1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 typedef struct ip_stat { 140 kstat_named_t ipsec_fanout_proto; 141 kstat_named_t ip_udp_fannorm; 142 kstat_named_t ip_udp_fanmb; 143 kstat_named_t ip_udp_fanothers; 144 kstat_named_t ip_udp_fast_path; 145 kstat_named_t ip_udp_slow_path; 146 kstat_named_t ip_udp_input_err; 147 kstat_named_t ip_tcppullup; 148 kstat_named_t ip_tcpoptions; 149 kstat_named_t ip_multipkttcp; 150 kstat_named_t ip_tcp_fast_path; 151 kstat_named_t ip_tcp_slow_path; 152 kstat_named_t ip_tcp_input_error; 153 kstat_named_t ip_db_ref; 154 kstat_named_t ip_notaligned1; 155 kstat_named_t ip_notaligned2; 156 kstat_named_t ip_multimblk3; 157 kstat_named_t ip_multimblk4; 158 kstat_named_t ip_ipoptions; 159 kstat_named_t ip_classify_fail; 160 kstat_named_t ip_opt; 161 kstat_named_t ip_udp_rput_local; 162 kstat_named_t ipsec_proto_ahesp; 163 kstat_named_t ip_conn_flputbq; 164 kstat_named_t ip_conn_walk_drain; 165 kstat_named_t ip_out_sw_cksum; 166 kstat_named_t ip_in_sw_cksum; 167 kstat_named_t ip_trash_ire_reclaim_calls; 168 kstat_named_t ip_trash_ire_reclaim_success; 169 kstat_named_t ip_ire_arp_timer_expired; 170 kstat_named_t ip_ire_redirect_timer_expired; 171 kstat_named_t ip_ire_pmtu_timer_expired; 172 kstat_named_t ip_input_multi_squeue; 173 kstat_named_t ip_tcp_in_full_hw_cksum_err; 174 kstat_named_t ip_tcp_in_part_hw_cksum_err; 175 kstat_named_t ip_tcp_in_sw_cksum_err; 176 kstat_named_t ip_tcp_out_sw_cksum_bytes; 177 kstat_named_t ip_udp_in_full_hw_cksum_err; 178 kstat_named_t ip_udp_in_part_hw_cksum_err; 179 kstat_named_t ip_udp_in_sw_cksum_err; 180 kstat_named_t ip_udp_out_sw_cksum_bytes; 181 kstat_named_t ip_frag_mdt_pkt_out; 182 kstat_named_t ip_frag_mdt_discarded; 183 kstat_named_t ip_frag_mdt_allocfail; 184 kstat_named_t ip_frag_mdt_addpdescfail; 185 kstat_named_t ip_frag_mdt_allocd; 186 } ip_stat_t; 187 188 static ip_stat_t ip_statistics = { 189 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 195 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 196 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 197 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 198 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 201 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 202 { "ip_db_ref", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 204 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 206 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 207 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 208 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 209 { "ip_opt", KSTAT_DATA_UINT64 }, 210 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 211 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 212 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 213 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 214 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 217 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 218 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 221 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 229 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 235 }; 236 237 static kstat_t *ip_kstat; 238 239 #define TCP6 "tcp6" 240 #define TCP "tcp" 241 #define SCTP "sctp" 242 #define SCTP6 "sctp6" 243 244 major_t TCP6_MAJ; 245 major_t TCP_MAJ; 246 major_t SCTP_MAJ; 247 major_t SCTP6_MAJ; 248 249 int ip_poll_normal_ms = 100; 250 int ip_poll_normal_ticks = 0; 251 252 /* 253 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 254 */ 255 256 struct listptr_s { 257 mblk_t *lp_head; /* pointer to the head of the list */ 258 mblk_t *lp_tail; /* pointer to the tail of the list */ 259 }; 260 261 typedef struct listptr_s listptr_t; 262 263 /* 264 * This is used by ip_snmp_get_mib2_ip_route_media and 265 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 266 */ 267 typedef struct iproutedata_s { 268 uint_t ird_idx; 269 listptr_t ird_route; /* ipRouteEntryTable */ 270 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 271 listptr_t ird_attrs; /* ipRouteAttributeTable */ 272 } iproutedata_t; 273 274 /* 275 * Cluster specific hooks. These should be NULL when booted as a non-cluster 276 */ 277 278 /* 279 * Hook functions to enable cluster networking 280 * On non-clustered systems these vectors must always be NULL. 281 * 282 * Hook function to Check ip specified ip address is a shared ip address 283 * in the cluster 284 * 285 */ 286 int (*cl_inet_isclusterwide)(uint8_t protocol, 287 sa_family_t addr_family, uint8_t *laddrp) = NULL; 288 289 /* 290 * Hook function to generate cluster wide ip fragment identifier 291 */ 292 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 293 uint8_t *laddrp, uint8_t *faddrp) = NULL; 294 295 /* 296 * Synchronization notes: 297 * 298 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 299 * MT level protection given by STREAMS. IP uses a combination of its own 300 * internal serialization mechanism and standard Solaris locking techniques. 301 * The internal serialization is per phyint (no IPMP) or per IPMP group. 302 * This is used to serialize plumbing operations, IPMP operations, certain 303 * multicast operations, most set ioctls, igmp/mld timers etc. 304 * 305 * Plumbing is a long sequence of operations involving message 306 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 307 * involved in plumbing operations. A natural model is to serialize these 308 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 309 * parallel without any interference. But various set ioctls on hme0 are best 310 * serialized. However if the system uses IPMP, the operations are easier if 311 * they are serialized on a per IPMP group basis since IPMP operations 312 * happen across ill's of a group. Thus the lowest common denominator is to 313 * serialize most set ioctls, multicast join/leave operations, IPMP operations 314 * igmp/mld timer operations, and processing of DLPI control messages received 315 * from drivers on a per IPMP group basis. If the system does not employ 316 * IPMP the serialization is on a per phyint basis. This serialization is 317 * provided by the ipsq_t and primitives operating on this. Details can 318 * be found in ip_if.c above the core primitives operating on ipsq_t. 319 * 320 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 321 * Simiarly lookup of an ire by a thread also returns a refheld ire. 322 * In addition ipif's and ill's referenced by the ire are also indirectly 323 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 324 * the ipif's address or netmask change as long as an ipif is refheld 325 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 326 * address of an ipif has to go through the ipsq_t. This ensures that only 327 * 1 such exclusive operation proceeds at any time on the ipif. It then 328 * deletes all ires associated with this ipif, and waits for all refcnts 329 * associated with this ipif to come down to zero. The address is changed 330 * only after the ipif has been quiesced. Then the ipif is brought up again. 331 * More details are described above the comment in ip_sioctl_flags. 332 * 333 * Packet processing is based mostly on IREs and are fully multi-threaded 334 * using standard Solaris MT techniques. 335 * 336 * There are explicit locks in IP to handle: 337 * - The ip_g_head list maintained by mi_open_link() and friends. 338 * 339 * - The reassembly data structures (one lock per hash bucket) 340 * 341 * - conn_lock is meant to protect conn_t fields. The fields actually 342 * protected by conn_lock are documented in the conn_t definition. 343 * 344 * - ire_lock to protect some of the fields of the ire, IRE tables 345 * (one lock per hash bucket). Refer to ip_ire.c for details. 346 * 347 * - ndp_g_lock and nce_lock for protecting NCEs. 348 * 349 * - ill_lock protects fields of the ill and ipif. Details in ip.h 350 * 351 * - ill_g_lock: This is a global reader/writer lock. Protects the following 352 * * The AVL tree based global multi list of all ills. 353 * * The linked list of all ipifs of an ill 354 * * The <ill-ipsq> mapping 355 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 356 * * The illgroup list threaded by ill_group_next. 357 * * <ill-phyint> association 358 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 359 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 360 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 361 * will all have to hold the ill_g_lock as writer for the actual duration 362 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 363 * may be found in the IPMP section. 364 * 365 * - ill_lock: This is a per ill mutex. 366 * It protects some members of the ill and is documented below. 367 * It also protects the <ill-ipsq> mapping 368 * It also protects the illgroup list threaded by ill_group_next. 369 * It also protects the <ill-phyint> assoc. 370 * It also protects the list of ipifs hanging off the ill. 371 * 372 * - ipsq_lock: This is a per ipsq_t mutex lock. 373 * This protects all the other members of the ipsq struct except 374 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 375 * 376 * - illgrp_lock: This is a per ill_group mutex lock. 377 * The only thing it protects is the illgrp_ill_schednext member of ill_group 378 * which dictates which is the next ill in an ill_group that is to be chosen 379 * for sending outgoing packets, through creation of an IRE_CACHE that 380 * references this ill. 381 * 382 * - phyint_lock: This is a per phyint mutex lock. Protects just the 383 * phyint_flags 384 * 385 * - ip_g_nd_lock: This is a global reader/writer lock. 386 * Any call to nd_load to load a new parameter to the ND table must hold the 387 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 388 * as reader. 389 * 390 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 391 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 392 * uniqueness check also done atomically. 393 * 394 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 395 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 396 * as a writer when adding or deleting elements from these lists, and 397 * as a reader when walking these lists to send a SADB update to the 398 * IPsec capable ills. 399 * 400 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 401 * group list linked by ill_usesrc_grp_next. It also protects the 402 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 403 * group is being added or deleted. This lock is taken as a reader when 404 * walking the list/group(eg: to get the number of members in a usesrc group). 405 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 406 * field is changing state i.e from NULL to non-NULL or vice-versa. For 407 * example, it is not necessary to take this lock in the initial portion 408 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 409 * ip_sioctl_flags since the these operations are executed exclusively and 410 * that ensures that the "usesrc group state" cannot change. The "usesrc 411 * group state" change can happen only in the latter part of 412 * ip_sioctl_slifusesrc and in ill_delete. 413 * 414 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 415 * 416 * To change the <ill-phyint> association, the ill_g_lock must be held 417 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 418 * must be held. 419 * 420 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 421 * and the ill_lock of the ill in question must be held. 422 * 423 * To change the <ill-illgroup> association the ill_g_lock must be held as 424 * writer and the ill_lock of the ill in question must be held. 425 * 426 * To add or delete an ipif from the list of ipifs hanging off the ill, 427 * ill_g_lock (writer) and ill_lock must be held and the thread must be 428 * a writer on the associated ipsq,. 429 * 430 * To add or delete an ill to the system, the ill_g_lock must be held as 431 * writer and the thread must be a writer on the associated ipsq. 432 * 433 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 434 * must be a writer on the associated ipsq. 435 * 436 * Lock hierarchy 437 * 438 * Some lock hierarchy scenarios are listed below. 439 * 440 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 441 * ill_g_lock -> illgrp_lock -> ill_lock 442 * ill_g_lock -> ill_lock(s) -> phyint_lock 443 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 444 * ill_g_lock -> ip_addr_avail_lock 445 * conn_lock -> irb_lock -> ill_lock -> ire_lock 446 * ill_g_lock -> ip_g_nd_lock 447 * 448 * When more than 1 ill lock is needed to be held, all ill lock addresses 449 * are sorted on address and locked starting from highest addressed lock 450 * downward. 451 * 452 * Mobile-IP scenarios 453 * 454 * irb_lock -> ill_lock -> ire_mrtun_lock 455 * irb_lock -> ill_lock -> ire_srcif_table_lock 456 * 457 * IPsec scenarios 458 * 459 * ipsa_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 461 * ipsec_capab_ills_lock -> ipsa_lock 462 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 463 * 464 * Trusted Solaris scenarios 465 * 466 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 467 * igsa_lock -> gcdb_lock 468 * gcgrp_rwlock -> ire_lock 469 * gcgrp_rwlock -> gcdb_lock 470 * 471 * 472 * Routing/forwarding table locking notes: 473 * 474 * Lock acquisition order: Radix tree lock, irb_lock. 475 * Requirements: 476 * i. Walker must not hold any locks during the walker callback. 477 * ii Walker must not see a truncated tree during the walk because of any node 478 * deletion. 479 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 480 * in many places in the code to walk the irb list. Thus even if all the 481 * ires in a bucket have been deleted, we still can't free the radix node 482 * until the ires have actually been inactive'd (freed). 483 * 484 * Tree traversal - Need to hold the global tree lock in read mode. 485 * Before dropping the global tree lock, need to either increment the ire_refcnt 486 * to ensure that the radix node can't be deleted. 487 * 488 * Tree add - Need to hold the global tree lock in write mode to add a 489 * radix node. To prevent the node from being deleted, increment the 490 * irb_refcnt, after the node is added to the tree. The ire itself is 491 * added later while holding the irb_lock, but not the tree lock. 492 * 493 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 494 * All associated ires must be inactive (i.e. freed), and irb_refcnt 495 * must be zero. 496 * 497 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 498 * global tree lock (read mode) for traversal. 499 * 500 * IPSEC notes : 501 * 502 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 503 * in front of the actual packet. For outbound datagrams, the M_CTL 504 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 505 * information used by the IPSEC code for applying the right level of 506 * protection. The information initialized by IP in the ipsec_out_t 507 * is determined by the per-socket policy or global policy in the system. 508 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 509 * ipsec_info.h) which starts out with nothing in it. It gets filled 510 * with the right information if it goes through the AH/ESP code, which 511 * happens if the incoming packet is secure. The information initialized 512 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 513 * the policy requirements needed by per-socket policy or global policy 514 * is met or not. 515 * 516 * If there is both per-socket policy (set using setsockopt) and there 517 * is also global policy match for the 5 tuples of the socket, 518 * ipsec_override_policy() makes the decision of which one to use. 519 * 520 * For fully connected sockets i.e dst, src [addr, port] is known, 521 * conn_policy_cached is set indicating that policy has been cached. 522 * conn_in_enforce_policy may or may not be set depending on whether 523 * there is a global policy match or per-socket policy match. 524 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 525 * Once the right policy is set on the conn_t, policy cannot change for 526 * this socket. This makes life simpler for TCP (UDP ?) where 527 * re-transmissions go out with the same policy. For symmetry, policy 528 * is cached for fully connected UDP sockets also. Thus if policy is cached, 529 * it also implies that policy is latched i.e policy cannot change 530 * on these sockets. As we have the right policy on the conn, we don't 531 * have to lookup global policy for every outbound and inbound datagram 532 * and thus serving as an optimization. Note that a global policy change 533 * does not affect fully connected sockets if they have policy. If fully 534 * connected sockets did not have any policy associated with it, global 535 * policy change may affect them. 536 * 537 * IP Flow control notes: 538 * 539 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 540 * cannot be sent down to the driver by IP, because of a canput failure, IP 541 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 542 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 543 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 544 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 545 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 546 * the queued messages, and removes the conn from the drain list, if all 547 * messages were drained. It also qenables the next conn in the drain list to 548 * continue the drain process. 549 * 550 * In reality the drain list is not a single list, but a configurable number 551 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 552 * list. If the ip_wsrv of the next qenabled conn does not run, because the 553 * stream closes, ip_close takes responsibility to qenable the next conn in 554 * the drain list. The directly called ip_wput path always does a putq, if 555 * it cannot putnext. Thus synchronization problems are handled between 556 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 557 * functions that manipulate this drain list. Furthermore conn_drain_insert 558 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 559 * running on a queue at any time. conn_drain_tail can be simultaneously called 560 * from both ip_wsrv and ip_close. 561 * 562 * IPQOS notes: 563 * 564 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 565 * and IPQoS modules. IPPF includes hooks in IP at different control points 566 * (callout positions) which direct packets to IPQoS modules for policy 567 * processing. Policies, if present, are global. 568 * 569 * The callout positions are located in the following paths: 570 * o local_in (packets destined for this host) 571 * o local_out (packets orginating from this host ) 572 * o fwd_in (packets forwarded by this m/c - inbound) 573 * o fwd_out (packets forwarded by this m/c - outbound) 574 * Hooks at these callout points can be enabled/disabled using the ndd variable 575 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 576 * By default all the callout positions are enabled. 577 * 578 * Outbound (local_out) 579 * Hooks are placed in ip_wput_ire and ipsec_out_process. 580 * 581 * Inbound (local_in) 582 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 583 * TCP and UDP fanout routines. 584 * 585 * Forwarding (in and out) 586 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 587 * 588 * IP Policy Framework processing (IPPF processing) 589 * Policy processing for a packet is initiated by ip_process, which ascertains 590 * that the classifier (ipgpc) is loaded and configured, failing which the 591 * packet resumes normal processing in IP. If the clasifier is present, the 592 * packet is acted upon by one or more IPQoS modules (action instances), per 593 * filters configured in ipgpc and resumes normal IP processing thereafter. 594 * An action instance can drop a packet in course of its processing. 595 * 596 * A boolean variable, ip_policy, is used in all the fanout routines that can 597 * invoke ip_process for a packet. This variable indicates if the packet should 598 * to be sent for policy processing. The variable is set to B_TRUE by default, 599 * i.e. when the routines are invoked in the normal ip procesing path for a 600 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 601 * ip_policy is set to B_FALSE for all the routines called in these two 602 * functions because, in the former case, we don't process loopback traffic 603 * currently while in the latter, the packets have already been processed in 604 * icmp_inbound. 605 * 606 * Zones notes: 607 * 608 * The partitioning rules for networking are as follows: 609 * 1) Packets coming from a zone must have a source address belonging to that 610 * zone. 611 * 2) Packets coming from a zone can only be sent on a physical interface on 612 * which the zone has an IP address. 613 * 3) Between two zones on the same machine, packet delivery is only allowed if 614 * there's a matching route for the destination and zone in the forwarding 615 * table. 616 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 617 * different zones can bind to the same port with the wildcard address 618 * (INADDR_ANY). 619 * 620 * The granularity of interface partitioning is at the logical interface level. 621 * Therefore, every zone has its own IP addresses, and incoming packets can be 622 * attributed to a zone unambiguously. A logical interface is placed into a zone 623 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 624 * structure. Rule (1) is implemented by modifying the source address selection 625 * algorithm so that the list of eligible addresses is filtered based on the 626 * sending process zone. 627 * 628 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 629 * across all zones, depending on their type. Here is the break-up: 630 * 631 * IRE type Shared/exclusive 632 * -------- ---------------- 633 * IRE_BROADCAST Exclusive 634 * IRE_DEFAULT (default routes) Shared (*) 635 * IRE_LOCAL Exclusive (x) 636 * IRE_LOOPBACK Exclusive 637 * IRE_PREFIX (net routes) Shared (*) 638 * IRE_CACHE Exclusive 639 * IRE_IF_NORESOLVER (interface routes) Exclusive 640 * IRE_IF_RESOLVER (interface routes) Exclusive 641 * IRE_HOST (host routes) Shared (*) 642 * 643 * (*) A zone can only use a default or off-subnet route if the gateway is 644 * directly reachable from the zone, that is, if the gateway's address matches 645 * one of the zone's logical interfaces. 646 * 647 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 648 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 649 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 650 * address of the zone itself (the destination). Since IRE_LOCAL is used 651 * for communication between zones, ip_wput_ire has special logic to set 652 * the right source address when sending using an IRE_LOCAL. 653 * 654 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 655 * ire_cache_lookup restricts loopback using an IRE_LOCAL 656 * between zone to the case when L2 would have conceptually looped the packet 657 * back, i.e. the loopback which is required since neither Ethernet drivers 658 * nor Ethernet hardware loops them back. This is the case when the normal 659 * routes (ignoring IREs with different zoneids) would send out the packet on 660 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 661 * associated. 662 * 663 * Multiple zones can share a common broadcast address; typically all zones 664 * share the 255.255.255.255 address. Incoming as well as locally originated 665 * broadcast packets must be dispatched to all the zones on the broadcast 666 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 667 * since some zones may not be on the 10.16.72/24 network. To handle this, each 668 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 669 * sent to every zone that has an IRE_BROADCAST entry for the destination 670 * address on the input ill, see conn_wantpacket(). 671 * 672 * Applications in different zones can join the same multicast group address. 673 * For IPv4, group memberships are per-logical interface, so they're already 674 * inherently part of a zone. For IPv6, group memberships are per-physical 675 * interface, so we distinguish IPv6 group memberships based on group address, 676 * interface and zoneid. In both cases, received multicast packets are sent to 677 * every zone for which a group membership entry exists. On IPv6 we need to 678 * check that the target zone still has an address on the receiving physical 679 * interface; it could have been removed since the application issued the 680 * IPV6_JOIN_GROUP. 681 */ 682 683 /* 684 * Squeue Fanout flags: 685 * 0: No fanout. 686 * 1: Fanout across all squeues 687 */ 688 boolean_t ip_squeue_fanout = 0; 689 690 /* 691 * Maximum dups allowed per packet. 692 */ 693 uint_t ip_max_frag_dups = 10; 694 695 #define IS_SIMPLE_IPH(ipha) \ 696 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 697 698 /* RFC1122 Conformance */ 699 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 700 701 #define ILL_MAX_NAMELEN LIFNAMSIZ 702 703 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 704 705 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 706 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 707 708 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 709 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 710 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 711 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 712 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 713 mblk_t *, int); 714 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 715 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 716 ill_t *, zoneid_t); 717 static void icmp_options_update(ipha_t *); 718 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 719 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 720 zoneid_t zoneid); 721 static mblk_t *icmp_pkt_err_ok(mblk_t *); 722 static void icmp_redirect(mblk_t *); 723 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 724 725 static void ip_arp_news(queue_t *, mblk_t *); 726 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 727 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 728 char *ip_dot_addr(ipaddr_t, char *); 729 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 730 int ip_close(queue_t *, int); 731 static char *ip_dot_saddr(uchar_t *, char *); 732 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 733 boolean_t, boolean_t, ill_t *, zoneid_t); 734 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 735 boolean_t, boolean_t, zoneid_t); 736 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 737 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 738 static void ip_lrput(queue_t *, mblk_t *); 739 ipaddr_t ip_massage_options(ipha_t *); 740 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 741 ipaddr_t ip_net_mask(ipaddr_t); 742 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 743 zoneid_t); 744 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 745 conn_t *, uint32_t, zoneid_t); 746 char *ip_nv_lookup(nv_t *, int); 747 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 748 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 749 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 750 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 751 size_t); 752 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 753 void ip_rput(queue_t *, mblk_t *); 754 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 755 void *dummy_arg); 756 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 757 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 758 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 759 ire_t *); 760 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 761 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 762 uint16_t *); 763 int ip_snmp_get(queue_t *, mblk_t *); 764 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 765 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 766 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 767 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 768 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 769 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 771 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 772 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 780 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 781 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 782 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 783 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 784 static boolean_t ip_source_routed(ipha_t *); 785 static boolean_t ip_source_route_included(ipha_t *); 786 787 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 788 zoneid_t); 789 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 790 static void ip_wput_local_options(ipha_t *); 791 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 792 zoneid_t); 793 794 static void conn_drain_init(void); 795 static void conn_drain_fini(void); 796 static void conn_drain_tail(conn_t *connp, boolean_t closing); 797 798 static void conn_walk_drain(void); 799 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 800 zoneid_t); 801 802 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 803 zoneid_t); 804 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 805 void *dummy_arg); 806 807 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 808 809 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 810 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 811 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 812 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 813 814 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 815 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 816 caddr_t, cred_t *); 817 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 818 caddr_t cp, cred_t *cr); 819 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 820 cred_t *); 821 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 822 caddr_t cp, cred_t *cr); 823 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 824 cred_t *); 825 static squeue_func_t ip_squeue_switch(int); 826 827 static void ip_kstat_init(void); 828 static void ip_kstat_fini(void); 829 static int ip_kstat_update(kstat_t *kp, int rw); 830 static void icmp_kstat_init(void); 831 static void icmp_kstat_fini(void); 832 static int icmp_kstat_update(kstat_t *kp, int rw); 833 834 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 835 836 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 837 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 838 839 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 840 ipha_t *, ill_t *, boolean_t); 841 842 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 843 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 844 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 845 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 846 847 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 848 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 849 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 850 851 /* How long, in seconds, we allow frags to hang around. */ 852 #define IP_FRAG_TIMEOUT 60 853 854 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 855 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 856 857 /* 858 * Threshold which determines whether MDT should be used when 859 * generating IP fragments; payload size must be greater than 860 * this threshold for MDT to take place. 