1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/ipsec_info.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <sys/iphada.h> 103 #include <inet/tun.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/multidata.h> 116 #include <sys/pattr.h> 117 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 #include <sys/sunddi.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <rpc/pmap_prot.h> 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 134 * IP_SQUEUE_ENTER: squeue_enter 135 * IP_SQUEUE_FILL: squeue_fill 136 */ 137 int ip_squeue_enter = 2; /* Setable in /etc/system */ 138 139 squeue_func_t ip_input_proc; 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 199 uint8_t *laddrp, uint8_t *faddrp) = NULL; 200 201 /* 202 * Synchronization notes: 203 * 204 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 205 * MT level protection given by STREAMS. IP uses a combination of its own 206 * internal serialization mechanism and standard Solaris locking techniques. 207 * The internal serialization is per phyint (no IPMP) or per IPMP group. 208 * This is used to serialize plumbing operations, IPMP operations, certain 209 * multicast operations, most set ioctls, igmp/mld timers etc. 210 * 211 * Plumbing is a long sequence of operations involving message 212 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 213 * involved in plumbing operations. A natural model is to serialize these 214 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 215 * parallel without any interference. But various set ioctls on hme0 are best 216 * serialized. However if the system uses IPMP, the operations are easier if 217 * they are serialized on a per IPMP group basis since IPMP operations 218 * happen across ill's of a group. Thus the lowest common denominator is to 219 * serialize most set ioctls, multicast join/leave operations, IPMP operations 220 * igmp/mld timer operations, and processing of DLPI control messages received 221 * from drivers on a per IPMP group basis. If the system does not employ 222 * IPMP the serialization is on a per phyint basis. This serialization is 223 * provided by the ipsq_t and primitives operating on this. Details can 224 * be found in ip_if.c above the core primitives operating on ipsq_t. 225 * 226 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 227 * Simiarly lookup of an ire by a thread also returns a refheld ire. 228 * In addition ipif's and ill's referenced by the ire are also indirectly 229 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 230 * the ipif's address or netmask change as long as an ipif is refheld 231 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 232 * address of an ipif has to go through the ipsq_t. This ensures that only 233 * 1 such exclusive operation proceeds at any time on the ipif. It then 234 * deletes all ires associated with this ipif, and waits for all refcnts 235 * associated with this ipif to come down to zero. The address is changed 236 * only after the ipif has been quiesced. Then the ipif is brought up again. 237 * More details are described above the comment in ip_sioctl_flags. 238 * 239 * Packet processing is based mostly on IREs and are fully multi-threaded 240 * using standard Solaris MT techniques. 241 * 242 * There are explicit locks in IP to handle: 243 * - The ip_g_head list maintained by mi_open_link() and friends. 244 * 245 * - The reassembly data structures (one lock per hash bucket) 246 * 247 * - conn_lock is meant to protect conn_t fields. The fields actually 248 * protected by conn_lock are documented in the conn_t definition. 249 * 250 * - ire_lock to protect some of the fields of the ire, IRE tables 251 * (one lock per hash bucket). Refer to ip_ire.c for details. 252 * 253 * - ndp_g_lock and nce_lock for protecting NCEs. 254 * 255 * - ill_lock protects fields of the ill and ipif. Details in ip.h 256 * 257 * - ill_g_lock: This is a global reader/writer lock. Protects the following 258 * * The AVL tree based global multi list of all ills. 259 * * The linked list of all ipifs of an ill 260 * * The <ill-ipsq> mapping 261 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 262 * * The illgroup list threaded by ill_group_next. 263 * * <ill-phyint> association 264 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 265 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 266 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 267 * will all have to hold the ill_g_lock as writer for the actual duration 268 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 269 * may be found in the IPMP section. 270 * 271 * - ill_lock: This is a per ill mutex. 272 * It protects some members of the ill and is documented below. 273 * It also protects the <ill-ipsq> mapping 274 * It also protects the illgroup list threaded by ill_group_next. 275 * It also protects the <ill-phyint> assoc. 276 * It also protects the list of ipifs hanging off the ill. 277 * 278 * - ipsq_lock: This is a per ipsq_t mutex lock. 279 * This protects all the other members of the ipsq struct except 280 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 281 * 282 * - illgrp_lock: This is a per ill_group mutex lock. 283 * The only thing it protects is the illgrp_ill_schednext member of ill_group 284 * which dictates which is the next ill in an ill_group that is to be chosen 285 * for sending outgoing packets, through creation of an IRE_CACHE that 286 * references this ill. 287 * 288 * - phyint_lock: This is a per phyint mutex lock. Protects just the 289 * phyint_flags 290 * 291 * - ip_g_nd_lock: This is a global reader/writer lock. 292 * Any call to nd_load to load a new parameter to the ND table must hold the 293 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 294 * as reader. 295 * 296 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 297 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 298 * uniqueness check also done atomically. 299 * 300 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 301 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 302 * as a writer when adding or deleting elements from these lists, and 303 * as a reader when walking these lists to send a SADB update to the 304 * IPsec capable ills. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 315 * ip_sioctl_flags since the these operations are executed exclusively and 316 * that ensures that the "usesrc group state" cannot change. The "usesrc 317 * group state" change can happen only in the latter part of 318 * ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 327 * and the ill_lock of the ill in question must be held. 328 * 329 * To change the <ill-illgroup> association the ill_g_lock must be held as 330 * writer and the ill_lock of the ill in question must be held. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq,. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 347 * ill_g_lock -> illgrp_lock -> ill_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * IPsec scenarios 359 * 360 * ipsa_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 362 * ipsec_capab_ills_lock -> ipsa_lock 363 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 364 * 365 * Trusted Solaris scenarios 366 * 367 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 368 * igsa_lock -> gcdb_lock 369 * gcgrp_rwlock -> ire_lock 370 * gcgrp_rwlock -> gcdb_lock 371 * 372 * 373 * Routing/forwarding table locking notes: 374 * 375 * Lock acquisition order: Radix tree lock, irb_lock. 376 * Requirements: 377 * i. Walker must not hold any locks during the walker callback. 378 * ii Walker must not see a truncated tree during the walk because of any node 379 * deletion. 380 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 381 * in many places in the code to walk the irb list. Thus even if all the 382 * ires in a bucket have been deleted, we still can't free the radix node 383 * until the ires have actually been inactive'd (freed). 384 * 385 * Tree traversal - Need to hold the global tree lock in read mode. 386 * Before dropping the global tree lock, need to either increment the ire_refcnt 387 * to ensure that the radix node can't be deleted. 388 * 389 * Tree add - Need to hold the global tree lock in write mode to add a 390 * radix node. To prevent the node from being deleted, increment the 391 * irb_refcnt, after the node is added to the tree. The ire itself is 392 * added later while holding the irb_lock, but not the tree lock. 393 * 394 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 395 * All associated ires must be inactive (i.e. freed), and irb_refcnt 396 * must be zero. 397 * 398 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 399 * global tree lock (read mode) for traversal. 400 * 401 * IPsec notes : 402 * 403 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 404 * in front of the actual packet. For outbound datagrams, the M_CTL 405 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 406 * information used by the IPsec code for applying the right level of 407 * protection. The information initialized by IP in the ipsec_out_t 408 * is determined by the per-socket policy or global policy in the system. 409 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 410 * ipsec_info.h) which starts out with nothing in it. It gets filled 411 * with the right information if it goes through the AH/ESP code, which 412 * happens if the incoming packet is secure. The information initialized 413 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 414 * the policy requirements needed by per-socket policy or global policy 415 * is met or not. 416 * 417 * If there is both per-socket policy (set using setsockopt) and there 418 * is also global policy match for the 5 tuples of the socket, 419 * ipsec_override_policy() makes the decision of which one to use. 420 * 421 * For fully connected sockets i.e dst, src [addr, port] is known, 422 * conn_policy_cached is set indicating that policy has been cached. 423 * conn_in_enforce_policy may or may not be set depending on whether 424 * there is a global policy match or per-socket policy match. 425 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 426 * Once the right policy is set on the conn_t, policy cannot change for 427 * this socket. This makes life simpler for TCP (UDP ?) where 428 * re-transmissions go out with the same policy. For symmetry, policy 429 * is cached for fully connected UDP sockets also. Thus if policy is cached, 430 * it also implies that policy is latched i.e policy cannot change 431 * on these sockets. As we have the right policy on the conn, we don't 432 * have to lookup global policy for every outbound and inbound datagram 433 * and thus serving as an optimization. Note that a global policy change 434 * does not affect fully connected sockets if they have policy. If fully 435 * connected sockets did not have any policy associated with it, global 436 * policy change may affect them. 437 * 438 * IP Flow control notes: 439 * 440 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 441 * cannot be sent down to the driver by IP, because of a canput failure, IP 442 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 443 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 444 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 445 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 446 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 447 * the queued messages, and removes the conn from the drain list, if all 448 * messages were drained. It also qenables the next conn in the drain list to 449 * continue the drain process. 450 * 451 * In reality the drain list is not a single list, but a configurable number 452 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 453 * list. If the ip_wsrv of the next qenabled conn does not run, because the 454 * stream closes, ip_close takes responsibility to qenable the next conn in 455 * the drain list. The directly called ip_wput path always does a putq, if 456 * it cannot putnext. Thus synchronization problems are handled between 457 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 458 * functions that manipulate this drain list. Furthermore conn_drain_insert 459 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 460 * running on a queue at any time. conn_drain_tail can be simultaneously called 461 * from both ip_wsrv and ip_close. 462 * 463 * IPQOS notes: 464 * 465 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 466 * and IPQoS modules. IPPF includes hooks in IP at different control points 467 * (callout positions) which direct packets to IPQoS modules for policy 468 * processing. Policies, if present, are global. 469 * 470 * The callout positions are located in the following paths: 471 * o local_in (packets destined for this host) 472 * o local_out (packets orginating from this host ) 473 * o fwd_in (packets forwarded by this m/c - inbound) 474 * o fwd_out (packets forwarded by this m/c - outbound) 475 * Hooks at these callout points can be enabled/disabled using the ndd variable 476 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 477 * By default all the callout positions are enabled. 478 * 479 * Outbound (local_out) 480 * Hooks are placed in ip_wput_ire and ipsec_out_process. 481 * 482 * Inbound (local_in) 483 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 484 * TCP and UDP fanout routines. 485 * 486 * Forwarding (in and out) 487 * Hooks are placed in ip_rput_forward. 488 * 489 * IP Policy Framework processing (IPPF processing) 490 * Policy processing for a packet is initiated by ip_process, which ascertains 491 * that the classifier (ipgpc) is loaded and configured, failing which the 492 * packet resumes normal processing in IP. If the clasifier is present, the 493 * packet is acted upon by one or more IPQoS modules (action instances), per 494 * filters configured in ipgpc and resumes normal IP processing thereafter. 495 * An action instance can drop a packet in course of its processing. 496 * 497 * A boolean variable, ip_policy, is used in all the fanout routines that can 498 * invoke ip_process for a packet. This variable indicates if the packet should 499 * to be sent for policy processing. The variable is set to B_TRUE by default, 500 * i.e. when the routines are invoked in the normal ip procesing path for a 501 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 502 * ip_policy is set to B_FALSE for all the routines called in these two 503 * functions because, in the former case, we don't process loopback traffic 504 * currently while in the latter, the packets have already been processed in 505 * icmp_inbound. 506 * 507 * Zones notes: 508 * 509 * The partitioning rules for networking are as follows: 510 * 1) Packets coming from a zone must have a source address belonging to that 511 * zone. 512 * 2) Packets coming from a zone can only be sent on a physical interface on 513 * which the zone has an IP address. 514 * 3) Between two zones on the same machine, packet delivery is only allowed if 515 * there's a matching route for the destination and zone in the forwarding 516 * table. 517 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 518 * different zones can bind to the same port with the wildcard address 519 * (INADDR_ANY). 520 * 521 * The granularity of interface partitioning is at the logical interface level. 522 * Therefore, every zone has its own IP addresses, and incoming packets can be 523 * attributed to a zone unambiguously. A logical interface is placed into a zone 524 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 525 * structure. Rule (1) is implemented by modifying the source address selection 526 * algorithm so that the list of eligible addresses is filtered based on the 527 * sending process zone. 528 * 529 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 530 * across all zones, depending on their type. Here is the break-up: 531 * 532 * IRE type Shared/exclusive 533 * -------- ---------------- 534 * IRE_BROADCAST Exclusive 535 * IRE_DEFAULT (default routes) Shared (*) 536 * IRE_LOCAL Exclusive (x) 537 * IRE_LOOPBACK Exclusive 538 * IRE_PREFIX (net routes) Shared (*) 539 * IRE_CACHE Exclusive 540 * IRE_IF_NORESOLVER (interface routes) Exclusive 541 * IRE_IF_RESOLVER (interface routes) Exclusive 542 * IRE_HOST (host routes) Shared (*) 543 * 544 * (*) A zone can only use a default or off-subnet route if the gateway is 545 * directly reachable from the zone, that is, if the gateway's address matches 546 * one of the zone's logical interfaces. 547 * 548 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 549 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 550 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 551 * address of the zone itself (the destination). Since IRE_LOCAL is used 552 * for communication between zones, ip_wput_ire has special logic to set 553 * the right source address when sending using an IRE_LOCAL. 554 * 555 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 556 * ire_cache_lookup restricts loopback using an IRE_LOCAL 557 * between zone to the case when L2 would have conceptually looped the packet 558 * back, i.e. the loopback which is required since neither Ethernet drivers 559 * nor Ethernet hardware loops them back. This is the case when the normal 560 * routes (ignoring IREs with different zoneids) would send out the packet on 561 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 562 * associated. 563 * 564 * Multiple zones can share a common broadcast address; typically all zones 565 * share the 255.255.255.255 address. Incoming as well as locally originated 566 * broadcast packets must be dispatched to all the zones on the broadcast 567 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 568 * since some zones may not be on the 10.16.72/24 network. To handle this, each 569 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 570 * sent to every zone that has an IRE_BROADCAST entry for the destination 571 * address on the input ill, see conn_wantpacket(). 572 * 573 * Applications in different zones can join the same multicast group address. 574 * For IPv4, group memberships are per-logical interface, so they're already 575 * inherently part of a zone. For IPv6, group memberships are per-physical 576 * interface, so we distinguish IPv6 group memberships based on group address, 577 * interface and zoneid. In both cases, received multicast packets are sent to 578 * every zone for which a group membership entry exists. On IPv6 we need to 579 * check that the target zone still has an address on the receiving physical 580 * interface; it could have been removed since the application issued the 581 * IPV6_JOIN_GROUP. 582 */ 583 584 /* 585 * Squeue Fanout flags: 586 * 0: No fanout. 587 * 1: Fanout across all squeues 588 */ 589 boolean_t ip_squeue_fanout = 0; 590 591 /* 592 * Maximum dups allowed per packet. 593 */ 594 uint_t ip_max_frag_dups = 10; 595 596 #define IS_SIMPLE_IPH(ipha) \ 597 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 598 599 /* RFC1122 Conformance */ 600 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 601 602 #define ILL_MAX_NAMELEN LIFNAMSIZ 603 604 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 605 606 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 607 cred_t *credp, boolean_t isv6); 608 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 609 610 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 611 ip_stack_t *); 612 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 613 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 614 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 615 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 616 mblk_t *, int, ip_stack_t *); 617 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 618 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 619 ill_t *, zoneid_t); 620 static void icmp_options_update(ipha_t *); 621 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 622 ip_stack_t *); 623 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 624 zoneid_t zoneid, ip_stack_t *); 625 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 626 static void icmp_redirect(ill_t *, mblk_t *); 627 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 628 ip_stack_t *); 629 630 static void ip_arp_news(queue_t *, mblk_t *); 631 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 632 ip_stack_t *); 633 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 634 char *ip_dot_addr(ipaddr_t, char *); 635 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 636 int ip_close(queue_t *, int); 637 static char *ip_dot_saddr(uchar_t *, char *); 638 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 639 boolean_t, boolean_t, ill_t *, zoneid_t); 640 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, zoneid_t); 642 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 643 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 644 static void ip_lrput(queue_t *, mblk_t *); 645 ipaddr_t ip_net_mask(ipaddr_t); 646 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 647 ip_stack_t *); 648 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 649 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 650 char *ip_nv_lookup(nv_t *, int); 651 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 652 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 654 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 655 ipndp_t *, size_t); 656 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 657 void ip_rput(queue_t *, mblk_t *); 658 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 659 void *dummy_arg); 660 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 661 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 662 ip_stack_t *); 663 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 664 ire_t *, ip_stack_t *); 665 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 666 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 667 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 668 ip_stack_t *); 669 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 670 uint16_t *); 671 int ip_snmp_get(queue_t *, mblk_t *, int); 672 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 673 mib2_ipIfStatsEntry_t *, ip_stack_t *); 674 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 675 ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 682 ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 684 ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 686 ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 688 ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 702 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 703 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 704 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 705 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 706 static boolean_t ip_source_route_included(ipha_t *); 707 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 708 709 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 710 zoneid_t, ip_stack_t *); 711 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 712 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 713 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 714 zoneid_t, ip_stack_t *); 715 716 static void conn_drain_init(ip_stack_t *); 717 static void conn_drain_fini(ip_stack_t *); 718 static void conn_drain_tail(conn_t *connp, boolean_t closing); 719 720 static void conn_walk_drain(ip_stack_t *); 721 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 722 zoneid_t); 723 724 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 725 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 726 static void ip_stack_fini(netstackid_t stackid, void *arg); 727 728 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 729 zoneid_t); 730 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 731 void *dummy_arg); 732 733 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 734 735 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 736 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 737 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 738 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 739 740 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 741 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 742 caddr_t, cred_t *); 743 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 744 caddr_t cp, cred_t *cr); 745 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 746 cred_t *); 747 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 748 caddr_t cp, cred_t *cr); 749 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 750 cred_t *); 751 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 752 cred_t *); 753 static squeue_func_t ip_squeue_switch(int); 754 755 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 756 static void ip_kstat_fini(netstackid_t, kstat_t *); 757 static int ip_kstat_update(kstat_t *kp, int rw); 758 static void *icmp_kstat_init(netstackid_t); 759 static void icmp_kstat_fini(netstackid_t, kstat_t *); 760 static int icmp_kstat_update(kstat_t *kp, int rw); 761 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 762 static void ip_kstat2_fini(netstackid_t, kstat_t *); 763 764 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 765 766 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 767 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 768 769 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 770 ipha_t *, ill_t *, boolean_t); 771 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 772 773 /* How long, in seconds, we allow frags to hang around. */ 774 #define IP_FRAG_TIMEOUT 60 775 776 /* 777 * Threshold which determines whether MDT should be used when 778 * generating IP fragments; payload size must be greater than 779 * this threshold for MDT to take place. 780 */ 781 #define IP_WPUT_FRAG_MDT_MIN 32768 782 783 /* Setable in /etc/system only */ 784 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 785 786 static long ip_rput_pullups; 787 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 788 789 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 790 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 791 792 int ip_debug; 793 794 #ifdef DEBUG 795 uint32_t ipsechw_debug = 0; 796 #endif 797 798 /* 799 * Multirouting/CGTP stuff 800 */ 801 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 802 803 /* 804 * XXX following really should only be in a header. Would need more 805 * header and .c clean up first. 806 */ 807 extern optdb_obj_t ip_opt_obj; 808 809 ulong_t ip_squeue_enter_unbound = 0; 810 811 /* 812 * Named Dispatch Parameter Table. 813 * All of these are alterable, within the min/max values given, at run time. 814 */ 815 static ipparam_t lcl_param_arr[] = { 816 /* min max value name */ 817 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 818 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 819 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 820 { 0, 1, 0, "ip_respond_to_timestamp"}, 821 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 822 { 0, 1, 1, "ip_send_redirects"}, 823 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 824 { 0, 10, 0, "ip_mrtdebug"}, 825 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 826 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 827 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 828 { 1, 255, 255, "ip_def_ttl" }, 829 { 0, 1, 0, "ip_forward_src_routed"}, 830 { 0, 256, 32, "ip_wroff_extra" }, 831 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 832 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 833 { 0, 1, 1, "ip_path_mtu_discovery" }, 834 { 0, 240, 30, "ip_ignore_delete_time" }, 835 { 0, 1, 0, "ip_ignore_redirect" }, 836 { 0, 1, 1, "ip_output_queue" }, 837 { 1, 254, 1, "ip_broadcast_ttl" }, 838 { 0, 99999, 100, "ip_icmp_err_interval" }, 839 { 1, 99999, 10, "ip_icmp_err_burst" }, 840 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 841 { 0, 1, 0, "ip_strict_dst_multihoming" }, 842 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 843 { 0, 1, 0, "ipsec_override_persocket_policy" }, 844 { 0, 1, 1, "icmp_accept_clear_messages" }, 845 { 0, 1, 1, "igmp_accept_clear_messages" }, 846 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 847 "ip_ndp_delay_first_probe_time"}, 848 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 849 "ip_ndp_max_unicast_solicit"}, 850 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 851 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 852 { 0, 1, 0, "ip6_forward_src_routed"}, 853 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 854 { 0, 1, 1, "ip6_send_redirects"}, 855 { 0, 1, 0, "ip6_ignore_redirect" }, 856 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 857 858 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 859 860 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 861 862 { 0, 1, 1, "pim_accept_clear_messages" }, 863 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 864 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 865 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 866 { 0, 15, 0, "ip_policy_mask" }, 867 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 868 { 0, 255, 1, "ip_multirt_ttl" }, 869 { 0, 1, 1, "ip_multidata_outbound" }, 870 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 871 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 872 { 0, 1000, 1, "ip_max_temp_defend" }, 873 { 0, 1000, 3, "ip_max_defend" }, 874 { 0, 999999, 30, "ip_defend_interval" }, 875 { 0, 3600000, 300000, "ip_dup_recovery" }, 876 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 877 { 0, 1, 1, "ip_lso_outbound" }, 878 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 879 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 880 #ifdef DEBUG 881 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 882 #else 883 { 0, 0, 0, "" }, 884 #endif 885 }; 886 887 /* 888 * Extended NDP table 889 * The addresses for the first two are filled in to be ips_ip_g_forward 890 * and ips_ipv6_forward at init time. 891 */ 892 static ipndp_t lcl_ndp_arr[] = { 893 /* getf setf data name */ 894 #define IPNDP_IP_FORWARDING_OFFSET 0 895 { ip_param_generic_get, ip_forward_set, NULL, 896 "ip_forwarding" }, 897 #define IPNDP_IP6_FORWARDING_OFFSET 1 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip6_forwarding" }, 900 { ip_ill_report, NULL, NULL, 901 "ip_ill_status" }, 902 { ip_ipif_report, NULL, NULL, 903 "ip_ipif_status" }, 904 { ip_conn_report, NULL, NULL, 905 "ip_conn_status" }, 906 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 907 "ip_rput_pullups" }, 908 { ip_srcid_report, NULL, NULL, 909 "ip_srcid_status" }, 910 { ip_param_generic_get, ip_squeue_profile_set, 911 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 912 { ip_param_generic_get, ip_squeue_bind_set, 913 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 914 { ip_param_generic_get, ip_input_proc_set, 915 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 916 { ip_param_generic_get, ip_int_set, 917 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 918 #define IPNDP_CGTP_FILTER_OFFSET 11 919 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 920 "ip_cgtp_filter" }, 921 { ip_param_generic_get, ip_int_set, 922 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 923 #define IPNDP_IPMP_HOOK_OFFSET 13 924 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 925 "ipmp_hook_emulation" }, 926 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 927 "ip_debug" }, 928 }; 929 930 /* 931 * Table of IP ioctls encoding the various properties of the ioctl and 932 * indexed based on the last byte of the ioctl command. Occasionally there 933 * is a clash, and there is more than 1 ioctl with the same last byte. 934 * In such a case 1 ioctl is encoded in the ndx table and the remaining 935 * ioctls are encoded in the misc table. An entry in the ndx table is 936 * retrieved by indexing on the last byte of the ioctl command and comparing 937 * the ioctl command with the value in the ndx table. In the event of a 938 * mismatch the misc table is then searched sequentially for the desired 939 * ioctl command. 940 * 941 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 942 */ 943 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 944 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 955 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 956 MISC_CMD, ip_siocaddrt, NULL }, 957 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 958 MISC_CMD, ip_siocdelrt, NULL }, 959 960 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 961 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 962 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 963 IF_CMD, ip_sioctl_get_addr, NULL }, 964 965 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 966 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 967 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 968 IPI_GET_CMD | IPI_REPL, 969 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 970 971 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 972 IPI_PRIV | IPI_WR | IPI_REPL, 973 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 974 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 975 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 976 IF_CMD, ip_sioctl_get_flags, NULL }, 977 978 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 981 /* copyin size cannot be coded for SIOCGIFCONF */ 982 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 983 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 984 985 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 986 IF_CMD, ip_sioctl_mtu, NULL }, 987 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 988 IF_CMD, ip_sioctl_get_mtu, NULL }, 989 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 990 IPI_GET_CMD | IPI_REPL, 991 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 992 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 993 IF_CMD, ip_sioctl_brdaddr, NULL }, 994 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 995 IPI_GET_CMD | IPI_REPL, 996 IF_CMD, ip_sioctl_get_netmask, NULL }, 997 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 998 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 999 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1000 IPI_GET_CMD | IPI_REPL, 1001 IF_CMD, ip_sioctl_get_metric, NULL }, 1002 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1003 IF_CMD, ip_sioctl_metric, NULL }, 1004 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1005 1006 /* See 166-168 below for extended SIOC*XARP ioctls */ 1007 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1008 ARP_CMD, ip_sioctl_arp, NULL }, 1009 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1010 ARP_CMD, ip_sioctl_arp, NULL }, 1011 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 1014 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1015 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1037 MISC_CMD, if_unitsel, if_unitsel_restart }, 1038 1039 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1059 IPI_PRIV | IPI_WR | IPI_MODOK, 1060 IF_CMD, ip_sioctl_sifname, NULL }, 1061 1062 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 1076 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1077 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1078 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1079 IF_CMD, ip_sioctl_get_muxid, NULL }, 1080 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1081 IPI_PRIV | IPI_WR | IPI_REPL, 1082 IF_CMD, ip_sioctl_muxid, NULL }, 1083 1084 /* Both if and lif variants share same func */ 1085 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1086 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1087 /* Both if and lif variants share same func */ 1088 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1089 IPI_PRIV | IPI_WR | IPI_REPL, 1090 IF_CMD, ip_sioctl_slifindex, NULL }, 1091 1092 /* copyin size cannot be coded for SIOCGIFCONF */ 1093 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1094 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1095 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1114 IPI_PRIV | IPI_WR | IPI_REPL, 1115 LIF_CMD, ip_sioctl_removeif, 1116 ip_sioctl_removeif_restart }, 1117 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1118 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1119 LIF_CMD, ip_sioctl_addif, NULL }, 1120 #define SIOCLIFADDR_NDX 112 1121 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1122 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1123 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1124 IPI_GET_CMD | IPI_REPL, 1125 LIF_CMD, ip_sioctl_get_addr, NULL }, 1126 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1127 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1128 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_REPL, 1130 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1131 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1132 IPI_PRIV | IPI_WR | IPI_REPL, 1133 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1134 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_flags, NULL }, 1137 1138 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 1141 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1142 ip_sioctl_get_lifconf, NULL }, 1143 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1144 LIF_CMD, ip_sioctl_mtu, NULL }, 1145 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1146 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1147 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1148 IPI_GET_CMD | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1150 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1151 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1152 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1153 IPI_GET_CMD | IPI_REPL, 1154 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1155 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1156 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1157 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1158 IPI_GET_CMD | IPI_REPL, 1159 LIF_CMD, ip_sioctl_get_metric, NULL }, 1160 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1161 LIF_CMD, ip_sioctl_metric, NULL }, 1162 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1163 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1164 LIF_CMD, ip_sioctl_slifname, 1165 ip_sioctl_slifname_restart }, 1166 1167 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1168 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1169 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1170 IPI_GET_CMD | IPI_REPL, 1171 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1172 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1173 IPI_PRIV | IPI_WR | IPI_REPL, 1174 LIF_CMD, ip_sioctl_muxid, NULL }, 1175 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1176 IPI_GET_CMD | IPI_REPL, 1177 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1178 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1179 IPI_PRIV | IPI_WR | IPI_REPL, 1180 LIF_CMD, ip_sioctl_slifindex, 0 }, 1181 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1182 LIF_CMD, ip_sioctl_token, NULL }, 1183 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1184 IPI_GET_CMD | IPI_REPL, 1185 LIF_CMD, ip_sioctl_get_token, NULL }, 1186 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1187 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1188 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1189 IPI_GET_CMD | IPI_REPL, 1190 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1191 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1192 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1193 1194 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1197 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1198 LIF_CMD, ip_siocdelndp_v6, NULL }, 1199 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1200 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1201 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1202 LIF_CMD, ip_siocsetndp_v6, NULL }, 1203 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1204 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1205 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1206 MISC_CMD, ip_sioctl_tonlink, NULL }, 1207 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1208 MISC_CMD, ip_sioctl_tmysite, NULL }, 1209 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1210 TUN_CMD, ip_sioctl_tunparam, NULL }, 1211 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1212 IPI_PRIV | IPI_WR, 1213 TUN_CMD, ip_sioctl_tunparam, NULL }, 1214 1215 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1216 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1217 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 1221 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1222 IPI_PRIV | IPI_WR | IPI_REPL, 1223 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1224 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1225 IPI_PRIV | IPI_WR | IPI_REPL, 1226 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1227 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1230 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1231 IPI_GET_CMD | IPI_REPL, 1232 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1233 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1236 1237 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1238 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 1242 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1244 1245 /* These are handled in ip_sioctl_copyin_setup itself */ 1246 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1247 MISC_CMD, NULL, NULL }, 1248 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1249 MISC_CMD, NULL, NULL }, 1250 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1251 1252 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1253 ip_sioctl_get_lifconf, NULL }, 1254 1255 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1256 XARP_CMD, ip_sioctl_arp, NULL }, 1257 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1258 XARP_CMD, ip_sioctl_arp, NULL }, 1259 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1260 XARP_CMD, ip_sioctl_arp, NULL }, 1261 1262 /* SIOCPOPSOCKFS is not handled by IP */ 1263 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1264 1265 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1266 IPI_GET_CMD | IPI_REPL, 1267 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1268 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1269 IPI_PRIV | IPI_WR | IPI_REPL, 1270 LIF_CMD, ip_sioctl_slifzone, 1271 ip_sioctl_slifzone_restart }, 1272 /* 172-174 are SCTP ioctls and not handled by IP */ 1273 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1276 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1277 IPI_GET_CMD, LIF_CMD, 1278 ip_sioctl_get_lifusesrc, 0 }, 1279 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR, 1281 LIF_CMD, ip_sioctl_slifusesrc, 1282 NULL }, 1283 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1284 ip_sioctl_get_lifsrcof, NULL }, 1285 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1286 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1287 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1288 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1289 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1290 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1294 ip_sioctl_set_ipmpfailback, NULL }, 1295 /* SIOCSENABLESDP is handled by SDP */ 1296 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1297 }; 1298 1299 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1300 1301 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1302 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1303 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1304 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1305 TUN_CMD, ip_sioctl_tunparam, NULL }, 1306 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1307 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1313 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1314 MISC_CMD, mrt_ioctl}, 1315 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1316 MISC_CMD, mrt_ioctl}, 1317 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1318 MISC_CMD, mrt_ioctl} 1319 }; 1320 1321 int ip_misc_ioctl_count = 1322 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1323 1324 int conn_drain_nthreads; /* Number of drainers reqd. */ 1325 /* Settable in /etc/system */ 1326 /* Defined in ip_ire.c */ 1327 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1328 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1329 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1330 1331 static nv_t ire_nv_arr[] = { 1332 { IRE_BROADCAST, "BROADCAST" }, 1333 { IRE_LOCAL, "LOCAL" }, 1334 { IRE_LOOPBACK, "LOOPBACK" }, 1335 { IRE_CACHE, "CACHE" }, 1336 { IRE_DEFAULT, "DEFAULT" }, 1337 { IRE_PREFIX, "PREFIX" }, 1338 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1339 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1340 { IRE_HOST, "HOST" }, 1341 { 0 } 1342 }; 1343 1344 nv_t *ire_nv_tbl = ire_nv_arr; 1345 1346 /* Simple ICMP IP Header Template */ 1347 static ipha_t icmp_ipha = { 1348 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1349 }; 1350 1351 struct module_info ip_mod_info = { 1352 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1353 }; 1354 1355 /* 1356 * Duplicate static symbols within a module confuses mdb; so we avoid the 1357 * problem by making the symbols here distinct from those in udp.c. 1358 */ 1359 1360 /* 1361 * Entry points for IP as a device and as a module. 1362 * FIXME: down the road we might want a separate module and driver qinit. 1363 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1364 */ 1365 static struct qinit iprinitv4 = { 1366 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1367 &ip_mod_info 1368 }; 1369 1370 struct qinit iprinitv6 = { 1371 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1372 &ip_mod_info 1373 }; 1374 1375 static struct qinit ipwinitv4 = { 1376 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1377 &ip_mod_info 1378 }; 1379 1380 struct qinit ipwinitv6 = { 1381 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1382 &ip_mod_info 1383 }; 1384 1385 static struct qinit iplrinit = { 1386 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1387 &ip_mod_info 1388 }; 1389 1390 static struct qinit iplwinit = { 1391 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1392 &ip_mod_info 1393 }; 1394 1395 /* For AF_INET aka /dev/ip */ 1396 struct streamtab ipinfov4 = { 1397 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1398 }; 1399 1400 /* For AF_INET6 aka /dev/ip6 */ 1401 struct streamtab ipinfov6 = { 1402 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1403 }; 1404 1405 #ifdef DEBUG 1406 static boolean_t skip_sctp_cksum = B_FALSE; 1407 #endif 1408 1409 /* 1410 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1411 * ip_rput_v6(), ip_output(), etc. If the message 1412 * block already has a M_CTL at the front of it, then simply set the zoneid 1413 * appropriately. 1414 */ 1415 mblk_t * 1416 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1417 { 1418 mblk_t *first_mp; 1419 ipsec_out_t *io; 1420 1421 ASSERT(zoneid != ALL_ZONES); 1422 if (mp->b_datap->db_type == M_CTL) { 1423 io = (ipsec_out_t *)mp->b_rptr; 1424 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1425 io->ipsec_out_zoneid = zoneid; 1426 return (mp); 1427 } 1428 1429 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1430 if (first_mp == NULL) 1431 return (NULL); 1432 io = (ipsec_out_t *)first_mp->b_rptr; 1433 /* This is not a secure packet */ 1434 io->ipsec_out_secure = B_FALSE; 1435 io->ipsec_out_zoneid = zoneid; 1436 first_mp->b_cont = mp; 1437 return (first_mp); 1438 } 1439 1440 /* 1441 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1442 */ 1443 mblk_t * 1444 ip_copymsg(mblk_t *mp) 1445 { 1446 mblk_t *nmp; 1447 ipsec_info_t *in; 1448 1449 if (mp->b_datap->db_type != M_CTL) 1450 return (copymsg(mp)); 1451 1452 in = (ipsec_info_t *)mp->b_rptr; 1453 1454 /* 1455 * Note that M_CTL is also used for delivering ICMP error messages 1456 * upstream to transport layers. 1457 */ 1458 if (in->ipsec_info_type != IPSEC_OUT && 1459 in->ipsec_info_type != IPSEC_IN) 1460 return (copymsg(mp)); 1461 1462 nmp = copymsg(mp->b_cont); 1463 1464 if (in->ipsec_info_type == IPSEC_OUT) { 1465 return (ipsec_out_tag(mp, nmp, 1466 ((ipsec_out_t *)in)->ipsec_out_ns)); 1467 } else { 1468 return (ipsec_in_tag(mp, nmp, 1469 ((ipsec_in_t *)in)->ipsec_in_ns)); 1470 } 1471 } 1472 1473 /* Generate an ICMP fragmentation needed message. */ 1474 static void 1475 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1476 ip_stack_t *ipst) 1477 { 1478 icmph_t icmph; 1479 mblk_t *first_mp; 1480 boolean_t mctl_present; 1481 1482 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1483 1484 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1485 if (mctl_present) 1486 freeb(first_mp); 1487 return; 1488 } 1489 1490 bzero(&icmph, sizeof (icmph_t)); 1491 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1492 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1493 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1494 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1495 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1496 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1497 ipst); 1498 } 1499 1500 /* 1501 * icmp_inbound deals with ICMP messages in the following ways. 1502 * 1503 * 1) It needs to send a reply back and possibly delivering it 1504 * to the "interested" upper clients. 1505 * 2) It needs to send it to the upper clients only. 1506 * 3) It needs to change some values in IP only. 1507 * 4) It needs to change some values in IP and upper layers e.g TCP. 1508 * 1509 * We need to accomodate icmp messages coming in clear until we get 1510 * everything secure from the wire. If icmp_accept_clear_messages 1511 * is zero we check with the global policy and act accordingly. If 1512 * it is non-zero, we accept the message without any checks. But 1513 * *this does not mean* that this will be delivered to the upper 1514 * clients. By accepting we might send replies back, change our MTU 1515 * value etc. but delivery to the ULP/clients depends on their policy 1516 * dispositions. 1517 * 1518 * We handle the above 4 cases in the context of IPsec in the 1519 * following way : 1520 * 1521 * 1) Send the reply back in the same way as the request came in. 1522 * If it came in encrypted, it goes out encrypted. If it came in 1523 * clear, it goes out in clear. Thus, this will prevent chosen 1524 * plain text attack. 1525 * 2) The client may or may not expect things to come in secure. 1526 * If it comes in secure, the policy constraints are checked 1527 * before delivering it to the upper layers. If it comes in 1528 * clear, ipsec_inbound_accept_clear will decide whether to 1529 * accept this in clear or not. In both the cases, if the returned 1530 * message (IP header + 8 bytes) that caused the icmp message has 1531 * AH/ESP headers, it is sent up to AH/ESP for validation before 1532 * sending up. If there are only 8 bytes of returned message, then 1533 * upper client will not be notified. 1534 * 3) Check with global policy to see whether it matches the constaints. 1535 * But this will be done only if icmp_accept_messages_in_clear is 1536 * zero. 1537 * 4) If we need to change both in IP and ULP, then the decision taken 1538 * while affecting the values in IP and while delivering up to TCP 1539 * should be the same. 1540 * 1541 * There are two cases. 1542 * 1543 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1544 * failed), we will not deliver it to the ULP, even though they 1545 * are *willing* to accept in *clear*. This is fine as our global 1546 * disposition to icmp messages asks us reject the datagram. 1547 * 1548 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1549 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1550 * to deliver it to ULP (policy failed), it can lead to 1551 * consistency problems. The cases known at this time are 1552 * ICMP_DESTINATION_UNREACHABLE messages with following code 1553 * values : 1554 * 1555 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1556 * and Upper layer rejects. Then the communication will 1557 * come to a stop. This is solved by making similar decisions 1558 * at both levels. Currently, when we are unable to deliver 1559 * to the Upper Layer (due to policy failures) while IP has 1560 * adjusted ire_max_frag, the next outbound datagram would 1561 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1562 * will be with the right level of protection. Thus the right 1563 * value will be communicated even if we are not able to 1564 * communicate when we get from the wire initially. But this 1565 * assumes there would be at least one outbound datagram after 1566 * IP has adjusted its ire_max_frag value. To make things 1567 * simpler, we accept in clear after the validation of 1568 * AH/ESP headers. 1569 * 1570 * - Other ICMP ERRORS : We may not be able to deliver it to the 1571 * upper layer depending on the level of protection the upper 1572 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1573 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1574 * should be accepted in clear when the Upper layer expects secure. 1575 * Thus the communication may get aborted by some bad ICMP 1576 * packets. 1577 * 1578 * IPQoS Notes: 1579 * The only instance when a packet is sent for processing is when there 1580 * isn't an ICMP client and if we are interested in it. 1581 * If there is a client, IPPF processing will take place in the 1582 * ip_fanout_proto routine. 1583 * 1584 * Zones notes: 1585 * The packet is only processed in the context of the specified zone: typically 1586 * only this zone will reply to an echo request, and only interested clients in 1587 * this zone will receive a copy of the packet. This means that the caller must 1588 * call icmp_inbound() for each relevant zone. 1589 */ 1590 static void 1591 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1592 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1593 ill_t *recv_ill, zoneid_t zoneid) 1594 { 1595 icmph_t *icmph; 1596 ipha_t *ipha; 1597 int iph_hdr_length; 1598 int hdr_length; 1599 boolean_t interested; 1600 uint32_t ts; 1601 uchar_t *wptr; 1602 ipif_t *ipif; 1603 mblk_t *first_mp; 1604 ipsec_in_t *ii; 1605 ire_t *src_ire; 1606 boolean_t onlink; 1607 timestruc_t now; 1608 uint32_t ill_index; 1609 ip_stack_t *ipst; 1610 1611 ASSERT(ill != NULL); 1612 ipst = ill->ill_ipst; 1613 1614 first_mp = mp; 1615 if (mctl_present) { 1616 mp = first_mp->b_cont; 1617 ASSERT(mp != NULL); 1618 } 1619 1620 ipha = (ipha_t *)mp->b_rptr; 1621 if (ipst->ips_icmp_accept_clear_messages == 0) { 1622 first_mp = ipsec_check_global_policy(first_mp, NULL, 1623 ipha, NULL, mctl_present, ipst->ips_netstack); 1624 if (first_mp == NULL) 1625 return; 1626 } 1627 1628 /* 1629 * On a labeled system, we have to check whether the zone itself is 1630 * permitted to receive raw traffic. 1631 */ 1632 if (is_system_labeled()) { 1633 if (zoneid == ALL_ZONES) 1634 zoneid = tsol_packet_to_zoneid(mp); 1635 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1636 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1637 zoneid)); 1638 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1639 freemsg(first_mp); 1640 return; 1641 } 1642 } 1643 1644 /* 1645 * We have accepted the ICMP message. It means that we will 1646 * respond to the packet if needed. It may not be delivered 1647 * to the upper client depending on the policy constraints 1648 * and the disposition in ipsec_inbound_accept_clear. 1649 */ 1650 1651 ASSERT(ill != NULL); 1652 1653 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1654 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1655 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1656 /* Last chance to get real. */ 1657 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1658 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1659 freemsg(first_mp); 1660 return; 1661 } 1662 /* Refresh iph following the pullup. */ 1663 ipha = (ipha_t *)mp->b_rptr; 1664 } 1665 /* ICMP header checksum, including checksum field, should be zero. */ 1666 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1667 IP_CSUM(mp, iph_hdr_length, 0)) { 1668 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1669 freemsg(first_mp); 1670 return; 1671 } 1672 /* The IP header will always be a multiple of four bytes */ 1673 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1674 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1675 icmph->icmph_code)); 1676 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1677 /* We will set "interested" to "true" if we want a copy */ 1678 interested = B_FALSE; 1679 switch (icmph->icmph_type) { 1680 case ICMP_ECHO_REPLY: 1681 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1682 break; 1683 case ICMP_DEST_UNREACHABLE: 1684 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1686 interested = B_TRUE; /* Pass up to transport */ 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1688 break; 1689 case ICMP_SOURCE_QUENCH: 1690 interested = B_TRUE; /* Pass up to transport */ 1691 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1692 break; 1693 case ICMP_REDIRECT: 1694 if (!ipst->ips_ip_ignore_redirect) 1695 interested = B_TRUE; 1696 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1697 break; 1698 case ICMP_ECHO_REQUEST: 1699 /* 1700 * Whether to respond to echo requests that come in as IP 1701 * broadcasts or as IP multicast is subject to debate 1702 * (what isn't?). We aim to please, you pick it. 1703 * Default is do it. 1704 */ 1705 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1706 /* unicast: always respond */ 1707 interested = B_TRUE; 1708 } else if (CLASSD(ipha->ipha_dst)) { 1709 /* multicast: respond based on tunable */ 1710 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1711 } else if (broadcast) { 1712 /* broadcast: respond based on tunable */ 1713 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1714 } 1715 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1716 break; 1717 case ICMP_ROUTER_ADVERTISEMENT: 1718 case ICMP_ROUTER_SOLICITATION: 1719 break; 1720 case ICMP_TIME_EXCEEDED: 1721 interested = B_TRUE; /* Pass up to transport */ 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1723 break; 1724 case ICMP_PARAM_PROBLEM: 1725 interested = B_TRUE; /* Pass up to transport */ 1726 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1727 break; 1728 case ICMP_TIME_STAMP_REQUEST: 1729 /* Response to Time Stamp Requests is local policy. */ 1730 if (ipst->ips_ip_g_resp_to_timestamp && 1731 /* So is whether to respond if it was an IP broadcast. */ 1732 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1733 int tstamp_len = 3 * sizeof (uint32_t); 1734 1735 if (wptr + tstamp_len > mp->b_wptr) { 1736 if (!pullupmsg(mp, wptr + tstamp_len - 1737 mp->b_rptr)) { 1738 BUMP_MIB(ill->ill_ip_mib, 1739 ipIfStatsInDiscards); 1740 freemsg(first_mp); 1741 return; 1742 } 1743 /* Refresh ipha following the pullup. */ 1744 ipha = (ipha_t *)mp->b_rptr; 1745 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1746 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1747 } 1748 interested = B_TRUE; 1749 } 1750 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1751 break; 1752 case ICMP_TIME_STAMP_REPLY: 1753 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1754 break; 1755 case ICMP_INFO_REQUEST: 1756 /* Per RFC 1122 3.2.2.7, ignore this. */ 1757 case ICMP_INFO_REPLY: 1758 break; 1759 case ICMP_ADDRESS_MASK_REQUEST: 1760 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1761 !broadcast) && 1762 /* TODO m_pullup of complete header? */ 1763 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1764 interested = B_TRUE; 1765 } 1766 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1767 break; 1768 case ICMP_ADDRESS_MASK_REPLY: 1769 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1770 break; 1771 default: 1772 interested = B_TRUE; /* Pass up to transport */ 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1774 break; 1775 } 1776 /* See if there is an ICMP client. */ 1777 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1778 /* If there is an ICMP client and we want one too, copy it. */ 1779 mblk_t *first_mp1; 1780 1781 if (!interested) { 1782 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1783 ip_policy, recv_ill, zoneid); 1784 return; 1785 } 1786 first_mp1 = ip_copymsg(first_mp); 1787 if (first_mp1 != NULL) { 1788 ip_fanout_proto(q, first_mp1, ill, ipha, 1789 0, mctl_present, ip_policy, recv_ill, zoneid); 1790 } 1791 } else if (!interested) { 1792 freemsg(first_mp); 1793 return; 1794 } else { 1795 /* 1796 * Initiate policy processing for this packet if ip_policy 1797 * is true. 1798 */ 1799 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1800 ill_index = ill->ill_phyint->phyint_ifindex; 1801 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1802 if (mp == NULL) { 1803 if (mctl_present) { 1804 freeb(first_mp); 1805 } 1806 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1807 return; 1808 } 1809 } 1810 } 1811 /* We want to do something with it. */ 1812 /* Check db_ref to make sure we can modify the packet. */ 1813 if (mp->b_datap->db_ref > 1) { 1814 mblk_t *first_mp1; 1815 1816 first_mp1 = ip_copymsg(first_mp); 1817 freemsg(first_mp); 1818 if (!first_mp1) { 1819 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1820 return; 1821 } 1822 first_mp = first_mp1; 1823 if (mctl_present) { 1824 mp = first_mp->b_cont; 1825 ASSERT(mp != NULL); 1826 } else { 1827 mp = first_mp; 1828 } 1829 ipha = (ipha_t *)mp->b_rptr; 1830 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1831 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1832 } 1833 switch (icmph->icmph_type) { 1834 case ICMP_ADDRESS_MASK_REQUEST: 1835 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1836 if (ipif == NULL) { 1837 freemsg(first_mp); 1838 return; 1839 } 1840 /* 1841 * outging interface must be IPv4 1842 */ 1843 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1844 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1845 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1846 ipif_refrele(ipif); 1847 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1848 break; 1849 case ICMP_ECHO_REQUEST: 1850 icmph->icmph_type = ICMP_ECHO_REPLY; 1851 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1852 break; 1853 case ICMP_TIME_STAMP_REQUEST: { 1854 uint32_t *tsp; 1855 1856 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1857 tsp = (uint32_t *)wptr; 1858 tsp++; /* Skip past 'originate time' */ 1859 /* Compute # of milliseconds since midnight */ 1860 gethrestime(&now); 1861 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1862 now.tv_nsec / (NANOSEC / MILLISEC); 1863 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1864 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1865 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1866 break; 1867 } 1868 default: 1869 ipha = (ipha_t *)&icmph[1]; 1870 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1871 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1872 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1873 freemsg(first_mp); 1874 return; 1875 } 1876 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1877 ipha = (ipha_t *)&icmph[1]; 1878 } 1879 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1880 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1881 freemsg(first_mp); 1882 return; 1883 } 1884 hdr_length = IPH_HDR_LENGTH(ipha); 1885 if (hdr_length < sizeof (ipha_t)) { 1886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1887 freemsg(first_mp); 1888 return; 1889 } 1890 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1891 if (!pullupmsg(mp, 1892 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1894 freemsg(first_mp); 1895 return; 1896 } 1897 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1898 ipha = (ipha_t *)&icmph[1]; 1899 } 1900 switch (icmph->icmph_type) { 1901 case ICMP_REDIRECT: 1902 /* 1903 * As there is no upper client to deliver, we don't 1904 * need the first_mp any more. 1905 */ 1906 if (mctl_present) { 1907 freeb(first_mp); 1908 } 1909 icmp_redirect(ill, mp); 1910 return; 1911 case ICMP_DEST_UNREACHABLE: 1912 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1913 if (!icmp_inbound_too_big(icmph, ipha, ill, 1914 zoneid, mp, iph_hdr_length, ipst)) { 1915 freemsg(first_mp); 1916 return; 1917 } 1918 /* 1919 * icmp_inbound_too_big() may alter mp. 1920 * Resynch ipha and icmph accordingly. 1921 */ 1922 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1923 ipha = (ipha_t *)&icmph[1]; 1924 } 1925 /* FALLTHRU */ 1926 default : 1927 /* 1928 * IPQoS notes: Since we have already done IPQoS 1929 * processing we don't want to do it again in 1930 * the fanout routines called by 1931 * icmp_inbound_error_fanout, hence the last 1932 * argument, ip_policy, is B_FALSE. 1933 */ 1934 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1935 ipha, iph_hdr_length, hdr_length, mctl_present, 1936 B_FALSE, recv_ill, zoneid); 1937 } 1938 return; 1939 } 1940 /* Send out an ICMP packet */ 1941 icmph->icmph_checksum = 0; 1942 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1943 if (broadcast || CLASSD(ipha->ipha_dst)) { 1944 ipif_t *ipif_chosen; 1945 /* 1946 * Make it look like it was directed to us, so we don't look 1947 * like a fool with a broadcast or multicast source address. 1948 */ 1949 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1950 /* 1951 * Make sure that we haven't grabbed an interface that's DOWN. 1952 */ 1953 if (ipif != NULL) { 1954 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1955 ipha->ipha_src, zoneid); 1956 if (ipif_chosen != NULL) { 1957 ipif_refrele(ipif); 1958 ipif = ipif_chosen; 1959 } 1960 } 1961 if (ipif == NULL) { 1962 ip0dbg(("icmp_inbound: " 1963 "No source for broadcast/multicast:\n" 1964 "\tsrc 0x%x dst 0x%x ill %p " 1965 "ipif_lcl_addr 0x%x\n", 1966 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1967 (void *)ill, 1968 ill->ill_ipif->ipif_lcl_addr)); 1969 freemsg(first_mp); 1970 return; 1971 } 1972 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1973 ipha->ipha_dst = ipif->ipif_src_addr; 1974 ipif_refrele(ipif); 1975 } 1976 /* Reset time to live. */ 1977 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1978 { 1979 /* Swap source and destination addresses */ 1980 ipaddr_t tmp; 1981 1982 tmp = ipha->ipha_src; 1983 ipha->ipha_src = ipha->ipha_dst; 1984 ipha->ipha_dst = tmp; 1985 } 1986 ipha->ipha_ident = 0; 1987 if (!IS_SIMPLE_IPH(ipha)) 1988 icmp_options_update(ipha); 1989 1990 /* 1991 * ICMP echo replies should go out on the same interface 1992 * the request came on as probes used by in.mpathd for detecting 1993 * NIC failures are ECHO packets. We turn-off load spreading 1994 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1995 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1996 * function. This is in turn handled by ip_wput and ip_newroute 1997 * to make sure that the packet goes out on the interface it came 1998 * in on. If we don't turnoff load spreading, the packets might get 1999 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2000 * to go out and in.mpathd would wrongly detect a failure or 2001 * mis-detect a NIC failure for link failure. As load spreading 2002 * can happen only if ill_group is not NULL, we do only for 2003 * that case and this does not affect the normal case. 2004 * 2005 * We turn off load spreading only on echo packets that came from 2006 * on-link hosts. If the interface route has been deleted, this will 2007 * not be enforced as we can't do much. For off-link hosts, as the 2008 * default routes in IPv4 does not typically have an ire_ipif 2009 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2010 * Moreover, expecting a default route through this interface may 2011 * not be correct. We use ipha_dst because of the swap above. 2012 */ 2013 onlink = B_FALSE; 2014 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2015 /* 2016 * First, we need to make sure that it is not one of our 2017 * local addresses. If we set onlink when it is one of 2018 * our local addresses, we will end up creating IRE_CACHES 2019 * for one of our local addresses. Then, we will never 2020 * accept packets for them afterwards. 2021 */ 2022 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2023 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2024 if (src_ire == NULL) { 2025 ipif = ipif_get_next_ipif(NULL, ill); 2026 if (ipif == NULL) { 2027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2028 freemsg(mp); 2029 return; 2030 } 2031 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2032 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2033 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2034 ipif_refrele(ipif); 2035 if (src_ire != NULL) { 2036 onlink = B_TRUE; 2037 ire_refrele(src_ire); 2038 } 2039 } else { 2040 ire_refrele(src_ire); 2041 } 2042 } 2043 if (!mctl_present) { 2044 /* 2045 * This packet should go out the same way as it 2046 * came in i.e in clear. To make sure that global 2047 * policy will not be applied to this in ip_wput_ire, 2048 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2049 */ 2050 ASSERT(first_mp == mp); 2051 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2052 if (first_mp == NULL) { 2053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2054 freemsg(mp); 2055 return; 2056 } 2057 ii = (ipsec_in_t *)first_mp->b_rptr; 2058 2059 /* This is not a secure packet */ 2060 ii->ipsec_in_secure = B_FALSE; 2061 if (onlink) { 2062 ii->ipsec_in_attach_if = B_TRUE; 2063 ii->ipsec_in_ill_index = 2064 ill->ill_phyint->phyint_ifindex; 2065 ii->ipsec_in_rill_index = 2066 recv_ill->ill_phyint->phyint_ifindex; 2067 } 2068 first_mp->b_cont = mp; 2069 } else if (onlink) { 2070 ii = (ipsec_in_t *)first_mp->b_rptr; 2071 ii->ipsec_in_attach_if = B_TRUE; 2072 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2073 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2074 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2075 } else { 2076 ii = (ipsec_in_t *)first_mp->b_rptr; 2077 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2078 } 2079 ii->ipsec_in_zoneid = zoneid; 2080 ASSERT(zoneid != ALL_ZONES); 2081 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2082 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2083 return; 2084 } 2085 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2086 put(WR(q), first_mp); 2087 } 2088 2089 static ipaddr_t 2090 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2091 { 2092 conn_t *connp; 2093 connf_t *connfp; 2094 ipaddr_t nexthop_addr = INADDR_ANY; 2095 int hdr_length = IPH_HDR_LENGTH(ipha); 2096 uint16_t *up; 2097 uint32_t ports; 2098 ip_stack_t *ipst = ill->ill_ipst; 2099 2100 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2101 switch (ipha->ipha_protocol) { 2102 case IPPROTO_TCP: 2103 { 2104 tcph_t *tcph; 2105 2106 /* do a reverse lookup */ 2107 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2108 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2109 TCPS_LISTEN, ipst); 2110 break; 2111 } 2112 case IPPROTO_UDP: 2113 { 2114 uint32_t dstport, srcport; 2115 2116 ((uint16_t *)&ports)[0] = up[1]; 2117 ((uint16_t *)&ports)[1] = up[0]; 2118 2119 /* Extract ports in net byte order */ 2120 dstport = htons(ntohl(ports) & 0xFFFF); 2121 srcport = htons(ntohl(ports) >> 16); 2122 2123 connfp = &ipst->ips_ipcl_udp_fanout[ 2124 IPCL_UDP_HASH(dstport, ipst)]; 2125 mutex_enter(&connfp->connf_lock); 2126 connp = connfp->connf_head; 2127 2128 /* do a reverse lookup */ 2129 while ((connp != NULL) && 2130 (!IPCL_UDP_MATCH(connp, dstport, 2131 ipha->ipha_src, srcport, ipha->ipha_dst) || 2132 !IPCL_ZONE_MATCH(connp, zoneid))) { 2133 connp = connp->conn_next; 2134 } 2135 if (connp != NULL) 2136 CONN_INC_REF(connp); 2137 mutex_exit(&connfp->connf_lock); 2138 break; 2139 } 2140 case IPPROTO_SCTP: 2141 { 2142 in6_addr_t map_src, map_dst; 2143 2144 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2145 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2146 ((uint16_t *)&ports)[0] = up[1]; 2147 ((uint16_t *)&ports)[1] = up[0]; 2148 2149 connp = sctp_find_conn(&map_src, &map_dst, ports, 2150 zoneid, ipst->ips_netstack->netstack_sctp); 2151 if (connp == NULL) { 2152 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2153 zoneid, ports, ipha, ipst); 2154 } else { 2155 CONN_INC_REF(connp); 2156 SCTP_REFRELE(CONN2SCTP(connp)); 2157 } 2158 break; 2159 } 2160 default: 2161 { 2162 ipha_t ripha; 2163 2164 ripha.ipha_src = ipha->ipha_dst; 2165 ripha.ipha_dst = ipha->ipha_src; 2166 ripha.ipha_protocol = ipha->ipha_protocol; 2167 2168 connfp = &ipst->ips_ipcl_proto_fanout[ 2169 ipha->ipha_protocol]; 2170 mutex_enter(&connfp->connf_lock); 2171 connp = connfp->connf_head; 2172 for (connp = connfp->connf_head; connp != NULL; 2173 connp = connp->conn_next) { 2174 if (IPCL_PROTO_MATCH(connp, 2175 ipha->ipha_protocol, &ripha, ill, 2176 0, zoneid)) { 2177 CONN_INC_REF(connp); 2178 break; 2179 } 2180 } 2181 mutex_exit(&connfp->connf_lock); 2182 } 2183 } 2184 if (connp != NULL) { 2185 if (connp->conn_nexthop_set) 2186 nexthop_addr = connp->conn_nexthop_v4; 2187 CONN_DEC_REF(connp); 2188 } 2189 return (nexthop_addr); 2190 } 2191 2192 /* Table from RFC 1191 */ 2193 static int icmp_frag_size_table[] = 2194 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2195 2196 /* 2197 * Process received ICMP Packet too big. 2198 * After updating any IRE it does the fanout to any matching transport streams. 2199 * Assumes the message has been pulled up till the IP header that caused 2200 * the error. 2201 * 2202 * Returns B_FALSE on failure and B_TRUE on success. 2203 */ 2204 static boolean_t 2205 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2206 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2207 ip_stack_t *ipst) 2208 { 2209 ire_t *ire, *first_ire; 2210 int mtu; 2211 int hdr_length; 2212 ipaddr_t nexthop_addr; 2213 2214 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2215 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2216 ASSERT(ill != NULL); 2217 2218 hdr_length = IPH_HDR_LENGTH(ipha); 2219 2220 /* Drop if the original packet contained a source route */ 2221 if (ip_source_route_included(ipha)) { 2222 return (B_FALSE); 2223 } 2224 /* 2225 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2226 * header. 2227 */ 2228 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2229 mp->b_wptr) { 2230 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2231 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2233 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2234 return (B_FALSE); 2235 } 2236 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2237 ipha = (ipha_t *)&icmph[1]; 2238 } 2239 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2240 if (nexthop_addr != INADDR_ANY) { 2241 /* nexthop set */ 2242 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2243 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2244 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2245 } else { 2246 /* nexthop not set */ 2247 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2248 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2249 } 2250 2251 if (!first_ire) { 2252 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2253 ntohl(ipha->ipha_dst))); 2254 return (B_FALSE); 2255 } 2256 /* Check for MTU discovery advice as described in RFC 1191 */ 2257 mtu = ntohs(icmph->icmph_du_mtu); 2258 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2259 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2260 ire = ire->ire_next) { 2261 /* 2262 * Look for the connection to which this ICMP message is 2263 * directed. If it has the IP_NEXTHOP option set, then the 2264 * search is limited to IREs with the MATCH_IRE_PRIVATE 2265 * option. Else the search is limited to regular IREs. 2266 */ 2267 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2268 (nexthop_addr != ire->ire_gateway_addr)) || 2269 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2270 (nexthop_addr != INADDR_ANY))) 2271 continue; 2272 2273 mutex_enter(&ire->ire_lock); 2274 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2275 /* Reduce the IRE max frag value as advised. */ 2276 ip1dbg(("Received mtu from router: %d (was %d)\n", 2277 mtu, ire->ire_max_frag)); 2278 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2279 } else { 2280 uint32_t length; 2281 int i; 2282 2283 /* 2284 * Use the table from RFC 1191 to figure out 2285 * the next "plateau" based on the length in 2286 * the original IP packet. 2287 */ 2288 length = ntohs(ipha->ipha_length); 2289 if (ire->ire_max_frag <= length && 2290 ire->ire_max_frag >= length - hdr_length) { 2291 /* 2292 * Handle broken BSD 4.2 systems that 2293 * return the wrong iph_length in ICMP 2294 * errors. 2295 */ 2296 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2297 length, ire->ire_max_frag)); 2298 length -= hdr_length; 2299 } 2300 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2301 if (length > icmp_frag_size_table[i]) 2302 break; 2303 } 2304 if (i == A_CNT(icmp_frag_size_table)) { 2305 /* Smaller than 68! */ 2306 ip1dbg(("Too big for packet size %d\n", 2307 length)); 2308 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2309 ire->ire_frag_flag = 0; 2310 } else { 2311 mtu = icmp_frag_size_table[i]; 2312 ip1dbg(("Calculated mtu %d, packet size %d, " 2313 "before %d", mtu, length, 2314 ire->ire_max_frag)); 2315 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2316 ip1dbg((", after %d\n", ire->ire_max_frag)); 2317 } 2318 /* Record the new max frag size for the ULP. */ 2319 icmph->icmph_du_zero = 0; 2320 icmph->icmph_du_mtu = 2321 htons((uint16_t)ire->ire_max_frag); 2322 } 2323 mutex_exit(&ire->ire_lock); 2324 } 2325 rw_exit(&first_ire->ire_bucket->irb_lock); 2326 ire_refrele(first_ire); 2327 return (B_TRUE); 2328 } 2329 2330 /* 2331 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2332 * calls this function. 2333 */ 2334 static mblk_t * 2335 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2336 { 2337 ipha_t *ipha; 2338 icmph_t *icmph; 2339 ipha_t *in_ipha; 2340 int length; 2341 2342 ASSERT(mp->b_datap->db_type == M_DATA); 2343 2344 /* 2345 * For Self-encapsulated packets, we added an extra IP header 2346 * without the options. Inner IP header is the one from which 2347 * the outer IP header was formed. Thus, we need to remove the 2348 * outer IP header. To do this, we pullup the whole message 2349 * and overlay whatever follows the outer IP header over the 2350 * outer IP header. 2351 */ 2352 2353 if (!pullupmsg(mp, -1)) 2354 return (NULL); 2355 2356 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2357 ipha = (ipha_t *)&icmph[1]; 2358 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2359 2360 /* 2361 * The length that we want to overlay is following the inner 2362 * IP header. Subtracting the IP header + icmp header + outer 2363 * IP header's length should give us the length that we want to 2364 * overlay. 2365 */ 2366 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2367 hdr_length; 2368 /* 2369 * Overlay whatever follows the inner header over the 2370 * outer header. 2371 */ 2372 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2373 2374 /* Set the wptr to account for the outer header */ 2375 mp->b_wptr -= hdr_length; 2376 return (mp); 2377 } 2378 2379 /* 2380 * Try to pass the ICMP message upstream in case the ULP cares. 2381 * 2382 * If the packet that caused the ICMP error is secure, we send 2383 * it to AH/ESP to make sure that the attached packet has a 2384 * valid association. ipha in the code below points to the 2385 * IP header of the packet that caused the error. 2386 * 2387 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2388 * in the context of IPsec. Normally we tell the upper layer 2389 * whenever we send the ire (including ip_bind), the IPsec header 2390 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2391 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2392 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2393 * same thing. As TCP has the IPsec options size that needs to be 2394 * adjusted, we just pass the MTU unchanged. 2395 * 2396 * IFN could have been generated locally or by some router. 2397 * 2398 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2399 * This happens because IP adjusted its value of MTU on an 2400 * earlier IFN message and could not tell the upper layer, 2401 * the new adjusted value of MTU e.g. Packet was encrypted 2402 * or there was not enough information to fanout to upper 2403 * layers. Thus on the next outbound datagram, ip_wput_ire 2404 * generates the IFN, where IPsec processing has *not* been 2405 * done. 2406 * 2407 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2408 * could have generated this. This happens because ire_max_frag 2409 * value in IP was set to a new value, while the IPsec processing 2410 * was being done and after we made the fragmentation check in 2411 * ip_wput_ire. Thus on return from IPsec processing, 2412 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2413 * and generates the IFN. As IPsec processing is over, we fanout 2414 * to AH/ESP to remove the header. 2415 * 2416 * In both these cases, ipsec_in_loopback will be set indicating 2417 * that IFN was generated locally. 2418 * 2419 * ROUTER : IFN could be secure or non-secure. 2420 * 2421 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2422 * packet in error has AH/ESP headers to validate the AH/ESP 2423 * headers. AH/ESP will verify whether there is a valid SA or 2424 * not and send it back. We will fanout again if we have more 2425 * data in the packet. 2426 * 2427 * If the packet in error does not have AH/ESP, we handle it 2428 * like any other case. 2429 * 2430 * * NON_SECURE : If the packet in error has AH/ESP headers, 2431 * we attach a dummy ipsec_in and send it up to AH/ESP 2432 * for validation. AH/ESP will verify whether there is a 2433 * valid SA or not and send it back. We will fanout again if 2434 * we have more data in the packet. 2435 * 2436 * If the packet in error does not have AH/ESP, we handle it 2437 * like any other case. 2438 */ 2439 static void 2440 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2441 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2442 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2443 zoneid_t zoneid) 2444 { 2445 uint16_t *up; /* Pointer to ports in ULP header */ 2446 uint32_t ports; /* reversed ports for fanout */ 2447 ipha_t ripha; /* With reversed addresses */ 2448 mblk_t *first_mp; 2449 ipsec_in_t *ii; 2450 tcph_t *tcph; 2451 conn_t *connp; 2452 ip_stack_t *ipst; 2453 2454 ASSERT(ill != NULL); 2455 2456 ASSERT(recv_ill != NULL); 2457 ipst = recv_ill->ill_ipst; 2458 2459 first_mp = mp; 2460 if (mctl_present) { 2461 mp = first_mp->b_cont; 2462 ASSERT(mp != NULL); 2463 2464 ii = (ipsec_in_t *)first_mp->b_rptr; 2465 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2466 } else { 2467 ii = NULL; 2468 } 2469 2470 switch (ipha->ipha_protocol) { 2471 case IPPROTO_UDP: 2472 /* 2473 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2474 * transport header. 2475 */ 2476 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2477 mp->b_wptr) { 2478 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2479 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2480 goto discard_pkt; 2481 } 2482 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2483 ipha = (ipha_t *)&icmph[1]; 2484 } 2485 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2486 2487 /* 2488 * Attempt to find a client stream based on port. 2489 * Note that we do a reverse lookup since the header is 2490 * in the form we sent it out. 2491 * The ripha header is only used for the IP_UDP_MATCH and we 2492 * only set the src and dst addresses and protocol. 2493 */ 2494 ripha.ipha_src = ipha->ipha_dst; 2495 ripha.ipha_dst = ipha->ipha_src; 2496 ripha.ipha_protocol = ipha->ipha_protocol; 2497 ((uint16_t *)&ports)[0] = up[1]; 2498 ((uint16_t *)&ports)[1] = up[0]; 2499 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2500 ntohl(ipha->ipha_src), ntohs(up[0]), 2501 ntohl(ipha->ipha_dst), ntohs(up[1]), 2502 icmph->icmph_type, icmph->icmph_code)); 2503 2504 /* Have to change db_type after any pullupmsg */ 2505 DB_TYPE(mp) = M_CTL; 2506 2507 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2508 mctl_present, ip_policy, recv_ill, zoneid); 2509 return; 2510 2511 case IPPROTO_TCP: 2512 /* 2513 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2514 * transport header. 2515 */ 2516 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2517 mp->b_wptr) { 2518 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2519 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2520 goto discard_pkt; 2521 } 2522 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2523 ipha = (ipha_t *)&icmph[1]; 2524 } 2525 /* 2526 * Find a TCP client stream for this packet. 2527 * Note that we do a reverse lookup since the header is 2528 * in the form we sent it out. 2529 */ 2530 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2531 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2532 ipst); 2533 if (connp == NULL) 2534 goto discard_pkt; 2535 2536 /* Have to change db_type after any pullupmsg */ 2537 DB_TYPE(mp) = M_CTL; 2538 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2539 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2540 return; 2541 2542 case IPPROTO_SCTP: 2543 /* 2544 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2545 * transport header. 2546 */ 2547 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2548 mp->b_wptr) { 2549 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2550 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2551 goto discard_pkt; 2552 } 2553 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2554 ipha = (ipha_t *)&icmph[1]; 2555 } 2556 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2557 /* 2558 * Find a SCTP client stream for this packet. 2559 * Note that we do a reverse lookup since the header is 2560 * in the form we sent it out. 2561 * The ripha header is only used for the matching and we 2562 * only set the src and dst addresses, protocol, and version. 2563 */ 2564 ripha.ipha_src = ipha->ipha_dst; 2565 ripha.ipha_dst = ipha->ipha_src; 2566 ripha.ipha_protocol = ipha->ipha_protocol; 2567 ripha.ipha_version_and_hdr_length = 2568 ipha->ipha_version_and_hdr_length; 2569 ((uint16_t *)&ports)[0] = up[1]; 2570 ((uint16_t *)&ports)[1] = up[0]; 2571 2572 /* Have to change db_type after any pullupmsg */ 2573 DB_TYPE(mp) = M_CTL; 2574 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2575 mctl_present, ip_policy, zoneid); 2576 return; 2577 2578 case IPPROTO_ESP: 2579 case IPPROTO_AH: { 2580 int ipsec_rc; 2581 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2582 2583 /* 2584 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2585 * We will re-use the IPSEC_IN if it is already present as 2586 * AH/ESP will not affect any fields in the IPSEC_IN for 2587 * ICMP errors. If there is no IPSEC_IN, allocate a new 2588 * one and attach it in the front. 2589 */ 2590 if (ii != NULL) { 2591 /* 2592 * ip_fanout_proto_again converts the ICMP errors 2593 * that come back from AH/ESP to M_DATA so that 2594 * if it is non-AH/ESP and we do a pullupmsg in 2595 * this function, it would work. Convert it back 2596 * to M_CTL before we send up as this is a ICMP 2597 * error. This could have been generated locally or 2598 * by some router. Validate the inner IPsec 2599 * headers. 2600 * 2601 * NOTE : ill_index is used by ip_fanout_proto_again 2602 * to locate the ill. 2603 */ 2604 ASSERT(ill != NULL); 2605 ii->ipsec_in_ill_index = 2606 ill->ill_phyint->phyint_ifindex; 2607 ii->ipsec_in_rill_index = 2608 recv_ill->ill_phyint->phyint_ifindex; 2609 DB_TYPE(first_mp->b_cont) = M_CTL; 2610 } else { 2611 /* 2612 * IPSEC_IN is not present. We attach a ipsec_in 2613 * message and send up to IPsec for validating 2614 * and removing the IPsec headers. Clear 2615 * ipsec_in_secure so that when we return 2616 * from IPsec, we don't mistakenly think that this 2617 * is a secure packet came from the network. 2618 * 2619 * NOTE : ill_index is used by ip_fanout_proto_again 2620 * to locate the ill. 2621 */ 2622 ASSERT(first_mp == mp); 2623 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2624 if (first_mp == NULL) { 2625 freemsg(mp); 2626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2627 return; 2628 } 2629 ii = (ipsec_in_t *)first_mp->b_rptr; 2630 2631 /* This is not a secure packet */ 2632 ii->ipsec_in_secure = B_FALSE; 2633 first_mp->b_cont = mp; 2634 DB_TYPE(mp) = M_CTL; 2635 ASSERT(ill != NULL); 2636 ii->ipsec_in_ill_index = 2637 ill->ill_phyint->phyint_ifindex; 2638 ii->ipsec_in_rill_index = 2639 recv_ill->ill_phyint->phyint_ifindex; 2640 } 2641 ip2dbg(("icmp_inbound_error: ipsec\n")); 2642 2643 if (!ipsec_loaded(ipss)) { 2644 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2645 return; 2646 } 2647 2648 if (ipha->ipha_protocol == IPPROTO_ESP) 2649 ipsec_rc = ipsecesp_icmp_error(first_mp); 2650 else 2651 ipsec_rc = ipsecah_icmp_error(first_mp); 2652 if (ipsec_rc == IPSEC_STATUS_FAILED) 2653 return; 2654 2655 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2656 return; 2657 } 2658 default: 2659 /* 2660 * The ripha header is only used for the lookup and we 2661 * only set the src and dst addresses and protocol. 2662 */ 2663 ripha.ipha_src = ipha->ipha_dst; 2664 ripha.ipha_dst = ipha->ipha_src; 2665 ripha.ipha_protocol = ipha->ipha_protocol; 2666 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2667 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2668 ntohl(ipha->ipha_dst), 2669 icmph->icmph_type, icmph->icmph_code)); 2670 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2671 ipha_t *in_ipha; 2672 2673 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2674 mp->b_wptr) { 2675 if (!pullupmsg(mp, (uchar_t *)ipha + 2676 hdr_length + sizeof (ipha_t) - 2677 mp->b_rptr)) { 2678 goto discard_pkt; 2679 } 2680 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2681 ipha = (ipha_t *)&icmph[1]; 2682 } 2683 /* 2684 * Caller has verified that length has to be 2685 * at least the size of IP header. 2686 */ 2687 ASSERT(hdr_length >= sizeof (ipha_t)); 2688 /* 2689 * Check the sanity of the inner IP header like 2690 * we did for the outer header. 2691 */ 2692 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2693 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2694 goto discard_pkt; 2695 } 2696 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2697 goto discard_pkt; 2698 } 2699 /* Check for Self-encapsulated tunnels */ 2700 if (in_ipha->ipha_src == ipha->ipha_src && 2701 in_ipha->ipha_dst == ipha->ipha_dst) { 2702 2703 mp = icmp_inbound_self_encap_error(mp, 2704 iph_hdr_length, hdr_length); 2705 if (mp == NULL) 2706 goto discard_pkt; 2707 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2708 ipha = (ipha_t *)&icmph[1]; 2709 hdr_length = IPH_HDR_LENGTH(ipha); 2710 /* 2711 * The packet in error is self-encapsualted. 2712 * And we are finding it further encapsulated 2713 * which we could not have possibly generated. 2714 */ 2715 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2716 goto discard_pkt; 2717 } 2718 icmp_inbound_error_fanout(q, ill, first_mp, 2719 icmph, ipha, iph_hdr_length, hdr_length, 2720 mctl_present, ip_policy, recv_ill, zoneid); 2721 return; 2722 } 2723 } 2724 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2725 ipha->ipha_protocol == IPPROTO_IPV6) && 2726 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2727 ii != NULL && 2728 ii->ipsec_in_loopback && 2729 ii->ipsec_in_secure) { 2730 /* 2731 * For IP tunnels that get a looped-back 2732 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2733 * reported new MTU to take into account the IPsec 2734 * headers protecting this configured tunnel. 2735 * 2736 * This allows the tunnel module (tun.c) to blindly 2737 * accept the MTU reported in an ICMP "too big" 2738 * message. 2739 * 2740 * Non-looped back ICMP messages will just be 2741 * handled by the security protocols (if needed), 2742 * and the first subsequent packet will hit this 2743 * path. 2744 */ 2745 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2746 ipsec_in_extra_length(first_mp)); 2747 } 2748 /* Have to change db_type after any pullupmsg */ 2749 DB_TYPE(mp) = M_CTL; 2750 2751 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2752 ip_policy, recv_ill, zoneid); 2753 return; 2754 } 2755 /* NOTREACHED */ 2756 discard_pkt: 2757 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2758 drop_pkt:; 2759 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2760 freemsg(first_mp); 2761 } 2762 2763 /* 2764 * Common IP options parser. 2765 * 2766 * Setup routine: fill in *optp with options-parsing state, then 2767 * tail-call ipoptp_next to return the first option. 2768 */ 2769 uint8_t 2770 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2771 { 2772 uint32_t totallen; /* total length of all options */ 2773 2774 totallen = ipha->ipha_version_and_hdr_length - 2775 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2776 totallen <<= 2; 2777 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2778 optp->ipoptp_end = optp->ipoptp_next + totallen; 2779 optp->ipoptp_flags = 0; 2780 return (ipoptp_next(optp)); 2781 } 2782 2783 /* 2784 * Common IP options parser: extract next option. 2785 */ 2786 uint8_t 2787 ipoptp_next(ipoptp_t *optp) 2788 { 2789 uint8_t *end = optp->ipoptp_end; 2790 uint8_t *cur = optp->ipoptp_next; 2791 uint8_t opt, len, pointer; 2792 2793 /* 2794 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2795 * has been corrupted. 2796 */ 2797 ASSERT(cur <= end); 2798 2799 if (cur == end) 2800 return (IPOPT_EOL); 2801 2802 opt = cur[IPOPT_OPTVAL]; 2803 2804 /* 2805 * Skip any NOP options. 2806 */ 2807 while (opt == IPOPT_NOP) { 2808 cur++; 2809 if (cur == end) 2810 return (IPOPT_EOL); 2811 opt = cur[IPOPT_OPTVAL]; 2812 } 2813 2814 if (opt == IPOPT_EOL) 2815 return (IPOPT_EOL); 2816 2817 /* 2818 * Option requiring a length. 2819 */ 2820 if ((cur + 1) >= end) { 2821 optp->ipoptp_flags |= IPOPTP_ERROR; 2822 return (IPOPT_EOL); 2823 } 2824 len = cur[IPOPT_OLEN]; 2825 if (len < 2) { 2826 optp->ipoptp_flags |= IPOPTP_ERROR; 2827 return (IPOPT_EOL); 2828 } 2829 optp->ipoptp_cur = cur; 2830 optp->ipoptp_len = len; 2831 optp->ipoptp_next = cur + len; 2832 if (cur + len > end) { 2833 optp->ipoptp_flags |= IPOPTP_ERROR; 2834 return (IPOPT_EOL); 2835 } 2836 2837 /* 2838 * For the options which require a pointer field, make sure 2839 * its there, and make sure it points to either something 2840 * inside this option, or the end of the option. 2841 */ 2842 switch (opt) { 2843 case IPOPT_RR: 2844 case IPOPT_TS: 2845 case IPOPT_LSRR: 2846 case IPOPT_SSRR: 2847 if (len <= IPOPT_OFFSET) { 2848 optp->ipoptp_flags |= IPOPTP_ERROR; 2849 return (opt); 2850 } 2851 pointer = cur[IPOPT_OFFSET]; 2852 if (pointer - 1 > len) { 2853 optp->ipoptp_flags |= IPOPTP_ERROR; 2854 return (opt); 2855 } 2856 break; 2857 } 2858 2859 /* 2860 * Sanity check the pointer field based on the type of the 2861 * option. 2862 */ 2863 switch (opt) { 2864 case IPOPT_RR: 2865 case IPOPT_SSRR: 2866 case IPOPT_LSRR: 2867 if (pointer < IPOPT_MINOFF_SR) 2868 optp->ipoptp_flags |= IPOPTP_ERROR; 2869 break; 2870 case IPOPT_TS: 2871 if (pointer < IPOPT_MINOFF_IT) 2872 optp->ipoptp_flags |= IPOPTP_ERROR; 2873 /* 2874 * Note that the Internet Timestamp option also 2875 * contains two four bit fields (the Overflow field, 2876 * and the Flag field), which follow the pointer 2877 * field. We don't need to check that these fields 2878 * fall within the length of the option because this 2879 * was implicitely done above. We've checked that the 2880 * pointer value is at least IPOPT_MINOFF_IT, and that 2881 * it falls within the option. Since IPOPT_MINOFF_IT > 2882 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2883 */ 2884 ASSERT(len > IPOPT_POS_OV_FLG); 2885 break; 2886 } 2887 2888 return (opt); 2889 } 2890 2891 /* 2892 * Use the outgoing IP header to create an IP_OPTIONS option the way 2893 * it was passed down from the application. 2894 */ 2895 int 2896 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2897 { 2898 ipoptp_t opts; 2899 const uchar_t *opt; 2900 uint8_t optval; 2901 uint8_t optlen; 2902 uint32_t len = 0; 2903 uchar_t *buf1 = buf; 2904 2905 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2906 len += IP_ADDR_LEN; 2907 bzero(buf1, IP_ADDR_LEN); 2908 2909 /* 2910 * OK to cast away const here, as we don't store through the returned 2911 * opts.ipoptp_cur pointer. 2912 */ 2913 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2914 optval != IPOPT_EOL; 2915 optval = ipoptp_next(&opts)) { 2916 int off; 2917 2918 opt = opts.ipoptp_cur; 2919 optlen = opts.ipoptp_len; 2920 switch (optval) { 2921 case IPOPT_SSRR: 2922 case IPOPT_LSRR: 2923 2924 /* 2925 * Insert ipha_dst as the first entry in the source 2926 * route and move down the entries on step. 2927 * The last entry gets placed at buf1. 2928 */ 2929 buf[IPOPT_OPTVAL] = optval; 2930 buf[IPOPT_OLEN] = optlen; 2931 buf[IPOPT_OFFSET] = optlen; 2932 2933 off = optlen - IP_ADDR_LEN; 2934 if (off < 0) { 2935 /* No entries in source route */ 2936 break; 2937 } 2938 /* Last entry in source route */ 2939 bcopy(opt + off, buf1, IP_ADDR_LEN); 2940 off -= IP_ADDR_LEN; 2941 2942 while (off > 0) { 2943 bcopy(opt + off, 2944 buf + off + IP_ADDR_LEN, 2945 IP_ADDR_LEN); 2946 off -= IP_ADDR_LEN; 2947 } 2948 /* ipha_dst into first slot */ 2949 bcopy(&ipha->ipha_dst, 2950 buf + off + IP_ADDR_LEN, 2951 IP_ADDR_LEN); 2952 buf += optlen; 2953 len += optlen; 2954 break; 2955 2956 case IPOPT_COMSEC: 2957 case IPOPT_SECURITY: 2958 /* if passing up a label is not ok, then remove */ 2959 if (is_system_labeled()) 2960 break; 2961 /* FALLTHROUGH */ 2962 default: 2963 bcopy(opt, buf, optlen); 2964 buf += optlen; 2965 len += optlen; 2966 break; 2967 } 2968 } 2969 done: 2970 /* Pad the resulting options */ 2971 while (len & 0x3) { 2972 *buf++ = IPOPT_EOL; 2973 len++; 2974 } 2975 return (len); 2976 } 2977 2978 /* 2979 * Update any record route or timestamp options to include this host. 2980 * Reverse any source route option. 2981 * This routine assumes that the options are well formed i.e. that they 2982 * have already been checked. 2983 */ 2984 static void 2985 icmp_options_update(ipha_t *ipha) 2986 { 2987 ipoptp_t opts; 2988 uchar_t *opt; 2989 uint8_t optval; 2990 ipaddr_t src; /* Our local address */ 2991 ipaddr_t dst; 2992 2993 ip2dbg(("icmp_options_update\n")); 2994 src = ipha->ipha_src; 2995 dst = ipha->ipha_dst; 2996 2997 for (optval = ipoptp_first(&opts, ipha); 2998 optval != IPOPT_EOL; 2999 optval = ipoptp_next(&opts)) { 3000 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3001 opt = opts.ipoptp_cur; 3002 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3003 optval, opts.ipoptp_len)); 3004 switch (optval) { 3005 int off1, off2; 3006 case IPOPT_SSRR: 3007 case IPOPT_LSRR: 3008 /* 3009 * Reverse the source route. The first entry 3010 * should be the next to last one in the current 3011 * source route (the last entry is our address). 3012 * The last entry should be the final destination. 3013 */ 3014 off1 = IPOPT_MINOFF_SR - 1; 3015 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3016 if (off2 < 0) { 3017 /* No entries in source route */ 3018 ip1dbg(( 3019 "icmp_options_update: bad src route\n")); 3020 break; 3021 } 3022 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3023 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3024 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3025 off2 -= IP_ADDR_LEN; 3026 3027 while (off1 < off2) { 3028 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3029 bcopy((char *)opt + off2, (char *)opt + off1, 3030 IP_ADDR_LEN); 3031 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3032 off1 += IP_ADDR_LEN; 3033 off2 -= IP_ADDR_LEN; 3034 } 3035 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3036 break; 3037 } 3038 } 3039 } 3040 3041 /* 3042 * Process received ICMP Redirect messages. 3043 */ 3044 static void 3045 icmp_redirect(ill_t *ill, mblk_t *mp) 3046 { 3047 ipha_t *ipha; 3048 int iph_hdr_length; 3049 icmph_t *icmph; 3050 ipha_t *ipha_err; 3051 ire_t *ire; 3052 ire_t *prev_ire; 3053 ire_t *save_ire; 3054 ipaddr_t src, dst, gateway; 3055 iulp_t ulp_info = { 0 }; 3056 int error; 3057 ip_stack_t *ipst; 3058 3059 ASSERT(ill != NULL); 3060 ipst = ill->ill_ipst; 3061 3062 ipha = (ipha_t *)mp->b_rptr; 3063 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3064 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3065 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3066 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3067 freemsg(mp); 3068 return; 3069 } 3070 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3071 ipha_err = (ipha_t *)&icmph[1]; 3072 src = ipha->ipha_src; 3073 dst = ipha_err->ipha_dst; 3074 gateway = icmph->icmph_rd_gateway; 3075 /* Make sure the new gateway is reachable somehow. */ 3076 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3077 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3078 /* 3079 * Make sure we had a route for the dest in question and that 3080 * that route was pointing to the old gateway (the source of the 3081 * redirect packet.) 3082 */ 3083 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3084 NULL, MATCH_IRE_GW, ipst); 3085 /* 3086 * Check that 3087 * the redirect was not from ourselves 3088 * the new gateway and the old gateway are directly reachable 3089 */ 3090 if (!prev_ire || 3091 !ire || 3092 ire->ire_type == IRE_LOCAL) { 3093 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3094 freemsg(mp); 3095 if (ire != NULL) 3096 ire_refrele(ire); 3097 if (prev_ire != NULL) 3098 ire_refrele(prev_ire); 3099 return; 3100 } 3101 3102 /* 3103 * Should we use the old ULP info to create the new gateway? From 3104 * a user's perspective, we should inherit the info so that it 3105 * is a "smooth" transition. If we do not do that, then new 3106 * connections going thru the new gateway will have no route metrics, 3107 * which is counter-intuitive to user. From a network point of 3108 * view, this may or may not make sense even though the new gateway 3109 * is still directly connected to us so the route metrics should not 3110 * change much. 3111 * 3112 * But if the old ire_uinfo is not initialized, we do another 3113 * recursive lookup on the dest using the new gateway. There may 3114 * be a route to that. If so, use it to initialize the redirect 3115 * route. 3116 */ 3117 if (prev_ire->ire_uinfo.iulp_set) { 3118 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3119 } else { 3120 ire_t *tmp_ire; 3121 ire_t *sire; 3122 3123 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3124 ALL_ZONES, 0, NULL, 3125 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3126 ipst); 3127 if (sire != NULL) { 3128 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3129 /* 3130 * If sire != NULL, ire_ftable_lookup() should not 3131 * return a NULL value. 3132 */ 3133 ASSERT(tmp_ire != NULL); 3134 ire_refrele(tmp_ire); 3135 ire_refrele(sire); 3136 } else if (tmp_ire != NULL) { 3137 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3138 sizeof (iulp_t)); 3139 ire_refrele(tmp_ire); 3140 } 3141 } 3142 if (prev_ire->ire_type == IRE_CACHE) 3143 ire_delete(prev_ire); 3144 ire_refrele(prev_ire); 3145 /* 3146 * TODO: more precise handling for cases 0, 2, 3, the latter two 3147 * require TOS routing 3148 */ 3149 switch (icmph->icmph_code) { 3150 case 0: 3151 case 1: 3152 /* TODO: TOS specificity for cases 2 and 3 */ 3153 case 2: 3154 case 3: 3155 break; 3156 default: 3157 freemsg(mp); 3158 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3159 ire_refrele(ire); 3160 return; 3161 } 3162 /* 3163 * Create a Route Association. This will allow us to remember that 3164 * someone we believe told us to use the particular gateway. 3165 */ 3166 save_ire = ire; 3167 ire = ire_create( 3168 (uchar_t *)&dst, /* dest addr */ 3169 (uchar_t *)&ip_g_all_ones, /* mask */ 3170 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3171 (uchar_t *)&gateway, /* gateway addr */ 3172 &save_ire->ire_max_frag, /* max frag */ 3173 NULL, /* no src nce */ 3174 NULL, /* no rfq */ 3175 NULL, /* no stq */ 3176 IRE_HOST, 3177 NULL, /* ipif */ 3178 0, /* cmask */ 3179 0, /* phandle */ 3180 0, /* ihandle */ 3181 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3182 &ulp_info, 3183 NULL, /* tsol_gc_t */ 3184 NULL, /* gcgrp */ 3185 ipst); 3186 3187 if (ire == NULL) { 3188 freemsg(mp); 3189 ire_refrele(save_ire); 3190 return; 3191 } 3192 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3193 ire_refrele(save_ire); 3194 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3195 3196 if (error == 0) { 3197 ire_refrele(ire); /* Held in ire_add_v4 */ 3198 /* tell routing sockets that we received a redirect */ 3199 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3200 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3201 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3202 } 3203 3204 /* 3205 * Delete any existing IRE_HOST type redirect ires for this destination. 3206 * This together with the added IRE has the effect of 3207 * modifying an existing redirect. 3208 */ 3209 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3210 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3211 if (prev_ire != NULL) { 3212 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3213 ire_delete(prev_ire); 3214 ire_refrele(prev_ire); 3215 } 3216 3217 freemsg(mp); 3218 } 3219 3220 /* 3221 * Generate an ICMP parameter problem message. 3222 */ 3223 static void 3224 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3225 ip_stack_t *ipst) 3226 { 3227 icmph_t icmph; 3228 boolean_t mctl_present; 3229 mblk_t *first_mp; 3230 3231 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3232 3233 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3234 if (mctl_present) 3235 freeb(first_mp); 3236 return; 3237 } 3238 3239 bzero(&icmph, sizeof (icmph_t)); 3240 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3241 icmph.icmph_pp_ptr = ptr; 3242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3243 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3244 ipst); 3245 } 3246 3247 /* 3248 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3249 * the ICMP header pointed to by "stuff". (May be called as writer.) 3250 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3251 * an icmp error packet can be sent. 3252 * Assigns an appropriate source address to the packet. If ipha_dst is 3253 * one of our addresses use it for source. Otherwise pick a source based 3254 * on a route lookup back to ipha_src. 3255 * Note that ipha_src must be set here since the 3256 * packet is likely to arrive on an ill queue in ip_wput() which will 3257 * not set a source address. 3258 */ 3259 static void 3260 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3261 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3262 { 3263 ipaddr_t dst; 3264 icmph_t *icmph; 3265 ipha_t *ipha; 3266 uint_t len_needed; 3267 size_t msg_len; 3268 mblk_t *mp1; 3269 ipaddr_t src; 3270 ire_t *ire; 3271 mblk_t *ipsec_mp; 3272 ipsec_out_t *io = NULL; 3273 3274 if (mctl_present) { 3275 /* 3276 * If it is : 3277 * 3278 * 1) a IPSEC_OUT, then this is caused by outbound 3279 * datagram originating on this host. IPsec processing 3280 * may or may not have been done. Refer to comments above 3281 * icmp_inbound_error_fanout for details. 3282 * 3283 * 2) a IPSEC_IN if we are generating a icmp_message 3284 * for an incoming datagram destined for us i.e called 3285 * from ip_fanout_send_icmp. 3286 */ 3287 ipsec_info_t *in; 3288 ipsec_mp = mp; 3289 mp = ipsec_mp->b_cont; 3290 3291 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3292 ipha = (ipha_t *)mp->b_rptr; 3293 3294 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3295 in->ipsec_info_type == IPSEC_IN); 3296 3297 if (in->ipsec_info_type == IPSEC_IN) { 3298 /* 3299 * Convert the IPSEC_IN to IPSEC_OUT. 3300 */ 3301 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3302 BUMP_MIB(&ipst->ips_ip_mib, 3303 ipIfStatsOutDiscards); 3304 return; 3305 } 3306 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3307 } else { 3308 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3309 io = (ipsec_out_t *)in; 3310 /* 3311 * Clear out ipsec_out_proc_begin, so we do a fresh 3312 * ire lookup. 3313 */ 3314 io->ipsec_out_proc_begin = B_FALSE; 3315 } 3316 ASSERT(zoneid == io->ipsec_out_zoneid); 3317 ASSERT(zoneid != ALL_ZONES); 3318 } else { 3319 /* 3320 * This is in clear. The icmp message we are building 3321 * here should go out in clear. 3322 * 3323 * Pardon the convolution of it all, but it's easier to 3324 * allocate a "use cleartext" IPSEC_IN message and convert 3325 * it than it is to allocate a new one. 3326 */ 3327 ipsec_in_t *ii; 3328 ASSERT(DB_TYPE(mp) == M_DATA); 3329 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3330 if (ipsec_mp == NULL) { 3331 freemsg(mp); 3332 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3333 return; 3334 } 3335 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3336 3337 /* This is not a secure packet */ 3338 ii->ipsec_in_secure = B_FALSE; 3339 /* 3340 * For trusted extensions using a shared IP address we can 3341 * send using any zoneid. 3342 */ 3343 if (zoneid == ALL_ZONES) 3344 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3345 else 3346 ii->ipsec_in_zoneid = zoneid; 3347 ipsec_mp->b_cont = mp; 3348 ipha = (ipha_t *)mp->b_rptr; 3349 /* 3350 * Convert the IPSEC_IN to IPSEC_OUT. 3351 */ 3352 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3353 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3354 return; 3355 } 3356 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3357 } 3358 3359 /* Remember our eventual destination */ 3360 dst = ipha->ipha_src; 3361 3362 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3363 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3364 if (ire != NULL && 3365 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3366 src = ipha->ipha_dst; 3367 } else { 3368 if (ire != NULL) 3369 ire_refrele(ire); 3370 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3371 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3372 ipst); 3373 if (ire == NULL) { 3374 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3375 freemsg(ipsec_mp); 3376 return; 3377 } 3378 src = ire->ire_src_addr; 3379 } 3380 3381 if (ire != NULL) 3382 ire_refrele(ire); 3383 3384 /* 3385 * Check if we can send back more then 8 bytes in addition to 3386 * the IP header. We try to send 64 bytes of data and the internal 3387 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3388 */ 3389 len_needed = IPH_HDR_LENGTH(ipha); 3390 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3391 ipha->ipha_protocol == IPPROTO_IPV6) { 3392 3393 if (!pullupmsg(mp, -1)) { 3394 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3395 freemsg(ipsec_mp); 3396 return; 3397 } 3398 ipha = (ipha_t *)mp->b_rptr; 3399 3400 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3401 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3402 len_needed)); 3403 } else { 3404 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3405 3406 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3407 len_needed += ip_hdr_length_v6(mp, ip6h); 3408 } 3409 } 3410 len_needed += ipst->ips_ip_icmp_return; 3411 msg_len = msgdsize(mp); 3412 if (msg_len > len_needed) { 3413 (void) adjmsg(mp, len_needed - msg_len); 3414 msg_len = len_needed; 3415 } 3416 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3417 if (mp1 == NULL) { 3418 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3419 freemsg(ipsec_mp); 3420 return; 3421 } 3422 mp1->b_cont = mp; 3423 mp = mp1; 3424 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3425 ipsec_mp->b_rptr == (uint8_t *)io && 3426 io->ipsec_out_type == IPSEC_OUT); 3427 ipsec_mp->b_cont = mp; 3428 3429 /* 3430 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3431 * node generates be accepted in peace by all on-host destinations. 3432 * If we do NOT assume that all on-host destinations trust 3433 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3434 * (Look for ipsec_out_icmp_loopback). 3435 */ 3436 io->ipsec_out_icmp_loopback = B_TRUE; 3437 3438 ipha = (ipha_t *)mp->b_rptr; 3439 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3440 *ipha = icmp_ipha; 3441 ipha->ipha_src = src; 3442 ipha->ipha_dst = dst; 3443 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3444 msg_len += sizeof (icmp_ipha) + len; 3445 if (msg_len > IP_MAXPACKET) { 3446 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3447 msg_len = IP_MAXPACKET; 3448 } 3449 ipha->ipha_length = htons((uint16_t)msg_len); 3450 icmph = (icmph_t *)&ipha[1]; 3451 bcopy(stuff, icmph, len); 3452 icmph->icmph_checksum = 0; 3453 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3454 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3455 put(q, ipsec_mp); 3456 } 3457 3458 /* 3459 * Determine if an ICMP error packet can be sent given the rate limit. 3460 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3461 * in milliseconds) and a burst size. Burst size number of packets can 3462 * be sent arbitrarely closely spaced. 3463 * The state is tracked using two variables to implement an approximate 3464 * token bucket filter: 3465 * icmp_pkt_err_last - lbolt value when the last burst started 3466 * icmp_pkt_err_sent - number of packets sent in current burst 3467 */ 3468 boolean_t 3469 icmp_err_rate_limit(ip_stack_t *ipst) 3470 { 3471 clock_t now = TICK_TO_MSEC(lbolt); 3472 uint_t refilled; /* Number of packets refilled in tbf since last */ 3473 /* Guard against changes by loading into local variable */ 3474 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3475 3476 if (err_interval == 0) 3477 return (B_FALSE); 3478 3479 if (ipst->ips_icmp_pkt_err_last > now) { 3480 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3481 ipst->ips_icmp_pkt_err_last = 0; 3482 ipst->ips_icmp_pkt_err_sent = 0; 3483 } 3484 /* 3485 * If we are in a burst update the token bucket filter. 3486 * Update the "last" time to be close to "now" but make sure 3487 * we don't loose precision. 3488 */ 3489 if (ipst->ips_icmp_pkt_err_sent != 0) { 3490 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3491 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3492 ipst->ips_icmp_pkt_err_sent = 0; 3493 } else { 3494 ipst->ips_icmp_pkt_err_sent -= refilled; 3495 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3496 } 3497 } 3498 if (ipst->ips_icmp_pkt_err_sent == 0) { 3499 /* Start of new burst */ 3500 ipst->ips_icmp_pkt_err_last = now; 3501 } 3502 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3503 ipst->ips_icmp_pkt_err_sent++; 3504 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3505 ipst->ips_icmp_pkt_err_sent)); 3506 return (B_FALSE); 3507 } 3508 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3509 return (B_TRUE); 3510 } 3511 3512 /* 3513 * Check if it is ok to send an IPv4 ICMP error packet in 3514 * response to the IPv4 packet in mp. 3515 * Free the message and return null if no 3516 * ICMP error packet should be sent. 3517 */ 3518 static mblk_t * 3519 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3520 { 3521 icmph_t *icmph; 3522 ipha_t *ipha; 3523 uint_t len_needed; 3524 ire_t *src_ire; 3525 ire_t *dst_ire; 3526 3527 if (!mp) 3528 return (NULL); 3529 ipha = (ipha_t *)mp->b_rptr; 3530 if (ip_csum_hdr(ipha)) { 3531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3532 freemsg(mp); 3533 return (NULL); 3534 } 3535 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3536 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3537 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3538 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3539 if (src_ire != NULL || dst_ire != NULL || 3540 CLASSD(ipha->ipha_dst) || 3541 CLASSD(ipha->ipha_src) || 3542 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3543 /* Note: only errors to the fragment with offset 0 */ 3544 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3545 freemsg(mp); 3546 if (src_ire != NULL) 3547 ire_refrele(src_ire); 3548 if (dst_ire != NULL) 3549 ire_refrele(dst_ire); 3550 return (NULL); 3551 } 3552 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3553 /* 3554 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3555 * errors in response to any ICMP errors. 3556 */ 3557 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3558 if (mp->b_wptr - mp->b_rptr < len_needed) { 3559 if (!pullupmsg(mp, len_needed)) { 3560 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3561 freemsg(mp); 3562 return (NULL); 3563 } 3564 ipha = (ipha_t *)mp->b_rptr; 3565 } 3566 icmph = (icmph_t *) 3567 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3568 switch (icmph->icmph_type) { 3569 case ICMP_DEST_UNREACHABLE: 3570 case ICMP_SOURCE_QUENCH: 3571 case ICMP_TIME_EXCEEDED: 3572 case ICMP_PARAM_PROBLEM: 3573 case ICMP_REDIRECT: 3574 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3575 freemsg(mp); 3576 return (NULL); 3577 default: 3578 break; 3579 } 3580 } 3581 /* 3582 * If this is a labeled system, then check to see if we're allowed to 3583 * send a response to this particular sender. If not, then just drop. 3584 */ 3585 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3586 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3587 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3588 freemsg(mp); 3589 return (NULL); 3590 } 3591 if (icmp_err_rate_limit(ipst)) { 3592 /* 3593 * Only send ICMP error packets every so often. 3594 * This should be done on a per port/source basis, 3595 * but for now this will suffice. 3596 */ 3597 freemsg(mp); 3598 return (NULL); 3599 } 3600 return (mp); 3601 } 3602 3603 /* 3604 * Generate an ICMP redirect message. 3605 */ 3606 static void 3607 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3608 { 3609 icmph_t icmph; 3610 3611 /* 3612 * We are called from ip_rput where we could 3613 * not have attached an IPSEC_IN. 3614 */ 3615 ASSERT(mp->b_datap->db_type == M_DATA); 3616 3617 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3618 return; 3619 } 3620 3621 bzero(&icmph, sizeof (icmph_t)); 3622 icmph.icmph_type = ICMP_REDIRECT; 3623 icmph.icmph_code = 1; 3624 icmph.icmph_rd_gateway = gateway; 3625 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3626 /* Redirects sent by router, and router is global zone */ 3627 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3628 } 3629 3630 /* 3631 * Generate an ICMP time exceeded message. 3632 */ 3633 void 3634 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3635 ip_stack_t *ipst) 3636 { 3637 icmph_t icmph; 3638 boolean_t mctl_present; 3639 mblk_t *first_mp; 3640 3641 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3642 3643 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3644 if (mctl_present) 3645 freeb(first_mp); 3646 return; 3647 } 3648 3649 bzero(&icmph, sizeof (icmph_t)); 3650 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3651 icmph.icmph_code = code; 3652 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3653 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3654 ipst); 3655 } 3656 3657 /* 3658 * Generate an ICMP unreachable message. 