-1); 18156 18157 bad_src_route: 18158 q = WR(q); 18159 if (q->q_next != NULL) 18160 ill = q->q_ptr; 18161 else 18162 ill = NULL; 18163 18164 /* make sure we clear any indication of a hardware checksum */ 18165 DB_CKSUMFLAGS(mp) = 0; 18166 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18167 if (zoneid == ALL_ZONES) 18168 freemsg(mp); 18169 else 18170 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18171 return (-1); 18172 } 18173 18174 /* 18175 * IP & ICMP info in >=14 msg's ... 18176 * - ip fixed part (mib2_ip_t) 18177 * - icmp fixed part (mib2_icmp_t) 18178 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18179 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18180 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18181 * - ipRouteAttributeTable (ip 102) labeled routes 18182 * - ip multicast membership (ip_member_t) 18183 * - ip multicast source filtering (ip_grpsrc_t) 18184 * - igmp fixed part (struct igmpstat) 18185 * - multicast routing stats (struct mrtstat) 18186 * - multicast routing vifs (array of struct vifctl) 18187 * - multicast routing routes (array of struct mfcctl) 18188 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18189 * One per ill plus one generic 18190 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18191 * One per ill plus one generic 18192 * - ipv6RouteEntry all IPv6 IREs 18193 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18194 * - ipv6NetToMediaEntry all Neighbor Cache entries 18195 * - ipv6AddrEntry all IPv6 ipifs 18196 * - ipv6 multicast membership (ipv6_member_t) 18197 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18198 * 18199 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18200 * 18201 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18202 * already filled in by the caller. 18203 * Return value of 0 indicates that no messages were sent and caller 18204 * should free mpctl. 18205 */ 18206 int 18207 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18208 { 18209 ip_stack_t *ipst; 18210 sctp_stack_t *sctps; 18211 18212 if (q->q_next != NULL) { 18213 ipst = ILLQ_TO_IPST(q); 18214 } else { 18215 ipst = CONNQ_TO_IPST(q); 18216 } 18217 ASSERT(ipst != NULL); 18218 sctps = ipst->ips_netstack->netstack_sctp; 18219 18220 if (mpctl == NULL || mpctl->b_cont == NULL) { 18221 return (0); 18222 } 18223 18224 /* 18225 * For the purposes of the (broken) packet shell use 18226 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18227 * to make TCP and UDP appear first in the list of mib items. 18228 * TBD: We could expand this and use it in netstat so that 18229 * the kernel doesn't have to produce large tables (connections, 18230 * routes, etc) when netstat only wants the statistics or a particular 18231 * table. 18232 */ 18233 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18234 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18235 return (1); 18236 } 18237 } 18238 18239 if (level != MIB2_TCP) { 18240 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18241 return (1); 18242 } 18243 } 18244 18245 if (level != MIB2_UDP) { 18246 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18247 return (1); 18248 } 18249 } 18250 18251 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18252 ipst)) == NULL) { 18253 return (1); 18254 } 18255 18256 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18257 return (1); 18258 } 18259 18260 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18261 return (1); 18262 } 18263 18264 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18265 return (1); 18266 } 18267 18268 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18269 return (1); 18270 } 18271 18272 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18273 return (1); 18274 } 18275 18276 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18277 return (1); 18278 } 18279 18280 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18281 return (1); 18282 } 18283 18284 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18285 return (1); 18286 } 18287 18288 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18289 return (1); 18290 } 18291 18292 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18293 return (1); 18294 } 18295 18296 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18297 return (1); 18298 } 18299 18300 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18301 return (1); 18302 } 18303 18304 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18305 return (1); 18306 } 18307 18308 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18309 if (mpctl == NULL) 18310 return (1); 18311 18312 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18313 if (mpctl == NULL) 18314 return (1); 18315 18316 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18317 return (1); 18318 } 18319 freemsg(mpctl); 18320 return (1); 18321 } 18322 18323 /* Get global (legacy) IPv4 statistics */ 18324 static mblk_t * 18325 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18326 ip_stack_t *ipst) 18327 { 18328 mib2_ip_t old_ip_mib; 18329 struct opthdr *optp; 18330 mblk_t *mp2ctl; 18331 18332 /* 18333 * make a copy of the original message 18334 */ 18335 mp2ctl = copymsg(mpctl); 18336 18337 /* fixed length IP structure... */ 18338 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18339 optp->level = MIB2_IP; 18340 optp->name = 0; 18341 SET_MIB(old_ip_mib.ipForwarding, 18342 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18343 SET_MIB(old_ip_mib.ipDefaultTTL, 18344 (uint32_t)ipst->ips_ip_def_ttl); 18345 SET_MIB(old_ip_mib.ipReasmTimeout, 18346 ipst->ips_ip_g_frag_timeout); 18347 SET_MIB(old_ip_mib.ipAddrEntrySize, 18348 sizeof (mib2_ipAddrEntry_t)); 18349 SET_MIB(old_ip_mib.ipRouteEntrySize, 18350 sizeof (mib2_ipRouteEntry_t)); 18351 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18352 sizeof (mib2_ipNetToMediaEntry_t)); 18353 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18354 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18355 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18356 sizeof (mib2_ipAttributeEntry_t)); 18357 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18358 18359 /* 18360 * Grab the statistics from the new IP MIB 18361 */ 18362 SET_MIB(old_ip_mib.ipInReceives, 18363 (uint32_t)ipmib->ipIfStatsHCInReceives); 18364 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18365 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18366 SET_MIB(old_ip_mib.ipForwDatagrams, 18367 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18368 SET_MIB(old_ip_mib.ipInUnknownProtos, 18369 ipmib->ipIfStatsInUnknownProtos); 18370 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18371 SET_MIB(old_ip_mib.ipInDelivers, 18372 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18373 SET_MIB(old_ip_mib.ipOutRequests, 18374 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18375 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18376 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18377 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18378 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18379 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18380 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18381 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18382 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18383 18384 /* ipRoutingDiscards is not being used */ 18385 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18386 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18387 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18388 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18389 SET_MIB(old_ip_mib.ipReasmDuplicates, 18390 ipmib->ipIfStatsReasmDuplicates); 18391 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18392 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18393 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18394 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18395 SET_MIB(old_ip_mib.rawipInOverflows, 18396 ipmib->rawipIfStatsInOverflows); 18397 18398 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18399 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18400 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18401 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18402 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18403 ipmib->ipIfStatsOutSwitchIPVersion); 18404 18405 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18406 (int)sizeof (old_ip_mib))) { 18407 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18408 (uint_t)sizeof (old_ip_mib))); 18409 } 18410 18411 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18412 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18413 (int)optp->level, (int)optp->name, (int)optp->len)); 18414 qreply(q, mpctl); 18415 return (mp2ctl); 18416 } 18417 18418 /* Per interface IPv4 statistics */ 18419 static mblk_t * 18420 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18421 { 18422 struct opthdr *optp; 18423 mblk_t *mp2ctl; 18424 ill_t *ill; 18425 ill_walk_context_t ctx; 18426 mblk_t *mp_tail = NULL; 18427 mib2_ipIfStatsEntry_t global_ip_mib; 18428 18429 /* 18430 * Make a copy of the original message 18431 */ 18432 mp2ctl = copymsg(mpctl); 18433 18434 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18435 optp->level = MIB2_IP; 18436 optp->name = MIB2_IP_TRAFFIC_STATS; 18437 /* Include "unknown interface" ip_mib */ 18438 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18439 ipst->ips_ip_mib.ipIfStatsIfIndex = 18440 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18441 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18442 (ipst->ips_ip_g_forward ? 1 : 2)); 18443 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18444 (uint32_t)ipst->ips_ip_def_ttl); 18445 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18446 sizeof (mib2_ipIfStatsEntry_t)); 18447 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18448 sizeof (mib2_ipAddrEntry_t)); 18449 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18450 sizeof (mib2_ipRouteEntry_t)); 18451 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18452 sizeof (mib2_ipNetToMediaEntry_t)); 18453 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18454 sizeof (ip_member_t)); 18455 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18456 sizeof (ip_grpsrc_t)); 18457 18458 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18459 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18460 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18461 "failed to allocate %u bytes\n", 18462 (uint_t)sizeof (ipst->ips_ip_mib))); 18463 } 18464 18465 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18466 18467 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18468 ill = ILL_START_WALK_V4(&ctx, ipst); 18469 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18470 ill->ill_ip_mib->ipIfStatsIfIndex = 18471 ill->ill_phyint->phyint_ifindex; 18472 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18473 (ipst->ips_ip_g_forward ? 1 : 2)); 18474 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18475 (uint32_t)ipst->ips_ip_def_ttl); 18476 18477 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18478 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18479 (char *)ill->ill_ip_mib, 18480 (int)sizeof (*ill->ill_ip_mib))) { 18481 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18482 "failed to allocate %u bytes\n", 18483 (uint_t)sizeof (*ill->ill_ip_mib))); 18484 } 18485 } 18486 rw_exit(&ipst->ips_ill_g_lock); 18487 18488 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18489 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18490 "level %d, name %d, len %d\n", 18491 (int)optp->level, (int)optp->name, (int)optp->len)); 18492 qreply(q, mpctl); 18493 18494 if (mp2ctl == NULL) 18495 return (NULL); 18496 18497 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18498 } 18499 18500 /* Global IPv4 ICMP statistics */ 18501 static mblk_t * 18502 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18503 { 18504 struct opthdr *optp; 18505 mblk_t *mp2ctl; 18506 18507 /* 18508 * Make a copy of the original message 18509 */ 18510 mp2ctl = copymsg(mpctl); 18511 18512 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18513 optp->level = MIB2_ICMP; 18514 optp->name = 0; 18515 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18516 (int)sizeof (ipst->ips_icmp_mib))) { 18517 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18518 (uint_t)sizeof (ipst->ips_icmp_mib))); 18519 } 18520 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18521 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18522 (int)optp->level, (int)optp->name, (int)optp->len)); 18523 qreply(q, mpctl); 18524 return (mp2ctl); 18525 } 18526 18527 /* Global IPv4 IGMP statistics */ 18528 static mblk_t * 18529 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18530 { 18531 struct opthdr *optp; 18532 mblk_t *mp2ctl; 18533 18534 /* 18535 * make a copy of the original message 18536 */ 18537 mp2ctl = copymsg(mpctl); 18538 18539 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18540 optp->level = EXPER_IGMP; 18541 optp->name = 0; 18542 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18543 (int)sizeof (ipst->ips_igmpstat))) { 18544 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18545 (uint_t)sizeof (ipst->ips_igmpstat))); 18546 } 18547 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18548 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18549 (int)optp->level, (int)optp->name, (int)optp->len)); 18550 qreply(q, mpctl); 18551 return (mp2ctl); 18552 } 18553 18554 /* Global IPv4 Multicast Routing statistics */ 18555 static mblk_t * 18556 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18557 { 18558 struct opthdr *optp; 18559 mblk_t *mp2ctl; 18560 18561 /* 18562 * make a copy of the original message 18563 */ 18564 mp2ctl = copymsg(mpctl); 18565 18566 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18567 optp->level = EXPER_DVMRP; 18568 optp->name = 0; 18569 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18570 ip0dbg(("ip_mroute_stats: failed\n")); 18571 } 18572 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18573 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18574 (int)optp->level, (int)optp->name, (int)optp->len)); 18575 qreply(q, mpctl); 18576 return (mp2ctl); 18577 } 18578 18579 /* IPv4 address information */ 18580 static mblk_t * 18581 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18582 { 18583 struct opthdr *optp; 18584 mblk_t *mp2ctl; 18585 mblk_t *mp_tail = NULL; 18586 ill_t *ill; 18587 ipif_t *ipif; 18588 uint_t bitval; 18589 mib2_ipAddrEntry_t mae; 18590 zoneid_t zoneid; 18591 ill_walk_context_t ctx; 18592 18593 /* 18594 * make a copy of the original message 18595 */ 18596 mp2ctl = copymsg(mpctl); 18597 18598 /* ipAddrEntryTable */ 18599 18600 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18601 optp->level = MIB2_IP; 18602 optp->name = MIB2_IP_ADDR; 18603 zoneid = Q_TO_CONN(q)->conn_zoneid; 18604 18605 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18606 ill = ILL_START_WALK_V4(&ctx, ipst); 18607 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18608 for (ipif = ill->ill_ipif; ipif != NULL; 18609 ipif = ipif->ipif_next) { 18610 if (ipif->ipif_zoneid != zoneid && 18611 ipif->ipif_zoneid != ALL_ZONES) 18612 continue; 18613 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18614 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18615 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18616 18617 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18618 OCTET_LENGTH); 18619 mae.ipAdEntIfIndex.o_length = 18620 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18621 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18622 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18623 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18624 mae.ipAdEntInfo.ae_subnet_len = 18625 ip_mask_to_plen(ipif->ipif_net_mask); 18626 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18627 for (bitval = 1; 18628 bitval && 18629 !(bitval & ipif->ipif_brd_addr); 18630 bitval <<= 1) 18631 noop; 18632 mae.ipAdEntBcastAddr = bitval; 18633 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18634 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18635 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18636 mae.ipAdEntInfo.ae_broadcast_addr = 18637 ipif->ipif_brd_addr; 18638 mae.ipAdEntInfo.ae_pp_dst_addr = 18639 ipif->ipif_pp_dst_addr; 18640 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18641 ill->ill_flags | ill->ill_phyint->phyint_flags; 18642 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18643 18644 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18645 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18646 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18647 "allocate %u bytes\n", 18648 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18649 } 18650 } 18651 } 18652 rw_exit(&ipst->ips_ill_g_lock); 18653 18654 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18655 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18656 (int)optp->level, (int)optp->name, (int)optp->len)); 18657 qreply(q, mpctl); 18658 return (mp2ctl); 18659 } 18660 18661 /* IPv6 address information */ 18662 static mblk_t * 18663 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18664 { 18665 struct opthdr *optp; 18666 mblk_t *mp2ctl; 18667 mblk_t *mp_tail = NULL; 18668 ill_t *ill; 18669 ipif_t *ipif; 18670 mib2_ipv6AddrEntry_t mae6; 18671 zoneid_t zoneid; 18672 ill_walk_context_t ctx; 18673 18674 /* 18675 * make a copy of the original message 18676 */ 18677 mp2ctl = copymsg(mpctl); 18678 18679 /* ipv6AddrEntryTable */ 18680 18681 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18682 optp->level = MIB2_IP6; 18683 optp->name = MIB2_IP6_ADDR; 18684 zoneid = Q_TO_CONN(q)->conn_zoneid; 18685 18686 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18687 ill = ILL_START_WALK_V6(&ctx, ipst); 18688 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18689 for (ipif = ill->ill_ipif; ipif != NULL; 18690 ipif = ipif->ipif_next) { 18691 if (ipif->ipif_zoneid != zoneid && 18692 ipif->ipif_zoneid != ALL_ZONES) 18693 continue; 18694 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18695 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18696 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18697 18698 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18699 OCTET_LENGTH); 18700 mae6.ipv6AddrIfIndex.o_length = 18701 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18702 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18703 mae6.ipv6AddrPfxLength = 18704 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18705 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18706 mae6.ipv6AddrInfo.ae_subnet_len = 18707 mae6.ipv6AddrPfxLength; 18708 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18709 18710 /* Type: stateless(1), stateful(2), unknown(3) */ 18711 if (ipif->ipif_flags & IPIF_ADDRCONF) 18712 mae6.ipv6AddrType = 1; 18713 else 18714 mae6.ipv6AddrType = 2; 18715 /* Anycast: true(1), false(2) */ 18716 if (ipif->ipif_flags & IPIF_ANYCAST) 18717 mae6.ipv6AddrAnycastFlag = 1; 18718 else 18719 mae6.ipv6AddrAnycastFlag = 2; 18720 18721 /* 18722 * Address status: preferred(1), deprecated(2), 18723 * invalid(3), inaccessible(4), unknown(5) 18724 */ 18725 if (ipif->ipif_flags & IPIF_NOLOCAL) 18726 mae6.ipv6AddrStatus = 3; 18727 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18728 mae6.ipv6AddrStatus = 2; 18729 else 18730 mae6.ipv6AddrStatus = 1; 18731 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18732 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18733 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18734 ipif->ipif_v6pp_dst_addr; 18735 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18736 ill->ill_flags | ill->ill_phyint->phyint_flags; 18737 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18738 mae6.ipv6AddrIdentifier = ill->ill_token; 18739 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18740 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18741 mae6.ipv6AddrRetransmitTime = 18742 ill->ill_reachable_retrans_time; 18743 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18744 (char *)&mae6, 18745 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18746 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18747 "allocate %u bytes\n", 18748 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18749 } 18750 } 18751 } 18752 rw_exit(&ipst->ips_ill_g_lock); 18753 18754 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18755 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18756 (int)optp->level, (int)optp->name, (int)optp->len)); 18757 qreply(q, mpctl); 18758 return (mp2ctl); 18759 } 18760 18761 /* IPv4 multicast group membership. */ 18762 static mblk_t * 18763 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18764 { 18765 struct opthdr *optp; 18766 mblk_t *mp2ctl; 18767 ill_t *ill; 18768 ipif_t *ipif; 18769 ilm_t *ilm; 18770 ip_member_t ipm; 18771 mblk_t *mp_tail = NULL; 18772 ill_walk_context_t ctx; 18773 zoneid_t zoneid; 18774 ilm_walker_t ilw; 18775 18776 /* 18777 * make a copy of the original message 18778 */ 18779 mp2ctl = copymsg(mpctl); 18780 zoneid = Q_TO_CONN(q)->conn_zoneid; 18781 18782 /* ipGroupMember table */ 18783 optp = (struct opthdr *)&mpctl->b_rptr[ 18784 sizeof (struct T_optmgmt_ack)]; 18785 optp->level = MIB2_IP; 18786 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18787 18788 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18789 ill = ILL_START_WALK_V4(&ctx, ipst); 18790 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18791 if (IS_UNDER_IPMP(ill)) 18792 continue; 18793 18794 ilm = ilm_walker_start(&ilw, ill); 18795 for (ipif = ill->ill_ipif; ipif != NULL; 18796 ipif = ipif->ipif_next) { 18797 if (ipif->ipif_zoneid != zoneid && 18798 ipif->ipif_zoneid != ALL_ZONES) 18799 continue; /* not this zone */ 18800 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18801 OCTET_LENGTH); 18802 ipm.ipGroupMemberIfIndex.o_length = 18803 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18804 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18805 ASSERT(ilm->ilm_ipif != NULL); 18806 ASSERT(ilm->ilm_ill == NULL); 18807 if (ilm->ilm_ipif != ipif) 18808 continue; 18809 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18810 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18811 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18812 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18813 (char *)&ipm, (int)sizeof (ipm))) { 18814 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18815 "failed to allocate %u bytes\n", 18816 (uint_t)sizeof (ipm))); 18817 } 18818 } 18819 } 18820 ilm_walker_finish(&ilw); 18821 } 18822 rw_exit(&ipst->ips_ill_g_lock); 18823 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18824 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18825 (int)optp->level, (int)optp->name, (int)optp->len)); 18826 qreply(q, mpctl); 18827 return (mp2ctl); 18828 } 18829 18830 /* IPv6 multicast group membership. */ 18831 static mblk_t * 18832 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18833 { 18834 struct opthdr *optp; 18835 mblk_t *mp2ctl; 18836 ill_t *ill; 18837 ilm_t *ilm; 18838 ipv6_member_t ipm6; 18839 mblk_t *mp_tail = NULL; 18840 ill_walk_context_t ctx; 18841 zoneid_t zoneid; 18842 ilm_walker_t ilw; 18843 18844 /* 18845 * make a copy of the original message 18846 */ 18847 mp2ctl = copymsg(mpctl); 18848 zoneid = Q_TO_CONN(q)->conn_zoneid; 18849 18850 /* ip6GroupMember table */ 18851 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18852 optp->level = MIB2_IP6; 18853 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18854 18855 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18856 ill = ILL_START_WALK_V6(&ctx, ipst); 18857 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18858 if (IS_UNDER_IPMP(ill)) 18859 continue; 18860 18861 ilm = ilm_walker_start(&ilw, ill); 18862 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18863 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18864 ASSERT(ilm->ilm_ipif == NULL); 18865 ASSERT(ilm->ilm_ill != NULL); 18866 if (ilm->ilm_zoneid != zoneid) 18867 continue; /* not this zone */ 18868 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18869 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18870 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18871 if (!snmp_append_data2(mpctl->b_cont, 18872 &mp_tail, 18873 (char *)&ipm6, (int)sizeof (ipm6))) { 18874 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18875 "failed to allocate %u bytes\n", 18876 (uint_t)sizeof (ipm6))); 18877 } 18878 } 18879 ilm_walker_finish(&ilw); 18880 } 18881 rw_exit(&ipst->ips_ill_g_lock); 18882 18883 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18884 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18885 (int)optp->level, (int)optp->name, (int)optp->len)); 18886 qreply(q, mpctl); 18887 return (mp2ctl); 18888 } 18889 18890 /* IP multicast filtered sources */ 18891 static mblk_t * 18892 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18893 { 18894 struct opthdr *optp; 18895 mblk_t *mp2ctl; 18896 ill_t *ill; 18897 ipif_t *ipif; 18898 ilm_t *ilm; 18899 ip_grpsrc_t ips; 18900 mblk_t *mp_tail = NULL; 18901 ill_walk_context_t ctx; 18902 zoneid_t zoneid; 18903 int i; 18904 slist_t *sl; 18905 ilm_walker_t ilw; 18906 18907 /* 18908 * make a copy of the original message 18909 */ 18910 mp2ctl = copymsg(mpctl); 18911 zoneid = Q_TO_CONN(q)->conn_zoneid; 18912 18913 /* ipGroupSource table */ 18914 optp = (struct opthdr *)&mpctl->b_rptr[ 18915 sizeof (struct T_optmgmt_ack)]; 18916 optp->level = MIB2_IP; 18917 optp->name = EXPER_IP_GROUP_SOURCES; 18918 18919 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18920 ill = ILL_START_WALK_V4(&ctx, ipst); 18921 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18922 if (IS_UNDER_IPMP(ill)) 18923 continue; 18924 18925 ilm = ilm_walker_start(&ilw, ill); 18926 for (ipif = ill->ill_ipif; ipif != NULL; 18927 ipif = ipif->ipif_next) { 18928 if (ipif->ipif_zoneid != zoneid) 18929 continue; /* not this zone */ 18930 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18931 OCTET_LENGTH); 18932 ips.ipGroupSourceIfIndex.o_length = 18933 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18934 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18935 ASSERT(ilm->ilm_ipif != NULL); 18936 ASSERT(ilm->ilm_ill == NULL); 18937 sl = ilm->ilm_filter; 18938 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18939 continue; 18940 ips.ipGroupSourceGroup = ilm->ilm_addr; 18941 for (i = 0; i < sl->sl_numsrc; i++) { 18942 if (!IN6_IS_ADDR_V4MAPPED( 18943 &sl->sl_addr[i])) 18944 continue; 18945 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18946 ips.ipGroupSourceAddress); 18947 if (snmp_append_data2(mpctl->b_cont, 18948 &mp_tail, (char *)&ips, 18949 (int)sizeof (ips)) == 0) { 18950 ip1dbg(("ip_snmp_get_mib2_" 18951 "ip_group_src: failed to " 18952 "allocate %u bytes\n", 18953 (uint_t)sizeof (ips))); 18954 } 18955 } 18956 } 18957 } 18958 ilm_walker_finish(&ilw); 18959 } 18960 rw_exit(&ipst->ips_ill_g_lock); 18961 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18962 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18963 (int)optp->level, (int)optp->name, (int)optp->len)); 18964 qreply(q, mpctl); 18965 return (mp2ctl); 18966 } 18967 18968 /* IPv6 multicast filtered sources. */ 18969 static mblk_t * 18970 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18971 { 18972 struct opthdr *optp; 18973 mblk_t *mp2ctl; 18974 ill_t *ill; 18975 ilm_t *ilm; 18976 ipv6_grpsrc_t ips6; 18977 mblk_t *mp_tail = NULL; 18978 ill_walk_context_t ctx; 18979 zoneid_t zoneid; 18980 int i; 18981 slist_t *sl; 18982 ilm_walker_t ilw; 18983 18984 /* 18985 * make a copy of the original message 18986 */ 18987 mp2ctl = copymsg(mpctl); 18988 zoneid = Q_TO_CONN(q)->conn_zoneid; 18989 18990 /* ip6GroupMember table */ 18991 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18992 optp->level = MIB2_IP6; 18993 optp->name = EXPER_IP6_GROUP_SOURCES; 18994 18995 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18996 ill = ILL_START_WALK_V6(&ctx, ipst); 18997 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18998 if (IS_UNDER_IPMP(ill)) 18999 continue; 19000 19001 ilm = ilm_walker_start(&ilw, ill); 19002 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19003 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19004 ASSERT(ilm->ilm_ipif == NULL); 19005 ASSERT(ilm->ilm_ill != NULL); 19006 sl = ilm->ilm_filter; 19007 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19008 continue; 19009 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19010 for (i = 0; i < sl->sl_numsrc; i++) { 19011 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19012 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19013 (char *)&ips6, (int)sizeof (ips6))) { 19014 ip1dbg(("ip_snmp_get_mib2_ip6_" 19015 "group_src: failed to allocate " 19016 "%u bytes\n", 19017 (uint_t)sizeof (ips6))); 19018 } 19019 } 19020 } 19021 ilm_walker_finish(&ilw); 19022 } 19023 rw_exit(&ipst->ips_ill_g_lock); 19024 19025 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19026 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19027 (int)optp->level, (int)optp->name, (int)optp->len)); 19028 qreply(q, mpctl); 19029 return (mp2ctl); 19030 } 19031 19032 /* Multicast routing virtual interface table. */ 19033 static mblk_t * 19034 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19035 { 19036 struct opthdr *optp; 19037 mblk_t *mp2ctl; 19038 19039 /* 19040 * make a copy of the original message 19041 */ 19042 mp2ctl = copymsg(mpctl); 19043 19044 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19045 optp->level = EXPER_DVMRP; 19046 optp->name = EXPER_DVMRP_VIF; 19047 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19048 ip0dbg(("ip_mroute_vif: failed\n")); 19049 } 19050 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19051 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19052 (int)optp->level, (int)optp->name, (int)optp->len)); 19053 qreply(q, mpctl); 19054 return (mp2ctl); 19055 } 19056 19057 /* Multicast routing table. */ 19058 static mblk_t * 19059 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19060 { 19061 struct opthdr *optp; 19062 mblk_t *mp2ctl; 19063 19064 /* 19065 * make a copy of the original message 19066 */ 19067 mp2ctl = copymsg(mpctl); 19068 19069 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19070 optp->level = EXPER_DVMRP; 19071 optp->name = EXPER_DVMRP_MRT; 19072 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19073 ip0dbg(("ip_mroute_mrt: failed\n")); 19074 } 19075 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19076 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19077 (int)optp->level, (int)optp->name, (int)optp->len)); 19078 qreply(q, mpctl); 19079 return (mp2ctl); 19080 } 19081 19082 /* 19083 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19084 * in one IRE walk. 19085 */ 19086 static mblk_t * 19087 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19088 ip_stack_t *ipst) 19089 { 19090 struct opthdr *optp; 19091 mblk_t *mp2ctl; /* Returned */ 19092 mblk_t *mp3ctl; /* nettomedia */ 19093 mblk_t *mp4ctl; /* routeattrs */ 19094 iproutedata_t ird; 19095 zoneid_t zoneid; 19096 19097 /* 19098 * make copies of the original message 19099 * - mp2ctl is returned unchanged to the caller for his use 19100 * - mpctl is sent upstream as ipRouteEntryTable 19101 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19102 * - mp4ctl is sent upstream as ipRouteAttributeTable 19103 */ 19104 mp2ctl = copymsg(mpctl); 19105 mp3ctl = copymsg(mpctl); 19106 mp4ctl = copymsg(mpctl); 19107 if (mp3ctl == NULL || mp4ctl == NULL) { 19108 freemsg(mp4ctl); 19109 freemsg(mp3ctl); 19110 freemsg(mp2ctl); 19111 freemsg(mpctl); 19112 return (NULL); 19113 } 19114 19115 bzero(&ird, sizeof (ird)); 19116 19117 ird.ird_route.lp_head = mpctl->b_cont; 19118 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19119 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19120 /* 19121 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19122 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19123 * intended a temporary solution until a proper MIB API is provided 19124 * that provides complete filtering/caller-opt-in. 19125 */ 19126 if (level == EXPER_IP_AND_TESTHIDDEN) 19127 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19128 19129 zoneid = Q_TO_CONN(q)->conn_zoneid; 19130 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19131 19132 /* ipRouteEntryTable in mpctl */ 19133 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19134 optp->level = MIB2_IP; 19135 optp->name = MIB2_IP_ROUTE; 19136 optp->len = msgdsize(ird.ird_route.lp_head); 19137 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19138 (int)optp->level, (int)optp->name, (int)optp->len)); 19139 qreply(q, mpctl); 19140 19141 /* ipNetToMediaEntryTable in mp3ctl */ 19142 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19143 optp->level = MIB2_IP; 19144 optp->name = MIB2_IP_MEDIA; 19145 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19146 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19147 (int)optp->level, (int)optp->name, (int)optp->len)); 19148 qreply(q, mp3ctl); 19149 19150 /* ipRouteAttributeTable in mp4ctl */ 19151 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19152 optp->level = MIB2_IP; 19153 optp->name = EXPER_IP_RTATTR; 19154 optp->len = msgdsize(ird.ird_attrs.lp_head); 19155 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19156 (int)optp->level, (int)optp->name, (int)optp->len)); 19157 if (optp->len == 0) 19158 freemsg(mp4ctl); 19159 else 19160 qreply(q, mp4ctl); 19161 19162 return (mp2ctl); 19163 } 19164 19165 /* 19166 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19167 * ipv6NetToMediaEntryTable in an NDP walk. 19168 */ 19169 static mblk_t * 19170 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19171 ip_stack_t *ipst) 19172 { 19173 struct opthdr *optp; 19174 mblk_t *mp2ctl; /* Returned */ 19175 mblk_t *mp3ctl; /* nettomedia */ 19176 mblk_t *mp4ctl; /* routeattrs */ 19177 iproutedata_t ird; 19178 zoneid_t zoneid; 19179 19180 /* 19181 * make copies of the original message 19182 * - mp2ctl is returned unchanged to the caller for his use 19183 * - mpctl is sent upstream as ipv6RouteEntryTable 19184 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19185 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19186 */ 19187 mp2ctl = copymsg(mpctl); 19188 mp3ctl = copymsg(mpctl); 19189 mp4ctl = copymsg(mpctl); 19190 if (mp3ctl == NULL || mp4ctl == NULL) { 19191 freemsg(mp4ctl); 19192 freemsg(mp3ctl); 19193 freemsg(mp2ctl); 19194 freemsg(mpctl); 19195 return (NULL); 19196 } 19197 19198 bzero(&ird, sizeof (ird)); 19199 19200 ird.ird_route.lp_head = mpctl->b_cont; 19201 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19202 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19203 /* 19204 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19205 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19206 * intended a temporary solution until a proper MIB API is provided 19207 * that provides complete filtering/caller-opt-in. 19208 */ 19209 if (level == EXPER_IP_AND_TESTHIDDEN) 19210 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19211 19212 zoneid = Q_TO_CONN(q)->conn_zoneid; 19213 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19214 19215 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19216 optp->level = MIB2_IP6; 19217 optp->name = MIB2_IP6_ROUTE; 19218 optp->len = msgdsize(ird.ird_route.lp_head); 19219 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19220 (int)optp->level, (int)optp->name, (int)optp->len)); 19221 qreply(q, mpctl); 19222 19223 /* ipv6NetToMediaEntryTable in mp3ctl */ 19224 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19225 19226 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19227 optp->level = MIB2_IP6; 19228 optp->name = MIB2_IP6_MEDIA; 19229 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19230 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19231 (int)optp->level, (int)optp->name, (int)optp->len)); 19232 qreply(q, mp3ctl); 19233 19234 /* ipv6RouteAttributeTable in mp4ctl */ 19235 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19236 optp->level = MIB2_IP6; 19237 optp->name = EXPER_IP_RTATTR; 19238 optp->len = msgdsize(ird.ird_attrs.lp_head); 19239 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19240 (int)optp->level, (int)optp->name, (int)optp->len)); 19241 if (optp->len == 0) 19242 freemsg(mp4ctl); 19243 else 19244 qreply(q, mp4ctl); 19245 19246 return (mp2ctl); 19247 } 19248 19249 /* 19250 * IPv6 mib: One per ill 19251 */ 19252 static mblk_t * 19253 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19254 { 19255 struct opthdr *optp; 19256 mblk_t *mp2ctl; 19257 ill_t *ill; 19258 ill_walk_context_t ctx; 19259 mblk_t *mp_tail = NULL; 19260 19261 /* 19262 * Make a copy of the original message 19263 */ 19264 mp2ctl = copymsg(mpctl); 19265 19266 /* fixed length IPv6 structure ... */ 19267 19268 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19269 optp->level = MIB2_IP6; 19270 optp->name = 0; 19271 /* Include "unknown interface" ip6_mib */ 19272 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19273 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19274 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19275 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19276 ipst->ips_ipv6_forward ? 1 : 2); 19277 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19278 ipst->ips_ipv6_def_hops); 19279 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19280 sizeof (mib2_ipIfStatsEntry_t)); 19281 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19282 sizeof (mib2_ipv6AddrEntry_t)); 19283 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19284 sizeof (mib2_ipv6RouteEntry_t)); 19285 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19286 sizeof (mib2_ipv6NetToMediaEntry_t)); 19287 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19288 sizeof (ipv6_member_t)); 19289 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19290 sizeof (ipv6_grpsrc_t)); 19291 19292 /* 19293 * Synchronize 64- and 32-bit counters 19294 */ 19295 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19296 ipIfStatsHCInReceives); 19297 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19298 ipIfStatsHCInDelivers); 19299 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19300 ipIfStatsHCOutRequests); 19301 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19302 ipIfStatsHCOutForwDatagrams); 19303 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19304 ipIfStatsHCOutMcastPkts); 19305 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19306 ipIfStatsHCInMcastPkts); 19307 19308 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19309 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19310 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19311 (uint_t)sizeof (ipst->ips_ip6_mib))); 19312 } 19313 19314 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19315 ill = ILL_START_WALK_V6(&ctx, ipst); 19316 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19317 ill->ill_ip_mib->ipIfStatsIfIndex = 19318 ill->ill_phyint->phyint_ifindex; 19319 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19320 ipst->ips_ipv6_forward ? 1 : 2); 19321 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19322 ill->ill_max_hops); 19323 19324 /* 19325 * Synchronize 64- and 32-bit counters 19326 */ 19327 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19328 ipIfStatsHCInReceives); 19329 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19330 ipIfStatsHCInDelivers); 19331 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19332 ipIfStatsHCOutRequests); 19333 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19334 ipIfStatsHCOutForwDatagrams); 19335 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19336 ipIfStatsHCOutMcastPkts); 19337 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19338 ipIfStatsHCInMcastPkts); 19339 19340 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19341 (char *)ill->ill_ip_mib, 19342 (int)sizeof (*ill->ill_ip_mib))) { 19343 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19344 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19345 } 19346 } 19347 rw_exit(&ipst->ips_ill_g_lock); 19348 19349 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19350 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19351 (int)optp->level, (int)optp->name, (int)optp->len)); 19352 qreply(q, mpctl); 19353 return (mp2ctl); 19354 } 19355 19356 /* 19357 * ICMPv6 mib: One per ill 19358 */ 19359 static mblk_t * 19360 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19361 { 19362 struct opthdr *optp; 19363 mblk_t *mp2ctl; 19364 ill_t *ill; 19365 ill_walk_context_t ctx; 19366 mblk_t *mp_tail = NULL; 19367 /* 19368 * Make a copy of the original message 19369 */ 19370 mp2ctl = copymsg(mpctl); 19371 19372 /* fixed length ICMPv6 structure ... */ 19373 19374 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19375 optp->level = MIB2_ICMP6; 19376 optp->name = 0; 19377 /* Include "unknown interface" icmp6_mib */ 19378 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19379 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19380 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19381 sizeof (mib2_ipv6IfIcmpEntry_t); 19382 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19383 (char *)&ipst->ips_icmp6_mib, 19384 (int)sizeof (ipst->ips_icmp6_mib))) { 19385 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19386 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19387 } 19388 19389 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19390 ill = ILL_START_WALK_V6(&ctx, ipst); 19391 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19392 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19393 ill->ill_phyint->phyint_ifindex; 19394 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19395 (char *)ill->ill_icmp6_mib, 19396 (int)sizeof (*ill->ill_icmp6_mib))) { 19397 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19398 "%u bytes\n", 19399 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19400 } 19401 } 19402 rw_exit(&ipst->ips_ill_g_lock); 19403 19404 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19405 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19406 (int)optp->level, (int)optp->name, (int)optp->len)); 19407 qreply(q, mpctl); 19408 return (mp2ctl); 19409 } 19410 19411 /* 19412 * ire_walk routine to create both ipRouteEntryTable and 19413 * ipRouteAttributeTable in one IRE walk 19414 */ 19415 static void 19416 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19417 { 19418 ill_t *ill; 19419 ipif_t *ipif; 19420 mib2_ipRouteEntry_t *re; 19421 mib2_ipAttributeEntry_t *iae, *iaeptr; 19422 ipaddr_t gw_addr; 19423 tsol_ire_gw_secattr_t *attrp; 19424 tsol_gc_t *gc = NULL; 19425 tsol_gcgrp_t *gcgrp = NULL; 19426 uint_t sacnt = 0; 19427 int i; 19428 19429 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19430 19431 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19432 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19433 return; 19434 } 19435 19436 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19437 return; 19438 19439 if ((attrp = ire->ire_gw_secattr) != NULL) { 19440 mutex_enter(&attrp->igsa_lock); 19441 if ((gc = attrp->igsa_gc) != NULL) { 19442 gcgrp = gc->gc_grp; 19443 ASSERT(gcgrp != NULL); 19444 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19445 sacnt = 1; 19446 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19447 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19448 gc = gcgrp->gcgrp_head; 19449 sacnt = gcgrp->gcgrp_count; 19450 } 19451 mutex_exit(&attrp->igsa_lock); 19452 19453 /* do nothing if there's no gc to report */ 19454 if (gc == NULL) { 19455 ASSERT(sacnt == 0); 19456 if (gcgrp != NULL) { 19457 /* we might as well drop the lock now */ 19458 rw_exit(&gcgrp->gcgrp_rwlock); 19459 gcgrp = NULL; 19460 } 19461 attrp = NULL; 19462 } 19463 19464 ASSERT(gc == NULL || (gcgrp != NULL && 19465 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19466 } 19467 ASSERT(sacnt == 0 || gc != NULL); 19468 19469 if (sacnt != 0 && 19470 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19471 kmem_free(re, sizeof (*re)); 19472 rw_exit(&gcgrp->gcgrp_rwlock); 19473 return; 19474 } 19475 19476 /* 19477 * Return all IRE types for route table... let caller pick and choose 19478 */ 19479 re->ipRouteDest = ire->ire_addr; 19480 ipif = ire->ire_ipif; 19481 re->ipRouteIfIndex.o_length = 0; 19482 if (ire->ire_type == IRE_CACHE) { 19483 ill = (ill_t *)ire->ire_stq->q_ptr; 19484 re->ipRouteIfIndex.o_length = 19485 ill->ill_name_length == 0 ? 0 : 19486 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19487 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19488 re->ipRouteIfIndex.o_length); 19489 } else if (ipif != NULL) { 19490 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19491 re->ipRouteIfIndex.o_length = 19492 mi_strlen(re->ipRouteIfIndex.o_bytes); 19493 } 19494 re->ipRouteMetric1 = -1; 19495 re->ipRouteMetric2 = -1; 19496 re->ipRouteMetric3 = -1; 19497 re->ipRouteMetric4 = -1; 19498 19499 gw_addr = ire->ire_gateway_addr; 19500 19501 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19502 re->ipRouteNextHop = ire->ire_src_addr; 19503 else 19504 re->ipRouteNextHop = gw_addr; 19505 /* indirect(4), direct(3), or invalid(2) */ 19506 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19507 re->ipRouteType = 2; 19508 else 19509 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19510 re->ipRouteProto = -1; 19511 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19512 re->ipRouteMask = ire->ire_mask; 19513 re->ipRouteMetric5 = -1; 19514 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19515 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19516 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19517 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19518 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19519 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19520 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19521 re->ipRouteInfo.re_flags = ire->ire_flags; 19522 19523 if (ire->ire_flags & RTF_DYNAMIC) { 19524 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19525 } else { 19526 re->ipRouteInfo.re_ire_type = ire->ire_type; 19527 } 19528 19529 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19530 (char *)re, (int)sizeof (*re))) { 19531 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19532 (uint_t)sizeof (*re))); 19533 } 19534 19535 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19536 iaeptr->iae_routeidx = ird->ird_idx; 19537 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19538 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19539 } 19540 19541 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19542 (char *)iae, sacnt * sizeof (*iae))) { 19543 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19544 (unsigned)(sacnt * sizeof (*iae)))); 19545 } 19546 19547 /* bump route index for next pass */ 19548 ird->ird_idx++; 19549 19550 kmem_free(re, sizeof (*re)); 19551 if (sacnt != 0) 19552 kmem_free(iae, sacnt * sizeof (*iae)); 19553 19554 if (gcgrp != NULL) 19555 rw_exit(&gcgrp->gcgrp_rwlock); 19556 } 19557 19558 /* 19559 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19560 */ 19561 static void 19562 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19563 { 19564 ill_t *ill; 19565 ipif_t *ipif; 19566 mib2_ipv6RouteEntry_t *re; 19567 mib2_ipAttributeEntry_t *iae, *iaeptr; 19568 in6_addr_t gw_addr_v6; 19569 tsol_ire_gw_secattr_t *attrp; 19570 tsol_gc_t *gc = NULL; 19571 tsol_gcgrp_t *gcgrp = NULL; 19572 uint_t sacnt = 0; 19573 int i; 19574 19575 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19576 19577 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19578 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19579 return; 19580 } 19581 19582 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19583 return; 19584 19585 if ((attrp = ire->ire_gw_secattr) != NULL) { 19586 mutex_enter(&attrp->igsa_lock); 19587 if ((gc = attrp->igsa_gc) != NULL) { 19588 gcgrp = gc->gc_grp; 19589 ASSERT(gcgrp != NULL); 19590 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19591 sacnt = 1; 19592 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19593 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19594 gc = gcgrp->gcgrp_head; 19595 sacnt = gcgrp->gcgrp_count; 19596 } 19597 mutex_exit(&attrp->igsa_lock); 19598 19599 /* do nothing if there's no gc to report */ 19600 if (gc == NULL) { 19601 ASSERT(sacnt == 0); 19602 if (gcgrp != NULL) { 19603 /* we might as well drop the lock now */ 19604 rw_exit(&gcgrp->gcgrp_rwlock); 19605 gcgrp = NULL; 19606 } 19607 attrp = NULL; 19608 } 19609 19610 ASSERT(gc == NULL || (gcgrp != NULL && 19611 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19612 } 19613 ASSERT(sacnt == 0 || gc != NULL); 19614 19615 if (sacnt != 0 && 19616 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19617 kmem_free(re, sizeof (*re)); 19618 rw_exit(&gcgrp->gcgrp_rwlock); 19619 return; 19620 } 19621 19622 /* 19623 * Return all IRE types for route table... let caller pick and choose 19624 */ 19625 re->ipv6RouteDest = ire->ire_addr_v6; 19626 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19627 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19628 re->ipv6RouteIfIndex.o_length = 0; 19629 ipif = ire->ire_ipif; 19630 if (ire->ire_type == IRE_CACHE) { 19631 ill = (ill_t *)ire->ire_stq->q_ptr; 19632 re->ipv6RouteIfIndex.o_length = 19633 ill->ill_name_length == 0 ? 