861 */ 862 #define IP_WPUT_FRAG_MDT_MIN 32768 863 864 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 865 866 /* Protected by ip_mi_lock */ 867 static void *ip_g_head; /* Instance Data List Head */ 868 kmutex_t ip_mi_lock; /* Lock for list of instances */ 869 870 /* Only modified during _init and _fini thus no locking is needed. */ 871 caddr_t ip_g_nd; /* Named Dispatch List Head */ 872 873 874 static long ip_rput_pullups; 875 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 876 877 vmem_t *ip_minor_arena; 878 879 /* 880 * MIB-2 stuff for SNMP (both IP and ICMP) 881 */ 882 mib2_ip_t ip_mib; 883 mib2_icmp_t icmp_mib; 884 885 #ifdef DEBUG 886 uint32_t ipsechw_debug = 0; 887 #endif 888 889 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 890 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 891 892 uint_t loopback_packets = 0; 893 894 /* 895 * Multirouting/CGTP stuff 896 */ 897 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 898 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 899 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 900 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 901 hrtime_t ip_multirt_log_interval = 1000; 902 /* Time since last warning issued. */ 903 static hrtime_t multirt_bad_mtu_last_time = 0; 904 905 kmutex_t ip_trash_timer_lock; 906 krwlock_t ip_g_nd_lock; 907 908 /* 909 * XXX following really should only be in a header. Would need more 910 * header and .c clean up first. 911 */ 912 extern optdb_obj_t ip_opt_obj; 913 914 ulong_t ip_squeue_enter_unbound = 0; 915 916 /* 917 * Named Dispatch Parameter Table. 918 * All of these are alterable, within the min/max values given, at run time. 919 */ 920 static ipparam_t lcl_param_arr[] = { 921 /* min max value name */ 922 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 923 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 924 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 925 { 0, 1, 0, "ip_respond_to_timestamp"}, 926 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 927 { 0, 1, 1, "ip_send_redirects"}, 928 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 929 { 0, 10, 0, "ip_debug"}, 930 { 0, 10, 0, "ip_mrtdebug"}, 931 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 932 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 933 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 934 { 1, 255, 255, "ip_def_ttl" }, 935 { 0, 1, 0, "ip_forward_src_routed"}, 936 { 0, 256, 32, "ip_wroff_extra" }, 937 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 938 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 939 { 0, 1, 1, "ip_path_mtu_discovery" }, 940 { 0, 240, 30, "ip_ignore_delete_time" }, 941 { 0, 1, 0, "ip_ignore_redirect" }, 942 { 0, 1, 1, "ip_output_queue" }, 943 { 1, 254, 1, "ip_broadcast_ttl" }, 944 { 0, 99999, 100, "ip_icmp_err_interval" }, 945 { 1, 99999, 10, "ip_icmp_err_burst" }, 946 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 947 { 0, 1, 0, "ip_strict_dst_multihoming" }, 948 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 949 { 0, 1, 0, "ipsec_override_persocket_policy" }, 950 { 0, 1, 1, "icmp_accept_clear_messages" }, 951 { 0, 1, 1, "igmp_accept_clear_messages" }, 952 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 953 "ip_ndp_delay_first_probe_time"}, 954 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 955 "ip_ndp_max_unicast_solicit"}, 956 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 957 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 958 { 0, 1, 0, "ip6_forward_src_routed"}, 959 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 960 { 0, 1, 1, "ip6_send_redirects"}, 961 { 0, 1, 0, "ip6_ignore_redirect" }, 962 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 963 964 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 965 966 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 967 968 { 0, 1, 1, "pim_accept_clear_messages" }, 969 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 970 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 971 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 972 { 0, 15, 0, "ip_policy_mask" }, 973 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 974 { 0, 255, 1, "ip_multirt_ttl" }, 975 { 0, 1, 1, "ip_multidata_outbound" }, 976 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 977 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 978 { 0, 1000, 1, "ip_max_temp_defend" }, 979 { 0, 1000, 3, "ip_max_defend" }, 980 { 0, 999999, 30, "ip_defend_interval" }, 981 { 0, 3600000, 300000, "ip_dup_recovery" }, 982 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 983 #ifdef DEBUG 984 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 985 #endif 986 }; 987 988 ipparam_t *ip_param_arr = lcl_param_arr; 989 990 /* Extended NDP table */ 991 static ipndp_t lcl_ndp_arr[] = { 992 /* getf setf data name */ 993 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 994 "ip_forwarding" }, 995 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 996 "ip6_forwarding" }, 997 { ip_ill_report, NULL, NULL, 998 "ip_ill_status" }, 999 { ip_ipif_report, NULL, NULL, 1000 "ip_ipif_status" }, 1001 { ip_ire_report, NULL, NULL, 1002 "ipv4_ire_status" }, 1003 { ip_ire_report_mrtun, NULL, NULL, 1004 "ipv4_mrtun_ire_status" }, 1005 { ip_ire_report_srcif, NULL, NULL, 1006 "ipv4_srcif_ire_status" }, 1007 { ip_ire_report_v6, NULL, NULL, 1008 "ipv6_ire_status" }, 1009 { ip_conn_report, NULL, NULL, 1010 "ip_conn_status" }, 1011 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1012 "ip_rput_pullups" }, 1013 { ndp_report, NULL, NULL, 1014 "ip_ndp_cache_report" }, 1015 { ip_srcid_report, NULL, NULL, 1016 "ip_srcid_status" }, 1017 { ip_param_generic_get, ip_squeue_profile_set, 1018 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1019 { ip_param_generic_get, ip_squeue_bind_set, 1020 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1021 { ip_param_generic_get, ip_input_proc_set, 1022 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1023 { ip_param_generic_get, ip_int_set, 1024 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1025 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1026 "ip_cgtp_filter" }, 1027 { ip_param_generic_get, ip_int_set, 1028 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1029 }; 1030 1031 /* 1032 * ip_g_forward controls IP forwarding. It takes two values: 1033 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1034 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1035 * 1036 * RFC1122 says there must be a configuration switch to control forwarding, 1037 * but that the default MUST be to not forward packets ever. Implicit 1038 * control based on configuration of multiple interfaces MUST NOT be 1039 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1040 * and, in fact, it was the default. That capability is now provided in the 1041 * /etc/rc2.d/S69inet script. 1042 */ 1043 int ip_g_forward = IP_FORWARD_DEFAULT; 1044 1045 /* It also has an IPv6 counterpart. */ 1046 1047 int ipv6_forward = IP_FORWARD_DEFAULT; 1048 1049 /* 1050 * Table of IP ioctls encoding the various properties of the ioctl and 1051 * indexed based on the last byte of the ioctl command. Occasionally there 1052 * is a clash, and there is more than 1 ioctl with the same last byte. 1053 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1054 * ioctls are encoded in the misc table. An entry in the ndx table is 1055 * retrieved by indexing on the last byte of the ioctl command and comparing 1056 * the ioctl command with the value in the ndx table. In the event of a 1057 * mismatch the misc table is then searched sequentially for the desired 1058 * ioctl command. 1059 * 1060 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1061 */ 1062 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1063 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 1074 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1075 MISC_CMD, ip_siocaddrt, NULL }, 1076 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1077 MISC_CMD, ip_siocdelrt, NULL }, 1078 1079 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1080 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1081 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1082 IF_CMD, ip_sioctl_get_addr, NULL }, 1083 1084 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1085 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1086 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1087 IPI_GET_CMD | IPI_REPL, 1088 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1089 1090 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1091 IPI_PRIV | IPI_WR | IPI_REPL, 1092 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1093 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1094 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_flags, NULL }, 1096 1097 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 1100 /* copyin size cannot be coded for SIOCGIFCONF */ 1101 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1102 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1103 1104 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1105 IF_CMD, ip_sioctl_mtu, NULL }, 1106 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1107 IF_CMD, ip_sioctl_get_mtu, NULL }, 1108 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1109 IPI_GET_CMD | IPI_REPL, 1110 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1111 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1112 IF_CMD, ip_sioctl_brdaddr, NULL }, 1113 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1114 IPI_GET_CMD | IPI_REPL, 1115 IF_CMD, ip_sioctl_get_netmask, NULL }, 1116 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1117 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1118 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1119 IPI_GET_CMD | IPI_REPL, 1120 IF_CMD, ip_sioctl_get_metric, NULL }, 1121 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1122 IF_CMD, ip_sioctl_metric, NULL }, 1123 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 1125 /* See 166-168 below for extended SIOC*XARP ioctls */ 1126 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1127 MISC_CMD, ip_sioctl_arp, NULL }, 1128 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1129 MISC_CMD, ip_sioctl_arp, NULL }, 1130 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1131 MISC_CMD, ip_sioctl_arp, NULL }, 1132 1133 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 1155 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1156 MISC_CMD, if_unitsel, if_unitsel_restart }, 1157 1158 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 1177 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1178 IPI_PRIV | IPI_WR | IPI_MODOK, 1179 IF_CMD, ip_sioctl_sifname, NULL }, 1180 1181 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 1195 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1196 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1197 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1198 IF_CMD, ip_sioctl_get_muxid, NULL }, 1199 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1200 IPI_PRIV | IPI_WR | IPI_REPL, 1201 IF_CMD, ip_sioctl_muxid, NULL }, 1202 1203 /* Both if and lif variants share same func */ 1204 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1205 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1206 /* Both if and lif variants share same func */ 1207 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1208 IPI_PRIV | IPI_WR | IPI_REPL, 1209 IF_CMD, ip_sioctl_slifindex, NULL }, 1210 1211 /* copyin size cannot be coded for SIOCGIFCONF */ 1212 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1213 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1214 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1215 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1216 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1217 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1218 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 1232 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_removeif, 1235 ip_sioctl_removeif_restart }, 1236 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1237 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1238 LIF_CMD, ip_sioctl_addif, NULL }, 1239 #define SIOCLIFADDR_NDX 112 1240 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1241 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1242 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1243 IPI_GET_CMD | IPI_REPL, 1244 LIF_CMD, ip_sioctl_get_addr, NULL }, 1245 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1246 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1247 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1248 IPI_GET_CMD | IPI_REPL, 1249 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1250 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1251 IPI_PRIV | IPI_WR | IPI_REPL, 1252 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1253 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1254 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1255 LIF_CMD, ip_sioctl_get_flags, NULL }, 1256 1257 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1258 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1259 1260 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1261 ip_sioctl_get_lifconf, NULL }, 1262 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1263 LIF_CMD, ip_sioctl_mtu, NULL }, 1264 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1265 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1266 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1269 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1270 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1271 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1272 IPI_GET_CMD | IPI_REPL, 1273 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1274 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1275 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1276 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_metric, NULL }, 1279 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1280 LIF_CMD, ip_sioctl_metric, NULL }, 1281 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1282 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1283 LIF_CMD, ip_sioctl_slifname, 1284 ip_sioctl_slifname_restart }, 1285 1286 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1287 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1288 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1289 IPI_GET_CMD | IPI_REPL, 1290 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1291 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1292 IPI_PRIV | IPI_WR | IPI_REPL, 1293 LIF_CMD, ip_sioctl_muxid, NULL }, 1294 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1295 IPI_GET_CMD | IPI_REPL, 1296 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1297 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1298 IPI_PRIV | IPI_WR | IPI_REPL, 1299 LIF_CMD, ip_sioctl_slifindex, 0 }, 1300 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1301 LIF_CMD, ip_sioctl_token, NULL }, 1302 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1303 IPI_GET_CMD | IPI_REPL, 1304 LIF_CMD, ip_sioctl_get_token, NULL }, 1305 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1306 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1307 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1308 IPI_GET_CMD | IPI_REPL, 1309 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1310 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1311 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1312 1313 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1314 IPI_GET_CMD | IPI_REPL, 1315 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1316 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1317 LIF_CMD, ip_siocdelndp_v6, NULL }, 1318 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1319 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1320 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1321 LIF_CMD, ip_siocsetndp_v6, NULL }, 1322 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1323 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1324 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1325 MISC_CMD, ip_sioctl_tonlink, NULL }, 1326 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1327 MISC_CMD, ip_sioctl_tmysite, NULL }, 1328 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1329 TUN_CMD, ip_sioctl_tunparam, NULL }, 1330 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1331 IPI_PRIV | IPI_WR, 1332 TUN_CMD, ip_sioctl_tunparam, NULL }, 1333 1334 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1335 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1336 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1337 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1338 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1339 1340 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1341 IPI_PRIV | IPI_WR | IPI_REPL, 1342 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1343 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1344 IPI_PRIV | IPI_WR | IPI_REPL, 1345 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1346 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1347 IPI_PRIV | IPI_WR, 1348 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1349 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1350 IPI_GET_CMD | IPI_REPL, 1351 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1352 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1353 IPI_GET_CMD | IPI_REPL, 1354 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1355 1356 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1357 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1358 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1359 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1360 1361 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1362 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1363 1364 /* These are handled in ip_sioctl_copyin_setup itself */ 1365 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1366 MISC_CMD, NULL, NULL }, 1367 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1368 MISC_CMD, NULL, NULL }, 1369 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1370 1371 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1372 ip_sioctl_get_lifconf, NULL }, 1373 1374 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1375 MISC_CMD, ip_sioctl_xarp, NULL }, 1376 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1377 MISC_CMD, ip_sioctl_xarp, NULL }, 1378 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1379 MISC_CMD, ip_sioctl_xarp, NULL }, 1380 1381 /* SIOCPOPSOCKFS is not handled by IP */ 1382 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1383 1384 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1385 IPI_GET_CMD | IPI_REPL, 1386 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1387 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1388 IPI_PRIV | IPI_WR | IPI_REPL, 1389 LIF_CMD, ip_sioctl_slifzone, 1390 ip_sioctl_slifzone_restart }, 1391 /* 172-174 are SCTP ioctls and not handled by IP */ 1392 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1393 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1394 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1395 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1396 IPI_GET_CMD, LIF_CMD, 1397 ip_sioctl_get_lifusesrc, 0 }, 1398 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1399 IPI_PRIV | IPI_WR, 1400 LIF_CMD, ip_sioctl_slifusesrc, 1401 NULL }, 1402 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1403 ip_sioctl_get_lifsrcof, NULL }, 1404 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1405 MISC_CMD, ip_sioctl_msfilter, NULL }, 1406 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1407 MISC_CMD, ip_sioctl_msfilter, NULL }, 1408 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1409 MISC_CMD, ip_sioctl_msfilter, NULL }, 1410 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1411 MISC_CMD, ip_sioctl_msfilter, NULL }, 1412 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1413 ip_sioctl_set_ipmpfailback, NULL } 1414 }; 1415 1416 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1417 1418 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1419 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1420 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1421 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1422 TUN_CMD, ip_sioctl_tunparam, NULL }, 1423 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1424 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1425 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1426 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1427 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1428 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1429 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1430 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1431 MISC_CMD, mrt_ioctl}, 1432 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1433 MISC_CMD, mrt_ioctl}, 1434 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1435 MISC_CMD, mrt_ioctl} 1436 }; 1437 1438 int ip_misc_ioctl_count = 1439 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1440 1441 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1442 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1443 static int conn_drain_list_index; /* Next drain_list to be used */ 1444 int conn_drain_nthreads; /* Number of drainers reqd. */ 1445 /* Settable in /etc/system */ 1446 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1447 1448 /* Defined in ip_ire.c */ 1449 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1450 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1451 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1452 1453 static nv_t ire_nv_arr[] = { 1454 { IRE_BROADCAST, "BROADCAST" }, 1455 { IRE_LOCAL, "LOCAL" }, 1456 { IRE_LOOPBACK, "LOOPBACK" }, 1457 { IRE_CACHE, "CACHE" }, 1458 { IRE_DEFAULT, "DEFAULT" }, 1459 { IRE_PREFIX, "PREFIX" }, 1460 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1461 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1462 { IRE_HOST, "HOST" }, 1463 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1464 { 0 } 1465 }; 1466 1467 nv_t *ire_nv_tbl = ire_nv_arr; 1468 1469 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1470 extern krwlock_t ipsec_capab_ills_lock; 1471 1472 /* Packet dropper for IP IPsec processing failures */ 1473 ipdropper_t ip_dropper; 1474 1475 /* Simple ICMP IP Header Template */ 1476 static ipha_t icmp_ipha = { 1477 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1478 }; 1479 1480 struct module_info ip_mod_info = { 1481 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1482 }; 1483 1484 /* 1485 * Duplicate static symbols within a module confuses mdb; so we avoid the 1486 * problem by making the symbols here distinct from those in udp.c. 1487 */ 1488 1489 static struct qinit iprinit = { 1490 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1491 &ip_mod_info 1492 }; 1493 1494 static struct qinit ipwinit = { 1495 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1496 &ip_mod_info 1497 }; 1498 1499 static struct qinit iplrinit = { 1500 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1501 &ip_mod_info 1502 }; 1503 1504 static struct qinit iplwinit = { 1505 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1506 &ip_mod_info 1507 }; 1508 1509 struct streamtab ipinfo = { 1510 &iprinit, &ipwinit, &iplrinit, &iplwinit 1511 }; 1512 1513 #ifdef DEBUG 1514 static boolean_t skip_sctp_cksum = B_FALSE; 1515 #endif 1516 1517 /* 1518 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1519 * ip_rput_v6(), ip_output(), etc. If the message 1520 * block already has a M_CTL at the front of it, then simply set the zoneid 1521 * appropriately. 1522 */ 1523 mblk_t * 1524 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1525 { 1526 mblk_t *first_mp; 1527 ipsec_out_t *io; 1528 1529 ASSERT(zoneid != ALL_ZONES); 1530 if (mp->b_datap->db_type == M_CTL) { 1531 io = (ipsec_out_t *)mp->b_rptr; 1532 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1533 io->ipsec_out_zoneid = zoneid; 1534 return (mp); 1535 } 1536 1537 first_mp = ipsec_alloc_ipsec_out(); 1538 if (first_mp == NULL) 1539 return (NULL); 1540 io = (ipsec_out_t *)first_mp->b_rptr; 1541 /* This is not a secure packet */ 1542 io->ipsec_out_secure = B_FALSE; 1543 io->ipsec_out_zoneid = zoneid; 1544 first_mp->b_cont = mp; 1545 return (first_mp); 1546 } 1547 1548 /* 1549 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1550 */ 1551 mblk_t * 1552 ip_copymsg(mblk_t *mp) 1553 { 1554 mblk_t *nmp; 1555 ipsec_info_t *in; 1556 1557 if (mp->b_datap->db_type != M_CTL) 1558 return (copymsg(mp)); 1559 1560 in = (ipsec_info_t *)mp->b_rptr; 1561 1562 /* 1563 * Note that M_CTL is also used for delivering ICMP error messages 1564 * upstream to transport layers. 1565 */ 1566 if (in->ipsec_info_type != IPSEC_OUT && 1567 in->ipsec_info_type != IPSEC_IN) 1568 return (copymsg(mp)); 1569 1570 nmp = copymsg(mp->b_cont); 1571 1572 if (in->ipsec_info_type == IPSEC_OUT) 1573 return (ipsec_out_tag(mp, nmp)); 1574 else 1575 return (ipsec_in_tag(mp, nmp)); 1576 } 1577 1578 /* Generate an ICMP fragmentation needed message. */ 1579 static void 1580 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1581 { 1582 icmph_t icmph; 1583 mblk_t *first_mp; 1584 boolean_t mctl_present; 1585 1586 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1587 1588 if (!(mp = icmp_pkt_err_ok(mp))) { 1589 if (mctl_present) 1590 freeb(first_mp); 1591 return; 1592 } 1593 1594 bzero(&icmph, sizeof (icmph_t)); 1595 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1596 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1597 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1598 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1599 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1600 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1601 } 1602 1603 /* 1604 * icmp_inbound deals with ICMP messages in the following ways. 1605 * 1606 * 1) It needs to send a reply back and possibly delivering it 1607 * to the "interested" upper clients. 1608 * 2) It needs to send it to the upper clients only. 1609 * 3) It needs to change some values in IP only. 1610 * 4) It needs to change some values in IP and upper layers e.g TCP. 1611 * 1612 * We need to accomodate icmp messages coming in clear until we get 1613 * everything secure from the wire. If icmp_accept_clear_messages 1614 * is zero we check with the global policy and act accordingly. If 1615 * it is non-zero, we accept the message without any checks. But 1616 * *this does not mean* that this will be delivered to the upper 1617 * clients. By accepting we might send replies back, change our MTU 1618 * value etc. but delivery to the ULP/clients depends on their policy 1619 * dispositions. 