3659 */ 3660 void 3661 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3662 ip_stack_t *ipst) 3663 { 3664 icmph_t icmph; 3665 mblk_t *first_mp; 3666 boolean_t mctl_present; 3667 3668 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3669 3670 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3671 if (mctl_present) 3672 freeb(first_mp); 3673 return; 3674 } 3675 3676 bzero(&icmph, sizeof (icmph_t)); 3677 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3678 icmph.icmph_code = code; 3679 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3680 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3681 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3682 zoneid, ipst); 3683 } 3684 3685 /* 3686 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3687 * duplicate. As long as someone else holds the address, the interface will 3688 * stay down. When that conflict goes away, the interface is brought back up. 3689 * This is done so that accidental shutdowns of addresses aren't made 3690 * permanent. Your server will recover from a failure. 3691 * 3692 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3693 * user space process (dhcpagent). 3694 * 3695 * Recovery completes if ARP reports that the address is now ours (via 3696 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3697 * 3698 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3699 */ 3700 static void 3701 ipif_dup_recovery(void *arg) 3702 { 3703 ipif_t *ipif = arg; 3704 ill_t *ill = ipif->ipif_ill; 3705 mblk_t *arp_add_mp; 3706 mblk_t *arp_del_mp; 3707 area_t *area; 3708 ip_stack_t *ipst = ill->ill_ipst; 3709 3710 ipif->ipif_recovery_id = 0; 3711 3712 /* 3713 * No lock needed for moving or condemned check, as this is just an 3714 * optimization. 3715 */ 3716 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3717 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3718 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3719 /* No reason to try to bring this address back. */ 3720 return; 3721 } 3722 3723 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3724 goto alloc_fail; 3725 3726 if (ipif->ipif_arp_del_mp == NULL) { 3727 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3728 goto alloc_fail; 3729 ipif->ipif_arp_del_mp = arp_del_mp; 3730 } 3731 3732 /* Setting the 'unverified' flag restarts DAD */ 3733 area = (area_t *)arp_add_mp->b_rptr; 3734 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3735 ACE_F_UNVERIFIED; 3736 putnext(ill->ill_rq, arp_add_mp); 3737 return; 3738 3739 alloc_fail: 3740 /* 3741 * On allocation failure, just restart the timer. Note that the ipif 3742 * is down here, so no other thread could be trying to start a recovery 3743 * timer. The ill_lock protects the condemned flag and the recovery 3744 * timer ID. 3745 */ 3746 freemsg(arp_add_mp); 3747 mutex_enter(&ill->ill_lock); 3748 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3749 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3750 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3751 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3752 } 3753 mutex_exit(&ill->ill_lock); 3754 } 3755 3756 /* 3757 * This is for exclusive changes due to ARP. Either tear down an interface due 3758 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3759 */ 3760 /* ARGSUSED */ 3761 static void 3762 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3763 { 3764 ill_t *ill = rq->q_ptr; 3765 arh_t *arh; 3766 ipaddr_t src; 3767 ipif_t *ipif; 3768 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3769 char hbuf[MAC_STR_LEN]; 3770 char sbuf[INET_ADDRSTRLEN]; 3771 const char *failtype; 3772 boolean_t bring_up; 3773 ip_stack_t *ipst = ill->ill_ipst; 3774 3775 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3776 case AR_CN_READY: 3777 failtype = NULL; 3778 bring_up = B_TRUE; 3779 break; 3780 case AR_CN_FAILED: 3781 failtype = "in use"; 3782 bring_up = B_FALSE; 3783 break; 3784 default: 3785 failtype = "claimed"; 3786 bring_up = B_FALSE; 3787 break; 3788 } 3789 3790 arh = (arh_t *)mp->b_cont->b_rptr; 3791 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3792 3793 /* Handle failures due to probes */ 3794 if (src == 0) { 3795 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3796 IP_ADDR_LEN); 3797 } 3798 3799 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3800 sizeof (hbuf)); 3801 (void) ip_dot_addr(src, sbuf); 3802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3803 3804 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3805 ipif->ipif_lcl_addr != src) { 3806 continue; 3807 } 3808 3809 /* 3810 * If we failed on a recovery probe, then restart the timer to 3811 * try again later. 3812 */ 3813 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3814 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3815 ill->ill_net_type == IRE_IF_RESOLVER && 3816 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3817 ipst->ips_ip_dup_recovery > 0 && 3818 ipif->ipif_recovery_id == 0) { 3819 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3820 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3821 continue; 3822 } 3823 3824 /* 3825 * If what we're trying to do has already been done, then do 3826 * nothing. 3827 */ 3828 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3829 continue; 3830 3831 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3832 3833 if (failtype == NULL) { 3834 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3835 ibuf); 3836 } else { 3837 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3838 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3839 } 3840 3841 if (bring_up) { 3842 ASSERT(ill->ill_dl_up); 3843 /* 3844 * Free up the ARP delete message so we can allocate 3845 * a fresh one through the normal path. 3846 */ 3847 freemsg(ipif->ipif_arp_del_mp); 3848 ipif->ipif_arp_del_mp = NULL; 3849 if (ipif_resolver_up(ipif, Res_act_initial) != 3850 EINPROGRESS) { 3851 ipif->ipif_addr_ready = 1; 3852 (void) ipif_up_done(ipif); 3853 } 3854 continue; 3855 } 3856 3857 mutex_enter(&ill->ill_lock); 3858 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3859 ipif->ipif_flags |= IPIF_DUPLICATE; 3860 ill->ill_ipif_dup_count++; 3861 mutex_exit(&ill->ill_lock); 3862 /* 3863 * Already exclusive on the ill; no need to handle deferred 3864 * processing here. 3865 */ 3866 (void) ipif_down(ipif, NULL, NULL); 3867 ipif_down_tail(ipif); 3868 mutex_enter(&ill->ill_lock); 3869 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3870 ill->ill_net_type == IRE_IF_RESOLVER && 3871 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3872 ipst->ips_ip_dup_recovery > 0) { 3873 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3874 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3875 } 3876 mutex_exit(&ill->ill_lock); 3877 } 3878 freemsg(mp); 3879 } 3880 3881 /* ARGSUSED */ 3882 static void 3883 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3884 { 3885 ill_t *ill = rq->q_ptr; 3886 arh_t *arh; 3887 ipaddr_t src; 3888 ipif_t *ipif; 3889 3890 arh = (arh_t *)mp->b_cont->b_rptr; 3891 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3892 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3893 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3894 (void) ipif_resolver_up(ipif, Res_act_defend); 3895 } 3896 freemsg(mp); 3897 } 3898 3899 /* 3900 * News from ARP. ARP sends notification of interesting events down 3901 * to its clients using M_CTL messages with the interesting ARP packet 3902 * attached via b_cont. 3903 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3904 * queue as opposed to ARP sending the message to all the clients, i.e. all 3905 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3906 * table if a cache IRE is found to delete all the entries for the address in 3907 * the packet. 3908 */ 3909 static void 3910 ip_arp_news(queue_t *q, mblk_t *mp) 3911 { 3912 arcn_t *arcn; 3913 arh_t *arh; 3914 ire_t *ire = NULL; 3915 char hbuf[MAC_STR_LEN]; 3916 char sbuf[INET_ADDRSTRLEN]; 3917 ipaddr_t src; 3918 in6_addr_t v6src; 3919 boolean_t isv6 = B_FALSE; 3920 ipif_t *ipif; 3921 ill_t *ill; 3922 ip_stack_t *ipst; 3923 3924 if (CONN_Q(q)) { 3925 conn_t *connp = Q_TO_CONN(q); 3926 3927 ipst = connp->conn_netstack->netstack_ip; 3928 } else { 3929 ill_t *ill = (ill_t *)q->q_ptr; 3930 3931 ipst = ill->ill_ipst; 3932 } 3933 3934 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3935 if (q->q_next) { 3936 putnext(q, mp); 3937 } else 3938 freemsg(mp); 3939 return; 3940 } 3941 arh = (arh_t *)mp->b_cont->b_rptr; 3942 /* Is it one we are interested in? */ 3943 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3944 isv6 = B_TRUE; 3945 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3946 IPV6_ADDR_LEN); 3947 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3948 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3949 IP_ADDR_LEN); 3950 } else { 3951 freemsg(mp); 3952 return; 3953 } 3954 3955 ill = q->q_ptr; 3956 3957 arcn = (arcn_t *)mp->b_rptr; 3958 switch (arcn->arcn_code) { 3959 case AR_CN_BOGON: 3960 /* 3961 * Someone is sending ARP packets with a source protocol 3962 * address that we have published and for which we believe our 3963 * entry is authoritative and (when ill_arp_extend is set) 3964 * verified to be unique on the network. 3965 * 3966 * The ARP module internally handles the cases where the sender 3967 * is just probing (for DAD) and where the hardware address of 3968 * a non-authoritative entry has changed. Thus, these are the 3969 * real conflicts, and we have to do resolution. 3970 * 3971 * We back away quickly from the address if it's from DHCP or 3972 * otherwise temporary and hasn't been used recently (or at 3973 * all). We'd like to include "deprecated" addresses here as 3974 * well (as there's no real reason to defend something we're 3975 * discarding), but IPMP "reuses" this flag to mean something 3976 * other than the standard meaning. 3977 * 3978 * If the ARP module above is not extended (meaning that it 3979 * doesn't know how to defend the address), then we just log 3980 * the problem as we always did and continue on. It's not 3981 * right, but there's little else we can do, and those old ATM 3982 * users are going away anyway. 3983 */ 3984 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3985 hbuf, sizeof (hbuf)); 3986 (void) ip_dot_addr(src, sbuf); 3987 if (isv6) { 3988 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3989 ipst); 3990 } else { 3991 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3992 } 3993 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3994 uint32_t now; 3995 uint32_t maxage; 3996 clock_t lused; 3997 uint_t maxdefense; 3998 uint_t defs; 3999 4000 /* 4001 * First, figure out if this address hasn't been used 4002 * in a while. If it hasn't, then it's a better 4003 * candidate for abandoning. 4004 */ 4005 ipif = ire->ire_ipif; 4006 ASSERT(ipif != NULL); 4007 now = gethrestime_sec(); 4008 maxage = now - ire->ire_create_time; 4009 if (maxage > ipst->ips_ip_max_temp_idle) 4010 maxage = ipst->ips_ip_max_temp_idle; 4011 lused = drv_hztousec(ddi_get_lbolt() - 4012 ire->ire_last_used_time) / MICROSEC + 1; 4013 if (lused >= maxage && (ipif->ipif_flags & 4014 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4015 maxdefense = ipst->ips_ip_max_temp_defend; 4016 else 4017 maxdefense = ipst->ips_ip_max_defend; 4018 4019 /* 4020 * Now figure out how many times we've defended 4021 * ourselves. Ignore defenses that happened long in 4022 * the past. 4023 */ 4024 mutex_enter(&ire->ire_lock); 4025 if ((defs = ire->ire_defense_count) > 0 && 4026 now - ire->ire_defense_time > 4027 ipst->ips_ip_defend_interval) { 4028 ire->ire_defense_count = defs = 0; 4029 } 4030 ire->ire_defense_count++; 4031 ire->ire_defense_time = now; 4032 mutex_exit(&ire->ire_lock); 4033 ill_refhold(ill); 4034 ire_refrele(ire); 4035 4036 /* 4037 * If we've defended ourselves too many times already, 4038 * then give up and tear down the interface(s) using 4039 * this address. Otherwise, defend by sending out a 4040 * gratuitous ARP. 4041 */ 4042 if (defs >= maxdefense && ill->ill_arp_extend) { 4043 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4044 B_FALSE); 4045 } else { 4046 cmn_err(CE_WARN, 4047 "node %s is using our IP address %s on %s", 4048 hbuf, sbuf, ill->ill_name); 4049 /* 4050 * If this is an old (ATM) ARP module, then 4051 * don't try to defend the address. Remain 4052 * compatible with the old behavior. Defend 4053 * only with new ARP. 4054 */ 4055 if (ill->ill_arp_extend) { 4056 qwriter_ip(ill, q, mp, ip_arp_defend, 4057 NEW_OP, B_FALSE); 4058 } else { 4059 ill_refrele(ill); 4060 } 4061 } 4062 return; 4063 } 4064 cmn_err(CE_WARN, 4065 "proxy ARP problem? Node '%s' is using %s on %s", 4066 hbuf, sbuf, ill->ill_name); 4067 if (ire != NULL) 4068 ire_refrele(ire); 4069 break; 4070 case AR_CN_ANNOUNCE: 4071 if (isv6) { 4072 /* 4073 * For XRESOLV interfaces. 4074 * Delete the IRE cache entry and NCE for this 4075 * v6 address 4076 */ 4077 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4078 /* 4079 * If v6src is a non-zero, it's a router address 4080 * as below. Do the same sort of thing to clean 4081 * out off-net IRE_CACHE entries that go through 4082 * the router. 4083 */ 4084 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4085 ire_walk_v6(ire_delete_cache_gw_v6, 4086 (char *)&v6src, ALL_ZONES, ipst); 4087 } 4088 } else { 4089 nce_hw_map_t hwm; 4090 4091 /* 4092 * ARP gives us a copy of any packet where it thinks 4093 * the address has changed, so that we can update our 4094 * caches. We're responsible for caching known answers 4095 * in the current design. We check whether the 4096 * hardware address really has changed in all of our 4097 * entries that have cached this mapping, and if so, we 4098 * blow them away. This way we will immediately pick 4099 * up the rare case of a host changing hardware 4100 * address. 4101 */ 4102 if (src == 0) 4103 break; 4104 hwm.hwm_addr = src; 4105 hwm.hwm_hwlen = arh->arh_hlen; 4106 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4107 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4108 ndp_walk_common(ipst->ips_ndp4, NULL, 4109 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4110 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4111 } 4112 break; 4113 case AR_CN_READY: 4114 /* No external v6 resolver has a contract to use this */ 4115 if (isv6) 4116 break; 4117 /* If the link is down, we'll retry this later */ 4118 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4119 break; 4120 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4121 NULL, NULL, ipst); 4122 if (ipif != NULL) { 4123 /* 4124 * If this is a duplicate recovery, then we now need to 4125 * go exclusive to bring this thing back up. 4126 */ 4127 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4128 IPIF_DUPLICATE) { 4129 ipif_refrele(ipif); 4130 ill_refhold(ill); 4131 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4132 B_FALSE); 4133 return; 4134 } 4135 /* 4136 * If this is the first notice that this address is 4137 * ready, then let the user know now. 4138 */ 4139 if ((ipif->ipif_flags & IPIF_UP) && 4140 !ipif->ipif_addr_ready) { 4141 ipif_mask_reply(ipif); 4142 ip_rts_ifmsg(ipif); 4143 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4144 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4145 } 4146 ipif->ipif_addr_ready = 1; 4147 ipif_refrele(ipif); 4148 } 4149 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4150 if (ire != NULL) { 4151 ire->ire_defense_count = 0; 4152 ire_refrele(ire); 4153 } 4154 break; 4155 case AR_CN_FAILED: 4156 /* No external v6 resolver has a contract to use this */ 4157 if (isv6) 4158 break; 4159 ill_refhold(ill); 4160 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4161 return; 4162 } 4163 freemsg(mp); 4164 } 4165 4166 /* 4167 * Create a mblk suitable for carrying the interface index and/or source link 4168 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4169 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4170 * application. 4171 */ 4172 mblk_t * 4173 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4174 ip_stack_t *ipst) 4175 { 4176 mblk_t *mp; 4177 ip_pktinfo_t *pinfo; 4178 ipha_t *ipha; 4179 struct ether_header *pether; 4180 4181 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4182 if (mp == NULL) { 4183 ip1dbg(("ip_add_info: allocation failure.\n")); 4184 return (data_mp); 4185 } 4186 4187 ipha = (ipha_t *)data_mp->b_rptr; 4188 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4189 bzero(pinfo, sizeof (ip_pktinfo_t)); 4190 pinfo->ip_pkt_flags = (uchar_t)flags; 4191 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4192 4193 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4194 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4195 if (flags & IPF_RECVADDR) { 4196 ipif_t *ipif; 4197 ire_t *ire; 4198 4199 /* 4200 * Only valid for V4 4201 */ 4202 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4203 (IPV4_VERSION << 4)); 4204 4205 ipif = ipif_get_next_ipif(NULL, ill); 4206 if (ipif != NULL) { 4207 /* 4208 * Since a decision has already been made to deliver the 4209 * packet, there is no need to test for SECATTR and 4210 * ZONEONLY. 4211 * When a multicast packet is transmitted 4212 * a cache entry is created for the multicast address. 4213 * When delivering a copy of the packet or when new 4214 * packets are received we do not want to match on the 4215 * cached entry so explicitly match on 4216 * IRE_LOCAL and IRE_LOOPBACK 4217 */ 4218 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4219 IRE_LOCAL | IRE_LOOPBACK, 4220 ipif, zoneid, NULL, 4221 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4222 if (ire == NULL) { 4223 /* 4224 * packet must have come on a different 4225 * interface. 4226 * Since a decision has already been made to 4227 * deliver the packet, there is no need to test 4228 * for SECATTR and ZONEONLY. 4229 * Only match on local and broadcast ire's. 4230 * See detailed comment above. 4231 */ 4232 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4233 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4234 NULL, MATCH_IRE_TYPE, ipst); 4235 } 4236 4237 if (ire == NULL) { 4238 /* 4239 * This is either a multicast packet or 4240 * the address has been removed since 4241 * the packet was received. 4242 * Return INADDR_ANY so that normal source 4243 * selection occurs for the response. 4244 */ 4245 4246 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4247 } else { 4248 pinfo->ip_pkt_match_addr.s_addr = 4249 ire->ire_src_addr; 4250 ire_refrele(ire); 4251 } 4252 ipif_refrele(ipif); 4253 } else { 4254 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4255 } 4256 } 4257 4258 pether = (struct ether_header *)((char *)ipha 4259 - sizeof (struct ether_header)); 4260 /* 4261 * Make sure the interface is an ethernet type, since this option 4262 * is currently supported only on this type of interface. Also make 4263 * sure we are pointing correctly above db_base. 4264 */ 4265 4266 if ((flags & IPF_RECVSLLA) && 4267 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4268 (ill->ill_type == IFT_ETHER) && 4269 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4270 4271 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4272 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4273 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4274 } else { 4275 /* 4276 * Clear the bit. Indicate to upper layer that IP is not 4277 * sending this ancillary info. 4278 */ 4279 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4280 } 4281 4282 mp->b_datap->db_type = M_CTL; 4283 mp->b_wptr += sizeof (ip_pktinfo_t); 4284 mp->b_cont = data_mp; 4285 4286 return (mp); 4287 } 4288 4289 /* 4290 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4291 * part of the bind request. 4292 */ 4293 4294 boolean_t 4295 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4296 { 4297 ipsec_in_t *ii; 4298 4299 ASSERT(policy_mp != NULL); 4300 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4301 4302 ii = (ipsec_in_t *)policy_mp->b_rptr; 4303 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4304 4305 connp->conn_policy = ii->ipsec_in_policy; 4306 ii->ipsec_in_policy = NULL; 4307 4308 if (ii->ipsec_in_action != NULL) { 4309 if (connp->conn_latch == NULL) { 4310 connp->conn_latch = iplatch_create(); 4311 if (connp->conn_latch == NULL) 4312 return (B_FALSE); 4313 } 4314 ipsec_latch_inbound(connp->conn_latch, ii); 4315 } 4316 return (B_TRUE); 4317 } 4318 4319 /* 4320 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4321 * and to arrange for power-fanout assist. The ULP is identified by 4322 * adding a single byte at the end of the original bind message. 4323 * A ULP other than UDP or TCP that wishes to be recognized passes 4324 * down a bind with a zero length address. 4325 * 4326 * The binding works as follows: 4327 * - A zero byte address means just bind to the protocol. 4328 * - A four byte address is treated as a request to validate 4329 * that the address is a valid local address, appropriate for 4330 * an application to bind to. This does not affect any fanout 4331 * information in IP. 4332 * - A sizeof sin_t byte address is used to bind to only the local address 4333 * and port. 4334 * - A sizeof ipa_conn_t byte address contains complete fanout information 4335 * consisting of local and remote addresses and ports. In 4336 * this case, the addresses are both validated as appropriate 4337 * for this operation, and, if so, the information is retained 4338 * for use in the inbound fanout. 4339 * 4340 * The ULP (except in the zero-length bind) can append an 4341 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4342 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4343 * a copy of the source or destination IRE (source for local bind; 4344 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4345 * policy information contained should be copied on to the conn. 4346 * 4347 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4348 */ 4349 mblk_t * 4350 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4351 { 4352 ssize_t len; 4353 struct T_bind_req *tbr; 4354 sin_t *sin; 4355 ipa_conn_t *ac; 4356 uchar_t *ucp; 4357 mblk_t *mp1; 4358 boolean_t ire_requested; 4359 boolean_t ipsec_policy_set = B_FALSE; 4360 int error = 0; 4361 int protocol; 4362 ipa_conn_x_t *acx; 4363 4364 ASSERT(!connp->conn_af_isv6); 4365 connp->conn_pkt_isv6 = B_FALSE; 4366 4367 len = MBLKL(mp); 4368 if (len < (sizeof (*tbr) + 1)) { 4369 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4370 "ip_bind: bogus msg, len %ld", len); 4371 /* XXX: Need to return something better */ 4372 goto bad_addr; 4373 } 4374 /* Back up and extract the protocol identifier. */ 4375 mp->b_wptr--; 4376 protocol = *mp->b_wptr & 0xFF; 4377 tbr = (struct T_bind_req *)mp->b_rptr; 4378 /* Reset the message type in preparation for shipping it back. */ 4379 DB_TYPE(mp) = M_PCPROTO; 4380 4381 connp->conn_ulp = (uint8_t)protocol; 4382 4383 /* 4384 * Check for a zero length address. This is from a protocol that 4385 * wants to register to receive all packets of its type. 4386 */ 4387 if (tbr->ADDR_length == 0) { 4388 /* 4389 * These protocols are now intercepted in ip_bind_v6(). 4390 * Reject protocol-level binds here for now. 4391 * 4392 * For SCTP raw socket, ICMP sends down a bind with sin_t 4393 * so that the protocol type cannot be SCTP. 4394 */ 4395 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4396 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4397 goto bad_addr; 4398 } 4399 4400 /* 4401 * 4402 * The udp module never sends down a zero-length address, 4403 * and allowing this on a labeled system will break MLP 4404 * functionality. 4405 */ 4406 if (is_system_labeled() && protocol == IPPROTO_UDP) 4407 goto bad_addr; 4408 4409 if (connp->conn_mac_exempt) 4410 goto bad_addr; 4411 4412 /* No hash here really. The table is big enough. */ 4413 connp->conn_srcv6 = ipv6_all_zeros; 4414 4415 ipcl_proto_insert(connp, protocol); 4416 4417 tbr->PRIM_type = T_BIND_ACK; 4418 return (mp); 4419 } 4420 4421 /* Extract the address pointer from the message. */ 4422 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4423 tbr->ADDR_length); 4424 if (ucp == NULL) { 4425 ip1dbg(("ip_bind: no address\n")); 4426 goto bad_addr; 4427 } 4428 if (!OK_32PTR(ucp)) { 4429 ip1dbg(("ip_bind: unaligned address\n")); 4430 goto bad_addr; 4431 } 4432 /* 4433 * Check for trailing mps. 4434 */ 4435 4436 mp1 = mp->b_cont; 4437 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4438 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4439 4440 switch (tbr->ADDR_length) { 4441 default: 4442 ip1dbg(("ip_bind: bad address length %d\n", 4443 (int)tbr->ADDR_length)); 4444 goto bad_addr; 4445 4446 case IP_ADDR_LEN: 4447 /* Verification of local address only */ 4448 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4449 ire_requested, ipsec_policy_set, B_FALSE); 4450 break; 4451 4452 case sizeof (sin_t): 4453 sin = (sin_t *)ucp; 4454 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4455 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4456 break; 4457 4458 case sizeof (ipa_conn_t): 4459 ac = (ipa_conn_t *)ucp; 4460 /* For raw socket, the local port is not set. */ 4461 if (ac->ac_lport == 0) 4462 ac->ac_lport = connp->conn_lport; 4463 /* Always verify destination reachability. */ 4464 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4465 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4466 ipsec_policy_set, B_TRUE, B_TRUE); 4467 break; 4468 4469 case sizeof (ipa_conn_x_t): 4470 acx = (ipa_conn_x_t *)ucp; 4471 /* 4472 * Whether or not to verify destination reachability depends 4473 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4474 */ 4475 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4476 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4477 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4478 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4479 break; 4480 } 4481 if (error == EINPROGRESS) 4482 return (NULL); 4483 else if (error != 0) 4484 goto bad_addr; 4485 /* 4486 * Pass the IPsec headers size in ire_ipsec_overhead. 4487 * We can't do this in ip_bind_insert_ire because the policy 4488 * may not have been inherited at that point in time and hence 4489 * conn_out_enforce_policy may not be set. 4490 */ 4491 mp1 = mp->b_cont; 4492 if (ire_requested && connp->conn_out_enforce_policy && 4493 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4494 ire_t *ire = (ire_t *)mp1->b_rptr; 4495 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4496 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4497 } 4498 4499 /* Send it home. */ 4500 mp->b_datap->db_type = M_PCPROTO; 4501 tbr->PRIM_type = T_BIND_ACK; 4502 return (mp); 4503 4504 bad_addr: 4505 /* 4506 * If error = -1 then we generate a TBADADDR - otherwise error is 4507 * a unix errno. 4508 */ 4509 if (error > 0) 4510 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4511 else 4512 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4513 return (mp); 4514 } 4515 4516 /* 4517 * Here address is verified to be a valid local address. 4518 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4519 * address is also considered a valid local address. 4520 * In the case of a broadcast/multicast address, however, the 4521 * upper protocol is expected to reset the src address 4522 * to 0 if it sees a IRE_BROADCAST type returned so that 4523 * no packets are emitted with broadcast/multicast address as 4524 * source address (that violates hosts requirements RFC1122) 4525 * The addresses valid for bind are: 4526 * (1) - INADDR_ANY (0) 4527 * (2) - IP address of an UP interface 4528 * (3) - IP address of a DOWN interface 4529 * (4) - valid local IP broadcast addresses. In this case 4530 * the conn will only receive packets destined to 4531 * the specified broadcast address. 4532 * (5) - a multicast address. In this case 4533 * the conn will only receive packets destined to 4534 * the specified multicast address. Note: the 4535 * application still has to issue an 4536 * IP_ADD_MEMBERSHIP socket option. 4537 * 4538 * On error, return -1 for TBADADDR otherwise pass the 4539 * errno with TSYSERR reply. 4540 * 4541 * In all the above cases, the bound address must be valid in the current zone. 4542 * When the address is loopback, multicast or broadcast, there might be many 4543 * matching IREs so bind has to look up based on the zone. 4544 * 4545 * Note: lport is in network byte order. 4546 */ 4547 int 4548 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4549 boolean_t ire_requested, boolean_t ipsec_policy_set, 4550 boolean_t fanout_insert) 4551 { 4552 int error = 0; 4553 ire_t *src_ire; 4554 mblk_t *policy_mp; 4555 ipif_t *ipif; 4556 zoneid_t zoneid; 4557 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4558 4559 if (ipsec_policy_set) { 4560 policy_mp = mp->b_cont; 4561 } 4562 4563 /* 4564 * If it was previously connected, conn_fully_bound would have 4565 * been set. 4566 */ 4567 connp->conn_fully_bound = B_FALSE; 4568 4569 src_ire = NULL; 4570 ipif = NULL; 4571 4572 zoneid = IPCL_ZONEID(connp); 4573 4574 if (src_addr) { 4575 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4576 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4577 /* 4578 * If an address other than 0.0.0.0 is requested, 4579 * we verify that it is a valid address for bind 4580 * Note: Following code is in if-else-if form for 4581 * readability compared to a condition check. 4582 */ 4583 /* LINTED - statement has no consequent */ 4584 if (IRE_IS_LOCAL(src_ire)) { 4585 /* 4586 * (2) Bind to address of local UP interface 4587 */ 4588 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4589 /* 4590 * (4) Bind to broadcast address 4591 * Note: permitted only from transports that 4592 * request IRE 4593 */ 4594 if (!ire_requested) 4595 error = EADDRNOTAVAIL; 4596 } else { 4597 /* 4598 * (3) Bind to address of local DOWN interface 4599 * (ipif_lookup_addr() looks up all interfaces 4600 * but we do not get here for UP interfaces 4601 * - case (2) above) 4602 * We put the protocol byte back into the mblk 4603 * since we may come back via ip_wput_nondata() 4604 * later with this mblk if ipif_lookup_addr chooses 4605 * to defer processing. 4606 */ 4607 *mp->b_wptr++ = (char)connp->conn_ulp; 4608 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4609 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4610 &error, ipst)) != NULL) { 4611 ipif_refrele(ipif); 4612 } else if (error == EINPROGRESS) { 4613 if (src_ire != NULL) 4614 ire_refrele(src_ire); 4615 return (EINPROGRESS); 4616 } else if (CLASSD(src_addr)) { 4617 error = 0; 4618 if (src_ire != NULL) 4619 ire_refrele(src_ire); 4620 /* 4621 * (5) bind to multicast address. 4622 * Fake out the IRE returned to upper 4623 * layer to be a broadcast IRE. 4624 */ 4625 src_ire = ire_ctable_lookup( 4626 INADDR_BROADCAST, INADDR_ANY, 4627 IRE_BROADCAST, NULL, zoneid, NULL, 4628 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4629 ipst); 4630 if (src_ire == NULL || !ire_requested) 4631 error = EADDRNOTAVAIL; 4632 } else { 4633 /* 4634 * Not a valid address for bind 4635 */ 4636 error = EADDRNOTAVAIL; 4637 } 4638 /* 4639 * Just to keep it consistent with the processing in 4640 * ip_bind_v4() 4641 */ 4642 mp->b_wptr--; 4643 } 4644 if (error) { 4645 /* Red Alert! Attempting to be a bogon! */ 4646 ip1dbg(("ip_bind: bad src address 0x%x\n", 4647 ntohl(src_addr))); 4648 goto bad_addr; 4649 } 4650 } 4651 4652 /* 4653 * Allow setting new policies. For example, disconnects come 4654 * down as ipa_t bind. As we would have set conn_policy_cached 4655 * to B_TRUE before, we should set it to B_FALSE, so that policy 4656 * can change after the disconnect. 4657 */ 4658 connp->conn_policy_cached = B_FALSE; 4659 4660 /* 4661 * If not fanout_insert this was just an address verification 4662 */ 4663 if (fanout_insert) { 4664 /* 4665 * The addresses have been verified. Time to insert in 4666 * the correct fanout list. 4667 */ 4668 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4669 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4670 connp->conn_lport = lport; 4671 connp->conn_fport = 0; 4672 /* 4673 * Do we need to add a check to reject Multicast packets 4674 */ 4675 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4676 } 4677 4678 if (error == 0) { 4679 if (ire_requested) { 4680 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4681 error = -1; 4682 /* Falls through to bad_addr */ 4683 } 4684 } else if (ipsec_policy_set) { 4685 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4686 error = -1; 4687 /* Falls through to bad_addr */ 4688 } 4689 } 4690 } 4691 bad_addr: 4692 if (error != 0) { 4693 if (connp->conn_anon_port) { 4694 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4695 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4696 B_FALSE); 4697 } 4698 connp->conn_mlp_type = mlptSingle; 4699 } 4700 if (src_ire != NULL) 4701 IRE_REFRELE(src_ire); 4702 if (ipsec_policy_set) { 4703 ASSERT(policy_mp == mp->b_cont); 4704 ASSERT(policy_mp != NULL); 4705 freeb(policy_mp); 4706 /* 4707 * As of now assume that nothing else accompanies 4708 * IPSEC_POLICY_SET. 4709 */ 4710 mp->b_cont = NULL; 4711 } 4712 return (error); 4713 } 4714 4715 /* 4716 * Verify that both the source and destination addresses 4717 * are valid. If verify_dst is false, then the destination address may be 4718 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4719 * destination reachability, while tunnels do not. 4720 * Note that we allow connect to broadcast and multicast 4721 * addresses when ire_requested is set. Thus the ULP 4722 * has to check for IRE_BROADCAST and multicast. 4723 * 4724 * Returns zero if ok. 4725 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4726 * (for use with TSYSERR reply). 4727 * 4728 * Note: lport and fport are in network byte order. 4729 */ 4730 int 4731 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4732 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4733 boolean_t ire_requested, boolean_t ipsec_policy_set, 4734 boolean_t fanout_insert, boolean_t verify_dst) 4735 { 4736 ire_t *src_ire; 4737 ire_t *dst_ire; 4738 int error = 0; 4739 int protocol; 4740 mblk_t *policy_mp; 4741 ire_t *sire = NULL; 4742 ire_t *md_dst_ire = NULL; 4743 ire_t *lso_dst_ire = NULL; 4744 ill_t *ill = NULL; 4745 zoneid_t zoneid; 4746 ipaddr_t src_addr = *src_addrp; 4747 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4748 4749 src_ire = dst_ire = NULL; 4750 protocol = *mp->b_wptr & 0xFF; 4751 4752 /* 4753 * If we never got a disconnect before, clear it now. 4754 */ 4755 connp->conn_fully_bound = B_FALSE; 4756 4757 if (ipsec_policy_set) { 4758 policy_mp = mp->b_cont; 4759 } 4760 4761 zoneid = IPCL_ZONEID(connp); 4762 4763 if (CLASSD(dst_addr)) { 4764 /* Pick up an IRE_BROADCAST */ 4765 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4766 NULL, zoneid, MBLK_GETLABEL(mp), 4767 (MATCH_IRE_RECURSIVE | 4768 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4769 MATCH_IRE_SECATTR), ipst); 4770 } else { 4771 /* 4772 * If conn_dontroute is set or if conn_nexthop_set is set, 4773 * and onlink ipif is not found set ENETUNREACH error. 4774 */ 4775 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4776 ipif_t *ipif; 4777 4778 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4779 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4780 if (ipif == NULL) { 4781 error = ENETUNREACH; 4782 goto bad_addr; 4783 } 4784 ipif_refrele(ipif); 4785 } 4786 4787 if (connp->conn_nexthop_set) { 4788 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4789 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4790 MATCH_IRE_SECATTR, ipst); 4791 } else { 4792 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4793 &sire, zoneid, MBLK_GETLABEL(mp), 4794 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4795 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4796 MATCH_IRE_SECATTR), ipst); 4797 } 4798 } 4799 /* 4800 * dst_ire can't be a broadcast when not ire_requested. 4801 * We also prevent ire's with src address INADDR_ANY to 4802 * be used, which are created temporarily for 4803 * sending out packets from endpoints that have 4804 * conn_unspec_src set. If verify_dst is true, the destination must be 4805 * reachable. If verify_dst is false, the destination needn't be 4806 * reachable. 4807 * 4808 * If we match on a reject or black hole, then we've got a 4809 * local failure. May as well fail out the connect() attempt, 4810 * since it's never going to succeed. 4811 */ 4812 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4813 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4814 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4815 /* 4816 * If we're verifying destination reachability, we always want 4817 * to complain here. 4818 * 4819 * If we're not verifying destination reachability but the 4820 * destination has a route, we still want to fail on the 4821 * temporary address and broadcast address tests. 4822 */ 4823 if (verify_dst || (dst_ire != NULL)) { 4824 if (ip_debug > 2) { 4825 pr_addr_dbg("ip_bind_connected: bad connected " 4826 "dst %s\n", AF_INET, &dst_addr); 4827 } 4828 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4829 error = ENETUNREACH; 4830 else 4831 error = EHOSTUNREACH; 4832 goto bad_addr; 4833 } 4834 } 4835 4836 /* 4837 * We now know that routing will allow us to reach the destination. 4838 * Check whether Trusted Solaris policy allows communication with this 4839 * host, and pretend that the destination is unreachable if not. 4840 * 4841 * This is never a problem for TCP, since that transport is known to 4842 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4843 * handling. If the remote is unreachable, it will be detected at that 4844 * point, so there's no reason to check it here. 4845 * 4846 * Note that for sendto (and other datagram-oriented friends), this 4847 * check is done as part of the data path label computation instead. 4848 * The check here is just to make non-TCP connect() report the right 4849 * error. 4850 */ 4851 if (dst_ire != NULL && is_system_labeled() && 4852 !IPCL_IS_TCP(connp) && 4853 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4854 connp->conn_mac_exempt, ipst) != 0) { 4855 error = EHOSTUNREACH; 4856 if (ip_debug > 2) { 4857 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4858 AF_INET, &dst_addr); 4859 } 4860 goto bad_addr; 4861 } 4862 4863 /* 4864 * If the app does a connect(), it means that it will most likely 4865 * send more than 1 packet to the destination. It makes sense 4866 * to clear the temporary flag. 4867 */ 4868 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4869 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4870 irb_t *irb = dst_ire->ire_bucket; 4871 4872 rw_enter(&irb->irb_lock, RW_WRITER); 4873 /* 4874 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4875 * the lock to guarantee irb_tmp_ire_cnt. 4876 */ 4877 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4878 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4879 irb->irb_tmp_ire_cnt--; 4880 } 4881 rw_exit(&irb->irb_lock); 4882 } 4883 4884 /* 4885 * See if we should notify ULP about LSO/MDT; we do this whether or not 4886 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4887 * eligibility tests for passive connects are handled separately 4888 * through tcp_adapt_ire(). We do this before the source address 4889 * selection, because dst_ire may change after a call to 4890 * ipif_select_source(). This is a best-effort check, as the 4891 * packet for this connection may not actually go through 4892 * dst_ire->ire_stq, and the exact IRE can only be known after 4893 * calling ip_newroute(). This is why we further check on the 4894 * IRE during LSO/Multidata packet transmission in 4895 * tcp_lsosend()/tcp_multisend(). 4896 */ 4897 if (!ipsec_policy_set && dst_ire != NULL && 4898 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4899 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4900 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4901 lso_dst_ire = dst_ire; 4902 IRE_REFHOLD(lso_dst_ire); 4903 } else if (ipst->ips_ip_multidata_outbound && 4904 ILL_MDT_CAPABLE(ill)) { 4905 md_dst_ire = dst_ire; 4906 IRE_REFHOLD(md_dst_ire); 4907 } 4908 } 4909 4910 if (dst_ire != NULL && 4911 dst_ire->ire_type == IRE_LOCAL && 4912 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4913 /* 4914 * If the IRE belongs to a different zone, look for a matching 4915 * route in the forwarding table and use the source address from 4916 * that route. 4917 */ 4918 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4919 zoneid, 0, NULL, 4920 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4921 MATCH_IRE_RJ_BHOLE, ipst); 4922 if (src_ire == NULL) { 4923 error = EHOSTUNREACH; 4924 goto bad_addr; 4925 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4926 if (!(src_ire->ire_type & IRE_HOST)) 4927 error = ENETUNREACH; 4928 else 4929 error = EHOSTUNREACH; 4930 goto bad_addr; 4931 } 4932 if (src_addr == INADDR_ANY) 4933 src_addr = src_ire->ire_src_addr; 4934 ire_refrele(src_ire); 4935 src_ire = NULL; 4936 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4937 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4938 src_addr = sire->ire_src_addr; 4939 ire_refrele(dst_ire); 4940 dst_ire = sire; 4941 sire = NULL; 4942 } else { 4943 /* 4944 * Pick a source address so that a proper inbound 4945 * load spreading would happen. 4946 */ 4947 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4948 ipif_t *src_ipif = NULL; 4949 ire_t *ipif_ire; 4950 4951 /* 4952 * Supply a local source address such that inbound 4953 * load spreading happens. 4954 * 4955 * Determine the best source address on this ill for 4956 * the destination. 4957 * 4958 * 1) For broadcast, we should return a broadcast ire 4959 * found above so that upper layers know that the 4960 * destination address is a broadcast address. 4961 * 4962 * 2) If this is part of a group, select a better 4963 * source address so that better inbound load 4964 * balancing happens. Do the same if the ipif 4965 * is DEPRECATED. 4966 * 4967 * 3) If the outgoing interface is part of a usesrc 4968 * group, then try selecting a source address from 4969 * the usesrc ILL. 4970 */ 4971 if ((dst_ire->ire_zoneid != zoneid && 4972 dst_ire->ire_zoneid != ALL_ZONES) || 4973 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4974 (!(dst_ire->ire_type & IRE_BROADCAST) && 4975 ((dst_ill->ill_group != NULL) || 4976 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4977 (dst_ill->ill_usesrc_ifindex != 0)))) { 4978 /* 4979 * If the destination is reachable via a 4980 * given gateway, the selected source address 4981 * should be in the same subnet as the gateway. 4982 * Otherwise, the destination is not reachable. 4983 * 4984 * If there are no interfaces on the same subnet 4985 * as the destination, ipif_select_source gives 4986 * first non-deprecated interface which might be 4987 * on a different subnet than the gateway. 4988 * This is not desirable. Hence pass the dst_ire 4989 * source address to ipif_select_source. 4990 * It is sure that the destination is reachable 4991 * with the dst_ire source address subnet. 4992 * So passing dst_ire source address to 4993 * ipif_select_source will make sure that the 4994 * selected source will be on the same subnet 4995 * as dst_ire source address. 4996 */ 4997 ipaddr_t saddr = 4998 dst_ire->ire_ipif->ipif_src_addr; 4999 src_ipif = ipif_select_source(dst_ill, 5000 saddr, zoneid); 5001 if (src_ipif != NULL) { 5002 if (IS_VNI(src_ipif->ipif_ill)) { 5003 /* 5004 * For VNI there is no 5005 * interface route 5006 */ 5007 src_addr = 5008 src_ipif->ipif_src_addr; 5009 } else { 5010 ipif_ire = 5011 ipif_to_ire(src_ipif); 5012 if (ipif_ire != NULL) { 5013 IRE_REFRELE(dst_ire); 5014 dst_ire = ipif_ire; 5015 } 5016 src_addr = 5017 dst_ire->ire_src_addr; 5018 } 5019 ipif_refrele(src_ipif); 5020 } else { 5021 src_addr = dst_ire->ire_src_addr; 5022 } 5023 } else { 5024 src_addr = dst_ire->ire_src_addr; 5025 } 5026 } 5027 } 5028 5029 /* 5030 * We do ire_route_lookup() here (and not 5031 * interface lookup as we assert that 5032 * src_addr should only come from an 5033 * UP interface for hard binding. 5034 */ 5035 ASSERT(src_ire == NULL); 5036 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5037 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5038 /* src_ire must be a local|loopback */ 5039 if (!IRE_IS_LOCAL(src_ire)) { 5040 if (ip_debug > 2) { 5041 pr_addr_dbg("ip_bind_connected: bad connected " 5042 "src %s\n", AF_INET, &src_addr); 5043 } 5044 error = EADDRNOTAVAIL; 5045 goto bad_addr; 5046 } 5047 5048 /* 5049 * If the source address is a loopback address, the 5050 * destination had best be local or multicast. 5051 * The transports that can't handle multicast will reject 5052 * those addresses. 5053 */ 5054 if (src_ire->ire_type == IRE_LOOPBACK && 5055 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5056 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5057 error = -1; 5058 goto bad_addr; 5059 } 5060 5061 /* 5062 * Allow setting new policies. For example, disconnects come 5063 * down as ipa_t bind. As we would have set conn_policy_cached 5064 * to B_TRUE before, we should set it to B_FALSE, so that policy 5065 * can change after the disconnect. 5066 */ 5067 connp->conn_policy_cached = B_FALSE; 5068 5069 /* 5070 * Set the conn addresses/ports immediately, so the IPsec policy calls 5071 * can handle their passed-in conn's. 5072 */ 5073 5074 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5075 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5076 connp->conn_lport = lport; 5077 connp->conn_fport = fport; 5078 *src_addrp = src_addr; 5079 5080 ASSERT(!(ipsec_policy_set && ire_requested)); 5081 if (ire_requested) { 5082 iulp_t *ulp_info = NULL; 5083 5084 /* 5085 * Note that sire will not be NULL if this is an off-link 5086 * connection and there is not cache for that dest yet. 5087 * 5088 * XXX Because of an existing bug, if there are multiple 5089 * default routes, the IRE returned now may not be the actual 5090 * default route used (default routes are chosen in a 5091 * round robin fashion). So if the metrics for different 5092 * default routes are different, we may return the wrong 5093 * metrics. This will not be a problem if the existing 5094 * bug is fixed. 5095 */ 5096 if (sire != NULL) { 5097 ulp_info = &(sire->ire_uinfo); 5098 } 5099 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5100 error = -1; 5101 goto bad_addr; 5102 } 5103 } else if (ipsec_policy_set) { 5104 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5105 error = -1; 5106 goto bad_addr; 5107 } 5108 } 5109 5110 /* 5111 * Cache IPsec policy in this conn. If we have per-socket policy, 5112 * we'll cache that. If we don't, we'll inherit global policy. 5113 * 5114 * We can't insert until the conn reflects the policy. Note that 5115 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5116 * connections where we don't have a policy. This is to prevent 5117 * global policy lookups in the inbound path. 5118 * 5119 * If we insert before we set conn_policy_cached, 5120 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5121 * because global policy cound be non-empty. We normally call 5122 * ipsec_check_policy() for conn_policy_cached connections only if 5123 * ipc_in_enforce_policy is set. But in this case, 5124 * conn_policy_cached can get set anytime since we made the 5125 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5126 * called, which will make the above assumption false. Thus, we 5127 * need to insert after we set conn_policy_cached. 5128 */ 5129 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5130 goto bad_addr; 5131 5132 if (fanout_insert) { 5133 /* 5134 * The addresses have been verified. Time to insert in 5135 * the correct fanout list. 5136 */ 5137 error = ipcl_conn_insert(connp, protocol, src_addr, 5138 dst_addr, connp->conn_ports); 5139 } 5140 5141 if (error == 0) { 5142 connp->conn_fully_bound = B_TRUE; 5143 /* 5144 * Our initial checks for LSO/MDT have passed; the IRE is not 5145 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5146 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5147 * ip_xxinfo_return(), which performs further checks 5148 * against them and upon success, returns the LSO/MDT info 5149 * mblk which we will attach to the bind acknowledgment. 5150 */ 5151 if (lso_dst_ire != NULL) { 5152 mblk_t *lsoinfo_mp; 5153 5154 ASSERT(ill->ill_lso_capab != NULL); 5155 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5156 ill->ill_name, ill->ill_lso_capab)) != NULL) 5157 linkb(mp, lsoinfo_mp); 5158 } else if (md_dst_ire != NULL) { 5159 mblk_t *mdinfo_mp; 5160 5161 ASSERT(ill->ill_mdt_capab != NULL); 5162 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5163 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5164 linkb(mp, mdinfo_mp); 5165 } 5166 } 5167 bad_addr: 5168 if (ipsec_policy_set) { 5169 ASSERT(policy_mp == mp->b_cont); 5170 ASSERT(policy_mp != NULL); 5171 freeb(policy_mp); 5172 /* 5173 * As of now assume that nothing else accompanies 5174 * IPSEC_POLICY_SET. 5175 */ 5176 mp->b_cont = NULL; 5177 } 5178 if (src_ire != NULL) 5179 IRE_REFRELE(src_ire); 5180 if (dst_ire != NULL) 5181 IRE_REFRELE(dst_ire); 5182 if (sire != NULL) 5183 IRE_REFRELE(sire); 5184 if (md_dst_ire != NULL) 5185 IRE_REFRELE(md_dst_ire); 5186 if (lso_dst_ire != NULL) 5187 IRE_REFRELE(lso_dst_ire); 5188 return (error); 5189 } 5190 5191 /* 5192 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5193 * Prefers dst_ire over src_ire. 5194 */ 5195 static boolean_t 5196 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5197 { 5198 mblk_t *mp1; 5199 ire_t *ret_ire = NULL; 5200 5201 mp1 = mp->b_cont; 5202 ASSERT(mp1 != NULL); 5203 5204 if (ire != NULL) { 5205 /* 5206 * mp1 initialized above to IRE_DB_REQ_TYPE 5207 * appended mblk. Its <upper protocol>'s 5208 * job to make sure there is room. 5209 */ 5210 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5211 return (0); 5212 5213 mp1->b_datap->db_type = IRE_DB_TYPE; 5214 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5215 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5216 ret_ire = (ire_t *)mp1->b_rptr; 5217 /* 5218 * Pass the latest setting of the ip_path_mtu_discovery and 5219 * copy the ulp info if any. 5220 */ 5221 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5222 IPH_DF : 0; 5223 if (ulp_info != NULL) { 5224 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5225 sizeof (iulp_t)); 5226 } 5227 ret_ire->ire_mp = mp1; 5228 } else { 5229 /* 5230 * No IRE was found. Remove IRE mblk. 5231 */ 5232 mp->b_cont = mp1->b_cont; 5233 freeb(mp1); 5234 } 5235 5236 return (1); 5237 } 5238 5239 /* 5240 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5241 * the final piece where we don't. Return a pointer to the first mblk in the 5242 * result, and update the pointer to the next mblk to chew on. If anything 5243 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5244 * NULL pointer. 5245 */ 5246 mblk_t * 5247 ip_carve_mp(mblk_t **mpp, ssize_t len) 5248 { 5249 mblk_t *mp0; 5250 mblk_t *mp1; 5251 mblk_t *mp2; 5252 5253 if (!len || !mpp || !(mp0 = *mpp)) 5254 return (NULL); 5255 /* If we aren't going to consume the first mblk, we need a dup. */ 5256 if (mp0->b_wptr - mp0->b_rptr > len) { 5257 mp1 = dupb(mp0); 5258 if (mp1) { 5259 /* Partition the data between the two mblks. */ 5260 mp1->b_wptr = mp1->b_rptr + len; 5261 mp0->b_rptr = mp1->b_wptr; 5262 /* 5263 * after adjustments if mblk not consumed is now 5264 * unaligned, try to align it. If this fails free 5265 * all messages and let upper layer recover. 5266 */ 5267 if (!OK_32PTR(mp0->b_rptr)) { 5268 if (!pullupmsg(mp0, -1)) { 5269 freemsg(mp0); 5270 freemsg(mp1); 5271 *mpp = NULL; 5272 return (NULL); 5273 } 5274 } 5275 } 5276 return (mp1); 5277 } 5278 /* Eat through as many mblks as we need to get len bytes. */ 5279 len -= mp0->b_wptr - mp0->b_rptr; 5280 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5281 if (mp2->b_wptr - mp2->b_rptr > len) { 5282 /* 5283 * We won't consume the entire last mblk. Like 5284 * above, dup and partition it. 5285 */ 5286 mp1->b_cont = dupb(mp2); 5287 mp1 = mp1->b_cont; 5288 if (!mp1) { 5289 /* 5290 * Trouble. Rather than go to a lot of 5291 * trouble to clean up, we free the messages. 5292 * This won't be any worse than losing it on 5293 * the wire. 5294 */ 5295 freemsg(mp0); 5296 freemsg(mp2); 5297 *mpp = NULL; 5298 return (NULL); 5299 } 5300 mp1->b_wptr = mp1->b_rptr + len; 5301 mp2->b_rptr = mp1->b_wptr; 5302 /* 5303 * after adjustments if mblk not consumed is now 5304 * unaligned, try to align it. If this fails free 5305 * all messages and let upper layer recover. 5306 */ 5307 if (!OK_32PTR(mp2->b_rptr)) { 5308 if (!pullupmsg(mp2, -1)) { 5309 freemsg(mp0); 5310 freemsg(mp2); 5311 *mpp = NULL; 5312 return (NULL); 5313 } 5314 } 5315 *mpp = mp2; 5316 return (mp0); 5317 } 5318 /* Decrement len by the amount we just got. */ 5319 len -= mp2->b_wptr - mp2->b_rptr; 5320 } 5321 /* 5322 * len should be reduced to zero now. If not our caller has 5323 * screwed up. 5324 */ 5325 if (len) { 5326 /* Shouldn't happen! */ 5327 freemsg(mp0); 5328 *mpp = NULL; 5329 return (NULL); 5330 } 5331 /* 5332 * We consumed up to exactly the end of an mblk. Detach the part 5333 * we are returning from the rest of the chain. 5334 */ 5335 mp1->b_cont = NULL; 5336 *mpp = mp2; 5337 return (mp0); 5338 } 5339 5340 /* The ill stream is being unplumbed. Called from ip_close */ 5341 int 5342 ip_modclose(ill_t *ill) 5343 { 5344 boolean_t success; 5345 ipsq_t *ipsq; 5346 ipif_t *ipif; 5347 queue_t *q = ill->ill_rq; 5348 ip_stack_t *ipst = ill->ill_ipst; 5349 clock_t timeout; 5350 5351 /* 5352 * Wait for the ACKs of all deferred control messages to be processed. 5353 * In particular, we wait for a potential capability reset initiated 5354 * in ip_sioctl_plink() to complete before proceeding. 5355 * 5356 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5357 * in case the driver never replies. 5358 */ 5359 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5360 mutex_enter(&ill->ill_lock); 5361 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5362 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5363 /* Timeout */ 5364 break; 5365 } 5366 } 5367 mutex_exit(&ill->ill_lock); 5368 5369 /* 5370 * Forcibly enter the ipsq after some delay. This is to take 5371 * care of the case when some ioctl does not complete because 5372 * we sent a control message to the driver and it did not 5373 * send us a reply. We want to be able to at least unplumb 5374 * and replumb rather than force the user to reboot the system. 5375 */ 5376 success = ipsq_enter(ill, B_FALSE); 5377 5378 /* 5379 * Open/close/push/pop is guaranteed to be single threaded 5380 * per stream by STREAMS. FS guarantees that all references 5381 * from top are gone before close is called. So there can't 5382 * be another close thread that has set CONDEMNED on this ill. 5383 * and cause ipsq_enter to return failure. 5384 */ 5385 ASSERT(success); 5386 ipsq = ill->ill_phyint->phyint_ipsq; 5387 5388 /* 5389 * Mark it condemned. No new reference will be made to this ill. 5390 * Lookup functions will return an error. Threads that try to 5391 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5392 * that the refcnt will drop down to zero. 5393 */ 5394 mutex_enter(&ill->ill_lock); 5395 ill->ill_state_flags |= ILL_CONDEMNED; 5396 for (ipif = ill->ill_ipif; ipif != NULL; 5397 ipif = ipif->ipif_next) { 5398 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5399 } 5400 /* 5401 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5402 * returns error if ILL_CONDEMNED is set 5403 */ 5404 cv_broadcast(&ill->ill_cv); 5405 mutex_exit(&ill->ill_lock); 5406 5407 /* 5408 * Send all the deferred DLPI messages downstream which came in 5409 * during the small window right before ipsq_enter(). We do this 5410 * without waiting for the ACKs because all the ACKs for M_PROTO 5411 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5412 */ 5413 ill_dlpi_send_deferred(ill); 5414 5415 /* 5416 * Shut down fragmentation reassembly. 5417 * ill_frag_timer won't start a timer again. 5418 * Now cancel any existing timer 5419 */ 5420 (void) untimeout(ill->ill_frag_timer_id); 5421 (void) ill_frag_timeout(ill, 0); 5422 5423 /* 5424 * If MOVE was in progress, clear the 5425 * move_in_progress fields also. 5426 */ 5427 if (ill->ill_move_in_progress) { 5428 ILL_CLEAR_MOVE(ill); 5429 } 5430 5431 /* 5432 * Call ill_delete to bring down the ipifs, ilms and ill on 5433 * this ill. Then wait for the refcnts to drop to zero. 5434 * ill_is_freeable checks whether the ill is really quiescent. 5435 * Then make sure that threads that are waiting to enter the 5436 * ipsq have seen the error returned by ipsq_enter and have 5437 * gone away. Then we call ill_delete_tail which does the 5438 * DL_UNBIND_REQ with the driver and then qprocsoff. 5439 */ 5440 ill_delete(ill); 5441 mutex_enter(&ill->ill_lock); 5442 while (!ill_is_freeable(ill)) 5443 cv_wait(&ill->ill_cv, &ill->ill_lock); 5444 while (ill->ill_waiters) 5445 cv_wait(&ill->ill_cv, &ill->ill_lock); 5446 5447 mutex_exit(&ill->ill_lock); 5448 5449 /* 5450 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5451 * it held until the end of the function since the cleanup 5452 * below needs to be able to use the ip_stack_t. 5453 */ 5454 netstack_hold(ipst->ips_netstack); 5455 5456 /* qprocsoff is called in ill_delete_tail */ 5457 ill_delete_tail(ill); 5458 ASSERT(ill->ill_ipst == NULL); 5459 5460 /* 5461 * Walk through all upper (conn) streams and qenable 5462 * those that have queued data. 5463 * close synchronization needs this to 5464 * be done to ensure that all upper layers blocked 5465 * due to flow control to the closing device 5466 * get unblocked. 5467 */ 5468 ip1dbg(("ip_wsrv: walking\n")); 5469 conn_walk_drain(ipst); 5470 5471 mutex_enter(&ipst->ips_ip_mi_lock); 5472 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5473 mutex_exit(&ipst->ips_ip_mi_lock); 5474 5475 /* 5476 * credp could be null if the open didn't succeed and ip_modopen 5477 * itself calls ip_close. 5478 */ 5479 if (ill->ill_credp != NULL) 5480 crfree(ill->ill_credp); 5481 5482 mutex_enter(&ill->ill_lock); 5483 ill_nic_info_dispatch(ill); 5484 mutex_exit(&ill->ill_lock); 5485 5486 /* 5487 * Now we are done with the module close pieces that 5488 * need the netstack_t. 5489 */ 5490 netstack_rele(ipst->ips_netstack); 5491 5492 mi_close_free((IDP)ill); 5493 q->q_ptr = WR(q)->q_ptr = NULL; 5494 5495 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5496 5497 return (0); 5498 } 5499 5500 /* 5501 * This is called as part of close() for IP, UDP, ICMP, and RTS 5502 * in order to quiesce the conn. 5503 */ 5504 void 5505 ip_quiesce_conn(conn_t *connp) 5506 { 5507 boolean_t drain_cleanup_reqd = B_FALSE; 5508 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5509 boolean_t ilg_cleanup_reqd = B_FALSE; 5510 ip_stack_t *ipst; 5511 5512 ASSERT(!IPCL_IS_TCP(connp)); 5513 ipst = connp->conn_netstack->netstack_ip; 5514 5515 /* 5516 * Mark the conn as closing, and this conn must not be 5517 * inserted in future into any list. Eg. conn_drain_insert(), 5518 * won't insert this conn into the conn_drain_list. 5519 * Similarly ill_pending_mp_add() will not add any mp to 5520 * the pending mp list, after this conn has started closing. 5521 * 5522 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5523 * cannot get set henceforth. 5524 */ 5525 mutex_enter(&connp->conn_lock); 5526 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5527 connp->conn_state_flags |= CONN_CLOSING; 5528 if (connp->conn_idl != NULL) 5529 drain_cleanup_reqd = B_TRUE; 5530 if (connp->conn_oper_pending_ill != NULL) 5531 conn_ioctl_cleanup_reqd = B_TRUE; 5532 if (connp->conn_dhcpinit_ill != NULL) { 5533 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5534 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5535 connp->conn_dhcpinit_ill = NULL; 5536 } 5537 if (connp->conn_ilg_inuse != 0) 5538 ilg_cleanup_reqd = B_TRUE; 5539 mutex_exit(&connp->conn_lock); 5540 5541 if (conn_ioctl_cleanup_reqd) 5542 conn_ioctl_cleanup(connp); 5543 5544 if (is_system_labeled() && connp->conn_anon_port) { 5545 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5546 connp->conn_mlp_type, connp->conn_ulp, 5547 ntohs(connp->conn_lport), B_FALSE); 5548 connp->conn_anon_port = 0; 5549 } 5550 connp->conn_mlp_type = mlptSingle; 5551 5552 /* 5553 * Remove this conn from any fanout list it is on. 5554 * and then wait for any threads currently operating 5555 * on this endpoint to finish 5556 */ 5557 ipcl_hash_remove(connp); 5558 5559 /* 5560 * Remove this conn from the drain list, and do 5561 * any other cleanup that may be required. 5562 * (Only non-tcp streams may have a non-null conn_idl. 5563 * TCP streams are never flow controlled, and 5564 * conn_idl will be null) 5565 */ 5566 if (drain_cleanup_reqd) 5567 conn_drain_tail(connp, B_TRUE); 5568 5569 if (connp == ipst->ips_ip_g_mrouter) 5570 (void) ip_mrouter_done(NULL, ipst); 5571 5572 if (ilg_cleanup_reqd) 5573 ilg_delete_all(connp); 5574 5575 conn_delete_ire(connp, NULL); 5576 5577 /* 5578 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5579 * callers from write side can't be there now because close 5580 * is in progress. The only other caller is ipcl_walk 5581 * which checks for the condemned flag. 5582 */ 5583 mutex_enter(&connp->conn_lock); 5584 connp->conn_state_flags |= CONN_CONDEMNED; 5585 while (connp->conn_ref != 1) 5586 cv_wait(&connp->conn_cv, &connp->conn_lock); 5587 connp->conn_state_flags |= CONN_QUIESCED; 5588 mutex_exit(&connp->conn_lock); 5589 } 5590 5591 /* ARGSUSED */ 5592 int 5593 ip_close(queue_t *q, int flags) 5594 { 5595 conn_t *connp; 5596 5597 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5598 5599 /* 5600 * Call the appropriate delete routine depending on whether this is 5601 * a module or device. 5602 */ 5603 if (WR(q)->q_next != NULL) { 5604 /* This is a module close */ 5605 return (ip_modclose((ill_t *)q->q_ptr)); 5606 } 5607 5608 connp = q->q_ptr; 5609 ip_quiesce_conn(connp); 5610 5611 qprocsoff(q); 5612 5613 /* 5614 * Now we are truly single threaded on this stream, and can 5615 * delete the things hanging off the connp, and finally the connp. 5616 * We removed this connp from the fanout list, it cannot be 5617 * accessed thru the fanouts, and we already waited for the 5618 * conn_ref to drop to 0. We are already in close, so 5619 * there cannot be any other thread from the top. qprocsoff 5620 * has completed, and service has completed or won't run in 5621 * future. 5622 */ 5623 ASSERT(connp->conn_ref == 1); 5624 5625 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5626 5627 connp->conn_ref--; 5628 ipcl_conn_destroy(connp); 5629 5630 q->q_ptr = WR(q)->q_ptr = NULL; 5631 return (0); 5632 } 5633 5634 /* 5635 * Wapper around putnext() so that ip_rts_request can merely use 5636 * conn_recv. 5637 */ 5638 /*ARGSUSED2*/ 5639 static void 5640 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5641 { 5642 conn_t *connp = (conn_t *)arg1; 5643 5644 putnext(connp->conn_rq, mp); 5645 } 5646 5647 /* Return the IP checksum for the IP header at "iph". */ 5648 uint16_t 5649 ip_csum_hdr(ipha_t *ipha) 5650 { 5651 uint16_t *uph; 5652 uint32_t sum; 5653 int opt_len; 5654 5655 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5656 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5657 uph = (uint16_t *)ipha; 5658 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5659 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5660 if (opt_len > 0) { 5661 do { 5662 sum += uph[10]; 5663 sum += uph[11]; 5664 uph += 2; 5665 } while (--opt_len); 5666 } 5667 sum = (sum & 0xFFFF) + (sum >> 16); 5668 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5669 if (sum == 0xffff) 5670 sum = 0; 5671 return ((uint16_t)sum); 5672 } 5673 5674 /* 5675 * Called when the module is about to be unloaded 5676 */ 5677 void 5678 ip_ddi_destroy(void) 5679 { 5680 tnet_fini(); 5681 5682 icmp_ddi_destroy(); 5683 rts_ddi_destroy(); 5684 udp_ddi_destroy(); 5685 sctp_ddi_g_destroy(); 5686 tcp_ddi_g_destroy(); 5687 ipsec_policy_g_destroy(); 5688 ipcl_g_destroy(); 5689 ip_net_g_destroy(); 5690 ip_ire_g_fini(); 5691 inet_minor_destroy(ip_minor_arena_sa); 5692 #if defined(_LP64) 5693 inet_minor_destroy(ip_minor_arena_la); 5694 #endif 5695 5696 #ifdef DEBUG 5697 list_destroy(&ip_thread_list); 5698 rw_destroy(&ip_thread_rwlock); 5699 tsd_destroy(&ip_thread_data); 5700 #endif 5701 5702 netstack_unregister(NS_IP); 5703 } 5704 5705 /* 5706 * First step in cleanup. 5707 */ 5708 /* ARGSUSED */ 5709 static void 5710 ip_stack_shutdown(netstackid_t stackid, void *arg) 5711 { 5712 ip_stack_t *ipst = (ip_stack_t *)arg; 5713 5714 #ifdef NS_DEBUG 5715 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5716 #endif 5717 5718 /* Get rid of loopback interfaces and their IREs */ 5719 ip_loopback_cleanup(ipst); 5720 } 5721 5722 /* 5723 * Free the IP stack instance. 5724 */ 5725 static void 5726 ip_stack_fini(netstackid_t stackid, void *arg) 5727 { 5728 ip_stack_t *ipst = (ip_stack_t *)arg; 5729 int ret; 5730 5731 #ifdef NS_DEBUG 5732 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5733 #endif 5734 ipv4_hook_destroy(ipst); 5735 ipv6_hook_destroy(ipst); 5736 ip_net_destroy(ipst); 5737 5738 rw_destroy(&ipst->ips_srcid_lock); 5739 5740 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5741 ipst->ips_ip_mibkp = NULL; 5742 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5743 ipst->ips_icmp_mibkp = NULL; 5744 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5745 ipst->ips_ip_kstat = NULL; 5746 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5747 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5748 ipst->ips_ip6_kstat = NULL; 5749 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5750 5751 nd_free(&ipst->ips_ip_g_nd); 5752 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5753 ipst->ips_param_arr = NULL; 5754 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5755 ipst->ips_ndp_arr = NULL; 5756 5757 ip_mrouter_stack_destroy(ipst); 5758 5759 mutex_destroy(&ipst->ips_ip_mi_lock); 5760 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5761 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5762 rw_destroy(&ipst->ips_ip_g_nd_lock); 5763 5764 ret = untimeout(ipst->ips_igmp_timeout_id); 5765 if (ret == -1) { 5766 ASSERT(ipst->ips_igmp_timeout_id == 0); 5767 } else { 5768 ASSERT(ipst->ips_igmp_timeout_id != 0); 5769 ipst->ips_igmp_timeout_id = 0; 5770 } 5771 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5772 if (ret == -1) { 5773 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5774 } else { 5775 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5776 ipst->ips_igmp_slowtimeout_id = 0; 5777 } 5778 ret = untimeout(ipst->ips_mld_timeout_id); 5779 if (ret == -1) { 5780 ASSERT(ipst->ips_mld_timeout_id == 0); 5781 } else { 5782 ASSERT(ipst->ips_mld_timeout_id != 0); 5783 ipst->ips_mld_timeout_id = 0; 5784 } 5785 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5786 if (ret == -1) { 5787 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5788 } else { 5789 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5790 ipst->ips_mld_slowtimeout_id = 0; 5791 } 5792 ret = untimeout(ipst->ips_ip_ire_expire_id); 5793 if (ret == -1) { 5794 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5795 } else { 5796 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5797 ipst->ips_ip_ire_expire_id = 0; 5798 } 5799 5800 mutex_destroy(&ipst->ips_igmp_timer_lock); 5801 mutex_destroy(&ipst->ips_mld_timer_lock); 5802 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5803 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5804 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5805 rw_destroy(&ipst->ips_ill_g_lock); 5806 5807 ip_ire_fini(ipst); 5808 ip6_asp_free(ipst); 5809 conn_drain_fini(ipst); 5810 ipcl_destroy(ipst); 5811 5812 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5813 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5814 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5815 ipst->ips_ndp4 = NULL; 5816 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5817 ipst->ips_ndp6 = NULL; 5818 5819 if (ipst->ips_loopback_ksp != NULL) { 5820 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5821 ipst->ips_loopback_ksp = NULL; 5822 } 5823 5824 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5825 ipst->ips_phyint_g_list = NULL; 5826 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5827 ipst->ips_ill_g_heads = NULL; 5828 5829 kmem_free(ipst, sizeof (*ipst)); 5830 } 5831 5832 /* 5833 * This function is called from the TSD destructor, and is used to debug 5834 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5835 * details. 5836 */ 5837 static void 5838 ip_thread_exit(void *phash) 5839 { 5840 th_hash_t *thh = phash; 5841 5842 rw_enter(&ip_thread_rwlock, RW_WRITER); 5843 list_remove(&ip_thread_list, thh); 5844 rw_exit(&ip_thread_rwlock); 5845 mod_hash_destroy_hash(thh->thh_hash); 5846 kmem_free(thh, sizeof (*thh)); 5847 } 5848 5849 /* 5850 * Called when the IP kernel module is loaded into the kernel 5851 */ 5852 void 5853 ip_ddi_init(void) 5854 { 5855 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5856 5857 /* 5858 * For IP and TCP the minor numbers should start from 2 since we have 4 5859 * initial devices: ip, ip6, tcp, tcp6. 5860 */ 5861 /* 5862 * If this is a 64-bit kernel, then create two separate arenas - 5863 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5864 * other for socket apps in the range 2^^18 through 2^^32-1. 5865 */ 5866 ip_minor_arena_la = NULL; 5867 ip_minor_arena_sa = NULL; 5868 #if defined(_LP64) 5869 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5870 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5871 cmn_err(CE_PANIC, 5872 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5873 } 5874 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5875 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5876 cmn_err(CE_PANIC, 5877 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5878 } 5879 #else 5880 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5881 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5882 cmn_err(CE_PANIC, 5883 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5884 } 5885 #endif 5886 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5887 5888 ipcl_g_init(); 5889 ip_ire_g_init(); 5890 ip_net_g_init(); 5891 5892 #ifdef DEBUG 5893 tsd_create(&ip_thread_data, ip_thread_exit); 5894 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5895 list_create(&ip_thread_list, sizeof (th_hash_t), 5896 offsetof(th_hash_t, thh_link)); 5897 #endif 5898 5899 /* 5900 * We want to be informed each time a stack is created or 5901 * destroyed in the kernel, so we can maintain the 5902 * set of udp_stack_t's. 5903 */ 5904 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5905 ip_stack_fini); 5906 5907 ipsec_policy_g_init(); 5908 tcp_ddi_g_init(); 5909 sctp_ddi_g_init(); 5910 5911 tnet_init(); 5912 5913 udp_ddi_init(); 5914 rts_ddi_init(); 5915 icmp_ddi_init(); 5916 } 5917 5918 /* 5919 * Initialize the IP stack instance. 5920 */ 5921 static void * 5922 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5923 { 5924 ip_stack_t *ipst; 5925 ipparam_t *pa; 5926 ipndp_t *na; 5927 5928 #ifdef NS_DEBUG 5929 printf("ip_stack_init(stack %d)\n", stackid); 5930 #endif 5931 5932 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5933 ipst->ips_netstack = ns; 5934 5935 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5936 KM_SLEEP); 5937 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5938 KM_SLEEP); 5939 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5940 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5941 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5942 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5943 5944 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5945 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5946 ipst->ips_igmp_deferred_next = INFINITY; 5947 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5948 ipst->ips_mld_deferred_next = INFINITY; 5949 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5950 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5951 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5952 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5953 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5954 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5955 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5956 5957 ipcl_init(ipst); 5958 ip_ire_init(ipst); 5959 ip6_asp_init(ipst); 5960 ipif_init(ipst); 5961 conn_drain_init(ipst); 5962 ip_mrouter_stack_init(ipst); 5963 5964 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5965 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5966 5967 ipst->ips_ip_multirt_log_interval = 1000; 5968 5969 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5970 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5971 ipst->ips_ill_index = 1; 5972 5973 ipst->ips_saved_ip_g_forward = -1; 5974 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5975 5976 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5977 ipst->ips_param_arr = pa; 5978 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5979 5980 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5981 ipst->ips_ndp_arr = na; 5982 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5983 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5984 (caddr_t)&ipst->ips_ip_g_forward; 5985 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5986 (caddr_t)&ipst->ips_ipv6_forward; 5987 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5988 "ip_cgtp_filter") == 0); 5989 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5990 (caddr_t)&ipst->ips_ip_cgtp_filter; 5991 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5992 "ipmp_hook_emulation") == 0); 5993 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5994 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5995 5996 (void) ip_param_register(&ipst->ips_ip_g_nd, 5997 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5998 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5999 6000 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6001 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6002 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6003 ipst->ips_ip6_kstat = 6004 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6005 6006 ipst->ips_ipmp_enable_failback = B_TRUE; 6007 6008 ipst->ips_ip_src_id = 1; 6009 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6010 6011 ip_net_init(ipst, ns); 6012 ipv4_hook_init(ipst); 6013 ipv6_hook_init(ipst); 6014 6015 return (ipst); 6016 } 6017 6018 /* 6019 * Allocate and initialize a DLPI template of the specified length. (May be 6020 * called as writer.) 6021 */ 6022 mblk_t * 6023 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6024 { 6025 mblk_t *mp; 6026 6027 mp = allocb(len, BPRI_MED); 6028 if (!mp) 6029 return (NULL); 6030 6031 /* 6032 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6033 * of which we don't seem to use) are sent with M_PCPROTO, and 6034 * that other DLPI are M_PROTO. 6035 */ 6036 if (prim == DL_INFO_REQ) { 6037 mp->b_datap->db_type = M_PCPROTO; 6038 } else { 6039 mp->b_datap->db_type = M_PROTO; 6040 } 6041 6042 mp->b_wptr = mp->b_rptr + len; 6043 bzero(mp->b_rptr, len); 6044 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6045 return (mp); 6046 } 6047 6048 /* 6049 * Debug formatting routine. Returns a character string representation of the 6050 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6051 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6052 * 6053 * Once the ndd table-printing interfaces are removed, this can be changed to 6054 * standard dotted-decimal form. 6055 */ 6056 char * 6057 ip_dot_addr(ipaddr_t addr, char *buf) 6058 { 6059 uint8_t *ap = (uint8_t *)&addr; 6060 6061 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6062 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6063 return (buf); 6064 } 6065 6066 /* 6067 * Write the given MAC address as a printable string in the usual colon- 6068 * separated format. 6069 */ 6070 const char * 6071 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6072 { 6073 char *bp; 6074 6075 if (alen == 0 || buflen < 4) 6076 return ("?"); 6077 bp = buf; 6078 for (;;) { 6079 /* 6080 * If there are more MAC address bytes available, but we won't 6081 * have any room to print them, then add "..." to the string 6082 * instead. See below for the 'magic number' explanation. 6083 */ 6084 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6085 (void) strcpy(bp, "..."); 6086 break; 6087 } 6088 (void) sprintf(bp, "%02x", *addr++); 6089 bp += 2; 6090 if (--alen == 0) 6091 break; 6092 *bp++ = ':'; 6093 buflen -= 3; 6094 /* 6095 * At this point, based on the first 'if' statement above, 6096 * either alen == 1 and buflen >= 3, or alen > 1 and 6097 * buflen >= 4. The first case leaves room for the final "xx" 6098 * number and trailing NUL byte. The second leaves room for at 6099 * least "...". Thus the apparently 'magic' numbers chosen for 6100 * that statement. 6101 */ 6102 } 6103 return (buf); 6104 } 6105 6106 /* 6107 * Send an ICMP error after patching up the packet appropriately. Returns 6108 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6109 */ 6110 static boolean_t 6111 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6112 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6113 zoneid_t zoneid, ip_stack_t *ipst) 6114 { 6115 ipha_t *ipha; 6116 mblk_t *first_mp; 6117 boolean_t secure; 6118 unsigned char db_type; 6119 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6120 6121 first_mp = mp; 6122 if (mctl_present) { 6123 mp = mp->b_cont; 6124 secure = ipsec_in_is_secure(first_mp); 6125 ASSERT(mp != NULL); 6126 } else { 6127 /* 6128 * If this is an ICMP error being reported - which goes 6129 * up as M_CTLs, we need to convert them to M_DATA till 6130 * we finish checking with global policy because 6131 * ipsec_check_global_policy() assumes M_DATA as clear 6132 * and M_CTL as secure. 6133 */ 6134 db_type = DB_TYPE(mp); 6135 DB_TYPE(mp) = M_DATA; 6136 secure = B_FALSE; 6137 } 6138 /* 6139 * We are generating an icmp error for some inbound packet. 6140 * Called from all ip_fanout_(udp, tcp, proto) functions. 6141 * Before we generate an error, check with global policy 6142 * to see whether this is allowed to enter the system. As 6143 * there is no "conn", we are checking with global policy. 6144 */ 6145 ipha = (ipha_t *)mp->b_rptr; 6146 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6147 first_mp = ipsec_check_global_policy(first_mp, NULL, 6148 ipha, NULL, mctl_present, ipst->ips_netstack); 6149 if (first_mp == NULL) 6150 return (B_FALSE); 6151 } 6152 6153 if (!mctl_present) 6154 DB_TYPE(mp) = db_type; 6155 6156 if (flags & IP_FF_SEND_ICMP) { 6157 if (flags & IP_FF_HDR_COMPLETE) { 6158 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6159 freemsg(first_mp); 6160 return (B_TRUE); 6161 } 6162 } 6163 if (flags & IP_FF_CKSUM) { 6164 /* 6165 * Have to correct checksum since 6166 * the packet might have been 6167 * fragmented and the reassembly code in ip_rput 6168 * does not restore the IP checksum. 6169 */ 6170 ipha->ipha_hdr_checksum = 0; 6171 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6172 } 6173 switch (icmp_type) { 6174 case ICMP_DEST_UNREACHABLE: 6175 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6176 ipst); 6177 break; 6178 default: 6179 freemsg(first_mp); 6180 break; 6181 } 6182 } else { 6183 freemsg(first_mp); 6184 return (B_FALSE); 6185 } 6186 6187 return (B_TRUE); 6188 } 6189 6190 /* 6191 * Used to send an ICMP error message when a packet is received for 6192 * a protocol that is not supported. The mblk passed as argument 6193 * is consumed by this function. 6194 */ 6195 void 6196 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6197 ip_stack_t *ipst) 6198 { 6199 mblk_t *mp; 6200 ipha_t *ipha; 6201 ill_t *ill; 6202 ipsec_in_t *ii; 6203 6204 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6205 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6206 6207 mp = ipsec_mp->b_cont; 6208 ipsec_mp->b_cont = NULL; 6209 ipha = (ipha_t *)mp->b_rptr; 6210 /* Get ill from index in ipsec_in_t. */ 6211 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6212 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6213 ipst); 6214 if (ill != NULL) { 6215 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6216 if (ip_fanout_send_icmp(q, mp, flags, 6217 ICMP_DEST_UNREACHABLE, 6218 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6219 BUMP_MIB(ill->ill_ip_mib, 6220 ipIfStatsInUnknownProtos); 6221 } 6222 } else { 6223 if (ip_fanout_send_icmp_v6(q, mp, flags, 6224 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6225 0, B_FALSE, zoneid, ipst)) { 6226 BUMP_MIB(ill->ill_ip_mib, 6227 ipIfStatsInUnknownProtos); 6228 } 6229 } 6230 ill_refrele(ill); 6231 } else { /* re-link for the freemsg() below. */ 6232 ipsec_mp->b_cont = mp; 6233 } 6234 6235 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6236 freemsg(ipsec_mp); 6237 } 6238 6239 /* 6240 * See if the inbound datagram has had IPsec processing applied to it. 6241 */ 6242 boolean_t 6243 ipsec_in_is_secure(mblk_t *ipsec_mp) 6244 { 6245 ipsec_in_t *ii; 6246 6247 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6248 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6249 6250 if (ii->ipsec_in_loopback) { 6251 return (ii->ipsec_in_secure); 6252 } else { 6253 return (ii->ipsec_in_ah_sa != NULL || 6254 ii->ipsec_in_esp_sa != NULL || 6255 ii->ipsec_in_decaps); 6256 } 6257 } 6258 6259 /* 6260 * Handle protocols with which IP is less intimate. There 6261 * can be more than one stream bound to a particular 6262 * protocol. When this is the case, normally each one gets a copy 6263 * of any incoming packets. 6264 * 6265 * IPsec NOTE : 6266 * 6267 * Don't allow a secure packet going up a non-secure connection. 6268 * We don't allow this because 6269 * 6270 * 1) Reply might go out in clear which will be dropped at 6271 * the sending side. 6272 * 2) If the reply goes out in clear it will give the 6273 * adversary enough information for getting the key in 6274 * most of the cases. 6275 * 6276 * Moreover getting a secure packet when we expect clear 6277 * implies that SA's were added without checking for 6278 * policy on both ends. This should not happen once ISAKMP 6279 * is used to negotiate SAs as SAs will be added only after 6280 * verifying the policy. 6281 * 6282 * NOTE : If the packet was tunneled and not multicast we only send 6283 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6284 * back to delivering packets to AF_INET6 raw sockets. 6285 * 6286 * IPQoS Notes: 6287 * Once we have determined the client, invoke IPPF processing. 6288 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6289 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6290 * ip_policy will be false. 6291 * 6292 * Zones notes: 6293 * Currently only applications in the global zone can create raw sockets for 6294 * protocols other than ICMP. So unlike the broadcast / multicast case of 6295 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6296 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6297 */ 6298 static void 6299 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6300 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6301 zoneid_t zoneid) 6302 { 6303 queue_t *rq; 6304 mblk_t *mp1, *first_mp1; 6305 uint_t protocol = ipha->ipha_protocol; 6306 ipaddr_t dst; 6307 boolean_t one_only; 6308 mblk_t *first_mp = mp; 6309 boolean_t secure; 6310 uint32_t ill_index; 6311 conn_t *connp, *first_connp, *next_connp; 6312 connf_t *connfp; 6313 boolean_t shared_addr; 6314 mib2_ipIfStatsEntry_t *mibptr; 6315 ip_stack_t *ipst = recv_ill->ill_ipst; 6316 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6317 6318 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6319 if (mctl_present) { 6320 mp = first_mp->b_cont; 6321 secure = ipsec_in_is_secure(first_mp); 6322 ASSERT(mp != NULL); 6323 } else { 6324 secure = B_FALSE; 6325 } 6326 dst = ipha->ipha_dst; 6327 /* 6328 * If the packet was tunneled and not multicast we only send to it 6329 * the first match. 6330 */ 6331 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6332 !CLASSD(dst)); 6333 6334 shared_addr = (zoneid == ALL_ZONES); 6335 if (shared_addr) { 6336 /* 6337 * We don't allow multilevel ports for raw IP, so no need to 6338 * check for that here. 6339 */ 6340 zoneid = tsol_packet_to_zoneid(mp); 6341 } 6342 6343 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6344 mutex_enter(&connfp->connf_lock); 6345 connp = connfp->connf_head; 6346 for (connp = connfp->connf_head; connp != NULL; 6347 connp = connp->conn_next) { 6348 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6349 zoneid) && 6350 (!is_system_labeled() || 6351 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6352 connp))) { 6353 break; 6354 } 6355 } 6356 6357 if (connp == NULL || connp->conn_upq == NULL) { 6358 /* 6359 * No one bound to these addresses. Is 6360 * there a client that wants all 6361 * unclaimed datagrams? 6362 */ 6363 mutex_exit(&connfp->connf_lock); 6364 /* 6365 * Check for IPPROTO_ENCAP... 6366 */ 6367 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6368 /* 6369 * If an IPsec mblk is here on a multicast 6370 * tunnel (using ip_mroute stuff), check policy here, 6371 * THEN ship off to ip_mroute_decap(). 6372 * 6373 * BTW, If I match a configured IP-in-IP 6374 * tunnel, this path will not be reached, and 6375 * ip_mroute_decap will never be called. 6376 */ 6377 first_mp = ipsec_check_global_policy(first_mp, connp, 6378 ipha, NULL, mctl_present, ipst->ips_netstack); 6379 if (first_mp != NULL) { 6380 if (mctl_present) 6381 freeb(first_mp); 6382 ip_mroute_decap(q, mp, ill); 6383 } /* Else we already freed everything! */ 6384 } else { 6385 /* 6386 * Otherwise send an ICMP protocol unreachable. 6387 */ 6388 if (ip_fanout_send_icmp(q, first_mp, flags, 6389 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6390 mctl_present, zoneid, ipst)) { 6391 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6392 } 6393 } 6394 return; 6395 } 6396 CONN_INC_REF(connp); 6397 first_connp = connp; 6398 6399 /* 6400 * Only send message to one tunnel driver by immediately 6401 * terminating the loop. 6402 */ 6403 connp = one_only ? NULL : connp->conn_next; 6404 6405 for (;;) { 6406 while (connp != NULL) { 6407 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6408 flags, zoneid) && 6409 (!is_system_labeled() || 6410 tsol_receive_local(mp, &dst, IPV4_VERSION, 6411 shared_addr, connp))) 6412 break; 6413 connp = connp->conn_next; 6414 } 6415 6416 /* 6417 * Copy the packet. 6418 */ 6419 if (connp == NULL || connp->conn_upq == NULL || 6420 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6421 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6422 /* 6423 * No more interested clients or memory 6424 * allocation failed 6425 */ 6426 connp = first_connp; 6427 break; 6428 } 6429 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6430 CONN_INC_REF(connp); 6431 mutex_exit(&connfp->connf_lock); 6432 rq = connp->conn_rq; 6433 if (!canputnext(rq)) { 6434 if (flags & IP_FF_RAWIP) { 6435 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6436 } else { 6437 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6438 } 6439 6440 freemsg(first_mp1); 6441 } else { 6442 /* 6443 * Don't enforce here if we're an actual tunnel - 6444 * let "tun" do it instead. 6445 */ 6446 if (!IPCL_IS_IPTUN(connp) && 6447 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6448 secure)) { 6449 first_mp1 = ipsec_check_inbound_policy 6450 (first_mp1, connp, ipha, NULL, 6451 mctl_present); 6452 } 6453 if (first_mp1 != NULL) { 6454 int in_flags = 0; 6455 /* 6456 * ip_fanout_proto also gets called from 6457 * icmp_inbound_error_fanout, in which case 6458 * the msg type is M_CTL. Don't add info 6459 * in this case for the time being. In future 6460 * when there is a need for knowing the 6461 * inbound iface index for ICMP error msgs, 6462 * then this can be changed. 6463 */ 6464 if (connp->conn_recvif) 6465 in_flags = IPF_RECVIF; 6466 /* 6467 * The ULP may support IP_RECVPKTINFO for both 6468 * IP v4 and v6 so pass the appropriate argument 6469 * based on conn IP version. 6470 */ 6471 if (connp->conn_ip_recvpktinfo) { 6472 if (connp->conn_af_isv6) { 6473 /* 6474 * V6 only needs index 6475 */ 6476 in_flags |= IPF_RECVIF; 6477 } else { 6478 /* 6479 * V4 needs index + 6480 * matching address. 6481 */ 6482 in_flags |= IPF_RECVADDR; 6483 } 6484 } 6485 if ((in_flags != 0) && 6486 (mp->b_datap->db_type != M_CTL)) { 6487 /* 6488 * the actual data will be 6489 * contained in b_cont upon 6490 * successful return of the 6491 * following call else 6492 * original mblk is returned 6493 */ 6494 ASSERT(recv_ill != NULL); 6495 mp1 = ip_add_info(mp1, recv_ill, 6496 in_flags, IPCL_ZONEID(connp), ipst); 6497 } 6498 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6499 if (mctl_present) 6500 freeb(first_mp1); 6501 (connp->conn_recv)(connp, mp1, NULL); 6502 } 6503 } 6504 mutex_enter(&connfp->connf_lock); 6505 /* Follow the next pointer before releasing the conn. */ 6506 next_connp = connp->conn_next; 6507 CONN_DEC_REF(connp); 6508 connp = next_connp; 6509 } 6510 6511 /* Last one. Send it upstream. */ 6512 mutex_exit(&connfp->connf_lock); 6513 6514 /* 6515 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6516 * will be set to false. 6517 */ 6518 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6519 ill_index = ill->ill_phyint->phyint_ifindex; 6520 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6521 if (mp == NULL) { 6522 CONN_DEC_REF(connp); 6523 if (mctl_present) { 6524 freeb(first_mp); 6525 } 6526 return; 6527 } 6528 } 6529 6530 rq = connp->conn_rq; 6531 if (!canputnext(rq)) { 6532 if (flags & IP_FF_RAWIP) { 6533 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6534 } else { 6535 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6536 } 6537 6538 freemsg(first_mp); 6539 } else { 6540 if (IPCL_IS_IPTUN(connp)) { 6541 /* 6542 * Tunneled packet. We enforce policy in the tunnel 6543 * module itself. 6544 * 6545 * Send the WHOLE packet up (incl. IPSEC_IN) without 6546 * a policy check. 6547 * FIXME to use conn_recv for tun later. 6548 */ 6549 putnext(rq, first_mp); 6550 CONN_DEC_REF(connp); 6551 return; 6552 } 6553 6554 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6555 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6556 ipha, NULL, mctl_present); 6557 } 6558 6559 if (first_mp != NULL) { 6560 int in_flags = 0; 6561 6562 /* 6563 * ip_fanout_proto also gets called 6564 * from icmp_inbound_error_fanout, in 6565 * which case the msg type is M_CTL. 6566 * Don't add info in this case for time 6567 * being. In future when there is a 6568 * need for knowing the inbound iface 6569 * index for ICMP error msgs, then this 6570 * can be changed 6571 */ 6572 if (connp->conn_recvif) 6573 in_flags = IPF_RECVIF; 6574 if (connp->conn_ip_recvpktinfo) { 6575 if (connp->conn_af_isv6) { 6576 /* 6577 * V6 only needs index 6578 */ 6579 in_flags |= IPF_RECVIF; 6580 } else { 6581 /* 6582 * V4 needs index + 6583 * matching address. 6584 */ 6585 in_flags |= IPF_RECVADDR; 6586 } 6587 } 6588 if ((in_flags != 0) && 6589 (mp->b_datap->db_type != M_CTL)) { 6590 6591 /* 6592 * the actual data will be contained in 6593 * b_cont upon successful return 6594 * of the following call else original 6595 * mblk is returned 6596 */ 6597 ASSERT(recv_ill != NULL); 6598 mp = ip_add_info(mp, recv_ill, 6599 in_flags, IPCL_ZONEID(connp), ipst); 6600 } 6601 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6602 (connp->conn_recv)(connp, mp, NULL); 6603 if (mctl_present) 6604 freeb(first_mp); 6605 } 6606 } 6607 CONN_DEC_REF(connp); 6608 } 6609 6610 /* 6611 * Fanout for TCP packets 6612 * The caller puts <fport, lport> in the ports parameter. 6613 * 6614 * IPQoS Notes 6615 * Before sending it to the client, invoke IPPF processing. 6616 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6617 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6618 * ip_policy is false. 6619 */ 6620 static void 6621 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6622 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6623 { 6624 mblk_t *first_mp; 6625 boolean_t secure; 6626 uint32_t ill_index; 6627 int ip_hdr_len; 6628 tcph_t *tcph; 6629 boolean_t syn_present = B_FALSE; 6630 conn_t *connp; 6631 ip_stack_t *ipst = recv_ill->ill_ipst; 6632 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6633 6634 ASSERT(recv_ill != NULL); 6635 6636 first_mp = mp; 6637 if (mctl_present) { 6638 ASSERT(first_mp->b_datap->db_type == M_CTL); 6639 mp = first_mp->b_cont; 6640 secure = ipsec_in_is_secure(first_mp); 6641 ASSERT(mp != NULL); 6642 } else { 6643 secure = B_FALSE; 6644 } 6645 6646 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6647 6648 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6649 zoneid, ipst)) == NULL) { 6650 /* 6651 * No connected connection or listener. Send a 6652 * TH_RST via tcp_xmit_listeners_reset. 6653 */ 6654 6655 /* Initiate IPPf processing, if needed. */ 6656 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6657 uint32_t ill_index; 6658 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6659 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6660 if (first_mp == NULL) 6661 return; 6662 } 6663 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6664 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6665 zoneid)); 6666 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6667 ipst->ips_netstack->netstack_tcp, NULL); 6668 return; 6669 } 6670 6671 /* 6672 * Allocate the SYN for the TCP connection here itself 6673 */ 6674 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6675 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6676 if (IPCL_IS_TCP(connp)) { 6677 squeue_t *sqp; 6678 6679 /* 6680 * For fused tcp loopback, assign the eager's 6681 * squeue to be that of the active connect's. 6682 * Note that we don't check for IP_FF_LOOPBACK 6683 * here since this routine gets called only 6684 * for loopback (unlike the IPv6 counterpart). 6685 */ 6686 ASSERT(Q_TO_CONN(q) != NULL); 6687 if (do_tcp_fusion && 6688 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6689 !secure && 6690 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6691 IPCL_IS_TCP(Q_TO_CONN(q))) { 6692 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6693 sqp = Q_TO_CONN(q)->conn_sqp; 6694 } else { 6695 sqp = IP_SQUEUE_GET(lbolt); 6696 } 6697 6698 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6699 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6700 syn_present = B_TRUE; 6701 } 6702 } 6703 6704 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6705 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6706 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6707 if ((flags & TH_RST) || (flags & TH_URG)) { 6708 CONN_DEC_REF(connp); 6709 freemsg(first_mp); 6710 return; 6711 } 6712 if (flags & TH_ACK) { 6713 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6714 ipst->ips_netstack->netstack_tcp, connp); 6715 CONN_DEC_REF(connp); 6716 return; 6717 } 6718 6719 CONN_DEC_REF(connp); 6720 freemsg(first_mp); 6721 return; 6722 } 6723 6724 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6725 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6726 NULL, mctl_present); 6727 if (first_mp == NULL) { 6728 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6729 CONN_DEC_REF(connp); 6730 return; 6731 } 6732 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6733 ASSERT(syn_present); 6734 if (mctl_present) { 6735 ASSERT(first_mp != mp); 6736 first_mp->b_datap->db_struioflag |= 6737 STRUIO_POLICY; 6738 } else { 6739 ASSERT(first_mp == mp); 6740 mp->b_datap->db_struioflag &= 6741 ~STRUIO_EAGER; 6742 mp->b_datap->db_struioflag |= 6743 STRUIO_POLICY; 6744 } 6745 } else { 6746 /* 6747 * Discard first_mp early since we're dealing with a 6748 * fully-connected conn_t and tcp doesn't do policy in 6749 * this case. 6750 */ 6751 if (mctl_present) { 6752 freeb(first_mp); 6753 mctl_present = B_FALSE; 6754 } 6755 first_mp = mp; 6756 } 6757 } 6758 6759 /* 6760 * Initiate policy processing here if needed. If we get here from 6761 * icmp_inbound_error_fanout, ip_policy is false. 6762 */ 6763 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6764 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6765 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6766 if (mp == NULL) { 6767 CONN_DEC_REF(connp); 6768 if (mctl_present) 6769 freeb(first_mp); 6770 return; 6771 } else if (mctl_present) { 6772 ASSERT(first_mp != mp); 6773 first_mp->b_cont = mp; 6774 } else { 6775 first_mp = mp; 6776 } 6777 } 6778 6779 6780 6781 /* Handle socket options. */ 6782 if (!syn_present && 6783 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6784 /* Add header */ 6785 ASSERT(recv_ill != NULL); 6786 /* 6787 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6788 * IPF_RECVIF. 6789 */ 6790 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6791 ipst); 6792 if (mp == NULL) { 6793 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6794 CONN_DEC_REF(connp); 6795 if (mctl_present) 6796 freeb(first_mp); 6797 return; 6798 } else if (mctl_present) { 6799 /* 6800 * ip_add_info might return a new mp. 6801 */ 6802 ASSERT(first_mp != mp); 6803 first_mp->b_cont = mp; 6804 } else { 6805 first_mp = mp; 6806 } 6807 } 6808 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6809 if (IPCL_IS_TCP(connp)) { 6810 /* do not drain, certain use cases can blow the stack */ 6811 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6812 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6813 } else { 6814 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6815 (connp->conn_recv)(connp, first_mp, NULL); 6816 CONN_DEC_REF(connp); 6817 } 6818 } 6819 6820 /* 6821 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6822 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6823 * is not consumed. 6824 * 6825 * One of four things can happen, all of which affect the passed-in mblk: 6826 * 6827 * 1.) ICMP messages that go through here just get returned TRUE. 6828 * 6829 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6830 * 6831 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6832 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6833 * 6834 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6835 */ 6836 static boolean_t 6837 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6838 ipsec_stack_t *ipss) 6839 { 6840 int shift, plen, iph_len; 6841 ipha_t *ipha; 6842 udpha_t *udpha; 6843 uint32_t *spi; 6844 uint8_t *orptr; 6845 boolean_t udp_pkt, free_ire; 6846 6847 if (DB_TYPE(mp) == M_CTL) { 6848 /* 6849 * ICMP message with UDP inside. Don't bother stripping, just 6850 * send it up. 6851 * 6852 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6853 * to ignore errors set by ICMP anyway ('cause they might be 6854 * forged), but that's the app's decision, not ours. 6855 */ 6856 6857 /* Bunch of reality checks for DEBUG kernels... */ 6858 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6859 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6860 6861 return (B_TRUE); 6862 } 6863 6864 ipha = (ipha_t *)mp->b_rptr; 6865 iph_len = IPH_HDR_LENGTH(ipha); 6866 plen = ntohs(ipha->ipha_length); 6867 6868 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6869 /* 6870 * Most likely a keepalive for the benefit of an intervening 6871 * NAT. These aren't for us, per se, so drop it. 6872 * 6873 * RFC 3947/8 doesn't say for sure what to do for 2-3 6874 * byte packets (keepalives are 1-byte), but we'll drop them 6875 * also. 6876 */ 6877 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6878 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6879 return (B_FALSE); 6880 } 6881 6882 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6883 /* might as well pull it all up - it might be ESP. */ 6884 if (!pullupmsg(mp, -1)) { 6885 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6886 DROPPER(ipss, ipds_esp_nomem), 6887 &ipss->ipsec_dropper); 6888 return (B_FALSE); 6889 } 6890 6891 ipha = (ipha_t *)mp->b_rptr; 6892 } 6893 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6894 if (*spi == 0) { 6895 /* UDP packet - remove 0-spi. */ 6896 shift = sizeof (uint32_t); 6897 } else { 6898 /* ESP-in-UDP packet - reduce to ESP. */ 6899 ipha->ipha_protocol = IPPROTO_ESP; 6900 shift = sizeof (udpha_t); 6901 } 6902 6903 /* Fix IP header */ 6904 ipha->ipha_length = htons(plen - shift); 6905 ipha->ipha_hdr_checksum = 0; 6906 6907 orptr = mp->b_rptr; 6908 mp->b_rptr += shift; 6909 6910 if (*spi == 0) { 6911 ASSERT((uint8_t *)ipha == orptr); 6912 udpha = (udpha_t *)(orptr + iph_len); 6913 udpha->uha_length = htons(plen - shift - iph_len); 6914 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6915 udp_pkt = B_TRUE; 6916 } else { 6917 udp_pkt = B_FALSE; 6918 } 6919 ovbcopy(orptr, orptr + shift, iph_len); 6920 if (!udp_pkt) /* Punt up for ESP processing. */ { 6921 ipha = (ipha_t *)(orptr + shift); 6922 6923 free_ire = (ire == NULL); 6924 if (free_ire) { 6925 /* Re-acquire ire. */ 6926 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6927 ipss->ipsec_netstack->netstack_ip); 6928 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6929 if (ire != NULL) 6930 ire_refrele(ire); 6931 /* 6932 * Do a regular freemsg(), as this is an IP 6933 * error (no local route) not an IPsec one. 6934 */ 6935 freemsg(mp); 6936 } 6937 } 6938 6939 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6940 if (free_ire) 6941 ire_refrele(ire); 6942 } 6943 6944 return (udp_pkt); 6945 } 6946 6947 /* 6948 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6949 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6950 * Caller is responsible for dropping references to the conn, and freeing 6951 * first_mp. 6952 * 6953 * IPQoS Notes 6954 * Before sending it to the client, invoke IPPF processing. Policy processing 6955 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6956 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6957 * ip_wput_local, ip_policy is false. 6958 */ 6959 static void 6960 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6961 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6962 boolean_t ip_policy) 6963 { 6964 boolean_t mctl_present = (first_mp != NULL); 6965 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6966 uint32_t ill_index; 6967 ip_stack_t *ipst = recv_ill->ill_ipst; 6968 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6969 6970 ASSERT(ill != NULL); 6971 6972 if (mctl_present) 6973 first_mp->b_cont = mp; 6974 else 6975 first_mp = mp; 6976 6977 if (CONN_UDP_FLOWCTLD(connp)) { 6978 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6979 freemsg(first_mp); 6980 return; 6981 } 6982 6983 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6984 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6985 NULL, mctl_present); 6986 if (first_mp == NULL) { 6987 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6988 return; /* Freed by ipsec_check_inbound_policy(). */ 6989 } 6990 } 6991 if (mctl_present) 6992 freeb(first_mp); 6993 6994 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6995 if (connp->conn_udp->udp_nat_t_endpoint) { 6996 if (mctl_present) { 6997 /* mctl_present *shouldn't* happen. */ 6998 ip_drop_packet(mp, B_TRUE, NULL, NULL, 6999 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7000 &ipss->ipsec_dropper); 7001 return; 7002 } 7003 7004 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7005 return; 7006 } 7007 7008 /* Handle options. */ 7009 if (connp->conn_recvif) 7010 in_flags = IPF_RECVIF; 7011 /* 7012 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7013 * passed to ip_add_info is based on IP version of connp. 7014 */ 7015 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7016 if (connp->conn_af_isv6) { 7017 /* 7018 * V6 only needs index 7019 */ 7020 in_flags |= IPF_RECVIF; 7021 } else { 7022 /* 7023 * V4 needs index + matching address. 7024 */ 7025 in_flags |= IPF_RECVADDR; 7026 } 7027 } 7028 7029 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7030 in_flags |= IPF_RECVSLLA; 7031 7032 /* 7033 * Initiate IPPF processing here, if needed. Note first_mp won't be 7034 * freed if the packet is dropped. The caller will do so. 7035 */ 7036 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7037 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7038 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7039 if (mp == NULL) { 7040 return; 7041 } 7042 } 7043 if ((in_flags != 0) && 7044 (mp->b_datap->db_type != M_CTL)) { 7045 /* 7046 * The actual data will be contained in b_cont 7047 * upon successful return of the following call 7048 * else original mblk is returned 7049 */ 7050 ASSERT(recv_ill != NULL); 7051 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7052 ipst); 7053 } 7054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7055 /* Send it upstream */ 7056 (connp->conn_recv)(connp, mp, NULL); 7057 } 7058 7059 /* 7060 * Fanout for UDP packets. 7061 * The caller puts <fport, lport> in the ports parameter. 7062 * 7063 * If SO_REUSEADDR is set all multicast and broadcast packets 7064 * will be delivered to all streams bound to the same port. 7065 * 7066 * Zones notes: 7067 * Multicast and broadcast packets will be distributed to streams in all zones. 7068 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7069 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7070 * packets. To maintain this behavior with multiple zones, the conns are grouped 7071 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7072 * each zone. If unset, all the following conns in the same zone are skipped. 7073 */ 7074 static void 7075 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7076 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7077 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7078 { 7079 uint32_t dstport, srcport; 7080 ipaddr_t dst; 7081 mblk_t *first_mp; 7082 boolean_t secure; 7083 in6_addr_t v6src; 7084 conn_t *connp; 7085 connf_t *connfp; 7086 conn_t *first_connp; 7087 conn_t *next_connp; 7088 mblk_t *mp1, *first_mp1; 7089 ipaddr_t src; 7090 zoneid_t last_zoneid; 7091 boolean_t reuseaddr; 7092 boolean_t shared_addr; 7093 boolean_t unlabeled; 7094 ip_stack_t *ipst; 7095 7096 ASSERT(recv_ill != NULL); 7097 ipst = recv_ill->ill_ipst; 7098 7099 first_mp = mp; 7100 if (mctl_present) { 7101 mp = first_mp->b_cont; 7102 first_mp->b_cont = NULL; 7103 secure = ipsec_in_is_secure(first_mp); 7104 ASSERT(mp != NULL); 7105 } else { 7106 first_mp = NULL; 7107 secure = B_FALSE; 7108 } 7109 7110 /* Extract ports in net byte order */ 7111 dstport = htons(ntohl(ports) & 0xFFFF); 7112 srcport = htons(ntohl(ports) >> 16); 7113 dst = ipha->ipha_dst; 7114 src = ipha->ipha_src; 7115 7116 unlabeled = B_FALSE; 7117 if (is_system_labeled()) 7118 /* Cred cannot be null on IPv4 */ 7119 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7120 TSLF_UNLABELED) != 0; 7121 shared_addr = (zoneid == ALL_ZONES); 7122 if (shared_addr) { 7123 /* 7124 * No need to handle exclusive-stack zones since ALL_ZONES 7125 * only applies to the shared stack. 7126 */ 7127 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7128 /* 7129 * If no shared MLP is found, tsol_mlp_findzone returns 7130 * ALL_ZONES. In that case, we assume it's SLP, and 7131 * search for the zone based on the packet label. 7132 * 7133 * If there is such a zone, we prefer to find a 7134 * connection in it. Otherwise, we look for a 7135 * MAC-exempt connection in any zone whose label 7136 * dominates the default label on the packet. 7137 */ 7138 if (zoneid == ALL_ZONES) 7139 zoneid = tsol_packet_to_zoneid(mp); 7140 else 7141 unlabeled = B_FALSE; 7142 } 7143 7144 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7145 mutex_enter(&connfp->connf_lock); 7146 connp = connfp->connf_head; 7147 if (!broadcast && !CLASSD(dst)) { 7148 /* 7149 * Not broadcast or multicast. Send to the one (first) 7150 * client we find. No need to check conn_wantpacket() 7151 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7152 * IPv4 unicast packets. 7153 */ 7154 while ((connp != NULL) && 7155 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7156 (!IPCL_ZONE_MATCH(connp, zoneid) && 7157 !(unlabeled && connp->conn_mac_exempt)))) { 7158 /* 7159 * We keep searching since the conn did not match, 7160 * or its zone did not match and it is not either 7161 * an allzones conn or a mac exempt conn (if the 7162 * sender is unlabeled.) 7163 */ 7164 connp = connp->conn_next; 7165 } 7166 7167 if (connp == NULL || connp->conn_upq == NULL) 7168 goto notfound; 7169 7170 if (is_system_labeled() && 7171 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7172 connp)) 7173 goto notfound; 7174 7175 CONN_INC_REF(connp); 7176 mutex_exit(&connfp->connf_lock); 7177 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7178 flags, recv_ill, ip_policy); 7179 IP_STAT(ipst, ip_udp_fannorm); 7180 CONN_DEC_REF(connp); 7181 return; 7182 } 7183 7184 /* 7185 * Broadcast and multicast case 7186 * 7187 * Need to check conn_wantpacket(). 7188 * If SO_REUSEADDR has been set on the first we send the 7189 * packet to all clients that have joined the group and 7190 * match the port. 7191 */ 7192 7193 while (connp != NULL) { 7194 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7195 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7196 (!is_system_labeled() || 7197 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7198 connp))) 7199 break; 7200 connp = connp->conn_next; 7201 } 7202 7203 if (connp == NULL || connp->conn_upq == NULL) 7204 goto notfound; 7205 7206 first_connp = connp; 7207 /* 7208 * When SO_REUSEADDR is not set, send the packet only to the first 7209 * matching connection in its zone by keeping track of the zoneid. 7210 */ 7211 reuseaddr = first_connp->conn_reuseaddr; 7212 last_zoneid = first_connp->conn_zoneid; 7213 7214 CONN_INC_REF(connp); 7215 connp = connp->conn_next; 7216 for (;;) { 7217 while (connp != NULL) { 7218 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7219 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7220 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7221 (!is_system_labeled() || 7222 tsol_receive_local(mp, &dst, IPV4_VERSION, 7223 shared_addr, connp))) 7224 break; 7225 connp = connp->conn_next; 7226 } 7227 /* 7228 * Just copy the data part alone. The mctl part is 7229 * needed just for verifying policy and it is never 7230 * sent up. 7231 */ 7232 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7233 ((mp1 = copymsg(mp)) == NULL))) { 7234 /* 7235 * No more interested clients or memory 7236 * allocation failed 7237 */ 7238 connp = first_connp; 7239 break; 7240 } 7241 if (connp->conn_zoneid != last_zoneid) { 7242 /* 7243 * Update the zoneid so that the packet isn't sent to 7244 * any more conns in the same zone unless SO_REUSEADDR 7245 * is set. 7246 */ 7247 reuseaddr = connp->conn_reuseaddr; 7248 last_zoneid = connp->conn_zoneid; 7249 } 7250 if (first_mp != NULL) { 7251 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7252 ipsec_info_type == IPSEC_IN); 7253 first_mp1 = ipsec_in_tag(first_mp, NULL, 7254 ipst->ips_netstack); 7255 if (first_mp1 == NULL) { 7256 freemsg(mp1); 7257 connp = first_connp; 7258 break; 7259 } 7260 } else { 7261 first_mp1 = NULL; 7262 } 7263 CONN_INC_REF(connp); 7264 mutex_exit(&connfp->connf_lock); 7265 /* 7266 * IPQoS notes: We don't send the packet for policy 7267 * processing here, will do it for the last one (below). 7268 * i.e. we do it per-packet now, but if we do policy 7269 * processing per-conn, then we would need to do it 7270 * here too. 7271 */ 7272 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7273 ipha, flags, recv_ill, B_FALSE); 7274 mutex_enter(&connfp->connf_lock); 7275 /* Follow the next pointer before releasing the conn. */ 7276 next_connp = connp->conn_next; 7277 IP_STAT(ipst, ip_udp_fanmb); 7278 CONN_DEC_REF(connp); 7279 connp = next_connp; 7280 } 7281 7282 /* Last one. Send it upstream. */ 7283 mutex_exit(&connfp->connf_lock); 7284 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7285 recv_ill, ip_policy); 7286 IP_STAT(ipst, ip_udp_fanmb); 7287 CONN_DEC_REF(connp); 7288 return; 7289 7290 notfound: 7291 7292 mutex_exit(&connfp->connf_lock); 7293 IP_STAT(ipst, ip_udp_fanothers); 7294 /* 7295 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7296 * have already been matched above, since they live in the IPv4 7297 * fanout tables. This implies we only need to 7298 * check for IPv6 in6addr_any endpoints here. 7299 * Thus we compare using ipv6_all_zeros instead of the destination 7300 * address, except for the multicast group membership lookup which 7301 * uses the IPv4 destination. 7302 */ 7303 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7304 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7305 mutex_enter(&connfp->connf_lock); 7306 connp = connfp->connf_head; 7307 if (!broadcast && !CLASSD(dst)) { 7308 while (connp != NULL) { 7309 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7310 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7311 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7312 !connp->conn_ipv6_v6only) 7313 break; 7314 connp = connp->conn_next; 7315 } 7316 7317 if (connp != NULL && is_system_labeled() && 7318 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7319 connp)) 7320 connp = NULL; 7321 7322 if (connp == NULL || connp->conn_upq == NULL) { 7323 /* 7324 * No one bound to this port. Is 7325 * there a client that wants all 7326 * unclaimed datagrams? 7327 */ 7328 mutex_exit(&connfp->connf_lock); 7329 7330 if (mctl_present) 7331 first_mp->b_cont = mp; 7332 else 7333 first_mp = mp; 7334 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7335 connf_head != NULL) { 7336 ip_fanout_proto(q, first_mp, ill, ipha, 7337 flags | IP_FF_RAWIP, mctl_present, 7338 ip_policy, recv_ill, zoneid); 7339 } else { 7340 if (ip_fanout_send_icmp(q, first_mp, flags, 7341 ICMP_DEST_UNREACHABLE, 7342 ICMP_PORT_UNREACHABLE, 7343 mctl_present, zoneid, ipst)) { 7344 BUMP_MIB(ill->ill_ip_mib, 7345 udpIfStatsNoPorts); 7346 } 7347 } 7348 return; 7349 } 7350 7351 CONN_INC_REF(connp); 7352 mutex_exit(&connfp->connf_lock); 7353 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7354 flags, recv_ill, ip_policy); 7355 CONN_DEC_REF(connp); 7356 return; 7357 } 7358 /* 7359 * IPv4 multicast packet being delivered to an AF_INET6 7360 * in6addr_any endpoint. 7361 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7362 * and not conn_wantpacket_v6() since any multicast membership is 7363 * for an IPv4-mapped multicast address. 7364 * The packet is sent to all clients in all zones that have joined the 7365 * group and match the port. 7366 */ 7367 while (connp != NULL) { 7368 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7369 srcport, v6src) && 7370 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7371 (!is_system_labeled() || 7372 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7373 connp))) 7374 break; 7375 connp = connp->conn_next; 7376 } 7377 7378 if (connp == NULL || connp->conn_upq == NULL) { 7379 /* 7380 * No one bound to this port. Is 7381 * there a client that wants all 7382 * unclaimed datagrams? 7383 */ 7384 mutex_exit(&connfp->connf_lock); 7385 7386 if (mctl_present) 7387 first_mp->b_cont = mp; 7388 else 7389 first_mp = mp; 7390 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7391 NULL) { 7392 ip_fanout_proto(q, first_mp, ill, ipha, 7393 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7394 recv_ill, zoneid); 7395 } else { 7396 /* 7397 * We used to attempt to send an icmp error here, but 7398 * since this is known to be a multicast packet 7399 * and we don't send icmp errors in response to 7400 * multicast, just drop the packet and give up sooner. 7401 */ 7402 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7403 freemsg(first_mp); 7404 } 7405 return; 7406 } 7407 7408 first_connp = connp; 7409 7410 CONN_INC_REF(connp); 7411 connp = connp->conn_next; 7412 for (;;) { 7413 while (connp != NULL) { 7414 if (IPCL_UDP_MATCH_V6(connp, dstport, 7415 ipv6_all_zeros, srcport, v6src) && 7416 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7417 (!is_system_labeled() || 7418 tsol_receive_local(mp, &dst, IPV4_VERSION, 7419 shared_addr, connp))) 7420 break; 7421 connp = connp->conn_next; 7422 } 7423 /* 7424 * Just copy the data part alone. The mctl part is 7425 * needed just for verifying policy and it is never 7426 * sent up. 7427 */ 7428 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7429 ((mp1 = copymsg(mp)) == NULL))) { 7430 /* 7431 * No more intested clients or memory 7432 * allocation failed 7433 */ 7434 connp = first_connp; 7435 break; 7436 } 7437 if (first_mp != NULL) { 7438 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7439 ipsec_info_type == IPSEC_IN); 7440 first_mp1 = ipsec_in_tag(first_mp, NULL, 7441 ipst->ips_netstack); 7442 if (first_mp1 == NULL) { 7443 freemsg(mp1); 7444 connp = first_connp; 7445 break; 7446 } 7447 } else { 7448 first_mp1 = NULL; 7449 } 7450 CONN_INC_REF(connp); 7451 mutex_exit(&connfp->connf_lock); 7452 /* 7453 * IPQoS notes: We don't send the packet for policy 7454 * processing here, will do it for the last one (below). 7455 * i.e. we do it per-packet now, but if we do policy 7456 * processing per-conn, then we would need to do it 7457 * here too. 7458 */ 7459 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7460 ipha, flags, recv_ill, B_FALSE); 7461 mutex_enter(&connfp->connf_lock); 7462 /* Follow the next pointer before releasing the conn. */ 7463 next_connp = connp->conn_next; 7464 CONN_DEC_REF(connp); 7465 connp = next_connp; 7466 } 7467 7468 /* Last one. Send it upstream. */ 7469 mutex_exit(&connfp->connf_lock); 7470 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7471 recv_ill, ip_policy); 7472 CONN_DEC_REF(connp); 7473 } 7474 7475 /* 7476 * Complete the ip_wput header so that it 7477 * is possible to generate ICMP 7478 * errors. 7479 */ 7480 int 7481 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7482 { 7483 ire_t *ire; 7484 7485 if (ipha->ipha_src == INADDR_ANY) { 7486 ire = ire_lookup_local(zoneid, ipst); 7487 if (ire == NULL) { 7488 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7489 return (1); 7490 } 7491 ipha->ipha_src = ire->ire_addr; 7492 ire_refrele(ire); 7493 } 7494 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7495 ipha->ipha_hdr_checksum = 0; 7496 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7497 return (0); 7498 } 7499 7500 /* 7501 * Nobody should be sending 7502 * packets up this stream 7503 */ 7504 static void 7505 ip_lrput(queue_t *q, mblk_t *mp) 7506 { 7507 mblk_t *mp1; 7508 7509 switch (mp->b_datap->db_type) { 7510 case M_FLUSH: 7511 /* Turn around */ 7512 if (*mp->b_rptr & FLUSHW) { 7513 *mp->b_rptr &= ~FLUSHR; 7514 qreply(q, mp); 7515 return; 7516 } 7517 break; 7518 } 7519 /* Could receive messages that passed through ar_rput */ 7520 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7521 mp1->b_prev = mp1->b_next = NULL; 7522 freemsg(mp); 7523 } 7524 7525 /* Nobody should be sending packets down this stream */ 7526 /* ARGSUSED */ 7527 void 7528 ip_lwput(queue_t *q, mblk_t *mp) 7529 { 7530 freemsg(mp); 7531 } 7532 7533 /* 7534 * Move the first hop in any source route to ipha_dst and remove that part of 7535 * the source route. Called by other protocols. Errors in option formatting 7536 * are ignored - will be handled by ip_wput_options Return the final 7537 * destination (either ipha_dst or the last entry in a source route.) 