0 : 19634 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19635 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19636 re->ipv6RouteIfIndex.o_length); 19637 } else if (ipif != NULL) { 19638 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19639 re->ipv6RouteIfIndex.o_length = 19640 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19641 } 19642 19643 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19644 19645 mutex_enter(&ire->ire_lock); 19646 gw_addr_v6 = ire->ire_gateway_addr_v6; 19647 mutex_exit(&ire->ire_lock); 19648 19649 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19650 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19651 else 19652 re->ipv6RouteNextHop = gw_addr_v6; 19653 19654 /* remote(4), local(3), or discard(2) */ 19655 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19656 re->ipv6RouteType = 2; 19657 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19658 re->ipv6RouteType = 3; 19659 else 19660 re->ipv6RouteType = 4; 19661 19662 re->ipv6RouteProtocol = -1; 19663 re->ipv6RoutePolicy = 0; 19664 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19665 re->ipv6RouteNextHopRDI = 0; 19666 re->ipv6RouteWeight = 0; 19667 re->ipv6RouteMetric = 0; 19668 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19669 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19670 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19671 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19672 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19673 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19674 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19675 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19676 19677 if (ire->ire_flags & RTF_DYNAMIC) { 19678 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19679 } else { 19680 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19681 } 19682 19683 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19684 (char *)re, (int)sizeof (*re))) { 19685 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19686 (uint_t)sizeof (*re))); 19687 } 19688 19689 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19690 iaeptr->iae_routeidx = ird->ird_idx; 19691 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19692 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19693 } 19694 19695 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19696 (char *)iae, sacnt * sizeof (*iae))) { 19697 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19698 (unsigned)(sacnt * sizeof (*iae)))); 19699 } 19700 19701 /* bump route index for next pass */ 19702 ird->ird_idx++; 19703 19704 kmem_free(re, sizeof (*re)); 19705 if (sacnt != 0) 19706 kmem_free(iae, sacnt * sizeof (*iae)); 19707 19708 if (gcgrp != NULL) 19709 rw_exit(&gcgrp->gcgrp_rwlock); 19710 } 19711 19712 /* 19713 * ndp_walk routine to create ipv6NetToMediaEntryTable 19714 */ 19715 static int 19716 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19717 { 19718 ill_t *ill; 19719 mib2_ipv6NetToMediaEntry_t ntme; 19720 dl_unitdata_req_t *dl; 19721 19722 ill = nce->nce_ill; 19723 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19724 return (0); 19725 19726 /* 19727 * Neighbor cache entry attached to IRE with on-link 19728 * destination. 19729 */ 19730 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19731 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19732 if ((ill->ill_flags & ILLF_XRESOLV) && 19733 (nce->nce_res_mp != NULL)) { 19734 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19735 ntme.ipv6NetToMediaPhysAddress.o_length = 19736 dl->dl_dest_addr_length; 19737 } else { 19738 ntme.ipv6NetToMediaPhysAddress.o_length = 19739 ill->ill_phys_addr_length; 19740 } 19741 if (nce->nce_res_mp != NULL) { 19742 bcopy((char *)nce->nce_res_mp->b_rptr + 19743 NCE_LL_ADDR_OFFSET(ill), 19744 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19745 ntme.ipv6NetToMediaPhysAddress.o_length); 19746 } else { 19747 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19748 ill->ill_phys_addr_length); 19749 } 19750 /* 19751 * Note: Returns ND_* states. Should be: 19752 * reachable(1), stale(2), delay(3), probe(4), 19753 * invalid(5), unknown(6) 19754 */ 19755 ntme.ipv6NetToMediaState = nce->nce_state; 19756 ntme.ipv6NetToMediaLastUpdated = 0; 19757 19758 /* other(1), dynamic(2), static(3), local(4) */ 19759 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19760 ntme.ipv6NetToMediaType = 4; 19761 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19762 ntme.ipv6NetToMediaType = 1; 19763 } else { 19764 ntme.ipv6NetToMediaType = 2; 19765 } 19766 19767 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19768 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19769 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19770 (uint_t)sizeof (ntme))); 19771 } 19772 return (0); 19773 } 19774 19775 /* 19776 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19777 */ 19778 /* ARGSUSED */ 19779 int 19780 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19781 { 19782 switch (level) { 19783 case MIB2_IP: 19784 case MIB2_ICMP: 19785 switch (name) { 19786 default: 19787 break; 19788 } 19789 return (1); 19790 default: 19791 return (1); 19792 } 19793 } 19794 19795 /* 19796 * When there exists both a 64- and 32-bit counter of a particular type 19797 * (i.e., InReceives), only the 64-bit counters are added. 19798 */ 19799 void 19800 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19801 { 19802 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19803 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19804 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19805 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19806 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19807 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19808 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19809 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19810 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19811 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19812 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19813 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19814 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19815 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19816 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19817 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19818 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19819 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19820 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19821 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19822 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19823 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19824 o2->ipIfStatsInWrongIPVersion); 19825 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19826 o2->ipIfStatsInWrongIPVersion); 19827 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19828 o2->ipIfStatsOutSwitchIPVersion); 19829 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19830 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19831 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19832 o2->ipIfStatsHCInForwDatagrams); 19833 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19834 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19835 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19836 o2->ipIfStatsHCOutForwDatagrams); 19837 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19838 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19839 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19840 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19841 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19842 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19843 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19844 o2->ipIfStatsHCOutMcastOctets); 19845 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19846 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19847 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19848 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19849 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19850 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19851 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19852 } 19853 19854 void 19855 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19856 { 19857 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19858 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19859 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19860 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19861 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19862 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19863 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19864 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19865 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19866 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19867 o2->ipv6IfIcmpInRouterSolicits); 19868 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19869 o2->ipv6IfIcmpInRouterAdvertisements); 19870 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19871 o2->ipv6IfIcmpInNeighborSolicits); 19872 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19873 o2->ipv6IfIcmpInNeighborAdvertisements); 19874 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19875 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19876 o2->ipv6IfIcmpInGroupMembQueries); 19877 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19878 o2->ipv6IfIcmpInGroupMembResponses); 19879 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19880 o2->ipv6IfIcmpInGroupMembReductions); 19881 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19882 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19883 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19884 o2->ipv6IfIcmpOutDestUnreachs); 19885 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19886 o2->ipv6IfIcmpOutAdminProhibs); 19887 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19888 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19889 o2->ipv6IfIcmpOutParmProblems); 19890 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19891 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19892 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19893 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19894 o2->ipv6IfIcmpOutRouterSolicits); 19895 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19896 o2->ipv6IfIcmpOutRouterAdvertisements); 19897 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19898 o2->ipv6IfIcmpOutNeighborSolicits); 19899 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19900 o2->ipv6IfIcmpOutNeighborAdvertisements); 19901 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19902 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19903 o2->ipv6IfIcmpOutGroupMembQueries); 19904 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19905 o2->ipv6IfIcmpOutGroupMembResponses); 19906 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19907 o2->ipv6IfIcmpOutGroupMembReductions); 19908 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19909 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19910 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19911 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19912 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19913 o2->ipv6IfIcmpInBadNeighborSolicitations); 19914 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19915 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19916 o2->ipv6IfIcmpInGroupMembTotal); 19917 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19918 o2->ipv6IfIcmpInGroupMembBadQueries); 19919 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19920 o2->ipv6IfIcmpInGroupMembBadReports); 19921 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19922 o2->ipv6IfIcmpInGroupMembOurReports); 19923 } 19924 19925 /* 19926 * Called before the options are updated to check if this packet will 19927 * be source routed from here. 19928 * This routine assumes that the options are well formed i.e. that they 19929 * have already been checked. 19930 */ 19931 static boolean_t 19932 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19933 { 19934 ipoptp_t opts; 19935 uchar_t *opt; 19936 uint8_t optval; 19937 uint8_t optlen; 19938 ipaddr_t dst; 19939 ire_t *ire; 19940 19941 if (IS_SIMPLE_IPH(ipha)) { 19942 ip2dbg(("not source routed\n")); 19943 return (B_FALSE); 19944 } 19945 dst = ipha->ipha_dst; 19946 for (optval = ipoptp_first(&opts, ipha); 19947 optval != IPOPT_EOL; 19948 optval = ipoptp_next(&opts)) { 19949 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19950 opt = opts.ipoptp_cur; 19951 optlen = opts.ipoptp_len; 19952 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19953 optval, optlen)); 19954 switch (optval) { 19955 uint32_t off; 19956 case IPOPT_SSRR: 19957 case IPOPT_LSRR: 19958 /* 19959 * If dst is one of our addresses and there are some 19960 * entries left in the source route return (true). 19961 */ 19962 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19963 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19964 if (ire == NULL) { 19965 ip2dbg(("ip_source_routed: not next" 19966 " source route 0x%x\n", 19967 ntohl(dst))); 19968 return (B_FALSE); 19969 } 19970 ire_refrele(ire); 19971 off = opt[IPOPT_OFFSET]; 19972 off--; 19973 if (optlen < IP_ADDR_LEN || 19974 off > optlen - IP_ADDR_LEN) { 19975 /* End of source route */ 19976 ip1dbg(("ip_source_routed: end of SR\n")); 19977 return (B_FALSE); 19978 } 19979 return (B_TRUE); 19980 } 19981 } 19982 ip2dbg(("not source routed\n")); 19983 return (B_FALSE); 19984 } 19985 19986 /* 19987 * Check if the packet contains any source route. 19988 */ 19989 static boolean_t 19990 ip_source_route_included(ipha_t *ipha) 19991 { 19992 ipoptp_t opts; 19993 uint8_t optval; 19994 19995 if (IS_SIMPLE_IPH(ipha)) 19996 return (B_FALSE); 19997 for (optval = ipoptp_first(&opts, ipha); 19998 optval != IPOPT_EOL; 19999 optval = ipoptp_next(&opts)) { 20000 switch (optval) { 20001 case IPOPT_SSRR: 20002 case IPOPT_LSRR: 20003 return (B_TRUE); 20004 } 20005 } 20006 return (B_FALSE); 20007 } 20008 20009 /* 20010 * Called when the IRE expiration timer fires. 20011 */ 20012 void 20013 ip_trash_timer_expire(void *args) 20014 { 20015 int flush_flag = 0; 20016 ire_expire_arg_t iea; 20017 ip_stack_t *ipst = (ip_stack_t *)args; 20018 20019 iea.iea_ipst = ipst; /* No netstack_hold */ 20020 20021 /* 20022 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20023 * This lock makes sure that a new invocation of this function 20024 * that occurs due to an almost immediate timer firing will not 20025 * progress beyond this point until the current invocation is done 20026 */ 20027 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20028 ipst->ips_ip_ire_expire_id = 0; 20029 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20030 20031 /* Periodic timer */ 20032 if (ipst->ips_ip_ire_arp_time_elapsed >= 20033 ipst->ips_ip_ire_arp_interval) { 20034 /* 20035 * Remove all IRE_CACHE entries since they might 20036 * contain arp information. 20037 */ 20038 flush_flag |= FLUSH_ARP_TIME; 20039 ipst->ips_ip_ire_arp_time_elapsed = 0; 20040 IP_STAT(ipst, ip_ire_arp_timer_expired); 20041 } 20042 if (ipst->ips_ip_ire_rd_time_elapsed >= 20043 ipst->ips_ip_ire_redir_interval) { 20044 /* Remove all redirects */ 20045 flush_flag |= FLUSH_REDIRECT_TIME; 20046 ipst->ips_ip_ire_rd_time_elapsed = 0; 20047 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20048 } 20049 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20050 ipst->ips_ip_ire_pathmtu_interval) { 20051 /* Increase path mtu */ 20052 flush_flag |= FLUSH_MTU_TIME; 20053 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20054 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20055 } 20056 20057 /* 20058 * Optimize for the case when there are no redirects in the 20059 * ftable, that is, no need to walk the ftable in that case. 20060 */ 20061 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20062 iea.iea_flush_flag = flush_flag; 20063 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20064 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20065 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20066 NULL, ALL_ZONES, ipst); 20067 } 20068 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20069 ipst->ips_ip_redirect_cnt > 0) { 20070 iea.iea_flush_flag = flush_flag; 20071 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20072 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20073 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20074 } 20075 if (flush_flag & FLUSH_MTU_TIME) { 20076 /* 20077 * Walk all IPv6 IRE's and update them 20078 * Note that ARP and redirect timers are not 20079 * needed since NUD handles stale entries. 20080 */ 20081 flush_flag = FLUSH_MTU_TIME; 20082 iea.iea_flush_flag = flush_flag; 20083 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20084 ALL_ZONES, ipst); 20085 } 20086 20087 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20088 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20089 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20090 20091 /* 20092 * Hold the lock to serialize timeout calls and prevent 20093 * stale values in ip_ire_expire_id. Otherwise it is possible 20094 * for the timer to fire and a new invocation of this function 20095 * to start before the return value of timeout has been stored 20096 * in ip_ire_expire_id by the current invocation. 20097 */ 20098 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20099 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20100 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20101 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20102 } 20103 20104 /* 20105 * Called by the memory allocator subsystem directly, when the system 20106 * is running low on memory. 20107 */ 20108 /* ARGSUSED */ 20109 void 20110 ip_trash_ire_reclaim(void *args) 20111 { 20112 netstack_handle_t nh; 20113 netstack_t *ns; 20114 20115 netstack_next_init(&nh); 20116 while ((ns = netstack_next(&nh)) != NULL) { 20117 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20118 netstack_rele(ns); 20119 } 20120 netstack_next_fini(&nh); 20121 } 20122 20123 static void 20124 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20125 { 20126 ire_cache_count_t icc; 20127 ire_cache_reclaim_t icr; 20128 ncc_cache_count_t ncc; 20129 nce_cache_reclaim_t ncr; 20130 uint_t delete_cnt; 20131 /* 20132 * Memory reclaim call back. 20133 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20134 * Then, with a target of freeing 1/Nth of IRE_CACHE 20135 * entries, determine what fraction to free for 20136 * each category of IRE_CACHE entries giving absolute priority 20137 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20138 * entry will be freed unless all offlink entries are freed). 20139 */ 20140 icc.icc_total = 0; 20141 icc.icc_unused = 0; 20142 icc.icc_offlink = 0; 20143 icc.icc_pmtu = 0; 20144 icc.icc_onlink = 0; 20145 ire_walk(ire_cache_count, (char *)&icc, ipst); 20146 20147 /* 20148 * Free NCEs for IPv6 like the onlink ires. 20149 */ 20150 ncc.ncc_total = 0; 20151 ncc.ncc_host = 0; 20152 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20153 20154 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20155 icc.icc_pmtu + icc.icc_onlink); 20156 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20157 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20158 if (delete_cnt == 0) 20159 return; 20160 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20161 /* Always delete all unused offlink entries */ 20162 icr.icr_ipst = ipst; 20163 icr.icr_unused = 1; 20164 if (delete_cnt <= icc.icc_unused) { 20165 /* 20166 * Only need to free unused entries. In other words, 20167 * there are enough unused entries to free to meet our 20168 * target number of freed ire cache entries. 20169 */ 20170 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20171 ncr.ncr_host = 0; 20172 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20173 /* 20174 * Only need to free unused entries, plus a fraction of offlink 20175 * entries. It follows from the first if statement that 20176 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20177 */ 20178 delete_cnt -= icc.icc_unused; 20179 /* Round up # deleted by truncating fraction */ 20180 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20181 icr.icr_pmtu = icr.icr_onlink = 0; 20182 ncr.ncr_host = 0; 20183 } else if (delete_cnt <= 20184 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20185 /* 20186 * Free all unused and offlink entries, plus a fraction of 20187 * pmtu entries. It follows from the previous if statement 20188 * that icc_pmtu is non-zero, and that 20189 * delete_cnt != icc_unused + icc_offlink. 20190 */ 20191 icr.icr_offlink = 1; 20192 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20193 /* Round up # deleted by truncating fraction */ 20194 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20195 icr.icr_onlink = 0; 20196 ncr.ncr_host = 0; 20197 } else { 20198 /* 20199 * Free all unused, offlink, and pmtu entries, plus a fraction 20200 * of onlink entries. If we're here, then we know that 20201 * icc_onlink is non-zero, and that 20202 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20203 */ 20204 icr.icr_offlink = icr.icr_pmtu = 1; 20205 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20206 icc.icc_pmtu; 20207 /* Round up # deleted by truncating fraction */ 20208 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20209 /* Using the same delete fraction as for onlink IREs */ 20210 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20211 } 20212 #ifdef DEBUG 20213 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20214 "fractions %d/%d/%d/%d\n", 20215 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20216 icc.icc_unused, icc.icc_offlink, 20217 icc.icc_pmtu, icc.icc_onlink, 20218 icr.icr_unused, icr.icr_offlink, 20219 icr.icr_pmtu, icr.icr_onlink)); 20220 #endif 20221 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20222 if (ncr.ncr_host != 0) 20223 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20224 (uchar_t *)&ncr, ipst); 20225 #ifdef DEBUG 20226 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20227 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20228 ire_walk(ire_cache_count, (char *)&icc, ipst); 20229 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20230 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20231 icc.icc_pmtu, icc.icc_onlink)); 20232 #endif 20233 } 20234 20235 /* 20236 * ip_unbind is called when a copy of an unbind request is received from the 20237 * upper level protocol. We remove this conn from any fanout hash list it is 20238 * on, and zero out the bind information. No reply is expected up above. 20239 */ 20240 void 20241 ip_unbind(conn_t *connp) 20242 { 20243 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20244 20245 if (is_system_labeled() && connp->conn_anon_port) { 20246 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20247 connp->conn_mlp_type, connp->conn_ulp, 20248 ntohs(connp->conn_lport), B_FALSE); 20249 connp->conn_anon_port = 0; 20250 } 20251 connp->conn_mlp_type = mlptSingle; 20252 20253 ipcl_hash_remove(connp); 20254 } 20255 20256 /* 20257 * Write side put procedure. Outbound data, IOCTLs, responses from 20258 * resolvers, etc, come down through here. 20259 * 20260 * arg2 is always a queue_t *. 20261 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20262 * the zoneid. 20263 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20264 */ 20265 void 20266 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20267 { 20268 ip_output_options(arg, mp, arg2, caller, &zero_info); 20269 } 20270 20271 void 20272 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20273 ip_opt_info_t *infop) 20274 { 20275 conn_t *connp = NULL; 20276 queue_t *q = (queue_t *)arg2; 20277 ipha_t *ipha; 20278 #define rptr ((uchar_t *)ipha) 20279 ire_t *ire = NULL; 20280 ire_t *sctp_ire = NULL; 20281 uint32_t v_hlen_tos_len; 20282 ipaddr_t dst; 20283 mblk_t *first_mp = NULL; 20284 boolean_t mctl_present; 20285 ipsec_out_t *io; 20286 int match_flags; 20287 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20288 ipif_t *dst_ipif; 20289 boolean_t multirt_need_resolve = B_FALSE; 20290 mblk_t *copy_mp = NULL; 20291 int err = 0; 20292 zoneid_t zoneid; 20293 boolean_t need_decref = B_FALSE; 20294 boolean_t ignore_dontroute = B_FALSE; 20295 boolean_t ignore_nexthop = B_FALSE; 20296 boolean_t ip_nexthop = B_FALSE; 20297 ipaddr_t nexthop_addr; 20298 ip_stack_t *ipst; 20299 20300 #ifdef _BIG_ENDIAN 20301 #define V_HLEN (v_hlen_tos_len >> 24) 20302 #else 20303 #define V_HLEN (v_hlen_tos_len & 0xFF) 20304 #endif 20305 20306 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20307 "ip_wput_start: q %p", q); 20308 20309 /* 20310 * ip_wput fast path 20311 */ 20312 20313 /* is packet from ARP ? */ 20314 if (q->q_next != NULL) { 20315 zoneid = (zoneid_t)(uintptr_t)arg; 20316 goto qnext; 20317 } 20318 20319 connp = (conn_t *)arg; 20320 ASSERT(connp != NULL); 20321 zoneid = connp->conn_zoneid; 20322 ipst = connp->conn_netstack->netstack_ip; 20323 ASSERT(ipst != NULL); 20324 20325 /* is queue flow controlled? */ 20326 if ((q->q_first != NULL || connp->conn_draining) && 20327 (caller == IP_WPUT)) { 20328 ASSERT(!need_decref); 20329 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20330 (void) putq(q, mp); 20331 return; 20332 } 20333 20334 /* Multidata transmit? */ 20335 if (DB_TYPE(mp) == M_MULTIDATA) { 20336 /* 20337 * We should never get here, since all Multidata messages 20338 * originating from tcp should have been directed over to 20339 * tcp_multisend() in the first place. 20340 */ 20341 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20342 freemsg(mp); 20343 return; 20344 } else if (DB_TYPE(mp) != M_DATA) 20345 goto notdata; 20346 20347 if (mp->b_flag & MSGHASREF) { 20348 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20349 mp->b_flag &= ~MSGHASREF; 20350 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20351 need_decref = B_TRUE; 20352 } 20353 ipha = (ipha_t *)mp->b_rptr; 20354 20355 /* is IP header non-aligned or mblk smaller than basic IP header */ 20356 #ifndef SAFETY_BEFORE_SPEED 20357 if (!OK_32PTR(rptr) || 20358 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20359 goto hdrtoosmall; 20360 #endif 20361 20362 ASSERT(OK_32PTR(ipha)); 20363 20364 /* 20365 * This function assumes that mp points to an IPv4 packet. If it's the 20366 * wrong version, we'll catch it again in ip_output_v6. 20367 * 20368 * Note that this is *only* locally-generated output here, and never 20369 * forwarded data, and that we need to deal only with transports that 20370 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20371 * label.) 20372 */ 20373 if (is_system_labeled() && 20374 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20375 !connp->conn_ulp_labeled) { 20376 cred_t *credp; 20377 pid_t pid; 20378 20379 credp = BEST_CRED(mp, connp, &pid); 20380 err = tsol_check_label(credp, &mp, 20381 connp->conn_mac_exempt, ipst, pid); 20382 ipha = (ipha_t *)mp->b_rptr; 20383 if (err != 0) { 20384 first_mp = mp; 20385 if (err == EINVAL) 20386 goto icmp_parameter_problem; 20387 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20388 goto discard_pkt; 20389 } 20390 } 20391 20392 ASSERT(infop != NULL); 20393 20394 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20395 /* 20396 * IP_PKTINFO ancillary option is present. 20397 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20398 * allows using address of any zone as the source address. 20399 */ 20400 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20401 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20402 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20403 if (ire == NULL) 20404 goto drop_pkt; 20405 ire_refrele(ire); 20406 ire = NULL; 20407 } 20408 20409 /* 20410 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20411 */ 20412 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20413 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20414 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20415 20416 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20417 goto drop_pkt; 20418 /* 20419 * check that there is an ipif belonging 20420 * to our zone. IPCL_ZONEID is not used because 20421 * IP_ALLZONES option is valid only when the ill is 20422 * accessible from all zones i.e has a valid ipif in 20423 * all zones. 20424 */ 20425 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20426 goto drop_pkt; 20427 } 20428 } 20429 20430 /* 20431 * If there is a policy, try to attach an ipsec_out in 20432 * the front. At the end, first_mp either points to a 20433 * M_DATA message or IPSEC_OUT message linked to a 20434 * M_DATA message. We have to do it now as we might 20435 * lose the "conn" if we go through ip_newroute. 20436 */ 20437 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20438 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20439 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20440 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20441 if (need_decref) 20442 CONN_DEC_REF(connp); 20443 return; 20444 } else { 20445 ASSERT(mp->b_datap->db_type == M_CTL); 20446 first_mp = mp; 20447 mp = mp->b_cont; 20448 mctl_present = B_TRUE; 20449 } 20450 } else { 20451 first_mp = mp; 20452 mctl_present = B_FALSE; 20453 } 20454 20455 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20456 20457 /* is wrong version or IP options present */ 20458 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20459 goto version_hdrlen_check; 20460 dst = ipha->ipha_dst; 20461 20462 /* If IP_BOUND_IF has been set, use that ill. */ 20463 if (connp->conn_outgoing_ill != NULL) { 20464 xmit_ill = conn_get_held_ill(connp, 20465 &connp->conn_outgoing_ill, &err); 20466 if (err == ILL_LOOKUP_FAILED) 20467 goto drop_pkt; 20468 20469 goto send_from_ill; 20470 } 20471 20472 /* is packet multicast? */ 20473 if (CLASSD(dst)) 20474 goto multicast; 20475 20476 /* 20477 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20478 * takes precedence over conn_dontroute and conn_nexthop_set 20479 */ 20480 if (xmit_ill != NULL) 20481 goto send_from_ill; 20482 20483 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20484 /* 20485 * If the destination is a broadcast, local, or loopback 20486 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20487 * standard path. 20488 */ 20489 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20490 if ((ire == NULL) || (ire->ire_type & 20491 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20492 if (ire != NULL) { 20493 ire_refrele(ire); 20494 /* No more access to ire */ 20495 ire = NULL; 20496 } 20497 /* 20498 * bypass routing checks and go directly to interface. 20499 */ 20500 if (connp->conn_dontroute) 20501 goto dontroute; 20502 20503 ASSERT(connp->conn_nexthop_set); 20504 ip_nexthop = B_TRUE; 20505 nexthop_addr = connp->conn_nexthop_v4; 20506 goto send_from_ill; 20507 } 20508 20509 /* Must be a broadcast, a loopback or a local ire */ 20510 ire_refrele(ire); 20511 /* No more access to ire */ 20512 ire = NULL; 20513 } 20514 20515 /* 20516 * We cache IRE_CACHEs to avoid lookups. We don't do 20517 * this for the tcp global queue and listen end point 20518 * as it does not really have a real destination to 20519 * talk to. This is also true for SCTP. 20520 */ 20521 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20522 !connp->conn_fully_bound) { 20523 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20524 if (ire == NULL) 20525 goto noirefound; 20526 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20527 "ip_wput_end: q %p (%S)", q, "end"); 20528 20529 /* 20530 * Check if the ire has the RTF_MULTIRT flag, inherited 20531 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20532 */ 20533 if (ire->ire_flags & RTF_MULTIRT) { 20534 20535 /* 20536 * Force the TTL of multirouted packets if required. 20537 * The TTL of such packets is bounded by the 20538 * ip_multirt_ttl ndd variable. 20539 */ 20540 if ((ipst->ips_ip_multirt_ttl > 0) && 20541 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20542 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20543 "(was %d), dst 0x%08x\n", 20544 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20545 ntohl(ire->ire_addr))); 20546 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20547 } 20548 /* 20549 * We look at this point if there are pending 20550 * unresolved routes. ire_multirt_resolvable() 20551 * checks in O(n) that all IRE_OFFSUBNET ire 20552 * entries for the packet's destination and 20553 * flagged RTF_MULTIRT are currently resolved. 20554 * If some remain unresolved, we make a copy 20555 * of the current message. It will be used 20556 * to initiate additional route resolutions. 20557 */ 20558 multirt_need_resolve = 20559 ire_multirt_need_resolve(ire->ire_addr, 20560 msg_getlabel(first_mp), ipst); 20561 ip2dbg(("ip_wput[TCP]: ire %p, " 20562 "multirt_need_resolve %d, first_mp %p\n", 20563 (void *)ire, multirt_need_resolve, 20564 (void *)first_mp)); 20565 if (multirt_need_resolve) { 20566 copy_mp = copymsg(first_mp); 20567 if (copy_mp != NULL) { 20568 MULTIRT_DEBUG_TAG(copy_mp); 20569 } 20570 } 20571 } 20572 20573 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20574 20575 /* 20576 * Try to resolve another multiroute if 20577 * ire_multirt_need_resolve() deemed it necessary. 20578 */ 20579 if (copy_mp != NULL) 20580 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20581 if (need_decref) 20582 CONN_DEC_REF(connp); 20583 return; 20584 } 20585 20586 /* 20587 * Access to conn_ire_cache. (protected by conn_lock) 20588 * 20589 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20590 * the ire bucket lock here to check for CONDEMNED as it is okay to 20591 * send a packet or two with the IRE_CACHE that is going away. 20592 * Access to the ire requires an ire refhold on the ire prior to 20593 * its use since an interface unplumb thread may delete the cached 20594 * ire and release the refhold at any time. 20595 * 20596 * Caching an ire in the conn_ire_cache 20597 * 20598 * o Caching an ire pointer in the conn requires a strict check for 20599 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20600 * ires before cleaning up the conns. So the caching of an ire pointer 20601 * in the conn is done after making sure under the bucket lock that the 20602 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20603 * caching an ire after the unplumb thread has cleaned up the conn. 20604 * If the conn does not send a packet subsequently the unplumb thread 20605 * will be hanging waiting for the ire count to drop to zero. 20606 * 20607 * o We also need to atomically test for a null conn_ire_cache and 20608 * set the conn_ire_cache under the the protection of the conn_lock 20609 * to avoid races among concurrent threads trying to simultaneously 20610 * cache an ire in the conn_ire_cache. 20611 */ 20612 mutex_enter(&connp->conn_lock); 20613 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20614 20615 if (ire != NULL && ire->ire_addr == dst && 20616 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20617 20618 IRE_REFHOLD(ire); 20619 mutex_exit(&connp->conn_lock); 20620 20621 } else { 20622 boolean_t cached = B_FALSE; 20623 connp->conn_ire_cache = NULL; 20624 mutex_exit(&connp->conn_lock); 20625 /* Release the old ire */ 20626 if (ire != NULL && sctp_ire == NULL) 20627 IRE_REFRELE_NOTR(ire); 20628 20629 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20630 if (ire == NULL) 20631 goto noirefound; 20632 IRE_REFHOLD_NOTR(ire); 20633 20634 mutex_enter(&connp->conn_lock); 20635 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20636 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20637 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20638 if (connp->conn_ulp == IPPROTO_TCP) 20639 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20640 connp->conn_ire_cache = ire; 20641 cached = B_TRUE; 20642 } 20643 rw_exit(&ire->ire_bucket->irb_lock); 20644 } 20645 mutex_exit(&connp->conn_lock); 20646 20647 /* 20648 * We can continue to use the ire but since it was 20649 * not cached, we should drop the extra reference. 20650 */ 20651 if (!cached) 20652 IRE_REFRELE_NOTR(ire); 20653 } 20654 20655 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20656 "ip_wput_end: q %p (%S)", q, "end"); 20657 20658 /* 20659 * Check if the ire has the RTF_MULTIRT flag, inherited 20660 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20661 */ 20662 if (ire->ire_flags & RTF_MULTIRT) { 20663 /* 20664 * Force the TTL of multirouted packets if required. 20665 * The TTL of such packets is bounded by the 20666 * ip_multirt_ttl ndd variable. 20667 */ 20668 if ((ipst->ips_ip_multirt_ttl > 0) && 20669 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20670 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20671 "(was %d), dst 0x%08x\n", 20672 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20673 ntohl(ire->ire_addr))); 20674 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20675 } 20676 20677 /* 20678 * At this point, we check to see if there are any pending 20679 * unresolved routes. ire_multirt_resolvable() 20680 * checks in O(n) that all IRE_OFFSUBNET ire 20681 * entries for the packet's destination and 20682 * flagged RTF_MULTIRT are currently resolved. 20683 * If some remain unresolved, we make a copy 20684 * of the current message. It will be used 20685 * to initiate additional route resolutions. 20686 */ 20687 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20688 msg_getlabel(first_mp), ipst); 20689 ip2dbg(("ip_wput[not TCP]: ire %p, " 20690 "multirt_need_resolve %d, first_mp %p\n", 20691 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20692 if (multirt_need_resolve) { 20693 copy_mp = copymsg(first_mp); 20694 if (copy_mp != NULL) { 20695 MULTIRT_DEBUG_TAG(copy_mp); 20696 } 20697 } 20698 } 20699 20700 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20701 20702 /* 20703 * Try to resolve another multiroute if 20704 * ire_multirt_resolvable() deemed it necessary 20705 */ 20706 if (copy_mp != NULL) 20707 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20708 if (need_decref) 20709 CONN_DEC_REF(connp); 20710 return; 20711 20712 qnext: 20713 /* 20714 * Upper Level Protocols pass down complete IP datagrams 20715 * as M_DATA messages. Everything else is a sideshow. 20716 * 20717 * 1) We could be re-entering ip_wput because of ip_neworute 20718 * in which case we could have a IPSEC_OUT message. We 20719 * need to pass through ip_wput like other datagrams and 20720 * hence cannot branch to ip_wput_nondata. 20721 * 20722 * 2) ARP, AH, ESP, and other clients who are on the module 20723 * instance of IP stream, give us something to deal with. 20724 * We will handle AH and ESP here and rest in ip_wput_nondata. 20725 * 20726 * 3) ICMP replies also could come here. 20727 */ 20728 ipst = ILLQ_TO_IPST(q); 20729 20730 if (DB_TYPE(mp) != M_DATA) { 20731 notdata: 20732 if (DB_TYPE(mp) == M_CTL) { 20733 /* 20734 * M_CTL messages are used by ARP, AH and ESP to 20735 * communicate with IP. We deal with IPSEC_IN and 20736 * IPSEC_OUT here. ip_wput_nondata handles other 20737 * cases. 20738 */ 20739 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20740 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20741 first_mp = mp->b_cont; 20742 first_mp->b_flag &= ~MSGHASREF; 20743 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20744 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20745 CONN_DEC_REF(connp); 20746 connp = NULL; 20747 } 20748 if (ii->ipsec_info_type == IPSEC_IN) { 20749 /* 20750 * Either this message goes back to 20751 * IPsec for further processing or to 20752 * ULP after policy checks. 20753 */ 20754 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20755 return; 20756 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20757 io = (ipsec_out_t *)ii; 20758 if (io->ipsec_out_proc_begin) { 20759 /* 20760 * IPsec processing has already started. 20761 * Complete it. 20762 * IPQoS notes: We don't care what is 20763 * in ipsec_out_ill_index since this 20764 * won't be processed for IPQoS policies 20765 * in ipsec_out_process. 20766 */ 20767 ipsec_out_process(q, mp, NULL, 20768 io->ipsec_out_ill_index); 20769 return; 20770 } else { 20771 connp = (q->q_next != NULL) ? 20772 NULL : Q_TO_CONN(q); 20773 first_mp = mp; 20774 mp = mp->b_cont; 20775 mctl_present = B_TRUE; 20776 } 20777 zoneid = io->ipsec_out_zoneid; 20778 ASSERT(zoneid != ALL_ZONES); 20779 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20780 /* 20781 * It's an IPsec control message requesting 20782 * an SADB update to be sent to the IPsec 20783 * hardware acceleration capable ills. 20784 */ 20785 ipsec_ctl_t *ipsec_ctl = 20786 (ipsec_ctl_t *)mp->b_rptr; 20787 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20788 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20789 mblk_t *cmp = mp->b_cont; 20790 20791 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20792 ASSERT(cmp != NULL); 20793 20794 freeb(mp); 20795 ill_ipsec_capab_send_all(satype, cmp, sa, 20796 ipst->ips_netstack); 20797 return; 20798 } else { 20799 /* 20800 * This must be ARP or special TSOL signaling. 20801 */ 20802 ip_wput_nondata(NULL, q, mp, NULL); 20803 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20804 "ip_wput_end: q %p (%S)", q, "nondata"); 20805 return; 20806 } 20807 } else { 20808 /* 20809 * This must be non-(ARP/AH/ESP) messages. 20810 */ 20811 ASSERT(!need_decref); 20812 ip_wput_nondata(NULL, q, mp, NULL); 20813 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20814 "ip_wput_end: q %p (%S)", q, "nondata"); 20815 return; 20816 } 20817 } else { 20818 first_mp = mp; 20819 mctl_present = B_FALSE; 20820 } 20821 20822 ASSERT(first_mp != NULL); 20823 20824 if (mctl_present) { 20825 io = (ipsec_out_t *)first_mp->b_rptr; 20826 if (io->ipsec_out_ip_nexthop) { 20827 /* 20828 * We may have lost the conn context if we are 20829 * coming here from ip_newroute(). Copy the 20830 * nexthop information. 20831 */ 20832 ip_nexthop = B_TRUE; 20833 nexthop_addr = io->ipsec_out_nexthop_addr; 20834 20835 ipha = (ipha_t *)mp->b_rptr; 20836 dst = ipha->ipha_dst; 20837 goto send_from_ill; 20838 } 20839 } 20840 20841 ASSERT(xmit_ill == NULL); 20842 20843 /* We have a complete IP datagram heading outbound. */ 20844 ipha = (ipha_t *)mp->b_rptr; 20845 20846 #ifndef SPEED_BEFORE_SAFETY 20847 /* 20848 * Make sure we have a full-word aligned message and that at least 20849 * a simple IP header is accessible in the first message. If not, 20850 * try a pullup. For labeled systems we need to always take this 20851 * path as M_CTLs are "notdata" but have trailing data to process. 20852 */ 20853 if (!OK_32PTR(rptr) || 20854 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20855 hdrtoosmall: 20856 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20857 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20858 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20859 if (first_mp == NULL) 20860 first_mp = mp; 20861 goto discard_pkt; 20862 } 20863 20864 /* This function assumes that mp points to an IPv4 packet. */ 20865 if (is_system_labeled() && 20866 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20867 (connp == NULL || !connp->conn_ulp_labeled)) { 20868 cred_t *credp; 20869 pid_t pid; 20870 20871 if (connp != NULL) { 20872 credp = BEST_CRED(mp, connp, &pid); 20873 err = tsol_check_label(credp, &mp, 20874 connp->conn_mac_exempt, ipst, pid); 20875 } else if ((credp = msg_getcred(mp, &pid)) != NULL) { 20876 err = tsol_check_label(credp, &mp, 20877 B_FALSE, ipst, pid); 20878 } 20879 ipha = (ipha_t *)mp->b_rptr; 20880 if (mctl_present) 20881 first_mp->b_cont = mp; 20882 else 20883 first_mp = mp; 20884 if (err != 0) { 20885 if (err == EINVAL) 20886 goto icmp_parameter_problem; 20887 ip2dbg(("ip_wput: label check failed (%d)\n", 20888 err)); 20889 goto discard_pkt; 20890 } 20891 } 20892 20893 ipha = (ipha_t *)mp->b_rptr; 20894 if (first_mp == NULL) { 20895 ASSERT(xmit_ill == NULL); 20896 /* 20897 * If we got here because of "goto hdrtoosmall" 20898 * We need to attach a IPSEC_OUT. 20899 */ 20900 if (connp->conn_out_enforce_policy) { 20901 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20902 NULL, ipha->ipha_protocol, 20903 ipst->ips_netstack)) == NULL)) { 20904 BUMP_MIB(&ipst->ips_ip_mib, 20905 ipIfStatsOutDiscards); 20906 if (need_decref) 20907 CONN_DEC_REF(connp); 20908 return; 20909 } else { 20910 ASSERT(mp->b_datap->db_type == M_CTL); 20911 first_mp = mp; 20912 mp = mp->b_cont; 20913 mctl_present = B_TRUE; 20914 } 20915 } else { 20916 first_mp = mp; 20917 mctl_present = B_FALSE; 20918 } 20919 } 20920 } 20921 #endif 20922 20923 /* Most of the code below is written for speed, not readability */ 20924 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20925 20926 /* 20927 * If ip_newroute() fails, we're going to need a full 20928 * header for the icmp wraparound. 