1620 * 1621 * We handle the above 4 cases in the context of IPSEC in the 1622 * following way : 1623 * 1624 * 1) Send the reply back in the same way as the request came in. 1625 * If it came in encrypted, it goes out encrypted. If it came in 1626 * clear, it goes out in clear. Thus, this will prevent chosen 1627 * plain text attack. 1628 * 2) The client may or may not expect things to come in secure. 1629 * If it comes in secure, the policy constraints are checked 1630 * before delivering it to the upper layers. If it comes in 1631 * clear, ipsec_inbound_accept_clear will decide whether to 1632 * accept this in clear or not. In both the cases, if the returned 1633 * message (IP header + 8 bytes) that caused the icmp message has 1634 * AH/ESP headers, it is sent up to AH/ESP for validation before 1635 * sending up. If there are only 8 bytes of returned message, then 1636 * upper client will not be notified. 1637 * 3) Check with global policy to see whether it matches the constaints. 1638 * But this will be done only if icmp_accept_messages_in_clear is 1639 * zero. 1640 * 4) If we need to change both in IP and ULP, then the decision taken 1641 * while affecting the values in IP and while delivering up to TCP 1642 * should be the same. 1643 * 1644 * There are two cases. 1645 * 1646 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1647 * failed), we will not deliver it to the ULP, even though they 1648 * are *willing* to accept in *clear*. This is fine as our global 1649 * disposition to icmp messages asks us reject the datagram. 1650 * 1651 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1652 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1653 * to deliver it to ULP (policy failed), it can lead to 1654 * consistency problems. The cases known at this time are 1655 * ICMP_DESTINATION_UNREACHABLE messages with following code 1656 * values : 1657 * 1658 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1659 * and Upper layer rejects. Then the communication will 1660 * come to a stop. This is solved by making similar decisions 1661 * at both levels. Currently, when we are unable to deliver 1662 * to the Upper Layer (due to policy failures) while IP has 1663 * adjusted ire_max_frag, the next outbound datagram would 1664 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1665 * will be with the right level of protection. Thus the right 1666 * value will be communicated even if we are not able to 1667 * communicate when we get from the wire initially. But this 1668 * assumes there would be at least one outbound datagram after 1669 * IP has adjusted its ire_max_frag value. To make things 1670 * simpler, we accept in clear after the validation of 1671 * AH/ESP headers. 1672 * 1673 * - Other ICMP ERRORS : We may not be able to deliver it to the 1674 * upper layer depending on the level of protection the upper 1675 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1676 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1677 * should be accepted in clear when the Upper layer expects secure. 1678 * Thus the communication may get aborted by some bad ICMP 1679 * packets. 1680 * 1681 * IPQoS Notes: 1682 * The only instance when a packet is sent for processing is when there 1683 * isn't an ICMP client and if we are interested in it. 1684 * If there is a client, IPPF processing will take place in the 1685 * ip_fanout_proto routine. 1686 * 1687 * Zones notes: 1688 * The packet is only processed in the context of the specified zone: typically 1689 * only this zone will reply to an echo request, and only interested clients in 1690 * this zone will receive a copy of the packet. This means that the caller must 1691 * call icmp_inbound() for each relevant zone. 1692 */ 1693 static void 1694 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1695 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1696 ill_t *recv_ill, zoneid_t zoneid) 1697 { 1698 icmph_t *icmph; 1699 ipha_t *ipha; 1700 int iph_hdr_length; 1701 int hdr_length; 1702 boolean_t interested; 1703 uint32_t ts; 1704 uchar_t *wptr; 1705 ipif_t *ipif; 1706 mblk_t *first_mp; 1707 ipsec_in_t *ii; 1708 ire_t *src_ire; 1709 boolean_t onlink; 1710 timestruc_t now; 1711 uint32_t ill_index; 1712 1713 ASSERT(ill != NULL); 1714 1715 first_mp = mp; 1716 if (mctl_present) { 1717 mp = first_mp->b_cont; 1718 ASSERT(mp != NULL); 1719 } 1720 1721 ipha = (ipha_t *)mp->b_rptr; 1722 if (icmp_accept_clear_messages == 0) { 1723 first_mp = ipsec_check_global_policy(first_mp, NULL, 1724 ipha, NULL, mctl_present); 1725 if (first_mp == NULL) 1726 return; 1727 } 1728 1729 /* 1730 * On a labeled system, we have to check whether the zone itself is 1731 * permitted to receive raw traffic. 1732 */ 1733 if (is_system_labeled()) { 1734 if (zoneid == ALL_ZONES) 1735 zoneid = tsol_packet_to_zoneid(mp); 1736 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1737 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1738 zoneid)); 1739 BUMP_MIB(&icmp_mib, icmpInErrors); 1740 freemsg(first_mp); 1741 return; 1742 } 1743 } 1744 1745 /* 1746 * We have accepted the ICMP message. It means that we will 1747 * respond to the packet if needed. It may not be delivered 1748 * to the upper client depending on the policy constraints 1749 * and the disposition in ipsec_inbound_accept_clear. 1750 */ 1751 1752 ASSERT(ill != NULL); 1753 1754 BUMP_MIB(&icmp_mib, icmpInMsgs); 1755 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1756 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1757 /* Last chance to get real. */ 1758 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1759 BUMP_MIB(&icmp_mib, icmpInErrors); 1760 freemsg(first_mp); 1761 return; 1762 } 1763 /* Refresh iph following the pullup. */ 1764 ipha = (ipha_t *)mp->b_rptr; 1765 } 1766 /* ICMP header checksum, including checksum field, should be zero. */ 1767 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1768 IP_CSUM(mp, iph_hdr_length, 0)) { 1769 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1770 freemsg(first_mp); 1771 return; 1772 } 1773 /* The IP header will always be a multiple of four bytes */ 1774 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1775 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1776 icmph->icmph_code)); 1777 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1778 /* We will set "interested" to "true" if we want a copy */ 1779 interested = B_FALSE; 1780 switch (icmph->icmph_type) { 1781 case ICMP_ECHO_REPLY: 1782 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1783 break; 1784 case ICMP_DEST_UNREACHABLE: 1785 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1786 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1787 interested = B_TRUE; /* Pass up to transport */ 1788 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1789 break; 1790 case ICMP_SOURCE_QUENCH: 1791 interested = B_TRUE; /* Pass up to transport */ 1792 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1793 break; 1794 case ICMP_REDIRECT: 1795 if (!ip_ignore_redirect) 1796 interested = B_TRUE; 1797 BUMP_MIB(&icmp_mib, icmpInRedirects); 1798 break; 1799 case ICMP_ECHO_REQUEST: 1800 /* 1801 * Whether to respond to echo requests that come in as IP 1802 * broadcasts or as IP multicast is subject to debate 1803 * (what isn't?). We aim to please, you pick it. 1804 * Default is do it. 1805 */ 1806 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1807 /* unicast: always respond */ 1808 interested = B_TRUE; 1809 } else if (CLASSD(ipha->ipha_dst)) { 1810 /* multicast: respond based on tunable */ 1811 interested = ip_g_resp_to_echo_mcast; 1812 } else if (broadcast) { 1813 /* broadcast: respond based on tunable */ 1814 interested = ip_g_resp_to_echo_bcast; 1815 } 1816 BUMP_MIB(&icmp_mib, icmpInEchos); 1817 break; 1818 case ICMP_ROUTER_ADVERTISEMENT: 1819 case ICMP_ROUTER_SOLICITATION: 1820 break; 1821 case ICMP_TIME_EXCEEDED: 1822 interested = B_TRUE; /* Pass up to transport */ 1823 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1824 break; 1825 case ICMP_PARAM_PROBLEM: 1826 interested = B_TRUE; /* Pass up to transport */ 1827 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1828 break; 1829 case ICMP_TIME_STAMP_REQUEST: 1830 /* Response to Time Stamp Requests is local policy. */ 1831 if (ip_g_resp_to_timestamp && 1832 /* So is whether to respond if it was an IP broadcast. */ 1833 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1834 int tstamp_len = 3 * sizeof (uint32_t); 1835 1836 if (wptr + tstamp_len > mp->b_wptr) { 1837 if (!pullupmsg(mp, wptr + tstamp_len - 1838 mp->b_rptr)) { 1839 BUMP_MIB(&ip_mib, ipInDiscards); 1840 freemsg(first_mp); 1841 return; 1842 } 1843 /* Refresh ipha following the pullup. */ 1844 ipha = (ipha_t *)mp->b_rptr; 1845 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1846 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1847 } 1848 interested = B_TRUE; 1849 } 1850 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1851 break; 1852 case ICMP_TIME_STAMP_REPLY: 1853 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1854 break; 1855 case ICMP_INFO_REQUEST: 1856 /* Per RFC 1122 3.2.2.7, ignore this. */ 1857 case ICMP_INFO_REPLY: 1858 break; 1859 case ICMP_ADDRESS_MASK_REQUEST: 1860 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1861 /* TODO m_pullup of complete header? */ 1862 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1863 interested = B_TRUE; 1864 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1865 break; 1866 case ICMP_ADDRESS_MASK_REPLY: 1867 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1868 break; 1869 default: 1870 interested = B_TRUE; /* Pass up to transport */ 1871 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1872 break; 1873 } 1874 /* See if there is an ICMP client. */ 1875 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1876 /* If there is an ICMP client and we want one too, copy it. */ 1877 mblk_t *first_mp1; 1878 1879 if (!interested) { 1880 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1881 ip_policy, recv_ill, zoneid); 1882 return; 1883 } 1884 first_mp1 = ip_copymsg(first_mp); 1885 if (first_mp1 != NULL) { 1886 ip_fanout_proto(q, first_mp1, ill, ipha, 1887 0, mctl_present, ip_policy, recv_ill, zoneid); 1888 } 1889 } else if (!interested) { 1890 freemsg(first_mp); 1891 return; 1892 } else { 1893 /* 1894 * Initiate policy processing for this packet if ip_policy 1895 * is true. 1896 */ 1897 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1898 ill_index = ill->ill_phyint->phyint_ifindex; 1899 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1900 if (mp == NULL) { 1901 if (mctl_present) { 1902 freeb(first_mp); 1903 } 1904 BUMP_MIB(&icmp_mib, icmpInErrors); 1905 return; 1906 } 1907 } 1908 } 1909 /* We want to do something with it. */ 1910 /* Check db_ref to make sure we can modify the packet. */ 1911 if (mp->b_datap->db_ref > 1) { 1912 mblk_t *first_mp1; 1913 1914 first_mp1 = ip_copymsg(first_mp); 1915 freemsg(first_mp); 1916 if (!first_mp1) { 1917 BUMP_MIB(&icmp_mib, icmpOutDrops); 1918 return; 1919 } 1920 first_mp = first_mp1; 1921 if (mctl_present) { 1922 mp = first_mp->b_cont; 1923 ASSERT(mp != NULL); 1924 } else { 1925 mp = first_mp; 1926 } 1927 ipha = (ipha_t *)mp->b_rptr; 1928 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1929 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1930 } 1931 switch (icmph->icmph_type) { 1932 case ICMP_ADDRESS_MASK_REQUEST: 1933 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1934 if (ipif == NULL) { 1935 freemsg(first_mp); 1936 return; 1937 } 1938 /* 1939 * outging interface must be IPv4 1940 */ 1941 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1942 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1943 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1944 ipif_refrele(ipif); 1945 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1946 break; 1947 case ICMP_ECHO_REQUEST: 1948 icmph->icmph_type = ICMP_ECHO_REPLY; 1949 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1950 break; 1951 case ICMP_TIME_STAMP_REQUEST: { 1952 uint32_t *tsp; 1953 1954 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1955 tsp = (uint32_t *)wptr; 1956 tsp++; /* Skip past 'originate time' */ 1957 /* Compute # of milliseconds since midnight */ 1958 gethrestime(&now); 1959 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1960 now.tv_nsec / (NANOSEC / MILLISEC); 1961 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1962 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1963 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1964 break; 1965 } 1966 default: 1967 ipha = (ipha_t *)&icmph[1]; 1968 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1969 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1970 BUMP_MIB(&ip_mib, ipInDiscards); 1971 freemsg(first_mp); 1972 return; 1973 } 1974 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1975 ipha = (ipha_t *)&icmph[1]; 1976 } 1977 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1978 BUMP_MIB(&ip_mib, ipInDiscards); 1979 freemsg(first_mp); 1980 return; 1981 } 1982 hdr_length = IPH_HDR_LENGTH(ipha); 1983 if (hdr_length < sizeof (ipha_t)) { 1984 BUMP_MIB(&ip_mib, ipInDiscards); 1985 freemsg(first_mp); 1986 return; 1987 } 1988 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1989 if (!pullupmsg(mp, 1990 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1991 BUMP_MIB(&ip_mib, ipInDiscards); 1992 freemsg(first_mp); 1993 return; 1994 } 1995 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1996 ipha = (ipha_t *)&icmph[1]; 1997 } 1998 switch (icmph->icmph_type) { 1999 case ICMP_REDIRECT: 2000 /* 2001 * As there is no upper client to deliver, we don't 2002 * need the first_mp any more. 2003 */ 2004 if (mctl_present) { 2005 freeb(first_mp); 2006 } 2007 icmp_redirect(mp); 2008 return; 2009 case ICMP_DEST_UNREACHABLE: 2010 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2011 if (!icmp_inbound_too_big(icmph, ipha, ill, 2012 zoneid, mp, iph_hdr_length)) { 2013 freemsg(first_mp); 2014 return; 2015 } 2016 /* 2017 * icmp_inbound_too_big() may alter mp. 2018 * Resynch ipha and icmph accordingly. 2019 */ 2020 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2021 ipha = (ipha_t *)&icmph[1]; 2022 } 2023 /* FALLTHRU */ 2024 default : 2025 /* 2026 * IPQoS notes: Since we have already done IPQoS 2027 * processing we don't want to do it again in 2028 * the fanout routines called by 2029 * icmp_inbound_error_fanout, hence the last 2030 * argument, ip_policy, is B_FALSE. 2031 */ 2032 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2033 ipha, iph_hdr_length, hdr_length, mctl_present, 2034 B_FALSE, recv_ill, zoneid); 2035 } 2036 return; 2037 } 2038 /* Send out an ICMP packet */ 2039 icmph->icmph_checksum = 0; 2040 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2041 if (icmph->icmph_checksum == 0) 2042 icmph->icmph_checksum = 0xFFFF; 2043 if (broadcast || CLASSD(ipha->ipha_dst)) { 2044 ipif_t *ipif_chosen; 2045 /* 2046 * Make it look like it was directed to us, so we don't look 2047 * like a fool with a broadcast or multicast source address. 2048 */ 2049 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2050 /* 2051 * Make sure that we haven't grabbed an interface that's DOWN. 2052 */ 2053 if (ipif != NULL) { 2054 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2055 ipha->ipha_src, zoneid); 2056 if (ipif_chosen != NULL) { 2057 ipif_refrele(ipif); 2058 ipif = ipif_chosen; 2059 } 2060 } 2061 if (ipif == NULL) { 2062 ip0dbg(("icmp_inbound: " 2063 "No source for broadcast/multicast:\n" 2064 "\tsrc 0x%x dst 0x%x ill %p " 2065 "ipif_lcl_addr 0x%x\n", 2066 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2067 (void *)ill, 2068 ill->ill_ipif->ipif_lcl_addr)); 2069 freemsg(first_mp); 2070 return; 2071 } 2072 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2073 ipha->ipha_dst = ipif->ipif_src_addr; 2074 ipif_refrele(ipif); 2075 } 2076 /* Reset time to live. */ 2077 ipha->ipha_ttl = ip_def_ttl; 2078 { 2079 /* Swap source and destination addresses */ 2080 ipaddr_t tmp; 2081 2082 tmp = ipha->ipha_src; 2083 ipha->ipha_src = ipha->ipha_dst; 2084 ipha->ipha_dst = tmp; 2085 } 2086 ipha->ipha_ident = 0; 2087 if (!IS_SIMPLE_IPH(ipha)) 2088 icmp_options_update(ipha); 2089 2090 /* 2091 * ICMP echo replies should go out on the same interface 2092 * the request came on as probes used by in.mpathd for detecting 2093 * NIC failures are ECHO packets. We turn-off load spreading 2094 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2095 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2096 * function. This is in turn handled by ip_wput and ip_newroute 2097 * to make sure that the packet goes out on the interface it came 2098 * in on. If we don't turnoff load spreading, the packets might get 2099 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2100 * to go out and in.mpathd would wrongly detect a failure or 2101 * mis-detect a NIC failure for link failure. As load spreading 2102 * can happen only if ill_group is not NULL, we do only for 2103 * that case and this does not affect the normal case. 2104 * 2105 * We turn off load spreading only on echo packets that came from 2106 * on-link hosts. If the interface route has been deleted, this will 2107 * not be enforced as we can't do much. For off-link hosts, as the 2108 * default routes in IPv4 does not typically have an ire_ipif 2109 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2110 * Moreover, expecting a default route through this interface may 2111 * not be correct. We use ipha_dst because of the swap above. 2112 */ 2113 onlink = B_FALSE; 2114 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2115 /* 2116 * First, we need to make sure that it is not one of our 2117 * local addresses. If we set onlink when it is one of 2118 * our local addresses, we will end up creating IRE_CACHES 2119 * for one of our local addresses. Then, we will never 2120 * accept packets for them afterwards. 2121 */ 2122 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2123 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2124 if (src_ire == NULL) { 2125 ipif = ipif_get_next_ipif(NULL, ill); 2126 if (ipif == NULL) { 2127 BUMP_MIB(&ip_mib, ipInDiscards); 2128 freemsg(mp); 2129 return; 2130 } 2131 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2132 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2133 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2134 ipif_refrele(ipif); 2135 if (src_ire != NULL) { 2136 onlink = B_TRUE; 2137 ire_refrele(src_ire); 2138 } 2139 } else { 2140 ire_refrele(src_ire); 2141 } 2142 } 2143 if (!mctl_present) { 2144 /* 2145 * This packet should go out the same way as it 2146 * came in i.e in clear. To make sure that global 2147 * policy will not be applied to this in ip_wput_ire, 2148 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2149 */ 2150 ASSERT(first_mp == mp); 2151 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2152 BUMP_MIB(&ip_mib, ipInDiscards); 2153 freemsg(mp); 2154 return; 2155 } 2156 ii = (ipsec_in_t *)first_mp->b_rptr; 2157 2158 /* This is not a secure packet */ 2159 ii->ipsec_in_secure = B_FALSE; 2160 if (onlink) { 2161 ii->ipsec_in_attach_if = B_TRUE; 2162 ii->ipsec_in_ill_index = 2163 ill->ill_phyint->phyint_ifindex; 2164 ii->ipsec_in_rill_index = 2165 recv_ill->ill_phyint->phyint_ifindex; 2166 } 2167 first_mp->b_cont = mp; 2168 } else if (onlink) { 2169 ii = (ipsec_in_t *)first_mp->b_rptr; 2170 ii->ipsec_in_attach_if = B_TRUE; 2171 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2172 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2173 } else { 2174 ii = (ipsec_in_t *)first_mp->b_rptr; 2175 } 2176 ii->ipsec_in_zoneid = zoneid; 2177 ASSERT(zoneid != ALL_ZONES); 2178 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2179 BUMP_MIB(&ip_mib, ipInDiscards); 2180 return; 2181 } 2182 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2183 put(WR(q), first_mp); 2184 } 2185 2186 static ipaddr_t 2187 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2188 { 2189 conn_t *connp; 2190 connf_t *connfp; 2191 ipaddr_t nexthop_addr = INADDR_ANY; 2192 int hdr_length = IPH_HDR_LENGTH(ipha); 2193 uint16_t *up; 2194 uint32_t ports; 2195 2196 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2197 switch (ipha->ipha_protocol) { 2198 case IPPROTO_TCP: 2199 { 2200 tcph_t *tcph; 2201 2202 /* do a reverse lookup */ 2203 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2204 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2205 TCPS_LISTEN); 2206 break; 2207 } 2208 case IPPROTO_UDP: 2209 { 2210 uint32_t dstport, srcport; 2211 2212 ((uint16_t *)&ports)[0] = up[1]; 2213 ((uint16_t *)&ports)[1] = up[0]; 2214 2215 /* Extract ports in net byte order */ 2216 dstport = htons(ntohl(ports) & 0xFFFF); 2217 srcport = htons(ntohl(ports) >> 16); 2218 2219 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2220 mutex_enter(&connfp->connf_lock); 2221 connp = connfp->connf_head; 2222 2223 /* do a reverse lookup */ 2224 while ((connp != NULL) && 2225 (!IPCL_UDP_MATCH(connp, dstport, 2226 ipha->ipha_src, srcport, ipha->ipha_dst) || 2227 connp->conn_zoneid != zoneid)) { 2228 connp = connp->conn_next; 2229 } 2230 if (connp != NULL) 2231 CONN_INC_REF(connp); 2232 mutex_exit(&connfp->connf_lock); 2233 break; 2234 } 2235 case IPPROTO_SCTP: 2236 { 2237 in6_addr_t map_src, map_dst; 2238 2239 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2240 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2241 ((uint16_t *)&ports)[0] = up[1]; 2242 ((uint16_t *)&ports)[1] = up[0]; 2243 2244 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2245 0, zoneid)) == NULL) { 2246 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2247 zoneid, ports, ipha); 2248 } else { 2249 CONN_INC_REF(connp); 2250 SCTP_REFRELE(CONN2SCTP(connp)); 2251 } 2252 break; 2253 } 2254 default: 2255 { 2256 ipha_t ripha; 2257 2258 ripha.ipha_src = ipha->ipha_dst; 2259 ripha.ipha_dst = ipha->ipha_src; 2260 ripha.ipha_protocol = ipha->ipha_protocol; 2261 2262 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2263 mutex_enter(&connfp->connf_lock); 2264 connp = connfp->connf_head; 2265 for (connp = connfp->connf_head; connp != NULL; 2266 connp = connp->conn_next) { 2267 if (IPCL_PROTO_MATCH(connp, 2268 ipha->ipha_protocol, &ripha, ill, 2269 0, zoneid)) { 2270 CONN_INC_REF(connp); 2271 break; 2272 } 2273 } 2274 mutex_exit(&connfp->connf_lock); 2275 } 2276 } 2277 if (connp != NULL) { 2278 if (connp->conn_nexthop_set) 2279 nexthop_addr = connp->conn_nexthop_v4; 2280 CONN_DEC_REF(connp); 2281 } 2282 return (nexthop_addr); 2283 } 2284 2285 /* Table from RFC 1191 */ 2286 static int icmp_frag_size_table[] = 2287 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2288 2289 /* 2290 * Process received ICMP Packet too big. 2291 * After updating any IRE it does the fanout to any matching transport streams. 2292 * Assumes the message has been pulled up till the IP header that caused 2293 * the error. 2294 * 2295 * Returns B_FALSE on failure and B_TRUE on success. 2296 */ 2297 static boolean_t 2298 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2299 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2300 { 2301 ire_t *ire, *first_ire; 2302 int mtu; 2303 int hdr_length; 2304 ipaddr_t nexthop_addr; 2305 2306 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2307 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2308 2309 hdr_length = IPH_HDR_LENGTH(ipha); 2310 2311 /* Drop if the original packet contained a source route */ 2312 if (ip_source_route_included(ipha)) { 2313 return (B_FALSE); 2314 } 2315 /* 2316 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2317 * header. 2318 */ 2319 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2320 mp->b_wptr) { 2321 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2322 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2323 BUMP_MIB(&ip_mib, ipInDiscards); 2324 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2325 return (B_FALSE); 2326 } 2327 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2328 ipha = (ipha_t *)&icmph[1]; 2329 } 2330 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2331 if (nexthop_addr != INADDR_ANY) { 2332 /* nexthop set */ 2333 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2334 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2335 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2336 } else { 2337 /* nexthop not set */ 2338 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2339 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2340 } 2341 2342 if (!first_ire) { 2343 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2344 ntohl(ipha->ipha_dst))); 2345 return (B_FALSE); 2346 } 2347 /* Check for MTU discovery advice as described in RFC 1191 */ 2348 mtu = ntohs(icmph->icmph_du_mtu); 2349 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2350 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2351 ire = ire->ire_next) { 2352 /* 2353 * Look for the connection to which this ICMP message is 2354 * directed. If it has the IP_NEXTHOP option set, then the 2355 * search is limited to IREs with the MATCH_IRE_PRIVATE 2356 * option. Else the search is limited to regular IREs. 2357 */ 2358 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2359 (nexthop_addr != ire->ire_gateway_addr)) || 2360 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2361 (nexthop_addr != INADDR_ANY))) 2362 continue; 2363 2364 mutex_enter(&ire->ire_lock); 2365 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2366 /* Reduce the IRE max frag value as advised. */ 2367 ip1dbg(("Received mtu from router: %d (was %d)\n", 2368 mtu, ire->ire_max_frag)); 2369 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2370 } else { 2371 uint32_t length; 2372 int i; 2373 2374 /* 2375 * Use the table from RFC 1191 to figure out 2376 * the next "plateau" based on the length in 2377 * the original IP packet. 2378 */ 2379 length = ntohs(ipha->ipha_length); 2380 if (ire->ire_max_frag <= length && 2381 ire->ire_max_frag >= length - hdr_length) { 2382 /* 2383 * Handle broken BSD 4.2 systems that 2384 * return the wrong iph_length in ICMP 2385 * errors. 2386 */ 2387 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2388 length, ire->ire_max_frag)); 2389 length -= hdr_length; 2390 } 2391 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2392 if (length > icmp_frag_size_table[i]) 2393 break; 2394 } 2395 if (i == A_CNT(icmp_frag_size_table)) { 2396 /* Smaller than 68! */ 2397 ip1dbg(("Too big for packet size %d\n", 2398 length)); 2399 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2400 ire->ire_frag_flag = 0; 2401 } else { 2402 mtu = icmp_frag_size_table[i]; 2403 ip1dbg(("Calculated mtu %d, packet size %d, " 2404 "before %d", mtu, length, 2405 ire->ire_max_frag)); 2406 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2407 ip1dbg((", after %d\n", ire->ire_max_frag)); 2408 } 2409 /* Record the new max frag size for the ULP. */ 2410 icmph->icmph_du_zero = 0; 2411 icmph->icmph_du_mtu = 2412 htons((uint16_t)ire->ire_max_frag); 2413 } 2414 mutex_exit(&ire->ire_lock); 2415 } 2416 rw_exit(&first_ire->ire_bucket->irb_lock); 2417 ire_refrele(first_ire); 2418 return (B_TRUE); 2419 } 2420 2421 /* 2422 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2423 * calls this function. 2424 */ 2425 static mblk_t * 2426 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2427 { 2428 ipha_t *ipha; 2429 icmph_t *icmph; 2430 ipha_t *in_ipha; 2431 int length; 2432 2433 ASSERT(mp->b_datap->db_type == M_DATA); 2434 2435 /* 2436 * For Self-encapsulated packets, we added an extra IP header 2437 * without the options. Inner IP header is the one from which 2438 * the outer IP header was formed. Thus, we need to remove the 2439 * outer IP header. To do this, we pullup the whole message 2440 * and overlay whatever follows the outer IP header over the 2441 * outer IP header. 2442 */ 2443 2444 if (!pullupmsg(mp, -1)) { 2445 BUMP_MIB(&ip_mib, ipInDiscards); 2446 return (NULL); 2447 } 2448 2449 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2450 ipha = (ipha_t *)&icmph[1]; 2451 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2452 2453 /* 2454 * The length that we want to overlay is following the inner 2455 * IP header. Subtracting the IP header + icmp header + outer 2456 * IP header's length should give us the length that we want to 2457 * overlay. 2458 */ 2459 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2460 hdr_length; 2461 /* 2462 * Overlay whatever follows the inner header over the 2463 * outer header. 2464 */ 2465 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2466 2467 /* Set the wptr to account for the outer header */ 2468 mp->b_wptr -= hdr_length; 2469 return (mp); 2470 } 2471 2472 /* 2473 * Try to pass the ICMP message upstream in case the ULP cares. 2474 * 2475 * If the packet that caused the ICMP error is secure, we send 2476 * it to AH/ESP to make sure that the attached packet has a 2477 * valid association. ipha in the code below points to the 2478 * IP header of the packet that caused the error. 