7538 */ 7539 ipaddr_t 7540 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7541 { 7542 ipoptp_t opts; 7543 uchar_t *opt; 7544 uint8_t optval; 7545 uint8_t optlen; 7546 ipaddr_t dst; 7547 int i; 7548 ire_t *ire; 7549 ip_stack_t *ipst = ns->netstack_ip; 7550 7551 ip2dbg(("ip_massage_options\n")); 7552 dst = ipha->ipha_dst; 7553 for (optval = ipoptp_first(&opts, ipha); 7554 optval != IPOPT_EOL; 7555 optval = ipoptp_next(&opts)) { 7556 opt = opts.ipoptp_cur; 7557 switch (optval) { 7558 uint8_t off; 7559 case IPOPT_SSRR: 7560 case IPOPT_LSRR: 7561 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7562 ip1dbg(("ip_massage_options: bad src route\n")); 7563 break; 7564 } 7565 optlen = opts.ipoptp_len; 7566 off = opt[IPOPT_OFFSET]; 7567 off--; 7568 redo_srr: 7569 if (optlen < IP_ADDR_LEN || 7570 off > optlen - IP_ADDR_LEN) { 7571 /* End of source route */ 7572 ip1dbg(("ip_massage_options: end of SR\n")); 7573 break; 7574 } 7575 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7576 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7577 ntohl(dst))); 7578 /* 7579 * Check if our address is present more than 7580 * once as consecutive hops in source route. 7581 * XXX verify per-interface ip_forwarding 7582 * for source route? 7583 */ 7584 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7585 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7586 if (ire != NULL) { 7587 ire_refrele(ire); 7588 off += IP_ADDR_LEN; 7589 goto redo_srr; 7590 } 7591 if (dst == htonl(INADDR_LOOPBACK)) { 7592 ip1dbg(("ip_massage_options: loopback addr in " 7593 "source route!\n")); 7594 break; 7595 } 7596 /* 7597 * Update ipha_dst to be the first hop and remove the 7598 * first hop from the source route (by overwriting 7599 * part of the option with NOP options). 7600 */ 7601 ipha->ipha_dst = dst; 7602 /* Put the last entry in dst */ 7603 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7604 3; 7605 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7606 7607 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7608 ntohl(dst))); 7609 /* Move down and overwrite */ 7610 opt[IP_ADDR_LEN] = opt[0]; 7611 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7612 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7613 for (i = 0; i < IP_ADDR_LEN; i++) 7614 opt[i] = IPOPT_NOP; 7615 break; 7616 } 7617 } 7618 return (dst); 7619 } 7620 7621 /* 7622 * Return the network mask 7623 * associated with the specified address. 7624 */ 7625 ipaddr_t 7626 ip_net_mask(ipaddr_t addr) 7627 { 7628 uchar_t *up = (uchar_t *)&addr; 7629 ipaddr_t mask = 0; 7630 uchar_t *maskp = (uchar_t *)&mask; 7631 7632 #if defined(__i386) || defined(__amd64) 7633 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7634 #endif 7635 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7636 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7637 #endif 7638 if (CLASSD(addr)) { 7639 maskp[0] = 0xF0; 7640 return (mask); 7641 } 7642 7643 /* We assume Class E default netmask to be 32 */ 7644 if (CLASSE(addr)) 7645 return (0xffffffffU); 7646 7647 if (addr == 0) 7648 return (0); 7649 maskp[0] = 0xFF; 7650 if ((up[0] & 0x80) == 0) 7651 return (mask); 7652 7653 maskp[1] = 0xFF; 7654 if ((up[0] & 0xC0) == 0x80) 7655 return (mask); 7656 7657 maskp[2] = 0xFF; 7658 if ((up[0] & 0xE0) == 0xC0) 7659 return (mask); 7660 7661 /* Otherwise return no mask */ 7662 return ((ipaddr_t)0); 7663 } 7664 7665 /* 7666 * Select an ill for the packet by considering load spreading across 7667 * a different ill in the group if dst_ill is part of some group. 7668 */ 7669 ill_t * 7670 ip_newroute_get_dst_ill(ill_t *dst_ill) 7671 { 7672 ill_t *ill; 7673 7674 /* 7675 * We schedule irrespective of whether the source address is 7676 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7677 */ 7678 ill = illgrp_scheduler(dst_ill); 7679 if (ill == NULL) 7680 return (NULL); 7681 7682 /* 7683 * For groups with names ip_sioctl_groupname ensures that all 7684 * ills are of same type. For groups without names, ifgrp_insert 7685 * ensures this. 7686 */ 7687 ASSERT(dst_ill->ill_type == ill->ill_type); 7688 7689 return (ill); 7690 } 7691 7692 /* 7693 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7694 */ 7695 ill_t * 7696 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7697 ip_stack_t *ipst) 7698 { 7699 ill_t *ret_ill; 7700 7701 ASSERT(ifindex != 0); 7702 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7703 ipst); 7704 if (ret_ill == NULL || 7705 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7706 if (isv6) { 7707 if (ill != NULL) { 7708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7709 } else { 7710 BUMP_MIB(&ipst->ips_ip6_mib, 7711 ipIfStatsOutDiscards); 7712 } 7713 ip1dbg(("ip_grab_attach_ill (IPv6): " 7714 "bad ifindex %d.\n", ifindex)); 7715 } else { 7716 if (ill != NULL) { 7717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7718 } else { 7719 BUMP_MIB(&ipst->ips_ip_mib, 7720 ipIfStatsOutDiscards); 7721 } 7722 ip1dbg(("ip_grab_attach_ill (IPv4): " 7723 "bad ifindex %d.\n", ifindex)); 7724 } 7725 if (ret_ill != NULL) 7726 ill_refrele(ret_ill); 7727 freemsg(first_mp); 7728 return (NULL); 7729 } 7730 7731 return (ret_ill); 7732 } 7733 7734 /* 7735 * IPv4 - 7736 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7737 * out a packet to a destination address for which we do not have specific 7738 * (or sufficient) routing information. 7739 * 7740 * NOTE : These are the scopes of some of the variables that point at IRE, 7741 * which needs to be followed while making any future modifications 7742 * to avoid memory leaks. 7743 * 7744 * - ire and sire are the entries looked up initially by 7745 * ire_ftable_lookup. 7746 * - ipif_ire is used to hold the interface ire associated with 7747 * the new cache ire. But it's scope is limited, so we always REFRELE 7748 * it before branching out to error paths. 7749 * - save_ire is initialized before ire_create, so that ire returned 7750 * by ire_create will not over-write the ire. We REFRELE save_ire 7751 * before breaking out of the switch. 7752 * 7753 * Thus on failures, we have to REFRELE only ire and sire, if they 7754 * are not NULL. 7755 */ 7756 void 7757 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7758 zoneid_t zoneid, ip_stack_t *ipst) 7759 { 7760 areq_t *areq; 7761 ipaddr_t gw = 0; 7762 ire_t *ire = NULL; 7763 mblk_t *res_mp; 7764 ipaddr_t *addrp; 7765 ipaddr_t nexthop_addr; 7766 ipif_t *src_ipif = NULL; 7767 ill_t *dst_ill = NULL; 7768 ipha_t *ipha; 7769 ire_t *sire = NULL; 7770 mblk_t *first_mp; 7771 ire_t *save_ire; 7772 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7773 ushort_t ire_marks = 0; 7774 boolean_t mctl_present; 7775 ipsec_out_t *io; 7776 mblk_t *saved_mp; 7777 ire_t *first_sire = NULL; 7778 mblk_t *copy_mp = NULL; 7779 mblk_t *xmit_mp = NULL; 7780 ipaddr_t save_dst; 7781 uint32_t multirt_flags = 7782 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7783 boolean_t multirt_is_resolvable; 7784 boolean_t multirt_resolve_next; 7785 boolean_t unspec_src; 7786 boolean_t do_attach_ill = B_FALSE; 7787 boolean_t ip_nexthop = B_FALSE; 7788 tsol_ire_gw_secattr_t *attrp = NULL; 7789 tsol_gcgrp_t *gcgrp = NULL; 7790 tsol_gcgrp_addr_t ga; 7791 7792 if (ip_debug > 2) { 7793 /* ip1dbg */ 7794 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7795 } 7796 7797 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7798 if (mctl_present) { 7799 io = (ipsec_out_t *)first_mp->b_rptr; 7800 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7801 ASSERT(zoneid == io->ipsec_out_zoneid); 7802 ASSERT(zoneid != ALL_ZONES); 7803 } 7804 7805 ipha = (ipha_t *)mp->b_rptr; 7806 7807 /* All multicast lookups come through ip_newroute_ipif() */ 7808 if (CLASSD(dst)) { 7809 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7810 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7811 freemsg(first_mp); 7812 return; 7813 } 7814 7815 if (mctl_present && io->ipsec_out_attach_if) { 7816 /* ip_grab_attach_ill returns a held ill */ 7817 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7818 io->ipsec_out_ill_index, B_FALSE, ipst); 7819 7820 /* Failure case frees things for us. */ 7821 if (attach_ill == NULL) 7822 return; 7823 7824 /* 7825 * Check if we need an ire that will not be 7826 * looked up by anybody else i.e. HIDDEN. 7827 */ 7828 if (ill_is_probeonly(attach_ill)) 7829 ire_marks = IRE_MARK_HIDDEN; 7830 } 7831 if (mctl_present && io->ipsec_out_ip_nexthop) { 7832 ip_nexthop = B_TRUE; 7833 nexthop_addr = io->ipsec_out_nexthop_addr; 7834 } 7835 /* 7836 * If this IRE is created for forwarding or it is not for 7837 * traffic for congestion controlled protocols, mark it as temporary. 7838 */ 7839 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7840 ire_marks |= IRE_MARK_TEMPORARY; 7841 7842 /* 7843 * Get what we can from ire_ftable_lookup which will follow an IRE 7844 * chain until it gets the most specific information available. 7845 * For example, we know that there is no IRE_CACHE for this dest, 7846 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7847 * ire_ftable_lookup will look up the gateway, etc. 7848 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7849 * to the destination, of equal netmask length in the forward table, 7850 * will be recursively explored. If no information is available 7851 * for the final gateway of that route, we force the returned ire 7852 * to be equal to sire using MATCH_IRE_PARENT. 7853 * At least, in this case we have a starting point (in the buckets) 7854 * to look for other routes to the destination in the forward table. 7855 * This is actually used only for multirouting, where a list 7856 * of routes has to be processed in sequence. 7857 * 7858 * In the process of coming up with the most specific information, 7859 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7860 * for the gateway (i.e., one for which the ire_nce->nce_state is 7861 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7862 * Two caveats when handling incomplete ire's in ip_newroute: 7863 * - we should be careful when accessing its ire_nce (specifically 7864 * the nce_res_mp) ast it might change underneath our feet, and, 7865 * - not all legacy code path callers are prepared to handle 7866 * incomplete ire's, so we should not create/add incomplete 7867 * ire_cache entries here. (See discussion about temporary solution 7868 * further below). 7869 * 7870 * In order to minimize packet dropping, and to preserve existing 7871 * behavior, we treat this case as if there were no IRE_CACHE for the 7872 * gateway, and instead use the IF_RESOLVER ire to send out 7873 * another request to ARP (this is achieved by passing the 7874 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7875 * arp response comes back in ip_wput_nondata, we will create 7876 * a per-dst ire_cache that has an ND_COMPLETE ire. 7877 * 7878 * Note that this is a temporary solution; the correct solution is 7879 * to create an incomplete per-dst ire_cache entry, and send the 7880 * packet out when the gw's nce is resolved. In order to achieve this, 7881 * all packet processing must have been completed prior to calling 7882 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7883 * to be modified to accomodate this solution. 7884 */ 7885 if (ip_nexthop) { 7886 /* 7887 * The first time we come here, we look for an IRE_INTERFACE 7888 * entry for the specified nexthop, set the dst to be the 7889 * nexthop address and create an IRE_CACHE entry for the 7890 * nexthop. The next time around, we are able to find an 7891 * IRE_CACHE entry for the nexthop, set the gateway to be the 7892 * nexthop address and create an IRE_CACHE entry for the 7893 * destination address via the specified nexthop. 7894 */ 7895 ire = ire_cache_lookup(nexthop_addr, zoneid, 7896 MBLK_GETLABEL(mp), ipst); 7897 if (ire != NULL) { 7898 gw = nexthop_addr; 7899 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7900 } else { 7901 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7902 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7903 MBLK_GETLABEL(mp), 7904 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7905 ipst); 7906 if (ire != NULL) { 7907 dst = nexthop_addr; 7908 } 7909 } 7910 } else if (attach_ill == NULL) { 7911 ire = ire_ftable_lookup(dst, 0, 0, 0, 7912 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7913 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7914 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7915 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7916 ipst); 7917 } else { 7918 /* 7919 * attach_ill is set only for communicating with 7920 * on-link hosts. So, don't look for DEFAULT. 7921 */ 7922 ipif_t *attach_ipif; 7923 7924 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7925 if (attach_ipif == NULL) { 7926 ill_refrele(attach_ill); 7927 goto icmp_err_ret; 7928 } 7929 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7930 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7931 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7932 MATCH_IRE_SECATTR, ipst); 7933 ipif_refrele(attach_ipif); 7934 } 7935 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7936 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7937 7938 /* 7939 * This loop is run only once in most cases. 7940 * We loop to resolve further routes only when the destination 7941 * can be reached through multiple RTF_MULTIRT-flagged ires. 7942 */ 7943 do { 7944 /* Clear the previous iteration's values */ 7945 if (src_ipif != NULL) { 7946 ipif_refrele(src_ipif); 7947 src_ipif = NULL; 7948 } 7949 if (dst_ill != NULL) { 7950 ill_refrele(dst_ill); 7951 dst_ill = NULL; 7952 } 7953 7954 multirt_resolve_next = B_FALSE; 7955 /* 7956 * We check if packets have to be multirouted. 7957 * In this case, given the current <ire, sire> couple, 7958 * we look for the next suitable <ire, sire>. 7959 * This check is done in ire_multirt_lookup(), 7960 * which applies various criteria to find the next route 7961 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7962 * unchanged if it detects it has not been tried yet. 7963 */ 7964 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7965 ip3dbg(("ip_newroute: starting next_resolution " 7966 "with first_mp %p, tag %d\n", 7967 (void *)first_mp, 7968 MULTIRT_DEBUG_TAGGED(first_mp))); 7969 7970 ASSERT(sire != NULL); 7971 multirt_is_resolvable = 7972 ire_multirt_lookup(&ire, &sire, multirt_flags, 7973 MBLK_GETLABEL(mp), ipst); 7974 7975 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7976 "ire %p, sire %p\n", 7977 multirt_is_resolvable, 7978 (void *)ire, (void *)sire)); 7979 7980 if (!multirt_is_resolvable) { 7981 /* 7982 * No more multirt route to resolve; give up 7983 * (all routes resolved or no more 7984 * resolvable routes). 7985 */ 7986 if (ire != NULL) { 7987 ire_refrele(ire); 7988 ire = NULL; 7989 } 7990 } else { 7991 ASSERT(sire != NULL); 7992 ASSERT(ire != NULL); 7993 /* 7994 * We simply use first_sire as a flag that 7995 * indicates if a resolvable multirt route 7996 * has already been found. 7997 * If it is not the case, we may have to send 7998 * an ICMP error to report that the 7999 * destination is unreachable. 8000 * We do not IRE_REFHOLD first_sire. 8001 */ 8002 if (first_sire == NULL) { 8003 first_sire = sire; 8004 } 8005 } 8006 } 8007 if (ire == NULL) { 8008 if (ip_debug > 3) { 8009 /* ip2dbg */ 8010 pr_addr_dbg("ip_newroute: " 8011 "can't resolve %s\n", AF_INET, &dst); 8012 } 8013 ip3dbg(("ip_newroute: " 8014 "ire %p, sire %p, first_sire %p\n", 8015 (void *)ire, (void *)sire, (void *)first_sire)); 8016 8017 if (sire != NULL) { 8018 ire_refrele(sire); 8019 sire = NULL; 8020 } 8021 8022 if (first_sire != NULL) { 8023 /* 8024 * At least one multirt route has been found 8025 * in the same call to ip_newroute(); 8026 * there is no need to report an ICMP error. 8027 * first_sire was not IRE_REFHOLDed. 8028 */ 8029 MULTIRT_DEBUG_UNTAG(first_mp); 8030 freemsg(first_mp); 8031 return; 8032 } 8033 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8034 RTA_DST, ipst); 8035 if (attach_ill != NULL) 8036 ill_refrele(attach_ill); 8037 goto icmp_err_ret; 8038 } 8039 8040 /* 8041 * Verify that the returned IRE does not have either 8042 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8043 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8044 */ 8045 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8046 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8047 if (attach_ill != NULL) 8048 ill_refrele(attach_ill); 8049 goto icmp_err_ret; 8050 } 8051 /* 8052 * Increment the ire_ob_pkt_count field for ire if it is an 8053 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8054 * increment the same for the parent IRE, sire, if it is some 8055 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8056 */ 8057 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8058 UPDATE_OB_PKT_COUNT(ire); 8059 ire->ire_last_used_time = lbolt; 8060 } 8061 8062 if (sire != NULL) { 8063 gw = sire->ire_gateway_addr; 8064 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8065 IRE_INTERFACE)) == 0); 8066 UPDATE_OB_PKT_COUNT(sire); 8067 sire->ire_last_used_time = lbolt; 8068 } 8069 /* 8070 * We have a route to reach the destination. 8071 * 8072 * 1) If the interface is part of ill group, try to get a new 8073 * ill taking load spreading into account. 8074 * 8075 * 2) After selecting the ill, get a source address that 8076 * might create good inbound load spreading. 8077 * ipif_select_source does this for us. 8078 * 8079 * If the application specified the ill (ifindex), we still 8080 * load spread. Only if the packets needs to go out 8081 * specifically on a given ill e.g. binding to 8082 * IPIF_NOFAILOVER address, then we don't try to use a 8083 * different ill for load spreading. 8084 */ 8085 if (attach_ill == NULL) { 8086 /* 8087 * Don't perform outbound load spreading in the 8088 * case of an RTF_MULTIRT route, as we actually 8089 * typically want to replicate outgoing packets 8090 * through particular interfaces. 8091 */ 8092 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8093 dst_ill = ire->ire_ipif->ipif_ill; 8094 /* for uniformity */ 8095 ill_refhold(dst_ill); 8096 } else { 8097 /* 8098 * If we are here trying to create an IRE_CACHE 8099 * for an offlink destination and have the 8100 * IRE_CACHE for the next hop and the latter is 8101 * using virtual IP source address selection i.e 8102 * it's ire->ire_ipif is pointing to a virtual 8103 * network interface (vni) then 8104 * ip_newroute_get_dst_ll() will return the vni 8105 * interface as the dst_ill. Since the vni is 8106 * virtual i.e not associated with any physical 8107 * interface, it cannot be the dst_ill, hence 8108 * in such a case call ip_newroute_get_dst_ll() 8109 * with the stq_ill instead of the ire_ipif ILL. 8110 * The function returns a refheld ill. 8111 */ 8112 if ((ire->ire_type == IRE_CACHE) && 8113 IS_VNI(ire->ire_ipif->ipif_ill)) 8114 dst_ill = ip_newroute_get_dst_ill( 8115 ire->ire_stq->q_ptr); 8116 else 8117 dst_ill = ip_newroute_get_dst_ill( 8118 ire->ire_ipif->ipif_ill); 8119 } 8120 if (dst_ill == NULL) { 8121 if (ip_debug > 2) { 8122 pr_addr_dbg("ip_newroute: " 8123 "no dst ill for dst" 8124 " %s\n", AF_INET, &dst); 8125 } 8126 goto icmp_err_ret; 8127 } 8128 } else { 8129 dst_ill = ire->ire_ipif->ipif_ill; 8130 /* for uniformity */ 8131 ill_refhold(dst_ill); 8132 /* 8133 * We should have found a route matching ill as we 8134 * called ire_ftable_lookup with MATCH_IRE_ILL. 8135 * Rather than asserting, when there is a mismatch, 8136 * we just drop the packet. 8137 */ 8138 if (dst_ill != attach_ill) { 8139 ip0dbg(("ip_newroute: Packet dropped as " 8140 "IPIF_NOFAILOVER ill is %s, " 8141 "ire->ire_ipif->ipif_ill is %s\n", 8142 attach_ill->ill_name, 8143 dst_ill->ill_name)); 8144 ill_refrele(attach_ill); 8145 goto icmp_err_ret; 8146 } 8147 } 8148 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8149 if (attach_ill != NULL) { 8150 ill_refrele(attach_ill); 8151 attach_ill = NULL; 8152 do_attach_ill = B_TRUE; 8153 } 8154 ASSERT(dst_ill != NULL); 8155 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8156 8157 /* 8158 * Pick the best source address from dst_ill. 8159 * 8160 * 1) If it is part of a multipathing group, we would 8161 * like to spread the inbound packets across different 8162 * interfaces. ipif_select_source picks a random source 8163 * across the different ills in the group. 8164 * 8165 * 2) If it is not part of a multipathing group, we try 8166 * to pick the source address from the destination 8167 * route. Clustering assumes that when we have multiple 8168 * prefixes hosted on an interface, the prefix of the 8169 * source address matches the prefix of the destination 8170 * route. We do this only if the address is not 8171 * DEPRECATED. 8172 * 8173 * 3) If the conn is in a different zone than the ire, we 8174 * need to pick a source address from the right zone. 8175 * 8176 * NOTE : If we hit case (1) above, the prefix of the source 8177 * address picked may not match the prefix of the 8178 * destination routes prefix as ipif_select_source 8179 * does not look at "dst" while picking a source 8180 * address. 8181 * If we want the same behavior as (2), we will need 8182 * to change the behavior of ipif_select_source. 8183 */ 8184 ASSERT(src_ipif == NULL); 8185 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8186 /* 8187 * The RTF_SETSRC flag is set in the parent ire (sire). 8188 * Check that the ipif matching the requested source 8189 * address still exists. 8190 */ 8191 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8192 zoneid, NULL, NULL, NULL, NULL, ipst); 8193 } 8194 8195 unspec_src = (connp != NULL && connp->conn_unspec_src); 8196 8197 if (src_ipif == NULL && 8198 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8199 ire_marks |= IRE_MARK_USESRC_CHECK; 8200 if ((dst_ill->ill_group != NULL) || 8201 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8202 (connp != NULL && ire->ire_zoneid != zoneid && 8203 ire->ire_zoneid != ALL_ZONES) || 8204 (dst_ill->ill_usesrc_ifindex != 0)) { 8205 /* 8206 * If the destination is reachable via a 8207 * given gateway, the selected source address 8208 * should be in the same subnet as the gateway. 8209 * Otherwise, the destination is not reachable. 8210 * 8211 * If there are no interfaces on the same subnet 8212 * as the destination, ipif_select_source gives 8213 * first non-deprecated interface which might be 8214 * on a different subnet than the gateway. 8215 * This is not desirable. Hence pass the dst_ire 8216 * source address to ipif_select_source. 8217 * It is sure that the destination is reachable 8218 * with the dst_ire source address subnet. 8219 * So passing dst_ire source address to 8220 * ipif_select_source will make sure that the 8221 * selected source will be on the same subnet 8222 * as dst_ire source address. 8223 */ 8224 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8225 src_ipif = ipif_select_source(dst_ill, saddr, 8226 zoneid); 8227 if (src_ipif == NULL) { 8228 if (ip_debug > 2) { 8229 pr_addr_dbg("ip_newroute: " 8230 "no src for dst %s ", 8231 AF_INET, &dst); 8232 printf("through interface %s\n", 8233 dst_ill->ill_name); 8234 } 8235 goto icmp_err_ret; 8236 } 8237 } else { 8238 src_ipif = ire->ire_ipif; 8239 ASSERT(src_ipif != NULL); 8240 /* hold src_ipif for uniformity */ 8241 ipif_refhold(src_ipif); 8242 } 8243 } 8244 8245 /* 8246 * Assign a source address while we have the conn. 8247 * We can't have ip_wput_ire pick a source address when the 8248 * packet returns from arp since we need to look at 8249 * conn_unspec_src and conn_zoneid, and we lose the conn when 8250 * going through arp. 8251 * 8252 * NOTE : ip_newroute_v6 does not have this piece of code as 8253 * it uses ip6i to store this information. 8254 */ 8255 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8256 ipha->ipha_src = src_ipif->ipif_src_addr; 8257 8258 if (ip_debug > 3) { 8259 /* ip2dbg */ 8260 pr_addr_dbg("ip_newroute: first hop %s\n", 8261 AF_INET, &gw); 8262 } 8263 ip2dbg(("\tire type %s (%d)\n", 8264 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8265 8266 /* 8267 * The TTL of multirouted packets is bounded by the 8268 * ip_multirt_ttl ndd variable. 8269 */ 8270 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8271 /* Force TTL of multirouted packets */ 8272 if ((ipst->ips_ip_multirt_ttl > 0) && 8273 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8274 ip2dbg(("ip_newroute: forcing multirt TTL " 8275 "to %d (was %d), dst 0x%08x\n", 8276 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8277 ntohl(sire->ire_addr))); 8278 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8279 } 8280 } 8281 /* 8282 * At this point in ip_newroute(), ire is either the 8283 * IRE_CACHE of the next-hop gateway for an off-subnet 8284 * destination or an IRE_INTERFACE type that should be used 8285 * to resolve an on-subnet destination or an on-subnet 8286 * next-hop gateway. 8287 * 8288 * In the IRE_CACHE case, we have the following : 8289 * 8290 * 1) src_ipif - used for getting a source address. 8291 * 8292 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8293 * means packets using this IRE_CACHE will go out on 8294 * dst_ill. 8295 * 8296 * 3) The IRE sire will point to the prefix that is the 8297 * longest matching route for the destination. These 8298 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8299 * 8300 * The newly created IRE_CACHE entry for the off-subnet 8301 * destination is tied to both the prefix route and the 8302 * interface route used to resolve the next-hop gateway 8303 * via the ire_phandle and ire_ihandle fields, 8304 * respectively. 8305 * 8306 * In the IRE_INTERFACE case, we have the following : 8307 * 8308 * 1) src_ipif - used for getting a source address. 8309 * 8310 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8311 * means packets using the IRE_CACHE that we will build 8312 * here will go out on dst_ill. 8313 * 8314 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8315 * to be created will only be tied to the IRE_INTERFACE 8316 * that was derived from the ire_ihandle field. 8317 * 8318 * If sire is non-NULL, it means the destination is 8319 * off-link and we will first create the IRE_CACHE for the 8320 * gateway. Next time through ip_newroute, we will create 8321 * the IRE_CACHE for the final destination as described 8322 * above. 8323 * 8324 * In both cases, after the current resolution has been 8325 * completed (or possibly initialised, in the IRE_INTERFACE 8326 * case), the loop may be re-entered to attempt the resolution 8327 * of another RTF_MULTIRT route. 8328 * 8329 * When an IRE_CACHE entry for the off-subnet destination is 8330 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8331 * for further processing in emission loops. 8332 */ 8333 save_ire = ire; 8334 switch (ire->ire_type) { 8335 case IRE_CACHE: { 8336 ire_t *ipif_ire; 8337 8338 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8339 if (gw == 0) 8340 gw = ire->ire_gateway_addr; 8341 /* 8342 * We need 3 ire's to create a new cache ire for an 8343 * off-link destination from the cache ire of the 8344 * gateway. 8345 * 8346 * 1. The prefix ire 'sire' (Note that this does 8347 * not apply to the conn_nexthop_set case) 8348 * 2. The cache ire of the gateway 'ire' 8349 * 3. The interface ire 'ipif_ire' 8350 * 8351 * We have (1) and (2). We lookup (3) below. 8352 * 8353 * If there is no interface route to the gateway, 8354 * it is a race condition, where we found the cache 8355 * but the interface route has been deleted. 8356 */ 8357 if (ip_nexthop) { 8358 ipif_ire = ire_ihandle_lookup_onlink(ire); 8359 } else { 8360 ipif_ire = 8361 ire_ihandle_lookup_offlink(ire, sire); 8362 } 8363 if (ipif_ire == NULL) { 8364 ip1dbg(("ip_newroute: " 8365 "ire_ihandle_lookup_offlink failed\n")); 8366 goto icmp_err_ret; 8367 } 8368 8369 /* 8370 * Check cached gateway IRE for any security 8371 * attributes; if found, associate the gateway 8372 * credentials group to the destination IRE. 8373 */ 8374 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8375 mutex_enter(&attrp->igsa_lock); 8376 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8377 GCGRP_REFHOLD(gcgrp); 8378 mutex_exit(&attrp->igsa_lock); 8379 } 8380 8381 /* 8382 * XXX For the source of the resolver mp, 8383 * we are using the same DL_UNITDATA_REQ 8384 * (from save_ire->ire_nce->nce_res_mp) 8385 * though the save_ire is not pointing at the same ill. 8386 * This is incorrect. We need to send it up to the 8387 * resolver to get the right res_mp. For ethernets 8388 * this may be okay (ill_type == DL_ETHER). 8389 */ 8390 8391 ire = ire_create( 8392 (uchar_t *)&dst, /* dest address */ 8393 (uchar_t *)&ip_g_all_ones, /* mask */ 8394 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8395 (uchar_t *)&gw, /* gateway address */ 8396 &save_ire->ire_max_frag, 8397 save_ire->ire_nce, /* src nce */ 8398 dst_ill->ill_rq, /* recv-from queue */ 8399 dst_ill->ill_wq, /* send-to queue */ 8400 IRE_CACHE, /* IRE type */ 8401 src_ipif, 8402 (sire != NULL) ? 8403 sire->ire_mask : 0, /* Parent mask */ 8404 (sire != NULL) ? 8405 sire->ire_phandle : 0, /* Parent handle */ 8406 ipif_ire->ire_ihandle, /* Interface handle */ 8407 (sire != NULL) ? (sire->ire_flags & 8408 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8409 (sire != NULL) ? 8410 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8411 NULL, 8412 gcgrp, 8413 ipst); 8414 8415 if (ire == NULL) { 8416 if (gcgrp != NULL) { 8417 GCGRP_REFRELE(gcgrp); 8418 gcgrp = NULL; 8419 } 8420 ire_refrele(ipif_ire); 8421 ire_refrele(save_ire); 8422 break; 8423 } 8424 8425 /* reference now held by IRE */ 8426 gcgrp = NULL; 8427 8428 ire->ire_marks |= ire_marks; 8429 8430 /* 8431 * Prevent sire and ipif_ire from getting deleted. 8432 * The newly created ire is tied to both of them via 8433 * the phandle and ihandle respectively. 8434 */ 8435 if (sire != NULL) { 8436 IRB_REFHOLD(sire->ire_bucket); 8437 /* Has it been removed already ? */ 8438 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8439 IRB_REFRELE(sire->ire_bucket); 8440 ire_refrele(ipif_ire); 8441 ire_refrele(save_ire); 8442 break; 8443 } 8444 } 8445 8446 IRB_REFHOLD(ipif_ire->ire_bucket); 8447 /* Has it been removed already ? */ 8448 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8449 IRB_REFRELE(ipif_ire->ire_bucket); 8450 if (sire != NULL) 8451 IRB_REFRELE(sire->ire_bucket); 8452 ire_refrele(ipif_ire); 8453 ire_refrele(save_ire); 8454 break; 8455 } 8456 8457 xmit_mp = first_mp; 8458 /* 8459 * In the case of multirouting, a copy 8460 * of the packet is done before its sending. 8461 * The copy is used to attempt another 8462 * route resolution, in a next loop. 8463 */ 8464 if (ire->ire_flags & RTF_MULTIRT) { 8465 copy_mp = copymsg(first_mp); 8466 if (copy_mp != NULL) { 8467 xmit_mp = copy_mp; 8468 MULTIRT_DEBUG_TAG(first_mp); 8469 } 8470 } 8471 ire_add_then_send(q, ire, xmit_mp); 8472 ire_refrele(save_ire); 8473 8474 /* Assert that sire is not deleted yet. */ 8475 if (sire != NULL) { 8476 ASSERT(sire->ire_ptpn != NULL); 8477 IRB_REFRELE(sire->ire_bucket); 8478 } 8479 8480 /* Assert that ipif_ire is not deleted yet. */ 8481 ASSERT(ipif_ire->ire_ptpn != NULL); 8482 IRB_REFRELE(ipif_ire->ire_bucket); 8483 ire_refrele(ipif_ire); 8484 8485 /* 8486 * If copy_mp is not NULL, multirouting was 8487 * requested. We loop to initiate a next 8488 * route resolution attempt, starting from sire. 8489 */ 8490 if (copy_mp != NULL) { 8491 /* 8492 * Search for the next unresolved 8493 * multirt route. 8494 */ 8495 copy_mp = NULL; 8496 ipif_ire = NULL; 8497 ire = NULL; 8498 multirt_resolve_next = B_TRUE; 8499 continue; 8500 } 8501 if (sire != NULL) 8502 ire_refrele(sire); 8503 ipif_refrele(src_ipif); 8504 ill_refrele(dst_ill); 8505 return; 8506 } 8507 case IRE_IF_NORESOLVER: { 8508 8509 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8510 dst_ill->ill_resolver_mp == NULL) { 8511 ip1dbg(("ip_newroute: dst_ill %p " 8512 "for IRE_IF_NORESOLVER ire %p has " 8513 "no ill_resolver_mp\n", 8514 (void *)dst_ill, (void *)ire)); 8515 break; 8516 } 8517 8518 /* 8519 * TSol note: We are creating the ire cache for the 8520 * destination 'dst'. If 'dst' is offlink, going 8521 * through the first hop 'gw', the security attributes 8522 * of 'dst' must be set to point to the gateway 8523 * credentials of gateway 'gw'. If 'dst' is onlink, it 8524 * is possible that 'dst' is a potential gateway that is 8525 * referenced by some route that has some security 8526 * attributes. Thus in the former case, we need to do a 8527 * gcgrp_lookup of 'gw' while in the latter case we 8528 * need to do gcgrp_lookup of 'dst' itself. 8529 */ 8530 ga.ga_af = AF_INET; 8531 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8532 &ga.ga_addr); 8533 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8534 8535 ire = ire_create( 8536 (uchar_t *)&dst, /* dest address */ 8537 (uchar_t *)&ip_g_all_ones, /* mask */ 8538 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8539 (uchar_t *)&gw, /* gateway address */ 8540 &save_ire->ire_max_frag, 8541 NULL, /* no src nce */ 8542 dst_ill->ill_rq, /* recv-from queue */ 8543 dst_ill->ill_wq, /* send-to queue */ 8544 IRE_CACHE, 8545 src_ipif, 8546 save_ire->ire_mask, /* Parent mask */ 8547 (sire != NULL) ? /* Parent handle */ 8548 sire->ire_phandle : 0, 8549 save_ire->ire_ihandle, /* Interface handle */ 8550 (sire != NULL) ? sire->ire_flags & 8551 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8552 &(save_ire->ire_uinfo), 8553 NULL, 8554 gcgrp, 8555 ipst); 8556 8557 if (ire == NULL) { 8558 if (gcgrp != NULL) { 8559 GCGRP_REFRELE(gcgrp); 8560 gcgrp = NULL; 8561 } 8562 ire_refrele(save_ire); 8563 break; 8564 } 8565 8566 /* reference now held by IRE */ 8567 gcgrp = NULL; 8568 8569 ire->ire_marks |= ire_marks; 8570 8571 /* Prevent save_ire from getting deleted */ 8572 IRB_REFHOLD(save_ire->ire_bucket); 8573 /* Has it been removed already ? */ 8574 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8575 IRB_REFRELE(save_ire->ire_bucket); 8576 ire_refrele(save_ire); 8577 break; 8578 } 8579 8580 /* 8581 * In the case of multirouting, a copy 8582 * of the packet is made before it is sent. 8583 * The copy is used in the next 8584 * loop to attempt another resolution. 8585 */ 8586 xmit_mp = first_mp; 8587 if ((sire != NULL) && 8588 (sire->ire_flags & RTF_MULTIRT)) { 8589 copy_mp = copymsg(first_mp); 8590 if (copy_mp != NULL) { 8591 xmit_mp = copy_mp; 8592 MULTIRT_DEBUG_TAG(first_mp); 8593 } 8594 } 8595 ire_add_then_send(q, ire, xmit_mp); 8596 8597 /* Assert that it is not deleted yet. */ 8598 ASSERT(save_ire->ire_ptpn != NULL); 8599 IRB_REFRELE(save_ire->ire_bucket); 8600 ire_refrele(save_ire); 8601 8602 if (copy_mp != NULL) { 8603 /* 8604 * If we found a (no)resolver, we ignore any 8605 * trailing top priority IRE_CACHE in further 8606 * loops. This ensures that we do not omit any 8607 * (no)resolver. 8608 * This IRE_CACHE, if any, will be processed 8609 * by another thread entering ip_newroute(). 8610 * IRE_CACHE entries, if any, will be processed 8611 * by another thread entering ip_newroute(), 8612 * (upon resolver response, for instance). 8613 * This aims to force parallel multirt 8614 * resolutions as soon as a packet must be sent. 8615 * In the best case, after the tx of only one 8616 * packet, all reachable routes are resolved. 8617 * Otherwise, the resolution of all RTF_MULTIRT 8618 * routes would require several emissions. 8619 */ 8620 multirt_flags &= ~MULTIRT_CACHEGW; 8621 8622 /* 8623 * Search for the next unresolved multirt 8624 * route. 8625 */ 8626 copy_mp = NULL; 8627 save_ire = NULL; 8628 ire = NULL; 8629 multirt_resolve_next = B_TRUE; 8630 continue; 8631 } 8632 8633 /* 8634 * Don't need sire anymore 8635 */ 8636 if (sire != NULL) 8637 ire_refrele(sire); 8638 8639 ipif_refrele(src_ipif); 8640 ill_refrele(dst_ill); 8641 return; 8642 } 8643 case IRE_IF_RESOLVER: 8644 /* 8645 * We can't build an IRE_CACHE yet, but at least we 8646 * found a resolver that can help. 8647 */ 8648 res_mp = dst_ill->ill_resolver_mp; 8649 if (!OK_RESOLVER_MP(res_mp)) 8650 break; 8651 8652 /* 8653 * To be at this point in the code with a non-zero gw 8654 * means that dst is reachable through a gateway that 8655 * we have never resolved. By changing dst to the gw 8656 * addr we resolve the gateway first. 8657 * When ire_add_then_send() tries to put the IP dg 8658 * to dst, it will reenter ip_newroute() at which 8659 * time we will find the IRE_CACHE for the gw and 8660 * create another IRE_CACHE in case IRE_CACHE above. 8661 */ 8662 if (gw != INADDR_ANY) { 8663 /* 8664 * The source ipif that was determined above was 8665 * relative to the destination address, not the 8666 * gateway's. If src_ipif was not taken out of 8667 * the IRE_IF_RESOLVER entry, we'll need to call 8668 * ipif_select_source() again. 8669 */ 8670 if (src_ipif != ire->ire_ipif) { 8671 ipif_refrele(src_ipif); 8672 src_ipif = ipif_select_source(dst_ill, 8673 gw, zoneid); 8674 if (src_ipif == NULL) { 8675 if (ip_debug > 2) { 8676 pr_addr_dbg( 8677 "ip_newroute: no " 8678 "src for gw %s ", 8679 AF_INET, &gw); 8680 printf("through " 8681 "interface %s\n", 8682 dst_ill->ill_name); 8683 } 8684 goto icmp_err_ret; 8685 } 8686 } 8687 save_dst = dst; 8688 dst = gw; 8689 gw = INADDR_ANY; 8690 } 8691 8692 /* 8693 * We obtain a partial IRE_CACHE which we will pass 8694 * along with the resolver query. When the response 8695 * comes back it will be there ready for us to add. 8696 * The ire_max_frag is atomically set under the 8697 * irebucket lock in ire_add_v[46]. 8698 */ 8699 8700 ire = ire_create_mp( 8701 (uchar_t *)&dst, /* dest address */ 8702 (uchar_t *)&ip_g_all_ones, /* mask */ 8703 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8704 (uchar_t *)&gw, /* gateway address */ 8705 NULL, /* ire_max_frag */ 8706 NULL, /* no src nce */ 8707 dst_ill->ill_rq, /* recv-from queue */ 8708 dst_ill->ill_wq, /* send-to queue */ 8709 IRE_CACHE, 8710 src_ipif, /* Interface ipif */ 8711 save_ire->ire_mask, /* Parent mask */ 8712 0, 8713 save_ire->ire_ihandle, /* Interface handle */ 8714 0, /* flags if any */ 8715 &(save_ire->ire_uinfo), 8716 NULL, 8717 NULL, 8718 ipst); 8719 8720 if (ire == NULL) { 8721 ire_refrele(save_ire); 8722 break; 8723 } 8724 8725 if ((sire != NULL) && 8726 (sire->ire_flags & RTF_MULTIRT)) { 8727 copy_mp = copymsg(first_mp); 8728 if (copy_mp != NULL) 8729 MULTIRT_DEBUG_TAG(copy_mp); 8730 } 8731 8732 ire->ire_marks |= ire_marks; 8733 8734 /* 8735 * Construct message chain for the resolver 8736 * of the form: 8737 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8738 * Packet could contain a IPSEC_OUT mp. 8739 * 8740 * NOTE : ire will be added later when the response 8741 * comes back from ARP. If the response does not 8742 * come back, ARP frees the packet. For this reason, 8743 * we can't REFHOLD the bucket of save_ire to prevent 8744 * deletions. We may not be able to REFRELE the bucket 8745 * if the response never comes back. Thus, before 8746 * adding the ire, ire_add_v4 will make sure that the 8747 * interface route does not get deleted. This is the 8748 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8749 * where we can always prevent deletions because of 8750 * the synchronous nature of adding IRES i.e 8751 * ire_add_then_send is called after creating the IRE. 8752 */ 8753 ASSERT(ire->ire_mp != NULL); 8754 ire->ire_mp->b_cont = first_mp; 8755 /* Have saved_mp handy, for cleanup if canput fails */ 8756 saved_mp = mp; 8757 mp = copyb(res_mp); 8758 if (mp == NULL) { 8759 /* Prepare for cleanup */ 8760 mp = saved_mp; /* pkt */ 8761 ire_delete(ire); /* ire_mp */ 8762 ire = NULL; 8763 ire_refrele(save_ire); 8764 if (copy_mp != NULL) { 8765 MULTIRT_DEBUG_UNTAG(copy_mp); 8766 freemsg(copy_mp); 8767 copy_mp = NULL; 8768 } 8769 break; 8770 } 8771 linkb(mp, ire->ire_mp); 8772 8773 /* 8774 * Fill in the source and dest addrs for the resolver. 8775 * NOTE: this depends on memory layouts imposed by 8776 * ill_init(). 8777 */ 8778 areq = (areq_t *)mp->b_rptr; 8779 addrp = (ipaddr_t *)((char *)areq + 8780 areq->areq_sender_addr_offset); 8781 if (do_attach_ill) { 8782 /* 8783 * This is bind to no failover case. 8784 * arp packet also must go out on attach_ill. 8785 */ 8786 ASSERT(ipha->ipha_src != NULL); 8787 *addrp = ipha->ipha_src; 8788 } else { 8789 *addrp = save_ire->ire_src_addr; 8790 } 8791 8792 ire_refrele(save_ire); 8793 addrp = (ipaddr_t *)((char *)areq + 8794 areq->areq_target_addr_offset); 8795 *addrp = dst; 8796 /* Up to the resolver. */ 8797 if (canputnext(dst_ill->ill_rq) && 8798 !(dst_ill->ill_arp_closing)) { 8799 putnext(dst_ill->ill_rq, mp); 8800 ire = NULL; 8801 if (copy_mp != NULL) { 8802 /* 8803 * If we found a resolver, we ignore 8804 * any trailing top priority IRE_CACHE 8805 * in the further loops. This ensures 8806 * that we do not omit any resolver. 8807 * IRE_CACHE entries, if any, will be 8808 * processed next time we enter 8809 * ip_newroute(). 8810 */ 8811 multirt_flags &= ~MULTIRT_CACHEGW; 8812 /* 8813 * Search for the next unresolved 8814 * multirt route. 8815 */ 8816 first_mp = copy_mp; 8817 copy_mp = NULL; 8818 /* Prepare the next resolution loop. */ 8819 mp = first_mp; 8820 EXTRACT_PKT_MP(mp, first_mp, 8821 mctl_present); 8822 if (mctl_present) 8823 io = (ipsec_out_t *) 8824 first_mp->b_rptr; 8825 ipha = (ipha_t *)mp->b_rptr; 8826 8827 ASSERT(sire != NULL); 8828 8829 dst = save_dst; 8830 multirt_resolve_next = B_TRUE; 8831 continue; 8832 } 8833 8834 if (sire != NULL) 8835 ire_refrele(sire); 8836 8837 /* 8838 * The response will come back in ip_wput 8839 * with db_type IRE_DB_TYPE. 8840 */ 8841 ipif_refrele(src_ipif); 8842 ill_refrele(dst_ill); 8843 return; 8844 } else { 8845 /* Prepare for cleanup */ 8846 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8847 mp); 8848 mp->b_cont = NULL; 8849 freeb(mp); /* areq */ 8850 /* 8851 * this is an ire that is not added to the 8852 * cache. ire_freemblk will handle the release 8853 * of any resources associated with the ire. 8854 */ 8855 ire_delete(ire); /* ire_mp */ 8856 mp = saved_mp; /* pkt */ 8857 ire = NULL; 8858 if (copy_mp != NULL) { 8859 MULTIRT_DEBUG_UNTAG(copy_mp); 8860 freemsg(copy_mp); 8861 copy_mp = NULL; 8862 } 8863 break; 8864 } 8865 default: 8866 break; 8867 } 8868 } while (multirt_resolve_next); 8869 8870 ip1dbg(("ip_newroute: dropped\n")); 8871 /* Did this packet originate externally? */ 8872 if (mp->b_prev) { 8873 mp->b_next = NULL; 8874 mp->b_prev = NULL; 8875 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8876 } else { 8877 if (dst_ill != NULL) { 8878 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8879 } else { 8880 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8881 } 8882 } 8883 ASSERT(copy_mp == NULL); 8884 MULTIRT_DEBUG_UNTAG(first_mp); 8885 freemsg(first_mp); 8886 if (ire != NULL) 8887 ire_refrele(ire); 8888 if (sire != NULL) 8889 ire_refrele(sire); 8890 if (src_ipif != NULL) 8891 ipif_refrele(src_ipif); 8892 if (dst_ill != NULL) 8893 ill_refrele(dst_ill); 8894 return; 8895 8896 icmp_err_ret: 8897 ip1dbg(("ip_newroute: no route\n")); 8898 if (src_ipif != NULL) 8899 ipif_refrele(src_ipif); 8900 if (dst_ill != NULL) 8901 ill_refrele(dst_ill); 8902 if (sire != NULL) 8903 ire_refrele(sire); 8904 /* Did this packet originate externally? */ 8905 if (mp->b_prev) { 8906 mp->b_next = NULL; 8907 mp->b_prev = NULL; 8908 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8909 q = WR(q); 8910 } else { 8911 /* 8912 * There is no outgoing ill, so just increment the 8913 * system MIB. 8914 */ 8915 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8916 /* 8917 * Since ip_wput() isn't close to finished, we fill 8918 * in enough of the header for credible error reporting. 8919 */ 8920 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8921 /* Failed */ 8922 MULTIRT_DEBUG_UNTAG(first_mp); 8923 freemsg(first_mp); 8924 if (ire != NULL) 8925 ire_refrele(ire); 8926 return; 8927 } 8928 } 8929 8930 /* 8931 * At this point we will have ire only if RTF_BLACKHOLE 8932 * or RTF_REJECT flags are set on the IRE. It will not 8933 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8934 */ 8935 if (ire != NULL) { 8936 if (ire->ire_flags & RTF_BLACKHOLE) { 8937 ire_refrele(ire); 8938 MULTIRT_DEBUG_UNTAG(first_mp); 8939 freemsg(first_mp); 8940 return; 8941 } 8942 ire_refrele(ire); 8943 } 8944 if (ip_source_routed(ipha, ipst)) { 8945 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8946 zoneid, ipst); 8947 return; 8948 } 8949 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8950 } 8951 8952 ip_opt_info_t zero_info; 8953 8954 /* 8955 * IPv4 - 8956 * ip_newroute_ipif is called by ip_wput_multicast and 8957 * ip_rput_forward_multicast whenever we need to send 8958 * out a packet to a destination address for which we do not have specific 8959 * routing information. It is used when the packet will be sent out 8960 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8961 * socket option is set or icmp error message wants to go out on a particular 8962 * interface for a unicast packet. 8963 * 8964 * In most cases, the destination address is resolved thanks to the ipif 8965 * intrinsic resolver. However, there are some cases where the call to 8966 * ip_newroute_ipif must take into account the potential presence of 8967 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8968 * that uses the interface. This is specified through flags, 8969 * which can be a combination of: 8970 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8971 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8972 * and flags. Additionally, the packet source address has to be set to 8973 * the specified address. The caller is thus expected to set this flag 8974 * if the packet has no specific source address yet. 8975 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8976 * flag, the resulting ire will inherit the flag. All unresolved routes 8977 * to the destination must be explored in the same call to 8978 * ip_newroute_ipif(). 8979 */ 8980 static void 8981 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8982 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8983 { 8984 areq_t *areq; 8985 ire_t *ire = NULL; 8986 mblk_t *res_mp; 8987 ipaddr_t *addrp; 8988 mblk_t *first_mp; 8989 ire_t *save_ire = NULL; 8990 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8991 ipif_t *src_ipif = NULL; 8992 ushort_t ire_marks = 0; 8993 ill_t *dst_ill = NULL; 8994 boolean_t mctl_present; 8995 ipsec_out_t *io; 8996 ipha_t *ipha; 8997 int ihandle = 0; 8998 mblk_t *saved_mp; 8999 ire_t *fire = NULL; 9000 mblk_t *copy_mp = NULL; 9001 boolean_t multirt_resolve_next; 9002 boolean_t unspec_src; 9003 ipaddr_t ipha_dst; 9004 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9005 9006 /* 9007 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9008 * here for uniformity 9009 */ 9010 ipif_refhold(ipif); 9011 9012 /* 9013 * This loop is run only once in most cases. 9014 * We loop to resolve further routes only when the destination 9015 * can be reached through multiple RTF_MULTIRT-flagged ires. 9016 */ 9017 do { 9018 if (dst_ill != NULL) { 9019 ill_refrele(dst_ill); 9020 dst_ill = NULL; 9021 } 9022 if (src_ipif != NULL) { 9023 ipif_refrele(src_ipif); 9024 src_ipif = NULL; 9025 } 9026 multirt_resolve_next = B_FALSE; 9027 9028 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9029 ipif->ipif_ill->ill_name)); 9030 9031 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9032 if (mctl_present) 9033 io = (ipsec_out_t *)first_mp->b_rptr; 9034 9035 ipha = (ipha_t *)mp->b_rptr; 9036 9037 /* 9038 * Save the packet destination address, we may need it after 9039 * the packet has been consumed. 9040 */ 9041 ipha_dst = ipha->ipha_dst; 9042 9043 /* 9044 * If the interface is a pt-pt interface we look for an 9045 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9046 * local_address and the pt-pt destination address. Otherwise 9047 * we just match the local address. 9048 * NOTE: dst could be different than ipha->ipha_dst in case 9049 * of sending igmp multicast packets over a point-to-point 9050 * connection. 9051 * Thus we must be careful enough to check ipha_dst to be a 9052 * multicast address, otherwise it will take xmit_if path for 9053 * multicast packets resulting into kernel stack overflow by 9054 * repeated calls to ip_newroute_ipif from ire_send(). 9055 */ 9056 if (CLASSD(ipha_dst) && 9057 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9058 goto err_ret; 9059 } 9060 9061 /* 9062 * We check if an IRE_OFFSUBNET for the addr that goes through 9063 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9064 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9065 * propagate its flags to the new ire. 9066 */ 9067 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9068 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9069 ip2dbg(("ip_newroute_ipif: " 9070 "ipif_lookup_multi_ire(" 9071 "ipif %p, dst %08x) = fire %p\n", 9072 (void *)ipif, ntohl(dst), (void *)fire)); 9073 } 9074 9075 if (mctl_present && io->ipsec_out_attach_if) { 9076 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9077 io->ipsec_out_ill_index, B_FALSE, ipst); 9078 9079 /* Failure case frees things for us. */ 9080 if (attach_ill == NULL) { 9081 ipif_refrele(ipif); 9082 if (fire != NULL) 9083 ire_refrele(fire); 9084 return; 9085 } 9086 9087 /* 9088 * Check if we need an ire that will not be 9089 * looked up by anybody else i.e. HIDDEN. 9090 */ 9091 if (ill_is_probeonly(attach_ill)) { 9092 ire_marks = IRE_MARK_HIDDEN; 9093 } 9094 /* 9095 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9096 * case. 9097 */ 9098 dst_ill = ipif->ipif_ill; 9099 /* attach_ill has been refheld by ip_grab_attach_ill */ 9100 ASSERT(dst_ill == attach_ill); 9101 } else { 9102 /* 9103 * If the interface belongs to an interface group, 9104 * make sure the next possible interface in the group 9105 * is used. This encourages load spreading among 9106 * peers in an interface group. 9107 * Note: load spreading is disabled for RTF_MULTIRT 9108 * routes. 9109 */ 9110 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9111 (fire->ire_flags & RTF_MULTIRT)) { 9112 /* 9113 * Don't perform outbound load spreading 9114 * in the case of an RTF_MULTIRT issued route, 9115 * we actually typically want to replicate 9116 * outgoing packets through particular 9117 * interfaces. 9118 */ 9119 dst_ill = ipif->ipif_ill; 9120 ill_refhold(dst_ill); 9121 } else { 9122 dst_ill = ip_newroute_get_dst_ill( 9123 ipif->ipif_ill); 9124 } 9125 if (dst_ill == NULL) { 9126 if (ip_debug > 2) { 9127 pr_addr_dbg("ip_newroute_ipif: " 9128 "no dst ill for dst %s\n", 9129 AF_INET, &dst); 9130 } 9131 goto err_ret; 9132 } 9133 } 9134 9135 /* 9136 * Pick a source address preferring non-deprecated ones. 9137 * Unlike ip_newroute, we don't do any source address 9138 * selection here since for multicast it really does not help 9139 * in inbound load spreading as in the unicast case. 9140 */ 9141 if ((flags & RTF_SETSRC) && (fire != NULL) && 9142 (fire->ire_flags & RTF_SETSRC)) { 9143 /* 9144 * As requested by flags, an IRE_OFFSUBNET was looked up 9145 * on that interface. This ire has RTF_SETSRC flag, so 9146 * the source address of the packet must be changed. 9147 * Check that the ipif matching the requested source 9148 * address still exists. 9149 */ 9150 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9151 zoneid, NULL, NULL, NULL, NULL, ipst); 9152 } 9153 9154 unspec_src = (connp != NULL && connp->conn_unspec_src); 9155 9156 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9157 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9158 (connp != NULL && ipif->ipif_zoneid != zoneid && 9159 ipif->ipif_zoneid != ALL_ZONES)) && 9160 (src_ipif == NULL) && 9161 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9162 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9163 if (src_ipif == NULL) { 9164 if (ip_debug > 2) { 9165 /* ip1dbg */ 9166 pr_addr_dbg("ip_newroute_ipif: " 9167 "no src for dst %s", 9168 AF_INET, &dst); 9169 } 9170 ip1dbg((" through interface %s\n", 9171 dst_ill->ill_name)); 9172 goto err_ret; 9173 } 9174 ipif_refrele(ipif); 9175 ipif = src_ipif; 9176 ipif_refhold(ipif); 9177 } 9178 if (src_ipif == NULL) { 9179 src_ipif = ipif; 9180 ipif_refhold(src_ipif); 9181 } 9182 9183 /* 9184 * Assign a source address while we have the conn. 9185 * We can't have ip_wput_ire pick a source address when the 9186 * packet returns from arp since conn_unspec_src might be set 9187 * and we lose the conn when going through arp. 9188 */ 9189 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9190 ipha->ipha_src = src_ipif->ipif_src_addr; 9191 9192 /* 9193 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9194 * that the outgoing interface does not have an interface ire. 9195 */ 9196 if (CLASSD(ipha_dst) && (connp == NULL || 9197 connp->conn_outgoing_ill == NULL) && 9198 infop->ip_opt_ill_index == 0) { 9199 /* ipif_to_ire returns an held ire */ 9200 ire = ipif_to_ire(ipif); 9201 if (ire == NULL) 9202 goto err_ret; 9203 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9204 goto err_ret; 9205 /* 9206 * ihandle is needed when the ire is added to 9207 * cache table. 9208 */ 9209 save_ire = ire; 9210 ihandle = save_ire->ire_ihandle; 9211 9212 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9213 "flags %04x\n", 9214 (void *)ire, (void *)ipif, flags)); 9215 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9216 (fire->ire_flags & RTF_MULTIRT)) { 9217 /* 9218 * As requested by flags, an IRE_OFFSUBNET was 9219 * looked up on that interface. This ire has 9220 * RTF_MULTIRT flag, so the resolution loop will 9221 * be re-entered to resolve additional routes on 9222 * other interfaces. For that purpose, a copy of 9223 * the packet is performed at this point. 9224 */ 9225 fire->ire_last_used_time = lbolt; 9226 copy_mp = copymsg(first_mp); 9227 if (copy_mp) { 9228 MULTIRT_DEBUG_TAG(copy_mp); 9229 } 9230 } 9231 if ((flags & RTF_SETSRC) && (fire != NULL) && 9232 (fire->ire_flags & RTF_SETSRC)) { 9233 /* 9234 * As requested by flags, an IRE_OFFSUBET was 9235 * looked up on that interface. This ire has 9236 * RTF_SETSRC flag, so the source address of the 9237 * packet must be changed. 9238 */ 9239 ipha->ipha_src = fire->ire_src_addr; 9240 } 9241 } else { 9242 ASSERT((connp == NULL) || 9243 (connp->conn_outgoing_ill != NULL) || 9244 (connp->conn_dontroute) || 9245 infop->ip_opt_ill_index != 0); 9246 /* 9247 * The only ways we can come here are: 9248 * 1) IP_BOUND_IF socket option is set 9249 * 2) SO_DONTROUTE socket option is set 9250 * 3) IP_PKTINFO option is passed in as ancillary data. 9251 * In all cases, the new ire will not be added 9252 * into cache table. 9253 */ 9254 ire_marks |= IRE_MARK_NOADD; 9255 } 9256 9257 switch (ipif->ipif_net_type) { 9258 case IRE_IF_NORESOLVER: { 9259 /* We have what we need to build an IRE_CACHE. */ 9260 9261 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9262 (dst_ill->ill_resolver_mp == NULL)) { 9263 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9264 "for IRE_IF_NORESOLVER ire %p has " 9265 "no ill_resolver_mp\n", 9266 (void *)dst_ill, (void *)ire)); 9267 break; 9268 } 9269 9270 /* 9271 * The new ire inherits the IRE_OFFSUBNET flags 9272 * and source address, if this was requested. 9273 */ 9274 ire = ire_create( 9275 (uchar_t *)&dst, /* dest address */ 9276 (uchar_t *)&ip_g_all_ones, /* mask */ 9277 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9278 NULL, /* gateway address */ 9279 &ipif->ipif_mtu, 9280 NULL, /* no src nce */ 9281 dst_ill->ill_rq, /* recv-from queue */ 9282 dst_ill->ill_wq, /* send-to queue */ 9283 IRE_CACHE, 9284 src_ipif, 9285 (save_ire != NULL ? save_ire->ire_mask : 0), 9286 (fire != NULL) ? /* Parent handle */ 9287 fire->ire_phandle : 0, 9288 ihandle, /* Interface handle */ 9289 (fire != NULL) ? 9290 (fire->ire_flags & 9291 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9292 (save_ire == NULL ? &ire_uinfo_null : 9293 &save_ire->ire_uinfo), 9294 NULL, 9295 NULL, 9296 ipst); 9297 9298 if (ire == NULL) { 9299 if (save_ire != NULL) 9300 ire_refrele(save_ire); 9301 break; 9302 } 9303 9304 ire->ire_marks |= ire_marks; 9305 9306 /* 9307 * If IRE_MARK_NOADD is set then we need to convert 9308 * the max_fragp to a useable value now. This is 9309 * normally done in ire_add_v[46]. We also need to 9310 * associate the ire with an nce (normally would be 9311 * done in ip_wput_nondata()). 9312 * 9313 * Note that IRE_MARK_NOADD packets created here 9314 * do not have a non-null ire_mp pointer. The null 9315 * value of ire_bucket indicates that they were 9316 * never added. 9317 */ 9318 if (ire->ire_marks & IRE_MARK_NOADD) { 9319 uint_t max_frag; 9320 9321 max_frag = *ire->ire_max_fragp; 9322 ire->ire_max_fragp = NULL; 9323 ire->ire_max_frag = max_frag; 9324 9325 if ((ire->ire_nce = ndp_lookup_v4( 9326 ire_to_ill(ire), 9327 (ire->ire_gateway_addr != INADDR_ANY ? 9328 &ire->ire_gateway_addr : &ire->ire_addr), 9329 B_FALSE)) == NULL) { 9330 if (save_ire != NULL) 9331 ire_refrele(save_ire); 9332 break; 9333 } 9334 ASSERT(ire->ire_nce->nce_state == 9335 ND_REACHABLE); 9336 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9337 } 9338 9339 /* Prevent save_ire from getting deleted */ 9340 if (save_ire != NULL) { 9341 IRB_REFHOLD(save_ire->ire_bucket); 9342 /* Has it been removed already ? */ 9343 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9344 IRB_REFRELE(save_ire->ire_bucket); 9345 ire_refrele(save_ire); 9346 break; 9347 } 9348 } 9349 9350 ire_add_then_send(q, ire, first_mp); 9351 9352 /* Assert that save_ire is not deleted yet. */ 9353 if (save_ire != NULL) { 9354 ASSERT(save_ire->ire_ptpn != NULL); 9355 IRB_REFRELE(save_ire->ire_bucket); 9356 ire_refrele(save_ire); 9357 save_ire = NULL; 9358 } 9359 if (fire != NULL) { 9360 ire_refrele(fire); 9361 fire = NULL; 9362 } 9363 9364 /* 9365 * the resolution loop is re-entered if this 9366 * was requested through flags and if we 9367 * actually are in a multirouting case. 9368 */ 9369 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9370 boolean_t need_resolve = 9371 ire_multirt_need_resolve(ipha_dst, 9372 MBLK_GETLABEL(copy_mp), ipst); 9373 if (!need_resolve) { 9374 MULTIRT_DEBUG_UNTAG(copy_mp); 9375 freemsg(copy_mp); 9376 copy_mp = NULL; 9377 } else { 9378 /* 9379 * ipif_lookup_group() calls 9380 * ire_lookup_multi() that uses 9381 * ire_ftable_lookup() to find 9382 * an IRE_INTERFACE for the group. 9383 * In the multirt case, 9384 * ire_lookup_multi() then invokes 9385 * ire_multirt_lookup() to find 9386 * the next resolvable ire. 9387 * As a result, we obtain an new 9388 * interface, derived from the 9389 * next ire. 9390 */ 9391 ipif_refrele(ipif); 9392 ipif = ipif_lookup_group(ipha_dst, 9393 zoneid, ipst); 9394 ip2dbg(("ip_newroute_ipif: " 9395 "multirt dst %08x, ipif %p\n", 9396 htonl(dst), (void *)ipif)); 9397 if (ipif != NULL) { 9398 mp = copy_mp; 9399 copy_mp = NULL; 9400 multirt_resolve_next = B_TRUE; 9401 continue; 9402 } else { 9403 freemsg(copy_mp); 9404 } 9405 } 9406 } 9407 if (ipif != NULL) 9408 ipif_refrele(ipif); 9409 ill_refrele(dst_ill); 9410 ipif_refrele(src_ipif); 9411 return; 9412 } 9413 case IRE_IF_RESOLVER: 9414 /* 9415 * We can't build an IRE_CACHE yet, but at least 9416 * we found a resolver that can help. 9417 */ 9418 res_mp = dst_ill->ill_resolver_mp; 9419 if (!OK_RESOLVER_MP(res_mp)) 9420 break; 9421 9422 /* 9423 * We obtain a partial IRE_CACHE which we will pass 9424 * along with the resolver query. When the response 9425 * comes back it will be there ready for us to add. 9426 * The new ire inherits the IRE_OFFSUBNET flags 9427 * and source address, if this was requested. 9428 * The ire_max_frag is atomically set under the 9429 * irebucket lock in ire_add_v[46]. Only in the 9430 * case of IRE_MARK_NOADD, we set it here itself. 9431 */ 9432 ire = ire_create_mp( 9433 (uchar_t *)&dst, /* dest address */ 9434 (uchar_t *)&ip_g_all_ones, /* mask */ 9435 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9436 NULL, /* gateway address */ 9437 (ire_marks & IRE_MARK_NOADD) ? 9438 ipif->ipif_mtu : 0, /* max_frag */ 9439 NULL, /* no src nce */ 9440 dst_ill->ill_rq, /* recv-from queue */ 9441 dst_ill->ill_wq, /* send-to queue */ 9442 IRE_CACHE, 9443 src_ipif, 9444 (save_ire != NULL ? save_ire->ire_mask : 0), 9445 (fire != NULL) ? /* Parent handle */ 9446 fire->ire_phandle : 0, 9447 ihandle, /* Interface handle */ 9448 (fire != NULL) ? /* flags if any */ 9449 (fire->ire_flags & 9450 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9451 (save_ire == NULL ? &ire_uinfo_null : 9452 &save_ire->ire_uinfo), 9453 NULL, 9454 NULL, 9455 ipst); 9456 9457 if (save_ire != NULL) { 9458 ire_refrele(save_ire); 9459 save_ire = NULL; 9460 } 9461 if (ire == NULL) 9462 break; 9463 9464 ire->ire_marks |= ire_marks; 9465 /* 9466 * Construct message chain for the resolver of the 9467 * form: 9468 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9469 * 9470 * NOTE : ire will be added later when the response 9471 * comes back from ARP. If the response does not 9472 * come back, ARP frees the packet. For this reason, 9473 * we can't REFHOLD the bucket of save_ire to prevent 9474 * deletions. We may not be able to REFRELE the 9475 * bucket if the response never comes back. 9476 * Thus, before adding the ire, ire_add_v4 will make 9477 * sure that the interface route does not get deleted. 9478 * This is the only case unlike ip_newroute_v6, 9479 * ip_newroute_ipif_v6 where we can always prevent 9480 * deletions because ire_add_then_send is called after 9481 * creating the IRE. 9482 * If IRE_MARK_NOADD is set, then ire_add_then_send 9483 * does not add this IRE into the IRE CACHE. 9484 */ 9485 ASSERT(ire->ire_mp != NULL); 9486 ire->ire_mp->b_cont = first_mp; 9487 /* Have saved_mp handy, for cleanup if canput fails */ 9488 saved_mp = mp; 9489 mp = copyb(res_mp); 9490 if (mp == NULL) { 9491 /* Prepare for cleanup */ 9492 mp = saved_mp; /* pkt */ 9493 ire_delete(ire); /* ire_mp */ 9494 ire = NULL; 9495 if (copy_mp != NULL) { 9496 MULTIRT_DEBUG_UNTAG(copy_mp); 9497 freemsg(copy_mp); 9498 copy_mp = NULL; 9499 } 9500 break; 9501 } 9502 linkb(mp, ire->ire_mp); 9503 9504 /* 9505 * Fill in the source and dest addrs for the resolver. 9506 * NOTE: this depends on memory layouts imposed by 9507 * ill_init(). 9508 */ 9509 areq = (areq_t *)mp->b_rptr; 9510 addrp = (ipaddr_t *)((char *)areq + 9511 areq->areq_sender_addr_offset); 9512 *addrp = ire->ire_src_addr; 9513 addrp = (ipaddr_t *)((char *)areq + 9514 areq->areq_target_addr_offset); 9515 *addrp = dst; 9516 /* Up to the resolver. */ 9517 if (canputnext(dst_ill->ill_rq) && 9518 !(dst_ill->ill_arp_closing)) { 9519 putnext(dst_ill->ill_rq, mp); 9520 /* 9521 * The response will come back in ip_wput 9522 * with db_type IRE_DB_TYPE. 9523 */ 9524 } else { 9525 mp->b_cont = NULL; 9526 freeb(mp); /* areq */ 9527 ire_delete(ire); /* ire_mp */ 9528 saved_mp->b_next = NULL; 9529 saved_mp->b_prev = NULL; 9530 freemsg(first_mp); /* pkt */ 9531 ip2dbg(("ip_newroute_ipif: dropped\n")); 9532 } 9533 9534 if (fire != NULL) { 9535 ire_refrele(fire); 9536 fire = NULL; 9537 } 9538 9539 9540 /* 9541 * The resolution loop is re-entered if this was 9542 * requested through flags and we actually are 9543 * in a multirouting case. 9544 */ 9545 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9546 boolean_t need_resolve = 9547 ire_multirt_need_resolve(ipha_dst, 9548 MBLK_GETLABEL(copy_mp), ipst); 9549 if (!need_resolve) { 9550 MULTIRT_DEBUG_UNTAG(copy_mp); 9551 freemsg(copy_mp); 9552 copy_mp = NULL; 9553 } else { 9554 /* 9555 * ipif_lookup_group() calls 9556 * ire_lookup_multi() that uses 9557 * ire_ftable_lookup() to find 9558 * an IRE_INTERFACE for the group. 9559 * In the multirt case, 9560 * ire_lookup_multi() then invokes 9561 * ire_multirt_lookup() to find 9562 * the next resolvable ire. 9563 * As a result, we obtain an new 9564 * interface, derived from the 9565 * next ire. 9566 */ 9567 ipif_refrele(ipif); 9568 ipif = ipif_lookup_group(ipha_dst, 9569 zoneid, ipst); 9570 if (ipif != NULL) { 9571 mp = copy_mp; 9572 copy_mp = NULL; 9573 multirt_resolve_next = B_TRUE; 9574 continue; 9575 } else { 9576 freemsg(copy_mp); 9577 } 9578 } 9579 } 9580 if (ipif != NULL) 9581 ipif_refrele(ipif); 9582 ill_refrele(dst_ill); 9583 ipif_refrele(src_ipif); 9584 return; 9585 default: 9586 break; 9587 } 9588 } while (multirt_resolve_next); 9589 9590 err_ret: 9591 ip2dbg(("ip_newroute_ipif: dropped\n")); 9592 if (fire != NULL) 9593 ire_refrele(fire); 9594 ipif_refrele(ipif); 9595 /* Did this packet originate externally? */ 9596 if (dst_ill != NULL) 9597 ill_refrele(dst_ill); 9598 if (src_ipif != NULL) 9599 ipif_refrele(src_ipif); 9600 if (mp->b_prev || mp->b_next) { 9601 mp->b_next = NULL; 9602 mp->b_prev = NULL; 9603 } else { 9604 /* 9605 * Since ip_wput() isn't close to finished, we fill 9606 * in enough of the header for credible error reporting. 9607 */ 9608 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9609 /* Failed */ 9610 freemsg(first_mp); 9611 if (ire != NULL) 9612 ire_refrele(ire); 9613 return; 9614 } 9615 } 9616 /* 9617 * At this point we will have ire only if RTF_BLACKHOLE 9618 * or RTF_REJECT flags are set on the IRE. It will not 9619 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9620 */ 9621 if (ire != NULL) { 9622 if (ire->ire_flags & RTF_BLACKHOLE) { 9623 ire_refrele(ire); 9624 freemsg(first_mp); 9625 return; 9626 } 9627 ire_refrele(ire); 9628 } 9629 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9630 } 9631 9632 /* Name/Value Table Lookup Routine */ 9633 char * 9634 ip_nv_lookup(nv_t *nv, int value) 9635 { 9636 if (!nv) 9637 return (NULL); 9638 for (; nv->nv_name; nv++) { 9639 if (nv->nv_value == value) 9640 return (nv->nv_name); 9641 } 9642 return ("unknown"); 9643 } 9644 9645 /* 9646 * This is a module open, i.e. this is a control stream for access 9647 * to a DLPI device. We allocate an ill_t as the instance data in 9648 * this case. 9649 */ 9650 int 9651 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9652 { 9653 ill_t *ill; 9654 int err; 9655 zoneid_t zoneid; 9656 netstack_t *ns; 9657 ip_stack_t *ipst; 9658 9659 /* 9660 * Prevent unprivileged processes from pushing IP so that 9661 * they can't send raw IP. 9662 */ 9663 if (secpolicy_net_rawaccess(credp) != 0) 9664 return (EPERM); 9665 9666 ns = netstack_find_by_cred(credp); 9667 ASSERT(ns != NULL); 9668 ipst = ns->netstack_ip; 9669 ASSERT(ipst != NULL); 9670 9671 /* 9672 * For exclusive stacks we set the zoneid to zero 9673 * to make IP operate as if in the global zone. 9674 */ 9675 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9676 zoneid = GLOBAL_ZONEID; 9677 else 9678 zoneid = crgetzoneid(credp); 9679 9680 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9681 q->q_ptr = WR(q)->q_ptr = ill; 9682 ill->ill_ipst = ipst; 9683 ill->ill_zoneid = zoneid; 9684 9685 /* 9686 * ill_init initializes the ill fields and then sends down 9687 * down a DL_INFO_REQ after calling qprocson. 9688 */ 9689 err = ill_init(q, ill); 9690 if (err != 0) { 9691 mi_free(ill); 9692 netstack_rele(ipst->ips_netstack); 9693 q->q_ptr = NULL; 9694 WR(q)->q_ptr = NULL; 9695 return (err); 9696 } 9697 9698 /* ill_init initializes the ipsq marking this thread as writer */ 9699 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9700 /* Wait for the DL_INFO_ACK */ 9701 mutex_enter(&ill->ill_lock); 9702 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9703 /* 9704 * Return value of 0 indicates a pending signal. 9705 */ 9706 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9707 if (err == 0) { 9708 mutex_exit(&ill->ill_lock); 9709 (void) ip_close(q, 0); 9710 return (EINTR); 9711 } 9712 } 9713 mutex_exit(&ill->ill_lock); 9714 9715 /* 9716 * ip_rput_other could have set an error in ill_error on 9717 * receipt of M_ERROR. 9718 */ 9719 9720 err = ill->ill_error; 9721 if (err != 0) { 9722 (void) ip_close(q, 0); 9723 return (err); 9724 } 9725 9726 ill->ill_credp = credp; 9727 crhold(credp); 9728 9729 mutex_enter(&ipst->ips_ip_mi_lock); 9730 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9731 credp); 9732 mutex_exit(&ipst->ips_ip_mi_lock); 9733 if (err) { 9734 (void) ip_close(q, 0); 9735 return (err); 9736 } 9737 return (0); 9738 } 9739 9740 /* For /dev/ip aka AF_INET open */ 9741 int 9742 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9743 { 9744 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9745 } 9746 9747 /* For /dev/ip6 aka AF_INET6 open */ 9748 int 9749 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9750 { 9751 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9752 } 9753 9754 /* IP open routine. */ 9755 int 9756 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9757 boolean_t isv6) 9758 { 9759 conn_t *connp; 9760 major_t maj; 9761 zoneid_t zoneid; 9762 netstack_t *ns; 9763 ip_stack_t *ipst; 9764 9765 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9766 9767 /* Allow reopen. */ 9768 if (q->q_ptr != NULL) 9769 return (0); 9770 9771 if (sflag & MODOPEN) { 9772 /* This is a module open */ 9773 return (ip_modopen(q, devp, flag, sflag, credp)); 9774 } 9775 9776 ns = netstack_find_by_cred(credp); 9777 ASSERT(ns != NULL); 9778 ipst = ns->netstack_ip; 9779 ASSERT(ipst != NULL); 9780 9781 /* 9782 * For exclusive stacks we set the zoneid to zero 9783 * to make IP operate as if in the global zone. 9784 */ 9785 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9786 zoneid = GLOBAL_ZONEID; 9787 else 9788 zoneid = crgetzoneid(credp); 9789 9790 /* 9791 * We are opening as a device. This is an IP client stream, and we 9792 * allocate an conn_t as the instance data. 9793 */ 9794 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9795 9796 /* 9797 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9798 * done by netstack_find_by_cred() 9799 */ 9800 netstack_rele(ipst->ips_netstack); 9801 9802 connp->conn_zoneid = zoneid; 9803 9804 connp->conn_upq = q; 9805 q->q_ptr = WR(q)->q_ptr = connp; 9806 9807 if (flag & SO_SOCKSTR) 9808 connp->conn_flags |= IPCL_SOCKET; 9809 9810 /* Minor tells us which /dev entry was opened */ 9811 if (isv6) { 9812 connp->conn_flags |= IPCL_ISV6; 9813 connp->conn_af_isv6 = B_TRUE; 9814 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9815 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9816 } else { 9817 connp->conn_af_isv6 = B_FALSE; 9818 connp->conn_pkt_isv6 = B_FALSE; 9819 } 9820 9821 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9822 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9823 connp->conn_minor_arena = ip_minor_arena_la; 9824 } else { 9825 /* 9826 * Either minor numbers in the large arena were exhausted 9827 * or a non socket application is doing the open. 9828 * Try to allocate from the small arena. 9829 */ 9830 if ((connp->conn_dev = 9831 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9832 /* CONN_DEC_REF takes care of netstack_rele() */ 9833 q->q_ptr = WR(q)->q_ptr = NULL; 9834 CONN_DEC_REF(connp); 9835 return (EBUSY); 9836 } 9837 connp->conn_minor_arena = ip_minor_arena_sa; 9838 } 9839 9840 maj = getemajor(*devp); 9841 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9842 9843 /* 9844 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9845 */ 9846 connp->conn_cred = credp; 9847 9848 /* 9849 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9850 */ 9851 connp->conn_recv = ip_conn_input; 9852 9853 crhold(connp->conn_cred); 9854 9855 /* 9856 * If the caller has the process-wide flag set, then default to MAC 9857 * exempt mode. This allows read-down to unlabeled hosts. 9858 */ 9859 if (getpflags(NET_MAC_AWARE, credp) != 0) 9860 connp->conn_mac_exempt = B_TRUE; 9861 9862 connp->conn_rq = q; 9863 connp->conn_wq = WR(q); 9864 9865 /* Non-zero default values */ 9866 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9867 9868 /* 9869 * Make the conn globally visible to walkers 9870 */ 9871 ASSERT(connp->conn_ref == 1); 9872 mutex_enter(&connp->conn_lock); 9873 connp->conn_state_flags &= ~CONN_INCIPIENT; 9874 mutex_exit(&connp->conn_lock); 9875 9876 qprocson(q); 9877 9878 return (0); 9879 } 9880 9881 /* 9882 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9883 * Note that there is no race since either ip_output function works - it 9884 * is just an optimization to enter the best ip_output routine directly. 9885 */ 9886 void 9887 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9888 ip_stack_t *ipst) 9889 { 9890 if (isv6) { 9891 if (bump_mib) { 9892 BUMP_MIB(&ipst->ips_ip6_mib, 9893 ipIfStatsOutSwitchIPVersion); 9894 } 9895 connp->conn_send = ip_output_v6; 9896 connp->conn_pkt_isv6 = B_TRUE; 9897 } else { 9898 if (bump_mib) { 9899 BUMP_MIB(&ipst->ips_ip_mib, 9900 ipIfStatsOutSwitchIPVersion); 9901 } 9902 connp->conn_send = ip_output; 9903 connp->conn_pkt_isv6 = B_FALSE; 9904 } 9905 9906 } 9907 9908 /* 9909 * See if IPsec needs loading because of the options in mp. 9910 */ 9911 static boolean_t 9912 ipsec_opt_present(mblk_t *mp) 9913 { 9914 uint8_t *optcp, *next_optcp, *opt_endcp; 9915 struct opthdr *opt; 9916 struct T_opthdr *topt; 9917 int opthdr_len; 9918 t_uscalar_t optname, optlevel; 9919 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9920 ipsec_req_t *ipsr; 9921 9922 /* 9923 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9924 * return TRUE. 9925 */ 9926 9927 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9928 opt_endcp = optcp + tor->OPT_length; 9929 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9930 opthdr_len = sizeof (struct T_opthdr); 9931 } else { /* O_OPTMGMT_REQ */ 9932 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9933 opthdr_len = sizeof (struct opthdr); 9934 } 9935 for (; optcp < opt_endcp; optcp = next_optcp) { 9936 if (optcp + opthdr_len > opt_endcp) 9937 return (B_FALSE); /* Not enough option header. */ 9938 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9939 topt = (struct T_opthdr *)optcp; 9940 optlevel = topt->level; 9941 optname = topt->name; 9942 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9943 } else { 9944 opt = (struct opthdr *)optcp; 9945 optlevel = opt->level; 9946 optname = opt->name; 9947 next_optcp = optcp + opthdr_len + 9948 _TPI_ALIGN_OPT(opt->len); 9949 } 9950 if ((next_optcp < optcp) || /* wraparound pointer space */ 9951 ((next_optcp >= opt_endcp) && /* last option bad len */ 9952 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9953 return (B_FALSE); /* bad option buffer */ 9954 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9955 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9956 /* 9957 * Check to see if it's an all-bypass or all-zeroes 9958 * IPsec request. Don't bother loading IPsec if 9959 * the socket doesn't want to use it. (A good example 9960 * is a bypass request.) 9961 * 9962 * Basically, if any of the non-NEVER bits are set, 9963 * load IPsec. 9964 */ 9965 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9966 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9967 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9968 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9969 != 0) 9970 return (B_TRUE); 9971 } 9972 } 9973 return (B_FALSE); 9974 } 9975 9976 /* 9977 * If conn is is waiting for ipsec to finish loading, kick it. 9978 */ 9979 /* ARGSUSED */ 9980 static void 9981 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9982 { 9983 t_scalar_t optreq_prim; 9984 mblk_t *mp; 9985 cred_t *cr; 9986 int err = 0; 9987 9988 /* 9989 * This function is called, after ipsec loading is complete. 9990 * Since IP checks exclusively and atomically (i.e it prevents 9991 * ipsec load from completing until ip_optcom_req completes) 9992 * whether ipsec load is complete, there cannot be a race with IP 9993 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9994 */ 9995 mutex_enter(&connp->conn_lock); 9996 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9997 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9998 mp = connp->conn_ipsec_opt_mp; 9999 connp->conn_ipsec_opt_mp = NULL; 10000 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10001 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10002 mutex_exit(&connp->conn_lock); 10003 10004 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10005 10006 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10007 if (optreq_prim == T_OPTMGMT_REQ) { 10008 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10009 &ip_opt_obj, B_FALSE); 10010 } else { 10011 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10012 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10013 &ip_opt_obj, B_FALSE); 10014 } 10015 if (err != EINPROGRESS) 10016 CONN_OPER_PENDING_DONE(connp); 10017 return; 10018 } 10019 mutex_exit(&connp->conn_lock); 10020 } 10021 10022 /* 10023 * Called from the ipsec_loader thread, outside any perimeter, to tell 10024 * ip qenable any of the queues waiting for the ipsec loader to 10025 * complete. 10026 */ 10027 void 10028 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10029 { 10030 netstack_t *ns = ipss->ipsec_netstack; 10031 10032 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10033 } 10034 10035 /* 10036 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10037 * determines the grp on which it has to become exclusive, queues the mp 10038 * and sq draining restarts the optmgmt 10039 */ 10040 static boolean_t 10041 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10042 { 10043 conn_t *connp = Q_TO_CONN(q); 10044 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10045 10046 /* 10047 * Take IPsec requests and treat them special. 10048 */ 10049 if (ipsec_opt_present(mp)) { 10050 /* First check if IPsec is loaded. */ 10051 mutex_enter(&ipss->ipsec_loader_lock); 10052 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10053 mutex_exit(&ipss->ipsec_loader_lock); 10054 return (B_FALSE); 10055 } 10056 mutex_enter(&connp->conn_lock); 10057 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10058 10059 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10060 connp->conn_ipsec_opt_mp = mp; 10061 mutex_exit(&connp->conn_lock); 10062 mutex_exit(&ipss->ipsec_loader_lock); 10063 10064 ipsec_loader_loadnow(ipss); 10065 return (B_TRUE); 10066 } 10067 return (B_FALSE); 10068 } 10069 10070 /* 10071 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10072 * all of them are copied to the conn_t. If the req is "zero", the policy is 10073 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10074 * fields. 10075 * We keep only the latest setting of the policy and thus policy setting 10076 * is not incremental/cumulative. 10077 * 10078 * Requests to set policies with multiple alternative actions will 10079 * go through a different API. 10080 */ 10081 int 10082 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10083 { 10084 uint_t ah_req = 0; 10085 uint_t esp_req = 0; 10086 uint_t se_req = 0; 10087 ipsec_selkey_t sel; 10088 ipsec_act_t *actp = NULL; 10089 uint_t nact; 10090 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10091 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10092 ipsec_policy_root_t *pr; 10093 ipsec_policy_head_t *ph; 10094 int fam; 10095 boolean_t is_pol_reset; 10096 int error = 0; 10097 netstack_t *ns = connp->conn_netstack; 10098 ip_stack_t *ipst = ns->netstack_ip; 10099 ipsec_stack_t *ipss = ns->netstack_ipsec; 10100 10101 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10102 10103 /* 10104 * The IP_SEC_OPT option does not allow variable length parameters, 10105 * hence a request cannot be NULL. 10106 */ 10107 if (req == NULL) 10108 return (EINVAL); 10109 10110 ah_req = req->ipsr_ah_req; 10111 esp_req = req->ipsr_esp_req; 10112 se_req = req->ipsr_self_encap_req; 10113 10114 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10115 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10116 return (EINVAL); 10117 10118 /* 10119 * Are we dealing with a request to reset the policy (i.e. 10120 * zero requests). 10121 */ 10122 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10123 (esp_req & REQ_MASK) == 0 && 10124 (se_req & REQ_MASK) == 0); 10125 10126 if (!is_pol_reset) { 10127 /* 10128 * If we couldn't load IPsec, fail with "protocol 10129 * not supported". 10130 * IPsec may not have been loaded for a request with zero 10131 * policies, so we don't fail in this case. 10132 */ 10133 mutex_enter(&ipss->ipsec_loader_lock); 10134 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10135 mutex_exit(&ipss->ipsec_loader_lock); 10136 return (EPROTONOSUPPORT); 10137 } 10138 mutex_exit(&ipss->ipsec_loader_lock); 10139 10140 /* 10141 * Test for valid requests. Invalid algorithms 10142 * need to be tested by IPsec code because new 10143 * algorithms can be added dynamically. 10144 */ 10145 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10146 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10147 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10148 return (EINVAL); 10149 } 10150 10151 /* 10152 * Only privileged users can issue these 10153 * requests. 10154 */ 10155 if (((ah_req & IPSEC_PREF_NEVER) || 10156 (esp_req & IPSEC_PREF_NEVER) || 10157 (se_req & IPSEC_PREF_NEVER)) && 10158 secpolicy_ip_config(cr, B_FALSE) != 0) { 10159 return (EPERM); 10160 } 10161 10162 /* 10163 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10164 * are mutually exclusive. 10165 */ 10166 if (((ah_req & REQ_MASK) == REQ_MASK) || 10167 ((esp_req & REQ_MASK) == REQ_MASK) || 10168 ((se_req & REQ_MASK) == REQ_MASK)) { 10169 /* Both of them are set */ 10170 return (EINVAL); 10171 } 10172 } 10173 10174 mutex_enter(&connp->conn_lock); 10175 10176 /* 10177 * If we have already cached policies in ip_bind_connected*(), don't 10178 * let them change now. We cache policies for connections 10179 * whose src,dst [addr, port] is known. 10180 */ 10181 if (connp->conn_policy_cached) { 10182 mutex_exit(&connp->conn_lock); 10183 return (EINVAL); 10184 } 10185 10186 /* 10187 * We have a zero policies, reset the connection policy if already 10188 * set. This will cause the connection to inherit the 10189 * global policy, if any. 10190 */ 10191 if (is_pol_reset) { 10192 if (connp->conn_policy != NULL) { 10193 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10194 connp->conn_policy = NULL; 10195 } 10196 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10197 connp->conn_in_enforce_policy = B_FALSE; 10198 connp->conn_out_enforce_policy = B_FALSE; 10199 mutex_exit(&connp->conn_lock); 10200 return (0); 10201 } 10202 10203 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10204 ipst->ips_netstack); 10205 if (ph == NULL) 10206 goto enomem; 10207 10208 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10209 if (actp == NULL) 10210 goto enomem; 10211 10212 /* 10213 * Always allocate IPv4 policy entries, since they can also 10214 * apply to ipv6 sockets being used in ipv4-compat mode. 10215 */ 10216 bzero(&sel, sizeof (sel)); 10217 sel.ipsl_valid = IPSL_IPV4; 10218 10219 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10220 ipst->ips_netstack); 10221 if (pin4 == NULL) 10222 goto enomem; 10223 10224 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10225 ipst->ips_netstack); 10226 if (pout4 == NULL) 10227 goto enomem; 10228 10229 if (connp->conn_af_isv6) { 10230 /* 10231 * We're looking at a v6 socket, also allocate the 10232 * v6-specific entries... 10233 */ 10234 sel.ipsl_valid = IPSL_IPV6; 10235 pin6 = ipsec_policy_create(&sel, actp, nact, 10236 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10237 if (pin6 == NULL) 10238 goto enomem; 10239 10240 pout6 = ipsec_policy_create(&sel, actp, nact, 10241 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10242 if (pout6 == NULL) 10243 goto enomem; 10244 10245 /* 10246 * .. and file them away in the right place. 10247 */ 10248 fam = IPSEC_AF_V6; 10249 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10250 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10251 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10252 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10253 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10254 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10255 } 10256 10257 ipsec_actvec_free(actp, nact); 10258 10259 /* 10260 * File the v4 policies. 10261 */ 10262 fam = IPSEC_AF_V4; 10263 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10264 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10265 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10266 10267 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10268 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10269 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10270 10271 /* 10272 * If the requests need security, set enforce_policy. 10273 * If the requests are IPSEC_PREF_NEVER, one should 10274 * still set conn_out_enforce_policy so that an ipsec_out 10275 * gets attached in ip_wput. This is needed so that 10276 * for connections that we don't cache policy in ip_bind, 10277 * if global policy matches in ip_wput_attach_policy, we 10278 * don't wrongly inherit global policy. Similarly, we need 10279 * to set conn_in_enforce_policy also so that we don't verify 10280 * policy wrongly. 10281 */ 10282 if ((ah_req & REQ_MASK) != 0 || 10283 (esp_req & REQ_MASK) != 0 || 10284 (se_req & REQ_MASK) != 0) { 10285 connp->conn_in_enforce_policy = B_TRUE; 10286 connp->conn_out_enforce_policy = B_TRUE; 10287 connp->conn_flags |= IPCL_CHECK_POLICY; 10288 } 10289 10290 mutex_exit(&connp->conn_lock); 10291 return (error); 10292 #undef REQ_MASK 10293 10294 /* 10295 * Common memory-allocation-failure exit path. 10296 */ 10297 enomem: 10298 mutex_exit(&connp->conn_lock); 10299 if (actp != NULL) 10300 ipsec_actvec_free(actp, nact); 10301 if (pin4 != NULL) 10302 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10303 if (pout4 != NULL) 10304 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10305 if (pin6 != NULL) 10306 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10307 if (pout6 != NULL) 10308 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10309 return (ENOMEM); 10310 } 10311 10312 /* 10313 * Only for options that pass in an IP addr. Currently only V4 options 10314 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10315 * So this function assumes level is IPPROTO_IP 10316 */ 10317 int 10318 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10319 mblk_t *first_mp) 10320 { 10321 ipif_t *ipif = NULL; 10322 int error; 10323 ill_t *ill; 10324 int zoneid; 10325 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10326 10327 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10328 10329 if (addr != INADDR_ANY || checkonly) { 10330 ASSERT(connp != NULL); 10331 zoneid = IPCL_ZONEID(connp); 10332 if (option == IP_NEXTHOP) { 10333 ipif = ipif_lookup_onlink_addr(addr, 10334 connp->conn_zoneid, ipst); 10335 } else { 10336 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10337 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10338 &error, ipst); 10339 } 10340 if (ipif == NULL) { 10341 if (error == EINPROGRESS) 10342 return (error); 10343 else if ((option == IP_MULTICAST_IF) || 10344 (option == IP_NEXTHOP)) 10345 return (EHOSTUNREACH); 10346 else 10347 return (EINVAL); 10348 } else if (checkonly) { 10349 if (option == IP_MULTICAST_IF) { 10350 ill = ipif->ipif_ill; 10351 /* not supported by the virtual network iface */ 10352 if (IS_VNI(ill)) { 10353 ipif_refrele(ipif); 10354 return (EINVAL); 10355 } 10356 } 10357 ipif_refrele(ipif); 10358 return (0); 10359 } 10360 ill = ipif->ipif_ill; 10361 mutex_enter(&connp->conn_lock); 10362 mutex_enter(&ill->ill_lock); 10363 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10364 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10365 mutex_exit(&ill->ill_lock); 10366 mutex_exit(&connp->conn_lock); 10367 ipif_refrele(ipif); 10368 return (option == IP_MULTICAST_IF ? 10369 EHOSTUNREACH : EINVAL); 10370 } 10371 } else { 10372 mutex_enter(&connp->conn_lock); 10373 } 10374 10375 /* None of the options below are supported on the VNI */ 10376 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10377 mutex_exit(&ill->ill_lock); 10378 mutex_exit(&connp->conn_lock); 10379 ipif_refrele(ipif); 10380 return (EINVAL); 10381 } 10382 10383 switch (option) { 10384 case IP_DONTFAILOVER_IF: 10385 /* 10386 * This option is used by in.mpathd to ensure 10387 * that IPMP probe packets only go out on the 10388 * test interfaces. in.mpathd sets this option 10389 * on the non-failover interfaces. 10390 * For backward compatibility, this option 10391 * implicitly sets IP_MULTICAST_IF, as used 10392 * be done in bind(), so that ip_wput gets 10393 * this ipif to send mcast packets. 10394 */ 10395 if (ipif != NULL) { 10396 ASSERT(addr != INADDR_ANY); 10397 connp->conn_nofailover_ill = ipif->ipif_ill; 10398 connp->conn_multicast_ipif = ipif; 10399 } else { 10400 ASSERT(addr == INADDR_ANY); 10401 connp->conn_nofailover_ill = NULL; 10402 connp->conn_multicast_ipif = NULL; 10403 } 10404 break; 10405 10406 case IP_MULTICAST_IF: 10407 connp->conn_multicast_ipif = ipif; 10408 break; 10409 case IP_NEXTHOP: 10410 connp->conn_nexthop_v4 = addr; 10411 connp->conn_nexthop_set = B_TRUE; 10412 break; 10413 } 10414 10415 if (ipif != NULL) { 10416 mutex_exit(&ill->ill_lock); 10417 mutex_exit(&connp->conn_lock); 10418 ipif_refrele(ipif); 10419 return (0); 10420 } 10421 mutex_exit(&connp->conn_lock); 10422 /* We succeded in cleared the option */ 10423 return (0); 10424 } 10425 10426 /* 10427 * For options that pass in an ifindex specifying the ill. V6 options always 10428 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10429 */ 10430 int 10431 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10432 int level, int option, mblk_t *first_mp) 10433 { 10434 ill_t *ill = NULL; 10435 int error = 0; 10436 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10437 10438 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10439 if (ifindex != 0) { 10440 ASSERT(connp != NULL); 10441 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10442 first_mp, ip_restart_optmgmt, &error, ipst); 10443 if (ill != NULL) { 10444 if (checkonly) { 10445 /* not supported by the virtual network iface */ 10446 if (IS_VNI(ill)) { 10447 ill_refrele(ill); 10448 return (EINVAL); 10449 } 10450 ill_refrele(ill); 10451 return (0); 10452 } 10453 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10454 0, NULL)) { 10455 ill_refrele(ill); 10456 ill = NULL; 10457 mutex_enter(&connp->conn_lock); 10458 goto setit; 10459 } 10460 mutex_enter(&connp->conn_lock); 10461 mutex_enter(&ill->ill_lock); 10462 if (ill->ill_state_flags & ILL_CONDEMNED) { 10463 mutex_exit(&ill->ill_lock); 10464 mutex_exit(&connp->conn_lock); 10465 ill_refrele(ill); 10466 ill = NULL; 10467 mutex_enter(&connp->conn_lock); 10468 } 10469 goto setit; 10470 } else if (error == EINPROGRESS) { 10471 return (error); 10472 } else { 10473 error = 0; 10474 } 10475 } 10476 mutex_enter(&connp->conn_lock); 10477 setit: 10478 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10479 10480 /* 10481 * The options below assume that the ILL (if any) transmits and/or 10482 * receives traffic. Neither of which is true for the virtual network 10483 * interface, so fail setting these on a VNI. 10484 */ 10485 if (IS_VNI(ill)) { 10486 ASSERT(ill != NULL); 10487 mutex_exit(&ill->ill_lock); 10488 mutex_exit(&connp->conn_lock); 10489 ill_refrele(ill); 10490 return (EINVAL); 10491 } 10492 10493 if (level == IPPROTO_IP) { 10494 switch (option) { 10495 case IP_BOUND_IF: 10496 connp->conn_incoming_ill = ill; 10497 connp->conn_outgoing_ill = ill; 10498 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10499 0 : ifindex; 10500 break; 10501 10502 case IP_MULTICAST_IF: 10503 /* 10504 * This option is an internal special. The socket 10505 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10506 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10507 * specifies an ifindex and we try first on V6 ill's. 10508 * If we don't find one, we they try using on v4 ill's 10509 * intenally and we come here. 10510 */ 10511 if (!checkonly && ill != NULL) { 10512 ipif_t *ipif; 10513 ipif = ill->ill_ipif; 10514 10515 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10516 mutex_exit(&ill->ill_lock); 10517 mutex_exit(&connp->conn_lock); 10518 ill_refrele(ill); 10519 ill = NULL; 10520 mutex_enter(&connp->conn_lock); 10521 } else { 10522 connp->conn_multicast_ipif = ipif; 10523 } 10524 } 10525 break; 10526 10527 case IP_DHCPINIT_IF: 10528 if (connp->conn_dhcpinit_ill != NULL) { 10529 /* 10530 * We've locked the conn so conn_cleanup_ill() 10531 * cannot clear conn_dhcpinit_ill -- so it's 10532 * safe to access the ill. 10533 */ 10534 ill_t *oill = connp->conn_dhcpinit_ill; 10535 10536 ASSERT(oill->ill_dhcpinit != 0); 10537 atomic_dec_32(&oill->ill_dhcpinit); 10538 connp->conn_dhcpinit_ill = NULL; 10539 } 10540 10541 if (ill != NULL) { 10542 connp->conn_dhcpinit_ill = ill; 10543 atomic_inc_32(&ill->ill_dhcpinit); 10544 } 10545 break; 10546 } 10547 } else { 10548 switch (option) { 10549 case IPV6_BOUND_IF: 10550 connp->conn_incoming_ill = ill; 10551 connp->conn_outgoing_ill = ill; 10552 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10553 0 : ifindex; 10554 break; 10555 10556 case IPV6_BOUND_PIF: 10557 /* 10558 * Limit all transmit to this ill. 10559 * Unlike IPV6_BOUND_IF, using this option 10560 * prevents load spreading and failover from 10561 * happening when the interface is part of the 10562 * group. That's why we don't need to remember 10563 * the ifindex in orig_bound_ifindex as in 10564 * IPV6_BOUND_IF. 10565 */ 10566 connp->conn_outgoing_pill = ill; 10567 break; 10568 10569 case IPV6_DONTFAILOVER_IF: 10570 /* 10571 * This option is used by in.mpathd to ensure 10572 * that IPMP probe packets only go out on the 10573 * test interfaces. in.mpathd sets this option 10574 * on the non-failover interfaces. 10575 */ 10576 connp->conn_nofailover_ill = ill; 10577 /* 10578 * For backward compatibility, this option 10579 * implicitly sets ip_multicast_ill as used in 10580 * IPV6_MULTICAST_IF so that ip_wput gets 10581 * this ill to send mcast packets. 10582 */ 10583 connp->conn_multicast_ill = ill; 10584 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10585 0 : ifindex; 10586 break; 10587 10588 case IPV6_MULTICAST_IF: 10589 /* 10590 * Set conn_multicast_ill to be the IPv6 ill. 10591 * Set conn_multicast_ipif to be an IPv4 ipif 10592 * for ifindex to make IPv4 mapped addresses 10593 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10594 * Even if no IPv6 ill exists for the ifindex 10595 * we need to check for an IPv4 ifindex in order 10596 * for this to work with mapped addresses. In that 10597 * case only set conn_multicast_ipif. 10598 */ 10599 if (!checkonly) { 10600 if (ifindex == 0) { 10601 connp->conn_multicast_ill = NULL; 10602 connp->conn_orig_multicast_ifindex = 0; 10603 connp->conn_multicast_ipif = NULL; 10604 } else if (ill != NULL) { 10605 connp->conn_multicast_ill = ill; 10606 connp->conn_orig_multicast_ifindex = 10607 ifindex; 10608 } 10609 } 10610 break; 10611 } 10612 } 10613 10614 if (ill != NULL) { 10615 mutex_exit(&ill->ill_lock); 10616 mutex_exit(&connp->conn_lock); 10617 ill_refrele(ill); 10618 return (0); 10619 } 10620 mutex_exit(&connp->conn_lock); 10621 /* 10622 * We succeeded in clearing the option (ifindex == 0) or failed to 10623 * locate the ill and could not set the option (ifindex != 0) 10624 */ 10625 return (ifindex == 0 ? 0 : EINVAL); 10626 } 10627 10628 /* This routine sets socket options. */ 10629 /* ARGSUSED */ 10630 int 10631 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10632 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10633 void *dummy, cred_t *cr, mblk_t *first_mp) 10634 { 10635 int *i1 = (int *)invalp; 10636 conn_t *connp = Q_TO_CONN(q); 10637 int error = 0; 10638 boolean_t checkonly; 10639 ire_t *ire; 10640 boolean_t found; 10641 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10642 10643 switch (optset_context) { 10644 10645 case SETFN_OPTCOM_CHECKONLY: 10646 checkonly = B_TRUE; 10647 /* 10648 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10649 * inlen != 0 implies value supplied and 10650 * we have to "pretend" to set it. 10651 * inlen == 0 implies that there is no 10652 * value part in T_CHECK request and just validation 10653 * done elsewhere should be enough, we just return here. 10654 */ 10655 if (inlen == 0) { 10656 *outlenp = 0; 10657 return (0); 10658 } 10659 break; 10660 case SETFN_OPTCOM_NEGOTIATE: 10661 case SETFN_UD_NEGOTIATE: 10662 case SETFN_CONN_NEGOTIATE: 10663 checkonly = B_FALSE; 10664 break; 10665 default: 10666 /* 10667 * We should never get here 10668 */ 10669 *outlenp = 0; 10670 return (EINVAL); 10671 } 10672 10673 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10674 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10675 10676 /* 10677 * For fixed length options, no sanity check 10678 * of passed in length is done. It is assumed *_optcom_req() 10679 * routines do the right thing. 10680 */ 10681 10682 switch (level) { 10683 case SOL_SOCKET: 10684 /* 10685 * conn_lock protects the bitfields, and is used to 10686 * set the fields atomically. 10687 */ 10688 switch (name) { 10689 case SO_BROADCAST: 10690 if (!checkonly) { 10691 /* TODO: use value someplace? */ 10692 mutex_enter(&connp->conn_lock); 10693 connp->conn_broadcast = *i1 ? 1 : 0; 10694 mutex_exit(&connp->conn_lock); 10695 } 10696 break; /* goto sizeof (int) option return */ 10697 case SO_USELOOPBACK: 10698 if (!checkonly) { 10699 /* TODO: use value someplace? */ 10700 mutex_enter(&connp->conn_lock); 10701 connp->conn_loopback = *i1 ? 1 : 0; 10702 mutex_exit(&connp->conn_lock); 10703 } 10704 break; /* goto sizeof (int) option return */ 10705 case SO_DONTROUTE: 10706 if (!checkonly) { 10707 mutex_enter(&connp->conn_lock); 10708 connp->conn_dontroute = *i1 ? 1 : 0; 10709 mutex_exit(&connp->conn_lock); 10710 } 10711 break; /* goto sizeof (int) option return */ 10712 case SO_REUSEADDR: 10713 if (!checkonly) { 10714 mutex_enter(&connp->conn_lock); 10715 connp->conn_reuseaddr = *i1 ? 1 : 0; 10716 mutex_exit(&connp->conn_lock); 10717 } 10718 break; /* goto sizeof (int) option return */ 10719 case SO_PROTOTYPE: 10720 if (!checkonly) { 10721 mutex_enter(&connp->conn_lock); 10722 connp->conn_proto = *i1; 10723 mutex_exit(&connp->conn_lock); 10724 } 10725 break; /* goto sizeof (int) option return */ 10726 case SO_ALLZONES: 10727 if (!checkonly) { 10728 mutex_enter(&connp->conn_lock); 10729 if (IPCL_IS_BOUND(connp)) { 10730 mutex_exit(&connp->conn_lock); 10731 return (EINVAL); 10732 } 10733 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10734 mutex_exit(&connp->conn_lock); 10735 } 10736 break; /* goto sizeof (int) option return */ 10737 case SO_ANON_MLP: 10738 if (!checkonly) { 10739 mutex_enter(&connp->conn_lock); 10740 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10741 mutex_exit(&connp->conn_lock); 10742 } 10743 break; /* goto sizeof (int) option return */ 10744 case SO_MAC_EXEMPT: 10745 if (secpolicy_net_mac_aware(cr) != 0 || 10746 IPCL_IS_BOUND(connp)) 10747 return (EACCES); 10748 if (!checkonly) { 10749 mutex_enter(&connp->conn_lock); 10750 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10751 mutex_exit(&connp->conn_lock); 10752 } 10753 break; /* goto sizeof (int) option return */ 10754 default: 10755 /* 10756 * "soft" error (negative) 10757 * option not handled at this level 10758 * Note: Do not modify *outlenp 10759 */ 10760 return (-EINVAL); 10761 } 10762 break; 10763 case IPPROTO_IP: 10764 switch (name) { 10765 case IP_NEXTHOP: 10766 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10767 return (EPERM); 10768 /* FALLTHRU */ 10769 case IP_MULTICAST_IF: 10770 case IP_DONTFAILOVER_IF: { 10771 ipaddr_t addr = *i1; 10772 10773 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10774 first_mp); 10775 if (error != 0) 10776 return (error); 10777 break; /* goto sizeof (int) option return */ 10778 } 10779 10780 case IP_MULTICAST_TTL: 10781 /* Recorded in transport above IP */ 10782 *outvalp = *invalp; 10783 *outlenp = sizeof (uchar_t); 10784 return (0); 10785 case IP_MULTICAST_LOOP: 10786 if (!checkonly) { 10787 mutex_enter(&connp->conn_lock); 10788 connp->conn_multicast_loop = *invalp ? 1 : 0; 10789 mutex_exit(&connp->conn_lock); 10790 } 10791 *outvalp = *invalp; 10792 *outlenp = sizeof (uchar_t); 10793 return (0); 10794 case IP_ADD_MEMBERSHIP: 10795 case MCAST_JOIN_GROUP: 10796 case IP_DROP_MEMBERSHIP: 10797 case MCAST_LEAVE_GROUP: { 10798 struct ip_mreq *mreqp; 10799 struct group_req *greqp; 10800 ire_t *ire; 10801 boolean_t done = B_FALSE; 10802 ipaddr_t group, ifaddr; 10803 struct sockaddr_in *sin; 10804 uint32_t *ifindexp; 10805 boolean_t mcast_opt = B_TRUE; 10806 mcast_record_t fmode; 10807 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10808 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10809 10810 switch (name) { 10811 case IP_ADD_MEMBERSHIP: 10812 mcast_opt = B_FALSE; 10813 /* FALLTHRU */ 10814 case MCAST_JOIN_GROUP: 10815 fmode = MODE_IS_EXCLUDE; 10816 optfn = ip_opt_add_group; 10817 break; 10818 10819 case IP_DROP_MEMBERSHIP: 10820 mcast_opt = B_FALSE; 10821 /* FALLTHRU */ 10822 case MCAST_LEAVE_GROUP: 10823 fmode = MODE_IS_INCLUDE; 10824 optfn = ip_opt_delete_group; 10825 break; 10826 } 10827 10828 if (mcast_opt) { 10829 greqp = (struct group_req *)i1; 10830 sin = (struct sockaddr_in *)&greqp->gr_group; 10831 if (sin->sin_family != AF_INET) { 10832 *outlenp = 0; 10833 return (ENOPROTOOPT); 10834 } 10835 group = (ipaddr_t)sin->sin_addr.s_addr; 10836 ifaddr = INADDR_ANY; 10837 ifindexp = &greqp->gr_interface; 10838 } else { 10839 mreqp = (struct ip_mreq *)i1; 10840 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10841 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10842 ifindexp = NULL; 10843 } 10844 10845 /* 10846 * In the multirouting case, we need to replicate 10847 * the request on all interfaces that will take part 10848 * in replication. We do so because multirouting is 10849 * reflective, thus we will probably receive multi- 10850 * casts on those interfaces. 10851 * The ip_multirt_apply_membership() succeeds if the 10852 * operation succeeds on at least one interface. 10853 */ 10854 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10855 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10856 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10857 if (ire != NULL) { 10858 if (ire->ire_flags & RTF_MULTIRT) { 10859 error = ip_multirt_apply_membership( 10860 optfn, ire, connp, checkonly, group, 10861 fmode, INADDR_ANY, first_mp); 10862 done = B_TRUE; 10863 } 10864 ire_refrele(ire); 10865 } 10866 if (!done) { 10867 error = optfn(connp, checkonly, group, ifaddr, 10868 ifindexp, fmode, INADDR_ANY, first_mp); 10869 } 10870 if (error) { 10871 /* 10872 * EINPROGRESS is a soft error, needs retry 10873 * so don't make *outlenp zero. 10874 */ 10875 if (error != EINPROGRESS) 10876 *outlenp = 0; 10877 return (error); 10878 } 10879 /* OK return - copy input buffer into output buffer */ 10880 if (invalp != outvalp) { 10881 /* don't trust bcopy for identical src/dst */ 10882 bcopy(invalp, outvalp, inlen); 10883 } 10884 *outlenp = inlen; 10885 return (0); 10886 } 10887 case IP_BLOCK_SOURCE: 10888 case IP_UNBLOCK_SOURCE: 10889 case IP_ADD_SOURCE_MEMBERSHIP: 10890 case IP_DROP_SOURCE_MEMBERSHIP: 10891 case MCAST_BLOCK_SOURCE: 10892 case MCAST_UNBLOCK_SOURCE: 10893 case MCAST_JOIN_SOURCE_GROUP: 10894 case MCAST_LEAVE_SOURCE_GROUP: { 10895 struct ip_mreq_source *imreqp; 10896 struct group_source_req *gsreqp; 10897 in_addr_t grp, src, ifaddr = INADDR_ANY; 10898 uint32_t ifindex = 0; 10899 mcast_record_t fmode; 10900 struct sockaddr_in *sin; 10901 ire_t *ire; 10902 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10903 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10904 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10905 10906 switch (name) { 10907 case IP_BLOCK_SOURCE: 10908 mcast_opt = B_FALSE; 10909 /* FALLTHRU */ 10910 case MCAST_BLOCK_SOURCE: 10911 fmode = MODE_IS_EXCLUDE; 10912 optfn = ip_opt_add_group; 10913 break; 10914 10915 case IP_UNBLOCK_SOURCE: 10916 mcast_opt = B_FALSE; 10917 /* FALLTHRU */ 10918 case MCAST_UNBLOCK_SOURCE: 10919 fmode = MODE_IS_EXCLUDE; 10920 optfn = ip_opt_delete_group; 10921 break; 10922 10923 case IP_ADD_SOURCE_MEMBERSHIP: 10924 mcast_opt = B_FALSE; 10925 /* FALLTHRU */ 10926 case MCAST_JOIN_SOURCE_GROUP: 10927 fmode = MODE_IS_INCLUDE; 10928 optfn = ip_opt_add_group; 10929 break; 10930 10931 case IP_DROP_SOURCE_MEMBERSHIP: 10932 mcast_opt = B_FALSE; 10933 /* FALLTHRU */ 10934 case MCAST_LEAVE_SOURCE_GROUP: 10935 fmode = MODE_IS_INCLUDE; 10936 optfn = ip_opt_delete_group; 10937 break; 10938 } 10939 10940 if (mcast_opt) { 10941 gsreqp = (struct group_source_req *)i1; 10942 if (gsreqp->gsr_group.ss_family != AF_INET) { 10943 *outlenp = 0; 10944 return (ENOPROTOOPT); 10945 } 10946 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10947 grp = (ipaddr_t)sin->sin_addr.s_addr; 10948 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10949 src = (ipaddr_t)sin->sin_addr.s_addr; 10950 ifindex = gsreqp->gsr_interface; 10951 } else { 10952 imreqp = (struct ip_mreq_source *)i1; 10953 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10954 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10955 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10956 } 10957 10958 /* 10959 * In the multirouting case, we need to replicate 10960 * the request as noted in the mcast cases above. 10961 */ 10962 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10963 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10964 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10965 if (ire != NULL) { 10966 if (ire->ire_flags & RTF_MULTIRT) { 10967 error = ip_multirt_apply_membership( 10968 optfn, ire, connp, checkonly, grp, 10969 fmode, src, first_mp); 10970 done = B_TRUE; 10971 } 10972 ire_refrele(ire); 10973 } 10974 if (!done) { 10975 error = optfn(connp, checkonly, grp, ifaddr, 10976 &ifindex, fmode, src, first_mp); 10977 } 10978 if (error != 0) { 10979 /* 10980 * EINPROGRESS is a soft error, needs retry 10981 * so don't make *outlenp zero. 10982 */ 10983 if (error != EINPROGRESS) 10984 *outlenp = 0; 10985 return (error); 10986 } 10987 /* OK return - copy input buffer into output buffer */ 10988 if (invalp != outvalp) { 10989 bcopy(invalp, outvalp, inlen); 10990 } 10991 *outlenp = inlen; 10992 return (0); 10993 } 10994 case IP_SEC_OPT: 10995 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10996 if (error != 0) { 10997 *outlenp = 0; 10998 return (error); 10999 } 11000 break; 11001 case IP_HDRINCL: 11002 case IP_OPTIONS: 11003 case T_IP_OPTIONS: 11004 case IP_TOS: 11005 case T_IP_TOS: 11006 case IP_TTL: 11007 case IP_RECVDSTADDR: 11008 case IP_RECVOPTS: 11009 /* OK return - copy input buffer into output buffer */ 11010 if (invalp != outvalp) { 11011 /* don't trust bcopy for identical src/dst */ 11012 bcopy(invalp, outvalp, inlen); 11013 } 11014 *outlenp = inlen; 11015 return (0); 11016 case IP_RECVIF: 11017 /* Retrieve the inbound interface index */ 11018 if (!checkonly) { 11019 mutex_enter(&connp->conn_lock); 11020 connp->conn_recvif = *i1 ? 1 : 0; 11021 mutex_exit(&connp->conn_lock); 11022 } 11023 break; /* goto sizeof (int) option return */ 11024 case IP_RECVPKTINFO: 11025 if (!checkonly) { 11026 mutex_enter(&connp->conn_lock); 11027 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11028 mutex_exit(&connp->conn_lock); 11029 } 11030 break; /* goto sizeof (int) option return */ 11031 case IP_RECVSLLA: 11032 /* Retrieve the source link layer address */ 11033 if (!checkonly) { 11034 mutex_enter(&connp->conn_lock); 11035 connp->conn_recvslla = *i1 ? 1 : 0; 11036 mutex_exit(&connp->conn_lock); 11037 } 11038 break; /* goto sizeof (int) option return */ 11039 case MRT_INIT: 11040 case MRT_DONE: 11041 case MRT_ADD_VIF: 11042 case MRT_DEL_VIF: 11043 case MRT_ADD_MFC: 11044 case MRT_DEL_MFC: 11045 case MRT_ASSERT: 11046 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11047 *outlenp = 0; 11048 return (error); 11049 } 11050 error = ip_mrouter_set((int)name, q, checkonly, 11051 (uchar_t *)invalp, inlen, first_mp); 11052 if (error) { 11053 *outlenp = 0; 11054 return (error); 11055 } 11056 /* OK return - copy input buffer into output buffer */ 11057 if (invalp != outvalp) { 11058 /* don't trust bcopy for identical src/dst */ 11059 bcopy(invalp, outvalp, inlen); 11060 } 11061 *outlenp = inlen; 11062 return (0); 11063 case IP_BOUND_IF: 11064 case IP_DHCPINIT_IF: 11065 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11066 level, name, first_mp); 11067 if (error != 0) 11068 return (error); 11069 break; /* goto sizeof (int) option return */ 11070 11071 case IP_UNSPEC_SRC: 11072 /* Allow sending with a zero source address */ 11073 if (!checkonly) { 11074 mutex_enter(&connp->conn_lock); 11075 connp->conn_unspec_src = *i1 ? 1 : 0; 11076 mutex_exit(&connp->conn_lock); 11077 } 11078 break; /* goto sizeof (int) option return */ 11079 default: 11080 /* 11081 * "soft" error (negative) 11082 * option not handled at this level 11083 * Note: Do not modify *outlenp 11084 */ 11085 return (-EINVAL); 11086 } 11087 break; 11088 case IPPROTO_IPV6: 11089 switch (name) { 11090 case IPV6_BOUND_IF: 11091 case IPV6_BOUND_PIF: 11092 case IPV6_DONTFAILOVER_IF: 11093 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11094 level, name, first_mp); 11095 if (error != 0) 11096 return (error); 11097 break; /* goto sizeof (int) option return */ 11098 11099 case IPV6_MULTICAST_IF: 11100 /* 11101 * The only possible errors are EINPROGRESS and 11102 * EINVAL. EINPROGRESS will be restarted and is not 11103 * a hard error. We call this option on both V4 and V6 11104 * If both return EINVAL, then this call returns 11105 * EINVAL. If at least one of them succeeds we 11106 * return success. 11107 */ 11108 found = B_FALSE; 11109 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11110 level, name, first_mp); 11111 if (error == EINPROGRESS) 11112 return (error); 11113 if (error == 0) 11114 found = B_TRUE; 11115 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11116 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11117 if (error == 0) 11118 found = B_TRUE; 11119 if (!found) 11120 return (error); 11121 break; /* goto sizeof (int) option return */ 11122 11123 case IPV6_MULTICAST_HOPS: 11124 /* Recorded in transport above IP */ 11125 break; /* goto sizeof (int) option return */ 11126 case IPV6_MULTICAST_LOOP: 11127 if (!checkonly) { 11128 mutex_enter(&connp->conn_lock); 11129 connp->conn_multicast_loop = *i1; 11130 mutex_exit(&connp->conn_lock); 11131 } 11132 break; /* goto sizeof (int) option return */ 11133 case IPV6_JOIN_GROUP: 11134 case MCAST_JOIN_GROUP: 11135 case IPV6_LEAVE_GROUP: 11136 case MCAST_LEAVE_GROUP: { 11137 struct ipv6_mreq *ip_mreqp; 11138 struct group_req *greqp; 11139 ire_t *ire; 11140 boolean_t done = B_FALSE; 11141 in6_addr_t groupv6; 11142 uint32_t ifindex; 11143 boolean_t mcast_opt = B_TRUE; 11144 mcast_record_t fmode; 11145 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11146 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11147 11148 switch (name) { 11149 case IPV6_JOIN_GROUP: 11150 mcast_opt = B_FALSE; 11151 /* FALLTHRU */ 11152 case MCAST_JOIN_GROUP: 11153 fmode = MODE_IS_EXCLUDE; 11154 optfn = ip_opt_add_group_v6; 11155 break; 11156 11157 case IPV6_LEAVE_GROUP: 11158 mcast_opt = B_FALSE; 11159 /* FALLTHRU */ 11160 case MCAST_LEAVE_GROUP: 11161 fmode = MODE_IS_INCLUDE; 11162 optfn = ip_opt_delete_group_v6; 11163 break; 11164 } 11165 11166 if (mcast_opt) { 11167 struct sockaddr_in *sin; 11168 struct sockaddr_in6 *sin6; 11169 greqp = (struct group_req *)i1; 11170 if (greqp->gr_group.ss_family == AF_INET) { 11171 sin = (struct sockaddr_in *) 11172 &(greqp->gr_group); 11173 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11174 &groupv6); 11175 } else { 11176 sin6 = (struct sockaddr_in6 *) 11177 &(greqp->gr_group); 11178 groupv6 = sin6->sin6_addr; 11179 } 11180 ifindex = greqp->gr_interface; 11181 } else { 11182 ip_mreqp = (struct ipv6_mreq *)i1; 11183 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11184 ifindex = ip_mreqp->ipv6mr_interface; 11185 } 11186 /* 11187 * In the multirouting case, we need to replicate 11188 * the request on all interfaces that will take part 11189 * in replication. We do so because multirouting is 11190 * reflective, thus we will probably receive multi- 11191 * casts on those interfaces. 11192 * The ip_multirt_apply_membership_v6() succeeds if 11193 * the operation succeeds on at least one interface. 11194 */ 11195 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11196 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11197 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11198 if (ire != NULL) { 11199 if (ire->ire_flags & RTF_MULTIRT) { 11200 error = ip_multirt_apply_membership_v6( 11201 optfn, ire, connp, checkonly, 11202 &groupv6, fmode, &ipv6_all_zeros, 11203 first_mp); 11204 done = B_TRUE; 11205 } 11206 ire_refrele(ire); 11207 } 11208 if (!done) { 11209 error = optfn(connp, checkonly, &groupv6, 11210 ifindex, fmode, &ipv6_all_zeros, first_mp); 11211 } 11212 if (error) { 11213 /* 11214 * EINPROGRESS is a soft error, needs retry 11215 * so don't make *outlenp zero. 11216 */ 11217 if (error != EINPROGRESS) 11218 *outlenp = 0; 11219 return (error); 11220 } 11221 /* OK return - copy input buffer into output buffer */ 11222 if (invalp != outvalp) { 11223 /* don't trust bcopy for identical src/dst */ 11224 bcopy(invalp, outvalp, inlen); 11225 } 11226 *outlenp = inlen; 11227 return (0); 11228 } 11229 case MCAST_BLOCK_SOURCE: 11230 case MCAST_UNBLOCK_SOURCE: 11231 case MCAST_JOIN_SOURCE_GROUP: 11232 case MCAST_LEAVE_SOURCE_GROUP: { 11233 struct group_source_req *gsreqp; 11234 in6_addr_t v6grp, v6src; 11235 uint32_t ifindex; 11236 mcast_record_t fmode; 11237 ire_t *ire; 11238 boolean_t done = B_FALSE; 11239 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11240 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11241 11242 switch (name) { 11243 case MCAST_BLOCK_SOURCE: 11244 fmode = MODE_IS_EXCLUDE; 11245 optfn = ip_opt_add_group_v6; 11246 break; 11247 case MCAST_UNBLOCK_SOURCE: 11248 fmode = MODE_IS_EXCLUDE; 11249 optfn = ip_opt_delete_group_v6; 11250 break; 11251 case MCAST_JOIN_SOURCE_GROUP: 11252 fmode = MODE_IS_INCLUDE; 11253 optfn = ip_opt_add_group_v6; 11254 break; 11255 case MCAST_LEAVE_SOURCE_GROUP: 11256 fmode = MODE_IS_INCLUDE; 11257 optfn = ip_opt_delete_group_v6; 11258 break; 11259 } 11260 11261 gsreqp = (struct group_source_req *)i1; 11262 ifindex = gsreqp->gsr_interface; 11263 if (gsreqp->gsr_group.ss_family == AF_INET) { 11264 struct sockaddr_in *s; 11265 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11266 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11267 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11268 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11269 } else { 11270 struct sockaddr_in6 *s6; 11271 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11272 v6grp = s6->sin6_addr; 11273 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11274 v6src = s6->sin6_addr; 11275 } 11276 11277 /* 11278 * In the multirouting case, we need to replicate 11279 * the request as noted in the mcast cases above. 11280 */ 11281 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11282 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11283 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11284 if (ire != NULL) { 11285 if (ire->ire_flags & RTF_MULTIRT) { 11286 error = ip_multirt_apply_membership_v6( 11287 optfn, ire, connp, checkonly, 11288 &v6grp, fmode, &v6src, first_mp); 11289 done = B_TRUE; 11290 } 11291 ire_refrele(ire); 11292 } 11293 if (!done) { 11294 error = optfn(connp, checkonly, &v6grp, 11295 ifindex, fmode, &v6src, first_mp); 11296 } 11297 if (error != 0) { 11298 /* 11299 * EINPROGRESS is a soft error, needs retry 11300 * so don't make *outlenp zero. 11301 */ 11302 if (error != EINPROGRESS) 11303 *outlenp = 0; 11304 return (error); 11305 } 11306 /* OK return - copy input buffer into output buffer */ 11307 if (invalp != outvalp) { 11308 bcopy(invalp, outvalp, inlen); 11309 } 11310 *outlenp = inlen; 11311 return (0); 11312 } 11313 case IPV6_UNICAST_HOPS: 11314 /* Recorded in transport above IP */ 11315 break; /* goto sizeof (int) option return */ 11316 case IPV6_UNSPEC_SRC: 11317 /* Allow sending with a zero source address */ 11318 if (!checkonly) { 11319 mutex_enter(&connp->conn_lock); 11320 connp->conn_unspec_src = *i1 ? 1 : 0; 11321 mutex_exit(&connp->conn_lock); 11322 } 11323 break; /* goto sizeof (int) option return */ 11324 case IPV6_RECVPKTINFO: 11325 if (!checkonly) { 11326 mutex_enter(&connp->conn_lock); 11327 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11328 mutex_exit(&connp->conn_lock); 11329 } 11330 break; /* goto sizeof (int) option return */ 11331 case IPV6_RECVTCLASS: 11332 if (!checkonly) { 11333 if (*i1 < 0 || *i1 > 1) { 11334 return (EINVAL); 11335 } 11336 mutex_enter(&connp->conn_lock); 11337 connp->conn_ipv6_recvtclass = *i1; 11338 mutex_exit(&connp->conn_lock); 11339 } 11340 break; 11341 case IPV6_RECVPATHMTU: 11342 if (!checkonly) { 11343 if (*i1 < 0 || *i1 > 1) { 11344 return (EINVAL); 11345 } 11346 mutex_enter(&connp->conn_lock); 11347 connp->conn_ipv6_recvpathmtu = *i1; 11348 mutex_exit(&connp->conn_lock); 11349 } 11350 break; 11351 case IPV6_RECVHOPLIMIT: 11352 if (!checkonly) { 11353 mutex_enter(&connp->conn_lock); 11354 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11355 mutex_exit(&connp->conn_lock); 11356 } 11357 break; /* goto sizeof (int) option return */ 11358 case IPV6_RECVHOPOPTS: 11359 if (!checkonly) { 11360 mutex_enter(&connp->conn_lock); 11361 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11362 mutex_exit(&connp->conn_lock); 11363 } 11364 break; /* goto sizeof (int) option return */ 11365 case IPV6_RECVDSTOPTS: 11366 if (!checkonly) { 11367 mutex_enter(&connp->conn_lock); 11368 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11369 mutex_exit(&connp->conn_lock); 11370 } 11371 break; /* goto sizeof (int) option return */ 11372 case IPV6_RECVRTHDR: 11373 if (!checkonly) { 11374 mutex_enter(&connp->conn_lock); 11375 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11376 mutex_exit(&connp->conn_lock); 11377 } 11378 break; /* goto sizeof (int) option return */ 11379 case IPV6_RECVRTHDRDSTOPTS: 11380 if (!checkonly) { 11381 mutex_enter(&connp->conn_lock); 11382 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11383 mutex_exit(&connp->conn_lock); 11384 } 11385 break; /* goto sizeof (int) option return */ 11386 case IPV6_PKTINFO: 11387 if (inlen == 0) 11388 return (-EINVAL); /* clearing option */ 11389 error = ip6_set_pktinfo(cr, connp, 11390 (struct in6_pktinfo *)invalp, first_mp); 11391 if (error != 0) 11392 *outlenp = 0; 11393 else 11394 *outlenp = inlen; 11395 return (error); 11396 case IPV6_NEXTHOP: { 11397 struct sockaddr_in6 *sin6; 11398 11399 /* Verify that the nexthop is reachable */ 11400 if (inlen == 0) 11401 return (-EINVAL); /* clearing option */ 11402 11403 sin6 = (struct sockaddr_in6 *)invalp; 11404 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11405 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11406 NULL, MATCH_IRE_DEFAULT, ipst); 11407 11408 if (ire == NULL) { 11409 *outlenp = 0; 11410 return (EHOSTUNREACH); 11411 } 11412 ire_refrele(ire); 11413 return (-EINVAL); 11414 } 11415 case IPV6_SEC_OPT: 11416 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11417 if (error != 0) { 11418 *outlenp = 0; 11419 return (error); 11420 } 11421 break; 11422 case IPV6_SRC_PREFERENCES: { 11423 /* 11424 * This is implemented strictly in the ip module 11425 * (here and in tcp_opt_*() to accomodate tcp 11426 * sockets). Modules above ip pass this option 11427 * down here since ip is the only one that needs to 11428 * be aware of source address preferences. 