20929 */ 20930 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20931 uint_t v_hlen; 20932 version_hdrlen_check: 20933 ASSERT(first_mp != NULL); 20934 v_hlen = V_HLEN; 20935 /* 20936 * siphon off IPv6 packets coming down from transport 20937 * layer modules here. 20938 * Note: high-order bit carries NUD reachability confirmation 20939 */ 20940 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20941 /* 20942 * FIXME: assume that callers of ip_output* call 20943 * the right version? 20944 */ 20945 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20946 ASSERT(xmit_ill == NULL); 20947 if (need_decref) 20948 mp->b_flag |= MSGHASREF; 20949 (void) ip_output_v6(arg, first_mp, arg2, caller); 20950 return; 20951 } 20952 20953 if ((v_hlen >> 4) != IP_VERSION) { 20954 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20955 "ip_wput_end: q %p (%S)", q, "badvers"); 20956 goto discard_pkt; 20957 } 20958 /* 20959 * Is the header length at least 20 bytes? 20960 * 20961 * Are there enough bytes accessible in the header? If 20962 * not, try a pullup. 20963 */ 20964 v_hlen &= 0xF; 20965 v_hlen <<= 2; 20966 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20967 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20968 "ip_wput_end: q %p (%S)", q, "badlen"); 20969 goto discard_pkt; 20970 } 20971 if (v_hlen > (mp->b_wptr - rptr)) { 20972 if (!pullupmsg(mp, v_hlen)) { 20973 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20974 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20975 goto discard_pkt; 20976 } 20977 ipha = (ipha_t *)mp->b_rptr; 20978 } 20979 /* 20980 * Move first entry from any source route into ipha_dst and 20981 * verify the options 20982 */ 20983 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20984 zoneid, ipst)) { 20985 ASSERT(xmit_ill == NULL); 20986 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20987 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20988 "ip_wput_end: q %p (%S)", q, "badopts"); 20989 if (need_decref) 20990 CONN_DEC_REF(connp); 20991 return; 20992 } 20993 } 20994 dst = ipha->ipha_dst; 20995 20996 /* 20997 * Try to get an IRE_CACHE for the destination address. If we can't, 20998 * we have to run the packet through ip_newroute which will take 20999 * the appropriate action to arrange for an IRE_CACHE, such as querying 21000 * a resolver, or assigning a default gateway, etc. 21001 */ 21002 if (CLASSD(dst)) { 21003 ipif_t *ipif; 21004 uint32_t setsrc = 0; 21005 21006 multicast: 21007 ASSERT(first_mp != NULL); 21008 ip2dbg(("ip_wput: CLASSD\n")); 21009 if (connp == NULL) { 21010 /* 21011 * Use the first good ipif on the ill. 21012 * XXX Should this ever happen? (Appears 21013 * to show up with just ppp and no ethernet due 21014 * to in.rdisc.) 21015 * However, ire_send should be able to 21016 * call ip_wput_ire directly. 21017 * 21018 * XXX Also, this can happen for ICMP and other packets 21019 * with multicast source addresses. Perhaps we should 21020 * fix things so that we drop the packet in question, 21021 * but for now, just run with it. 21022 */ 21023 ill_t *ill = (ill_t *)q->q_ptr; 21024 21025 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21026 if (ipif == NULL) { 21027 if (need_decref) 21028 CONN_DEC_REF(connp); 21029 freemsg(first_mp); 21030 return; 21031 } 21032 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21033 ntohl(dst), ill->ill_name)); 21034 } else { 21035 /* 21036 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21037 * and IP_MULTICAST_IF. The block comment above this 21038 * function explains the locking mechanism used here. 21039 */ 21040 if (xmit_ill == NULL) { 21041 xmit_ill = conn_get_held_ill(connp, 21042 &connp->conn_outgoing_ill, &err); 21043 if (err == ILL_LOOKUP_FAILED) { 21044 ip1dbg(("ip_wput: No ill for " 21045 "IP_BOUND_IF\n")); 21046 BUMP_MIB(&ipst->ips_ip_mib, 21047 ipIfStatsOutNoRoutes); 21048 goto drop_pkt; 21049 } 21050 } 21051 21052 if (xmit_ill == NULL) { 21053 ipif = conn_get_held_ipif(connp, 21054 &connp->conn_multicast_ipif, &err); 21055 if (err == IPIF_LOOKUP_FAILED) { 21056 ip1dbg(("ip_wput: No ipif for " 21057 "multicast\n")); 21058 BUMP_MIB(&ipst->ips_ip_mib, 21059 ipIfStatsOutNoRoutes); 21060 goto drop_pkt; 21061 } 21062 } 21063 if (xmit_ill != NULL) { 21064 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21065 if (ipif == NULL) { 21066 ip1dbg(("ip_wput: No ipif for " 21067 "xmit_ill\n")); 21068 BUMP_MIB(&ipst->ips_ip_mib, 21069 ipIfStatsOutNoRoutes); 21070 goto drop_pkt; 21071 } 21072 } else if (ipif == NULL || ipif->ipif_isv6) { 21073 /* 21074 * We must do this ipif determination here 21075 * else we could pass through ip_newroute 21076 * and come back here without the conn context. 21077 * 21078 * Note: we do late binding i.e. we bind to 21079 * the interface when the first packet is sent. 21080 * For performance reasons we do not rebind on 21081 * each packet but keep the binding until the 21082 * next IP_MULTICAST_IF option. 21083 * 21084 * conn_multicast_{ipif,ill} are shared between 21085 * IPv4 and IPv6 and AF_INET6 sockets can 21086 * send both IPv4 and IPv6 packets. Hence 21087 * we have to check that "isv6" matches above. 21088 */ 21089 if (ipif != NULL) 21090 ipif_refrele(ipif); 21091 ipif = ipif_lookup_group(dst, zoneid, ipst); 21092 if (ipif == NULL) { 21093 ip1dbg(("ip_wput: No ipif for " 21094 "multicast\n")); 21095 BUMP_MIB(&ipst->ips_ip_mib, 21096 ipIfStatsOutNoRoutes); 21097 goto drop_pkt; 21098 } 21099 err = conn_set_held_ipif(connp, 21100 &connp->conn_multicast_ipif, ipif); 21101 if (err == IPIF_LOOKUP_FAILED) { 21102 ipif_refrele(ipif); 21103 ip1dbg(("ip_wput: No ipif for " 21104 "multicast\n")); 21105 BUMP_MIB(&ipst->ips_ip_mib, 21106 ipIfStatsOutNoRoutes); 21107 goto drop_pkt; 21108 } 21109 } 21110 } 21111 ASSERT(!ipif->ipif_isv6); 21112 /* 21113 * As we may lose the conn by the time we reach ip_wput_ire, 21114 * we copy conn_multicast_loop and conn_dontroute on to an 21115 * ipsec_out. In case if this datagram goes out secure, 21116 * we need the ill_index also. Copy that also into the 21117 * ipsec_out. 21118 */ 21119 if (mctl_present) { 21120 io = (ipsec_out_t *)first_mp->b_rptr; 21121 ASSERT(first_mp->b_datap->db_type == M_CTL); 21122 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21123 } else { 21124 ASSERT(mp == first_mp); 21125 if ((first_mp = allocb(sizeof (ipsec_info_t), 21126 BPRI_HI)) == NULL) { 21127 ipif_refrele(ipif); 21128 first_mp = mp; 21129 goto discard_pkt; 21130 } 21131 first_mp->b_datap->db_type = M_CTL; 21132 first_mp->b_wptr += sizeof (ipsec_info_t); 21133 /* ipsec_out_secure is B_FALSE now */ 21134 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21135 io = (ipsec_out_t *)first_mp->b_rptr; 21136 io->ipsec_out_type = IPSEC_OUT; 21137 io->ipsec_out_len = sizeof (ipsec_out_t); 21138 io->ipsec_out_use_global_policy = B_TRUE; 21139 io->ipsec_out_ns = ipst->ips_netstack; 21140 first_mp->b_cont = mp; 21141 mctl_present = B_TRUE; 21142 } 21143 21144 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21145 io->ipsec_out_ill_index = 21146 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21147 21148 if (connp != NULL) { 21149 io->ipsec_out_multicast_loop = 21150 connp->conn_multicast_loop; 21151 io->ipsec_out_dontroute = connp->conn_dontroute; 21152 io->ipsec_out_zoneid = connp->conn_zoneid; 21153 } 21154 /* 21155 * If the application uses IP_MULTICAST_IF with 21156 * different logical addresses of the same ILL, we 21157 * need to make sure that the soruce address of 21158 * the packet matches the logical IP address used 21159 * in the option. We do it by initializing ipha_src 21160 * here. This should keep IPsec also happy as 21161 * when we return from IPsec processing, we don't 21162 * have to worry about getting the right address on 21163 * the packet. Thus it is sufficient to look for 21164 * IRE_CACHE using MATCH_IRE_ILL rathen than 21165 * MATCH_IRE_IPIF. 21166 * 21167 * NOTE : We need to do it for non-secure case also as 21168 * this might go out secure if there is a global policy 21169 * match in ip_wput_ire. 21170 * 21171 * As we do not have the ire yet, it is possible that 21172 * we set the source address here and then later discover 21173 * that the ire implies the source address to be assigned 21174 * through the RTF_SETSRC flag. 21175 * In that case, the setsrc variable will remind us 21176 * that overwritting the source address by the one 21177 * of the RTF_SETSRC-flagged ire is allowed. 21178 */ 21179 if (ipha->ipha_src == INADDR_ANY && 21180 (connp == NULL || !connp->conn_unspec_src)) { 21181 ipha->ipha_src = ipif->ipif_src_addr; 21182 setsrc = RTF_SETSRC; 21183 } 21184 /* 21185 * Find an IRE which matches the destination and the outgoing 21186 * queue (i.e. the outgoing interface.) 21187 * For loopback use a unicast IP address for 21188 * the ire lookup. 21189 */ 21190 if (IS_LOOPBACK(ipif->ipif_ill)) 21191 dst = ipif->ipif_lcl_addr; 21192 21193 /* 21194 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21195 * We don't need to lookup ire in ctable as the packet 21196 * needs to be sent to the destination through the specified 21197 * ill irrespective of ires in the cache table. 21198 */ 21199 ire = NULL; 21200 if (xmit_ill == NULL) { 21201 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21202 zoneid, msg_getlabel(mp), match_flags, ipst); 21203 } 21204 21205 if (ire == NULL) { 21206 /* 21207 * Multicast loopback and multicast forwarding is 21208 * done in ip_wput_ire. 21209 * 21210 * Mark this packet to make it be delivered to 21211 * ip_wput_ire after the new ire has been 21212 * created. 21213 * 21214 * The call to ip_newroute_ipif takes into account 21215 * the setsrc reminder. In any case, we take care 21216 * of the RTF_MULTIRT flag. 21217 */ 21218 mp->b_prev = mp->b_next = NULL; 21219 if (xmit_ill == NULL || 21220 xmit_ill->ill_ipif_up_count > 0) { 21221 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21222 setsrc | RTF_MULTIRT, zoneid, infop); 21223 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21224 "ip_wput_end: q %p (%S)", q, "noire"); 21225 } else { 21226 freemsg(first_mp); 21227 } 21228 ipif_refrele(ipif); 21229 if (xmit_ill != NULL) 21230 ill_refrele(xmit_ill); 21231 if (need_decref) 21232 CONN_DEC_REF(connp); 21233 return; 21234 } 21235 21236 ipif_refrele(ipif); 21237 ipif = NULL; 21238 ASSERT(xmit_ill == NULL); 21239 21240 /* 21241 * Honor the RTF_SETSRC flag for multicast packets, 21242 * if allowed by the setsrc reminder. 21243 */ 21244 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21245 ipha->ipha_src = ire->ire_src_addr; 21246 } 21247 21248 /* 21249 * Unconditionally force the TTL to 1 for 21250 * multirouted multicast packets: 21251 * multirouted multicast should not cross 21252 * multicast routers. 21253 */ 21254 if (ire->ire_flags & RTF_MULTIRT) { 21255 if (ipha->ipha_ttl > 1) { 21256 ip2dbg(("ip_wput: forcing multicast " 21257 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21258 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21259 ipha->ipha_ttl = 1; 21260 } 21261 } 21262 } else { 21263 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21264 if ((ire != NULL) && (ire->ire_type & 21265 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21266 ignore_dontroute = B_TRUE; 21267 ignore_nexthop = B_TRUE; 21268 } 21269 if (ire != NULL) { 21270 ire_refrele(ire); 21271 ire = NULL; 21272 } 21273 /* 21274 * Guard against coming in from arp in which case conn is NULL. 21275 * Also guard against non M_DATA with dontroute set but 21276 * destined to local, loopback or broadcast addresses. 21277 */ 21278 if (connp != NULL && connp->conn_dontroute && 21279 !ignore_dontroute) { 21280 dontroute: 21281 /* 21282 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21283 * routing protocols from seeing false direct 21284 * connectivity. 21285 */ 21286 ipha->ipha_ttl = 1; 21287 /* If suitable ipif not found, drop packet */ 21288 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21289 if (dst_ipif == NULL) { 21290 noroute: 21291 ip1dbg(("ip_wput: no route for dst using" 21292 " SO_DONTROUTE\n")); 21293 BUMP_MIB(&ipst->ips_ip_mib, 21294 ipIfStatsOutNoRoutes); 21295 mp->b_prev = mp->b_next = NULL; 21296 if (first_mp == NULL) 21297 first_mp = mp; 21298 goto drop_pkt; 21299 } else { 21300 /* 21301 * If suitable ipif has been found, set 21302 * xmit_ill to the corresponding 21303 * ipif_ill because we'll be using the 21304 * send_from_ill logic below. 21305 */ 21306 ASSERT(xmit_ill == NULL); 21307 xmit_ill = dst_ipif->ipif_ill; 21308 mutex_enter(&xmit_ill->ill_lock); 21309 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21310 mutex_exit(&xmit_ill->ill_lock); 21311 xmit_ill = NULL; 21312 ipif_refrele(dst_ipif); 21313 goto noroute; 21314 } 21315 ill_refhold_locked(xmit_ill); 21316 mutex_exit(&xmit_ill->ill_lock); 21317 ipif_refrele(dst_ipif); 21318 } 21319 } 21320 21321 send_from_ill: 21322 if (xmit_ill != NULL) { 21323 ipif_t *ipif; 21324 21325 /* 21326 * Mark this packet as originated locally 21327 */ 21328 mp->b_prev = mp->b_next = NULL; 21329 21330 /* 21331 * Could be SO_DONTROUTE case also. 21332 * Verify that at least one ipif is up on the ill. 21333 */ 21334 if (xmit_ill->ill_ipif_up_count == 0) { 21335 ip1dbg(("ip_output: xmit_ill %s is down\n", 21336 xmit_ill->ill_name)); 21337 goto drop_pkt; 21338 } 21339 21340 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21341 if (ipif == NULL) { 21342 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21343 xmit_ill->ill_name)); 21344 goto drop_pkt; 21345 } 21346 21347 match_flags = 0; 21348 if (IS_UNDER_IPMP(xmit_ill)) 21349 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21350 21351 /* 21352 * Look for a ire that is part of the group, 21353 * if found use it else call ip_newroute_ipif. 21354 * IPCL_ZONEID is not used for matching because 21355 * IP_ALLZONES option is valid only when the 21356 * ill is accessible from all zones i.e has a 21357 * valid ipif in all zones. 21358 */ 21359 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21360 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21361 msg_getlabel(mp), match_flags, ipst); 21362 /* 21363 * If an ire exists use it or else create 21364 * an ire but don't add it to the cache. 21365 * Adding an ire may cause issues with 21366 * asymmetric routing. 21367 * In case of multiroute always act as if 21368 * ire does not exist. 21369 */ 21370 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21371 if (ire != NULL) 21372 ire_refrele(ire); 21373 ip_newroute_ipif(q, first_mp, ipif, 21374 dst, connp, 0, zoneid, infop); 21375 ipif_refrele(ipif); 21376 ip1dbg(("ip_output: xmit_ill via %s\n", 21377 xmit_ill->ill_name)); 21378 ill_refrele(xmit_ill); 21379 if (need_decref) 21380 CONN_DEC_REF(connp); 21381 return; 21382 } 21383 ipif_refrele(ipif); 21384 } else if (ip_nexthop || (connp != NULL && 21385 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21386 if (!ip_nexthop) { 21387 ip_nexthop = B_TRUE; 21388 nexthop_addr = connp->conn_nexthop_v4; 21389 } 21390 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21391 MATCH_IRE_GW; 21392 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21393 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21394 } else { 21395 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21396 ipst); 21397 } 21398 if (!ire) { 21399 if (ip_nexthop && !ignore_nexthop) { 21400 if (mctl_present) { 21401 io = (ipsec_out_t *)first_mp->b_rptr; 21402 ASSERT(first_mp->b_datap->db_type == 21403 M_CTL); 21404 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21405 } else { 21406 ASSERT(mp == first_mp); 21407 first_mp = allocb( 21408 sizeof (ipsec_info_t), BPRI_HI); 21409 if (first_mp == NULL) { 21410 first_mp = mp; 21411 goto discard_pkt; 21412 } 21413 first_mp->b_datap->db_type = M_CTL; 21414 first_mp->b_wptr += 21415 sizeof (ipsec_info_t); 21416 /* ipsec_out_secure is B_FALSE now */ 21417 bzero(first_mp->b_rptr, 21418 sizeof (ipsec_info_t)); 21419 io = (ipsec_out_t *)first_mp->b_rptr; 21420 io->ipsec_out_type = IPSEC_OUT; 21421 io->ipsec_out_len = 21422 sizeof (ipsec_out_t); 21423 io->ipsec_out_use_global_policy = 21424 B_TRUE; 21425 io->ipsec_out_ns = ipst->ips_netstack; 21426 first_mp->b_cont = mp; 21427 mctl_present = B_TRUE; 21428 } 21429 io->ipsec_out_ip_nexthop = ip_nexthop; 21430 io->ipsec_out_nexthop_addr = nexthop_addr; 21431 } 21432 noirefound: 21433 /* 21434 * Mark this packet as having originated on 21435 * this machine. This will be noted in 21436 * ire_add_then_send, which needs to know 21437 * whether to run it back through ip_wput or 21438 * ip_rput following successful resolution. 21439 */ 21440 mp->b_prev = NULL; 21441 mp->b_next = NULL; 21442 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21443 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21444 "ip_wput_end: q %p (%S)", q, "newroute"); 21445 if (xmit_ill != NULL) 21446 ill_refrele(xmit_ill); 21447 if (need_decref) 21448 CONN_DEC_REF(connp); 21449 return; 21450 } 21451 } 21452 21453 /* We now know where we are going with it. */ 21454 21455 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21456 "ip_wput_end: q %p (%S)", q, "end"); 21457 21458 /* 21459 * Check if the ire has the RTF_MULTIRT flag, inherited 21460 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21461 */ 21462 if (ire->ire_flags & RTF_MULTIRT) { 21463 /* 21464 * Force the TTL of multirouted packets if required. 21465 * The TTL of such packets is bounded by the 21466 * ip_multirt_ttl ndd variable. 21467 */ 21468 if ((ipst->ips_ip_multirt_ttl > 0) && 21469 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21470 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21471 "(was %d), dst 0x%08x\n", 21472 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21473 ntohl(ire->ire_addr))); 21474 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21475 } 21476 /* 21477 * At this point, we check to see if there are any pending 21478 * unresolved routes. ire_multirt_resolvable() 21479 * checks in O(n) that all IRE_OFFSUBNET ire 21480 * entries for the packet's destination and 21481 * flagged RTF_MULTIRT are currently resolved. 21482 * If some remain unresolved, we make a copy 21483 * of the current message. It will be used 21484 * to initiate additional route resolutions. 21485 */ 21486 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21487 msg_getlabel(first_mp), ipst); 21488 ip2dbg(("ip_wput[noirefound]: ire %p, " 21489 "multirt_need_resolve %d, first_mp %p\n", 21490 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21491 if (multirt_need_resolve) { 21492 copy_mp = copymsg(first_mp); 21493 if (copy_mp != NULL) { 21494 MULTIRT_DEBUG_TAG(copy_mp); 21495 } 21496 } 21497 } 21498 21499 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21500 /* 21501 * Try to resolve another multiroute if 21502 * ire_multirt_resolvable() deemed it necessary. 21503 * At this point, we need to distinguish 21504 * multicasts from other packets. For multicasts, 21505 * we call ip_newroute_ipif() and request that both 21506 * multirouting and setsrc flags are checked. 21507 */ 21508 if (copy_mp != NULL) { 21509 if (CLASSD(dst)) { 21510 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21511 if (ipif) { 21512 ASSERT(infop->ip_opt_ill_index == 0); 21513 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21514 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21515 ipif_refrele(ipif); 21516 } else { 21517 MULTIRT_DEBUG_UNTAG(copy_mp); 21518 freemsg(copy_mp); 21519 copy_mp = NULL; 21520 } 21521 } else { 21522 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21523 } 21524 } 21525 if (xmit_ill != NULL) 21526 ill_refrele(xmit_ill); 21527 if (need_decref) 21528 CONN_DEC_REF(connp); 21529 return; 21530 21531 icmp_parameter_problem: 21532 /* could not have originated externally */ 21533 ASSERT(mp->b_prev == NULL); 21534 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21535 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21536 /* it's the IP header length that's in trouble */ 21537 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21538 first_mp = NULL; 21539 } 21540 21541 discard_pkt: 21542 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21543 drop_pkt: 21544 ip1dbg(("ip_wput: dropped packet\n")); 21545 if (ire != NULL) 21546 ire_refrele(ire); 21547 if (need_decref) 21548 CONN_DEC_REF(connp); 21549 freemsg(first_mp); 21550 if (xmit_ill != NULL) 21551 ill_refrele(xmit_ill); 21552 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21553 "ip_wput_end: q %p (%S)", q, "droppkt"); 21554 } 21555 21556 /* 21557 * If this is a conn_t queue, then we pass in the conn. This includes the 21558 * zoneid. 21559 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21560 * in which case we use the global zoneid since those are all part of 21561 * the global zone. 21562 */ 21563 void 21564 ip_wput(queue_t *q, mblk_t *mp) 21565 { 21566 if (CONN_Q(q)) 21567 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21568 else 21569 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21570 } 21571 21572 /* 21573 * 21574 * The following rules must be observed when accessing any ipif or ill 21575 * that has been cached in the conn. Typically conn_outgoing_ill, 21576 * conn_multicast_ipif and conn_multicast_ill. 21577 * 21578 * Access: The ipif or ill pointed to from the conn can be accessed under 21579 * the protection of the conn_lock or after it has been refheld under the 21580 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21581 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21582 * The reason for this is that a concurrent unplumb could actually be 21583 * cleaning up these cached pointers by walking the conns and might have 21584 * finished cleaning up the conn in question. The macros check that an 21585 * unplumb has not yet started on the ipif or ill. 21586 * 21587 * Caching: An ipif or ill pointer may be cached in the conn only after 21588 * making sure that an unplumb has not started. So the caching is done 21589 * while holding both the conn_lock and the ill_lock and after using the 21590 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21591 * flag before starting the cleanup of conns. 21592 * 21593 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21594 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21595 * or a reference to the ipif or a reference to an ire that references the 21596 * ipif. An ipif only changes its ill when migrating from an underlying ill 21597 * to an IPMP ill in ipif_up(). 21598 */ 21599 ipif_t * 21600 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21601 { 21602 ipif_t *ipif; 21603 ill_t *ill; 21604 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21605 21606 *err = 0; 21607 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21608 mutex_enter(&connp->conn_lock); 21609 ipif = *ipifp; 21610 if (ipif != NULL) { 21611 ill = ipif->ipif_ill; 21612 mutex_enter(&ill->ill_lock); 21613 if (IPIF_CAN_LOOKUP(ipif)) { 21614 ipif_refhold_locked(ipif); 21615 mutex_exit(&ill->ill_lock); 21616 mutex_exit(&connp->conn_lock); 21617 rw_exit(&ipst->ips_ill_g_lock); 21618 return (ipif); 21619 } else { 21620 *err = IPIF_LOOKUP_FAILED; 21621 } 21622 mutex_exit(&ill->ill_lock); 21623 } 21624 mutex_exit(&connp->conn_lock); 21625 rw_exit(&ipst->ips_ill_g_lock); 21626 return (NULL); 21627 } 21628 21629 ill_t * 21630 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21631 { 21632 ill_t *ill; 21633 21634 *err = 0; 21635 mutex_enter(&connp->conn_lock); 21636 ill = *illp; 21637 if (ill != NULL) { 21638 mutex_enter(&ill->ill_lock); 21639 if (ILL_CAN_LOOKUP(ill)) { 21640 ill_refhold_locked(ill); 21641 mutex_exit(&ill->ill_lock); 21642 mutex_exit(&connp->conn_lock); 21643 return (ill); 21644 } else { 21645 *err = ILL_LOOKUP_FAILED; 21646 } 21647 mutex_exit(&ill->ill_lock); 21648 } 21649 mutex_exit(&connp->conn_lock); 21650 return (NULL); 21651 } 21652 21653 static int 21654 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21655 { 21656 ill_t *ill; 21657 21658 ill = ipif->ipif_ill; 21659 mutex_enter(&connp->conn_lock); 21660 mutex_enter(&ill->ill_lock); 21661 if (IPIF_CAN_LOOKUP(ipif)) { 21662 *ipifp = ipif; 21663 mutex_exit(&ill->ill_lock); 21664 mutex_exit(&connp->conn_lock); 21665 return (0); 21666 } 21667 mutex_exit(&ill->ill_lock); 21668 mutex_exit(&connp->conn_lock); 21669 return (IPIF_LOOKUP_FAILED); 21670 } 21671 21672 /* 21673 * This is called if the outbound datagram needs fragmentation. 21674 * 21675 * NOTE : This function does not ire_refrele the ire argument passed in. 21676 */ 21677 static void 21678 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21679 ip_stack_t *ipst, conn_t *connp) 21680 { 21681 ipha_t *ipha; 21682 mblk_t *mp; 21683 uint32_t v_hlen_tos_len; 21684 uint32_t max_frag; 21685 uint32_t frag_flag; 21686 boolean_t dont_use; 21687 21688 if (ipsec_mp->b_datap->db_type == M_CTL) { 21689 mp = ipsec_mp->b_cont; 21690 } else { 21691 mp = ipsec_mp; 21692 } 21693 21694 ipha = (ipha_t *)mp->b_rptr; 21695 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21696 21697 #ifdef _BIG_ENDIAN 21698 #define V_HLEN (v_hlen_tos_len >> 24) 21699 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21700 #else 21701 #define V_HLEN (v_hlen_tos_len & 0xFF) 21702 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21703 #endif 21704 21705 #ifndef SPEED_BEFORE_SAFETY 21706 /* 21707 * Check that ipha_length is consistent with 21708 * the mblk length 21709 */ 21710 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21711 ip0dbg(("Packet length mismatch: %d, %ld\n", 21712 LENGTH, msgdsize(mp))); 21713 freemsg(ipsec_mp); 21714 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21715 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21716 "packet length mismatch"); 21717 return; 21718 } 21719 #endif 21720 /* 21721 * Don't use frag_flag if pre-built packet or source 21722 * routed or if multicast (since multicast packets do not solicit 21723 * ICMP "packet too big" messages). Get the values of 21724 * max_frag and frag_flag atomically by acquiring the 21725 * ire_lock. 21726 */ 21727 mutex_enter(&ire->ire_lock); 21728 max_frag = ire->ire_max_frag; 21729 frag_flag = ire->ire_frag_flag; 21730 mutex_exit(&ire->ire_lock); 21731 21732 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21733 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21734 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21735 21736 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21737 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21738 } 21739 21740 /* 21741 * Used for deciding the MSS size for the upper layer. Thus 21742 * we need to check the outbound policy values in the conn. 21743 */ 21744 int 21745 conn_ipsec_length(conn_t *connp) 21746 { 21747 ipsec_latch_t *ipl; 21748 21749 ipl = connp->conn_latch; 21750 if (ipl == NULL) 21751 return (0); 21752 21753 if (ipl->ipl_out_policy == NULL) 21754 return (0); 21755 21756 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21757 } 21758 21759 /* 21760 * Returns an estimate of the IPsec headers size. This is used if 21761 * we don't want to call into IPsec to get the exact size. 21762 */ 21763 int 21764 ipsec_out_extra_length(mblk_t *ipsec_mp) 21765 { 21766 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21767 ipsec_action_t *a; 21768 21769 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21770 if (!io->ipsec_out_secure) 21771 return (0); 21772 21773 a = io->ipsec_out_act; 21774 21775 if (a == NULL) { 21776 ASSERT(io->ipsec_out_policy != NULL); 21777 a = io->ipsec_out_policy->ipsp_act; 21778 } 21779 ASSERT(a != NULL); 21780 21781 return (a->ipa_ovhd); 21782 } 21783 21784 /* 21785 * Returns an estimate of the IPsec headers size. This is used if 21786 * we don't want to call into IPsec to get the exact size. 21787 */ 21788 int 21789 ipsec_in_extra_length(mblk_t *ipsec_mp) 21790 { 21791 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21792 ipsec_action_t *a; 21793 21794 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21795 21796 a = ii->ipsec_in_action; 21797 return (a == NULL ? 0 : a->ipa_ovhd); 21798 } 21799 21800 /* 21801 * If there are any source route options, return the true final 21802 * destination. Otherwise, return the destination. 21803 */ 21804 ipaddr_t 21805 ip_get_dst(ipha_t *ipha) 21806 { 21807 ipoptp_t opts; 21808 uchar_t *opt; 21809 uint8_t optval; 21810 uint8_t optlen; 21811 ipaddr_t dst; 21812 uint32_t off; 21813 21814 dst = ipha->ipha_dst; 21815 21816 if (IS_SIMPLE_IPH(ipha)) 21817 return (dst); 21818 21819 for (optval = ipoptp_first(&opts, ipha); 21820 optval != IPOPT_EOL; 21821 optval = ipoptp_next(&opts)) { 21822 opt = opts.ipoptp_cur; 21823 optlen = opts.ipoptp_len; 21824 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21825 switch (optval) { 21826 case IPOPT_SSRR: 21827 case IPOPT_LSRR: 21828 off = opt[IPOPT_OFFSET]; 21829 /* 21830 * If one of the conditions is true, it means 21831 * end of options and dst already has the right 21832 * value. 21833 */ 21834 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21835 off = optlen - IP_ADDR_LEN; 21836 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21837 } 21838 return (dst); 21839 default: 21840 break; 21841 } 21842 } 21843 21844 return (dst); 21845 } 21846 21847 mblk_t * 21848 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21849 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21850 { 21851 ipsec_out_t *io; 21852 mblk_t *first_mp; 21853 boolean_t policy_present; 21854 ip_stack_t *ipst; 21855 ipsec_stack_t *ipss; 21856 21857 ASSERT(ire != NULL); 21858 ipst = ire->ire_ipst; 21859 ipss = ipst->ips_netstack->netstack_ipsec; 21860 21861 first_mp = mp; 21862 if (mp->b_datap->db_type == M_CTL) { 21863 io = (ipsec_out_t *)first_mp->b_rptr; 21864 /* 21865 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21866 * 21867 * 1) There is per-socket policy (including cached global 21868 * policy) or a policy on the IP-in-IP tunnel. 21869 * 2) There is no per-socket policy, but it is 21870 * a multicast packet that needs to go out 21871 * on a specific interface. This is the case 21872 * where (ip_wput and ip_wput_multicast) attaches 21873 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21874 * 21875 * In case (2) we check with global policy to 21876 * see if there is a match and set the ill_index 21877 * appropriately so that we can lookup the ire 21878 * properly in ip_wput_ipsec_out. 21879 */ 21880 21881 /* 21882 * ipsec_out_use_global_policy is set to B_FALSE 21883 * in ipsec_in_to_out(). Refer to that function for 21884 * details. 21885 */ 21886 if ((io->ipsec_out_latch == NULL) && 21887 (io->ipsec_out_use_global_policy)) { 21888 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21889 ire, connp, unspec_src, zoneid)); 21890 } 21891 if (!io->ipsec_out_secure) { 21892 /* 21893 * If this is not a secure packet, drop 21894 * the IPSEC_OUT mp and treat it as a clear 21895 * packet. This happens when we are sending 21896 * a ICMP reply back to a clear packet. See 21897 * ipsec_in_to_out() for details. 21898 */ 21899 mp = first_mp->b_cont; 21900 freeb(first_mp); 21901 } 21902 return (mp); 21903 } 21904 /* 21905 * See whether we need to attach a global policy here. We 21906 * don't depend on the conn (as it could be null) for deciding 21907 * what policy this datagram should go through because it 21908 * should have happened in ip_wput if there was some 21909 * policy. This normally happens for connections which are not 21910 * fully bound preventing us from caching policies in 21911 * ip_bind. Packets coming from the TCP listener/global queue 21912 * - which are non-hard_bound - could also be affected by 21913 * applying policy here. 21914 * 21915 * If this packet is coming from tcp global queue or listener, 21916 * we will be applying policy here. This may not be *right* 21917 * if these packets are coming from the detached connection as 21918 * it could have gone in clear before. This happens only if a 21919 * TCP connection started when there is no policy and somebody 21920 * added policy before it became detached. Thus packets of the 21921 * detached connection could go out secure and the other end 21922 * would drop it because it will be expecting in clear. The 21923 * converse is not true i.e if somebody starts a TCP 21924 * connection and deletes the policy, all the packets will 21925 * still go out with the policy that existed before deleting 21926 * because ip_unbind sends up policy information which is used 21927 * by TCP on subsequent ip_wputs. The right solution is to fix 21928 * TCP to attach a dummy IPSEC_OUT and set 21929 * ipsec_out_use_global_policy to B_FALSE. As this might 21930 * affect performance for normal cases, we are not doing it. 21931 * Thus, set policy before starting any TCP connections. 21932 * 21933 * NOTE - We might apply policy even for a hard bound connection 21934 * - for which we cached policy in ip_bind - if somebody added 21935 * global policy after we inherited the policy in ip_bind. 21936 * This means that the packets that were going out in clear 21937 * previously would start going secure and hence get dropped 21938 * on the other side. To fix this, TCP attaches a dummy 21939 * ipsec_out and make sure that we don't apply global policy. 21940 */ 21941 if (ipha != NULL) 21942 policy_present = ipss->ipsec_outbound_v4_policy_present; 21943 else 21944 policy_present = ipss->ipsec_outbound_v6_policy_present; 21945 if (!policy_present) 21946 return (mp); 21947 21948 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21949 zoneid)); 21950 } 21951 21952 /* 21953 * This function does the ire_refrele of the ire passed in as the 21954 * argument. As this function looks up more ires i.e broadcast ires, 21955 * it needs to REFRELE them. Currently, for simplicity we don't 21956 * differentiate the one passed in and looked up here. We always 21957 * REFRELE. 21958 * IPQoS Notes: 21959 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21960 * IPsec packets are done in ipsec_out_process. 21961 */ 21962 void 21963 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21964 zoneid_t zoneid) 21965 { 21966 ipha_t *ipha; 21967 #define rptr ((uchar_t *)ipha) 21968 queue_t *stq; 21969 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21970 uint32_t v_hlen_tos_len; 21971 uint32_t ttl_protocol; 21972 ipaddr_t src; 21973 ipaddr_t dst; 21974 uint32_t cksum; 21975 ipaddr_t orig_src; 21976 ire_t *ire1; 21977 mblk_t *next_mp; 21978 uint_t hlen; 21979 uint16_t *up; 21980 uint32_t max_frag = ire->ire_max_frag; 21981 ill_t *ill = ire_to_ill(ire); 21982 int clusterwide; 21983 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21984 int ipsec_len; 21985 mblk_t *first_mp; 21986 ipsec_out_t *io; 21987 boolean_t conn_dontroute; /* conn value for multicast */ 21988 boolean_t conn_multicast_loop; /* conn value for multicast */ 21989 boolean_t multicast_forward; /* Should we forward ? */ 21990 boolean_t unspec_src; 21991 ill_t *conn_outgoing_ill = NULL; 21992 ill_t *ire_ill; 21993 ill_t *ire1_ill; 21994 ill_t *out_ill; 21995 uint32_t ill_index = 0; 21996 boolean_t multirt_send = B_FALSE; 21997 int err; 21998 ipxmit_state_t pktxmit_state; 21999 ip_stack_t *ipst = ire->ire_ipst; 22000 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22001 22002 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22003 "ip_wput_ire_start: q %p", q); 22004 22005 multicast_forward = B_FALSE; 22006 unspec_src = (connp != NULL && connp->conn_unspec_src); 22007 22008 if (ire->ire_flags & RTF_MULTIRT) { 22009 /* 22010 * Multirouting case. The bucket where ire is stored 22011 * probably holds other RTF_MULTIRT flagged ire 22012 * to the destination. In this call to ip_wput_ire, 22013 * we attempt to send the packet through all 22014 * those ires. Thus, we first ensure that ire is the 22015 * first RTF_MULTIRT ire in the bucket, 22016 * before walking the ire list. 22017 */ 22018 ire_t *first_ire; 22019 irb_t *irb = ire->ire_bucket; 22020 ASSERT(irb != NULL); 22021 22022 /* Make sure we do not omit any multiroute ire. */ 22023 IRB_REFHOLD(irb); 22024 for (first_ire = irb->irb_ire; 22025 first_ire != NULL; 22026 first_ire = first_ire->ire_next) { 22027 if ((first_ire->ire_flags & RTF_MULTIRT) && 22028 (first_ire->ire_addr == ire->ire_addr) && 22029 !(first_ire->ire_marks & 22030 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22031 break; 22032 } 22033 22034 if ((first_ire != NULL) && (first_ire != ire)) { 22035 IRE_REFHOLD(first_ire); 22036 ire_refrele(ire); 22037 ire = first_ire; 22038 ill = ire_to_ill(ire); 22039 } 22040 IRB_REFRELE(irb); 22041 } 22042 22043 /* 22044 * conn_outgoing_ill variable is used only in the broadcast loop. 22045 * for performance we don't grab the mutexs in the fastpath 22046 */ 22047 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22048 connp->conn_outgoing_ill != NULL) { 22049 conn_outgoing_ill = conn_get_held_ill(connp, 22050 &connp->conn_outgoing_ill, &err); 22051 if (err == ILL_LOOKUP_FAILED) { 22052 ire_refrele(ire); 22053 freemsg(mp); 22054 return; 22055 } 22056 } 22057 22058 if (mp->b_datap->db_type != M_CTL) { 22059 ipha = (ipha_t *)mp->b_rptr; 22060 } else { 22061 io = (ipsec_out_t *)mp->b_rptr; 22062 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22063 ASSERT(zoneid == io->ipsec_out_zoneid); 22064 ASSERT(zoneid != ALL_ZONES); 22065 ipha = (ipha_t *)mp->b_cont->b_rptr; 22066 dst = ipha->ipha_dst; 22067 /* 22068 * For the multicast case, ipsec_out carries conn_dontroute and 22069 * conn_multicast_loop as conn may not be available here. We 22070 * need this for multicast loopback and forwarding which is done 22071 * later in the code. 22072 */ 22073 if (CLASSD(dst)) { 22074 conn_dontroute = io->ipsec_out_dontroute; 22075 conn_multicast_loop = io->ipsec_out_multicast_loop; 22076 /* 22077 * If conn_dontroute is not set or conn_multicast_loop 22078 * is set, we need to do forwarding/loopback. For 22079 * datagrams from ip_wput_multicast, conn_dontroute is 22080 * set to B_TRUE and conn_multicast_loop is set to 22081 * B_FALSE so that we neither do forwarding nor 22082 * loopback. 22083 */ 22084 if (!conn_dontroute || conn_multicast_loop) 22085 multicast_forward = B_TRUE; 22086 } 22087 } 22088 22089 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22090 ire->ire_zoneid != ALL_ZONES) { 22091 /* 22092 * When a zone sends a packet to another zone, we try to deliver 22093 * the packet under the same conditions as if the destination 22094 * was a real node on the network. To do so, we look for a 22095 * matching route in the forwarding table. 22096 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22097 * ip_newroute() does. 22098 * Note that IRE_LOCAL are special, since they are used 22099 * when the zoneid doesn't match in some cases. This means that 22100 * we need to handle ipha_src differently since ire_src_addr 22101 * belongs to the receiving zone instead of the sending zone. 22102 * When ip_restrict_interzone_loopback is set, then 22103 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22104 * for loopback between zones when the logical "Ethernet" would 22105 * have looped them back. 22106 */ 22107 ire_t *src_ire; 22108 22109 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22110 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22111 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22112 if (src_ire != NULL && 22113 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22114 (!ipst->ips_ip_restrict_interzone_loopback || 22115 ire_local_same_lan(ire, src_ire))) { 22116 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22117 ipha->ipha_src = src_ire->ire_src_addr; 22118 ire_refrele(src_ire); 22119 } else { 22120 ire_refrele(ire); 22121 if (conn_outgoing_ill != NULL) 22122 ill_refrele(conn_outgoing_ill); 22123 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22124 if (src_ire != NULL) { 22125 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22126 ire_refrele(src_ire); 22127 freemsg(mp); 22128 return; 22129 } 22130 ire_refrele(src_ire); 22131 } 22132 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22133 /* Failed */ 22134 freemsg(mp); 22135 return; 22136 } 22137 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22138 ipst); 22139 return; 22140 } 22141 } 22142 22143 if (mp->b_datap->db_type == M_CTL || 22144 ipss->ipsec_outbound_v4_policy_present) { 22145 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22146 unspec_src, zoneid); 22147 if (mp == NULL) { 22148 ire_refrele(ire); 22149 if (conn_outgoing_ill != NULL) 22150 ill_refrele(conn_outgoing_ill); 22151 return; 22152 } 22153 /* 22154 * Trusted Extensions supports all-zones interfaces, so 22155 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22156 * the global zone. 22157 */ 22158 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22159 io = (ipsec_out_t *)mp->b_rptr; 22160 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22161 zoneid = io->ipsec_out_zoneid; 22162 } 22163 } 22164 22165 first_mp = mp; 22166 ipsec_len = 0; 22167 22168 if (first_mp->b_datap->db_type == M_CTL) { 22169 io = (ipsec_out_t *)first_mp->b_rptr; 22170 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22171 mp = first_mp->b_cont; 22172 ipsec_len = ipsec_out_extra_length(first_mp); 22173 ASSERT(ipsec_len >= 0); 22174 /* We already picked up the zoneid from the M_CTL above */ 22175 ASSERT(zoneid == io->ipsec_out_zoneid); 22176 ASSERT(zoneid != ALL_ZONES); 22177 22178 /* 22179 * Drop M_CTL here if IPsec processing is not needed. 22180 * (Non-IPsec use of M_CTL extracted any information it 22181 * needed above). 22182 */ 22183 if (ipsec_len == 0) { 22184 freeb(first_mp); 22185 first_mp = mp; 22186 } 22187 } 22188 22189 /* 22190 * Fast path for ip_wput_ire 22191 */ 22192 22193 ipha = (ipha_t *)mp->b_rptr; 22194 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22195 dst = ipha->ipha_dst; 22196 22197 /* 22198 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22199 * if the socket is a SOCK_RAW type. The transport checksum should 22200 * be provided in the pre-built packet, so we don't need to compute it. 22201 * Also, other application set flags, like DF, should not be altered. 22202 * Other transport MUST pass down zero. 22203 */ 22204 ip_hdr_included = ipha->ipha_ident; 22205 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22206 22207 if (CLASSD(dst)) { 22208 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22209 ntohl(dst), 22210 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22211 ntohl(ire->ire_addr))); 22212 } 22213 22214 /* Macros to extract header fields from data already in registers */ 22215 #ifdef _BIG_ENDIAN 22216 #define V_HLEN (v_hlen_tos_len >> 24) 22217 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22218 #define PROTO (ttl_protocol & 0xFF) 22219 #else 22220 #define V_HLEN (v_hlen_tos_len & 0xFF) 22221 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22222 #define PROTO (ttl_protocol >> 8) 22223 #endif 22224 22225 orig_src = src = ipha->ipha_src; 22226 /* (The loop back to "another" is explained down below.) */ 22227 another:; 22228 /* 22229 * Assign an ident value for this packet. We assign idents on 22230 * a per destination basis out of the IRE. There could be 22231 * other threads targeting the same destination, so we have to 22232 * arrange for a atomic increment. Note that we use a 32-bit 22233 * atomic add because it has better performance than its 22234 * 16-bit sibling. 22235 * 22236 * If running in cluster mode and if the source address 22237 * belongs to a replicated service then vector through 22238 * cl_inet_ipident vector to allocate ip identifier 22239 * NOTE: This is a contract private interface with the 22240 * clustering group. 22241 */ 22242 clusterwide = 0; 22243 if (cl_inet_ipident) { 22244 ASSERT(cl_inet_isclusterwide); 22245 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22246 22247 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22248 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22249 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22250 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22251 (uint8_t *)(uintptr_t)dst, NULL); 22252 clusterwide = 1; 22253 } 22254 } 22255 if (!clusterwide) { 22256 ipha->ipha_ident = 22257 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22258 } 22259 22260 #ifndef _BIG_ENDIAN 22261 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22262 #endif 22263 22264 /* 22265 * Set source address unless sent on an ill or conn_unspec_src is set. 22266 * This is needed to obey conn_unspec_src when packets go through 22267 * ip_newroute + arp. 22268 * Assumes ip_newroute{,_multi} sets the source address as well. 22269 */ 22270 if (src == INADDR_ANY && !unspec_src) { 22271 /* 22272 * Assign the appropriate source address from the IRE if none 22273 * was specified. 22274 */ 22275 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22276 22277 src = ire->ire_src_addr; 22278 if (connp == NULL) { 22279 ip1dbg(("ip_wput_ire: no connp and no src " 22280 "address for dst 0x%x, using src 0x%x\n", 22281 ntohl(dst), 22282 ntohl(src))); 22283 } 22284 ipha->ipha_src = src; 22285 } 22286 stq = ire->ire_stq; 22287 22288 /* 22289 * We only allow ire chains for broadcasts since there will 22290 * be multiple IRE_CACHE entries for the same multicast 22291 * address (one per ipif). 22292 */ 22293 next_mp = NULL; 22294 22295 /* broadcast packet */ 22296 if (ire->ire_type == IRE_BROADCAST) 22297 goto broadcast; 22298 22299 /* loopback ? */ 22300 if (stq == NULL) 22301 goto nullstq; 22302 22303 /* The ill_index for outbound ILL */ 22304 ill_index = Q_TO_INDEX(stq); 22305 22306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22307 ttl_protocol = ((uint16_t *)ipha)[4]; 22308 22309 /* pseudo checksum (do it in parts for IP header checksum) */ 22310 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22311 22312 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22313 queue_t *dev_q = stq->q_next; 22314 22315 /* 22316 * For DIRECT_CAPABLE, we do flow control at 22317 * the time of sending the packet. See 22318 * ILL_SEND_TX(). 22319 */ 22320 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22321 (DEV_Q_FLOW_BLOCKED(dev_q))) 22322 goto blocked; 22323 22324 if ((PROTO == IPPROTO_UDP) && 22325 (ip_hdr_included != IP_HDR_INCLUDED)) { 22326 hlen = (V_HLEN & 0xF) << 2; 22327 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22328 if (*up != 0) { 22329 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22330 hlen, LENGTH, max_frag, ipsec_len, cksum); 22331 /* Software checksum? */ 22332 if (DB_CKSUMFLAGS(mp) == 0) { 22333 IP_STAT(ipst, ip_out_sw_cksum); 22334 IP_STAT_UPDATE(ipst, 22335 ip_udp_out_sw_cksum_bytes, 22336 LENGTH - hlen); 22337 } 22338 } 22339 } 22340 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22341 hlen = (V_HLEN & 0xF) << 2; 22342 if (PROTO == IPPROTO_TCP) { 22343 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22344 /* 22345 * The packet header is processed once and for all, even 22346 * in the multirouting case. We disable hardware 22347 * checksum if the packet is multirouted, as it will be 22348 * replicated via several interfaces, and not all of 22349 * them may have this capability. 22350 */ 22351 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22352 LENGTH, max_frag, ipsec_len, cksum); 22353 /* Software checksum? */ 22354 if (DB_CKSUMFLAGS(mp) == 0) { 22355 IP_STAT(ipst, ip_out_sw_cksum); 22356 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22357 LENGTH - hlen); 22358 } 22359 } else { 22360 sctp_hdr_t *sctph; 22361 22362 ASSERT(PROTO == IPPROTO_SCTP); 22363 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22364 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22365 /* 22366 * Zero out the checksum field to ensure proper 22367 * checksum calculation. 