2479 * 2480 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2481 * in the context of IPSEC. Normally we tell the upper layer 2482 * whenever we send the ire (including ip_bind), the IPSEC header 2483 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2484 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2485 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2486 * same thing. As TCP has the IPSEC options size that needs to be 2487 * adjusted, we just pass the MTU unchanged. 2488 * 2489 * IFN could have been generated locally or by some router. 2490 * 2491 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2492 * This happens because IP adjusted its value of MTU on an 2493 * earlier IFN message and could not tell the upper layer, 2494 * the new adjusted value of MTU e.g. Packet was encrypted 2495 * or there was not enough information to fanout to upper 2496 * layers. Thus on the next outbound datagram, ip_wput_ire 2497 * generates the IFN, where IPSEC processing has *not* been 2498 * done. 2499 * 2500 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2501 * could have generated this. This happens because ire_max_frag 2502 * value in IP was set to a new value, while the IPSEC processing 2503 * was being done and after we made the fragmentation check in 2504 * ip_wput_ire. Thus on return from IPSEC processing, 2505 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2506 * and generates the IFN. As IPSEC processing is over, we fanout 2507 * to AH/ESP to remove the header. 2508 * 2509 * In both these cases, ipsec_in_loopback will be set indicating 2510 * that IFN was generated locally. 2511 * 2512 * ROUTER : IFN could be secure or non-secure. 2513 * 2514 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2515 * packet in error has AH/ESP headers to validate the AH/ESP 2516 * headers. AH/ESP will verify whether there is a valid SA or 2517 * not and send it back. We will fanout again if we have more 2518 * data in the packet. 2519 * 2520 * If the packet in error does not have AH/ESP, we handle it 2521 * like any other case. 2522 * 2523 * * NON_SECURE : If the packet in error has AH/ESP headers, 2524 * we attach a dummy ipsec_in and send it up to AH/ESP 2525 * for validation. AH/ESP will verify whether there is a 2526 * valid SA or not and send it back. We will fanout again if 2527 * we have more data in the packet. 2528 * 2529 * If the packet in error does not have AH/ESP, we handle it 2530 * like any other case. 2531 */ 2532 static void 2533 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2534 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2535 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2536 zoneid_t zoneid) 2537 { 2538 uint16_t *up; /* Pointer to ports in ULP header */ 2539 uint32_t ports; /* reversed ports for fanout */ 2540 ipha_t ripha; /* With reversed addresses */ 2541 mblk_t *first_mp; 2542 ipsec_in_t *ii; 2543 tcph_t *tcph; 2544 conn_t *connp; 2545 2546 first_mp = mp; 2547 if (mctl_present) { 2548 mp = first_mp->b_cont; 2549 ASSERT(mp != NULL); 2550 2551 ii = (ipsec_in_t *)first_mp->b_rptr; 2552 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2553 } else { 2554 ii = NULL; 2555 } 2556 2557 switch (ipha->ipha_protocol) { 2558 case IPPROTO_UDP: 2559 /* 2560 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2561 * transport header. 2562 */ 2563 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2564 mp->b_wptr) { 2565 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2566 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2567 BUMP_MIB(&ip_mib, ipInDiscards); 2568 goto drop_pkt; 2569 } 2570 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2571 ipha = (ipha_t *)&icmph[1]; 2572 } 2573 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2574 2575 /* 2576 * Attempt to find a client stream based on port. 2577 * Note that we do a reverse lookup since the header is 2578 * in the form we sent it out. 2579 * The ripha header is only used for the IP_UDP_MATCH and we 2580 * only set the src and dst addresses and protocol. 2581 */ 2582 ripha.ipha_src = ipha->ipha_dst; 2583 ripha.ipha_dst = ipha->ipha_src; 2584 ripha.ipha_protocol = ipha->ipha_protocol; 2585 ((uint16_t *)&ports)[0] = up[1]; 2586 ((uint16_t *)&ports)[1] = up[0]; 2587 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2588 ntohl(ipha->ipha_src), ntohs(up[0]), 2589 ntohl(ipha->ipha_dst), ntohs(up[1]), 2590 icmph->icmph_type, icmph->icmph_code)); 2591 2592 /* Have to change db_type after any pullupmsg */ 2593 DB_TYPE(mp) = M_CTL; 2594 2595 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2596 mctl_present, ip_policy, recv_ill, zoneid); 2597 return; 2598 2599 case IPPROTO_TCP: 2600 /* 2601 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2602 * transport header. 2603 */ 2604 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2605 mp->b_wptr) { 2606 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2607 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2608 BUMP_MIB(&ip_mib, ipInDiscards); 2609 goto drop_pkt; 2610 } 2611 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2612 ipha = (ipha_t *)&icmph[1]; 2613 } 2614 /* 2615 * Find a TCP client stream for this packet. 2616 * Note that we do a reverse lookup since the header is 2617 * in the form we sent it out. 2618 */ 2619 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2620 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2621 if (connp == NULL) { 2622 BUMP_MIB(&ip_mib, ipInDiscards); 2623 goto drop_pkt; 2624 } 2625 2626 /* Have to change db_type after any pullupmsg */ 2627 DB_TYPE(mp) = M_CTL; 2628 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2629 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2630 return; 2631 2632 case IPPROTO_SCTP: 2633 /* 2634 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2635 * transport header. 2636 */ 2637 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2638 mp->b_wptr) { 2639 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2640 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2641 BUMP_MIB(&ip_mib, ipInDiscards); 2642 goto drop_pkt; 2643 } 2644 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2645 ipha = (ipha_t *)&icmph[1]; 2646 } 2647 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2648 /* 2649 * Find a SCTP client stream for this packet. 2650 * Note that we do a reverse lookup since the header is 2651 * in the form we sent it out. 2652 * The ripha header is only used for the matching and we 2653 * only set the src and dst addresses, protocol, and version. 2654 */ 2655 ripha.ipha_src = ipha->ipha_dst; 2656 ripha.ipha_dst = ipha->ipha_src; 2657 ripha.ipha_protocol = ipha->ipha_protocol; 2658 ripha.ipha_version_and_hdr_length = 2659 ipha->ipha_version_and_hdr_length; 2660 ((uint16_t *)&ports)[0] = up[1]; 2661 ((uint16_t *)&ports)[1] = up[0]; 2662 2663 /* Have to change db_type after any pullupmsg */ 2664 DB_TYPE(mp) = M_CTL; 2665 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2666 mctl_present, ip_policy, 0, zoneid); 2667 return; 2668 2669 case IPPROTO_ESP: 2670 case IPPROTO_AH: { 2671 int ipsec_rc; 2672 2673 /* 2674 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2675 * We will re-use the IPSEC_IN if it is already present as 2676 * AH/ESP will not affect any fields in the IPSEC_IN for 2677 * ICMP errors. If there is no IPSEC_IN, allocate a new 2678 * one and attach it in the front. 2679 */ 2680 if (ii != NULL) { 2681 /* 2682 * ip_fanout_proto_again converts the ICMP errors 2683 * that come back from AH/ESP to M_DATA so that 2684 * if it is non-AH/ESP and we do a pullupmsg in 2685 * this function, it would work. Convert it back 2686 * to M_CTL before we send up as this is a ICMP 2687 * error. This could have been generated locally or 2688 * by some router. Validate the inner IPSEC 2689 * headers. 2690 * 2691 * NOTE : ill_index is used by ip_fanout_proto_again 2692 * to locate the ill. 2693 */ 2694 ASSERT(ill != NULL); 2695 ii->ipsec_in_ill_index = 2696 ill->ill_phyint->phyint_ifindex; 2697 ii->ipsec_in_rill_index = 2698 recv_ill->ill_phyint->phyint_ifindex; 2699 DB_TYPE(first_mp->b_cont) = M_CTL; 2700 } else { 2701 /* 2702 * IPSEC_IN is not present. We attach a ipsec_in 2703 * message and send up to IPSEC for validating 2704 * and removing the IPSEC headers. Clear 2705 * ipsec_in_secure so that when we return 2706 * from IPSEC, we don't mistakenly think that this 2707 * is a secure packet came from the network. 2708 * 2709 * NOTE : ill_index is used by ip_fanout_proto_again 2710 * to locate the ill. 2711 */ 2712 ASSERT(first_mp == mp); 2713 first_mp = ipsec_in_alloc(B_TRUE); 2714 if (first_mp == NULL) { 2715 freemsg(mp); 2716 BUMP_MIB(&ip_mib, ipInDiscards); 2717 return; 2718 } 2719 ii = (ipsec_in_t *)first_mp->b_rptr; 2720 2721 /* This is not a secure packet */ 2722 ii->ipsec_in_secure = B_FALSE; 2723 first_mp->b_cont = mp; 2724 DB_TYPE(mp) = M_CTL; 2725 ASSERT(ill != NULL); 2726 ii->ipsec_in_ill_index = 2727 ill->ill_phyint->phyint_ifindex; 2728 ii->ipsec_in_rill_index = 2729 recv_ill->ill_phyint->phyint_ifindex; 2730 } 2731 ip2dbg(("icmp_inbound_error: ipsec\n")); 2732 2733 if (!ipsec_loaded()) { 2734 ip_proto_not_sup(q, first_mp, 0, zoneid); 2735 return; 2736 } 2737 2738 if (ipha->ipha_protocol == IPPROTO_ESP) 2739 ipsec_rc = ipsecesp_icmp_error(first_mp); 2740 else 2741 ipsec_rc = ipsecah_icmp_error(first_mp); 2742 if (ipsec_rc == IPSEC_STATUS_FAILED) 2743 return; 2744 2745 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2746 return; 2747 } 2748 default: 2749 /* 2750 * The ripha header is only used for the lookup and we 2751 * only set the src and dst addresses and protocol. 2752 */ 2753 ripha.ipha_src = ipha->ipha_dst; 2754 ripha.ipha_dst = ipha->ipha_src; 2755 ripha.ipha_protocol = ipha->ipha_protocol; 2756 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2757 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2758 ntohl(ipha->ipha_dst), 2759 icmph->icmph_type, icmph->icmph_code)); 2760 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2761 ipha_t *in_ipha; 2762 2763 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2764 mp->b_wptr) { 2765 if (!pullupmsg(mp, (uchar_t *)ipha + 2766 hdr_length + sizeof (ipha_t) - 2767 mp->b_rptr)) { 2768 2769 BUMP_MIB(&ip_mib, ipInDiscards); 2770 goto drop_pkt; 2771 } 2772 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2773 ipha = (ipha_t *)&icmph[1]; 2774 } 2775 /* 2776 * Caller has verified that length has to be 2777 * at least the size of IP header. 2778 */ 2779 ASSERT(hdr_length >= sizeof (ipha_t)); 2780 /* 2781 * Check the sanity of the inner IP header like 2782 * we did for the outer header. 2783 */ 2784 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2785 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2786 BUMP_MIB(&ip_mib, ipInDiscards); 2787 goto drop_pkt; 2788 } 2789 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2790 BUMP_MIB(&ip_mib, ipInDiscards); 2791 goto drop_pkt; 2792 } 2793 /* Check for Self-encapsulated tunnels */ 2794 if (in_ipha->ipha_src == ipha->ipha_src && 2795 in_ipha->ipha_dst == ipha->ipha_dst) { 2796 2797 mp = icmp_inbound_self_encap_error(mp, 2798 iph_hdr_length, hdr_length); 2799 if (mp == NULL) 2800 goto drop_pkt; 2801 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2802 ipha = (ipha_t *)&icmph[1]; 2803 hdr_length = IPH_HDR_LENGTH(ipha); 2804 /* 2805 * The packet in error is self-encapsualted. 2806 * And we are finding it further encapsulated 2807 * which we could not have possibly generated. 2808 */ 2809 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2810 BUMP_MIB(&ip_mib, ipInDiscards); 2811 goto drop_pkt; 2812 } 2813 icmp_inbound_error_fanout(q, ill, first_mp, 2814 icmph, ipha, iph_hdr_length, hdr_length, 2815 mctl_present, ip_policy, recv_ill, zoneid); 2816 return; 2817 } 2818 } 2819 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2820 ipha->ipha_protocol == IPPROTO_IPV6) && 2821 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2822 ii != NULL && 2823 ii->ipsec_in_loopback && 2824 ii->ipsec_in_secure) { 2825 /* 2826 * For IP tunnels that get a looped-back 2827 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2828 * reported new MTU to take into account the IPsec 2829 * headers protecting this configured tunnel. 2830 * 2831 * This allows the tunnel module (tun.c) to blindly 2832 * accept the MTU reported in an ICMP "too big" 2833 * message. 2834 * 2835 * Non-looped back ICMP messages will just be 2836 * handled by the security protocols (if needed), 2837 * and the first subsequent packet will hit this 2838 * path. 2839 */ 2840 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2841 ipsec_in_extra_length(first_mp)); 2842 } 2843 /* Have to change db_type after any pullupmsg */ 2844 DB_TYPE(mp) = M_CTL; 2845 2846 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2847 ip_policy, recv_ill, zoneid); 2848 return; 2849 } 2850 /* NOTREACHED */ 2851 drop_pkt:; 2852 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2853 freemsg(first_mp); 2854 } 2855 2856 /* 2857 * Common IP options parser. 2858 * 2859 * Setup routine: fill in *optp with options-parsing state, then 2860 * tail-call ipoptp_next to return the first option. 2861 */ 2862 uint8_t 2863 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2864 { 2865 uint32_t totallen; /* total length of all options */ 2866 2867 totallen = ipha->ipha_version_and_hdr_length - 2868 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2869 totallen <<= 2; 2870 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2871 optp->ipoptp_end = optp->ipoptp_next + totallen; 2872 optp->ipoptp_flags = 0; 2873 return (ipoptp_next(optp)); 2874 } 2875 2876 /* 2877 * Common IP options parser: extract next option. 2878 */ 2879 uint8_t 2880 ipoptp_next(ipoptp_t *optp) 2881 { 2882 uint8_t *end = optp->ipoptp_end; 2883 uint8_t *cur = optp->ipoptp_next; 2884 uint8_t opt, len, pointer; 2885 2886 /* 2887 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2888 * has been corrupted. 2889 */ 2890 ASSERT(cur <= end); 2891 2892 if (cur == end) 2893 return (IPOPT_EOL); 2894 2895 opt = cur[IPOPT_OPTVAL]; 2896 2897 /* 2898 * Skip any NOP options. 2899 */ 2900 while (opt == IPOPT_NOP) { 2901 cur++; 2902 if (cur == end) 2903 return (IPOPT_EOL); 2904 opt = cur[IPOPT_OPTVAL]; 2905 } 2906 2907 if (opt == IPOPT_EOL) 2908 return (IPOPT_EOL); 2909 2910 /* 2911 * Option requiring a length. 2912 */ 2913 if ((cur + 1) >= end) { 2914 optp->ipoptp_flags |= IPOPTP_ERROR; 2915 return (IPOPT_EOL); 2916 } 2917 len = cur[IPOPT_OLEN]; 2918 if (len < 2) { 2919 optp->ipoptp_flags |= IPOPTP_ERROR; 2920 return (IPOPT_EOL); 2921 } 2922 optp->ipoptp_cur = cur; 2923 optp->ipoptp_len = len; 2924 optp->ipoptp_next = cur + len; 2925 if (cur + len > end) { 2926 optp->ipoptp_flags |= IPOPTP_ERROR; 2927 return (IPOPT_EOL); 2928 } 2929 2930 /* 2931 * For the options which require a pointer field, make sure 2932 * its there, and make sure it points to either something 2933 * inside this option, or the end of the option. 2934 */ 2935 switch (opt) { 2936 case IPOPT_RR: 2937 case IPOPT_TS: 2938 case IPOPT_LSRR: 2939 case IPOPT_SSRR: 2940 if (len <= IPOPT_OFFSET) { 2941 optp->ipoptp_flags |= IPOPTP_ERROR; 2942 return (opt); 2943 } 2944 pointer = cur[IPOPT_OFFSET]; 2945 if (pointer - 1 > len) { 2946 optp->ipoptp_flags |= IPOPTP_ERROR; 2947 return (opt); 2948 } 2949 break; 2950 } 2951 2952 /* 2953 * Sanity check the pointer field based on the type of the 2954 * option. 2955 */ 2956 switch (opt) { 2957 case IPOPT_RR: 2958 case IPOPT_SSRR: 2959 case IPOPT_LSRR: 2960 if (pointer < IPOPT_MINOFF_SR) 2961 optp->ipoptp_flags |= IPOPTP_ERROR; 2962 break; 2963 case IPOPT_TS: 2964 if (pointer < IPOPT_MINOFF_IT) 2965 optp->ipoptp_flags |= IPOPTP_ERROR; 2966 /* 2967 * Note that the Internet Timestamp option also 2968 * contains two four bit fields (the Overflow field, 2969 * and the Flag field), which follow the pointer 2970 * field. We don't need to check that these fields 2971 * fall within the length of the option because this 2972 * was implicitely done above. We've checked that the 2973 * pointer value is at least IPOPT_MINOFF_IT, and that 2974 * it falls within the option. Since IPOPT_MINOFF_IT > 2975 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2976 */ 2977 ASSERT(len > IPOPT_POS_OV_FLG); 2978 break; 2979 } 2980 2981 return (opt); 2982 } 2983 2984 /* 2985 * Use the outgoing IP header to create an IP_OPTIONS option the way 2986 * it was passed down from the application. 2987 */ 2988 int 2989 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2990 { 2991 ipoptp_t opts; 2992 const uchar_t *opt; 2993 uint8_t optval; 2994 uint8_t optlen; 2995 uint32_t len = 0; 2996 uchar_t *buf1 = buf; 2997 2998 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2999 len += IP_ADDR_LEN; 3000 bzero(buf1, IP_ADDR_LEN); 3001 3002 /* 3003 * OK to cast away const here, as we don't store through the returned 3004 * opts.ipoptp_cur pointer. 3005 */ 3006 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3007 optval != IPOPT_EOL; 3008 optval = ipoptp_next(&opts)) { 3009 int off; 3010 3011 opt = opts.ipoptp_cur; 3012 optlen = opts.ipoptp_len; 3013 switch (optval) { 3014 case IPOPT_SSRR: 3015 case IPOPT_LSRR: 3016 3017 /* 3018 * Insert ipha_dst as the first entry in the source 3019 * route and move down the entries on step. 3020 * The last entry gets placed at buf1. 3021 */ 3022 buf[IPOPT_OPTVAL] = optval; 3023 buf[IPOPT_OLEN] = optlen; 3024 buf[IPOPT_OFFSET] = optlen; 3025 3026 off = optlen - IP_ADDR_LEN; 3027 if (off < 0) { 3028 /* No entries in source route */ 3029 break; 3030 } 3031 /* Last entry in source route */ 3032 bcopy(opt + off, buf1, IP_ADDR_LEN); 3033 off -= IP_ADDR_LEN; 3034 3035 while (off > 0) { 3036 bcopy(opt + off, 3037 buf + off + IP_ADDR_LEN, 3038 IP_ADDR_LEN); 3039 off -= IP_ADDR_LEN; 3040 } 3041 /* ipha_dst into first slot */ 3042 bcopy(&ipha->ipha_dst, 3043 buf + off + IP_ADDR_LEN, 3044 IP_ADDR_LEN); 3045 buf += optlen; 3046 len += optlen; 3047 break; 3048 3049 case IPOPT_COMSEC: 3050 case IPOPT_SECURITY: 3051 /* if passing up a label is not ok, then remove */ 3052 if (is_system_labeled()) 3053 break; 3054 /* FALLTHROUGH */ 3055 default: 3056 bcopy(opt, buf, optlen); 3057 buf += optlen; 3058 len += optlen; 3059 break; 3060 } 3061 } 3062 done: 3063 /* Pad the resulting options */ 3064 while (len & 0x3) { 3065 *buf++ = IPOPT_EOL; 3066 len++; 3067 } 3068 return (len); 3069 } 3070 3071 /* 3072 * Update any record route or timestamp options to include this host. 3073 * Reverse any source route option. 3074 * This routine assumes that the options are well formed i.e. that they 3075 * have already been checked. 3076 */ 3077 static void 3078 icmp_options_update(ipha_t *ipha) 3079 { 3080 ipoptp_t opts; 3081 uchar_t *opt; 3082 uint8_t optval; 3083 ipaddr_t src; /* Our local address */ 3084 ipaddr_t dst; 3085 3086 ip2dbg(("icmp_options_update\n")); 3087 src = ipha->ipha_src; 3088 dst = ipha->ipha_dst; 3089 3090 for (optval = ipoptp_first(&opts, ipha); 3091 optval != IPOPT_EOL; 3092 optval = ipoptp_next(&opts)) { 3093 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3094 opt = opts.ipoptp_cur; 3095 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3096 optval, opts.ipoptp_len)); 3097 switch (optval) { 3098 int off1, off2; 3099 case IPOPT_SSRR: 3100 case IPOPT_LSRR: 3101 /* 3102 * Reverse the source route. The first entry 3103 * should be the next to last one in the current 3104 * source route (the last entry is our address). 3105 * The last entry should be the final destination. 3106 */ 3107 off1 = IPOPT_MINOFF_SR - 1; 3108 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3109 if (off2 < 0) { 3110 /* No entries in source route */ 3111 ip1dbg(( 3112 "icmp_options_update: bad src route\n")); 3113 break; 3114 } 3115 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3116 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3117 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3118 off2 -= IP_ADDR_LEN; 3119 3120 while (off1 < off2) { 3121 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3122 bcopy((char *)opt + off2, (char *)opt + off1, 3123 IP_ADDR_LEN); 3124 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3125 off1 += IP_ADDR_LEN; 3126 off2 -= IP_ADDR_LEN; 3127 } 3128 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3129 break; 3130 } 3131 } 3132 } 3133 3134 /* 3135 * Process received ICMP Redirect messages. 3136 */ 3137 /* ARGSUSED */ 3138 static void 3139 icmp_redirect(mblk_t *mp) 3140 { 3141 ipha_t *ipha; 3142 int iph_hdr_length; 3143 icmph_t *icmph; 3144 ipha_t *ipha_err; 3145 ire_t *ire; 3146 ire_t *prev_ire; 3147 ire_t *save_ire; 3148 ipaddr_t src, dst, gateway; 3149 iulp_t ulp_info = { 0 }; 3150 int error; 3151 3152 ipha = (ipha_t *)mp->b_rptr; 3153 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3154 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3155 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3156 BUMP_MIB(&icmp_mib, icmpInErrors); 3157 freemsg(mp); 3158 return; 3159 } 3160 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3161 ipha_err = (ipha_t *)&icmph[1]; 3162 src = ipha->ipha_src; 3163 dst = ipha_err->ipha_dst; 3164 gateway = icmph->icmph_rd_gateway; 3165 /* Make sure the new gateway is reachable somehow. */ 3166 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3167 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3168 /* 3169 * Make sure we had a route for the dest in question and that 3170 * that route was pointing to the old gateway (the source of the 3171 * redirect packet.) 3172 */ 3173 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3174 NULL, MATCH_IRE_GW); 3175 /* 3176 * Check that 3177 * the redirect was not from ourselves 3178 * the new gateway and the old gateway are directly reachable 3179 */ 3180 if (!prev_ire || 3181 !ire || 3182 ire->ire_type == IRE_LOCAL) { 3183 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3184 freemsg(mp); 3185 if (ire != NULL) 3186 ire_refrele(ire); 3187 if (prev_ire != NULL) 3188 ire_refrele(prev_ire); 3189 return; 3190 } 3191 3192 /* 3193 * Should we use the old ULP info to create the new gateway? From 3194 * a user's perspective, we should inherit the info so that it 3195 * is a "smooth" transition. If we do not do that, then new 3196 * connections going thru the new gateway will have no route metrics, 3197 * which is counter-intuitive to user. From a network point of 3198 * view, this may or may not make sense even though the new gateway 3199 * is still directly connected to us so the route metrics should not 3200 * change much. 3201 * 3202 * But if the old ire_uinfo is not initialized, we do another 3203 * recursive lookup on the dest using the new gateway. There may 3204 * be a route to that. If so, use it to initialize the redirect 3205 * route. 3206 */ 3207 if (prev_ire->ire_uinfo.iulp_set) { 3208 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3209 } else { 3210 ire_t *tmp_ire; 3211 ire_t *sire; 3212 3213 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3214 ALL_ZONES, 0, NULL, 3215 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3216 if (sire != NULL) { 3217 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3218 /* 3219 * If sire != NULL, ire_ftable_lookup() should not 3220 * return a NULL value. 3221 */ 3222 ASSERT(tmp_ire != NULL); 3223 ire_refrele(tmp_ire); 3224 ire_refrele(sire); 3225 } else if (tmp_ire != NULL) { 3226 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3227 sizeof (iulp_t)); 3228 ire_refrele(tmp_ire); 3229 } 3230 } 3231 if (prev_ire->ire_type == IRE_CACHE) 3232 ire_delete(prev_ire); 3233 ire_refrele(prev_ire); 3234 /* 3235 * TODO: more precise handling for cases 0, 2, 3, the latter two 3236 * require TOS routing 3237 */ 3238 switch (icmph->icmph_code) { 3239 case 0: 3240 case 1: 3241 /* TODO: TOS specificity for cases 2 and 3 */ 3242 case 2: 3243 case 3: 3244 break; 3245 default: 3246 freemsg(mp); 3247 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3248 ire_refrele(ire); 3249 return; 3250 } 3251 /* 3252 * Create a Route Association. This will allow us to remember that 3253 * someone we believe told us to use the particular gateway. 3254 */ 3255 save_ire = ire; 3256 ire = ire_create( 3257 (uchar_t *)&dst, /* dest addr */ 3258 (uchar_t *)&ip_g_all_ones, /* mask */ 3259 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3260 (uchar_t *)&gateway, /* gateway addr */ 3261 NULL, /* no in_srcaddr */ 3262 &save_ire->ire_max_frag, /* max frag */ 3263 NULL, /* Fast Path header */ 3264 NULL, /* no rfq */ 3265 NULL, /* no stq */ 3266 IRE_HOST_REDIRECT, 3267 NULL, 3268 NULL, 3269 NULL, 3270 0, 3271 0, 3272 0, 3273 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3274 &ulp_info, 3275 NULL, 3276 NULL); 3277 3278 if (ire == NULL) { 3279 freemsg(mp); 3280 ire_refrele(save_ire); 3281 return; 3282 } 3283 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3284 ire_refrele(save_ire); 3285 atomic_inc_32(&ip_redirect_cnt); 3286 3287 if (error == 0) { 3288 ire_refrele(ire); /* Held in ire_add_v4 */ 3289 /* tell routing sockets that we received a redirect */ 3290 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3291 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3292 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3293 } 3294 3295 /* 3296 * Delete any existing IRE_HOST_REDIRECT for this destination. 3297 * This together with the added IRE has the effect of 3298 * modifying an existing redirect. 3299 */ 3300 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3301 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3302 if (prev_ire) { 3303 ire_delete(prev_ire); 3304 ire_refrele(prev_ire); 3305 } 3306 3307 freemsg(mp); 3308 } 3309 3310 /* 3311 * Generate an ICMP parameter problem message. 3312 */ 3313 static void 3314 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3315 { 3316 icmph_t icmph; 3317 boolean_t mctl_present; 3318 mblk_t *first_mp; 3319 3320 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3321 3322 if (!(mp = icmp_pkt_err_ok(mp))) { 3323 if (mctl_present) 3324 freeb(first_mp); 3325 return; 3326 } 3327 3328 bzero(&icmph, sizeof (icmph_t)); 3329 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3330 icmph.icmph_pp_ptr = ptr; 3331 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3332 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3333 } 3334 3335 /* 3336 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3337 * the ICMP header pointed to by "stuff". (May be called as writer.) 3338 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3339 * an icmp error packet can be sent. 3340 * Assigns an appropriate source address to the packet. If ipha_dst is 3341 * one of our addresses use it for source. Otherwise pick a source based 3342 * on a route lookup back to ipha_src. 3343 * Note that ipha_src must be set here since the 3344 * packet is likely to arrive on an ill queue in ip_wput() which will 3345 * not set a source address. 3346 */ 3347 static void 3348 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3349 boolean_t mctl_present, zoneid_t zoneid) 3350 { 3351 ipaddr_t dst; 3352 icmph_t *icmph; 3353 ipha_t *ipha; 3354 uint_t len_needed; 3355 size_t msg_len; 3356 mblk_t *mp1; 3357 ipaddr_t src; 3358 ire_t *ire; 3359 mblk_t *ipsec_mp; 3360 ipsec_out_t *io = NULL; 3361 boolean_t xmit_if_on = B_FALSE; 3362 3363 if (mctl_present) { 3364 /* 3365 * If it is : 3366 * 3367 * 1) a IPSEC_OUT, then this is caused by outbound 3368 * datagram originating on this host. IPSEC processing 3369 * may or may not have been done. Refer to comments above 3370 * icmp_inbound_error_fanout for details. 3371 * 3372 * 2) a IPSEC_IN if we are generating a icmp_message 3373 * for an incoming datagram destined for us i.e called 3374 * from ip_fanout_send_icmp. 3375 */ 3376 ipsec_info_t *in; 3377 ipsec_mp = mp; 3378 mp = ipsec_mp->b_cont; 3379 3380 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3381 ipha = (ipha_t *)mp->b_rptr; 3382 3383 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3384 in->ipsec_info_type == IPSEC_IN); 3385 3386 if (in->ipsec_info_type == IPSEC_IN) { 3387 /* 3388 * Convert the IPSEC_IN to IPSEC_OUT. 3389 */ 3390 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3391 BUMP_MIB(&ip_mib, ipOutDiscards); 3392 return; 3393 } 3394 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3395 } else { 3396 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3397 io = (ipsec_out_t *)in; 3398 if (io->ipsec_out_xmit_if) 3399 xmit_if_on = B_TRUE; 3400 /* 3401 * Clear out ipsec_out_proc_begin, so we do a fresh 3402 * ire lookup. 3403 */ 3404 io->ipsec_out_proc_begin = B_FALSE; 3405 } 3406 ASSERT(zoneid == io->ipsec_out_zoneid); 3407 ASSERT(zoneid != ALL_ZONES); 3408 } else { 3409 /* 3410 * This is in clear. The icmp message we are building 3411 * here should go out in clear. 3412 * 3413 * Pardon the convolution of it all, but it's easier to 3414 * allocate a "use cleartext" IPSEC_IN message and convert 3415 * it than it is to allocate a new one. 3416 */ 3417 ipsec_in_t *ii; 3418 ASSERT(DB_TYPE(mp) == M_DATA); 3419 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3420 freemsg(mp); 3421 BUMP_MIB(&ip_mib, ipOutDiscards); 3422 return; 3423 } 3424 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3425 3426 /* This is not a secure packet */ 3427 ii->ipsec_in_secure = B_FALSE; 3428 /* 3429 * For trusted extensions using a shared IP address we can 3430 * send using any zoneid. 