11429 * 11430 * This socket option only affects connected 11431 * sockets that haven't already bound to a specific 11432 * IPv6 address. In other words, sockets that 11433 * don't call bind() with an address other than the 11434 * unspecified address and that call connect(). 11435 * ip_bind_connected_v6() passes these preferences 11436 * to the ipif_select_source_v6() function. 11437 */ 11438 if (inlen != sizeof (uint32_t)) 11439 return (EINVAL); 11440 error = ip6_set_src_preferences(connp, 11441 *(uint32_t *)invalp); 11442 if (error != 0) { 11443 *outlenp = 0; 11444 return (error); 11445 } else { 11446 *outlenp = sizeof (uint32_t); 11447 } 11448 break; 11449 } 11450 case IPV6_V6ONLY: 11451 if (*i1 < 0 || *i1 > 1) { 11452 return (EINVAL); 11453 } 11454 mutex_enter(&connp->conn_lock); 11455 connp->conn_ipv6_v6only = *i1; 11456 mutex_exit(&connp->conn_lock); 11457 break; 11458 default: 11459 return (-EINVAL); 11460 } 11461 break; 11462 default: 11463 /* 11464 * "soft" error (negative) 11465 * option not handled at this level 11466 * Note: Do not modify *outlenp 11467 */ 11468 return (-EINVAL); 11469 } 11470 /* 11471 * Common case of return from an option that is sizeof (int) 11472 */ 11473 *(int *)outvalp = *i1; 11474 *outlenp = sizeof (int); 11475 return (0); 11476 } 11477 11478 /* 11479 * This routine gets default values of certain options whose default 11480 * values are maintained by protocol specific code 11481 */ 11482 /* ARGSUSED */ 11483 int 11484 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11485 { 11486 int *i1 = (int *)ptr; 11487 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11488 11489 switch (level) { 11490 case IPPROTO_IP: 11491 switch (name) { 11492 case IP_MULTICAST_TTL: 11493 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11494 return (sizeof (uchar_t)); 11495 case IP_MULTICAST_LOOP: 11496 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11497 return (sizeof (uchar_t)); 11498 default: 11499 return (-1); 11500 } 11501 case IPPROTO_IPV6: 11502 switch (name) { 11503 case IPV6_UNICAST_HOPS: 11504 *i1 = ipst->ips_ipv6_def_hops; 11505 return (sizeof (int)); 11506 case IPV6_MULTICAST_HOPS: 11507 *i1 = IP_DEFAULT_MULTICAST_TTL; 11508 return (sizeof (int)); 11509 case IPV6_MULTICAST_LOOP: 11510 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11511 return (sizeof (int)); 11512 case IPV6_V6ONLY: 11513 *i1 = 1; 11514 return (sizeof (int)); 11515 default: 11516 return (-1); 11517 } 11518 default: 11519 return (-1); 11520 } 11521 /* NOTREACHED */ 11522 } 11523 11524 /* 11525 * Given a destination address and a pointer to where to put the information 11526 * this routine fills in the mtuinfo. 11527 */ 11528 int 11529 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11530 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11531 { 11532 ire_t *ire; 11533 ip_stack_t *ipst = ns->netstack_ip; 11534 11535 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11536 return (-1); 11537 11538 bzero(mtuinfo, sizeof (*mtuinfo)); 11539 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11540 mtuinfo->ip6m_addr.sin6_port = port; 11541 mtuinfo->ip6m_addr.sin6_addr = *in6; 11542 11543 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11544 if (ire != NULL) { 11545 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11546 ire_refrele(ire); 11547 } else { 11548 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11549 } 11550 return (sizeof (struct ip6_mtuinfo)); 11551 } 11552 11553 /* 11554 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11555 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11556 * isn't. This doesn't matter as the error checking is done properly for the 11557 * other MRT options coming in through ip_opt_set. 11558 */ 11559 int 11560 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11561 { 11562 conn_t *connp = Q_TO_CONN(q); 11563 ipsec_req_t *req = (ipsec_req_t *)ptr; 11564 11565 switch (level) { 11566 case IPPROTO_IP: 11567 switch (name) { 11568 case MRT_VERSION: 11569 case MRT_ASSERT: 11570 (void) ip_mrouter_get(name, q, ptr); 11571 return (sizeof (int)); 11572 case IP_SEC_OPT: 11573 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11574 case IP_NEXTHOP: 11575 if (connp->conn_nexthop_set) { 11576 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11577 return (sizeof (ipaddr_t)); 11578 } else 11579 return (0); 11580 case IP_RECVPKTINFO: 11581 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11582 return (sizeof (int)); 11583 default: 11584 break; 11585 } 11586 break; 11587 case IPPROTO_IPV6: 11588 switch (name) { 11589 case IPV6_SEC_OPT: 11590 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11591 case IPV6_SRC_PREFERENCES: { 11592 return (ip6_get_src_preferences(connp, 11593 (uint32_t *)ptr)); 11594 } 11595 case IPV6_V6ONLY: 11596 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11597 return (sizeof (int)); 11598 case IPV6_PATHMTU: 11599 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11600 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11601 default: 11602 break; 11603 } 11604 break; 11605 default: 11606 break; 11607 } 11608 return (-1); 11609 } 11610 11611 /* Named Dispatch routine to get a current value out of our parameter table. */ 11612 /* ARGSUSED */ 11613 static int 11614 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11615 { 11616 ipparam_t *ippa = (ipparam_t *)cp; 11617 11618 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11619 return (0); 11620 } 11621 11622 /* ARGSUSED */ 11623 static int 11624 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11625 { 11626 11627 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11628 return (0); 11629 } 11630 11631 /* 11632 * Set ip{,6}_forwarding values. This means walking through all of the 11633 * ill's and toggling their forwarding values. 11634 */ 11635 /* ARGSUSED */ 11636 static int 11637 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11638 { 11639 long new_value; 11640 int *forwarding_value = (int *)cp; 11641 ill_t *ill; 11642 boolean_t isv6; 11643 ill_walk_context_t ctx; 11644 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11645 11646 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11647 11648 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11649 new_value < 0 || new_value > 1) { 11650 return (EINVAL); 11651 } 11652 11653 *forwarding_value = new_value; 11654 11655 /* 11656 * Regardless of the current value of ip_forwarding, set all per-ill 11657 * values of ip_forwarding to the value being set. 11658 * 11659 * Bring all the ill's up to date with the new global value. 11660 */ 11661 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11662 11663 if (isv6) 11664 ill = ILL_START_WALK_V6(&ctx, ipst); 11665 else 11666 ill = ILL_START_WALK_V4(&ctx, ipst); 11667 11668 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11669 (void) ill_forward_set(ill, new_value != 0); 11670 11671 rw_exit(&ipst->ips_ill_g_lock); 11672 return (0); 11673 } 11674 11675 /* 11676 * Walk through the param array specified registering each element with the 11677 * Named Dispatch handler. This is called only during init. So it is ok 11678 * not to acquire any locks 11679 */ 11680 static boolean_t 11681 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11682 ipndp_t *ipnd, size_t ipnd_cnt) 11683 { 11684 for (; ippa_cnt-- > 0; ippa++) { 11685 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11686 if (!nd_load(ndp, ippa->ip_param_name, 11687 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11688 nd_free(ndp); 11689 return (B_FALSE); 11690 } 11691 } 11692 } 11693 11694 for (; ipnd_cnt-- > 0; ipnd++) { 11695 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11696 if (!nd_load(ndp, ipnd->ip_ndp_name, 11697 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11698 ipnd->ip_ndp_data)) { 11699 nd_free(ndp); 11700 return (B_FALSE); 11701 } 11702 } 11703 } 11704 11705 return (B_TRUE); 11706 } 11707 11708 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11709 /* ARGSUSED */ 11710 static int 11711 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11712 { 11713 long new_value; 11714 ipparam_t *ippa = (ipparam_t *)cp; 11715 11716 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11717 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11718 return (EINVAL); 11719 } 11720 ippa->ip_param_value = new_value; 11721 return (0); 11722 } 11723 11724 /* 11725 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11726 * When an ipf is passed here for the first time, if 11727 * we already have in-order fragments on the queue, we convert from the fast- 11728 * path reassembly scheme to the hard-case scheme. From then on, additional 11729 * fragments are reassembled here. We keep track of the start and end offsets 11730 * of each piece, and the number of holes in the chain. When the hole count 11731 * goes to zero, we are done! 11732 * 11733 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11734 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11735 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11736 * after the call to ip_reassemble(). 11737 */ 11738 int 11739 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11740 size_t msg_len) 11741 { 11742 uint_t end; 11743 mblk_t *next_mp; 11744 mblk_t *mp1; 11745 uint_t offset; 11746 boolean_t incr_dups = B_TRUE; 11747 boolean_t offset_zero_seen = B_FALSE; 11748 boolean_t pkt_boundary_checked = B_FALSE; 11749 11750 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11751 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11752 11753 /* Add in byte count */ 11754 ipf->ipf_count += msg_len; 11755 if (ipf->ipf_end) { 11756 /* 11757 * We were part way through in-order reassembly, but now there 11758 * is a hole. We walk through messages already queued, and 11759 * mark them for hard case reassembly. We know that up till 11760 * now they were in order starting from offset zero. 11761 */ 11762 offset = 0; 11763 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11764 IP_REASS_SET_START(mp1, offset); 11765 if (offset == 0) { 11766 ASSERT(ipf->ipf_nf_hdr_len != 0); 11767 offset = -ipf->ipf_nf_hdr_len; 11768 } 11769 offset += mp1->b_wptr - mp1->b_rptr; 11770 IP_REASS_SET_END(mp1, offset); 11771 } 11772 /* One hole at the end. */ 11773 ipf->ipf_hole_cnt = 1; 11774 /* Brand it as a hard case, forever. */ 11775 ipf->ipf_end = 0; 11776 } 11777 /* Walk through all the new pieces. */ 11778 do { 11779 end = start + (mp->b_wptr - mp->b_rptr); 11780 /* 11781 * If start is 0, decrease 'end' only for the first mblk of 11782 * the fragment. Otherwise 'end' can get wrong value in the 11783 * second pass of the loop if first mblk is exactly the 11784 * size of ipf_nf_hdr_len. 11785 */ 11786 if (start == 0 && !offset_zero_seen) { 11787 /* First segment */ 11788 ASSERT(ipf->ipf_nf_hdr_len != 0); 11789 end -= ipf->ipf_nf_hdr_len; 11790 offset_zero_seen = B_TRUE; 11791 } 11792 next_mp = mp->b_cont; 11793 /* 11794 * We are checking to see if there is any interesing data 11795 * to process. If there isn't and the mblk isn't the 11796 * one which carries the unfragmentable header then we 11797 * drop it. It's possible to have just the unfragmentable 11798 * header come through without any data. That needs to be 11799 * saved. 11800 * 11801 * If the assert at the top of this function holds then the 11802 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11803 * is infrequently traveled enough that the test is left in 11804 * to protect against future code changes which break that 11805 * invariant. 11806 */ 11807 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11808 /* Empty. Blast it. */ 11809 IP_REASS_SET_START(mp, 0); 11810 IP_REASS_SET_END(mp, 0); 11811 /* 11812 * If the ipf points to the mblk we are about to free, 11813 * update ipf to point to the next mblk (or NULL 11814 * if none). 11815 */ 11816 if (ipf->ipf_mp->b_cont == mp) 11817 ipf->ipf_mp->b_cont = next_mp; 11818 freeb(mp); 11819 continue; 11820 } 11821 mp->b_cont = NULL; 11822 IP_REASS_SET_START(mp, start); 11823 IP_REASS_SET_END(mp, end); 11824 if (!ipf->ipf_tail_mp) { 11825 ipf->ipf_tail_mp = mp; 11826 ipf->ipf_mp->b_cont = mp; 11827 if (start == 0 || !more) { 11828 ipf->ipf_hole_cnt = 1; 11829 /* 11830 * if the first fragment comes in more than one 11831 * mblk, this loop will be executed for each 11832 * mblk. Need to adjust hole count so exiting 11833 * this routine will leave hole count at 1. 11834 */ 11835 if (next_mp) 11836 ipf->ipf_hole_cnt++; 11837 } else 11838 ipf->ipf_hole_cnt = 2; 11839 continue; 11840 } else if (ipf->ipf_last_frag_seen && !more && 11841 !pkt_boundary_checked) { 11842 /* 11843 * We check datagram boundary only if this fragment 11844 * claims to be the last fragment and we have seen a 11845 * last fragment in the past too. We do this only 11846 * once for a given fragment. 11847 * 11848 * start cannot be 0 here as fragments with start=0 11849 * and MF=0 gets handled as a complete packet. These 11850 * fragments should not reach here. 11851 */ 11852 11853 if (start + msgdsize(mp) != 11854 IP_REASS_END(ipf->ipf_tail_mp)) { 11855 /* 11856 * We have two fragments both of which claim 11857 * to be the last fragment but gives conflicting 11858 * information about the whole datagram size. 11859 * Something fishy is going on. Drop the 11860 * fragment and free up the reassembly list. 11861 */ 11862 return (IP_REASS_FAILED); 11863 } 11864 11865 /* 11866 * We shouldn't come to this code block again for this 11867 * particular fragment. 11868 */ 11869 pkt_boundary_checked = B_TRUE; 11870 } 11871 11872 /* New stuff at or beyond tail? */ 11873 offset = IP_REASS_END(ipf->ipf_tail_mp); 11874 if (start >= offset) { 11875 if (ipf->ipf_last_frag_seen) { 11876 /* current fragment is beyond last fragment */ 11877 return (IP_REASS_FAILED); 11878 } 11879 /* Link it on end. */ 11880 ipf->ipf_tail_mp->b_cont = mp; 11881 ipf->ipf_tail_mp = mp; 11882 if (more) { 11883 if (start != offset) 11884 ipf->ipf_hole_cnt++; 11885 } else if (start == offset && next_mp == NULL) 11886 ipf->ipf_hole_cnt--; 11887 continue; 11888 } 11889 mp1 = ipf->ipf_mp->b_cont; 11890 offset = IP_REASS_START(mp1); 11891 /* New stuff at the front? */ 11892 if (start < offset) { 11893 if (start == 0) { 11894 if (end >= offset) { 11895 /* Nailed the hole at the begining. */ 11896 ipf->ipf_hole_cnt--; 11897 } 11898 } else if (end < offset) { 11899 /* 11900 * A hole, stuff, and a hole where there used 11901 * to be just a hole. 11902 */ 11903 ipf->ipf_hole_cnt++; 11904 } 11905 mp->b_cont = mp1; 11906 /* Check for overlap. */ 11907 while (end > offset) { 11908 if (end < IP_REASS_END(mp1)) { 11909 mp->b_wptr -= end - offset; 11910 IP_REASS_SET_END(mp, offset); 11911 BUMP_MIB(ill->ill_ip_mib, 11912 ipIfStatsReasmPartDups); 11913 break; 11914 } 11915 /* Did we cover another hole? */ 11916 if ((mp1->b_cont && 11917 IP_REASS_END(mp1) != 11918 IP_REASS_START(mp1->b_cont) && 11919 end >= IP_REASS_START(mp1->b_cont)) || 11920 (!ipf->ipf_last_frag_seen && !more)) { 11921 ipf->ipf_hole_cnt--; 11922 } 11923 /* Clip out mp1. */ 11924 if ((mp->b_cont = mp1->b_cont) == NULL) { 11925 /* 11926 * After clipping out mp1, this guy 11927 * is now hanging off the end. 11928 */ 11929 ipf->ipf_tail_mp = mp; 11930 } 11931 IP_REASS_SET_START(mp1, 0); 11932 IP_REASS_SET_END(mp1, 0); 11933 /* Subtract byte count */ 11934 ipf->ipf_count -= mp1->b_datap->db_lim - 11935 mp1->b_datap->db_base; 11936 freeb(mp1); 11937 BUMP_MIB(ill->ill_ip_mib, 11938 ipIfStatsReasmPartDups); 11939 mp1 = mp->b_cont; 11940 if (!mp1) 11941 break; 11942 offset = IP_REASS_START(mp1); 11943 } 11944 ipf->ipf_mp->b_cont = mp; 11945 continue; 11946 } 11947 /* 11948 * The new piece starts somewhere between the start of the head 11949 * and before the end of the tail. 11950 */ 11951 for (; mp1; mp1 = mp1->b_cont) { 11952 offset = IP_REASS_END(mp1); 11953 if (start < offset) { 11954 if (end <= offset) { 11955 /* Nothing new. */ 11956 IP_REASS_SET_START(mp, 0); 11957 IP_REASS_SET_END(mp, 0); 11958 /* Subtract byte count */ 11959 ipf->ipf_count -= mp->b_datap->db_lim - 11960 mp->b_datap->db_base; 11961 if (incr_dups) { 11962 ipf->ipf_num_dups++; 11963 incr_dups = B_FALSE; 11964 } 11965 freeb(mp); 11966 BUMP_MIB(ill->ill_ip_mib, 11967 ipIfStatsReasmDuplicates); 11968 break; 11969 } 11970 /* 11971 * Trim redundant stuff off beginning of new 11972 * piece. 11973 */ 11974 IP_REASS_SET_START(mp, offset); 11975 mp->b_rptr += offset - start; 11976 BUMP_MIB(ill->ill_ip_mib, 11977 ipIfStatsReasmPartDups); 11978 start = offset; 11979 if (!mp1->b_cont) { 11980 /* 11981 * After trimming, this guy is now 11982 * hanging off the end. 11983 */ 11984 mp1->b_cont = mp; 11985 ipf->ipf_tail_mp = mp; 11986 if (!more) { 11987 ipf->ipf_hole_cnt--; 11988 } 11989 break; 11990 } 11991 } 11992 if (start >= IP_REASS_START(mp1->b_cont)) 11993 continue; 11994 /* Fill a hole */ 11995 if (start > offset) 11996 ipf->ipf_hole_cnt++; 11997 mp->b_cont = mp1->b_cont; 11998 mp1->b_cont = mp; 11999 mp1 = mp->b_cont; 12000 offset = IP_REASS_START(mp1); 12001 if (end >= offset) { 12002 ipf->ipf_hole_cnt--; 12003 /* Check for overlap. */ 12004 while (end > offset) { 12005 if (end < IP_REASS_END(mp1)) { 12006 mp->b_wptr -= end - offset; 12007 IP_REASS_SET_END(mp, offset); 12008 /* 12009 * TODO we might bump 12010 * this up twice if there is 12011 * overlap at both ends. 12012 */ 12013 BUMP_MIB(ill->ill_ip_mib, 12014 ipIfStatsReasmPartDups); 12015 break; 12016 } 12017 /* Did we cover another hole? */ 12018 if ((mp1->b_cont && 12019 IP_REASS_END(mp1) 12020 != IP_REASS_START(mp1->b_cont) && 12021 end >= 12022 IP_REASS_START(mp1->b_cont)) || 12023 (!ipf->ipf_last_frag_seen && 12024 !more)) { 12025 ipf->ipf_hole_cnt--; 12026 } 12027 /* Clip out mp1. */ 12028 if ((mp->b_cont = mp1->b_cont) == 12029 NULL) { 12030 /* 12031 * After clipping out mp1, 12032 * this guy is now hanging 12033 * off the end. 12034 */ 12035 ipf->ipf_tail_mp = mp; 12036 } 12037 IP_REASS_SET_START(mp1, 0); 12038 IP_REASS_SET_END(mp1, 0); 12039 /* Subtract byte count */ 12040 ipf->ipf_count -= 12041 mp1->b_datap->db_lim - 12042 mp1->b_datap->db_base; 12043 freeb(mp1); 12044 BUMP_MIB(ill->ill_ip_mib, 12045 ipIfStatsReasmPartDups); 12046 mp1 = mp->b_cont; 12047 if (!mp1) 12048 break; 12049 offset = IP_REASS_START(mp1); 12050 } 12051 } 12052 break; 12053 } 12054 } while (start = end, mp = next_mp); 12055 12056 /* Fragment just processed could be the last one. Remember this fact */ 12057 if (!more) 12058 ipf->ipf_last_frag_seen = B_TRUE; 12059 12060 /* Still got holes? */ 12061 if (ipf->ipf_hole_cnt) 12062 return (IP_REASS_PARTIAL); 12063 /* Clean up overloaded fields to avoid upstream disasters. */ 12064 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12065 IP_REASS_SET_START(mp1, 0); 12066 IP_REASS_SET_END(mp1, 0); 12067 } 12068 return (IP_REASS_COMPLETE); 12069 } 12070 12071 /* 12072 * ipsec processing for the fast path, used for input UDP Packets 12073 * Returns true if ready for passup to UDP. 12074 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12075 * was an ESP-in-UDP packet, etc.). 12076 */ 12077 static boolean_t 12078 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12079 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12080 { 12081 uint32_t ill_index; 12082 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12083 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12084 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12085 udp_t *udp = connp->conn_udp; 12086 12087 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12088 /* The ill_index of the incoming ILL */ 12089 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12090 12091 /* pass packet up to the transport */ 12092 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12093 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12094 NULL, mctl_present); 12095 if (*first_mpp == NULL) { 12096 return (B_FALSE); 12097 } 12098 } 12099 12100 /* Initiate IPPF processing for fastpath UDP */ 12101 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12102 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12103 if (*mpp == NULL) { 12104 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12105 "deferred/dropped during IPPF processing\n")); 12106 return (B_FALSE); 12107 } 12108 } 12109 /* 12110 * Remove 0-spi if it's 0, or move everything behind 12111 * the UDP header over it and forward to ESP via 12112 * ip_proto_input(). 12113 */ 12114 if (udp->udp_nat_t_endpoint) { 12115 if (mctl_present) { 12116 /* mctl_present *shouldn't* happen. */ 12117 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12118 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12119 &ipss->ipsec_dropper); 12120 *first_mpp = NULL; 12121 return (B_FALSE); 12122 } 12123 12124 /* "ill" is "recv_ill" in actuality. */ 12125 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12126 return (B_FALSE); 12127 12128 /* Else continue like a normal UDP packet. */ 12129 } 12130 12131 /* 12132 * We make the checks as below since we are in the fast path 12133 * and want to minimize the number of checks if the IP_RECVIF and/or 12134 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12135 */ 12136 if (connp->conn_recvif || connp->conn_recvslla || 12137 connp->conn_ip_recvpktinfo) { 12138 if (connp->conn_recvif) { 12139 in_flags = IPF_RECVIF; 12140 } 12141 /* 12142 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12143 * so the flag passed to ip_add_info is based on IP version 12144 * of connp. 12145 */ 12146 if (connp->conn_ip_recvpktinfo) { 12147 if (connp->conn_af_isv6) { 12148 /* 12149 * V6 only needs index 12150 */ 12151 in_flags |= IPF_RECVIF; 12152 } else { 12153 /* 12154 * V4 needs index + matching address. 12155 */ 12156 in_flags |= IPF_RECVADDR; 12157 } 12158 } 12159 if (connp->conn_recvslla) { 12160 in_flags |= IPF_RECVSLLA; 12161 } 12162 /* 12163 * since in_flags are being set ill will be 12164 * referenced in ip_add_info, so it better not 12165 * be NULL. 12166 */ 12167 /* 12168 * the actual data will be contained in b_cont 12169 * upon successful return of the following call. 12170 * If the call fails then the original mblk is 12171 * returned. 12172 */ 12173 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12174 ipst); 12175 } 12176 12177 return (B_TRUE); 12178 } 12179 12180 /* 12181 * Fragmentation reassembly. Each ILL has a hash table for 12182 * queuing packets undergoing reassembly for all IPIFs 12183 * associated with the ILL. The hash is based on the packet 12184 * IP ident field. The ILL frag hash table was allocated 12185 * as a timer block at the time the ILL was created. Whenever 12186 * there is anything on the reassembly queue, the timer will 12187 * be running. Returns B_TRUE if successful else B_FALSE; 12188 * frees mp on failure. 12189 */ 12190 static boolean_t 12191 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12192 uint32_t *cksum_val, uint16_t *cksum_flags) 12193 { 12194 uint32_t frag_offset_flags; 12195 ill_t *ill = (ill_t *)q->q_ptr; 12196 mblk_t *mp = *mpp; 12197 mblk_t *t_mp; 12198 ipaddr_t dst; 12199 uint8_t proto = ipha->ipha_protocol; 12200 uint32_t sum_val; 12201 uint16_t sum_flags; 12202 ipf_t *ipf; 12203 ipf_t **ipfp; 12204 ipfb_t *ipfb; 12205 uint16_t ident; 12206 uint32_t offset; 12207 ipaddr_t src; 12208 uint_t hdr_length; 12209 uint32_t end; 12210 mblk_t *mp1; 12211 mblk_t *tail_mp; 12212 size_t count; 12213 size_t msg_len; 12214 uint8_t ecn_info = 0; 12215 uint32_t packet_size; 12216 boolean_t pruned = B_FALSE; 12217 ip_stack_t *ipst = ill->ill_ipst; 12218 12219 if (cksum_val != NULL) 12220 *cksum_val = 0; 12221 if (cksum_flags != NULL) 12222 *cksum_flags = 0; 12223 12224 /* 12225 * Drop the fragmented as early as possible, if 12226 * we don't have resource(s) to re-assemble. 12227 */ 12228 if (ipst->ips_ip_reass_queue_bytes == 0) { 12229 freemsg(mp); 12230 return (B_FALSE); 12231 } 12232 12233 /* Check for fragmentation offset; return if there's none */ 12234 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12235 (IPH_MF | IPH_OFFSET)) == 0) 12236 return (B_TRUE); 12237 12238 /* 12239 * We utilize hardware computed checksum info only for UDP since 12240 * IP fragmentation is a normal occurence for the protocol. In 12241 * addition, checksum offload support for IP fragments carrying 12242 * UDP payload is commonly implemented across network adapters. 12243 */ 12244 ASSERT(ill != NULL); 12245 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12246 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12247 mblk_t *mp1 = mp->b_cont; 12248 int32_t len; 12249 12250 /* Record checksum information from the packet */ 12251 sum_val = (uint32_t)DB_CKSUM16(mp); 12252 sum_flags = DB_CKSUMFLAGS(mp); 12253 12254 /* IP payload offset from beginning of mblk */ 12255 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12256 12257 if ((sum_flags & HCK_PARTIALCKSUM) && 12258 (mp1 == NULL || mp1->b_cont == NULL) && 12259 offset >= DB_CKSUMSTART(mp) && 12260 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12261 uint32_t adj; 12262 /* 12263 * Partial checksum has been calculated by hardware 12264 * and attached to the packet; in addition, any 12265 * prepended extraneous data is even byte aligned. 12266 * If any such data exists, we adjust the checksum; 12267 * this would also handle any postpended data. 12268 */ 12269 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12270 mp, mp1, len, adj); 12271 12272 /* One's complement subtract extraneous checksum */ 12273 if (adj >= sum_val) 12274 sum_val = ~(adj - sum_val) & 0xFFFF; 12275 else 12276 sum_val -= adj; 12277 } 12278 } else { 12279 sum_val = 0; 12280 sum_flags = 0; 12281 } 12282 12283 /* Clear hardware checksumming flag */ 12284 DB_CKSUMFLAGS(mp) = 0; 12285 12286 ident = ipha->ipha_ident; 12287 offset = (frag_offset_flags << 3) & 0xFFFF; 12288 src = ipha->ipha_src; 12289 dst = ipha->ipha_dst; 12290 hdr_length = IPH_HDR_LENGTH(ipha); 12291 end = ntohs(ipha->ipha_length) - hdr_length; 12292 12293 /* If end == 0 then we have a packet with no data, so just free it */ 12294 if (end == 0) { 12295 freemsg(mp); 12296 return (B_FALSE); 12297 } 12298 12299 /* Record the ECN field info. */ 12300 ecn_info = (ipha->ipha_type_of_service & 0x3); 12301 if (offset != 0) { 12302 /* 12303 * If this isn't the first piece, strip the header, and 12304 * add the offset to the end value. 12305 */ 12306 mp->b_rptr += hdr_length; 12307 end += offset; 12308 } 12309 12310 msg_len = MBLKSIZE(mp); 12311 tail_mp = mp; 12312 while (tail_mp->b_cont != NULL) { 12313 tail_mp = tail_mp->b_cont; 12314 msg_len += MBLKSIZE(tail_mp); 12315 } 12316 12317 /* If the reassembly list for this ILL will get too big, prune it */ 12318 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12319 ipst->ips_ip_reass_queue_bytes) { 12320 ill_frag_prune(ill, 12321 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12322 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12323 pruned = B_TRUE; 12324 } 12325 12326 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12327 mutex_enter(&ipfb->ipfb_lock); 12328 12329 ipfp = &ipfb->ipfb_ipf; 12330 /* Try to find an existing fragment queue for this packet. */ 12331 for (;;) { 12332 ipf = ipfp[0]; 12333 if (ipf != NULL) { 12334 /* 12335 * It has to match on ident and src/dst address. 12336 */ 12337 if (ipf->ipf_ident == ident && 12338 ipf->ipf_src == src && 12339 ipf->ipf_dst == dst && 12340 ipf->ipf_protocol == proto) { 12341 /* 12342 * If we have received too many 12343 * duplicate fragments for this packet 12344 * free it. 12345 */ 12346 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12347 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12348 freemsg(mp); 12349 mutex_exit(&ipfb->ipfb_lock); 12350 return (B_FALSE); 12351 } 12352 /* Found it. */ 12353 break; 12354 } 12355 ipfp = &ipf->ipf_hash_next; 12356 continue; 12357 } 12358 12359 /* 12360 * If we pruned the list, do we want to store this new 12361 * fragment?. We apply an optimization here based on the 12362 * fact that most fragments will be received in order. 12363 * So if the offset of this incoming fragment is zero, 12364 * it is the first fragment of a new packet. We will 12365 * keep it. Otherwise drop the fragment, as we have 12366 * probably pruned the packet already (since the 12367 * packet cannot be found). 12368 */ 12369 if (pruned && offset != 0) { 12370 mutex_exit(&ipfb->ipfb_lock); 12371 freemsg(mp); 12372 return (B_FALSE); 12373 } 12374 12375 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12376 /* 12377 * Too many fragmented packets in this hash 12378 * bucket. Free the oldest. 12379 */ 12380 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12381 } 12382 12383 /* New guy. Allocate a frag message. */ 12384 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12385 if (mp1 == NULL) { 12386 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12387 freemsg(mp); 12388 reass_done: 12389 mutex_exit(&ipfb->ipfb_lock); 12390 return (B_FALSE); 12391 } 12392 12393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12394 mp1->b_cont = mp; 12395 12396 /* Initialize the fragment header. */ 12397 ipf = (ipf_t *)mp1->b_rptr; 12398 ipf->ipf_mp = mp1; 12399 ipf->ipf_ptphn = ipfp; 12400 ipfp[0] = ipf; 12401 ipf->ipf_hash_next = NULL; 12402 ipf->ipf_ident = ident; 12403 ipf->ipf_protocol = proto; 12404 ipf->ipf_src = src; 12405 ipf->ipf_dst = dst; 12406 ipf->ipf_nf_hdr_len = 0; 12407 /* Record reassembly start time. */ 12408 ipf->ipf_timestamp = gethrestime_sec(); 12409 /* Record ipf generation and account for frag header */ 12410 ipf->ipf_gen = ill->ill_ipf_gen++; 12411 ipf->ipf_count = MBLKSIZE(mp1); 12412 ipf->ipf_last_frag_seen = B_FALSE; 12413 ipf->ipf_ecn = ecn_info; 12414 ipf->ipf_num_dups = 0; 12415 ipfb->ipfb_frag_pkts++; 12416 ipf->ipf_checksum = 0; 12417 ipf->ipf_checksum_flags = 0; 12418 12419 /* Store checksum value in fragment header */ 12420 if (sum_flags != 0) { 12421 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12422 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12423 ipf->ipf_checksum = sum_val; 12424 ipf->ipf_checksum_flags = sum_flags; 12425 } 12426 12427 /* 12428 * We handle reassembly two ways. In the easy case, 12429 * where all the fragments show up in order, we do 12430 * minimal bookkeeping, and just clip new pieces on 12431 * the end. If we ever see a hole, then we go off 12432 * to ip_reassemble which has to mark the pieces and 12433 * keep track of the number of holes, etc. Obviously, 12434 * the point of having both mechanisms is so we can 12435 * handle the easy case as efficiently as possible. 12436 */ 12437 if (offset == 0) { 12438 /* Easy case, in-order reassembly so far. */ 12439 ipf->ipf_count += msg_len; 12440 ipf->ipf_tail_mp = tail_mp; 12441 /* 12442 * Keep track of next expected offset in 12443 * ipf_end. 12444 */ 12445 ipf->ipf_end = end; 12446 ipf->ipf_nf_hdr_len = hdr_length; 12447 } else { 12448 /* Hard case, hole at the beginning. */ 12449 ipf->ipf_tail_mp = NULL; 12450 /* 12451 * ipf_end == 0 means that we have given up 12452 * on easy reassembly. 12453 */ 12454 ipf->ipf_end = 0; 12455 12456 /* Forget checksum offload from now on */ 12457 ipf->ipf_checksum_flags = 0; 12458 12459 /* 12460 * ipf_hole_cnt is set by ip_reassemble. 12461 * ipf_count is updated by ip_reassemble. 12462 * No need to check for return value here 12463 * as we don't expect reassembly to complete 12464 * or fail for the first fragment itself. 12465 */ 12466 (void) ip_reassemble(mp, ipf, 12467 (frag_offset_flags & IPH_OFFSET) << 3, 12468 (frag_offset_flags & IPH_MF), ill, msg_len); 12469 } 12470 /* Update per ipfb and ill byte counts */ 12471 ipfb->ipfb_count += ipf->ipf_count; 12472 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12473 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12474 /* If the frag timer wasn't already going, start it. */ 12475 mutex_enter(&ill->ill_lock); 12476 ill_frag_timer_start(ill); 12477 mutex_exit(&ill->ill_lock); 12478 goto reass_done; 12479 } 12480 12481 /* 12482 * If the packet's flag has changed (it could be coming up 12483 * from an interface different than the previous, therefore 12484 * possibly different checksum capability), then forget about 12485 * any stored checksum states. Otherwise add the value to 12486 * the existing one stored in the fragment header. 12487 */ 12488 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12489 sum_val += ipf->ipf_checksum; 12490 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12491 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12492 ipf->ipf_checksum = sum_val; 12493 } else if (ipf->ipf_checksum_flags != 0) { 12494 /* Forget checksum offload from now on */ 12495 ipf->ipf_checksum_flags = 0; 12496 } 12497 12498 /* 12499 * We have a new piece of a datagram which is already being 12500 * reassembled. Update the ECN info if all IP fragments 12501 * are ECN capable. If there is one which is not, clear 12502 * all the info. If there is at least one which has CE 12503 * code point, IP needs to report that up to transport. 12504 */ 12505 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12506 if (ecn_info == IPH_ECN_CE) 12507 ipf->ipf_ecn = IPH_ECN_CE; 12508 } else { 12509 ipf->ipf_ecn = IPH_ECN_NECT; 12510 } 12511 if (offset && ipf->ipf_end == offset) { 12512 /* The new fragment fits at the end */ 12513 ipf->ipf_tail_mp->b_cont = mp; 12514 /* Update the byte count */ 12515 ipf->ipf_count += msg_len; 12516 /* Update per ipfb and ill byte counts */ 12517 ipfb->ipfb_count += msg_len; 12518 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12519 atomic_add_32(&ill->ill_frag_count, msg_len); 12520 if (frag_offset_flags & IPH_MF) { 12521 /* More to come. */ 12522 ipf->ipf_end = end; 12523 ipf->ipf_tail_mp = tail_mp; 12524 goto reass_done; 12525 } 12526 } else { 12527 /* Go do the hard cases. */ 12528 int ret; 12529 12530 if (offset == 0) 12531 ipf->ipf_nf_hdr_len = hdr_length; 12532 12533 /* Save current byte count */ 12534 count = ipf->ipf_count; 12535 ret = ip_reassemble(mp, ipf, 12536 (frag_offset_flags & IPH_OFFSET) << 3, 12537 (frag_offset_flags & IPH_MF), ill, msg_len); 12538 /* Count of bytes added and subtracted (freeb()ed) */ 12539 count = ipf->ipf_count - count; 12540 if (count) { 12541 /* Update per ipfb and ill byte counts */ 12542 ipfb->ipfb_count += count; 12543 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12544 atomic_add_32(&ill->ill_frag_count, count); 12545 } 12546 if (ret == IP_REASS_PARTIAL) { 12547 goto reass_done; 12548 } else if (ret == IP_REASS_FAILED) { 12549 /* Reassembly failed. Free up all resources */ 12550 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12551 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12552 IP_REASS_SET_START(t_mp, 0); 12553 IP_REASS_SET_END(t_mp, 0); 12554 } 12555 freemsg(mp); 12556 goto reass_done; 12557 } 12558 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12559 } 12560 /* 12561 * We have completed reassembly. Unhook the frag header from 12562 * the reassembly list. 12563 * 12564 * Before we free the frag header, record the ECN info 12565 * to report back to the transport. 12566 */ 12567 ecn_info = ipf->ipf_ecn; 12568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12569 ipfp = ipf->ipf_ptphn; 12570 12571 /* We need to supply these to caller */ 12572 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12573 sum_val = ipf->ipf_checksum; 12574 else 12575 sum_val = 0; 12576 12577 mp1 = ipf->ipf_mp; 12578 count = ipf->ipf_count; 12579 ipf = ipf->ipf_hash_next; 12580 if (ipf != NULL) 12581 ipf->ipf_ptphn = ipfp; 12582 ipfp[0] = ipf; 12583 atomic_add_32(&ill->ill_frag_count, -count); 12584 ASSERT(ipfb->ipfb_count >= count); 12585 ipfb->ipfb_count -= count; 12586 ipfb->ipfb_frag_pkts--; 12587 mutex_exit(&ipfb->ipfb_lock); 12588 /* Ditch the frag header. */ 12589 mp = mp1->b_cont; 12590 12591 freeb(mp1); 12592 12593 /* Restore original IP length in header. */ 12594 packet_size = (uint32_t)msgdsize(mp); 12595 if (packet_size > IP_MAXPACKET) { 12596 freemsg(mp); 12597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12598 return (B_FALSE); 12599 } 12600 12601 if (DB_REF(mp) > 1) { 12602 mblk_t *mp2 = copymsg(mp); 12603 12604 freemsg(mp); 12605 if (mp2 == NULL) { 12606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12607 return (B_FALSE); 12608 } 12609 mp = mp2; 12610 } 12611 ipha = (ipha_t *)mp->b_rptr; 12612 12613 ipha->ipha_length = htons((uint16_t)packet_size); 12614 /* We're now complete, zip the frag state */ 12615 ipha->ipha_fragment_offset_and_flags = 0; 12616 /* Record the ECN info. */ 12617 ipha->ipha_type_of_service &= 0xFC; 12618 ipha->ipha_type_of_service |= ecn_info; 12619 *mpp = mp; 12620 12621 /* Reassembly is successful; return checksum information if needed */ 12622 if (cksum_val != NULL) 12623 *cksum_val = sum_val; 12624 if (cksum_flags != NULL) 12625 *cksum_flags = sum_flags; 12626 12627 return (B_TRUE); 12628 } 12629 12630 /* 12631 * Perform ip header check sum update local options. 12632 * return B_TRUE if all is well, else return B_FALSE and release 12633 * the mp. caller is responsible for decrementing ire ref cnt. 12634 */ 12635 static boolean_t 12636 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12637 ip_stack_t *ipst) 12638 { 12639 mblk_t *first_mp; 12640 boolean_t mctl_present; 12641 uint16_t sum; 12642 12643 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12644 /* 12645 * Don't do the checksum if it has gone through AH/ESP 12646 * processing. 12647 */ 12648 if (!mctl_present) { 12649 sum = ip_csum_hdr(ipha); 12650 if (sum != 0) { 12651 if (ill != NULL) { 12652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12653 } else { 12654 BUMP_MIB(&ipst->ips_ip_mib, 12655 ipIfStatsInCksumErrs); 12656 } 12657 freemsg(first_mp); 12658 return (B_FALSE); 12659 } 12660 } 12661 12662 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12663 if (mctl_present) 12664 freeb(first_mp); 12665 return (B_FALSE); 12666 } 12667 12668 return (B_TRUE); 12669 } 12670 12671 /* 12672 * All udp packet are delivered to the local host via this routine. 12673 */ 12674 void 12675 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12676 ill_t *recv_ill) 12677 { 12678 uint32_t sum; 12679 uint32_t u1; 12680 boolean_t mctl_present; 12681 conn_t *connp; 12682 mblk_t *first_mp; 12683 uint16_t *up; 12684 ill_t *ill = (ill_t *)q->q_ptr; 12685 uint16_t reass_hck_flags = 0; 12686 ip_stack_t *ipst; 12687 12688 ASSERT(recv_ill != NULL); 12689 ipst = recv_ill->ill_ipst; 12690 12691 #define rptr ((uchar_t *)ipha) 12692 12693 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12694 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12695 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12696 ASSERT(ill != NULL); 12697 12698 /* 12699 * FAST PATH for udp packets 12700 */ 12701 12702 /* u1 is # words of IP options */ 12703 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12704 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12705 12706 /* IP options present */ 12707 if (u1 != 0) 12708 goto ipoptions; 12709 12710 /* Check the IP header checksum. */ 12711 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12712 /* Clear the IP header h/w cksum flag */ 12713 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12714 } else if (!mctl_present) { 12715 /* 12716 * Don't verify header checksum if this packet is coming 12717 * back from AH/ESP as we already did it. 12718 */ 12719 #define uph ((uint16_t *)ipha) 12720 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12721 uph[6] + uph[7] + uph[8] + uph[9]; 12722 #undef uph 12723 /* finish doing IP checksum */ 12724 sum = (sum & 0xFFFF) + (sum >> 16); 12725 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12726 if (sum != 0 && sum != 0xFFFF) { 12727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12728 freemsg(first_mp); 12729 return; 12730 } 12731 } 12732 12733 /* 12734 * Count for SNMP of inbound packets for ire. 12735 * if mctl is present this might be a secure packet and 12736 * has already been counted for in ip_proto_input(). 12737 */ 12738 if (!mctl_present) { 12739 UPDATE_IB_PKT_COUNT(ire); 12740 ire->ire_last_used_time = lbolt; 12741 } 12742 12743 /* packet part of fragmented IP packet? */ 12744 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12745 if (u1 & (IPH_MF | IPH_OFFSET)) { 12746 goto fragmented; 12747 } 12748 12749 /* u1 = IP header length (20 bytes) */ 12750 u1 = IP_SIMPLE_HDR_LENGTH; 12751 12752 /* packet does not contain complete IP & UDP headers */ 12753 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12754 goto udppullup; 12755 12756 /* up points to UDP header */ 12757 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12758 #define iphs ((uint16_t *)ipha) 12759 12760 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12761 if (up[3] != 0) { 12762 mblk_t *mp1 = mp->b_cont; 12763 boolean_t cksum_err; 12764 uint16_t hck_flags = 0; 12765 12766 /* Pseudo-header checksum */ 12767 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12768 iphs[9] + up[2]; 12769 12770 /* 12771 * Revert to software checksum calculation if the interface 12772 * isn't capable of checksum offload or if IPsec is present. 12773 */ 12774 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12775 hck_flags = DB_CKSUMFLAGS(mp); 12776 12777 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12778 IP_STAT(ipst, ip_in_sw_cksum); 12779 12780 IP_CKSUM_RECV(hck_flags, u1, 12781 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12782 (int32_t)((uchar_t *)up - rptr), 12783 mp, mp1, cksum_err); 12784 12785 if (cksum_err) { 12786 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12787 if (hck_flags & HCK_FULLCKSUM) 12788 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12789 else if (hck_flags & HCK_PARTIALCKSUM) 12790 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12791 else 12792 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12793 12794 freemsg(first_mp); 12795 return; 12796 } 12797 } 12798 12799 /* Non-fragmented broadcast or multicast packet? */ 12800 if (ire->ire_type == IRE_BROADCAST) 12801 goto udpslowpath; 12802 12803 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12804 ire->ire_zoneid, ipst)) != NULL) { 12805 ASSERT(connp->conn_upq != NULL); 12806 IP_STAT(ipst, ip_udp_fast_path); 12807 12808 if (CONN_UDP_FLOWCTLD(connp)) { 12809 freemsg(mp); 12810 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12811 } else { 12812 if (!mctl_present) { 12813 BUMP_MIB(ill->ill_ip_mib, 12814 ipIfStatsHCInDelivers); 12815 } 12816 /* 12817 * mp and first_mp can change. 12818 */ 12819 if (ip_udp_check(q, connp, recv_ill, 12820 ipha, &mp, &first_mp, mctl_present, ire)) { 12821 /* Send it upstream */ 12822 (connp->conn_recv)(connp, mp, NULL); 12823 } 12824 } 12825 /* 12826 * freeb() cannot deal with null mblk being passed 12827 * in and first_mp can be set to null in the call 12828 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12829 */ 12830 if (mctl_present && first_mp != NULL) { 12831 freeb(first_mp); 12832 } 12833 CONN_DEC_REF(connp); 12834 return; 12835 } 12836 12837 /* 12838 * if we got here we know the packet is not fragmented and 12839 * has no options. The classifier could not find a conn_t and 12840 * most likely its an icmp packet so send it through slow path. 12841 */ 12842 12843 goto udpslowpath; 12844 12845 ipoptions: 12846 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12847 goto slow_done; 12848 } 12849 12850 UPDATE_IB_PKT_COUNT(ire); 12851 ire->ire_last_used_time = lbolt; 12852 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12853 if (u1 & (IPH_MF | IPH_OFFSET)) { 12854 fragmented: 12855 /* 12856 * "sum" and "reass_hck_flags" are non-zero if the 12857 * reassembled packet has a valid hardware computed 12858 * checksum information associated with it. 12859 */ 12860 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12861 goto slow_done; 12862 /* 12863 * Make sure that first_mp points back to mp as 12864 * the mp we came in with could have changed in 12865 * ip_rput_fragment(). 12866 */ 12867 ASSERT(!mctl_present); 12868 ipha = (ipha_t *)mp->b_rptr; 12869 first_mp = mp; 12870 } 12871 12872 /* Now we have a complete datagram, destined for this machine. */ 12873 u1 = IPH_HDR_LENGTH(ipha); 12874 /* Pull up the UDP header, if necessary. */ 12875 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12876 udppullup: 12877 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12878 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12879 freemsg(first_mp); 12880 goto slow_done; 12881 } 12882 ipha = (ipha_t *)mp->b_rptr; 12883 } 12884 12885 /* 12886 * Validate the checksum for the reassembled packet; for the 12887 * pullup case we calculate the payload checksum in software. 12888 */ 12889 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12890 if (up[3] != 0) { 12891 boolean_t cksum_err; 12892 12893 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12894 IP_STAT(ipst, ip_in_sw_cksum); 12895 12896 IP_CKSUM_RECV_REASS(reass_hck_flags, 12897 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12898 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12899 iphs[9] + up[2], sum, cksum_err); 12900 12901 if (cksum_err) { 12902 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12903 12904 if (reass_hck_flags & HCK_FULLCKSUM) 12905 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12906 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12907 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12908 else 12909 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12910 12911 freemsg(first_mp); 12912 goto slow_done; 12913 } 12914 } 12915 udpslowpath: 12916 12917 /* Clear hardware checksum flag to be safe */ 12918 DB_CKSUMFLAGS(mp) = 0; 12919 12920 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12921 (ire->ire_type == IRE_BROADCAST), 12922 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12923 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12924 12925 slow_done: 12926 IP_STAT(ipst, ip_udp_slow_path); 12927 return; 12928 12929 #undef iphs 12930 #undef rptr 12931 } 12932 12933 /* ARGSUSED */ 12934 static mblk_t * 12935 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12936 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12937 ill_rx_ring_t *ill_ring) 12938 { 12939 conn_t *connp; 12940 uint32_t sum; 12941 uint32_t u1; 12942 uint16_t *up; 12943 int offset; 12944 ssize_t len; 12945 mblk_t *mp1; 12946 boolean_t syn_present = B_FALSE; 12947 tcph_t *tcph; 12948 uint_t ip_hdr_len; 12949 ill_t *ill = (ill_t *)q->q_ptr; 12950 zoneid_t zoneid = ire->ire_zoneid; 12951 boolean_t cksum_err; 12952 uint16_t hck_flags = 0; 12953 ip_stack_t *ipst = recv_ill->ill_ipst; 12954 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12955 12956 #define rptr ((uchar_t *)ipha) 12957 12958 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12959 ASSERT(ill != NULL); 12960 12961 /* 12962 * FAST PATH for tcp packets 12963 */ 12964 12965 /* u1 is # words of IP options */ 12966 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12967 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12968 12969 /* IP options present */ 12970 if (u1) { 12971 goto ipoptions; 12972 } else if (!mctl_present) { 12973 /* Check the IP header checksum. */ 12974 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12975 /* Clear the IP header h/w cksum flag */ 12976 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12977 } else if (!mctl_present) { 12978 /* 12979 * Don't verify header checksum if this packet 12980 * is coming back from AH/ESP as we already did it. 12981 */ 12982 #define uph ((uint16_t *)ipha) 12983 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12984 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12985 #undef uph 12986 /* finish doing IP checksum */ 12987 sum = (sum & 0xFFFF) + (sum >> 16); 12988 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12989 if (sum != 0 && sum != 0xFFFF) { 12990 BUMP_MIB(ill->ill_ip_mib, 12991 ipIfStatsInCksumErrs); 12992 goto error; 12993 } 12994 } 12995 } 12996 12997 if (!mctl_present) { 12998 UPDATE_IB_PKT_COUNT(ire); 12999 ire->ire_last_used_time = lbolt; 13000 } 13001 13002 /* packet part of fragmented IP packet? */ 13003 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13004 if (u1 & (IPH_MF | IPH_OFFSET)) { 13005 goto fragmented; 13006 } 13007 13008 /* u1 = IP header length (20 bytes) */ 13009 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13010 13011 /* does packet contain IP+TCP headers? */ 13012 len = mp->b_wptr - rptr; 13013 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13014 IP_STAT(ipst, ip_tcppullup); 13015 goto tcppullup; 13016 } 13017 13018 /* TCP options present? */ 13019 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13020 13021 /* 13022 * If options need to be pulled up, then goto tcpoptions. 13023 * otherwise we are still in the fast path 13024 */ 13025 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13026 IP_STAT(ipst, ip_tcpoptions); 13027 goto tcpoptions; 13028 } 13029 13030 /* multiple mblks of tcp data? */ 13031 if ((mp1 = mp->b_cont) != NULL) { 13032 /* more then two? */ 13033 if (mp1->b_cont != NULL) { 13034 IP_STAT(ipst, ip_multipkttcp); 13035 goto multipkttcp; 13036 } 13037 len += mp1->b_wptr - mp1->b_rptr; 13038 } 13039 13040 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13041 13042 /* part of pseudo checksum */ 13043 13044 /* TCP datagram length */ 13045 u1 = len - IP_SIMPLE_HDR_LENGTH; 13046 13047 #define iphs ((uint16_t *)ipha) 13048 13049 #ifdef _BIG_ENDIAN 13050 u1 += IPPROTO_TCP; 13051 #else 13052 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13053 #endif 13054 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13055 13056 /* 13057 * Revert to software checksum calculation if the interface 13058 * isn't capable of checksum offload or if IPsec is present. 13059 */ 13060 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13061 hck_flags = DB_CKSUMFLAGS(mp); 13062 13063 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13064 IP_STAT(ipst, ip_in_sw_cksum); 13065 13066 IP_CKSUM_RECV(hck_flags, u1, 13067 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13068 (int32_t)((uchar_t *)up - rptr), 13069 mp, mp1, cksum_err); 13070 13071 if (cksum_err) { 13072 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13073 13074 if (hck_flags & HCK_FULLCKSUM) 13075 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13076 else if (hck_flags & HCK_PARTIALCKSUM) 13077 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13078 else 13079 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13080 13081 goto error; 13082 } 13083 13084 try_again: 13085 13086 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13087 zoneid, ipst)) == NULL) { 13088 /* Send the TH_RST */ 13089 goto no_conn; 13090 } 13091 13092 /* 13093 * TCP FAST PATH for AF_INET socket. 13094 * 13095 * TCP fast path to avoid extra work. An AF_INET socket type 13096 * does not have facility to receive extra information via 13097 * ip_process or ip_add_info. Also, when the connection was 13098 * established, we made a check if this connection is impacted 13099 * by any global IPsec policy or per connection policy (a 13100 * policy that comes in effect later will not apply to this 13101 * connection). Since all this can be determined at the 13102 * connection establishment time, a quick check of flags 13103 * can avoid extra work. 13104 */ 13105 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13106 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13107 ASSERT(first_mp == mp); 13108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13109 SET_SQUEUE(mp, tcp_rput_data, connp); 13110 return (mp); 13111 } 13112 13113 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13114 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13115 if (IPCL_IS_TCP(connp)) { 13116 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13117 DB_CKSUMSTART(mp) = 13118 (intptr_t)ip_squeue_get(ill_ring); 13119 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13120 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13121 BUMP_MIB(ill->ill_ip_mib, 13122 ipIfStatsHCInDelivers); 13123 SET_SQUEUE(mp, connp->conn_recv, connp); 13124 return (mp); 13125 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13126 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13127 BUMP_MIB(ill->ill_ip_mib, 13128 ipIfStatsHCInDelivers); 13129 ip_squeue_enter_unbound++; 13130 SET_SQUEUE(mp, tcp_conn_request_unbound, 13131 connp); 13132 return (mp); 13133 } 13134 syn_present = B_TRUE; 13135 } 13136 13137 } 13138 13139 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13140 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13141 13142 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13143 /* No need to send this packet to TCP */ 13144 if ((flags & TH_RST) || (flags & TH_URG)) { 13145 CONN_DEC_REF(connp); 13146 freemsg(first_mp); 13147 return (NULL); 13148 } 13149 if (flags & TH_ACK) { 13150 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13151 ipst->ips_netstack->netstack_tcp, connp); 13152 CONN_DEC_REF(connp); 13153 return (NULL); 13154 } 13155 13156 CONN_DEC_REF(connp); 13157 freemsg(first_mp); 13158 return (NULL); 13159 } 13160 13161 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13162 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13163 ipha, NULL, mctl_present); 13164 if (first_mp == NULL) { 13165 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13166 CONN_DEC_REF(connp); 13167 return (NULL); 13168 } 13169 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13170 ASSERT(syn_present); 13171 if (mctl_present) { 13172 ASSERT(first_mp != mp); 13173 first_mp->b_datap->db_struioflag |= 13174 STRUIO_POLICY; 13175 } else { 13176 ASSERT(first_mp == mp); 13177 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13178 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13179 } 13180 } else { 13181 /* 13182 * Discard first_mp early since we're dealing with a 13183 * fully-connected conn_t and tcp doesn't do policy in 13184 * this case. 13185 */ 13186 if (mctl_present) { 13187 freeb(first_mp); 13188 mctl_present = B_FALSE; 13189 } 13190 first_mp = mp; 13191 } 13192 } 13193 13194 /* Initiate IPPF processing for fastpath */ 13195 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13196 uint32_t ill_index; 13197 13198 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13199 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13200 if (mp == NULL) { 13201 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13202 "deferred/dropped during IPPF processing\n")); 13203 CONN_DEC_REF(connp); 13204 if (mctl_present) 13205 freeb(first_mp); 13206 return (NULL); 13207 } else if (mctl_present) { 13208 /* 13209 * ip_process might return a new mp. 13210 */ 13211 ASSERT(first_mp != mp); 13212 first_mp->b_cont = mp; 13213 } else { 13214 first_mp = mp; 13215 } 13216 13217 } 13218 13219 if (!syn_present && connp->conn_ip_recvpktinfo) { 13220 /* 13221 * TCP does not support IP_RECVPKTINFO for v4 so lets 13222 * make sure IPF_RECVIF is passed to ip_add_info. 13223 */ 13224 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13225 IPCL_ZONEID(connp), ipst); 13226 if (mp == NULL) { 13227 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13228 CONN_DEC_REF(connp); 13229 if (mctl_present) 13230 freeb(first_mp); 13231 return (NULL); 13232 } else if (mctl_present) { 13233 /* 13234 * ip_add_info might return a new mp. 13235 */ 13236 ASSERT(first_mp != mp); 13237 first_mp->b_cont = mp; 13238 } else { 13239 first_mp = mp; 13240 } 13241 } 13242 13243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13244 if (IPCL_IS_TCP(connp)) { 13245 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13246 return (first_mp); 13247 } else { 13248 /* SOCK_RAW, IPPROTO_TCP case */ 13249 (connp->conn_recv)(connp, first_mp, NULL); 13250 CONN_DEC_REF(connp); 13251 return (NULL); 13252 } 13253 13254 no_conn: 13255 /* Initiate IPPf processing, if needed. */ 13256 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13257 uint32_t ill_index; 13258 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13259 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13260 if (first_mp == NULL) { 13261 return (NULL); 13262 } 13263 } 13264 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13265 13266 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13267 ipst->ips_netstack->netstack_tcp, NULL); 13268 return (NULL); 13269 ipoptions: 13270 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13271 goto slow_done; 13272 } 13273 13274 UPDATE_IB_PKT_COUNT(ire); 13275 ire->ire_last_used_time = lbolt; 13276 13277 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13278 if (u1 & (IPH_MF | IPH_OFFSET)) { 13279 fragmented: 13280 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13281 if (mctl_present) 13282 freeb(first_mp); 13283 goto slow_done; 13284 } 13285 /* 13286 * Make sure that first_mp points back to mp as 13287 * the mp we came in with could have changed in 13288 * ip_rput_fragment(). 13289 */ 13290 ASSERT(!mctl_present); 13291 ipha = (ipha_t *)mp->b_rptr; 13292 first_mp = mp; 13293 } 13294 13295 /* Now we have a complete datagram, destined for this machine. */ 13296 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13297 13298 len = mp->b_wptr - mp->b_rptr; 13299 /* Pull up a minimal TCP header, if necessary. */ 13300 if (len < (u1 + 20)) { 13301 tcppullup: 13302 if (!pullupmsg(mp, u1 + 20)) { 13303 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13304 goto error; 13305 } 13306 ipha = (ipha_t *)mp->b_rptr; 13307 len = mp->b_wptr - mp->b_rptr; 13308 } 13309 13310 /* 13311 * Extract the offset field from the TCP header. As usual, we 13312 * try to help the compiler more than the reader. 13313 */ 13314 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13315 if (offset != 5) { 13316 tcpoptions: 13317 if (offset < 5) { 13318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13319 goto error; 13320 } 13321 /* 13322 * There must be TCP options. 13323 * Make sure we can grab them. 13324 */ 13325 offset <<= 2; 13326 offset += u1; 13327 if (len < offset) { 13328 if (!pullupmsg(mp, offset)) { 13329 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13330 goto error; 13331 } 13332 ipha = (ipha_t *)mp->b_rptr; 13333 len = mp->b_wptr - rptr; 13334 } 13335 } 13336 13337 /* Get the total packet length in len, including headers. */ 13338 if (mp->b_cont) { 13339 multipkttcp: 13340 len = msgdsize(mp); 13341 } 13342 13343 /* 13344 * Check the TCP checksum by pulling together the pseudo- 13345 * header checksum, and passing it to ip_csum to be added in 13346 * with the TCP datagram. 13347 * 13348 * Since we are not using the hwcksum if available we must 13349 * clear the flag. We may come here via tcppullup or tcpoptions. 13350 * If either of these fails along the way the mblk is freed. 13351 * If this logic ever changes and mblk is reused to say send 13352 * ICMP's back, then this flag may need to be cleared in 13353 * other places as well. 13354 */ 13355 DB_CKSUMFLAGS(mp) = 0; 13356 13357 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13358 13359 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13360 #ifdef _BIG_ENDIAN 13361 u1 += IPPROTO_TCP; 13362 #else 13363 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13364 #endif 13365 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13366 /* 13367 * Not M_DATA mblk or its a dup, so do the checksum now. 13368 */ 13369 IP_STAT(ipst, ip_in_sw_cksum); 13370 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13371 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13372 goto error; 13373 } 13374 13375 IP_STAT(ipst, ip_tcp_slow_path); 13376 goto try_again; 13377 #undef iphs 13378 #undef rptr 13379 13380 error: 13381 freemsg(first_mp); 13382 slow_done: 13383 return (NULL); 13384 } 13385 13386 /* ARGSUSED */ 13387 static void 13388 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13389 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13390 { 13391 conn_t *connp; 13392 uint32_t sum; 13393 uint32_t u1; 13394 ssize_t len; 13395 sctp_hdr_t *sctph; 13396 zoneid_t zoneid = ire->ire_zoneid; 13397 uint32_t pktsum; 13398 uint32_t calcsum; 13399 uint32_t ports; 13400 in6_addr_t map_src, map_dst; 13401 ill_t *ill = (ill_t *)q->q_ptr; 13402 ip_stack_t *ipst; 13403 sctp_stack_t *sctps; 13404 boolean_t sctp_csum_err = B_FALSE; 13405 13406 ASSERT(recv_ill != NULL); 13407 ipst = recv_ill->ill_ipst; 13408 sctps = ipst->ips_netstack->netstack_sctp; 13409 13410 #define rptr ((uchar_t *)ipha) 13411 13412 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13413 ASSERT(ill != NULL); 13414 13415 /* u1 is # words of IP options */ 13416 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13417 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13418 13419 /* IP options present */ 13420 if (u1 > 0) { 13421 goto ipoptions; 13422 } else { 13423 /* Check the IP header checksum. */ 13424 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13425 !mctl_present) { 13426 #define uph ((uint16_t *)ipha) 13427 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13428 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13429 #undef uph 13430 /* finish doing IP checksum */ 13431 sum = (sum & 0xFFFF) + (sum >> 16); 13432 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13433 /* 13434 * Don't verify header checksum if this packet 13435 * is coming back from AH/ESP as we already did it. 13436 */ 13437 if (sum != 0 && sum != 0xFFFF) { 13438 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13439 goto error; 13440 } 13441 } 13442 /* 13443 * Since there is no SCTP h/w cksum support yet, just 13444 * clear the flag. 13445 */ 13446 DB_CKSUMFLAGS(mp) = 0; 13447 } 13448 13449 /* 13450 * Don't verify header checksum if this packet is coming 13451 * back from AH/ESP as we already did it. 13452 */ 13453 if (!mctl_present) { 13454 UPDATE_IB_PKT_COUNT(ire); 13455 ire->ire_last_used_time = lbolt; 13456 } 13457 13458 /* packet part of fragmented IP packet? */ 13459 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13460 if (u1 & (IPH_MF | IPH_OFFSET)) 13461 goto fragmented; 13462 13463 /* u1 = IP header length (20 bytes) */ 13464 u1 = IP_SIMPLE_HDR_LENGTH; 13465 13466 find_sctp_client: 13467 /* Pullup if we don't have the sctp common header. */ 13468 len = MBLKL(mp); 13469 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13470 if (mp->b_cont == NULL || 13471 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13473 goto error; 13474 } 13475 ipha = (ipha_t *)mp->b_rptr; 13476 len = MBLKL(mp); 13477 } 13478 13479 sctph = (sctp_hdr_t *)(rptr + u1); 13480 #ifdef DEBUG 13481 if (!skip_sctp_cksum) { 13482 #endif 13483 pktsum = sctph->sh_chksum; 13484 sctph->sh_chksum = 0; 13485 calcsum = sctp_cksum(mp, u1); 13486 sctph->sh_chksum = pktsum; 13487 if (calcsum != pktsum) 13488 sctp_csum_err = B_TRUE; 13489 #ifdef DEBUG /* skip_sctp_cksum */ 13490 } 13491 #endif 13492 /* get the ports */ 13493 ports = *(uint32_t *)&sctph->sh_sport; 13494 13495 IRE_REFRELE(ire); 13496 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13497 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13498 if (sctp_csum_err) { 13499 /* 13500 * No potential sctp checksum errors go to the Sun 13501 * sctp stack however they might be Adler-32 summed 13502 * packets a userland stack bound to a raw IP socket 13503 * could reasonably use. Note though that Adler-32 is 13504 * a long deprecated algorithm and customer sctp 13505 * networks should eventually migrate to CRC-32 at 13506 * which time this facility should be removed. 13507 */ 13508 flags |= IP_FF_SCTP_CSUM_ERR; 13509 goto no_conn; 13510 } 13511 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13512 sctps)) == NULL) { 13513 /* Check for raw socket or OOTB handling */ 13514 goto no_conn; 13515 } 13516 13517 /* Found a client; up it goes */ 13518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13519 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13520 return; 13521 13522 no_conn: 13523 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13524 ports, mctl_present, flags, B_TRUE, zoneid); 13525 return; 13526 13527 ipoptions: 13528 DB_CKSUMFLAGS(mp) = 0; 13529 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13530 goto slow_done; 13531 13532 UPDATE_IB_PKT_COUNT(ire); 13533 ire->ire_last_used_time = lbolt; 13534 13535 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13536 if (u1 & (IPH_MF | IPH_OFFSET)) { 13537 fragmented: 13538 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13539 goto slow_done; 13540 /* 13541 * Make sure that first_mp points back to mp as 13542 * the mp we came in with could have changed in 13543 * ip_rput_fragment(). 13544 */ 13545 ASSERT(!mctl_present); 13546 ipha = (ipha_t *)mp->b_rptr; 13547 first_mp = mp; 13548 } 13549 13550 /* Now we have a complete datagram, destined for this machine. */ 13551 u1 = IPH_HDR_LENGTH(ipha); 13552 goto find_sctp_client; 13553 #undef iphs 13554 #undef rptr 13555 13556 error: 13557 freemsg(first_mp); 13558 slow_done: 13559 IRE_REFRELE(ire); 13560 } 13561 13562 #define VER_BITS 0xF0 13563 #define VERSION_6 0x60 13564 13565 static boolean_t 13566 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13567 ipaddr_t *dstp, ip_stack_t *ipst) 13568 { 13569 uint_t opt_len; 13570 ipha_t *ipha; 13571 ssize_t len; 13572 uint_t pkt_len; 13573 13574 ASSERT(ill != NULL); 13575 IP_STAT(ipst, ip_ipoptions); 13576 ipha = *iphapp; 13577 13578 #define rptr ((uchar_t *)ipha) 13579 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13580 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13581 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13582 freemsg(mp); 13583 return (B_FALSE); 13584 } 13585 13586 /* multiple mblk or too short */ 13587 pkt_len = ntohs(ipha->ipha_length); 13588 13589 /* Get the number of words of IP options in the IP header. */ 13590 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13591 if (opt_len) { 13592 /* IP Options present! Validate and process. */ 13593 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13595 goto done; 13596 } 13597 /* 13598 * Recompute complete header length and make sure we 13599 * have access to all of it. 13600 */ 13601 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13602 if (len > (mp->b_wptr - rptr)) { 13603 if (len > pkt_len) { 13604 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13605 goto done; 13606 } 13607 if (!pullupmsg(mp, len)) { 13608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13609 goto done; 13610 } 13611 ipha = (ipha_t *)mp->b_rptr; 13612 } 13613 /* 13614 * Go off to ip_rput_options which returns the next hop 13615 * destination address, which may have been affected 13616 * by source routing. 13617 */ 13618 IP_STAT(ipst, ip_opt); 13619 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13621 return (B_FALSE); 13622 } 13623 } 13624 *iphapp = ipha; 13625 return (B_TRUE); 13626 done: 13627 /* clear b_prev - used by ip_mroute_decap */ 13628 mp->b_prev = NULL; 13629 freemsg(mp); 13630 return (B_FALSE); 13631 #undef rptr 13632 } 13633 13634 /* 13635 * Deal with the fact that there is no ire for the destination. 13636 */ 13637 static ire_t * 13638 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13639 { 13640 ipha_t *ipha; 13641 ill_t *ill; 13642 ire_t *ire; 13643 ip_stack_t *ipst; 13644 enum ire_forward_action ret_action; 13645 13646 ipha = (ipha_t *)mp->b_rptr; 13647 ill = (ill_t *)q->q_ptr; 13648 13649 ASSERT(ill != NULL); 13650 ipst = ill->ill_ipst; 13651 13652 /* 13653 * No IRE for this destination, so it can't be for us. 13654 * Unless we are forwarding, drop the packet. 13655 * We have to let source routed packets through 13656 * since we don't yet know if they are 'ping -l' 13657 * packets i.e. if they will go out over the 13658 * same interface as they came in on. 13659 */ 13660 if (ll_multicast) { 13661 freemsg(mp); 13662 return (NULL); 13663 } 13664 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13665 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13666 freemsg(mp); 13667 return (NULL); 13668 } 13669 13670 /* 13671 * Mark this packet as having originated externally. 13672 * 13673 * For non-forwarding code path, ire_send later double 13674 * checks this interface to see if it is still exists 13675 * post-ARP resolution. 13676 * 13677 * Also, IPQOS uses this to differentiate between 13678 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13679 * QOS packet processing in ip_wput_attach_llhdr(). 13680 * The QoS module can mark the b_band for a fastpath message 13681 * or the dl_priority field in a unitdata_req header for 13682 * CoS marking. This info can only be found in 13683 * ip_wput_attach_llhdr(). 13684 */ 13685 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13686 /* 13687 * Clear the indication that this may have a hardware checksum 13688 * as we are not using it 13689 */ 13690 DB_CKSUMFLAGS(mp) = 0; 13691 13692 ire = ire_forward(dst, &ret_action, NULL, NULL, 13693 MBLK_GETLABEL(mp), ipst); 13694 13695 if (ire == NULL && ret_action == Forward_check_multirt) { 13696 /* Let ip_newroute handle CGTP */ 13697 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13698 return (NULL); 13699 } 13700 13701 if (ire != NULL) 13702 return (ire); 13703 13704 mp->b_prev = mp->b_next = 0; 13705 13706 if (ret_action == Forward_blackhole) { 13707 freemsg(mp); 13708 return (NULL); 13709 } 13710 /* send icmp unreachable */ 13711 q = WR(q); 13712 /* Sent by forwarding path, and router is global zone */ 13713 if (ip_source_routed(ipha, ipst)) { 13714 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13715 GLOBAL_ZONEID, ipst); 13716 } else { 13717 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13718 ipst); 13719 } 13720 13721 return (NULL); 13722 13723 } 13724 13725 /* 13726 * check ip header length and align it. 13727 */ 13728 static boolean_t 13729 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13730 { 13731 ssize_t len; 13732 ill_t *ill; 13733 ipha_t *ipha; 13734 13735 len = MBLKL(mp); 13736 13737 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13738 ill = (ill_t *)q->q_ptr; 13739 13740 if (!OK_32PTR(mp->b_rptr)) 13741 IP_STAT(ipst, ip_notaligned1); 13742 else 13743 IP_STAT(ipst, ip_notaligned2); 13744 /* Guard against bogus device drivers */ 13745 if (len < 0) { 13746 /* clear b_prev - used by ip_mroute_decap */ 13747 mp->b_prev = NULL; 13748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13749 freemsg(mp); 13750 return (B_FALSE); 13751 } 13752 13753 if (ip_rput_pullups++ == 0) { 13754 ipha = (ipha_t *)mp->b_rptr; 13755 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13756 "ip_check_and_align_header: %s forced us to " 13757 " pullup pkt, hdr len %ld, hdr addr %p", 13758 ill->ill_name, len, ipha); 13759 } 13760 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13761 /* clear b_prev - used by ip_mroute_decap */ 13762 mp->b_prev = NULL; 13763 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13764 freemsg(mp); 13765 return (B_FALSE); 13766 } 13767 } 13768 return (B_TRUE); 13769 } 13770 13771 ire_t * 13772 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13773 { 13774 ire_t *new_ire; 13775 ill_t *ire_ill; 13776 uint_t ifindex; 13777 ip_stack_t *ipst = ill->ill_ipst; 13778 boolean_t strict_check = B_FALSE; 13779 13780 /* 13781 * This packet came in on an interface other than the one associated 13782 * with the first ire we found for the destination address. We do 13783 * another ire lookup here, using the ingress ill, to see if the 13784 * interface is in an interface group. 13785 * As long as the ills belong to the same group, we don't consider 13786 * them to be arriving on the wrong interface. Thus, if the switch 13787 * is doing inbound load spreading, we won't drop packets when the 13788 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13789 * for 'usesrc groups' where the destination address may belong to 13790 * another interface to allow multipathing to happen. 13791 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13792 * where the local address may not be unique. In this case we were 13793 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13794 * actually returned. The new lookup, which is more specific, should 13795 * only find the IRE_LOCAL associated with the ingress ill if one 13796 * exists. 13797 */ 13798 13799 if (ire->ire_ipversion == IPV4_VERSION) { 13800 if (ipst->ips_ip_strict_dst_multihoming) 13801 strict_check = B_TRUE; 13802 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13803 ill->ill_ipif, ALL_ZONES, NULL, 13804 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13805 } else { 13806 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13807 if (ipst->ips_ipv6_strict_dst_multihoming) 13808 strict_check = B_TRUE; 13809 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13810 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13811 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13812 } 13813 /* 13814 * If the same ire that was returned in ip_input() is found then this 13815 * is an indication that interface groups are in use. The packet 13816 * arrived on a different ill in the group than the one associated with 13817 * the destination address. If a different ire was found then the same 13818 * IP address must be hosted on multiple ills. This is possible with 13819 * unnumbered point2point interfaces. We switch to use this new ire in 13820 * order to have accurate interface statistics. 13821 */ 13822 if (new_ire != NULL) { 13823 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13824 ire_refrele(ire); 13825 ire = new_ire; 13826 } else { 13827 ire_refrele(new_ire); 13828 } 13829 return (ire); 13830 } else if ((ire->ire_rfq == NULL) && 13831 (ire->ire_ipversion == IPV4_VERSION)) { 13832 /* 13833 * The best match could have been the original ire which 13834 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13835 * the strict multihoming checks are irrelevant as we consider 13836 * local addresses hosted on lo0 to be interface agnostic. We 13837 * only expect a null ire_rfq on IREs which are associated with 13838 * lo0 hence we can return now. 13839 */ 13840 return (ire); 13841 } 13842 13843 /* 13844 * Chase pointers once and store locally. 13845 */ 13846 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13847 (ill_t *)(ire->ire_rfq->q_ptr); 13848 ifindex = ill->ill_usesrc_ifindex; 13849 13850 /* 13851 * Check if it's a legal address on the 'usesrc' interface. 13852 */ 13853 if ((ifindex != 0) && (ire_ill != NULL) && 13854 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13855 return (ire); 13856 } 13857 13858 /* 13859 * If the ip*_strict_dst_multihoming switch is on then we can 13860 * only accept this packet if the interface is marked as routing. 13861 */ 13862 if (!(strict_check)) 13863 return (ire); 13864 13865 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13866 ILLF_ROUTER) != 0) { 13867 return (ire); 13868 } 13869 13870 ire_refrele(ire); 13871 return (NULL); 13872 } 13873 13874 ire_t * 13875 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13876 { 13877 ipha_t *ipha; 13878 ire_t *src_ire; 13879 ill_t *stq_ill; 13880 uint_t hlen; 13881 uint_t pkt_len; 13882 uint32_t sum; 13883 queue_t *dev_q; 13884 ip_stack_t *ipst = ill->ill_ipst; 13885 mblk_t *fpmp; 13886 enum ire_forward_action ret_action; 13887 13888 ipha = (ipha_t *)mp->b_rptr; 13889 13890 if (ire != NULL && 13891 ire->ire_zoneid != GLOBAL_ZONEID && 13892 ire->ire_zoneid != ALL_ZONES) { 13893 /* 13894 * Should only use IREs that are visible to the global 13895 * zone for forwarding. 13896 */ 13897 ire_refrele(ire); 13898 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13899 } 13900 13901 /* 13902 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13903 * The loopback address check for both src and dst has already 13904 * been checked in ip_input 13905 */ 13906 13907 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13908 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13909 goto drop; 13910 } 13911 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13912 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13913 13914 if (src_ire != NULL) { 13915 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13916 ire_refrele(src_ire); 13917 goto drop; 13918 } 13919 13920 /* No ire cache of nexthop. So first create one */ 13921 if (ire == NULL) { 13922 13923 ire = ire_forward(dst, &ret_action, NULL, NULL, 13924 NULL, ipst); 13925 /* 13926 * We only come to ip_fast_forward if ip_cgtp_filter 13927 * is not set. So ire_forward() should not return with 13928 * Forward_check_multirt as the next action. 13929 */ 13930 ASSERT(ret_action != Forward_check_multirt); 13931 if (ire == NULL) { 13932 /* An attempt was made to forward the packet */ 13933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13935 mp->b_prev = mp->b_next = 0; 13936 /* send icmp unreachable */ 13937 /* Sent by forwarding path, and router is global zone */ 13938 if (ret_action == Forward_ret_icmp_err) { 13939 if (ip_source_routed(ipha, ipst)) { 13940 icmp_unreachable(ill->ill_wq, mp, 13941 ICMP_SOURCE_ROUTE_FAILED, 13942 GLOBAL_ZONEID, ipst); 13943 } else { 13944 icmp_unreachable(ill->ill_wq, mp, 13945 ICMP_HOST_UNREACHABLE, 13946 GLOBAL_ZONEID, ipst); 13947 } 13948 } else { 13949 freemsg(mp); 13950 } 13951 return (NULL); 13952 } 13953 } 13954 13955 /* 13956 * Forwarding fastpath exception case: 13957 * If either of the follwoing case is true, we take 13958 * the slowpath 13959 * o forwarding is not enabled 13960 * o incoming and outgoing interface are the same, or the same 13961 * IPMP group 13962 * o corresponding ire is in incomplete state 13963 * o packet needs fragmentation 13964 * o ARP cache is not resolved 13965 * 13966 * The codeflow from here on is thus: 13967 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13968 */ 13969 pkt_len = ntohs(ipha->ipha_length); 13970 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13971 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13972 !(ill->ill_flags & ILLF_ROUTER) || 13973 (ill == stq_ill) || 13974 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13975 (ire->ire_nce == NULL) || 13976 (pkt_len > ire->ire_max_frag) || 13977 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13978 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13979 ipha->ipha_ttl <= 1) { 13980 ip_rput_process_forward(ill->ill_rq, mp, ire, 13981 ipha, ill, B_FALSE); 13982 return (ire); 13983 } 13984 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13985 13986 DTRACE_PROBE4(ip4__forwarding__start, 13987 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13988 13989 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13990 ipst->ips_ipv4firewall_forwarding, 13991 ill, stq_ill, ipha, mp, mp, 0, ipst); 13992 13993 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13994 13995 if (mp == NULL) 13996 goto drop; 13997 13998 mp->b_datap->db_struioun.cksum.flags = 0; 13999 /* Adjust the checksum to reflect the ttl decrement. */ 14000 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14001 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14002 ipha->ipha_ttl--; 14003 14004 /* 14005 * Write the link layer header. We can do this safely here, 14006 * because we have already tested to make sure that the IP 14007 * policy is not set, and that we have a fast path destination 14008 * header. 14009 */ 14010 mp->b_rptr -= hlen; 14011 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14012 14013 UPDATE_IB_PKT_COUNT(ire); 14014 ire->ire_last_used_time = lbolt; 14015 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14016 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14017 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14018 14019 dev_q = ire->ire_stq->q_next; 14020 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14021 !canputnext(ire->ire_stq)) { 14022 goto indiscard; 14023 } 14024 if (ILL_DLS_CAPABLE(stq_ill)) { 14025 /* 14026 * Send the packet directly to DLD, where it 14027 * may be queued depending on the availability 14028 * of transmit resources at the media layer. 14029 */ 14030 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14031 } else { 14032 DTRACE_PROBE4(ip4__physical__out__start, 14033 ill_t *, NULL, ill_t *, stq_ill, 14034 ipha_t *, ipha, mblk_t *, mp); 14035 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14036 ipst->ips_ipv4firewall_physical_out, 14037 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14038 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14039 if (mp == NULL) 14040 goto drop; 14041 putnext(ire->ire_stq, mp); 14042 } 14043 return (ire); 14044 14045 indiscard: 14046 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14047 drop: 14048 if (mp != NULL) 14049 freemsg(mp); 14050 return (ire); 14051 14052 } 14053 14054 /* 14055 * This function is called in the forwarding slowpath, when 14056 * either the ire lacks the link-layer address, or the packet needs 14057 * further processing(eg. fragmentation), before transmission. 14058 */ 14059 14060 static void 14061 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14062 ill_t *ill, boolean_t ll_multicast) 14063 { 14064 ill_group_t *ill_group; 14065 ill_group_t *ire_group; 14066 queue_t *dev_q; 14067 ire_t *src_ire; 14068 ip_stack_t *ipst = ill->ill_ipst; 14069 14070 ASSERT(ire->ire_stq != NULL); 14071 14072 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14073 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14074 14075 if (ll_multicast != 0) { 14076 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14077 goto drop_pkt; 14078 } 14079 14080 /* 14081 * check if ipha_src is a broadcast address. Note that this 14082 * check is redundant when we get here from ip_fast_forward() 14083 * which has already done this check. However, since we can 14084 * also get here from ip_rput_process_broadcast() or, for 14085 * for the slow path through ip_fast_forward(), we perform 14086 * the check again for code-reusability 14087 */ 14088 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14089 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14090 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14091 if (src_ire != NULL) 14092 ire_refrele(src_ire); 14093 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14094 ip2dbg(("ip_rput_process_forward: Received packet with" 14095 " bad src/dst address on %s\n", ill->ill_name)); 14096 goto drop_pkt; 14097 } 14098 14099 ill_group = ill->ill_group; 14100 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14101 /* 14102 * Check if we want to forward this one at this time. 14103 * We allow source routed packets on a host provided that 14104 * they go out the same interface or same interface group 14105 * as they came in on. 14106 * 14107 * XXX To be quicker, we may wish to not chase pointers to 14108 * get the ILLF_ROUTER flag and instead store the 14109 * forwarding policy in the ire. An unfortunate 14110 * side-effect of that would be requiring an ire flush 14111 * whenever the ILLF_ROUTER flag changes. 14112 */ 14113 if (((ill->ill_flags & 14114 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14115 ILLF_ROUTER) == 0) && 14116 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14117 (ill_group != NULL && ill_group == ire_group)))) { 14118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14119 if (ip_source_routed(ipha, ipst)) { 14120 q = WR(q); 14121 /* 14122 * Clear the indication that this may have 14123 * hardware checksum as we are not using it. 14124 */ 14125 DB_CKSUMFLAGS(mp) = 0; 14126 /* Sent by forwarding path, and router is global zone */ 14127 icmp_unreachable(q, mp, 14128 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14129 return; 14130 } 14131 goto drop_pkt; 14132 } 14133 14134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14135 14136 /* Packet is being forwarded. Turning off hwcksum flag. */ 14137 DB_CKSUMFLAGS(mp) = 0; 14138 if (ipst->ips_ip_g_send_redirects) { 14139 /* 14140 * Check whether the incoming interface and outgoing 14141 * interface is part of the same group. If so, 14142 * send redirects. 14143 * 14144 * Check the source address to see if it originated 14145 * on the same logical subnet it is going back out on. 14146 * If so, we should be able to send it a redirect. 14147 * Avoid sending a redirect if the destination 14148 * is directly connected (i.e., ipha_dst is the same 14149 * as ire_gateway_addr or the ire_addr of the 14150 * nexthop IRE_CACHE ), or if the packet was source 14151 * routed out this interface. 14152 */ 14153 ipaddr_t src, nhop; 14154 mblk_t *mp1; 14155 ire_t *nhop_ire = NULL; 14156 14157 /* 14158 * Check whether ire_rfq and q are from the same ill 14159 * or if they are not same, they at least belong 14160 * to the same group. If so, send redirects. 14161 */ 14162 if ((ire->ire_rfq == q || 14163 (ill_group != NULL && ill_group == ire_group)) && 14164 !ip_source_routed(ipha, ipst)) { 14165 14166 nhop = (ire->ire_gateway_addr != 0 ? 14167 ire->ire_gateway_addr : ire->ire_addr); 14168 14169 if (ipha->ipha_dst == nhop) { 14170 /* 14171 * We avoid sending a redirect if the 14172 * destination is directly connected 14173 * because it is possible that multiple 14174 * IP subnets may have been configured on 14175 * the link, and the source may not 14176 * be on the same subnet as ip destination, 14177 * even though they are on the same 14178 * physical link. 14179 */ 14180 goto sendit; 14181 } 14182 14183 src = ipha->ipha_src; 14184 14185 /* 14186 * We look up the interface ire for the nexthop, 14187 * to see if ipha_src is in the same subnet 14188 * as the nexthop. 14189 * 14190 * Note that, if, in the future, IRE_CACHE entries 14191 * are obsoleted, this lookup will not be needed, 14192 * as the ire passed to this function will be the 14193 * same as the nhop_ire computed below. 14194 */ 14195 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14196 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14197 0, NULL, MATCH_IRE_TYPE, ipst); 14198 14199 if (nhop_ire != NULL) { 14200 if ((src & nhop_ire->ire_mask) == 14201 (nhop & nhop_ire->ire_mask)) { 14202 /* 14203 * The source is directly connected. 14204 * Just copy the ip header (which is 14205 * in the first mblk) 14206 */ 14207 mp1 = copyb(mp); 14208 if (mp1 != NULL) { 14209 icmp_send_redirect(WR(q), mp1, 14210 nhop, ipst); 14211 } 14212 } 14213 ire_refrele(nhop_ire); 14214 } 14215 } 14216 } 14217 sendit: 14218 dev_q = ire->ire_stq->q_next; 14219 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14220 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14221 freemsg(mp); 14222 return; 14223 } 14224 14225 ip_rput_forward(ire, ipha, mp, ill); 14226 return; 14227 14228 drop_pkt: 14229 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14230 freemsg(mp); 14231 } 14232 14233 ire_t * 14234 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14235 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14236 { 14237 queue_t *q; 14238 uint16_t hcksumflags; 14239 ip_stack_t *ipst = ill->ill_ipst; 14240 14241 q = *qp; 14242 14243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14244 14245 /* 14246 * Clear the indication that this may have hardware 14247 * checksum as we are not using it for forwarding. 14248 */ 14249 hcksumflags = DB_CKSUMFLAGS(mp); 14250 DB_CKSUMFLAGS(mp) = 0; 14251 14252 /* 14253 * Directed broadcast forwarding: if the packet came in over a 14254 * different interface then it is routed out over we can forward it. 14255 */ 14256 if (ipha->ipha_protocol == IPPROTO_TCP) { 14257 ire_refrele(ire); 14258 freemsg(mp); 14259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14260 return (NULL); 14261 } 14262 /* 14263 * For multicast we have set dst to be INADDR_BROADCAST 14264 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14265 * only for broadcast packets. 14266 */ 14267 if (!CLASSD(ipha->ipha_dst)) { 14268 ire_t *new_ire; 14269 ipif_t *ipif; 14270 /* 14271 * For ill groups, as the switch duplicates broadcasts 14272 * across all the ports, we need to filter out and 14273 * send up only one copy. There is one copy for every 14274 * broadcast address on each ill. Thus, we look for a 14275 * specific IRE on this ill and look at IRE_MARK_NORECV 14276 * later to see whether this ill is eligible to receive 14277 * them or not. ill_nominate_bcast_rcv() nominates only 14278 * one set of IREs for receiving. 14279 */ 14280 14281 ipif = ipif_get_next_ipif(NULL, ill); 14282 if (ipif == NULL) { 14283 ire_refrele(ire); 14284 freemsg(mp); 14285 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14286 return (NULL); 14287 } 14288 new_ire = ire_ctable_lookup(dst, 0, 0, 14289 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14290 ipif_refrele(ipif); 14291 14292 if (new_ire != NULL) { 14293 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14294 ire_refrele(ire); 14295 ire_refrele(new_ire); 14296 freemsg(mp); 14297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14298 return (NULL); 14299 } 14300 /* 14301 * In the special case of multirouted broadcast 14302 * packets, we unconditionally need to "gateway" 14303 * them to the appropriate interface here. 14304 * In the normal case, this cannot happen, because 14305 * there is no broadcast IRE tagged with the 14306 * RTF_MULTIRT flag. 14307 */ 14308 if (new_ire->ire_flags & RTF_MULTIRT) { 14309 ire_refrele(new_ire); 14310 if (ire->ire_rfq != NULL) { 14311 q = ire->ire_rfq; 14312 *qp = q; 14313 } 14314 } else { 14315 ire_refrele(ire); 14316 ire = new_ire; 14317 } 14318 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14319 if (!ipst->ips_ip_g_forward_directed_bcast) { 14320 /* 14321 * Free the message if 14322 * ip_g_forward_directed_bcast is turned 14323 * off for non-local broadcast. 14324 */ 14325 ire_refrele(ire); 14326 freemsg(mp); 14327 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14328 return (NULL); 14329 } 14330 } else { 14331 /* 14332 * This CGTP packet successfully passed the 14333 * CGTP filter, but the related CGTP 14334 * broadcast IRE has not been found, 14335 * meaning that the redundant ipif is 14336 * probably down. However, if we discarded 14337 * this packet, its duplicate would be 14338 * filtered out by the CGTP filter so none 14339 * of them would get through. So we keep 14340 * going with this one. 14341 */ 14342 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14343 if (ire->ire_rfq != NULL) { 14344 q = ire->ire_rfq; 14345 *qp = q; 14346 } 14347 } 14348 } 14349 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14350 /* 14351 * Verify that there are not more then one 14352 * IRE_BROADCAST with this broadcast address which 14353 * has ire_stq set. 14354 * TODO: simplify, loop over all IRE's 14355 */ 14356 ire_t *ire1; 14357 int num_stq = 0; 14358 mblk_t *mp1; 14359 14360 /* Find the first one with ire_stq set */ 14361 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14362 for (ire1 = ire; ire1 && 14363 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14364 ire1 = ire1->ire_next) 14365 ; 14366 if (ire1) { 14367 ire_refrele(ire); 14368 ire = ire1; 14369 IRE_REFHOLD(ire); 14370 } 14371 14372 /* Check if there are additional ones with stq set */ 14373 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14374 if (ire->ire_addr != ire1->ire_addr) 14375 break; 14376 if (ire1->ire_stq) { 14377 num_stq++; 14378 break; 14379 } 14380 } 14381 rw_exit(&ire->ire_bucket->irb_lock); 14382 if (num_stq == 1 && ire->ire_stq != NULL) { 14383 ip1dbg(("ip_rput_process_broadcast: directed " 14384 "broadcast to 0x%x\n", 14385 ntohl(ire->ire_addr))); 14386 mp1 = copymsg(mp); 14387 if (mp1) { 14388 switch (ipha->ipha_protocol) { 14389 case IPPROTO_UDP: 14390 ip_udp_input(q, mp1, ipha, ire, ill); 14391 break; 14392 default: 14393 ip_proto_input(q, mp1, ipha, ire, ill, 14394 B_FALSE); 14395 break; 14396 } 14397 } 14398 /* 14399 * Adjust ttl to 2 (1+1 - the forward engine 14400 * will decrement it by one. 14401 */ 14402 if (ip_csum_hdr(ipha)) { 14403 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14404 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14405 freemsg(mp); 14406 ire_refrele(ire); 14407 return (NULL); 14408 } 14409 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14410 ipha->ipha_hdr_checksum = 0; 14411 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14412 ip_rput_process_forward(q, mp, ire, ipha, 14413 ill, ll_multicast); 14414 ire_refrele(ire); 14415 return (NULL); 14416 } 14417 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14418 ntohl(ire->ire_addr))); 14419 } 14420 14421 14422 /* Restore any hardware checksum flags */ 14423 DB_CKSUMFLAGS(mp) = hcksumflags; 14424 return (ire); 14425 } 14426 14427 /* ARGSUSED */ 14428 static boolean_t 14429 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14430 int *ll_multicast, ipaddr_t *dstp) 14431 { 14432 ip_stack_t *ipst = ill->ill_ipst; 14433 14434 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14435 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14436 ntohs(ipha->ipha_length)); 14437 14438 /* 14439 * Forward packets only if we have joined the allmulti 14440 * group on this interface. 14441 */ 14442 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14443 int retval; 14444 14445 /* 14446 * Clear the indication that this may have hardware 14447 * checksum as we are not using it. 14448 */ 14449 DB_CKSUMFLAGS(mp) = 0; 14450 retval = ip_mforward(ill, ipha, mp); 14451 /* ip_mforward updates mib variables if needed */ 14452 /* clear b_prev - used by ip_mroute_decap */ 14453 mp->b_prev = NULL; 14454 14455 switch (retval) { 14456 case 0: 14457 /* 14458 * pkt is okay and arrived on phyint. 14459 * 14460 * If we are running as a multicast router 14461 * we need to see all IGMP and/or PIM packets. 14462 */ 14463 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14464 (ipha->ipha_protocol == IPPROTO_PIM)) { 14465 goto done; 14466 } 14467 break; 14468 case -1: 14469 /* pkt is mal-formed, toss it */ 14470 goto drop_pkt; 14471 case 1: 14472 /* pkt is okay and arrived on a tunnel */ 14473 /* 14474 * If we are running a multicast router 14475 * we need to see all igmp packets. 14476 */ 14477 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14478 *dstp = INADDR_BROADCAST; 14479 *ll_multicast = 1; 14480 return (B_FALSE); 14481 } 14482 14483 goto drop_pkt; 14484 } 14485 } 14486 14487 ILM_WALKER_HOLD(ill); 14488 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14489 /* 14490 * This might just be caused by the fact that 14491 * multiple IP Multicast addresses map to the same 14492 * link layer multicast - no need to increment counter! 14493 */ 14494 ILM_WALKER_RELE(ill); 14495 freemsg(mp); 14496 return (B_TRUE); 14497 } 14498 ILM_WALKER_RELE(ill); 14499 done: 14500 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14501 /* 14502 * This assumes the we deliver to all streams for multicast 14503 * and broadcast packets. 14504 */ 14505 *dstp = INADDR_BROADCAST; 14506 *ll_multicast = 1; 14507 return (B_FALSE); 14508 drop_pkt: 14509 ip2dbg(("ip_rput: drop pkt\n")); 14510 freemsg(mp); 14511 return (B_TRUE); 14512 } 14513 14514 /* 14515 * This function is used to both return an indication of whether or not 14516 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14517 * and in doing so, determine whether or not it is broadcast vs multicast. 14518 * For it to be a broadcast packet, we must have the appropriate mblk_t 14519 * hanging off the ill_t. If this is either not present or doesn't match 14520 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14521 * to be multicast. Thus NICs that have no broadcast address (or no 14522 * capability for one, such as point to point links) cannot return as 14523 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14524 * the return values simplifies the current use of the return value of this 14525 * function, which is to pass through the multicast/broadcast characteristic 14526 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14527 * changing the return value to some other symbol demands the appropriate 14528 * "translation" when hpe_flags is set prior to calling hook_run() for 14529 * packet events. 14530 */ 14531 int 14532 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14533 { 14534 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14535 mblk_t *bmp; 14536 14537 if (ind->dl_group_address) { 14538 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14539 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14540 MBLKL(mb) && 14541 (bmp = ill->ill_bcast_mp) != NULL) { 14542 dl_unitdata_req_t *dlur; 14543 uint8_t *bphys_addr; 14544 14545 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14546 if (ill->ill_sap_length < 0) 14547 bphys_addr = (uchar_t *)dlur + 14548 dlur->dl_dest_addr_offset; 14549 else 14550 bphys_addr = (uchar_t *)dlur + 14551 dlur->dl_dest_addr_offset + 14552 ill->ill_sap_length; 14553 14554 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14555 bphys_addr, ind->dl_dest_addr_length) == 0) { 14556 return (HPE_BROADCAST); 14557 } 14558 return (HPE_MULTICAST); 14559 } 14560 return (HPE_MULTICAST); 14561 } 14562 return (0); 14563 } 14564 14565 static boolean_t 14566 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14567 int *ll_multicast, mblk_t **mpp) 14568 { 14569 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14570 boolean_t must_copy = B_FALSE; 14571 struct iocblk *iocp; 14572 ipha_t *ipha; 14573 ip_stack_t *ipst = ill->ill_ipst; 14574 14575 #define rptr ((uchar_t *)ipha) 14576 14577 first_mp = *first_mpp; 14578 mp = *mpp; 14579 14580 ASSERT(first_mp == mp); 14581 14582 /* 14583 * if db_ref > 1 then copymsg and free original. Packet may be 14584 * changed and do not want other entity who has a reference to this 14585 * message to trip over the changes. This is a blind change because 14586 * trying to catch all places that might change packet is too 14587 * difficult (since it may be a module above this one) 14588 * 14589 * This corresponds to the non-fast path case. We walk down the full 14590 * chain in this case, and check the db_ref count of all the dblks, 14591 * and do a copymsg if required. It is possible that the db_ref counts 14592 * of the data blocks in the mblk chain can be different. 14593 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14594 * count of 1, followed by a M_DATA block with a ref count of 2, if 14595 * 'snoop' is running. 14596 */ 14597 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14598 if (mp1->b_datap->db_ref > 1) { 14599 must_copy = B_TRUE; 14600 break; 14601 } 14602 } 14603 14604 if (must_copy) { 14605 mp1 = copymsg(mp); 14606 if (mp1 == NULL) { 14607 for (mp1 = mp; mp1 != NULL; 14608 mp1 = mp1->b_cont) { 14609 mp1->b_next = NULL; 14610 mp1->b_prev = NULL; 14611 } 14612 freemsg(mp); 14613 if (ill != NULL) { 14614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14615 } else { 14616 BUMP_MIB(&ipst->ips_ip_mib, 14617 ipIfStatsInDiscards); 14618 } 14619 return (B_TRUE); 14620 } 14621 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14622 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14623 /* Copy b_prev - used by ip_mroute_decap */ 14624 to_mp->b_prev = from_mp->b_prev; 14625 from_mp->b_prev = NULL; 14626 } 14627 *first_mpp = first_mp = mp1; 14628 freemsg(mp); 14629 mp = mp1; 14630 *mpp = mp1; 14631 } 14632 14633 ipha = (ipha_t *)mp->b_rptr; 14634 14635 /* 14636 * previous code has a case for M_DATA. 14637 * We want to check how that happens. 14638 */ 14639 ASSERT(first_mp->b_datap->db_type != M_DATA); 14640 switch (first_mp->b_datap->db_type) { 14641 case M_PROTO: 14642 case M_PCPROTO: 14643 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14644 DL_UNITDATA_IND) { 14645 /* Go handle anything other than data elsewhere. */ 14646 ip_rput_dlpi(q, mp); 14647 return (B_TRUE); 14648 } 14649 14650 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14651 /* Ditch the DLPI header. */ 14652 mp1 = mp->b_cont; 14653 ASSERT(first_mp == mp); 14654 *first_mpp = mp1; 14655 freeb(mp); 14656 *mpp = mp1; 14657 return (B_FALSE); 14658 case M_IOCACK: 14659 ip1dbg(("got iocack ")); 14660 iocp = (struct iocblk *)mp->b_rptr; 14661 switch (iocp->ioc_cmd) { 14662 case DL_IOC_HDR_INFO: 14663 ill = (ill_t *)q->q_ptr; 14664 ill_fastpath_ack(ill, mp); 14665 return (B_TRUE); 14666 case SIOCSTUNPARAM: 14667 case OSIOCSTUNPARAM: 14668 /* Go through qwriter_ip */ 14669 break; 14670 case SIOCGTUNPARAM: 14671 case OSIOCGTUNPARAM: 14672 ip_rput_other(NULL, q, mp, NULL); 14673 return (B_TRUE); 14674 default: 14675 putnext(q, mp); 14676 return (B_TRUE); 14677 } 14678 /* FALLTHRU */ 14679 case M_ERROR: 14680 case M_HANGUP: 14681 /* 14682 * Since this is on the ill stream we unconditionally 14683 * bump up the refcount 14684 */ 14685 ill_refhold(ill); 14686 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14687 return (B_TRUE); 14688 case M_CTL: 14689 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14690 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14691 IPHADA_M_CTL)) { 14692 /* 14693 * It's an IPsec accelerated packet. 14694 * Make sure that the ill from which we received the 14695 * packet has enabled IPsec hardware acceleration. 14696 */ 14697 if (!(ill->ill_capabilities & 14698 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14699 /* IPsec kstats: bean counter */ 14700 freemsg(mp); 14701 return (B_TRUE); 14702 } 14703 14704 /* 14705 * Make mp point to the mblk following the M_CTL, 14706 * then process according to type of mp. 14707 * After this processing, first_mp will point to 14708 * the data-attributes and mp to the pkt following 14709 * the M_CTL. 14710 */ 14711 mp = first_mp->b_cont; 14712 if (mp == NULL) { 14713 freemsg(first_mp); 14714 return (B_TRUE); 14715 } 14716 /* 14717 * A Hardware Accelerated packet can only be M_DATA 14718 * ESP or AH packet. 14719 */ 14720 if (mp->b_datap->db_type != M_DATA) { 14721 /* non-M_DATA IPsec accelerated packet */ 14722 IPSECHW_DEBUG(IPSECHW_PKT, 14723 ("non-M_DATA IPsec accelerated pkt\n")); 14724 freemsg(first_mp); 14725 return (B_TRUE); 14726 } 14727 ipha = (ipha_t *)mp->b_rptr; 14728 if (ipha->ipha_protocol != IPPROTO_AH && 14729 ipha->ipha_protocol != IPPROTO_ESP) { 14730 IPSECHW_DEBUG(IPSECHW_PKT, 14731 ("non-M_DATA IPsec accelerated pkt\n")); 14732 freemsg(first_mp); 14733 return (B_TRUE); 14734 } 14735 *mpp = mp; 14736 return (B_FALSE); 14737 } 14738 putnext(q, mp); 14739 return (B_TRUE); 14740 case M_IOCNAK: 14741 ip1dbg(("got iocnak ")); 14742 iocp = (struct iocblk *)mp->b_rptr; 14743 switch (iocp->ioc_cmd) { 14744 case SIOCSTUNPARAM: 14745 case OSIOCSTUNPARAM: 14746 /* 14747 * Since this is on the ill stream we unconditionally 14748 * bump up the refcount 14749 */ 14750 ill_refhold(ill); 14751 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14752 return (B_TRUE); 14753 case DL_IOC_HDR_INFO: 14754 case SIOCGTUNPARAM: 14755 case OSIOCGTUNPARAM: 14756 ip_rput_other(NULL, q, mp, NULL); 14757 return (B_TRUE); 14758 default: 14759 break; 14760 } 14761 /* FALLTHRU */ 14762 default: 14763 putnext(q, mp); 14764 return (B_TRUE); 14765 } 14766 } 14767 14768 /* Read side put procedure. Packets coming from the wire arrive here. */ 14769 void 14770 ip_rput(queue_t *q, mblk_t *mp) 14771 { 14772 ill_t *ill; 14773 union DL_primitives *dl; 14774 14775 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14776 14777 ill = (ill_t *)q->q_ptr; 14778 14779 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14780 /* 14781 * If things are opening or closing, only accept high-priority 14782 * DLPI messages. (On open ill->ill_ipif has not yet been 14783 * created; on close, things hanging off the ill may have been 14784 * freed already.) 14785 */ 14786 dl = (union DL_primitives *)mp->b_rptr; 14787 if (DB_TYPE(mp) != M_PCPROTO || 14788 dl->dl_primitive == DL_UNITDATA_IND) { 14789 /* 14790 * SIOC[GS]TUNPARAM ioctls can come here. 14791 */ 14792 inet_freemsg(mp); 14793 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14794 "ip_rput_end: q %p (%S)", q, "uninit"); 14795 return; 14796 } 14797 } 14798 14799 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14800 "ip_rput_end: q %p (%S)", q, "end"); 14801 14802 ip_input(ill, NULL, mp, NULL); 14803 } 14804 14805 static mblk_t * 14806 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14807 { 14808 mblk_t *mp1; 14809 boolean_t adjusted = B_FALSE; 14810 ip_stack_t *ipst = ill->ill_ipst; 14811 14812 IP_STAT(ipst, ip_db_ref); 14813 /* 14814 * The IP_RECVSLLA option depends on having the 14815 * link layer header. First check that: 14816 * a> the underlying device is of type ether, 14817 * since this option is currently supported only 14818 * over ethernet. 14819 * b> there is enough room to copy over the link 14820 * layer header. 14821 * 14822 * Once the checks are done, adjust rptr so that 14823 * the link layer header will be copied via 14824 * copymsg. Note that, IFT_ETHER may be returned 14825 * by some non-ethernet drivers but in this case 14826 * the second check will fail. 14827 */ 14828 if (ill->ill_type == IFT_ETHER && 14829 (mp->b_rptr - mp->b_datap->db_base) >= 14830 sizeof (struct ether_header)) { 14831 mp->b_rptr -= sizeof (struct ether_header); 14832 adjusted = B_TRUE; 14833 } 14834 mp1 = copymsg(mp); 14835 14836 if (mp1 == NULL) { 14837 mp->b_next = NULL; 14838 /* clear b_prev - used by ip_mroute_decap */ 14839 mp->b_prev = NULL; 14840 freemsg(mp); 14841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14842 return (NULL); 14843 } 14844 14845 if (adjusted) { 14846 /* 14847 * Copy is done. Restore the pointer in 14848 * the _new_ mblk 14849 */ 14850 mp1->b_rptr += sizeof (struct ether_header); 14851 } 14852 14853 /* Copy b_prev - used by ip_mroute_decap */ 14854 mp1->b_prev = mp->b_prev; 14855 mp->b_prev = NULL; 14856 14857 /* preserve the hardware checksum flags and data, if present */ 14858 if (DB_CKSUMFLAGS(mp) != 0) { 14859 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14860 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14861 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14862 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14863 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14864 } 14865 14866 freemsg(mp); 14867 return (mp1); 14868 } 14869 14870 /* 14871 * Direct read side procedure capable of dealing with chains. GLDv3 based 14872 * drivers call this function directly with mblk chains while STREAMS 14873 * read side procedure ip_rput() calls this for single packet with ip_ring 14874 * set to NULL to process one packet at a time. 14875 * 14876 * The ill will always be valid if this function is called directly from 14877 * the driver. 14878 * 14879 * If ip_input() is called from GLDv3: 14880 * 14881 * - This must be a non-VLAN IP stream. 14882 * - 'mp' is either an untagged or a special priority-tagged packet. 14883 * - Any VLAN tag that was in the MAC header has been stripped. 14884 * 14885 * If the IP header in packet is not 32-bit aligned, every message in the 14886 * chain will be aligned before further operations. This is required on SPARC 14887 * platform. 14888 */ 14889 /* ARGSUSED */ 14890 void 14891 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14892 struct mac_header_info_s *mhip) 14893 { 14894 ipaddr_t dst = NULL; 14895 ipaddr_t prev_dst; 14896 ire_t *ire = NULL; 14897 ipha_t *ipha; 14898 uint_t pkt_len; 14899 ssize_t len; 14900 uint_t opt_len; 14901 int ll_multicast; 14902 int cgtp_flt_pkt; 14903 queue_t *q = ill->ill_rq; 14904 squeue_t *curr_sqp = NULL; 14905 mblk_t *head = NULL; 14906 mblk_t *tail = NULL; 14907 mblk_t *first_mp; 14908 mblk_t *mp; 14909 mblk_t *dmp; 14910 int cnt = 0; 14911 ip_stack_t *ipst = ill->ill_ipst; 14912 14913 ASSERT(mp_chain != NULL); 14914 ASSERT(ill != NULL); 14915 14916 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14917 14918 #define rptr ((uchar_t *)ipha) 14919 14920 while (mp_chain != NULL) { 14921 first_mp = mp = mp_chain; 14922 mp_chain = mp_chain->b_next; 14923 mp->b_next = NULL; 14924 ll_multicast = 0; 14925 14926 /* 14927 * We do ire caching from one iteration to 14928 * another. In the event the packet chain contains 14929 * all packets from the same dst, this caching saves 14930 * an ire_cache_lookup for each of the succeeding 14931 * packets in a packet chain. 14932 */ 14933 prev_dst = dst; 14934 14935 /* 14936 * if db_ref > 1 then copymsg and free original. Packet 14937 * may be changed and we do not want the other entity 14938 * who has a reference to this message to trip over the 14939 * changes. This is a blind change because trying to 14940 * catch all places that might change the packet is too 14941 * difficult. 14942 * 14943 * This corresponds to the fast path case, where we have 14944 * a chain of M_DATA mblks. We check the db_ref count 14945 * of only the 1st data block in the mblk chain. There 14946 * doesn't seem to be a reason why a device driver would 14947 * send up data with varying db_ref counts in the mblk 14948 * chain. In any case the Fast path is a private 14949 * interface, and our drivers don't do such a thing. 14950 * Given the above assumption, there is no need to walk 14951 * down the entire mblk chain (which could have a 14952 * potential performance problem) 14953 */ 14954 14955 if (DB_REF(mp) > 1) { 14956 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14957 continue; 14958 } 14959 14960 /* 14961 * Check and align the IP header. 14962 */ 14963 first_mp = mp; 14964 if (DB_TYPE(mp) == M_DATA) { 14965 dmp = mp; 14966 } else if (DB_TYPE(mp) == M_PROTO && 14967 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14968 dmp = mp->b_cont; 14969 } else { 14970 dmp = NULL; 14971 } 14972 if (dmp != NULL) { 14973 /* 14974 * IP header ptr not aligned? 14975 * OR IP header not complete in first mblk 14976 */ 14977 if (!OK_32PTR(dmp->b_rptr) || 14978 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14979 if (!ip_check_and_align_header(q, dmp, ipst)) 14980 continue; 14981 } 14982 } 14983 14984 /* 14985 * ip_input fast path 14986 */ 14987 14988 /* mblk type is not M_DATA */ 14989 if (DB_TYPE(mp) != M_DATA) { 14990 if (ip_rput_process_notdata(q, &first_mp, ill, 14991 &ll_multicast, &mp)) 14992 continue; 14993 14994 /* 14995 * The only way we can get here is if we had a 14996 * packet that was either a DL_UNITDATA_IND or 14997 * an M_CTL for an IPsec accelerated packet. 14998 * 14999 * In either case, the first_mp will point to 15000 * the leading M_PROTO or M_CTL. 15001 */ 15002 ASSERT(first_mp != NULL); 15003 } else if (mhip != NULL) { 15004 /* 15005 * ll_multicast is set here so that it is ready 15006 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15007 * manipulates ll_multicast in the same fashion when 15008 * called from ip_rput_process_notdata. 15009 */ 15010 switch (mhip->mhi_dsttype) { 15011 case MAC_ADDRTYPE_MULTICAST : 15012 ll_multicast = HPE_MULTICAST; 15013 break; 15014 case MAC_ADDRTYPE_BROADCAST : 15015 ll_multicast = HPE_BROADCAST; 15016 break; 15017 default : 15018 break; 15019 } 15020 } 15021 15022 /* Make sure its an M_DATA and that its aligned */ 15023 ASSERT(DB_TYPE(mp) == M_DATA); 15024 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15025 15026 ipha = (ipha_t *)mp->b_rptr; 15027 len = mp->b_wptr - rptr; 15028 pkt_len = ntohs(ipha->ipha_length); 15029 15030 /* 15031 * We must count all incoming packets, even if they end 15032 * up being dropped later on. 15033 */ 15034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15035 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15036 15037 /* multiple mblk or too short */ 15038 len -= pkt_len; 15039 if (len != 0) { 15040 /* 15041 * Make sure we have data length consistent 15042 * with the IP header. 15043 */ 15044 if (mp->b_cont == NULL) { 15045 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15046 BUMP_MIB(ill->ill_ip_mib, 15047 ipIfStatsInHdrErrors); 15048 ip2dbg(("ip_input: drop pkt\n")); 15049 freemsg(mp); 15050 continue; 15051 } 15052 mp->b_wptr = rptr + pkt_len; 15053 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15054 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15055 BUMP_MIB(ill->ill_ip_mib, 15056 ipIfStatsInHdrErrors); 15057 ip2dbg(("ip_input: drop pkt\n")); 15058 freemsg(mp); 15059 continue; 15060 } 15061 (void) adjmsg(mp, -len); 15062 IP_STAT(ipst, ip_multimblk3); 15063 } 15064 } 15065 15066 /* Obtain the dst of the current packet */ 15067 dst = ipha->ipha_dst; 15068 15069 /* 15070 * The following test for loopback is faster than 15071 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15072 * operations. 15073 * Note that these addresses are always in network byte order 15074 */ 15075 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15076 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15078 freemsg(mp); 15079 continue; 15080 } 15081 15082 /* 15083 * The event for packets being received from a 'physical' 15084 * interface is placed after validation of the source and/or 15085 * destination address as being local so that packets can be 15086 * redirected to loopback addresses using ipnat. 15087 */ 15088 DTRACE_PROBE4(ip4__physical__in__start, 15089 ill_t *, ill, ill_t *, NULL, 15090 ipha_t *, ipha, mblk_t *, first_mp); 15091 15092 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15093 ipst->ips_ipv4firewall_physical_in, 15094 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15095 15096 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15097 15098 if (first_mp == NULL) { 15099 continue; 15100 } 15101 dst = ipha->ipha_dst; 15102 15103 /* 15104 * Attach any necessary label information to 15105 * this packet 15106 */ 15107 if (is_system_labeled() && 15108 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15109 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15110 freemsg(mp); 15111 continue; 15112 } 15113 15114 /* 15115 * Reuse the cached ire only if the ipha_dst of the previous 15116 * packet is the same as the current packet AND it is not 15117 * INADDR_ANY. 15118 */ 15119 if (!(dst == prev_dst && dst != INADDR_ANY) && 15120 (ire != NULL)) { 15121 ire_refrele(ire); 15122 ire = NULL; 15123 } 15124 opt_len = ipha->ipha_version_and_hdr_length - 15125 IP_SIMPLE_HDR_VERSION; 15126 15127 /* 15128 * Check to see if we can take the fastpath. 15129 * That is possible if the following conditions are met 15130 * o Tsol disabled 15131 * o CGTP disabled 15132 * o ipp_action_count is 0 15133 * o no options in the packet 15134 * o not a RSVP packet 15135 * o not a multicast packet 15136 * o ill not in IP_DHCPINIT_IF mode 15137 */ 15138 if (!is_system_labeled() && 15139 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15140 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15141 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15142 if (ire == NULL) 15143 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15144 ipst); 15145 15146 /* incoming packet is for forwarding */ 15147 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15148 ire = ip_fast_forward(ire, dst, ill, mp); 15149 continue; 15150 } 15151 /* incoming packet is for local consumption */ 15152 if (ire->ire_type & IRE_LOCAL) 15153 goto local; 15154 } 15155 15156 /* 15157 * Disable ire caching for anything more complex 15158 * than the simple fast path case we checked for above. 15159 */ 15160 if (ire != NULL) { 15161 ire_refrele(ire); 15162 ire = NULL; 15163 } 15164 15165 /* 15166 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15167 * server to unicast DHCP packets to a DHCP client using the 15168 * IP address it is offering to the client. This can be 15169 * disabled through the "broadcast bit", but not all DHCP 15170 * servers honor that bit. Therefore, to interoperate with as 15171 * many DHCP servers as possible, the DHCP client allows the 15172 * server to unicast, but we treat those packets as broadcast 15173 * here. Note that we don't rewrite the packet itself since 15174 * (a) that would mess up the checksums and (b) the DHCP 15175 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15176 * hand it the packet regardless. 15177 */ 15178 if (ill->ill_dhcpinit != 0 && 15179 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15180 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15181 udpha_t *udpha; 15182 15183 /* 15184 * Reload ipha since pullupmsg() can change b_rptr. 15185 */ 15186 ipha = (ipha_t *)mp->b_rptr; 15187 udpha = (udpha_t *)&ipha[1]; 15188 15189 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15190 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15191 mblk_t *, mp); 15192 dst = INADDR_BROADCAST; 15193 } 15194 } 15195 15196 /* Full-blown slow path */ 15197 if (opt_len != 0) { 15198 if (len != 0) 15199 IP_STAT(ipst, ip_multimblk4); 15200 else 15201 IP_STAT(ipst, ip_ipoptions); 15202 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15203 &dst, ipst)) 15204 continue; 15205 } 15206 15207 /* 15208 * Invoke the CGTP (multirouting) filtering module to process 15209 * the incoming packet. Packets identified as duplicates 15210 * must be discarded. Filtering is active only if the 15211 * the ip_cgtp_filter ndd variable is non-zero. 15212 */ 15213 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15214 if (ipst->ips_ip_cgtp_filter && 15215 ipst->ips_ip_cgtp_filter_ops != NULL) { 15216 netstackid_t stackid; 15217 15218 stackid = ipst->ips_netstack->netstack_stackid; 15219 cgtp_flt_pkt = 15220 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15221 ill->ill_phyint->phyint_ifindex, mp); 15222 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15223 freemsg(first_mp); 15224 continue; 15225 } 15226 } 15227 15228 /* 15229 * If rsvpd is running, let RSVP daemon handle its processing 15230 * and forwarding of RSVP multicast/unicast packets. 15231 * If rsvpd is not running but mrouted is running, RSVP 15232 * multicast packets are forwarded as multicast traffic 15233 * and RSVP unicast packets are forwarded by unicast router. 15234 * If neither rsvpd nor mrouted is running, RSVP multicast 15235 * packets are not forwarded, but the unicast packets are 15236 * forwarded like unicast traffic. 15237 */ 15238 if (ipha->ipha_protocol == IPPROTO_RSVP && 15239 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15240 NULL) { 15241 /* RSVP packet and rsvpd running. Treat as ours */ 15242 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15243 /* 15244 * This assumes that we deliver to all streams for 15245 * multicast and broadcast packets. 