22368 */ 22369 sctph->sh_chksum = 0; 22370 #ifdef DEBUG 22371 if (!skip_sctp_cksum) 22372 #endif 22373 sctph->sh_chksum = sctp_cksum(mp, hlen); 22374 } 22375 } 22376 22377 /* 22378 * If this is a multicast packet and originated from ip_wput 22379 * we need to do loopback and forwarding checks. If it comes 22380 * from ip_wput_multicast, we SHOULD not do this. 22381 */ 22382 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22383 22384 /* checksum */ 22385 cksum += ttl_protocol; 22386 22387 /* fragment the packet */ 22388 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22389 goto fragmentit; 22390 /* 22391 * Don't use frag_flag if packet is pre-built or source 22392 * routed or if multicast (since multicast packets do 22393 * not solicit ICMP "packet too big" messages). 22394 */ 22395 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22396 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22397 !ip_source_route_included(ipha)) && 22398 !CLASSD(ipha->ipha_dst)) 22399 ipha->ipha_fragment_offset_and_flags |= 22400 htons(ire->ire_frag_flag); 22401 22402 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22403 /* calculate IP header checksum */ 22404 cksum += ipha->ipha_ident; 22405 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22406 cksum += ipha->ipha_fragment_offset_and_flags; 22407 22408 /* IP options present */ 22409 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22410 if (hlen) 22411 goto checksumoptions; 22412 22413 /* calculate hdr checksum */ 22414 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22415 cksum = ~(cksum + (cksum >> 16)); 22416 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22417 } 22418 if (ipsec_len != 0) { 22419 /* 22420 * We will do the rest of the processing after 22421 * we come back from IPsec in ip_wput_ipsec_out(). 22422 */ 22423 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22424 22425 io = (ipsec_out_t *)first_mp->b_rptr; 22426 io->ipsec_out_ill_index = 22427 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22428 ipsec_out_process(q, first_mp, ire, 0); 22429 ire_refrele(ire); 22430 if (conn_outgoing_ill != NULL) 22431 ill_refrele(conn_outgoing_ill); 22432 return; 22433 } 22434 22435 /* 22436 * In most cases, the emission loop below is entered only 22437 * once. Only in the case where the ire holds the 22438 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22439 * flagged ires in the bucket, and send the packet 22440 * through all crossed RTF_MULTIRT routes. 22441 */ 22442 if (ire->ire_flags & RTF_MULTIRT) { 22443 multirt_send = B_TRUE; 22444 } 22445 do { 22446 if (multirt_send) { 22447 irb_t *irb; 22448 /* 22449 * We are in a multiple send case, need to get 22450 * the next ire and make a duplicate of the packet. 22451 * ire1 holds here the next ire to process in the 22452 * bucket. If multirouting is expected, 22453 * any non-RTF_MULTIRT ire that has the 22454 * right destination address is ignored. 22455 */ 22456 irb = ire->ire_bucket; 22457 ASSERT(irb != NULL); 22458 22459 IRB_REFHOLD(irb); 22460 for (ire1 = ire->ire_next; 22461 ire1 != NULL; 22462 ire1 = ire1->ire_next) { 22463 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22464 continue; 22465 if (ire1->ire_addr != ire->ire_addr) 22466 continue; 22467 if (ire1->ire_marks & 22468 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22469 continue; 22470 22471 /* Got one */ 22472 IRE_REFHOLD(ire1); 22473 break; 22474 } 22475 IRB_REFRELE(irb); 22476 22477 if (ire1 != NULL) { 22478 next_mp = copyb(mp); 22479 if ((next_mp == NULL) || 22480 ((mp->b_cont != NULL) && 22481 ((next_mp->b_cont = 22482 dupmsg(mp->b_cont)) == NULL))) { 22483 freemsg(next_mp); 22484 next_mp = NULL; 22485 ire_refrele(ire1); 22486 ire1 = NULL; 22487 } 22488 } 22489 22490 /* Last multiroute ire; don't loop anymore. */ 22491 if (ire1 == NULL) { 22492 multirt_send = B_FALSE; 22493 } 22494 } 22495 22496 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22497 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22498 mblk_t *, mp); 22499 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22500 ipst->ips_ipv4firewall_physical_out, 22501 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22502 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22503 22504 if (mp == NULL) 22505 goto release_ire_and_ill; 22506 22507 if (ipst->ips_ip4_observe.he_interested) { 22508 zoneid_t szone; 22509 22510 /* 22511 * On the outbound path the destination zone will be 22512 * unknown as we're sending this packet out on the 22513 * wire. 22514 */ 22515 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22516 ALL_ZONES); 22517 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22518 ire->ire_ipif->ipif_ill, ipst); 22519 } 22520 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22521 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22522 22523 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22524 22525 if ((pktxmit_state == SEND_FAILED) || 22526 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22527 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22528 "- packet dropped\n")); 22529 release_ire_and_ill: 22530 ire_refrele(ire); 22531 if (next_mp != NULL) { 22532 freemsg(next_mp); 22533 ire_refrele(ire1); 22534 } 22535 if (conn_outgoing_ill != NULL) 22536 ill_refrele(conn_outgoing_ill); 22537 return; 22538 } 22539 22540 if (CLASSD(dst)) { 22541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22542 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22543 LENGTH); 22544 } 22545 22546 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22547 "ip_wput_ire_end: q %p (%S)", 22548 q, "last copy out"); 22549 IRE_REFRELE(ire); 22550 22551 if (multirt_send) { 22552 ASSERT(ire1); 22553 /* 22554 * Proceed with the next RTF_MULTIRT ire, 22555 * Also set up the send-to queue accordingly. 22556 */ 22557 ire = ire1; 22558 ire1 = NULL; 22559 stq = ire->ire_stq; 22560 mp = next_mp; 22561 next_mp = NULL; 22562 ipha = (ipha_t *)mp->b_rptr; 22563 ill_index = Q_TO_INDEX(stq); 22564 ill = (ill_t *)stq->q_ptr; 22565 } 22566 } while (multirt_send); 22567 if (conn_outgoing_ill != NULL) 22568 ill_refrele(conn_outgoing_ill); 22569 return; 22570 22571 /* 22572 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22573 */ 22574 broadcast: 22575 { 22576 /* 22577 * To avoid broadcast storms, we usually set the TTL to 1 for 22578 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22579 * can be overridden stack-wide through the ip_broadcast_ttl 22580 * ndd tunable, or on a per-connection basis through the 22581 * IP_BROADCAST_TTL socket option. 22582 * 22583 * In the event that we are replying to incoming ICMP packets, 22584 * connp could be NULL. 22585 */ 22586 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22587 if (connp != NULL) { 22588 if (connp->conn_dontroute) 22589 ipha->ipha_ttl = 1; 22590 else if (connp->conn_broadcast_ttl != 0) 22591 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22592 } 22593 22594 /* 22595 * Note that we are not doing a IRB_REFHOLD here. 22596 * Actually we don't care if the list changes i.e 22597 * if somebody deletes an IRE from the list while 22598 * we drop the lock, the next time we come around 22599 * ire_next will be NULL and hence we won't send 22600 * out multiple copies which is fine. 22601 */ 22602 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22603 ire1 = ire->ire_next; 22604 if (conn_outgoing_ill != NULL) { 22605 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22606 ASSERT(ire1 == ire->ire_next); 22607 if (ire1 != NULL && ire1->ire_addr == dst) { 22608 ire_refrele(ire); 22609 ire = ire1; 22610 IRE_REFHOLD(ire); 22611 ire1 = ire->ire_next; 22612 continue; 22613 } 22614 rw_exit(&ire->ire_bucket->irb_lock); 22615 /* Did not find a matching ill */ 22616 ip1dbg(("ip_wput_ire: broadcast with no " 22617 "matching IP_BOUND_IF ill %s dst %x\n", 22618 conn_outgoing_ill->ill_name, dst)); 22619 freemsg(first_mp); 22620 if (ire != NULL) 22621 ire_refrele(ire); 22622 ill_refrele(conn_outgoing_ill); 22623 return; 22624 } 22625 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22626 /* 22627 * If the next IRE has the same address and is not one 22628 * of the two copies that we need to send, try to see 22629 * whether this copy should be sent at all. This 22630 * assumes that we insert loopbacks first and then 22631 * non-loopbacks. This is acheived by inserting the 22632 * loopback always before non-loopback. 22633 * This is used to send a single copy of a broadcast 22634 * packet out all physical interfaces that have an 22635 * matching IRE_BROADCAST while also looping 22636 * back one copy (to ip_wput_local) for each 22637 * matching physical interface. However, we avoid 22638 * sending packets out different logical that match by 22639 * having ipif_up/ipif_down supress duplicate 22640 * IRE_BROADCASTS. 22641 * 22642 * This feature is currently used to get broadcasts 22643 * sent to multiple interfaces, when the broadcast 22644 * address being used applies to multiple interfaces. 22645 * For example, a whole net broadcast will be 22646 * replicated on every connected subnet of 22647 * the target net. 22648 * 22649 * Each zone has its own set of IRE_BROADCASTs, so that 22650 * we're able to distribute inbound packets to multiple 22651 * zones who share a broadcast address. We avoid looping 22652 * back outbound packets in different zones but on the 22653 * same ill, as the application would see duplicates. 22654 * 22655 * This logic assumes that ire_add_v4() groups the 22656 * IRE_BROADCAST entries so that those with the same 22657 * ire_addr are kept together. 22658 */ 22659 ire_ill = ire->ire_ipif->ipif_ill; 22660 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22661 while (ire1 != NULL && ire1->ire_addr == dst) { 22662 ire1_ill = ire1->ire_ipif->ipif_ill; 22663 if (ire1_ill != ire_ill) 22664 break; 22665 ire1 = ire1->ire_next; 22666 } 22667 } 22668 } 22669 ASSERT(multirt_send == B_FALSE); 22670 if (ire1 != NULL && ire1->ire_addr == dst) { 22671 if ((ire->ire_flags & RTF_MULTIRT) && 22672 (ire1->ire_flags & RTF_MULTIRT)) { 22673 /* 22674 * We are in the multirouting case. 22675 * The message must be sent at least 22676 * on both ires. These ires have been 22677 * inserted AFTER the standard ones 22678 * in ip_rt_add(). There are thus no 22679 * other ire entries for the destination 22680 * address in the rest of the bucket 22681 * that do not have the RTF_MULTIRT 22682 * flag. We don't process a copy 22683 * of the message here. This will be 22684 * done in the final sending loop. 22685 */ 22686 multirt_send = B_TRUE; 22687 } else { 22688 next_mp = ip_copymsg(first_mp); 22689 if (next_mp != NULL) 22690 IRE_REFHOLD(ire1); 22691 } 22692 } 22693 rw_exit(&ire->ire_bucket->irb_lock); 22694 } 22695 22696 if (stq) { 22697 /* 22698 * A non-NULL send-to queue means this packet is going 22699 * out of this machine. 22700 */ 22701 out_ill = (ill_t *)stq->q_ptr; 22702 22703 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22704 ttl_protocol = ((uint16_t *)ipha)[4]; 22705 /* 22706 * We accumulate the pseudo header checksum in cksum. 22707 * This is pretty hairy code, so watch close. One 22708 * thing to keep in mind is that UDP and TCP have 22709 * stored their respective datagram lengths in their 22710 * checksum fields. This lines things up real nice. 22711 */ 22712 cksum = (dst >> 16) + (dst & 0xFFFF) + 22713 (src >> 16) + (src & 0xFFFF); 22714 /* 22715 * We assume the udp checksum field contains the 22716 * length, so to compute the pseudo header checksum, 22717 * all we need is the protocol number and src/dst. 22718 */ 22719 /* Provide the checksums for UDP and TCP. */ 22720 if ((PROTO == IPPROTO_TCP) && 22721 (ip_hdr_included != IP_HDR_INCLUDED)) { 22722 /* hlen gets the number of uchar_ts in the IP header */ 22723 hlen = (V_HLEN & 0xF) << 2; 22724 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22725 IP_STAT(ipst, ip_out_sw_cksum); 22726 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22727 LENGTH - hlen); 22728 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22729 } else if (PROTO == IPPROTO_SCTP && 22730 (ip_hdr_included != IP_HDR_INCLUDED)) { 22731 sctp_hdr_t *sctph; 22732 22733 hlen = (V_HLEN & 0xF) << 2; 22734 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22735 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22736 sctph->sh_chksum = 0; 22737 #ifdef DEBUG 22738 if (!skip_sctp_cksum) 22739 #endif 22740 sctph->sh_chksum = sctp_cksum(mp, hlen); 22741 } else { 22742 queue_t *dev_q = stq->q_next; 22743 22744 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22745 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22746 blocked: 22747 ipha->ipha_ident = ip_hdr_included; 22748 /* 22749 * If we don't have a conn to apply 22750 * backpressure, free the message. 22751 * In the ire_send path, we don't know 22752 * the position to requeue the packet. Rather 22753 * than reorder packets, we just drop this 22754 * packet. 22755 */ 22756 if (ipst->ips_ip_output_queue && 22757 connp != NULL && 22758 caller != IRE_SEND) { 22759 if (caller == IP_WSRV) { 22760 idl_tx_list_t *idl_txl; 22761 22762 idl_txl = 22763 &ipst->ips_idl_tx_list[0]; 22764 connp->conn_did_putbq = 1; 22765 (void) putbq(connp->conn_wq, 22766 first_mp); 22767 conn_drain_insert(connp, 22768 idl_txl); 22769 /* 22770 * This is the service thread, 22771 * and the queue is already 22772 * noenabled. The check for 22773 * canput and the putbq is not 22774 * atomic. So we need to check 22775 * again. 22776 */ 22777 if (canput(stq->q_next)) 22778 connp->conn_did_putbq 22779 = 0; 22780 IP_STAT(ipst, ip_conn_flputbq); 22781 } else { 22782 /* 22783 * We are not the service proc. 22784 * ip_wsrv will be scheduled or 22785 * is already running. 22786 */ 22787 22788 (void) putq(connp->conn_wq, 22789 first_mp); 22790 } 22791 } else { 22792 out_ill = (ill_t *)stq->q_ptr; 22793 BUMP_MIB(out_ill->ill_ip_mib, 22794 ipIfStatsOutDiscards); 22795 freemsg(first_mp); 22796 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22797 "ip_wput_ire_end: q %p (%S)", 22798 q, "discard"); 22799 } 22800 ire_refrele(ire); 22801 if (next_mp) { 22802 ire_refrele(ire1); 22803 freemsg(next_mp); 22804 } 22805 if (conn_outgoing_ill != NULL) 22806 ill_refrele(conn_outgoing_ill); 22807 return; 22808 } 22809 if ((PROTO == IPPROTO_UDP) && 22810 (ip_hdr_included != IP_HDR_INCLUDED)) { 22811 /* 22812 * hlen gets the number of uchar_ts in the 22813 * IP header 22814 */ 22815 hlen = (V_HLEN & 0xF) << 2; 22816 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22817 max_frag = ire->ire_max_frag; 22818 if (*up != 0) { 22819 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22820 up, PROTO, hlen, LENGTH, max_frag, 22821 ipsec_len, cksum); 22822 /* Software checksum? */ 22823 if (DB_CKSUMFLAGS(mp) == 0) { 22824 IP_STAT(ipst, ip_out_sw_cksum); 22825 IP_STAT_UPDATE(ipst, 22826 ip_udp_out_sw_cksum_bytes, 22827 LENGTH - hlen); 22828 } 22829 } 22830 } 22831 } 22832 /* 22833 * Need to do this even when fragmenting. The local 22834 * loopback can be done without computing checksums 22835 * but forwarding out other interface must be done 22836 * after the IP checksum (and ULP checksums) have been 22837 * computed. 22838 * 22839 * NOTE : multicast_forward is set only if this packet 22840 * originated from ip_wput. For packets originating from 22841 * ip_wput_multicast, it is not set. 22842 */ 22843 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22844 multi_loopback: 22845 ip2dbg(("ip_wput: multicast, loop %d\n", 22846 conn_multicast_loop)); 22847 22848 /* Forget header checksum offload */ 22849 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22850 22851 /* 22852 * Local loopback of multicasts? Check the 22853 * ill. 22854 * 22855 * Note that the loopback function will not come 22856 * in through ip_rput - it will only do the 22857 * client fanout thus we need to do an mforward 22858 * as well. The is different from the BSD 22859 * logic. 22860 */ 22861 if (ill != NULL) { 22862 if (ilm_lookup_ill(ill, ipha->ipha_dst, 22863 ALL_ZONES) != NULL) { 22864 /* 22865 * Pass along the virtual output q. 22866 * ip_wput_local() will distribute the 22867 * packet to all the matching zones, 22868 * except the sending zone when 22869 * IP_MULTICAST_LOOP is false. 22870 */ 22871 ip_multicast_loopback(q, ill, first_mp, 22872 conn_multicast_loop ? 0 : 22873 IP_FF_NO_MCAST_LOOP, zoneid); 22874 } 22875 } 22876 if (ipha->ipha_ttl == 0) { 22877 /* 22878 * 0 => only to this host i.e. we are 22879 * done. We are also done if this was the 22880 * loopback interface since it is sufficient 22881 * to loopback one copy of a multicast packet. 22882 */ 22883 freemsg(first_mp); 22884 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22885 "ip_wput_ire_end: q %p (%S)", 22886 q, "loopback"); 22887 ire_refrele(ire); 22888 if (conn_outgoing_ill != NULL) 22889 ill_refrele(conn_outgoing_ill); 22890 return; 22891 } 22892 /* 22893 * ILLF_MULTICAST is checked in ip_newroute 22894 * i.e. we don't need to check it here since 22895 * all IRE_CACHEs come from ip_newroute. 22896 * For multicast traffic, SO_DONTROUTE is interpreted 22897 * to mean only send the packet out the interface 22898 * (optionally specified with IP_MULTICAST_IF) 22899 * and do not forward it out additional interfaces. 22900 * RSVP and the rsvp daemon is an example of a 22901 * protocol and user level process that 22902 * handles it's own routing. Hence, it uses the 22903 * SO_DONTROUTE option to accomplish this. 22904 */ 22905 22906 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22907 ill != NULL) { 22908 /* Unconditionally redo the checksum */ 22909 ipha->ipha_hdr_checksum = 0; 22910 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22911 22912 /* 22913 * If this needs to go out secure, we need 22914 * to wait till we finish the IPsec 22915 * processing. 22916 */ 22917 if (ipsec_len == 0 && 22918 ip_mforward(ill, ipha, mp)) { 22919 freemsg(first_mp); 22920 ip1dbg(("ip_wput: mforward failed\n")); 22921 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22922 "ip_wput_ire_end: q %p (%S)", 22923 q, "mforward failed"); 22924 ire_refrele(ire); 22925 if (conn_outgoing_ill != NULL) 22926 ill_refrele(conn_outgoing_ill); 22927 return; 22928 } 22929 } 22930 } 22931 max_frag = ire->ire_max_frag; 22932 cksum += ttl_protocol; 22933 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22934 /* No fragmentation required for this one. */ 22935 /* 22936 * Don't use frag_flag if packet is pre-built or source 22937 * routed or if multicast (since multicast packets do 22938 * not solicit ICMP "packet too big" messages). 22939 */ 22940 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22941 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22942 !ip_source_route_included(ipha)) && 22943 !CLASSD(ipha->ipha_dst)) 22944 ipha->ipha_fragment_offset_and_flags |= 22945 htons(ire->ire_frag_flag); 22946 22947 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22948 /* Complete the IP header checksum. */ 22949 cksum += ipha->ipha_ident; 22950 cksum += (v_hlen_tos_len >> 16)+ 22951 (v_hlen_tos_len & 0xFFFF); 22952 cksum += ipha->ipha_fragment_offset_and_flags; 22953 hlen = (V_HLEN & 0xF) - 22954 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22955 if (hlen) { 22956 checksumoptions: 22957 /* 22958 * Account for the IP Options in the IP 22959 * header checksum. 22960 */ 22961 up = (uint16_t *)(rptr+ 22962 IP_SIMPLE_HDR_LENGTH); 22963 do { 22964 cksum += up[0]; 22965 cksum += up[1]; 22966 up += 2; 22967 } while (--hlen); 22968 } 22969 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22970 cksum = ~(cksum + (cksum >> 16)); 22971 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22972 } 22973 if (ipsec_len != 0) { 22974 ipsec_out_process(q, first_mp, ire, ill_index); 22975 if (!next_mp) { 22976 ire_refrele(ire); 22977 if (conn_outgoing_ill != NULL) 22978 ill_refrele(conn_outgoing_ill); 22979 return; 22980 } 22981 goto next; 22982 } 22983 22984 /* 22985 * multirt_send has already been handled 22986 * for broadcast, but not yet for multicast 22987 * or IP options. 22988 */ 22989 if (next_mp == NULL) { 22990 if (ire->ire_flags & RTF_MULTIRT) { 22991 multirt_send = B_TRUE; 22992 } 22993 } 22994 22995 /* 22996 * In most cases, the emission loop below is 22997 * entered only once. Only in the case where 22998 * the ire holds the RTF_MULTIRT flag, do we loop 22999 * to process all RTF_MULTIRT ires in the bucket, 23000 * and send the packet through all crossed 23001 * RTF_MULTIRT routes. 23002 */ 23003 do { 23004 if (multirt_send) { 23005 irb_t *irb; 23006 23007 irb = ire->ire_bucket; 23008 ASSERT(irb != NULL); 23009 /* 23010 * We are in a multiple send case, 23011 * need to get the next IRE and make 23012 * a duplicate of the packet. 23013 */ 23014 IRB_REFHOLD(irb); 23015 for (ire1 = ire->ire_next; 23016 ire1 != NULL; 23017 ire1 = ire1->ire_next) { 23018 if (!(ire1->ire_flags & 23019 RTF_MULTIRT)) 23020 continue; 23021 23022 if (ire1->ire_addr != 23023 ire->ire_addr) 23024 continue; 23025 23026 if (ire1->ire_marks & 23027 (IRE_MARK_CONDEMNED | 23028 IRE_MARK_TESTHIDDEN)) 23029 continue; 23030 23031 /* Got one */ 23032 IRE_REFHOLD(ire1); 23033 break; 23034 } 23035 IRB_REFRELE(irb); 23036 23037 if (ire1 != NULL) { 23038 next_mp = copyb(mp); 23039 if ((next_mp == NULL) || 23040 ((mp->b_cont != NULL) && 23041 ((next_mp->b_cont = 23042 dupmsg(mp->b_cont)) 23043 == NULL))) { 23044 freemsg(next_mp); 23045 next_mp = NULL; 23046 ire_refrele(ire1); 23047 ire1 = NULL; 23048 } 23049 } 23050 23051 /* 23052 * Last multiroute ire; don't loop 23053 * anymore. The emission is over 23054 * and next_mp is NULL. 23055 */ 23056 if (ire1 == NULL) { 23057 multirt_send = B_FALSE; 23058 } 23059 } 23060 23061 out_ill = ire_to_ill(ire); 23062 DTRACE_PROBE4(ip4__physical__out__start, 23063 ill_t *, NULL, 23064 ill_t *, out_ill, 23065 ipha_t *, ipha, mblk_t *, mp); 23066 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23067 ipst->ips_ipv4firewall_physical_out, 23068 NULL, out_ill, ipha, mp, mp, 0, ipst); 23069 DTRACE_PROBE1(ip4__physical__out__end, 23070 mblk_t *, mp); 23071 if (mp == NULL) 23072 goto release_ire_and_ill_2; 23073 23074 ASSERT(ipsec_len == 0); 23075 mp->b_prev = 23076 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23077 DTRACE_PROBE2(ip__xmit__2, 23078 mblk_t *, mp, ire_t *, ire); 23079 pktxmit_state = ip_xmit_v4(mp, ire, 23080 NULL, B_TRUE, connp); 23081 if ((pktxmit_state == SEND_FAILED) || 23082 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23083 release_ire_and_ill_2: 23084 if (next_mp) { 23085 freemsg(next_mp); 23086 ire_refrele(ire1); 23087 } 23088 ire_refrele(ire); 23089 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23090 "ip_wput_ire_end: q %p (%S)", 23091 q, "discard MDATA"); 23092 if (conn_outgoing_ill != NULL) 23093 ill_refrele(conn_outgoing_ill); 23094 return; 23095 } 23096 23097 if (CLASSD(dst)) { 23098 BUMP_MIB(out_ill->ill_ip_mib, 23099 ipIfStatsHCOutMcastPkts); 23100 UPDATE_MIB(out_ill->ill_ip_mib, 23101 ipIfStatsHCOutMcastOctets, 23102 LENGTH); 23103 } else if (ire->ire_type == IRE_BROADCAST) { 23104 BUMP_MIB(out_ill->ill_ip_mib, 23105 ipIfStatsHCOutBcastPkts); 23106 } 23107 23108 if (multirt_send) { 23109 /* 23110 * We are in a multiple send case, 23111 * need to re-enter the sending loop 23112 * using the next ire. 23113 */ 23114 ire_refrele(ire); 23115 ire = ire1; 23116 stq = ire->ire_stq; 23117 mp = next_mp; 23118 next_mp = NULL; 23119 ipha = (ipha_t *)mp->b_rptr; 23120 ill_index = Q_TO_INDEX(stq); 23121 } 23122 } while (multirt_send); 23123 23124 if (!next_mp) { 23125 /* 23126 * Last copy going out (the ultra-common 23127 * case). Note that we intentionally replicate 23128 * the putnext rather than calling it before 23129 * the next_mp check in hopes of a little 23130 * tail-call action out of the compiler. 23131 */ 23132 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23133 "ip_wput_ire_end: q %p (%S)", 23134 q, "last copy out(1)"); 23135 ire_refrele(ire); 23136 if (conn_outgoing_ill != NULL) 23137 ill_refrele(conn_outgoing_ill); 23138 return; 23139 } 23140 /* More copies going out below. */ 23141 } else { 23142 int offset; 23143 fragmentit: 23144 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23145 /* 23146 * If this would generate a icmp_frag_needed message, 23147 * we need to handle it before we do the IPsec 23148 * processing. Otherwise, we need to strip the IPsec 23149 * headers before we send up the message to the ULPs 23150 * which becomes messy and difficult. 23151 */ 23152 if (ipsec_len != 0) { 23153 if ((max_frag < (unsigned int)(LENGTH + 23154 ipsec_len)) && (offset & IPH_DF)) { 23155 out_ill = (ill_t *)stq->q_ptr; 23156 BUMP_MIB(out_ill->ill_ip_mib, 23157 ipIfStatsOutFragFails); 23158 BUMP_MIB(out_ill->ill_ip_mib, 23159 ipIfStatsOutFragReqds); 23160 ipha->ipha_hdr_checksum = 0; 23161 ipha->ipha_hdr_checksum = 23162 (uint16_t)ip_csum_hdr(ipha); 23163 icmp_frag_needed(ire->ire_stq, first_mp, 23164 max_frag, zoneid, ipst); 23165 if (!next_mp) { 23166 ire_refrele(ire); 23167 if (conn_outgoing_ill != NULL) { 23168 ill_refrele( 23169 conn_outgoing_ill); 23170 } 23171 return; 23172 } 23173 } else { 23174 /* 23175 * This won't cause a icmp_frag_needed 23176 * message. to be generated. Send it on 23177 * the wire. Note that this could still 23178 * cause fragmentation and all we 23179 * do is the generation of the message 23180 * to the ULP if needed before IPsec. 23181 */ 23182 if (!next_mp) { 23183 ipsec_out_process(q, first_mp, 23184 ire, ill_index); 23185 TRACE_2(TR_FAC_IP, 23186 TR_IP_WPUT_IRE_END, 23187 "ip_wput_ire_end: q %p " 23188 "(%S)", q, 23189 "last ipsec_out_process"); 23190 ire_refrele(ire); 23191 if (conn_outgoing_ill != NULL) { 23192 ill_refrele( 23193 conn_outgoing_ill); 23194 } 23195 return; 23196 } 23197 ipsec_out_process(q, first_mp, 23198 ire, ill_index); 23199 } 23200 } else { 23201 /* 23202 * Initiate IPPF processing. For 23203 * fragmentable packets we finish 23204 * all QOS packet processing before 23205 * calling: 23206 * ip_wput_ire_fragmentit->ip_wput_frag 23207 */ 23208 23209 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23210 ip_process(IPP_LOCAL_OUT, &mp, 23211 ill_index); 23212 if (mp == NULL) { 23213 out_ill = (ill_t *)stq->q_ptr; 23214 BUMP_MIB(out_ill->ill_ip_mib, 23215 ipIfStatsOutDiscards); 23216 if (next_mp != NULL) { 23217 freemsg(next_mp); 23218 ire_refrele(ire1); 23219 } 23220 ire_refrele(ire); 23221 TRACE_2(TR_FAC_IP, 23222 TR_IP_WPUT_IRE_END, 23223 "ip_wput_ire: q %p (%S)", 23224 q, "discard MDATA"); 23225 if (conn_outgoing_ill != NULL) { 23226 ill_refrele( 23227 conn_outgoing_ill); 23228 } 23229 return; 23230 } 23231 } 23232 if (!next_mp) { 23233 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23234 "ip_wput_ire_end: q %p (%S)", 23235 q, "last fragmentation"); 23236 ip_wput_ire_fragmentit(mp, ire, 23237 zoneid, ipst, connp); 23238 ire_refrele(ire); 23239 if (conn_outgoing_ill != NULL) 23240 ill_refrele(conn_outgoing_ill); 23241 return; 23242 } 23243 ip_wput_ire_fragmentit(mp, ire, 23244 zoneid, ipst, connp); 23245 } 23246 } 23247 } else { 23248 nullstq: 23249 /* A NULL stq means the destination address is local. */ 23250 UPDATE_OB_PKT_COUNT(ire); 23251 ire->ire_last_used_time = lbolt; 23252 ASSERT(ire->ire_ipif != NULL); 23253 if (!next_mp) { 23254 /* 23255 * Is there an "in" and "out" for traffic local 23256 * to a host (loopback)? The code in Solaris doesn't 23257 * explicitly draw a line in its code for in vs out, 23258 * so we've had to draw a line in the sand: ip_wput_ire 23259 * is considered to be the "output" side and 23260 * ip_wput_local to be the "input" side. 23261 */ 23262 out_ill = ire_to_ill(ire); 23263 23264 /* 23265 * DTrace this as ip:::send. A blocked packet will 23266 * fire the send probe, but not the receive probe. 23267 */ 23268 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23269 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23270 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23271 23272 DTRACE_PROBE4(ip4__loopback__out__start, 23273 ill_t *, NULL, ill_t *, out_ill, 23274 ipha_t *, ipha, mblk_t *, first_mp); 23275 23276 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23277 ipst->ips_ipv4firewall_loopback_out, 23278 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23279 23280 DTRACE_PROBE1(ip4__loopback__out_end, 23281 mblk_t *, first_mp); 23282 23283 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23284 "ip_wput_ire_end: q %p (%S)", 23285 q, "local address"); 23286 23287 if (first_mp != NULL) 23288 ip_wput_local(q, out_ill, ipha, 23289 first_mp, ire, 0, ire->ire_zoneid); 23290 ire_refrele(ire); 23291 if (conn_outgoing_ill != NULL) 23292 ill_refrele(conn_outgoing_ill); 23293 return; 23294 } 23295 23296 out_ill = ire_to_ill(ire); 23297 23298 /* 23299 * DTrace this as ip:::send. A blocked packet will fire the 23300 * send probe, but not the receive probe. 23301 */ 23302 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23303 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23304 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23305 23306 DTRACE_PROBE4(ip4__loopback__out__start, 23307 ill_t *, NULL, ill_t *, out_ill, 23308 ipha_t *, ipha, mblk_t *, first_mp); 23309 23310 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23311 ipst->ips_ipv4firewall_loopback_out, 23312 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23313 23314 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23315 23316 if (first_mp != NULL) 23317 ip_wput_local(q, out_ill, ipha, 23318 first_mp, ire, 0, ire->ire_zoneid); 23319 } 23320 next: 23321 /* 23322 * More copies going out to additional interfaces. 23323 * ire1 has already been held. We don't need the 23324 * "ire" anymore. 23325 */ 23326 ire_refrele(ire); 23327 ire = ire1; 23328 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23329 mp = next_mp; 23330 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23331 ill = ire_to_ill(ire); 23332 first_mp = mp; 23333 if (ipsec_len != 0) { 23334 ASSERT(first_mp->b_datap->db_type == M_CTL); 23335 mp = mp->b_cont; 23336 } 23337 dst = ire->ire_addr; 23338 ipha = (ipha_t *)mp->b_rptr; 23339 /* 23340 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23341 * Restore ipha_ident "no checksum" flag. 23342 */ 23343 src = orig_src; 23344 ipha->ipha_ident = ip_hdr_included; 23345 goto another; 23346 23347 #undef rptr 23348 #undef Q_TO_INDEX 23349 } 23350 23351 /* 23352 * Routine to allocate a message that is used to notify the ULP about MDT. 23353 * The caller may provide a pointer to the link-layer MDT capabilities, 23354 * or NULL if MDT is to be disabled on the stream. 23355 */ 23356 mblk_t * 23357 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23358 { 23359 mblk_t *mp; 23360 ip_mdt_info_t *mdti; 23361 ill_mdt_capab_t *idst; 23362 23363 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23364 DB_TYPE(mp) = M_CTL; 23365 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23366 mdti = (ip_mdt_info_t *)mp->b_rptr; 23367 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23368 idst = &(mdti->mdt_capab); 23369 23370 /* 23371 * If the caller provides us with the capability, copy 23372 * it over into our notification message; otherwise 23373 * we zero out the capability portion. 23374 */ 23375 if (isrc != NULL) 23376 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23377 else 23378 bzero((caddr_t)idst, sizeof (*idst)); 23379 } 23380 return (mp); 23381 } 23382 23383 /* 23384 * Routine which determines whether MDT can be enabled on the destination 23385 * IRE and IPC combination, and if so, allocates and returns the MDT 23386 * notification mblk that may be used by ULP. We also check if we need to 23387 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23388 * MDT usage in the past have been lifted. This gets called during IP 23389 * and ULP binding. 23390 */ 23391 mblk_t * 23392 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23393 ill_mdt_capab_t *mdt_cap) 23394 { 23395 mblk_t *mp; 23396 boolean_t rc = B_FALSE; 23397 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23398 23399 ASSERT(dst_ire != NULL); 23400 ASSERT(connp != NULL); 23401 ASSERT(mdt_cap != NULL); 23402 23403 /* 23404 * Currently, we only support simple TCP/{IPv4,IPv6} with 23405 * Multidata, which is handled in tcp_multisend(). This 23406 * is the reason why we do all these checks here, to ensure 23407 * that we don't enable Multidata for the cases which we 23408 * can't handle at the moment. 23409 */ 23410 do { 23411 /* Only do TCP at the moment */ 23412 if (connp->conn_ulp != IPPROTO_TCP) 23413 break; 23414 23415 /* 23416 * IPsec outbound policy present? Note that we get here 23417 * after calling ipsec_conn_cache_policy() where the global 23418 * policy checking is performed. conn_latch will be 23419 * non-NULL as long as there's a policy defined, 23420 * i.e. conn_out_enforce_policy may be NULL in such case 23421 * when the connection is non-secure, and hence we check 23422 * further if the latch refers to an outbound policy. 23423 */ 23424 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23425 break; 23426 23427 /* CGTP (multiroute) is enabled? */ 23428 if (dst_ire->ire_flags & RTF_MULTIRT) 23429 break; 23430 23431 /* Outbound IPQoS enabled? */ 23432 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23433 /* 23434 * In this case, we disable MDT for this and all 23435 * future connections going over the interface. 23436 */ 23437 mdt_cap->ill_mdt_on = 0; 23438 break; 23439 } 23440 23441 /* socket option(s) present? */ 23442 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23443 break; 23444 23445 rc = B_TRUE; 23446 /* CONSTCOND */ 23447 } while (0); 23448 23449 /* Remember the result */ 23450 connp->conn_mdt_ok = rc; 23451 23452 if (!rc) 23453 return (NULL); 23454 else if (!mdt_cap->ill_mdt_on) { 23455 /* 23456 * If MDT has been previously turned off in the past, and we 23457 * currently can do MDT (due to IPQoS policy removal, etc.) 23458 * then enable it for this interface. 23459 */ 23460 mdt_cap->ill_mdt_on = 1; 23461 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23462 "interface %s\n", ill_name)); 23463 } 23464 23465 /* Allocate the MDT info mblk */ 23466 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23467 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23468 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23469 return (NULL); 23470 } 23471 return (mp); 23472 } 23473 23474 /* 23475 * Routine to allocate a message that is used to notify the ULP about LSO. 23476 * The caller may provide a pointer to the link-layer LSO capabilities, 23477 * or NULL if LSO is to be disabled on the stream. 23478 */ 23479 mblk_t * 23480 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23481 { 23482 mblk_t *mp; 23483 ip_lso_info_t *lsoi; 23484 ill_lso_capab_t *idst; 23485 23486 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23487 DB_TYPE(mp) = M_CTL; 23488 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23489 lsoi = (ip_lso_info_t *)mp->b_rptr; 23490 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23491 idst = &(lsoi->lso_capab); 23492 23493 /* 23494 * If the caller provides us with the capability, copy 23495 * it over into our notification message; otherwise 23496 * we zero out the capability portion. 23497 */ 23498 if (isrc != NULL) 23499 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23500 else 23501 bzero((caddr_t)idst, sizeof (*idst)); 23502 } 23503 return (mp); 23504 } 23505 23506 /* 23507 * Routine which determines whether LSO can be enabled on the destination 23508 * IRE and IPC combination, and if so, allocates and returns the LSO 23509 * notification mblk that may be used by ULP. We also check if we need to 23510 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23511 * LSO usage in the past have been lifted. This gets called during IP 23512 * and ULP binding. 23513 */ 23514 mblk_t * 23515 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23516 ill_lso_capab_t *lso_cap) 23517 { 23518 mblk_t *mp; 23519 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23520 23521 ASSERT(dst_ire != NULL); 23522 ASSERT(connp != NULL); 23523 ASSERT(lso_cap != NULL); 23524 23525 connp->conn_lso_ok = B_TRUE; 23526 23527 if ((connp->conn_ulp != IPPROTO_TCP) || 23528 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23529 (dst_ire->ire_flags & RTF_MULTIRT) || 23530 !CONN_IS_LSO_MD_FASTPATH(connp) || 23531 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23532 connp->conn_lso_ok = B_FALSE; 23533 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23534 /* 23535 * Disable LSO for this and all future connections going 23536 * over the interface. 23537 */ 23538 lso_cap->ill_lso_on = 0; 23539 } 23540 } 23541 23542 if (!connp->conn_lso_ok) 23543 return (NULL); 23544 else if (!lso_cap->ill_lso_on) { 23545 /* 23546 * If LSO has been previously turned off in the past, and we 23547 * currently can do LSO (due to IPQoS policy removal, etc.) 23548 * then enable it for this interface. 23549 */ 23550 lso_cap->ill_lso_on = 1; 23551 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23552 ill_name)); 23553 } 23554 23555 /* Allocate the LSO info mblk */ 23556 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23557 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23558 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23559 23560 return (mp); 23561 } 23562 23563 /* 23564 * Create destination address attribute, and fill it with the physical 23565 * destination address and SAP taken from the template DL_UNITDATA_REQ 23566 * message block. 23567 */ 23568 boolean_t 23569 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23570 { 23571 dl_unitdata_req_t *dlurp; 23572 pattr_t *pa; 23573 pattrinfo_t pa_info; 23574 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23575 uint_t das_len, das_off; 23576 23577 ASSERT(dlmp != NULL); 23578 23579 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23580 das_len = dlurp->dl_dest_addr_length; 23581 das_off = dlurp->dl_dest_addr_offset; 23582 23583 pa_info.type = PATTR_DSTADDRSAP; 23584 pa_info.len = sizeof (**das) + das_len - 1; 23585 23586 /* create and associate the attribute */ 23587 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23588 if (pa != NULL) { 23589 ASSERT(*das != NULL); 23590 (*das)->addr_is_group = 0; 23591 (*das)->addr_len = (uint8_t)das_len; 23592 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23593 } 23594 23595 return (pa != NULL); 23596 } 23597 23598 /* 23599 * Create hardware checksum attribute and fill it with the values passed. 23600 */ 23601 boolean_t 23602 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23603 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23604 { 23605 pattr_t *pa; 23606 pattrinfo_t pa_info; 23607 23608 ASSERT(mmd != NULL); 23609 23610 pa_info.type = PATTR_HCKSUM; 23611 pa_info.len = sizeof (pattr_hcksum_t); 23612 23613 /* create and associate the attribute */ 23614 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23615 if (pa != NULL) { 23616 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23617 23618 hck->hcksum_start_offset = start_offset; 23619 hck->hcksum_stuff_offset = stuff_offset; 23620 hck->hcksum_end_offset = end_offset; 23621 hck->hcksum_flags = flags; 23622 } 23623 return (pa != NULL); 23624 } 23625 23626 /* 23627 * Create zerocopy attribute and fill it with the specified flags 23628 */ 23629 boolean_t 23630 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23631 { 23632 pattr_t *pa; 23633 pattrinfo_t pa_info; 23634 23635 ASSERT(mmd != NULL); 23636 pa_info.type = PATTR_ZCOPY; 23637 pa_info.len = sizeof (pattr_zcopy_t); 23638 23639 /* create and associate the attribute */ 23640 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23641 if (pa != NULL) { 23642 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23643 23644 zcopy->zcopy_flags = flags; 23645 } 23646 return (pa != NULL); 23647 } 23648 23649 /* 23650 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23651 * block chain. We could rewrite to handle arbitrary message block chains but 23652 * that would make the code complicated and slow. Right now there three 23653 * restrictions: 23654 * 23655 * 1. The first message block must contain the complete IP header and 23656 * at least 1 byte of payload data. 23657 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23658 * so that we can use a single Multidata message. 23659 * 3. No frag must be distributed over two or more message blocks so 23660 * that we don't need more than two packet descriptors per frag. 23661 * 23662 * The above restrictions allow us to support userland applications (which 23663 * will send down a single message block) and NFS over UDP (which will 23664 * send down a chain of at most three message blocks). 23665 * 23666 * We also don't use MDT for payloads with less than or equal to 23667 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23668 */ 23669 boolean_t 23670 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23671 { 23672 int blocks; 23673 ssize_t total, missing, size; 23674 23675 ASSERT(mp != NULL); 23676 ASSERT(hdr_len > 0); 23677 23678 size = MBLKL(mp) - hdr_len; 23679 if (size <= 0) 23680 return (B_FALSE); 23681 23682 /* The first mblk contains the header and some payload. */ 23683 blocks = 1; 23684 total = size; 23685 size %= len; 23686 missing = (size == 0) ? 0 : (len - size); 23687 mp = mp->b_cont; 23688 23689 while (mp != NULL) { 23690 /* 23691 * Give up if we encounter a zero length message block. 23692 * In practice, this should rarely happen and therefore 23693 * not worth the trouble of freeing and re-linking the 23694 * mblk from the chain to handle such case. 23695 */ 23696 if ((size = MBLKL(mp)) == 0) 23697 return (B_FALSE); 23698 23699 /* Too many payload buffers for a single Multidata message? */ 23700 if (++blocks > MULTIDATA_MAX_PBUFS) 23701 return (B_FALSE); 23702 23703 total += size; 23704 /* Is a frag distributed over two or more message blocks? */ 23705 if (missing > size) 23706 return (B_FALSE); 23707 size -= missing; 23708 23709 size %= len; 23710 missing = (size == 0) ? 0 : (len - size); 23711 23712 mp = mp->b_cont; 23713 } 23714 23715 return (total > ip_wput_frag_mdt_min); 23716 } 23717 23718 /* 23719 * Outbound IPv4 fragmentation routine using MDT. 23720 */ 23721 static void 23722 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23723 uint32_t frag_flag, int offset) 23724 { 23725 ipha_t *ipha_orig; 23726 int i1, ip_data_end; 23727 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23728 mblk_t *hdr_mp, *md_mp = NULL; 23729 unsigned char *hdr_ptr, *pld_ptr; 23730 multidata_t *mmd; 23731 ip_pdescinfo_t pdi; 23732 ill_t *ill; 23733 ip_stack_t *ipst = ire->ire_ipst; 23734 23735 ASSERT(DB_TYPE(mp) == M_DATA); 23736 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23737 23738 ill = ire_to_ill(ire); 23739 ASSERT(ill != NULL); 23740 23741 ipha_orig = (ipha_t *)mp->b_rptr; 23742 mp->b_rptr += sizeof (ipha_t); 23743 23744 /* Calculate how many packets we will send out */ 23745 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23746 pkts = (i1 + len - 1) / len; 23747 ASSERT(pkts > 1); 23748 23749 /* Allocate a message block which will hold all the IP Headers. */ 23750 wroff = ipst->ips_ip_wroff_extra; 23751 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23752 23753 i1 = pkts * hdr_chunk_len; 23754 /* 23755 * Create the header buffer, Multidata and destination address 23756 * and SAP attribute that should be associated with it. 23757 */ 23758 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23759 ((hdr_mp->b_wptr += i1), 23760 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23761 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23762 freemsg(mp); 23763 if (md_mp == NULL) { 23764 freemsg(hdr_mp); 23765 } else { 23766 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23767 freemsg(md_mp); 23768 } 23769 IP_STAT(ipst, ip_frag_mdt_allocfail); 23770 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23771 return; 23772 } 23773 IP_STAT(ipst, ip_frag_mdt_allocd); 23774 23775 /* 23776 * Add a payload buffer to the Multidata; this operation must not 23777 * fail, or otherwise our logic in this routine is broken. There 23778 * is no memory allocation done by the routine, so any returned 23779 * failure simply tells us that we've done something wrong. 23780 * 23781 * A failure tells us that either we're adding the same payload 23782 * buffer more than once, or we're trying to add more buffers than 23783 * allowed. None of the above cases should happen, and we panic 23784 * because either there's horrible heap corruption, and/or 23785 * programming mistake. 23786 */ 23787 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23788 goto pbuf_panic; 23789 23790 hdr_ptr = hdr_mp->b_rptr; 23791 pld_ptr = mp->b_rptr; 23792 23793 /* Establish the ending byte offset, based on the starting offset. */ 23794 offset <<= 3; 23795 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23796 IP_SIMPLE_HDR_LENGTH; 23797 23798 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23799 23800 while (pld_ptr < mp->b_wptr) { 23801 ipha_t *ipha; 23802 uint16_t offset_and_flags; 23803 uint16_t ip_len; 23804 int error; 23805 23806 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23807 ipha = (ipha_t *)(hdr_ptr + wroff); 23808 ASSERT(OK_32PTR(ipha)); 23809 *ipha = *ipha_orig; 23810 23811 if (ip_data_end - offset > len) { 23812 offset_and_flags = IPH_MF; 23813 } else { 23814 /* 23815 * Last frag. Set len to the length of this last piece. 23816 */ 23817 len = ip_data_end - offset; 23818 /* A frag of a frag might have IPH_MF non-zero */ 23819 offset_and_flags = 23820 ntohs(ipha->ipha_fragment_offset_and_flags) & 23821 IPH_MF; 23822 } 23823 offset_and_flags |= (uint16_t)(offset >> 3); 23824 offset_and_flags |= (uint16_t)frag_flag; 23825 /* Store the offset and flags in the IP header. */ 23826 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23827 23828 /* Store the length in the IP header. */ 23829 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23830 ipha->ipha_length = htons(ip_len); 23831 23832 /* 23833 * Set the IP header checksum. Note that mp is just 23834 * the header, so this is easy to pass to ip_csum. 23835 */ 23836 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23837 23838 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23839 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23840 NULL, int, 0); 23841 23842 /* 23843 * Record offset and size of header and data of the next packet 23844 * in the multidata message. 23845 */ 23846 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23847 PDESC_PLD_INIT(&pdi); 23848 i1 = MIN(mp->b_wptr - pld_ptr, len); 23849 ASSERT(i1 > 0); 23850 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23851 if (i1 == len) { 23852 pld_ptr += len; 23853 } else { 23854 i1 = len - i1; 23855 mp = mp->b_cont; 23856 ASSERT(mp != NULL); 23857 ASSERT(MBLKL(mp) >= i1); 23858 /* 23859 * Attach the next payload message block to the 23860 * multidata message. 