3431 */ 3432 if (zoneid == ALL_ZONES) 3433 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3434 else 3435 ii->ipsec_in_zoneid = zoneid; 3436 ipsec_mp->b_cont = mp; 3437 ipha = (ipha_t *)mp->b_rptr; 3438 /* 3439 * Convert the IPSEC_IN to IPSEC_OUT. 3440 */ 3441 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3442 BUMP_MIB(&ip_mib, ipOutDiscards); 3443 return; 3444 } 3445 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3446 } 3447 3448 /* Remember our eventual destination */ 3449 dst = ipha->ipha_src; 3450 3451 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3452 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3453 if (ire != NULL && 3454 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3455 src = ipha->ipha_dst; 3456 } else if (!xmit_if_on) { 3457 if (ire != NULL) 3458 ire_refrele(ire); 3459 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3460 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3461 if (ire == NULL) { 3462 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3463 freemsg(ipsec_mp); 3464 return; 3465 } 3466 src = ire->ire_src_addr; 3467 } else { 3468 ipif_t *ipif = NULL; 3469 ill_t *ill; 3470 /* 3471 * This must be an ICMP error coming from 3472 * ip_mrtun_forward(). The src addr should 3473 * be equal to the IP-addr of the outgoing 3474 * interface. 3475 */ 3476 if (io == NULL) { 3477 /* This is not a IPSEC_OUT type control msg */ 3478 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3479 freemsg(ipsec_mp); 3480 return; 3481 } 3482 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3483 NULL, NULL, NULL, NULL); 3484 if (ill != NULL) { 3485 ipif = ipif_get_next_ipif(NULL, ill); 3486 ill_refrele(ill); 3487 } 3488 if (ipif == NULL) { 3489 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3490 freemsg(ipsec_mp); 3491 return; 3492 } 3493 src = ipif->ipif_src_addr; 3494 ipif_refrele(ipif); 3495 } 3496 3497 if (ire != NULL) 3498 ire_refrele(ire); 3499 3500 /* 3501 * Check if we can send back more then 8 bytes in addition 3502 * to the IP header. We will include as much as 64 bytes. 3503 */ 3504 len_needed = IPH_HDR_LENGTH(ipha); 3505 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3506 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3507 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3508 } 3509 len_needed += ip_icmp_return; 3510 msg_len = msgdsize(mp); 3511 if (msg_len > len_needed) { 3512 (void) adjmsg(mp, len_needed - msg_len); 3513 msg_len = len_needed; 3514 } 3515 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3516 if (mp1 == NULL) { 3517 BUMP_MIB(&icmp_mib, icmpOutErrors); 3518 freemsg(ipsec_mp); 3519 return; 3520 } 3521 /* 3522 * On an unlabeled system, dblks don't necessarily have creds. 3523 */ 3524 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3525 if (DB_CRED(mp) != NULL) 3526 mblk_setcred(mp1, DB_CRED(mp)); 3527 mp1->b_cont = mp; 3528 mp = mp1; 3529 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3530 ipsec_mp->b_rptr == (uint8_t *)io && 3531 io->ipsec_out_type == IPSEC_OUT); 3532 ipsec_mp->b_cont = mp; 3533 3534 /* 3535 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3536 * node generates be accepted in peace by all on-host destinations. 3537 * If we do NOT assume that all on-host destinations trust 3538 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3539 * (Look for ipsec_out_icmp_loopback). 3540 */ 3541 io->ipsec_out_icmp_loopback = B_TRUE; 3542 3543 ipha = (ipha_t *)mp->b_rptr; 3544 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3545 *ipha = icmp_ipha; 3546 ipha->ipha_src = src; 3547 ipha->ipha_dst = dst; 3548 ipha->ipha_ttl = ip_def_ttl; 3549 msg_len += sizeof (icmp_ipha) + len; 3550 if (msg_len > IP_MAXPACKET) { 3551 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3552 msg_len = IP_MAXPACKET; 3553 } 3554 ipha->ipha_length = htons((uint16_t)msg_len); 3555 icmph = (icmph_t *)&ipha[1]; 3556 bcopy(stuff, icmph, len); 3557 icmph->icmph_checksum = 0; 3558 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3559 if (icmph->icmph_checksum == 0) 3560 icmph->icmph_checksum = 0xFFFF; 3561 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3562 put(q, ipsec_mp); 3563 } 3564 3565 /* 3566 * Determine if an ICMP error packet can be sent given the rate limit. 3567 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3568 * in milliseconds) and a burst size. Burst size number of packets can 3569 * be sent arbitrarely closely spaced. 3570 * The state is tracked using two variables to implement an approximate 3571 * token bucket filter: 3572 * icmp_pkt_err_last - lbolt value when the last burst started 3573 * icmp_pkt_err_sent - number of packets sent in current burst 3574 */ 3575 boolean_t 3576 icmp_err_rate_limit(void) 3577 { 3578 clock_t now = TICK_TO_MSEC(lbolt); 3579 uint_t refilled; /* Number of packets refilled in tbf since last */ 3580 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3581 3582 if (err_interval == 0) 3583 return (B_FALSE); 3584 3585 if (icmp_pkt_err_last > now) { 3586 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3587 icmp_pkt_err_last = 0; 3588 icmp_pkt_err_sent = 0; 3589 } 3590 /* 3591 * If we are in a burst update the token bucket filter. 3592 * Update the "last" time to be close to "now" but make sure 3593 * we don't loose precision. 3594 */ 3595 if (icmp_pkt_err_sent != 0) { 3596 refilled = (now - icmp_pkt_err_last)/err_interval; 3597 if (refilled > icmp_pkt_err_sent) { 3598 icmp_pkt_err_sent = 0; 3599 } else { 3600 icmp_pkt_err_sent -= refilled; 3601 icmp_pkt_err_last += refilled * err_interval; 3602 } 3603 } 3604 if (icmp_pkt_err_sent == 0) { 3605 /* Start of new burst */ 3606 icmp_pkt_err_last = now; 3607 } 3608 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3609 icmp_pkt_err_sent++; 3610 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3611 icmp_pkt_err_sent)); 3612 return (B_FALSE); 3613 } 3614 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3615 return (B_TRUE); 3616 } 3617 3618 /* 3619 * Check if it is ok to send an IPv4 ICMP error packet in 3620 * response to the IPv4 packet in mp. 3621 * Free the message and return null if no 3622 * ICMP error packet should be sent. 3623 */ 3624 static mblk_t * 3625 icmp_pkt_err_ok(mblk_t *mp) 3626 { 3627 icmph_t *icmph; 3628 ipha_t *ipha; 3629 uint_t len_needed; 3630 ire_t *src_ire; 3631 ire_t *dst_ire; 3632 3633 if (!mp) 3634 return (NULL); 3635 ipha = (ipha_t *)mp->b_rptr; 3636 if (ip_csum_hdr(ipha)) { 3637 BUMP_MIB(&ip_mib, ipInCksumErrs); 3638 freemsg(mp); 3639 return (NULL); 3640 } 3641 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3642 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3643 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3644 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3645 if (src_ire != NULL || dst_ire != NULL || 3646 CLASSD(ipha->ipha_dst) || 3647 CLASSD(ipha->ipha_src) || 3648 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3649 /* Note: only errors to the fragment with offset 0 */ 3650 BUMP_MIB(&icmp_mib, icmpOutDrops); 3651 freemsg(mp); 3652 if (src_ire != NULL) 3653 ire_refrele(src_ire); 3654 if (dst_ire != NULL) 3655 ire_refrele(dst_ire); 3656 return (NULL); 3657 } 3658 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3659 /* 3660 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3661 * errors in response to any ICMP errors. 3662 */ 3663 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3664 if (mp->b_wptr - mp->b_rptr < len_needed) { 3665 if (!pullupmsg(mp, len_needed)) { 3666 BUMP_MIB(&icmp_mib, icmpInErrors); 3667 freemsg(mp); 3668 return (NULL); 3669 } 3670 ipha = (ipha_t *)mp->b_rptr; 3671 } 3672 icmph = (icmph_t *) 3673 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3674 switch (icmph->icmph_type) { 3675 case ICMP_DEST_UNREACHABLE: 3676 case ICMP_SOURCE_QUENCH: 3677 case ICMP_TIME_EXCEEDED: 3678 case ICMP_PARAM_PROBLEM: 3679 case ICMP_REDIRECT: 3680 BUMP_MIB(&icmp_mib, icmpOutDrops); 3681 freemsg(mp); 3682 return (NULL); 3683 default: 3684 break; 3685 } 3686 } 3687 /* 3688 * If this is a labeled system, then check to see if we're allowed to 3689 * send a response to this particular sender. If not, then just drop. 3690 */ 3691 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3692 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3693 BUMP_MIB(&icmp_mib, icmpOutDrops); 3694 freemsg(mp); 3695 return (NULL); 3696 } 3697 if (icmp_err_rate_limit()) { 3698 /* 3699 * Only send ICMP error packets every so often. 3700 * This should be done on a per port/source basis, 3701 * but for now this will suffice. 3702 */ 3703 freemsg(mp); 3704 return (NULL); 3705 } 3706 return (mp); 3707 } 3708 3709 /* 3710 * Generate an ICMP redirect message. 3711 */ 3712 static void 3713 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3714 { 3715 icmph_t icmph; 3716 3717 /* 3718 * We are called from ip_rput where we could 3719 * not have attached an IPSEC_IN. 3720 */ 3721 ASSERT(mp->b_datap->db_type == M_DATA); 3722 3723 if (!(mp = icmp_pkt_err_ok(mp))) { 3724 return; 3725 } 3726 3727 bzero(&icmph, sizeof (icmph_t)); 3728 icmph.icmph_type = ICMP_REDIRECT; 3729 icmph.icmph_code = 1; 3730 icmph.icmph_rd_gateway = gateway; 3731 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3732 /* Redirects sent by router, and router is global zone */ 3733 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3734 } 3735 3736 /* 3737 * Generate an ICMP time exceeded message. 3738 */ 3739 void 3740 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3741 { 3742 icmph_t icmph; 3743 boolean_t mctl_present; 3744 mblk_t *first_mp; 3745 3746 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3747 3748 if (!(mp = icmp_pkt_err_ok(mp))) { 3749 if (mctl_present) 3750 freeb(first_mp); 3751 return; 3752 } 3753 3754 bzero(&icmph, sizeof (icmph_t)); 3755 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3756 icmph.icmph_code = code; 3757 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3758 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3759 } 3760 3761 /* 3762 * Generate an ICMP unreachable message. 3763 */ 3764 void 3765 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3766 { 3767 icmph_t icmph; 3768 mblk_t *first_mp; 3769 boolean_t mctl_present; 3770 3771 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3772 3773 if (!(mp = icmp_pkt_err_ok(mp))) { 3774 if (mctl_present) 3775 freeb(first_mp); 3776 return; 3777 } 3778 3779 bzero(&icmph, sizeof (icmph_t)); 3780 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3781 icmph.icmph_code = code; 3782 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3783 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3784 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3785 zoneid); 3786 } 3787 3788 /* 3789 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3790 * duplicate. As long as someone else holds the address, the interface will 3791 * stay down. When that conflict goes away, the interface is brought back up. 3792 * This is done so that accidental shutdowns of addresses aren't made 3793 * permanent. Your server will recover from a failure. 3794 * 3795 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3796 * user space process (dhcpagent). 3797 * 3798 * Recovery completes if ARP reports that the address is now ours (via 3799 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3800 * 3801 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3802 */ 3803 static void 3804 ipif_dup_recovery(void *arg) 3805 { 3806 ipif_t *ipif = arg; 3807 ill_t *ill = ipif->ipif_ill; 3808 mblk_t *arp_add_mp; 3809 mblk_t *arp_del_mp; 3810 area_t *area; 3811 3812 ipif->ipif_recovery_id = 0; 3813 3814 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3815 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3816 /* No reason to try to bring this address back. */ 3817 return; 3818 } 3819 3820 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3821 goto alloc_fail; 3822 3823 if (ipif->ipif_arp_del_mp == NULL) { 3824 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3825 goto alloc_fail; 3826 ipif->ipif_arp_del_mp = arp_del_mp; 3827 } 3828 3829 /* Setting the 'unverified' flag restarts DAD */ 3830 area = (area_t *)arp_add_mp->b_rptr; 3831 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3832 ACE_F_UNVERIFIED; 3833 putnext(ill->ill_rq, arp_add_mp); 3834 return; 3835 3836 alloc_fail: 3837 /* On allocation failure, just restart the timer */ 3838 freemsg(arp_add_mp); 3839 if (ip_dup_recovery > 0) { 3840 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3841 MSEC_TO_TICK(ip_dup_recovery)); 3842 } 3843 } 3844 3845 /* 3846 * This is for exclusive changes due to ARP. Either tear down an interface due 3847 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3848 */ 3849 /* ARGSUSED */ 3850 static void 3851 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3852 { 3853 ill_t *ill = rq->q_ptr; 3854 arh_t *arh; 3855 ipaddr_t src; 3856 ipif_t *ipif; 3857 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3858 char hbuf[MAC_STR_LEN]; 3859 char sbuf[INET_ADDRSTRLEN]; 3860 const char *failtype; 3861 boolean_t bring_up; 3862 3863 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3864 case AR_CN_READY: 3865 failtype = NULL; 3866 bring_up = B_TRUE; 3867 break; 3868 case AR_CN_FAILED: 3869 failtype = "in use"; 3870 bring_up = B_FALSE; 3871 break; 3872 default: 3873 failtype = "claimed"; 3874 bring_up = B_FALSE; 3875 break; 3876 } 3877 3878 arh = (arh_t *)mp->b_cont->b_rptr; 3879 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3880 3881 /* Handle failures due to probes */ 3882 if (src == 0) { 3883 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3884 IP_ADDR_LEN); 3885 } 3886 3887 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3888 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3889 sizeof (hbuf)); 3890 (void) ip_dot_addr(src, sbuf); 3891 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3892 3893 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3894 ipif->ipif_lcl_addr != src) { 3895 continue; 3896 } 3897 3898 /* 3899 * If we failed on a recovery probe, then restart the timer to 3900 * try again later. 3901 */ 3902 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3903 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3904 ill->ill_net_type == IRE_IF_RESOLVER && 3905 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3906 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3907 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3908 continue; 3909 } 3910 3911 /* 3912 * If what we're trying to do has already been done, then do 3913 * nothing. 3914 */ 3915 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3916 continue; 3917 3918 if (ipif->ipif_id != 0) { 3919 (void) snprintf(ibuf + ill->ill_name_length - 1, 3920 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3921 ipif->ipif_id); 3922 } 3923 if (failtype == NULL) { 3924 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3925 ibuf); 3926 } else { 3927 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3928 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3929 } 3930 3931 if (bring_up) { 3932 ASSERT(ill->ill_dl_up); 3933 /* 3934 * Free up the ARP delete message so we can allocate 3935 * a fresh one through the normal path. 3936 */ 3937 freemsg(ipif->ipif_arp_del_mp); 3938 ipif->ipif_arp_del_mp = NULL; 3939 if (ipif_resolver_up(ipif, Res_act_initial) != 3940 EINPROGRESS) { 3941 ipif->ipif_addr_ready = 1; 3942 (void) ipif_up_done(ipif); 3943 } 3944 continue; 3945 } 3946 3947 mutex_enter(&ill->ill_lock); 3948 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3949 ipif->ipif_flags |= IPIF_DUPLICATE; 3950 ill->ill_ipif_dup_count++; 3951 mutex_exit(&ill->ill_lock); 3952 /* 3953 * Already exclusive on the ill; no need to handle deferred 3954 * processing here. 3955 */ 3956 (void) ipif_down(ipif, NULL, NULL); 3957 ipif_down_tail(ipif); 3958 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3959 ill->ill_net_type == IRE_IF_RESOLVER && 3960 ip_dup_recovery > 0) { 3961 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3962 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3963 } 3964 } 3965 freemsg(mp); 3966 } 3967 3968 /* ARGSUSED */ 3969 static void 3970 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3971 { 3972 ill_t *ill = rq->q_ptr; 3973 arh_t *arh; 3974 ipaddr_t src; 3975 ipif_t *ipif; 3976 3977 arh = (arh_t *)mp->b_cont->b_rptr; 3978 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3979 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3980 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3981 (void) ipif_resolver_up(ipif, Res_act_defend); 3982 } 3983 freemsg(mp); 3984 } 3985 3986 /* 3987 * News from ARP. ARP sends notification of interesting events down 3988 * to its clients using M_CTL messages with the interesting ARP packet 3989 * attached via b_cont. 3990 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3991 * queue as opposed to ARP sending the message to all the clients, i.e. all 3992 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3993 * table if a cache IRE is found to delete all the entries for the address in 3994 * the packet. 3995 */ 3996 static void 3997 ip_arp_news(queue_t *q, mblk_t *mp) 3998 { 3999 arcn_t *arcn; 4000 arh_t *arh; 4001 ire_t *ire = NULL; 4002 char hbuf[MAC_STR_LEN]; 4003 char sbuf[INET_ADDRSTRLEN]; 4004 ipaddr_t src; 4005 in6_addr_t v6src; 4006 boolean_t isv6 = B_FALSE; 4007 ipif_t *ipif; 4008 ill_t *ill; 4009 4010 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4011 if (q->q_next) { 4012 putnext(q, mp); 4013 } else 4014 freemsg(mp); 4015 return; 4016 } 4017 arh = (arh_t *)mp->b_cont->b_rptr; 4018 /* Is it one we are interested in? */ 4019 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4020 isv6 = B_TRUE; 4021 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4022 IPV6_ADDR_LEN); 4023 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4024 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4025 IP_ADDR_LEN); 4026 } else { 4027 freemsg(mp); 4028 return; 4029 } 4030 4031 ill = q->q_ptr; 4032 4033 arcn = (arcn_t *)mp->b_rptr; 4034 switch (arcn->arcn_code) { 4035 case AR_CN_BOGON: 4036 /* 4037 * Someone is sending ARP packets with a source protocol 4038 * address that we have published and for which we believe our 4039 * entry is authoritative and (when ill_arp_extend is set) 4040 * verified to be unique on the network. 4041 * 4042 * The ARP module internally handles the cases where the sender 4043 * is just probing (for DAD) and where the hardware address of 4044 * a non-authoritative entry has changed. Thus, these are the 4045 * real conflicts, and we have to do resolution. 4046 * 4047 * We back away quickly from the address if it's from DHCP or 4048 * otherwise temporary and hasn't been used recently (or at 4049 * all). We'd like to include "deprecated" addresses here as 4050 * well (as there's no real reason to defend something we're 4051 * discarding), but IPMP "reuses" this flag to mean something 4052 * other than the standard meaning. 4053 * 4054 * If the ARP module above is not extended (meaning that it 4055 * doesn't know how to defend the address), then we just log 4056 * the problem as we always did and continue on. It's not 4057 * right, but there's little else we can do, and those old ATM 4058 * users are going away anyway. 4059 */ 4060 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4061 hbuf, sizeof (hbuf)); 4062 (void) ip_dot_addr(src, sbuf); 4063 if (isv6) 4064 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4065 else 4066 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4067 4068 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4069 uint32_t now; 4070 uint32_t maxage; 4071 clock_t lused; 4072 uint_t maxdefense; 4073 uint_t defs; 4074 4075 /* 4076 * First, figure out if this address hasn't been used 4077 * in a while. If it hasn't, then it's a better 4078 * candidate for abandoning. 4079 */ 4080 ipif = ire->ire_ipif; 4081 ASSERT(ipif != NULL); 4082 now = gethrestime_sec(); 4083 maxage = now - ire->ire_create_time; 4084 if (maxage > ip_max_temp_idle) 4085 maxage = ip_max_temp_idle; 4086 lused = drv_hztousec(ddi_get_lbolt() - 4087 ire->ire_last_used_time) / MICROSEC + 1; 4088 if (lused >= maxage && (ipif->ipif_flags & 4089 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4090 maxdefense = ip_max_temp_defend; 4091 else 4092 maxdefense = ip_max_defend; 4093 4094 /* 4095 * Now figure out how many times we've defended 4096 * ourselves. Ignore defenses that happened long in 4097 * the past. 4098 */ 4099 mutex_enter(&ire->ire_lock); 4100 if ((defs = ire->ire_defense_count) > 0 && 4101 now - ire->ire_defense_time > ip_defend_interval) { 4102 ire->ire_defense_count = defs = 0; 4103 } 4104 ire->ire_defense_count++; 4105 ire->ire_defense_time = now; 4106 mutex_exit(&ire->ire_lock); 4107 ill_refhold(ill); 4108 ire_refrele(ire); 4109 4110 /* 4111 * If we've defended ourselves too many times already, 4112 * then give up and tear down the interface(s) using 4113 * this address. Otherwise, defend by sending out a 4114 * gratuitous ARP. 4115 */ 4116 if (defs >= maxdefense && ill->ill_arp_extend) { 4117 (void) qwriter_ip(NULL, ill, q, mp, 4118 ip_arp_excl, CUR_OP, B_FALSE); 4119 } else { 4120 cmn_err(CE_WARN, 4121 "node %s is using our IP address %s on %s", 4122 hbuf, sbuf, ill->ill_name); 4123 /* 4124 * If this is an old (ATM) ARP module, then 4125 * don't try to defend the address. Remain 4126 * compatible with the old behavior. Defend 4127 * only with new ARP. 4128 */ 4129 if (ill->ill_arp_extend) { 4130 (void) qwriter_ip(NULL, ill, q, mp, 4131 ip_arp_defend, CUR_OP, B_FALSE); 4132 } else { 4133 ill_refrele(ill); 4134 } 4135 } 4136 return; 4137 } 4138 cmn_err(CE_WARN, 4139 "proxy ARP problem? Node '%s' is using %s on %s", 4140 hbuf, sbuf, ill->ill_name); 4141 if (ire != NULL) 4142 ire_refrele(ire); 4143 break; 4144 case AR_CN_ANNOUNCE: 4145 if (isv6) { 4146 /* 4147 * For XRESOLV interfaces. 4148 * Delete the IRE cache entry and NCE for this 4149 * v6 address 4150 */ 4151 ip_ire_clookup_and_delete_v6(&v6src); 4152 /* 4153 * If v6src is a non-zero, it's a router address 4154 * as below. Do the same sort of thing to clean 4155 * out off-net IRE_CACHE entries that go through 4156 * the router. 4157 */ 4158 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4159 ire_walk_v6(ire_delete_cache_gw_v6, 4160 (char *)&v6src, ALL_ZONES); 4161 } 4162 } else { 4163 nce_hw_map_t hwm; 4164 4165 /* 4166 * ARP gives us a copy of any packet where it thinks 4167 * the address has changed, so that we can update our 4168 * caches. We're responsible for caching known answers 4169 * in the current design. We check whether the 4170 * hardware address really has changed in all of our 4171 * entries that have cached this mapping, and if so, we 4172 * blow them away. This way we will immediately pick 4173 * up the rare case of a host changing hardware 4174 * address. 4175 */ 4176 if (src == 0) 4177 break; 4178 hwm.hwm_addr = src; 4179 hwm.hwm_hwlen = arh->arh_hlen; 4180 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4181 ndp_walk_common(&ndp4, NULL, 4182 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4183 } 4184 break; 4185 case AR_CN_READY: 4186 /* No external v6 resolver has a contract to use this */ 4187 if (isv6) 4188 break; 4189 /* If the link is down, we'll retry this later */ 4190 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4191 break; 4192 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4193 NULL, NULL); 4194 if (ipif != NULL) { 4195 /* 4196 * If this is a duplicate recovery, then we now need to 4197 * go exclusive to bring this thing back up. 4198 */ 4199 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4200 IPIF_DUPLICATE) { 4201 ipif_refrele(ipif); 4202 ill_refhold(ill); 4203 (void) qwriter_ip(NULL, ill, q, mp, 4204 ip_arp_excl, CUR_OP, B_FALSE); 4205 return; 4206 } 4207 /* 4208 * If this is the first notice that this address is 4209 * ready, then let the user know now. 4210 */ 4211 if ((ipif->ipif_flags & IPIF_UP) && 4212 !ipif->ipif_addr_ready) { 4213 ipif_mask_reply(ipif); 4214 ip_rts_ifmsg(ipif); 4215 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4216 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4217 } 4218 ipif->ipif_addr_ready = 1; 4219 ipif_refrele(ipif); 4220 } 4221 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4222 if (ire != NULL) { 4223 ire->ire_defense_count = 0; 4224 ire_refrele(ire); 4225 } 4226 break; 4227 case AR_CN_FAILED: 4228 /* No external v6 resolver has a contract to use this */ 4229 if (isv6) 4230 break; 4231 ill_refhold(ill); 4232 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4233 B_FALSE); 4234 return; 4235 } 4236 freemsg(mp); 4237 } 4238 4239 /* 4240 * Create a mblk suitable for carrying the interface index and/or source link 4241 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4242 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4243 * application. 4244 */ 4245 mblk_t * 4246 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4247 { 4248 mblk_t *mp; 4249 in_pktinfo_t *pinfo; 4250 ipha_t *ipha; 4251 struct ether_header *pether; 4252 4253 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4254 if (mp == NULL) { 4255 ip1dbg(("ip_add_info: allocation failure.\n")); 4256 return (data_mp); 4257 } 4258 4259 ipha = (ipha_t *)data_mp->b_rptr; 4260 pinfo = (in_pktinfo_t *)mp->b_rptr; 4261 bzero(pinfo, sizeof (in_pktinfo_t)); 4262 pinfo->in_pkt_flags = (uchar_t)flags; 4263 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4264 4265 if (flags & IPF_RECVIF) 4266 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4267 4268 pether = (struct ether_header *)((char *)ipha 4269 - sizeof (struct ether_header)); 4270 /* 4271 * Make sure the interface is an ethernet type, since this option 4272 * is currently supported only on this type of interface. Also make 4273 * sure we are pointing correctly above db_base. 4274 */ 4275 4276 if ((flags & IPF_RECVSLLA) && 4277 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4278 (ill->ill_type == IFT_ETHER) && 4279 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4280 4281 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4282 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4283 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4284 } else { 4285 /* 4286 * Clear the bit. Indicate to upper layer that IP is not 4287 * sending this ancillary info. 4288 */ 4289 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4290 } 4291 4292 mp->b_datap->db_type = M_CTL; 4293 mp->b_wptr += sizeof (in_pktinfo_t); 4294 mp->b_cont = data_mp; 4295 4296 return (mp); 4297 } 4298 4299 /* 4300 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4301 * part of the bind request. 4302 */ 4303 4304 boolean_t 4305 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4306 { 4307 ipsec_in_t *ii; 4308 4309 ASSERT(policy_mp != NULL); 4310 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4311 4312 ii = (ipsec_in_t *)policy_mp->b_rptr; 4313 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4314 4315 connp->conn_policy = ii->ipsec_in_policy; 4316 ii->ipsec_in_policy = NULL; 4317 4318 if (ii->ipsec_in_action != NULL) { 4319 if (connp->conn_latch == NULL) { 4320 connp->conn_latch = iplatch_create(); 4321 if (connp->conn_latch == NULL) 4322 return (B_FALSE); 4323 } 4324 ipsec_latch_inbound(connp->conn_latch, ii); 4325 } 4326 return (B_TRUE); 4327 } 4328 4329 /* 4330 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4331 * and to arrange for power-fanout assist. The ULP is identified by 4332 * adding a single byte at the end of the original bind message. 4333 * A ULP other than UDP or TCP that wishes to be recognized passes 4334 * down a bind with a zero length address. 4335 * 4336 * The binding works as follows: 4337 * - A zero byte address means just bind to the protocol. 4338 * - A four byte address is treated as a request to validate 4339 * that the address is a valid local address, appropriate for 4340 * an application to bind to. This does not affect any fanout 4341 * information in IP. 4342 * - A sizeof sin_t byte address is used to bind to only the local address 4343 * and port. 4344 * - A sizeof ipa_conn_t byte address contains complete fanout information 4345 * consisting of local and remote addresses and ports. In 4346 * this case, the addresses are both validated as appropriate 4347 * for this operation, and, if so, the information is retained 4348 * for use in the inbound fanout. 