15246 * We have to force ll_multicast to 1 to handle the 15247 * M_DATA messages passed in from ip_mroute_decap. 15248 */ 15249 dst = INADDR_BROADCAST; 15250 ll_multicast = 1; 15251 } else if (CLASSD(dst)) { 15252 /* packet is multicast */ 15253 mp->b_next = NULL; 15254 if (ip_rput_process_multicast(q, mp, ill, ipha, 15255 &ll_multicast, &dst)) 15256 continue; 15257 } 15258 15259 if (ire == NULL) { 15260 ire = ire_cache_lookup(dst, ALL_ZONES, 15261 MBLK_GETLABEL(mp), ipst); 15262 } 15263 15264 if (ire != NULL && ire->ire_stq != NULL && 15265 ire->ire_zoneid != GLOBAL_ZONEID && 15266 ire->ire_zoneid != ALL_ZONES) { 15267 /* 15268 * Should only use IREs that are visible from the 15269 * global zone for forwarding. 15270 */ 15271 ire_refrele(ire); 15272 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15273 MBLK_GETLABEL(mp), ipst); 15274 } 15275 15276 if (ire == NULL) { 15277 /* 15278 * No IRE for this destination, so it can't be for us. 15279 * Unless we are forwarding, drop the packet. 15280 * We have to let source routed packets through 15281 * since we don't yet know if they are 'ping -l' 15282 * packets i.e. if they will go out over the 15283 * same interface as they came in on. 15284 */ 15285 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15286 if (ire == NULL) 15287 continue; 15288 } 15289 15290 /* 15291 * Broadcast IRE may indicate either broadcast or 15292 * multicast packet 15293 */ 15294 if (ire->ire_type == IRE_BROADCAST) { 15295 /* 15296 * Skip broadcast checks if packet is UDP multicast; 15297 * we'd rather not enter ip_rput_process_broadcast() 15298 * unless the packet is broadcast for real, since 15299 * that routine is a no-op for multicast. 15300 */ 15301 if (ipha->ipha_protocol != IPPROTO_UDP || 15302 !CLASSD(ipha->ipha_dst)) { 15303 ire = ip_rput_process_broadcast(&q, mp, 15304 ire, ipha, ill, dst, cgtp_flt_pkt, 15305 ll_multicast); 15306 if (ire == NULL) 15307 continue; 15308 } 15309 } else if (ire->ire_stq != NULL) { 15310 /* fowarding? */ 15311 ip_rput_process_forward(q, mp, ire, ipha, ill, 15312 ll_multicast); 15313 /* ip_rput_process_forward consumed the packet */ 15314 continue; 15315 } 15316 15317 local: 15318 /* 15319 * If the queue in the ire is different to the ingress queue 15320 * then we need to check to see if we can accept the packet. 15321 * Note that for multicast packets and broadcast packets sent 15322 * to a broadcast address which is shared between multiple 15323 * interfaces we should not do this since we just got a random 15324 * broadcast ire. 15325 */ 15326 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15327 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15328 ill)) == NULL) { 15329 /* Drop packet */ 15330 BUMP_MIB(ill->ill_ip_mib, 15331 ipIfStatsForwProhibits); 15332 freemsg(mp); 15333 continue; 15334 } 15335 if (ire->ire_rfq != NULL) 15336 q = ire->ire_rfq; 15337 } 15338 15339 switch (ipha->ipha_protocol) { 15340 case IPPROTO_TCP: 15341 ASSERT(first_mp == mp); 15342 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15343 mp, 0, q, ip_ring)) != NULL) { 15344 if (curr_sqp == NULL) { 15345 curr_sqp = GET_SQUEUE(mp); 15346 ASSERT(cnt == 0); 15347 cnt++; 15348 head = tail = mp; 15349 } else if (curr_sqp == GET_SQUEUE(mp)) { 15350 ASSERT(tail != NULL); 15351 cnt++; 15352 tail->b_next = mp; 15353 tail = mp; 15354 } else { 15355 /* 15356 * A different squeue. Send the 15357 * chain for the previous squeue on 15358 * its way. This shouldn't happen 15359 * often unless interrupt binding 15360 * changes. 15361 */ 15362 IP_STAT(ipst, ip_input_multi_squeue); 15363 squeue_enter_chain(curr_sqp, head, 15364 tail, cnt, SQTAG_IP_INPUT); 15365 curr_sqp = GET_SQUEUE(mp); 15366 head = mp; 15367 tail = mp; 15368 cnt = 1; 15369 } 15370 } 15371 continue; 15372 case IPPROTO_UDP: 15373 ASSERT(first_mp == mp); 15374 ip_udp_input(q, mp, ipha, ire, ill); 15375 continue; 15376 case IPPROTO_SCTP: 15377 ASSERT(first_mp == mp); 15378 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15379 q, dst); 15380 /* ire has been released by ip_sctp_input */ 15381 ire = NULL; 15382 continue; 15383 default: 15384 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15385 continue; 15386 } 15387 } 15388 15389 if (ire != NULL) 15390 ire_refrele(ire); 15391 15392 if (head != NULL) 15393 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15394 15395 /* 15396 * This code is there just to make netperf/ttcp look good. 15397 * 15398 * Its possible that after being in polling mode (and having cleared 15399 * the backlog), squeues have turned the interrupt frequency higher 15400 * to improve latency at the expense of more CPU utilization (less 15401 * packets per interrupts or more number of interrupts). Workloads 15402 * like ttcp/netperf do manage to tickle polling once in a while 15403 * but for the remaining time, stay in higher interrupt mode since 15404 * their packet arrival rate is pretty uniform and this shows up 15405 * as higher CPU utilization. Since people care about CPU utilization 15406 * while running netperf/ttcp, turn the interrupt frequency back to 15407 * normal/default if polling has not been used in ip_poll_normal_ticks. 15408 */ 15409 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15410 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15411 ip_ring->rr_poll_state &= ~ILL_POLLING; 15412 ip_ring->rr_blank(ip_ring->rr_handle, 15413 ip_ring->rr_normal_blank_time, 15414 ip_ring->rr_normal_pkt_cnt); 15415 } 15416 } 15417 15418 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15419 "ip_input_end: q %p (%S)", q, "end"); 15420 #undef rptr 15421 } 15422 15423 static void 15424 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15425 t_uscalar_t err) 15426 { 15427 if (dl_err == DL_SYSERR) { 15428 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15429 "%s: %s failed: DL_SYSERR (errno %u)\n", 15430 ill->ill_name, dl_primstr(prim), err); 15431 return; 15432 } 15433 15434 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15435 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15436 dl_errstr(dl_err)); 15437 } 15438 15439 /* 15440 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15441 * than DL_UNITDATA_IND messages. If we need to process this message 15442 * exclusively, we call qwriter_ip, in which case we also need to call 15443 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15444 */ 15445 void 15446 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15447 { 15448 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15449 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15450 ill_t *ill = (ill_t *)q->q_ptr; 15451 boolean_t pending; 15452 15453 ip1dbg(("ip_rput_dlpi")); 15454 if (dloa->dl_primitive == DL_ERROR_ACK) { 15455 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15456 "%s (0x%x), unix %u\n", ill->ill_name, 15457 dl_primstr(dlea->dl_error_primitive), 15458 dlea->dl_error_primitive, 15459 dl_errstr(dlea->dl_errno), 15460 dlea->dl_errno, 15461 dlea->dl_unix_errno)); 15462 } 15463 15464 /* 15465 * If we received an ACK but didn't send a request for it, then it 15466 * can't be part of any pending operation; discard up-front. 15467 */ 15468 switch (dloa->dl_primitive) { 15469 case DL_NOTIFY_IND: 15470 pending = B_TRUE; 15471 break; 15472 case DL_ERROR_ACK: 15473 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15474 break; 15475 case DL_OK_ACK: 15476 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15477 break; 15478 case DL_INFO_ACK: 15479 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15480 break; 15481 case DL_BIND_ACK: 15482 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15483 break; 15484 case DL_PHYS_ADDR_ACK: 15485 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15486 break; 15487 case DL_NOTIFY_ACK: 15488 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15489 break; 15490 case DL_CONTROL_ACK: 15491 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15492 break; 15493 case DL_CAPABILITY_ACK: 15494 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15495 break; 15496 default: 15497 /* Not a DLPI message we support or were expecting */ 15498 freemsg(mp); 15499 return; 15500 } 15501 15502 if (!pending) { 15503 freemsg(mp); 15504 return; 15505 } 15506 15507 switch (dloa->dl_primitive) { 15508 case DL_ERROR_ACK: 15509 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15510 mutex_enter(&ill->ill_lock); 15511 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15512 cv_signal(&ill->ill_cv); 15513 mutex_exit(&ill->ill_lock); 15514 } 15515 break; 15516 15517 case DL_OK_ACK: 15518 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15519 dl_primstr((int)dloa->dl_correct_primitive))); 15520 switch (dloa->dl_correct_primitive) { 15521 case DL_UNBIND_REQ: 15522 mutex_enter(&ill->ill_lock); 15523 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15524 cv_signal(&ill->ill_cv); 15525 mutex_exit(&ill->ill_lock); 15526 break; 15527 15528 case DL_ENABMULTI_REQ: 15529 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15530 ill->ill_dlpi_multicast_state = IDS_OK; 15531 break; 15532 } 15533 break; 15534 default: 15535 break; 15536 } 15537 15538 /* 15539 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15540 * need to become writer to continue to process it. Because an 15541 * exclusive operation doesn't complete until replies to all queued 15542 * DLPI messages have been received, we know we're in the middle of an 15543 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15544 * 15545 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15546 * Since this is on the ill stream we unconditionally bump up the 15547 * refcount without doing ILL_CAN_LOOKUP(). 15548 */ 15549 ill_refhold(ill); 15550 if (dloa->dl_primitive == DL_NOTIFY_IND) 15551 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15552 else 15553 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15554 } 15555 15556 /* 15557 * Handling of DLPI messages that require exclusive access to the ipsq. 15558 * 15559 * Need to do ill_pending_mp_release on ioctl completion, which could 15560 * happen here. (along with mi_copy_done) 15561 */ 15562 /* ARGSUSED */ 15563 static void 15564 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15565 { 15566 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15567 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15568 int err = 0; 15569 ill_t *ill; 15570 ipif_t *ipif = NULL; 15571 mblk_t *mp1 = NULL; 15572 conn_t *connp = NULL; 15573 t_uscalar_t paddrreq; 15574 mblk_t *mp_hw; 15575 boolean_t success; 15576 boolean_t ioctl_aborted = B_FALSE; 15577 boolean_t log = B_TRUE; 15578 ip_stack_t *ipst; 15579 15580 ip1dbg(("ip_rput_dlpi_writer ..")); 15581 ill = (ill_t *)q->q_ptr; 15582 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15583 15584 ASSERT(IAM_WRITER_ILL(ill)); 15585 15586 ipst = ill->ill_ipst; 15587 15588 /* 15589 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15590 * both are null or non-null. However we can assert that only 15591 * after grabbing the ipsq_lock. So we don't make any assertion 15592 * here and in other places in the code. 15593 */ 15594 ipif = ipsq->ipsq_pending_ipif; 15595 /* 15596 * The current ioctl could have been aborted by the user and a new 15597 * ioctl to bring up another ill could have started. We could still 15598 * get a response from the driver later. 15599 */ 15600 if (ipif != NULL && ipif->ipif_ill != ill) 15601 ioctl_aborted = B_TRUE; 15602 15603 switch (dloa->dl_primitive) { 15604 case DL_ERROR_ACK: 15605 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15606 dl_primstr(dlea->dl_error_primitive))); 15607 15608 switch (dlea->dl_error_primitive) { 15609 case DL_PROMISCON_REQ: 15610 case DL_PROMISCOFF_REQ: 15611 case DL_DISABMULTI_REQ: 15612 case DL_UNBIND_REQ: 15613 case DL_ATTACH_REQ: 15614 case DL_INFO_REQ: 15615 ill_dlpi_done(ill, dlea->dl_error_primitive); 15616 break; 15617 case DL_NOTIFY_REQ: 15618 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15619 log = B_FALSE; 15620 break; 15621 case DL_PHYS_ADDR_REQ: 15622 /* 15623 * For IPv6 only, there are two additional 15624 * phys_addr_req's sent to the driver to get the 15625 * IPv6 token and lla. This allows IP to acquire 15626 * the hardware address format for a given interface 15627 * without having built in knowledge of the hardware 15628 * address. ill_phys_addr_pend keeps track of the last 15629 * DL_PAR sent so we know which response we are 15630 * dealing with. ill_dlpi_done will update 15631 * ill_phys_addr_pend when it sends the next req. 15632 * We don't complete the IOCTL until all three DL_PARs 15633 * have been attempted, so set *_len to 0 and break. 15634 */ 15635 paddrreq = ill->ill_phys_addr_pend; 15636 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15637 if (paddrreq == DL_IPV6_TOKEN) { 15638 ill->ill_token_length = 0; 15639 log = B_FALSE; 15640 break; 15641 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15642 ill->ill_nd_lla_len = 0; 15643 log = B_FALSE; 15644 break; 15645 } 15646 /* 15647 * Something went wrong with the DL_PHYS_ADDR_REQ. 15648 * We presumably have an IOCTL hanging out waiting 15649 * for completion. Find it and complete the IOCTL 15650 * with the error noted. 15651 * However, ill_dl_phys was called on an ill queue 15652 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15653 * set. But the ioctl is known to be pending on ill_wq. 15654 */ 15655 if (!ill->ill_ifname_pending) 15656 break; 15657 ill->ill_ifname_pending = 0; 15658 if (!ioctl_aborted) 15659 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15660 if (mp1 != NULL) { 15661 /* 15662 * This operation (SIOCSLIFNAME) must have 15663 * happened on the ill. Assert there is no conn 15664 */ 15665 ASSERT(connp == NULL); 15666 q = ill->ill_wq; 15667 } 15668 break; 15669 case DL_BIND_REQ: 15670 ill_dlpi_done(ill, DL_BIND_REQ); 15671 if (ill->ill_ifname_pending) 15672 break; 15673 /* 15674 * Something went wrong with the bind. We presumably 15675 * have an IOCTL hanging out waiting for completion. 15676 * Find it, take down the interface that was coming 15677 * up, and complete the IOCTL with the error noted. 15678 */ 15679 if (!ioctl_aborted) 15680 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15681 if (mp1 != NULL) { 15682 /* 15683 * This operation (SIOCSLIFFLAGS) must have 15684 * happened from a conn. 15685 */ 15686 ASSERT(connp != NULL); 15687 q = CONNP_TO_WQ(connp); 15688 if (ill->ill_move_in_progress) { 15689 ILL_CLEAR_MOVE(ill); 15690 } 15691 (void) ipif_down(ipif, NULL, NULL); 15692 /* error is set below the switch */ 15693 } 15694 break; 15695 case DL_ENABMULTI_REQ: 15696 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15697 15698 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15699 ill->ill_dlpi_multicast_state = IDS_FAILED; 15700 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15701 ipif_t *ipif; 15702 15703 printf("ip: joining multicasts failed (%d)" 15704 " on %s - will use link layer " 15705 "broadcasts for multicast\n", 15706 dlea->dl_errno, ill->ill_name); 15707 15708 /* 15709 * Set up the multicast mapping alone. 15710 * writer, so ok to access ill->ill_ipif 15711 * without any lock. 15712 */ 15713 ipif = ill->ill_ipif; 15714 mutex_enter(&ill->ill_phyint->phyint_lock); 15715 ill->ill_phyint->phyint_flags |= 15716 PHYI_MULTI_BCAST; 15717 mutex_exit(&ill->ill_phyint->phyint_lock); 15718 15719 if (!ill->ill_isv6) { 15720 (void) ipif_arp_setup_multicast(ipif, 15721 NULL); 15722 } else { 15723 (void) ipif_ndp_setup_multicast(ipif, 15724 NULL); 15725 } 15726 } 15727 freemsg(mp); /* Don't want to pass this up */ 15728 return; 15729 15730 case DL_CAPABILITY_REQ: 15731 case DL_CONTROL_REQ: 15732 ill_dlpi_done(ill, dlea->dl_error_primitive); 15733 ill->ill_dlpi_capab_state = IDS_FAILED; 15734 freemsg(mp); 15735 return; 15736 } 15737 /* 15738 * Note the error for IOCTL completion (mp1 is set when 15739 * ready to complete ioctl). If ill_ifname_pending_err is 15740 * set, an error occured during plumbing (ill_ifname_pending), 15741 * so we want to report that error. 15742 * 15743 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15744 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15745 * expected to get errack'd if the driver doesn't support 15746 * these flags (e.g. ethernet). log will be set to B_FALSE 15747 * if these error conditions are encountered. 15748 */ 15749 if (mp1 != NULL) { 15750 if (ill->ill_ifname_pending_err != 0) { 15751 err = ill->ill_ifname_pending_err; 15752 ill->ill_ifname_pending_err = 0; 15753 } else { 15754 err = dlea->dl_unix_errno ? 15755 dlea->dl_unix_errno : ENXIO; 15756 } 15757 /* 15758 * If we're plumbing an interface and an error hasn't already 15759 * been saved, set ill_ifname_pending_err to the error passed 15760 * up. Ignore the error if log is B_FALSE (see comment above). 15761 */ 15762 } else if (log && ill->ill_ifname_pending && 15763 ill->ill_ifname_pending_err == 0) { 15764 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15765 dlea->dl_unix_errno : ENXIO; 15766 } 15767 15768 if (log) 15769 ip_dlpi_error(ill, dlea->dl_error_primitive, 15770 dlea->dl_errno, dlea->dl_unix_errno); 15771 break; 15772 case DL_CAPABILITY_ACK: 15773 /* Call a routine to handle this one. */ 15774 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15775 ill_capability_ack(ill, mp); 15776 15777 /* 15778 * If the ack is due to renegotiation, we will need to send 15779 * a new CAPABILITY_REQ to start the renegotiation. 15780 */ 15781 if (ill->ill_capab_reneg) { 15782 ill->ill_capab_reneg = B_FALSE; 15783 ill_capability_probe(ill); 15784 } 15785 break; 15786 case DL_CONTROL_ACK: 15787 /* We treat all of these as "fire and forget" */ 15788 ill_dlpi_done(ill, DL_CONTROL_REQ); 15789 break; 15790 case DL_INFO_ACK: 15791 /* Call a routine to handle this one. */ 15792 ill_dlpi_done(ill, DL_INFO_REQ); 15793 ip_ll_subnet_defaults(ill, mp); 15794 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15795 return; 15796 case DL_BIND_ACK: 15797 /* 15798 * We should have an IOCTL waiting on this unless 15799 * sent by ill_dl_phys, in which case just return 15800 */ 15801 ill_dlpi_done(ill, DL_BIND_REQ); 15802 if (ill->ill_ifname_pending) 15803 break; 15804 15805 if (!ioctl_aborted) 15806 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15807 if (mp1 == NULL) 15808 break; 15809 /* 15810 * Because mp1 was added by ill_dl_up(), and it always 15811 * passes a valid connp, connp must be valid here. 15812 */ 15813 ASSERT(connp != NULL); 15814 q = CONNP_TO_WQ(connp); 15815 15816 /* 15817 * We are exclusive. So nothing can change even after 15818 * we get the pending mp. If need be we can put it back 15819 * and restart, as in calling ipif_arp_up() below. 15820 */ 15821 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15822 15823 mutex_enter(&ill->ill_lock); 15824 ill->ill_dl_up = 1; 15825 (void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0); 15826 mutex_exit(&ill->ill_lock); 15827 15828 /* 15829 * Now bring up the resolver; when that is complete, we'll 15830 * create IREs. Note that we intentionally mirror what 15831 * ipif_up() would have done, because we got here by way of 15832 * ill_dl_up(), which stopped ipif_up()'s processing. 15833 */ 15834 if (ill->ill_isv6) { 15835 /* 15836 * v6 interfaces. 15837 * Unlike ARP which has to do another bind 15838 * and attach, once we get here we are 15839 * done with NDP. Except in the case of 15840 * ILLF_XRESOLV, in which case we send an 15841 * AR_INTERFACE_UP to the external resolver. 15842 * If all goes well, the ioctl will complete 15843 * in ip_rput(). If there's an error, we 15844 * complete it here. 15845 */ 15846 if ((err = ipif_ndp_up(ipif)) == 0) { 15847 if (ill->ill_flags & ILLF_XRESOLV) { 15848 mutex_enter(&connp->conn_lock); 15849 mutex_enter(&ill->ill_lock); 15850 success = ipsq_pending_mp_add( 15851 connp, ipif, q, mp1, 0); 15852 mutex_exit(&ill->ill_lock); 15853 mutex_exit(&connp->conn_lock); 15854 if (success) { 15855 err = ipif_resolver_up(ipif, 15856 Res_act_initial); 15857 if (err == EINPROGRESS) { 15858 freemsg(mp); 15859 return; 15860 } 15861 ASSERT(err != 0); 15862 mp1 = ipsq_pending_mp_get(ipsq, 15863 &connp); 15864 ASSERT(mp1 != NULL); 15865 } else { 15866 /* conn has started closing */ 15867 err = EINTR; 15868 } 15869 } else { /* Non XRESOLV interface */ 15870 (void) ipif_resolver_up(ipif, 15871 Res_act_initial); 15872 err = ipif_up_done_v6(ipif); 15873 } 15874 } 15875 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15876 /* 15877 * ARP and other v4 external resolvers. 15878 * Leave the pending mblk intact so that 15879 * the ioctl completes in ip_rput(). 15880 */ 15881 mutex_enter(&connp->conn_lock); 15882 mutex_enter(&ill->ill_lock); 15883 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15884 mutex_exit(&ill->ill_lock); 15885 mutex_exit(&connp->conn_lock); 15886 if (success) { 15887 err = ipif_resolver_up(ipif, Res_act_initial); 15888 if (err == EINPROGRESS) { 15889 freemsg(mp); 15890 return; 15891 } 15892 ASSERT(err != 0); 15893 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15894 } else { 15895 /* The conn has started closing */ 15896 err = EINTR; 15897 } 15898 } else { 15899 /* 15900 * This one is complete. Reply to pending ioctl. 15901 */ 15902 (void) ipif_resolver_up(ipif, Res_act_initial); 15903 err = ipif_up_done(ipif); 15904 } 15905 15906 if ((err == 0) && (ill->ill_up_ipifs)) { 15907 err = ill_up_ipifs(ill, q, mp1); 15908 if (err == EINPROGRESS) { 15909 freemsg(mp); 15910 return; 15911 } 15912 } 15913 15914 if (ill->ill_up_ipifs) { 15915 ill_group_cleanup(ill); 15916 } 15917 15918 break; 15919 case DL_NOTIFY_IND: { 15920 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15921 ire_t *ire; 15922 boolean_t need_ire_walk_v4 = B_FALSE; 15923 boolean_t need_ire_walk_v6 = B_FALSE; 15924 15925 switch (notify->dl_notification) { 15926 case DL_NOTE_PHYS_ADDR: 15927 err = ill_set_phys_addr(ill, mp); 15928 break; 15929 15930 case DL_NOTE_FASTPATH_FLUSH: 15931 ill_fastpath_flush(ill); 15932 break; 15933 15934 case DL_NOTE_SDU_SIZE: 15935 /* 15936 * Change the MTU size of the interface, of all 15937 * attached ipif's, and of all relevant ire's. The 15938 * new value's a uint32_t at notify->dl_data. 15939 * Mtu change Vs. new ire creation - protocol below. 15940 * 15941 * a Mark the ipif as IPIF_CHANGING. 15942 * b Set the new mtu in the ipif. 15943 * c Change the ire_max_frag on all affected ires 15944 * d Unmark the IPIF_CHANGING 15945 * 15946 * To see how the protocol works, assume an interface 15947 * route is also being added simultaneously by 15948 * ip_rt_add and let 'ipif' be the ipif referenced by 15949 * the ire. If the ire is created before step a, 15950 * it will be cleaned up by step c. If the ire is 15951 * created after step d, it will see the new value of 15952 * ipif_mtu. Any attempt to create the ire between 15953 * steps a to d will fail because of the IPIF_CHANGING 15954 * flag. Note that ire_create() is passed a pointer to 15955 * the ipif_mtu, and not the value. During ire_add 15956 * under the bucket lock, the ire_max_frag of the 15957 * new ire being created is set from the ipif/ire from 15958 * which it is being derived. 15959 */ 15960 mutex_enter(&ill->ill_lock); 15961 ill->ill_max_frag = (uint_t)notify->dl_data; 15962 15963 /* 15964 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15965 * leave it alone 15966 */ 15967 if (ill->ill_mtu_userspecified) { 15968 mutex_exit(&ill->ill_lock); 15969 break; 15970 } 15971 ill->ill_max_mtu = ill->ill_max_frag; 15972 if (ill->ill_isv6) { 15973 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15974 ill->ill_max_mtu = IPV6_MIN_MTU; 15975 } else { 15976 if (ill->ill_max_mtu < IP_MIN_MTU) 15977 ill->ill_max_mtu = IP_MIN_MTU; 15978 } 15979 for (ipif = ill->ill_ipif; ipif != NULL; 15980 ipif = ipif->ipif_next) { 15981 /* 15982 * Don't override the mtu if the user 15983 * has explicitly set it. 15984 */ 15985 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15986 continue; 15987 ipif->ipif_mtu = (uint_t)notify->dl_data; 15988 if (ipif->ipif_isv6) 15989 ire = ipif_to_ire_v6(ipif); 15990 else 15991 ire = ipif_to_ire(ipif); 15992 if (ire != NULL) { 15993 ire->ire_max_frag = ipif->ipif_mtu; 15994 ire_refrele(ire); 15995 } 15996 if (ipif->ipif_flags & IPIF_UP) { 15997 if (ill->ill_isv6) 15998 need_ire_walk_v6 = B_TRUE; 15999 else 16000 need_ire_walk_v4 = B_TRUE; 16001 } 16002 } 16003 mutex_exit(&ill->ill_lock); 16004 if (need_ire_walk_v4) 16005 ire_walk_v4(ill_mtu_change, (char *)ill, 16006 ALL_ZONES, ipst); 16007 if (need_ire_walk_v6) 16008 ire_walk_v6(ill_mtu_change, (char *)ill, 16009 ALL_ZONES, ipst); 16010 break; 16011 case DL_NOTE_LINK_UP: 16012 case DL_NOTE_LINK_DOWN: { 16013 /* 16014 * We are writer. ill / phyint / ipsq assocs stable. 16015 * The RUNNING flag reflects the state of the link. 16016 */ 16017 phyint_t *phyint = ill->ill_phyint; 16018 uint64_t new_phyint_flags; 16019 boolean_t changed = B_FALSE; 16020 boolean_t went_up; 16021 16022 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16023 mutex_enter(&phyint->phyint_lock); 16024 new_phyint_flags = went_up ? 16025 phyint->phyint_flags | PHYI_RUNNING : 16026 phyint->phyint_flags & ~PHYI_RUNNING; 16027 if (new_phyint_flags != phyint->phyint_flags) { 16028 phyint->phyint_flags = new_phyint_flags; 16029 changed = B_TRUE; 16030 } 16031 mutex_exit(&phyint->phyint_lock); 16032 /* 16033 * ill_restart_dad handles the DAD restart and routing 16034 * socket notification logic. 16035 */ 16036 if (changed) { 16037 ill_restart_dad(phyint->phyint_illv4, went_up); 16038 ill_restart_dad(phyint->phyint_illv6, went_up); 16039 } 16040 break; 16041 } 16042 case DL_NOTE_PROMISC_ON_PHYS: 16043 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16044 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16045 mutex_enter(&ill->ill_lock); 16046 ill->ill_promisc_on_phys = B_TRUE; 16047 mutex_exit(&ill->ill_lock); 16048 break; 16049 case DL_NOTE_PROMISC_OFF_PHYS: 16050 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16051 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16052 mutex_enter(&ill->ill_lock); 16053 ill->ill_promisc_on_phys = B_FALSE; 16054 mutex_exit(&ill->ill_lock); 16055 break; 16056 case DL_NOTE_CAPAB_RENEG: 16057 /* 16058 * Something changed on the driver side. 16059 * It wants us to renegotiate the capabilities 16060 * on this ill. One possible cause is the aggregation 16061 * interface under us where a port got added or 16062 * went away. 16063 * 16064 * If the capability negotiation is already done 16065 * or is in progress, reset the capabilities and 16066 * mark the ill's ill_capab_reneg to be B_TRUE, 16067 * so that when the ack comes back, we can start 16068 * the renegotiation process. 16069 * 16070 * Note that if ill_capab_reneg is already B_TRUE 16071 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16072 * the capability resetting request has been sent 16073 * and the renegotiation has not been started yet; 16074 * nothing needs to be done in this case. 16075 */ 16076 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16077 ill_capability_reset(ill); 16078 ill->ill_capab_reneg = B_TRUE; 16079 } 16080 break; 16081 default: 16082 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16083 "type 0x%x for DL_NOTIFY_IND\n", 16084 notify->dl_notification)); 16085 break; 16086 } 16087 16088 /* 16089 * As this is an asynchronous operation, we 16090 * should not call ill_dlpi_done 16091 */ 16092 break; 16093 } 16094 case DL_NOTIFY_ACK: { 16095 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16096 16097 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16098 ill->ill_note_link = 1; 16099 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16100 break; 16101 } 16102 case DL_PHYS_ADDR_ACK: { 16103 /* 16104 * As part of plumbing the interface via SIOCSLIFNAME, 16105 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16106 * whose answers we receive here. As each answer is received, 16107 * we call ill_dlpi_done() to dispatch the next request as 16108 * we're processing the current one. Once all answers have 16109 * been received, we use ipsq_pending_mp_get() to dequeue the 16110 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16111 * is invoked from an ill queue, conn_oper_pending_ill is not 16112 * available, but we know the ioctl is pending on ill_wq.) 16113 */ 16114 uint_t paddrlen, paddroff; 16115 16116 paddrreq = ill->ill_phys_addr_pend; 16117 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16118 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16119 16120 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16121 if (paddrreq == DL_IPV6_TOKEN) { 16122 /* 16123 * bcopy to low-order bits of ill_token 16124 * 16125 * XXX Temporary hack - currently, all known tokens 16126 * are 64 bits, so I'll cheat for the moment. 16127 */ 16128 bcopy(mp->b_rptr + paddroff, 16129 &ill->ill_token.s6_addr32[2], paddrlen); 16130 ill->ill_token_length = paddrlen; 16131 break; 16132 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16133 ASSERT(ill->ill_nd_lla_mp == NULL); 16134 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16135 mp = NULL; 16136 break; 16137 } 16138 16139 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16140 ASSERT(ill->ill_phys_addr_mp == NULL); 16141 if (!ill->ill_ifname_pending) 16142 break; 16143 ill->ill_ifname_pending = 0; 16144 if (!ioctl_aborted) 16145 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16146 if (mp1 != NULL) { 16147 ASSERT(connp == NULL); 16148 q = ill->ill_wq; 16149 } 16150 /* 16151 * If any error acks received during the plumbing sequence, 16152 * ill_ifname_pending_err will be set. Break out and send up 16153 * the error to the pending ioctl. 16154 */ 16155 if (ill->ill_ifname_pending_err != 0) { 16156 err = ill->ill_ifname_pending_err; 16157 ill->ill_ifname_pending_err = 0; 16158 break; 16159 } 16160 16161 ill->ill_phys_addr_mp = mp; 16162 ill->ill_phys_addr = mp->b_rptr + paddroff; 16163 mp = NULL; 16164 16165 /* 16166 * If paddrlen is zero, the DLPI provider doesn't support 16167 * physical addresses. The other two tests were historical 16168 * workarounds for bugs in our former PPP implementation, but 16169 * now other things have grown dependencies on them -- e.g., 16170 * the tun module specifies a dl_addr_length of zero in its 16171 * DL_BIND_ACK, but then specifies an incorrect value in its 16172 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16173 * but only after careful testing ensures that all dependent 16174 * broken DLPI providers have been fixed. 16175 */ 16176 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16177 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16178 ill->ill_phys_addr = NULL; 16179 } else if (paddrlen != ill->ill_phys_addr_length) { 16180 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16181 paddrlen, ill->ill_phys_addr_length)); 16182 err = EINVAL; 16183 break; 16184 } 16185 16186 if (ill->ill_nd_lla_mp == NULL) { 16187 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16188 err = ENOMEM; 16189 break; 16190 } 16191 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16192 } 16193 16194 /* 16195 * Set the interface token. If the zeroth interface address 16196 * is unspecified, then set it to the link local address. 16197 */ 16198 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16199 (void) ill_setdefaulttoken(ill); 16200 16201 ASSERT(ill->ill_ipif->ipif_id == 0); 16202 if (ipif != NULL && 16203 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16204 (void) ipif_setlinklocal(ipif); 16205 } 16206 break; 16207 } 16208 case DL_OK_ACK: 16209 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16210 dl_primstr((int)dloa->dl_correct_primitive), 16211 dloa->dl_correct_primitive)); 16212 switch (dloa->dl_correct_primitive) { 16213 case DL_PROMISCON_REQ: 16214 case DL_PROMISCOFF_REQ: 16215 case DL_ENABMULTI_REQ: 16216 case DL_DISABMULTI_REQ: 16217 case DL_UNBIND_REQ: 16218 case DL_ATTACH_REQ: 16219 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16220 break; 16221 } 16222 break; 16223 default: 16224 break; 16225 } 16226 16227 freemsg(mp); 16228 if (mp1 != NULL) { 16229 /* 16230 * The operation must complete without EINPROGRESS 16231 * since ipsq_pending_mp_get() has removed the mblk 16232 * from ipsq_pending_mp. Otherwise, the operation 16233 * will be stuck forever in the ipsq. 16234 */ 16235 ASSERT(err != EINPROGRESS); 16236 16237 switch (ipsq->ipsq_current_ioctl) { 16238 case 0: 16239 ipsq_current_finish(ipsq); 16240 break; 16241 16242 case SIOCLIFADDIF: 16243 case SIOCSLIFNAME: 16244 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16245 break; 16246 16247 default: 16248 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16249 break; 16250 } 16251 } 16252 } 16253 16254 /* 16255 * ip_rput_other is called by ip_rput to handle messages modifying the global 16256 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16257 */ 16258 /* ARGSUSED */ 16259 void 16260 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16261 { 16262 ill_t *ill; 16263 struct iocblk *iocp; 16264 mblk_t *mp1; 16265 conn_t *connp = NULL; 16266 16267 ip1dbg(("ip_rput_other ")); 16268 ill = (ill_t *)q->q_ptr; 16269 /* 16270 * This routine is not a writer in the case of SIOCGTUNPARAM 16271 * in which case ipsq is NULL. 16272 */ 16273 if (ipsq != NULL) { 16274 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16275 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16276 } 16277 16278 switch (mp->b_datap->db_type) { 16279 case M_ERROR: 16280 case M_HANGUP: 16281 /* 16282 * The device has a problem. We force the ILL down. It can 16283 * be brought up again manually using SIOCSIFFLAGS (via 16284 * ifconfig or equivalent). 16285 */ 16286 ASSERT(ipsq != NULL); 16287 if (mp->b_rptr < mp->b_wptr) 16288 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16289 if (ill->ill_error == 0) 16290 ill->ill_error = ENXIO; 16291 if (!ill_down_start(q, mp)) 16292 return; 16293 ipif_all_down_tail(ipsq, q, mp, NULL); 16294 break; 16295 case M_IOCACK: 16296 iocp = (struct iocblk *)mp->b_rptr; 16297 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16298 switch (iocp->ioc_cmd) { 16299 case SIOCSTUNPARAM: 16300 case OSIOCSTUNPARAM: 16301 ASSERT(ipsq != NULL); 16302 /* 16303 * Finish socket ioctl passed through to tun. 16304 * We should have an IOCTL waiting on this. 16305 */ 16306 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16307 if (ill->ill_isv6) { 16308 struct iftun_req *ta; 16309 16310 /* 16311 * if a source or destination is 16312 * being set, try and set the link 16313 * local address for the tunnel 16314 */ 16315 ta = (struct iftun_req *)mp->b_cont-> 16316 b_cont->b_rptr; 16317 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16318 ipif_set_tun_llink(ill, ta); 16319 } 16320 16321 } 16322 if (mp1 != NULL) { 16323 /* 16324 * Now copy back the b_next/b_prev used by 16325 * mi code for the mi_copy* functions. 16326 * See ip_sioctl_tunparam() for the reason. 16327 * Also protect against missing b_cont. 16328 */ 16329 if (mp->b_cont != NULL) { 16330 mp->b_cont->b_next = 16331 mp1->b_cont->b_next; 16332 mp->b_cont->b_prev = 16333 mp1->b_cont->b_prev; 16334 } 16335 inet_freemsg(mp1); 16336 ASSERT(connp != NULL); 16337 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16338 iocp->ioc_error, NO_COPYOUT, ipsq); 16339 } else { 16340 ASSERT(connp == NULL); 16341 putnext(q, mp); 16342 } 16343 break; 16344 case SIOCGTUNPARAM: 16345 case OSIOCGTUNPARAM: 16346 /* 16347 * This is really M_IOCDATA from the tunnel driver. 16348 * convert back and complete the ioctl. 16349 * We should have an IOCTL waiting on this. 16350 */ 16351 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16352 if (mp1) { 16353 /* 16354 * Now copy back the b_next/b_prev used by 16355 * mi code for the mi_copy* functions. 16356 * See ip_sioctl_tunparam() for the reason. 16357 * Also protect against missing b_cont. 16358 */ 16359 if (mp->b_cont != NULL) { 16360 mp->b_cont->b_next = 16361 mp1->b_cont->b_next; 16362 mp->b_cont->b_prev = 16363 mp1->b_cont->b_prev; 16364 } 16365 inet_freemsg(mp1); 16366 if (iocp->ioc_error == 0) 16367 mp->b_datap->db_type = M_IOCDATA; 16368 ASSERT(connp != NULL); 16369 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16370 iocp->ioc_error, COPYOUT, NULL); 16371 } else { 16372 ASSERT(connp == NULL); 16373 putnext(q, mp); 16374 } 16375 break; 16376 default: 16377 break; 16378 } 16379 break; 16380 case M_IOCNAK: 16381 iocp = (struct iocblk *)mp->b_rptr; 16382 16383 switch (iocp->ioc_cmd) { 16384 int mode; 16385 16386 case DL_IOC_HDR_INFO: 16387 /* 16388 * If this was the first attempt turn of the 16389 * fastpath probing. 16390 */ 16391 mutex_enter(&ill->ill_lock); 16392 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16393 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16394 mutex_exit(&ill->ill_lock); 16395 ill_fastpath_nack(ill); 16396 ip1dbg(("ip_rput: DLPI fastpath off on " 16397 "interface %s\n", 16398 ill->ill_name)); 16399 } else { 16400 mutex_exit(&ill->ill_lock); 16401 } 16402 freemsg(mp); 16403 break; 16404 case SIOCSTUNPARAM: 16405 case OSIOCSTUNPARAM: 16406 ASSERT(ipsq != NULL); 16407 /* 16408 * Finish socket ioctl passed through to tun 16409 * We should have an IOCTL waiting on this. 16410 */ 16411 /* FALLTHRU */ 16412 case SIOCGTUNPARAM: 16413 case OSIOCGTUNPARAM: 16414 /* 16415 * This is really M_IOCDATA from the tunnel driver. 16416 * convert back and complete the ioctl. 16417 * We should have an IOCTL waiting on this. 16418 */ 16419 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16420 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16421 mp1 = ill_pending_mp_get(ill, &connp, 16422 iocp->ioc_id); 16423 mode = COPYOUT; 16424 ipsq = NULL; 16425 } else { 16426 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16427 mode = NO_COPYOUT; 16428 } 16429 if (mp1 != NULL) { 16430 /* 16431 * Now copy back the b_next/b_prev used by 16432 * mi code for the mi_copy* functions. 16433 * See ip_sioctl_tunparam() for the reason. 16434 * Also protect against missing b_cont. 16435 */ 16436 if (mp->b_cont != NULL) { 16437 mp->b_cont->b_next = 16438 mp1->b_cont->b_next; 16439 mp->b_cont->b_prev = 16440 mp1->b_cont->b_prev; 16441 } 16442 inet_freemsg(mp1); 16443 if (iocp->ioc_error == 0) 16444 iocp->ioc_error = EINVAL; 16445 ASSERT(connp != NULL); 16446 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16447 iocp->ioc_error, mode, ipsq); 16448 } else { 16449 ASSERT(connp == NULL); 16450 putnext(q, mp); 16451 } 16452 break; 16453 default: 16454 break; 16455 } 16456 default: 16457 break; 16458 } 16459 } 16460 16461 /* 16462 * NOTE : This function does not ire_refrele the ire argument passed in. 16463 * 16464 * IPQoS notes 16465 * IP policy is invoked twice for a forwarded packet, once on the read side 16466 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16467 * enabled. An additional parameter, in_ill, has been added for this purpose. 16468 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16469 * because ip_mroute drops this information. 16470 * 16471 */ 16472 void 16473 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16474 { 16475 uint32_t old_pkt_len; 16476 uint32_t pkt_len; 16477 queue_t *q; 16478 uint32_t sum; 16479 #define rptr ((uchar_t *)ipha) 16480 uint32_t max_frag; 16481 uint32_t ill_index; 16482 ill_t *out_ill; 16483 mib2_ipIfStatsEntry_t *mibptr; 16484 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16485 16486 /* Get the ill_index of the incoming ILL */ 16487 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16488 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16489 16490 /* Initiate Read side IPPF processing */ 16491 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16492 ip_process(IPP_FWD_IN, &mp, ill_index); 16493 if (mp == NULL) { 16494 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16495 "during IPPF processing\n")); 16496 return; 16497 } 16498 } 16499 16500 /* Adjust the checksum to reflect the ttl decrement. */ 16501 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16502 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16503 16504 if (ipha->ipha_ttl-- <= 1) { 16505 if (ip_csum_hdr(ipha)) { 16506 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16507 goto drop_pkt; 16508 } 16509 /* 16510 * Note: ire_stq this will be NULL for multicast 16511 * datagrams using the long path through arp (the IRE 16512 * is not an IRE_CACHE). This should not cause 16513 * problems since we don't generate ICMP errors for 16514 * multicast packets. 16515 */ 16516 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16517 q = ire->ire_stq; 16518 if (q != NULL) { 16519 /* Sent by forwarding path, and router is global zone */ 16520 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16521 GLOBAL_ZONEID, ipst); 16522 } else 16523 freemsg(mp); 16524 return; 16525 } 16526 16527 /* 16528 * Don't forward if the interface is down 16529 */ 16530 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16531 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16532 ip2dbg(("ip_rput_forward:interface is down\n")); 16533 goto drop_pkt; 16534 } 16535 16536 /* Get the ill_index of the outgoing ILL */ 16537 out_ill = ire_to_ill(ire); 16538 ill_index = out_ill->ill_phyint->phyint_ifindex; 16539 16540 DTRACE_PROBE4(ip4__forwarding__start, 16541 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16542 16543 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16544 ipst->ips_ipv4firewall_forwarding, 16545 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16546 16547 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16548 16549 if (mp == NULL) 16550 return; 16551 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16552 16553 if (is_system_labeled()) { 16554 mblk_t *mp1; 16555 16556 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16557 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16558 goto drop_pkt; 16559 } 16560 /* Size may have changed */ 16561 mp = mp1; 16562 ipha = (ipha_t *)mp->b_rptr; 16563 pkt_len = ntohs(ipha->ipha_length); 16564 } 16565 16566 /* Check if there are options to update */ 16567 if (!IS_SIMPLE_IPH(ipha)) { 16568 if (ip_csum_hdr(ipha)) { 16569 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16570 goto drop_pkt; 16571 } 16572 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16573 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16574 return; 16575 } 16576 16577 ipha->ipha_hdr_checksum = 0; 16578 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16579 } 16580 max_frag = ire->ire_max_frag; 16581 if (pkt_len > max_frag) { 16582 /* 16583 * It needs fragging on its way out. We haven't 16584 * verified the header checksum yet. Since we 16585 * are going to put a surely good checksum in the 16586 * outgoing header, we have to make sure that it 16587 * was good coming in. 16588 */ 16589 if (ip_csum_hdr(ipha)) { 16590 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16591 goto drop_pkt; 16592 } 16593 /* Initiate Write side IPPF processing */ 16594 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16595 ip_process(IPP_FWD_OUT, &mp, ill_index); 16596 if (mp == NULL) { 16597 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16598 " during IPPF processing\n")); 16599 return; 16600 } 16601 } 16602 /* 16603 * Handle labeled packet resizing. 16604 * 16605 * If we have added a label, inform ip_wput_frag() of its 16606 * effect on the MTU for ICMP messages. 16607 */ 16608 if (pkt_len > old_pkt_len) { 16609 uint32_t secopt_size; 16610 16611 secopt_size = pkt_len - old_pkt_len; 16612 if (secopt_size < max_frag) 16613 max_frag -= secopt_size; 16614 } 16615 16616 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16617 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16618 return; 16619 } 16620 16621 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16622 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16623 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16624 ipst->ips_ipv4firewall_physical_out, 16625 NULL, out_ill, ipha, mp, mp, 0, ipst); 16626 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16627 if (mp == NULL) 16628 return; 16629 16630 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16631 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16632 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16633 /* ip_xmit_v4 always consumes the packet */ 16634 return; 16635 16636 drop_pkt:; 16637 ip1dbg(("ip_rput_forward: drop pkt\n")); 16638 freemsg(mp); 16639 #undef rptr 16640 } 16641 16642 void 16643 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16644 { 16645 ire_t *ire; 16646 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16647 16648 ASSERT(!ipif->ipif_isv6); 16649 /* 16650 * Find an IRE which matches the destination and the outgoing 16651 * queue in the cache table. All we need is an IRE_CACHE which 16652 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16653 * then it is enough to have some IRE_CACHE in the group. 16654 */ 16655 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16656 dst = ipif->ipif_pp_dst_addr; 16657 16658 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16659 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16660 if (ire == NULL) { 16661 /* 16662 * Mark this packet to make it be delivered to 16663 * ip_rput_forward after the new ire has been 16664 * created. 16665 */ 16666 mp->b_prev = NULL; 16667 mp->b_next = mp; 16668 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16669 NULL, 0, GLOBAL_ZONEID, &zero_info); 16670 } else { 16671 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16672 IRE_REFRELE(ire); 16673 } 16674 } 16675 16676 /* Update any source route, record route or timestamp options */ 16677 static int 16678 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16679 { 16680 ipoptp_t opts; 16681 uchar_t *opt; 16682 uint8_t optval; 16683 uint8_t optlen; 16684 ipaddr_t dst; 16685 uint32_t ts; 16686 ire_t *dst_ire = NULL; 16687 ire_t *tmp_ire = NULL; 16688 timestruc_t now; 16689 16690 ip2dbg(("ip_rput_forward_options\n")); 16691 dst = ipha->ipha_dst; 16692 for (optval = ipoptp_first(&opts, ipha); 16693 optval != IPOPT_EOL; 16694 optval = ipoptp_next(&opts)) { 16695 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16696 opt = opts.ipoptp_cur; 16697 optlen = opts.ipoptp_len; 16698 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16699 optval, opts.ipoptp_len)); 16700 switch (optval) { 16701 uint32_t off; 16702 case IPOPT_SSRR: 16703 case IPOPT_LSRR: 16704 /* Check if adminstratively disabled */ 16705 if (!ipst->ips_ip_forward_src_routed) { 16706 if (ire->ire_stq != NULL) { 16707 /* 16708 * Sent by forwarding path, and router 16709 * is global zone 16710 */ 16711 icmp_unreachable(ire->ire_stq, mp, 16712 ICMP_SOURCE_ROUTE_FAILED, 16713 GLOBAL_ZONEID, ipst); 16714 } else { 16715 ip0dbg(("ip_rput_forward_options: " 16716 "unable to send unreach\n")); 16717 freemsg(mp); 16718 } 16719 return (-1); 16720 } 16721 16722 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16723 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16724 if (dst_ire == NULL) { 16725 /* 16726 * Must be partial since ip_rput_options 16727 * checked for strict. 16728 */ 16729 break; 16730 } 16731 off = opt[IPOPT_OFFSET]; 16732 off--; 16733 redo_srr: 16734 if (optlen < IP_ADDR_LEN || 16735 off > optlen - IP_ADDR_LEN) { 16736 /* End of source route */ 16737 ip1dbg(( 16738 "ip_rput_forward_options: end of SR\n")); 16739 ire_refrele(dst_ire); 16740 break; 16741 } 16742 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16743 bcopy(&ire->ire_src_addr, (char *)opt + off, 16744 IP_ADDR_LEN); 16745 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16746 ntohl(dst))); 16747 16748 /* 16749 * Check if our address is present more than 16750 * once as consecutive hops in source route. 16751 */ 16752 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16753 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16754 if (tmp_ire != NULL) { 16755 ire_refrele(tmp_ire); 16756 off += IP_ADDR_LEN; 16757 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16758 goto redo_srr; 16759 } 16760 ipha->ipha_dst = dst; 16761 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16762 ire_refrele(dst_ire); 16763 break; 16764 case IPOPT_RR: 16765 off = opt[IPOPT_OFFSET]; 16766 off--; 16767 if (optlen < IP_ADDR_LEN || 16768 off > optlen - IP_ADDR_LEN) { 16769 /* No more room - ignore */ 16770 ip1dbg(( 16771 "ip_rput_forward_options: end of RR\n")); 16772 break; 16773 } 16774 bcopy(&ire->ire_src_addr, (char *)opt + off, 16775 IP_ADDR_LEN); 16776 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16777 break; 16778 case IPOPT_TS: 16779 /* Insert timestamp if there is room */ 16780 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16781 case IPOPT_TS_TSONLY: 16782 off = IPOPT_TS_TIMELEN; 16783 break; 16784 case IPOPT_TS_PRESPEC: 16785 case IPOPT_TS_PRESPEC_RFC791: 16786 /* Verify that the address matched */ 16787 off = opt[IPOPT_OFFSET] - 1; 16788 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16789 dst_ire = ire_ctable_lookup(dst, 0, 16790 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16791 MATCH_IRE_TYPE, ipst); 16792 if (dst_ire == NULL) { 16793 /* Not for us */ 16794 break; 16795 } 16796 ire_refrele(dst_ire); 16797 /* FALLTHRU */ 16798 case IPOPT_TS_TSANDADDR: 16799 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16800 break; 16801 default: 16802 /* 16803 * ip_*put_options should have already 16804 * dropped this packet. 16805 */ 16806 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16807 "unknown IT - bug in ip_rput_options?\n"); 16808 return (0); /* Keep "lint" happy */ 16809 } 16810 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16811 /* Increase overflow counter */ 16812 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16813 opt[IPOPT_POS_OV_FLG] = 16814 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16815 (off << 4)); 16816 break; 16817 } 16818 off = opt[IPOPT_OFFSET] - 1; 16819 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16820 case IPOPT_TS_PRESPEC: 16821 case IPOPT_TS_PRESPEC_RFC791: 16822 case IPOPT_TS_TSANDADDR: 16823 bcopy(&ire->ire_src_addr, 16824 (char *)opt + off, IP_ADDR_LEN); 16825 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16826 /* FALLTHRU */ 16827 case IPOPT_TS_TSONLY: 16828 off = opt[IPOPT_OFFSET] - 1; 16829 /* Compute # of milliseconds since midnight */ 16830 gethrestime(&now); 16831 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16832 now.tv_nsec / (NANOSEC / MILLISEC); 16833 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16834 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16835 break; 16836 } 16837 break; 16838 } 16839 } 16840 return (0); 16841 } 16842 16843 /* 16844 * This is called after processing at least one of AH/ESP headers. 16845 * 16846 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16847 * the actual, physical interface on which the packet was received, 16848 * but, when ip_strict_dst_multihoming is set to 1, could be the 16849 * interface which had the ipha_dst configured when the packet went 16850 * through ip_rput. The ill_index corresponding to the recv_ill 16851 * is saved in ipsec_in_rill_index 16852 * 16853 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16854 * cannot assume "ire" points to valid data for any IPv6 cases. 16855 */ 16856 void 16857 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16858 { 16859 mblk_t *mp; 16860 ipaddr_t dst; 16861 in6_addr_t *v6dstp; 16862 ipha_t *ipha; 16863 ip6_t *ip6h; 16864 ipsec_in_t *ii; 16865 boolean_t ill_need_rele = B_FALSE; 16866 boolean_t rill_need_rele = B_FALSE; 16867 boolean_t ire_need_rele = B_FALSE; 16868 netstack_t *ns; 16869 ip_stack_t *ipst; 16870 16871 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16872 ASSERT(ii->ipsec_in_ill_index != 0); 16873 ns = ii->ipsec_in_ns; 16874 ASSERT(ii->ipsec_in_ns != NULL); 16875 ipst = ns->netstack_ip; 16876 16877 mp = ipsec_mp->b_cont; 16878 ASSERT(mp != NULL); 16879 16880 16881 if (ill == NULL) { 16882 ASSERT(recv_ill == NULL); 16883 /* 16884 * We need to get the original queue on which ip_rput_local 16885 * or ip_rput_data_v6 was called. 16886 */ 16887 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16888 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16889 ill_need_rele = B_TRUE; 16890 16891 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16892 recv_ill = ill_lookup_on_ifindex( 16893 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16894 NULL, NULL, NULL, NULL, ipst); 16895 rill_need_rele = B_TRUE; 16896 } else { 16897 recv_ill = ill; 16898 } 16899 16900 if ((ill == NULL) || (recv_ill == NULL)) { 16901 ip0dbg(("ip_fanout_proto_again: interface " 16902 "disappeared\n")); 16903 if (ill != NULL) 16904 ill_refrele(ill); 16905 if (recv_ill != NULL) 16906 ill_refrele(recv_ill); 16907 freemsg(ipsec_mp); 16908 return; 16909 } 16910 } 16911 16912 ASSERT(ill != NULL && recv_ill != NULL); 16913 16914 if (mp->b_datap->db_type == M_CTL) { 16915 /* 16916 * AH/ESP is returning the ICMP message after 16917 * removing their headers. Fanout again till 16918 * it gets to the right protocol. 16919 */ 16920 if (ii->ipsec_in_v4) { 16921 icmph_t *icmph; 16922 int iph_hdr_length; 16923 int hdr_length; 16924 16925 ipha = (ipha_t *)mp->b_rptr; 16926 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16927 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16928 ipha = (ipha_t *)&icmph[1]; 16929 hdr_length = IPH_HDR_LENGTH(ipha); 16930 /* 16931 * icmp_inbound_error_fanout may need to do pullupmsg. 16932 * Reset the type to M_DATA. 16933 */ 16934 mp->b_datap->db_type = M_DATA; 16935 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16936 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16937 B_FALSE, ill, ii->ipsec_in_zoneid); 16938 } else { 16939 icmp6_t *icmp6; 16940 int hdr_length; 16941 16942 ip6h = (ip6_t *)mp->b_rptr; 16943 /* Don't call hdr_length_v6() unless you have to. */ 16944 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16945 hdr_length = ip_hdr_length_v6(mp, ip6h); 16946 else 16947 hdr_length = IPV6_HDR_LEN; 16948 16949 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16950 /* 16951 * icmp_inbound_error_fanout_v6 may need to do 16952 * pullupmsg. Reset the type to M_DATA. 16953 */ 16954 mp->b_datap->db_type = M_DATA; 16955 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16956 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16957 } 16958 if (ill_need_rele) 16959 ill_refrele(ill); 16960 if (rill_need_rele) 16961 ill_refrele(recv_ill); 16962 return; 16963 } 16964 16965 if (ii->ipsec_in_v4) { 16966 ipha = (ipha_t *)mp->b_rptr; 16967 dst = ipha->ipha_dst; 16968 if (CLASSD(dst)) { 16969 /* 16970 * Multicast has to be delivered to all streams. 16971 */ 16972 dst = INADDR_BROADCAST; 16973 } 16974 16975 if (ire == NULL) { 16976 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16977 MBLK_GETLABEL(mp), ipst); 16978 if (ire == NULL) { 16979 if (ill_need_rele) 16980 ill_refrele(ill); 16981 if (rill_need_rele) 16982 ill_refrele(recv_ill); 16983 ip1dbg(("ip_fanout_proto_again: " 16984 "IRE not found")); 16985 freemsg(ipsec_mp); 16986 return; 16987 } 16988 ire_need_rele = B_TRUE; 16989 } 16990 16991 switch (ipha->ipha_protocol) { 16992 case IPPROTO_UDP: 16993 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16994 recv_ill); 16995 if (ire_need_rele) 16996 ire_refrele(ire); 16997 break; 16998 case IPPROTO_TCP: 16999 if (!ire_need_rele) 17000 IRE_REFHOLD(ire); 17001 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17002 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17003 IRE_REFRELE(ire); 17004 if (mp != NULL) 17005 squeue_enter_chain(GET_SQUEUE(mp), mp, 17006 mp, 1, SQTAG_IP_PROTO_AGAIN); 17007 break; 17008 case IPPROTO_SCTP: 17009 if (!ire_need_rele) 17010 IRE_REFHOLD(ire); 17011 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17012 ipsec_mp, 0, ill->ill_rq, dst); 17013 break; 17014 default: 17015 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17016 recv_ill, B_FALSE); 17017 if (ire_need_rele) 17018 ire_refrele(ire); 17019 break; 17020 } 17021 } else { 17022 uint32_t rput_flags = 0; 17023 17024 ip6h = (ip6_t *)mp->b_rptr; 17025 v6dstp = &ip6h->ip6_dst; 17026 /* 17027 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17028 * address. 17029 * 17030 * Currently, we don't store that state in the IPSEC_IN 17031 * message, and we may need to. 17032 */ 17033 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17034 IP6_IN_LLMCAST : 0); 17035 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17036 NULL, NULL); 17037 } 17038 if (ill_need_rele) 17039 ill_refrele(ill); 17040 if (rill_need_rele) 17041 ill_refrele(recv_ill); 17042 } 17043 17044 /* 17045 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17046 * returns 'true' if there are still fragments left on the queue, in 17047 * which case we restart the timer. 17048 */ 17049 void 17050 ill_frag_timer(void *arg) 17051 { 17052 ill_t *ill = (ill_t *)arg; 17053 boolean_t frag_pending; 17054 ip_stack_t *ipst = ill->ill_ipst; 17055 17056 mutex_enter(&ill->ill_lock); 17057 ASSERT(!ill->ill_fragtimer_executing); 17058 if (ill->ill_state_flags & ILL_CONDEMNED) { 17059 ill->ill_frag_timer_id = 0; 17060 mutex_exit(&ill->ill_lock); 17061 return; 17062 } 17063 ill->ill_fragtimer_executing = 1; 17064 mutex_exit(&ill->ill_lock); 17065 17066 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17067 17068 /* 17069 * Restart the timer, if we have fragments pending or if someone 17070 * wanted us to be scheduled again. 17071 */ 17072 mutex_enter(&ill->ill_lock); 17073 ill->ill_fragtimer_executing = 0; 17074 ill->ill_frag_timer_id = 0; 17075 if (frag_pending || ill->ill_fragtimer_needrestart) 17076 ill_frag_timer_start(ill); 17077 mutex_exit(&ill->ill_lock); 17078 } 17079 17080 void 17081 ill_frag_timer_start(ill_t *ill) 17082 { 17083 ip_stack_t *ipst = ill->ill_ipst; 17084 17085 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17086 17087 /* If the ill is closing or opening don't proceed */ 17088 if (ill->ill_state_flags & ILL_CONDEMNED) 17089 return; 17090 17091 if (ill->ill_fragtimer_executing) { 17092 /* 17093 * ill_frag_timer is currently executing. Just record the 17094 * the fact that we want the timer to be restarted. 17095 * ill_frag_timer will post a timeout before it returns, 17096 * ensuring it will be called again. 17097 */ 17098 ill->ill_fragtimer_needrestart = 1; 17099 return; 17100 } 17101 17102 if (ill->ill_frag_timer_id == 0) { 17103 /* 17104 * The timer is neither running nor is the timeout handler 17105 * executing. Post a timeout so that ill_frag_timer will be 17106 * called 17107 */ 17108 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17109 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17110 ill->ill_fragtimer_needrestart = 0; 17111 } 17112 } 17113 17114 /* 17115 * This routine is needed for loopback when forwarding multicasts. 17116 * 17117 * IPQoS Notes: 17118 * IPPF processing is done in fanout routines. 17119 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17120 * processing for IPsec packets is done when it comes back in clear. 17121 * NOTE : The callers of this function need to do the ire_refrele for the 17122 * ire that is being passed in. 17123 */ 17124 void 17125 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17126 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17127 { 17128 ill_t *ill = (ill_t *)q->q_ptr; 17129 uint32_t sum; 17130 uint32_t u1; 17131 uint32_t u2; 17132 int hdr_length; 17133 boolean_t mctl_present; 17134 mblk_t *first_mp = mp; 17135 mblk_t *hada_mp = NULL; 17136 ipha_t *inner_ipha; 17137 ip_stack_t *ipst; 17138 17139 ASSERT(recv_ill != NULL); 17140 ipst = recv_ill->ill_ipst; 17141 17142 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17143 "ip_rput_locl_start: q %p", q); 17144 17145 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17146 ASSERT(ill != NULL); 17147 17148 17149 #define rptr ((uchar_t *)ipha) 17150 #define iphs ((uint16_t *)ipha) 17151 17152 /* 17153 * no UDP or TCP packet should come here anymore. 17154 */ 17155 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17156 ipha->ipha_protocol != IPPROTO_UDP); 17157 17158 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17159 if (mctl_present && 17160 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17161 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17162 17163 /* 17164 * It's an IPsec accelerated packet. 17165 * Keep a pointer to the data attributes around until 17166 * we allocate the ipsec_info_t. 17167 */ 17168 IPSECHW_DEBUG(IPSECHW_PKT, 17169 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17170 hada_mp = first_mp; 17171 hada_mp->b_cont = NULL; 17172 /* 17173 * Since it is accelerated, it comes directly from 17174 * the ill and the data attributes is followed by 17175 * the packet data. 17176 */ 17177 ASSERT(mp->b_datap->db_type != M_CTL); 17178 first_mp = mp; 17179 mctl_present = B_FALSE; 17180 } 17181 17182 /* 17183 * IF M_CTL is not present, then ipsec_in_is_secure 17184 * should return B_TRUE. There is a case where loopback 17185 * packets has an M_CTL in the front with all the 17186 * IPsec options set to IPSEC_PREF_NEVER - which means 17187 * ipsec_in_is_secure will return B_FALSE. As loopback 17188 * packets never comes here, it is safe to ASSERT the 17189 * following. 17190 */ 17191 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17192 17193 /* 17194 * Also, we should never have an mctl_present if this is an 17195 * ESP-in-UDP packet. 17196 */ 17197 ASSERT(!mctl_present || !esp_in_udp_packet); 17198 17199 17200 /* u1 is # words of IP options */ 17201 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17202 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17203 17204 /* 17205 * Don't verify header checksum if we just removed UDP header or 17206 * packet is coming back from AH/ESP. 17207 */ 17208 if (!esp_in_udp_packet && !mctl_present) { 17209 if (u1) { 17210 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17211 if (hada_mp != NULL) 17212 freemsg(hada_mp); 17213 return; 17214 } 17215 } else { 17216 /* Check the IP header checksum. */ 17217 #define uph ((uint16_t *)ipha) 17218 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17219 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17220 #undef uph 17221 /* finish doing IP checksum */ 17222 sum = (sum & 0xFFFF) + (sum >> 16); 17223 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17224 if (sum && sum != 0xFFFF) { 17225 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17226 goto drop_pkt; 17227 } 17228 } 17229 } 17230 17231 /* 17232 * Count for SNMP of inbound packets for ire. As ip_proto_input 17233 * might be called more than once for secure packets, count only 17234 * the first time. 17235 */ 17236 if (!mctl_present) { 17237 UPDATE_IB_PKT_COUNT(ire); 17238 ire->ire_last_used_time = lbolt; 17239 } 17240 17241 /* Check for fragmentation offset. */ 17242 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17243 u1 = u2 & (IPH_MF | IPH_OFFSET); 17244 if (u1) { 17245 /* 17246 * We re-assemble fragments before we do the AH/ESP 17247 * processing. Thus, M_CTL should not be present 17248 * while we are re-assembling. 17249 */ 17250 ASSERT(!mctl_present); 17251 ASSERT(first_mp == mp); 17252 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17253 return; 17254 } 17255 /* 17256 * Make sure that first_mp points back to mp as 17257 * the mp we came in with could have changed in 17258 * ip_rput_fragment(). 17259 */ 17260 ipha = (ipha_t *)mp->b_rptr; 17261 first_mp = mp; 17262 } 17263 17264 /* 17265 * Clear hardware checksumming flag as it is currently only 17266 * used by TCP and UDP. 17267 */ 17268 DB_CKSUMFLAGS(mp) = 0; 17269 17270 /* Now we have a complete datagram, destined for this machine. */ 17271 u1 = IPH_HDR_LENGTH(ipha); 17272 switch (ipha->ipha_protocol) { 17273 case IPPROTO_ICMP: { 17274 ire_t *ire_zone; 17275 ilm_t *ilm; 17276 mblk_t *mp1; 17277 zoneid_t last_zoneid; 17278 17279 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17280 ASSERT(ire->ire_type == IRE_BROADCAST); 17281 /* 17282 * In the multicast case, applications may have joined 17283 * the group from different zones, so we need to deliver 17284 * the packet to each of them. Loop through the 17285 * multicast memberships structures (ilm) on the receive 17286 * ill and send a copy of the packet up each matching 17287 * one. However, we don't do this for multicasts sent on 17288 * the loopback interface (PHYI_LOOPBACK flag set) as 17289 * they must stay in the sender's zone. 17290 * 17291 * ilm_add_v6() ensures that ilms in the same zone are 17292 * contiguous in the ill_ilm list. We use this property 17293 * to avoid sending duplicates needed when two 17294 * applications in the same zone join the same group on 17295 * different logical interfaces: we ignore the ilm if 17296 * its zoneid is the same as the last matching one. 17297 * In addition, the sending of the packet for 17298 * ire_zoneid is delayed until all of the other ilms 17299 * have been exhausted. 17300 */ 17301 last_zoneid = -1; 17302 ILM_WALKER_HOLD(recv_ill); 17303 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17304 ilm = ilm->ilm_next) { 17305 if ((ilm->ilm_flags & ILM_DELETED) || 17306 ipha->ipha_dst != ilm->ilm_addr || 17307 ilm->ilm_zoneid == last_zoneid || 17308 ilm->ilm_zoneid == ire->ire_zoneid || 17309 ilm->ilm_zoneid == ALL_ZONES || 17310 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17311 continue; 17312 mp1 = ip_copymsg(first_mp); 17313 if (mp1 == NULL) 17314 continue; 17315 icmp_inbound(q, mp1, B_TRUE, ill, 17316 0, sum, mctl_present, B_TRUE, 17317 recv_ill, ilm->ilm_zoneid); 17318 last_zoneid = ilm->ilm_zoneid; 17319 } 17320 ILM_WALKER_RELE(recv_ill); 17321 } else if (ire->ire_type == IRE_BROADCAST) { 17322 /* 17323 * In the broadcast case, there may be many zones 17324 * which need a copy of the packet delivered to them. 17325 * There is one IRE_BROADCAST per broadcast address 17326 * and per zone; we walk those using a helper function. 17327 * In addition, the sending of the packet for ire is 17328 * delayed until all of the other ires have been 17329 * processed. 17330 */ 17331 IRB_REFHOLD(ire->ire_bucket); 17332 ire_zone = NULL; 17333 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17334 ire)) != NULL) { 17335 mp1 = ip_copymsg(first_mp); 17336 if (mp1 == NULL) 17337 continue; 17338 17339 UPDATE_IB_PKT_COUNT(ire_zone); 17340 ire_zone->ire_last_used_time = lbolt; 17341 icmp_inbound(q, mp1, B_TRUE, ill, 17342 0, sum, mctl_present, B_TRUE, 17343 recv_ill, ire_zone->ire_zoneid); 17344 } 17345 IRB_REFRELE(ire->ire_bucket); 17346 } 17347 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17348 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17349 ire->ire_zoneid); 17350 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17351 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17352 return; 17353 } 17354 case IPPROTO_IGMP: 17355 /* 17356 * If we are not willing to accept IGMP packets in clear, 17357 * then check with global policy. 17358 */ 17359 if (ipst->ips_igmp_accept_clear_messages == 0) { 17360 first_mp = ipsec_check_global_policy(first_mp, NULL, 17361 ipha, NULL, mctl_present, ipst->ips_netstack); 17362 if (first_mp == NULL) 17363 return; 17364 } 17365 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17366 freemsg(first_mp); 17367 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17368 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17369 return; 17370 } 17371 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17372 /* Bad packet - discarded by igmp_input */ 17373 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17374 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17375 if (mctl_present) 17376 freeb(first_mp); 17377 return; 17378 } 17379 /* 17380 * igmp_input() may have returned the pulled up message. 17381 * So first_mp and ipha need to be reinitialized. 17382 */ 17383 ipha = (ipha_t *)mp->b_rptr; 17384 if (mctl_present) 17385 first_mp->b_cont = mp; 17386 else 17387 first_mp = mp; 17388 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17389 connf_head != NULL) { 17390 /* No user-level listener for IGMP packets */ 17391 goto drop_pkt; 17392 } 17393 /* deliver to local raw users */ 17394 break; 17395 case IPPROTO_PIM: 17396 /* 17397 * If we are not willing to accept PIM packets in clear, 17398 * then check with global policy. 17399 */ 17400 if (ipst->ips_pim_accept_clear_messages == 0) { 17401 first_mp = ipsec_check_global_policy(first_mp, NULL, 17402 ipha, NULL, mctl_present, ipst->ips_netstack); 17403 if (first_mp == NULL) 17404 return; 17405 } 17406 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17407 freemsg(first_mp); 17408 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17409 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17410 return; 17411 } 17412 if (pim_input(q, mp, ill) != 0) { 17413 /* Bad packet - discarded by pim_input */ 17414 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17415 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17416 if (mctl_present) 17417 freeb(first_mp); 17418 return; 17419 } 17420 17421 /* 17422 * pim_input() may have pulled up the message so ipha needs to 17423 * be reinitialized. 17424 */ 17425 ipha = (ipha_t *)mp->b_rptr; 17426 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17427 connf_head != NULL) { 17428 /* No user-level listener for PIM packets */ 17429 goto drop_pkt; 17430 } 17431 /* deliver to local raw users */ 17432 break; 17433 case IPPROTO_ENCAP: 17434 /* 17435 * Handle self-encapsulated packets (IP-in-IP where 17436 * the inner addresses == the outer addresses). 17437 */ 17438 hdr_length = IPH_HDR_LENGTH(ipha); 17439 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17440 mp->b_wptr) { 17441 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17442 sizeof (ipha_t) - mp->b_rptr)) { 17443 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17444 freemsg(first_mp); 17445 return; 17446 } 17447 ipha = (ipha_t *)mp->b_rptr; 17448 } 17449 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17450 /* 17451 * Check the sanity of the inner IP header. 17452 */ 17453 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17454 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17455 freemsg(first_mp); 17456 return; 17457 } 17458 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17459 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17460 freemsg(first_mp); 17461 return; 17462 } 17463 if (inner_ipha->ipha_src == ipha->ipha_src && 17464 inner_ipha->ipha_dst == ipha->ipha_dst) { 17465 ipsec_in_t *ii; 17466 17467 /* 17468 * Self-encapsulated tunnel packet. Remove 17469 * the outer IP header and fanout again. 17470 * We also need to make sure that the inner 17471 * header is pulled up until options. 17472 */ 17473 mp->b_rptr = (uchar_t *)inner_ipha; 17474 ipha = inner_ipha; 17475 hdr_length = IPH_HDR_LENGTH(ipha); 17476 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17477 if (!pullupmsg(mp, (uchar_t *)ipha + 17478 + hdr_length - mp->b_rptr)) { 17479 freemsg(first_mp); 17480 return; 17481 } 17482 ipha = (ipha_t *)mp->b_rptr; 17483 } 17484 if (hdr_length > sizeof (ipha_t)) { 17485 /* We got options on the inner packet. */ 17486 ipaddr_t dst = ipha->ipha_dst; 17487 17488 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17489 -1) { 17490 /* Bad options! */ 17491 return; 17492 } 17493 if (dst != ipha->ipha_dst) { 17494 /* 17495 * Someone put a source-route in 17496 * the inside header of a self- 17497 * encapsulated packet. Drop it 17498 * with extreme prejudice and let 17499 * the sender know. 17500 */ 17501 icmp_unreachable(q, first_mp, 17502 ICMP_SOURCE_ROUTE_FAILED, 17503 recv_ill->ill_zoneid, ipst); 17504 return; 17505 } 17506 } 17507 if (!mctl_present) { 17508 ASSERT(first_mp == mp); 17509 /* 17510 * This means that somebody is sending 17511 * Self-encapsualted packets without AH/ESP. 17512 * If AH/ESP was present, we would have already 17513 * allocated the first_mp. 17514 * 17515 * Send this packet to find a tunnel endpoint. 17516 * if I can't find one, an ICMP 17517 * PROTOCOL_UNREACHABLE will get sent. 17518 */ 17519 goto fanout; 17520 } 17521 /* 17522 * We generally store the ill_index if we need to 17523 * do IPsec processing as we lose the ill queue when 17524 * we come back. But in this case, we never should 17525 * have to store the ill_index here as it should have 17526 * been stored previously when we processed the 17527 * AH/ESP header in this routine or for non-ipsec 17528 * cases, we still have the queue. But for some bad 17529 * packets from the wire, we can get to IPsec after 17530 * this and we better store the index for that case. 17531 */ 17532 ill = (ill_t *)q->q_ptr; 17533 ii = (ipsec_in_t *)first_mp->b_rptr; 17534 ii->ipsec_in_ill_index = 17535 ill->ill_phyint->phyint_ifindex; 17536 ii->ipsec_in_rill_index = 17537 recv_ill->ill_phyint->phyint_ifindex; 17538 if (ii->ipsec_in_decaps) { 17539 /* 17540 * This packet is self-encapsulated multiple 17541 * times. We don't want to recurse infinitely. 17542 * To keep it simple, drop the packet. 17543 */ 17544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17545 freemsg(first_mp); 17546 return; 17547 } 17548 ii->ipsec_in_decaps = B_TRUE; 17549 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17550 ire); 17551 return; 17552 } 17553 break; 17554 case IPPROTO_AH: 17555 case IPPROTO_ESP: { 17556 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17557 17558 /* 17559 * Fast path for AH/ESP. If this is the first time 17560 * we are sending a datagram to AH/ESP, allocate 17561 * a IPSEC_IN message and prepend it. Otherwise, 17562 * just fanout. 17563 */ 17564 17565 int ipsec_rc; 17566 ipsec_in_t *ii; 17567 netstack_t *ns = ipst->ips_netstack; 17568 17569 IP_STAT(ipst, ipsec_proto_ahesp); 17570 if (!mctl_present) { 17571 ASSERT(first_mp == mp); 17572 first_mp = ipsec_in_alloc(B_TRUE, ns); 17573 if (first_mp == NULL) { 17574 ip1dbg(("ip_proto_input: IPSEC_IN " 17575 "allocation failure.\n")); 17576 freemsg(hada_mp); /* okay ifnull */ 17577 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17578 freemsg(mp); 17579 return; 17580 } 17581 /* 17582 * Store the ill_index so that when we come back 17583 * from IPsec we ride on the same queue. 17584 */ 17585 ill = (ill_t *)q->q_ptr; 17586 ii = (ipsec_in_t *)first_mp->b_rptr; 17587 ii->ipsec_in_ill_index = 17588 ill->ill_phyint->phyint_ifindex; 17589 ii->ipsec_in_rill_index = 17590 recv_ill->ill_phyint->phyint_ifindex; 17591 first_mp->b_cont = mp; 17592 /* 17593 * Cache hardware acceleration info. 17594 */ 17595 if (hada_mp != NULL) { 17596 IPSECHW_DEBUG(IPSECHW_PKT, 17597 ("ip_rput_local: caching data attr.\n")); 17598 ii->ipsec_in_accelerated = B_TRUE; 17599 ii->ipsec_in_da = hada_mp; 17600 hada_mp = NULL; 17601 } 17602 } else { 17603 ii = (ipsec_in_t *)first_mp->b_rptr; 17604 } 17605 17606 if (!ipsec_loaded(ipss)) { 17607 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17608 ire->ire_zoneid, ipst); 17609 return; 17610 } 17611 17612 ns = ipst->ips_netstack; 17613 /* select inbound SA and have IPsec process the pkt */ 17614 if (ipha->ipha_protocol == IPPROTO_ESP) { 17615 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17616 boolean_t esp_in_udp_sa; 17617 if (esph == NULL) 17618 return; 17619 ASSERT(ii->ipsec_in_esp_sa != NULL); 17620 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17621 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17622 IPSA_F_NATT) != 0); 17623 /* 17624 * The following is a fancy, but quick, way of saying: 17625 * ESP-in-UDP SA and Raw ESP packet --> drop 17626 * OR 17627 * ESP SA and ESP-in-UDP packet --> drop 17628 */ 17629 if (esp_in_udp_sa != esp_in_udp_packet) { 17630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17631 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17632 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17633 &ns->netstack_ipsec->ipsec_dropper); 17634 return; 17635 } 17636 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17637 first_mp, esph); 17638 } else { 17639 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17640 if (ah == NULL) 17641 return; 17642 ASSERT(ii->ipsec_in_ah_sa != NULL); 17643 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17644 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17645 first_mp, ah); 17646 } 17647 17648 switch (ipsec_rc) { 17649 case IPSEC_STATUS_SUCCESS: 17650 break; 17651 case IPSEC_STATUS_FAILED: 17652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17653 /* FALLTHRU */ 17654 case IPSEC_STATUS_PENDING: 17655 return; 17656 } 17657 /* we're done with IPsec processing, send it up */ 17658 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17659 return; 17660 } 17661 default: 17662 break; 17663 } 17664 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17665 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17666 ire->ire_zoneid)); 17667 goto drop_pkt; 17668 } 17669 /* 17670 * Handle protocols with which IP is less intimate. There 17671 * can be more than one stream bound to a particular 17672 * protocol. When this is the case, each one gets a copy 17673 * of any incoming packets. 17674 */ 17675 fanout: 17676 ip_fanout_proto(q, first_mp, ill, ipha, 17677 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17678 B_TRUE, recv_ill, ire->ire_zoneid); 17679 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17680 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17681 return; 17682 17683 drop_pkt: 17684 freemsg(first_mp); 17685 if (hada_mp != NULL) 17686 freeb(hada_mp); 17687 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17688 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17689 #undef rptr 17690 #undef iphs 17691 17692 } 17693 17694 /* 17695 * Update any source route, record route or timestamp options. 17696 * Check that we are at end of strict source route. 17697 * The options have already been checked for sanity in ip_rput_options(). 17698 */ 17699 static boolean_t 17700 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17701 ip_stack_t *ipst) 17702 { 17703 ipoptp_t opts; 17704 uchar_t *opt; 17705 uint8_t optval; 17706 uint8_t optlen; 17707 ipaddr_t dst; 17708 uint32_t ts; 17709 ire_t *dst_ire; 17710 timestruc_t now; 17711 zoneid_t zoneid; 17712 ill_t *ill; 17713 17714 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17715 17716 ip2dbg(("ip_rput_local_options\n")); 17717 17718 for (optval = ipoptp_first(&opts, ipha); 17719 optval != IPOPT_EOL; 17720 optval = ipoptp_next(&opts)) { 17721 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17722 opt = opts.ipoptp_cur; 17723 optlen = opts.ipoptp_len; 17724 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17725 optval, optlen)); 17726 switch (optval) { 17727 uint32_t off; 17728 case IPOPT_SSRR: 17729 case IPOPT_LSRR: 17730 off = opt[IPOPT_OFFSET]; 17731 off--; 17732 if (optlen < IP_ADDR_LEN || 17733 off > optlen - IP_ADDR_LEN) { 17734 /* End of source route */ 17735 ip1dbg(("ip_rput_local_options: end of SR\n")); 17736 break; 17737 } 17738 /* 17739 * This will only happen if two consecutive entries 17740 * in the source route contains our address or if 17741 * it is a packet with a loose source route which 17742 * reaches us before consuming the whole source route 17743 */ 17744 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17745 if (optval == IPOPT_SSRR) { 17746 goto bad_src_route; 17747 } 17748 /* 17749 * Hack: instead of dropping the packet truncate the 17750 * source route to what has been used by filling the 17751 * rest with IPOPT_NOP. 17752 */ 17753 opt[IPOPT_OLEN] = (uint8_t)off; 17754 while (off < optlen) { 17755 opt[off++] = IPOPT_NOP; 17756 } 17757 break; 17758 case IPOPT_RR: 17759 off = opt[IPOPT_OFFSET]; 17760 off--; 17761 if (optlen < IP_ADDR_LEN || 17762 off > optlen - IP_ADDR_LEN) { 17763 /* No more room - ignore */ 17764 ip1dbg(( 17765 "ip_rput_local_options: end of RR\n")); 17766 break; 17767 } 17768 bcopy(&ire->ire_src_addr, (char *)opt + off, 17769 IP_ADDR_LEN); 17770 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17771 break; 17772 case IPOPT_TS: 17773 /* Insert timestamp if there is romm */ 17774 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17775 case IPOPT_TS_TSONLY: 17776 off = IPOPT_TS_TIMELEN; 17777 break; 17778 case IPOPT_TS_PRESPEC: 17779 case IPOPT_TS_PRESPEC_RFC791: 17780 /* Verify that the address matched */ 17781 off = opt[IPOPT_OFFSET] - 1; 17782 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17783 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17784 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17785 ipst); 17786 if (dst_ire == NULL) { 17787 /* Not for us */ 17788 break; 17789 } 17790 ire_refrele(dst_ire); 17791 /* FALLTHRU */ 17792 case IPOPT_TS_TSANDADDR: 17793 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17794 break; 17795 default: 17796 /* 17797 * ip_*put_options should have already 17798 * dropped this packet. 17799 */ 17800 cmn_err(CE_PANIC, "ip_rput_local_options: " 17801 "unknown IT - bug in ip_rput_options?\n"); 17802 return (B_TRUE); /* Keep "lint" happy */ 17803 } 17804 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17805 /* Increase overflow counter */ 17806 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17807 opt[IPOPT_POS_OV_FLG] = 17808 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17809 (off << 4)); 17810 break; 17811 } 17812 off = opt[IPOPT_OFFSET] - 1; 17813 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17814 case IPOPT_TS_PRESPEC: 17815 case IPOPT_TS_PRESPEC_RFC791: 17816 case IPOPT_TS_TSANDADDR: 17817 bcopy(&ire->ire_src_addr, (char *)opt + off, 17818 IP_ADDR_LEN); 17819 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17820 /* FALLTHRU */ 17821 case IPOPT_TS_TSONLY: 17822 off = opt[IPOPT_OFFSET] - 1; 17823 /* Compute # of milliseconds since midnight */ 17824 gethrestime(&now); 17825 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17826 now.tv_nsec / (NANOSEC / MILLISEC); 17827 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17828 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17829 break; 17830 } 17831 break; 17832 } 17833 } 17834 return (B_TRUE); 17835 17836 bad_src_route: 17837 q = WR(q); 17838 if (q->q_next != NULL) 17839 ill = q->q_ptr; 17840 else 17841 ill = NULL; 17842 17843 /* make sure we clear any indication of a hardware checksum */ 17844 DB_CKSUMFLAGS(mp) = 0; 17845 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17846 if (zoneid == ALL_ZONES) 17847 freemsg(mp); 17848 else 17849 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17850 return (B_FALSE); 17851 17852 } 17853 17854 /* 17855 * Process IP options in an inbound packet. If an option affects the 17856 * effective destination address, return the next hop address via dstp. 17857 * Returns -1 if something fails in which case an ICMP error has been sent 17858 * and mp freed. 17859 */ 17860 static int 17861 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17862 ip_stack_t *ipst) 17863 { 17864 ipoptp_t opts; 17865 uchar_t *opt; 17866 uint8_t optval; 17867 uint8_t optlen; 17868 ipaddr_t dst; 17869 intptr_t code = 0; 17870 ire_t *ire = NULL; 17871 zoneid_t zoneid; 17872 ill_t *ill; 17873 17874 ip2dbg(("ip_rput_options\n")); 17875 dst = ipha->ipha_dst; 17876 for (optval = ipoptp_first(&opts, ipha); 17877 optval != IPOPT_EOL; 17878 optval = ipoptp_next(&opts)) { 17879 opt = opts.ipoptp_cur; 17880 optlen = opts.ipoptp_len; 17881 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17882 optval, optlen)); 17883 /* 17884 * Note: we need to verify the checksum before we 17885 * modify anything thus this routine only extracts the next 17886 * hop dst from any source route. 17887 */ 17888 switch (optval) { 17889 uint32_t off; 17890 case IPOPT_SSRR: 17891 case IPOPT_LSRR: 17892 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17893 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17894 if (ire == NULL) { 17895 if (optval == IPOPT_SSRR) { 17896 ip1dbg(("ip_rput_options: not next" 17897 " strict source route 0x%x\n", 17898 ntohl(dst))); 17899 code = (char *)&ipha->ipha_dst - 17900 (char *)ipha; 17901 goto param_prob; /* RouterReq's */ 17902 } 17903 ip2dbg(("ip_rput_options: " 17904 "not next source route 0x%x\n", 17905 ntohl(dst))); 17906 break; 17907 } 17908 ire_refrele(ire); 17909 17910 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17911 ip1dbg(( 17912 "ip_rput_options: bad option offset\n")); 17913 code = (char *)&opt[IPOPT_OLEN] - 17914 (char *)ipha; 17915 goto param_prob; 17916 } 17917 off = opt[IPOPT_OFFSET]; 17918 off--; 17919 redo_srr: 17920 if (optlen < IP_ADDR_LEN || 17921 off > optlen - IP_ADDR_LEN) { 17922 /* End of source route */ 17923 ip1dbg(("ip_rput_options: end of SR\n")); 17924 break; 17925 } 17926 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17927 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17928 ntohl(dst))); 17929 17930 /* 17931 * Check if our address is present more than 17932 * once as consecutive hops in source route. 17933 * XXX verify per-interface ip_forwarding 17934 * for source route? 17935 */ 17936 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17937 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17938 17939 if (ire != NULL) { 17940 ire_refrele(ire); 17941 off += IP_ADDR_LEN; 17942 goto redo_srr; 17943 } 17944 17945 if (dst == htonl(INADDR_LOOPBACK)) { 17946 ip1dbg(("ip_rput_options: loopback addr in " 17947 "source route!\n")); 17948 goto bad_src_route; 17949 } 17950 /* 17951 * For strict: verify that dst is directly 17952 * reachable. 17953 */ 17954 if (optval == IPOPT_SSRR) { 17955 ire = ire_ftable_lookup(dst, 0, 0, 17956 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17957 MBLK_GETLABEL(mp), 17958 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17959 if (ire == NULL) { 17960 ip1dbg(("ip_rput_options: SSRR not " 17961 "directly reachable: 0x%x\n", 17962 ntohl(dst))); 17963 goto bad_src_route; 17964 } 17965 ire_refrele(ire); 17966 } 17967 /* 17968 * Defer update of the offset and the record route 17969 * until the packet is forwarded. 17970 */ 17971 break; 17972 case IPOPT_RR: 17973 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17974 ip1dbg(( 17975 "ip_rput_options: bad option offset\n")); 17976 code = (char *)&opt[IPOPT_OLEN] - 17977 (char *)ipha; 17978 goto param_prob; 17979 } 17980 break; 17981 case IPOPT_TS: 17982 /* 17983 * Verify that length >= 5 and that there is either 17984 * room for another timestamp or that the overflow 17985 * counter is not maxed out. 17986 */ 17987 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17988 if (optlen < IPOPT_MINLEN_IT) { 17989 goto param_prob; 17990 } 17991 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17992 ip1dbg(( 17993 "ip_rput_options: bad option offset\n")); 17994 code = (char *)&opt[IPOPT_OFFSET] - 17995 (char *)ipha; 17996 goto param_prob; 17997 } 17998 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17999 case IPOPT_TS_TSONLY: 18000 off = IPOPT_TS_TIMELEN; 18001 break; 18002 case IPOPT_TS_TSANDADDR: 18003 case IPOPT_TS_PRESPEC: 18004 case IPOPT_TS_PRESPEC_RFC791: 18005 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18006 break; 18007 default: 18008 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18009 (char *)ipha; 18010 goto param_prob; 18011 } 18012 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18013 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18014 /* 18015 * No room and the overflow counter is 15 18016 * already. 18017 */ 18018 goto param_prob; 18019 } 18020 break; 18021 } 18022 } 18023 18024 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18025 *dstp = dst; 18026 return (0); 18027 } 18028 18029 ip1dbg(("ip_rput_options: error processing IP options.")); 18030 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18031 18032 param_prob: 18033 q = WR(q); 18034 if (q->q_next != NULL) 18035 ill = q->q_ptr; 18036 else 18037 ill = NULL; 18038 18039 /* make sure we clear any indication of a hardware checksum */ 18040 DB_CKSUMFLAGS(mp) = 0; 18041 /* Don't know whether this is for non-global or global/forwarding */ 18042 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18043 if (zoneid == ALL_ZONES) 18044 freemsg(mp); 18045 else 18046 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18047 return (-1); 18048 18049 bad_src_route: 18050 q = WR(q); 18051 if (q->q_next != NULL) 18052 ill = q->q_ptr; 18053 else 18054 ill = NULL; 18055 18056 /* make sure we clear any indication of a hardware checksum */ 18057 DB_CKSUMFLAGS(mp) = 0; 18058 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18059 if (zoneid == ALL_ZONES) 18060 freemsg(mp); 18061 else 18062 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18063 return (-1); 18064 } 18065 18066 /* 18067 * IP & ICMP info in >=14 msg's ... 18068 * - ip fixed part (mib2_ip_t) 18069 * - icmp fixed part (mib2_icmp_t) 18070 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18071 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18072 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18073 * - ipRouteAttributeTable (ip 102) labeled routes 18074 * - ip multicast membership (ip_member_t) 18075 * - ip multicast source filtering (ip_grpsrc_t) 18076 * - igmp fixed part (struct igmpstat) 18077 * - multicast routing stats (struct mrtstat) 18078 * - multicast routing vifs (array of struct vifctl) 18079 * - multicast routing routes (array of struct mfcctl) 18080 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18081 * One per ill plus one generic 18082 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18083 * One per ill plus one generic 18084 * - ipv6RouteEntry all IPv6 IREs 18085 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18086 * - ipv6NetToMediaEntry all Neighbor Cache entries 18087 * - ipv6AddrEntry all IPv6 ipifs 18088 * - ipv6 multicast membership (ipv6_member_t) 18089 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18090 * 18091 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18092 * 18093 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18094 * already filled in by the caller. 18095 * Return value of 0 indicates that no messages were sent and caller 18096 * should free mpctl. 18097 */ 18098 int 18099 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18100 { 18101 ip_stack_t *ipst; 18102 sctp_stack_t *sctps; 18103 18104 if (q->q_next != NULL) { 18105 ipst = ILLQ_TO_IPST(q); 18106 } else { 18107 ipst = CONNQ_TO_IPST(q); 18108 } 18109 ASSERT(ipst != NULL); 18110 sctps = ipst->ips_netstack->netstack_sctp; 18111 18112 if (mpctl == NULL || mpctl->b_cont == NULL) { 18113 return (0); 18114 } 18115 18116 /* 18117 * For the purposes of the (broken) packet shell use 18118 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18119 * to make TCP and UDP appear first in the list of mib items. 18120 * TBD: We could expand this and use it in netstat so that 18121 * the kernel doesn't have to produce large tables (connections, 18122 * routes, etc) when netstat only wants the statistics or a particular 18123 * table. 18124 */ 18125 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18126 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18127 return (1); 18128 } 18129 } 18130 18131 if (level != MIB2_TCP) { 18132 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18133 return (1); 18134 } 18135 } 18136 18137 if (level != MIB2_UDP) { 18138 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18139 return (1); 18140 } 18141 } 18142 18143 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18144 ipst)) == NULL) { 18145 return (1); 18146 } 18147 18148 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18149 return (1); 18150 } 18151 18152 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18153 return (1); 18154 } 18155 18156 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18157 return (1); 18158 } 18159 18160 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18161 return (1); 18162 } 18163 18164 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18165 return (1); 18166 } 18167 18168 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18169 return (1); 18170 } 18171 18172 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18173 return (1); 18174 } 18175 18176 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18177 return (1); 18178 } 18179 18180 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18181 return (1); 18182 } 18183 18184 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18185 return (1); 18186 } 18187 18188 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18189 return (1); 18190 } 18191 18192 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18193 return (1); 18194 } 18195 18196 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18197 return (1); 18198 } 18199 18200 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18201 return (1); 18202 } 18203 18204 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18205 if (mpctl == NULL) { 18206 return (1); 18207 } 18208 18209 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18210 return (1); 18211 } 18212 freemsg(mpctl); 18213 return (1); 18214 } 18215 18216 18217 /* Get global (legacy) IPv4 statistics */ 18218 static mblk_t * 18219 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18220 ip_stack_t *ipst) 18221 { 18222 mib2_ip_t old_ip_mib; 18223 struct opthdr *optp; 18224 mblk_t *mp2ctl; 18225 18226 /* 18227 * make a copy of the original message 18228 */ 18229 mp2ctl = copymsg(mpctl); 18230 18231 /* fixed length IP structure... */ 18232 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18233 optp->level = MIB2_IP; 18234 optp->name = 0; 18235 SET_MIB(old_ip_mib.ipForwarding, 18236 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18237 SET_MIB(old_ip_mib.ipDefaultTTL, 18238 (uint32_t)ipst->ips_ip_def_ttl); 18239 SET_MIB(old_ip_mib.ipReasmTimeout, 18240 ipst->ips_ip_g_frag_timeout); 18241 SET_MIB(old_ip_mib.ipAddrEntrySize, 18242 sizeof (mib2_ipAddrEntry_t)); 18243 SET_MIB(old_ip_mib.ipRouteEntrySize, 18244 sizeof (mib2_ipRouteEntry_t)); 18245 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18246 sizeof (mib2_ipNetToMediaEntry_t)); 18247 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18248 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18249 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18250 sizeof (mib2_ipAttributeEntry_t)); 18251 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18252 18253 /* 18254 * Grab the statistics from the new IP MIB 18255 */ 18256 SET_MIB(old_ip_mib.ipInReceives, 18257 (uint32_t)ipmib->ipIfStatsHCInReceives); 18258 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18259 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18260 SET_MIB(old_ip_mib.ipForwDatagrams, 18261 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18262 SET_MIB(old_ip_mib.ipInUnknownProtos, 18263 ipmib->ipIfStatsInUnknownProtos); 18264 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18265 SET_MIB(old_ip_mib.ipInDelivers, 18266 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18267 SET_MIB(old_ip_mib.ipOutRequests, 18268 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18269 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18270 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18271 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18272 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18273 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18274 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18275 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18276 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18277 18278 /* ipRoutingDiscards is not being used */ 18279 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18280 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18281 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18282 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18283 SET_MIB(old_ip_mib.ipReasmDuplicates, 18284 ipmib->ipIfStatsReasmDuplicates); 18285 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18286 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18287 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18288 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18289 SET_MIB(old_ip_mib.rawipInOverflows, 18290 ipmib->rawipIfStatsInOverflows); 18291 18292 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18293 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18294 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18295 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18296 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18297 ipmib->ipIfStatsOutSwitchIPVersion); 18298 18299 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18300 (int)sizeof (old_ip_mib))) { 18301 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18302 (uint_t)sizeof (old_ip_mib))); 18303 } 18304 18305 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18306 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18307 (int)optp->level, (int)optp->name, (int)optp->len)); 18308 qreply(q, mpctl); 18309 return (mp2ctl); 18310 } 18311 18312 /* Per interface IPv4 statistics */ 18313 static mblk_t * 18314 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18315 { 18316 struct opthdr *optp; 18317 mblk_t *mp2ctl; 18318 ill_t *ill; 18319 ill_walk_context_t ctx; 18320 mblk_t *mp_tail = NULL; 18321 mib2_ipIfStatsEntry_t global_ip_mib; 18322 18323 /* 18324 * Make a copy of the original message 18325 */ 18326 mp2ctl = copymsg(mpctl); 18327 18328 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18329 optp->level = MIB2_IP; 18330 optp->name = MIB2_IP_TRAFFIC_STATS; 18331 /* Include "unknown interface" ip_mib */ 18332 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18333 ipst->ips_ip_mib.ipIfStatsIfIndex = 18334 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18335 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18336 (ipst->ips_ip_g_forward ? 1 : 2)); 18337 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18338 (uint32_t)ipst->ips_ip_def_ttl); 18339 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18340 sizeof (mib2_ipIfStatsEntry_t)); 18341 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18342 sizeof (mib2_ipAddrEntry_t)); 18343 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18344 sizeof (mib2_ipRouteEntry_t)); 18345 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18346 sizeof (mib2_ipNetToMediaEntry_t)); 18347 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18348 sizeof (ip_member_t)); 18349 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18350 sizeof (ip_grpsrc_t)); 18351 18352 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18353 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18354 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18355 "failed to allocate %u bytes\n", 18356 (uint_t)sizeof (ipst->ips_ip_mib))); 18357 } 18358 18359 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18360 18361 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18362 ill = ILL_START_WALK_V4(&ctx, ipst); 18363 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18364 ill->ill_ip_mib->ipIfStatsIfIndex = 18365 ill->ill_phyint->phyint_ifindex; 18366 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18367 (ipst->ips_ip_g_forward ? 1 : 2)); 18368 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18369 (uint32_t)ipst->ips_ip_def_ttl); 18370 18371 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18372 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18373 (char *)ill->ill_ip_mib, 18374 (int)sizeof (*ill->ill_ip_mib))) { 18375 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18376 "failed to allocate %u bytes\n", 18377 (uint_t)sizeof (*ill->ill_ip_mib))); 18378 } 18379 } 18380 rw_exit(&ipst->ips_ill_g_lock); 18381 18382 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18383 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18384 "level %d, name %d, len %d\n", 18385 (int)optp->level, (int)optp->name, (int)optp->len)); 18386 qreply(q, mpctl); 18387 18388 if (mp2ctl == NULL) 18389 return (NULL); 18390 18391 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18392 } 18393 18394 /* Global IPv4 ICMP statistics */ 18395 static mblk_t * 18396 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18397 { 18398 struct opthdr *optp; 18399 mblk_t *mp2ctl; 18400 18401 /* 18402 * Make a copy of the original message 18403 */ 18404 mp2ctl = copymsg(mpctl); 18405 18406 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18407 optp->level = MIB2_ICMP; 18408 optp->name = 0; 18409 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18410 (int)sizeof (ipst->ips_icmp_mib))) { 18411 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18412 (uint_t)sizeof (ipst->ips_icmp_mib))); 18413 } 18414 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18415 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18416 (int)optp->level, (int)optp->name, (int)optp->len)); 18417 qreply(q, mpctl); 18418 return (mp2ctl); 18419 } 18420 18421 /* Global IPv4 IGMP statistics */ 18422 static mblk_t * 18423 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18424 { 18425 struct opthdr *optp; 18426 mblk_t *mp2ctl; 18427 18428 /* 18429 * make a copy of the original message 18430 */ 18431 mp2ctl = copymsg(mpctl); 18432 18433 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18434 optp->level = EXPER_IGMP; 18435 optp->name = 0; 18436 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18437 (int)sizeof (ipst->ips_igmpstat))) { 18438 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18439 (uint_t)sizeof (ipst->ips_igmpstat))); 18440 } 18441 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18442 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18443 (int)optp->level, (int)optp->name, (int)optp->len)); 18444 qreply(q, mpctl); 18445 return (mp2ctl); 18446 } 18447 18448 /* Global IPv4 Multicast Routing statistics */ 18449 static mblk_t * 18450 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18451 { 18452 struct opthdr *optp; 18453 mblk_t *mp2ctl; 18454 18455 /* 18456 * make a copy of the original message 18457 */ 18458 mp2ctl = copymsg(mpctl); 18459 18460 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18461 optp->level = EXPER_DVMRP; 18462 optp->name = 0; 18463 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18464 ip0dbg(("ip_mroute_stats: failed\n")); 18465 } 18466 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18467 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18468 (int)optp->level, (int)optp->name, (int)optp->len)); 18469 qreply(q, mpctl); 18470 return (mp2ctl); 18471 } 18472 18473 /* IPv4 address information */ 18474 static mblk_t * 18475 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18476 { 18477 struct opthdr *optp; 18478 mblk_t *mp2ctl; 18479 mblk_t *mp_tail = NULL; 18480 ill_t *ill; 18481 ipif_t *ipif; 18482 uint_t bitval; 18483 mib2_ipAddrEntry_t mae; 18484 zoneid_t zoneid; 18485 ill_walk_context_t ctx; 18486 18487 /* 18488 * make a copy of the original message 18489 */ 18490 mp2ctl = copymsg(mpctl); 18491 18492 /* ipAddrEntryTable */ 18493 18494 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18495 optp->level = MIB2_IP; 18496 optp->name = MIB2_IP_ADDR; 18497 zoneid = Q_TO_CONN(q)->conn_zoneid; 18498 18499 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18500 ill = ILL_START_WALK_V4(&ctx, ipst); 18501 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18502 for (ipif = ill->ill_ipif; ipif != NULL; 18503 ipif = ipif->ipif_next) { 18504 if (ipif->ipif_zoneid != zoneid && 18505 ipif->ipif_zoneid != ALL_ZONES) 18506 continue; 18507 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18508 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18509 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18510 18511 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18512 OCTET_LENGTH); 18513 mae.ipAdEntIfIndex.o_length = 18514 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18515 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18516 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18517 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18518 mae.ipAdEntInfo.ae_subnet_len = 18519 ip_mask_to_plen(ipif->ipif_net_mask); 18520 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18521 for (bitval = 1; 18522 bitval && 18523 !(bitval & ipif->ipif_brd_addr); 18524 bitval <<= 1) 18525 noop; 18526 mae.ipAdEntBcastAddr = bitval; 18527 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18528 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18529 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18530 mae.ipAdEntInfo.ae_broadcast_addr = 18531 ipif->ipif_brd_addr; 18532 mae.ipAdEntInfo.ae_pp_dst_addr = 18533 ipif->ipif_pp_dst_addr; 18534 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18535 ill->ill_flags | ill->ill_phyint->phyint_flags; 18536 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18537 18538 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18539 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18540 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18541 "allocate %u bytes\n", 18542 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18543 } 18544 } 18545 } 18546 rw_exit(&ipst->ips_ill_g_lock); 18547 18548 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18549 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18550 (int)optp->level, (int)optp->name, (int)optp->len)); 18551 qreply(q, mpctl); 18552 return (mp2ctl); 18553 } 18554 18555 /* IPv6 address information */ 18556 static mblk_t * 18557 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18558 { 18559 struct opthdr *optp; 18560 mblk_t *mp2ctl; 18561 mblk_t *mp_tail = NULL; 18562 ill_t *ill; 18563 ipif_t *ipif; 18564 mib2_ipv6AddrEntry_t mae6; 18565 zoneid_t zoneid; 18566 ill_walk_context_t ctx; 18567 18568 /* 18569 * make a copy of the original message 18570 */ 18571 mp2ctl = copymsg(mpctl); 18572 18573 /* ipv6AddrEntryTable */ 18574 18575 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18576 optp->level = MIB2_IP6; 18577 optp->name = MIB2_IP6_ADDR; 18578 zoneid = Q_TO_CONN(q)->conn_zoneid; 18579 18580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18581 ill = ILL_START_WALK_V6(&ctx, ipst); 18582 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18583 for (ipif = ill->ill_ipif; ipif != NULL; 18584 ipif = ipif->ipif_next) { 18585 if (ipif->ipif_zoneid != zoneid && 18586 ipif->ipif_zoneid != ALL_ZONES) 18587 continue; 18588 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18589 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18590 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18591 18592 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18593 OCTET_LENGTH); 18594 mae6.ipv6AddrIfIndex.o_length = 18595 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18596 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18597 mae6.ipv6AddrPfxLength = 18598 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18599 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18600 mae6.ipv6AddrInfo.ae_subnet_len = 18601 mae6.ipv6AddrPfxLength; 18602 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18603 18604 /* Type: stateless(1), stateful(2), unknown(3) */ 18605 if (ipif->ipif_flags & IPIF_ADDRCONF) 18606 mae6.ipv6AddrType = 1; 18607 else 18608 mae6.ipv6AddrType = 2; 18609 /* Anycast: true(1), false(2) */ 18610 if (ipif->ipif_flags & IPIF_ANYCAST) 18611 mae6.ipv6AddrAnycastFlag = 1; 18612 else 18613 mae6.ipv6AddrAnycastFlag = 2; 18614 18615 /* 18616 * Address status: preferred(1), deprecated(2), 18617 * invalid(3), inaccessible(4), unknown(5) 18618 */ 18619 if (ipif->ipif_flags & IPIF_NOLOCAL) 18620 mae6.ipv6AddrStatus = 3; 18621 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18622 mae6.ipv6AddrStatus = 2; 18623 else 18624 mae6.ipv6AddrStatus = 1; 18625 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18626 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18627 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18628 ipif->ipif_v6pp_dst_addr; 18629 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18630 ill->ill_flags | ill->ill_phyint->phyint_flags; 18631 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18632 mae6.ipv6AddrIdentifier = ill->ill_token; 18633 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18634 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18635 mae6.ipv6AddrRetransmitTime = 18636 ill->ill_reachable_retrans_time; 18637 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18638 (char *)&mae6, 18639 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18640 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18641 "allocate %u bytes\n", 18642 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18643 } 18644 } 18645 } 18646 rw_exit(&ipst->ips_ill_g_lock); 18647 18648 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18649 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18650 (int)optp->level, (int)optp->name, (int)optp->len)); 18651 qreply(q, mpctl); 18652 return (mp2ctl); 18653 } 18654 18655 /* IPv4 multicast group membership. */ 18656 static mblk_t * 18657 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18658 { 18659 struct opthdr *optp; 18660 mblk_t *mp2ctl; 18661 ill_t *ill; 18662 ipif_t *ipif; 18663 ilm_t *ilm; 18664 ip_member_t ipm; 18665 mblk_t *mp_tail = NULL; 18666 ill_walk_context_t ctx; 18667 zoneid_t zoneid; 18668 18669 /* 18670 * make a copy of the original message 18671 */ 18672 mp2ctl = copymsg(mpctl); 18673 zoneid = Q_TO_CONN(q)->conn_zoneid; 18674 18675 /* ipGroupMember table */ 18676 optp = (struct opthdr *)&mpctl->b_rptr[ 18677 sizeof (struct T_optmgmt_ack)]; 18678 optp->level = MIB2_IP; 18679 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18680 18681 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18682 ill = ILL_START_WALK_V4(&ctx, ipst); 18683 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18684 ILM_WALKER_HOLD(ill); 18685 for (ipif = ill->ill_ipif; ipif != NULL; 18686 ipif = ipif->ipif_next) { 18687 if (ipif->ipif_zoneid != zoneid && 18688 ipif->ipif_zoneid != ALL_ZONES) 18689 continue; /* not this zone */ 18690 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18691 OCTET_LENGTH); 18692 ipm.ipGroupMemberIfIndex.o_length = 18693 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18694 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18695 ASSERT(ilm->ilm_ipif != NULL); 18696 ASSERT(ilm->ilm_ill == NULL); 18697 if (ilm->ilm_ipif != ipif) 18698 continue; 18699 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18700 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18701 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18702 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18703 (char *)&ipm, (int)sizeof (ipm))) { 18704 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18705 "failed to allocate %u bytes\n", 18706 (uint_t)sizeof (ipm))); 18707 } 18708 } 18709 } 18710 ILM_WALKER_RELE(ill); 18711 } 18712 rw_exit(&ipst->ips_ill_g_lock); 18713 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18714 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18715 (int)optp->level, (int)optp->name, (int)optp->len)); 18716 qreply(q, mpctl); 18717 return (mp2ctl); 18718 } 18719 18720 /* IPv6 multicast group membership. */ 18721 static mblk_t * 18722 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18723 { 18724 struct opthdr *optp; 18725 mblk_t *mp2ctl; 18726 ill_t *ill; 18727 ilm_t *ilm; 18728 ipv6_member_t ipm6; 18729 mblk_t *mp_tail = NULL; 18730 ill_walk_context_t ctx; 18731 zoneid_t zoneid; 18732 18733 /* 18734 * make a copy of the original message 18735 */ 18736 mp2ctl = copymsg(mpctl); 18737 zoneid = Q_TO_CONN(q)->conn_zoneid; 18738 18739 /* ip6GroupMember table */ 18740 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18741 optp->level = MIB2_IP6; 18742 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18743 18744 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18745 ill = ILL_START_WALK_V6(&ctx, ipst); 18746 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18747 ILM_WALKER_HOLD(ill); 18748 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18749 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18750 ASSERT(ilm->ilm_ipif == NULL); 18751 ASSERT(ilm->ilm_ill != NULL); 18752 if (ilm->ilm_zoneid != zoneid) 18753 continue; /* not this zone */ 18754 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18755 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18756 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18757 if (!snmp_append_data2(mpctl->b_cont, 18758 &mp_tail, 18759 (char *)&ipm6, (int)sizeof (ipm6))) { 18760 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18761 "failed to allocate %u bytes\n", 18762 (uint_t)sizeof (ipm6))); 18763 } 18764 } 18765 ILM_WALKER_RELE(ill); 18766 } 18767 rw_exit(&ipst->ips_ill_g_lock); 18768 18769 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18770 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18771 (int)optp->level, (int)optp->name, (int)optp->len)); 18772 qreply(q, mpctl); 18773 return (mp2ctl); 18774 } 18775 18776 /* IP multicast filtered sources */ 18777 static mblk_t * 18778 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18779 { 18780 struct opthdr *optp; 18781 mblk_t *mp2ctl; 18782 ill_t *ill; 18783 ipif_t *ipif; 18784 ilm_t *ilm; 18785 ip_grpsrc_t ips; 18786 mblk_t *mp_tail = NULL; 18787 ill_walk_context_t ctx; 18788 zoneid_t zoneid; 18789 int i; 18790 slist_t *sl; 18791 18792 /* 18793 * make a copy of the original message 18794 */ 18795 mp2ctl = copymsg(mpctl); 18796 zoneid = Q_TO_CONN(q)->conn_zoneid; 18797 18798 /* ipGroupSource table */ 18799 optp = (struct opthdr *)&mpctl->b_rptr[ 18800 sizeof (struct T_optmgmt_ack)]; 18801 optp->level = MIB2_IP; 18802 optp->name = EXPER_IP_GROUP_SOURCES; 18803 18804 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18805 ill = ILL_START_WALK_V4(&ctx, ipst); 18806 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18807 ILM_WALKER_HOLD(ill); 18808 for (ipif = ill->ill_ipif; ipif != NULL; 18809 ipif = ipif->ipif_next) { 18810 if (ipif->ipif_zoneid != zoneid) 18811 continue; /* not this zone */ 18812 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18813 OCTET_LENGTH); 18814 ips.ipGroupSourceIfIndex.o_length = 18815 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18816 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18817 ASSERT(ilm->ilm_ipif != NULL); 18818 ASSERT(ilm->ilm_ill == NULL); 18819 sl = ilm->ilm_filter; 18820 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18821 continue; 18822 ips.ipGroupSourceGroup = ilm->ilm_addr; 18823 for (i = 0; i < sl->sl_numsrc; i++) { 18824 if (!IN6_IS_ADDR_V4MAPPED( 18825 &sl->sl_addr[i])) 18826 continue; 18827 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18828 ips.ipGroupSourceAddress); 18829 if (snmp_append_data2(mpctl->b_cont, 18830 &mp_tail, (char *)&ips, 18831 (int)sizeof (ips)) == 0) { 18832 ip1dbg(("ip_snmp_get_mib2_" 18833 "ip_group_src: failed to " 18834 "allocate %u bytes\n", 18835 (uint_t)sizeof (ips))); 18836 } 18837 } 18838 } 18839 } 18840 ILM_WALKER_RELE(ill); 18841 } 18842 rw_exit(&ipst->ips_ill_g_lock); 18843 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18844 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18845 (int)optp->level, (int)optp->name, (int)optp->len)); 18846 qreply(q, mpctl); 18847 return (mp2ctl); 18848 } 18849 18850 /* IPv6 multicast filtered sources. */ 18851 static mblk_t * 18852 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18853 { 18854 struct opthdr *optp; 18855 mblk_t *mp2ctl; 18856 ill_t *ill; 18857 ilm_t *ilm; 18858 ipv6_grpsrc_t ips6; 18859 mblk_t *mp_tail = NULL; 18860 ill_walk_context_t ctx; 18861 zoneid_t zoneid; 18862 int i; 18863 slist_t *sl; 18864 18865 /* 18866 * make a copy of the original message 18867 */ 18868 mp2ctl = copymsg(mpctl); 18869 zoneid = Q_TO_CONN(q)->conn_zoneid; 18870 18871 /* ip6GroupMember table */ 18872 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18873 optp->level = MIB2_IP6; 18874 optp->name = EXPER_IP6_GROUP_SOURCES; 18875 18876 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18877 ill = ILL_START_WALK_V6(&ctx, ipst); 18878 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18879 ILM_WALKER_HOLD(ill); 18880 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18881 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18882 ASSERT(ilm->ilm_ipif == NULL); 18883 ASSERT(ilm->ilm_ill != NULL); 18884 sl = ilm->ilm_filter; 18885 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18886 continue; 18887 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18888 for (i = 0; i < sl->sl_numsrc; i++) { 18889 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18890 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18891 (char *)&ips6, (int)sizeof (ips6))) { 18892 ip1dbg(("ip_snmp_get_mib2_ip6_" 18893 "group_src: failed to allocate " 18894 "%u bytes\n", 18895 (uint_t)sizeof (ips6))); 18896 } 18897 } 18898 } 18899 ILM_WALKER_RELE(ill); 18900 } 18901 rw_exit(&ipst->ips_ill_g_lock); 18902 18903 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18904 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18905 (int)optp->level, (int)optp->name, (int)optp->len)); 18906 qreply(q, mpctl); 18907 return (mp2ctl); 18908 } 18909 18910 /* Multicast routing virtual interface table. */ 18911 static mblk_t * 18912 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18913 { 18914 struct opthdr *optp; 18915 mblk_t *mp2ctl; 18916 18917 /* 18918 * make a copy of the original message 18919 */ 18920 mp2ctl = copymsg(mpctl); 18921 18922 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18923 optp->level = EXPER_DVMRP; 18924 optp->name = EXPER_DVMRP_VIF; 18925 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18926 ip0dbg(("ip_mroute_vif: failed\n")); 18927 } 18928 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18929 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18930 (int)optp->level, (int)optp->name, (int)optp->len)); 18931 qreply(q, mpctl); 18932 return (mp2ctl); 18933 } 18934 18935 /* Multicast routing table. */ 18936 static mblk_t * 18937 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18938 { 18939 struct opthdr *optp; 18940 mblk_t *mp2ctl; 18941 18942 /* 18943 * make a copy of the original message 18944 */ 18945 mp2ctl = copymsg(mpctl); 18946 18947 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18948 optp->level = EXPER_DVMRP; 18949 optp->name = EXPER_DVMRP_MRT; 18950 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18951 ip0dbg(("ip_mroute_mrt: failed\n")); 18952 } 18953 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18954 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18955 (int)optp->level, (int)optp->name, (int)optp->len)); 18956 qreply(q, mpctl); 18957 return (mp2ctl); 18958 } 18959 18960 /* 18961 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18962 * in one IRE walk. 18963 */ 18964 static mblk_t * 18965 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18966 { 18967 struct opthdr *optp; 18968 mblk_t *mp2ctl; /* Returned */ 18969 mblk_t *mp3ctl; /* nettomedia */ 18970 mblk_t *mp4ctl; /* routeattrs */ 18971 iproutedata_t ird; 18972 zoneid_t zoneid; 18973 18974 /* 18975 * make copies of the original message 18976 * - mp2ctl is returned unchanged to the caller for his use 18977 * - mpctl is sent upstream as ipRouteEntryTable 18978 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18979 * - mp4ctl is sent upstream as ipRouteAttributeTable 18980 */ 18981 mp2ctl = copymsg(mpctl); 18982 mp3ctl = copymsg(mpctl); 18983 mp4ctl = copymsg(mpctl); 18984 if (mp3ctl == NULL || mp4ctl == NULL) { 18985 freemsg(mp4ctl); 18986 freemsg(mp3ctl); 18987 freemsg(mp2ctl); 18988 freemsg(mpctl); 18989 return (NULL); 18990 } 18991 18992 bzero(&ird, sizeof (ird)); 18993 18994 ird.ird_route.lp_head = mpctl->b_cont; 18995 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18996 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18997 18998 zoneid = Q_TO_CONN(q)->conn_zoneid; 18999 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19000 19001 /* ipRouteEntryTable in mpctl */ 19002 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19003 optp->level = MIB2_IP; 19004 optp->name = MIB2_IP_ROUTE; 19005 optp->len = msgdsize(ird.ird_route.lp_head); 19006 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19007 (int)optp->level, (int)optp->name, (int)optp->len)); 19008 qreply(q, mpctl); 19009 19010 /* ipNetToMediaEntryTable in mp3ctl */ 19011 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19012 optp->level = MIB2_IP; 19013 optp->name = MIB2_IP_MEDIA; 19014 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19015 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19016 (int)optp->level, (int)optp->name, (int)optp->len)); 19017 qreply(q, mp3ctl); 19018 19019 /* ipRouteAttributeTable in mp4ctl */ 19020 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19021 optp->level = MIB2_IP; 19022 optp->name = EXPER_IP_RTATTR; 19023 optp->len = msgdsize(ird.ird_attrs.lp_head); 19024 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19025 (int)optp->level, (int)optp->name, (int)optp->len)); 19026 if (optp->len == 0) 19027 freemsg(mp4ctl); 19028 else 19029 qreply(q, mp4ctl); 19030 19031 return (mp2ctl); 19032 } 19033 19034 /* 19035 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19036 * ipv6NetToMediaEntryTable in an NDP walk. 19037 */ 19038 static mblk_t * 19039 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19040 { 19041 struct opthdr *optp; 19042 mblk_t *mp2ctl; /* Returned */ 19043 mblk_t *mp3ctl; /* nettomedia */ 19044 mblk_t *mp4ctl; /* routeattrs */ 19045 iproutedata_t ird; 19046 zoneid_t zoneid; 19047 19048 /* 19049 * make copies of the original message 19050 * - mp2ctl is returned unchanged to the caller for his use 19051 * - mpctl is sent upstream as ipv6RouteEntryTable 19052 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19053 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19054 */ 19055 mp2ctl = copymsg(mpctl); 19056 mp3ctl = copymsg(mpctl); 19057 mp4ctl = copymsg(mpctl); 19058 if (mp3ctl == NULL || mp4ctl == NULL) { 19059 freemsg(mp4ctl); 19060 freemsg(mp3ctl); 19061 freemsg(mp2ctl); 19062 freemsg(mpctl); 19063 return (NULL); 19064 } 19065 19066 bzero(&ird, sizeof (ird)); 19067 19068 ird.ird_route.lp_head = mpctl->b_cont; 19069 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19070 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19071 19072 zoneid = Q_TO_CONN(q)->conn_zoneid; 19073 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19074 19075 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19076 optp->level = MIB2_IP6; 19077 optp->name = MIB2_IP6_ROUTE; 19078 optp->len = msgdsize(ird.ird_route.lp_head); 19079 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19080 (int)optp->level, (int)optp->name, (int)optp->len)); 19081 qreply(q, mpctl); 19082 19083 /* ipv6NetToMediaEntryTable in mp3ctl */ 19084 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19085 19086 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19087 optp->level = MIB2_IP6; 19088 optp->name = MIB2_IP6_MEDIA; 19089 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19090 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19091 (int)optp->level, (int)optp->name, (int)optp->len)); 19092 qreply(q, mp3ctl); 19093 19094 /* ipv6RouteAttributeTable in mp4ctl */ 19095 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19096 optp->level = MIB2_IP6; 19097 optp->name = EXPER_IP_RTATTR; 19098 optp->len = msgdsize(ird.ird_attrs.lp_head); 19099 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19100 (int)optp->level, (int)optp->name, (int)optp->len)); 19101 if (optp->len == 0) 19102 freemsg(mp4ctl); 19103 else 19104 qreply(q, mp4ctl); 19105 19106 return (mp2ctl); 19107 } 19108 19109 /* 19110 * IPv6 mib: One per ill 19111 */ 19112 static mblk_t * 19113 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19114 { 19115 struct opthdr *optp; 19116 mblk_t *mp2ctl; 19117 ill_t *ill; 19118 ill_walk_context_t ctx; 19119 mblk_t *mp_tail = NULL; 19120 19121 /* 19122 * Make a copy of the original message 19123 */ 19124 mp2ctl = copymsg(mpctl); 19125 19126 /* fixed length IPv6 structure ... */ 19127 19128 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19129 optp->level = MIB2_IP6; 19130 optp->name = 0; 19131 /* Include "unknown interface" ip6_mib */ 19132 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19133 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19134 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19135 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19136 ipst->ips_ipv6_forward ? 