23861 */ 23862 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23863 goto pbuf_panic; 23864 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23865 pld_ptr = mp->b_rptr + i1; 23866 } 23867 23868 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23869 KM_NOSLEEP)) == NULL) { 23870 /* 23871 * Any failure other than ENOMEM indicates that we 23872 * have passed in invalid pdesc info or parameters 23873 * to mmd_addpdesc, which must not happen. 23874 * 23875 * EINVAL is a result of failure on boundary checks 23876 * against the pdesc info contents. It should not 23877 * happen, and we panic because either there's 23878 * horrible heap corruption, and/or programming 23879 * mistake. 23880 */ 23881 if (error != ENOMEM) { 23882 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23883 "pdesc logic error detected for " 23884 "mmd %p pinfo %p (%d)\n", 23885 (void *)mmd, (void *)&pdi, error); 23886 /* NOTREACHED */ 23887 } 23888 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23889 /* Free unattached payload message blocks as well */ 23890 md_mp->b_cont = mp->b_cont; 23891 goto free_mmd; 23892 } 23893 23894 /* Advance fragment offset. */ 23895 offset += len; 23896 23897 /* Advance to location for next header in the buffer. */ 23898 hdr_ptr += hdr_chunk_len; 23899 23900 /* Did we reach the next payload message block? */ 23901 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23902 mp = mp->b_cont; 23903 /* 23904 * Attach the next message block with payload 23905 * data to the multidata message. 23906 */ 23907 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23908 goto pbuf_panic; 23909 pld_ptr = mp->b_rptr; 23910 } 23911 } 23912 23913 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23914 ASSERT(mp->b_wptr == pld_ptr); 23915 23916 /* Update IP statistics */ 23917 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23918 23919 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23920 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23921 23922 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23923 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23924 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23925 23926 if (pkt_type == OB_PKT) { 23927 ire->ire_ob_pkt_count += pkts; 23928 if (ire->ire_ipif != NULL) 23929 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23930 } else { 23931 /* The type is IB_PKT in the forwarding path. */ 23932 ire->ire_ib_pkt_count += pkts; 23933 ASSERT(!IRE_IS_LOCAL(ire)); 23934 if (ire->ire_type & IRE_BROADCAST) { 23935 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23936 } else { 23937 UPDATE_MIB(ill->ill_ip_mib, 23938 ipIfStatsHCOutForwDatagrams, pkts); 23939 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23940 } 23941 } 23942 ire->ire_last_used_time = lbolt; 23943 /* Send it down */ 23944 putnext(ire->ire_stq, md_mp); 23945 return; 23946 23947 pbuf_panic: 23948 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23949 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23950 pbuf_idx); 23951 /* NOTREACHED */ 23952 } 23953 23954 /* 23955 * Outbound IP fragmentation routine. 23956 * 23957 * NOTE : This routine does not ire_refrele the ire that is passed in 23958 * as the argument. 23959 */ 23960 static void 23961 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23962 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 23963 { 23964 int i1; 23965 mblk_t *ll_hdr_mp; 23966 int ll_hdr_len; 23967 int hdr_len; 23968 mblk_t *hdr_mp; 23969 ipha_t *ipha; 23970 int ip_data_end; 23971 int len; 23972 mblk_t *mp = mp_orig, *mp1; 23973 int offset; 23974 queue_t *q; 23975 uint32_t v_hlen_tos_len; 23976 mblk_t *first_mp; 23977 boolean_t mctl_present; 23978 ill_t *ill; 23979 ill_t *out_ill; 23980 mblk_t *xmit_mp; 23981 mblk_t *carve_mp; 23982 ire_t *ire1 = NULL; 23983 ire_t *save_ire = NULL; 23984 mblk_t *next_mp = NULL; 23985 boolean_t last_frag = B_FALSE; 23986 boolean_t multirt_send = B_FALSE; 23987 ire_t *first_ire = NULL; 23988 irb_t *irb = NULL; 23989 mib2_ipIfStatsEntry_t *mibptr = NULL; 23990 23991 ill = ire_to_ill(ire); 23992 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 23993 23994 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23995 23996 if (max_frag == 0) { 23997 ip1dbg(("ip_wput_frag: ire frag size is 0" 23998 " - dropping packet\n")); 23999 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24000 freemsg(mp); 24001 return; 24002 } 24003 24004 /* 24005 * IPsec does not allow hw accelerated packets to be fragmented 24006 * This check is made in ip_wput_ipsec_out prior to coming here 24007 * via ip_wput_ire_fragmentit. 24008 * 24009 * If at this point we have an ire whose ARP request has not 24010 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24011 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24012 * This packet and all fragmentable packets for this ire will 24013 * continue to get dropped while ire_nce->nce_state remains in 24014 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24015 * ND_REACHABLE, all subsquent large packets for this ire will 24016 * get fragemented and sent out by this function. 24017 */ 24018 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24019 /* If nce_state is ND_INITIAL, trigger ARP query */ 24020 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24021 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24022 " - dropping packet\n")); 24023 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24024 freemsg(mp); 24025 return; 24026 } 24027 24028 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24029 "ip_wput_frag_start:"); 24030 24031 if (mp->b_datap->db_type == M_CTL) { 24032 first_mp = mp; 24033 mp_orig = mp = mp->b_cont; 24034 mctl_present = B_TRUE; 24035 } else { 24036 first_mp = mp; 24037 mctl_present = B_FALSE; 24038 } 24039 24040 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24041 ipha = (ipha_t *)mp->b_rptr; 24042 24043 /* 24044 * If the Don't Fragment flag is on, generate an ICMP destination 24045 * unreachable, fragmentation needed. 24046 */ 24047 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24048 if (offset & IPH_DF) { 24049 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24050 if (is_system_labeled()) { 24051 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24052 ire->ire_max_frag - max_frag, AF_INET); 24053 } 24054 /* 24055 * Need to compute hdr checksum if called from ip_wput_ire. 24056 * Note that ip_rput_forward verifies the checksum before 24057 * calling this routine so in that case this is a noop. 24058 */ 24059 ipha->ipha_hdr_checksum = 0; 24060 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24061 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24062 ipst); 24063 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24064 "ip_wput_frag_end:(%S)", 24065 "don't fragment"); 24066 return; 24067 } 24068 /* 24069 * Labeled systems adjust max_frag if they add a label 24070 * to send the correct path mtu. We need the real mtu since we 24071 * are fragmenting the packet after label adjustment. 24072 */ 24073 if (is_system_labeled()) 24074 max_frag = ire->ire_max_frag; 24075 if (mctl_present) 24076 freeb(first_mp); 24077 /* 24078 * Establish the starting offset. May not be zero if we are fragging 24079 * a fragment that is being forwarded. 24080 */ 24081 offset = offset & IPH_OFFSET; 24082 24083 /* TODO why is this test needed? */ 24084 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24085 if (((max_frag - LENGTH) & ~7) < 8) { 24086 /* TODO: notify ulp somehow */ 24087 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24088 freemsg(mp); 24089 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24090 "ip_wput_frag_end:(%S)", 24091 "len < 8"); 24092 return; 24093 } 24094 24095 hdr_len = (V_HLEN & 0xF) << 2; 24096 24097 ipha->ipha_hdr_checksum = 0; 24098 24099 /* 24100 * Establish the number of bytes maximum per frag, after putting 24101 * in the header. 24102 */ 24103 len = (max_frag - hdr_len) & ~7; 24104 24105 /* Check if we can use MDT to send out the frags. */ 24106 ASSERT(!IRE_IS_LOCAL(ire)); 24107 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24108 ipst->ips_ip_multidata_outbound && 24109 !(ire->ire_flags & RTF_MULTIRT) && 24110 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24111 ill != NULL && ILL_MDT_CAPABLE(ill) && 24112 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24113 ASSERT(ill->ill_mdt_capab != NULL); 24114 if (!ill->ill_mdt_capab->ill_mdt_on) { 24115 /* 24116 * If MDT has been previously turned off in the past, 24117 * and we currently can do MDT (due to IPQoS policy 24118 * removal, etc.) then enable it for this interface. 24119 */ 24120 ill->ill_mdt_capab->ill_mdt_on = 1; 24121 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24122 ill->ill_name)); 24123 } 24124 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24125 offset); 24126 return; 24127 } 24128 24129 /* Get a copy of the header for the trailing frags */ 24130 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24131 mp); 24132 if (!hdr_mp) { 24133 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24134 freemsg(mp); 24135 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24136 "ip_wput_frag_end:(%S)", 24137 "couldn't copy hdr"); 24138 return; 24139 } 24140 24141 /* Store the starting offset, with the MoreFrags flag. */ 24142 i1 = offset | IPH_MF | frag_flag; 24143 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24144 24145 /* Establish the ending byte offset, based on the starting offset. */ 24146 offset <<= 3; 24147 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24148 24149 /* Store the length of the first fragment in the IP header. */ 24150 i1 = len + hdr_len; 24151 ASSERT(i1 <= IP_MAXPACKET); 24152 ipha->ipha_length = htons((uint16_t)i1); 24153 24154 /* 24155 * Compute the IP header checksum for the first frag. We have to 24156 * watch out that we stop at the end of the header. 24157 */ 24158 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24159 24160 /* 24161 * Now carve off the first frag. Note that this will include the 24162 * original IP header. 24163 */ 24164 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24165 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24166 freeb(hdr_mp); 24167 freemsg(mp_orig); 24168 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24169 "ip_wput_frag_end:(%S)", 24170 "couldn't carve first"); 24171 return; 24172 } 24173 24174 /* 24175 * Multirouting case. Each fragment is replicated 24176 * via all non-condemned RTF_MULTIRT routes 24177 * currently resolved. 24178 * We ensure that first_ire is the first RTF_MULTIRT 24179 * ire in the bucket. 24180 */ 24181 if (ire->ire_flags & RTF_MULTIRT) { 24182 irb = ire->ire_bucket; 24183 ASSERT(irb != NULL); 24184 24185 multirt_send = B_TRUE; 24186 24187 /* Make sure we do not omit any multiroute ire. */ 24188 IRB_REFHOLD(irb); 24189 for (first_ire = irb->irb_ire; 24190 first_ire != NULL; 24191 first_ire = first_ire->ire_next) { 24192 if ((first_ire->ire_flags & RTF_MULTIRT) && 24193 (first_ire->ire_addr == ire->ire_addr) && 24194 !(first_ire->ire_marks & 24195 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24196 break; 24197 } 24198 24199 if (first_ire != NULL) { 24200 if (first_ire != ire) { 24201 IRE_REFHOLD(first_ire); 24202 /* 24203 * Do not release the ire passed in 24204 * as the argument. 24205 */ 24206 ire = first_ire; 24207 } else { 24208 first_ire = NULL; 24209 } 24210 } 24211 IRB_REFRELE(irb); 24212 24213 /* 24214 * Save the first ire; we will need to restore it 24215 * for the trailing frags. 24216 * We REFHOLD save_ire, as each iterated ire will be 24217 * REFRELEd. 24218 */ 24219 save_ire = ire; 24220 IRE_REFHOLD(save_ire); 24221 } 24222 24223 /* 24224 * First fragment emission loop. 24225 * In most cases, the emission loop below is entered only 24226 * once. Only in the case where the ire holds the RTF_MULTIRT 24227 * flag, do we loop to process all RTF_MULTIRT ires in the 24228 * bucket, and send the fragment through all crossed 24229 * RTF_MULTIRT routes. 24230 */ 24231 do { 24232 if (ire->ire_flags & RTF_MULTIRT) { 24233 /* 24234 * We are in a multiple send case, need to get 24235 * the next ire and make a copy of the packet. 24236 * ire1 holds here the next ire to process in the 24237 * bucket. If multirouting is expected, 24238 * any non-RTF_MULTIRT ire that has the 24239 * right destination address is ignored. 24240 * 24241 * We have to take into account the MTU of 24242 * each walked ire. max_frag is set by the 24243 * the caller and generally refers to 24244 * the primary ire entry. Here we ensure that 24245 * no route with a lower MTU will be used, as 24246 * fragments are carved once for all ires, 24247 * then replicated. 24248 */ 24249 ASSERT(irb != NULL); 24250 IRB_REFHOLD(irb); 24251 for (ire1 = ire->ire_next; 24252 ire1 != NULL; 24253 ire1 = ire1->ire_next) { 24254 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24255 continue; 24256 if (ire1->ire_addr != ire->ire_addr) 24257 continue; 24258 if (ire1->ire_marks & 24259 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24260 continue; 24261 /* 24262 * Ensure we do not exceed the MTU 24263 * of the next route. 24264 */ 24265 if (ire1->ire_max_frag < max_frag) { 24266 ip_multirt_bad_mtu(ire1, max_frag); 24267 continue; 24268 } 24269 24270 /* Got one. */ 24271 IRE_REFHOLD(ire1); 24272 break; 24273 } 24274 IRB_REFRELE(irb); 24275 24276 if (ire1 != NULL) { 24277 next_mp = copyb(mp); 24278 if ((next_mp == NULL) || 24279 ((mp->b_cont != NULL) && 24280 ((next_mp->b_cont = 24281 dupmsg(mp->b_cont)) == NULL))) { 24282 freemsg(next_mp); 24283 next_mp = NULL; 24284 ire_refrele(ire1); 24285 ire1 = NULL; 24286 } 24287 } 24288 24289 /* Last multiroute ire; don't loop anymore. */ 24290 if (ire1 == NULL) { 24291 multirt_send = B_FALSE; 24292 } 24293 } 24294 24295 ll_hdr_len = 0; 24296 LOCK_IRE_FP_MP(ire); 24297 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24298 if (ll_hdr_mp != NULL) { 24299 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24300 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24301 } else { 24302 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24303 } 24304 24305 /* If there is a transmit header, get a copy for this frag. */ 24306 /* 24307 * TODO: should check db_ref before calling ip_carve_mp since 24308 * it might give us a dup. 24309 */ 24310 if (!ll_hdr_mp) { 24311 /* No xmit header. */ 24312 xmit_mp = mp; 24313 24314 /* We have a link-layer header that can fit in our mblk. */ 24315 } else if (mp->b_datap->db_ref == 1 && 24316 ll_hdr_len != 0 && 24317 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24318 /* M_DATA fastpath */ 24319 mp->b_rptr -= ll_hdr_len; 24320 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24321 xmit_mp = mp; 24322 24323 /* Corner case if copyb has failed */ 24324 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24325 UNLOCK_IRE_FP_MP(ire); 24326 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24327 freeb(hdr_mp); 24328 freemsg(mp); 24329 freemsg(mp_orig); 24330 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24331 "ip_wput_frag_end:(%S)", 24332 "discard"); 24333 24334 if (multirt_send) { 24335 ASSERT(ire1); 24336 ASSERT(next_mp); 24337 24338 freemsg(next_mp); 24339 ire_refrele(ire1); 24340 } 24341 if (save_ire != NULL) 24342 IRE_REFRELE(save_ire); 24343 24344 if (first_ire != NULL) 24345 ire_refrele(first_ire); 24346 return; 24347 24348 /* 24349 * Case of res_mp OR the fastpath mp can't fit 24350 * in the mblk 24351 */ 24352 } else { 24353 xmit_mp->b_cont = mp; 24354 24355 /* 24356 * Get priority marking, if any. 24357 * We propagate the CoS marking from the 24358 * original packet that went to QoS processing 24359 * in ip_wput_ire to the newly carved mp. 24360 */ 24361 if (DB_TYPE(xmit_mp) == M_DATA) 24362 xmit_mp->b_band = mp->b_band; 24363 } 24364 UNLOCK_IRE_FP_MP(ire); 24365 24366 q = ire->ire_stq; 24367 out_ill = (ill_t *)q->q_ptr; 24368 24369 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24370 24371 DTRACE_PROBE4(ip4__physical__out__start, 24372 ill_t *, NULL, ill_t *, out_ill, 24373 ipha_t *, ipha, mblk_t *, xmit_mp); 24374 24375 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24376 ipst->ips_ipv4firewall_physical_out, 24377 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24378 24379 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24380 24381 if (xmit_mp != NULL) { 24382 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24383 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24384 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24385 24386 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24387 24388 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24389 UPDATE_MIB(out_ill->ill_ip_mib, 24390 ipIfStatsHCOutOctets, i1); 24391 24392 if (pkt_type != OB_PKT) { 24393 /* 24394 * Update the packet count and MIB stats 24395 * of trailing RTF_MULTIRT ires. 24396 */ 24397 UPDATE_OB_PKT_COUNT(ire); 24398 BUMP_MIB(out_ill->ill_ip_mib, 24399 ipIfStatsOutFragReqds); 24400 } 24401 } 24402 24403 if (multirt_send) { 24404 /* 24405 * We are in a multiple send case; look for 24406 * the next ire and re-enter the loop. 24407 */ 24408 ASSERT(ire1); 24409 ASSERT(next_mp); 24410 /* REFRELE the current ire before looping */ 24411 ire_refrele(ire); 24412 ire = ire1; 24413 ire1 = NULL; 24414 mp = next_mp; 24415 next_mp = NULL; 24416 } 24417 } while (multirt_send); 24418 24419 ASSERT(ire1 == NULL); 24420 24421 /* Restore the original ire; we need it for the trailing frags */ 24422 if (save_ire != NULL) { 24423 /* REFRELE the last iterated ire */ 24424 ire_refrele(ire); 24425 /* save_ire has been REFHOLDed */ 24426 ire = save_ire; 24427 save_ire = NULL; 24428 q = ire->ire_stq; 24429 } 24430 24431 if (pkt_type == OB_PKT) { 24432 UPDATE_OB_PKT_COUNT(ire); 24433 } else { 24434 out_ill = (ill_t *)q->q_ptr; 24435 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24436 UPDATE_IB_PKT_COUNT(ire); 24437 } 24438 24439 /* Advance the offset to the second frag starting point. */ 24440 offset += len; 24441 /* 24442 * Update hdr_len from the copied header - there might be less options 24443 * in the later fragments. 24444 */ 24445 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24446 /* Loop until done. */ 24447 for (;;) { 24448 uint16_t offset_and_flags; 24449 uint16_t ip_len; 24450 24451 if (ip_data_end - offset > len) { 24452 /* 24453 * Carve off the appropriate amount from the original 24454 * datagram. 24455 */ 24456 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24457 mp = NULL; 24458 break; 24459 } 24460 /* 24461 * More frags after this one. Get another copy 24462 * of the header. 24463 */ 24464 if (carve_mp->b_datap->db_ref == 1 && 24465 hdr_mp->b_wptr - hdr_mp->b_rptr < 24466 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24467 /* Inline IP header */ 24468 carve_mp->b_rptr -= hdr_mp->b_wptr - 24469 hdr_mp->b_rptr; 24470 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24471 hdr_mp->b_wptr - hdr_mp->b_rptr); 24472 mp = carve_mp; 24473 } else { 24474 if (!(mp = copyb(hdr_mp))) { 24475 freemsg(carve_mp); 24476 break; 24477 } 24478 /* Get priority marking, if any. */ 24479 mp->b_band = carve_mp->b_band; 24480 mp->b_cont = carve_mp; 24481 } 24482 ipha = (ipha_t *)mp->b_rptr; 24483 offset_and_flags = IPH_MF; 24484 } else { 24485 /* 24486 * Last frag. Consume the header. Set len to 24487 * the length of this last piece. 24488 */ 24489 len = ip_data_end - offset; 24490 24491 /* 24492 * Carve off the appropriate amount from the original 24493 * datagram. 24494 */ 24495 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24496 mp = NULL; 24497 break; 24498 } 24499 if (carve_mp->b_datap->db_ref == 1 && 24500 hdr_mp->b_wptr - hdr_mp->b_rptr < 24501 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24502 /* Inline IP header */ 24503 carve_mp->b_rptr -= hdr_mp->b_wptr - 24504 hdr_mp->b_rptr; 24505 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24506 hdr_mp->b_wptr - hdr_mp->b_rptr); 24507 mp = carve_mp; 24508 freeb(hdr_mp); 24509 hdr_mp = mp; 24510 } else { 24511 mp = hdr_mp; 24512 /* Get priority marking, if any. */ 24513 mp->b_band = carve_mp->b_band; 24514 mp->b_cont = carve_mp; 24515 } 24516 ipha = (ipha_t *)mp->b_rptr; 24517 /* A frag of a frag might have IPH_MF non-zero */ 24518 offset_and_flags = 24519 ntohs(ipha->ipha_fragment_offset_and_flags) & 24520 IPH_MF; 24521 } 24522 offset_and_flags |= (uint16_t)(offset >> 3); 24523 offset_and_flags |= (uint16_t)frag_flag; 24524 /* Store the offset and flags in the IP header. */ 24525 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24526 24527 /* Store the length in the IP header. */ 24528 ip_len = (uint16_t)(len + hdr_len); 24529 ipha->ipha_length = htons(ip_len); 24530 24531 /* 24532 * Set the IP header checksum. Note that mp is just 24533 * the header, so this is easy to pass to ip_csum. 24534 */ 24535 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24536 24537 /* Attach a transmit header, if any, and ship it. */ 24538 if (pkt_type == OB_PKT) { 24539 UPDATE_OB_PKT_COUNT(ire); 24540 } else { 24541 out_ill = (ill_t *)q->q_ptr; 24542 BUMP_MIB(out_ill->ill_ip_mib, 24543 ipIfStatsHCOutForwDatagrams); 24544 UPDATE_IB_PKT_COUNT(ire); 24545 } 24546 24547 if (ire->ire_flags & RTF_MULTIRT) { 24548 irb = ire->ire_bucket; 24549 ASSERT(irb != NULL); 24550 24551 multirt_send = B_TRUE; 24552 24553 /* 24554 * Save the original ire; we will need to restore it 24555 * for the tailing frags. 24556 */ 24557 save_ire = ire; 24558 IRE_REFHOLD(save_ire); 24559 } 24560 /* 24561 * Emission loop for this fragment, similar 24562 * to what is done for the first fragment. 24563 */ 24564 do { 24565 if (multirt_send) { 24566 /* 24567 * We are in a multiple send case, need to get 24568 * the next ire and make a copy of the packet. 24569 */ 24570 ASSERT(irb != NULL); 24571 IRB_REFHOLD(irb); 24572 for (ire1 = ire->ire_next; 24573 ire1 != NULL; 24574 ire1 = ire1->ire_next) { 24575 if (!(ire1->ire_flags & RTF_MULTIRT)) 24576 continue; 24577 if (ire1->ire_addr != ire->ire_addr) 24578 continue; 24579 if (ire1->ire_marks & 24580 (IRE_MARK_CONDEMNED | 24581 IRE_MARK_TESTHIDDEN)) 24582 continue; 24583 /* 24584 * Ensure we do not exceed the MTU 24585 * of the next route. 24586 */ 24587 if (ire1->ire_max_frag < max_frag) { 24588 ip_multirt_bad_mtu(ire1, 24589 max_frag); 24590 continue; 24591 } 24592 24593 /* Got one. */ 24594 IRE_REFHOLD(ire1); 24595 break; 24596 } 24597 IRB_REFRELE(irb); 24598 24599 if (ire1 != NULL) { 24600 next_mp = copyb(mp); 24601 if ((next_mp == NULL) || 24602 ((mp->b_cont != NULL) && 24603 ((next_mp->b_cont = 24604 dupmsg(mp->b_cont)) == NULL))) { 24605 freemsg(next_mp); 24606 next_mp = NULL; 24607 ire_refrele(ire1); 24608 ire1 = NULL; 24609 } 24610 } 24611 24612 /* Last multiroute ire; don't loop anymore. */ 24613 if (ire1 == NULL) { 24614 multirt_send = B_FALSE; 24615 } 24616 } 24617 24618 /* Update transmit header */ 24619 ll_hdr_len = 0; 24620 LOCK_IRE_FP_MP(ire); 24621 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24622 if (ll_hdr_mp != NULL) { 24623 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24624 ll_hdr_len = MBLKL(ll_hdr_mp); 24625 } else { 24626 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24627 } 24628 24629 if (!ll_hdr_mp) { 24630 xmit_mp = mp; 24631 24632 /* 24633 * We have link-layer header that can fit in 24634 * our mblk. 24635 */ 24636 } else if (mp->b_datap->db_ref == 1 && 24637 ll_hdr_len != 0 && 24638 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24639 /* M_DATA fastpath */ 24640 mp->b_rptr -= ll_hdr_len; 24641 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24642 ll_hdr_len); 24643 xmit_mp = mp; 24644 24645 /* 24646 * Case of res_mp OR the fastpath mp can't fit 24647 * in the mblk 24648 */ 24649 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24650 xmit_mp->b_cont = mp; 24651 /* Get priority marking, if any. */ 24652 if (DB_TYPE(xmit_mp) == M_DATA) 24653 xmit_mp->b_band = mp->b_band; 24654 24655 /* Corner case if copyb failed */ 24656 } else { 24657 /* 24658 * Exit both the replication and 24659 * fragmentation loops. 24660 */ 24661 UNLOCK_IRE_FP_MP(ire); 24662 goto drop_pkt; 24663 } 24664 UNLOCK_IRE_FP_MP(ire); 24665 24666 mp1 = mp; 24667 out_ill = (ill_t *)q->q_ptr; 24668 24669 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24670 24671 DTRACE_PROBE4(ip4__physical__out__start, 24672 ill_t *, NULL, ill_t *, out_ill, 24673 ipha_t *, ipha, mblk_t *, xmit_mp); 24674 24675 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24676 ipst->ips_ipv4firewall_physical_out, 24677 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24678 24679 DTRACE_PROBE1(ip4__physical__out__end, 24680 mblk_t *, xmit_mp); 24681 24682 if (mp != mp1 && hdr_mp == mp1) 24683 hdr_mp = mp; 24684 if (mp != mp1 && mp_orig == mp1) 24685 mp_orig = mp; 24686 24687 if (xmit_mp != NULL) { 24688 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24689 NULL, void_ip_t *, ipha, 24690 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24691 ipha, ip6_t *, NULL, int, 0); 24692 24693 ILL_SEND_TX(out_ill, ire, connp, 24694 xmit_mp, 0, connp); 24695 24696 BUMP_MIB(out_ill->ill_ip_mib, 24697 ipIfStatsHCOutTransmits); 24698 UPDATE_MIB(out_ill->ill_ip_mib, 24699 ipIfStatsHCOutOctets, ip_len); 24700 24701 if (pkt_type != OB_PKT) { 24702 /* 24703 * Update the packet count of trailing 24704 * RTF_MULTIRT ires. 24705 */ 24706 UPDATE_OB_PKT_COUNT(ire); 24707 } 24708 } 24709 24710 /* All done if we just consumed the hdr_mp. */ 24711 if (mp == hdr_mp) { 24712 last_frag = B_TRUE; 24713 BUMP_MIB(out_ill->ill_ip_mib, 24714 ipIfStatsOutFragOKs); 24715 } 24716 24717 if (multirt_send) { 24718 /* 24719 * We are in a multiple send case; look for 24720 * the next ire and re-enter the loop. 24721 */ 24722 ASSERT(ire1); 24723 ASSERT(next_mp); 24724 /* REFRELE the current ire before looping */ 24725 ire_refrele(ire); 24726 ire = ire1; 24727 ire1 = NULL; 24728 q = ire->ire_stq; 24729 mp = next_mp; 24730 next_mp = NULL; 24731 } 24732 } while (multirt_send); 24733 /* 24734 * Restore the original ire; we need it for the 24735 * trailing frags 24736 */ 24737 if (save_ire != NULL) { 24738 ASSERT(ire1 == NULL); 24739 /* REFRELE the last iterated ire */ 24740 ire_refrele(ire); 24741 /* save_ire has been REFHOLDed */ 24742 ire = save_ire; 24743 q = ire->ire_stq; 24744 save_ire = NULL; 24745 } 24746 24747 if (last_frag) { 24748 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24749 "ip_wput_frag_end:(%S)", 24750 "consumed hdr_mp"); 24751 24752 if (first_ire != NULL) 24753 ire_refrele(first_ire); 24754 return; 24755 } 24756 /* Otherwise, advance and loop. */ 24757 offset += len; 24758 } 24759 24760 drop_pkt: 24761 /* Clean up following allocation failure. */ 24762 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24763 freemsg(mp); 24764 if (mp != hdr_mp) 24765 freeb(hdr_mp); 24766 if (mp != mp_orig) 24767 freemsg(mp_orig); 24768 24769 if (save_ire != NULL) 24770 IRE_REFRELE(save_ire); 24771 if (first_ire != NULL) 24772 ire_refrele(first_ire); 24773 24774 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24775 "ip_wput_frag_end:(%S)", 24776 "end--alloc failure"); 24777 } 24778 24779 /* 24780 * Copy the header plus those options which have the copy bit set 24781 * src is the template to make sure we preserve the cred for TX purposes. 24782 */ 24783 static mblk_t * 24784 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24785 mblk_t *src) 24786 { 24787 mblk_t *mp; 24788 uchar_t *up; 24789 24790 /* 24791 * Quick check if we need to look for options without the copy bit 24792 * set 24793 */ 24794 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24795 if (!mp) 24796 return (mp); 24797 mp->b_rptr += ipst->ips_ip_wroff_extra; 24798 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24799 bcopy(rptr, mp->b_rptr, hdr_len); 24800 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24801 return (mp); 24802 } 24803 up = mp->b_rptr; 24804 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24805 up += IP_SIMPLE_HDR_LENGTH; 24806 rptr += IP_SIMPLE_HDR_LENGTH; 24807 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24808 while (hdr_len > 0) { 24809 uint32_t optval; 24810 uint32_t optlen; 24811 24812 optval = *rptr; 24813 if (optval == IPOPT_EOL) 24814 break; 24815 if (optval == IPOPT_NOP) 24816 optlen = 1; 24817 else 24818 optlen = rptr[1]; 24819 if (optval & IPOPT_COPY) { 24820 bcopy(rptr, up, optlen); 24821 up += optlen; 24822 } 24823 rptr += optlen; 24824 hdr_len -= optlen; 24825 } 24826 /* 24827 * Make sure that we drop an even number of words by filling 24828 * with EOL to the next word boundary. 24829 */ 24830 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24831 hdr_len & 0x3; hdr_len++) 24832 *up++ = IPOPT_EOL; 24833 mp->b_wptr = up; 24834 /* Update header length */ 24835 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24836 return (mp); 24837 } 24838 24839 /* 24840 * Delivery to local recipients including fanout to multiple recipients. 24841 * Does not do checksumming of UDP/TCP. 24842 * Note: q should be the read side queue for either the ill or conn. 24843 * Note: rq should be the read side q for the lower (ill) stream. 24844 * We don't send packets to IPPF processing, thus the last argument 24845 * to all the fanout calls are B_FALSE. 24846 */ 24847 void 24848 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24849 int fanout_flags, zoneid_t zoneid) 24850 { 24851 uint32_t protocol; 24852 mblk_t *first_mp; 24853 boolean_t mctl_present; 24854 int ire_type; 24855 #define rptr ((uchar_t *)ipha) 24856 ip_stack_t *ipst = ill->ill_ipst; 24857 24858 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24859 "ip_wput_local_start: q %p", q); 24860 24861 if (ire != NULL) { 24862 ire_type = ire->ire_type; 24863 } else { 24864 /* 24865 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24866 * packet is not multicast, we can't tell the ire type. 24867 */ 24868 ASSERT(CLASSD(ipha->ipha_dst)); 24869 ire_type = IRE_BROADCAST; 24870 } 24871 24872 first_mp = mp; 24873 if (first_mp->b_datap->db_type == M_CTL) { 24874 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24875 if (!io->ipsec_out_secure) { 24876 /* 24877 * This ipsec_out_t was allocated in ip_wput 24878 * for multicast packets to store the ill_index. 24879 * As this is being delivered locally, we don't 24880 * need this anymore. 24881 */ 24882 mp = first_mp->b_cont; 24883 freeb(first_mp); 24884 first_mp = mp; 24885 mctl_present = B_FALSE; 24886 } else { 24887 /* 24888 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24889 * security properties for the looped-back packet. 24890 */ 24891 mctl_present = B_TRUE; 24892 mp = first_mp->b_cont; 24893 ASSERT(mp != NULL); 24894 ipsec_out_to_in(first_mp); 24895 } 24896 } else { 24897 mctl_present = B_FALSE; 24898 } 24899 24900 DTRACE_PROBE4(ip4__loopback__in__start, 24901 ill_t *, ill, ill_t *, NULL, 24902 ipha_t *, ipha, mblk_t *, first_mp); 24903 24904 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24905 ipst->ips_ipv4firewall_loopback_in, 24906 ill, NULL, ipha, first_mp, mp, 0, ipst); 24907 24908 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24909 24910 if (first_mp == NULL) 24911 return; 24912 24913 if (ipst->ips_ip4_observe.he_interested) { 24914 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 24915 zoneid_t stackzoneid = netstackid_to_zoneid( 24916 ipst->ips_netstack->netstack_stackid); 24917 24918 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 24919 /* 24920 * 127.0.0.1 is special, as we cannot lookup its zoneid by 24921 * address. Restrict the lookup below to the destination zone. 24922 */ 24923 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 24924 lookup_zoneid = zoneid; 24925 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 24926 lookup_zoneid); 24927 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, ipst); 24928 } 24929 24930 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 24931 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 24932 int, 1); 24933 24934 ipst->ips_loopback_packets++; 24935 24936 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24937 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24938 if (!IS_SIMPLE_IPH(ipha)) { 24939 ip_wput_local_options(ipha, ipst); 24940 } 24941 24942 protocol = ipha->ipha_protocol; 24943 switch (protocol) { 24944 case IPPROTO_ICMP: { 24945 ire_t *ire_zone; 24946 ilm_t *ilm; 24947 mblk_t *mp1; 24948 zoneid_t last_zoneid; 24949 ilm_walker_t ilw; 24950 24951 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24952 ASSERT(ire_type == IRE_BROADCAST); 24953 /* 24954 * In the multicast case, applications may have joined 24955 * the group from different zones, so we need to deliver 24956 * the packet to each of them. Loop through the 24957 * multicast memberships structures (ilm) on the receive 24958 * ill and send a copy of the packet up each matching 24959 * one. However, we don't do this for multicasts sent on 24960 * the loopback interface (PHYI_LOOPBACK flag set) as 24961 * they must stay in the sender's zone. 24962 * 24963 * ilm_add_v6() ensures that ilms in the same zone are 24964 * contiguous in the ill_ilm list. We use this property 24965 * to avoid sending duplicates needed when two 24966 * applications in the same zone join the same group on 24967 * different logical interfaces: we ignore the ilm if 24968 * it's zoneid is the same as the last matching one. 24969 * In addition, the sending of the packet for 24970 * ire_zoneid is delayed until all of the other ilms 24971 * have been exhausted. 24972 */ 24973 last_zoneid = -1; 24974 ilm = ilm_walker_start(&ilw, ill); 24975 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 24976 if (ipha->ipha_dst != ilm->ilm_addr || 24977 ilm->ilm_zoneid == last_zoneid || 24978 ilm->ilm_zoneid == zoneid || 24979 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24980 continue; 24981 mp1 = ip_copymsg(first_mp); 24982 if (mp1 == NULL) 24983 continue; 24984 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 24985 0, 0, mctl_present, B_FALSE, ill, 24986 ilm->ilm_zoneid); 24987 last_zoneid = ilm->ilm_zoneid; 24988 } 24989 ilm_walker_finish(&ilw); 24990 /* 24991 * Loopback case: the sending endpoint has 24992 * IP_MULTICAST_LOOP disabled, therefore we don't 24993 * dispatch the multicast packet to the sending zone. 24994 */ 24995 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24996 freemsg(first_mp); 24997 return; 24998 } 24999 } else if (ire_type == IRE_BROADCAST) { 25000 /* 25001 * In the broadcast case, there may be many zones 25002 * which need a copy of the packet delivered to them. 25003 * There is one IRE_BROADCAST per broadcast address 25004 * and per zone; we walk those using a helper function. 25005 * In addition, the sending of the packet for zoneid is 25006 * delayed until all of the other ires have been 25007 * processed. 25008 */ 25009 IRB_REFHOLD(ire->ire_bucket); 25010 ire_zone = NULL; 25011 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25012 ire)) != NULL) { 25013 mp1 = ip_copymsg(first_mp); 25014 if (mp1 == NULL) 25015 continue; 25016 25017 UPDATE_IB_PKT_COUNT(ire_zone); 25018 ire_zone->ire_last_used_time = lbolt; 25019 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25020 mctl_present, B_FALSE, ill, 25021 ire_zone->ire_zoneid); 25022 } 25023 IRB_REFRELE(ire->ire_bucket); 25024 } 25025 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25026 0, mctl_present, B_FALSE, ill, zoneid); 25027 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25028 "ip_wput_local_end: q %p (%S)", 25029 q, "icmp"); 25030 return; 25031 } 25032 case IPPROTO_IGMP: 25033 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25034 /* Bad packet - discarded by igmp_input */ 25035 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25036 "ip_wput_local_end: q %p (%S)", 25037 q, "igmp_input--bad packet"); 25038 if (mctl_present) 25039 freeb(first_mp); 25040 return; 25041 } 25042 /* 25043 * igmp_input() may have returned the pulled up message. 25044 * So first_mp and ipha need to be reinitialized. 25045 */ 25046 ipha = (ipha_t *)mp->b_rptr; 25047 if (mctl_present) 25048 first_mp->b_cont = mp; 25049 else 25050 first_mp = mp; 25051 /* deliver to local raw users */ 25052 break; 25053 case IPPROTO_ENCAP: 25054 /* 25055 * This case is covered by either ip_fanout_proto, or by 25056 * the above security processing for self-tunneled packets. 25057 */ 25058 break; 25059 case IPPROTO_UDP: { 25060 uint16_t *up; 25061 uint32_t ports; 25062 25063 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25064 UDP_PORTS_OFFSET); 25065 /* Force a 'valid' checksum. */ 25066 up[3] = 0; 25067 25068 ports = *(uint32_t *)up; 25069 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25070 (ire_type == IRE_BROADCAST), 25071 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25072 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25073 ill, zoneid); 25074 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25075 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25076 return; 25077 } 25078 case IPPROTO_TCP: { 25079 25080 /* 25081 * For TCP, discard broadcast packets. 25082 */ 25083 if ((ushort_t)ire_type == IRE_BROADCAST) { 25084 freemsg(first_mp); 25085 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25086 ip2dbg(("ip_wput_local: discard broadcast\n")); 25087 return; 25088 } 25089 25090 if (mp->b_datap->db_type == M_DATA) { 25091 /* 25092 * M_DATA mblk, so init mblk (chain) for no struio(). 25093 */ 25094 mblk_t *mp1 = mp; 25095 25096 do { 25097 mp1->b_datap->db_struioflag = 0; 25098 } while ((mp1 = mp1->b_cont) != NULL); 25099 } 25100 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25101 <= mp->b_wptr); 25102 ip_fanout_tcp(q, first_mp, ill, ipha, 25103 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25104 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25105 mctl_present, B_FALSE, zoneid); 25106 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25107 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25108 return; 25109 } 25110 case IPPROTO_SCTP: 25111 { 25112 uint32_t ports; 25113 25114 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25115 ip_fanout_sctp(first_mp, ill, ipha, ports, 25116 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25117 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25118 return; 25119 } 25120 25121 default: 25122 break; 25123 } 25124 /* 25125 * Find a client for some other protocol. We give 25126 * copies to multiple clients, if more than one is 25127 * bound. 25128 */ 25129 ip_fanout_proto(q, first_mp, ill, ipha, 25130 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25131 mctl_present, B_FALSE, ill, zoneid); 25132 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25133 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25134 #undef rptr 25135 } 25136 25137 /* 25138 * Update any source route, record route, or timestamp options. 25139 * Check that we are at end of strict source route. 25140 * The options have been sanity checked by ip_wput_options(). 25141 */ 25142 static void 25143 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25144 { 25145 ipoptp_t opts; 25146 uchar_t *opt; 25147 uint8_t optval; 25148 uint8_t optlen; 25149 ipaddr_t dst; 25150 uint32_t ts; 25151 ire_t *ire; 25152 timestruc_t now; 25153 25154 ip2dbg(("ip_wput_local_options\n")); 25155 for (optval = ipoptp_first(&opts, ipha); 25156 optval != IPOPT_EOL; 25157 optval = ipoptp_next(&opts)) { 25158 opt = opts.ipoptp_cur; 25159 optlen = opts.ipoptp_len; 25160 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25161 switch (optval) { 25162 uint32_t off; 25163 case IPOPT_SSRR: 25164 case IPOPT_LSRR: 25165 off = opt[IPOPT_OFFSET]; 25166 off--; 25167 if (optlen < IP_ADDR_LEN || 25168 off > optlen - IP_ADDR_LEN) { 25169 /* End of source route */ 25170 break; 25171 } 25172 /* 25173 * This will only happen if two consecutive entries 25174 * in the source route contains our address or if 25175 * it is a packet with a loose source route which 25176 * reaches us before consuming the whole source route 25177 */ 25178 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25179 if (optval == IPOPT_SSRR) { 25180 return; 25181 } 25182 /* 25183 * Hack: instead of dropping the packet truncate the 25184 * source route to what has been used by filling the 25185 * rest with IPOPT_NOP. 25186 */ 25187 opt[IPOPT_OLEN] = (uint8_t)off; 25188 while (off < optlen) { 25189 opt[off++] = IPOPT_NOP; 25190 } 25191 break; 25192 case IPOPT_RR: 25193 off = opt[IPOPT_OFFSET]; 25194 off--; 25195 if (optlen < IP_ADDR_LEN || 25196 off > optlen - IP_ADDR_LEN) { 25197 /* No more room - ignore */ 25198 ip1dbg(( 25199 "ip_wput_forward_options: end of RR\n")); 25200 break; 25201 } 25202 dst = htonl(INADDR_LOOPBACK); 25203 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25204 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25205 break; 25206 case IPOPT_TS: 25207 /* Insert timestamp if there is romm */ 25208 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25209 case IPOPT_TS_TSONLY: 25210 off = IPOPT_TS_TIMELEN; 25211 break; 25212 case IPOPT_TS_PRESPEC: 25213 case IPOPT_TS_PRESPEC_RFC791: 25214 /* Verify that the address matched */ 25215 off = opt[IPOPT_OFFSET] - 1; 25216 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25217 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25218 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25219 ipst); 25220 if (ire == NULL) { 25221 /* Not for us */ 25222 break; 25223 } 25224 ire_refrele(ire); 25225 /* FALLTHRU */ 25226 case IPOPT_TS_TSANDADDR: 25227 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25228 break; 25229 default: 25230 /* 25231 * ip_*put_options should have already 25232 * dropped this packet. 25233 */ 25234 cmn_err(CE_PANIC, "ip_wput_local_options: " 25235 "unknown IT - bug in ip_wput_options?\n"); 25236 return; /* Keep "lint" happy */ 25237 } 25238 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25239 /* Increase overflow counter */ 25240 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25241 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25242 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25243 (off << 4); 25244 break; 25245 } 25246 off = opt[IPOPT_OFFSET] - 1; 25247 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25248 case IPOPT_TS_PRESPEC: 25249 case IPOPT_TS_PRESPEC_RFC791: 25250 case IPOPT_TS_TSANDADDR: 25251 dst = htonl(INADDR_LOOPBACK); 25252 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25253 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25254 /* FALLTHRU */ 25255 case IPOPT_TS_TSONLY: 25256 off = opt[IPOPT_OFFSET] - 1; 25257 /* Compute # of milliseconds since midnight */ 25258 gethrestime(&now); 25259 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25260 now.tv_nsec / (NANOSEC / MILLISEC); 25261 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25262 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25263 break; 25264 } 25265 break; 25266 } 25267 } 25268 } 25269 25270 /* 25271 * Send out a multicast packet on interface ipif. 25272 * The sender does not have an conn. 25273 * Caller verifies that this isn't a PHYI_LOOPBACK. 25274 */ 25275 void 25276 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25277 { 25278 ipha_t *ipha; 25279 ire_t *ire; 25280 ipaddr_t dst; 25281 mblk_t *first_mp; 25282 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25283 25284 /* igmp_sendpkt always allocates a ipsec_out_t */ 25285 ASSERT(mp->b_datap->db_type == M_CTL); 25286 ASSERT(!ipif->ipif_isv6); 25287 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25288 25289 first_mp = mp; 25290 mp = first_mp->b_cont; 25291 ASSERT(mp->b_datap->db_type == M_DATA); 25292 ipha = (ipha_t *)mp->b_rptr; 25293 25294 /* 25295 * Find an IRE which matches the destination and the outgoing 25296 * queue (i.e. the outgoing interface.) 25297 */ 25298 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25299 dst = ipif->ipif_pp_dst_addr; 25300 else 25301 dst = ipha->ipha_dst; 25302 /* 25303 * The source address has already been initialized by the 25304 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25305 * be sufficient rather than MATCH_IRE_IPIF. 25306 * 25307 * This function is used for sending IGMP packets. For IPMP, 25308 * we sidestep IGMP snooping issues by sending all multicast 25309 * traffic on a single interface in the IPMP group. 25310 */ 25311 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25312 MATCH_IRE_ILL, ipst); 25313 if (!ire) { 25314 /* 25315 * Mark this packet to make it be delivered to 25316 * ip_wput_ire after the new ire has been 25317 * created. 25318 */ 25319 mp->b_prev = NULL; 25320 mp->b_next = NULL; 25321 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25322 zoneid, &zero_info); 25323 return; 25324 } 25325 25326 /* 25327 * Honor the RTF_SETSRC flag; this is the only case 25328 * where we force this addr whatever the current src addr is, 25329 * because this address is set by igmp_sendpkt(), and 25330 * cannot be specified by any user. 25331 */ 25332 if (ire->ire_flags & RTF_SETSRC) { 25333 ipha->ipha_src = ire->ire_src_addr; 25334 } 25335 25336 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25337 } 25338 25339 /* 25340 * NOTE : This function does not ire_refrele the ire argument passed in. 25341 * 25342 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25343 * failure. The nce_fp_mp can vanish any time in the case of 25344 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25345 * the ire_lock to access the nce_fp_mp in this case. 25346 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25347 * prepending a fastpath message IPQoS processing must precede it, we also set 25348 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25349 * (IPQoS might have set the b_band for CoS marking). 25350 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25351 * must follow it so that IPQoS can mark the dl_priority field for CoS 25352 * marking, if needed. 25353 */ 25354 static mblk_t * 25355 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25356 uint32_t ill_index, ipha_t **iphap) 25357 { 25358 uint_t hlen; 25359 ipha_t *ipha; 25360 mblk_t *mp1; 25361 boolean_t qos_done = B_FALSE; 25362 uchar_t *ll_hdr; 25363 ip_stack_t *ipst = ire->ire_ipst; 25364 25365 #define rptr ((uchar_t *)ipha) 25366 25367 ipha = (ipha_t *)mp->b_rptr; 25368 hlen = 0; 25369 LOCK_IRE_FP_MP(ire); 25370 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25371 ASSERT(DB_TYPE(mp1) == M_DATA); 25372 /* Initiate IPPF processing */ 25373 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25374 UNLOCK_IRE_FP_MP(ire); 25375 ip_process(proc, &mp, ill_index); 25376 if (mp == NULL) 25377 return (NULL); 25378 25379 ipha = (ipha_t *)mp->b_rptr; 25380 LOCK_IRE_FP_MP(ire); 25381 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25382 qos_done = B_TRUE; 25383 goto no_fp_mp; 25384 } 25385 ASSERT(DB_TYPE(mp1) == M_DATA); 25386 } 25387 hlen = MBLKL(mp1); 25388 /* 25389 * Check if we have enough room to prepend fastpath 25390 * header 25391 */ 25392 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25393 ll_hdr = rptr - hlen; 25394 bcopy(mp1->b_rptr, ll_hdr, hlen); 25395 /* 25396 * Set the b_rptr to the start of the link layer 25397 * header 25398 */ 25399 mp->b_rptr = ll_hdr; 25400 mp1 = mp; 25401 } else { 25402 mp1 = copyb(mp1); 25403 if (mp1 == NULL) 25404 goto unlock_err; 25405 mp1->b_band = mp->b_band; 25406 mp1->b_cont = mp; 25407 /* 25408 * XXX disable ICK_VALID and compute checksum 25409 * here; can happen if nce_fp_mp changes and 25410 * it can't be copied now due to insufficient 25411 * space. (unlikely, fp mp can change, but it 25412 * does not increase in length) 25413 */ 25414 } 25415 UNLOCK_IRE_FP_MP(ire); 25416 } else { 25417 no_fp_mp: 25418 mp1 = copyb(ire->ire_nce->nce_res_mp); 25419 if (mp1 == NULL) { 25420 unlock_err: 25421 UNLOCK_IRE_FP_MP(ire); 25422 freemsg(mp); 25423 return (NULL); 25424 } 25425 UNLOCK_IRE_FP_MP(ire); 25426 mp1->b_cont = mp; 25427 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25428 ip_process(proc, &mp1, ill_index); 25429 if (mp1 == NULL) 25430 return (NULL); 25431 25432 if (mp1->b_cont == NULL) 25433 ipha = NULL; 25434 else 25435 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25436 } 25437 } 25438 25439 *iphap = ipha; 25440 return (mp1); 25441 #undef rptr 25442 } 25443 25444 /* 25445 * Finish the outbound IPsec processing for an IPv6 packet. This function 25446 * is called from ipsec_out_process() if the IPsec packet was processed 25447 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25448 * asynchronously. 