4349 * 4350 * The ULP (except in the zero-length bind) can append an 4351 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4352 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4353 * a copy of the source or destination IRE (source for local bind; 4354 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4355 * policy information contained should be copied on to the conn. 4356 * 4357 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4358 */ 4359 mblk_t * 4360 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4361 { 4362 ssize_t len; 4363 struct T_bind_req *tbr; 4364 sin_t *sin; 4365 ipa_conn_t *ac; 4366 uchar_t *ucp; 4367 mblk_t *mp1; 4368 boolean_t ire_requested; 4369 boolean_t ipsec_policy_set = B_FALSE; 4370 int error = 0; 4371 int protocol; 4372 ipa_conn_x_t *acx; 4373 4374 ASSERT(!connp->conn_af_isv6); 4375 connp->conn_pkt_isv6 = B_FALSE; 4376 4377 len = MBLKL(mp); 4378 if (len < (sizeof (*tbr) + 1)) { 4379 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4380 "ip_bind: bogus msg, len %ld", len); 4381 /* XXX: Need to return something better */ 4382 goto bad_addr; 4383 } 4384 /* Back up and extract the protocol identifier. */ 4385 mp->b_wptr--; 4386 protocol = *mp->b_wptr & 0xFF; 4387 tbr = (struct T_bind_req *)mp->b_rptr; 4388 /* Reset the message type in preparation for shipping it back. */ 4389 DB_TYPE(mp) = M_PCPROTO; 4390 4391 connp->conn_ulp = (uint8_t)protocol; 4392 4393 /* 4394 * Check for a zero length address. This is from a protocol that 4395 * wants to register to receive all packets of its type. 4396 */ 4397 if (tbr->ADDR_length == 0) { 4398 /* 4399 * These protocols are now intercepted in ip_bind_v6(). 4400 * Reject protocol-level binds here for now. 4401 * 4402 * For SCTP raw socket, ICMP sends down a bind with sin_t 4403 * so that the protocol type cannot be SCTP. 4404 */ 4405 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4406 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4407 goto bad_addr; 4408 } 4409 4410 /* 4411 * 4412 * The udp module never sends down a zero-length address, 4413 * and allowing this on a labeled system will break MLP 4414 * functionality. 4415 */ 4416 if (is_system_labeled() && protocol == IPPROTO_UDP) 4417 goto bad_addr; 4418 4419 if (connp->conn_mac_exempt) 4420 goto bad_addr; 4421 4422 /* No hash here really. The table is big enough. */ 4423 connp->conn_srcv6 = ipv6_all_zeros; 4424 4425 ipcl_proto_insert(connp, protocol); 4426 4427 tbr->PRIM_type = T_BIND_ACK; 4428 return (mp); 4429 } 4430 4431 /* Extract the address pointer from the message. */ 4432 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4433 tbr->ADDR_length); 4434 if (ucp == NULL) { 4435 ip1dbg(("ip_bind: no address\n")); 4436 goto bad_addr; 4437 } 4438 if (!OK_32PTR(ucp)) { 4439 ip1dbg(("ip_bind: unaligned address\n")); 4440 goto bad_addr; 4441 } 4442 /* 4443 * Check for trailing mps. 4444 */ 4445 4446 mp1 = mp->b_cont; 4447 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4448 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4449 4450 switch (tbr->ADDR_length) { 4451 default: 4452 ip1dbg(("ip_bind: bad address length %d\n", 4453 (int)tbr->ADDR_length)); 4454 goto bad_addr; 4455 4456 case IP_ADDR_LEN: 4457 /* Verification of local address only */ 4458 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4459 ire_requested, ipsec_policy_set, B_FALSE); 4460 break; 4461 4462 case sizeof (sin_t): 4463 sin = (sin_t *)ucp; 4464 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4465 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4466 if (protocol == IPPROTO_TCP) 4467 connp->conn_recv = tcp_conn_request; 4468 break; 4469 4470 case sizeof (ipa_conn_t): 4471 ac = (ipa_conn_t *)ucp; 4472 /* For raw socket, the local port is not set. */ 4473 if (ac->ac_lport == 0) 4474 ac->ac_lport = connp->conn_lport; 4475 /* Always verify destination reachability. */ 4476 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4477 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4478 ipsec_policy_set, B_TRUE, B_TRUE); 4479 if (protocol == IPPROTO_TCP) 4480 connp->conn_recv = tcp_input; 4481 break; 4482 4483 case sizeof (ipa_conn_x_t): 4484 acx = (ipa_conn_x_t *)ucp; 4485 /* 4486 * Whether or not to verify destination reachability depends 4487 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4488 */ 4489 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4490 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4491 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4492 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4493 if (protocol == IPPROTO_TCP) 4494 connp->conn_recv = tcp_input; 4495 break; 4496 } 4497 if (error == EINPROGRESS) 4498 return (NULL); 4499 else if (error != 0) 4500 goto bad_addr; 4501 /* 4502 * Pass the IPSEC headers size in ire_ipsec_overhead. 4503 * We can't do this in ip_bind_insert_ire because the policy 4504 * may not have been inherited at that point in time and hence 4505 * conn_out_enforce_policy may not be set. 4506 */ 4507 mp1 = mp->b_cont; 4508 if (ire_requested && connp->conn_out_enforce_policy && 4509 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4510 ire_t *ire = (ire_t *)mp1->b_rptr; 4511 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4512 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4513 } 4514 4515 /* Send it home. */ 4516 mp->b_datap->db_type = M_PCPROTO; 4517 tbr->PRIM_type = T_BIND_ACK; 4518 return (mp); 4519 4520 bad_addr: 4521 /* 4522 * If error = -1 then we generate a TBADADDR - otherwise error is 4523 * a unix errno. 4524 */ 4525 if (error > 0) 4526 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4527 else 4528 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4529 return (mp); 4530 } 4531 4532 /* 4533 * Here address is verified to be a valid local address. 4534 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4535 * address is also considered a valid local address. 4536 * In the case of a broadcast/multicast address, however, the 4537 * upper protocol is expected to reset the src address 4538 * to 0 if it sees a IRE_BROADCAST type returned so that 4539 * no packets are emitted with broadcast/multicast address as 4540 * source address (that violates hosts requirements RFC1122) 4541 * The addresses valid for bind are: 4542 * (1) - INADDR_ANY (0) 4543 * (2) - IP address of an UP interface 4544 * (3) - IP address of a DOWN interface 4545 * (4) - valid local IP broadcast addresses. In this case 4546 * the conn will only receive packets destined to 4547 * the specified broadcast address. 4548 * (5) - a multicast address. In this case 4549 * the conn will only receive packets destined to 4550 * the specified multicast address. Note: the 4551 * application still has to issue an 4552 * IP_ADD_MEMBERSHIP socket option. 4553 * 4554 * On error, return -1 for TBADADDR otherwise pass the 4555 * errno with TSYSERR reply. 4556 * 4557 * In all the above cases, the bound address must be valid in the current zone. 4558 * When the address is loopback, multicast or broadcast, there might be many 4559 * matching IREs so bind has to look up based on the zone. 4560 * 4561 * Note: lport is in network byte order. 4562 */ 4563 int 4564 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4565 boolean_t ire_requested, boolean_t ipsec_policy_set, 4566 boolean_t fanout_insert) 4567 { 4568 int error = 0; 4569 ire_t *src_ire; 4570 mblk_t *policy_mp; 4571 ipif_t *ipif; 4572 zoneid_t zoneid; 4573 4574 if (ipsec_policy_set) { 4575 policy_mp = mp->b_cont; 4576 } 4577 4578 /* 4579 * If it was previously connected, conn_fully_bound would have 4580 * been set. 4581 */ 4582 connp->conn_fully_bound = B_FALSE; 4583 4584 src_ire = NULL; 4585 ipif = NULL; 4586 4587 zoneid = IPCL_ZONEID(connp); 4588 4589 if (src_addr) { 4590 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4591 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4592 /* 4593 * If an address other than 0.0.0.0 is requested, 4594 * we verify that it is a valid address for bind 4595 * Note: Following code is in if-else-if form for 4596 * readability compared to a condition check. 4597 */ 4598 /* LINTED - statement has no consequent */ 4599 if (IRE_IS_LOCAL(src_ire)) { 4600 /* 4601 * (2) Bind to address of local UP interface 4602 */ 4603 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4604 /* 4605 * (4) Bind to broadcast address 4606 * Note: permitted only from transports that 4607 * request IRE 4608 */ 4609 if (!ire_requested) 4610 error = EADDRNOTAVAIL; 4611 } else { 4612 /* 4613 * (3) Bind to address of local DOWN interface 4614 * (ipif_lookup_addr() looks up all interfaces 4615 * but we do not get here for UP interfaces 4616 * - case (2) above) 4617 * We put the protocol byte back into the mblk 4618 * since we may come back via ip_wput_nondata() 4619 * later with this mblk if ipif_lookup_addr chooses 4620 * to defer processing. 4621 */ 4622 *mp->b_wptr++ = (char)connp->conn_ulp; 4623 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4624 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4625 &error)) != NULL) { 4626 ipif_refrele(ipif); 4627 } else if (error == EINPROGRESS) { 4628 if (src_ire != NULL) 4629 ire_refrele(src_ire); 4630 return (EINPROGRESS); 4631 } else if (CLASSD(src_addr)) { 4632 error = 0; 4633 if (src_ire != NULL) 4634 ire_refrele(src_ire); 4635 /* 4636 * (5) bind to multicast address. 4637 * Fake out the IRE returned to upper 4638 * layer to be a broadcast IRE. 4639 */ 4640 src_ire = ire_ctable_lookup( 4641 INADDR_BROADCAST, INADDR_ANY, 4642 IRE_BROADCAST, NULL, zoneid, NULL, 4643 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4644 if (src_ire == NULL || !ire_requested) 4645 error = EADDRNOTAVAIL; 4646 } else { 4647 /* 4648 * Not a valid address for bind 4649 */ 4650 error = EADDRNOTAVAIL; 4651 } 4652 /* 4653 * Just to keep it consistent with the processing in 4654 * ip_bind_v4() 4655 */ 4656 mp->b_wptr--; 4657 } 4658 if (error) { 4659 /* Red Alert! Attempting to be a bogon! */ 4660 ip1dbg(("ip_bind: bad src address 0x%x\n", 4661 ntohl(src_addr))); 4662 goto bad_addr; 4663 } 4664 } 4665 4666 /* 4667 * Allow setting new policies. For example, disconnects come 4668 * down as ipa_t bind. As we would have set conn_policy_cached 4669 * to B_TRUE before, we should set it to B_FALSE, so that policy 4670 * can change after the disconnect. 4671 */ 4672 connp->conn_policy_cached = B_FALSE; 4673 4674 /* 4675 * If not fanout_insert this was just an address verification 4676 */ 4677 if (fanout_insert) { 4678 /* 4679 * The addresses have been verified. Time to insert in 4680 * the correct fanout list. 4681 */ 4682 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4683 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4684 connp->conn_lport = lport; 4685 connp->conn_fport = 0; 4686 /* 4687 * Do we need to add a check to reject Multicast packets 4688 */ 4689 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4690 } 4691 4692 if (error == 0) { 4693 if (ire_requested) { 4694 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4695 error = -1; 4696 /* Falls through to bad_addr */ 4697 } 4698 } else if (ipsec_policy_set) { 4699 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4700 error = -1; 4701 /* Falls through to bad_addr */ 4702 } 4703 } 4704 } 4705 bad_addr: 4706 if (error != 0) { 4707 if (connp->conn_anon_port) { 4708 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4709 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4710 B_FALSE); 4711 } 4712 connp->conn_mlp_type = mlptSingle; 4713 } 4714 if (src_ire != NULL) 4715 IRE_REFRELE(src_ire); 4716 if (ipsec_policy_set) { 4717 ASSERT(policy_mp == mp->b_cont); 4718 ASSERT(policy_mp != NULL); 4719 freeb(policy_mp); 4720 /* 4721 * As of now assume that nothing else accompanies 4722 * IPSEC_POLICY_SET. 4723 */ 4724 mp->b_cont = NULL; 4725 } 4726 return (error); 4727 } 4728 4729 /* 4730 * Verify that both the source and destination addresses 4731 * are valid. If verify_dst is false, then the destination address may be 4732 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4733 * destination reachability, while tunnels do not. 4734 * Note that we allow connect to broadcast and multicast 4735 * addresses when ire_requested is set. Thus the ULP 4736 * has to check for IRE_BROADCAST and multicast. 4737 * 4738 * Returns zero if ok. 4739 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4740 * (for use with TSYSERR reply). 4741 * 4742 * Note: lport and fport are in network byte order. 4743 */ 4744 int 4745 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4746 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4747 boolean_t ire_requested, boolean_t ipsec_policy_set, 4748 boolean_t fanout_insert, boolean_t verify_dst) 4749 { 4750 ire_t *src_ire; 4751 ire_t *dst_ire; 4752 int error = 0; 4753 int protocol; 4754 mblk_t *policy_mp; 4755 ire_t *sire = NULL; 4756 ire_t *md_dst_ire = NULL; 4757 ill_t *md_ill = NULL; 4758 zoneid_t zoneid; 4759 ipaddr_t src_addr = *src_addrp; 4760 4761 src_ire = dst_ire = NULL; 4762 protocol = *mp->b_wptr & 0xFF; 4763 4764 /* 4765 * If we never got a disconnect before, clear it now. 4766 */ 4767 connp->conn_fully_bound = B_FALSE; 4768 4769 if (ipsec_policy_set) { 4770 policy_mp = mp->b_cont; 4771 } 4772 4773 zoneid = IPCL_ZONEID(connp); 4774 4775 if (CLASSD(dst_addr)) { 4776 /* Pick up an IRE_BROADCAST */ 4777 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4778 NULL, zoneid, MBLK_GETLABEL(mp), 4779 (MATCH_IRE_RECURSIVE | 4780 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4781 MATCH_IRE_SECATTR)); 4782 } else { 4783 /* 4784 * If conn_dontroute is set or if conn_nexthop_set is set, 4785 * and onlink ipif is not found set ENETUNREACH error. 4786 */ 4787 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4788 ipif_t *ipif; 4789 4790 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4791 dst_addr : connp->conn_nexthop_v4, zoneid); 4792 if (ipif == NULL) { 4793 error = ENETUNREACH; 4794 goto bad_addr; 4795 } 4796 ipif_refrele(ipif); 4797 } 4798 4799 if (connp->conn_nexthop_set) { 4800 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4801 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4802 MATCH_IRE_SECATTR); 4803 } else { 4804 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4805 &sire, zoneid, MBLK_GETLABEL(mp), 4806 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4807 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4808 MATCH_IRE_SECATTR)); 4809 } 4810 } 4811 /* 4812 * dst_ire can't be a broadcast when not ire_requested. 4813 * We also prevent ire's with src address INADDR_ANY to 4814 * be used, which are created temporarily for 4815 * sending out packets from endpoints that have 4816 * conn_unspec_src set. If verify_dst is true, the destination must be 4817 * reachable. If verify_dst is false, the destination needn't be 4818 * reachable. 4819 * 4820 * If we match on a reject or black hole, then we've got a 4821 * local failure. May as well fail out the connect() attempt, 4822 * since it's never going to succeed. 4823 */ 4824 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4825 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4826 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4827 /* 4828 * If we're verifying destination reachability, we always want 4829 * to complain here. 4830 * 4831 * If we're not verifying destination reachability but the 4832 * destination has a route, we still want to fail on the 4833 * temporary address and broadcast address tests. 4834 */ 4835 if (verify_dst || (dst_ire != NULL)) { 4836 if (ip_debug > 2) { 4837 pr_addr_dbg("ip_bind_connected: bad connected " 4838 "dst %s\n", AF_INET, &dst_addr); 4839 } 4840 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4841 error = ENETUNREACH; 4842 else 4843 error = EHOSTUNREACH; 4844 goto bad_addr; 4845 } 4846 } 4847 4848 /* 4849 * We now know that routing will allow us to reach the destination. 4850 * Check whether Trusted Solaris policy allows communication with this 4851 * host, and pretend that the destination is unreachable if not. 4852 * 4853 * This is never a problem for TCP, since that transport is known to 4854 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4855 * handling. If the remote is unreachable, it will be detected at that 4856 * point, so there's no reason to check it here. 4857 * 4858 * Note that for sendto (and other datagram-oriented friends), this 4859 * check is done as part of the data path label computation instead. 4860 * The check here is just to make non-TCP connect() report the right 4861 * error. 4862 */ 4863 if (dst_ire != NULL && is_system_labeled() && 4864 !IPCL_IS_TCP(connp) && 4865 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4866 connp->conn_mac_exempt) != 0) { 4867 error = EHOSTUNREACH; 4868 if (ip_debug > 2) { 4869 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4870 AF_INET, &dst_addr); 4871 } 4872 goto bad_addr; 4873 } 4874 4875 /* 4876 * If the app does a connect(), it means that it will most likely 4877 * send more than 1 packet to the destination. It makes sense 4878 * to clear the temporary flag. 4879 */ 4880 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4881 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4882 irb_t *irb = dst_ire->ire_bucket; 4883 4884 rw_enter(&irb->irb_lock, RW_WRITER); 4885 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4886 irb->irb_tmp_ire_cnt--; 4887 rw_exit(&irb->irb_lock); 4888 } 4889 4890 /* 4891 * See if we should notify ULP about MDT; we do this whether or not 4892 * ire_requested is TRUE, in order to handle active connects; MDT 4893 * eligibility tests for passive connects are handled separately 4894 * through tcp_adapt_ire(). We do this before the source address 4895 * selection, because dst_ire may change after a call to 4896 * ipif_select_source(). This is a best-effort check, as the 4897 * packet for this connection may not actually go through 4898 * dst_ire->ire_stq, and the exact IRE can only be known after 4899 * calling ip_newroute(). This is why we further check on the 4900 * IRE during Multidata packet transmission in tcp_multisend(). 4901 */ 4902 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4903 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4904 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4905 ILL_MDT_CAPABLE(md_ill)) { 4906 md_dst_ire = dst_ire; 4907 IRE_REFHOLD(md_dst_ire); 4908 } 4909 4910 if (dst_ire != NULL && 4911 dst_ire->ire_type == IRE_LOCAL && 4912 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4913 /* 4914 * If the IRE belongs to a different zone, look for a matching 4915 * route in the forwarding table and use the source address from 4916 * that route. 4917 */ 4918 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4919 zoneid, 0, NULL, 4920 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4921 MATCH_IRE_RJ_BHOLE); 4922 if (src_ire == NULL) { 4923 error = EHOSTUNREACH; 4924 goto bad_addr; 4925 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4926 if (!(src_ire->ire_type & IRE_HOST)) 4927 error = ENETUNREACH; 4928 else 4929 error = EHOSTUNREACH; 4930 goto bad_addr; 4931 } 4932 if (src_addr == INADDR_ANY) 4933 src_addr = src_ire->ire_src_addr; 4934 ire_refrele(src_ire); 4935 src_ire = NULL; 4936 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4937 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4938 src_addr = sire->ire_src_addr; 4939 ire_refrele(dst_ire); 4940 dst_ire = sire; 4941 sire = NULL; 4942 } else { 4943 /* 4944 * Pick a source address so that a proper inbound 4945 * load spreading would happen. 4946 */ 4947 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4948 ipif_t *src_ipif = NULL; 4949 ire_t *ipif_ire; 4950 4951 /* 4952 * Supply a local source address such that inbound 4953 * load spreading happens. 4954 * 4955 * Determine the best source address on this ill for 4956 * the destination. 4957 * 4958 * 1) For broadcast, we should return a broadcast ire 4959 * found above so that upper layers know that the 4960 * destination address is a broadcast address. 4961 * 4962 * 2) If this is part of a group, select a better 4963 * source address so that better inbound load 4964 * balancing happens. Do the same if the ipif 4965 * is DEPRECATED. 4966 * 4967 * 3) If the outgoing interface is part of a usesrc 4968 * group, then try selecting a source address from 4969 * the usesrc ILL. 4970 */ 4971 if ((dst_ire->ire_zoneid != zoneid && 4972 dst_ire->ire_zoneid != ALL_ZONES) || 4973 (!(dst_ire->ire_type & IRE_BROADCAST) && 4974 ((dst_ill->ill_group != NULL) || 4975 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4976 (dst_ill->ill_usesrc_ifindex != 0)))) { 4977 /* 4978 * If the destination is reachable via a 4979 * given gateway, the selected source address 4980 * should be in the same subnet as the gateway. 4981 * Otherwise, the destination is not reachable. 4982 * 4983 * If there are no interfaces on the same subnet 4984 * as the destination, ipif_select_source gives 4985 * first non-deprecated interface which might be 4986 * on a different subnet than the gateway. 4987 * This is not desirable. Hence pass the dst_ire 4988 * source address to ipif_select_source. 4989 * It is sure that the destination is reachable 4990 * with the dst_ire source address subnet. 4991 * So passing dst_ire source address to 4992 * ipif_select_source will make sure that the 4993 * selected source will be on the same subnet 4994 * as dst_ire source address. 4995 */ 4996 ipaddr_t saddr = 4997 dst_ire->ire_ipif->ipif_src_addr; 4998 src_ipif = ipif_select_source(dst_ill, 4999 saddr, zoneid); 5000 if (src_ipif != NULL) { 5001 if (IS_VNI(src_ipif->ipif_ill)) { 5002 /* 5003 * For VNI there is no 5004 * interface route 5005 */ 5006 src_addr = 5007 src_ipif->ipif_src_addr; 5008 } else { 5009 ipif_ire = 5010 ipif_to_ire(src_ipif); 5011 if (ipif_ire != NULL) { 5012 IRE_REFRELE(dst_ire); 5013 dst_ire = ipif_ire; 5014 } 5015 src_addr = 5016 dst_ire->ire_src_addr; 5017 } 5018 ipif_refrele(src_ipif); 5019 } else { 5020 src_addr = dst_ire->ire_src_addr; 5021 } 5022 } else { 5023 src_addr = dst_ire->ire_src_addr; 5024 } 5025 } 5026 } 5027 5028 /* 5029 * We do ire_route_lookup() here (and not 5030 * interface lookup as we assert that 5031 * src_addr should only come from an 5032 * UP interface for hard binding. 5033 */ 5034 ASSERT(src_ire == NULL); 5035 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5036 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5037 /* src_ire must be a local|loopback */ 5038 if (!IRE_IS_LOCAL(src_ire)) { 5039 if (ip_debug > 2) { 5040 pr_addr_dbg("ip_bind_connected: bad connected " 5041 "src %s\n", AF_INET, &src_addr); 5042 } 5043 error = EADDRNOTAVAIL; 5044 goto bad_addr; 5045 } 5046 5047 /* 5048 * If the source address is a loopback address, the 5049 * destination had best be local or multicast. 5050 * The transports that can't handle multicast will reject 5051 * those addresses. 5052 */ 5053 if (src_ire->ire_type == IRE_LOOPBACK && 5054 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5055 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5056 error = -1; 5057 goto bad_addr; 5058 } 5059 5060 /* 5061 * Allow setting new policies. For example, disconnects come 5062 * down as ipa_t bind. As we would have set conn_policy_cached 5063 * to B_TRUE before, we should set it to B_FALSE, so that policy 5064 * can change after the disconnect. 5065 */ 5066 connp->conn_policy_cached = B_FALSE; 5067 5068 /* 5069 * Set the conn addresses/ports immediately, so the IPsec policy calls 5070 * can handle their passed-in conn's. 5071 */ 5072 5073 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5074 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5075 connp->conn_lport = lport; 5076 connp->conn_fport = fport; 5077 *src_addrp = src_addr; 5078 5079 ASSERT(!(ipsec_policy_set && ire_requested)); 5080 if (ire_requested) { 5081 iulp_t *ulp_info = NULL; 5082 5083 /* 5084 * Note that sire will not be NULL if this is an off-link 5085 * connection and there is not cache for that dest yet. 5086 * 5087 * XXX Because of an existing bug, if there are multiple 5088 * default routes, the IRE returned now may not be the actual 5089 * default route used (default routes are chosen in a 5090 * round robin fashion). So if the metrics for different 5091 * default routes are different, we may return the wrong 5092 * metrics. This will not be a problem if the existing 5093 * bug is fixed. 5094 */ 5095 if (sire != NULL) { 5096 ulp_info = &(sire->ire_uinfo); 5097 } 5098 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5099 error = -1; 5100 goto bad_addr; 5101 } 5102 } else if (ipsec_policy_set) { 5103 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5104 error = -1; 5105 goto bad_addr; 5106 } 5107 } 5108 5109 /* 5110 * Cache IPsec policy in this conn. If we have per-socket policy, 5111 * we'll cache that. If we don't, we'll inherit global policy. 5112 * 5113 * We can't insert until the conn reflects the policy. Note that 5114 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5115 * connections where we don't have a policy. This is to prevent 5116 * global policy lookups in the inbound path. 5117 * 5118 * If we insert before we set conn_policy_cached, 5119 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5120 * because global policy cound be non-empty. We normally call 5121 * ipsec_check_policy() for conn_policy_cached connections only if 5122 * ipc_in_enforce_policy is set. But in this case, 5123 * conn_policy_cached can get set anytime since we made the 5124 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5125 * called, which will make the above assumption false. Thus, we 5126 * need to insert after we set conn_policy_cached. 5127 */ 5128 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5129 goto bad_addr; 5130 5131 if (fanout_insert) { 5132 /* 5133 * The addresses have been verified. Time to insert in 5134 * the correct fanout list. 5135 */ 5136 error = ipcl_conn_insert(connp, protocol, src_addr, 5137 dst_addr, connp->conn_ports); 5138 } 5139 5140 if (error == 0) { 5141 connp->conn_fully_bound = B_TRUE; 5142 /* 5143 * Our initial checks for MDT have passed; the IRE is not 5144 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5145 * be supporting MDT. Pass the IRE, IPC and ILL into 5146 * ip_mdinfo_return(), which performs further checks 5147 * against them and upon success, returns the MDT info 5148 * mblk which we will attach to the bind acknowledgment. 5149 */ 5150 if (md_dst_ire != NULL) { 5151 mblk_t *mdinfo_mp; 5152 5153 ASSERT(md_ill != NULL); 5154 ASSERT(md_ill->ill_mdt_capab != NULL); 5155 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5156 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 5157 linkb(mp, mdinfo_mp); 5158 } 5159 } 5160 bad_addr: 5161 if (ipsec_policy_set) { 5162 ASSERT(policy_mp == mp->b_cont); 5163 ASSERT(policy_mp != NULL); 5164 freeb(policy_mp); 5165 /* 5166 * As of now assume that nothing else accompanies 5167 * IPSEC_POLICY_SET. 5168 */ 5169 mp->b_cont = NULL; 5170 } 5171 if (src_ire != NULL) 5172 IRE_REFRELE(src_ire); 5173 if (dst_ire != NULL) 5174 IRE_REFRELE(dst_ire); 5175 if (sire != NULL) 5176 IRE_REFRELE(sire); 5177 if (md_dst_ire != NULL) 5178 IRE_REFRELE(md_dst_ire); 5179 return (error); 5180 } 5181 5182 /* 5183 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5184 * Prefers dst_ire over src_ire. 5185 */ 5186 static boolean_t 5187 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5188 { 5189 mblk_t *mp1; 5190 ire_t *ret_ire = NULL; 5191 5192 mp1 = mp->b_cont; 5193 ASSERT(mp1 != NULL); 5194 5195 if (ire != NULL) { 5196 /* 5197 * mp1 initialized above to IRE_DB_REQ_TYPE 5198 * appended mblk. Its <upper protocol>'s 5199 * job to make sure there is room. 5200 */ 5201 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5202 return (0); 5203 5204 mp1->b_datap->db_type = IRE_DB_TYPE; 5205 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5206 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5207 ret_ire = (ire_t *)mp1->b_rptr; 5208 /* 5209 * Pass the latest setting of the ip_path_mtu_discovery and 5210 * copy the ulp info if any. 5211 */ 5212 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5213 IPH_DF : 0; 5214 if (ulp_info != NULL) { 5215 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5216 sizeof (iulp_t)); 5217 } 5218 ret_ire->ire_mp = mp1; 5219 } else { 5220 /* 5221 * No IRE was found. Remove IRE mblk. 5222 */ 5223 mp->b_cont = mp1->b_cont; 5224 freeb(mp1); 5225 } 5226 5227 return (1); 5228 } 5229 5230 /* 5231 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5232 * the final piece where we don't. Return a pointer to the first mblk in the 5233 * result, and update the pointer to the next mblk to chew on. If anything 5234 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5235 * NULL pointer. 5236 */ 5237 mblk_t * 5238 ip_carve_mp(mblk_t **mpp, ssize_t len) 5239 { 5240 mblk_t *mp0; 5241 mblk_t *mp1; 5242 mblk_t *mp2; 5243 5244 if (!len || !mpp || !(mp0 = *mpp)) 5245 return (NULL); 5246 /* If we aren't going to consume the first mblk, we need a dup. */ 5247 if (mp0->b_wptr - mp0->b_rptr > len) { 5248 mp1 = dupb(mp0); 5249 if (mp1) { 5250 /* Partition the data between the two mblks. */ 5251 mp1->b_wptr = mp1->b_rptr + len; 5252 mp0->b_rptr = mp1->b_wptr; 5253 /* 5254 * after adjustments if mblk not consumed is now 5255 * unaligned, try to align it. If this fails free 5256 * all messages and let upper layer recover. 