1 : 2); 19137 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19138 ipst->ips_ipv6_def_hops); 19139 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19140 sizeof (mib2_ipIfStatsEntry_t)); 19141 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19142 sizeof (mib2_ipv6AddrEntry_t)); 19143 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19144 sizeof (mib2_ipv6RouteEntry_t)); 19145 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19146 sizeof (mib2_ipv6NetToMediaEntry_t)); 19147 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19148 sizeof (ipv6_member_t)); 19149 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19150 sizeof (ipv6_grpsrc_t)); 19151 19152 /* 19153 * Synchronize 64- and 32-bit counters 19154 */ 19155 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19156 ipIfStatsHCInReceives); 19157 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19158 ipIfStatsHCInDelivers); 19159 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19160 ipIfStatsHCOutRequests); 19161 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19162 ipIfStatsHCOutForwDatagrams); 19163 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19164 ipIfStatsHCOutMcastPkts); 19165 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19166 ipIfStatsHCInMcastPkts); 19167 19168 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19169 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19170 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19171 (uint_t)sizeof (ipst->ips_ip6_mib))); 19172 } 19173 19174 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19175 ill = ILL_START_WALK_V6(&ctx, ipst); 19176 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19177 ill->ill_ip_mib->ipIfStatsIfIndex = 19178 ill->ill_phyint->phyint_ifindex; 19179 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19180 ipst->ips_ipv6_forward ? 1 : 2); 19181 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19182 ill->ill_max_hops); 19183 19184 /* 19185 * Synchronize 64- and 32-bit counters 19186 */ 19187 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19188 ipIfStatsHCInReceives); 19189 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19190 ipIfStatsHCInDelivers); 19191 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19192 ipIfStatsHCOutRequests); 19193 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19194 ipIfStatsHCOutForwDatagrams); 19195 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19196 ipIfStatsHCOutMcastPkts); 19197 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19198 ipIfStatsHCInMcastPkts); 19199 19200 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19201 (char *)ill->ill_ip_mib, 19202 (int)sizeof (*ill->ill_ip_mib))) { 19203 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19204 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19205 } 19206 } 19207 rw_exit(&ipst->ips_ill_g_lock); 19208 19209 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19210 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19211 (int)optp->level, (int)optp->name, (int)optp->len)); 19212 qreply(q, mpctl); 19213 return (mp2ctl); 19214 } 19215 19216 /* 19217 * ICMPv6 mib: One per ill 19218 */ 19219 static mblk_t * 19220 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19221 { 19222 struct opthdr *optp; 19223 mblk_t *mp2ctl; 19224 ill_t *ill; 19225 ill_walk_context_t ctx; 19226 mblk_t *mp_tail = NULL; 19227 /* 19228 * Make a copy of the original message 19229 */ 19230 mp2ctl = copymsg(mpctl); 19231 19232 /* fixed length ICMPv6 structure ... */ 19233 19234 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19235 optp->level = MIB2_ICMP6; 19236 optp->name = 0; 19237 /* Include "unknown interface" icmp6_mib */ 19238 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19239 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19240 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19241 sizeof (mib2_ipv6IfIcmpEntry_t); 19242 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19243 (char *)&ipst->ips_icmp6_mib, 19244 (int)sizeof (ipst->ips_icmp6_mib))) { 19245 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19246 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19247 } 19248 19249 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19250 ill = ILL_START_WALK_V6(&ctx, ipst); 19251 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19252 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19253 ill->ill_phyint->phyint_ifindex; 19254 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19255 (char *)ill->ill_icmp6_mib, 19256 (int)sizeof (*ill->ill_icmp6_mib))) { 19257 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19258 "%u bytes\n", 19259 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19260 } 19261 } 19262 rw_exit(&ipst->ips_ill_g_lock); 19263 19264 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19265 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19266 (int)optp->level, (int)optp->name, (int)optp->len)); 19267 qreply(q, mpctl); 19268 return (mp2ctl); 19269 } 19270 19271 /* 19272 * ire_walk routine to create both ipRouteEntryTable and 19273 * ipRouteAttributeTable in one IRE walk 19274 */ 19275 static void 19276 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19277 { 19278 ill_t *ill; 19279 ipif_t *ipif; 19280 mib2_ipRouteEntry_t *re; 19281 mib2_ipAttributeEntry_t *iae, *iaeptr; 19282 ipaddr_t gw_addr; 19283 tsol_ire_gw_secattr_t *attrp; 19284 tsol_gc_t *gc = NULL; 19285 tsol_gcgrp_t *gcgrp = NULL; 19286 uint_t sacnt = 0; 19287 int i; 19288 19289 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19290 19291 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19292 return; 19293 19294 if ((attrp = ire->ire_gw_secattr) != NULL) { 19295 mutex_enter(&attrp->igsa_lock); 19296 if ((gc = attrp->igsa_gc) != NULL) { 19297 gcgrp = gc->gc_grp; 19298 ASSERT(gcgrp != NULL); 19299 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19300 sacnt = 1; 19301 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19302 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19303 gc = gcgrp->gcgrp_head; 19304 sacnt = gcgrp->gcgrp_count; 19305 } 19306 mutex_exit(&attrp->igsa_lock); 19307 19308 /* do nothing if there's no gc to report */ 19309 if (gc == NULL) { 19310 ASSERT(sacnt == 0); 19311 if (gcgrp != NULL) { 19312 /* we might as well drop the lock now */ 19313 rw_exit(&gcgrp->gcgrp_rwlock); 19314 gcgrp = NULL; 19315 } 19316 attrp = NULL; 19317 } 19318 19319 ASSERT(gc == NULL || (gcgrp != NULL && 19320 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19321 } 19322 ASSERT(sacnt == 0 || gc != NULL); 19323 19324 if (sacnt != 0 && 19325 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19326 kmem_free(re, sizeof (*re)); 19327 rw_exit(&gcgrp->gcgrp_rwlock); 19328 return; 19329 } 19330 19331 /* 19332 * Return all IRE types for route table... let caller pick and choose 19333 */ 19334 re->ipRouteDest = ire->ire_addr; 19335 ipif = ire->ire_ipif; 19336 re->ipRouteIfIndex.o_length = 0; 19337 if (ire->ire_type == IRE_CACHE) { 19338 ill = (ill_t *)ire->ire_stq->q_ptr; 19339 re->ipRouteIfIndex.o_length = 19340 ill->ill_name_length == 0 ? 0 : 19341 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19342 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19343 re->ipRouteIfIndex.o_length); 19344 } else if (ipif != NULL) { 19345 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19346 re->ipRouteIfIndex.o_length = 19347 mi_strlen(re->ipRouteIfIndex.o_bytes); 19348 } 19349 re->ipRouteMetric1 = -1; 19350 re->ipRouteMetric2 = -1; 19351 re->ipRouteMetric3 = -1; 19352 re->ipRouteMetric4 = -1; 19353 19354 gw_addr = ire->ire_gateway_addr; 19355 19356 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19357 re->ipRouteNextHop = ire->ire_src_addr; 19358 else 19359 re->ipRouteNextHop = gw_addr; 19360 /* indirect(4), direct(3), or invalid(2) */ 19361 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19362 re->ipRouteType = 2; 19363 else 19364 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19365 re->ipRouteProto = -1; 19366 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19367 re->ipRouteMask = ire->ire_mask; 19368 re->ipRouteMetric5 = -1; 19369 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19370 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19371 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19372 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19373 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19374 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19375 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19376 re->ipRouteInfo.re_flags = ire->ire_flags; 19377 19378 if (ire->ire_flags & RTF_DYNAMIC) { 19379 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19380 } else { 19381 re->ipRouteInfo.re_ire_type = ire->ire_type; 19382 } 19383 19384 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19385 (char *)re, (int)sizeof (*re))) { 19386 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19387 (uint_t)sizeof (*re))); 19388 } 19389 19390 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19391 iaeptr->iae_routeidx = ird->ird_idx; 19392 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19393 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19394 } 19395 19396 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19397 (char *)iae, sacnt * sizeof (*iae))) { 19398 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19399 (unsigned)(sacnt * sizeof (*iae)))); 19400 } 19401 19402 /* bump route index for next pass */ 19403 ird->ird_idx++; 19404 19405 kmem_free(re, sizeof (*re)); 19406 if (sacnt != 0) 19407 kmem_free(iae, sacnt * sizeof (*iae)); 19408 19409 if (gcgrp != NULL) 19410 rw_exit(&gcgrp->gcgrp_rwlock); 19411 } 19412 19413 /* 19414 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19415 */ 19416 static void 19417 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19418 { 19419 ill_t *ill; 19420 ipif_t *ipif; 19421 mib2_ipv6RouteEntry_t *re; 19422 mib2_ipAttributeEntry_t *iae, *iaeptr; 19423 in6_addr_t gw_addr_v6; 19424 tsol_ire_gw_secattr_t *attrp; 19425 tsol_gc_t *gc = NULL; 19426 tsol_gcgrp_t *gcgrp = NULL; 19427 uint_t sacnt = 0; 19428 int i; 19429 19430 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19431 19432 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19433 return; 19434 19435 if ((attrp = ire->ire_gw_secattr) != NULL) { 19436 mutex_enter(&attrp->igsa_lock); 19437 if ((gc = attrp->igsa_gc) != NULL) { 19438 gcgrp = gc->gc_grp; 19439 ASSERT(gcgrp != NULL); 19440 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19441 sacnt = 1; 19442 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19443 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19444 gc = gcgrp->gcgrp_head; 19445 sacnt = gcgrp->gcgrp_count; 19446 } 19447 mutex_exit(&attrp->igsa_lock); 19448 19449 /* do nothing if there's no gc to report */ 19450 if (gc == NULL) { 19451 ASSERT(sacnt == 0); 19452 if (gcgrp != NULL) { 19453 /* we might as well drop the lock now */ 19454 rw_exit(&gcgrp->gcgrp_rwlock); 19455 gcgrp = NULL; 19456 } 19457 attrp = NULL; 19458 } 19459 19460 ASSERT(gc == NULL || (gcgrp != NULL && 19461 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19462 } 19463 ASSERT(sacnt == 0 || gc != NULL); 19464 19465 if (sacnt != 0 && 19466 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19467 kmem_free(re, sizeof (*re)); 19468 rw_exit(&gcgrp->gcgrp_rwlock); 19469 return; 19470 } 19471 19472 /* 19473 * Return all IRE types for route table... let caller pick and choose 19474 */ 19475 re->ipv6RouteDest = ire->ire_addr_v6; 19476 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19477 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19478 re->ipv6RouteIfIndex.o_length = 0; 19479 ipif = ire->ire_ipif; 19480 if (ire->ire_type == IRE_CACHE) { 19481 ill = (ill_t *)ire->ire_stq->q_ptr; 19482 re->ipv6RouteIfIndex.o_length = 19483 ill->ill_name_length == 0 ? 0 : 19484 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19485 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19486 re->ipv6RouteIfIndex.o_length); 19487 } else if (ipif != NULL) { 19488 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19489 re->ipv6RouteIfIndex.o_length = 19490 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19491 } 19492 19493 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19494 19495 mutex_enter(&ire->ire_lock); 19496 gw_addr_v6 = ire->ire_gateway_addr_v6; 19497 mutex_exit(&ire->ire_lock); 19498 19499 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19500 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19501 else 19502 re->ipv6RouteNextHop = gw_addr_v6; 19503 19504 /* remote(4), local(3), or discard(2) */ 19505 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19506 re->ipv6RouteType = 2; 19507 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19508 re->ipv6RouteType = 3; 19509 else 19510 re->ipv6RouteType = 4; 19511 19512 re->ipv6RouteProtocol = -1; 19513 re->ipv6RoutePolicy = 0; 19514 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19515 re->ipv6RouteNextHopRDI = 0; 19516 re->ipv6RouteWeight = 0; 19517 re->ipv6RouteMetric = 0; 19518 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19519 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19520 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19521 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19522 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19523 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19524 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19525 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19526 19527 if (ire->ire_flags & RTF_DYNAMIC) { 19528 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19529 } else { 19530 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19531 } 19532 19533 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19534 (char *)re, (int)sizeof (*re))) { 19535 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19536 (uint_t)sizeof (*re))); 19537 } 19538 19539 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19540 iaeptr->iae_routeidx = ird->ird_idx; 19541 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19542 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19543 } 19544 19545 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19546 (char *)iae, sacnt * sizeof (*iae))) { 19547 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19548 (unsigned)(sacnt * sizeof (*iae)))); 19549 } 19550 19551 /* bump route index for next pass */ 19552 ird->ird_idx++; 19553 19554 kmem_free(re, sizeof (*re)); 19555 if (sacnt != 0) 19556 kmem_free(iae, sacnt * sizeof (*iae)); 19557 19558 if (gcgrp != NULL) 19559 rw_exit(&gcgrp->gcgrp_rwlock); 19560 } 19561 19562 /* 19563 * ndp_walk routine to create ipv6NetToMediaEntryTable 19564 */ 19565 static int 19566 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19567 { 19568 ill_t *ill; 19569 mib2_ipv6NetToMediaEntry_t ntme; 19570 dl_unitdata_req_t *dl; 19571 19572 ill = nce->nce_ill; 19573 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19574 return (0); 19575 19576 /* 19577 * Neighbor cache entry attached to IRE with on-link 19578 * destination. 19579 */ 19580 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19581 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19582 if ((ill->ill_flags & ILLF_XRESOLV) && 19583 (nce->nce_res_mp != NULL)) { 19584 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19585 ntme.ipv6NetToMediaPhysAddress.o_length = 19586 dl->dl_dest_addr_length; 19587 } else { 19588 ntme.ipv6NetToMediaPhysAddress.o_length = 19589 ill->ill_phys_addr_length; 19590 } 19591 if (nce->nce_res_mp != NULL) { 19592 bcopy((char *)nce->nce_res_mp->b_rptr + 19593 NCE_LL_ADDR_OFFSET(ill), 19594 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19595 ntme.ipv6NetToMediaPhysAddress.o_length); 19596 } else { 19597 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19598 ill->ill_phys_addr_length); 19599 } 19600 /* 19601 * Note: Returns ND_* states. Should be: 19602 * reachable(1), stale(2), delay(3), probe(4), 19603 * invalid(5), unknown(6) 19604 */ 19605 ntme.ipv6NetToMediaState = nce->nce_state; 19606 ntme.ipv6NetToMediaLastUpdated = 0; 19607 19608 /* other(1), dynamic(2), static(3), local(4) */ 19609 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19610 ntme.ipv6NetToMediaType = 4; 19611 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19612 ntme.ipv6NetToMediaType = 1; 19613 } else { 19614 ntme.ipv6NetToMediaType = 2; 19615 } 19616 19617 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19618 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19619 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19620 (uint_t)sizeof (ntme))); 19621 } 19622 return (0); 19623 } 19624 19625 /* 19626 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19627 */ 19628 /* ARGSUSED */ 19629 int 19630 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19631 { 19632 switch (level) { 19633 case MIB2_IP: 19634 case MIB2_ICMP: 19635 switch (name) { 19636 default: 19637 break; 19638 } 19639 return (1); 19640 default: 19641 return (1); 19642 } 19643 } 19644 19645 /* 19646 * When there exists both a 64- and 32-bit counter of a particular type 19647 * (i.e., InReceives), only the 64-bit counters are added. 19648 */ 19649 void 19650 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19651 { 19652 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19653 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19654 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19655 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19656 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19657 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19658 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19659 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19660 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19661 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19662 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19663 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19664 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19665 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19666 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19667 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19668 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19669 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19670 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19671 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19672 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19673 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19674 o2->ipIfStatsInWrongIPVersion); 19675 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19676 o2->ipIfStatsInWrongIPVersion); 19677 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19678 o2->ipIfStatsOutSwitchIPVersion); 19679 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19680 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19681 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19682 o2->ipIfStatsHCInForwDatagrams); 19683 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19684 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19685 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19686 o2->ipIfStatsHCOutForwDatagrams); 19687 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19688 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19689 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19690 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19691 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19692 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19693 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19694 o2->ipIfStatsHCOutMcastOctets); 19695 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19696 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19697 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19698 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19699 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19700 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19701 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19702 } 19703 19704 void 19705 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19706 { 19707 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19708 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19709 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19710 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19711 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19712 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19713 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19714 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19715 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19716 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19717 o2->ipv6IfIcmpInRouterSolicits); 19718 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19719 o2->ipv6IfIcmpInRouterAdvertisements); 19720 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19721 o2->ipv6IfIcmpInNeighborSolicits); 19722 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19723 o2->ipv6IfIcmpInNeighborAdvertisements); 19724 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19725 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19726 o2->ipv6IfIcmpInGroupMembQueries); 19727 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19728 o2->ipv6IfIcmpInGroupMembResponses); 19729 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19730 o2->ipv6IfIcmpInGroupMembReductions); 19731 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19732 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19733 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19734 o2->ipv6IfIcmpOutDestUnreachs); 19735 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19736 o2->ipv6IfIcmpOutAdminProhibs); 19737 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19738 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19739 o2->ipv6IfIcmpOutParmProblems); 19740 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19741 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19742 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19743 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19744 o2->ipv6IfIcmpOutRouterSolicits); 19745 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19746 o2->ipv6IfIcmpOutRouterAdvertisements); 19747 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19748 o2->ipv6IfIcmpOutNeighborSolicits); 19749 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19750 o2->ipv6IfIcmpOutNeighborAdvertisements); 19751 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19752 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19753 o2->ipv6IfIcmpOutGroupMembQueries); 19754 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19755 o2->ipv6IfIcmpOutGroupMembResponses); 19756 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19757 o2->ipv6IfIcmpOutGroupMembReductions); 19758 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19759 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19760 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19761 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19762 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19763 o2->ipv6IfIcmpInBadNeighborSolicitations); 19764 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19765 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19766 o2->ipv6IfIcmpInGroupMembTotal); 19767 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19768 o2->ipv6IfIcmpInGroupMembBadQueries); 19769 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19770 o2->ipv6IfIcmpInGroupMembBadReports); 19771 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19772 o2->ipv6IfIcmpInGroupMembOurReports); 19773 } 19774 19775 /* 19776 * Called before the options are updated to check if this packet will 19777 * be source routed from here. 19778 * This routine assumes that the options are well formed i.e. that they 19779 * have already been checked. 19780 */ 19781 static boolean_t 19782 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19783 { 19784 ipoptp_t opts; 19785 uchar_t *opt; 19786 uint8_t optval; 19787 uint8_t optlen; 19788 ipaddr_t dst; 19789 ire_t *ire; 19790 19791 if (IS_SIMPLE_IPH(ipha)) { 19792 ip2dbg(("not source routed\n")); 19793 return (B_FALSE); 19794 } 19795 dst = ipha->ipha_dst; 19796 for (optval = ipoptp_first(&opts, ipha); 19797 optval != IPOPT_EOL; 19798 optval = ipoptp_next(&opts)) { 19799 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19800 opt = opts.ipoptp_cur; 19801 optlen = opts.ipoptp_len; 19802 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19803 optval, optlen)); 19804 switch (optval) { 19805 uint32_t off; 19806 case IPOPT_SSRR: 19807 case IPOPT_LSRR: 19808 /* 19809 * If dst is one of our addresses and there are some 19810 * entries left in the source route return (true). 19811 */ 19812 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19813 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19814 if (ire == NULL) { 19815 ip2dbg(("ip_source_routed: not next" 19816 " source route 0x%x\n", 19817 ntohl(dst))); 19818 return (B_FALSE); 19819 } 19820 ire_refrele(ire); 19821 off = opt[IPOPT_OFFSET]; 19822 off--; 19823 if (optlen < IP_ADDR_LEN || 19824 off > optlen - IP_ADDR_LEN) { 19825 /* End of source route */ 19826 ip1dbg(("ip_source_routed: end of SR\n")); 19827 return (B_FALSE); 19828 } 19829 return (B_TRUE); 19830 } 19831 } 19832 ip2dbg(("not source routed\n")); 19833 return (B_FALSE); 19834 } 19835 19836 /* 19837 * Check if the packet contains any source route. 19838 */ 19839 static boolean_t 19840 ip_source_route_included(ipha_t *ipha) 19841 { 19842 ipoptp_t opts; 19843 uint8_t optval; 19844 19845 if (IS_SIMPLE_IPH(ipha)) 19846 return (B_FALSE); 19847 for (optval = ipoptp_first(&opts, ipha); 19848 optval != IPOPT_EOL; 19849 optval = ipoptp_next(&opts)) { 19850 switch (optval) { 19851 case IPOPT_SSRR: 19852 case IPOPT_LSRR: 19853 return (B_TRUE); 19854 } 19855 } 19856 return (B_FALSE); 19857 } 19858 19859 /* 19860 * Called when the IRE expiration timer fires. 19861 */ 19862 void 19863 ip_trash_timer_expire(void *args) 19864 { 19865 int flush_flag = 0; 19866 ire_expire_arg_t iea; 19867 ip_stack_t *ipst = (ip_stack_t *)args; 19868 19869 iea.iea_ipst = ipst; /* No netstack_hold */ 19870 19871 /* 19872 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19873 * This lock makes sure that a new invocation of this function 19874 * that occurs due to an almost immediate timer firing will not 19875 * progress beyond this point until the current invocation is done 19876 */ 19877 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19878 ipst->ips_ip_ire_expire_id = 0; 19879 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19880 19881 /* Periodic timer */ 19882 if (ipst->ips_ip_ire_arp_time_elapsed >= 19883 ipst->ips_ip_ire_arp_interval) { 19884 /* 19885 * Remove all IRE_CACHE entries since they might 19886 * contain arp information. 19887 */ 19888 flush_flag |= FLUSH_ARP_TIME; 19889 ipst->ips_ip_ire_arp_time_elapsed = 0; 19890 IP_STAT(ipst, ip_ire_arp_timer_expired); 19891 } 19892 if (ipst->ips_ip_ire_rd_time_elapsed >= 19893 ipst->ips_ip_ire_redir_interval) { 19894 /* Remove all redirects */ 19895 flush_flag |= FLUSH_REDIRECT_TIME; 19896 ipst->ips_ip_ire_rd_time_elapsed = 0; 19897 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19898 } 19899 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19900 ipst->ips_ip_ire_pathmtu_interval) { 19901 /* Increase path mtu */ 19902 flush_flag |= FLUSH_MTU_TIME; 19903 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19904 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19905 } 19906 19907 /* 19908 * Optimize for the case when there are no redirects in the 19909 * ftable, that is, no need to walk the ftable in that case. 19910 */ 19911 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19912 iea.iea_flush_flag = flush_flag; 19913 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19914 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19915 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19916 NULL, ALL_ZONES, ipst); 19917 } 19918 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19919 ipst->ips_ip_redirect_cnt > 0) { 19920 iea.iea_flush_flag = flush_flag; 19921 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19922 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19923 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19924 } 19925 if (flush_flag & FLUSH_MTU_TIME) { 19926 /* 19927 * Walk all IPv6 IRE's and update them 19928 * Note that ARP and redirect timers are not 19929 * needed since NUD handles stale entries. 19930 */ 19931 flush_flag = FLUSH_MTU_TIME; 19932 iea.iea_flush_flag = flush_flag; 19933 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19934 ALL_ZONES, ipst); 19935 } 19936 19937 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19938 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19939 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19940 19941 /* 19942 * Hold the lock to serialize timeout calls and prevent 19943 * stale values in ip_ire_expire_id. Otherwise it is possible 19944 * for the timer to fire and a new invocation of this function 19945 * to start before the return value of timeout has been stored 19946 * in ip_ire_expire_id by the current invocation. 19947 */ 19948 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19949 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19950 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19951 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19952 } 19953 19954 /* 19955 * Called by the memory allocator subsystem directly, when the system 19956 * is running low on memory. 19957 */ 19958 /* ARGSUSED */ 19959 void 19960 ip_trash_ire_reclaim(void *args) 19961 { 19962 netstack_handle_t nh; 19963 netstack_t *ns; 19964 19965 netstack_next_init(&nh); 19966 while ((ns = netstack_next(&nh)) != NULL) { 19967 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19968 netstack_rele(ns); 19969 } 19970 netstack_next_fini(&nh); 19971 } 19972 19973 static void 19974 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19975 { 19976 ire_cache_count_t icc; 19977 ire_cache_reclaim_t icr; 19978 ncc_cache_count_t ncc; 19979 nce_cache_reclaim_t ncr; 19980 uint_t delete_cnt; 19981 /* 19982 * Memory reclaim call back. 19983 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19984 * Then, with a target of freeing 1/Nth of IRE_CACHE 19985 * entries, determine what fraction to free for 19986 * each category of IRE_CACHE entries giving absolute priority 19987 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19988 * entry will be freed unless all offlink entries are freed). 19989 */ 19990 icc.icc_total = 0; 19991 icc.icc_unused = 0; 19992 icc.icc_offlink = 0; 19993 icc.icc_pmtu = 0; 19994 icc.icc_onlink = 0; 19995 ire_walk(ire_cache_count, (char *)&icc, ipst); 19996 19997 /* 19998 * Free NCEs for IPv6 like the onlink ires. 19999 */ 20000 ncc.ncc_total = 0; 20001 ncc.ncc_host = 0; 20002 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20003 20004 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20005 icc.icc_pmtu + icc.icc_onlink); 20006 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20007 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20008 if (delete_cnt == 0) 20009 return; 20010 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20011 /* Always delete all unused offlink entries */ 20012 icr.icr_ipst = ipst; 20013 icr.icr_unused = 1; 20014 if (delete_cnt <= icc.icc_unused) { 20015 /* 20016 * Only need to free unused entries. In other words, 20017 * there are enough unused entries to free to meet our 20018 * target number of freed ire cache entries. 20019 */ 20020 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20021 ncr.ncr_host = 0; 20022 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20023 /* 20024 * Only need to free unused entries, plus a fraction of offlink 20025 * entries. It follows from the first if statement that 20026 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20027 */ 20028 delete_cnt -= icc.icc_unused; 20029 /* Round up # deleted by truncating fraction */ 20030 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20031 icr.icr_pmtu = icr.icr_onlink = 0; 20032 ncr.ncr_host = 0; 20033 } else if (delete_cnt <= 20034 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20035 /* 20036 * Free all unused and offlink entries, plus a fraction of 20037 * pmtu entries. It follows from the previous if statement 20038 * that icc_pmtu is non-zero, and that 20039 * delete_cnt != icc_unused + icc_offlink. 20040 */ 20041 icr.icr_offlink = 1; 20042 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20043 /* Round up # deleted by truncating fraction */ 20044 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20045 icr.icr_onlink = 0; 20046 ncr.ncr_host = 0; 20047 } else { 20048 /* 20049 * Free all unused, offlink, and pmtu entries, plus a fraction 20050 * of onlink entries. If we're here, then we know that 20051 * icc_onlink is non-zero, and that 20052 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20053 */ 20054 icr.icr_offlink = icr.icr_pmtu = 1; 20055 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20056 icc.icc_pmtu; 20057 /* Round up # deleted by truncating fraction */ 20058 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20059 /* Using the same delete fraction as for onlink IREs */ 20060 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20061 } 20062 #ifdef DEBUG 20063 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20064 "fractions %d/%d/%d/%d\n", 20065 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20066 icc.icc_unused, icc.icc_offlink, 20067 icc.icc_pmtu, icc.icc_onlink, 20068 icr.icr_unused, icr.icr_offlink, 20069 icr.icr_pmtu, icr.icr_onlink)); 20070 #endif 20071 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20072 if (ncr.ncr_host != 0) 20073 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20074 (uchar_t *)&ncr, ipst); 20075 #ifdef DEBUG 20076 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20077 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20078 ire_walk(ire_cache_count, (char *)&icc, ipst); 20079 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20080 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20081 icc.icc_pmtu, icc.icc_onlink)); 20082 #endif 20083 } 20084 20085 /* 20086 * ip_unbind is called when a copy of an unbind request is received from the 20087 * upper level protocol. We remove this conn from any fanout hash list it is 20088 * on, and zero out the bind information. No reply is expected up above. 20089 */ 20090 mblk_t * 20091 ip_unbind(queue_t *q, mblk_t *mp) 20092 { 20093 conn_t *connp = Q_TO_CONN(q); 20094 20095 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20096 20097 if (is_system_labeled() && connp->conn_anon_port) { 20098 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20099 connp->conn_mlp_type, connp->conn_ulp, 20100 ntohs(connp->conn_lport), B_FALSE); 20101 connp->conn_anon_port = 0; 20102 } 20103 connp->conn_mlp_type = mlptSingle; 20104 20105 ipcl_hash_remove(connp); 20106 20107 ASSERT(mp->b_cont == NULL); 20108 /* 20109 * Convert mp into a T_OK_ACK 20110 */ 20111 mp = mi_tpi_ok_ack_alloc(mp); 20112 20113 /* 20114 * should not happen in practice... T_OK_ACK is smaller than the 20115 * original message. 20116 */ 20117 if (mp == NULL) 20118 return (NULL); 20119 20120 return (mp); 20121 } 20122 20123 /* 20124 * Write side put procedure. Outbound data, IOCTLs, responses from 20125 * resolvers, etc, come down through here. 20126 * 20127 * arg2 is always a queue_t *. 20128 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20129 * the zoneid. 20130 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20131 */ 20132 void 20133 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20134 { 20135 ip_output_options(arg, mp, arg2, caller, &zero_info); 20136 } 20137 20138 void 20139 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20140 ip_opt_info_t *infop) 20141 { 20142 conn_t *connp = NULL; 20143 queue_t *q = (queue_t *)arg2; 20144 ipha_t *ipha; 20145 #define rptr ((uchar_t *)ipha) 20146 ire_t *ire = NULL; 20147 ire_t *sctp_ire = NULL; 20148 uint32_t v_hlen_tos_len; 20149 ipaddr_t dst; 20150 mblk_t *first_mp = NULL; 20151 boolean_t mctl_present; 20152 ipsec_out_t *io; 20153 int match_flags; 20154 ill_t *attach_ill = NULL; 20155 /* Bind to IPIF_NOFAILOVER ill etc. */ 20156 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20157 ipif_t *dst_ipif; 20158 boolean_t multirt_need_resolve = B_FALSE; 20159 mblk_t *copy_mp = NULL; 20160 int err; 20161 zoneid_t zoneid; 20162 boolean_t need_decref = B_FALSE; 20163 boolean_t ignore_dontroute = B_FALSE; 20164 boolean_t ignore_nexthop = B_FALSE; 20165 boolean_t ip_nexthop = B_FALSE; 20166 ipaddr_t nexthop_addr; 20167 ip_stack_t *ipst; 20168 20169 #ifdef _BIG_ENDIAN 20170 #define V_HLEN (v_hlen_tos_len >> 24) 20171 #else 20172 #define V_HLEN (v_hlen_tos_len & 0xFF) 20173 #endif 20174 20175 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20176 "ip_wput_start: q %p", q); 20177 20178 /* 20179 * ip_wput fast path 20180 */ 20181 20182 /* is packet from ARP ? */ 20183 if (q->q_next != NULL) { 20184 zoneid = (zoneid_t)(uintptr_t)arg; 20185 goto qnext; 20186 } 20187 20188 connp = (conn_t *)arg; 20189 ASSERT(connp != NULL); 20190 zoneid = connp->conn_zoneid; 20191 ipst = connp->conn_netstack->netstack_ip; 20192 20193 /* is queue flow controlled? */ 20194 if ((q->q_first != NULL || connp->conn_draining) && 20195 (caller == IP_WPUT)) { 20196 ASSERT(!need_decref); 20197 (void) putq(q, mp); 20198 return; 20199 } 20200 20201 /* Multidata transmit? */ 20202 if (DB_TYPE(mp) == M_MULTIDATA) { 20203 /* 20204 * We should never get here, since all Multidata messages 20205 * originating from tcp should have been directed over to 20206 * tcp_multisend() in the first place. 20207 */ 20208 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20209 freemsg(mp); 20210 return; 20211 } else if (DB_TYPE(mp) != M_DATA) 20212 goto notdata; 20213 20214 if (mp->b_flag & MSGHASREF) { 20215 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20216 mp->b_flag &= ~MSGHASREF; 20217 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20218 need_decref = B_TRUE; 20219 } 20220 ipha = (ipha_t *)mp->b_rptr; 20221 20222 /* is IP header non-aligned or mblk smaller than basic IP header */ 20223 #ifndef SAFETY_BEFORE_SPEED 20224 if (!OK_32PTR(rptr) || 20225 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20226 goto hdrtoosmall; 20227 #endif 20228 20229 ASSERT(OK_32PTR(ipha)); 20230 20231 /* 20232 * This function assumes that mp points to an IPv4 packet. If it's the 20233 * wrong version, we'll catch it again in ip_output_v6. 20234 * 20235 * Note that this is *only* locally-generated output here, and never 20236 * forwarded data, and that we need to deal only with transports that 20237 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20238 * label.) 20239 */ 20240 if (is_system_labeled() && 20241 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20242 !connp->conn_ulp_labeled) { 20243 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20244 connp->conn_mac_exempt, ipst); 20245 ipha = (ipha_t *)mp->b_rptr; 20246 if (err != 0) { 20247 first_mp = mp; 20248 if (err == EINVAL) 20249 goto icmp_parameter_problem; 20250 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20251 goto discard_pkt; 20252 } 20253 } 20254 20255 ASSERT(infop != NULL); 20256 20257 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20258 /* 20259 * IP_PKTINFO ancillary option is present. 20260 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20261 * allows using address of any zone as the source address. 20262 */ 20263 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20264 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20265 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20266 if (ire == NULL) 20267 goto drop_pkt; 20268 ire_refrele(ire); 20269 ire = NULL; 20270 } 20271 20272 /* 20273 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20274 * passed in IP_PKTINFO. 20275 */ 20276 if (infop->ip_opt_ill_index != 0 && 20277 connp->conn_outgoing_ill == NULL && 20278 connp->conn_nofailover_ill == NULL) { 20279 20280 xmit_ill = ill_lookup_on_ifindex( 20281 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20282 ipst); 20283 20284 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20285 goto drop_pkt; 20286 /* 20287 * check that there is an ipif belonging 20288 * to our zone. IPCL_ZONEID is not used because 20289 * IP_ALLZONES option is valid only when the ill is 20290 * accessible from all zones i.e has a valid ipif in 20291 * all zones. 20292 */ 20293 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20294 goto drop_pkt; 20295 } 20296 } 20297 20298 /* 20299 * If there is a policy, try to attach an ipsec_out in 20300 * the front. At the end, first_mp either points to a 20301 * M_DATA message or IPSEC_OUT message linked to a 20302 * M_DATA message. We have to do it now as we might 20303 * lose the "conn" if we go through ip_newroute. 20304 */ 20305 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20306 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20307 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20308 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20309 if (need_decref) 20310 CONN_DEC_REF(connp); 20311 return; 20312 } else { 20313 ASSERT(mp->b_datap->db_type == M_CTL); 20314 first_mp = mp; 20315 mp = mp->b_cont; 20316 mctl_present = B_TRUE; 20317 } 20318 } else { 20319 first_mp = mp; 20320 mctl_present = B_FALSE; 20321 } 20322 20323 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20324 20325 /* is wrong version or IP options present */ 20326 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20327 goto version_hdrlen_check; 20328 dst = ipha->ipha_dst; 20329 20330 if (connp->conn_nofailover_ill != NULL) { 20331 attach_ill = conn_get_held_ill(connp, 20332 &connp->conn_nofailover_ill, &err); 20333 if (err == ILL_LOOKUP_FAILED) { 20334 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20335 if (need_decref) 20336 CONN_DEC_REF(connp); 20337 freemsg(first_mp); 20338 return; 20339 } 20340 } 20341 20342 /* If IP_BOUND_IF has been set, use that ill. */ 20343 if (connp->conn_outgoing_ill != NULL) { 20344 xmit_ill = conn_get_held_ill(connp, 20345 &connp->conn_outgoing_ill, &err); 20346 if (err == ILL_LOOKUP_FAILED) 20347 goto drop_pkt; 20348 20349 goto send_from_ill; 20350 } 20351 20352 /* is packet multicast? */ 20353 if (CLASSD(dst)) 20354 goto multicast; 20355 20356 /* 20357 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20358 * takes precedence over conn_dontroute and conn_nexthop_set 20359 */ 20360 if (xmit_ill != NULL) 20361 goto send_from_ill; 20362 20363 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20364 /* 20365 * If the destination is a broadcast, local, or loopback 20366 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20367 * standard path. 20368 */ 20369 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20370 if ((ire == NULL) || (ire->ire_type & 20371 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20372 if (ire != NULL) { 20373 ire_refrele(ire); 20374 /* No more access to ire */ 20375 ire = NULL; 20376 } 20377 /* 20378 * bypass routing checks and go directly to interface. 20379 */ 20380 if (connp->conn_dontroute) 20381 goto dontroute; 20382 20383 ASSERT(connp->conn_nexthop_set); 20384 ip_nexthop = B_TRUE; 20385 nexthop_addr = connp->conn_nexthop_v4; 20386 goto send_from_ill; 20387 } 20388 20389 /* Must be a broadcast, a loopback or a local ire */ 20390 ire_refrele(ire); 20391 /* No more access to ire */ 20392 ire = NULL; 20393 } 20394 20395 if (attach_ill != NULL) 20396 goto send_from_ill; 20397 20398 /* 20399 * We cache IRE_CACHEs to avoid lookups. We don't do 20400 * this for the tcp global queue and listen end point 20401 * as it does not really have a real destination to 20402 * talk to. This is also true for SCTP. 20403 */ 20404 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20405 !connp->conn_fully_bound) { 20406 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20407 if (ire == NULL) 20408 goto noirefound; 20409 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20410 "ip_wput_end: q %p (%S)", q, "end"); 20411 20412 /* 20413 * Check if the ire has the RTF_MULTIRT flag, inherited 20414 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20415 */ 20416 if (ire->ire_flags & RTF_MULTIRT) { 20417 20418 /* 20419 * Force the TTL of multirouted packets if required. 20420 * The TTL of such packets is bounded by the 20421 * ip_multirt_ttl ndd variable. 20422 */ 20423 if ((ipst->ips_ip_multirt_ttl > 0) && 20424 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20425 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20426 "(was %d), dst 0x%08x\n", 20427 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20428 ntohl(ire->ire_addr))); 20429 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20430 } 20431 /* 20432 * We look at this point if there are pending 20433 * unresolved routes. ire_multirt_resolvable() 20434 * checks in O(n) that all IRE_OFFSUBNET ire 20435 * entries for the packet's destination and 20436 * flagged RTF_MULTIRT are currently resolved. 20437 * If some remain unresolved, we make a copy 20438 * of the current message. It will be used 20439 * to initiate additional route resolutions. 20440 */ 20441 multirt_need_resolve = 20442 ire_multirt_need_resolve(ire->ire_addr, 20443 MBLK_GETLABEL(first_mp), ipst); 20444 ip2dbg(("ip_wput[TCP]: ire %p, " 20445 "multirt_need_resolve %d, first_mp %p\n", 20446 (void *)ire, multirt_need_resolve, 20447 (void *)first_mp)); 20448 if (multirt_need_resolve) { 20449 copy_mp = copymsg(first_mp); 20450 if (copy_mp != NULL) { 20451 MULTIRT_DEBUG_TAG(copy_mp); 20452 } 20453 } 20454 } 20455 20456 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20457 20458 /* 20459 * Try to resolve another multiroute if 20460 * ire_multirt_need_resolve() deemed it necessary. 20461 */ 20462 if (copy_mp != NULL) 20463 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20464 if (need_decref) 20465 CONN_DEC_REF(connp); 20466 return; 20467 } 20468 20469 /* 20470 * Access to conn_ire_cache. (protected by conn_lock) 20471 * 20472 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20473 * the ire bucket lock here to check for CONDEMNED as it is okay to 20474 * send a packet or two with the IRE_CACHE that is going away. 20475 * Access to the ire requires an ire refhold on the ire prior to 20476 * its use since an interface unplumb thread may delete the cached 20477 * ire and release the refhold at any time. 20478 * 20479 * Caching an ire in the conn_ire_cache 20480 * 20481 * o Caching an ire pointer in the conn requires a strict check for 20482 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20483 * ires before cleaning up the conns. So the caching of an ire pointer 20484 * in the conn is done after making sure under the bucket lock that the 20485 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20486 * caching an ire after the unplumb thread has cleaned up the conn. 20487 * If the conn does not send a packet subsequently the unplumb thread 20488 * will be hanging waiting for the ire count to drop to zero. 20489 * 20490 * o We also need to atomically test for a null conn_ire_cache and 20491 * set the conn_ire_cache under the the protection of the conn_lock 20492 * to avoid races among concurrent threads trying to simultaneously 20493 * cache an ire in the conn_ire_cache. 20494 */ 20495 mutex_enter(&connp->conn_lock); 20496 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20497 20498 if (ire != NULL && ire->ire_addr == dst && 20499 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20500 20501 IRE_REFHOLD(ire); 20502 mutex_exit(&connp->conn_lock); 20503 20504 } else { 20505 boolean_t cached = B_FALSE; 20506 connp->conn_ire_cache = NULL; 20507 mutex_exit(&connp->conn_lock); 20508 /* Release the old ire */ 20509 if (ire != NULL && sctp_ire == NULL) 20510 IRE_REFRELE_NOTR(ire); 20511 20512 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20513 if (ire == NULL) 20514 goto noirefound; 20515 IRE_REFHOLD_NOTR(ire); 20516 20517 mutex_enter(&connp->conn_lock); 20518 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20519 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20520 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20521 if (connp->conn_ulp == IPPROTO_TCP) 20522 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20523 connp->conn_ire_cache = ire; 20524 cached = B_TRUE; 20525 } 20526 rw_exit(&ire->ire_bucket->irb_lock); 20527 } 20528 mutex_exit(&connp->conn_lock); 20529 20530 /* 20531 * We can continue to use the ire but since it was 20532 * not cached, we should drop the extra reference. 20533 */ 20534 if (!cached) 20535 IRE_REFRELE_NOTR(ire); 20536 } 20537 20538 20539 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20540 "ip_wput_end: q %p (%S)", q, "end"); 20541 20542 /* 20543 * Check if the ire has the RTF_MULTIRT flag, inherited 20544 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20545 */ 20546 if (ire->ire_flags & RTF_MULTIRT) { 20547 20548 /* 20549 * Force the TTL of multirouted packets if required. 20550 * The TTL of such packets is bounded by the 20551 * ip_multirt_ttl ndd variable. 20552 */ 20553 if ((ipst->ips_ip_multirt_ttl > 0) && 20554 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20555 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20556 "(was %d), dst 0x%08x\n", 20557 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20558 ntohl(ire->ire_addr))); 20559 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20560 } 20561 20562 /* 20563 * At this point, we check to see if there are any pending 20564 * unresolved routes. ire_multirt_resolvable() 20565 * checks in O(n) that all IRE_OFFSUBNET ire 20566 * entries for the packet's destination and 20567 * flagged RTF_MULTIRT are currently resolved. 20568 * If some remain unresolved, we make a copy 20569 * of the current message. It will be used 20570 * to initiate additional route resolutions. 20571 */ 20572 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20573 MBLK_GETLABEL(first_mp), ipst); 20574 ip2dbg(("ip_wput[not TCP]: ire %p, " 20575 "multirt_need_resolve %d, first_mp %p\n", 20576 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20577 if (multirt_need_resolve) { 20578 copy_mp = copymsg(first_mp); 20579 if (copy_mp != NULL) { 20580 MULTIRT_DEBUG_TAG(copy_mp); 20581 } 20582 } 20583 } 20584 20585 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20586 20587 /* 20588 * Try to resolve another multiroute if 20589 * ire_multirt_resolvable() deemed it necessary 20590 */ 20591 if (copy_mp != NULL) 20592 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20593 if (need_decref) 20594 CONN_DEC_REF(connp); 20595 return; 20596 20597 qnext: 20598 /* 20599 * Upper Level Protocols pass down complete IP datagrams 20600 * as M_DATA messages. Everything else is a sideshow. 20601 * 20602 * 1) We could be re-entering ip_wput because of ip_neworute 20603 * in which case we could have a IPSEC_OUT message. We 20604 * need to pass through ip_wput like other datagrams and 20605 * hence cannot branch to ip_wput_nondata. 20606 * 20607 * 2) ARP, AH, ESP, and other clients who are on the module 20608 * instance of IP stream, give us something to deal with. 20609 * We will handle AH and ESP here and rest in ip_wput_nondata. 20610 * 20611 * 3) ICMP replies also could come here. 20612 */ 20613 ipst = ILLQ_TO_IPST(q); 20614 20615 if (DB_TYPE(mp) != M_DATA) { 20616 notdata: 20617 if (DB_TYPE(mp) == M_CTL) { 20618 /* 20619 * M_CTL messages are used by ARP, AH and ESP to 20620 * communicate with IP. We deal with IPSEC_IN and 20621 * IPSEC_OUT here. ip_wput_nondata handles other 20622 * cases. 20623 */ 20624 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20625 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20626 first_mp = mp->b_cont; 20627 first_mp->b_flag &= ~MSGHASREF; 20628 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20629 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20630 CONN_DEC_REF(connp); 20631 connp = NULL; 20632 } 20633 if (ii->ipsec_info_type == IPSEC_IN) { 20634 /* 20635 * Either this message goes back to 20636 * IPsec for further processing or to 20637 * ULP after policy checks. 20638 */ 20639 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20640 return; 20641 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20642 io = (ipsec_out_t *)ii; 20643 if (io->ipsec_out_proc_begin) { 20644 /* 20645 * IPsec processing has already started. 20646 * Complete it. 20647 * IPQoS notes: We don't care what is 20648 * in ipsec_out_ill_index since this 20649 * won't be processed for IPQoS policies 20650 * in ipsec_out_process. 20651 */ 20652 ipsec_out_process(q, mp, NULL, 20653 io->ipsec_out_ill_index); 20654 return; 20655 } else { 20656 connp = (q->q_next != NULL) ? 20657 NULL : Q_TO_CONN(q); 20658 first_mp = mp; 20659 mp = mp->b_cont; 20660 mctl_present = B_TRUE; 20661 } 20662 zoneid = io->ipsec_out_zoneid; 20663 ASSERT(zoneid != ALL_ZONES); 20664 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20665 /* 20666 * It's an IPsec control message requesting 20667 * an SADB update to be sent to the IPsec 20668 * hardware acceleration capable ills. 20669 */ 20670 ipsec_ctl_t *ipsec_ctl = 20671 (ipsec_ctl_t *)mp->b_rptr; 20672 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20673 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20674 mblk_t *cmp = mp->b_cont; 20675 20676 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20677 ASSERT(cmp != NULL); 20678 20679 freeb(mp); 20680 ill_ipsec_capab_send_all(satype, cmp, sa, 20681 ipst->ips_netstack); 20682 return; 20683 } else { 20684 /* 20685 * This must be ARP or special TSOL signaling. 20686 */ 20687 ip_wput_nondata(NULL, q, mp, NULL); 20688 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20689 "ip_wput_end: q %p (%S)", q, "nondata"); 20690 return; 20691 } 20692 } else { 20693 /* 20694 * This must be non-(ARP/AH/ESP) messages. 20695 */ 20696 ASSERT(!need_decref); 20697 ip_wput_nondata(NULL, q, mp, NULL); 20698 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20699 "ip_wput_end: q %p (%S)", q, "nondata"); 20700 return; 20701 } 20702 } else { 20703 first_mp = mp; 20704 mctl_present = B_FALSE; 20705 } 20706 20707 ASSERT(first_mp != NULL); 20708 /* 20709 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20710 * to make sure that this packet goes out on the same interface it 20711 * came in. We handle that here. 20712 */ 20713 if (mctl_present) { 20714 uint_t ifindex; 20715 20716 io = (ipsec_out_t *)first_mp->b_rptr; 20717 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20718 /* 20719 * We may have lost the conn context if we are 20720 * coming here from ip_newroute(). Copy the 20721 * nexthop information. 20722 */ 20723 if (io->ipsec_out_ip_nexthop) { 20724 ip_nexthop = B_TRUE; 20725 nexthop_addr = io->ipsec_out_nexthop_addr; 20726 20727 ipha = (ipha_t *)mp->b_rptr; 20728 dst = ipha->ipha_dst; 20729 goto send_from_ill; 20730 } else { 20731 ASSERT(io->ipsec_out_ill_index != 0); 20732 ifindex = io->ipsec_out_ill_index; 20733 attach_ill = ill_lookup_on_ifindex(ifindex, 20734 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20735 if (attach_ill == NULL) { 20736 ASSERT(xmit_ill == NULL); 20737 ip1dbg(("ip_output: bad ifindex for " 20738 "(BIND TO IPIF_NOFAILOVER) %d\n", 20739 ifindex)); 20740 freemsg(first_mp); 20741 BUMP_MIB(&ipst->ips_ip_mib, 20742 ipIfStatsOutDiscards); 20743 ASSERT(!need_decref); 20744 return; 20745 } 20746 } 20747 } 20748 } 20749 20750 ASSERT(xmit_ill == NULL); 20751 20752 /* We have a complete IP datagram heading outbound. */ 20753 ipha = (ipha_t *)mp->b_rptr; 20754 20755 #ifndef SPEED_BEFORE_SAFETY 20756 /* 20757 * Make sure we have a full-word aligned message and that at least 20758 * a simple IP header is accessible in the first message. If not, 20759 * try a pullup. For labeled systems we need to always take this 20760 * path as M_CTLs are "notdata" but have trailing data to process. 20761 */ 20762 if (!OK_32PTR(rptr) || 20763 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20764 hdrtoosmall: 20765 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20766 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20767 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20768 if (first_mp == NULL) 20769 first_mp = mp; 20770 goto discard_pkt; 20771 } 20772 20773 /* This function assumes that mp points to an IPv4 packet. */ 20774 if (is_system_labeled() && q->q_next == NULL && 20775 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20776 !connp->conn_ulp_labeled) { 20777 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20778 connp->conn_mac_exempt, ipst); 20779 ipha = (ipha_t *)mp->b_rptr; 20780 if (first_mp != NULL) 20781 first_mp->b_cont = mp; 20782 if (err != 0) { 20783 if (first_mp == NULL) 20784 first_mp = mp; 20785 if (err == EINVAL) 20786 goto icmp_parameter_problem; 20787 ip2dbg(("ip_wput: label check failed (%d)\n", 20788 err)); 20789 goto discard_pkt; 20790 } 20791 } 20792 20793 ipha = (ipha_t *)mp->b_rptr; 20794 if (first_mp == NULL) { 20795 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20796 /* 20797 * If we got here because of "goto hdrtoosmall" 20798 * We need to attach a IPSEC_OUT. 20799 */ 20800 if (connp->conn_out_enforce_policy) { 20801 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20802 NULL, ipha->ipha_protocol, 20803 ipst->ips_netstack)) == NULL)) { 20804 BUMP_MIB(&ipst->ips_ip_mib, 20805 ipIfStatsOutDiscards); 20806 if (need_decref) 20807 CONN_DEC_REF(connp); 20808 return; 20809 } else { 20810 ASSERT(mp->b_datap->db_type == M_CTL); 20811 first_mp = mp; 20812 mp = mp->b_cont; 20813 mctl_present = B_TRUE; 20814 } 20815 } else { 20816 first_mp = mp; 20817 mctl_present = B_FALSE; 20818 } 20819 } 20820 } 20821 #endif 20822 20823 /* Most of the code below is written for speed, not readability */ 20824 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20825 20826 /* 20827 * If ip_newroute() fails, we're going to need a full 20828 * header for the icmp wraparound. 20829 */ 20830 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20831 uint_t v_hlen; 20832 version_hdrlen_check: 20833 ASSERT(first_mp != NULL); 20834 v_hlen = V_HLEN; 20835 /* 20836 * siphon off IPv6 packets coming down from transport 20837 * layer modules here. 20838 * Note: high-order bit carries NUD reachability confirmation 20839 */ 20840 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20841 /* 20842 * FIXME: assume that callers of ip_output* call 20843 * the right version? 20844 */ 20845 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20846 ASSERT(xmit_ill == NULL); 20847 if (attach_ill != NULL) 20848 ill_refrele(attach_ill); 20849 if (need_decref) 20850 mp->b_flag |= MSGHASREF; 20851 (void) ip_output_v6(arg, first_mp, arg2, caller); 20852 return; 20853 } 20854 20855 if ((v_hlen >> 4) != IP_VERSION) { 20856 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20857 "ip_wput_end: q %p (%S)", q, "badvers"); 20858 goto discard_pkt; 20859 } 20860 /* 20861 * Is the header length at least 20 bytes? 20862 * 20863 * Are there enough bytes accessible in the header? If 20864 * not, try a pullup. 20865 */ 20866 v_hlen &= 0xF; 20867 v_hlen <<= 2; 20868 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20869 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20870 "ip_wput_end: q %p (%S)", q, "badlen"); 20871 goto discard_pkt; 20872 } 20873 if (v_hlen > (mp->b_wptr - rptr)) { 20874 if (!pullupmsg(mp, v_hlen)) { 20875 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20876 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20877 goto discard_pkt; 20878 } 20879 ipha = (ipha_t *)mp->b_rptr; 20880 } 20881 /* 20882 * Move first entry from any source route into ipha_dst and 20883 * verify the options 20884 */ 20885 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20886 zoneid, ipst)) { 20887 ASSERT(xmit_ill == NULL); 20888 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20889 if (attach_ill != NULL) 20890 ill_refrele(attach_ill); 20891 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20892 "ip_wput_end: q %p (%S)", q, "badopts"); 20893 if (need_decref) 20894 CONN_DEC_REF(connp); 20895 return; 20896 } 20897 } 20898 dst = ipha->ipha_dst; 20899 20900 /* 20901 * Try to get an IRE_CACHE for the destination address. If we can't, 20902 * we have to run the packet through ip_newroute which will take 20903 * the appropriate action to arrange for an IRE_CACHE, such as querying 20904 * a resolver, or assigning a default gateway, etc. 20905 */ 20906 if (CLASSD(dst)) { 20907 ipif_t *ipif; 20908 uint32_t setsrc = 0; 20909 20910 multicast: 20911 ASSERT(first_mp != NULL); 20912 ip2dbg(("ip_wput: CLASSD\n")); 20913 if (connp == NULL) { 20914 /* 20915 * Use the first good ipif on the ill. 20916 * XXX Should this ever happen? (Appears 20917 * to show up with just ppp and no ethernet due 20918 * to in.rdisc.) 20919 * However, ire_send should be able to 20920 * call ip_wput_ire directly. 20921 * 20922 * XXX Also, this can happen for ICMP and other packets 20923 * with multicast source addresses. Perhaps we should 20924 * fix things so that we drop the packet in question, 20925 * but for now, just run with it. 20926 */ 20927 ill_t *ill = (ill_t *)q->q_ptr; 20928 20929 /* 20930 * Don't honor attach_if for this case. If ill 20931 * is part of the group, ipif could belong to 20932 * any ill and we cannot maintain attach_ill 20933 * and ipif_ill same anymore and the assert 20934 * below would fail. 20935 */ 20936 if (mctl_present && io->ipsec_out_attach_if) { 20937 io->ipsec_out_ill_index = 0; 20938 io->ipsec_out_attach_if = B_FALSE; 20939 ASSERT(attach_ill != NULL); 20940 ill_refrele(attach_ill); 20941 attach_ill = NULL; 20942 } 20943 20944 ASSERT(attach_ill == NULL); 20945 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20946 if (ipif == NULL) { 20947 if (need_decref) 20948 CONN_DEC_REF(connp); 20949 freemsg(first_mp); 20950 return; 20951 } 20952 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20953 ntohl(dst), ill->ill_name)); 20954 } else { 20955 /* 20956 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20957 * and IP_MULTICAST_IF. The block comment above this 20958 * function explains the locking mechanism used here. 20959 */ 20960 if (xmit_ill == NULL) { 20961 xmit_ill = conn_get_held_ill(connp, 20962 &connp->conn_outgoing_ill, &err); 20963 if (err == ILL_LOOKUP_FAILED) { 20964 ip1dbg(("ip_wput: No ill for " 20965 "IP_BOUND_IF\n")); 20966 BUMP_MIB(&ipst->ips_ip_mib, 20967 ipIfStatsOutNoRoutes); 20968 goto drop_pkt; 20969 } 20970 } 20971 20972 if (xmit_ill == NULL) { 20973 ipif = conn_get_held_ipif(connp, 20974 &connp->conn_multicast_ipif, &err); 20975 if (err == IPIF_LOOKUP_FAILED) { 20976 ip1dbg(("ip_wput: No ipif for " 20977 "multicast\n")); 20978 BUMP_MIB(&ipst->ips_ip_mib, 20979 ipIfStatsOutNoRoutes); 20980 goto drop_pkt; 20981 } 20982 } 20983 if (xmit_ill != NULL) { 20984 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20985 if (ipif == NULL) { 20986 ip1dbg(("ip_wput: No ipif for " 20987 "xmit_ill\n")); 20988 BUMP_MIB(&ipst->ips_ip_mib, 20989 ipIfStatsOutNoRoutes); 20990 goto drop_pkt; 20991 } 20992 } else if (ipif == NULL || ipif->ipif_isv6) { 20993 /* 20994 * We must do this ipif determination here 20995 * else we could pass through ip_newroute 20996 * and come back here without the conn context. 20997 * 20998 * Note: we do late binding i.e. we bind to 20999 * the interface when the first packet is sent. 21000 * For performance reasons we do not rebind on 21001 * each packet but keep the binding until the 21002 * next IP_MULTICAST_IF option. 21003 * 21004 * conn_multicast_{ipif,ill} are shared between 21005 * IPv4 and IPv6 and AF_INET6 sockets can 21006 * send both IPv4 and IPv6 packets. Hence 21007 * we have to check that "isv6" matches above. 21008 */ 21009 if (ipif != NULL) 21010 ipif_refrele(ipif); 21011 ipif = ipif_lookup_group(dst, zoneid, ipst); 21012 if (ipif == NULL) { 21013 ip1dbg(("ip_wput: No ipif for " 21014 "multicast\n")); 21015 BUMP_MIB(&ipst->ips_ip_mib, 21016 ipIfStatsOutNoRoutes); 21017 goto drop_pkt; 21018 } 21019 err = conn_set_held_ipif(connp, 21020 &connp->conn_multicast_ipif, ipif); 21021 if (err == IPIF_LOOKUP_FAILED) { 21022 ipif_refrele(ipif); 21023 ip1dbg(("ip_wput: No ipif for " 21024 "multicast\n")); 21025 BUMP_MIB(&ipst->ips_ip_mib, 21026 ipIfStatsOutNoRoutes); 21027 goto drop_pkt; 21028 } 21029 } 21030 } 21031 ASSERT(!ipif->ipif_isv6); 21032 /* 21033 * As we may lose the conn by the time we reach ip_wput_ire, 21034 * we copy conn_multicast_loop and conn_dontroute on to an 21035 * ipsec_out. In case if this datagram goes out secure, 21036 * we need the ill_index also. Copy that also into the 21037 * ipsec_out. 21038 */ 21039 if (mctl_present) { 21040 io = (ipsec_out_t *)first_mp->b_rptr; 21041 ASSERT(first_mp->b_datap->db_type == M_CTL); 21042 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21043 } else { 21044 ASSERT(mp == first_mp); 21045 if ((first_mp = allocb(sizeof (ipsec_info_t), 21046 BPRI_HI)) == NULL) { 21047 ipif_refrele(ipif); 21048 first_mp = mp; 21049 goto discard_pkt; 21050 } 21051 first_mp->b_datap->db_type = M_CTL; 21052 first_mp->b_wptr += sizeof (ipsec_info_t); 21053 /* ipsec_out_secure is B_FALSE now */ 21054 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21055 io = (ipsec_out_t *)first_mp->b_rptr; 21056 io->ipsec_out_type = IPSEC_OUT; 21057 io->ipsec_out_len = sizeof (ipsec_out_t); 21058 io->ipsec_out_use_global_policy = B_TRUE; 21059 io->ipsec_out_ns = ipst->ips_netstack; 21060 first_mp->b_cont = mp; 21061 mctl_present = B_TRUE; 21062 } 21063 if (attach_ill != NULL) { 21064 ASSERT(attach_ill == ipif->ipif_ill); 21065 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21066 21067 /* 21068 * Check if we need an ire that will not be 21069 * looked up by anybody else i.e. HIDDEN. 21070 */ 21071 if (ill_is_probeonly(attach_ill)) { 21072 match_flags |= MATCH_IRE_MARK_HIDDEN; 21073 } 21074 io->ipsec_out_ill_index = 21075 attach_ill->ill_phyint->phyint_ifindex; 21076 io->ipsec_out_attach_if = B_TRUE; 21077 } else { 21078 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21079 io->ipsec_out_ill_index = 21080 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21081 } 21082 if (connp != NULL) { 21083 io->ipsec_out_multicast_loop = 21084 connp->conn_multicast_loop; 21085 io->ipsec_out_dontroute = connp->conn_dontroute; 21086 io->ipsec_out_zoneid = connp->conn_zoneid; 21087 } 21088 /* 21089 * If the application uses IP_MULTICAST_IF with 21090 * different logical addresses of the same ILL, we 21091 * need to make sure that the soruce address of 21092 * the packet matches the logical IP address used 21093 * in the option. We do it by initializing ipha_src 21094 * here. This should keep IPsec also happy as 21095 * when we return from IPsec processing, we don't 21096 * have to worry about getting the right address on 21097 * the packet. Thus it is sufficient to look for 21098 * IRE_CACHE using MATCH_IRE_ILL rathen than 21099 * MATCH_IRE_IPIF. 21100 * 21101 * NOTE : We need to do it for non-secure case also as 21102 * this might go out secure if there is a global policy 21103 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21104 * address, the source should be initialized already and 21105 * hence we won't be initializing here. 21106 * 21107 * As we do not have the ire yet, it is possible that 21108 * we set the source address here and then later discover 21109 * that the ire implies the source address to be assigned 21110 * through the RTF_SETSRC flag. 21111 * In that case, the setsrc variable will remind us 21112 * that overwritting the source address by the one 21113 * of the RTF_SETSRC-flagged ire is allowed. 21114 */ 21115 if (ipha->ipha_src == INADDR_ANY && 21116 (connp == NULL || !connp->conn_unspec_src)) { 21117 ipha->ipha_src = ipif->ipif_src_addr; 21118 setsrc = RTF_SETSRC; 21119 } 21120 /* 21121 * Find an IRE which matches the destination and the outgoing 21122 * queue (i.e. the outgoing interface.) 21123 * For loopback use a unicast IP address for 21124 * the ire lookup. 21125 */ 21126 if (IS_LOOPBACK(ipif->ipif_ill)) 21127 dst = ipif->ipif_lcl_addr; 21128 21129 /* 21130 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21131 * We don't need to lookup ire in ctable as the packet 21132 * needs to be sent to the destination through the specified 21133 * ill irrespective of ires in the cache table. 21134 */ 21135 ire = NULL; 21136 if (xmit_ill == NULL) { 21137 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21138 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21139 } 21140 21141 /* 21142 * refrele attach_ill as its not needed anymore. 21143 */ 21144 if (attach_ill != NULL) { 21145 ill_refrele(attach_ill); 21146 attach_ill = NULL; 21147 } 21148 21149 if (ire == NULL) { 21150 /* 21151 * Multicast loopback and multicast forwarding is 21152 * done in ip_wput_ire. 21153 * 21154 * Mark this packet to make it be delivered to 21155 * ip_wput_ire after the new ire has been 21156 * created. 21157 * 21158 * The call to ip_newroute_ipif takes into account 21159 * the setsrc reminder. In any case, we take care 21160 * of the RTF_MULTIRT flag. 21161 */ 21162 mp->b_prev = mp->b_next = NULL; 21163 if (xmit_ill == NULL || 21164 xmit_ill->ill_ipif_up_count > 0) { 21165 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21166 setsrc | RTF_MULTIRT, zoneid, infop); 21167 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21168 "ip_wput_end: q %p (%S)", q, "noire"); 21169 } else { 21170 freemsg(first_mp); 21171 } 21172 ipif_refrele(ipif); 21173 if (xmit_ill != NULL) 21174 ill_refrele(xmit_ill); 21175 if (need_decref) 21176 CONN_DEC_REF(connp); 21177 return; 21178 } 21179 21180 ipif_refrele(ipif); 21181 ipif = NULL; 21182 ASSERT(xmit_ill == NULL); 21183 21184 /* 21185 * Honor the RTF_SETSRC flag for multicast packets, 21186 * if allowed by the setsrc reminder. 21187 */ 21188 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21189 ipha->ipha_src = ire->ire_src_addr; 21190 } 21191 21192 /* 21193 * Unconditionally force the TTL to 1 for 21194 * multirouted multicast packets: 21195 * multirouted multicast should not cross 21196 * multicast routers. 21197 */ 21198 if (ire->ire_flags & RTF_MULTIRT) { 21199 if (ipha->ipha_ttl > 1) { 21200 ip2dbg(("ip_wput: forcing multicast " 21201 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21202 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21203 ipha->ipha_ttl = 1; 21204 } 21205 } 21206 } else { 21207 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21208 if ((ire != NULL) && (ire->ire_type & 21209 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21210 ignore_dontroute = B_TRUE; 21211 ignore_nexthop = B_TRUE; 21212 } 21213 if (ire != NULL) { 21214 ire_refrele(ire); 21215 ire = NULL; 21216 } 21217 /* 21218 * Guard against coming in from arp in which case conn is NULL. 21219 * Also guard against non M_DATA with dontroute set but 21220 * destined to local, loopback or broadcast addresses. 21221 */ 21222 if (connp != NULL && connp->conn_dontroute && 21223 !ignore_dontroute) { 21224 dontroute: 21225 /* 21226 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21227 * routing protocols from seeing false direct 21228 * connectivity. 21229 */ 21230 ipha->ipha_ttl = 1; 21231 21232 /* If suitable ipif not found, drop packet */ 21233 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21234 if (dst_ipif == NULL) { 21235 noroute: 21236 ip1dbg(("ip_wput: no route for dst using" 21237 " SO_DONTROUTE\n")); 21238 BUMP_MIB(&ipst->ips_ip_mib, 21239 ipIfStatsOutNoRoutes); 21240 mp->b_prev = mp->b_next = NULL; 21241 if (first_mp == NULL) 21242 first_mp = mp; 21243 goto drop_pkt; 21244 } else { 21245 /* 21246 * If suitable ipif has been found, set 21247 * xmit_ill to the corresponding 21248 * ipif_ill because we'll be using the 21249 * send_from_ill logic below. 21250 */ 21251 ASSERT(xmit_ill == NULL); 21252 xmit_ill = dst_ipif->ipif_ill; 21253 mutex_enter(&xmit_ill->ill_lock); 21254 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21255 mutex_exit(&xmit_ill->ill_lock); 21256 xmit_ill = NULL; 21257 ipif_refrele(dst_ipif); 21258 goto noroute; 21259 } 21260 ill_refhold_locked(xmit_ill); 21261 mutex_exit(&xmit_ill->ill_lock); 21262 ipif_refrele(dst_ipif); 21263 } 21264 } 21265 /* 21266 * If we are bound to IPIF_NOFAILOVER address, look for 21267 * an IRE_CACHE matching the ill. 21268 */ 21269 send_from_ill: 21270 if (attach_ill != NULL) { 21271 ipif_t *attach_ipif; 21272 21273 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21274 21275 /* 21276 * Check if we need an ire that will not be 21277 * looked up by anybody else i.e. HIDDEN. 21278 */ 21279 if (ill_is_probeonly(attach_ill)) { 21280 match_flags |= MATCH_IRE_MARK_HIDDEN; 21281 } 21282 21283 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21284 if (attach_ipif == NULL) { 21285 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21286 goto discard_pkt; 21287 } 21288 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21289 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21290 ipif_refrele(attach_ipif); 21291 } else if (xmit_ill != NULL) { 21292 ipif_t *ipif; 21293 21294 /* 21295 * Mark this packet as originated locally 21296 */ 21297 mp->b_prev = mp->b_next = NULL; 21298 21299 /* 21300 * Could be SO_DONTROUTE case also. 21301 * Verify that at least one ipif is up on the ill. 21302 */ 21303 if (xmit_ill->ill_ipif_up_count == 0) { 21304 ip1dbg(("ip_output: xmit_ill %s is down\n", 21305 xmit_ill->ill_name)); 21306 goto drop_pkt; 21307 } 21308 21309 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21310 if (ipif == NULL) { 21311 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21312 xmit_ill->ill_name)); 21313 goto drop_pkt; 21314 } 21315 21316 /* 21317 * Look for a ire that is part of the group, 21318 * if found use it else call ip_newroute_ipif. 21319 * IPCL_ZONEID is not used for matching because 21320 * IP_ALLZONES option is valid only when the 21321 * ill is accessible from all zones i.e has a 21322 * valid ipif in all zones. 21323 */ 21324 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21325 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21326 MBLK_GETLABEL(mp), match_flags, ipst); 21327 /* 21328 * If an ire exists use it or else create 21329 * an ire but don't add it to the cache. 21330 * Adding an ire may cause issues with 21331 * asymmetric routing. 21332 * In case of multiroute always act as if 21333 * ire does not exist. 21334 */ 21335 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21336 if (ire != NULL) 21337 ire_refrele(ire); 21338 ip_newroute_ipif(q, first_mp, ipif, 21339 dst, connp, 0, zoneid, infop); 21340 ipif_refrele(ipif); 21341 ip1dbg(("ip_output: xmit_ill via %s\n", 21342 xmit_ill->ill_name)); 21343 ill_refrele(xmit_ill); 21344 if (need_decref) 21345 CONN_DEC_REF(connp); 21346 return; 21347 } 21348 ipif_refrele(ipif); 21349 } else if (ip_nexthop || (connp != NULL && 21350 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21351 if (!ip_nexthop) { 21352 ip_nexthop = B_TRUE; 21353 nexthop_addr = connp->conn_nexthop_v4; 21354 } 21355 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21356 MATCH_IRE_GW; 21357 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21358 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21359 } else { 21360 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21361 ipst); 21362 } 21363 if (!ire) { 21364 /* 21365 * Make sure we don't load spread if this 21366 * is IPIF_NOFAILOVER case. 21367 */ 21368 if ((attach_ill != NULL) || 21369 (ip_nexthop && !ignore_nexthop)) { 21370 if (mctl_present) { 21371 io = (ipsec_out_t *)first_mp->b_rptr; 21372 ASSERT(first_mp->b_datap->db_type == 21373 M_CTL); 21374 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21375 } else { 21376 ASSERT(mp == first_mp); 21377 first_mp = allocb( 21378 sizeof (ipsec_info_t), BPRI_HI); 21379 if (first_mp == NULL) { 21380 first_mp = mp; 21381 goto discard_pkt; 21382 } 21383 first_mp->b_datap->db_type = M_CTL; 21384 first_mp->b_wptr += 21385 sizeof (ipsec_info_t); 21386 /* ipsec_out_secure is B_FALSE now */ 21387 bzero(first_mp->b_rptr, 21388 sizeof (ipsec_info_t)); 21389 io = (ipsec_out_t *)first_mp->b_rptr; 21390 io->ipsec_out_type = IPSEC_OUT; 21391 io->ipsec_out_len = 21392 sizeof (ipsec_out_t); 21393 io->ipsec_out_use_global_policy = 21394 B_TRUE; 21395 io->ipsec_out_ns = ipst->ips_netstack; 21396 first_mp->b_cont = mp; 21397 mctl_present = B_TRUE; 21398 } 21399 if (attach_ill != NULL) { 21400 io->ipsec_out_ill_index = attach_ill-> 21401 ill_phyint->phyint_ifindex; 21402 io->ipsec_out_attach_if = B_TRUE; 21403 } else { 21404 io->ipsec_out_ip_nexthop = ip_nexthop; 21405 io->ipsec_out_nexthop_addr = 21406 nexthop_addr; 21407 } 21408 } 21409 noirefound: 21410 /* 21411 * Mark this packet as having originated on 21412 * this machine. This will be noted in 21413 * ire_add_then_send, which needs to know 21414 * whether to run it back through ip_wput or 21415 * ip_rput following successful resolution. 21416 */ 21417 mp->b_prev = NULL; 21418 mp->b_next = NULL; 21419 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21420 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21421 "ip_wput_end: q %p (%S)", q, "newroute"); 21422 if (attach_ill != NULL) 21423 ill_refrele(attach_ill); 21424 if (xmit_ill != NULL) 21425 ill_refrele(xmit_ill); 21426 if (need_decref) 21427 CONN_DEC_REF(connp); 21428 return; 21429 } 21430 } 21431 21432 /* We now know where we are going with it. */ 21433 21434 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21435 "ip_wput_end: q %p (%S)", q, "end"); 21436 21437 /* 21438 * Check if the ire has the RTF_MULTIRT flag, inherited 21439 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21440 */ 21441 if (ire->ire_flags & RTF_MULTIRT) { 21442 /* 21443 * Force the TTL of multirouted packets if required. 21444 * The TTL of such packets is bounded by the 21445 * ip_multirt_ttl ndd variable. 21446 */ 21447 if ((ipst->ips_ip_multirt_ttl > 0) && 21448 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21449 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21450 "(was %d), dst 0x%08x\n", 21451 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21452 ntohl(ire->ire_addr))); 21453 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21454 } 21455 /* 21456 * At this point, we check to see if there are any pending 21457 * unresolved routes. ire_multirt_resolvable() 21458 * checks in O(n) that all IRE_OFFSUBNET ire 21459 * entries for the packet's destination and 21460 * flagged RTF_MULTIRT are currently resolved. 21461 * If some remain unresolved, we make a copy 21462 * of the current message. It will be used 21463 * to initiate additional route resolutions. 21464 */ 21465 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21466 MBLK_GETLABEL(first_mp), ipst); 21467 ip2dbg(("ip_wput[noirefound]: ire %p, " 21468 "multirt_need_resolve %d, first_mp %p\n", 21469 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21470 if (multirt_need_resolve) { 21471 copy_mp = copymsg(first_mp); 21472 if (copy_mp != NULL) { 21473 MULTIRT_DEBUG_TAG(copy_mp); 21474 } 21475 } 21476 } 21477 21478 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21479 /* 21480 * Try to resolve another multiroute if 21481 * ire_multirt_resolvable() deemed it necessary. 21482 * At this point, we need to distinguish 21483 * multicasts from other packets. For multicasts, 21484 * we call ip_newroute_ipif() and request that both 21485 * multirouting and setsrc flags are checked. 21486 */ 21487 if (copy_mp != NULL) { 21488 if (CLASSD(dst)) { 21489 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21490 if (ipif) { 21491 ASSERT(infop->ip_opt_ill_index == 0); 21492 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21493 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21494 ipif_refrele(ipif); 21495 } else { 21496 MULTIRT_DEBUG_UNTAG(copy_mp); 21497 freemsg(copy_mp); 21498 copy_mp = NULL; 21499 } 21500 } else { 21501 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21502 } 21503 } 21504 if (attach_ill != NULL) 21505 ill_refrele(attach_ill); 21506 if (xmit_ill != NULL) 21507 ill_refrele(xmit_ill); 21508 if (need_decref) 21509 CONN_DEC_REF(connp); 21510 return; 21511 21512 icmp_parameter_problem: 21513 /* could not have originated externally */ 21514 ASSERT(mp->b_prev == NULL); 21515 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21516 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21517 /* it's the IP header length that's in trouble */ 21518 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21519 first_mp = NULL; 21520 } 21521 21522 discard_pkt: 21523 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21524 drop_pkt: 21525 ip1dbg(("ip_wput: dropped packet\n")); 21526 if (ire != NULL) 21527 ire_refrele(ire); 21528 if (need_decref) 21529 CONN_DEC_REF(connp); 21530 freemsg(first_mp); 21531 if (attach_ill != NULL) 21532 ill_refrele(attach_ill); 21533 if (xmit_ill != NULL) 21534 ill_refrele(xmit_ill); 21535 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21536 "ip_wput_end: q %p (%S)", q, "droppkt"); 21537 } 21538 21539 /* 21540 * If this is a conn_t queue, then we pass in the conn. This includes the 21541 * zoneid. 21542 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21543 * in which case we use the global zoneid since those are all part of 21544 * the global zone. 21545 */ 21546 void 21547 ip_wput(queue_t *q, mblk_t *mp) 21548 { 21549 if (CONN_Q(q)) 21550 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21551 else 21552 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21553 } 21554 21555 /* 21556 * 21557 * The following rules must be observed when accessing any ipif or ill 21558 * that has been cached in the conn. Typically conn_nofailover_ill, 21559 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21560 * 21561 * Access: The ipif or ill pointed to from the conn can be accessed under 21562 * the protection of the conn_lock or after it has been refheld under the 21563 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21564 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21565 * The reason for this is that a concurrent unplumb could actually be 21566 * cleaning up these cached pointers by walking the conns and might have 21567 * finished cleaning up the conn in question. The macros check that an 21568 * unplumb has not yet started on the ipif or ill. 21569 * 21570 * Caching: An ipif or ill pointer may be cached in the conn only after 21571 * making sure that an unplumb has not started. So the caching is done 21572 * while holding both the conn_lock and the ill_lock and after using the 21573 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21574 * flag before starting the cleanup of conns. 21575 * 21576 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21577 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21578 * or a reference to the ipif or a reference to an ire that references the 21579 * ipif. An ipif does not change its ill except for failover/failback. Since 21580 * failover/failback happens only after bringing down the ipif and making sure 21581 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21582 * the above holds. 21583 */ 21584 ipif_t * 21585 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21586 { 21587 ipif_t *ipif; 21588 ill_t *ill; 21589 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21590 21591 *err = 0; 21592 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21593 mutex_enter(&connp->conn_lock); 21594 ipif = *ipifp; 21595 if (ipif != NULL) { 21596 ill = ipif->ipif_ill; 21597 mutex_enter(&ill->ill_lock); 21598 if (IPIF_CAN_LOOKUP(ipif)) { 21599 ipif_refhold_locked(ipif); 21600 mutex_exit(&ill->ill_lock); 21601 mutex_exit(&connp->conn_lock); 21602 rw_exit(&ipst->ips_ill_g_lock); 21603 return (ipif); 21604 } else { 21605 *err = IPIF_LOOKUP_FAILED; 21606 } 21607 mutex_exit(&ill->ill_lock); 21608 } 21609 mutex_exit(&connp->conn_lock); 21610 rw_exit(&ipst->ips_ill_g_lock); 21611 return (NULL); 21612 } 21613 21614 ill_t * 21615 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21616 { 21617 ill_t *ill; 21618 21619 *err = 0; 21620 mutex_enter(&connp->conn_lock); 21621 ill = *illp; 21622 if (ill != NULL) { 21623 mutex_enter(&ill->ill_lock); 21624 if (ILL_CAN_LOOKUP(ill)) { 21625 ill_refhold_locked(ill); 21626 mutex_exit(&ill->ill_lock); 21627 mutex_exit(&connp->conn_lock); 21628 return (ill); 21629 } else { 21630 *err = ILL_LOOKUP_FAILED; 21631 } 21632 mutex_exit(&ill->ill_lock); 21633 } 21634 mutex_exit(&connp->conn_lock); 21635 return (NULL); 21636 } 21637 21638 static int 21639 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21640 { 21641 ill_t *ill; 21642 21643 ill = ipif->ipif_ill; 21644 mutex_enter(&connp->conn_lock); 21645 mutex_enter(&ill->ill_lock); 21646 if (IPIF_CAN_LOOKUP(ipif)) { 21647 *ipifp = ipif; 21648 mutex_exit(&ill->ill_lock); 21649 mutex_exit(&connp->conn_lock); 21650 return (0); 21651 } 21652 mutex_exit(&ill->ill_lock); 21653 mutex_exit(&connp->conn_lock); 21654 return (IPIF_LOOKUP_FAILED); 21655 } 21656 21657 /* 21658 * This is called if the outbound datagram needs fragmentation. 21659 * 21660 * NOTE : This function does not ire_refrele the ire argument passed in. 21661 */ 21662 static void 21663 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21664 ip_stack_t *ipst) 21665 { 21666 ipha_t *ipha; 21667 mblk_t *mp; 21668 uint32_t v_hlen_tos_len; 21669 uint32_t max_frag; 21670 uint32_t frag_flag; 21671 boolean_t dont_use; 21672 21673 if (ipsec_mp->b_datap->db_type == M_CTL) { 21674 mp = ipsec_mp->b_cont; 21675 } else { 21676 mp = ipsec_mp; 21677 } 21678 21679 ipha = (ipha_t *)mp->b_rptr; 21680 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21681 21682 #ifdef _BIG_ENDIAN 21683 #define V_HLEN (v_hlen_tos_len >> 24) 21684 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21685 #else 21686 #define V_HLEN (v_hlen_tos_len & 0xFF) 21687 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21688 #endif 21689 21690 #ifndef SPEED_BEFORE_SAFETY 21691 /* 21692 * Check that ipha_length is consistent with 21693 * the mblk length 21694 */ 21695 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21696 ip0dbg(("Packet length mismatch: %d, %ld\n", 21697 LENGTH, msgdsize(mp))); 21698 freemsg(ipsec_mp); 21699 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21700 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21701 "packet length mismatch"); 21702 return; 21703 } 21704 #endif 21705 /* 21706 * Don't use frag_flag if pre-built packet or source 21707 * routed or if multicast (since multicast packets do not solicit 21708 * ICMP "packet too big" messages). Get the values of 21709 * max_frag and frag_flag atomically by acquiring the 21710 * ire_lock. 21711 */ 21712 mutex_enter(&ire->ire_lock); 21713 max_frag = ire->ire_max_frag; 21714 frag_flag = ire->ire_frag_flag; 21715 mutex_exit(&ire->ire_lock); 21716 21717 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21718 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21719 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21720 21721 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21722 (dont_use ? 0 : frag_flag), zoneid, ipst); 21723 } 21724 21725 /* 21726 * Used for deciding the MSS size for the upper layer. Thus 21727 * we need to check the outbound policy values in the conn. 21728 */ 21729 int 21730 conn_ipsec_length(conn_t *connp) 21731 { 21732 ipsec_latch_t *ipl; 21733 21734 ipl = connp->conn_latch; 21735 if (ipl == NULL) 21736 return (0); 21737 21738 if (ipl->ipl_out_policy == NULL) 21739 return (0); 21740 21741 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21742 } 21743 21744 /* 21745 * Returns an estimate of the IPsec headers size. This is used if 21746 * we don't want to call into IPsec to get the exact size. 21747 */ 21748 int 21749 ipsec_out_extra_length(mblk_t *ipsec_mp) 21750 { 21751 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21752 ipsec_action_t *a; 21753 21754 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21755 if (!io->ipsec_out_secure) 21756 return (0); 21757 21758 a = io->ipsec_out_act; 21759 21760 if (a == NULL) { 21761 ASSERT(io->ipsec_out_policy != NULL); 21762 a = io->ipsec_out_policy->ipsp_act; 21763 } 21764 ASSERT(a != NULL); 21765 21766 return (a->ipa_ovhd); 21767 } 21768 21769 /* 21770 * Returns an estimate of the IPsec headers size. This is used if 21771 * we don't want to call into IPsec to get the exact size. 21772 */ 21773 int 21774 ipsec_in_extra_length(mblk_t *ipsec_mp) 21775 { 21776 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21777 ipsec_action_t *a; 21778 21779 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21780 21781 a = ii->ipsec_in_action; 21782 return (a == NULL ? 0 : a->ipa_ovhd); 21783 } 21784 21785 /* 21786 * If there are any source route options, return the true final 21787 * destination. Otherwise, return the destination. 21788 */ 21789 ipaddr_t 21790 ip_get_dst(ipha_t *ipha) 21791 { 21792 ipoptp_t opts; 21793 uchar_t *opt; 21794 uint8_t optval; 21795 uint8_t optlen; 21796 ipaddr_t dst; 21797 uint32_t off; 21798 21799 dst = ipha->ipha_dst; 21800 21801 if (IS_SIMPLE_IPH(ipha)) 21802 return (dst); 21803 21804 for (optval = ipoptp_first(&opts, ipha); 21805 optval != IPOPT_EOL; 21806 optval = ipoptp_next(&opts)) { 21807 opt = opts.ipoptp_cur; 21808 optlen = opts.ipoptp_len; 21809 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21810 switch (optval) { 21811 case IPOPT_SSRR: 21812 case IPOPT_LSRR: 21813 off = opt[IPOPT_OFFSET]; 21814 /* 21815 * If one of the conditions is true, it means 21816 * end of options and dst already has the right 21817 * value. 21818 */ 21819 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21820 off = optlen - IP_ADDR_LEN; 21821 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21822 } 21823 return (dst); 21824 default: 21825 break; 21826 } 21827 } 21828 21829 return (dst); 21830 } 21831 21832 mblk_t * 21833 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21834 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21835 { 21836 ipsec_out_t *io; 21837 mblk_t *first_mp; 21838 boolean_t policy_present; 21839 ip_stack_t *ipst; 21840 ipsec_stack_t *ipss; 21841 21842 ASSERT(ire != NULL); 21843 ipst = ire->ire_ipst; 21844 ipss = ipst->ips_netstack->netstack_ipsec; 21845 21846 first_mp = mp; 21847 if (mp->b_datap->db_type == M_CTL) { 21848 io = (ipsec_out_t *)first_mp->b_rptr; 21849 /* 21850 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21851 * 21852 * 1) There is per-socket policy (including cached global 21853 * policy) or a policy on the IP-in-IP tunnel. 21854 * 2) There is no per-socket policy, but it is 21855 * a multicast packet that needs to go out 21856 * on a specific interface. This is the case 21857 * where (ip_wput and ip_wput_multicast) attaches 21858 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21859 * 21860 * In case (2) we check with global policy to 21861 * see if there is a match and set the ill_index 21862 * appropriately so that we can lookup the ire 21863 * properly in ip_wput_ipsec_out. 21864 */ 21865 21866 /* 21867 * ipsec_out_use_global_policy is set to B_FALSE 21868 * in ipsec_in_to_out(). Refer to that function for 21869 * details. 21870 */ 21871 if ((io->ipsec_out_latch == NULL) && 21872 (io->ipsec_out_use_global_policy)) { 21873 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21874 ire, connp, unspec_src, zoneid)); 21875 } 21876 if (!io->ipsec_out_secure) { 21877 /* 21878 * If this is not a secure packet, drop 21879 * the IPSEC_OUT mp and treat it as a clear 21880 * packet. This happens when we are sending 21881 * a ICMP reply back to a clear packet. See 21882 * ipsec_in_to_out() for details. 21883 */ 21884 mp = first_mp->b_cont; 21885 freeb(first_mp); 21886 } 21887 return (mp); 21888 } 21889 /* 21890 * See whether we need to attach a global policy here. We 21891 * don't depend on the conn (as it could be null) for deciding 21892 * what policy this datagram should go through because it 21893 * should have happened in ip_wput if there was some 21894 * policy. This normally happens for connections which are not 21895 * fully bound preventing us from caching policies in 21896 * ip_bind. Packets coming from the TCP listener/global queue 21897 * - which are non-hard_bound - could also be affected by 21898 * applying policy here. 21899 * 21900 * If this packet is coming from tcp global queue or listener, 21901 * we will be applying policy here. This may not be *right* 21902 * if these packets are coming from the detached connection as 21903 * it could have gone in clear before. This happens only if a 21904 * TCP connection started when there is no policy and somebody 21905 * added policy before it became detached. Thus packets of the 21906 * detached connection could go out secure and the other end 21907 * would drop it because it will be expecting in clear. The 21908 * converse is not true i.e if somebody starts a TCP 21909 * connection and deletes the policy, all the packets will 21910 * still go out with the policy that existed before deleting 21911 * because ip_unbind sends up policy information which is used 21912 * by TCP on subsequent ip_wputs. The right solution is to fix 21913 * TCP to attach a dummy IPSEC_OUT and set 21914 * ipsec_out_use_global_policy to B_FALSE. As this might 21915 * affect performance for normal cases, we are not doing it. 21916 * Thus, set policy before starting any TCP connections. 21917 * 21918 * NOTE - We might apply policy even for a hard bound connection 21919 * - for which we cached policy in ip_bind - if somebody added 21920 * global policy after we inherited the policy in ip_bind. 21921 * This means that the packets that were going out in clear 21922 * previously would start going secure and hence get dropped 21923 * on the other side. To fix this, TCP attaches a dummy 21924 * ipsec_out and make sure that we don't apply global policy. 21925 */ 21926 if (ipha != NULL) 21927 policy_present = ipss->ipsec_outbound_v4_policy_present; 21928 else 21929 policy_present = ipss->ipsec_outbound_v6_policy_present; 21930 if (!policy_present) 21931 return (mp); 21932 21933 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21934 zoneid)); 21935 } 21936 21937 ire_t * 21938 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21939 { 21940 ipaddr_t addr; 21941 ire_t *save_ire; 21942 irb_t *irb; 21943 ill_group_t *illgrp; 21944 int err; 21945 21946 save_ire = ire; 21947 addr = ire->ire_addr; 21948 21949 ASSERT(ire->ire_type == IRE_BROADCAST); 21950 21951 illgrp = connp->conn_outgoing_ill->ill_group; 21952 if (illgrp == NULL) { 21953 *conn_outgoing_ill = conn_get_held_ill(connp, 21954 &connp->conn_outgoing_ill, &err); 21955 if (err == ILL_LOOKUP_FAILED) { 21956 ire_refrele(save_ire); 21957 return (NULL); 21958 } 21959 return (save_ire); 21960 } 21961 /* 21962 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21963 * If it is part of the group, we need to send on the ire 21964 * that has been cleared of IRE_MARK_NORECV and that belongs 21965 * to this group. This is okay as IP_BOUND_IF really means 21966 * any ill in the group. We depend on the fact that the 21967 * first ire in the group is always cleared of IRE_MARK_NORECV 21968 * if such an ire exists. This is possible only if you have 21969 * at least one ill in the group that has not failed. 21970 * 21971 * First get to the ire that matches the address and group. 21972 * 21973 * We don't look for an ire with a matching zoneid because a given zone 21974 * won't always have broadcast ires on all ills in the group. 21975 */ 21976 irb = ire->ire_bucket; 21977 rw_enter(&irb->irb_lock, RW_READER); 21978 if (ire->ire_marks & IRE_MARK_NORECV) { 21979 /* 21980 * If the current zone only has an ire broadcast for this 21981 * address marked NORECV, the ire we want is ahead in the 21982 * bucket, so we look it up deliberately ignoring the zoneid. 21983 */ 21984 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21985 if (ire->ire_addr != addr) 21986 continue; 21987 /* skip over deleted ires */ 21988 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21989 continue; 21990 } 21991 } 21992 while (ire != NULL) { 21993 /* 21994 * If a new interface is coming up, we could end up 21995 * seeing the loopback ire and the non-loopback ire 21996 * may not have been added yet. So check for ire_stq 21997 */ 21998 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21999 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22000 break; 22001 } 22002 ire = ire->ire_next; 22003 } 22004 if (ire != NULL && ire->ire_addr == addr && 22005 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22006 IRE_REFHOLD(ire); 22007 rw_exit(&irb->irb_lock); 22008 ire_refrele(save_ire); 22009 *conn_outgoing_ill = ire_to_ill(ire); 22010 /* 22011 * Refhold the ill to make the conn_outgoing_ill 22012 * independent of the ire. ip_wput_ire goes in a loop 22013 * and may refrele the ire. Since we have an ire at this 22014 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22015 */ 22016 ill_refhold(*conn_outgoing_ill); 22017 return (ire); 22018 } 22019 rw_exit(&irb->irb_lock); 22020 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22021 /* 22022 * If we can't find a suitable ire, return the original ire. 22023 */ 22024 return (save_ire); 22025 } 22026 22027 /* 22028 * This function does the ire_refrele of the ire passed in as the 22029 * argument. As this function looks up more ires i.e broadcast ires, 22030 * it needs to REFRELE them. Currently, for simplicity we don't 22031 * differentiate the one passed in and looked up here. We always 22032 * REFRELE. 22033 * IPQoS Notes: 22034 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22035 * IPsec packets are done in ipsec_out_process. 22036 * 22037 */ 22038 void 22039 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22040 zoneid_t zoneid) 22041 { 22042 ipha_t *ipha; 22043 #define rptr ((uchar_t *)ipha) 22044 queue_t *stq; 22045 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22046 uint32_t v_hlen_tos_len; 22047 uint32_t ttl_protocol; 22048 ipaddr_t src; 22049 ipaddr_t dst; 22050 uint32_t cksum; 22051 ipaddr_t orig_src; 22052 ire_t *ire1; 22053 mblk_t *next_mp; 22054 uint_t hlen; 22055 uint16_t *up; 22056 uint32_t max_frag = ire->ire_max_frag; 22057 ill_t *ill = ire_to_ill(ire); 22058 int clusterwide; 22059 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22060 int ipsec_len; 22061 mblk_t *first_mp; 22062 ipsec_out_t *io; 22063 boolean_t conn_dontroute; /* conn value for multicast */ 22064 boolean_t conn_multicast_loop; /* conn value for multicast */ 22065 boolean_t multicast_forward; /* Should we forward ? */ 22066 boolean_t unspec_src; 22067 ill_t *conn_outgoing_ill = NULL; 22068 ill_t *ire_ill; 22069 ill_t *ire1_ill; 22070 ill_t *out_ill; 22071 uint32_t ill_index = 0; 22072 boolean_t multirt_send = B_FALSE; 22073 int err; 22074 ipxmit_state_t pktxmit_state; 22075 ip_stack_t *ipst = ire->ire_ipst; 22076 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22077 22078 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22079 "ip_wput_ire_start: q %p", q); 22080 22081 multicast_forward = B_FALSE; 22082 unspec_src = (connp != NULL && connp->conn_unspec_src); 22083 22084 if (ire->ire_flags & RTF_MULTIRT) { 22085 /* 22086 * Multirouting case. The bucket where ire is stored 22087 * probably holds other RTF_MULTIRT flagged ire 22088 * to the destination. In this call to ip_wput_ire, 22089 * we attempt to send the packet through all 22090 * those ires. Thus, we first ensure that ire is the 22091 * first RTF_MULTIRT ire in the bucket, 22092 * before walking the ire list. 22093 */ 22094 ire_t *first_ire; 22095 irb_t *irb = ire->ire_bucket; 22096 ASSERT(irb != NULL); 22097 22098 /* Make sure we do not omit any multiroute ire. */ 22099 IRB_REFHOLD(irb); 22100 for (first_ire = irb->irb_ire; 22101 first_ire != NULL; 22102 first_ire = first_ire->ire_next) { 22103 if ((first_ire->ire_flags & RTF_MULTIRT) && 22104 (first_ire->ire_addr == ire->ire_addr) && 22105 !(first_ire->ire_marks & 22106 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22107 break; 22108 } 22109 } 22110 22111 if ((first_ire != NULL) && (first_ire != ire)) { 22112 IRE_REFHOLD(first_ire); 22113 ire_refrele(ire); 22114 ire = first_ire; 22115 ill = ire_to_ill(ire); 22116 } 22117 IRB_REFRELE(irb); 22118 } 22119 22120 /* 22121 * conn_outgoing_ill variable is used only in the broadcast loop. 22122 * for performance we don't grab the mutexs in the fastpath 22123 */ 22124 if ((connp != NULL) && 22125 (ire->ire_type == IRE_BROADCAST) && 22126 ((connp->conn_nofailover_ill != NULL) || 22127 (connp->conn_outgoing_ill != NULL))) { 22128 /* 22129 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22130 * option. So, see if this endpoint is bound to a 22131 * IPIF_NOFAILOVER address. If so, honor it. This implies 22132 * that if the interface is failed, we will still send 22133 * the packet on the same ill which is what we want. 22134 */ 22135 conn_outgoing_ill = conn_get_held_ill(connp, 22136 &connp->conn_nofailover_ill, &err); 22137 if (err == ILL_LOOKUP_FAILED) { 22138 ire_refrele(ire); 22139 freemsg(mp); 22140 return; 22141 } 22142 if (conn_outgoing_ill == NULL) { 22143 /* 22144 * Choose a good ill in the group to send the 22145 * packets on. 22146 */ 22147 ire = conn_set_outgoing_ill(connp, ire, 22148 &conn_outgoing_ill); 22149 if (ire == NULL) { 22150 freemsg(mp); 22151 return; 22152 } 22153 } 22154 } 22155 22156 if (mp->b_datap->db_type != M_CTL) { 22157 ipha = (ipha_t *)mp->b_rptr; 22158 } else { 22159 io = (ipsec_out_t *)mp->b_rptr; 22160 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22161 ASSERT(zoneid == io->ipsec_out_zoneid); 22162 ASSERT(zoneid != ALL_ZONES); 22163 ipha = (ipha_t *)mp->b_cont->b_rptr; 22164 dst = ipha->ipha_dst; 22165 /* 22166 * For the multicast case, ipsec_out carries conn_dontroute and 22167 * conn_multicast_loop as conn may not be available here. We 22168 * need this for multicast loopback and forwarding which is done 22169 * later in the code. 22170 */ 22171 if (CLASSD(dst)) { 22172 conn_dontroute = io->ipsec_out_dontroute; 22173 conn_multicast_loop = io->ipsec_out_multicast_loop; 22174 /* 22175 * If conn_dontroute is not set or conn_multicast_loop 22176 * is set, we need to do forwarding/loopback. For 22177 * datagrams from ip_wput_multicast, conn_dontroute is 22178 * set to B_TRUE and conn_multicast_loop is set to 22179 * B_FALSE so that we neither do forwarding nor 22180 * loopback. 22181 */ 22182 if (!conn_dontroute || conn_multicast_loop) 22183 multicast_forward = B_TRUE; 22184 } 22185 } 22186 22187 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22188 ire->ire_zoneid != ALL_ZONES) { 22189 /* 22190 * When a zone sends a packet to another zone, we try to deliver 22191 * the packet under the same conditions as if the destination 22192 * was a real node on the network. To do so, we look for a 22193 * matching route in the forwarding table. 22194 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22195 * ip_newroute() does. 22196 * Note that IRE_LOCAL are special, since they are used 22197 * when the zoneid doesn't match in some cases. This means that 22198 * we need to handle ipha_src differently since ire_src_addr 22199 * belongs to the receiving zone instead of the sending zone. 22200 * When ip_restrict_interzone_loopback is set, then 22201 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22202 * for loopback between zones when the logical "Ethernet" would 22203 * have looped them back. 22204 */ 22205 ire_t *src_ire; 22206 22207 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22208 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22209 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22210 if (src_ire != NULL && 22211 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22212 (!ipst->ips_ip_restrict_interzone_loopback || 22213 ire_local_same_ill_group(ire, src_ire))) { 22214 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22215 ipha->ipha_src = src_ire->ire_src_addr; 22216 ire_refrele(src_ire); 22217 } else { 22218 ire_refrele(ire); 22219 if (conn_outgoing_ill != NULL) 22220 ill_refrele(conn_outgoing_ill); 22221 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22222 if (src_ire != NULL) { 22223 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22224 ire_refrele(src_ire); 22225 freemsg(mp); 22226 return; 22227 } 22228 ire_refrele(src_ire); 22229 } 22230 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22231 /* Failed */ 22232 freemsg(mp); 22233 return; 22234 } 22235 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22236 ipst); 22237 return; 22238 } 22239 } 22240 22241 if (mp->b_datap->db_type == M_CTL || 22242 ipss->ipsec_outbound_v4_policy_present) { 22243 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22244 unspec_src, zoneid); 22245 if (mp == NULL) { 22246 ire_refrele(ire); 22247 if (conn_outgoing_ill != NULL) 22248 ill_refrele(conn_outgoing_ill); 22249 return; 22250 } 22251 /* 22252 * Trusted Extensions supports all-zones interfaces, so 22253 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22254 * the global zone. 22255 */ 22256 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22257 io = (ipsec_out_t *)mp->b_rptr; 22258 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22259 zoneid = io->ipsec_out_zoneid; 22260 } 22261 } 22262 22263 first_mp = mp; 22264 ipsec_len = 0; 22265 22266 if (first_mp->b_datap->db_type == M_CTL) { 22267 io = (ipsec_out_t *)first_mp->b_rptr; 22268 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22269 mp = first_mp->b_cont; 22270 ipsec_len = ipsec_out_extra_length(first_mp); 22271 ASSERT(ipsec_len >= 0); 22272 /* We already picked up the zoneid from the M_CTL above */ 22273 ASSERT(zoneid == io->ipsec_out_zoneid); 22274 ASSERT(zoneid != ALL_ZONES); 22275 22276 /* 22277 * Drop M_CTL here if IPsec processing is not needed. 22278 * (Non-IPsec use of M_CTL extracted any information it 22279 * needed above). 22280 */ 22281 if (ipsec_len == 0) { 22282 freeb(first_mp); 22283 first_mp = mp; 22284 } 22285 } 22286 22287 /* 22288 * Fast path for ip_wput_ire 22289 */ 22290 22291 ipha = (ipha_t *)mp->b_rptr; 22292 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22293 dst = ipha->ipha_dst; 22294 22295 /* 22296 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22297 * if the socket is a SOCK_RAW type. The transport checksum should 22298 * be provided in the pre-built packet, so we don't need to compute it. 22299 * Also, other application set flags, like DF, should not be altered. 22300 * Other transport MUST pass down zero. 22301 */ 22302 ip_hdr_included = ipha->ipha_ident; 22303 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22304 22305 if (CLASSD(dst)) { 22306 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22307 ntohl(dst), 22308 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22309 ntohl(ire->ire_addr))); 22310 } 22311 22312 /* Macros to extract header fields from data already in registers */ 22313 #ifdef _BIG_ENDIAN 22314 #define V_HLEN (v_hlen_tos_len >> 24) 22315 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22316 #define PROTO (ttl_protocol & 0xFF) 22317 #else 22318 #define V_HLEN (v_hlen_tos_len & 0xFF) 22319 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22320 #define PROTO (ttl_protocol >> 8) 22321 #endif 22322 22323 22324 orig_src = src = ipha->ipha_src; 22325 /* (The loop back to "another" is explained down below.) */ 22326 another:; 22327 /* 22328 * Assign an ident value for this packet. We assign idents on 22329 * a per destination basis out of the IRE. There could be 22330 * other threads targeting the same destination, so we have to 22331 * arrange for a atomic increment. Note that we use a 32-bit 22332 * atomic add because it has better performance than its 22333 * 16-bit sibling. 22334 * 22335 * If running in cluster mode and if the source address 22336 * belongs to a replicated service then vector through 22337 * cl_inet_ipident vector to allocate ip identifier 22338 * NOTE: This is a contract private interface with the 22339 * clustering group. 22340 */ 22341 clusterwide = 0; 22342 if (cl_inet_ipident) { 22343 ASSERT(cl_inet_isclusterwide); 22344 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22345 AF_INET, (uint8_t *)(uintptr_t)src)) { 22346 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22347 AF_INET, (uint8_t *)(uintptr_t)src, 22348 (uint8_t *)(uintptr_t)dst); 22349 clusterwide = 1; 22350 } 22351 } 22352 if (!clusterwide) { 22353 ipha->ipha_ident = 22354 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22355 } 22356 22357 #ifndef _BIG_ENDIAN 22358 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22359 #endif 22360 22361 /* 22362 * Set source address unless sent on an ill or conn_unspec_src is set. 22363 * This is needed to obey conn_unspec_src when packets go through 22364 * ip_newroute + arp. 22365 * Assumes ip_newroute{,_multi} sets the source address as well. 22366 */ 22367 if (src == INADDR_ANY && !unspec_src) { 22368 /* 22369 * Assign the appropriate source address from the IRE if none 22370 * was specified. 22371 */ 22372 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22373 22374 /* 22375 * With IP multipathing, broadcast packets are sent on the ire 22376 * that has been cleared of IRE_MARK_NORECV and that belongs to 22377 * the group. However, this ire might not be in the same zone so 22378 * we can't always use its source address. We look for a 22379 * broadcast ire in the same group and in the right zone. 22380 */ 22381 if (ire->ire_type == IRE_BROADCAST && 22382 ire->ire_zoneid != zoneid) { 22383 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22384 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22385 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22386 if (src_ire != NULL) { 22387 src = src_ire->ire_src_addr; 22388 ire_refrele(src_ire); 22389 } else { 22390 ire_refrele(ire); 22391 if (conn_outgoing_ill != NULL) 22392 ill_refrele(conn_outgoing_ill); 22393 freemsg(first_mp); 22394 if (ill != NULL) { 22395 BUMP_MIB(ill->ill_ip_mib, 22396 ipIfStatsOutDiscards); 22397 } else { 22398 BUMP_MIB(&ipst->ips_ip_mib, 22399 ipIfStatsOutDiscards); 22400 } 22401 return; 22402 } 22403 } else { 22404 src = ire->ire_src_addr; 22405 } 22406 22407 if (connp == NULL) { 22408 ip1dbg(("ip_wput_ire: no connp and no src " 22409 "address for dst 0x%x, using src 0x%x\n", 22410 ntohl(dst), 22411 ntohl(src))); 22412 } 22413 ipha->ipha_src = src; 22414 } 22415 stq = ire->ire_stq; 22416 22417 /* 22418 * We only allow ire chains for broadcasts since there will 22419 * be multiple IRE_CACHE entries for the same multicast 22420 * address (one per ipif). 22421 */ 22422 next_mp = NULL; 22423 22424 /* broadcast packet */ 22425 if (ire->ire_type == IRE_BROADCAST) 22426 goto broadcast; 22427 22428 /* loopback ? */ 22429 if (stq == NULL) 22430 goto nullstq; 22431 22432 /* The ill_index for outbound ILL */ 22433 ill_index = Q_TO_INDEX(stq); 22434 22435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22436 ttl_protocol = ((uint16_t *)ipha)[4]; 22437 22438 /* pseudo checksum (do it in parts for IP header checksum) */ 22439 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22440 22441 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22442 queue_t *dev_q = stq->q_next; 22443 22444 /* flow controlled */ 22445 if ((dev_q->q_next || dev_q->q_first) && 22446 !canput(dev_q)) 22447 goto blocked; 22448 if ((PROTO == IPPROTO_UDP) && 22449 (ip_hdr_included != IP_HDR_INCLUDED)) { 22450 hlen = (V_HLEN & 0xF) << 2; 22451 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22452 if (*up != 0) { 22453 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22454 hlen, LENGTH, max_frag, ipsec_len, cksum); 22455 /* Software checksum? */ 22456 if (DB_CKSUMFLAGS(mp) == 0) { 22457 IP_STAT(ipst, ip_out_sw_cksum); 22458 IP_STAT_UPDATE(ipst, 22459 ip_udp_out_sw_cksum_bytes, 22460 LENGTH - hlen); 22461 } 22462 } 22463 } 22464 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22465 hlen = (V_HLEN & 0xF) << 2; 22466 if (PROTO == IPPROTO_TCP) { 22467 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22468 /* 22469 * The packet header is processed once and for all, even 22470 * in the multirouting case. We disable hardware 22471 * checksum if the packet is multirouted, as it will be 22472 * replicated via several interfaces, and not all of 22473 * them may have this capability. 22474 */ 22475 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22476 LENGTH, max_frag, ipsec_len, cksum); 22477 /* Software checksum? */ 22478 if (DB_CKSUMFLAGS(mp) == 0) { 22479 IP_STAT(ipst, ip_out_sw_cksum); 22480 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22481 LENGTH - hlen); 22482 } 22483 } else { 22484 sctp_hdr_t *sctph; 22485 22486 ASSERT(PROTO == IPPROTO_SCTP); 22487 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22488 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22489 /* 22490 * Zero out the checksum field to ensure proper 22491 * checksum calculation. 22492 */ 22493 sctph->sh_chksum = 0; 22494 #ifdef DEBUG 22495 if (!skip_sctp_cksum) 22496 #endif 22497 sctph->sh_chksum = sctp_cksum(mp, hlen); 22498 } 22499 } 22500 22501 /* 22502 * If this is a multicast packet and originated from ip_wput 22503 * we need to do loopback and forwarding checks. If it comes 22504 * from ip_wput_multicast, we SHOULD not do this. 22505 */ 22506 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22507 22508 /* checksum */ 22509 cksum += ttl_protocol; 22510 22511 /* fragment the packet */ 22512 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22513 goto fragmentit; 22514 /* 22515 * Don't use frag_flag if packet is pre-built or source 22516 * routed or if multicast (since multicast packets do 22517 * not solicit ICMP "packet too big" messages). 