25449 */ 25450 void 25451 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25452 ire_t *ire_arg) 25453 { 25454 in6_addr_t *v6dstp; 25455 ire_t *ire; 25456 mblk_t *mp; 25457 ip6_t *ip6h1; 25458 uint_t ill_index; 25459 ipsec_out_t *io; 25460 boolean_t hwaccel; 25461 uint32_t flags = IP6_NO_IPPOLICY; 25462 int match_flags; 25463 zoneid_t zoneid; 25464 boolean_t ill_need_rele = B_FALSE; 25465 boolean_t ire_need_rele = B_FALSE; 25466 ip_stack_t *ipst; 25467 25468 mp = ipsec_mp->b_cont; 25469 ip6h1 = (ip6_t *)mp->b_rptr; 25470 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25471 ASSERT(io->ipsec_out_ns != NULL); 25472 ipst = io->ipsec_out_ns->netstack_ip; 25473 ill_index = io->ipsec_out_ill_index; 25474 if (io->ipsec_out_reachable) { 25475 flags |= IPV6_REACHABILITY_CONFIRMATION; 25476 } 25477 hwaccel = io->ipsec_out_accelerated; 25478 zoneid = io->ipsec_out_zoneid; 25479 ASSERT(zoneid != ALL_ZONES); 25480 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25481 /* Multicast addresses should have non-zero ill_index. */ 25482 v6dstp = &ip6h->ip6_dst; 25483 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25484 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25485 25486 if (ill == NULL && ill_index != 0) { 25487 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25488 /* Failure case frees things for us. */ 25489 if (ill == NULL) 25490 return; 25491 25492 ill_need_rele = B_TRUE; 25493 } 25494 ASSERT(mp != NULL); 25495 25496 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25497 boolean_t unspec_src; 25498 ipif_t *ipif; 25499 25500 /* 25501 * Use the ill_index to get the right ill. 25502 */ 25503 unspec_src = io->ipsec_out_unspec_src; 25504 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25505 if (ipif == NULL) { 25506 if (ill_need_rele) 25507 ill_refrele(ill); 25508 freemsg(ipsec_mp); 25509 return; 25510 } 25511 25512 if (ire_arg != NULL) { 25513 ire = ire_arg; 25514 } else { 25515 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25516 zoneid, msg_getlabel(mp), match_flags, ipst); 25517 ire_need_rele = B_TRUE; 25518 } 25519 if (ire != NULL) { 25520 ipif_refrele(ipif); 25521 /* 25522 * XXX Do the multicast forwarding now, as the IPsec 25523 * processing has been done. 25524 */ 25525 goto send; 25526 } 25527 25528 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25529 mp->b_prev = NULL; 25530 mp->b_next = NULL; 25531 25532 /* 25533 * If the IPsec packet was processed asynchronously, 25534 * drop it now. 25535 */ 25536 if (q == NULL) { 25537 if (ill_need_rele) 25538 ill_refrele(ill); 25539 freemsg(ipsec_mp); 25540 return; 25541 } 25542 25543 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25544 unspec_src, zoneid); 25545 ipif_refrele(ipif); 25546 } else { 25547 if (ire_arg != NULL) { 25548 ire = ire_arg; 25549 } else { 25550 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25551 ire_need_rele = B_TRUE; 25552 } 25553 if (ire != NULL) 25554 goto send; 25555 /* 25556 * ire disappeared underneath. 25557 * 25558 * What we need to do here is the ip_newroute 25559 * logic to get the ire without doing the IPsec 25560 * processing. Follow the same old path. But this 25561 * time, ip_wput or ire_add_then_send will call us 25562 * directly as all the IPsec operations are done. 25563 */ 25564 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25565 mp->b_prev = NULL; 25566 mp->b_next = NULL; 25567 25568 /* 25569 * If the IPsec packet was processed asynchronously, 25570 * drop it now. 25571 */ 25572 if (q == NULL) { 25573 if (ill_need_rele) 25574 ill_refrele(ill); 25575 freemsg(ipsec_mp); 25576 return; 25577 } 25578 25579 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25580 zoneid, ipst); 25581 } 25582 if (ill != NULL && ill_need_rele) 25583 ill_refrele(ill); 25584 return; 25585 send: 25586 if (ill != NULL && ill_need_rele) 25587 ill_refrele(ill); 25588 25589 /* Local delivery */ 25590 if (ire->ire_stq == NULL) { 25591 ill_t *out_ill; 25592 ASSERT(q != NULL); 25593 25594 /* PFHooks: LOOPBACK_OUT */ 25595 out_ill = ire_to_ill(ire); 25596 25597 /* 25598 * DTrace this as ip:::send. A blocked packet will fire the 25599 * send probe, but not the receive probe. 25600 */ 25601 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25602 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25603 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25604 25605 DTRACE_PROBE4(ip6__loopback__out__start, 25606 ill_t *, NULL, ill_t *, out_ill, 25607 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25608 25609 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25610 ipst->ips_ipv6firewall_loopback_out, 25611 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25612 25613 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25614 25615 if (ipsec_mp != NULL) { 25616 ip_wput_local_v6(RD(q), out_ill, 25617 ip6h, ipsec_mp, ire, 0, zoneid); 25618 } 25619 if (ire_need_rele) 25620 ire_refrele(ire); 25621 return; 25622 } 25623 /* 25624 * Everything is done. Send it out on the wire. 25625 * We force the insertion of a fragment header using the 25626 * IPH_FRAG_HDR flag in two cases: 25627 * - after reception of an ICMPv6 "packet too big" message 25628 * with a MTU < 1280 (cf. RFC 2460 section 5) 25629 * - for multirouted IPv6 packets, so that the receiver can 25630 * discard duplicates according to their fragment identifier 25631 */ 25632 /* XXX fix flow control problems. */ 25633 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25634 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25635 if (hwaccel) { 25636 /* 25637 * hardware acceleration does not handle these 25638 * "slow path" cases. 25639 */ 25640 /* IPsec KSTATS: should bump bean counter here. */ 25641 if (ire_need_rele) 25642 ire_refrele(ire); 25643 freemsg(ipsec_mp); 25644 return; 25645 } 25646 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25647 (mp->b_cont ? msgdsize(mp) : 25648 mp->b_wptr - (uchar_t *)ip6h)) { 25649 /* IPsec KSTATS: should bump bean counter here. */ 25650 ip0dbg(("Packet length mismatch: %d, %ld\n", 25651 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25652 msgdsize(mp))); 25653 if (ire_need_rele) 25654 ire_refrele(ire); 25655 freemsg(ipsec_mp); 25656 return; 25657 } 25658 ASSERT(mp->b_prev == NULL); 25659 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25660 ntohs(ip6h->ip6_plen) + 25661 IPV6_HDR_LEN, ire->ire_max_frag)); 25662 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25663 ire->ire_max_frag); 25664 } else { 25665 UPDATE_OB_PKT_COUNT(ire); 25666 ire->ire_last_used_time = lbolt; 25667 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25668 } 25669 if (ire_need_rele) 25670 ire_refrele(ire); 25671 freeb(ipsec_mp); 25672 } 25673 25674 void 25675 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25676 { 25677 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25678 da_ipsec_t *hada; /* data attributes */ 25679 ill_t *ill = (ill_t *)q->q_ptr; 25680 25681 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25682 25683 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25684 /* IPsec KSTATS: Bump lose counter here! */ 25685 freemsg(mp); 25686 return; 25687 } 25688 25689 /* 25690 * It's an IPsec packet that must be 25691 * accelerated by the Provider, and the 25692 * outbound ill is IPsec acceleration capable. 25693 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25694 * to the ill. 25695 * IPsec KSTATS: should bump packet counter here. 25696 */ 25697 25698 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25699 if (hada_mp == NULL) { 25700 /* IPsec KSTATS: should bump packet counter here. */ 25701 freemsg(mp); 25702 return; 25703 } 25704 25705 hada_mp->b_datap->db_type = M_CTL; 25706 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25707 hada_mp->b_cont = mp; 25708 25709 hada = (da_ipsec_t *)hada_mp->b_rptr; 25710 bzero(hada, sizeof (da_ipsec_t)); 25711 hada->da_type = IPHADA_M_CTL; 25712 25713 putnext(q, hada_mp); 25714 } 25715 25716 /* 25717 * Finish the outbound IPsec processing. This function is called from 25718 * ipsec_out_process() if the IPsec packet was processed 25719 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25720 * asynchronously. 25721 */ 25722 void 25723 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25724 ire_t *ire_arg) 25725 { 25726 uint32_t v_hlen_tos_len; 25727 ipaddr_t dst; 25728 ipif_t *ipif = NULL; 25729 ire_t *ire; 25730 ire_t *ire1 = NULL; 25731 mblk_t *next_mp = NULL; 25732 uint32_t max_frag; 25733 boolean_t multirt_send = B_FALSE; 25734 mblk_t *mp; 25735 ipha_t *ipha1; 25736 uint_t ill_index; 25737 ipsec_out_t *io; 25738 int match_flags; 25739 irb_t *irb = NULL; 25740 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25741 zoneid_t zoneid; 25742 ipxmit_state_t pktxmit_state; 25743 ip_stack_t *ipst; 25744 25745 #ifdef _BIG_ENDIAN 25746 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25747 #else 25748 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25749 #endif 25750 25751 mp = ipsec_mp->b_cont; 25752 ipha1 = (ipha_t *)mp->b_rptr; 25753 ASSERT(mp != NULL); 25754 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25755 dst = ipha->ipha_dst; 25756 25757 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25758 ill_index = io->ipsec_out_ill_index; 25759 zoneid = io->ipsec_out_zoneid; 25760 ASSERT(zoneid != ALL_ZONES); 25761 ipst = io->ipsec_out_ns->netstack_ip; 25762 ASSERT(io->ipsec_out_ns != NULL); 25763 25764 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25765 if (ill == NULL && ill_index != 0) { 25766 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25767 /* Failure case frees things for us. */ 25768 if (ill == NULL) 25769 return; 25770 25771 ill_need_rele = B_TRUE; 25772 } 25773 25774 if (CLASSD(dst)) { 25775 boolean_t conn_dontroute; 25776 /* 25777 * Use the ill_index to get the right ipif. 25778 */ 25779 conn_dontroute = io->ipsec_out_dontroute; 25780 if (ill_index == 0) 25781 ipif = ipif_lookup_group(dst, zoneid, ipst); 25782 else 25783 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25784 if (ipif == NULL) { 25785 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25786 " multicast\n")); 25787 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25788 freemsg(ipsec_mp); 25789 goto done; 25790 } 25791 /* 25792 * ipha_src has already been intialized with the 25793 * value of the ipif in ip_wput. All we need now is 25794 * an ire to send this downstream. 25795 */ 25796 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25797 msg_getlabel(mp), match_flags, ipst); 25798 if (ire != NULL) { 25799 ill_t *ill1; 25800 /* 25801 * Do the multicast forwarding now, as the IPsec 25802 * processing has been done. 25803 */ 25804 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25805 (ill1 = ire_to_ill(ire))) { 25806 if (ip_mforward(ill1, ipha, mp)) { 25807 freemsg(ipsec_mp); 25808 ip1dbg(("ip_wput_ipsec_out: mforward " 25809 "failed\n")); 25810 ire_refrele(ire); 25811 goto done; 25812 } 25813 } 25814 goto send; 25815 } 25816 25817 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25818 mp->b_prev = NULL; 25819 mp->b_next = NULL; 25820 25821 /* 25822 * If the IPsec packet was processed asynchronously, 25823 * drop it now. 25824 */ 25825 if (q == NULL) { 25826 freemsg(ipsec_mp); 25827 goto done; 25828 } 25829 25830 /* 25831 * We may be using a wrong ipif to create the ire. 25832 * But it is okay as the source address is assigned 25833 * for the packet already. Next outbound packet would 25834 * create the IRE with the right IPIF in ip_wput. 25835 * 25836 * Also handle RTF_MULTIRT routes. 25837 */ 25838 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25839 zoneid, &zero_info); 25840 } else { 25841 if (ire_arg != NULL) { 25842 ire = ire_arg; 25843 ire_need_rele = B_FALSE; 25844 } else { 25845 ire = ire_cache_lookup(dst, zoneid, 25846 msg_getlabel(mp), ipst); 25847 } 25848 if (ire != NULL) { 25849 goto send; 25850 } 25851 25852 /* 25853 * ire disappeared underneath. 25854 * 25855 * What we need to do here is the ip_newroute 25856 * logic to get the ire without doing the IPsec 25857 * processing. Follow the same old path. But this 25858 * time, ip_wput or ire_add_then_put will call us 25859 * directly as all the IPsec operations are done. 25860 */ 25861 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25862 mp->b_prev = NULL; 25863 mp->b_next = NULL; 25864 25865 /* 25866 * If the IPsec packet was processed asynchronously, 25867 * drop it now. 25868 */ 25869 if (q == NULL) { 25870 freemsg(ipsec_mp); 25871 goto done; 25872 } 25873 25874 /* 25875 * Since we're going through ip_newroute() again, we 25876 * need to make sure we don't: 25877 * 25878 * 1.) Trigger the ASSERT() with the ipha_ident 25879 * overloading. 25880 * 2.) Redo transport-layer checksumming, since we've 25881 * already done all that to get this far. 25882 * 25883 * The easiest way not do either of the above is to set 25884 * the ipha_ident field to IP_HDR_INCLUDED. 25885 */ 25886 ipha->ipha_ident = IP_HDR_INCLUDED; 25887 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25888 zoneid, ipst); 25889 } 25890 goto done; 25891 send: 25892 if (ire->ire_stq == NULL) { 25893 ill_t *out_ill; 25894 /* 25895 * Loopbacks go through ip_wput_local except for one case. 25896 * We come here if we generate a icmp_frag_needed message 25897 * after IPsec processing is over. When this function calls 25898 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25899 * icmp_frag_needed. The message generated comes back here 25900 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25901 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25902 * source address as it is usually set in ip_wput_ire. As 25903 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25904 * and we end up here. We can't enter ip_wput_ire once the 25905 * IPsec processing is over and hence we need to do it here. 25906 */ 25907 ASSERT(q != NULL); 25908 UPDATE_OB_PKT_COUNT(ire); 25909 ire->ire_last_used_time = lbolt; 25910 if (ipha->ipha_src == 0) 25911 ipha->ipha_src = ire->ire_src_addr; 25912 25913 /* PFHooks: LOOPBACK_OUT */ 25914 out_ill = ire_to_ill(ire); 25915 25916 /* 25917 * DTrace this as ip:::send. A blocked packet will fire the 25918 * send probe, but not the receive probe. 25919 */ 25920 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25921 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 25922 ipha_t *, ipha, ip6_t *, NULL, int, 1); 25923 25924 DTRACE_PROBE4(ip4__loopback__out__start, 25925 ill_t *, NULL, ill_t *, out_ill, 25926 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25927 25928 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25929 ipst->ips_ipv4firewall_loopback_out, 25930 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 25931 25932 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25933 25934 if (ipsec_mp != NULL) 25935 ip_wput_local(RD(q), out_ill, 25936 ipha, ipsec_mp, ire, 0, zoneid); 25937 if (ire_need_rele) 25938 ire_refrele(ire); 25939 goto done; 25940 } 25941 25942 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25943 /* 25944 * We are through with IPsec processing. 25945 * Fragment this and send it on the wire. 25946 */ 25947 if (io->ipsec_out_accelerated) { 25948 /* 25949 * The packet has been accelerated but must 25950 * be fragmented. This should not happen 25951 * since AH and ESP must not accelerate 25952 * packets that need fragmentation, however 25953 * the configuration could have changed 25954 * since the AH or ESP processing. 25955 * Drop packet. 25956 * IPsec KSTATS: bump bean counter here. 25957 */ 25958 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25959 "fragmented accelerated packet!\n")); 25960 freemsg(ipsec_mp); 25961 } else { 25962 ip_wput_ire_fragmentit(ipsec_mp, ire, 25963 zoneid, ipst, NULL); 25964 } 25965 if (ire_need_rele) 25966 ire_refrele(ire); 25967 goto done; 25968 } 25969 25970 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25971 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25972 (void *)ire->ire_ipif, (void *)ipif)); 25973 25974 /* 25975 * Multiroute the secured packet. 25976 */ 25977 if (ire->ire_flags & RTF_MULTIRT) { 25978 ire_t *first_ire; 25979 irb = ire->ire_bucket; 25980 ASSERT(irb != NULL); 25981 /* 25982 * This ire has been looked up as the one that 25983 * goes through the given ipif; 25984 * make sure we do not omit any other multiroute ire 25985 * that may be present in the bucket before this one. 25986 */ 25987 IRB_REFHOLD(irb); 25988 for (first_ire = irb->irb_ire; 25989 first_ire != NULL; 25990 first_ire = first_ire->ire_next) { 25991 if ((first_ire->ire_flags & RTF_MULTIRT) && 25992 (first_ire->ire_addr == ire->ire_addr) && 25993 !(first_ire->ire_marks & 25994 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 25995 break; 25996 } 25997 25998 if ((first_ire != NULL) && (first_ire != ire)) { 25999 /* 26000 * Don't change the ire if the packet must 26001 * be fragmented if sent via this new one. 26002 */ 26003 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26004 IRE_REFHOLD(first_ire); 26005 if (ire_need_rele) 26006 ire_refrele(ire); 26007 else 26008 ire_need_rele = B_TRUE; 26009 ire = first_ire; 26010 } 26011 } 26012 IRB_REFRELE(irb); 26013 26014 multirt_send = B_TRUE; 26015 max_frag = ire->ire_max_frag; 26016 } 26017 26018 /* 26019 * In most cases, the emission loop below is entered only once. 26020 * Only in the case where the ire holds the RTF_MULTIRT 26021 * flag, we loop to process all RTF_MULTIRT ires in the 26022 * bucket, and send the packet through all crossed 26023 * RTF_MULTIRT routes. 26024 */ 26025 do { 26026 if (multirt_send) { 26027 /* 26028 * ire1 holds here the next ire to process in the 26029 * bucket. If multirouting is expected, 26030 * any non-RTF_MULTIRT ire that has the 26031 * right destination address is ignored. 26032 */ 26033 ASSERT(irb != NULL); 26034 IRB_REFHOLD(irb); 26035 for (ire1 = ire->ire_next; 26036 ire1 != NULL; 26037 ire1 = ire1->ire_next) { 26038 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26039 continue; 26040 if (ire1->ire_addr != ire->ire_addr) 26041 continue; 26042 if (ire1->ire_marks & 26043 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26044 continue; 26045 /* No loopback here */ 26046 if (ire1->ire_stq == NULL) 26047 continue; 26048 /* 26049 * Ensure we do not exceed the MTU 26050 * of the next route. 26051 */ 26052 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26053 ip_multirt_bad_mtu(ire1, max_frag); 26054 continue; 26055 } 26056 26057 IRE_REFHOLD(ire1); 26058 break; 26059 } 26060 IRB_REFRELE(irb); 26061 if (ire1 != NULL) { 26062 /* 26063 * We are in a multiple send case, need to 26064 * make a copy of the packet. 26065 */ 26066 next_mp = copymsg(ipsec_mp); 26067 if (next_mp == NULL) { 26068 ire_refrele(ire1); 26069 ire1 = NULL; 26070 } 26071 } 26072 } 26073 /* 26074 * Everything is done. Send it out on the wire 26075 * 26076 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26077 * either send it on the wire or, in the case of 26078 * HW acceleration, call ipsec_hw_putnext. 26079 */ 26080 if (ire->ire_nce && 26081 ire->ire_nce->nce_state != ND_REACHABLE) { 26082 DTRACE_PROBE2(ip__wput__ipsec__bail, 26083 (ire_t *), ire, (mblk_t *), ipsec_mp); 26084 /* 26085 * If ire's link-layer is unresolved (this 26086 * would only happen if the incomplete ire 26087 * was added to cachetable via forwarding path) 26088 * don't bother going to ip_xmit_v4. Just drop the 26089 * packet. 26090 * There is a slight risk here, in that, if we 26091 * have the forwarding path create an incomplete 26092 * IRE, then until the IRE is completed, any 26093 * transmitted IPsec packets will be dropped 26094 * instead of being queued waiting for resolution. 26095 * 26096 * But the likelihood of a forwarding packet and a wput 26097 * packet sending to the same dst at the same time 26098 * and there not yet be an ARP entry for it is small. 26099 * Furthermore, if this actually happens, it might 26100 * be likely that wput would generate multiple 26101 * packets (and forwarding would also have a train 26102 * of packets) for that destination. If this is 26103 * the case, some of them would have been dropped 26104 * anyway, since ARP only queues a few packets while 26105 * waiting for resolution 26106 * 26107 * NOTE: We should really call ip_xmit_v4, 26108 * and let it queue the packet and send the 26109 * ARP query and have ARP come back thus: 26110 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26111 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26112 * hw accel work. But it's too complex to get 26113 * the IPsec hw acceleration approach to fit 26114 * well with ip_xmit_v4 doing ARP without 26115 * doing IPsec simplification. For now, we just 26116 * poke ip_xmit_v4 to trigger the arp resolve, so 26117 * that we can continue with the send on the next 26118 * attempt. 26119 * 26120 * XXX THis should be revisited, when 26121 * the IPsec/IP interaction is cleaned up 26122 */ 26123 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26124 " - dropping packet\n")); 26125 freemsg(ipsec_mp); 26126 /* 26127 * Call ip_xmit_v4() to trigger ARP query 26128 * in case the nce_state is ND_INITIAL 26129 */ 26130 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26131 goto drop_pkt; 26132 } 26133 26134 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26135 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26136 mblk_t *, ipsec_mp); 26137 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26138 ipst->ips_ipv4firewall_physical_out, NULL, 26139 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26140 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26141 if (ipsec_mp == NULL) 26142 goto drop_pkt; 26143 26144 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26145 pktxmit_state = ip_xmit_v4(mp, ire, 26146 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26147 26148 if ((pktxmit_state == SEND_FAILED) || 26149 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26150 26151 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26152 drop_pkt: 26153 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26154 ipIfStatsOutDiscards); 26155 if (ire_need_rele) 26156 ire_refrele(ire); 26157 if (ire1 != NULL) { 26158 ire_refrele(ire1); 26159 freemsg(next_mp); 26160 } 26161 goto done; 26162 } 26163 26164 freeb(ipsec_mp); 26165 if (ire_need_rele) 26166 ire_refrele(ire); 26167 26168 if (ire1 != NULL) { 26169 ire = ire1; 26170 ire_need_rele = B_TRUE; 26171 ASSERT(next_mp); 26172 ipsec_mp = next_mp; 26173 mp = ipsec_mp->b_cont; 26174 ire1 = NULL; 26175 next_mp = NULL; 26176 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26177 } else { 26178 multirt_send = B_FALSE; 26179 } 26180 } while (multirt_send); 26181 done: 26182 if (ill != NULL && ill_need_rele) 26183 ill_refrele(ill); 26184 if (ipif != NULL) 26185 ipif_refrele(ipif); 26186 } 26187 26188 /* 26189 * Get the ill corresponding to the specified ire, and compare its 26190 * capabilities with the protocol and algorithms specified by the 26191 * the SA obtained from ipsec_out. If they match, annotate the 26192 * ipsec_out structure to indicate that the packet needs acceleration. 26193 * 26194 * 26195 * A packet is eligible for outbound hardware acceleration if the 26196 * following conditions are satisfied: 26197 * 26198 * 1. the packet will not be fragmented 26199 * 2. the provider supports the algorithm 26200 * 3. there is no pending control message being exchanged 26201 * 4. snoop is not attached 26202 * 5. the destination address is not a broadcast or multicast address. 26203 * 26204 * Rationale: 26205 * - Hardware drivers do not support fragmentation with 26206 * the current interface. 26207 * - snoop, multicast, and broadcast may result in exposure of 26208 * a cleartext datagram. 26209 * We check all five of these conditions here. 26210 * 26211 * XXX would like to nuke "ire_t *" parameter here; problem is that 26212 * IRE is only way to figure out if a v4 address is a broadcast and 26213 * thus ineligible for acceleration... 26214 */ 26215 static void 26216 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26217 { 26218 ipsec_out_t *io; 26219 mblk_t *data_mp; 26220 uint_t plen, overhead; 26221 ip_stack_t *ipst; 26222 phyint_t *phyint; 26223 26224 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26225 return; 26226 26227 if (ill == NULL) 26228 return; 26229 ipst = ill->ill_ipst; 26230 phyint = ill->ill_phyint; 26231 26232 /* 26233 * Destination address is a broadcast or multicast. Punt. 26234 */ 26235 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26236 IRE_LOCAL))) 26237 return; 26238 26239 data_mp = ipsec_mp->b_cont; 26240 26241 if (ill->ill_isv6) { 26242 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26243 26244 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26245 return; 26246 26247 plen = ip6h->ip6_plen; 26248 } else { 26249 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26250 26251 if (CLASSD(ipha->ipha_dst)) 26252 return; 26253 26254 plen = ipha->ipha_length; 26255 } 26256 /* 26257 * Is there a pending DLPI control message being exchanged 26258 * between IP/IPsec and the DLS Provider? If there is, it 26259 * could be a SADB update, and the state of the DLS Provider 26260 * SADB might not be in sync with the SADB maintained by 26261 * IPsec. To avoid dropping packets or using the wrong keying 26262 * material, we do not accelerate this packet. 26263 */ 26264 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26265 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26266 "ill_dlpi_pending! don't accelerate packet\n")); 26267 return; 26268 } 26269 26270 /* 26271 * Is the Provider in promiscous mode? If it does, we don't 26272 * accelerate the packet since it will bounce back up to the 26273 * listeners in the clear. 26274 */ 26275 if (phyint->phyint_flags & PHYI_PROMISC) { 26276 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26277 "ill in promiscous mode, don't accelerate packet\n")); 26278 return; 26279 } 26280 26281 /* 26282 * Will the packet require fragmentation? 26283 */ 26284 26285 /* 26286 * IPsec ESP note: this is a pessimistic estimate, but the same 26287 * as is used elsewhere. 26288 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26289 * + 2-byte trailer 26290 */ 26291 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26292 IPSEC_BASE_ESP_HDR_SIZE(sa); 26293 26294 if ((plen + overhead) > ill->ill_max_mtu) 26295 return; 26296 26297 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26298 26299 /* 26300 * Can the ill accelerate this IPsec protocol and algorithm 26301 * specified by the SA? 26302 */ 26303 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26304 ill->ill_isv6, sa, ipst->ips_netstack)) { 26305 return; 26306 } 26307 26308 /* 26309 * Tell AH or ESP that the outbound ill is capable of 26310 * accelerating this packet. 26311 */ 26312 io->ipsec_out_is_capab_ill = B_TRUE; 26313 } 26314 26315 /* 26316 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26317 * 26318 * If this function returns B_TRUE, the requested SA's have been filled 26319 * into the ipsec_out_*_sa pointers. 26320 * 26321 * If the function returns B_FALSE, the packet has been "consumed", most 26322 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26323 * 26324 * The SA references created by the protocol-specific "select" 26325 * function will be released when the ipsec_mp is freed, thanks to the 26326 * ipsec_out_free destructor -- see spd.c. 26327 */ 26328 static boolean_t 26329 ipsec_out_select_sa(mblk_t *ipsec_mp) 26330 { 26331 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26332 ipsec_out_t *io; 26333 ipsec_policy_t *pp; 26334 ipsec_action_t *ap; 26335 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26336 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26337 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26338 26339 if (!io->ipsec_out_secure) { 26340 /* 26341 * We came here by mistake. 26342 * Don't bother with ipsec processing 26343 * We should "discourage" this path in the future. 26344 */ 26345 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26346 return (B_FALSE); 26347 } 26348 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26349 ASSERT((io->ipsec_out_policy != NULL) || 26350 (io->ipsec_out_act != NULL)); 26351 26352 ASSERT(io->ipsec_out_failed == B_FALSE); 26353 26354 /* 26355 * IPsec processing has started. 26356 */ 26357 io->ipsec_out_proc_begin = B_TRUE; 26358 ap = io->ipsec_out_act; 26359 if (ap == NULL) { 26360 pp = io->ipsec_out_policy; 26361 ASSERT(pp != NULL); 26362 ap = pp->ipsp_act; 26363 ASSERT(ap != NULL); 26364 } 26365 26366 /* 26367 * We have an action. now, let's select SA's. 26368 * (In the future, we can cache this in the conn_t..) 26369 */ 26370 if (ap->ipa_want_esp) { 26371 if (io->ipsec_out_esp_sa == NULL) { 26372 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26373 IPPROTO_ESP); 26374 } 26375 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26376 } 26377 26378 if (ap->ipa_want_ah) { 26379 if (io->ipsec_out_ah_sa == NULL) { 26380 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26381 IPPROTO_AH); 26382 } 26383 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26384 /* 26385 * The ESP and AH processing order needs to be preserved 26386 * when both protocols are required (ESP should be applied 26387 * before AH for an outbound packet). Force an ESP ACQUIRE 26388 * when both ESP and AH are required, and an AH ACQUIRE 26389 * is needed. 26390 */ 26391 if (ap->ipa_want_esp && need_ah_acquire) 26392 need_esp_acquire = B_TRUE; 26393 } 26394 26395 /* 26396 * Send an ACQUIRE (extended, regular, or both) if we need one. 26397 * Release SAs that got referenced, but will not be used until we 26398 * acquire _all_ of the SAs we need. 26399 */ 26400 if (need_ah_acquire || need_esp_acquire) { 26401 if (io->ipsec_out_ah_sa != NULL) { 26402 IPSA_REFRELE(io->ipsec_out_ah_sa); 26403 io->ipsec_out_ah_sa = NULL; 26404 } 26405 if (io->ipsec_out_esp_sa != NULL) { 26406 IPSA_REFRELE(io->ipsec_out_esp_sa); 26407 io->ipsec_out_esp_sa = NULL; 26408 } 26409 26410 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26411 return (B_FALSE); 26412 } 26413 26414 return (B_TRUE); 26415 } 26416 26417 /* 26418 * Process an IPSEC_OUT message and see what you can 26419 * do with it. 26420 * IPQoS Notes: 26421 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26422 * IPsec. 26423 * XXX would like to nuke ire_t. 26424 * XXX ill_index better be "real" 26425 */ 26426 void 26427 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26428 { 26429 ipsec_out_t *io; 26430 ipsec_policy_t *pp; 26431 ipsec_action_t *ap; 26432 ipha_t *ipha; 26433 ip6_t *ip6h; 26434 mblk_t *mp; 26435 ill_t *ill; 26436 zoneid_t zoneid; 26437 ipsec_status_t ipsec_rc; 26438 boolean_t ill_need_rele = B_FALSE; 26439 ip_stack_t *ipst; 26440 ipsec_stack_t *ipss; 26441 26442 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26443 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26444 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26445 ipst = io->ipsec_out_ns->netstack_ip; 26446 mp = ipsec_mp->b_cont; 26447 26448 /* 26449 * Initiate IPPF processing. We do it here to account for packets 26450 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26451 * We can check for ipsec_out_proc_begin even for such packets, as 26452 * they will always be false (asserted below). 26453 */ 26454 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26455 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26456 io->ipsec_out_ill_index : ill_index); 26457 if (mp == NULL) { 26458 ip2dbg(("ipsec_out_process: packet dropped "\ 26459 "during IPPF processing\n")); 26460 freeb(ipsec_mp); 26461 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26462 return; 26463 } 26464 } 26465 26466 if (!io->ipsec_out_secure) { 26467 /* 26468 * We came here by mistake. 26469 * Don't bother with ipsec processing 26470 * Should "discourage" this path in the future. 26471 */ 26472 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26473 goto done; 26474 } 26475 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26476 ASSERT((io->ipsec_out_policy != NULL) || 26477 (io->ipsec_out_act != NULL)); 26478 ASSERT(io->ipsec_out_failed == B_FALSE); 26479 26480 ipss = ipst->ips_netstack->netstack_ipsec; 26481 if (!ipsec_loaded(ipss)) { 26482 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26483 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26484 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26485 } else { 26486 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26487 } 26488 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26489 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26490 &ipss->ipsec_dropper); 26491 return; 26492 } 26493 26494 /* 26495 * IPsec processing has started. 26496 */ 26497 io->ipsec_out_proc_begin = B_TRUE; 26498 ap = io->ipsec_out_act; 26499 if (ap == NULL) { 26500 pp = io->ipsec_out_policy; 26501 ASSERT(pp != NULL); 26502 ap = pp->ipsp_act; 26503 ASSERT(ap != NULL); 26504 } 26505 26506 /* 26507 * Save the outbound ill index. When the packet comes back 26508 * from IPsec, we make sure the ill hasn't changed or disappeared 26509 * before sending it the accelerated packet. 26510 */ 26511 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26512 ill = ire_to_ill(ire); 26513 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26514 } 26515 26516 /* 26517 * The order of processing is first insert a IP header if needed. 26518 * Then insert the ESP header and then the AH header. 26519 */ 26520 if ((io->ipsec_out_se_done == B_FALSE) && 26521 (ap->ipa_want_se)) { 26522 /* 26523 * First get the outer IP header before sending 26524 * it to ESP. 26525 */ 26526 ipha_t *oipha, *iipha; 26527 mblk_t *outer_mp, *inner_mp; 26528 26529 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26530 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26531 "ipsec_out_process: " 26532 "Self-Encapsulation failed: Out of memory\n"); 26533 freemsg(ipsec_mp); 26534 if (ill != NULL) { 26535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26536 } else { 26537 BUMP_MIB(&ipst->ips_ip_mib, 26538 ipIfStatsOutDiscards); 26539 } 26540 return; 26541 } 26542 inner_mp = ipsec_mp->b_cont; 26543 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26544 oipha = (ipha_t *)outer_mp->b_rptr; 26545 iipha = (ipha_t *)inner_mp->b_rptr; 26546 *oipha = *iipha; 26547 outer_mp->b_wptr += sizeof (ipha_t); 26548 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26549 sizeof (ipha_t)); 26550 oipha->ipha_protocol = IPPROTO_ENCAP; 26551 oipha->ipha_version_and_hdr_length = 26552 IP_SIMPLE_HDR_VERSION; 26553 oipha->ipha_hdr_checksum = 0; 26554 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26555 outer_mp->b_cont = inner_mp; 26556 ipsec_mp->b_cont = outer_mp; 26557 26558 io->ipsec_out_se_done = B_TRUE; 26559 io->ipsec_out_tunnel = B_TRUE; 26560 } 26561 26562 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26563 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26564 !ipsec_out_select_sa(ipsec_mp)) 26565 return; 26566 26567 /* 26568 * By now, we know what SA's to use. Toss over to ESP & AH 26569 * to do the heavy lifting. 26570 */ 26571 zoneid = io->ipsec_out_zoneid; 26572 ASSERT(zoneid != ALL_ZONES); 26573 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26574 ASSERT(io->ipsec_out_esp_sa != NULL); 26575 io->ipsec_out_esp_done = B_TRUE; 26576 /* 26577 * Note that since hw accel can only apply one transform, 26578 * not two, we skip hw accel for ESP if we also have AH 26579 * This is an design limitation of the interface 26580 * which should be revisited. 26581 */ 26582 ASSERT(ire != NULL); 26583 if (io->ipsec_out_ah_sa == NULL) { 26584 ill = (ill_t *)ire->ire_stq->q_ptr; 26585 ipsec_out_is_accelerated(ipsec_mp, 26586 io->ipsec_out_esp_sa, ill, ire); 26587 } 26588 26589 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26590 switch (ipsec_rc) { 26591 case IPSEC_STATUS_SUCCESS: 26592 break; 26593 case IPSEC_STATUS_FAILED: 26594 if (ill != NULL) { 26595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26596 } else { 26597 BUMP_MIB(&ipst->ips_ip_mib, 26598 ipIfStatsOutDiscards); 26599 } 26600 /* FALLTHRU */ 26601 case IPSEC_STATUS_PENDING: 26602 return; 26603 } 26604 } 26605 26606 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26607 ASSERT(io->ipsec_out_ah_sa != NULL); 26608 io->ipsec_out_ah_done = B_TRUE; 26609 if (ire == NULL) { 26610 int idx = io->ipsec_out_capab_ill_index; 26611 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26612 NULL, NULL, NULL, NULL, ipst); 26613 ill_need_rele = B_TRUE; 26614 } else { 26615 ill = (ill_t *)ire->ire_stq->q_ptr; 26616 } 26617 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26618 ire); 26619 26620 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26621 switch (ipsec_rc) { 26622 case IPSEC_STATUS_SUCCESS: 26623 break; 26624 case IPSEC_STATUS_FAILED: 26625 if (ill != NULL) { 26626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26627 } else { 26628 BUMP_MIB(&ipst->ips_ip_mib, 26629 ipIfStatsOutDiscards); 26630 } 26631 /* FALLTHRU */ 26632 case IPSEC_STATUS_PENDING: 26633 if (ill != NULL && ill_need_rele) 26634 ill_refrele(ill); 26635 return; 26636 } 26637 } 26638 /* 26639 * We are done with IPsec processing. Send it over the wire. 26640 */ 26641 done: 26642 mp = ipsec_mp->b_cont; 26643 ipha = (ipha_t *)mp->b_rptr; 26644 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26645 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26646 ire); 26647 } else { 26648 ip6h = (ip6_t *)ipha; 26649 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26650 ire); 26651 } 26652 if (ill != NULL && ill_need_rele) 26653 ill_refrele(ill); 26654 } 26655 26656 /* ARGSUSED */ 26657 void 26658 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26659 { 26660 opt_restart_t *or; 26661 int err; 26662 conn_t *connp; 26663 cred_t *cr; 26664 26665 ASSERT(CONN_Q(q)); 26666 connp = Q_TO_CONN(q); 26667 26668 ASSERT(first_mp->b_datap->db_type == M_CTL); 26669 or = (opt_restart_t *)first_mp->b_rptr; 26670 /* 26671 * We checked for a db_credp the first time svr4_optcom_req 26672 * was called (from ip_wput_nondata). So we can just ASSERT here. 26673 */ 26674 cr = msg_getcred(first_mp, NULL); 26675 ASSERT(cr != NULL); 26676 26677 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26678 err = svr4_optcom_req(q, first_mp, cr, 26679 &ip_opt_obj, B_FALSE); 26680 } else { 26681 ASSERT(or->or_type == T_OPTMGMT_REQ); 26682 err = tpi_optcom_req(q, first_mp, cr, 26683 &ip_opt_obj, B_FALSE); 26684 } 26685 if (err != EINPROGRESS) { 26686 /* operation is done */ 26687 CONN_OPER_PENDING_DONE(connp); 26688 } 26689 } 26690 26691 /* 26692 * ioctls that go through a down/up sequence may need to wait for the down 26693 * to complete. This involves waiting for the ire and ipif refcnts to go down 26694 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26695 */ 26696 /* ARGSUSED */ 26697 void 26698 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26699 { 26700 struct iocblk *iocp; 26701 mblk_t *mp1; 26702 ip_ioctl_cmd_t *ipip; 26703 int err; 26704 sin_t *sin; 26705 struct lifreq *lifr; 26706 struct ifreq *ifr; 26707 26708 iocp = (struct iocblk *)mp->b_rptr; 26709 ASSERT(ipsq != NULL); 26710 /* Existence of mp1 verified in ip_wput_nondata */ 26711 mp1 = mp->b_cont->b_cont; 26712 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26713 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26714 /* 26715 * Special case where ipx_current_ipif is not set: 26716 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26717 * We are here as were not able to complete the operation in 26718 * ipif_set_values because we could not become exclusive on 26719 * the new ipsq. 26720 */ 26721 ill_t *ill = q->q_ptr; 26722 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26723 } 26724 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26725 26726 if (ipip->ipi_cmd_type == IF_CMD) { 26727 /* This a old style SIOC[GS]IF* command */ 26728 ifr = (struct ifreq *)mp1->b_rptr; 26729 sin = (sin_t *)&ifr->ifr_addr; 26730 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26731 /* This a new style SIOC[GS]LIF* command */ 26732 lifr = (struct lifreq *)mp1->b_rptr; 26733 sin = (sin_t *)&lifr->lifr_addr; 26734 } else { 26735 sin = NULL; 26736 } 26737 26738 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26739 q, mp, ipip, mp1->b_rptr); 26740 26741 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26742 } 26743 26744 /* 26745 * ioctl processing 26746 * 26747 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26748 * the ioctl command in the ioctl tables, determines the copyin data size 26749 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26750 * 26751 * ioctl processing then continues when the M_IOCDATA makes its way down to 26752 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26753 * associated 'conn' is refheld till the end of the ioctl and the general 26754 * ioctl processing function ip_process_ioctl() is called to extract the 26755 * arguments and process the ioctl. To simplify extraction, ioctl commands 26756 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26757 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26758 * is used to extract the ioctl's arguments. 26759 * 26760 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26761 * so goes thru the serialization primitive ipsq_try_enter. Then the 26762 * appropriate function to handle the ioctl is called based on the entry in 26763 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26764 * which also refreleases the 'conn' that was refheld at the start of the 26765 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26766 * 26767 * Many exclusive ioctls go thru an internal down up sequence as part of 26768 * the operation. For example an attempt to change the IP address of an 26769 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26770 * does all the cleanup such as deleting all ires that use this address. 26771 * Then we need to wait till all references to the interface go away. 26772 */ 26773 void 26774 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26775 { 26776 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26777 ip_ioctl_cmd_t *ipip = arg; 26778 ip_extract_func_t *extract_funcp; 26779 cmd_info_t ci; 26780 int err; 26781 boolean_t entered_ipsq = B_FALSE; 26782 26783 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26784 26785 if (ipip == NULL) 26786 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26787 26788 /* 26789 * SIOCLIFADDIF needs to go thru a special path since the 26790 * ill may not exist yet. This happens in the case of lo0 26791 * which is created using this ioctl. 26792 */ 26793 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26794 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26795 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26796 return; 26797 } 26798 26799 ci.ci_ipif = NULL; 26800 if (ipip->ipi_cmd_type == MISC_CMD) { 26801 /* 26802 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26803 */ 26804 if (ipip->ipi_cmd == IF_UNITSEL) { 26805 /* ioctl comes down the ill */ 26806 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26807 ipif_refhold(ci.ci_ipif); 26808 } 26809 err = 0; 26810 ci.ci_sin = NULL; 26811 ci.ci_sin6 = NULL; 26812 ci.ci_lifr = NULL; 26813 } else { 26814 switch (ipip->ipi_cmd_type) { 26815 case IF_CMD: 26816 case LIF_CMD: 26817 extract_funcp = ip_extract_lifreq; 26818 break; 26819 26820 case ARP_CMD: 26821 case XARP_CMD: 26822 extract_funcp = ip_extract_arpreq; 26823 break; 26824 26825 case MSFILT_CMD: 26826 extract_funcp = ip_extract_msfilter; 26827 break; 26828 26829 default: 26830 ASSERT(0); 26831 } 26832 26833 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26834 if (err != 0) { 26835 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26836 return; 26837 } 26838 26839 /* 26840 * All of the extraction functions return a refheld ipif. 26841 */ 26842 ASSERT(ci.ci_ipif != NULL); 26843 } 26844 26845 if (!(ipip->ipi_flags & IPI_WR)) { 26846 /* 26847 * A return value of EINPROGRESS means the ioctl is 26848 * either queued and waiting for some reason or has 26849 * already completed. 26850 */ 26851 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26852 ci.ci_lifr); 26853 if (ci.ci_ipif != NULL) 26854 ipif_refrele(ci.ci_ipif); 26855 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26856 return; 26857 } 26858 26859 ASSERT(ci.ci_ipif != NULL); 26860 26861 /* 26862 * If ipsq is non-NULL, we are already being called exclusively. 26863 */ 26864 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26865 if (ipsq == NULL) { 26866 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 26867 NEW_OP, B_TRUE); 26868 if (ipsq == NULL) { 26869 ipif_refrele(ci.ci_ipif); 26870 return; 26871 } 26872 entered_ipsq = B_TRUE; 26873 } 26874 26875 /* 26876 * Release the ipif so that ipif_down and friends that wait for 26877 * references to go away are not misled about the current ipif_refcnt 26878 * values. We are writer so we can access the ipif even after releasing 26879 * the ipif. 26880 */ 26881 ipif_refrele(ci.ci_ipif); 26882 26883 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26884 26885 /* 26886 * A return value of EINPROGRESS means the ioctl is 26887 * either queued and waiting for some reason or has 26888 * already completed. 26889 */ 26890 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26891 26892 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26893 26894 if (entered_ipsq) 26895 ipsq_exit(ipsq); 26896 } 26897 26898 /* 26899 * Complete the ioctl. Typically ioctls use the mi package and need to 26900 * do mi_copyout/mi_copy_done. 26901 */ 26902 void 26903 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26904 { 26905 conn_t *connp = NULL; 26906 26907 if (err == EINPROGRESS) 26908 return; 26909 26910 if (CONN_Q(q)) { 26911 connp = Q_TO_CONN(q); 26912 ASSERT(connp->conn_ref >= 2); 26913 } 26914 26915 switch (mode) { 26916 case COPYOUT: 26917 if (err == 0) 26918 mi_copyout(q, mp); 26919 else 26920 mi_copy_done(q, mp, err); 26921 break; 26922 26923 case NO_COPYOUT: 26924 mi_copy_done(q, mp, err); 26925 break; 26926 26927 default: 26928 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26929 break; 26930 } 26931 26932 /* 26933 * The refhold placed at the start of the ioctl is released here. 26934 */ 26935 if (connp != NULL) 26936 CONN_OPER_PENDING_DONE(connp); 26937 26938 if (ipsq != NULL) 26939 ipsq_current_finish(ipsq); 26940 } 26941 26942 /* Called from ip_wput for all non data messages */ 26943 /* ARGSUSED */ 26944 void 26945 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26946 { 26947 mblk_t *mp1; 26948 ire_t *ire, *fake_ire; 26949 ill_t *ill; 26950 struct iocblk *iocp; 26951 ip_ioctl_cmd_t *ipip; 26952 cred_t *cr; 26953 conn_t *connp; 26954 int err; 26955 nce_t *nce; 26956 ipif_t *ipif; 26957 ip_stack_t *ipst; 26958 char *proto_str; 26959 26960 if (CONN_Q(q)) { 26961 connp = Q_TO_CONN(q); 26962 ipst = connp->conn_netstack->netstack_ip; 26963 } else { 26964 connp = NULL; 26965 ipst = ILLQ_TO_IPST(q); 26966 } 26967 26968 switch (DB_TYPE(mp)) { 26969 case M_IOCTL: 26970 /* 26971 * IOCTL processing begins in ip_sioctl_copyin_setup which 26972 * will arrange to copy in associated control structures. 