5257 */ 5258 if (!OK_32PTR(mp0->b_rptr)) { 5259 if (!pullupmsg(mp0, -1)) { 5260 freemsg(mp0); 5261 freemsg(mp1); 5262 *mpp = NULL; 5263 return (NULL); 5264 } 5265 } 5266 } 5267 return (mp1); 5268 } 5269 /* Eat through as many mblks as we need to get len bytes. */ 5270 len -= mp0->b_wptr - mp0->b_rptr; 5271 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5272 if (mp2->b_wptr - mp2->b_rptr > len) { 5273 /* 5274 * We won't consume the entire last mblk. Like 5275 * above, dup and partition it. 5276 */ 5277 mp1->b_cont = dupb(mp2); 5278 mp1 = mp1->b_cont; 5279 if (!mp1) { 5280 /* 5281 * Trouble. Rather than go to a lot of 5282 * trouble to clean up, we free the messages. 5283 * This won't be any worse than losing it on 5284 * the wire. 5285 */ 5286 freemsg(mp0); 5287 freemsg(mp2); 5288 *mpp = NULL; 5289 return (NULL); 5290 } 5291 mp1->b_wptr = mp1->b_rptr + len; 5292 mp2->b_rptr = mp1->b_wptr; 5293 /* 5294 * after adjustments if mblk not consumed is now 5295 * unaligned, try to align it. If this fails free 5296 * all messages and let upper layer recover. 5297 */ 5298 if (!OK_32PTR(mp2->b_rptr)) { 5299 if (!pullupmsg(mp2, -1)) { 5300 freemsg(mp0); 5301 freemsg(mp2); 5302 *mpp = NULL; 5303 return (NULL); 5304 } 5305 } 5306 *mpp = mp2; 5307 return (mp0); 5308 } 5309 /* Decrement len by the amount we just got. */ 5310 len -= mp2->b_wptr - mp2->b_rptr; 5311 } 5312 /* 5313 * len should be reduced to zero now. If not our caller has 5314 * screwed up. 5315 */ 5316 if (len) { 5317 /* Shouldn't happen! */ 5318 freemsg(mp0); 5319 *mpp = NULL; 5320 return (NULL); 5321 } 5322 /* 5323 * We consumed up to exactly the end of an mblk. Detach the part 5324 * we are returning from the rest of the chain. 5325 */ 5326 mp1->b_cont = NULL; 5327 *mpp = mp2; 5328 return (mp0); 5329 } 5330 5331 /* The ill stream is being unplumbed. Called from ip_close */ 5332 int 5333 ip_modclose(ill_t *ill) 5334 { 5335 5336 boolean_t success; 5337 ipsq_t *ipsq; 5338 ipif_t *ipif; 5339 queue_t *q = ill->ill_rq; 5340 5341 /* 5342 * Forcibly enter the ipsq after some delay. This is to take 5343 * care of the case when some ioctl does not complete because 5344 * we sent a control message to the driver and it did not 5345 * send us a reply. We want to be able to at least unplumb 5346 * and replumb rather than force the user to reboot the system. 5347 */ 5348 success = ipsq_enter(ill, B_FALSE); 5349 5350 /* 5351 * Open/close/push/pop is guaranteed to be single threaded 5352 * per stream by STREAMS. FS guarantees that all references 5353 * from top are gone before close is called. So there can't 5354 * be another close thread that has set CONDEMNED on this ill. 5355 * and cause ipsq_enter to return failure. 5356 */ 5357 ASSERT(success); 5358 ipsq = ill->ill_phyint->phyint_ipsq; 5359 5360 /* 5361 * Mark it condemned. No new reference will be made to this ill. 5362 * Lookup functions will return an error. Threads that try to 5363 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5364 * that the refcnt will drop down to zero. 5365 */ 5366 mutex_enter(&ill->ill_lock); 5367 ill->ill_state_flags |= ILL_CONDEMNED; 5368 for (ipif = ill->ill_ipif; ipif != NULL; 5369 ipif = ipif->ipif_next) { 5370 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5371 } 5372 /* 5373 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5374 * returns error if ILL_CONDEMNED is set 5375 */ 5376 cv_broadcast(&ill->ill_cv); 5377 mutex_exit(&ill->ill_lock); 5378 5379 /* 5380 * Shut down fragmentation reassembly. 5381 * ill_frag_timer won't start a timer again. 5382 * Now cancel any existing timer 5383 */ 5384 (void) untimeout(ill->ill_frag_timer_id); 5385 (void) ill_frag_timeout(ill, 0); 5386 5387 /* 5388 * If MOVE was in progress, clear the 5389 * move_in_progress fields also. 5390 */ 5391 if (ill->ill_move_in_progress) { 5392 ILL_CLEAR_MOVE(ill); 5393 } 5394 5395 /* 5396 * Call ill_delete to bring down the ipifs, ilms and ill on 5397 * this ill. Then wait for the refcnts to drop to zero. 5398 * ill_is_quiescent checks whether the ill is really quiescent. 5399 * Then make sure that threads that are waiting to enter the 5400 * ipsq have seen the error returned by ipsq_enter and have 5401 * gone away. Then we call ill_delete_tail which does the 5402 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5403 */ 5404 ill_delete(ill); 5405 mutex_enter(&ill->ill_lock); 5406 while (!ill_is_quiescent(ill)) 5407 cv_wait(&ill->ill_cv, &ill->ill_lock); 5408 while (ill->ill_waiters) 5409 cv_wait(&ill->ill_cv, &ill->ill_lock); 5410 5411 mutex_exit(&ill->ill_lock); 5412 5413 /* qprocsoff is called in ill_delete_tail */ 5414 ill_delete_tail(ill); 5415 5416 /* 5417 * Walk through all upper (conn) streams and qenable 5418 * those that have queued data. 5419 * close synchronization needs this to 5420 * be done to ensure that all upper layers blocked 5421 * due to flow control to the closing device 5422 * get unblocked. 5423 */ 5424 ip1dbg(("ip_wsrv: walking\n")); 5425 conn_walk_drain(); 5426 5427 mutex_enter(&ip_mi_lock); 5428 mi_close_unlink(&ip_g_head, (IDP)ill); 5429 mutex_exit(&ip_mi_lock); 5430 5431 /* 5432 * credp could be null if the open didn't succeed and ip_modopen 5433 * itself calls ip_close. 5434 */ 5435 if (ill->ill_credp != NULL) 5436 crfree(ill->ill_credp); 5437 5438 mi_close_free((IDP)ill); 5439 q->q_ptr = WR(q)->q_ptr = NULL; 5440 5441 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5442 5443 return (0); 5444 } 5445 5446 /* 5447 * This is called as part of close() for both IP and UDP 5448 * in order to quiesce the conn. 5449 */ 5450 void 5451 ip_quiesce_conn(conn_t *connp) 5452 { 5453 boolean_t drain_cleanup_reqd = B_FALSE; 5454 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5455 boolean_t ilg_cleanup_reqd = B_FALSE; 5456 5457 ASSERT(!IPCL_IS_TCP(connp)); 5458 5459 /* 5460 * Mark the conn as closing, and this conn must not be 5461 * inserted in future into any list. Eg. conn_drain_insert(), 5462 * won't insert this conn into the conn_drain_list. 5463 * Similarly ill_pending_mp_add() will not add any mp to 5464 * the pending mp list, after this conn has started closing. 5465 * 5466 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5467 * cannot get set henceforth. 5468 */ 5469 mutex_enter(&connp->conn_lock); 5470 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5471 connp->conn_state_flags |= CONN_CLOSING; 5472 if (connp->conn_idl != NULL) 5473 drain_cleanup_reqd = B_TRUE; 5474 if (connp->conn_oper_pending_ill != NULL) 5475 conn_ioctl_cleanup_reqd = B_TRUE; 5476 if (connp->conn_ilg_inuse != 0) 5477 ilg_cleanup_reqd = B_TRUE; 5478 mutex_exit(&connp->conn_lock); 5479 5480 if (IPCL_IS_UDP(connp)) 5481 udp_quiesce_conn(connp); 5482 5483 if (conn_ioctl_cleanup_reqd) 5484 conn_ioctl_cleanup(connp); 5485 5486 if (is_system_labeled() && connp->conn_anon_port) { 5487 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5488 connp->conn_mlp_type, connp->conn_ulp, 5489 ntohs(connp->conn_lport), B_FALSE); 5490 connp->conn_anon_port = 0; 5491 } 5492 connp->conn_mlp_type = mlptSingle; 5493 5494 /* 5495 * Remove this conn from any fanout list it is on. 5496 * and then wait for any threads currently operating 5497 * on this endpoint to finish 5498 */ 5499 ipcl_hash_remove(connp); 5500 5501 /* 5502 * Remove this conn from the drain list, and do 5503 * any other cleanup that may be required. 5504 * (Only non-tcp streams may have a non-null conn_idl. 5505 * TCP streams are never flow controlled, and 5506 * conn_idl will be null) 5507 */ 5508 if (drain_cleanup_reqd) 5509 conn_drain_tail(connp, B_TRUE); 5510 5511 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5512 (void) ip_mrouter_done(NULL); 5513 5514 if (ilg_cleanup_reqd) 5515 ilg_delete_all(connp); 5516 5517 conn_delete_ire(connp, NULL); 5518 5519 /* 5520 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5521 * callers from write side can't be there now because close 5522 * is in progress. The only other caller is ipcl_walk 5523 * which checks for the condemned flag. 5524 */ 5525 mutex_enter(&connp->conn_lock); 5526 connp->conn_state_flags |= CONN_CONDEMNED; 5527 while (connp->conn_ref != 1) 5528 cv_wait(&connp->conn_cv, &connp->conn_lock); 5529 connp->conn_state_flags |= CONN_QUIESCED; 5530 mutex_exit(&connp->conn_lock); 5531 } 5532 5533 /* ARGSUSED */ 5534 int 5535 ip_close(queue_t *q, int flags) 5536 { 5537 conn_t *connp; 5538 5539 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5540 5541 /* 5542 * Call the appropriate delete routine depending on whether this is 5543 * a module or device. 5544 */ 5545 if (WR(q)->q_next != NULL) { 5546 /* This is a module close */ 5547 return (ip_modclose((ill_t *)q->q_ptr)); 5548 } 5549 5550 connp = q->q_ptr; 5551 ip_quiesce_conn(connp); 5552 5553 qprocsoff(q); 5554 5555 /* 5556 * Now we are truly single threaded on this stream, and can 5557 * delete the things hanging off the connp, and finally the connp. 5558 * We removed this connp from the fanout list, it cannot be 5559 * accessed thru the fanouts, and we already waited for the 5560 * conn_ref to drop to 0. We are already in close, so 5561 * there cannot be any other thread from the top. qprocsoff 5562 * has completed, and service has completed or won't run in 5563 * future. 5564 */ 5565 ASSERT(connp->conn_ref == 1); 5566 5567 /* 5568 * A conn which was previously marked as IPCL_UDP cannot 5569 * retain the flag because it would have been cleared by 5570 * udp_close(). 5571 */ 5572 ASSERT(!IPCL_IS_UDP(connp)); 5573 5574 if (connp->conn_latch != NULL) { 5575 IPLATCH_REFRELE(connp->conn_latch); 5576 connp->conn_latch = NULL; 5577 } 5578 if (connp->conn_policy != NULL) { 5579 IPPH_REFRELE(connp->conn_policy); 5580 connp->conn_policy = NULL; 5581 } 5582 if (connp->conn_ipsec_opt_mp != NULL) { 5583 freemsg(connp->conn_ipsec_opt_mp); 5584 connp->conn_ipsec_opt_mp = NULL; 5585 } 5586 5587 inet_minor_free(ip_minor_arena, connp->conn_dev); 5588 5589 connp->conn_ref--; 5590 ipcl_conn_destroy(connp); 5591 5592 q->q_ptr = WR(q)->q_ptr = NULL; 5593 return (0); 5594 } 5595 5596 int 5597 ip_snmpmod_close(queue_t *q) 5598 { 5599 conn_t *connp = Q_TO_CONN(q); 5600 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5601 5602 qprocsoff(q); 5603 5604 if (connp->conn_flags & IPCL_UDPMOD) 5605 udp_close_free(connp); 5606 5607 if (connp->conn_cred != NULL) { 5608 crfree(connp->conn_cred); 5609 connp->conn_cred = NULL; 5610 } 5611 CONN_DEC_REF(connp); 5612 q->q_ptr = WR(q)->q_ptr = NULL; 5613 return (0); 5614 } 5615 5616 /* 5617 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5618 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5619 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5620 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5621 * queues as we never enqueue messages there and we don't handle any ioctls. 5622 * Everything else is freed. 5623 */ 5624 void 5625 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5626 { 5627 conn_t *connp = q->q_ptr; 5628 pfi_t setfn; 5629 pfi_t getfn; 5630 5631 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5632 5633 switch (DB_TYPE(mp)) { 5634 case M_PROTO: 5635 case M_PCPROTO: 5636 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5637 ((((union T_primitives *)mp->b_rptr)->type == 5638 T_SVR4_OPTMGMT_REQ) || 5639 (((union T_primitives *)mp->b_rptr)->type == 5640 T_OPTMGMT_REQ))) { 5641 /* 5642 * This is the only TPI primitive supported. Its 5643 * handling does not require tcp_t, but it does require 5644 * conn_t to check permissions. 5645 */ 5646 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5647 5648 if (connp->conn_flags & IPCL_TCPMOD) { 5649 setfn = tcp_snmp_set; 5650 getfn = tcp_snmp_get; 5651 } else { 5652 setfn = udp_snmp_set; 5653 getfn = udp_snmp_get; 5654 } 5655 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5656 freemsg(mp); 5657 return; 5658 } 5659 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5660 != NULL) 5661 qreply(q, mp); 5662 break; 5663 case M_FLUSH: 5664 case M_IOCTL: 5665 putnext(q, mp); 5666 break; 5667 default: 5668 freemsg(mp); 5669 break; 5670 } 5671 } 5672 5673 /* Return the IP checksum for the IP header at "iph". */ 5674 uint16_t 5675 ip_csum_hdr(ipha_t *ipha) 5676 { 5677 uint16_t *uph; 5678 uint32_t sum; 5679 int opt_len; 5680 5681 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5682 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5683 uph = (uint16_t *)ipha; 5684 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5685 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5686 if (opt_len > 0) { 5687 do { 5688 sum += uph[10]; 5689 sum += uph[11]; 5690 uph += 2; 5691 } while (--opt_len); 5692 } 5693 sum = (sum & 0xFFFF) + (sum >> 16); 5694 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5695 if (sum == 0xffff) 5696 sum = 0; 5697 return ((uint16_t)sum); 5698 } 5699 5700 void 5701 ip_ddi_destroy(void) 5702 { 5703 tnet_fini(); 5704 tcp_ddi_destroy(); 5705 sctp_ddi_destroy(); 5706 ipsec_loader_destroy(); 5707 ipsec_policy_destroy(); 5708 ipsec_kstat_destroy(); 5709 nd_free(&ip_g_nd); 5710 mutex_destroy(&igmp_timer_lock); 5711 mutex_destroy(&mld_timer_lock); 5712 mutex_destroy(&igmp_slowtimeout_lock); 5713 mutex_destroy(&mld_slowtimeout_lock); 5714 mutex_destroy(&ip_mi_lock); 5715 mutex_destroy(&rts_clients.connf_lock); 5716 ip_ire_fini(); 5717 ip6_asp_free(); 5718 conn_drain_fini(); 5719 ipcl_destroy(); 5720 inet_minor_destroy(ip_minor_arena); 5721 icmp_kstat_fini(); 5722 ip_kstat_fini(); 5723 rw_destroy(&ipsec_capab_ills_lock); 5724 rw_destroy(&ill_g_usesrc_lock); 5725 ip_drop_unregister(&ip_dropper); 5726 } 5727 5728 5729 void 5730 ip_ddi_init(void) 5731 { 5732 TCP6_MAJ = ddi_name_to_major(TCP6); 5733 TCP_MAJ = ddi_name_to_major(TCP); 5734 SCTP_MAJ = ddi_name_to_major(SCTP); 5735 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5736 5737 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5738 5739 /* IP's IPsec code calls the packet dropper */ 5740 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5741 5742 if (!ip_g_nd) { 5743 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5744 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5745 nd_free(&ip_g_nd); 5746 } 5747 } 5748 5749 ipsec_loader_init(); 5750 ipsec_policy_init(); 5751 ipsec_kstat_init(); 5752 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5753 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5754 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5755 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5756 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5757 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5758 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5759 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5760 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5761 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5762 5763 /* 5764 * For IP and TCP the minor numbers should start from 2 since we have 4 5765 * initial devices: ip, ip6, tcp, tcp6. 5766 */ 5767 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5768 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5769 cmn_err(CE_PANIC, 5770 "ip_ddi_init: ip_minor_arena creation failed\n"); 5771 } 5772 5773 ipcl_init(); 5774 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5775 ip_ire_init(); 5776 ip6_asp_init(); 5777 ipif_init(); 5778 conn_drain_init(); 5779 tcp_ddi_init(); 5780 sctp_ddi_init(); 5781 5782 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5783 5784 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5785 "net", KSTAT_TYPE_NAMED, 5786 sizeof (ip_statistics) / sizeof (kstat_named_t), 5787 KSTAT_FLAG_VIRTUAL)) != NULL) { 5788 ip_kstat->ks_data = &ip_statistics; 5789 kstat_install(ip_kstat); 5790 } 5791 ip_kstat_init(); 5792 ip6_kstat_init(); 5793 icmp_kstat_init(); 5794 ipsec_loader_start(); 5795 tnet_init(); 5796 } 5797 5798 /* 5799 * Allocate and initialize a DLPI template of the specified length. (May be 5800 * called as writer.) 5801 */ 5802 mblk_t * 5803 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5804 { 5805 mblk_t *mp; 5806 5807 mp = allocb(len, BPRI_MED); 5808 if (!mp) 5809 return (NULL); 5810 5811 /* 5812 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5813 * of which we don't seem to use) are sent with M_PCPROTO, and 5814 * that other DLPI are M_PROTO. 5815 */ 5816 if (prim == DL_INFO_REQ) { 5817 mp->b_datap->db_type = M_PCPROTO; 5818 } else { 5819 mp->b_datap->db_type = M_PROTO; 5820 } 5821 5822 mp->b_wptr = mp->b_rptr + len; 5823 bzero(mp->b_rptr, len); 5824 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5825 return (mp); 5826 } 5827 5828 const char * 5829 dlpi_prim_str(int prim) 5830 { 5831 switch (prim) { 5832 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5833 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5834 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5835 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5836 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5837 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5838 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5839 case DL_OK_ACK: return ("DL_OK_ACK"); 5840 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5841 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5842 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5843 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5844 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5845 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5846 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5847 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5848 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5849 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5850 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5851 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5852 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5853 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5854 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5855 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5856 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5857 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5858 default: return ("<unknown primitive>"); 5859 } 5860 } 5861 5862 const char * 5863 dlpi_err_str(int err) 5864 { 5865 switch (err) { 5866 case DL_ACCESS: return ("DL_ACCESS"); 5867 case DL_BADADDR: return ("DL_BADADDR"); 5868 case DL_BADCORR: return ("DL_BADCORR"); 5869 case DL_BADDATA: return ("DL_BADDATA"); 5870 case DL_BADPPA: return ("DL_BADPPA"); 5871 case DL_BADPRIM: return ("DL_BADPRIM"); 5872 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5873 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5874 case DL_BADSAP: return ("DL_BADSAP"); 5875 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5876 case DL_BOUND: return ("DL_BOUND"); 5877 case DL_INITFAILED: return ("DL_INITFAILED"); 5878 case DL_NOADDR: return ("DL_NOADDR"); 5879 case DL_NOTINIT: return ("DL_NOTINIT"); 5880 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5881 case DL_SYSERR: return ("DL_SYSERR"); 5882 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5883 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5884 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5885 case DL_TOOMANY: return ("DL_TOOMANY"); 5886 case DL_NOTENAB: return ("DL_NOTENAB"); 5887 case DL_BUSY: return ("DL_BUSY"); 5888 case DL_NOAUTO: return ("DL_NOAUTO"); 5889 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5890 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5891 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5892 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5893 case DL_PENDING: return ("DL_PENDING"); 5894 default: return ("<unknown error>"); 5895 } 5896 } 5897 5898 /* 5899 * Debug formatting routine. Returns a character string representation of the 5900 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5901 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5902 * 5903 * Once the ndd table-printing interfaces are removed, this can be changed to 5904 * standard dotted-decimal form. 5905 */ 5906 char * 5907 ip_dot_addr(ipaddr_t addr, char *buf) 5908 { 5909 uint8_t *ap = (uint8_t *)&addr; 5910 5911 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5912 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5913 return (buf); 5914 } 5915 5916 /* 5917 * Write the given MAC address as a printable string in the usual colon- 5918 * separated format. 5919 */ 5920 const char * 5921 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 5922 { 5923 char *bp; 5924 5925 if (alen == 0 || buflen < 4) 5926 return ("?"); 5927 bp = buf; 5928 for (;;) { 5929 /* 5930 * If there are more MAC address bytes available, but we won't 5931 * have any room to print them, then add "..." to the string 5932 * instead. See below for the 'magic number' explanation. 5933 */ 5934 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 5935 (void) strcpy(bp, "..."); 5936 break; 5937 } 5938 (void) sprintf(bp, "%02x", *addr++); 5939 bp += 2; 5940 if (--alen == 0) 5941 break; 5942 *bp++ = ':'; 5943 buflen -= 3; 5944 /* 5945 * At this point, based on the first 'if' statement above, 5946 * either alen == 1 and buflen >= 3, or alen > 1 and 5947 * buflen >= 4. The first case leaves room for the final "xx" 5948 * number and trailing NUL byte. The second leaves room for at 5949 * least "...". Thus the apparently 'magic' numbers chosen for 5950 * that statement. 5951 */ 5952 } 5953 return (buf); 5954 } 5955 5956 /* 5957 * Send an ICMP error after patching up the packet appropriately. Returns 5958 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5959 */ 5960 static boolean_t 5961 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5962 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5963 { 5964 ipha_t *ipha; 5965 mblk_t *first_mp; 5966 boolean_t secure; 5967 unsigned char db_type; 5968 5969 first_mp = mp; 5970 if (mctl_present) { 5971 mp = mp->b_cont; 5972 secure = ipsec_in_is_secure(first_mp); 5973 ASSERT(mp != NULL); 5974 } else { 5975 /* 5976 * If this is an ICMP error being reported - which goes 5977 * up as M_CTLs, we need to convert them to M_DATA till 5978 * we finish checking with global policy because 5979 * ipsec_check_global_policy() assumes M_DATA as clear 5980 * and M_CTL as secure. 5981 */ 5982 db_type = DB_TYPE(mp); 5983 DB_TYPE(mp) = M_DATA; 5984 secure = B_FALSE; 5985 } 5986 /* 5987 * We are generating an icmp error for some inbound packet. 5988 * Called from all ip_fanout_(udp, tcp, proto) functions. 5989 * Before we generate an error, check with global policy 5990 * to see whether this is allowed to enter the system. As 5991 * there is no "conn", we are checking with global policy. 5992 */ 5993 ipha = (ipha_t *)mp->b_rptr; 5994 if (secure || ipsec_inbound_v4_policy_present) { 5995 first_mp = ipsec_check_global_policy(first_mp, NULL, 5996 ipha, NULL, mctl_present); 5997 if (first_mp == NULL) 5998 return (B_FALSE); 5999 } 6000 6001 if (!mctl_present) 6002 DB_TYPE(mp) = db_type; 6003 6004 if (flags & IP_FF_SEND_ICMP) { 6005 if (flags & IP_FF_HDR_COMPLETE) { 6006 if (ip_hdr_complete(ipha, zoneid)) { 6007 freemsg(first_mp); 6008 return (B_TRUE); 6009 } 6010 } 6011 if (flags & IP_FF_CKSUM) { 6012 /* 6013 * Have to correct checksum since 6014 * the packet might have been 6015 * fragmented and the reassembly code in ip_rput 6016 * does not restore the IP checksum. 6017 */ 6018 ipha->ipha_hdr_checksum = 0; 6019 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6020 } 6021 switch (icmp_type) { 6022 case ICMP_DEST_UNREACHABLE: 6023 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6024 break; 6025 default: 6026 freemsg(first_mp); 6027 break; 6028 } 6029 } else { 6030 freemsg(first_mp); 6031 return (B_FALSE); 6032 } 6033 6034 return (B_TRUE); 6035 } 6036 6037 /* 6038 * Used to send an ICMP error message when a packet is received for 6039 * a protocol that is not supported. The mblk passed as argument 6040 * is consumed by this function. 6041 */ 6042 void 6043 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6044 { 6045 mblk_t *mp; 6046 ipha_t *ipha; 6047 ill_t *ill; 6048 ipsec_in_t *ii; 6049 6050 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6051 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6052 6053 mp = ipsec_mp->b_cont; 6054 ipsec_mp->b_cont = NULL; 6055 ipha = (ipha_t *)mp->b_rptr; 6056 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6057 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6058 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6059 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6060 } 6061 } else { 6062 /* Get ill from index in ipsec_in_t. */ 6063 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6064 B_TRUE, NULL, NULL, NULL, NULL); 6065 if (ill != NULL) { 6066 if (ip_fanout_send_icmp_v6(q, mp, flags, 6067 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6068 0, B_FALSE, zoneid)) { 6069 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6070 } 6071 6072 ill_refrele(ill); 6073 } else { /* re-link for the freemsg() below. */ 6074 ipsec_mp->b_cont = mp; 6075 } 6076 } 6077 6078 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6079 freemsg(ipsec_mp); 6080 } 6081 6082 /* 6083 * See if the inbound datagram has had IPsec processing applied to it. 6084 */ 6085 boolean_t 6086 ipsec_in_is_secure(mblk_t *ipsec_mp) 6087 { 6088 ipsec_in_t *ii; 6089 6090 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6091 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6092 6093 if (ii->ipsec_in_loopback) { 6094 return (ii->ipsec_in_secure); 6095 } else { 6096 return (ii->ipsec_in_ah_sa != NULL || 6097 ii->ipsec_in_esp_sa != NULL || 6098 ii->ipsec_in_decaps); 6099 } 6100 } 6101 6102 /* 6103 * Handle protocols with which IP is less intimate. There 6104 * can be more than one stream bound to a particular 6105 * protocol. When this is the case, normally each one gets a copy 6106 * of any incoming packets. 6107 * 6108 * IPSEC NOTE : 6109 * 6110 * Don't allow a secure packet going up a non-secure connection. 6111 * We don't allow this because 6112 * 6113 * 1) Reply might go out in clear which will be dropped at 6114 * the sending side. 6115 * 2) If the reply goes out in clear it will give the 6116 * adversary enough information for getting the key in 6117 * most of the cases. 6118 * 6119 * Moreover getting a secure packet when we expect clear 6120 * implies that SA's were added without checking for 6121 * policy on both ends. This should not happen once ISAKMP 6122 * is used to negotiate SAs as SAs will be added only after 6123 * verifying the policy. 6124 * 6125 * NOTE : If the packet was tunneled and not multicast we only send 6126 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6127 * back to delivering packets to AF_INET6 raw sockets. 6128 * 6129 * IPQoS Notes: 6130 * Once we have determined the client, invoke IPPF processing. 6131 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6132 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6133 * ip_policy will be false. 6134 * 6135 * Zones notes: 6136 * Currently only applications in the global zone can create raw sockets for 6137 * protocols other than ICMP. So unlike the broadcast / multicast case of 6138 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6139 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6140 */ 6141 static void 6142 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6143 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6144 zoneid_t zoneid) 6145 { 6146 queue_t *rq; 6147 mblk_t *mp1, *first_mp1; 6148 uint_t protocol = ipha->ipha_protocol; 6149 ipaddr_t dst; 6150 boolean_t one_only; 6151 mblk_t *first_mp = mp; 6152 boolean_t secure; 6153 uint32_t ill_index; 6154 conn_t *connp, *first_connp, *next_connp; 6155 connf_t *connfp; 6156 boolean_t shared_addr; 6157 6158 if (mctl_present) { 6159 mp = first_mp->b_cont; 6160 secure = ipsec_in_is_secure(first_mp); 6161 ASSERT(mp != NULL); 6162 } else { 6163 secure = B_FALSE; 6164 } 6165 dst = ipha->ipha_dst; 6166 /* 6167 * If the packet was tunneled and not multicast we only send to it 6168 * the first match. 6169 */ 6170 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6171 !CLASSD(dst)); 6172 6173 shared_addr = (zoneid == ALL_ZONES); 6174 if (shared_addr) { 6175 /* 6176 * We don't allow multilevel ports for raw IP, so no need to 6177 * check for that here. 6178 */ 6179 zoneid = tsol_packet_to_zoneid(mp); 6180 } 6181 6182 connfp = &ipcl_proto_fanout[protocol]; 6183 mutex_enter(&connfp->connf_lock); 6184 connp = connfp->connf_head; 6185 for (connp = connfp->connf_head; connp != NULL; 6186 connp = connp->conn_next) { 6187 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6188 zoneid) && 6189 (!is_system_labeled() || 6190 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6191 connp))) 6192 break; 6193 } 6194 6195 if (connp == NULL || connp->conn_upq == NULL) { 6196 /* 6197 * No one bound to these addresses. Is 6198 * there a client that wants all 6199 * unclaimed datagrams? 6200 */ 6201 mutex_exit(&connfp->connf_lock); 6202 /* 6203 * Check for IPPROTO_ENCAP... 6204 */ 6205 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6206 /* 6207 * XXX If an IPsec mblk is here on a multicast 6208 * tunnel (using ip_mroute stuff), what should 6209 * I do? 6210 * 6211 * For now, just free the IPsec mblk before 6212 * passing it up to the multicast routing 6213 * stuff. 