22518 */ 22519 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22520 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22521 !ip_source_route_included(ipha)) && 22522 !CLASSD(ipha->ipha_dst)) 22523 ipha->ipha_fragment_offset_and_flags |= 22524 htons(ire->ire_frag_flag); 22525 22526 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22527 /* calculate IP header checksum */ 22528 cksum += ipha->ipha_ident; 22529 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22530 cksum += ipha->ipha_fragment_offset_and_flags; 22531 22532 /* IP options present */ 22533 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22534 if (hlen) 22535 goto checksumoptions; 22536 22537 /* calculate hdr checksum */ 22538 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22539 cksum = ~(cksum + (cksum >> 16)); 22540 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22541 } 22542 if (ipsec_len != 0) { 22543 /* 22544 * We will do the rest of the processing after 22545 * we come back from IPsec in ip_wput_ipsec_out(). 22546 */ 22547 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22548 22549 io = (ipsec_out_t *)first_mp->b_rptr; 22550 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22551 ill_phyint->phyint_ifindex; 22552 22553 ipsec_out_process(q, first_mp, ire, ill_index); 22554 ire_refrele(ire); 22555 if (conn_outgoing_ill != NULL) 22556 ill_refrele(conn_outgoing_ill); 22557 return; 22558 } 22559 22560 /* 22561 * In most cases, the emission loop below is entered only 22562 * once. Only in the case where the ire holds the 22563 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22564 * flagged ires in the bucket, and send the packet 22565 * through all crossed RTF_MULTIRT routes. 22566 */ 22567 if (ire->ire_flags & RTF_MULTIRT) { 22568 multirt_send = B_TRUE; 22569 } 22570 do { 22571 if (multirt_send) { 22572 irb_t *irb; 22573 /* 22574 * We are in a multiple send case, need to get 22575 * the next ire and make a duplicate of the packet. 22576 * ire1 holds here the next ire to process in the 22577 * bucket. If multirouting is expected, 22578 * any non-RTF_MULTIRT ire that has the 22579 * right destination address is ignored. 22580 */ 22581 irb = ire->ire_bucket; 22582 ASSERT(irb != NULL); 22583 22584 IRB_REFHOLD(irb); 22585 for (ire1 = ire->ire_next; 22586 ire1 != NULL; 22587 ire1 = ire1->ire_next) { 22588 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22589 continue; 22590 if (ire1->ire_addr != ire->ire_addr) 22591 continue; 22592 if (ire1->ire_marks & 22593 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22594 continue; 22595 22596 /* Got one */ 22597 IRE_REFHOLD(ire1); 22598 break; 22599 } 22600 IRB_REFRELE(irb); 22601 22602 if (ire1 != NULL) { 22603 next_mp = copyb(mp); 22604 if ((next_mp == NULL) || 22605 ((mp->b_cont != NULL) && 22606 ((next_mp->b_cont = 22607 dupmsg(mp->b_cont)) == NULL))) { 22608 freemsg(next_mp); 22609 next_mp = NULL; 22610 ire_refrele(ire1); 22611 ire1 = NULL; 22612 } 22613 } 22614 22615 /* Last multiroute ire; don't loop anymore. */ 22616 if (ire1 == NULL) { 22617 multirt_send = B_FALSE; 22618 } 22619 } 22620 22621 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22622 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22623 mblk_t *, mp); 22624 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22625 ipst->ips_ipv4firewall_physical_out, 22626 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22627 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22628 if (mp == NULL) 22629 goto release_ire_and_ill; 22630 22631 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22632 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22633 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22634 if ((pktxmit_state == SEND_FAILED) || 22635 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22636 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22637 "- packet dropped\n")); 22638 release_ire_and_ill: 22639 ire_refrele(ire); 22640 if (next_mp != NULL) { 22641 freemsg(next_mp); 22642 ire_refrele(ire1); 22643 } 22644 if (conn_outgoing_ill != NULL) 22645 ill_refrele(conn_outgoing_ill); 22646 return; 22647 } 22648 22649 if (CLASSD(dst)) { 22650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22651 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22652 LENGTH); 22653 } 22654 22655 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22656 "ip_wput_ire_end: q %p (%S)", 22657 q, "last copy out"); 22658 IRE_REFRELE(ire); 22659 22660 if (multirt_send) { 22661 ASSERT(ire1); 22662 /* 22663 * Proceed with the next RTF_MULTIRT ire, 22664 * Also set up the send-to queue accordingly. 22665 */ 22666 ire = ire1; 22667 ire1 = NULL; 22668 stq = ire->ire_stq; 22669 mp = next_mp; 22670 next_mp = NULL; 22671 ipha = (ipha_t *)mp->b_rptr; 22672 ill_index = Q_TO_INDEX(stq); 22673 ill = (ill_t *)stq->q_ptr; 22674 } 22675 } while (multirt_send); 22676 if (conn_outgoing_ill != NULL) 22677 ill_refrele(conn_outgoing_ill); 22678 return; 22679 22680 /* 22681 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22682 */ 22683 broadcast: 22684 { 22685 /* 22686 * To avoid broadcast storms, we usually set the TTL to 1 for 22687 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22688 * can be overridden stack-wide through the ip_broadcast_ttl 22689 * ndd tunable, or on a per-connection basis through the 22690 * IP_BROADCAST_TTL socket option. 22691 * 22692 * In the event that we are replying to incoming ICMP packets, 22693 * connp could be NULL. 22694 */ 22695 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22696 if (connp != NULL) { 22697 if (connp->conn_dontroute) 22698 ipha->ipha_ttl = 1; 22699 else if (connp->conn_broadcast_ttl != 0) 22700 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22701 } 22702 22703 /* 22704 * Note that we are not doing a IRB_REFHOLD here. 22705 * Actually we don't care if the list changes i.e 22706 * if somebody deletes an IRE from the list while 22707 * we drop the lock, the next time we come around 22708 * ire_next will be NULL and hence we won't send 22709 * out multiple copies which is fine. 22710 */ 22711 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22712 ire1 = ire->ire_next; 22713 if (conn_outgoing_ill != NULL) { 22714 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22715 ASSERT(ire1 == ire->ire_next); 22716 if (ire1 != NULL && ire1->ire_addr == dst) { 22717 ire_refrele(ire); 22718 ire = ire1; 22719 IRE_REFHOLD(ire); 22720 ire1 = ire->ire_next; 22721 continue; 22722 } 22723 rw_exit(&ire->ire_bucket->irb_lock); 22724 /* Did not find a matching ill */ 22725 ip1dbg(("ip_wput_ire: broadcast with no " 22726 "matching IP_BOUND_IF ill %s dst %x\n", 22727 conn_outgoing_ill->ill_name, dst)); 22728 freemsg(first_mp); 22729 if (ire != NULL) 22730 ire_refrele(ire); 22731 ill_refrele(conn_outgoing_ill); 22732 return; 22733 } 22734 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22735 /* 22736 * If the next IRE has the same address and is not one 22737 * of the two copies that we need to send, try to see 22738 * whether this copy should be sent at all. This 22739 * assumes that we insert loopbacks first and then 22740 * non-loopbacks. This is acheived by inserting the 22741 * loopback always before non-loopback. 22742 * This is used to send a single copy of a broadcast 22743 * packet out all physical interfaces that have an 22744 * matching IRE_BROADCAST while also looping 22745 * back one copy (to ip_wput_local) for each 22746 * matching physical interface. However, we avoid 22747 * sending packets out different logical that match by 22748 * having ipif_up/ipif_down supress duplicate 22749 * IRE_BROADCASTS. 22750 * 22751 * This feature is currently used to get broadcasts 22752 * sent to multiple interfaces, when the broadcast 22753 * address being used applies to multiple interfaces. 22754 * For example, a whole net broadcast will be 22755 * replicated on every connected subnet of 22756 * the target net. 22757 * 22758 * Each zone has its own set of IRE_BROADCASTs, so that 22759 * we're able to distribute inbound packets to multiple 22760 * zones who share a broadcast address. We avoid looping 22761 * back outbound packets in different zones but on the 22762 * same ill, as the application would see duplicates. 22763 * 22764 * If the interfaces are part of the same group, 22765 * we would want to send only one copy out for 22766 * whole group. 22767 * 22768 * This logic assumes that ire_add_v4() groups the 22769 * IRE_BROADCAST entries so that those with the same 22770 * ire_addr and ill_group are kept together. 22771 */ 22772 ire_ill = ire->ire_ipif->ipif_ill; 22773 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22774 if (ire_ill->ill_group != NULL && 22775 (ire->ire_marks & IRE_MARK_NORECV)) { 22776 /* 22777 * If the current zone only has an ire 22778 * broadcast for this address marked 22779 * NORECV, the ire we want is ahead in 22780 * the bucket, so we look it up 22781 * deliberately ignoring the zoneid. 22782 */ 22783 for (ire1 = ire->ire_bucket->irb_ire; 22784 ire1 != NULL; 22785 ire1 = ire1->ire_next) { 22786 ire1_ill = 22787 ire1->ire_ipif->ipif_ill; 22788 if (ire1->ire_addr != dst) 22789 continue; 22790 /* skip over the current ire */ 22791 if (ire1 == ire) 22792 continue; 22793 /* skip over deleted ires */ 22794 if (ire1->ire_marks & 22795 IRE_MARK_CONDEMNED) 22796 continue; 22797 /* 22798 * non-loopback ire in our 22799 * group: use it for the next 22800 * pass in the loop 22801 */ 22802 if (ire1->ire_stq != NULL && 22803 ire1_ill->ill_group == 22804 ire_ill->ill_group) 22805 break; 22806 } 22807 } 22808 } else { 22809 while (ire1 != NULL && ire1->ire_addr == dst) { 22810 ire1_ill = ire1->ire_ipif->ipif_ill; 22811 /* 22812 * We can have two broadcast ires on the 22813 * same ill in different zones; here 22814 * we'll send a copy of the packet on 22815 * each ill and the fanout code will 22816 * call conn_wantpacket() to check that 22817 * the zone has the broadcast address 22818 * configured on the ill. If the two 22819 * ires are in the same group we only 22820 * send one copy up. 22821 */ 22822 if (ire1_ill != ire_ill && 22823 (ire1_ill->ill_group == NULL || 22824 ire_ill->ill_group == NULL || 22825 ire1_ill->ill_group != 22826 ire_ill->ill_group)) { 22827 break; 22828 } 22829 ire1 = ire1->ire_next; 22830 } 22831 } 22832 } 22833 ASSERT(multirt_send == B_FALSE); 22834 if (ire1 != NULL && ire1->ire_addr == dst) { 22835 if ((ire->ire_flags & RTF_MULTIRT) && 22836 (ire1->ire_flags & RTF_MULTIRT)) { 22837 /* 22838 * We are in the multirouting case. 22839 * The message must be sent at least 22840 * on both ires. These ires have been 22841 * inserted AFTER the standard ones 22842 * in ip_rt_add(). There are thus no 22843 * other ire entries for the destination 22844 * address in the rest of the bucket 22845 * that do not have the RTF_MULTIRT 22846 * flag. We don't process a copy 22847 * of the message here. This will be 22848 * done in the final sending loop. 22849 */ 22850 multirt_send = B_TRUE; 22851 } else { 22852 next_mp = ip_copymsg(first_mp); 22853 if (next_mp != NULL) 22854 IRE_REFHOLD(ire1); 22855 } 22856 } 22857 rw_exit(&ire->ire_bucket->irb_lock); 22858 } 22859 22860 if (stq) { 22861 /* 22862 * A non-NULL send-to queue means this packet is going 22863 * out of this machine. 22864 */ 22865 out_ill = (ill_t *)stq->q_ptr; 22866 22867 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22868 ttl_protocol = ((uint16_t *)ipha)[4]; 22869 /* 22870 * We accumulate the pseudo header checksum in cksum. 22871 * This is pretty hairy code, so watch close. One 22872 * thing to keep in mind is that UDP and TCP have 22873 * stored their respective datagram lengths in their 22874 * checksum fields. This lines things up real nice. 22875 */ 22876 cksum = (dst >> 16) + (dst & 0xFFFF) + 22877 (src >> 16) + (src & 0xFFFF); 22878 /* 22879 * We assume the udp checksum field contains the 22880 * length, so to compute the pseudo header checksum, 22881 * all we need is the protocol number and src/dst. 22882 */ 22883 /* Provide the checksums for UDP and TCP. */ 22884 if ((PROTO == IPPROTO_TCP) && 22885 (ip_hdr_included != IP_HDR_INCLUDED)) { 22886 /* hlen gets the number of uchar_ts in the IP header */ 22887 hlen = (V_HLEN & 0xF) << 2; 22888 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22889 IP_STAT(ipst, ip_out_sw_cksum); 22890 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22891 LENGTH - hlen); 22892 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22893 } else if (PROTO == IPPROTO_SCTP && 22894 (ip_hdr_included != IP_HDR_INCLUDED)) { 22895 sctp_hdr_t *sctph; 22896 22897 hlen = (V_HLEN & 0xF) << 2; 22898 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22899 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22900 sctph->sh_chksum = 0; 22901 #ifdef DEBUG 22902 if (!skip_sctp_cksum) 22903 #endif 22904 sctph->sh_chksum = sctp_cksum(mp, hlen); 22905 } else { 22906 queue_t *dev_q = stq->q_next; 22907 22908 if ((dev_q->q_next || dev_q->q_first) && 22909 !canput(dev_q)) { 22910 blocked: 22911 ipha->ipha_ident = ip_hdr_included; 22912 /* 22913 * If we don't have a conn to apply 22914 * backpressure, free the message. 22915 * In the ire_send path, we don't know 22916 * the position to requeue the packet. Rather 22917 * than reorder packets, we just drop this 22918 * packet. 22919 */ 22920 if (ipst->ips_ip_output_queue && 22921 connp != NULL && 22922 caller != IRE_SEND) { 22923 if (caller == IP_WSRV) { 22924 connp->conn_did_putbq = 1; 22925 (void) putbq(connp->conn_wq, 22926 first_mp); 22927 conn_drain_insert(connp); 22928 /* 22929 * This is the service thread, 22930 * and the queue is already 22931 * noenabled. The check for 22932 * canput and the putbq is not 22933 * atomic. So we need to check 22934 * again. 22935 */ 22936 if (canput(stq->q_next)) 22937 connp->conn_did_putbq 22938 = 0; 22939 IP_STAT(ipst, ip_conn_flputbq); 22940 } else { 22941 /* 22942 * We are not the service proc. 22943 * ip_wsrv will be scheduled or 22944 * is already running. 22945 */ 22946 (void) putq(connp->conn_wq, 22947 first_mp); 22948 } 22949 } else { 22950 out_ill = (ill_t *)stq->q_ptr; 22951 BUMP_MIB(out_ill->ill_ip_mib, 22952 ipIfStatsOutDiscards); 22953 freemsg(first_mp); 22954 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22955 "ip_wput_ire_end: q %p (%S)", 22956 q, "discard"); 22957 } 22958 ire_refrele(ire); 22959 if (next_mp) { 22960 ire_refrele(ire1); 22961 freemsg(next_mp); 22962 } 22963 if (conn_outgoing_ill != NULL) 22964 ill_refrele(conn_outgoing_ill); 22965 return; 22966 } 22967 if ((PROTO == IPPROTO_UDP) && 22968 (ip_hdr_included != IP_HDR_INCLUDED)) { 22969 /* 22970 * hlen gets the number of uchar_ts in the 22971 * IP header 22972 */ 22973 hlen = (V_HLEN & 0xF) << 2; 22974 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22975 max_frag = ire->ire_max_frag; 22976 if (*up != 0) { 22977 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22978 up, PROTO, hlen, LENGTH, max_frag, 22979 ipsec_len, cksum); 22980 /* Software checksum? */ 22981 if (DB_CKSUMFLAGS(mp) == 0) { 22982 IP_STAT(ipst, ip_out_sw_cksum); 22983 IP_STAT_UPDATE(ipst, 22984 ip_udp_out_sw_cksum_bytes, 22985 LENGTH - hlen); 22986 } 22987 } 22988 } 22989 } 22990 /* 22991 * Need to do this even when fragmenting. The local 22992 * loopback can be done without computing checksums 22993 * but forwarding out other interface must be done 22994 * after the IP checksum (and ULP checksums) have been 22995 * computed. 22996 * 22997 * NOTE : multicast_forward is set only if this packet 22998 * originated from ip_wput. For packets originating from 22999 * ip_wput_multicast, it is not set. 23000 */ 23001 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23002 multi_loopback: 23003 ip2dbg(("ip_wput: multicast, loop %d\n", 23004 conn_multicast_loop)); 23005 23006 /* Forget header checksum offload */ 23007 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23008 23009 /* 23010 * Local loopback of multicasts? Check the 23011 * ill. 23012 * 23013 * Note that the loopback function will not come 23014 * in through ip_rput - it will only do the 23015 * client fanout thus we need to do an mforward 23016 * as well. The is different from the BSD 23017 * logic. 23018 */ 23019 if (ill != NULL) { 23020 ilm_t *ilm; 23021 23022 ILM_WALKER_HOLD(ill); 23023 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23024 ALL_ZONES); 23025 ILM_WALKER_RELE(ill); 23026 if (ilm != NULL) { 23027 /* 23028 * Pass along the virtual output q. 23029 * ip_wput_local() will distribute the 23030 * packet to all the matching zones, 23031 * except the sending zone when 23032 * IP_MULTICAST_LOOP is false. 23033 */ 23034 ip_multicast_loopback(q, ill, first_mp, 23035 conn_multicast_loop ? 0 : 23036 IP_FF_NO_MCAST_LOOP, zoneid); 23037 } 23038 } 23039 if (ipha->ipha_ttl == 0) { 23040 /* 23041 * 0 => only to this host i.e. we are 23042 * done. We are also done if this was the 23043 * loopback interface since it is sufficient 23044 * to loopback one copy of a multicast packet. 23045 */ 23046 freemsg(first_mp); 23047 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23048 "ip_wput_ire_end: q %p (%S)", 23049 q, "loopback"); 23050 ire_refrele(ire); 23051 if (conn_outgoing_ill != NULL) 23052 ill_refrele(conn_outgoing_ill); 23053 return; 23054 } 23055 /* 23056 * ILLF_MULTICAST is checked in ip_newroute 23057 * i.e. we don't need to check it here since 23058 * all IRE_CACHEs come from ip_newroute. 23059 * For multicast traffic, SO_DONTROUTE is interpreted 23060 * to mean only send the packet out the interface 23061 * (optionally specified with IP_MULTICAST_IF) 23062 * and do not forward it out additional interfaces. 23063 * RSVP and the rsvp daemon is an example of a 23064 * protocol and user level process that 23065 * handles it's own routing. Hence, it uses the 23066 * SO_DONTROUTE option to accomplish this. 23067 */ 23068 23069 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23070 ill != NULL) { 23071 /* Unconditionally redo the checksum */ 23072 ipha->ipha_hdr_checksum = 0; 23073 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23074 23075 /* 23076 * If this needs to go out secure, we need 23077 * to wait till we finish the IPsec 23078 * processing. 23079 */ 23080 if (ipsec_len == 0 && 23081 ip_mforward(ill, ipha, mp)) { 23082 freemsg(first_mp); 23083 ip1dbg(("ip_wput: mforward failed\n")); 23084 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23085 "ip_wput_ire_end: q %p (%S)", 23086 q, "mforward failed"); 23087 ire_refrele(ire); 23088 if (conn_outgoing_ill != NULL) 23089 ill_refrele(conn_outgoing_ill); 23090 return; 23091 } 23092 } 23093 } 23094 max_frag = ire->ire_max_frag; 23095 cksum += ttl_protocol; 23096 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23097 /* No fragmentation required for this one. */ 23098 /* 23099 * Don't use frag_flag if packet is pre-built or source 23100 * routed or if multicast (since multicast packets do 23101 * not solicit ICMP "packet too big" messages). 23102 */ 23103 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23104 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23105 !ip_source_route_included(ipha)) && 23106 !CLASSD(ipha->ipha_dst)) 23107 ipha->ipha_fragment_offset_and_flags |= 23108 htons(ire->ire_frag_flag); 23109 23110 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23111 /* Complete the IP header checksum. */ 23112 cksum += ipha->ipha_ident; 23113 cksum += (v_hlen_tos_len >> 16)+ 23114 (v_hlen_tos_len & 0xFFFF); 23115 cksum += ipha->ipha_fragment_offset_and_flags; 23116 hlen = (V_HLEN & 0xF) - 23117 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23118 if (hlen) { 23119 checksumoptions: 23120 /* 23121 * Account for the IP Options in the IP 23122 * header checksum. 23123 */ 23124 up = (uint16_t *)(rptr+ 23125 IP_SIMPLE_HDR_LENGTH); 23126 do { 23127 cksum += up[0]; 23128 cksum += up[1]; 23129 up += 2; 23130 } while (--hlen); 23131 } 23132 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23133 cksum = ~(cksum + (cksum >> 16)); 23134 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23135 } 23136 if (ipsec_len != 0) { 23137 ipsec_out_process(q, first_mp, ire, ill_index); 23138 if (!next_mp) { 23139 ire_refrele(ire); 23140 if (conn_outgoing_ill != NULL) 23141 ill_refrele(conn_outgoing_ill); 23142 return; 23143 } 23144 goto next; 23145 } 23146 23147 /* 23148 * multirt_send has already been handled 23149 * for broadcast, but not yet for multicast 23150 * or IP options. 23151 */ 23152 if (next_mp == NULL) { 23153 if (ire->ire_flags & RTF_MULTIRT) { 23154 multirt_send = B_TRUE; 23155 } 23156 } 23157 23158 /* 23159 * In most cases, the emission loop below is 23160 * entered only once. Only in the case where 23161 * the ire holds the RTF_MULTIRT flag, do we loop 23162 * to process all RTF_MULTIRT ires in the bucket, 23163 * and send the packet through all crossed 23164 * RTF_MULTIRT routes. 23165 */ 23166 do { 23167 if (multirt_send) { 23168 irb_t *irb; 23169 23170 irb = ire->ire_bucket; 23171 ASSERT(irb != NULL); 23172 /* 23173 * We are in a multiple send case, 23174 * need to get the next IRE and make 23175 * a duplicate of the packet. 23176 */ 23177 IRB_REFHOLD(irb); 23178 for (ire1 = ire->ire_next; 23179 ire1 != NULL; 23180 ire1 = ire1->ire_next) { 23181 if (!(ire1->ire_flags & 23182 RTF_MULTIRT)) { 23183 continue; 23184 } 23185 if (ire1->ire_addr != 23186 ire->ire_addr) { 23187 continue; 23188 } 23189 if (ire1->ire_marks & 23190 (IRE_MARK_CONDEMNED| 23191 IRE_MARK_HIDDEN)) { 23192 continue; 23193 } 23194 23195 /* Got one */ 23196 IRE_REFHOLD(ire1); 23197 break; 23198 } 23199 IRB_REFRELE(irb); 23200 23201 if (ire1 != NULL) { 23202 next_mp = copyb(mp); 23203 if ((next_mp == NULL) || 23204 ((mp->b_cont != NULL) && 23205 ((next_mp->b_cont = 23206 dupmsg(mp->b_cont)) 23207 == NULL))) { 23208 freemsg(next_mp); 23209 next_mp = NULL; 23210 ire_refrele(ire1); 23211 ire1 = NULL; 23212 } 23213 } 23214 23215 /* 23216 * Last multiroute ire; don't loop 23217 * anymore. The emission is over 23218 * and next_mp is NULL. 23219 */ 23220 if (ire1 == NULL) { 23221 multirt_send = B_FALSE; 23222 } 23223 } 23224 23225 out_ill = ire_to_ill(ire); 23226 DTRACE_PROBE4(ip4__physical__out__start, 23227 ill_t *, NULL, 23228 ill_t *, out_ill, 23229 ipha_t *, ipha, mblk_t *, mp); 23230 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23231 ipst->ips_ipv4firewall_physical_out, 23232 NULL, out_ill, ipha, mp, mp, 0, ipst); 23233 DTRACE_PROBE1(ip4__physical__out__end, 23234 mblk_t *, mp); 23235 if (mp == NULL) 23236 goto release_ire_and_ill_2; 23237 23238 ASSERT(ipsec_len == 0); 23239 mp->b_prev = 23240 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23241 DTRACE_PROBE2(ip__xmit__2, 23242 mblk_t *, mp, ire_t *, ire); 23243 pktxmit_state = ip_xmit_v4(mp, ire, 23244 NULL, B_TRUE); 23245 if ((pktxmit_state == SEND_FAILED) || 23246 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23247 release_ire_and_ill_2: 23248 if (next_mp) { 23249 freemsg(next_mp); 23250 ire_refrele(ire1); 23251 } 23252 ire_refrele(ire); 23253 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23254 "ip_wput_ire_end: q %p (%S)", 23255 q, "discard MDATA"); 23256 if (conn_outgoing_ill != NULL) 23257 ill_refrele(conn_outgoing_ill); 23258 return; 23259 } 23260 23261 if (CLASSD(dst)) { 23262 BUMP_MIB(out_ill->ill_ip_mib, 23263 ipIfStatsHCOutMcastPkts); 23264 UPDATE_MIB(out_ill->ill_ip_mib, 23265 ipIfStatsHCOutMcastOctets, 23266 LENGTH); 23267 } else if (ire->ire_type == IRE_BROADCAST) { 23268 BUMP_MIB(out_ill->ill_ip_mib, 23269 ipIfStatsHCOutBcastPkts); 23270 } 23271 23272 if (multirt_send) { 23273 /* 23274 * We are in a multiple send case, 23275 * need to re-enter the sending loop 23276 * using the next ire. 23277 */ 23278 ire_refrele(ire); 23279 ire = ire1; 23280 stq = ire->ire_stq; 23281 mp = next_mp; 23282 next_mp = NULL; 23283 ipha = (ipha_t *)mp->b_rptr; 23284 ill_index = Q_TO_INDEX(stq); 23285 } 23286 } while (multirt_send); 23287 23288 if (!next_mp) { 23289 /* 23290 * Last copy going out (the ultra-common 23291 * case). Note that we intentionally replicate 23292 * the putnext rather than calling it before 23293 * the next_mp check in hopes of a little 23294 * tail-call action out of the compiler. 23295 */ 23296 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23297 "ip_wput_ire_end: q %p (%S)", 23298 q, "last copy out(1)"); 23299 ire_refrele(ire); 23300 if (conn_outgoing_ill != NULL) 23301 ill_refrele(conn_outgoing_ill); 23302 return; 23303 } 23304 /* More copies going out below. */ 23305 } else { 23306 int offset; 23307 fragmentit: 23308 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23309 /* 23310 * If this would generate a icmp_frag_needed message, 23311 * we need to handle it before we do the IPsec 23312 * processing. Otherwise, we need to strip the IPsec 23313 * headers before we send up the message to the ULPs 23314 * which becomes messy and difficult. 23315 */ 23316 if (ipsec_len != 0) { 23317 if ((max_frag < (unsigned int)(LENGTH + 23318 ipsec_len)) && (offset & IPH_DF)) { 23319 out_ill = (ill_t *)stq->q_ptr; 23320 BUMP_MIB(out_ill->ill_ip_mib, 23321 ipIfStatsOutFragFails); 23322 BUMP_MIB(out_ill->ill_ip_mib, 23323 ipIfStatsOutFragReqds); 23324 ipha->ipha_hdr_checksum = 0; 23325 ipha->ipha_hdr_checksum = 23326 (uint16_t)ip_csum_hdr(ipha); 23327 icmp_frag_needed(ire->ire_stq, first_mp, 23328 max_frag, zoneid, ipst); 23329 if (!next_mp) { 23330 ire_refrele(ire); 23331 if (conn_outgoing_ill != NULL) { 23332 ill_refrele( 23333 conn_outgoing_ill); 23334 } 23335 return; 23336 } 23337 } else { 23338 /* 23339 * This won't cause a icmp_frag_needed 23340 * message. to be generated. Send it on 23341 * the wire. Note that this could still 23342 * cause fragmentation and all we 23343 * do is the generation of the message 23344 * to the ULP if needed before IPsec. 23345 */ 23346 if (!next_mp) { 23347 ipsec_out_process(q, first_mp, 23348 ire, ill_index); 23349 TRACE_2(TR_FAC_IP, 23350 TR_IP_WPUT_IRE_END, 23351 "ip_wput_ire_end: q %p " 23352 "(%S)", q, 23353 "last ipsec_out_process"); 23354 ire_refrele(ire); 23355 if (conn_outgoing_ill != NULL) { 23356 ill_refrele( 23357 conn_outgoing_ill); 23358 } 23359 return; 23360 } 23361 ipsec_out_process(q, first_mp, 23362 ire, ill_index); 23363 } 23364 } else { 23365 /* 23366 * Initiate IPPF processing. For 23367 * fragmentable packets we finish 23368 * all QOS packet processing before 23369 * calling: 23370 * ip_wput_ire_fragmentit->ip_wput_frag 23371 */ 23372 23373 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23374 ip_process(IPP_LOCAL_OUT, &mp, 23375 ill_index); 23376 if (mp == NULL) { 23377 out_ill = (ill_t *)stq->q_ptr; 23378 BUMP_MIB(out_ill->ill_ip_mib, 23379 ipIfStatsOutDiscards); 23380 if (next_mp != NULL) { 23381 freemsg(next_mp); 23382 ire_refrele(ire1); 23383 } 23384 ire_refrele(ire); 23385 TRACE_2(TR_FAC_IP, 23386 TR_IP_WPUT_IRE_END, 23387 "ip_wput_ire: q %p (%S)", 23388 q, "discard MDATA"); 23389 if (conn_outgoing_ill != NULL) { 23390 ill_refrele( 23391 conn_outgoing_ill); 23392 } 23393 return; 23394 } 23395 } 23396 if (!next_mp) { 23397 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23398 "ip_wput_ire_end: q %p (%S)", 23399 q, "last fragmentation"); 23400 ip_wput_ire_fragmentit(mp, ire, 23401 zoneid, ipst); 23402 ire_refrele(ire); 23403 if (conn_outgoing_ill != NULL) 23404 ill_refrele(conn_outgoing_ill); 23405 return; 23406 } 23407 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23408 } 23409 } 23410 } else { 23411 nullstq: 23412 /* A NULL stq means the destination address is local. */ 23413 UPDATE_OB_PKT_COUNT(ire); 23414 ire->ire_last_used_time = lbolt; 23415 ASSERT(ire->ire_ipif != NULL); 23416 if (!next_mp) { 23417 /* 23418 * Is there an "in" and "out" for traffic local 23419 * to a host (loopback)? The code in Solaris doesn't 23420 * explicitly draw a line in its code for in vs out, 23421 * so we've had to draw a line in the sand: ip_wput_ire 23422 * is considered to be the "output" side and 23423 * ip_wput_local to be the "input" side. 23424 */ 23425 out_ill = ire_to_ill(ire); 23426 23427 DTRACE_PROBE4(ip4__loopback__out__start, 23428 ill_t *, NULL, ill_t *, out_ill, 23429 ipha_t *, ipha, mblk_t *, first_mp); 23430 23431 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23432 ipst->ips_ipv4firewall_loopback_out, 23433 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23434 23435 DTRACE_PROBE1(ip4__loopback__out_end, 23436 mblk_t *, first_mp); 23437 23438 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23439 "ip_wput_ire_end: q %p (%S)", 23440 q, "local address"); 23441 23442 if (first_mp != NULL) 23443 ip_wput_local(q, out_ill, ipha, 23444 first_mp, ire, 0, ire->ire_zoneid); 23445 ire_refrele(ire); 23446 if (conn_outgoing_ill != NULL) 23447 ill_refrele(conn_outgoing_ill); 23448 return; 23449 } 23450 23451 out_ill = ire_to_ill(ire); 23452 23453 DTRACE_PROBE4(ip4__loopback__out__start, 23454 ill_t *, NULL, ill_t *, out_ill, 23455 ipha_t *, ipha, mblk_t *, first_mp); 23456 23457 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23458 ipst->ips_ipv4firewall_loopback_out, 23459 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23460 23461 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23462 23463 if (first_mp != NULL) 23464 ip_wput_local(q, out_ill, ipha, 23465 first_mp, ire, 0, ire->ire_zoneid); 23466 } 23467 next: 23468 /* 23469 * More copies going out to additional interfaces. 23470 * ire1 has already been held. We don't need the 23471 * "ire" anymore. 23472 */ 23473 ire_refrele(ire); 23474 ire = ire1; 23475 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23476 mp = next_mp; 23477 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23478 ill = ire_to_ill(ire); 23479 first_mp = mp; 23480 if (ipsec_len != 0) { 23481 ASSERT(first_mp->b_datap->db_type == M_CTL); 23482 mp = mp->b_cont; 23483 } 23484 dst = ire->ire_addr; 23485 ipha = (ipha_t *)mp->b_rptr; 23486 /* 23487 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23488 * Restore ipha_ident "no checksum" flag. 23489 */ 23490 src = orig_src; 23491 ipha->ipha_ident = ip_hdr_included; 23492 goto another; 23493 23494 #undef rptr 23495 #undef Q_TO_INDEX 23496 } 23497 23498 /* 23499 * Routine to allocate a message that is used to notify the ULP about MDT. 23500 * The caller may provide a pointer to the link-layer MDT capabilities, 23501 * or NULL if MDT is to be disabled on the stream. 23502 */ 23503 mblk_t * 23504 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23505 { 23506 mblk_t *mp; 23507 ip_mdt_info_t *mdti; 23508 ill_mdt_capab_t *idst; 23509 23510 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23511 DB_TYPE(mp) = M_CTL; 23512 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23513 mdti = (ip_mdt_info_t *)mp->b_rptr; 23514 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23515 idst = &(mdti->mdt_capab); 23516 23517 /* 23518 * If the caller provides us with the capability, copy 23519 * it over into our notification message; otherwise 23520 * we zero out the capability portion. 23521 */ 23522 if (isrc != NULL) 23523 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23524 else 23525 bzero((caddr_t)idst, sizeof (*idst)); 23526 } 23527 return (mp); 23528 } 23529 23530 /* 23531 * Routine which determines whether MDT can be enabled on the destination 23532 * IRE and IPC combination, and if so, allocates and returns the MDT 23533 * notification mblk that may be used by ULP. We also check if we need to 23534 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23535 * MDT usage in the past have been lifted. This gets called during IP 23536 * and ULP binding. 23537 */ 23538 mblk_t * 23539 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23540 ill_mdt_capab_t *mdt_cap) 23541 { 23542 mblk_t *mp; 23543 boolean_t rc = B_FALSE; 23544 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23545 23546 ASSERT(dst_ire != NULL); 23547 ASSERT(connp != NULL); 23548 ASSERT(mdt_cap != NULL); 23549 23550 /* 23551 * Currently, we only support simple TCP/{IPv4,IPv6} with 23552 * Multidata, which is handled in tcp_multisend(). This 23553 * is the reason why we do all these checks here, to ensure 23554 * that we don't enable Multidata for the cases which we 23555 * can't handle at the moment. 23556 */ 23557 do { 23558 /* Only do TCP at the moment */ 23559 if (connp->conn_ulp != IPPROTO_TCP) 23560 break; 23561 23562 /* 23563 * IPsec outbound policy present? Note that we get here 23564 * after calling ipsec_conn_cache_policy() where the global 23565 * policy checking is performed. conn_latch will be 23566 * non-NULL as long as there's a policy defined, 23567 * i.e. conn_out_enforce_policy may be NULL in such case 23568 * when the connection is non-secure, and hence we check 23569 * further if the latch refers to an outbound policy. 23570 */ 23571 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23572 break; 23573 23574 /* CGTP (multiroute) is enabled? */ 23575 if (dst_ire->ire_flags & RTF_MULTIRT) 23576 break; 23577 23578 /* Outbound IPQoS enabled? */ 23579 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23580 /* 23581 * In this case, we disable MDT for this and all 23582 * future connections going over the interface. 23583 */ 23584 mdt_cap->ill_mdt_on = 0; 23585 break; 23586 } 23587 23588 /* socket option(s) present? */ 23589 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23590 break; 23591 23592 rc = B_TRUE; 23593 /* CONSTCOND */ 23594 } while (0); 23595 23596 /* Remember the result */ 23597 connp->conn_mdt_ok = rc; 23598 23599 if (!rc) 23600 return (NULL); 23601 else if (!mdt_cap->ill_mdt_on) { 23602 /* 23603 * If MDT has been previously turned off in the past, and we 23604 * currently can do MDT (due to IPQoS policy removal, etc.) 23605 * then enable it for this interface. 23606 */ 23607 mdt_cap->ill_mdt_on = 1; 23608 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23609 "interface %s\n", ill_name)); 23610 } 23611 23612 /* Allocate the MDT info mblk */ 23613 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23614 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23615 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23616 return (NULL); 23617 } 23618 return (mp); 23619 } 23620 23621 /* 23622 * Routine to allocate a message that is used to notify the ULP about LSO. 23623 * The caller may provide a pointer to the link-layer LSO capabilities, 23624 * or NULL if LSO is to be disabled on the stream. 23625 */ 23626 mblk_t * 23627 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23628 { 23629 mblk_t *mp; 23630 ip_lso_info_t *lsoi; 23631 ill_lso_capab_t *idst; 23632 23633 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23634 DB_TYPE(mp) = M_CTL; 23635 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23636 lsoi = (ip_lso_info_t *)mp->b_rptr; 23637 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23638 idst = &(lsoi->lso_capab); 23639 23640 /* 23641 * If the caller provides us with the capability, copy 23642 * it over into our notification message; otherwise 23643 * we zero out the capability portion. 23644 */ 23645 if (isrc != NULL) 23646 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23647 else 23648 bzero((caddr_t)idst, sizeof (*idst)); 23649 } 23650 return (mp); 23651 } 23652 23653 /* 23654 * Routine which determines whether LSO can be enabled on the destination 23655 * IRE and IPC combination, and if so, allocates and returns the LSO 23656 * notification mblk that may be used by ULP. We also check if we need to 23657 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23658 * LSO usage in the past have been lifted. This gets called during IP 23659 * and ULP binding. 23660 */ 23661 mblk_t * 23662 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23663 ill_lso_capab_t *lso_cap) 23664 { 23665 mblk_t *mp; 23666 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23667 23668 ASSERT(dst_ire != NULL); 23669 ASSERT(connp != NULL); 23670 ASSERT(lso_cap != NULL); 23671 23672 connp->conn_lso_ok = B_TRUE; 23673 23674 if ((connp->conn_ulp != IPPROTO_TCP) || 23675 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23676 (dst_ire->ire_flags & RTF_MULTIRT) || 23677 !CONN_IS_LSO_MD_FASTPATH(connp) || 23678 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23679 connp->conn_lso_ok = B_FALSE; 23680 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23681 /* 23682 * Disable LSO for this and all future connections going 23683 * over the interface. 23684 */ 23685 lso_cap->ill_lso_on = 0; 23686 } 23687 } 23688 23689 if (!connp->conn_lso_ok) 23690 return (NULL); 23691 else if (!lso_cap->ill_lso_on) { 23692 /* 23693 * If LSO has been previously turned off in the past, and we 23694 * currently can do LSO (due to IPQoS policy removal, etc.) 23695 * then enable it for this interface. 23696 */ 23697 lso_cap->ill_lso_on = 1; 23698 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23699 ill_name)); 23700 } 23701 23702 /* Allocate the LSO info mblk */ 23703 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23704 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23705 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23706 23707 return (mp); 23708 } 23709 23710 /* 23711 * Create destination address attribute, and fill it with the physical 23712 * destination address and SAP taken from the template DL_UNITDATA_REQ 23713 * message block. 23714 */ 23715 boolean_t 23716 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23717 { 23718 dl_unitdata_req_t *dlurp; 23719 pattr_t *pa; 23720 pattrinfo_t pa_info; 23721 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23722 uint_t das_len, das_off; 23723 23724 ASSERT(dlmp != NULL); 23725 23726 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23727 das_len = dlurp->dl_dest_addr_length; 23728 das_off = dlurp->dl_dest_addr_offset; 23729 23730 pa_info.type = PATTR_DSTADDRSAP; 23731 pa_info.len = sizeof (**das) + das_len - 1; 23732 23733 /* create and associate the attribute */ 23734 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23735 if (pa != NULL) { 23736 ASSERT(*das != NULL); 23737 (*das)->addr_is_group = 0; 23738 (*das)->addr_len = (uint8_t)das_len; 23739 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23740 } 23741 23742 return (pa != NULL); 23743 } 23744 23745 /* 23746 * Create hardware checksum attribute and fill it with the values passed. 23747 */ 23748 boolean_t 23749 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23750 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23751 { 23752 pattr_t *pa; 23753 pattrinfo_t pa_info; 23754 23755 ASSERT(mmd != NULL); 23756 23757 pa_info.type = PATTR_HCKSUM; 23758 pa_info.len = sizeof (pattr_hcksum_t); 23759 23760 /* create and associate the attribute */ 23761 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23762 if (pa != NULL) { 23763 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23764 23765 hck->hcksum_start_offset = start_offset; 23766 hck->hcksum_stuff_offset = stuff_offset; 23767 hck->hcksum_end_offset = end_offset; 23768 hck->hcksum_flags = flags; 23769 } 23770 return (pa != NULL); 23771 } 23772 23773 /* 23774 * Create zerocopy attribute and fill it with the specified flags 23775 */ 23776 boolean_t 23777 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23778 { 23779 pattr_t *pa; 23780 pattrinfo_t pa_info; 23781 23782 ASSERT(mmd != NULL); 23783 pa_info.type = PATTR_ZCOPY; 23784 pa_info.len = sizeof (pattr_zcopy_t); 23785 23786 /* create and associate the attribute */ 23787 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23788 if (pa != NULL) { 23789 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23790 23791 zcopy->zcopy_flags = flags; 23792 } 23793 return (pa != NULL); 23794 } 23795 23796 /* 23797 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23798 * block chain. We could rewrite to handle arbitrary message block chains but 23799 * that would make the code complicated and slow. Right now there three 23800 * restrictions: 23801 * 23802 * 1. The first message block must contain the complete IP header and 23803 * at least 1 byte of payload data. 23804 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23805 * so that we can use a single Multidata message. 23806 * 3. No frag must be distributed over two or more message blocks so 23807 * that we don't need more than two packet descriptors per frag. 23808 * 23809 * The above restrictions allow us to support userland applications (which 23810 * will send down a single message block) and NFS over UDP (which will 23811 * send down a chain of at most three message blocks). 23812 * 23813 * We also don't use MDT for payloads with less than or equal to 23814 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23815 */ 23816 boolean_t 23817 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23818 { 23819 int blocks; 23820 ssize_t total, missing, size; 23821 23822 ASSERT(mp != NULL); 23823 ASSERT(hdr_len > 0); 23824 23825 size = MBLKL(mp) - hdr_len; 23826 if (size <= 0) 23827 return (B_FALSE); 23828 23829 /* The first mblk contains the header and some payload. */ 23830 blocks = 1; 23831 total = size; 23832 size %= len; 23833 missing = (size == 0) ? 0 : (len - size); 23834 mp = mp->b_cont; 23835 23836 while (mp != NULL) { 23837 /* 23838 * Give up if we encounter a zero length message block. 23839 * In practice, this should rarely happen and therefore 23840 * not worth the trouble of freeing and re-linking the 23841 * mblk from the chain to handle such case. 23842 */ 23843 if ((size = MBLKL(mp)) == 0) 23844 return (B_FALSE); 23845 23846 /* Too many payload buffers for a single Multidata message? */ 23847 if (++blocks > MULTIDATA_MAX_PBUFS) 23848 return (B_FALSE); 23849 23850 total += size; 23851 /* Is a frag distributed over two or more message blocks? */ 23852 if (missing > size) 23853 return (B_FALSE); 23854 size -= missing; 23855 23856 size %= len; 23857 missing = (size == 0) ? 0 : (len - size); 23858 23859 mp = mp->b_cont; 23860 } 23861 23862 return (total > ip_wput_frag_mdt_min); 23863 } 23864 23865 /* 23866 * Outbound IPv4 fragmentation routine using MDT. 23867 */ 23868 static void 23869 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23870 uint32_t frag_flag, int offset) 23871 { 23872 ipha_t *ipha_orig; 23873 int i1, ip_data_end; 23874 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23875 mblk_t *hdr_mp, *md_mp = NULL; 23876 unsigned char *hdr_ptr, *pld_ptr; 23877 multidata_t *mmd; 23878 ip_pdescinfo_t pdi; 23879 ill_t *ill; 23880 ip_stack_t *ipst = ire->ire_ipst; 23881 23882 ASSERT(DB_TYPE(mp) == M_DATA); 23883 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23884 23885 ill = ire_to_ill(ire); 23886 ASSERT(ill != NULL); 23887 23888 ipha_orig = (ipha_t *)mp->b_rptr; 23889 mp->b_rptr += sizeof (ipha_t); 23890 23891 /* Calculate how many packets we will send out */ 23892 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23893 pkts = (i1 + len - 1) / len; 23894 ASSERT(pkts > 1); 23895 23896 /* Allocate a message block which will hold all the IP Headers. */ 23897 wroff = ipst->ips_ip_wroff_extra; 23898 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23899 23900 i1 = pkts * hdr_chunk_len; 23901 /* 23902 * Create the header buffer, Multidata and destination address 23903 * and SAP attribute that should be associated with it. 23904 */ 23905 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23906 ((hdr_mp->b_wptr += i1), 23907 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23908 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23909 freemsg(mp); 23910 if (md_mp == NULL) { 23911 freemsg(hdr_mp); 23912 } else { 23913 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23914 freemsg(md_mp); 23915 } 23916 IP_STAT(ipst, ip_frag_mdt_allocfail); 23917 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23918 return; 23919 } 23920 IP_STAT(ipst, ip_frag_mdt_allocd); 23921 23922 /* 23923 * Add a payload buffer to the Multidata; this operation must not 23924 * fail, or otherwise our logic in this routine is broken. There 23925 * is no memory allocation done by the routine, so any returned 23926 * failure simply tells us that we've done something wrong. 23927 * 23928 * A failure tells us that either we're adding the same payload 23929 * buffer more than once, or we're trying to add more buffers than 23930 * allowed. None of the above cases should happen, and we panic 23931 * because either there's horrible heap corruption, and/or 23932 * programming mistake. 23933 */ 23934 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23935 goto pbuf_panic; 23936 23937 hdr_ptr = hdr_mp->b_rptr; 23938 pld_ptr = mp->b_rptr; 23939 23940 /* Establish the ending byte offset, based on the starting offset. */ 23941 offset <<= 3; 23942 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23943 IP_SIMPLE_HDR_LENGTH; 23944 23945 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23946 23947 while (pld_ptr < mp->b_wptr) { 23948 ipha_t *ipha; 23949 uint16_t offset_and_flags; 23950 uint16_t ip_len; 23951 int error; 23952 23953 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23954 ipha = (ipha_t *)(hdr_ptr + wroff); 23955 ASSERT(OK_32PTR(ipha)); 23956 *ipha = *ipha_orig; 23957 23958 if (ip_data_end - offset > len) { 23959 offset_and_flags = IPH_MF; 23960 } else { 23961 /* 23962 * Last frag. Set len to the length of this last piece. 23963 */ 23964 len = ip_data_end - offset; 23965 /* A frag of a frag might have IPH_MF non-zero */ 23966 offset_and_flags = 23967 ntohs(ipha->ipha_fragment_offset_and_flags) & 23968 IPH_MF; 23969 } 23970 offset_and_flags |= (uint16_t)(offset >> 3); 23971 offset_and_flags |= (uint16_t)frag_flag; 23972 /* Store the offset and flags in the IP header. */ 23973 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23974 23975 /* Store the length in the IP header. */ 23976 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23977 ipha->ipha_length = htons(ip_len); 23978 23979 /* 23980 * Set the IP header checksum. Note that mp is just 23981 * the header, so this is easy to pass to ip_csum. 23982 */ 23983 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23984 23985 /* 23986 * Record offset and size of header and data of the next packet 23987 * in the multidata message. 23988 */ 23989 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23990 PDESC_PLD_INIT(&pdi); 23991 i1 = MIN(mp->b_wptr - pld_ptr, len); 23992 ASSERT(i1 > 0); 23993 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23994 if (i1 == len) { 23995 pld_ptr += len; 23996 } else { 23997 i1 = len - i1; 23998 mp = mp->b_cont; 23999 ASSERT(mp != NULL); 24000 ASSERT(MBLKL(mp) >= i1); 24001 /* 24002 * Attach the next payload message block to the 24003 * multidata message. 24004 */ 24005 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24006 goto pbuf_panic; 24007 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24008 pld_ptr = mp->b_rptr + i1; 24009 } 24010 24011 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24012 KM_NOSLEEP)) == NULL) { 24013 /* 24014 * Any failure other than ENOMEM indicates that we 24015 * have passed in invalid pdesc info or parameters 24016 * to mmd_addpdesc, which must not happen. 24017 * 24018 * EINVAL is a result of failure on boundary checks 24019 * against the pdesc info contents. It should not 24020 * happen, and we panic because either there's 24021 * horrible heap corruption, and/or programming 24022 * mistake. 24023 */ 24024 if (error != ENOMEM) { 24025 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24026 "pdesc logic error detected for " 24027 "mmd %p pinfo %p (%d)\n", 24028 (void *)mmd, (void *)&pdi, error); 24029 /* NOTREACHED */ 24030 } 24031 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24032 /* Free unattached payload message blocks as well */ 24033 md_mp->b_cont = mp->b_cont; 24034 goto free_mmd; 24035 } 24036 24037 /* Advance fragment offset. */ 24038 offset += len; 24039 24040 /* Advance to location for next header in the buffer. */ 24041 hdr_ptr += hdr_chunk_len; 24042 24043 /* Did we reach the next payload message block? */ 24044 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24045 mp = mp->b_cont; 24046 /* 24047 * Attach the next message block with payload 24048 * data to the multidata message. 24049 */ 24050 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24051 goto pbuf_panic; 24052 pld_ptr = mp->b_rptr; 24053 } 24054 } 24055 24056 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24057 ASSERT(mp->b_wptr == pld_ptr); 24058 24059 /* Update IP statistics */ 24060 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24061 24062 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24063 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24064 24065 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24066 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24067 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24068 24069 if (pkt_type == OB_PKT) { 24070 ire->ire_ob_pkt_count += pkts; 24071 if (ire->ire_ipif != NULL) 24072 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24073 } else { 24074 /* The type is IB_PKT in the forwarding path. */ 24075 ire->ire_ib_pkt_count += pkts; 24076 ASSERT(!IRE_IS_LOCAL(ire)); 24077 if (ire->ire_type & IRE_BROADCAST) { 24078 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24079 } else { 24080 UPDATE_MIB(ill->ill_ip_mib, 24081 ipIfStatsHCOutForwDatagrams, pkts); 24082 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24083 } 24084 } 24085 ire->ire_last_used_time = lbolt; 24086 /* Send it down */ 24087 putnext(ire->ire_stq, md_mp); 24088 return; 24089 24090 pbuf_panic: 24091 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24092 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24093 pbuf_idx); 24094 /* NOTREACHED */ 24095 } 24096 24097 /* 24098 * Outbound IP fragmentation routine. 24099 * 24100 * NOTE : This routine does not ire_refrele the ire that is passed in 24101 * as the argument. 24102 */ 24103 static void 24104 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24105 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24106 { 24107 int i1; 24108 mblk_t *ll_hdr_mp; 24109 int ll_hdr_len; 24110 int hdr_len; 24111 mblk_t *hdr_mp; 24112 ipha_t *ipha; 24113 int ip_data_end; 24114 int len; 24115 mblk_t *mp = mp_orig, *mp1; 24116 int offset; 24117 queue_t *q; 24118 uint32_t v_hlen_tos_len; 24119 mblk_t *first_mp; 24120 boolean_t mctl_present; 24121 ill_t *ill; 24122 ill_t *out_ill; 24123 mblk_t *xmit_mp; 24124 mblk_t *carve_mp; 24125 ire_t *ire1 = NULL; 24126 ire_t *save_ire = NULL; 24127 mblk_t *next_mp = NULL; 24128 boolean_t last_frag = B_FALSE; 24129 boolean_t multirt_send = B_FALSE; 24130 ire_t *first_ire = NULL; 24131 irb_t *irb = NULL; 24132 mib2_ipIfStatsEntry_t *mibptr = NULL; 24133 24134 ill = ire_to_ill(ire); 24135 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24136 24137 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24138 24139 if (max_frag == 0) { 24140 ip1dbg(("ip_wput_frag: ire frag size is 0" 24141 " - dropping packet\n")); 24142 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24143 freemsg(mp); 24144 return; 24145 } 24146 24147 /* 24148 * IPsec does not allow hw accelerated packets to be fragmented 24149 * This check is made in ip_wput_ipsec_out prior to coming here 24150 * via ip_wput_ire_fragmentit. 24151 * 24152 * If at this point we have an ire whose ARP request has not 24153 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24154 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24155 * This packet and all fragmentable packets for this ire will 24156 * continue to get dropped while ire_nce->nce_state remains in 24157 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24158 * ND_REACHABLE, all subsquent large packets for this ire will 24159 * get fragemented and sent out by this function. 24160 */ 24161 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24162 /* If nce_state is ND_INITIAL, trigger ARP query */ 24163 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24164 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24165 " - dropping packet\n")); 24166 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24167 freemsg(mp); 24168 return; 24169 } 24170 24171 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24172 "ip_wput_frag_start:"); 24173 24174 if (mp->b_datap->db_type == M_CTL) { 24175 first_mp = mp; 24176 mp_orig = mp = mp->b_cont; 24177 mctl_present = B_TRUE; 24178 } else { 24179 first_mp = mp; 24180 mctl_present = B_FALSE; 24181 } 24182 24183 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24184 ipha = (ipha_t *)mp->b_rptr; 24185 24186 /* 24187 * If the Don't Fragment flag is on, generate an ICMP destination 24188 * unreachable, fragmentation needed. 24189 */ 24190 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24191 if (offset & IPH_DF) { 24192 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24193 if (is_system_labeled()) { 24194 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24195 ire->ire_max_frag - max_frag, AF_INET); 24196 } 24197 /* 24198 * Need to compute hdr checksum if called from ip_wput_ire. 24199 * Note that ip_rput_forward verifies the checksum before 24200 * calling this routine so in that case this is a noop. 24201 */ 24202 ipha->ipha_hdr_checksum = 0; 24203 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24204 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24205 ipst); 24206 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24207 "ip_wput_frag_end:(%S)", 24208 "don't fragment"); 24209 return; 24210 } 24211 /* 24212 * Labeled systems adjust max_frag if they add a label 24213 * to send the correct path mtu. We need the real mtu since we 24214 * are fragmenting the packet after label adjustment. 24215 */ 24216 if (is_system_labeled()) 24217 max_frag = ire->ire_max_frag; 24218 if (mctl_present) 24219 freeb(first_mp); 24220 /* 24221 * Establish the starting offset. May not be zero if we are fragging 24222 * a fragment that is being forwarded. 24223 */ 24224 offset = offset & IPH_OFFSET; 24225 24226 /* TODO why is this test needed? */ 24227 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24228 if (((max_frag - LENGTH) & ~7) < 8) { 24229 /* TODO: notify ulp somehow */ 24230 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24231 freemsg(mp); 24232 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24233 "ip_wput_frag_end:(%S)", 24234 "len < 8"); 24235 return; 24236 } 24237 24238 hdr_len = (V_HLEN & 0xF) << 2; 24239 24240 ipha->ipha_hdr_checksum = 0; 24241 24242 /* 24243 * Establish the number of bytes maximum per frag, after putting 24244 * in the header. 24245 */ 24246 len = (max_frag - hdr_len) & ~7; 24247 24248 /* Check if we can use MDT to send out the frags. */ 24249 ASSERT(!IRE_IS_LOCAL(ire)); 24250 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24251 ipst->ips_ip_multidata_outbound && 24252 !(ire->ire_flags & RTF_MULTIRT) && 24253 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24254 ill != NULL && ILL_MDT_CAPABLE(ill) && 24255 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24256 ASSERT(ill->ill_mdt_capab != NULL); 24257 if (!ill->ill_mdt_capab->ill_mdt_on) { 24258 /* 24259 * If MDT has been previously turned off in the past, 24260 * and we currently can do MDT (due to IPQoS policy 24261 * removal, etc.) then enable it for this interface. 24262 */ 24263 ill->ill_mdt_capab->ill_mdt_on = 1; 24264 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24265 ill->ill_name)); 24266 } 24267 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24268 offset); 24269 return; 24270 } 24271 24272 /* Get a copy of the header for the trailing frags */ 24273 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24274 if (!hdr_mp) { 24275 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24276 freemsg(mp); 24277 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24278 "ip_wput_frag_end:(%S)", 24279 "couldn't copy hdr"); 24280 return; 24281 } 24282 if (DB_CRED(mp) != NULL) 24283 mblk_setcred(hdr_mp, DB_CRED(mp)); 24284 24285 /* Store the starting offset, with the MoreFrags flag. */ 24286 i1 = offset | IPH_MF | frag_flag; 24287 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24288 24289 /* Establish the ending byte offset, based on the starting offset. */ 24290 offset <<= 3; 24291 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24292 24293 /* Store the length of the first fragment in the IP header. */ 24294 i1 = len + hdr_len; 24295 ASSERT(i1 <= IP_MAXPACKET); 24296 ipha->ipha_length = htons((uint16_t)i1); 24297 24298 /* 24299 * Compute the IP header checksum for the first frag. We have to 24300 * watch out that we stop at the end of the header. 24301 */ 24302 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24303 24304 /* 24305 * Now carve off the first frag. Note that this will include the 24306 * original IP header. 24307 */ 24308 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24309 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24310 freeb(hdr_mp); 24311 freemsg(mp_orig); 24312 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24313 "ip_wput_frag_end:(%S)", 24314 "couldn't carve first"); 24315 return; 24316 } 24317 24318 /* 24319 * Multirouting case. Each fragment is replicated 24320 * via all non-condemned RTF_MULTIRT routes 24321 * currently resolved. 24322 * We ensure that first_ire is the first RTF_MULTIRT 24323 * ire in the bucket. 24324 */ 24325 if (ire->ire_flags & RTF_MULTIRT) { 24326 irb = ire->ire_bucket; 24327 ASSERT(irb != NULL); 24328 24329 multirt_send = B_TRUE; 24330 24331 /* Make sure we do not omit any multiroute ire. */ 24332 IRB_REFHOLD(irb); 24333 for (first_ire = irb->irb_ire; 24334 first_ire != NULL; 24335 first_ire = first_ire->ire_next) { 24336 if ((first_ire->ire_flags & RTF_MULTIRT) && 24337 (first_ire->ire_addr == ire->ire_addr) && 24338 !(first_ire->ire_marks & 24339 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24340 break; 24341 } 24342 } 24343 24344 if (first_ire != NULL) { 24345 if (first_ire != ire) { 24346 IRE_REFHOLD(first_ire); 24347 /* 24348 * Do not release the ire passed in 24349 * as the argument. 24350 */ 24351 ire = first_ire; 24352 } else { 24353 first_ire = NULL; 24354 } 24355 } 24356 IRB_REFRELE(irb); 24357 24358 /* 24359 * Save the first ire; we will need to restore it 24360 * for the trailing frags. 24361 * We REFHOLD save_ire, as each iterated ire will be 24362 * REFRELEd. 24363 */ 24364 save_ire = ire; 24365 IRE_REFHOLD(save_ire); 24366 } 24367 24368 /* 24369 * First fragment emission loop. 24370 * In most cases, the emission loop below is entered only 24371 * once. Only in the case where the ire holds the RTF_MULTIRT 24372 * flag, do we loop to process all RTF_MULTIRT ires in the 24373 * bucket, and send the fragment through all crossed 24374 * RTF_MULTIRT routes. 24375 */ 24376 do { 24377 if (ire->ire_flags & RTF_MULTIRT) { 24378 /* 24379 * We are in a multiple send case, need to get 24380 * the next ire and make a copy of the packet. 24381 * ire1 holds here the next ire to process in the 24382 * bucket. If multirouting is expected, 24383 * any non-RTF_MULTIRT ire that has the 24384 * right destination address is ignored. 24385 * 24386 * We have to take into account the MTU of 24387 * each walked ire. max_frag is set by the 24388 * the caller and generally refers to 24389 * the primary ire entry. Here we ensure that 24390 * no route with a lower MTU will be used, as 24391 * fragments are carved once for all ires, 24392 * then replicated. 24393 */ 24394 ASSERT(irb != NULL); 24395 IRB_REFHOLD(irb); 24396 for (ire1 = ire->ire_next; 24397 ire1 != NULL; 24398 ire1 = ire1->ire_next) { 24399 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24400 continue; 24401 if (ire1->ire_addr != ire->ire_addr) 24402 continue; 24403 if (ire1->ire_marks & 24404 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24405 continue; 24406 /* 24407 * Ensure we do not exceed the MTU 24408 * of the next route. 24409 */ 24410 if (ire1->ire_max_frag < max_frag) { 24411 ip_multirt_bad_mtu(ire1, max_frag); 24412 continue; 24413 } 24414 24415 /* Got one. */ 24416 IRE_REFHOLD(ire1); 24417 break; 24418 } 24419 IRB_REFRELE(irb); 24420 24421 if (ire1 != NULL) { 24422 next_mp = copyb(mp); 24423 if ((next_mp == NULL) || 24424 ((mp->b_cont != NULL) && 24425 ((next_mp->b_cont = 24426 dupmsg(mp->b_cont)) == NULL))) { 24427 freemsg(next_mp); 24428 next_mp = NULL; 24429 ire_refrele(ire1); 24430 ire1 = NULL; 24431 } 24432 } 24433 24434 /* Last multiroute ire; don't loop anymore. */ 24435 if (ire1 == NULL) { 24436 multirt_send = B_FALSE; 24437 } 24438 } 24439 24440 ll_hdr_len = 0; 24441 LOCK_IRE_FP_MP(ire); 24442 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24443 if (ll_hdr_mp != NULL) { 24444 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24445 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24446 } else { 24447 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24448 } 24449 24450 /* If there is a transmit header, get a copy for this frag. */ 24451 /* 24452 * TODO: should check db_ref before calling ip_carve_mp since 24453 * it might give us a dup. 24454 */ 24455 if (!ll_hdr_mp) { 24456 /* No xmit header. */ 24457 xmit_mp = mp; 24458 24459 /* We have a link-layer header that can fit in our mblk. */ 24460 } else if (mp->b_datap->db_ref == 1 && 24461 ll_hdr_len != 0 && 24462 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24463 /* M_DATA fastpath */ 24464 mp->b_rptr -= ll_hdr_len; 24465 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24466 xmit_mp = mp; 24467 24468 /* Corner case if copyb has failed */ 24469 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24470 UNLOCK_IRE_FP_MP(ire); 24471 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24472 freeb(hdr_mp); 24473 freemsg(mp); 24474 freemsg(mp_orig); 24475 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24476 "ip_wput_frag_end:(%S)", 24477 "discard"); 24478 24479 if (multirt_send) { 24480 ASSERT(ire1); 24481 ASSERT(next_mp); 24482 24483 freemsg(next_mp); 24484 ire_refrele(ire1); 24485 } 24486 if (save_ire != NULL) 24487 IRE_REFRELE(save_ire); 24488 24489 if (first_ire != NULL) 24490 ire_refrele(first_ire); 24491 return; 24492 24493 /* 24494 * Case of res_mp OR the fastpath mp can't fit 24495 * in the mblk 24496 */ 24497 } else { 24498 xmit_mp->b_cont = mp; 24499 if (DB_CRED(mp) != NULL) 24500 mblk_setcred(xmit_mp, DB_CRED(mp)); 24501 /* 24502 * Get priority marking, if any. 24503 * We propagate the CoS marking from the 24504 * original packet that went to QoS processing 24505 * in ip_wput_ire to the newly carved mp. 24506 */ 24507 if (DB_TYPE(xmit_mp) == M_DATA) 24508 xmit_mp->b_band = mp->b_band; 24509 } 24510 UNLOCK_IRE_FP_MP(ire); 24511 24512 q = ire->ire_stq; 24513 out_ill = (ill_t *)q->q_ptr; 24514 24515 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24516 24517 DTRACE_PROBE4(ip4__physical__out__start, 24518 ill_t *, NULL, ill_t *, out_ill, 24519 ipha_t *, ipha, mblk_t *, xmit_mp); 24520 24521 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24522 ipst->ips_ipv4firewall_physical_out, 24523 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24524 24525 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24526 24527 if (xmit_mp != NULL) { 24528 putnext(q, xmit_mp); 24529 24530 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24531 UPDATE_MIB(out_ill->ill_ip_mib, 24532 ipIfStatsHCOutOctets, i1); 24533 24534 if (pkt_type != OB_PKT) { 24535 /* 24536 * Update the packet count and MIB stats 24537 * of trailing RTF_MULTIRT ires. 24538 */ 24539 UPDATE_OB_PKT_COUNT(ire); 24540 BUMP_MIB(out_ill->ill_ip_mib, 24541 ipIfStatsOutFragReqds); 24542 } 24543 } 24544 24545 if (multirt_send) { 24546 /* 24547 * We are in a multiple send case; look for 24548 * the next ire and re-enter the loop. 24549 */ 24550 ASSERT(ire1); 24551 ASSERT(next_mp); 24552 /* REFRELE the current ire before looping */ 24553 ire_refrele(ire); 24554 ire = ire1; 24555 ire1 = NULL; 24556 mp = next_mp; 24557 next_mp = NULL; 24558 } 24559 } while (multirt_send); 24560 24561 ASSERT(ire1 == NULL); 24562 24563 /* Restore the original ire; we need it for the trailing frags */ 24564 if (save_ire != NULL) { 24565 /* REFRELE the last iterated ire */ 24566 ire_refrele(ire); 24567 /* save_ire has been REFHOLDed */ 24568 ire = save_ire; 24569 save_ire = NULL; 24570 q = ire->ire_stq; 24571 } 24572 24573 if (pkt_type == OB_PKT) { 24574 UPDATE_OB_PKT_COUNT(ire); 24575 } else { 24576 out_ill = (ill_t *)q->q_ptr; 24577 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24578 UPDATE_IB_PKT_COUNT(ire); 24579 } 24580 24581 /* Advance the offset to the second frag starting point. */ 24582 offset += len; 24583 /* 24584 * Update hdr_len from the copied header - there might be less options 24585 * in the later fragments. 24586 */ 24587 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24588 /* Loop until done. */ 24589 for (;;) { 24590 uint16_t offset_and_flags; 24591 uint16_t ip_len; 24592 24593 if (ip_data_end - offset > len) { 24594 /* 24595 * Carve off the appropriate amount from the original 24596 * datagram. 24597 */ 24598 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24599 mp = NULL; 24600 break; 24601 } 24602 /* 24603 * More frags after this one. Get another copy 24604 * of the header. 24605 */ 24606 if (carve_mp->b_datap->db_ref == 1 && 24607 hdr_mp->b_wptr - hdr_mp->b_rptr < 24608 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24609 /* Inline IP header */ 24610 carve_mp->b_rptr -= hdr_mp->b_wptr - 24611 hdr_mp->b_rptr; 24612 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24613 hdr_mp->b_wptr - hdr_mp->b_rptr); 24614 mp = carve_mp; 24615 } else { 24616 if (!(mp = copyb(hdr_mp))) { 24617 freemsg(carve_mp); 24618 break; 24619 } 24620 /* Get priority marking, if any. */ 24621 mp->b_band = carve_mp->b_band; 24622 mp->b_cont = carve_mp; 24623 } 24624 ipha = (ipha_t *)mp->b_rptr; 24625 offset_and_flags = IPH_MF; 24626 } else { 24627 /* 24628 * Last frag. Consume the header. Set len to 24629 * the length of this last piece. 24630 */ 24631 len = ip_data_end - offset; 24632 24633 /* 24634 * Carve off the appropriate amount from the original 24635 * datagram. 24636 */ 24637 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24638 mp = NULL; 24639 break; 24640 } 24641 if (carve_mp->b_datap->db_ref == 1 && 24642 hdr_mp->b_wptr - hdr_mp->b_rptr < 24643 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24644 /* Inline IP header */ 24645 carve_mp->b_rptr -= hdr_mp->b_wptr - 24646 hdr_mp->b_rptr; 24647 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24648 hdr_mp->b_wptr - hdr_mp->b_rptr); 24649 mp = carve_mp; 24650 freeb(hdr_mp); 24651 hdr_mp = mp; 24652 } else { 24653 mp = hdr_mp; 24654 /* Get priority marking, if any. */ 24655 mp->b_band = carve_mp->b_band; 24656 mp->b_cont = carve_mp; 24657 } 24658 ipha = (ipha_t *)mp->b_rptr; 24659 /* A frag of a frag might have IPH_MF non-zero */ 24660 offset_and_flags = 24661 ntohs(ipha->ipha_fragment_offset_and_flags) & 24662 IPH_MF; 24663 } 24664 offset_and_flags |= (uint16_t)(offset >> 3); 24665 offset_and_flags |= (uint16_t)frag_flag; 24666 /* Store the offset and flags in the IP header. */ 24667 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24668 24669 /* Store the length in the IP header. */ 24670 ip_len = (uint16_t)(len + hdr_len); 24671 ipha->ipha_length = htons(ip_len); 24672 24673 /* 24674 * Set the IP header checksum. Note that mp is just 24675 * the header, so this is easy to pass to ip_csum. 24676 */ 24677 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24678 24679 /* Attach a transmit header, if any, and ship it. */ 24680 if (pkt_type == OB_PKT) { 24681 UPDATE_OB_PKT_COUNT(ire); 24682 } else { 24683 out_ill = (ill_t *)q->q_ptr; 24684 BUMP_MIB(out_ill->ill_ip_mib, 24685 ipIfStatsHCOutForwDatagrams); 24686 UPDATE_IB_PKT_COUNT(ire); 24687 } 24688 24689 if (ire->ire_flags & RTF_MULTIRT) { 24690 irb = ire->ire_bucket; 24691 ASSERT(irb != NULL); 24692 24693 multirt_send = B_TRUE; 24694 24695 /* 24696 * Save the original ire; we will need to restore it 24697 * for the tailing frags. 24698 */ 24699 save_ire = ire; 24700 IRE_REFHOLD(save_ire); 24701 } 24702 /* 24703 * Emission loop for this fragment, similar 24704 * to what is done for the first fragment. 24705 */ 24706 do { 24707 if (multirt_send) { 24708 /* 24709 * We are in a multiple send case, need to get 24710 * the next ire and make a copy of the packet. 24711 */ 24712 ASSERT(irb != NULL); 24713 IRB_REFHOLD(irb); 24714 for (ire1 = ire->ire_next; 24715 ire1 != NULL; 24716 ire1 = ire1->ire_next) { 24717 if (!(ire1->ire_flags & RTF_MULTIRT)) 24718 continue; 24719 if (ire1->ire_addr != ire->ire_addr) 24720 continue; 24721 if (ire1->ire_marks & 24722 (IRE_MARK_CONDEMNED| 24723 IRE_MARK_HIDDEN)) { 24724 continue; 24725 } 24726 /* 24727 * Ensure we do not exceed the MTU 24728 * of the next route. 24729 */ 24730 if (ire1->ire_max_frag < max_frag) { 24731 ip_multirt_bad_mtu(ire1, 24732 max_frag); 24733 continue; 24734 } 24735 24736 /* Got one. */ 24737 IRE_REFHOLD(ire1); 24738 break; 24739 } 24740 IRB_REFRELE(irb); 24741 24742 if (ire1 != NULL) { 24743 next_mp = copyb(mp); 24744 if ((next_mp == NULL) || 24745 ((mp->b_cont != NULL) && 24746 ((next_mp->b_cont = 24747 dupmsg(mp->b_cont)) == NULL))) { 24748 freemsg(next_mp); 24749 next_mp = NULL; 24750 ire_refrele(ire1); 24751 ire1 = NULL; 24752 } 24753 } 24754 24755 /* Last multiroute ire; don't loop anymore. */ 24756 if (ire1 == NULL) { 24757 multirt_send = B_FALSE; 24758 } 24759 } 24760 24761 /* Update transmit header */ 24762 ll_hdr_len = 0; 24763 LOCK_IRE_FP_MP(ire); 24764 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24765 if (ll_hdr_mp != NULL) { 24766 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24767 ll_hdr_len = MBLKL(ll_hdr_mp); 24768 } else { 24769 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24770 } 24771 24772 if (!ll_hdr_mp) { 24773 xmit_mp = mp; 24774 24775 /* 24776 * We have link-layer header that can fit in 24777 * our mblk. 24778 */ 24779 } else if (mp->b_datap->db_ref == 1 && 24780 ll_hdr_len != 0 && 24781 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24782 /* M_DATA fastpath */ 24783 mp->b_rptr -= ll_hdr_len; 24784 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24785 ll_hdr_len); 24786 xmit_mp = mp; 24787 24788 /* 24789 * Case of res_mp OR the fastpath mp can't fit 24790 * in the mblk 24791 */ 24792 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24793 xmit_mp->b_cont = mp; 24794 if (DB_CRED(mp) != NULL) 24795 mblk_setcred(xmit_mp, DB_CRED(mp)); 24796 /* Get priority marking, if any. */ 24797 if (DB_TYPE(xmit_mp) == M_DATA) 24798 xmit_mp->b_band = mp->b_band; 24799 24800 /* Corner case if copyb failed */ 24801 } else { 24802 /* 24803 * Exit both the replication and 24804 * fragmentation loops. 24805 */ 24806 UNLOCK_IRE_FP_MP(ire); 24807 goto drop_pkt; 24808 } 24809 UNLOCK_IRE_FP_MP(ire); 24810 24811 mp1 = mp; 24812 out_ill = (ill_t *)q->q_ptr; 24813 24814 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24815 24816 DTRACE_PROBE4(ip4__physical__out__start, 24817 ill_t *, NULL, ill_t *, out_ill, 24818 ipha_t *, ipha, mblk_t *, xmit_mp); 24819 24820 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24821 ipst->ips_ipv4firewall_physical_out, 24822 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24823 24824 DTRACE_PROBE1(ip4__physical__out__end, 24825 mblk_t *, xmit_mp); 24826 24827 if (mp != mp1 && hdr_mp == mp1) 24828 hdr_mp = mp; 24829 if (mp != mp1 && mp_orig == mp1) 24830 mp_orig = mp; 24831 24832 if (xmit_mp != NULL) { 24833 putnext(q, xmit_mp); 24834 24835 BUMP_MIB(out_ill->ill_ip_mib, 24836 ipIfStatsHCOutTransmits); 24837 UPDATE_MIB(out_ill->ill_ip_mib, 24838 ipIfStatsHCOutOctets, ip_len); 24839 24840 if (pkt_type != OB_PKT) { 24841 /* 24842 * Update the packet count of trailing 24843 * RTF_MULTIRT ires. 24844 */ 24845 UPDATE_OB_PKT_COUNT(ire); 24846 } 24847 } 24848 24849 /* All done if we just consumed the hdr_mp. */ 24850 if (mp == hdr_mp) { 24851 last_frag = B_TRUE; 24852 BUMP_MIB(out_ill->ill_ip_mib, 24853 ipIfStatsOutFragOKs); 24854 } 24855 24856 if (multirt_send) { 24857 /* 24858 * We are in a multiple send case; look for 24859 * the next ire and re-enter the loop. 24860 */ 24861 ASSERT(ire1); 24862 ASSERT(next_mp); 24863 /* REFRELE the current ire before looping */ 24864 ire_refrele(ire); 24865 ire = ire1; 24866 ire1 = NULL; 24867 q = ire->ire_stq; 24868 mp = next_mp; 24869 next_mp = NULL; 24870 } 24871 } while (multirt_send); 24872 /* 24873 * Restore the original ire; we need it for the 24874 * trailing frags 24875 */ 24876 if (save_ire != NULL) { 24877 ASSERT(ire1 == NULL); 24878 /* REFRELE the last iterated ire */ 24879 ire_refrele(ire); 24880 /* save_ire has been REFHOLDed */ 24881 ire = save_ire; 24882 q = ire->ire_stq; 24883 save_ire = NULL; 24884 } 24885 24886 if (last_frag) { 24887 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24888 "ip_wput_frag_end:(%S)", 24889 "consumed hdr_mp"); 24890 24891 if (first_ire != NULL) 24892 ire_refrele(first_ire); 24893 return; 24894 } 24895 /* Otherwise, advance and loop. */ 24896 offset += len; 24897 } 24898 24899 drop_pkt: 24900 /* Clean up following allocation failure. */ 24901 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24902 freemsg(mp); 24903 if (mp != hdr_mp) 24904 freeb(hdr_mp); 24905 if (mp != mp_orig) 24906 freemsg(mp_orig); 24907 24908 if (save_ire != NULL) 24909 IRE_REFRELE(save_ire); 24910 if (first_ire != NULL) 24911 ire_refrele(first_ire); 24912 24913 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24914 "ip_wput_frag_end:(%S)", 24915 "end--alloc failure"); 24916 } 24917 24918 /* 24919 * Copy the header plus those options which have the copy bit set 24920 */ 24921 static mblk_t * 24922 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24923 { 24924 mblk_t *mp; 24925 uchar_t *up; 24926 24927 /* 24928 * Quick check if we need to look for options without the copy bit 24929 * set 24930 */ 24931 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24932 if (!mp) 24933 return (mp); 24934 mp->b_rptr += ipst->ips_ip_wroff_extra; 24935 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24936 bcopy(rptr, mp->b_rptr, hdr_len); 24937 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24938 return (mp); 24939 } 24940 up = mp->b_rptr; 24941 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24942 up += IP_SIMPLE_HDR_LENGTH; 24943 rptr += IP_SIMPLE_HDR_LENGTH; 24944 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24945 while (hdr_len > 0) { 24946 uint32_t optval; 24947 uint32_t optlen; 24948 24949 optval = *rptr; 24950 if (optval == IPOPT_EOL) 24951 break; 24952 if (optval == IPOPT_NOP) 24953 optlen = 1; 24954 else 24955 optlen = rptr[1]; 24956 if (optval & IPOPT_COPY) { 24957 bcopy(rptr, up, optlen); 24958 up += optlen; 24959 } 24960 rptr += optlen; 24961 hdr_len -= optlen; 24962 } 24963 /* 24964 * Make sure that we drop an even number of words by filling 24965 * with EOL to the next word boundary. 24966 */ 24967 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24968 hdr_len & 0x3; hdr_len++) 24969 *up++ = IPOPT_EOL; 24970 mp->b_wptr = up; 24971 /* Update header length */ 24972 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24973 return (mp); 24974 } 24975 24976 /* 24977 * Delivery to local recipients including fanout to multiple recipients. 24978 * Does not do checksumming of UDP/TCP. 24979 * Note: q should be the read side queue for either the ill or conn. 24980 * Note: rq should be the read side q for the lower (ill) stream. 24981 * We don't send packets to IPPF processing, thus the last argument 24982 * to all the fanout calls are B_FALSE. 24983 */ 24984 void 24985 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24986 int fanout_flags, zoneid_t zoneid) 24987 { 24988 uint32_t protocol; 24989 mblk_t *first_mp; 24990 boolean_t mctl_present; 24991 int ire_type; 24992 #define rptr ((uchar_t *)ipha) 24993 ip_stack_t *ipst = ill->ill_ipst; 24994 24995 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24996 "ip_wput_local_start: q %p", q); 24997 24998 if (ire != NULL) { 24999 ire_type = ire->ire_type; 25000 } else { 25001 /* 25002 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25003 * packet is not multicast, we can't tell the ire type. 25004 */ 25005 ASSERT(CLASSD(ipha->ipha_dst)); 25006 ire_type = IRE_BROADCAST; 25007 } 25008 25009 first_mp = mp; 25010 if (first_mp->b_datap->db_type == M_CTL) { 25011 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25012 if (!io->ipsec_out_secure) { 25013 /* 25014 * This ipsec_out_t was allocated in ip_wput 25015 * for multicast packets to store the ill_index. 25016 * As this is being delivered locally, we don't 25017 * need this anymore. 25018 */ 25019 mp = first_mp->b_cont; 25020 freeb(first_mp); 25021 first_mp = mp; 25022 mctl_present = B_FALSE; 25023 } else { 25024 /* 25025 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25026 * security properties for the looped-back packet. 25027 */ 25028 mctl_present = B_TRUE; 25029 mp = first_mp->b_cont; 25030 ASSERT(mp != NULL); 25031 ipsec_out_to_in(first_mp); 25032 } 25033 } else { 25034 mctl_present = B_FALSE; 25035 } 25036 25037 DTRACE_PROBE4(ip4__loopback__in__start, 25038 ill_t *, ill, ill_t *, NULL, 25039 ipha_t *, ipha, mblk_t *, first_mp); 25040 25041 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25042 ipst->ips_ipv4firewall_loopback_in, 25043 ill, NULL, ipha, first_mp, mp, 0, ipst); 25044 25045 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25046 25047 if (first_mp == NULL) 25048 return; 25049 25050 ipst->ips_loopback_packets++; 25051 25052 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25053 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25054 if (!IS_SIMPLE_IPH(ipha)) { 25055 ip_wput_local_options(ipha, ipst); 25056 } 25057 25058 protocol = ipha->ipha_protocol; 25059 switch (protocol) { 25060 case IPPROTO_ICMP: { 25061 ire_t *ire_zone; 25062 ilm_t *ilm; 25063 mblk_t *mp1; 25064 zoneid_t last_zoneid; 25065 25066 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25067 ASSERT(ire_type == IRE_BROADCAST); 25068 /* 25069 * In the multicast case, applications may have joined 25070 * the group from different zones, so we need to deliver 25071 * the packet to each of them. Loop through the 25072 * multicast memberships structures (ilm) on the receive 25073 * ill and send a copy of the packet up each matching 25074 * one. However, we don't do this for multicasts sent on 25075 * the loopback interface (PHYI_LOOPBACK flag set) as 25076 * they must stay in the sender's zone. 25077 * 25078 * ilm_add_v6() ensures that ilms in the same zone are 25079 * contiguous in the ill_ilm list. We use this property 25080 * to avoid sending duplicates needed when two 25081 * applications in the same zone join the same group on 25082 * different logical interfaces: we ignore the ilm if 25083 * it's zoneid is the same as the last matching one. 25084 * In addition, the sending of the packet for 25085 * ire_zoneid is delayed until all of the other ilms 25086 * have been exhausted. 25087 */ 25088 last_zoneid = -1; 25089 ILM_WALKER_HOLD(ill); 25090 for (ilm = ill->ill_ilm; ilm != NULL; 25091 ilm = ilm->ilm_next) { 25092 if ((ilm->ilm_flags & ILM_DELETED) || 25093 ipha->ipha_dst != ilm->ilm_addr || 25094 ilm->ilm_zoneid == last_zoneid || 25095 ilm->ilm_zoneid == zoneid || 25096 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25097 continue; 25098 mp1 = ip_copymsg(first_mp); 25099 if (mp1 == NULL) 25100 continue; 25101 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25102 mctl_present, B_FALSE, ill, 25103 ilm->ilm_zoneid); 25104 last_zoneid = ilm->ilm_zoneid; 25105 } 25106 ILM_WALKER_RELE(ill); 25107 /* 25108 * Loopback case: the sending endpoint has 25109 * IP_MULTICAST_LOOP disabled, therefore we don't 25110 * dispatch the multicast packet to the sending zone. 25111 */ 25112 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25113 freemsg(first_mp); 25114 return; 25115 } 25116 } else if (ire_type == IRE_BROADCAST) { 25117 /* 25118 * In the broadcast case, there may be many zones 25119 * which need a copy of the packet delivered to them. 25120 * There is one IRE_BROADCAST per broadcast address 25121 * and per zone; we walk those using a helper function. 25122 * In addition, the sending of the packet for zoneid is 25123 * delayed until all of the other ires have been 25124 * processed. 25125 */ 25126 IRB_REFHOLD(ire->ire_bucket); 25127 ire_zone = NULL; 25128 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25129 ire)) != NULL) { 25130 mp1 = ip_copymsg(first_mp); 25131 if (mp1 == NULL) 25132 continue; 25133 25134 UPDATE_IB_PKT_COUNT(ire_zone); 25135 ire_zone->ire_last_used_time = lbolt; 25136 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25137 mctl_present, B_FALSE, ill, 25138 ire_zone->ire_zoneid); 25139 } 25140 IRB_REFRELE(ire->ire_bucket); 25141 } 25142 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25143 0, mctl_present, B_FALSE, ill, zoneid); 25144 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25145 "ip_wput_local_end: q %p (%S)", 25146 q, "icmp"); 25147 return; 25148 } 25149 case IPPROTO_IGMP: 25150 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25151 /* Bad packet - discarded by igmp_input */ 25152 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25153 "ip_wput_local_end: q %p (%S)", 25154 q, "igmp_input--bad packet"); 25155 if (mctl_present) 25156 freeb(first_mp); 25157 return; 25158 } 25159 /* 25160 * igmp_input() may have returned the pulled up message. 25161 * So first_mp and ipha need to be reinitialized. 25162 */ 25163 ipha = (ipha_t *)mp->b_rptr; 25164 if (mctl_present) 25165 first_mp->b_cont = mp; 25166 else 25167 first_mp = mp; 25168 /* deliver to local raw users */ 25169 break; 25170 case IPPROTO_ENCAP: 25171 /* 25172 * This case is covered by either ip_fanout_proto, or by 25173 * the above security processing for self-tunneled packets. 25174 */ 25175 break; 25176 case IPPROTO_UDP: { 25177 uint16_t *up; 25178 uint32_t ports; 25179 25180 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25181 UDP_PORTS_OFFSET); 25182 /* Force a 'valid' checksum. */ 25183 up[3] = 0; 25184 25185 ports = *(uint32_t *)up; 25186 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25187 (ire_type == IRE_BROADCAST), 25188 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25189 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25190 ill, zoneid); 25191 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25192 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25193 return; 25194 } 25195 case IPPROTO_TCP: { 25196 25197 /* 25198 * For TCP, discard broadcast packets. 25199 */ 25200 if ((ushort_t)ire_type == IRE_BROADCAST) { 25201 freemsg(first_mp); 25202 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25203 ip2dbg(("ip_wput_local: discard broadcast\n")); 25204 return; 25205 } 25206 25207 if (mp->b_datap->db_type == M_DATA) { 25208 /* 25209 * M_DATA mblk, so init mblk (chain) for no struio(). 25210 */ 25211 mblk_t *mp1 = mp; 25212 25213 do { 25214 mp1->b_datap->db_struioflag = 0; 25215 } while ((mp1 = mp1->b_cont) != NULL); 25216 } 25217 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25218 <= mp->b_wptr); 25219 ip_fanout_tcp(q, first_mp, ill, ipha, 25220 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25221 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25222 mctl_present, B_FALSE, zoneid); 25223 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25224 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25225 return; 25226 } 25227 case IPPROTO_SCTP: 25228 { 25229 uint32_t ports; 25230 25231 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25232 ip_fanout_sctp(first_mp, ill, ipha, ports, 25233 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25234 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25235 return; 25236 } 25237 25238 default: 25239 break; 25240 } 25241 /* 25242 * Find a client for some other protocol. We give 25243 * copies to multiple clients, if more than one is 25244 * bound. 25245 */ 25246 ip_fanout_proto(q, first_mp, ill, ipha, 25247 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25248 mctl_present, B_FALSE, ill, zoneid); 25249 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25250 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25251 #undef rptr 25252 } 25253 25254 /* 25255 * Update any source route, record route, or timestamp options. 25256 * Check that we are at end of strict source route. 25257 * The options have been sanity checked by ip_wput_options(). 25258 */ 25259 static void 25260 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25261 { 25262 ipoptp_t opts; 25263 uchar_t *opt; 25264 uint8_t optval; 25265 uint8_t optlen; 25266 ipaddr_t dst; 25267 uint32_t ts; 25268 ire_t *ire; 25269 timestruc_t now; 25270 25271 ip2dbg(("ip_wput_local_options\n")); 25272 for (optval = ipoptp_first(&opts, ipha); 25273 optval != IPOPT_EOL; 25274 optval = ipoptp_next(&opts)) { 25275 opt = opts.ipoptp_cur; 25276 optlen = opts.ipoptp_len; 25277 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25278 switch (optval) { 25279 uint32_t off; 25280 case IPOPT_SSRR: 25281 case IPOPT_LSRR: 25282 off = opt[IPOPT_OFFSET]; 25283 off--; 25284 if (optlen < IP_ADDR_LEN || 25285 off > optlen - IP_ADDR_LEN) { 25286 /* End of source route */ 25287 break; 25288 } 25289 /* 25290 * This will only happen if two consecutive entries 25291 * in the source route contains our address or if 25292 * it is a packet with a loose source route which 25293 * reaches us before consuming the whole source route 25294 */ 25295 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25296 if (optval == IPOPT_SSRR) { 25297 return; 25298 } 25299 /* 25300 * Hack: instead of dropping the packet truncate the 25301 * source route to what has been used by filling the 25302 * rest with IPOPT_NOP. 25303 */ 25304 opt[IPOPT_OLEN] = (uint8_t)off; 25305 while (off < optlen) { 25306 opt[off++] = IPOPT_NOP; 25307 } 25308 break; 25309 case IPOPT_RR: 25310 off = opt[IPOPT_OFFSET]; 25311 off--; 25312 if (optlen < IP_ADDR_LEN || 25313 off > optlen - IP_ADDR_LEN) { 25314 /* No more room - ignore */ 25315 ip1dbg(( 25316 "ip_wput_forward_options: end of RR\n")); 25317 break; 25318 } 25319 dst = htonl(INADDR_LOOPBACK); 25320 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25321 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25322 break; 25323 case IPOPT_TS: 25324 /* Insert timestamp if there is romm */ 25325 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25326 case IPOPT_TS_TSONLY: 25327 off = IPOPT_TS_TIMELEN; 25328 break; 25329 case IPOPT_TS_PRESPEC: 25330 case IPOPT_TS_PRESPEC_RFC791: 25331 /* Verify that the address matched */ 25332 off = opt[IPOPT_OFFSET] - 1; 25333 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25334 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25335 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25336 ipst); 25337 if (ire == NULL) { 25338 /* Not for us */ 25339 break; 25340 } 25341 ire_refrele(ire); 25342 /* FALLTHRU */ 25343 case IPOPT_TS_TSANDADDR: 25344 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25345 break; 25346 default: 25347 /* 25348 * ip_*put_options should have already 25349 * dropped this packet. 25350 */ 25351 cmn_err(CE_PANIC, "ip_wput_local_options: " 25352 "unknown IT - bug in ip_wput_options?\n"); 25353 return; /* Keep "lint" happy */ 25354 } 25355 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25356 /* Increase overflow counter */ 25357 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25358 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25359 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25360 (off << 4); 25361 break; 25362 } 25363 off = opt[IPOPT_OFFSET] - 1; 25364 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25365 case IPOPT_TS_PRESPEC: 25366 case IPOPT_TS_PRESPEC_RFC791: 25367 case IPOPT_TS_TSANDADDR: 25368 dst = htonl(INADDR_LOOPBACK); 25369 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25370 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25371 /* FALLTHRU */ 25372 case IPOPT_TS_TSONLY: 25373 off = opt[IPOPT_OFFSET] - 1; 25374 /* Compute # of milliseconds since midnight */ 25375 gethrestime(&now); 25376 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25377 now.tv_nsec / (NANOSEC / MILLISEC); 25378 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25379 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25380 break; 25381 } 25382 break; 25383 } 25384 } 25385 } 25386 25387 /* 25388 * Send out a multicast packet on interface ipif. 25389 * The sender does not have an conn. 25390 * Caller verifies that this isn't a PHYI_LOOPBACK. 25391 */ 25392 void 25393 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25394 { 25395 ipha_t *ipha; 25396 ire_t *ire; 25397 ipaddr_t dst; 25398 mblk_t *first_mp; 25399 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25400 25401 /* igmp_sendpkt always allocates a ipsec_out_t */ 25402 ASSERT(mp->b_datap->db_type == M_CTL); 25403 ASSERT(!ipif->ipif_isv6); 25404 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25405 25406 first_mp = mp; 25407 mp = first_mp->b_cont; 25408 ASSERT(mp->b_datap->db_type == M_DATA); 25409 ipha = (ipha_t *)mp->b_rptr; 25410 25411 /* 25412 * Find an IRE which matches the destination and the outgoing 25413 * queue (i.e. the outgoing interface.) 25414 */ 25415 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25416 dst = ipif->ipif_pp_dst_addr; 25417 else 25418 dst = ipha->ipha_dst; 25419 /* 25420 * The source address has already been initialized by the 25421 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25422 * be sufficient rather than MATCH_IRE_IPIF. 25423 * 25424 * This function is used for sending IGMP packets. We need 25425 * to make sure that we send the packet out of the interface 25426 * (ipif->ipif_ill) where we joined the group. This is to 25427 * prevent from switches doing IGMP snooping to send us multicast 25428 * packets for a given group on the interface we have joined. 25429 * If we can't find an ire, igmp_sendpkt has already initialized 25430 * ipsec_out_attach_if so that this will not be load spread in 25431 * ip_newroute_ipif. 25432 */ 25433 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25434 MATCH_IRE_ILL, ipst); 25435 if (!ire) { 25436 /* 25437 * Mark this packet to make it be delivered to 25438 * ip_wput_ire after the new ire has been 25439 * created. 25440 */ 25441 mp->b_prev = NULL; 25442 mp->b_next = NULL; 25443 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25444 zoneid, &zero_info); 25445 return; 25446 } 25447 25448 /* 25449 * Honor the RTF_SETSRC flag; this is the only case 25450 * where we force this addr whatever the current src addr is, 25451 * because this address is set by igmp_sendpkt(), and 25452 * cannot be specified by any user. 25453 */ 25454 if (ire->ire_flags & RTF_SETSRC) { 25455 ipha->ipha_src = ire->ire_src_addr; 25456 } 25457 25458 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25459 } 25460 25461 /* 25462 * NOTE : This function does not ire_refrele the ire argument passed in. 25463 * 25464 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25465 * failure. The nce_fp_mp can vanish any time in the case of 25466 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25467 * the ire_lock to access the nce_fp_mp in this case. 25468 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25469 * prepending a fastpath message IPQoS processing must precede it, we also set 25470 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25471 * (IPQoS might have set the b_band for CoS marking). 25472 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25473 * must follow it so that IPQoS can mark the dl_priority field for CoS 25474 * marking, if needed. 25475 */ 25476 static mblk_t * 25477 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25478 { 25479 uint_t hlen; 25480 ipha_t *ipha; 25481 mblk_t *mp1; 25482 boolean_t qos_done = B_FALSE; 25483 uchar_t *ll_hdr; 25484 ip_stack_t *ipst = ire->ire_ipst; 25485 25486 #define rptr ((uchar_t *)ipha) 25487 25488 ipha = (ipha_t *)mp->b_rptr; 25489 hlen = 0; 25490 LOCK_IRE_FP_MP(ire); 25491 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25492 ASSERT(DB_TYPE(mp1) == M_DATA); 25493 /* Initiate IPPF processing */ 25494 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25495 UNLOCK_IRE_FP_MP(ire); 25496 ip_process(proc, &mp, ill_index); 25497 if (mp == NULL) 25498 return (NULL); 25499 25500 ipha = (ipha_t *)mp->b_rptr; 25501 LOCK_IRE_FP_MP(ire); 25502 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25503 qos_done = B_TRUE; 25504 goto no_fp_mp; 25505 } 25506 ASSERT(DB_TYPE(mp1) == M_DATA); 25507 } 25508 hlen = MBLKL(mp1); 25509 /* 25510 * Check if we have enough room to prepend fastpath 25511 * header 25512 */ 25513 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25514 ll_hdr = rptr - hlen; 25515 bcopy(mp1->b_rptr, ll_hdr, hlen); 25516 /* 25517 * Set the b_rptr to the start of the link layer 25518 * header 25519 */ 25520 mp->b_rptr = ll_hdr; 25521 mp1 = mp; 25522 } else { 25523 mp1 = copyb(mp1); 25524 if (mp1 == NULL) 25525 goto unlock_err; 25526 mp1->b_band = mp->b_band; 25527 mp1->b_cont = mp; 25528 /* 25529 * certain system generated traffic may not 25530 * have cred/label in ip header block. This 25531 * is true even for a labeled system. But for 25532 * labeled traffic, inherit the label in the 25533 * new header. 25534 */ 25535 if (DB_CRED(mp) != NULL) 25536 mblk_setcred(mp1, DB_CRED(mp)); 25537 /* 25538 * XXX disable ICK_VALID and compute checksum 25539 * here; can happen if nce_fp_mp changes and 25540 * it can't be copied now due to insufficient 25541 * space. (unlikely, fp mp can change, but it 25542 * does not increase in length) 25543 */ 25544 } 25545 UNLOCK_IRE_FP_MP(ire); 25546 } else { 25547 no_fp_mp: 25548 mp1 = copyb(ire->ire_nce->nce_res_mp); 25549 if (mp1 == NULL) { 25550 unlock_err: 25551 UNLOCK_IRE_FP_MP(ire); 25552 freemsg(mp); 25553 return (NULL); 25554 } 25555 UNLOCK_IRE_FP_MP(ire); 25556 mp1->b_cont = mp; 25557 /* 25558 * certain system generated traffic may not 25559 * have cred/label in ip header block. This 25560 * is true even for a labeled system. But for 25561 * labeled traffic, inherit the label in the 25562 * new header. 25563 */ 25564 if (DB_CRED(mp) != NULL) 25565 mblk_setcred(mp1, DB_CRED(mp)); 25566 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25567 ip_process(proc, &mp1, ill_index); 25568 if (mp1 == NULL) 25569 return (NULL); 25570 } 25571 } 25572 return (mp1); 25573 #undef rptr 25574 } 25575 25576 /* 25577 * Finish the outbound IPsec processing for an IPv6 packet. This function 25578 * is called from ipsec_out_process() if the IPsec packet was processed 25579 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25580 * asynchronously. 25581 */ 25582 void 25583 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25584 ire_t *ire_arg) 25585 { 25586 in6_addr_t *v6dstp; 25587 ire_t *ire; 25588 mblk_t *mp; 25589 ip6_t *ip6h1; 25590 uint_t ill_index; 25591 ipsec_out_t *io; 25592 boolean_t attach_if, hwaccel; 25593 uint32_t flags = IP6_NO_IPPOLICY; 25594 int match_flags; 25595 zoneid_t zoneid; 25596 boolean_t ill_need_rele = B_FALSE; 25597 boolean_t ire_need_rele = B_FALSE; 25598 ip_stack_t *ipst; 25599 25600 mp = ipsec_mp->b_cont; 25601 ip6h1 = (ip6_t *)mp->b_rptr; 25602 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25603 ASSERT(io->ipsec_out_ns != NULL); 25604 ipst = io->ipsec_out_ns->netstack_ip; 25605 ill_index = io->ipsec_out_ill_index; 25606 if (io->ipsec_out_reachable) { 25607 flags |= IPV6_REACHABILITY_CONFIRMATION; 25608 } 25609 attach_if = io->ipsec_out_attach_if; 25610 hwaccel = io->ipsec_out_accelerated; 25611 zoneid = io->ipsec_out_zoneid; 25612 ASSERT(zoneid != ALL_ZONES); 25613 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25614 /* Multicast addresses should have non-zero ill_index. */ 25615 v6dstp = &ip6h->ip6_dst; 25616 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25617 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25618 ASSERT(!attach_if || ill_index != 0); 25619 if (ill_index != 0) { 25620 if (ill == NULL) { 25621 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25622 B_TRUE, ipst); 25623 25624 /* Failure case frees things for us. */ 25625 if (ill == NULL) 25626 return; 25627 25628 ill_need_rele = B_TRUE; 25629 } 25630 /* 25631 * If this packet needs to go out on a particular interface 25632 * honor it. 25633 */ 25634 if (attach_if) { 25635 match_flags = MATCH_IRE_ILL; 25636 25637 /* 25638 * Check if we need an ire that will not be 25639 * looked up by anybody else i.e. HIDDEN. 25640 */ 25641 if (ill_is_probeonly(ill)) { 25642 match_flags |= MATCH_IRE_MARK_HIDDEN; 25643 } 25644 } 25645 } 25646 ASSERT(mp != NULL); 25647 25648 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25649 boolean_t unspec_src; 25650 ipif_t *ipif; 25651 25652 /* 25653 * Use the ill_index to get the right ill. 25654 */ 25655 unspec_src = io->ipsec_out_unspec_src; 25656 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25657 if (ipif == NULL) { 25658 if (ill_need_rele) 25659 ill_refrele(ill); 25660 freemsg(ipsec_mp); 25661 return; 25662 } 25663 25664 if (ire_arg != NULL) { 25665 ire = ire_arg; 25666 } else { 25667 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25668 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25669 ire_need_rele = B_TRUE; 25670 } 25671 if (ire != NULL) { 25672 ipif_refrele(ipif); 25673 /* 25674 * XXX Do the multicast forwarding now, as the IPsec 25675 * processing has been done. 25676 */ 25677 goto send; 25678 } 25679 25680 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25681 mp->b_prev = NULL; 25682 mp->b_next = NULL; 25683 25684 /* 25685 * If the IPsec packet was processed asynchronously, 25686 * drop it now. 25687 */ 25688 if (q == NULL) { 25689 if (ill_need_rele) 25690 ill_refrele(ill); 25691 freemsg(ipsec_mp); 25692 return; 25693 } 25694 25695 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25696 unspec_src, zoneid); 25697 ipif_refrele(ipif); 25698 } else { 25699 if (attach_if) { 25700 ipif_t *ipif; 25701 25702 ipif = ipif_get_next_ipif(NULL, ill); 25703 if (ipif == NULL) { 25704 if (ill_need_rele) 25705 ill_refrele(ill); 25706 freemsg(ipsec_mp); 25707 return; 25708 } 25709 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25710 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25711 ire_need_rele = B_TRUE; 25712 ipif_refrele(ipif); 25713 } else { 25714 if (ire_arg != NULL) { 25715 ire = ire_arg; 25716 } else { 25717 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25718 ipst); 25719 ire_need_rele = B_TRUE; 25720 } 25721 } 25722 if (ire != NULL) 25723 goto send; 25724 /* 25725 * ire disappeared underneath. 25726 * 25727 * What we need to do here is the ip_newroute 25728 * logic to get the ire without doing the IPsec 25729 * processing. Follow the same old path. But this 25730 * time, ip_wput or ire_add_then_send will call us 25731 * directly as all the IPsec operations are done. 25732 */ 25733 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25734 mp->b_prev = NULL; 25735 mp->b_next = NULL; 25736 25737 /* 25738 * If the IPsec packet was processed asynchronously, 25739 * drop it now. 25740 */ 25741 if (q == NULL) { 25742 if (ill_need_rele) 25743 ill_refrele(ill); 25744 freemsg(ipsec_mp); 25745 return; 25746 } 25747 25748 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25749 zoneid, ipst); 25750 } 25751 if (ill != NULL && ill_need_rele) 25752 ill_refrele(ill); 25753 return; 25754 send: 25755 if (ill != NULL && ill_need_rele) 25756 ill_refrele(ill); 25757 25758 /* Local delivery */ 25759 if (ire->ire_stq == NULL) { 25760 ill_t *out_ill; 25761 ASSERT(q != NULL); 25762 25763 /* PFHooks: LOOPBACK_OUT */ 25764 out_ill = ire_to_ill(ire); 25765 25766 DTRACE_PROBE4(ip6__loopback__out__start, 25767 ill_t *, NULL, ill_t *, out_ill, 25768 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25769 25770 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25771 ipst->ips_ipv6firewall_loopback_out, 25772 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25773 25774 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25775 25776 if (ipsec_mp != NULL) 25777 ip_wput_local_v6(RD(q), out_ill, 25778 ip6h, ipsec_mp, ire, 0); 25779 if (ire_need_rele) 25780 ire_refrele(ire); 25781 return; 25782 } 25783 /* 25784 * Everything is done. Send it out on the wire. 25785 * We force the insertion of a fragment header using the 25786 * IPH_FRAG_HDR flag in two cases: 25787 * - after reception of an ICMPv6 "packet too big" message 25788 * with a MTU < 1280 (cf. RFC 2460 section 5) 25789 * - for multirouted IPv6 packets, so that the receiver can 25790 * discard duplicates according to their fragment identifier 25791 */ 25792 /* XXX fix flow control problems. */ 25793 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25794 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25795 if (hwaccel) { 25796 /* 25797 * hardware acceleration does not handle these 25798 * "slow path" cases. 25799 */ 25800 /* IPsec KSTATS: should bump bean counter here. */ 25801 if (ire_need_rele) 25802 ire_refrele(ire); 25803 freemsg(ipsec_mp); 25804 return; 25805 } 25806 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25807 (mp->b_cont ? msgdsize(mp) : 25808 mp->b_wptr - (uchar_t *)ip6h)) { 25809 /* IPsec KSTATS: should bump bean counter here. */ 25810 ip0dbg(("Packet length mismatch: %d, %ld\n", 25811 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25812 msgdsize(mp))); 25813 if (ire_need_rele) 25814 ire_refrele(ire); 25815 freemsg(ipsec_mp); 25816 return; 25817 } 25818 ASSERT(mp->b_prev == NULL); 25819 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25820 ntohs(ip6h->ip6_plen) + 25821 IPV6_HDR_LEN, ire->ire_max_frag)); 25822 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25823 ire->ire_max_frag); 25824 } else { 25825 UPDATE_OB_PKT_COUNT(ire); 25826 ire->ire_last_used_time = lbolt; 25827 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25828 } 25829 if (ire_need_rele) 25830 ire_refrele(ire); 25831 freeb(ipsec_mp); 25832 } 25833 25834 void 25835 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25836 { 25837 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25838 da_ipsec_t *hada; /* data attributes */ 25839 ill_t *ill = (ill_t *)q->q_ptr; 25840 25841 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25842 25843 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25844 /* IPsec KSTATS: Bump lose counter here! */ 25845 freemsg(mp); 25846 return; 25847 } 25848 25849 /* 25850 * It's an IPsec packet that must be 25851 * accelerated by the Provider, and the 25852 * outbound ill is IPsec acceleration capable. 25853 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25854 * to the ill. 25855 * IPsec KSTATS: should bump packet counter here. 25856 */ 25857 25858 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25859 if (hada_mp == NULL) { 25860 /* IPsec KSTATS: should bump packet counter here. */ 25861 freemsg(mp); 25862 return; 25863 } 25864 25865 hada_mp->b_datap->db_type = M_CTL; 25866 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25867 hada_mp->b_cont = mp; 25868 25869 hada = (da_ipsec_t *)hada_mp->b_rptr; 25870 bzero(hada, sizeof (da_ipsec_t)); 25871 hada->da_type = IPHADA_M_CTL; 25872 25873 putnext(q, hada_mp); 25874 } 25875 25876 /* 25877 * Finish the outbound IPsec processing. This function is called from 25878 * ipsec_out_process() if the IPsec packet was processed 25879 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25880 * asynchronously. 25881 */ 25882 void 25883 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25884 ire_t *ire_arg) 25885 { 25886 uint32_t v_hlen_tos_len; 25887 ipaddr_t dst; 25888 ipif_t *ipif = NULL; 25889 ire_t *ire; 25890 ire_t *ire1 = NULL; 25891 mblk_t *next_mp = NULL; 25892 uint32_t max_frag; 25893 boolean_t multirt_send = B_FALSE; 25894 mblk_t *mp; 25895 ipha_t *ipha1; 25896 uint_t ill_index; 25897 ipsec_out_t *io; 25898 boolean_t attach_if; 25899 int match_flags; 25900 irb_t *irb = NULL; 25901 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25902 zoneid_t zoneid; 25903 ipxmit_state_t pktxmit_state; 25904 ip_stack_t *ipst; 25905 25906 #ifdef _BIG_ENDIAN 25907 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25908 #else 25909 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25910 #endif 25911 25912 mp = ipsec_mp->b_cont; 25913 ipha1 = (ipha_t *)mp->b_rptr; 25914 ASSERT(mp != NULL); 25915 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25916 dst = ipha->ipha_dst; 25917 25918 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25919 ill_index = io->ipsec_out_ill_index; 25920 attach_if = io->ipsec_out_attach_if; 25921 zoneid = io->ipsec_out_zoneid; 25922 ASSERT(zoneid != ALL_ZONES); 25923 ipst = io->ipsec_out_ns->netstack_ip; 25924 ASSERT(io->ipsec_out_ns != NULL); 25925 25926 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25927 if (ill_index != 0) { 25928 if (ill == NULL) { 25929 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25930 ill_index, B_FALSE, ipst); 25931 25932 /* Failure case frees things for us. */ 25933 if (ill == NULL) 25934 return; 25935 25936 ill_need_rele = B_TRUE; 25937 } 25938 /* 25939 * If this packet needs to go out on a particular interface 25940 * honor it. 25941 */ 25942 if (attach_if) { 25943 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25944 25945 /* 25946 * Check if we need an ire that will not be 25947 * looked up by anybody else i.e. HIDDEN. 25948 */ 25949 if (ill_is_probeonly(ill)) { 25950 match_flags |= MATCH_IRE_MARK_HIDDEN; 25951 } 25952 } 25953 } 25954 25955 if (CLASSD(dst)) { 25956 boolean_t conn_dontroute; 25957 /* 25958 * Use the ill_index to get the right ipif. 25959 */ 25960 conn_dontroute = io->ipsec_out_dontroute; 25961 if (ill_index == 0) 25962 ipif = ipif_lookup_group(dst, zoneid, ipst); 25963 else 25964 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25965 if (ipif == NULL) { 25966 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25967 " multicast\n")); 25968 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25969 freemsg(ipsec_mp); 25970 goto done; 25971 } 25972 /* 25973 * ipha_src has already been intialized with the 25974 * value of the ipif in ip_wput. All we need now is 25975 * an ire to send this downstream. 25976 */ 25977 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25978 MBLK_GETLABEL(mp), match_flags, ipst); 25979 if (ire != NULL) { 25980 ill_t *ill1; 25981 /* 25982 * Do the multicast forwarding now, as the IPsec 25983 * processing has been done. 25984 */ 25985 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25986 (ill1 = ire_to_ill(ire))) { 25987 if (ip_mforward(ill1, ipha, mp)) { 25988 freemsg(ipsec_mp); 25989 ip1dbg(("ip_wput_ipsec_out: mforward " 25990 "failed\n")); 25991 ire_refrele(ire); 25992 goto done; 25993 } 25994 } 25995 goto send; 25996 } 25997 25998 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25999 mp->b_prev = NULL; 26000 mp->b_next = NULL; 26001 26002 /* 26003 * If the IPsec packet was processed asynchronously, 26004 * drop it now. 26005 */ 26006 if (q == NULL) { 26007 freemsg(ipsec_mp); 26008 goto done; 26009 } 26010 26011 /* 26012 * We may be using a wrong ipif to create the ire. 26013 * But it is okay as the source address is assigned 26014 * for the packet already. Next outbound packet would 26015 * create the IRE with the right IPIF in ip_wput. 26016 * 26017 * Also handle RTF_MULTIRT routes. 26018 */ 26019 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26020 zoneid, &zero_info); 26021 } else { 26022 if (attach_if) { 26023 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26024 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26025 } else { 26026 if (ire_arg != NULL) { 26027 ire = ire_arg; 26028 ire_need_rele = B_FALSE; 26029 } else { 26030 ire = ire_cache_lookup(dst, zoneid, 26031 MBLK_GETLABEL(mp), ipst); 26032 } 26033 } 26034 if (ire != NULL) { 26035 goto send; 26036 } 26037 26038 /* 26039 * ire disappeared underneath. 26040 * 26041 * What we need to do here is the ip_newroute 26042 * logic to get the ire without doing the IPsec 26043 * processing. Follow the same old path. But this 26044 * time, ip_wput or ire_add_then_put will call us 26045 * directly as all the IPsec operations are done. 26046 */ 26047 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26048 mp->b_prev = NULL; 26049 mp->b_next = NULL; 26050 26051 /* 26052 * If the IPsec packet was processed asynchronously, 26053 * drop it now. 26054 */ 26055 if (q == NULL) { 26056 freemsg(ipsec_mp); 26057 goto done; 26058 } 26059 26060 /* 26061 * Since we're going through ip_newroute() again, we 26062 * need to make sure we don't: 26063 * 26064 * 1.) Trigger the ASSERT() with the ipha_ident 26065 * overloading. 26066 * 2.) Redo transport-layer checksumming, since we've 26067 * already done all that to get this far. 26068 * 26069 * The easiest way not do either of the above is to set 26070 * the ipha_ident field to IP_HDR_INCLUDED. 26071 */ 26072 ipha->ipha_ident = IP_HDR_INCLUDED; 26073 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26074 zoneid, ipst); 26075 } 26076 goto done; 26077 send: 26078 if (ire->ire_stq == NULL) { 26079 ill_t *out_ill; 26080 /* 26081 * Loopbacks go through ip_wput_local except for one case. 26082 * We come here if we generate a icmp_frag_needed message 26083 * after IPsec processing is over. When this function calls 26084 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26085 * icmp_frag_needed. The message generated comes back here 26086 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26087 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26088 * source address as it is usually set in ip_wput_ire. As 26089 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26090 * and we end up here. We can't enter ip_wput_ire once the 26091 * IPsec processing is over and hence we need to do it here. 26092 */ 26093 ASSERT(q != NULL); 26094 UPDATE_OB_PKT_COUNT(ire); 26095 ire->ire_last_used_time = lbolt; 26096 if (ipha->ipha_src == 0) 26097 ipha->ipha_src = ire->ire_src_addr; 26098 26099 /* PFHooks: LOOPBACK_OUT */ 26100 out_ill = ire_to_ill(ire); 26101 26102 DTRACE_PROBE4(ip4__loopback__out__start, 26103 ill_t *, NULL, ill_t *, out_ill, 26104 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26105 26106 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26107 ipst->ips_ipv4firewall_loopback_out, 26108 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26109 26110 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26111 26112 if (ipsec_mp != NULL) 26113 ip_wput_local(RD(q), out_ill, 26114 ipha, ipsec_mp, ire, 0, zoneid); 26115 if (ire_need_rele) 26116 ire_refrele(ire); 26117 goto done; 26118 } 26119 26120 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26121 /* 26122 * We are through with IPsec processing. 26123 * Fragment this and send it on the wire. 26124 */ 26125 if (io->ipsec_out_accelerated) { 26126 /* 26127 * The packet has been accelerated but must 26128 * be fragmented. This should not happen 26129 * since AH and ESP must not accelerate 26130 * packets that need fragmentation, however 26131 * the configuration could have changed 26132 * since the AH or ESP processing. 26133 * Drop packet. 26134 * IPsec KSTATS: bump bean counter here. 26135 */ 26136 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26137 "fragmented accelerated packet!\n")); 26138 freemsg(ipsec_mp); 26139 } else { 26140 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26141 } 26142 if (ire_need_rele) 26143 ire_refrele(ire); 26144 goto done; 26145 } 26146 26147 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26148 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26149 (void *)ire->ire_ipif, (void *)ipif)); 26150 26151 /* 26152 * Multiroute the secured packet, unless IPsec really 26153 * requires the packet to go out only through a particular 26154 * interface. 26155 */ 26156 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26157 ire_t *first_ire; 26158 irb = ire->ire_bucket; 26159 ASSERT(irb != NULL); 26160 /* 26161 * This ire has been looked up as the one that 26162 * goes through the given ipif; 26163 * make sure we do not omit any other multiroute ire 26164 * that may be present in the bucket before this one. 26165 */ 26166 IRB_REFHOLD(irb); 26167 for (first_ire = irb->irb_ire; 26168 first_ire != NULL; 26169 first_ire = first_ire->ire_next) { 26170 if ((first_ire->ire_flags & RTF_MULTIRT) && 26171 (first_ire->ire_addr == ire->ire_addr) && 26172 !(first_ire->ire_marks & 26173 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26174 break; 26175 } 26176 } 26177 26178 if ((first_ire != NULL) && (first_ire != ire)) { 26179 /* 26180 * Don't change the ire if the packet must 26181 * be fragmented if sent via this new one. 26182 */ 26183 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26184 IRE_REFHOLD(first_ire); 26185 if (ire_need_rele) 26186 ire_refrele(ire); 26187 else 26188 ire_need_rele = B_TRUE; 26189 ire = first_ire; 26190 } 26191 } 26192 IRB_REFRELE(irb); 26193 26194 multirt_send = B_TRUE; 26195 max_frag = ire->ire_max_frag; 26196 } else { 26197 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26198 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26199 "flag, attach_if %d\n", attach_if)); 26200 } 26201 } 26202 26203 /* 26204 * In most cases, the emission loop below is entered only once. 26205 * Only in the case where the ire holds the RTF_MULTIRT 26206 * flag, we loop to process all RTF_MULTIRT ires in the 26207 * bucket, and send the packet through all crossed 26208 * RTF_MULTIRT routes. 26209 */ 26210 do { 26211 if (multirt_send) { 26212 /* 26213 * ire1 holds here the next ire to process in the 26214 * bucket. If multirouting is expected, 26215 * any non-RTF_MULTIRT ire that has the 26216 * right destination address is ignored. 26217 */ 26218 ASSERT(irb != NULL); 26219 IRB_REFHOLD(irb); 26220 for (ire1 = ire->ire_next; 26221 ire1 != NULL; 26222 ire1 = ire1->ire_next) { 26223 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26224 continue; 26225 if (ire1->ire_addr != ire->ire_addr) 26226 continue; 26227 if (ire1->ire_marks & 26228 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26229 continue; 26230 /* No loopback here */ 26231 if (ire1->ire_stq == NULL) 26232 continue; 26233 /* 26234 * Ensure we do not exceed the MTU 26235 * of the next route. 26236 */ 26237 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26238 ip_multirt_bad_mtu(ire1, max_frag); 26239 continue; 26240 } 26241 26242 IRE_REFHOLD(ire1); 26243 break; 26244 } 26245 IRB_REFRELE(irb); 26246 if (ire1 != NULL) { 26247 /* 26248 * We are in a multiple send case, need to 26249 * make a copy of the packet. 26250 */ 26251 next_mp = copymsg(ipsec_mp); 26252 if (next_mp == NULL) { 26253 ire_refrele(ire1); 26254 ire1 = NULL; 26255 } 26256 } 26257 } 26258 /* 26259 * Everything is done. Send it out on the wire 26260 * 26261 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26262 * either send it on the wire or, in the case of 26263 * HW acceleration, call ipsec_hw_putnext. 26264 */ 26265 if (ire->ire_nce && 26266 ire->ire_nce->nce_state != ND_REACHABLE) { 26267 DTRACE_PROBE2(ip__wput__ipsec__bail, 26268 (ire_t *), ire, (mblk_t *), ipsec_mp); 26269 /* 26270 * If ire's link-layer is unresolved (this 26271 * would only happen if the incomplete ire 26272 * was added to cachetable via forwarding path) 26273 * don't bother going to ip_xmit_v4. Just drop the 26274 * packet. 26275 * There is a slight risk here, in that, if we 26276 * have the forwarding path create an incomplete 26277 * IRE, then until the IRE is completed, any 26278 * transmitted IPsec packets will be dropped 26279 * instead of being queued waiting for resolution. 26280 * 26281 * But the likelihood of a forwarding packet and a wput 26282 * packet sending to the same dst at the same time 26283 * and there not yet be an ARP entry for it is small. 26284 * Furthermore, if this actually happens, it might 26285 * be likely that wput would generate multiple 26286 * packets (and forwarding would also have a train 26287 * of packets) for that destination. If this is 26288 * the case, some of them would have been dropped 26289 * anyway, since ARP only queues a few packets while 26290 * waiting for resolution 26291 * 26292 * NOTE: We should really call ip_xmit_v4, 26293 * and let it queue the packet and send the 26294 * ARP query and have ARP come back thus: 26295 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26296 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26297 * hw accel work. But it's too complex to get 26298 * the IPsec hw acceleration approach to fit 26299 * well with ip_xmit_v4 doing ARP without 26300 * doing IPsec simplification. For now, we just 26301 * poke ip_xmit_v4 to trigger the arp resolve, so 26302 * that we can continue with the send on the next 26303 * attempt. 26304 * 26305 * XXX THis should be revisited, when 26306 * the IPsec/IP interaction is cleaned up 26307 */ 26308 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26309 " - dropping packet\n")); 26310 freemsg(ipsec_mp); 26311 /* 26312 * Call ip_xmit_v4() to trigger ARP query 26313 * in case the nce_state is ND_INITIAL 26314 */ 26315 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26316 goto drop_pkt; 26317 } 26318 26319 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26320 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26321 mblk_t *, ipsec_mp); 26322 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26323 ipst->ips_ipv4firewall_physical_out, NULL, 26324 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26325 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26326 if (ipsec_mp == NULL) 26327 goto drop_pkt; 26328 26329 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26330 pktxmit_state = ip_xmit_v4(mp, ire, 26331 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26332 26333 if ((pktxmit_state == SEND_FAILED) || 26334 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26335 26336 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26337 drop_pkt: 26338 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26339 ipIfStatsOutDiscards); 26340 if (ire_need_rele) 26341 ire_refrele(ire); 26342 if (ire1 != NULL) { 26343 ire_refrele(ire1); 26344 freemsg(next_mp); 26345 } 26346 goto done; 26347 } 26348 26349 freeb(ipsec_mp); 26350 if (ire_need_rele) 26351 ire_refrele(ire); 26352 26353 if (ire1 != NULL) { 26354 ire = ire1; 26355 ire_need_rele = B_TRUE; 26356 ASSERT(next_mp); 26357 ipsec_mp = next_mp; 26358 mp = ipsec_mp->b_cont; 26359 ire1 = NULL; 26360 next_mp = NULL; 26361 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26362 } else { 26363 multirt_send = B_FALSE; 26364 } 26365 } while (multirt_send); 26366 done: 26367 if (ill != NULL && ill_need_rele) 26368 ill_refrele(ill); 26369 if (ipif != NULL) 26370 ipif_refrele(ipif); 26371 } 26372 26373 /* 26374 * Get the ill corresponding to the specified ire, and compare its 26375 * capabilities with the protocol and algorithms specified by the 26376 * the SA obtained from ipsec_out. If they match, annotate the 26377 * ipsec_out structure to indicate that the packet needs acceleration. 