26973 */ 26974 ip_sioctl_copyin_setup(q, mp); 26975 return; 26976 case M_IOCDATA: 26977 /* 26978 * Ensure that this is associated with one of our trans- 26979 * parent ioctls. If it's not ours, discard it if we're 26980 * running as a driver, or pass it on if we're a module. 26981 */ 26982 iocp = (struct iocblk *)mp->b_rptr; 26983 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26984 if (ipip == NULL) { 26985 if (q->q_next == NULL) { 26986 goto nak; 26987 } else { 26988 putnext(q, mp); 26989 } 26990 return; 26991 } 26992 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 26993 /* 26994 * the ioctl is one we recognise, but is not 26995 * consumed by IP as a module, pass M_IOCDATA 26996 * for processing downstream, but only for 26997 * common Streams ioctls. 26998 */ 26999 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27000 putnext(q, mp); 27001 return; 27002 } else { 27003 goto nak; 27004 } 27005 } 27006 27007 /* IOCTL continuation following copyin or copyout. */ 27008 if (mi_copy_state(q, mp, NULL) == -1) { 27009 /* 27010 * The copy operation failed. mi_copy_state already 27011 * cleaned up, so we're out of here. 27012 */ 27013 return; 27014 } 27015 /* 27016 * If we just completed a copy in, we become writer and 27017 * continue processing in ip_sioctl_copyin_done. If it 27018 * was a copy out, we call mi_copyout again. If there is 27019 * nothing more to copy out, it will complete the IOCTL. 27020 */ 27021 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27022 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27023 mi_copy_done(q, mp, EPROTO); 27024 return; 27025 } 27026 /* 27027 * Check for cases that need more copying. A return 27028 * value of 0 means a second copyin has been started, 27029 * so we return; a return value of 1 means no more 27030 * copying is needed, so we continue. 27031 */ 27032 if (ipip->ipi_cmd_type == MSFILT_CMD && 27033 MI_COPY_COUNT(mp) == 1) { 27034 if (ip_copyin_msfilter(q, mp) == 0) 27035 return; 27036 } 27037 /* 27038 * Refhold the conn, till the ioctl completes. This is 27039 * needed in case the ioctl ends up in the pending mp 27040 * list. Every mp in the ill_pending_mp list and 27041 * the ipx_pending_mp must have a refhold on the conn 27042 * to resume processing. The refhold is released when 27043 * the ioctl completes. (normally or abnormally) 27044 * In all cases ip_ioctl_finish is called to finish 27045 * the ioctl. 27046 */ 27047 if (connp != NULL) { 27048 /* This is not a reentry */ 27049 ASSERT(ipsq == NULL); 27050 CONN_INC_REF(connp); 27051 } else { 27052 if (!(ipip->ipi_flags & IPI_MODOK)) { 27053 mi_copy_done(q, mp, EINVAL); 27054 return; 27055 } 27056 } 27057 27058 ip_process_ioctl(ipsq, q, mp, ipip); 27059 27060 } else { 27061 mi_copyout(q, mp); 27062 } 27063 return; 27064 nak: 27065 iocp->ioc_error = EINVAL; 27066 mp->b_datap->db_type = M_IOCNAK; 27067 iocp->ioc_count = 0; 27068 qreply(q, mp); 27069 return; 27070 27071 case M_IOCNAK: 27072 /* 27073 * The only way we could get here is if a resolver didn't like 27074 * an IOCTL we sent it. This shouldn't happen. 27075 */ 27076 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27077 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27078 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27079 freemsg(mp); 27080 return; 27081 case M_IOCACK: 27082 /* /dev/ip shouldn't see this */ 27083 if (CONN_Q(q)) 27084 goto nak; 27085 27086 /* 27087 * Finish socket ioctls passed through to ARP. We use the 27088 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27089 * we need to become writer before calling ip_sioctl_iocack(). 27090 * Note that qwriter_ip() will release the refhold, and that a 27091 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27092 * ill stream. 27093 */ 27094 iocp = (struct iocblk *)mp->b_rptr; 27095 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27096 ip_sioctl_iocack(NULL, q, mp, NULL); 27097 return; 27098 } 27099 27100 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27101 iocp->ioc_cmd == AR_ENTRY_ADD); 27102 ill = q->q_ptr; 27103 ill_refhold(ill); 27104 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27105 return; 27106 case M_FLUSH: 27107 if (*mp->b_rptr & FLUSHW) 27108 flushq(q, FLUSHALL); 27109 if (q->q_next) { 27110 putnext(q, mp); 27111 return; 27112 } 27113 if (*mp->b_rptr & FLUSHR) { 27114 *mp->b_rptr &= ~FLUSHW; 27115 qreply(q, mp); 27116 return; 27117 } 27118 freemsg(mp); 27119 return; 27120 case IRE_DB_REQ_TYPE: 27121 if (connp == NULL) { 27122 proto_str = "IRE_DB_REQ_TYPE"; 27123 goto protonak; 27124 } 27125 /* An Upper Level Protocol wants a copy of an IRE. */ 27126 ip_ire_req(q, mp); 27127 return; 27128 case M_CTL: 27129 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27130 break; 27131 27132 /* M_CTL messages are used by ARP to tell us things. */ 27133 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27134 break; 27135 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27136 case AR_ENTRY_SQUERY: 27137 putnext(q, mp); 27138 return; 27139 case AR_CLIENT_NOTIFY: 27140 ip_arp_news(q, mp); 27141 return; 27142 case AR_DLPIOP_DONE: 27143 ASSERT(q->q_next != NULL); 27144 ill = (ill_t *)q->q_ptr; 27145 /* qwriter_ip releases the refhold */ 27146 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27147 ill_refhold(ill); 27148 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27149 return; 27150 case AR_ARP_CLOSING: 27151 /* 27152 * ARP (above us) is closing. If no ARP bringup is 27153 * currently pending, ack the message so that ARP 27154 * can complete its close. Also mark ill_arp_closing 27155 * so that new ARP bringups will fail. If any 27156 * ARP bringup is currently in progress, we will 27157 * ack this when the current ARP bringup completes. 27158 */ 27159 ASSERT(q->q_next != NULL); 27160 ill = (ill_t *)q->q_ptr; 27161 mutex_enter(&ill->ill_lock); 27162 ill->ill_arp_closing = 1; 27163 if (!ill->ill_arp_bringup_pending) { 27164 mutex_exit(&ill->ill_lock); 27165 qreply(q, mp); 27166 } else { 27167 mutex_exit(&ill->ill_lock); 27168 freemsg(mp); 27169 } 27170 return; 27171 case AR_ARP_EXTEND: 27172 /* 27173 * The ARP module above us is capable of duplicate 27174 * address detection. Old ATM drivers will not send 27175 * this message. 27176 */ 27177 ASSERT(q->q_next != NULL); 27178 ill = (ill_t *)q->q_ptr; 27179 ill->ill_arp_extend = B_TRUE; 27180 freemsg(mp); 27181 return; 27182 default: 27183 break; 27184 } 27185 break; 27186 case M_PROTO: 27187 case M_PCPROTO: 27188 /* 27189 * The only PROTO messages we expect are copies of option 27190 * negotiation acknowledgements, AH and ESP bind requests 27191 * are also expected. 27192 */ 27193 switch (((union T_primitives *)mp->b_rptr)->type) { 27194 case O_T_BIND_REQ: 27195 case T_BIND_REQ: { 27196 /* Request can get queued in bind */ 27197 if (connp == NULL) { 27198 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27199 goto protonak; 27200 } 27201 /* 27202 * The transports except SCTP call ip_bind_{v4,v6}() 27203 * directly instead of a a putnext. SCTP doesn't 27204 * generate any T_BIND_REQ since it has its own 27205 * fanout data structures. However, ESP and AH 27206 * come in for regular binds; all other cases are 27207 * bind retries. 27208 */ 27209 ASSERT(!IPCL_IS_SCTP(connp)); 27210 27211 /* Don't increment refcnt if this is a re-entry */ 27212 if (ipsq == NULL) 27213 CONN_INC_REF(connp); 27214 27215 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27216 connp, NULL) : ip_bind_v4(q, mp, connp); 27217 ASSERT(mp != NULL); 27218 27219 ASSERT(!IPCL_IS_TCP(connp)); 27220 ASSERT(!IPCL_IS_UDP(connp)); 27221 ASSERT(!IPCL_IS_RAWIP(connp)); 27222 ASSERT(!IPCL_IS_IPTUN(connp)); 27223 27224 /* The case of AH and ESP */ 27225 qreply(q, mp); 27226 CONN_OPER_PENDING_DONE(connp); 27227 return; 27228 } 27229 case T_SVR4_OPTMGMT_REQ: 27230 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27231 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27232 27233 if (connp == NULL) { 27234 proto_str = "T_SVR4_OPTMGMT_REQ"; 27235 goto protonak; 27236 } 27237 27238 /* 27239 * All Solaris components should pass a db_credp 27240 * for this TPI message, hence we ASSERT. 27241 * But in case there is some other M_PROTO that looks 27242 * like a TPI message sent by some other kernel 27243 * component, we check and return an error. 27244 */ 27245 cr = msg_getcred(mp, NULL); 27246 ASSERT(cr != NULL); 27247 if (cr == NULL) { 27248 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27249 if (mp != NULL) 27250 qreply(q, mp); 27251 return; 27252 } 27253 27254 if (!snmpcom_req(q, mp, ip_snmp_set, 27255 ip_snmp_get, cr)) { 27256 /* 27257 * Call svr4_optcom_req so that it can 27258 * generate the ack. We don't come here 27259 * if this operation is being restarted. 27260 * ip_restart_optmgmt will drop the conn ref. 27261 * In the case of ipsec option after the ipsec 27262 * load is complete conn_restart_ipsec_waiter 27263 * drops the conn ref. 27264 */ 27265 ASSERT(ipsq == NULL); 27266 CONN_INC_REF(connp); 27267 if (ip_check_for_ipsec_opt(q, mp)) 27268 return; 27269 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27270 B_FALSE); 27271 if (err != EINPROGRESS) { 27272 /* Operation is done */ 27273 CONN_OPER_PENDING_DONE(connp); 27274 } 27275 } 27276 return; 27277 case T_OPTMGMT_REQ: 27278 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27279 /* 27280 * Note: No snmpcom_req support through new 27281 * T_OPTMGMT_REQ. 27282 * Call tpi_optcom_req so that it can 27283 * generate the ack. 27284 */ 27285 if (connp == NULL) { 27286 proto_str = "T_OPTMGMT_REQ"; 27287 goto protonak; 27288 } 27289 27290 /* 27291 * All Solaris components should pass a db_credp 27292 * for this TPI message, hence we ASSERT. 27293 * But in case there is some other M_PROTO that looks 27294 * like a TPI message sent by some other kernel 27295 * component, we check and return an error. 27296 */ 27297 cr = msg_getcred(mp, NULL); 27298 ASSERT(cr != NULL); 27299 if (cr == NULL) { 27300 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27301 if (mp != NULL) 27302 qreply(q, mp); 27303 return; 27304 } 27305 ASSERT(ipsq == NULL); 27306 /* 27307 * We don't come here for restart. ip_restart_optmgmt 27308 * will drop the conn ref. In the case of ipsec option 27309 * after the ipsec load is complete 27310 * conn_restart_ipsec_waiter drops the conn ref. 27311 */ 27312 CONN_INC_REF(connp); 27313 if (ip_check_for_ipsec_opt(q, mp)) 27314 return; 27315 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27316 if (err != EINPROGRESS) { 27317 /* Operation is done */ 27318 CONN_OPER_PENDING_DONE(connp); 27319 } 27320 return; 27321 case T_UNBIND_REQ: 27322 if (connp == NULL) { 27323 proto_str = "T_UNBIND_REQ"; 27324 goto protonak; 27325 } 27326 ip_unbind(Q_TO_CONN(q)); 27327 mp = mi_tpi_ok_ack_alloc(mp); 27328 qreply(q, mp); 27329 return; 27330 default: 27331 /* 27332 * Have to drop any DLPI messages coming down from 27333 * arp (such as an info_req which would cause ip 27334 * to receive an extra info_ack if it was passed 27335 * through. 27336 */ 27337 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27338 (int)*(uint_t *)mp->b_rptr)); 27339 freemsg(mp); 27340 return; 27341 } 27342 /* NOTREACHED */ 27343 case IRE_DB_TYPE: { 27344 nce_t *nce; 27345 ill_t *ill; 27346 in6_addr_t gw_addr_v6; 27347 27348 /* 27349 * This is a response back from a resolver. It 27350 * consists of a message chain containing: 27351 * IRE_MBLK-->LL_HDR_MBLK->pkt 27352 * The IRE_MBLK is the one we allocated in ip_newroute. 27353 * The LL_HDR_MBLK is the DLPI header to use to get 27354 * the attached packet, and subsequent ones for the 27355 * same destination, transmitted. 27356 */ 27357 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27358 break; 27359 /* 27360 * First, check to make sure the resolution succeeded. 27361 * If it failed, the second mblk will be empty. 27362 * If it is, free the chain, dropping the packet. 27363 * (We must ire_delete the ire; that frees the ire mblk) 27364 * We're doing this now to support PVCs for ATM; it's 27365 * a partial xresolv implementation. When we fully implement 27366 * xresolv interfaces, instead of freeing everything here 27367 * we'll initiate neighbor discovery. 27368 * 27369 * For v4 (ARP and other external resolvers) the resolver 27370 * frees the message, so no check is needed. This check 27371 * is required, though, for a full xresolve implementation. 27372 * Including this code here now both shows how external 27373 * resolvers can NACK a resolution request using an 27374 * existing design that has no specific provisions for NACKs, 27375 * and also takes into account that the current non-ARP 27376 * external resolver has been coded to use this method of 27377 * NACKing for all IPv6 (xresolv) cases, 27378 * whether our xresolv implementation is complete or not. 27379 * 27380 */ 27381 ire = (ire_t *)mp->b_rptr; 27382 ill = ire_to_ill(ire); 27383 mp1 = mp->b_cont; /* dl_unitdata_req */ 27384 if (mp1->b_rptr == mp1->b_wptr) { 27385 if (ire->ire_ipversion == IPV6_VERSION) { 27386 /* 27387 * XRESOLV interface. 27388 */ 27389 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27390 mutex_enter(&ire->ire_lock); 27391 gw_addr_v6 = ire->ire_gateway_addr_v6; 27392 mutex_exit(&ire->ire_lock); 27393 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27394 nce = ndp_lookup_v6(ill, B_FALSE, 27395 &ire->ire_addr_v6, B_FALSE); 27396 } else { 27397 nce = ndp_lookup_v6(ill, B_FALSE, 27398 &gw_addr_v6, B_FALSE); 27399 } 27400 if (nce != NULL) { 27401 nce_resolv_failed(nce); 27402 ndp_delete(nce); 27403 NCE_REFRELE(nce); 27404 } 27405 } 27406 mp->b_cont = NULL; 27407 freemsg(mp1); /* frees the pkt as well */ 27408 ASSERT(ire->ire_nce == NULL); 27409 ire_delete((ire_t *)mp->b_rptr); 27410 return; 27411 } 27412 27413 /* 27414 * Split them into IRE_MBLK and pkt and feed it into 27415 * ire_add_then_send. Then in ire_add_then_send 27416 * the IRE will be added, and then the packet will be 27417 * run back through ip_wput. This time it will make 27418 * it to the wire. 27419 */ 27420 mp->b_cont = NULL; 27421 mp = mp1->b_cont; /* now, mp points to pkt */ 27422 mp1->b_cont = NULL; 27423 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27424 if (ire->ire_ipversion == IPV6_VERSION) { 27425 /* 27426 * XRESOLV interface. Find the nce and put a copy 27427 * of the dl_unitdata_req in nce_res_mp 27428 */ 27429 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27430 mutex_enter(&ire->ire_lock); 27431 gw_addr_v6 = ire->ire_gateway_addr_v6; 27432 mutex_exit(&ire->ire_lock); 27433 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27434 nce = ndp_lookup_v6(ill, B_FALSE, 27435 &ire->ire_addr_v6, B_FALSE); 27436 } else { 27437 nce = ndp_lookup_v6(ill, B_FALSE, 27438 &gw_addr_v6, B_FALSE); 27439 } 27440 if (nce != NULL) { 27441 /* 27442 * We have to protect nce_res_mp here 27443 * from being accessed by other threads 27444 * while we change the mblk pointer. 27445 * Other functions will also lock the nce when 27446 * accessing nce_res_mp. 27447 * 27448 * The reason we change the mblk pointer 27449 * here rather than copying the resolved address 27450 * into the template is that, unlike with 27451 * ethernet, we have no guarantee that the 27452 * resolved address length will be 27453 * smaller than or equal to the lla length 27454 * with which the template was allocated, 27455 * (for ethernet, they're equal) 27456 * so we have to use the actual resolved 27457 * address mblk - which holds the real 27458 * dl_unitdata_req with the resolved address. 27459 * 27460 * Doing this is the same behavior as was 27461 * previously used in the v4 ARP case. 27462 */ 27463 mutex_enter(&nce->nce_lock); 27464 if (nce->nce_res_mp != NULL) 27465 freemsg(nce->nce_res_mp); 27466 nce->nce_res_mp = mp1; 27467 mutex_exit(&nce->nce_lock); 27468 /* 27469 * We do a fastpath probe here because 27470 * we have resolved the address without 27471 * using Neighbor Discovery. 27472 * In the non-XRESOLV v6 case, the fastpath 27473 * probe is done right after neighbor 27474 * discovery completes. 27475 */ 27476 if (nce->nce_res_mp != NULL) { 27477 int res; 27478 nce_fastpath_list_add(nce); 27479 res = ill_fastpath_probe(ill, 27480 nce->nce_res_mp); 27481 if (res != 0 && res != EAGAIN) 27482 nce_fastpath_list_delete(nce); 27483 } 27484 27485 ire_add_then_send(q, ire, mp); 27486 /* 27487 * Now we have to clean out any packets 27488 * that may have been queued on the nce 27489 * while it was waiting for address resolution 27490 * to complete. 27491 */ 27492 mutex_enter(&nce->nce_lock); 27493 mp1 = nce->nce_qd_mp; 27494 nce->nce_qd_mp = NULL; 27495 mutex_exit(&nce->nce_lock); 27496 while (mp1 != NULL) { 27497 mblk_t *nxt_mp; 27498 queue_t *fwdq = NULL; 27499 ill_t *inbound_ill; 27500 uint_t ifindex; 27501 27502 nxt_mp = mp1->b_next; 27503 mp1->b_next = NULL; 27504 /* 27505 * Retrieve ifindex stored in 27506 * ip_rput_data_v6() 27507 */ 27508 ifindex = 27509 (uint_t)(uintptr_t)mp1->b_prev; 27510 inbound_ill = 27511 ill_lookup_on_ifindex(ifindex, 27512 B_TRUE, NULL, NULL, NULL, 27513 NULL, ipst); 27514 mp1->b_prev = NULL; 27515 if (inbound_ill != NULL) 27516 fwdq = inbound_ill->ill_rq; 27517 27518 if (fwdq != NULL) { 27519 put(fwdq, mp1); 27520 ill_refrele(inbound_ill); 27521 } else 27522 put(WR(ill->ill_rq), mp1); 27523 mp1 = nxt_mp; 27524 } 27525 NCE_REFRELE(nce); 27526 } else { /* nce is NULL; clean up */ 27527 ire_delete(ire); 27528 freemsg(mp); 27529 freemsg(mp1); 27530 return; 27531 } 27532 } else { 27533 nce_t *arpce; 27534 /* 27535 * Link layer resolution succeeded. Recompute the 27536 * ire_nce. 27537 */ 27538 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27539 if ((arpce = ndp_lookup_v4(ill, 27540 (ire->ire_gateway_addr != INADDR_ANY ? 27541 &ire->ire_gateway_addr : &ire->ire_addr), 27542 B_FALSE)) == NULL) { 27543 freeb(ire->ire_mp); 27544 freeb(mp1); 27545 freemsg(mp); 27546 return; 27547 } 27548 mutex_enter(&arpce->nce_lock); 27549 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27550 if (arpce->nce_state == ND_REACHABLE) { 27551 /* 27552 * Someone resolved this before us; 27553 * cleanup the res_mp. Since ire has 27554 * not been added yet, the call to ire_add_v4 27555 * from ire_add_then_send (when a dup is 27556 * detected) will clean up the ire. 27557 */ 27558 freeb(mp1); 27559 } else { 27560 ASSERT(arpce->nce_res_mp == NULL); 27561 arpce->nce_res_mp = mp1; 27562 arpce->nce_state = ND_REACHABLE; 27563 } 27564 mutex_exit(&arpce->nce_lock); 27565 if (ire->ire_marks & IRE_MARK_NOADD) { 27566 /* 27567 * this ire will not be added to the ire 27568 * cache table, so we can set the ire_nce 27569 * here, as there are no atomicity constraints. 27570 */ 27571 ire->ire_nce = arpce; 27572 /* 27573 * We are associating this nce with the ire 27574 * so change the nce ref taken in 27575 * ndp_lookup_v4() from 27576 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27577 */ 27578 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27579 } else { 27580 NCE_REFRELE(arpce); 27581 } 27582 ire_add_then_send(q, ire, mp); 27583 } 27584 return; /* All is well, the packet has been sent. */ 27585 } 27586 case IRE_ARPRESOLVE_TYPE: { 27587 27588 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27589 break; 27590 mp1 = mp->b_cont; /* dl_unitdata_req */ 27591 mp->b_cont = NULL; 27592 /* 27593 * First, check to make sure the resolution succeeded. 27594 * If it failed, the second mblk will be empty. 27595 */ 27596 if (mp1->b_rptr == mp1->b_wptr) { 27597 /* cleanup the incomplete ire, free queued packets */ 27598 freemsg(mp); /* fake ire */ 27599 freeb(mp1); /* dl_unitdata response */ 27600 return; 27601 } 27602 27603 /* 27604 * Update any incomplete nce_t found. We search the ctable 27605 * and find the nce from the ire->ire_nce because we need 27606 * to pass the ire to ip_xmit_v4 later, and can find both 27607 * ire and nce in one lookup. 27608 */ 27609 fake_ire = (ire_t *)mp->b_rptr; 27610 27611 /* 27612 * By the time we come back here from ARP the logical outgoing 27613 * interface of the incomplete ire we added in ire_forward() 27614 * could have disappeared, causing the incomplete ire to also 27615 * disappear. So we need to retreive the proper ipif for the 27616 * ire before looking in ctable. In the case of IPMP, the 27617 * ipif may be on the IPMP ill, so look it up based on the 27618 * ire_ipif_ifindex we stashed back in ire_init_common(). 27619 * Then, we can verify that ire_ipif_seqid still exists. 27620 */ 27621 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27622 NULL, NULL, NULL, NULL, ipst); 27623 if (ill == NULL) { 27624 ip1dbg(("ill for incomplete ire vanished\n")); 27625 freemsg(mp); /* fake ire */ 27626 freeb(mp1); /* dl_unitdata response */ 27627 return; 27628 } 27629 27630 /* Get the outgoing ipif */ 27631 mutex_enter(&ill->ill_lock); 27632 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27633 if (ipif == NULL) { 27634 mutex_exit(&ill->ill_lock); 27635 ill_refrele(ill); 27636 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27637 freemsg(mp); /* fake_ire */ 27638 freeb(mp1); /* dl_unitdata response */ 27639 return; 27640 } 27641 27642 ipif_refhold_locked(ipif); 27643 mutex_exit(&ill->ill_lock); 27644 ill_refrele(ill); 27645 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27646 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27647 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27648 ipif_refrele(ipif); 27649 if (ire == NULL) { 27650 /* 27651 * no ire was found; check if there is an nce 27652 * for this lookup; if it has no ire's pointing at it 27653 * cleanup. 27654 */ 27655 if ((nce = ndp_lookup_v4(q->q_ptr, 27656 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27657 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27658 B_FALSE)) != NULL) { 27659 /* 27660 * cleanup: 27661 * We check for refcnt 2 (one for the nce 27662 * hash list + 1 for the ref taken by 27663 * ndp_lookup_v4) to check that there are 27664 * no ire's pointing at the nce. 27665 */ 27666 if (nce->nce_refcnt == 2) 27667 ndp_delete(nce); 27668 NCE_REFRELE(nce); 27669 } 27670 freeb(mp1); /* dl_unitdata response */ 27671 freemsg(mp); /* fake ire */ 27672 return; 27673 } 27674 27675 nce = ire->ire_nce; 27676 DTRACE_PROBE2(ire__arpresolve__type, 27677 ire_t *, ire, nce_t *, nce); 27678 mutex_enter(&nce->nce_lock); 27679 nce->nce_last = TICK_TO_MSEC(lbolt64); 27680 if (nce->nce_state == ND_REACHABLE) { 27681 /* 27682 * Someone resolved this before us; 27683 * our response is not needed any more. 27684 */ 27685 mutex_exit(&nce->nce_lock); 27686 freeb(mp1); /* dl_unitdata response */ 27687 } else { 27688 ASSERT(nce->nce_res_mp == NULL); 27689 nce->nce_res_mp = mp1; 27690 nce->nce_state = ND_REACHABLE; 27691 mutex_exit(&nce->nce_lock); 27692 nce_fastpath(nce); 27693 } 27694 /* 27695 * The cached nce_t has been updated to be reachable; 27696 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27697 */ 27698 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27699 freemsg(mp); 27700 /* 27701 * send out queued packets. 27702 */ 27703 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27704 27705 IRE_REFRELE(ire); 27706 return; 27707 } 27708 default: 27709 break; 27710 } 27711 if (q->q_next) { 27712 putnext(q, mp); 27713 } else 27714 freemsg(mp); 27715 return; 27716 27717 protonak: 27718 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27719 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27720 qreply(q, mp); 27721 } 27722 27723 /* 27724 * Process IP options in an outbound packet. Modify the destination if there 27725 * is a source route option. 27726 * Returns non-zero if something fails in which case an ICMP error has been 27727 * sent and mp freed. 27728 */ 27729 static int 27730 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27731 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27732 { 27733 ipoptp_t opts; 27734 uchar_t *opt; 27735 uint8_t optval; 27736 uint8_t optlen; 27737 ipaddr_t dst; 27738 intptr_t code = 0; 27739 mblk_t *mp; 27740 ire_t *ire = NULL; 27741 27742 ip2dbg(("ip_wput_options\n")); 27743 mp = ipsec_mp; 27744 if (mctl_present) { 27745 mp = ipsec_mp->b_cont; 27746 } 27747 27748 dst = ipha->ipha_dst; 27749 for (optval = ipoptp_first(&opts, ipha); 27750 optval != IPOPT_EOL; 27751 optval = ipoptp_next(&opts)) { 27752 opt = opts.ipoptp_cur; 27753 optlen = opts.ipoptp_len; 27754 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27755 optval, optlen)); 27756 switch (optval) { 27757 uint32_t off; 27758 case IPOPT_SSRR: 27759 case IPOPT_LSRR: 27760 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27761 ip1dbg(( 27762 "ip_wput_options: bad option offset\n")); 27763 code = (char *)&opt[IPOPT_OLEN] - 27764 (char *)ipha; 27765 goto param_prob; 27766 } 27767 off = opt[IPOPT_OFFSET]; 27768 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27769 ntohl(dst))); 27770 /* 27771 * For strict: verify that dst is directly 27772 * reachable. 27773 */ 27774 if (optval == IPOPT_SSRR) { 27775 ire = ire_ftable_lookup(dst, 0, 0, 27776 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27777 msg_getlabel(mp), 27778 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27779 if (ire == NULL) { 27780 ip1dbg(("ip_wput_options: SSRR not" 27781 " directly reachable: 0x%x\n", 27782 ntohl(dst))); 27783 goto bad_src_route; 27784 } 27785 ire_refrele(ire); 27786 } 27787 break; 27788 case IPOPT_RR: 27789 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27790 ip1dbg(( 27791 "ip_wput_options: bad option offset\n")); 27792 code = (char *)&opt[IPOPT_OLEN] - 27793 (char *)ipha; 27794 goto param_prob; 27795 } 27796 break; 27797 case IPOPT_TS: 27798 /* 27799 * Verify that length >=5 and that there is either 27800 * room for another timestamp or that the overflow 27801 * counter is not maxed out. 27802 */ 27803 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27804 if (optlen < IPOPT_MINLEN_IT) { 27805 goto param_prob; 27806 } 27807 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27808 ip1dbg(( 27809 "ip_wput_options: bad option offset\n")); 27810 code = (char *)&opt[IPOPT_OFFSET] - 27811 (char *)ipha; 27812 goto param_prob; 27813 } 27814 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27815 case IPOPT_TS_TSONLY: 27816 off = IPOPT_TS_TIMELEN; 27817 break; 27818 case IPOPT_TS_TSANDADDR: 27819 case IPOPT_TS_PRESPEC: 27820 case IPOPT_TS_PRESPEC_RFC791: 27821 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27822 break; 27823 default: 27824 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27825 (char *)ipha; 27826 goto param_prob; 27827 } 27828 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27829 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27830 /* 27831 * No room and the overflow counter is 15 27832 * already. 27833 */ 27834 goto param_prob; 27835 } 27836 break; 27837 } 27838 } 27839 27840 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27841 return (0); 27842 27843 ip1dbg(("ip_wput_options: error processing IP options.")); 27844 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27845 27846 param_prob: 27847 /* 27848 * Since ip_wput() isn't close to finished, we fill 27849 * in enough of the header for credible error reporting. 27850 */ 27851 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27852 /* Failed */ 27853 freemsg(ipsec_mp); 27854 return (-1); 27855 } 27856 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27857 return (-1); 27858 27859 bad_src_route: 27860 /* 27861 * Since ip_wput() isn't close to finished, we fill 27862 * in enough of the header for credible error reporting. 27863 */ 27864 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27865 /* Failed */ 27866 freemsg(ipsec_mp); 27867 return (-1); 27868 } 27869 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27870 return (-1); 27871 } 27872 27873 /* 27874 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27875 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27876 * thru /etc/system. 27877 */ 27878 #define CONN_MAXDRAINCNT 64 27879 27880 static void 27881 conn_drain_init(ip_stack_t *ipst) 27882 { 27883 int i, j; 27884 idl_tx_list_t *itl_tx; 27885 27886 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27887 27888 if ((ipst->ips_conn_drain_list_cnt == 0) || 27889 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27890 /* 27891 * Default value of the number of drainers is the 27892 * number of cpus, subject to maximum of 8 drainers. 27893 */ 27894 if (boot_max_ncpus != -1) 27895 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27896 else 27897 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27898 } 27899 27900 ipst->ips_idl_tx_list = 27901 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 27902 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27903 itl_tx = &ipst->ips_idl_tx_list[i]; 27904 itl_tx->txl_drain_list = 27905 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27906 sizeof (idl_t), KM_SLEEP); 27907 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 27908 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 27909 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 27910 MUTEX_DEFAULT, NULL); 27911 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 27912 } 27913 } 27914 } 27915 27916 static void 27917 conn_drain_fini(ip_stack_t *ipst) 27918 { 27919 int i; 27920 idl_tx_list_t *itl_tx; 27921 27922 for (i = 0; i < TX_FANOUT_SIZE; i++) { 27923 itl_tx = &ipst->ips_idl_tx_list[i]; 27924 kmem_free(itl_tx->txl_drain_list, 27925 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27926 } 27927 kmem_free(ipst->ips_idl_tx_list, 27928 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 27929 ipst->ips_idl_tx_list = NULL; 27930 } 27931 27932 /* 27933 * Note: For an overview of how flowcontrol is handled in IP please see the 27934 * IP Flowcontrol notes at the top of this file. 27935 * 27936 * Flow control has blocked us from proceeding. Insert the given conn in one 27937 * of the conn drain lists. These conn wq's will be qenabled later on when 27938 * STREAMS flow control does a backenable. conn_walk_drain will enable 27939 * the first conn in each of these drain lists. Each of these qenabled conns 27940 * in turn enables the next in the list, after it runs, or when it closes, 27941 * thus sustaining the drain process. 27942 */ 27943 void 27944 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 27945 { 27946 idl_t *idl = tx_list->txl_drain_list; 27947 uint_t index; 27948 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27949 27950 mutex_enter(&connp->conn_lock); 27951 if (connp->conn_state_flags & CONN_CLOSING) { 27952 /* 27953 * The conn is closing as a result of which CONN_CLOSING 27954 * is set. Return. 27955 */ 27956 mutex_exit(&connp->conn_lock); 27957 return; 27958 } else if (connp->conn_idl == NULL) { 27959 /* 27960 * Assign the next drain list round robin. We dont' use 27961 * a lock, and thus it may not be strictly round robin. 27962 * Atomicity of load/stores is enough to make sure that 27963 * conn_drain_list_index is always within bounds. 27964 */ 27965 index = tx_list->txl_drain_index; 27966 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27967 connp->conn_idl = &tx_list->txl_drain_list[index]; 27968 index++; 27969 if (index == ipst->ips_conn_drain_list_cnt) 27970 index = 0; 27971 tx_list->txl_drain_index = index; 27972 } 27973 mutex_exit(&connp->conn_lock); 27974 27975 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27976 if ((connp->conn_drain_prev != NULL) || 27977 (connp->conn_state_flags & CONN_CLOSING)) { 27978 /* 27979 * The conn is already in the drain list, OR 27980 * the conn is closing. We need to check again for 27981 * the closing case again since close can happen 27982 * after we drop the conn_lock, and before we 27983 * acquire the CONN_DRAIN_LIST_LOCK. 27984 */ 27985 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27986 return; 27987 } else { 27988 idl = connp->conn_idl; 27989 } 27990 27991 /* 27992 * The conn is not in the drain list. Insert it at the 27993 * tail of the drain list. The drain list is circular 27994 * and doubly linked. idl_conn points to the 1st element 27995 * in the list. 27996 */ 27997 if (idl->idl_conn == NULL) { 27998 idl->idl_conn = connp; 27999 connp->conn_drain_next = connp; 28000 connp->conn_drain_prev = connp; 28001 } else { 28002 conn_t *head = idl->idl_conn; 28003 28004 connp->conn_drain_next = head; 28005 connp->conn_drain_prev = head->conn_drain_prev; 28006 head->conn_drain_prev->conn_drain_next = connp; 28007 head->conn_drain_prev = connp; 28008 } 28009 /* 28010 * For non streams based sockets assert flow control. 28011 */ 28012 if (IPCL_IS_NONSTR(connp)) { 28013 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28014 (*connp->conn_upcalls->su_txq_full) 28015 (connp->conn_upper_handle, B_TRUE); 28016 } else { 28017 conn_setqfull(connp); 28018 noenable(connp->conn_wq); 28019 } 28020 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28021 } 28022 28023 /* 28024 * This conn is closing, and we are called from ip_close. OR 28025 * This conn has been serviced by ip_wsrv, and we need to do the tail 28026 * processing. 28027 * If this conn is part of the drain list, we may need to sustain the drain 28028 * process by qenabling the next conn in the drain list. We may also need to 28029 * remove this conn from the list, if it is done. 28030 */ 28031 static void 28032 conn_drain_tail(conn_t *connp, boolean_t closing) 28033 { 28034 idl_t *idl; 28035 28036 /* 28037 * connp->conn_idl is stable at this point, and no lock is needed 28038 * to check it. If we are called from ip_close, close has already 28039 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28040 * called us only because conn_idl is non-null. If we are called thru 28041 * service, conn_idl could be null, but it cannot change because 28042 * service is single-threaded per queue, and there cannot be another 28043 * instance of service trying to call conn_drain_insert on this conn 28044 * now. 28045 */ 28046 ASSERT(!closing || (connp->conn_idl != NULL)); 28047 28048 /* 28049 * If connp->conn_idl is null, the conn has not been inserted into any 28050 * drain list even once since creation of the conn. Just return. 28051 */ 28052 if (connp->conn_idl == NULL) 28053 return; 28054 28055 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28056 28057 if (connp->conn_drain_prev == NULL) { 28058 /* This conn is currently not in the drain list. */ 28059 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28060 return; 28061 } 28062 idl = connp->conn_idl; 28063 if (idl->idl_conn_draining == connp) { 28064 /* 28065 * This conn is the current drainer. If this is the last conn 28066 * in the drain list, we need to do more checks, in the 'if' 28067 * below. Otherwwise we need to just qenable the next conn, 28068 * to sustain the draining, and is handled in the 'else' 28069 * below. 28070 */ 28071 if (connp->conn_drain_next == idl->idl_conn) { 28072 /* 28073 * This conn is the last in this list. This round 28074 * of draining is complete. If idl_repeat is set, 28075 * it means another flow enabling has happened from 28076 * the driver/streams and we need to another round 28077 * of draining. 28078 * If there are more than 2 conns in the drain list, 28079 * do a left rotate by 1, so that all conns except the 28080 * conn at the head move towards the head by 1, and the 28081 * the conn at the head goes to the tail. This attempts 28082 * a more even share for all queues that are being 28083 * drained. 28084 */ 28085 if ((connp->conn_drain_next != connp) && 28086 (idl->idl_conn->conn_drain_next != connp)) { 28087 idl->idl_conn = idl->idl_conn->conn_drain_next; 28088 } 28089 if (idl->idl_repeat) { 28090 qenable(idl->idl_conn->conn_wq); 28091 idl->idl_conn_draining = idl->idl_conn; 28092 idl->idl_repeat = 0; 28093 } else { 28094 idl->idl_conn_draining = NULL; 28095 } 28096 } else { 28097 /* 28098 * If the next queue that we are now qenable'ing, 28099 * is closing, it will remove itself from this list 28100 * and qenable the subsequent queue in ip_close(). 28101 * Serialization is acheived thru idl_lock. 28102 */ 28103 qenable(connp->conn_drain_next->conn_wq); 28104 idl->idl_conn_draining = connp->conn_drain_next; 28105 } 28106 } 28107 if (!connp->conn_did_putbq || closing) { 28108 /* 28109 * Remove ourself from the drain list, if we did not do 28110 * a putbq, or if the conn is closing. 28111 * Note: It is possible that q->q_first is non-null. It means 28112 * that these messages landed after we did a enableok() in 28113 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28114 * service them. 28115 */ 28116 if (connp->conn_drain_next == connp) { 28117 /* Singleton in the list */ 28118 ASSERT(connp->conn_drain_prev == connp); 28119 idl->idl_conn = NULL; 28120 idl->idl_conn_draining = NULL; 28121 } else { 28122 connp->conn_drain_prev->conn_drain_next = 28123 connp->conn_drain_next; 28124 connp->conn_drain_next->conn_drain_prev = 28125 connp->conn_drain_prev; 28126 if (idl->idl_conn == connp) 28127 idl->idl_conn = connp->conn_drain_next; 28128 ASSERT(idl->idl_conn_draining != connp); 28129 28130 } 28131 connp->conn_drain_next = NULL; 28132 connp->conn_drain_prev = NULL; 28133 28134 /* 28135 * For non streams based sockets open up flow control. 28136 */ 28137 if (IPCL_IS_NONSTR(connp)) { 28138 (*connp->conn_upcalls->su_txq_full) 28139 (connp->conn_upper_handle, B_FALSE); 28140 } else { 28141 conn_clrqfull(connp); 28142 enableok(connp->conn_wq); 28143 } 28144 } 28145 28146 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28147 } 28148 28149 /* 28150 * Write service routine. Shared perimeter entry point. 28151 * ip_wsrv can be called in any of the following ways. 28152 * 1. The device queue's messages has fallen below the low water mark 28153 * and STREAMS has backenabled the ill_wq. We walk thru all the 28154 * the drain lists and backenable the first conn in each list. 28155 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28156 * qenabled non-tcp upper layers. We start dequeing messages and call 28157 * ip_wput for each message. 28158 */ 28159 28160 void 28161 ip_wsrv(queue_t *q) 28162 { 28163 conn_t *connp; 28164 ill_t *ill; 28165 mblk_t *mp; 28166 28167 if (q->q_next) { 28168 ill = (ill_t *)q->q_ptr; 28169 if (ill->ill_state_flags == 0) { 28170 ip_stack_t *ipst = ill->ill_ipst; 28171 28172 /* 28173 * The device flow control has opened up. 28174 * Walk through conn drain lists and qenable the 28175 * first conn in each list. This makes sense only 28176 * if the stream is fully plumbed and setup. 28177 * Hence the if check above. 28178 */ 28179 ip1dbg(("ip_wsrv: walking\n")); 28180 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28181 } 28182 return; 28183 } 28184 28185 connp = Q_TO_CONN(q); 28186 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28187 28188 /* 28189 * 1. Set conn_draining flag to signal that service is active. 28190 * 28191 * 2. ip_output determines whether it has been called from service, 28192 * based on the last parameter. If it is IP_WSRV it concludes it 28193 * has been called from service. 28194 * 28195 * 3. Message ordering is preserved by the following logic. 28196 * i. A directly called ip_output (i.e. not thru service) will queue 28197 * the message at the tail, if conn_draining is set (i.e. service 28198 * is running) or if q->q_first is non-null. 28199 * 28200 * ii. If ip_output is called from service, and if ip_output cannot 28201 * putnext due to flow control, it does a putbq. 28202 * 28203 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28204 * (causing an infinite loop). 28205 */ 28206 ASSERT(!connp->conn_did_putbq); 28207 28208 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28209 connp->conn_draining = 1; 28210 noenable(q); 28211 while ((mp = getq(q)) != NULL) { 28212 ASSERT(CONN_Q(q)); 28213 28214 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28215 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28216 if (connp->conn_did_putbq) { 28217 /* ip_wput did a putbq */ 28218 break; 28219 } 28220 } 28221 /* 28222 * At this point, a thread coming down from top, calling 28223 * ip_wput, may end up queueing the message. We have not yet 28224 * enabled the queue, so ip_wsrv won't be called again. 28225 * To avoid this race, check q->q_first again (in the loop) 28226 * If the other thread queued the message before we call 28227 * enableok(), we will catch it in the q->q_first check. 28228 * If the other thread queues the message after we call 28229 * enableok(), ip_wsrv will be called again by STREAMS. 28230 */ 28231 connp->conn_draining = 0; 28232 enableok(q); 28233 } 28234 28235 /* Enable the next conn for draining */ 28236 conn_drain_tail(connp, B_FALSE); 28237 28238 /* 28239 * conn_direct_blocked is used to indicate blocked 28240 * condition for direct path (ILL_DIRECT_CAPABLE()). 28241 * This is the only place where it is set without 28242 * checking for ILL_DIRECT_CAPABLE() and setting it 28243 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28244 */ 28245 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28246 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28247 connp->conn_direct_blocked = B_FALSE; 28248 } 28249 28250 connp->conn_did_putbq = 0; 28251 } 28252 28253 /* 28254 * Callback to disable flow control in IP. 28255 * 28256 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28257 * is enabled. 28258 * 28259 * When MAC_TX() is not able to send any more packets, dld sets its queue 28260 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28261 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28262 * function and wakes up corresponding mac worker threads, which in turn 28263 * calls this callback function, and disables flow control. 28264 */ 28265 void 28266 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28267 { 28268 ill_t *ill = (ill_t *)arg; 28269 ip_stack_t *ipst = ill->ill_ipst; 28270 idl_tx_list_t *idl_txl; 28271 28272 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28273 mutex_enter(&idl_txl->txl_lock); 28274 /* add code to to set a flag to indicate idl_txl is enabled */ 28275 conn_walk_drain(ipst, idl_txl); 28276 mutex_exit(&idl_txl->txl_lock); 28277 } 28278 28279 /* 28280 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28281 * of conns that need to be drained, check if drain is already in progress. 28282 * If so set the idl_repeat bit, indicating that the last conn in the list 28283 * needs to reinitiate the drain once again, for the list. If drain is not 28284 * in progress for the list, initiate the draining, by qenabling the 1st 28285 * conn in the list. The drain is self-sustaining, each qenabled conn will 28286 * in turn qenable the next conn, when it is done/blocked/closing. 28287 */ 28288 static void 28289 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28290 { 28291 int i; 28292 idl_t *idl; 28293 28294 IP_STAT(ipst, ip_conn_walk_drain); 28295 28296 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28297 idl = &tx_list->txl_drain_list[i]; 28298 mutex_enter(&idl->idl_lock); 28299 if (idl->idl_conn == NULL) { 28300 mutex_exit(&idl->idl_lock); 28301 continue; 28302 } 28303 /* 28304 * If this list is not being drained currently by 28305 * an ip_wsrv thread, start the process. 28306 */ 28307 if (idl->idl_conn_draining == NULL) { 28308 ASSERT(idl->idl_repeat == 0); 28309 qenable(idl->idl_conn->conn_wq); 28310 idl->idl_conn_draining = idl->idl_conn; 28311 } else { 28312 idl->idl_repeat = 1; 28313 } 28314 mutex_exit(&idl->idl_lock); 28315 } 28316 } 28317 28318 /* 28319 * Determine if the ill and multicast aspects of that packets 28320 * "matches" the conn. 28321 */ 28322 boolean_t 28323 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28324 zoneid_t zoneid) 28325 { 28326 ill_t *bound_ill; 28327 boolean_t found; 28328 ipif_t *ipif; 28329 ire_t *ire; 28330 ipaddr_t dst, src; 28331 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28332 28333 dst = ipha->ipha_dst; 28334 src = ipha->ipha_src; 28335 28336 /* 28337 * conn_incoming_ill is set by IP_BOUND_IF which limits 28338 * unicast, broadcast and multicast reception to 28339 * conn_incoming_ill. conn_wantpacket itself is called 28340 * only for BROADCAST and multicast. 28341 */ 28342 bound_ill = connp->conn_incoming_ill; 28343 if (bound_ill != NULL) { 28344 if (IS_IPMP(bound_ill)) { 28345 if (bound_ill->ill_grp != ill->ill_grp) 28346 return (B_FALSE); 28347 } else { 28348 if (bound_ill != ill) 28349 return (B_FALSE); 28350 } 28351 } 28352 28353 if (!CLASSD(dst)) { 28354 if (IPCL_ZONE_MATCH(connp, zoneid)) 28355 return (B_TRUE); 28356 /* 28357 * The conn is in a different zone; we need to check that this 28358 * broadcast address is configured in the application's zone. 28359 */ 28360 ipif = ipif_get_next_ipif(NULL, ill); 28361 if (ipif == NULL) 28362 return (B_FALSE); 28363 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28364 connp->conn_zoneid, NULL, 28365 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28366 ipif_refrele(ipif); 28367 if (ire != NULL) { 28368 ire_refrele(ire); 28369 return (B_TRUE); 28370 } else { 28371 return (B_FALSE); 28372 } 28373 } 28374 28375 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28376 connp->conn_zoneid == zoneid) { 28377 /* 28378 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28379 * disabled, therefore we don't dispatch the multicast packet to 28380 * the sending zone. 28381 */ 28382 return (B_FALSE); 28383 } 28384 28385 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28386 /* 28387 * Multicast packet on the loopback interface: we only match 28388 * conns who joined the group in the specified zone. 28389 */ 28390 return (B_FALSE); 28391 } 28392 28393 if (connp->conn_multi_router) { 28394 /* multicast packet and multicast router socket: send up */ 28395 return (B_TRUE); 28396 } 28397 28398 mutex_enter(&connp->conn_lock); 28399 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28400 mutex_exit(&connp->conn_lock); 28401 return (found); 28402 } 28403 28404 static void 28405 conn_setqfull(conn_t *connp) 28406 { 28407 queue_t *q = connp->conn_wq; 28408 28409 if (!(q->q_flag & QFULL)) { 28410 mutex_enter(QLOCK(q)); 28411 if (!