26378 * 26379 * 26380 * A packet is eligible for outbound hardware acceleration if the 26381 * following conditions are satisfied: 26382 * 26383 * 1. the packet will not be fragmented 26384 * 2. the provider supports the algorithm 26385 * 3. there is no pending control message being exchanged 26386 * 4. snoop is not attached 26387 * 5. the destination address is not a broadcast or multicast address. 26388 * 26389 * Rationale: 26390 * - Hardware drivers do not support fragmentation with 26391 * the current interface. 26392 * - snoop, multicast, and broadcast may result in exposure of 26393 * a cleartext datagram. 26394 * We check all five of these conditions here. 26395 * 26396 * XXX would like to nuke "ire_t *" parameter here; problem is that 26397 * IRE is only way to figure out if a v4 address is a broadcast and 26398 * thus ineligible for acceleration... 26399 */ 26400 static void 26401 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26402 { 26403 ipsec_out_t *io; 26404 mblk_t *data_mp; 26405 uint_t plen, overhead; 26406 ip_stack_t *ipst; 26407 26408 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26409 return; 26410 26411 if (ill == NULL) 26412 return; 26413 ipst = ill->ill_ipst; 26414 /* 26415 * Destination address is a broadcast or multicast. Punt. 26416 */ 26417 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26418 IRE_LOCAL))) 26419 return; 26420 26421 data_mp = ipsec_mp->b_cont; 26422 26423 if (ill->ill_isv6) { 26424 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26425 26426 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26427 return; 26428 26429 plen = ip6h->ip6_plen; 26430 } else { 26431 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26432 26433 if (CLASSD(ipha->ipha_dst)) 26434 return; 26435 26436 plen = ipha->ipha_length; 26437 } 26438 /* 26439 * Is there a pending DLPI control message being exchanged 26440 * between IP/IPsec and the DLS Provider? If there is, it 26441 * could be a SADB update, and the state of the DLS Provider 26442 * SADB might not be in sync with the SADB maintained by 26443 * IPsec. To avoid dropping packets or using the wrong keying 26444 * material, we do not accelerate this packet. 26445 */ 26446 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26447 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26448 "ill_dlpi_pending! don't accelerate packet\n")); 26449 return; 26450 } 26451 26452 /* 26453 * Is the Provider in promiscous mode? If it does, we don't 26454 * accelerate the packet since it will bounce back up to the 26455 * listeners in the clear. 26456 */ 26457 if (ill->ill_promisc_on_phys) { 26458 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26459 "ill in promiscous mode, don't accelerate packet\n")); 26460 return; 26461 } 26462 26463 /* 26464 * Will the packet require fragmentation? 26465 */ 26466 26467 /* 26468 * IPsec ESP note: this is a pessimistic estimate, but the same 26469 * as is used elsewhere. 26470 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26471 * + 2-byte trailer 26472 */ 26473 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26474 IPSEC_BASE_ESP_HDR_SIZE(sa); 26475 26476 if ((plen + overhead) > ill->ill_max_mtu) 26477 return; 26478 26479 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26480 26481 /* 26482 * Can the ill accelerate this IPsec protocol and algorithm 26483 * specified by the SA? 26484 */ 26485 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26486 ill->ill_isv6, sa, ipst->ips_netstack)) { 26487 return; 26488 } 26489 26490 /* 26491 * Tell AH or ESP that the outbound ill is capable of 26492 * accelerating this packet. 26493 */ 26494 io->ipsec_out_is_capab_ill = B_TRUE; 26495 } 26496 26497 /* 26498 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26499 * 26500 * If this function returns B_TRUE, the requested SA's have been filled 26501 * into the ipsec_out_*_sa pointers. 26502 * 26503 * If the function returns B_FALSE, the packet has been "consumed", most 26504 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26505 * 26506 * The SA references created by the protocol-specific "select" 26507 * function will be released when the ipsec_mp is freed, thanks to the 26508 * ipsec_out_free destructor -- see spd.c. 26509 */ 26510 static boolean_t 26511 ipsec_out_select_sa(mblk_t *ipsec_mp) 26512 { 26513 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26514 ipsec_out_t *io; 26515 ipsec_policy_t *pp; 26516 ipsec_action_t *ap; 26517 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26518 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26519 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26520 26521 if (!io->ipsec_out_secure) { 26522 /* 26523 * We came here by mistake. 26524 * Don't bother with ipsec processing 26525 * We should "discourage" this path in the future. 26526 */ 26527 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26528 return (B_FALSE); 26529 } 26530 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26531 ASSERT((io->ipsec_out_policy != NULL) || 26532 (io->ipsec_out_act != NULL)); 26533 26534 ASSERT(io->ipsec_out_failed == B_FALSE); 26535 26536 /* 26537 * IPsec processing has started. 26538 */ 26539 io->ipsec_out_proc_begin = B_TRUE; 26540 ap = io->ipsec_out_act; 26541 if (ap == NULL) { 26542 pp = io->ipsec_out_policy; 26543 ASSERT(pp != NULL); 26544 ap = pp->ipsp_act; 26545 ASSERT(ap != NULL); 26546 } 26547 26548 /* 26549 * We have an action. now, let's select SA's. 26550 * (In the future, we can cache this in the conn_t..) 26551 */ 26552 if (ap->ipa_want_esp) { 26553 if (io->ipsec_out_esp_sa == NULL) { 26554 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26555 IPPROTO_ESP); 26556 } 26557 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26558 } 26559 26560 if (ap->ipa_want_ah) { 26561 if (io->ipsec_out_ah_sa == NULL) { 26562 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26563 IPPROTO_AH); 26564 } 26565 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26566 /* 26567 * The ESP and AH processing order needs to be preserved 26568 * when both protocols are required (ESP should be applied 26569 * before AH for an outbound packet). Force an ESP ACQUIRE 26570 * when both ESP and AH are required, and an AH ACQUIRE 26571 * is needed. 26572 */ 26573 if (ap->ipa_want_esp && need_ah_acquire) 26574 need_esp_acquire = B_TRUE; 26575 } 26576 26577 /* 26578 * Send an ACQUIRE (extended, regular, or both) if we need one. 26579 * Release SAs that got referenced, but will not be used until we 26580 * acquire _all_ of the SAs we need. 26581 */ 26582 if (need_ah_acquire || need_esp_acquire) { 26583 if (io->ipsec_out_ah_sa != NULL) { 26584 IPSA_REFRELE(io->ipsec_out_ah_sa); 26585 io->ipsec_out_ah_sa = NULL; 26586 } 26587 if (io->ipsec_out_esp_sa != NULL) { 26588 IPSA_REFRELE(io->ipsec_out_esp_sa); 26589 io->ipsec_out_esp_sa = NULL; 26590 } 26591 26592 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26593 return (B_FALSE); 26594 } 26595 26596 return (B_TRUE); 26597 } 26598 26599 /* 26600 * Process an IPSEC_OUT message and see what you can 26601 * do with it. 26602 * IPQoS Notes: 26603 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26604 * IPsec. 26605 * XXX would like to nuke ire_t. 26606 * XXX ill_index better be "real" 26607 */ 26608 void 26609 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26610 { 26611 ipsec_out_t *io; 26612 ipsec_policy_t *pp; 26613 ipsec_action_t *ap; 26614 ipha_t *ipha; 26615 ip6_t *ip6h; 26616 mblk_t *mp; 26617 ill_t *ill; 26618 zoneid_t zoneid; 26619 ipsec_status_t ipsec_rc; 26620 boolean_t ill_need_rele = B_FALSE; 26621 ip_stack_t *ipst; 26622 ipsec_stack_t *ipss; 26623 26624 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26625 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26626 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26627 ipst = io->ipsec_out_ns->netstack_ip; 26628 mp = ipsec_mp->b_cont; 26629 26630 /* 26631 * Initiate IPPF processing. We do it here to account for packets 26632 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26633 * We can check for ipsec_out_proc_begin even for such packets, as 26634 * they will always be false (asserted below). 26635 */ 26636 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26637 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26638 io->ipsec_out_ill_index : ill_index); 26639 if (mp == NULL) { 26640 ip2dbg(("ipsec_out_process: packet dropped "\ 26641 "during IPPF processing\n")); 26642 freeb(ipsec_mp); 26643 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26644 return; 26645 } 26646 } 26647 26648 if (!io->ipsec_out_secure) { 26649 /* 26650 * We came here by mistake. 26651 * Don't bother with ipsec processing 26652 * Should "discourage" this path in the future. 26653 */ 26654 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26655 goto done; 26656 } 26657 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26658 ASSERT((io->ipsec_out_policy != NULL) || 26659 (io->ipsec_out_act != NULL)); 26660 ASSERT(io->ipsec_out_failed == B_FALSE); 26661 26662 ipss = ipst->ips_netstack->netstack_ipsec; 26663 if (!ipsec_loaded(ipss)) { 26664 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26665 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26666 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26667 } else { 26668 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26669 } 26670 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26671 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26672 &ipss->ipsec_dropper); 26673 return; 26674 } 26675 26676 /* 26677 * IPsec processing has started. 26678 */ 26679 io->ipsec_out_proc_begin = B_TRUE; 26680 ap = io->ipsec_out_act; 26681 if (ap == NULL) { 26682 pp = io->ipsec_out_policy; 26683 ASSERT(pp != NULL); 26684 ap = pp->ipsp_act; 26685 ASSERT(ap != NULL); 26686 } 26687 26688 /* 26689 * Save the outbound ill index. When the packet comes back 26690 * from IPsec, we make sure the ill hasn't changed or disappeared 26691 * before sending it the accelerated packet. 26692 */ 26693 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26694 int ifindex; 26695 ill = ire_to_ill(ire); 26696 ifindex = ill->ill_phyint->phyint_ifindex; 26697 io->ipsec_out_capab_ill_index = ifindex; 26698 } 26699 26700 /* 26701 * The order of processing is first insert a IP header if needed. 26702 * Then insert the ESP header and then the AH header. 26703 */ 26704 if ((io->ipsec_out_se_done == B_FALSE) && 26705 (ap->ipa_want_se)) { 26706 /* 26707 * First get the outer IP header before sending 26708 * it to ESP. 26709 */ 26710 ipha_t *oipha, *iipha; 26711 mblk_t *outer_mp, *inner_mp; 26712 26713 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26714 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26715 "ipsec_out_process: " 26716 "Self-Encapsulation failed: Out of memory\n"); 26717 freemsg(ipsec_mp); 26718 if (ill != NULL) { 26719 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26720 } else { 26721 BUMP_MIB(&ipst->ips_ip_mib, 26722 ipIfStatsOutDiscards); 26723 } 26724 return; 26725 } 26726 inner_mp = ipsec_mp->b_cont; 26727 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26728 oipha = (ipha_t *)outer_mp->b_rptr; 26729 iipha = (ipha_t *)inner_mp->b_rptr; 26730 *oipha = *iipha; 26731 outer_mp->b_wptr += sizeof (ipha_t); 26732 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26733 sizeof (ipha_t)); 26734 oipha->ipha_protocol = IPPROTO_ENCAP; 26735 oipha->ipha_version_and_hdr_length = 26736 IP_SIMPLE_HDR_VERSION; 26737 oipha->ipha_hdr_checksum = 0; 26738 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26739 outer_mp->b_cont = inner_mp; 26740 ipsec_mp->b_cont = outer_mp; 26741 26742 io->ipsec_out_se_done = B_TRUE; 26743 io->ipsec_out_tunnel = B_TRUE; 26744 } 26745 26746 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26747 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26748 !ipsec_out_select_sa(ipsec_mp)) 26749 return; 26750 26751 /* 26752 * By now, we know what SA's to use. Toss over to ESP & AH 26753 * to do the heavy lifting. 26754 */ 26755 zoneid = io->ipsec_out_zoneid; 26756 ASSERT(zoneid != ALL_ZONES); 26757 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26758 ASSERT(io->ipsec_out_esp_sa != NULL); 26759 io->ipsec_out_esp_done = B_TRUE; 26760 /* 26761 * Note that since hw accel can only apply one transform, 26762 * not two, we skip hw accel for ESP if we also have AH 26763 * This is an design limitation of the interface 26764 * which should be revisited. 26765 */ 26766 ASSERT(ire != NULL); 26767 if (io->ipsec_out_ah_sa == NULL) { 26768 ill = (ill_t *)ire->ire_stq->q_ptr; 26769 ipsec_out_is_accelerated(ipsec_mp, 26770 io->ipsec_out_esp_sa, ill, ire); 26771 } 26772 26773 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26774 switch (ipsec_rc) { 26775 case IPSEC_STATUS_SUCCESS: 26776 break; 26777 case IPSEC_STATUS_FAILED: 26778 if (ill != NULL) { 26779 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26780 } else { 26781 BUMP_MIB(&ipst->ips_ip_mib, 26782 ipIfStatsOutDiscards); 26783 } 26784 /* FALLTHRU */ 26785 case IPSEC_STATUS_PENDING: 26786 return; 26787 } 26788 } 26789 26790 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26791 ASSERT(io->ipsec_out_ah_sa != NULL); 26792 io->ipsec_out_ah_done = B_TRUE; 26793 if (ire == NULL) { 26794 int idx = io->ipsec_out_capab_ill_index; 26795 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26796 NULL, NULL, NULL, NULL, ipst); 26797 ill_need_rele = B_TRUE; 26798 } else { 26799 ill = (ill_t *)ire->ire_stq->q_ptr; 26800 } 26801 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26802 ire); 26803 26804 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26805 switch (ipsec_rc) { 26806 case IPSEC_STATUS_SUCCESS: 26807 break; 26808 case IPSEC_STATUS_FAILED: 26809 if (ill != NULL) { 26810 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26811 } else { 26812 BUMP_MIB(&ipst->ips_ip_mib, 26813 ipIfStatsOutDiscards); 26814 } 26815 /* FALLTHRU */ 26816 case IPSEC_STATUS_PENDING: 26817 if (ill != NULL && ill_need_rele) 26818 ill_refrele(ill); 26819 return; 26820 } 26821 } 26822 /* 26823 * We are done with IPsec processing. Send it over 26824 * the wire. 26825 */ 26826 done: 26827 mp = ipsec_mp->b_cont; 26828 ipha = (ipha_t *)mp->b_rptr; 26829 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26830 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26831 } else { 26832 ip6h = (ip6_t *)ipha; 26833 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26834 } 26835 if (ill != NULL && ill_need_rele) 26836 ill_refrele(ill); 26837 } 26838 26839 /* ARGSUSED */ 26840 void 26841 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26842 { 26843 opt_restart_t *or; 26844 int err; 26845 conn_t *connp; 26846 26847 ASSERT(CONN_Q(q)); 26848 connp = Q_TO_CONN(q); 26849 26850 ASSERT(first_mp->b_datap->db_type == M_CTL); 26851 or = (opt_restart_t *)first_mp->b_rptr; 26852 /* 26853 * We don't need to pass any credentials here since this is just 26854 * a restart. The credentials are passed in when svr4_optcom_req 26855 * is called the first time (from ip_wput_nondata). 26856 */ 26857 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26858 err = svr4_optcom_req(q, first_mp, NULL, 26859 &ip_opt_obj, B_FALSE); 26860 } else { 26861 ASSERT(or->or_type == T_OPTMGMT_REQ); 26862 err = tpi_optcom_req(q, first_mp, NULL, 26863 &ip_opt_obj, B_FALSE); 26864 } 26865 if (err != EINPROGRESS) { 26866 /* operation is done */ 26867 CONN_OPER_PENDING_DONE(connp); 26868 } 26869 } 26870 26871 /* 26872 * ioctls that go through a down/up sequence may need to wait for the down 26873 * to complete. This involves waiting for the ire and ipif refcnts to go down 26874 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26875 */ 26876 /* ARGSUSED */ 26877 void 26878 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26879 { 26880 struct iocblk *iocp; 26881 mblk_t *mp1; 26882 ip_ioctl_cmd_t *ipip; 26883 int err; 26884 sin_t *sin; 26885 struct lifreq *lifr; 26886 struct ifreq *ifr; 26887 26888 iocp = (struct iocblk *)mp->b_rptr; 26889 ASSERT(ipsq != NULL); 26890 /* Existence of mp1 verified in ip_wput_nondata */ 26891 mp1 = mp->b_cont->b_cont; 26892 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26893 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26894 /* 26895 * Special case where ipsq_current_ipif is not set: 26896 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26897 * ill could also have become part of a ipmp group in the 26898 * process, we are here as were not able to complete the 26899 * operation in ipif_set_values because we could not become 26900 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26901 * will not be set so we need to set it. 26902 */ 26903 ill_t *ill = q->q_ptr; 26904 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26905 } 26906 ASSERT(ipsq->ipsq_current_ipif != NULL); 26907 26908 if (ipip->ipi_cmd_type == IF_CMD) { 26909 /* This a old style SIOC[GS]IF* command */ 26910 ifr = (struct ifreq *)mp1->b_rptr; 26911 sin = (sin_t *)&ifr->ifr_addr; 26912 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26913 /* This a new style SIOC[GS]LIF* command */ 26914 lifr = (struct lifreq *)mp1->b_rptr; 26915 sin = (sin_t *)&lifr->lifr_addr; 26916 } else { 26917 sin = NULL; 26918 } 26919 26920 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26921 ipip, mp1->b_rptr); 26922 26923 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26924 } 26925 26926 /* 26927 * ioctl processing 26928 * 26929 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26930 * the ioctl command in the ioctl tables, determines the copyin data size 26931 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26932 * 26933 * ioctl processing then continues when the M_IOCDATA makes its way down to 26934 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26935 * associated 'conn' is refheld till the end of the ioctl and the general 26936 * ioctl processing function ip_process_ioctl() is called to extract the 26937 * arguments and process the ioctl. To simplify extraction, ioctl commands 26938 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26939 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26940 * is used to extract the ioctl's arguments. 26941 * 26942 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26943 * so goes thru the serialization primitive ipsq_try_enter. Then the 26944 * appropriate function to handle the ioctl is called based on the entry in 26945 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26946 * which also refreleases the 'conn' that was refheld at the start of the 26947 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26948 * 26949 * Many exclusive ioctls go thru an internal down up sequence as part of 26950 * the operation. For example an attempt to change the IP address of an 26951 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26952 * does all the cleanup such as deleting all ires that use this address. 26953 * Then we need to wait till all references to the interface go away. 26954 */ 26955 void 26956 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26957 { 26958 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26959 ip_ioctl_cmd_t *ipip = arg; 26960 ip_extract_func_t *extract_funcp; 26961 cmd_info_t ci; 26962 int err; 26963 boolean_t entered_ipsq = B_FALSE; 26964 26965 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26966 26967 if (ipip == NULL) 26968 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26969 26970 /* 26971 * SIOCLIFADDIF needs to go thru a special path since the 26972 * ill may not exist yet. This happens in the case of lo0 26973 * which is created using this ioctl. 26974 */ 26975 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26976 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26977 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26978 return; 26979 } 26980 26981 ci.ci_ipif = NULL; 26982 if (ipip->ipi_cmd_type == MISC_CMD) { 26983 /* 26984 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26985 */ 26986 if (ipip->ipi_cmd == IF_UNITSEL) { 26987 /* ioctl comes down the ill */ 26988 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26989 ipif_refhold(ci.ci_ipif); 26990 } 26991 err = 0; 26992 ci.ci_sin = NULL; 26993 ci.ci_sin6 = NULL; 26994 ci.ci_lifr = NULL; 26995 } else { 26996 switch (ipip->ipi_cmd_type) { 26997 case IF_CMD: 26998 case LIF_CMD: 26999 extract_funcp = ip_extract_lifreq; 27000 break; 27001 27002 case ARP_CMD: 27003 case XARP_CMD: 27004 extract_funcp = ip_extract_arpreq; 27005 break; 27006 27007 case TUN_CMD: 27008 extract_funcp = ip_extract_tunreq; 27009 break; 27010 27011 case MSFILT_CMD: 27012 extract_funcp = ip_extract_msfilter; 27013 break; 27014 27015 default: 27016 ASSERT(0); 27017 } 27018 27019 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27020 if (err != 0) { 27021 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27022 return; 27023 } 27024 27025 /* 27026 * All of the extraction functions return a refheld ipif. 27027 */ 27028 ASSERT(ci.ci_ipif != NULL); 27029 } 27030 27031 /* 27032 * If ipsq is non-null, we are already being called exclusively 27033 */ 27034 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27035 if (!(ipip->ipi_flags & IPI_WR)) { 27036 /* 27037 * A return value of EINPROGRESS means the ioctl is 27038 * either queued and waiting for some reason or has 27039 * already completed. 27040 */ 27041 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27042 ci.ci_lifr); 27043 if (ci.ci_ipif != NULL) 27044 ipif_refrele(ci.ci_ipif); 27045 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27046 return; 27047 } 27048 27049 ASSERT(ci.ci_ipif != NULL); 27050 27051 if (ipsq == NULL) { 27052 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27053 ip_process_ioctl, NEW_OP, B_TRUE); 27054 entered_ipsq = B_TRUE; 27055 } 27056 /* 27057 * Release the ipif so that ipif_down and friends that wait for 27058 * references to go away are not misled about the current ipif_refcnt 27059 * values. We are writer so we can access the ipif even after releasing 27060 * the ipif. 27061 */ 27062 ipif_refrele(ci.ci_ipif); 27063 if (ipsq == NULL) 27064 return; 27065 27066 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27067 27068 /* 27069 * For most set ioctls that come here, this serves as a single point 27070 * where we set the IPIF_CHANGING flag. This ensures that there won't 27071 * be any new references to the ipif. This helps functions that go 27072 * through this path and end up trying to wait for the refcnts 27073 * associated with the ipif to go down to zero. Some exceptions are 27074 * Failover, Failback, and Groupname commands that operate on more than 27075 * just the ci.ci_ipif. These commands internally determine the 27076 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27077 * flags on that set. Another exception is the Removeif command that 27078 * sets the IPIF_CONDEMNED flag internally after identifying the right 27079 * ipif to operate on. 27080 */ 27081 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27082 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27083 ipip->ipi_cmd != SIOCLIFFAILOVER && 27084 ipip->ipi_cmd != SIOCLIFFAILBACK && 27085 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27086 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27087 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27088 27089 /* 27090 * A return value of EINPROGRESS means the ioctl is 27091 * either queued and waiting for some reason or has 27092 * already completed. 27093 */ 27094 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27095 27096 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27097 27098 if (entered_ipsq) 27099 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27100 } 27101 27102 /* 27103 * Complete the ioctl. Typically ioctls use the mi package and need to 27104 * do mi_copyout/mi_copy_done. 27105 */ 27106 void 27107 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27108 { 27109 conn_t *connp = NULL; 27110 27111 if (err == EINPROGRESS) 27112 return; 27113 27114 if (CONN_Q(q)) { 27115 connp = Q_TO_CONN(q); 27116 ASSERT(connp->conn_ref >= 2); 27117 } 27118 27119 switch (mode) { 27120 case COPYOUT: 27121 if (err == 0) 27122 mi_copyout(q, mp); 27123 else 27124 mi_copy_done(q, mp, err); 27125 break; 27126 27127 case NO_COPYOUT: 27128 mi_copy_done(q, mp, err); 27129 break; 27130 27131 default: 27132 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27133 break; 27134 } 27135 27136 /* 27137 * The refhold placed at the start of the ioctl is released here. 27138 */ 27139 if (connp != NULL) 27140 CONN_OPER_PENDING_DONE(connp); 27141 27142 if (ipsq != NULL) 27143 ipsq_current_finish(ipsq); 27144 } 27145 27146 /* 27147 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27148 */ 27149 /* ARGSUSED */ 27150 void 27151 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27152 { 27153 conn_t *connp = arg; 27154 tcp_t *tcp; 27155 27156 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27157 tcp = connp->conn_tcp; 27158 27159 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27160 freemsg(mp); 27161 else 27162 tcp_rput_other(tcp, mp); 27163 CONN_OPER_PENDING_DONE(connp); 27164 } 27165 27166 /* Called from ip_wput for all non data messages */ 27167 /* ARGSUSED */ 27168 void 27169 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27170 { 27171 mblk_t *mp1; 27172 ire_t *ire, *fake_ire; 27173 ill_t *ill; 27174 struct iocblk *iocp; 27175 ip_ioctl_cmd_t *ipip; 27176 cred_t *cr; 27177 conn_t *connp; 27178 int err; 27179 nce_t *nce; 27180 ipif_t *ipif; 27181 ip_stack_t *ipst; 27182 char *proto_str; 27183 27184 if (CONN_Q(q)) { 27185 connp = Q_TO_CONN(q); 27186 ipst = connp->conn_netstack->netstack_ip; 27187 } else { 27188 connp = NULL; 27189 ipst = ILLQ_TO_IPST(q); 27190 } 27191 27192 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27193 27194 switch (DB_TYPE(mp)) { 27195 case M_IOCTL: 27196 /* 27197 * IOCTL processing begins in ip_sioctl_copyin_setup which 27198 * will arrange to copy in associated control structures. 27199 */ 27200 ip_sioctl_copyin_setup(q, mp); 27201 return; 27202 case M_IOCDATA: 27203 /* 27204 * Ensure that this is associated with one of our trans- 27205 * parent ioctls. If it's not ours, discard it if we're 27206 * running as a driver, or pass it on if we're a module. 27207 */ 27208 iocp = (struct iocblk *)mp->b_rptr; 27209 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27210 if (ipip == NULL) { 27211 if (q->q_next == NULL) { 27212 goto nak; 27213 } else { 27214 putnext(q, mp); 27215 } 27216 return; 27217 } 27218 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27219 /* 27220 * the ioctl is one we recognise, but is not 27221 * consumed by IP as a module, pass M_IOCDATA 27222 * for processing downstream, but only for 27223 * common Streams ioctls. 27224 */ 27225 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27226 putnext(q, mp); 27227 return; 27228 } else { 27229 goto nak; 27230 } 27231 } 27232 27233 /* IOCTL continuation following copyin or copyout. */ 27234 if (mi_copy_state(q, mp, NULL) == -1) { 27235 /* 27236 * The copy operation failed. mi_copy_state already 27237 * cleaned up, so we're out of here. 27238 */ 27239 return; 27240 } 27241 /* 27242 * If we just completed a copy in, we become writer and 27243 * continue processing in ip_sioctl_copyin_done. If it 27244 * was a copy out, we call mi_copyout again. If there is 27245 * nothing more to copy out, it will complete the IOCTL. 27246 */ 27247 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27248 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27249 mi_copy_done(q, mp, EPROTO); 27250 return; 27251 } 27252 /* 27253 * Check for cases that need more copying. A return 27254 * value of 0 means a second copyin has been started, 27255 * so we return; a return value of 1 means no more 27256 * copying is needed, so we continue. 27257 */ 27258 if (ipip->ipi_cmd_type == MSFILT_CMD && 27259 MI_COPY_COUNT(mp) == 1) { 27260 if (ip_copyin_msfilter(q, mp) == 0) 27261 return; 27262 } 27263 /* 27264 * Refhold the conn, till the ioctl completes. This is 27265 * needed in case the ioctl ends up in the pending mp 27266 * list. Every mp in the ill_pending_mp list and 27267 * the ipsq_pending_mp must have a refhold on the conn 27268 * to resume processing. The refhold is released when 27269 * the ioctl completes. (normally or abnormally) 27270 * In all cases ip_ioctl_finish is called to finish 27271 * the ioctl. 27272 */ 27273 if (connp != NULL) { 27274 /* This is not a reentry */ 27275 ASSERT(ipsq == NULL); 27276 CONN_INC_REF(connp); 27277 } else { 27278 if (!(ipip->ipi_flags & IPI_MODOK)) { 27279 mi_copy_done(q, mp, EINVAL); 27280 return; 27281 } 27282 } 27283 27284 ip_process_ioctl(ipsq, q, mp, ipip); 27285 27286 } else { 27287 mi_copyout(q, mp); 27288 } 27289 return; 27290 nak: 27291 iocp->ioc_error = EINVAL; 27292 mp->b_datap->db_type = M_IOCNAK; 27293 iocp->ioc_count = 0; 27294 qreply(q, mp); 27295 return; 27296 27297 case M_IOCNAK: 27298 /* 27299 * The only way we could get here is if a resolver didn't like 27300 * an IOCTL we sent it. This shouldn't happen. 27301 */ 27302 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27303 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27304 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27305 freemsg(mp); 27306 return; 27307 case M_IOCACK: 27308 /* /dev/ip shouldn't see this */ 27309 if (CONN_Q(q)) 27310 goto nak; 27311 27312 /* Finish socket ioctls passed through to ARP. */ 27313 ip_sioctl_iocack(q, mp); 27314 return; 27315 case M_FLUSH: 27316 if (*mp->b_rptr & FLUSHW) 27317 flushq(q, FLUSHALL); 27318 if (q->q_next) { 27319 putnext(q, mp); 27320 return; 27321 } 27322 if (*mp->b_rptr & FLUSHR) { 27323 *mp->b_rptr &= ~FLUSHW; 27324 qreply(q, mp); 27325 return; 27326 } 27327 freemsg(mp); 27328 return; 27329 case IRE_DB_REQ_TYPE: 27330 if (connp == NULL) { 27331 proto_str = "IRE_DB_REQ_TYPE"; 27332 goto protonak; 27333 } 27334 /* An Upper Level Protocol wants a copy of an IRE. */ 27335 ip_ire_req(q, mp); 27336 return; 27337 case M_CTL: 27338 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27339 break; 27340 27341 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27342 TUN_HELLO) { 27343 ASSERT(connp != NULL); 27344 connp->conn_flags |= IPCL_IPTUN; 27345 freeb(mp); 27346 return; 27347 } 27348 27349 /* M_CTL messages are used by ARP to tell us things. */ 27350 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27351 break; 27352 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27353 case AR_ENTRY_SQUERY: 27354 ip_wput_ctl(q, mp); 27355 return; 27356 case AR_CLIENT_NOTIFY: 27357 ip_arp_news(q, mp); 27358 return; 27359 case AR_DLPIOP_DONE: 27360 ASSERT(q->q_next != NULL); 27361 ill = (ill_t *)q->q_ptr; 27362 /* qwriter_ip releases the refhold */ 27363 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27364 ill_refhold(ill); 27365 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27366 return; 27367 case AR_ARP_CLOSING: 27368 /* 27369 * ARP (above us) is closing. If no ARP bringup is 27370 * currently pending, ack the message so that ARP 27371 * can complete its close. Also mark ill_arp_closing 27372 * so that new ARP bringups will fail. If any 27373 * ARP bringup is currently in progress, we will 27374 * ack this when the current ARP bringup completes. 27375 */ 27376 ASSERT(q->q_next != NULL); 27377 ill = (ill_t *)q->q_ptr; 27378 mutex_enter(&ill->ill_lock); 27379 ill->ill_arp_closing = 1; 27380 if (!ill->ill_arp_bringup_pending) { 27381 mutex_exit(&ill->ill_lock); 27382 qreply(q, mp); 27383 } else { 27384 mutex_exit(&ill->ill_lock); 27385 freemsg(mp); 27386 } 27387 return; 27388 case AR_ARP_EXTEND: 27389 /* 27390 * The ARP module above us is capable of duplicate 27391 * address detection. Old ATM drivers will not send 27392 * this message. 27393 */ 27394 ASSERT(q->q_next != NULL); 27395 ill = (ill_t *)q->q_ptr; 27396 ill->ill_arp_extend = B_TRUE; 27397 freemsg(mp); 27398 return; 27399 default: 27400 break; 27401 } 27402 break; 27403 case M_PROTO: 27404 case M_PCPROTO: 27405 /* 27406 * The only PROTO messages we expect are ULP binds and 27407 * copies of option negotiation acknowledgements. 27408 */ 27409 switch (((union T_primitives *)mp->b_rptr)->type) { 27410 case O_T_BIND_REQ: 27411 case T_BIND_REQ: { 27412 /* Request can get queued in bind */ 27413 if (connp == NULL) { 27414 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27415 goto protonak; 27416 } 27417 /* 27418 * The transports except SCTP call ip_bind_{v4,v6}() 27419 * directly instead of a a putnext. SCTP doesn't 27420 * generate any T_BIND_REQ since it has its own 27421 * fanout data structures. However, ESP and AH 27422 * come in for regular binds; all other cases are 27423 * bind retries. 27424 */ 27425 ASSERT(!IPCL_IS_SCTP(connp)); 27426 27427 /* Don't increment refcnt if this is a re-entry */ 27428 if (ipsq == NULL) 27429 CONN_INC_REF(connp); 27430 27431 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27432 connp, NULL) : ip_bind_v4(q, mp, connp); 27433 if (mp == NULL) 27434 return; 27435 if (IPCL_IS_TCP(connp)) { 27436 /* 27437 * In the case of TCP endpoint we 27438 * come here only for bind retries 27439 */ 27440 ASSERT(ipsq != NULL); 27441 CONN_INC_REF(connp); 27442 squeue_fill(connp->conn_sqp, mp, 27443 ip_resume_tcp_bind, connp, 27444 SQTAG_BIND_RETRY); 27445 } else if (IPCL_IS_UDP(connp)) { 27446 /* 27447 * In the case of UDP endpoint we 27448 * come here only for bind retries 27449 */ 27450 ASSERT(ipsq != NULL); 27451 udp_resume_bind(connp, mp); 27452 } else if (IPCL_IS_RAWIP(connp)) { 27453 /* 27454 * In the case of RAWIP endpoint we 27455 * come here only for bind retries 27456 */ 27457 ASSERT(ipsq != NULL); 27458 rawip_resume_bind(connp, mp); 27459 } else { 27460 /* The case of AH and ESP */ 27461 qreply(q, mp); 27462 CONN_OPER_PENDING_DONE(connp); 27463 } 27464 return; 27465 } 27466 case T_SVR4_OPTMGMT_REQ: 27467 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27468 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27469 27470 if (connp == NULL) { 27471 proto_str = "T_SVR4_OPTMGMT_REQ"; 27472 goto protonak; 27473 } 27474 27475 if (!snmpcom_req(q, mp, ip_snmp_set, 27476 ip_snmp_get, cr)) { 27477 /* 27478 * Call svr4_optcom_req so that it can 27479 * generate the ack. We don't come here 27480 * if this operation is being restarted. 27481 * ip_restart_optmgmt will drop the conn ref. 27482 * In the case of ipsec option after the ipsec 27483 * load is complete conn_restart_ipsec_waiter 27484 * drops the conn ref. 27485 */ 27486 ASSERT(ipsq == NULL); 27487 CONN_INC_REF(connp); 27488 if (ip_check_for_ipsec_opt(q, mp)) 27489 return; 27490 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27491 B_FALSE); 27492 if (err != EINPROGRESS) { 27493 /* Operation is done */ 27494 CONN_OPER_PENDING_DONE(connp); 27495 } 27496 } 27497 return; 27498 case T_OPTMGMT_REQ: 27499 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27500 /* 27501 * Note: No snmpcom_req support through new 27502 * T_OPTMGMT_REQ. 27503 * Call tpi_optcom_req so that it can 27504 * generate the ack. 27505 */ 27506 if (connp == NULL) { 27507 proto_str = "T_OPTMGMT_REQ"; 27508 goto protonak; 27509 } 27510 27511 ASSERT(ipsq == NULL); 27512 /* 27513 * We don't come here for restart. ip_restart_optmgmt 27514 * will drop the conn ref. In the case of ipsec option 27515 * after the ipsec load is complete 27516 * conn_restart_ipsec_waiter drops the conn ref. 27517 */ 27518 CONN_INC_REF(connp); 27519 if (ip_check_for_ipsec_opt(q, mp)) 27520 return; 27521 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27522 if (err != EINPROGRESS) { 27523 /* Operation is done */ 27524 CONN_OPER_PENDING_DONE(connp); 27525 } 27526 return; 27527 case T_UNBIND_REQ: 27528 if (connp == NULL) { 27529 proto_str = "T_UNBIND_REQ"; 27530 goto protonak; 27531 } 27532 mp = ip_unbind(q, mp); 27533 qreply(q, mp); 27534 return; 27535 default: 27536 /* 27537 * Have to drop any DLPI messages coming down from 27538 * arp (such as an info_req which would cause ip 27539 * to receive an extra info_ack if it was passed 27540 * through. 27541 */ 27542 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27543 (int)*(uint_t *)mp->b_rptr)); 27544 freemsg(mp); 27545 return; 27546 } 27547 /* NOTREACHED */ 27548 case IRE_DB_TYPE: { 27549 nce_t *nce; 27550 ill_t *ill; 27551 in6_addr_t gw_addr_v6; 27552 27553 27554 /* 27555 * This is a response back from a resolver. It 27556 * consists of a message chain containing: 27557 * IRE_MBLK-->LL_HDR_MBLK->pkt 27558 * The IRE_MBLK is the one we allocated in ip_newroute. 27559 * The LL_HDR_MBLK is the DLPI header to use to get 27560 * the attached packet, and subsequent ones for the 27561 * same destination, transmitted. 27562 */ 27563 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27564 break; 27565 /* 27566 * First, check to make sure the resolution succeeded. 27567 * If it failed, the second mblk will be empty. 27568 * If it is, free the chain, dropping the packet. 27569 * (We must ire_delete the ire; that frees the ire mblk) 27570 * We're doing this now to support PVCs for ATM; it's 27571 * a partial xresolv implementation. When we fully implement 27572 * xresolv interfaces, instead of freeing everything here 27573 * we'll initiate neighbor discovery. 27574 * 27575 * For v4 (ARP and other external resolvers) the resolver 27576 * frees the message, so no check is needed. This check 27577 * is required, though, for a full xresolve implementation. 27578 * Including this code here now both shows how external 27579 * resolvers can NACK a resolution request using an 27580 * existing design that has no specific provisions for NACKs, 27581 * and also takes into account that the current non-ARP 27582 * external resolver has been coded to use this method of 27583 * NACKing for all IPv6 (xresolv) cases, 27584 * whether our xresolv implementation is complete or not. 27585 * 27586 */ 27587 ire = (ire_t *)mp->b_rptr; 27588 ill = ire_to_ill(ire); 27589 mp1 = mp->b_cont; /* dl_unitdata_req */ 27590 if (mp1->b_rptr == mp1->b_wptr) { 27591 if (ire->ire_ipversion == IPV6_VERSION) { 27592 /* 27593 * XRESOLV interface. 27594 */ 27595 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27596 mutex_enter(&ire->ire_lock); 27597 gw_addr_v6 = ire->ire_gateway_addr_v6; 27598 mutex_exit(&ire->ire_lock); 27599 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27600 nce = ndp_lookup_v6(ill, 27601 &ire->ire_addr_v6, B_FALSE); 27602 } else { 27603 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27604 B_FALSE); 27605 } 27606 if (nce != NULL) { 27607 nce_resolv_failed(nce); 27608 ndp_delete(nce); 27609 NCE_REFRELE(nce); 27610 } 27611 } 27612 mp->b_cont = NULL; 27613 freemsg(mp1); /* frees the pkt as well */ 27614 ASSERT(ire->ire_nce == NULL); 27615 ire_delete((ire_t *)mp->b_rptr); 27616 return; 27617 } 27618 27619 /* 27620 * Split them into IRE_MBLK and pkt and feed it into 27621 * ire_add_then_send. Then in ire_add_then_send 27622 * the IRE will be added, and then the packet will be 27623 * run back through ip_wput. This time it will make 27624 * it to the wire. 27625 */ 27626 mp->b_cont = NULL; 27627 mp = mp1->b_cont; /* now, mp points to pkt */ 27628 mp1->b_cont = NULL; 27629 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27630 if (ire->ire_ipversion == IPV6_VERSION) { 27631 /* 27632 * XRESOLV interface. Find the nce and put a copy 27633 * of the dl_unitdata_req in nce_res_mp 27634 */ 27635 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27636 mutex_enter(&ire->ire_lock); 27637 gw_addr_v6 = ire->ire_gateway_addr_v6; 27638 mutex_exit(&ire->ire_lock); 27639 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27640 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27641 B_FALSE); 27642 } else { 27643 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27644 } 27645 if (nce != NULL) { 27646 /* 27647 * We have to protect nce_res_mp here 27648 * from being accessed by other threads 27649 * while we change the mblk pointer. 27650 * Other functions will also lock the nce when 27651 * accessing nce_res_mp. 27652 * 27653 * The reason we change the mblk pointer 27654 * here rather than copying the resolved address 27655 * into the template is that, unlike with 27656 * ethernet, we have no guarantee that the 27657 * resolved address length will be 27658 * smaller than or equal to the lla length 27659 * with which the template was allocated, 27660 * (for ethernet, they're equal) 27661 * so we have to use the actual resolved 27662 * address mblk - which holds the real 27663 * dl_unitdata_req with the resolved address. 27664 * 27665 * Doing this is the same behavior as was 27666 * previously used in the v4 ARP case. 27667 */ 27668 mutex_enter(&nce->nce_lock); 27669 if (nce->nce_res_mp != NULL) 27670 freemsg(nce->nce_res_mp); 27671 nce->nce_res_mp = mp1; 27672 mutex_exit(&nce->nce_lock); 27673 /* 27674 * We do a fastpath probe here because 27675 * we have resolved the address without 27676 * using Neighbor Discovery. 27677 * In the non-XRESOLV v6 case, the fastpath 27678 * probe is done right after neighbor 27679 * discovery completes. 27680 */ 27681 if (nce->nce_res_mp != NULL) { 27682 int res; 27683 nce_fastpath_list_add(nce); 27684 res = ill_fastpath_probe(ill, 27685 nce->nce_res_mp); 27686 if (res != 0 && res != EAGAIN) 27687 nce_fastpath_list_delete(nce); 27688 } 27689 27690 ire_add_then_send(q, ire, mp); 27691 /* 27692 * Now we have to clean out any packets 27693 * that may have been queued on the nce 27694 * while it was waiting for address resolution 27695 * to complete. 27696 */ 27697 mutex_enter(&nce->nce_lock); 27698 mp1 = nce->nce_qd_mp; 27699 nce->nce_qd_mp = NULL; 27700 mutex_exit(&nce->nce_lock); 27701 while (mp1 != NULL) { 27702 mblk_t *nxt_mp; 27703 queue_t *fwdq = NULL; 27704 ill_t *inbound_ill; 27705 uint_t ifindex; 27706 27707 nxt_mp = mp1->b_next; 27708 mp1->b_next = NULL; 27709 /* 27710 * Retrieve ifindex stored in 27711 * ip_rput_data_v6() 27712 */ 27713 ifindex = 27714 (uint_t)(uintptr_t)mp1->b_prev; 27715 inbound_ill = 27716 ill_lookup_on_ifindex(ifindex, 27717 B_TRUE, NULL, NULL, NULL, 27718 NULL, ipst); 27719 mp1->b_prev = NULL; 27720 if (inbound_ill != NULL) 27721 fwdq = inbound_ill->ill_rq; 27722 27723 if (fwdq != NULL) { 27724 put(fwdq, mp1); 27725 ill_refrele(inbound_ill); 27726 } else 27727 put(WR(ill->ill_rq), mp1); 27728 mp1 = nxt_mp; 27729 } 27730 NCE_REFRELE(nce); 27731 } else { /* nce is NULL; clean up */ 27732 ire_delete(ire); 27733 freemsg(mp); 27734 freemsg(mp1); 27735 return; 27736 } 27737 } else { 27738 nce_t *arpce; 27739 /* 27740 * Link layer resolution succeeded. Recompute the 27741 * ire_nce. 27742 */ 27743 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27744 if ((arpce = ndp_lookup_v4(ill, 27745 (ire->ire_gateway_addr != INADDR_ANY ? 27746 &ire->ire_gateway_addr : &ire->ire_addr), 27747 B_FALSE)) == NULL) { 27748 freeb(ire->ire_mp); 27749 freeb(mp1); 27750 freemsg(mp); 27751 return; 27752 } 27753 mutex_enter(&arpce->nce_lock); 27754 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27755 if (arpce->nce_state == ND_REACHABLE) { 27756 /* 27757 * Someone resolved this before us; 27758 * cleanup the res_mp. Since ire has 27759 * not been added yet, the call to ire_add_v4 27760 * from ire_add_then_send (when a dup is 27761 * detected) will clean up the ire. 27762 */ 27763 freeb(mp1); 27764 } else { 27765 ASSERT(arpce->nce_res_mp == NULL); 27766 arpce->nce_res_mp = mp1; 27767 arpce->nce_state = ND_REACHABLE; 27768 } 27769 mutex_exit(&arpce->nce_lock); 27770 if (ire->ire_marks & IRE_MARK_NOADD) { 27771 /* 27772 * this ire will not be added to the ire 27773 * cache table, so we can set the ire_nce 27774 * here, as there are no atomicity constraints. 27775 */ 27776 ire->ire_nce = arpce; 27777 /* 27778 * We are associating this nce with the ire 27779 * so change the nce ref taken in 27780 * ndp_lookup_v4() from 27781 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27782 */ 27783 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27784 } else { 27785 NCE_REFRELE(arpce); 27786 } 27787 ire_add_then_send(q, ire, mp); 27788 } 27789 return; /* All is well, the packet has been sent. */ 27790 } 27791 case IRE_ARPRESOLVE_TYPE: { 27792 27793 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27794 break; 27795 mp1 = mp->b_cont; /* dl_unitdata_req */ 27796 mp->b_cont = NULL; 27797 /* 27798 * First, check to make sure the resolution succeeded. 27799 * If it failed, the second mblk will be empty. 27800 */ 27801 if (mp1->b_rptr == mp1->b_wptr) { 27802 /* cleanup the incomplete ire, free queued packets */ 27803 freemsg(mp); /* fake ire */ 27804 freeb(mp1); /* dl_unitdata response */ 27805 return; 27806 } 27807 27808 /* 27809 * update any incomplete nce_t found. we lookup the ctable 27810 * and find the nce from the ire->ire_nce because we need 27811 * to pass the ire to ip_xmit_v4 later, and can find both 27812 * ire and nce in one lookup from the ctable. 27813 */ 27814 fake_ire = (ire_t *)mp->b_rptr; 27815 /* 27816 * By the time we come back here from ARP 27817 * the logical outgoing interface of the incomplete ire 27818 * we added in ire_forward could have disappeared, 27819 * causing the incomplete ire to also have 27820 * dissapeared. So we need to retreive the 27821 * proper ipif for the ire before looking 27822 * in ctable; do the ctablelookup based on ire_ipif_seqid 27823 */ 27824 ill = q->q_ptr; 27825 27826 /* Get the outgoing ipif */ 27827 mutex_enter(&ill->ill_lock); 27828 if (ill->ill_state_flags & ILL_CONDEMNED) { 27829 mutex_exit(&ill->ill_lock); 27830 freemsg(mp); /* fake ire */ 27831 freeb(mp1); /* dl_unitdata response */ 27832 return; 27833 } 27834 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27835 27836 if (ipif == NULL) { 27837 mutex_exit(&ill->ill_lock); 27838 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27839 freemsg(mp); 27840 freeb(mp1); 27841 return; 27842 } 27843 ipif_refhold_locked(ipif); 27844 mutex_exit(&ill->ill_lock); 27845 ire = ire_ctable_lookup(fake_ire->ire_addr, 27846 fake_ire->ire_gateway_addr, IRE_CACHE, 27847 ipif, fake_ire->ire_zoneid, NULL, 27848 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY| 27849 MATCH_IRE_TYPE), ipst); 27850 ipif_refrele(ipif); 27851 if (ire == NULL) { 27852 /* 27853 * no ire was found; check if there is an nce 27854 * for this lookup; if it has no ire's pointing at it 27855 * cleanup. 27856 */ 27857 if ((nce = ndp_lookup_v4(ill, 27858 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27859 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27860 B_FALSE)) != NULL) { 27861 /* 27862 * cleanup: 27863 * We check for refcnt 2 (one for the nce 27864 * hash list + 1 for the ref taken by 27865 * ndp_lookup_v4) to check that there are 27866 * no ire's pointing at the nce. 27867 */ 27868 if (nce->nce_refcnt == 2) 27869 ndp_delete(nce); 27870 NCE_REFRELE(nce); 27871 } 27872 freeb(mp1); /* dl_unitdata response */ 27873 freemsg(mp); /* fake ire */ 27874 return; 27875 } 27876 nce = ire->ire_nce; 27877 DTRACE_PROBE2(ire__arpresolve__type, 27878 ire_t *, ire, nce_t *, nce); 27879 ASSERT(nce->nce_state != ND_INITIAL); 27880 mutex_enter(&nce->nce_lock); 27881 nce->nce_last = TICK_TO_MSEC(lbolt64); 27882 if (nce->nce_state == ND_REACHABLE) { 27883 /* 27884 * Someone resolved this before us; 27885 * our response is not needed any more. 27886 */ 27887 mutex_exit(&nce->nce_lock); 27888 freeb(mp1); /* dl_unitdata response */ 27889 } else { 27890 ASSERT(nce->nce_res_mp == NULL); 27891 nce->nce_res_mp = mp1; 27892 nce->nce_state = ND_REACHABLE; 27893 mutex_exit(&nce->nce_lock); 27894 nce_fastpath(nce); 27895 } 27896 /* 27897 * The cached nce_t has been updated to be reachable; 27898 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27899 */ 27900 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27901 freemsg(mp); 27902 /* 27903 * send out queued packets. 27904 */ 27905 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27906 27907 IRE_REFRELE(ire); 27908 return; 27909 } 27910 default: 27911 break; 27912 } 27913 if (q->q_next) { 27914 putnext(q, mp); 27915 } else 27916 freemsg(mp); 27917 return; 27918 27919 protonak: 27920 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27921 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27922 qreply(q, mp); 27923 } 27924 27925 /* 27926 * Process IP options in an outbound packet. Modify the destination if there 27927 * is a source route option. 27928 * Returns non-zero if something fails in which case an ICMP error has been 27929 * sent and mp freed. 27930 */ 27931 static int 27932 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27933 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27934 { 27935 ipoptp_t opts; 27936 uchar_t *opt; 27937 uint8_t optval; 27938 uint8_t optlen; 27939 ipaddr_t dst; 27940 intptr_t code = 0; 27941 mblk_t *mp; 27942 ire_t *ire = NULL; 27943 27944 ip2dbg(("ip_wput_options\n")); 27945 mp = ipsec_mp; 27946 if (mctl_present) { 27947 mp = ipsec_mp->b_cont; 27948 } 27949 27950 dst = ipha->ipha_dst; 27951 for (optval = ipoptp_first(&opts, ipha); 27952 optval != IPOPT_EOL; 27953 optval = ipoptp_next(&opts)) { 27954 opt = opts.ipoptp_cur; 27955 optlen = opts.ipoptp_len; 27956 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27957 optval, optlen)); 27958 switch (optval) { 27959 uint32_t off; 27960 case IPOPT_SSRR: 27961 case IPOPT_LSRR: 27962 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27963 ip1dbg(( 27964 "ip_wput_options: bad option offset\n")); 27965 code = (char *)&opt[IPOPT_OLEN] - 27966 (char *)ipha; 27967 goto param_prob; 27968 } 27969 off = opt[IPOPT_OFFSET]; 27970 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27971 ntohl(dst))); 27972 /* 27973 * For strict: verify that dst is directly 27974 * reachable. 27975 */ 27976 if (optval == IPOPT_SSRR) { 27977 ire = ire_ftable_lookup(dst, 0, 0, 27978 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27979 MBLK_GETLABEL(mp), 27980 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27981 if (ire == NULL) { 27982 ip1dbg(("ip_wput_options: SSRR not" 27983 " directly reachable: 0x%x\n", 27984 ntohl(dst))); 27985 goto bad_src_route; 27986 } 27987 ire_refrele(ire); 27988 } 27989 break; 27990 case IPOPT_RR: 27991 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27992 ip1dbg(( 27993 "ip_wput_options: bad option offset\n")); 27994 code = (char *)&opt[IPOPT_OLEN] - 27995 (char *)ipha; 27996 goto param_prob; 27997 } 27998 break; 27999 case IPOPT_TS: 28000 /* 28001 * Verify that length >=5 and that there is either 28002 * room for another timestamp or that the overflow 28003 * counter is not maxed out. 28004 */ 28005 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28006 if (optlen < IPOPT_MINLEN_IT) { 28007 goto param_prob; 28008 } 28009 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28010 ip1dbg(( 28011 "ip_wput_options: bad option offset\n")); 28012 code = (char *)&opt[IPOPT_OFFSET] - 28013 (char *)ipha; 28014 goto param_prob; 28015 } 28016 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28017 case IPOPT_TS_TSONLY: 28018 off = IPOPT_TS_TIMELEN; 28019 break; 28020 case IPOPT_TS_TSANDADDR: 28021 case IPOPT_TS_PRESPEC: 28022 case IPOPT_TS_PRESPEC_RFC791: 28023 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28024 break; 28025 default: 28026 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28027 (char *)ipha; 28028 goto param_prob; 28029 } 28030 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28031 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28032 /* 28033 * No room and the overflow counter is 15 28034 * already. 28035 */ 28036 goto param_prob; 28037 } 28038 break; 28039 } 28040 } 28041 28042 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28043 return (0); 28044 28045 ip1dbg(("ip_wput_options: error processing IP options.")); 28046 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28047 28048 param_prob: 28049 /* 28050 * Since ip_wput() isn't close to finished, we fill 28051 * in enough of the header for credible error reporting. 28052 */ 28053 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28054 /* Failed */ 28055 freemsg(ipsec_mp); 28056 return (-1); 28057 } 28058 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28059 return (-1); 28060 28061 bad_src_route: 28062 /* 28063 * Since ip_wput() isn't close to finished, we fill 28064 * in enough of the header for credible error reporting. 28065 */ 28066 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28067 /* Failed */ 28068 freemsg(ipsec_mp); 28069 return (-1); 28070 } 28071 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28072 return (-1); 28073 } 28074 28075 /* 28076 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28077 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28078 * thru /etc/system. 28079 */ 28080 #define CONN_MAXDRAINCNT 64 28081 28082 static void 28083 conn_drain_init(ip_stack_t *ipst) 28084 { 28085 int i; 28086 28087 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28088 28089 if ((ipst->ips_conn_drain_list_cnt == 0) || 28090 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28091 /* 28092 * Default value of the number of drainers is the 28093 * number of cpus, subject to maximum of 8 drainers. 28094 */ 28095 if (boot_max_ncpus != -1) 28096 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28097 else 28098 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28099 } 28100 28101 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28102 sizeof (idl_t), KM_SLEEP); 28103 28104 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28105 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28106 MUTEX_DEFAULT, NULL); 28107 } 28108 } 28109 28110 static void 28111 conn_drain_fini(ip_stack_t *ipst) 28112 { 28113 int i; 28114 28115 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28116 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28117 kmem_free(ipst->ips_conn_drain_list, 28118 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28119 ipst->ips_conn_drain_list = NULL; 28120 } 28121 28122 /* 28123 * Note: For an overview of how flowcontrol is handled in IP please see the 28124 * IP Flowcontrol notes at the top of this file. 28125 * 28126 * Flow control has blocked us from proceeding. Insert the given conn in one 28127 * of the conn drain lists. These conn wq's will be qenabled later on when 28128 * STREAMS flow control does a backenable. conn_walk_drain will enable 28129 * the first conn in each of these drain lists. Each of these qenabled conns 28130 * in turn enables the next in the list, after it runs, or when it closes, 28131 * thus sustaining the drain process. 28132 * 28133 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28134 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28135 * running at any time, on a given conn, since there can be only 1 service proc 28136 * running on a queue at any time. 28137 */ 28138 void 28139 conn_drain_insert(conn_t *connp) 28140 { 28141 idl_t *idl; 28142 uint_t index; 28143 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28144 28145 mutex_enter(&connp->conn_lock); 28146 if (connp->conn_state_flags & CONN_CLOSING) { 28147 /* 28148 * The conn is closing as a result of which CONN_CLOSING 28149 * is set. Return. 28150 */ 28151 mutex_exit(&connp->conn_lock); 28152 return; 28153 } else if (connp->conn_idl == NULL) { 28154 /* 28155 * Assign the next drain list round robin. We dont' use 28156 * a lock, and thus it may not be strictly round robin. 28157 * Atomicity of load/stores is enough to make sure that 28158 * conn_drain_list_index is always within bounds. 28159 */ 28160 index = ipst->ips_conn_drain_list_index; 28161 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28162 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28163 index++; 28164 if (index == ipst->ips_conn_drain_list_cnt) 28165 index = 0; 28166 ipst->ips_conn_drain_list_index = index; 28167 } 28168 mutex_exit(&connp->conn_lock); 28169 28170 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28171 if ((connp->conn_drain_prev != NULL) || 28172 (connp->conn_state_flags & CONN_CLOSING)) { 28173 /* 28174 * The conn is already in the drain list, OR 28175 * the conn is closing. We need to check again for 28176 * the closing case again since close can happen 28177 * after we drop the conn_lock, and before we 28178 * acquire the CONN_DRAIN_LIST_LOCK. 28179 */ 28180 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28181 return; 28182 } else { 28183 idl = connp->conn_idl; 28184 } 28185 28186 /* 28187 * The conn is not in the drain list. Insert it at the 28188 * tail of the drain list. The drain list is circular 28189 * and doubly linked. idl_conn points to the 1st element 28190 * in the list. 28191 */ 28192 if (idl->idl_conn == NULL) { 28193 idl->idl_conn = connp; 28194 connp->conn_drain_next = connp; 28195 connp->conn_drain_prev = connp; 28196 } else { 28197 conn_t *head = idl->idl_conn; 28198 28199 connp->conn_drain_next = head; 28200 connp->conn_drain_prev = head->conn_drain_prev; 28201 head->conn_drain_prev->conn_drain_next = connp; 28202 head->conn_drain_prev = connp; 28203 } 28204 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28205 } 28206 28207 /* 28208 * This conn is closing, and we are called from ip_close. OR 28209 * This conn has been serviced by ip_wsrv, and we need to do the tail 28210 * processing. 28211 * If this conn is part of the drain list, we may need to sustain the drain 28212 * process by qenabling the next conn in the drain list. We may also need to 28213 * remove this conn from the list, if it is done. 28214 */ 28215 static void 28216 conn_drain_tail(conn_t *connp, boolean_t closing) 28217 { 28218 idl_t *idl; 28219 28220 /* 28221 * connp->conn_idl is stable at this point, and no lock is needed 28222 * to check it. If we are called from ip_close, close has already 28223 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28224 * called us only because conn_idl is non-null. If we are called thru 28225 * service, conn_idl could be null, but it cannot change because 28226 * service is single-threaded per queue, and there cannot be another 28227 * instance of service trying to call conn_drain_insert on this conn 28228 * now. 28229 */ 28230 ASSERT(!closing || (connp->conn_idl != NULL)); 28231 28232 /* 28233 * If connp->conn_idl is null, the conn has not been inserted into any 28234 * drain list even once since creation of the conn. Just return. 28235 */ 28236 if (connp->conn_idl == NULL) 28237 return; 28238 28239 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28240 28241 if (connp->conn_drain_prev == NULL) { 28242 /* This conn is currently not in the drain list. */ 28243 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28244 return; 28245 } 28246 idl = connp->conn_idl; 28247 if (idl->idl_conn_draining == connp) { 28248 /* 28249 * This conn is the current drainer. If this is the last conn 28250 * in the drain list, we need to do more checks, in the 'if' 28251 * below. Otherwwise we need to just qenable the next conn, 28252 * to sustain the draining, and is handled in the 'else' 28253 * below. 28254 */ 28255 if (connp->conn_drain_next == idl->idl_conn) { 28256 /* 28257 * This conn is the last in this list. This round 28258 * of draining is complete. If idl_repeat is set, 28259 * it means another flow enabling has happened from 28260 * the driver/streams and we need to another round 28261 * of draining. 28262 * If there are more than 2 conns in the drain list, 28263 * do a left rotate by 1, so that all conns except the 28264 * conn at the head move towards the head by 1, and the 28265 * the conn at the head goes to the tail. This attempts 28266 * a more even share for all queues that are being 28267 * drained. 28268 */ 28269 if ((connp->conn_drain_next != connp) && 28270 (idl->idl_conn->conn_drain_next != connp)) { 28271 idl->idl_conn = idl->idl_conn->conn_drain_next; 28272 } 28273 if (idl->idl_repeat) { 28274 qenable(idl->idl_conn->conn_wq); 28275 idl->idl_conn_draining = idl->idl_conn; 28276 idl->idl_repeat = 0; 28277 } else { 28278 idl->idl_conn_draining = NULL; 28279 } 28280 } else { 28281 /* 28282 * If the next queue that we are now qenable'ing, 28283 * is closing, it will remove itself from this list 28284 * and qenable the subsequent queue in ip_close(). 28285 * Serialization is acheived thru idl_lock. 28286 */ 28287 qenable(connp->conn_drain_next->conn_wq); 28288 idl->idl_conn_draining = connp->conn_drain_next; 28289 } 28290 } 28291 if (!connp->conn_did_putbq || closing) { 28292 /* 28293 * Remove ourself from the drain list, if we did not do 28294 * a putbq, or if the conn is closing. 28295 * Note: It is possible that q->q_first is non-null. It means 28296 * that these messages landed after we did a enableok() in 28297 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28298 * service them. 28299 */ 28300 if (connp->conn_drain_next == connp) { 28301 /* Singleton in the list */ 28302 ASSERT(connp->conn_drain_prev == connp); 28303 idl->idl_conn = NULL; 28304 idl->idl_conn_draining = NULL; 28305 } else { 28306 connp->conn_drain_prev->conn_drain_next = 28307 connp->conn_drain_next; 28308 connp->conn_drain_next->conn_drain_prev = 28309 connp->conn_drain_prev; 28310 if (idl->idl_conn == connp) 28311 idl->idl_conn = connp->conn_drain_next; 28312 ASSERT(idl->idl_conn_draining != connp); 28313 28314 } 28315 connp->conn_drain_next = NULL; 28316 connp->conn_drain_prev = NULL; 28317 } 28318 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28319 } 28320 28321 /* 28322 * Write service routine. Shared perimeter entry point. 28323 * ip_wsrv can be called in any of the following ways. 28324 * 1. The device queue's messages has fallen below the low water mark 28325 * and STREAMS has backenabled the ill_wq. We walk thru all the 28326 * the drain lists and backenable the first conn in each list. 28327 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28328 * qenabled non-tcp upper layers. We start dequeing messages and call 28329 * ip_wput for each message. 28330 */ 28331 28332 void 28333 ip_wsrv(queue_t *q) 28334 { 28335 conn_t *connp; 28336 ill_t *ill; 28337 mblk_t *mp; 28338 28339 if (q->q_next) { 28340 ill = (ill_t *)q->q_ptr; 28341 if (ill->ill_state_flags == 0) { 28342 /* 28343 * The device flow control has opened up. 28344 * Walk through conn drain lists and qenable the 28345 * first conn in each list. This makes sense only 28346 * if the stream is fully plumbed and setup. 28347 * Hence the if check above. 28348 */ 28349 ip1dbg(("ip_wsrv: walking\n")); 28350 conn_walk_drain(ill->ill_ipst); 28351 } 28352 return; 28353 } 28354 28355 connp = Q_TO_CONN(q); 28356 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28357 28358 /* 28359 * 1. Set conn_draining flag to signal that service is active. 28360 * 28361 * 2. ip_output determines whether it has been called from service, 28362 * based on the last parameter. If it is IP_WSRV it concludes it 28363 * has been called from service. 28364 * 28365 * 3. Message ordering is preserved by the following logic. 28366 * i. A directly called ip_output (i.e. not thru service) will queue 28367 * the message at the tail, if conn_draining is set (i.e. service 28368 * is running) or if q->q_first is non-null. 28369 * 28370 * ii. If ip_output is called from service, and if ip_output cannot 28371 * putnext due to flow control, it does a putbq. 28372 * 28373 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28374 * (causing an infinite loop). 28375 */ 28376 ASSERT(!connp->conn_did_putbq); 28377 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28378 connp->conn_draining = 1; 28379 noenable(q); 28380 while ((mp = getq(q)) != NULL) { 28381 ASSERT(CONN_Q(q)); 28382 28383 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28384 if (connp->conn_did_putbq) { 28385 /* ip_wput did a putbq */ 28386 break; 28387 } 28388 } 28389 /* 28390 * At this point, a thread coming down from top, calling 28391 * ip_wput, may end up queueing the message. We have not yet 28392 * enabled the queue, so ip_wsrv won't be called again. 28393 * To avoid this race, check q->q_first again (in the loop) 28394 * If the other thread queued the message before we call 28395 * enableok(), we will catch it in the q->q_first check. 28396 * If the other thread queues the message after we call 28397 * enableok(), ip_wsrv will be called again by STREAMS. 28398 */ 28399 connp->conn_draining = 0; 28400 enableok(q); 28401 } 28402 28403 /* Enable the next conn for draining */ 28404 conn_drain_tail(connp, B_FALSE); 28405 28406 connp->conn_did_putbq = 0; 28407 } 28408 28409 /* 28410 * Walk the list of all conn's calling the function provided with the 28411 * specified argument for each. Note that this only walks conn's that 28412 * have been bound. 28413 * Applies to both IPv4 and IPv6. 28414 */ 28415 static void 28416 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28417 { 28418 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28419 ipst->ips_ipcl_udp_fanout_size, 28420 func, arg, zoneid); 28421 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28422 ipst->ips_ipcl_conn_fanout_size, 28423 func, arg, zoneid); 28424 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28425 ipst->ips_ipcl_bind_fanout_size, 28426 func, arg, zoneid); 28427 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28428 IPPROTO_MAX, func, arg, zoneid); 28429 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28430 IPPROTO_MAX, func, arg, zoneid); 28431 } 28432 28433 /* 28434 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28435 * of conns that need to be drained, check if drain is already in progress. 28436 * If so set the idl_repeat bit, indicating that the last conn in the list 28437 * needs to reinitiate the drain once again, for the list. If drain is not 28438 * in progress for the list, initiate the draining, by qenabling the 1st 28439 * conn in the list. The drain is self-sustaining, each qenabled conn will 28440 * in turn qenable the next conn, when it is done/blocked/closing. 28441 */ 28442 static void 28443 conn_walk_drain(ip_stack_t *ipst) 28444 { 28445 int i; 28446 idl_t *idl; 28447 28448 IP_STAT(ipst, ip_conn_walk_drain); 28449 28450 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28451 idl = &ipst->ips_conn_drain_list[i]; 28452 mutex_enter(&idl->idl_lock); 28453 if (idl->idl_conn == NULL) { 28454 mutex_exit(&idl->idl_lock); 28455 continue; 28456 } 28457 /* 28458 * If this list is not being drained currently by 28459 * an ip_wsrv thread, start the process. 28460 */ 28461 if (idl->idl_conn_draining == NULL) { 28462 ASSERT(idl->idl_repeat == 0); 28463 qenable(idl->idl_conn->conn_wq); 28464 idl->idl_conn_draining = idl->idl_conn; 28465 } else { 28466 idl->idl_repeat = 1; 28467 } 28468 mutex_exit(&idl->idl_lock); 28469 } 28470 } 28471 28472 /* 28473 * Walk an conn hash table of `count' buckets, calling func for each entry. 28474 */ 28475 static void 28476 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28477 zoneid_t zoneid) 28478 { 28479 conn_t *connp; 28480 28481 while (count-- > 0) { 28482 mutex_enter(&connfp->connf_lock); 28483 for (connp = connfp->connf_head; connp != NULL; 28484 connp = connp->conn_next) { 28485 if (zoneid == GLOBAL_ZONEID || 28486 zoneid == connp->conn_zoneid) { 28487 CONN_INC_REF(connp); 28488 mutex_exit(&connfp->connf_lock); 28489 (*func)(connp, arg); 28490 mutex_enter(&connfp->connf_lock); 28491 CONN_DEC_REF(connp); 28492 } 28493 } 28494 mutex_exit(&connfp->connf_lock); 28495 connfp++; 28496 } 28497 } 28498 28499 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28500 static void 28501 conn_report1(conn_t *connp, void *mp) 28502 { 28503 char buf1[INET6_ADDRSTRLEN]; 28504 char buf2[INET6_ADDRSTRLEN]; 28505 uint_t print_len, buf_len; 28506 28507 ASSERT(connp != NULL); 28508 28509 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28510 if (buf_len <= 0) 28511 return; 28512 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28513 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28514 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28515 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28516 "%5d %s/%05d %s/%05d\n", 28517 (void *)connp, (void *)CONNP_TO_RQ(connp), 28518 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28519 buf1, connp->conn_lport, 28520 buf2, connp->conn_fport); 28521 if (print_len < buf_len) { 28522 ((mblk_t *)mp)->b_wptr += print_len; 28523 } else { 28524 ((mblk_t *)mp)->b_wptr += buf_len; 28525 } 28526 } 28527 28528 /* 28529 * Named Dispatch routine to produce a formatted report on all conns 28530 * that are listed in one of the fanout tables. 28531 * This report is accessed by using the ndd utility to "get" ND variable 28532 * "ip_conn_status". 28533 */ 28534 /* ARGSUSED */ 28535 static int 28536 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28537 { 28538 conn_t *connp = Q_TO_CONN(q); 28539 28540 (void) mi_mpprintf(mp, 28541 "CONN " MI_COL_HDRPAD_STR 28542 "rfq " MI_COL_HDRPAD_STR 28543 "stq " MI_COL_HDRPAD_STR 28544 " zone local remote"); 28545 28546 /* 28547 * Because of the ndd constraint, at most we can have 64K buffer 28548 * to put in all conn info. So to be more efficient, just 28549 * allocate a 64K buffer here, assuming we need that large buffer. 28550 * This should be OK as only privileged processes can do ndd /dev/ip. 28551 */ 28552 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28553 /* The following may work even if we cannot get a large buf. */ 28554 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28555 return (0); 28556 } 28557 28558 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28559 connp->conn_netstack->netstack_ip); 28560 return (0); 28561 } 28562 28563 /* 28564 * Determine if the ill and multicast aspects of that packets 28565 * "matches" the conn. 28566 */ 28567 boolean_t 28568 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28569 zoneid_t zoneid) 28570 { 28571 ill_t *in_ill; 28572 boolean_t found; 28573 ipif_t *ipif; 28574 ire_t *ire; 28575 ipaddr_t dst, src; 28576 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28577 28578 dst = ipha->ipha_dst; 28579 src = ipha->ipha_src; 28580 28581 /* 28582 * conn_incoming_ill is set by IP_BOUND_IF which limits 28583 * unicast, broadcast and multicast reception to 28584 * conn_incoming_ill. conn_wantpacket itself is called 28585 * only for BROADCAST and multicast. 28586 * 28587 * 1) ip_rput supresses duplicate broadcasts if the ill 28588 * is part of a group. Hence, we should be receiving 28589 * just one copy of broadcast for the whole group. 28590 * Thus, if it is part of the group the packet could 28591 * come on any ill of the group and hence we need a 28592 * match on the group. Otherwise, match on ill should 28593 * be sufficient. 28594 * 28595 * 2) ip_rput does not suppress duplicate multicast packets. 28596 * If there are two interfaces in a ill group and we have 28597 * 2 applications (conns) joined a multicast group G on 28598 * both the interfaces, ilm_lookup_ill filter in ip_rput 28599 * will give us two packets because we join G on both the 28600 * interfaces rather than nominating just one interface 28601 * for receiving multicast like broadcast above. So, 28602 * we have to call ilg_lookup_ill to filter out duplicate 28603 * copies, if ill is part of a group. 28604 */ 28605 in_ill = connp->conn_incoming_ill; 28606 if (in_ill != NULL) { 28607 if (in_ill->ill_group == NULL) { 28608 if (in_ill != ill) 28609 return (B_FALSE); 28610 } else if (in_ill->ill_group != ill->ill_group) { 28611 return (B_FALSE); 28612 } 28613 } 28614 28615 if (!CLASSD(dst)) { 28616 if (IPCL_ZONE_MATCH(connp, zoneid)) 28617 return (B_TRUE); 28618 /* 28619 * The conn is in a different zone; we need to check that this 28620 * broadcast address is configured in the application's zone and 28621 * on one ill in the group. 28622 */ 28623 ipif = ipif_get_next_ipif(NULL, ill); 28624 if (ipif == NULL) 28625 return (B_FALSE); 28626 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28627 connp->conn_zoneid, NULL, 28628 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28629 ipif_refrele(ipif); 28630 if (ire != NULL) { 28631 ire_refrele(ire); 28632 return (B_TRUE); 28633 } else { 28634 return (B_FALSE); 28635 } 28636 } 28637 28638 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28639 connp->conn_zoneid == zoneid) { 28640 /* 28641 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28642 * disabled, therefore we don't dispatch the multicast packet to 28643 * the sending zone. 28644 */ 28645 return (B_FALSE); 28646 } 28647 28648 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28649 /* 28650 * Multicast packet on the loopback interface: we only match 28651 * conns who joined the group in the specified zone. 28652 */ 28653 return (B_FALSE); 28654 } 28655 28656 if (connp->conn_multi_router) { 28657 /* multicast packet and multicast router socket: send up */ 28658 return (B_TRUE); 28659 } 28660 28661 mutex_enter(&connp->conn_lock); 28662 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28663 mutex_exit(&connp->conn_lock); 28664 return (found); 28665 } 28666 28667 /* 28668 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28669 */ 28670 /* ARGSUSED */ 28671 static void 28672 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28673 { 28674 ill_t *ill = (ill_t *)q->q_ptr; 28675 mblk_t *mp1, *mp2; 28676 ipif_t *ipif; 28677 int err = 0; 28678 conn_t *connp = NULL; 28679 ipsq_t *ipsq; 28680 arc_t *arc; 28681 28682 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28683 28684 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28685 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28686 28687 ASSERT(IAM_WRITER_ILL(ill)); 28688 mp2 = mp->b_cont; 28689 mp->b_cont = NULL; 28690 28691 /* 28692 * We have now received the arp bringup completion message 28693 * from ARP. Mark the arp bringup as done. Also if the arp 28694 * stream has already started closing, send up the AR_ARP_CLOSING 28695 * ack now since ARP is waiting in close for this ack. 28696 */ 28697 mutex_enter(&ill->ill_lock); 28698 ill->ill_arp_bringup_pending = 0; 28699 if (ill->ill_arp_closing) { 28700 mutex_exit(&ill->ill_lock); 28701 /* Let's reuse the mp for sending the ack */ 28702 arc = (arc_t *)mp->b_rptr; 28703 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28704 arc->arc_cmd = AR_ARP_CLOSING; 28705 qreply(q, mp); 28706 } else { 28707 mutex_exit(&ill->ill_lock); 28708 freeb(mp); 28709 } 28710 28711 ipsq = ill->ill_phyint->phyint_ipsq; 28712 ipif = ipsq->ipsq_pending_ipif; 28713 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28714 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28715 if (mp1 == NULL) { 28716 /* bringup was aborted by the user */ 28717 freemsg(mp2); 28718 return; 28719 } 28720 28721 /* 28722 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28723 * must have an associated conn_t. Otherwise, we're bringing this 28724 * interface back up as part of handling an asynchronous event (e.g., 28725 * physical address change). 28726 */ 28727 if (ipsq->ipsq_current_ioctl != 0) { 28728 ASSERT(connp != NULL); 28729 q = CONNP_TO_WQ(connp); 28730 } else { 28731 ASSERT(connp == NULL); 28732 q = ill->ill_rq; 28733 } 28734 28735 /* 28736 * If the DL_BIND_REQ fails, it is noted 28737 * in arc_name_offset. 28738 */ 28739 err = *((int *)mp2->b_rptr); 28740 if (err == 0) { 28741 if (ipif->ipif_isv6) { 28742 if ((err = ipif_up_done_v6(ipif)) != 0) 28743 ip0dbg(("ip_arp_done: init failed\n")); 28744 } else { 28745 if ((err = ipif_up_done(ipif)) != 0) 28746 ip0dbg(("ip_arp_done: init failed\n")); 28747 } 28748 } else { 28749 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28750 } 28751 28752 freemsg(mp2); 28753 28754 if ((err == 0) && (ill->ill_up_ipifs)) { 28755 err = ill_up_ipifs(ill, q, mp1); 28756 if (err == EINPROGRESS) 28757 return; 28758 } 28759 28760 if (ill->ill_up_ipifs) 28761 ill_group_cleanup(ill); 28762 28763 /* 28764 * The operation must complete without EINPROGRESS since 28765 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28766 * Otherwise, the operation will be stuck forever in the ipsq. 28767 */ 28768 ASSERT(err != EINPROGRESS); 28769 if (ipsq->ipsq_current_ioctl != 0) 28770 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28771 else 28772 ipsq_current_finish(ipsq); 28773 } 28774 28775 /* Allocate the private structure */ 28776 static int 28777 ip_priv_alloc(void **bufp) 28778 { 28779 void *buf; 28780 28781 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28782 return (ENOMEM); 28783 28784 *bufp = buf; 28785 return (0); 28786 } 28787 28788 /* Function to delete the private structure */ 28789 void 28790 ip_priv_free(void *buf) 28791 { 28792 ASSERT(buf != NULL); 28793 kmem_free(buf, sizeof (ip_priv_t)); 28794 } 28795 28796 /* 28797 * The entry point for IPPF processing. 28798 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28799 * routine just returns. 28800 * 28801 * When called, ip_process generates an ipp_packet_t structure 28802 * which holds the state information for this packet and invokes the 28803 * the classifier (via ipp_packet_process). The classification, depending on 28804 * configured filters, results in a list of actions for this packet. Invoking 28805 * an action may cause the packet to be dropped, in which case the resulting 28806 * mblk (*mpp) is NULL. proc indicates the callout position for 28807 * this packet and ill_index is the interface this packet on or will leave 28808 * on (inbound and outbound resp.). 28809 */ 28810 void 28811 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28812 { 28813 mblk_t *mp; 28814 ip_priv_t *priv; 28815 ipp_action_id_t aid; 28816 int rc = 0; 28817 ipp_packet_t *pp; 28818 #define IP_CLASS "ip" 28819 28820 /* If the classifier is not loaded, return */ 28821 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28822 return; 28823 } 28824 28825 mp = *mpp; 28826 ASSERT(mp != NULL); 28827 28828 /* Allocate the packet structure */ 28829 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28830 if (rc != 0) { 28831 *mpp = NULL; 28832 freemsg(mp); 28833 return; 28834 } 28835 28836 /* Allocate the private structure */ 28837 rc = ip_priv_alloc((void **)&priv); 28838 if (rc != 0) { 28839 *mpp = NULL; 28840 freemsg(mp); 28841 ipp_packet_free(pp); 28842 return; 28843 } 28844 priv->proc = proc; 28845 priv->ill_index = ill_index; 28846 ipp_packet_set_private(pp, priv, ip_priv_free); 28847 ipp_packet_set_data(pp, mp); 28848 28849 /* Invoke the classifier */ 28850 rc = ipp_packet_process(&pp); 28851 if (pp != NULL) { 28852 mp = ipp_packet_get_data(pp); 28853 ipp_packet_free(pp); 28854 if (rc != 0) { 28855 freemsg(mp); 28856 *mpp = NULL; 28857 } 28858 } else { 28859 *mpp = NULL; 28860 } 28861 #undef IP_CLASS 28862 } 28863 28864 /* 28865 * Propagate a multicast group membership operation (add/drop) on 28866 * all the interfaces crossed by the related multirt routes. 28867 * The call is considered successful if the operation succeeds 28868 * on at least one interface. 28869 */ 28870 static int 28871 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28872 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28873 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28874 mblk_t *first_mp) 28875 { 28876 ire_t *ire_gw; 28877 irb_t *irb; 28878 int error = 0; 28879 opt_restart_t *or; 28880 ip_stack_t *ipst = ire->ire_ipst; 28881 28882 irb = ire->ire_bucket; 28883 ASSERT(irb != NULL); 28884 28885 ASSERT(DB_TYPE(first_mp) == M_CTL); 28886 28887 or = (opt_restart_t *)first_mp->b_rptr; 28888 IRB_REFHOLD(irb); 28889 for (; ire != NULL; ire = ire->ire_next) { 28890 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28891 continue; 28892 if (ire->ire_addr != group) 28893 continue; 28894 28895 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28896 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28897 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28898 /* No resolver exists for the gateway; skip this ire. */ 28899 if (ire_gw == NULL) 28900 continue; 28901 28902 /* 28903 * This function can return EINPROGRESS. If so the operation 28904 * will be restarted from ip_restart_optmgmt which will 28905 * call ip_opt_set and option processing will restart for 28906 * this option. So we may end up calling 'fn' more than once. 28907 * This requires that 'fn' is idempotent except for the 28908 * return value. The operation is considered a success if 28909 * it succeeds at least once on any one interface. 28910 */ 28911 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28912 NULL, fmode, src, first_mp); 28913 if (error == 0) 28914 or->or_private = CGTP_MCAST_SUCCESS; 28915 28916 if (ip_debug > 0) { 28917 ulong_t off; 28918 char *ksym; 28919 ksym = kobj_getsymname((uintptr_t)fn, &off); 28920 ip2dbg(("ip_multirt_apply_membership: " 28921 "called %s, multirt group 0x%08x via itf 0x%08x, " 28922 "error %d [success %u]\n", 28923 ksym ? ksym : "?", 28924 ntohl(group), ntohl(ire_gw->ire_src_addr), 28925 error, or->or_private)); 28926 } 28927 28928 ire_refrele(ire_gw); 28929 if (error == EINPROGRESS) { 28930 IRB_REFRELE(irb); 28931 return (error); 28932 } 28933 } 28934 IRB_REFRELE(irb); 28935 /* 28936 * Consider the call as successful if we succeeded on at least 28937 * one interface. Otherwise, return the last encountered error. 28938 */ 28939 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28940 } 28941 28942 28943 /* 28944 * Issue a warning regarding a route crossing an interface with an 28945 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28946 * amount of time is logged. 28947 */ 28948 static void 28949 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28950 { 28951 hrtime_t current = gethrtime(); 28952 char buf[INET_ADDRSTRLEN]; 28953 ip_stack_t *ipst = ire->ire_ipst; 28954 28955 /* Convert interval in ms to hrtime in ns */ 28956 if (ipst->ips_multirt_bad_mtu_last_time + 28957 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28958 current) { 28959 cmn_err(CE_WARN, "ip: ignoring multiroute " 28960 "to %s, incorrect MTU %u (expected %u)\n", 28961 ip_dot_addr(ire->ire_addr, buf), 28962 ire->ire_max_frag, max_frag); 28963 28964 ipst->ips_multirt_bad_mtu_last_time = current; 28965 } 28966 } 28967 28968 28969 /* 28970 * Get the CGTP (multirouting) filtering status. 28971 * If 0, the CGTP hooks are transparent. 28972 */ 28973 /* ARGSUSED */ 28974 static int 28975 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28976 { 28977 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28978 28979 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28980 return (0); 28981 } 28982 28983 28984 /* 28985 * Set the CGTP (multirouting) filtering status. 28986 * If the status is changed from active to transparent 28987 * or from transparent to active, forward the new status 28988 * to the filtering module (if loaded). 28989 */ 28990 /* ARGSUSED */ 28991 static int 28992 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28993 cred_t *ioc_cr) 28994 { 28995 long new_value; 28996 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28997 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28998 28999 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29000 return (EPERM); 29001 29002 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29003 new_value < 0 || new_value > 1) { 29004 return (EINVAL); 29005 } 29006 29007 if ((!*ip_cgtp_filter_value) && new_value) { 29008 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29009 ipst->ips_ip_cgtp_filter_ops == NULL ? 29010 " (module not loaded)" : ""); 29011 } 29012 if (*ip_cgtp_filter_value && (!new_value)) { 29013 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29014 ipst->ips_ip_cgtp_filter_ops == NULL ? 29015 " (module not loaded)" : ""); 29016 } 29017 29018 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29019 int res; 29020 netstackid_t stackid; 29021 29022 stackid = ipst->ips_netstack->netstack_stackid; 29023 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29024 new_value); 29025 if (res) 29026 return (res); 29027 } 29028 29029 *ip_cgtp_filter_value = (boolean_t)new_value; 29030 29031 return (0); 29032 } 29033 29034 29035 /* 29036 * Return the expected CGTP hooks version number. 29037 */ 29038 int 29039 ip_cgtp_filter_supported(void) 29040 { 29041 return (ip_cgtp_filter_rev); 29042 } 29043 29044 29045 /* 29046 * CGTP hooks can be registered by invoking this function. 29047 * Checks that the version number matches. 29048 */ 29049 int 29050 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29051 { 29052 netstack_t *ns; 29053 ip_stack_t *ipst; 29054 29055 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29056 return (ENOTSUP); 29057 29058 ns = netstack_find_by_stackid(stackid); 29059 if (ns == NULL) 29060 return (EINVAL); 29061 ipst = ns->netstack_ip; 29062 ASSERT(ipst != NULL); 29063 29064 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29065 netstack_rele(ns); 29066 return (EALREADY); 29067 } 29068 29069 ipst->ips_ip_cgtp_filter_ops = ops; 29070 netstack_rele(ns); 29071 return (0); 29072 } 29073 29074 /* 29075 * CGTP hooks can be unregistered by invoking this function. 29076 * Returns ENXIO if there was no registration. 29077 * Returns EBUSY if the ndd variable has not been turned off. 29078 */ 29079 int 29080 ip_cgtp_filter_unregister(netstackid_t stackid) 29081 { 29082 netstack_t *ns; 29083 ip_stack_t *ipst; 29084 29085 ns = netstack_find_by_stackid(stackid); 29086 if (ns == NULL) 29087 return (EINVAL); 29088 ipst = ns->netstack_ip; 29089 ASSERT(ipst != NULL); 29090 29091 if (ipst->ips_ip_cgtp_filter) { 29092 netstack_rele(ns); 29093 return (EBUSY); 29094 } 29095 29096 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29097 netstack_rele(ns); 29098 return (ENXIO); 29099 } 29100 ipst->ips_ip_cgtp_filter_ops = NULL; 29101 netstack_rele(ns); 29102 return (0); 29103 } 29104 29105 /* 29106 * Check whether there is a CGTP filter registration. 29107 * Returns non-zero if there is a registration, otherwise returns zero. 29108 * Note: returns zero if bad stackid. 29109 */ 29110 int 29111 ip_cgtp_filter_is_registered(netstackid_t stackid) 29112 { 29113 netstack_t *ns; 29114 ip_stack_t *ipst; 29115 int ret; 29116 29117 ns = netstack_find_by_stackid(stackid); 29118 if (ns == NULL) 29119 return (0); 29120 ipst = ns->netstack_ip; 29121 ASSERT(ipst != NULL); 29122 29123 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29124 ret = 1; 29125 else 29126 ret = 0; 29127 29128 netstack_rele(ns); 29129 return (ret); 29130 } 29131 29132 static squeue_func_t 29133 ip_squeue_switch(int val) 29134 { 29135 squeue_func_t rval = squeue_fill; 29136 29137 switch (val) { 29138 case IP_SQUEUE_ENTER_NODRAIN: 29139 rval = squeue_enter_nodrain; 29140 break; 29141 case IP_SQUEUE_ENTER: 29142 rval = squeue_enter; 29143 break; 29144 default: 29145 break; 29146 } 29147 return (rval); 29148 } 29149 29150 /* ARGSUSED */ 29151 static int 29152 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29153 caddr_t addr, cred_t *cr) 29154 { 29155 int *v = (int *)addr; 29156 long new_value; 29157 29158 if (secpolicy_net_config(cr, B_FALSE) != 0) 29159 return (EPERM); 29160 29161 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29162 return (EINVAL); 29163 29164 ip_input_proc = ip_squeue_switch(new_value); 29165 *v = new_value; 29166 return (0); 29167 } 29168 29169 /* 29170 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29171 * ip_debug. 29172 */ 29173 /* ARGSUSED */ 29174 static int 29175 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29176 caddr_t addr, cred_t *cr) 29177 { 29178 int *v = (int *)addr; 29179 long new_value; 29180 29181 if (secpolicy_net_config(cr, B_FALSE) != 0) 29182 return (EPERM); 29183 29184 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29185 return (EINVAL); 29186 29187 *v = new_value; 29188 return (0); 29189 } 29190 29191 /* 29192 * Handle changes to ipmp_hook_emulation ndd variable. 29193 * Need to update phyint_hook_ifindex. 29194 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29195 */ 29196 static void 29197 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29198 { 29199 phyint_t *phyi; 29200 phyint_t *phyi_tmp; 29201 char *groupname; 29202 int namelen; 29203 ill_t *ill; 29204 boolean_t new_group; 29205 29206 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29207 /* 29208 * Group indicies are stored in the phyint - a common structure 29209 * to both IPv4 and IPv6. 29210 */ 29211 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29212 for (; phyi != NULL; 29213 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29214 phyi, AVL_AFTER)) { 29215 /* Ignore the ones that do not have a group */ 29216 if (phyi->phyint_groupname_len == 0) 29217 continue; 29218 29219 /* 29220 * Look for other phyint in group. 29221 * Clear name/namelen so the lookup doesn't find ourselves. 29222 */ 29223 namelen = phyi->phyint_groupname_len; 29224 groupname = phyi->phyint_groupname; 29225 phyi->phyint_groupname_len = 0; 29226 phyi->phyint_groupname = NULL; 29227 29228 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29229 /* Restore */ 29230 phyi->phyint_groupname_len = namelen; 29231 phyi->phyint_groupname = groupname; 29232 29233 new_group = B_FALSE; 29234 if (ipst->ips_ipmp_hook_emulation) { 29235 /* 29236 * If the group already exists and has already 29237 * been assigned a group ifindex, we use the existing 29238 * group_ifindex, otherwise we pick a new group_ifindex 29239 * here. 29240 */ 29241 if (phyi_tmp != NULL && 29242 phyi_tmp->phyint_group_ifindex != 0) { 29243 phyi->phyint_group_ifindex = 29244 phyi_tmp->phyint_group_ifindex; 29245 } else { 29246 /* XXX We need a recovery strategy here. */ 29247 if (!ip_assign_ifindex( 29248 &phyi->phyint_group_ifindex, ipst)) 29249 cmn_err(CE_PANIC, 29250 "ip_assign_ifindex() failed"); 29251 new_group = B_TRUE; 29252 } 29253 } else { 29254 phyi->phyint_group_ifindex = 0; 29255 } 29256 if (ipst->ips_ipmp_hook_emulation) 29257 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29258 else 29259 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29260 29261 /* 29262 * For IP Filter to find out the relationship between 29263 * names and interface indicies, we need to generate 29264 * a NE_PLUMB event when a new group can appear. 29265 * We always generate events when a new interface appears 29266 * (even when ipmp_hook_emulation is set) so there 29267 * is no need to generate NE_PLUMB events when 29268 * ipmp_hook_emulation is turned off. 29269 * And since it isn't critical for IP Filter to get 29270 * the NE_UNPLUMB events we skip those here. 29271 */ 29272 if (new_group) { 29273 /* 29274 * First phyint in group - generate group PLUMB event. 29275 * Since we are not running inside the ipsq we do 29276 * the dispatch immediately. 29277 */ 29278 if (phyi->phyint_illv4 != NULL) 29279 ill = phyi->phyint_illv4; 29280 else 29281 ill = phyi->phyint_illv6; 29282 29283 if (ill != NULL) { 29284 mutex_enter(&ill->ill_lock); 29285 ill_nic_info_plumb(ill, B_TRUE); 29286 ill_nic_info_dispatch(ill); 29287 mutex_exit(&ill->ill_lock); 29288 } 29289 } 29290 } 29291 rw_exit(&ipst->ips_ill_g_lock); 29292 } 29293 29294 /* ARGSUSED */ 29295 static int 29296 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29297 caddr_t addr, cred_t *cr) 29298 { 29299 int *v = (int *)addr; 29300 long new_value; 29301 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29302 29303 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29304 return (EINVAL); 29305 29306 if (*v != new_value) { 29307 *v = new_value; 29308 ipmp_hook_emulation_changed(ipst); 29309 } 29310 return (0); 29311 } 29312 29313 static void * 29314 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29315 { 29316 kstat_t *ksp; 29317 29318 ip_stat_t template = { 29319 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29320 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29321 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29322 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29323 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29324 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29325 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29326 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29327 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29328 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29329 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29330 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29331 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29332 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29333 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29334 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29335 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29336 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29337 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29338 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29339 { "ip_opt", KSTAT_DATA_UINT64 }, 29340 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29341 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29342 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29343 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29344 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29345 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29346 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29347 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29348 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29349 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29350 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29351 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29352 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29353 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29354 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29355 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29356 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29357 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29358 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29359 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29360 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29361 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29362 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29363 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29364 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29365 }; 29366 29367 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29368 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29369 KSTAT_FLAG_VIRTUAL, stackid); 29370 29371 if (ksp == NULL) 29372 return (NULL); 29373 29374 bcopy(&template, ip_statisticsp, sizeof (template)); 29375 ksp->ks_data = (void *)ip_statisticsp; 29376 ksp->ks_private = (void *)(uintptr_t)stackid; 29377 29378 kstat_install(ksp); 29379 return (ksp); 29380 } 29381 29382 static void 29383 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29384 { 29385 if (ksp != NULL) { 29386 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29387 kstat_delete_netstack(ksp, stackid); 29388 } 29389 } 29390 29391 static void * 29392 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29393 { 29394 kstat_t *ksp; 29395 29396 ip_named_kstat_t template = { 29397 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29398 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29399 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29400 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29401 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29402 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29403 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29404 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29405 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29406 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29407 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29408 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29409 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29410 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29411 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29412 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29413 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29414 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29415 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29416 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29417 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29418 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29419 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29420 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29421 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29422 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29423 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29424 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29425 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29426 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29427 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29428 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29429 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29430 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29431 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29432 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29433 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29434 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29435 }; 29436 29437 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29438 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29439 if (ksp == NULL || ksp->ks_data == NULL) 29440 return (NULL); 29441 29442 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29443 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29444 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29445 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29446 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29447 29448 template.netToMediaEntrySize.value.i32 = 29449 sizeof (mib2_ipNetToMediaEntry_t); 29450 29451 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29452 29453 bcopy(&template, ksp->ks_data, sizeof (template)); 29454 ksp->ks_update = ip_kstat_update; 29455 ksp->ks_private = (void *)(uintptr_t)stackid; 29456 29457 kstat_install(ksp); 29458 return (ksp); 29459 } 29460 29461 static void 29462 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29463 { 29464 if (ksp != NULL) { 29465 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29466 kstat_delete_netstack(ksp, stackid); 29467 } 29468 } 29469 29470 static int 29471 ip_kstat_update(kstat_t *kp, int rw) 29472 { 29473 ip_named_kstat_t *ipkp; 29474 mib2_ipIfStatsEntry_t ipmib; 29475 ill_walk_context_t ctx; 29476 ill_t *ill; 29477 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29478 netstack_t *ns; 29479 ip_stack_t *ipst; 29480 29481 if (kp == NULL || kp->ks_data == NULL) 29482 return (EIO); 29483 29484 if (rw == KSTAT_WRITE) 29485 return (EACCES); 29486 29487 ns = netstack_find_by_stackid(stackid); 29488 if (ns == NULL) 29489 return (-1); 29490 ipst = ns->netstack_ip; 29491 if (ipst == NULL) { 29492 netstack_rele(ns); 29493 return (-1); 29494 } 29495 ipkp = (ip_named_kstat_t *)kp->ks_data; 29496 29497 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29498 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29499 ill = ILL_START_WALK_V4(&ctx, ipst); 29500 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29501 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29502 rw_exit(&ipst->ips_ill_g_lock); 29503 29504 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29505 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29506 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29507 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29508 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29509 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29510 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29511 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29512 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29513 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29514 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29515 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29516 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29517 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29518 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29519 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29520 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29521 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29522 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29523 29524 ipkp->routingDiscards.value.ui32 = 0; 29525 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29526 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29527 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29528 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29529 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29530 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29531 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29532 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29533 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29534 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29535 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29536 29537 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29538 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29539 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29540 29541 netstack_rele(ns); 29542 29543 return (0); 29544 } 29545 29546 static void * 29547 icmp_kstat_init(netstackid_t stackid) 29548 { 29549 kstat_t *ksp; 29550 29551 icmp_named_kstat_t template = { 29552 { "inMsgs", KSTAT_DATA_UINT32 }, 29553 { "inErrors", KSTAT_DATA_UINT32 }, 29554 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29555 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29556 { "inParmProbs", KSTAT_DATA_UINT32 }, 29557 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29558 { "inRedirects", KSTAT_DATA_UINT32 }, 29559 { "inEchos", KSTAT_DATA_UINT32 }, 29560 { "inEchoReps", KSTAT_DATA_UINT32 }, 29561 { "inTimestamps", KSTAT_DATA_UINT32 }, 29562 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29563 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29564 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29565 { "outMsgs", KSTAT_DATA_UINT32 }, 29566 { "outErrors", KSTAT_DATA_UINT32 }, 29567 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29568 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29569 { "outParmProbs", KSTAT_DATA_UINT32 }, 29570 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29571 { "outRedirects", KSTAT_DATA_UINT32 }, 29572 { "outEchos", KSTAT_DATA_UINT32 }, 29573 { "outEchoReps", KSTAT_DATA_UINT32 }, 29574 { "outTimestamps", KSTAT_DATA_UINT32 }, 29575 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29576 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29577 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29578 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29579 { "inUnknowns", KSTAT_DATA_UINT32 }, 29580 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29581 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29582 { "outDrops", KSTAT_DATA_UINT32 }, 29583 { "inOverFlows", KSTAT_DATA_UINT32 }, 29584 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29585 }; 29586 29587 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29588 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29589 if (ksp == NULL || ksp->ks_data == NULL) 29590 return (NULL); 29591 29592 bcopy(&template, ksp->ks_data, sizeof (template)); 29593 29594 ksp->ks_update = icmp_kstat_update; 29595 ksp->ks_private = (void *)(uintptr_t)stackid; 29596 29597 kstat_install(ksp); 29598 return (ksp); 29599 } 29600 29601 static void 29602 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29603 { 29604 if (ksp != NULL) { 29605 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29606 kstat_delete_netstack(ksp, stackid); 29607 } 29608 } 29609 29610 static int 29611 icmp_kstat_update(kstat_t *kp, int rw) 29612 { 29613 icmp_named_kstat_t *icmpkp; 29614 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29615 netstack_t *ns; 29616 ip_stack_t *ipst; 29617 29618 if ((kp == NULL) || (kp->ks_data == NULL)) 29619 return (EIO); 29620 29621 if (rw == KSTAT_WRITE) 29622 return (EACCES); 29623 29624 ns = netstack_find_by_stackid(stackid); 29625 if (ns == NULL) 29626 return (-1); 29627 ipst = ns->netstack_ip; 29628 if (ipst == NULL) { 29629 netstack_rele(ns); 29630 return (-1); 29631 } 29632 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29633 29634 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29635 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29636 icmpkp->inDestUnreachs.value.ui32 = 29637 ipst->ips_icmp_mib.icmpInDestUnreachs; 29638 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29639 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29640 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29641 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29642 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29643 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29644 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29645 icmpkp->inTimestampReps.value.ui32 = 29646 ipst->ips_icmp_mib.icmpInTimestampReps; 29647 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29648 icmpkp->inAddrMaskReps.value.ui32 = 29649 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29650 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29651 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29652 icmpkp->outDestUnreachs.value.ui32 = 29653 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29654 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29655 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29656 icmpkp->outSrcQuenchs.value.ui32 = 29657 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29658 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29659 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29660 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29661 icmpkp->outTimestamps.value.ui32 = 29662 ipst->ips_icmp_mib.icmpOutTimestamps; 29663 icmpkp->outTimestampReps.value.ui32 = 29664 ipst->ips_icmp_mib.icmpOutTimestampReps; 29665 icmpkp->outAddrMasks.value.ui32 = 29666 ipst->ips_icmp_mib.icmpOutAddrMasks; 29667 icmpkp->outAddrMaskReps.value.ui32 = 29668 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29669 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29670 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29671 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29672 icmpkp->outFragNeeded.value.ui32 = 29673 ipst->ips_icmp_mib.icmpOutFragNeeded; 29674 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29675 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29676 icmpkp->inBadRedirects.value.ui32 = 29677 ipst->ips_icmp_mib.icmpInBadRedirects; 29678 29679 netstack_rele(ns); 29680 return (0); 29681 } 29682 29683 /* 29684 * This is the fanout function for raw socket opened for SCTP. Note 29685 * that it is called after SCTP checks that there is no socket which 29686 * wants a packet. Then before SCTP handles this out of the blue packet, 29687 * this function is called to see if there is any raw socket for SCTP. 29688 * If there is and it is bound to the correct address, the packet will 29689 * be sent to that socket. Note that only one raw socket can be bound to 29690 * a port. This is assured in ipcl_sctp_hash_insert(); 29691 */ 29692 void 29693 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29694 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29695 zoneid_t zoneid) 29696 { 29697 conn_t *connp; 29698 queue_t *rq; 29699 mblk_t *first_mp; 29700 boolean_t secure; 29701 ip6_t *ip6h; 29702 ip_stack_t *ipst = recv_ill->ill_ipst; 29703 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29704 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29705 boolean_t sctp_csum_err = B_FALSE; 29706 29707 if (flags & IP_FF_SCTP_CSUM_ERR) { 29708 sctp_csum_err = B_TRUE; 29709 flags &= ~IP_FF_SCTP_CSUM_ERR; 29710 } 29711 29712 first_mp = mp; 29713 if (mctl_present) { 29714 mp = first_mp->b_cont; 29715 secure = ipsec_in_is_secure(first_mp); 29716 ASSERT(mp != NULL); 29717 } else { 29718 secure = B_FALSE; 29719 } 29720 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29721 29722 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29723 if (connp == NULL) { 29724 /* 29725 * Although raw sctp is not summed, OOB chunks must be. 29726 * Drop the packet here if the sctp checksum failed. 29727 */ 29728 if (sctp_csum_err) { 29729 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29730 freemsg(first_mp); 29731 return; 29732 } 29733 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29734 return; 29735 } 29736 rq = connp->conn_rq; 29737 if (!canputnext(rq)) { 29738 CONN_DEC_REF(connp); 29739 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29740 freemsg(first_mp); 29741 return; 29742 } 29743 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29744 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29745 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29746 (isv4 ? ipha : NULL), ip6h, mctl_present); 29747 if (first_mp == NULL) { 29748 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29749 CONN_DEC_REF(connp); 29750 return; 29751 } 29752 } 29753 /* 29754 * We probably should not send M_CTL message up to 29755 * raw socket. 29756 */ 29757 if (mctl_present) 29758 freeb(first_mp); 29759 29760 /* Initiate IPPF processing here if needed. */ 29761 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29762 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29763 ip_process(IPP_LOCAL_IN, &mp, 29764 recv_ill->ill_phyint->phyint_ifindex); 29765 if (mp == NULL) { 29766 CONN_DEC_REF(connp); 29767 return; 29768 } 29769 } 29770 29771 if (connp->conn_recvif || connp->conn_recvslla || 29772 ((connp->conn_ip_recvpktinfo || 29773 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29774 (flags & IP_FF_IPINFO))) { 29775 int in_flags = 0; 29776 29777 /* 29778 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29779 * IPF_RECVIF. 29780 */ 29781 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29782 in_flags = IPF_RECVIF; 29783 } 29784 if (connp->conn_recvslla) { 29785 in_flags |= IPF_RECVSLLA; 29786 } 29787 if (isv4) { 29788 mp = ip_add_info(mp, recv_ill, in_flags, 29789 IPCL_ZONEID(connp), ipst); 29790 } else { 29791 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29792 if (mp == NULL) { 29793 BUMP_MIB(recv_ill->ill_ip_mib, 29794 ipIfStatsInDiscards); 29795 CONN_DEC_REF(connp); 29796 return; 29797 } 29798 } 29799 } 29800 29801 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29802 /* 29803 * We are sending the IPSEC_IN message also up. Refer 29804 * to comments above this function. 29805 * This is the SOCK_RAW, IPPROTO_SCTP case. 29806 */ 29807 (connp->conn_recv)(connp, mp, NULL); 29808 CONN_DEC_REF(connp); 29809 } 29810 29811 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29812 { \ 29813 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29814 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29815 } 29816 /* 29817 * This function should be called only if all packet processing 29818 * including fragmentation is complete. Callers of this function 29819 * must set mp->b_prev to one of these values: 29820 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29821 * prior to handing over the mp as first argument to this function. 29822 * 29823 * If the ire passed by caller is incomplete, this function 29824 * queues the packet and if necessary, sends ARP request and bails. 29825 * If the ire passed is fully resolved, we simply prepend 29826 * the link-layer header to the packet, do ipsec hw acceleration 29827 * work if necessary, and send the packet out on the wire. 29828 * 29829 * NOTE: IPsec will only call this function with fully resolved 29830 * ires if hw acceleration is involved. 29831 * TODO list : 29832 * a Handle M_MULTIDATA so that 29833 * tcp_multisend->tcp_multisend_data can 29834 * call ip_xmit_v4 directly 29835 * b Handle post-ARP work for fragments so that 29836 * ip_wput_frag can call this function. 29837 */ 29838 ipxmit_state_t 29839 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29840 { 29841 nce_t *arpce; 29842 queue_t *q; 29843 int ill_index; 29844 mblk_t *nxt_mp, *first_mp; 29845 boolean_t xmit_drop = B_FALSE; 29846 ip_proc_t proc; 29847 ill_t *out_ill; 29848 int pkt_len; 29849 29850 arpce = ire->ire_nce; 29851 ASSERT(arpce != NULL); 29852 29853 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29854 29855 mutex_enter(&arpce->nce_lock); 29856 switch (arpce->nce_state) { 29857 case ND_REACHABLE: 29858 /* If there are other queued packets, queue this packet */ 29859 if (arpce->nce_qd_mp != NULL) { 29860 if (mp != NULL) 29861 nce_queue_mp_common(arpce, mp, B_FALSE); 29862 mp = arpce->nce_qd_mp; 29863 } 29864 arpce->nce_qd_mp = NULL; 29865 mutex_exit(&arpce->nce_lock); 29866 29867 /* 29868 * Flush the queue. In the common case, where the 29869 * ARP is already resolved, it will go through the 29870 * while loop only once. 29871 */ 29872 while (mp != NULL) { 29873 29874 nxt_mp = mp->b_next; 29875 mp->b_next = NULL; 29876 ASSERT(mp->b_datap->db_type != M_CTL); 29877 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29878 /* 29879 * This info is needed for IPQOS to do COS marking 29880 * in ip_wput_attach_llhdr->ip_process. 29881 */ 29882 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29883 mp->b_prev = NULL; 29884 29885 /* set up ill index for outbound qos processing */ 29886 out_ill = ire_to_ill(ire); 29887 ill_index = out_ill->ill_phyint->phyint_ifindex; 29888 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29889 ill_index); 29890 if (first_mp == NULL) { 29891 xmit_drop = B_TRUE; 29892 BUMP_MIB(out_ill->ill_ip_mib, 29893 ipIfStatsOutDiscards); 29894 goto next_mp; 29895 } 29896 /* non-ipsec hw accel case */ 29897 if (io == NULL || !io->ipsec_out_accelerated) { 29898 /* send it */ 29899 q = ire->ire_stq; 29900 if (proc == IPP_FWD_OUT) { 29901 UPDATE_IB_PKT_COUNT(ire); 29902 } else { 29903 UPDATE_OB_PKT_COUNT(ire); 29904 } 29905 ire->ire_last_used_time = lbolt; 29906 29907 if (flow_ctl_enabled || canputnext(q)) { 29908 if (proc == IPP_FWD_OUT) { 29909 29910 BUMP_MIB(out_ill->ill_ip_mib, 29911 ipIfStatsHCOutForwDatagrams); 29912 29913 } 29914 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29915 pkt_len); 29916 29917 putnext(q, first_mp); 29918 } else { 29919 BUMP_MIB(out_ill->ill_ip_mib, 29920 ipIfStatsOutDiscards); 29921 xmit_drop = B_TRUE; 29922 freemsg(first_mp); 29923 } 29924 } else { 29925 /* 29926 * Safety Pup says: make sure this 29927 * is going to the right interface! 29928 */ 29929 ill_t *ill1 = 29930 (ill_t *)ire->ire_stq->q_ptr; 29931 int ifindex = 29932 ill1->ill_phyint->phyint_ifindex; 29933 if (ifindex != 29934 io->ipsec_out_capab_ill_index) { 29935 xmit_drop = B_TRUE; 29936 freemsg(mp); 29937 } else { 29938 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29939 pkt_len); 29940 ipsec_hw_putnext(ire->ire_stq, mp); 29941 } 29942 } 29943 next_mp: 29944 mp = nxt_mp; 29945 } /* while (mp != NULL) */ 29946 if (xmit_drop) 29947 return (SEND_FAILED); 29948 else 29949 return (SEND_PASSED); 29950 29951 case ND_INITIAL: 29952 case ND_INCOMPLETE: 29953 29954 /* 29955 * While we do send off packets to dests that 29956 * use fully-resolved CGTP routes, we do not 29957 * handle unresolved CGTP routes. 29958 */ 29959 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29960 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29961 29962 if (mp != NULL) { 29963 /* queue the packet */ 29964 nce_queue_mp_common(arpce, mp, B_FALSE); 29965 } 29966 29967 if (arpce->nce_state == ND_INCOMPLETE) { 29968 mutex_exit(&arpce->nce_lock); 29969 DTRACE_PROBE3(ip__xmit__incomplete, 29970 (ire_t *), ire, (mblk_t *), mp, 29971 (ipsec_out_t *), io); 29972 return (LOOKUP_IN_PROGRESS); 29973 } 29974 29975 arpce->nce_state = ND_INCOMPLETE; 29976 mutex_exit(&arpce->nce_lock); 29977 /* 29978 * Note that ire_add() (called from ire_forward()) 29979 * holds a ref on the ire until ARP is completed. 29980 */ 29981 29982 ire_arpresolve(ire, ire_to_ill(ire)); 29983 return (LOOKUP_IN_PROGRESS); 29984 default: 29985 ASSERT(0); 29986 mutex_exit(&arpce->nce_lock); 29987 return (LLHDR_RESLV_FAILED); 29988 } 29989 } 29990 29991 #undef UPDATE_IP_MIB_OB_COUNTERS 29992 29993 /* 29994 * Return B_TRUE if the buffers differ in length or content. 29995 * This is used for comparing extension header buffers. 29996 * Note that an extension header would be declared different 29997 * even if all that changed was the next header value in that header i.e. 29998 * what really changed is the next extension header. 29999 */ 30000 boolean_t 30001 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30002 uint_t blen) 30003 { 30004 if (!b_valid) 30005 blen = 0; 30006 30007 if (alen != blen) 30008 return (B_TRUE); 30009 if (alen == 0) 30010 return (B_FALSE); /* Both zero length */ 30011 return (bcmp(abuf, bbuf, alen)); 30012 } 30013 30014 /* 30015 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30016 * Return B_FALSE if memory allocation fails - don't change any state! 30017 */ 30018 boolean_t 30019 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30020 const void *src, uint_t srclen) 30021 { 30022 void *dst; 30023 30024 if (!src_valid) 30025 srclen = 0; 30026 30027 ASSERT(*dstlenp == 0); 30028 if (src != NULL && srclen != 0) { 30029 dst = mi_alloc(srclen, BPRI_MED); 30030 if (dst == NULL) 30031 return (B_FALSE); 30032 } else { 30033 dst = NULL; 30034 } 30035 if (*dstp != NULL) 30036 mi_free(*dstp); 30037 *dstp = dst; 30038 *dstlenp = dst == NULL ? 0 : srclen; 30039 return (B_TRUE); 30040 } 30041 30042 /* 30043 * Replace what is in *dst, *dstlen with the source. 30044 * Assumes ip_allocbuf has already been called. 30045 */ 30046 void 30047 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30048 const void *src, uint_t srclen) 30049 { 30050 if (!src_valid) 30051 srclen = 0; 30052 30053 ASSERT(*dstlenp == srclen); 30054 if (src != NULL && srclen != 0) 30055 bcopy(src, *dstp, srclen); 30056 } 30057 30058 /* 30059 * Free the storage pointed to by the members of an ip6_pkt_t. 30060 */ 30061 void 30062 ip6_pkt_free(ip6_pkt_t *ipp) 30063 { 30064 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30065 30066 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30067 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30068 ipp->ipp_hopopts = NULL; 30069 ipp->ipp_hopoptslen = 0; 30070 } 30071 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30072 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30073 ipp->ipp_rtdstopts = NULL; 30074 ipp->ipp_rtdstoptslen = 0; 30075 } 30076 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30077 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30078 ipp->ipp_dstopts = NULL; 30079 ipp->ipp_dstoptslen = 0; 30080 } 30081 if (ipp->ipp_fields & IPPF_RTHDR) { 30082 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30083 ipp->ipp_rthdr = NULL; 30084 ipp->ipp_rthdrlen = 0; 30085 } 30086 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30087 IPPF_RTHDR); 30088 } 30089