(q->q_flag & QFULL)) { 28412 /* still need to set QFULL */ 28413 q->q_flag |= QFULL; 28414 mutex_exit(QLOCK(q)); 28415 } else { 28416 mutex_exit(QLOCK(q)); 28417 } 28418 } 28419 } 28420 28421 static void 28422 conn_clrqfull(conn_t *connp) 28423 { 28424 queue_t *q = connp->conn_wq; 28425 28426 if (q->q_flag & QFULL) { 28427 mutex_enter(QLOCK(q)); 28428 if (q->q_flag & QFULL) { 28429 q->q_flag &= ~QFULL; 28430 mutex_exit(QLOCK(q)); 28431 if (q->q_flag & QWANTW) 28432 qbackenable(q, 0); 28433 } else { 28434 mutex_exit(QLOCK(q)); 28435 } 28436 } 28437 } 28438 28439 /* 28440 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28441 */ 28442 /* ARGSUSED */ 28443 static void 28444 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28445 { 28446 ill_t *ill = (ill_t *)q->q_ptr; 28447 mblk_t *mp1, *mp2; 28448 ipif_t *ipif; 28449 int err = 0; 28450 conn_t *connp = NULL; 28451 ipsq_t *ipsq; 28452 arc_t *arc; 28453 28454 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28455 28456 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28457 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28458 28459 ASSERT(IAM_WRITER_ILL(ill)); 28460 mp2 = mp->b_cont; 28461 mp->b_cont = NULL; 28462 28463 /* 28464 * We have now received the arp bringup completion message 28465 * from ARP. Mark the arp bringup as done. Also if the arp 28466 * stream has already started closing, send up the AR_ARP_CLOSING 28467 * ack now since ARP is waiting in close for this ack. 28468 */ 28469 mutex_enter(&ill->ill_lock); 28470 ill->ill_arp_bringup_pending = 0; 28471 if (ill->ill_arp_closing) { 28472 mutex_exit(&ill->ill_lock); 28473 /* Let's reuse the mp for sending the ack */ 28474 arc = (arc_t *)mp->b_rptr; 28475 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28476 arc->arc_cmd = AR_ARP_CLOSING; 28477 qreply(q, mp); 28478 } else { 28479 mutex_exit(&ill->ill_lock); 28480 freeb(mp); 28481 } 28482 28483 ipsq = ill->ill_phyint->phyint_ipsq; 28484 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28485 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28486 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28487 if (mp1 == NULL) { 28488 /* bringup was aborted by the user */ 28489 freemsg(mp2); 28490 return; 28491 } 28492 28493 /* 28494 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28495 * must have an associated conn_t. Otherwise, we're bringing this 28496 * interface back up as part of handling an asynchronous event (e.g., 28497 * physical address change). 28498 */ 28499 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28500 ASSERT(connp != NULL); 28501 q = CONNP_TO_WQ(connp); 28502 } else { 28503 ASSERT(connp == NULL); 28504 q = ill->ill_rq; 28505 } 28506 28507 /* 28508 * If the DL_BIND_REQ fails, it is noted 28509 * in arc_name_offset. 28510 */ 28511 err = *((int *)mp2->b_rptr); 28512 if (err == 0) { 28513 if (ipif->ipif_isv6) { 28514 if ((err = ipif_up_done_v6(ipif)) != 0) 28515 ip0dbg(("ip_arp_done: init failed\n")); 28516 } else { 28517 if ((err = ipif_up_done(ipif)) != 0) 28518 ip0dbg(("ip_arp_done: init failed\n")); 28519 } 28520 } else { 28521 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28522 } 28523 28524 freemsg(mp2); 28525 28526 if ((err == 0) && (ill->ill_up_ipifs)) { 28527 err = ill_up_ipifs(ill, q, mp1); 28528 if (err == EINPROGRESS) 28529 return; 28530 } 28531 28532 /* 28533 * If we have a moved ipif to bring up, and everything has succeeded 28534 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28535 * down -- the admin can try to bring it up by hand if need be. 28536 */ 28537 if (ill->ill_move_ipif != NULL) { 28538 ipif = ill->ill_move_ipif; 28539 ill->ill_move_ipif = NULL; 28540 if (err == 0) { 28541 err = ipif_up(ipif, q, mp1); 28542 if (err == EINPROGRESS) 28543 return; 28544 } 28545 } 28546 28547 /* 28548 * The operation must complete without EINPROGRESS since 28549 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28550 * operation will be stuck forever in the ipsq. 28551 */ 28552 ASSERT(err != EINPROGRESS); 28553 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28554 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28555 else 28556 ipsq_current_finish(ipsq); 28557 } 28558 28559 /* Allocate the private structure */ 28560 static int 28561 ip_priv_alloc(void **bufp) 28562 { 28563 void *buf; 28564 28565 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28566 return (ENOMEM); 28567 28568 *bufp = buf; 28569 return (0); 28570 } 28571 28572 /* Function to delete the private structure */ 28573 void 28574 ip_priv_free(void *buf) 28575 { 28576 ASSERT(buf != NULL); 28577 kmem_free(buf, sizeof (ip_priv_t)); 28578 } 28579 28580 /* 28581 * The entry point for IPPF processing. 28582 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28583 * routine just returns. 28584 * 28585 * When called, ip_process generates an ipp_packet_t structure 28586 * which holds the state information for this packet and invokes the 28587 * the classifier (via ipp_packet_process). The classification, depending on 28588 * configured filters, results in a list of actions for this packet. Invoking 28589 * an action may cause the packet to be dropped, in which case the resulting 28590 * mblk (*mpp) is NULL. proc indicates the callout position for 28591 * this packet and ill_index is the interface this packet on or will leave 28592 * on (inbound and outbound resp.). 28593 */ 28594 void 28595 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28596 { 28597 mblk_t *mp; 28598 ip_priv_t *priv; 28599 ipp_action_id_t aid; 28600 int rc = 0; 28601 ipp_packet_t *pp; 28602 #define IP_CLASS "ip" 28603 28604 /* If the classifier is not loaded, return */ 28605 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28606 return; 28607 } 28608 28609 mp = *mpp; 28610 ASSERT(mp != NULL); 28611 28612 /* Allocate the packet structure */ 28613 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28614 if (rc != 0) { 28615 *mpp = NULL; 28616 freemsg(mp); 28617 return; 28618 } 28619 28620 /* Allocate the private structure */ 28621 rc = ip_priv_alloc((void **)&priv); 28622 if (rc != 0) { 28623 *mpp = NULL; 28624 freemsg(mp); 28625 ipp_packet_free(pp); 28626 return; 28627 } 28628 priv->proc = proc; 28629 priv->ill_index = ill_index; 28630 ipp_packet_set_private(pp, priv, ip_priv_free); 28631 ipp_packet_set_data(pp, mp); 28632 28633 /* Invoke the classifier */ 28634 rc = ipp_packet_process(&pp); 28635 if (pp != NULL) { 28636 mp = ipp_packet_get_data(pp); 28637 ipp_packet_free(pp); 28638 if (rc != 0) { 28639 freemsg(mp); 28640 *mpp = NULL; 28641 } 28642 } else { 28643 *mpp = NULL; 28644 } 28645 #undef IP_CLASS 28646 } 28647 28648 /* 28649 * Propagate a multicast group membership operation (add/drop) on 28650 * all the interfaces crossed by the related multirt routes. 28651 * The call is considered successful if the operation succeeds 28652 * on at least one interface. 28653 */ 28654 static int 28655 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28656 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28657 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28658 mblk_t *first_mp) 28659 { 28660 ire_t *ire_gw; 28661 irb_t *irb; 28662 int error = 0; 28663 opt_restart_t *or; 28664 ip_stack_t *ipst = ire->ire_ipst; 28665 28666 irb = ire->ire_bucket; 28667 ASSERT(irb != NULL); 28668 28669 ASSERT(DB_TYPE(first_mp) == M_CTL); 28670 28671 or = (opt_restart_t *)first_mp->b_rptr; 28672 IRB_REFHOLD(irb); 28673 for (; ire != NULL; ire = ire->ire_next) { 28674 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28675 continue; 28676 if (ire->ire_addr != group) 28677 continue; 28678 28679 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28680 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28681 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28682 /* No resolver exists for the gateway; skip this ire. */ 28683 if (ire_gw == NULL) 28684 continue; 28685 28686 /* 28687 * This function can return EINPROGRESS. If so the operation 28688 * will be restarted from ip_restart_optmgmt which will 28689 * call ip_opt_set and option processing will restart for 28690 * this option. So we may end up calling 'fn' more than once. 28691 * This requires that 'fn' is idempotent except for the 28692 * return value. The operation is considered a success if 28693 * it succeeds at least once on any one interface. 28694 */ 28695 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28696 NULL, fmode, src, first_mp); 28697 if (error == 0) 28698 or->or_private = CGTP_MCAST_SUCCESS; 28699 28700 if (ip_debug > 0) { 28701 ulong_t off; 28702 char *ksym; 28703 ksym = kobj_getsymname((uintptr_t)fn, &off); 28704 ip2dbg(("ip_multirt_apply_membership: " 28705 "called %s, multirt group 0x%08x via itf 0x%08x, " 28706 "error %d [success %u]\n", 28707 ksym ? ksym : "?", 28708 ntohl(group), ntohl(ire_gw->ire_src_addr), 28709 error, or->or_private)); 28710 } 28711 28712 ire_refrele(ire_gw); 28713 if (error == EINPROGRESS) { 28714 IRB_REFRELE(irb); 28715 return (error); 28716 } 28717 } 28718 IRB_REFRELE(irb); 28719 /* 28720 * Consider the call as successful if we succeeded on at least 28721 * one interface. Otherwise, return the last encountered error. 28722 */ 28723 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28724 } 28725 28726 /* 28727 * Issue a warning regarding a route crossing an interface with an 28728 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28729 * amount of time is logged. 28730 */ 28731 static void 28732 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28733 { 28734 hrtime_t current = gethrtime(); 28735 char buf[INET_ADDRSTRLEN]; 28736 ip_stack_t *ipst = ire->ire_ipst; 28737 28738 /* Convert interval in ms to hrtime in ns */ 28739 if (ipst->ips_multirt_bad_mtu_last_time + 28740 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28741 current) { 28742 cmn_err(CE_WARN, "ip: ignoring multiroute " 28743 "to %s, incorrect MTU %u (expected %u)\n", 28744 ip_dot_addr(ire->ire_addr, buf), 28745 ire->ire_max_frag, max_frag); 28746 28747 ipst->ips_multirt_bad_mtu_last_time = current; 28748 } 28749 } 28750 28751 /* 28752 * Get the CGTP (multirouting) filtering status. 28753 * If 0, the CGTP hooks are transparent. 28754 */ 28755 /* ARGSUSED */ 28756 static int 28757 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28758 { 28759 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28760 28761 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28762 return (0); 28763 } 28764 28765 /* 28766 * Set the CGTP (multirouting) filtering status. 28767 * If the status is changed from active to transparent 28768 * or from transparent to active, forward the new status 28769 * to the filtering module (if loaded). 28770 */ 28771 /* ARGSUSED */ 28772 static int 28773 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28774 cred_t *ioc_cr) 28775 { 28776 long new_value; 28777 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28778 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28779 28780 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28781 return (EPERM); 28782 28783 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28784 new_value < 0 || new_value > 1) { 28785 return (EINVAL); 28786 } 28787 28788 if ((!*ip_cgtp_filter_value) && new_value) { 28789 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28790 ipst->ips_ip_cgtp_filter_ops == NULL ? 28791 " (module not loaded)" : ""); 28792 } 28793 if (*ip_cgtp_filter_value && (!new_value)) { 28794 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28795 ipst->ips_ip_cgtp_filter_ops == NULL ? 28796 " (module not loaded)" : ""); 28797 } 28798 28799 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28800 int res; 28801 netstackid_t stackid; 28802 28803 stackid = ipst->ips_netstack->netstack_stackid; 28804 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28805 new_value); 28806 if (res) 28807 return (res); 28808 } 28809 28810 *ip_cgtp_filter_value = (boolean_t)new_value; 28811 28812 return (0); 28813 } 28814 28815 /* 28816 * Return the expected CGTP hooks version number. 28817 */ 28818 int 28819 ip_cgtp_filter_supported(void) 28820 { 28821 return (ip_cgtp_filter_rev); 28822 } 28823 28824 /* 28825 * CGTP hooks can be registered by invoking this function. 28826 * Checks that the version number matches. 28827 */ 28828 int 28829 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28830 { 28831 netstack_t *ns; 28832 ip_stack_t *ipst; 28833 28834 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28835 return (ENOTSUP); 28836 28837 ns = netstack_find_by_stackid(stackid); 28838 if (ns == NULL) 28839 return (EINVAL); 28840 ipst = ns->netstack_ip; 28841 ASSERT(ipst != NULL); 28842 28843 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28844 netstack_rele(ns); 28845 return (EALREADY); 28846 } 28847 28848 ipst->ips_ip_cgtp_filter_ops = ops; 28849 netstack_rele(ns); 28850 return (0); 28851 } 28852 28853 /* 28854 * CGTP hooks can be unregistered by invoking this function. 28855 * Returns ENXIO if there was no registration. 28856 * Returns EBUSY if the ndd variable has not been turned off. 28857 */ 28858 int 28859 ip_cgtp_filter_unregister(netstackid_t stackid) 28860 { 28861 netstack_t *ns; 28862 ip_stack_t *ipst; 28863 28864 ns = netstack_find_by_stackid(stackid); 28865 if (ns == NULL) 28866 return (EINVAL); 28867 ipst = ns->netstack_ip; 28868 ASSERT(ipst != NULL); 28869 28870 if (ipst->ips_ip_cgtp_filter) { 28871 netstack_rele(ns); 28872 return (EBUSY); 28873 } 28874 28875 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28876 netstack_rele(ns); 28877 return (ENXIO); 28878 } 28879 ipst->ips_ip_cgtp_filter_ops = NULL; 28880 netstack_rele(ns); 28881 return (0); 28882 } 28883 28884 /* 28885 * Check whether there is a CGTP filter registration. 28886 * Returns non-zero if there is a registration, otherwise returns zero. 28887 * Note: returns zero if bad stackid. 28888 */ 28889 int 28890 ip_cgtp_filter_is_registered(netstackid_t stackid) 28891 { 28892 netstack_t *ns; 28893 ip_stack_t *ipst; 28894 int ret; 28895 28896 ns = netstack_find_by_stackid(stackid); 28897 if (ns == NULL) 28898 return (0); 28899 ipst = ns->netstack_ip; 28900 ASSERT(ipst != NULL); 28901 28902 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28903 ret = 1; 28904 else 28905 ret = 0; 28906 28907 netstack_rele(ns); 28908 return (ret); 28909 } 28910 28911 static int 28912 ip_squeue_switch(int val) 28913 { 28914 int rval = SQ_FILL; 28915 28916 switch (val) { 28917 case IP_SQUEUE_ENTER_NODRAIN: 28918 rval = SQ_NODRAIN; 28919 break; 28920 case IP_SQUEUE_ENTER: 28921 rval = SQ_PROCESS; 28922 break; 28923 default: 28924 break; 28925 } 28926 return (rval); 28927 } 28928 28929 /* ARGSUSED */ 28930 static int 28931 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28932 caddr_t addr, cred_t *cr) 28933 { 28934 int *v = (int *)addr; 28935 long new_value; 28936 28937 if (secpolicy_net_config(cr, B_FALSE) != 0) 28938 return (EPERM); 28939 28940 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28941 return (EINVAL); 28942 28943 ip_squeue_flag = ip_squeue_switch(new_value); 28944 *v = new_value; 28945 return (0); 28946 } 28947 28948 /* 28949 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 28950 * ip_debug. 28951 */ 28952 /* ARGSUSED */ 28953 static int 28954 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28955 caddr_t addr, cred_t *cr) 28956 { 28957 int *v = (int *)addr; 28958 long new_value; 28959 28960 if (secpolicy_net_config(cr, B_FALSE) != 0) 28961 return (EPERM); 28962 28963 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28964 return (EINVAL); 28965 28966 *v = new_value; 28967 return (0); 28968 } 28969 28970 static void * 28971 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 28972 { 28973 kstat_t *ksp; 28974 28975 ip_stat_t template = { 28976 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 28977 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 28978 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 28979 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 28980 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 28981 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 28982 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 28983 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 28984 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 28985 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 28986 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 28987 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 28988 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 28989 { "ip_db_ref", KSTAT_DATA_UINT64 }, 28990 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 28991 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 28992 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 28993 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 28994 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 28995 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 28996 { "ip_opt", KSTAT_DATA_UINT64 }, 28997 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 28998 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 28999 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29000 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29001 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29002 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29003 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29004 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29005 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29006 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29007 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29008 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29009 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29010 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29011 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29012 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29013 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29014 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29015 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29016 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29017 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29018 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29019 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29020 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29021 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29022 }; 29023 29024 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29025 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29026 KSTAT_FLAG_VIRTUAL, stackid); 29027 29028 if (ksp == NULL) 29029 return (NULL); 29030 29031 bcopy(&template, ip_statisticsp, sizeof (template)); 29032 ksp->ks_data = (void *)ip_statisticsp; 29033 ksp->ks_private = (void *)(uintptr_t)stackid; 29034 29035 kstat_install(ksp); 29036 return (ksp); 29037 } 29038 29039 static void 29040 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29041 { 29042 if (ksp != NULL) { 29043 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29044 kstat_delete_netstack(ksp, stackid); 29045 } 29046 } 29047 29048 static void * 29049 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29050 { 29051 kstat_t *ksp; 29052 29053 ip_named_kstat_t template = { 29054 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29055 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29056 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29057 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29058 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29059 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29060 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29061 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29062 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29063 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29064 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29065 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29066 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29067 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29068 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29069 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29070 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29071 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29072 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29073 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29074 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29075 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29076 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29077 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29078 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29079 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29080 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29081 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29082 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29083 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29084 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29085 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29086 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29087 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29088 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29089 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29090 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29091 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29092 }; 29093 29094 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29095 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29096 if (ksp == NULL || ksp->ks_data == NULL) 29097 return (NULL); 29098 29099 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29100 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29101 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29102 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29103 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29104 29105 template.netToMediaEntrySize.value.i32 = 29106 sizeof (mib2_ipNetToMediaEntry_t); 29107 29108 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29109 29110 bcopy(&template, ksp->ks_data, sizeof (template)); 29111 ksp->ks_update = ip_kstat_update; 29112 ksp->ks_private = (void *)(uintptr_t)stackid; 29113 29114 kstat_install(ksp); 29115 return (ksp); 29116 } 29117 29118 static void 29119 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29120 { 29121 if (ksp != NULL) { 29122 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29123 kstat_delete_netstack(ksp, stackid); 29124 } 29125 } 29126 29127 static int 29128 ip_kstat_update(kstat_t *kp, int rw) 29129 { 29130 ip_named_kstat_t *ipkp; 29131 mib2_ipIfStatsEntry_t ipmib; 29132 ill_walk_context_t ctx; 29133 ill_t *ill; 29134 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29135 netstack_t *ns; 29136 ip_stack_t *ipst; 29137 29138 if (kp == NULL || kp->ks_data == NULL) 29139 return (EIO); 29140 29141 if (rw == KSTAT_WRITE) 29142 return (EACCES); 29143 29144 ns = netstack_find_by_stackid(stackid); 29145 if (ns == NULL) 29146 return (-1); 29147 ipst = ns->netstack_ip; 29148 if (ipst == NULL) { 29149 netstack_rele(ns); 29150 return (-1); 29151 } 29152 ipkp = (ip_named_kstat_t *)kp->ks_data; 29153 29154 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29155 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29156 ill = ILL_START_WALK_V4(&ctx, ipst); 29157 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29158 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29159 rw_exit(&ipst->ips_ill_g_lock); 29160 29161 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29162 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29163 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29164 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29165 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29166 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29167 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29168 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29169 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29170 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29171 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29172 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29173 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29174 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29175 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29176 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29177 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29178 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29179 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29180 29181 ipkp->routingDiscards.value.ui32 = 0; 29182 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29183 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29184 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29185 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29186 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29187 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29188 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29189 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29190 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29191 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29192 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29193 29194 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29195 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29196 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29197 29198 netstack_rele(ns); 29199 29200 return (0); 29201 } 29202 29203 static void * 29204 icmp_kstat_init(netstackid_t stackid) 29205 { 29206 kstat_t *ksp; 29207 29208 icmp_named_kstat_t template = { 29209 { "inMsgs", KSTAT_DATA_UINT32 }, 29210 { "inErrors", KSTAT_DATA_UINT32 }, 29211 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29212 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29213 { "inParmProbs", KSTAT_DATA_UINT32 }, 29214 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29215 { "inRedirects", KSTAT_DATA_UINT32 }, 29216 { "inEchos", KSTAT_DATA_UINT32 }, 29217 { "inEchoReps", KSTAT_DATA_UINT32 }, 29218 { "inTimestamps", KSTAT_DATA_UINT32 }, 29219 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29220 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29221 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29222 { "outMsgs", KSTAT_DATA_UINT32 }, 29223 { "outErrors", KSTAT_DATA_UINT32 }, 29224 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29225 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29226 { "outParmProbs", KSTAT_DATA_UINT32 }, 29227 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29228 { "outRedirects", KSTAT_DATA_UINT32 }, 29229 { "outEchos", KSTAT_DATA_UINT32 }, 29230 { "outEchoReps", KSTAT_DATA_UINT32 }, 29231 { "outTimestamps", KSTAT_DATA_UINT32 }, 29232 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29233 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29234 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29235 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29236 { "inUnknowns", KSTAT_DATA_UINT32 }, 29237 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29238 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29239 { "outDrops", KSTAT_DATA_UINT32 }, 29240 { "inOverFlows", KSTAT_DATA_UINT32 }, 29241 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29242 }; 29243 29244 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29245 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29246 if (ksp == NULL || ksp->ks_data == NULL) 29247 return (NULL); 29248 29249 bcopy(&template, ksp->ks_data, sizeof (template)); 29250 29251 ksp->ks_update = icmp_kstat_update; 29252 ksp->ks_private = (void *)(uintptr_t)stackid; 29253 29254 kstat_install(ksp); 29255 return (ksp); 29256 } 29257 29258 static void 29259 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29260 { 29261 if (ksp != NULL) { 29262 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29263 kstat_delete_netstack(ksp, stackid); 29264 } 29265 } 29266 29267 static int 29268 icmp_kstat_update(kstat_t *kp, int rw) 29269 { 29270 icmp_named_kstat_t *icmpkp; 29271 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29272 netstack_t *ns; 29273 ip_stack_t *ipst; 29274 29275 if ((kp == NULL) || (kp->ks_data == NULL)) 29276 return (EIO); 29277 29278 if (rw == KSTAT_WRITE) 29279 return (EACCES); 29280 29281 ns = netstack_find_by_stackid(stackid); 29282 if (ns == NULL) 29283 return (-1); 29284 ipst = ns->netstack_ip; 29285 if (ipst == NULL) { 29286 netstack_rele(ns); 29287 return (-1); 29288 } 29289 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29290 29291 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29292 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29293 icmpkp->inDestUnreachs.value.ui32 = 29294 ipst->ips_icmp_mib.icmpInDestUnreachs; 29295 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29296 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29297 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29298 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29299 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29300 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29301 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29302 icmpkp->inTimestampReps.value.ui32 = 29303 ipst->ips_icmp_mib.icmpInTimestampReps; 29304 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29305 icmpkp->inAddrMaskReps.value.ui32 = 29306 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29307 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29308 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29309 icmpkp->outDestUnreachs.value.ui32 = 29310 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29311 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29312 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29313 icmpkp->outSrcQuenchs.value.ui32 = 29314 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29315 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29316 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29317 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29318 icmpkp->outTimestamps.value.ui32 = 29319 ipst->ips_icmp_mib.icmpOutTimestamps; 29320 icmpkp->outTimestampReps.value.ui32 = 29321 ipst->ips_icmp_mib.icmpOutTimestampReps; 29322 icmpkp->outAddrMasks.value.ui32 = 29323 ipst->ips_icmp_mib.icmpOutAddrMasks; 29324 icmpkp->outAddrMaskReps.value.ui32 = 29325 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29326 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29327 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29328 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29329 icmpkp->outFragNeeded.value.ui32 = 29330 ipst->ips_icmp_mib.icmpOutFragNeeded; 29331 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29332 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29333 icmpkp->inBadRedirects.value.ui32 = 29334 ipst->ips_icmp_mib.icmpInBadRedirects; 29335 29336 netstack_rele(ns); 29337 return (0); 29338 } 29339 29340 /* 29341 * This is the fanout function for raw socket opened for SCTP. Note 29342 * that it is called after SCTP checks that there is no socket which 29343 * wants a packet. Then before SCTP handles this out of the blue packet, 29344 * this function is called to see if there is any raw socket for SCTP. 29345 * If there is and it is bound to the correct address, the packet will 29346 * be sent to that socket. Note that only one raw socket can be bound to 29347 * a port. This is assured in ipcl_sctp_hash_insert(); 29348 */ 29349 void 29350 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29351 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29352 zoneid_t zoneid) 29353 { 29354 conn_t *connp; 29355 queue_t *rq; 29356 mblk_t *first_mp; 29357 boolean_t secure; 29358 ip6_t *ip6h; 29359 ip_stack_t *ipst = recv_ill->ill_ipst; 29360 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29361 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29362 boolean_t sctp_csum_err = B_FALSE; 29363 29364 if (flags & IP_FF_SCTP_CSUM_ERR) { 29365 sctp_csum_err = B_TRUE; 29366 flags &= ~IP_FF_SCTP_CSUM_ERR; 29367 } 29368 29369 first_mp = mp; 29370 if (mctl_present) { 29371 mp = first_mp->b_cont; 29372 secure = ipsec_in_is_secure(first_mp); 29373 ASSERT(mp != NULL); 29374 } else { 29375 secure = B_FALSE; 29376 } 29377 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29378 29379 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29380 if (connp == NULL) { 29381 /* 29382 * Although raw sctp is not summed, OOB chunks must be. 29383 * Drop the packet here if the sctp checksum failed. 29384 */ 29385 if (sctp_csum_err) { 29386 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29387 freemsg(first_mp); 29388 return; 29389 } 29390 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29391 return; 29392 } 29393 rq = connp->conn_rq; 29394 if (!canputnext(rq)) { 29395 CONN_DEC_REF(connp); 29396 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29397 freemsg(first_mp); 29398 return; 29399 } 29400 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29401 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29402 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29403 (isv4 ? ipha : NULL), ip6h, mctl_present); 29404 if (first_mp == NULL) { 29405 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29406 CONN_DEC_REF(connp); 29407 return; 29408 } 29409 } 29410 /* 29411 * We probably should not send M_CTL message up to 29412 * raw socket. 29413 */ 29414 if (mctl_present) 29415 freeb(first_mp); 29416 29417 /* Initiate IPPF processing here if needed. */ 29418 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29419 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29420 ip_process(IPP_LOCAL_IN, &mp, 29421 recv_ill->ill_phyint->phyint_ifindex); 29422 if (mp == NULL) { 29423 CONN_DEC_REF(connp); 29424 return; 29425 } 29426 } 29427 29428 if (connp->conn_recvif || connp->conn_recvslla || 29429 ((connp->conn_ip_recvpktinfo || 29430 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29431 (flags & IP_FF_IPINFO))) { 29432 int in_flags = 0; 29433 29434 /* 29435 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29436 * IPF_RECVIF. 29437 */ 29438 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29439 in_flags = IPF_RECVIF; 29440 } 29441 if (connp->conn_recvslla) { 29442 in_flags |= IPF_RECVSLLA; 29443 } 29444 if (isv4) { 29445 mp = ip_add_info(mp, recv_ill, in_flags, 29446 IPCL_ZONEID(connp), ipst); 29447 } else { 29448 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29449 if (mp == NULL) { 29450 BUMP_MIB(recv_ill->ill_ip_mib, 29451 ipIfStatsInDiscards); 29452 CONN_DEC_REF(connp); 29453 return; 29454 } 29455 } 29456 } 29457 29458 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29459 /* 29460 * We are sending the IPSEC_IN message also up. Refer 29461 * to comments above this function. 29462 * This is the SOCK_RAW, IPPROTO_SCTP case. 29463 */ 29464 (connp->conn_recv)(connp, mp, NULL); 29465 CONN_DEC_REF(connp); 29466 } 29467 29468 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29469 { \ 29470 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29471 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29472 } 29473 /* 29474 * This function should be called only if all packet processing 29475 * including fragmentation is complete. Callers of this function 29476 * must set mp->b_prev to one of these values: 29477 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29478 * prior to handing over the mp as first argument to this function. 29479 * 29480 * If the ire passed by caller is incomplete, this function 29481 * queues the packet and if necessary, sends ARP request and bails. 29482 * If the ire passed is fully resolved, we simply prepend 29483 * the link-layer header to the packet, do ipsec hw acceleration 29484 * work if necessary, and send the packet out on the wire. 29485 * 29486 * NOTE: IPsec will only call this function with fully resolved 29487 * ires if hw acceleration is involved. 29488 * TODO list : 29489 * a Handle M_MULTIDATA so that 29490 * tcp_multisend->tcp_multisend_data can 29491 * call ip_xmit_v4 directly 29492 * b Handle post-ARP work for fragments so that 29493 * ip_wput_frag can call this function. 29494 */ 29495 ipxmit_state_t 29496 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29497 boolean_t flow_ctl_enabled, conn_t *connp) 29498 { 29499 nce_t *arpce; 29500 ipha_t *ipha; 29501 queue_t *q; 29502 int ill_index; 29503 mblk_t *nxt_mp, *first_mp; 29504 boolean_t xmit_drop = B_FALSE; 29505 ip_proc_t proc; 29506 ill_t *out_ill; 29507 int pkt_len; 29508 29509 arpce = ire->ire_nce; 29510 ASSERT(arpce != NULL); 29511 29512 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29513 29514 mutex_enter(&arpce->nce_lock); 29515 switch (arpce->nce_state) { 29516 case ND_REACHABLE: 29517 /* If there are other queued packets, queue this packet */ 29518 if (arpce->nce_qd_mp != NULL) { 29519 if (mp != NULL) 29520 nce_queue_mp_common(arpce, mp, B_FALSE); 29521 mp = arpce->nce_qd_mp; 29522 } 29523 arpce->nce_qd_mp = NULL; 29524 mutex_exit(&arpce->nce_lock); 29525 29526 /* 29527 * Flush the queue. In the common case, where the 29528 * ARP is already resolved, it will go through the 29529 * while loop only once. 29530 */ 29531 while (mp != NULL) { 29532 29533 nxt_mp = mp->b_next; 29534 mp->b_next = NULL; 29535 ASSERT(mp->b_datap->db_type != M_CTL); 29536 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29537 /* 29538 * This info is needed for IPQOS to do COS marking 29539 * in ip_wput_attach_llhdr->ip_process. 29540 */ 29541 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29542 mp->b_prev = NULL; 29543 29544 /* set up ill index for outbound qos processing */ 29545 out_ill = ire_to_ill(ire); 29546 ill_index = out_ill->ill_phyint->phyint_ifindex; 29547 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29548 ill_index, &ipha); 29549 if (first_mp == NULL) { 29550 xmit_drop = B_TRUE; 29551 BUMP_MIB(out_ill->ill_ip_mib, 29552 ipIfStatsOutDiscards); 29553 goto next_mp; 29554 } 29555 29556 /* non-ipsec hw accel case */ 29557 if (io == NULL || !io->ipsec_out_accelerated) { 29558 /* send it */ 29559 q = ire->ire_stq; 29560 if (proc == IPP_FWD_OUT) { 29561 UPDATE_IB_PKT_COUNT(ire); 29562 } else { 29563 UPDATE_OB_PKT_COUNT(ire); 29564 } 29565 ire->ire_last_used_time = lbolt; 29566 29567 if (flow_ctl_enabled || canputnext(q)) { 29568 if (proc == IPP_FWD_OUT) { 29569 29570 BUMP_MIB(out_ill->ill_ip_mib, 29571 ipIfStatsHCOutForwDatagrams); 29572 29573 } 29574 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29575 pkt_len); 29576 29577 DTRACE_IP7(send, mblk_t *, first_mp, 29578 conn_t *, NULL, void_ip_t *, ipha, 29579 __dtrace_ipsr_ill_t *, out_ill, 29580 ipha_t *, ipha, ip6_t *, NULL, int, 29581 0); 29582 29583 ILL_SEND_TX(out_ill, 29584 ire, connp, first_mp, 0, connp); 29585 } else { 29586 BUMP_MIB(out_ill->ill_ip_mib, 29587 ipIfStatsOutDiscards); 29588 xmit_drop = B_TRUE; 29589 freemsg(first_mp); 29590 } 29591 } else { 29592 /* 29593 * Safety Pup says: make sure this 29594 * is going to the right interface! 29595 */ 29596 ill_t *ill1 = 29597 (ill_t *)ire->ire_stq->q_ptr; 29598 int ifindex = 29599 ill1->ill_phyint->phyint_ifindex; 29600 if (ifindex != 29601 io->ipsec_out_capab_ill_index) { 29602 xmit_drop = B_TRUE; 29603 freemsg(mp); 29604 } else { 29605 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29606 pkt_len); 29607 29608 DTRACE_IP7(send, mblk_t *, first_mp, 29609 conn_t *, NULL, void_ip_t *, ipha, 29610 __dtrace_ipsr_ill_t *, ill1, 29611 ipha_t *, ipha, ip6_t *, NULL, 29612 int, 0); 29613 29614 ipsec_hw_putnext(ire->ire_stq, mp); 29615 } 29616 } 29617 next_mp: 29618 mp = nxt_mp; 29619 } /* while (mp != NULL) */ 29620 if (xmit_drop) 29621 return (SEND_FAILED); 29622 else 29623 return (SEND_PASSED); 29624 29625 case ND_INITIAL: 29626 case ND_INCOMPLETE: 29627 29628 /* 29629 * While we do send off packets to dests that 29630 * use fully-resolved CGTP routes, we do not 29631 * handle unresolved CGTP routes. 29632 */ 29633 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29634 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29635 29636 if (mp != NULL) { 29637 /* queue the packet */ 29638 nce_queue_mp_common(arpce, mp, B_FALSE); 29639 } 29640 29641 if (arpce->nce_state == ND_INCOMPLETE) { 29642 mutex_exit(&arpce->nce_lock); 29643 DTRACE_PROBE3(ip__xmit__incomplete, 29644 (ire_t *), ire, (mblk_t *), mp, 29645 (ipsec_out_t *), io); 29646 return (LOOKUP_IN_PROGRESS); 29647 } 29648 29649 arpce->nce_state = ND_INCOMPLETE; 29650 mutex_exit(&arpce->nce_lock); 29651 29652 /* 29653 * Note that ire_add() (called from ire_forward()) 29654 * holds a ref on the ire until ARP is completed. 29655 */ 29656 ire_arpresolve(ire); 29657 return (LOOKUP_IN_PROGRESS); 29658 default: 29659 ASSERT(0); 29660 mutex_exit(&arpce->nce_lock); 29661 return (LLHDR_RESLV_FAILED); 29662 } 29663 } 29664 29665 #undef UPDATE_IP_MIB_OB_COUNTERS 29666 29667 /* 29668 * Return B_TRUE if the buffers differ in length or content. 29669 * This is used for comparing extension header buffers. 29670 * Note that an extension header would be declared different 29671 * even if all that changed was the next header value in that header i.e. 29672 * what really changed is the next extension header. 29673 */ 29674 boolean_t 29675 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29676 uint_t blen) 29677 { 29678 if (!b_valid) 29679 blen = 0; 29680 29681 if (alen != blen) 29682 return (B_TRUE); 29683 if (alen == 0) 29684 return (B_FALSE); /* Both zero length */ 29685 return (bcmp(abuf, bbuf, alen)); 29686 } 29687 29688 /* 29689 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29690 * Return B_FALSE if memory allocation fails - don't change any state! 29691 */ 29692 boolean_t 29693 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29694 const void *src, uint_t srclen) 29695 { 29696 void *dst; 29697 29698 if (!src_valid) 29699 srclen = 0; 29700 29701 ASSERT(*dstlenp == 0); 29702 if (src != NULL && srclen != 0) { 29703 dst = mi_alloc(srclen, BPRI_MED); 29704 if (dst == NULL) 29705 return (B_FALSE); 29706 } else { 29707 dst = NULL; 29708 } 29709 if (*dstp != NULL) 29710 mi_free(*dstp); 29711 *dstp = dst; 29712 *dstlenp = dst == NULL ? 0 : srclen; 29713 return (B_TRUE); 29714 } 29715 29716 /* 29717 * Replace what is in *dst, *dstlen with the source. 29718 * Assumes ip_allocbuf has already been called. 29719 */ 29720 void 29721 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29722 const void *src, uint_t srclen) 29723 { 29724 if (!src_valid) 29725 srclen = 0; 29726 29727 ASSERT(*dstlenp == srclen); 29728 if (src != NULL && srclen != 0) 29729 bcopy(src, *dstp, srclen); 29730 } 29731 29732 /* 29733 * Free the storage pointed to by the members of an ip6_pkt_t. 29734 */ 29735 void 29736 ip6_pkt_free(ip6_pkt_t *ipp) 29737 { 29738 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29739 29740 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29741 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29742 ipp->ipp_hopopts = NULL; 29743 ipp->ipp_hopoptslen = 0; 29744 } 29745 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29746 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29747 ipp->ipp_rtdstopts = NULL; 29748 ipp->ipp_rtdstoptslen = 0; 29749 } 29750 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29751 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29752 ipp->ipp_dstopts = NULL; 29753 ipp->ipp_dstoptslen = 0; 29754 } 29755 if (ipp->ipp_fields & IPPF_RTHDR) { 29756 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29757 ipp->ipp_rthdr = NULL; 29758 ipp->ipp_rthdrlen = 0; 29759 } 29760 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29761 IPPF_RTHDR); 29762 } 29763 29764 zoneid_t 29765 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29766 zoneid_t lookup_zoneid) 29767 { 29768 ire_t *ire; 29769 int ire_flags = MATCH_IRE_TYPE; 29770 zoneid_t zoneid = ALL_ZONES; 29771 29772 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29773 return (ALL_ZONES); 29774 29775 if (lookup_zoneid != ALL_ZONES) 29776 ire_flags |= MATCH_IRE_ZONEONLY; 29777 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29778 lookup_zoneid, NULL, ire_flags, ipst); 29779 if (ire != NULL) { 29780 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29781 ire_refrele(ire); 29782 } 29783 return (zoneid); 29784 } 29785 29786 zoneid_t 29787 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29788 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29789 { 29790 ire_t *ire; 29791 int ire_flags = MATCH_IRE_TYPE; 29792 zoneid_t zoneid = ALL_ZONES; 29793 ipif_t *ipif_arg = NULL; 29794 29795 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29796 return (ALL_ZONES); 29797 29798 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29799 ire_flags |= MATCH_IRE_ILL; 29800 ipif_arg = ill->ill_ipif; 29801 } 29802 if (lookup_zoneid != ALL_ZONES) 29803 ire_flags |= MATCH_IRE_ZONEONLY; 29804 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29805 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29806 if (ire != NULL) { 29807 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29808 ire_refrele(ire); 29809 } 29810 return (zoneid); 29811 } 29812 29813 /* 29814 * IP obserability hook support functions. 29815 */ 29816 static void 29817 ipobs_init(ip_stack_t *ipst) 29818 { 29819 netid_t id; 29820 29821 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 29822 29823 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 29824 VERIFY(ipst->ips_ip4_observe_pr != NULL); 29825 29826 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 29827 VERIFY(ipst->ips_ip6_observe_pr != NULL); 29828 } 29829 29830 static void 29831 ipobs_fini(ip_stack_t *ipst) 29832 { 29833 29834 net_protocol_release(ipst->ips_ip4_observe_pr); 29835 net_protocol_release(ipst->ips_ip6_observe_pr); 29836 } 29837 29838 /* 29839 * hook_pkt_observe_t is composed in network byte order so that the 29840 * entire mblk_t chain handed into hook_run can be used as-is. 29841 * The caveat is that use of the fields, such as the zone fields, 29842 * requires conversion into host byte order first. 29843 */ 29844 void 29845 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 29846 const ill_t *ill, ip_stack_t *ipst) 29847 { 29848 hook_pkt_observe_t *hdr; 29849 uint64_t grifindex; 29850 mblk_t *imp; 29851 29852 imp = allocb(sizeof (*hdr), BPRI_HI); 29853 if (imp == NULL) 29854 return; 29855 29856 hdr = (hook_pkt_observe_t *)imp->b_rptr; 29857 /* 29858 * b_wptr is set to make the apparent size of the data in the mblk_t 29859 * to exclude the pointers at the end of hook_pkt_observer_t. 29860 */ 29861 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 29862 imp->b_cont = mp; 29863 29864 ASSERT(DB_TYPE(mp) == M_DATA); 29865 29866 if (IS_UNDER_IPMP(ill)) 29867 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 29868 else 29869 grifindex = 0; 29870 29871 hdr->hpo_version = 1; 29872 hdr->hpo_htype = htype; 29873 hdr->hpo_pktlen = htons((ushort_t)msgdsize(mp)); 29874 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 29875 hdr->hpo_grifindex = htonl(grifindex); 29876 hdr->hpo_zsrc = htonl(zsrc); 29877 hdr->hpo_zdst = htonl(zdst); 29878 hdr->hpo_pkt = imp; 29879 hdr->hpo_ctx = ipst->ips_netstack; 29880 29881 if (ill->ill_isv6) { 29882 hdr->hpo_family = AF_INET6; 29883 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 29884 ipst->ips_ipv6observing, (hook_data_t)hdr); 29885 } else { 29886 hdr->hpo_family = AF_INET; 29887 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 29888 ipst->ips_ipv4observing, (hook_data_t)hdr); 29889 } 29890 29891 imp->b_cont = NULL; 29892 freemsg(imp); 29893 } 29894