6214 * 6215 * BTW, If I match a configured IP-in-IP 6216 * tunnel, ip_mroute_decap will never be 6217 * called. 6218 */ 6219 if (mp != first_mp) 6220 freeb(first_mp); 6221 ip_mroute_decap(q, mp); 6222 } else { 6223 /* 6224 * Otherwise send an ICMP protocol unreachable. 6225 */ 6226 if (ip_fanout_send_icmp(q, first_mp, flags, 6227 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6228 mctl_present, zoneid)) { 6229 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6230 } 6231 } 6232 return; 6233 } 6234 CONN_INC_REF(connp); 6235 first_connp = connp; 6236 6237 /* 6238 * Only send message to one tunnel driver by immediately 6239 * terminating the loop. 6240 */ 6241 connp = one_only ? NULL : connp->conn_next; 6242 6243 for (;;) { 6244 while (connp != NULL) { 6245 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6246 flags, zoneid) && 6247 (!is_system_labeled() || 6248 tsol_receive_local(mp, &dst, IPV4_VERSION, 6249 shared_addr, connp))) 6250 break; 6251 connp = connp->conn_next; 6252 } 6253 6254 /* 6255 * Copy the packet. 6256 */ 6257 if (connp == NULL || connp->conn_upq == NULL || 6258 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6259 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6260 /* 6261 * No more interested clients or memory 6262 * allocation failed 6263 */ 6264 connp = first_connp; 6265 break; 6266 } 6267 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6268 CONN_INC_REF(connp); 6269 mutex_exit(&connfp->connf_lock); 6270 rq = connp->conn_rq; 6271 if (!canputnext(rq)) { 6272 if (flags & IP_FF_RAWIP) { 6273 BUMP_MIB(&ip_mib, rawipInOverflows); 6274 } else { 6275 BUMP_MIB(&icmp_mib, icmpInOverflows); 6276 } 6277 6278 freemsg(first_mp1); 6279 } else { 6280 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6281 first_mp1 = ipsec_check_inbound_policy 6282 (first_mp1, connp, ipha, NULL, 6283 mctl_present); 6284 } 6285 if (first_mp1 != NULL) { 6286 /* 6287 * ip_fanout_proto also gets called from 6288 * icmp_inbound_error_fanout, in which case 6289 * the msg type is M_CTL. Don't add info 6290 * in this case for the time being. In future 6291 * when there is a need for knowing the 6292 * inbound iface index for ICMP error msgs, 6293 * then this can be changed. 6294 */ 6295 if ((connp->conn_recvif != 0) && 6296 (mp->b_datap->db_type != M_CTL)) { 6297 /* 6298 * the actual data will be 6299 * contained in b_cont upon 6300 * successful return of the 6301 * following call else 6302 * original mblk is returned 6303 */ 6304 ASSERT(recv_ill != NULL); 6305 mp1 = ip_add_info(mp1, recv_ill, 6306 IPF_RECVIF); 6307 } 6308 BUMP_MIB(&ip_mib, ipInDelivers); 6309 if (mctl_present) 6310 freeb(first_mp1); 6311 putnext(rq, mp1); 6312 } 6313 } 6314 mutex_enter(&connfp->connf_lock); 6315 /* Follow the next pointer before releasing the conn. */ 6316 next_connp = connp->conn_next; 6317 CONN_DEC_REF(connp); 6318 connp = next_connp; 6319 } 6320 6321 /* Last one. Send it upstream. */ 6322 mutex_exit(&connfp->connf_lock); 6323 6324 /* 6325 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6326 * will be set to false. 6327 */ 6328 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6329 ill_index = ill->ill_phyint->phyint_ifindex; 6330 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6331 if (mp == NULL) { 6332 CONN_DEC_REF(connp); 6333 if (mctl_present) { 6334 freeb(first_mp); 6335 } 6336 return; 6337 } 6338 } 6339 6340 rq = connp->conn_rq; 6341 if (!canputnext(rq)) { 6342 if (flags & IP_FF_RAWIP) { 6343 BUMP_MIB(&ip_mib, rawipInOverflows); 6344 } else { 6345 BUMP_MIB(&icmp_mib, icmpInOverflows); 6346 } 6347 6348 freemsg(first_mp); 6349 } else { 6350 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6351 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6352 ipha, NULL, mctl_present); 6353 } 6354 if (first_mp != NULL) { 6355 /* 6356 * ip_fanout_proto also gets called 6357 * from icmp_inbound_error_fanout, in 6358 * which case the msg type is M_CTL. 6359 * Don't add info in this case for time 6360 * being. In future when there is a 6361 * need for knowing the inbound iface 6362 * index for ICMP error msgs, then this 6363 * can be changed 6364 */ 6365 if ((connp->conn_recvif != 0) && 6366 (mp->b_datap->db_type != M_CTL)) { 6367 /* 6368 * the actual data will be contained in 6369 * b_cont upon successful return 6370 * of the following call else original 6371 * mblk is returned 6372 */ 6373 ASSERT(recv_ill != NULL); 6374 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6375 } 6376 BUMP_MIB(&ip_mib, ipInDelivers); 6377 putnext(rq, mp); 6378 if (mctl_present) 6379 freeb(first_mp); 6380 } 6381 } 6382 CONN_DEC_REF(connp); 6383 } 6384 6385 /* 6386 * Fanout for TCP packets 6387 * The caller puts <fport, lport> in the ports parameter. 6388 * 6389 * IPQoS Notes 6390 * Before sending it to the client, invoke IPPF processing. 6391 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6392 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6393 * ip_policy is false. 6394 */ 6395 static void 6396 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6397 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6398 { 6399 mblk_t *first_mp; 6400 boolean_t secure; 6401 uint32_t ill_index; 6402 int ip_hdr_len; 6403 tcph_t *tcph; 6404 boolean_t syn_present = B_FALSE; 6405 conn_t *connp; 6406 6407 first_mp = mp; 6408 if (mctl_present) { 6409 ASSERT(first_mp->b_datap->db_type == M_CTL); 6410 mp = first_mp->b_cont; 6411 secure = ipsec_in_is_secure(first_mp); 6412 ASSERT(mp != NULL); 6413 } else { 6414 secure = B_FALSE; 6415 } 6416 6417 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6418 6419 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6420 NULL) { 6421 /* 6422 * No connected connection or listener. Send a 6423 * TH_RST via tcp_xmit_listeners_reset. 6424 */ 6425 6426 /* Initiate IPPf processing, if needed. */ 6427 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6428 uint32_t ill_index; 6429 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6430 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6431 if (first_mp == NULL) 6432 return; 6433 } 6434 BUMP_MIB(&ip_mib, ipInDelivers); 6435 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6436 zoneid)); 6437 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6438 return; 6439 } 6440 6441 /* 6442 * Allocate the SYN for the TCP connection here itself 6443 */ 6444 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6445 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6446 if (IPCL_IS_TCP(connp)) { 6447 squeue_t *sqp; 6448 6449 /* 6450 * For fused tcp loopback, assign the eager's 6451 * squeue to be that of the active connect's. 6452 * Note that we don't check for IP_FF_LOOPBACK 6453 * here since this routine gets called only 6454 * for loopback (unlike the IPv6 counterpart). 6455 */ 6456 ASSERT(Q_TO_CONN(q) != NULL); 6457 if (do_tcp_fusion && 6458 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6459 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6460 IPCL_IS_TCP(Q_TO_CONN(q))) { 6461 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6462 sqp = Q_TO_CONN(q)->conn_sqp; 6463 } else { 6464 sqp = IP_SQUEUE_GET(lbolt); 6465 } 6466 6467 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6468 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6469 syn_present = B_TRUE; 6470 } 6471 } 6472 6473 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6474 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6475 if ((flags & TH_RST) || (flags & TH_URG)) { 6476 CONN_DEC_REF(connp); 6477 freemsg(first_mp); 6478 return; 6479 } 6480 if (flags & TH_ACK) { 6481 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6482 CONN_DEC_REF(connp); 6483 return; 6484 } 6485 6486 CONN_DEC_REF(connp); 6487 freemsg(first_mp); 6488 return; 6489 } 6490 6491 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6492 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6493 NULL, mctl_present); 6494 if (first_mp == NULL) { 6495 CONN_DEC_REF(connp); 6496 return; 6497 } 6498 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6499 ASSERT(syn_present); 6500 if (mctl_present) { 6501 ASSERT(first_mp != mp); 6502 first_mp->b_datap->db_struioflag |= 6503 STRUIO_POLICY; 6504 } else { 6505 ASSERT(first_mp == mp); 6506 mp->b_datap->db_struioflag &= 6507 ~STRUIO_EAGER; 6508 mp->b_datap->db_struioflag |= 6509 STRUIO_POLICY; 6510 } 6511 } else { 6512 /* 6513 * Discard first_mp early since we're dealing with a 6514 * fully-connected conn_t and tcp doesn't do policy in 6515 * this case. 6516 */ 6517 if (mctl_present) { 6518 freeb(first_mp); 6519 mctl_present = B_FALSE; 6520 } 6521 first_mp = mp; 6522 } 6523 } 6524 6525 /* 6526 * Initiate policy processing here if needed. If we get here from 6527 * icmp_inbound_error_fanout, ip_policy is false. 6528 */ 6529 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6530 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6531 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6532 if (mp == NULL) { 6533 CONN_DEC_REF(connp); 6534 if (mctl_present) 6535 freeb(first_mp); 6536 return; 6537 } else if (mctl_present) { 6538 ASSERT(first_mp != mp); 6539 first_mp->b_cont = mp; 6540 } else { 6541 first_mp = mp; 6542 } 6543 } 6544 6545 6546 6547 /* Handle IPv6 socket options. */ 6548 if (!syn_present && 6549 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6550 /* Add header */ 6551 ASSERT(recv_ill != NULL); 6552 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6553 if (mp == NULL) { 6554 CONN_DEC_REF(connp); 6555 if (mctl_present) 6556 freeb(first_mp); 6557 return; 6558 } else if (mctl_present) { 6559 /* 6560 * ip_add_info might return a new mp. 6561 */ 6562 ASSERT(first_mp != mp); 6563 first_mp->b_cont = mp; 6564 } else { 6565 first_mp = mp; 6566 } 6567 } 6568 6569 BUMP_MIB(&ip_mib, ipInDelivers); 6570 if (IPCL_IS_TCP(connp)) { 6571 (*ip_input_proc)(connp->conn_sqp, first_mp, 6572 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6573 } else { 6574 putnext(connp->conn_rq, first_mp); 6575 CONN_DEC_REF(connp); 6576 } 6577 } 6578 6579 /* 6580 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6581 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6582 * Caller is responsible for dropping references to the conn, and freeing 6583 * first_mp. 6584 * 6585 * IPQoS Notes 6586 * Before sending it to the client, invoke IPPF processing. Policy processing 6587 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6588 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6589 * ip_wput_local, ip_policy is false. 6590 */ 6591 static void 6592 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6593 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6594 boolean_t ip_policy) 6595 { 6596 boolean_t mctl_present = (first_mp != NULL); 6597 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6598 uint32_t ill_index; 6599 6600 if (mctl_present) 6601 first_mp->b_cont = mp; 6602 else 6603 first_mp = mp; 6604 6605 if (CONN_UDP_FLOWCTLD(connp)) { 6606 BUMP_MIB(&ip_mib, udpInOverflows); 6607 freemsg(first_mp); 6608 return; 6609 } 6610 6611 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6612 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6613 NULL, mctl_present); 6614 if (first_mp == NULL) 6615 return; /* Freed by ipsec_check_inbound_policy(). */ 6616 } 6617 if (mctl_present) 6618 freeb(first_mp); 6619 6620 if (connp->conn_recvif) 6621 in_flags = IPF_RECVIF; 6622 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6623 in_flags |= IPF_RECVSLLA; 6624 6625 /* Handle IPv6 options. */ 6626 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6627 in_flags |= IPF_RECVIF; 6628 6629 /* 6630 * Initiate IPPF processing here, if needed. Note first_mp won't be 6631 * freed if the packet is dropped. The caller will do so. 6632 */ 6633 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6634 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6635 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6636 if (mp == NULL) { 6637 return; 6638 } 6639 } 6640 if ((in_flags != 0) && 6641 (mp->b_datap->db_type != M_CTL)) { 6642 /* 6643 * The actual data will be contained in b_cont 6644 * upon successful return of the following call 6645 * else original mblk is returned 6646 */ 6647 ASSERT(recv_ill != NULL); 6648 mp = ip_add_info(mp, recv_ill, in_flags); 6649 } 6650 BUMP_MIB(&ip_mib, ipInDelivers); 6651 6652 /* Send it upstream */ 6653 CONN_UDP_RECV(connp, mp); 6654 } 6655 6656 /* 6657 * Fanout for UDP packets. 6658 * The caller puts <fport, lport> in the ports parameter. 6659 * 6660 * If SO_REUSEADDR is set all multicast and broadcast packets 6661 * will be delivered to all streams bound to the same port. 6662 * 6663 * Zones notes: 6664 * Multicast and broadcast packets will be distributed to streams in all zones. 6665 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6666 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6667 * packets. To maintain this behavior with multiple zones, the conns are grouped 6668 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6669 * each zone. If unset, all the following conns in the same zone are skipped. 6670 */ 6671 static void 6672 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6673 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6674 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6675 { 6676 uint32_t dstport, srcport; 6677 ipaddr_t dst; 6678 mblk_t *first_mp; 6679 boolean_t secure; 6680 in6_addr_t v6src; 6681 conn_t *connp; 6682 connf_t *connfp; 6683 conn_t *first_connp; 6684 conn_t *next_connp; 6685 mblk_t *mp1, *first_mp1; 6686 ipaddr_t src; 6687 zoneid_t last_zoneid; 6688 boolean_t reuseaddr; 6689 boolean_t shared_addr; 6690 6691 first_mp = mp; 6692 if (mctl_present) { 6693 mp = first_mp->b_cont; 6694 first_mp->b_cont = NULL; 6695 secure = ipsec_in_is_secure(first_mp); 6696 ASSERT(mp != NULL); 6697 } else { 6698 first_mp = NULL; 6699 secure = B_FALSE; 6700 } 6701 6702 /* Extract ports in net byte order */ 6703 dstport = htons(ntohl(ports) & 0xFFFF); 6704 srcport = htons(ntohl(ports) >> 16); 6705 dst = ipha->ipha_dst; 6706 src = ipha->ipha_src; 6707 6708 shared_addr = (zoneid == ALL_ZONES); 6709 if (shared_addr) { 6710 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6711 if (zoneid == ALL_ZONES) 6712 zoneid = tsol_packet_to_zoneid(mp); 6713 } 6714 6715 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6716 mutex_enter(&connfp->connf_lock); 6717 connp = connfp->connf_head; 6718 if (!broadcast && !CLASSD(dst)) { 6719 /* 6720 * Not broadcast or multicast. Send to the one (first) 6721 * client we find. No need to check conn_wantpacket() 6722 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6723 * IPv4 unicast packets. 6724 */ 6725 while ((connp != NULL) && 6726 (!IPCL_UDP_MATCH(connp, dstport, dst, 6727 srcport, src) || 6728 (connp->conn_zoneid != zoneid && !connp->conn_allzones))) { 6729 connp = connp->conn_next; 6730 } 6731 6732 if (connp == NULL || connp->conn_upq == NULL) 6733 goto notfound; 6734 6735 if (is_system_labeled() && 6736 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6737 connp)) 6738 goto notfound; 6739 6740 CONN_INC_REF(connp); 6741 mutex_exit(&connfp->connf_lock); 6742 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6743 recv_ill, ip_policy); 6744 IP_STAT(ip_udp_fannorm); 6745 CONN_DEC_REF(connp); 6746 return; 6747 } 6748 6749 /* 6750 * Broadcast and multicast case 6751 * 6752 * Need to check conn_wantpacket(). 6753 * If SO_REUSEADDR has been set on the first we send the 6754 * packet to all clients that have joined the group and 6755 * match the port. 6756 */ 6757 6758 while (connp != NULL) { 6759 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6760 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6761 (!is_system_labeled() || 6762 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6763 connp))) 6764 break; 6765 connp = connp->conn_next; 6766 } 6767 6768 if (connp == NULL || connp->conn_upq == NULL) 6769 goto notfound; 6770 6771 first_connp = connp; 6772 /* 6773 * When SO_REUSEADDR is not set, send the packet only to the first 6774 * matching connection in its zone by keeping track of the zoneid. 6775 */ 6776 reuseaddr = first_connp->conn_reuseaddr; 6777 last_zoneid = first_connp->conn_zoneid; 6778 6779 CONN_INC_REF(connp); 6780 connp = connp->conn_next; 6781 for (;;) { 6782 while (connp != NULL) { 6783 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6784 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6785 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6786 (!is_system_labeled() || 6787 tsol_receive_local(mp, &dst, IPV4_VERSION, 6788 shared_addr, connp))) 6789 break; 6790 connp = connp->conn_next; 6791 } 6792 /* 6793 * Just copy the data part alone. The mctl part is 6794 * needed just for verifying policy and it is never 6795 * sent up. 6796 */ 6797 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6798 ((mp1 = copymsg(mp)) == NULL))) { 6799 /* 6800 * No more interested clients or memory 6801 * allocation failed 6802 */ 6803 connp = first_connp; 6804 break; 6805 } 6806 if (connp->conn_zoneid != last_zoneid) { 6807 /* 6808 * Update the zoneid so that the packet isn't sent to 6809 * any more conns in the same zone unless SO_REUSEADDR 6810 * is set. 6811 */ 6812 reuseaddr = connp->conn_reuseaddr; 6813 last_zoneid = connp->conn_zoneid; 6814 } 6815 if (first_mp != NULL) { 6816 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6817 ipsec_info_type == IPSEC_IN); 6818 first_mp1 = ipsec_in_tag(first_mp, NULL); 6819 if (first_mp1 == NULL) { 6820 freemsg(mp1); 6821 connp = first_connp; 6822 break; 6823 } 6824 } else { 6825 first_mp1 = NULL; 6826 } 6827 CONN_INC_REF(connp); 6828 mutex_exit(&connfp->connf_lock); 6829 /* 6830 * IPQoS notes: We don't send the packet for policy 6831 * processing here, will do it for the last one (below). 6832 * i.e. we do it per-packet now, but if we do policy 6833 * processing per-conn, then we would need to do it 6834 * here too. 6835 */ 6836 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6837 ipha, flags, recv_ill, B_FALSE); 6838 mutex_enter(&connfp->connf_lock); 6839 /* Follow the next pointer before releasing the conn. */ 6840 next_connp = connp->conn_next; 6841 IP_STAT(ip_udp_fanmb); 6842 CONN_DEC_REF(connp); 6843 connp = next_connp; 6844 } 6845 6846 /* Last one. Send it upstream. */ 6847 mutex_exit(&connfp->connf_lock); 6848 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6849 ip_policy); 6850 IP_STAT(ip_udp_fanmb); 6851 CONN_DEC_REF(connp); 6852 return; 6853 6854 notfound: 6855 6856 mutex_exit(&connfp->connf_lock); 6857 IP_STAT(ip_udp_fanothers); 6858 /* 6859 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6860 * have already been matched above, since they live in the IPv4 6861 * fanout tables. This implies we only need to 6862 * check for IPv6 in6addr_any endpoints here. 6863 * Thus we compare using ipv6_all_zeros instead of the destination 6864 * address, except for the multicast group membership lookup which 6865 * uses the IPv4 destination. 6866 */ 6867 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6868 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6869 mutex_enter(&connfp->connf_lock); 6870 connp = connfp->connf_head; 6871 if (!broadcast && !CLASSD(dst)) { 6872 while (connp != NULL) { 6873 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6874 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6875 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6876 !connp->conn_ipv6_v6only) 6877 break; 6878 connp = connp->conn_next; 6879 } 6880 6881 if (connp != NULL && is_system_labeled() && 6882 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6883 connp)) 6884 connp = NULL; 6885 6886 if (connp == NULL || connp->conn_upq == NULL) { 6887 /* 6888 * No one bound to this port. Is 6889 * there a client that wants all 6890 * unclaimed datagrams? 6891 */ 6892 mutex_exit(&connfp->connf_lock); 6893 6894 if (mctl_present) 6895 first_mp->b_cont = mp; 6896 else 6897 first_mp = mp; 6898 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6899 ip_fanout_proto(q, first_mp, ill, ipha, 6900 flags | IP_FF_RAWIP, mctl_present, 6901 ip_policy, recv_ill, zoneid); 6902 } else { 6903 if (ip_fanout_send_icmp(q, first_mp, flags, 6904 ICMP_DEST_UNREACHABLE, 6905 ICMP_PORT_UNREACHABLE, 6906 mctl_present, zoneid)) { 6907 BUMP_MIB(&ip_mib, udpNoPorts); 6908 } 6909 } 6910 return; 6911 } 6912 6913 CONN_INC_REF(connp); 6914 mutex_exit(&connfp->connf_lock); 6915 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6916 recv_ill, ip_policy); 6917 CONN_DEC_REF(connp); 6918 return; 6919 } 6920 /* 6921 * IPv4 multicast packet being delivered to an AF_INET6 6922 * in6addr_any endpoint. 6923 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6924 * and not conn_wantpacket_v6() since any multicast membership is 6925 * for an IPv4-mapped multicast address. 6926 * The packet is sent to all clients in all zones that have joined the 6927 * group and match the port. 6928 */ 6929 while (connp != NULL) { 6930 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6931 srcport, v6src) && 6932 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6933 (!is_system_labeled() || 6934 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6935 connp))) 6936 break; 6937 connp = connp->conn_next; 6938 } 6939 6940 if (connp == NULL || connp->conn_upq == NULL) { 6941 /* 6942 * No one bound to this port. Is 6943 * there a client that wants all 6944 * unclaimed datagrams? 6945 */ 6946 mutex_exit(&connfp->connf_lock); 6947 6948 if (mctl_present) 6949 first_mp->b_cont = mp; 6950 else 6951 first_mp = mp; 6952 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6953 ip_fanout_proto(q, first_mp, ill, ipha, 6954 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6955 recv_ill, zoneid); 6956 } else { 6957 /* 6958 * We used to attempt to send an icmp error here, but 6959 * since this is known to be a multicast packet 6960 * and we don't send icmp errors in response to 6961 * multicast, just drop the packet and give up sooner. 6962 */ 6963 BUMP_MIB(&ip_mib, udpNoPorts); 6964 freemsg(first_mp); 6965 } 6966 return; 6967 } 6968 6969 first_connp = connp; 6970 6971 CONN_INC_REF(connp); 6972 connp = connp->conn_next; 6973 for (;;) { 6974 while (connp != NULL) { 6975 if (IPCL_UDP_MATCH_V6(connp, dstport, 6976 ipv6_all_zeros, srcport, v6src) && 6977 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6978 (!is_system_labeled() || 6979 tsol_receive_local(mp, &dst, IPV4_VERSION, 6980 shared_addr, connp))) 6981 break; 6982 connp = connp->conn_next; 6983 } 6984 /* 6985 * Just copy the data part alone. The mctl part is 6986 * needed just for verifying policy and it is never 6987 * sent up. 6988 */ 6989 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6990 ((mp1 = copymsg(mp)) == NULL))) { 6991 /* 6992 * No more intested clients or memory 6993 * allocation failed 6994 */ 6995 connp = first_connp; 6996 break; 6997 } 6998 if (first_mp != NULL) { 6999 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7000 ipsec_info_type == IPSEC_IN); 7001 first_mp1 = ipsec_in_tag(first_mp, NULL); 7002 if (first_mp1 == NULL) { 7003 freemsg(mp1); 7004 connp = first_connp; 7005 break; 7006 } 7007 } else { 7008 first_mp1 = NULL; 7009 } 7010 CONN_INC_REF(connp); 7011 mutex_exit(&connfp->connf_lock); 7012 /* 7013 * IPQoS notes: We don't send the packet for policy 7014 * processing here, will do it for the last one (below). 7015 * i.e. we do it per-packet now, but if we do policy 7016 * processing per-conn, then we would need to do it 7017 * here too. 7018 */ 7019 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 7020 ipha, flags, recv_ill, B_FALSE); 7021 mutex_enter(&connfp->connf_lock); 7022 /* Follow the next pointer before releasing the conn. */ 7023 next_connp = connp->conn_next; 7024 CONN_DEC_REF(connp); 7025 connp = next_connp; 7026 } 7027 7028 /* Last one. Send it upstream. */ 7029 mutex_exit(&connfp->connf_lock); 7030 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 7031 ip_policy); 7032 CONN_DEC_REF(connp); 7033 } 7034 7035 /* 7036 * Complete the ip_wput header so that it 7037 * is possible to generate ICMP 7038 * errors. 7039 */ 7040 int 7041 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7042 { 7043 ire_t *ire; 7044 7045 if (ipha->ipha_src == INADDR_ANY) { 7046 ire = ire_lookup_local(zoneid); 7047 if (ire == NULL) { 7048 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7049 return (1); 7050 } 7051 ipha->ipha_src = ire->ire_addr; 7052 ire_refrele(ire); 7053 } 7054 ipha->ipha_ttl = ip_def_ttl; 7055 ipha->ipha_hdr_checksum = 0; 7056 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7057 return (0); 7058 } 7059 7060 /* 7061 * Nobody should be sending 7062 * packets up this stream 7063 */ 7064 static void 7065 ip_lrput(queue_t *q, mblk_t *mp) 7066 { 7067 mblk_t *mp1; 7068 7069 switch (mp->b_datap->db_type) { 7070 case M_FLUSH: 7071 /* Turn around */ 7072 if (*mp->b_rptr & FLUSHW) { 7073 *mp->b_rptr &= ~FLUSHR; 7074 qreply(q, mp); 7075 return; 7076 } 7077 break; 7078 } 7079 /* Could receive messages that passed through ar_rput */ 7080 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7081 mp1->b_prev = mp1->b_next = NULL; 7082 freemsg(mp); 7083 } 7084 7085 /* Nobody should be sending packets down this stream */ 7086 /* ARGSUSED */ 7087 void 7088 ip_lwput(queue_t *q, mblk_t *mp) 7089 { 7090 freemsg(mp); 7091 } 7092 7093 /* 7094 * Move the first hop in any source route to ipha_dst and remove that part of 7095 * the source route. Called by other protocols. Errors in option formatting 7096 * are ignored - will be handled by ip_wput_options Return the final 7097 * destination (either ipha_dst or the last entry in a source route.) 7098 */ 7099 ipaddr_t 7100 ip_massage_options(ipha_t *ipha) 7101 { 7102 ipoptp_t opts; 7103 uchar_t *opt; 7104 uint8_t optval; 7105 uint8_t optlen; 7106 ipaddr_t dst; 7107 int i; 7108 ire_t *ire; 7109 7110 ip2dbg(("ip_massage_options\n")); 7111 dst = ipha->ipha_dst; 7112 for (optval = ipoptp_first(&opts, ipha); 7113 optval != IPOPT_EOL; 7114 optval = ipoptp_next(&opts)) { 7115 opt = opts.ipoptp_cur; 7116 switch (optval) { 7117 uint8_t off; 7118 case IPOPT_SSRR: 7119 case IPOPT_LSRR: 7120 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7121 ip1dbg(("ip_massage_options: bad src route\n")); 7122 break; 7123 } 7124 optlen = opts.ipoptp_len; 7125 off = opt[IPOPT_OFFSET]; 7126 off--; 7127 redo_srr: 7128 if (optlen < IP_ADDR_LEN || 7129 off > optlen - IP_ADDR_LEN) { 7130 /* End of source route */ 7131 ip1dbg(("ip_massage_options: end of SR\n")); 7132 break; 7133 } 7134 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7135 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7136 ntohl(dst))); 7137 /* 7138 * Check if our address is present more than 7139 * once as consecutive hops in source route. 7140 * XXX verify per-interface ip_forwarding 7141 * for source route? 7142 */ 7143 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7144 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7145 if (ire != NULL) { 7146 ire_refrele(ire); 7147 off += IP_ADDR_LEN; 7148 goto redo_srr; 7149 } 7150 if (dst == htonl(INADDR_LOOPBACK)) { 7151 ip1dbg(("ip_massage_options: loopback addr in " 7152 "source route!\n")); 7153 break; 7154 } 7155 /* 7156 * Update ipha_dst to be the first hop and remove the 7157 * first hop from the source route (by overwriting 7158 * part of the option with NOP options). 7159 */ 7160 ipha->ipha_dst = dst; 7161 /* Put the last entry in dst */ 7162 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7163 3; 7164 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7165 7166 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7167 ntohl(dst))); 7168 /* Move down and overwrite */ 7169 opt[IP_ADDR_LEN] = opt[0]; 7170 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7171 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7172 for (i = 0; i < IP_ADDR_LEN; i++) 7173 opt[i] = IPOPT_NOP; 7174 break; 7175 } 7176 } 7177 return (dst); 7178 } 7179 7180 /* 7181 * This function's job is to forward data to the reverse tunnel (FA->HA) 7182 * after doing a few checks. It is assumed that the incoming interface 7183 * of the packet is always different than the outgoing interface and the 7184 * ire_type of the found ire has to be a non-resolver type. 7185 * 7186 * IPQoS notes 7187 * IP policy is invoked twice for a forwarded packet, once on the read side 7188 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7189 * enabled. 7190 */ 7191 static void 7192 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7193 { 7194 ipha_t *ipha; 7195 queue_t *q; 7196 uint32_t pkt_len; 7197 #define rptr ((uchar_t *)ipha) 7198 uint32_t sum; 7199 uint32_t max_frag; 7200 mblk_t *first_mp; 7201 uint32_t ill_index; 7202 ipxmit_state_t pktxmit_state; 7203 7204 ASSERT(ire != NULL); 7205 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7206 ASSERT(ire->ire_stq != NULL); 7207 7208 /* Initiate read side IPPF processing */ 7209 if (IPP_ENABLED(IPP_FWD_IN)) { 7210 ill_index = in_ill->ill_phyint->phyint_ifindex; 7211 ip_process(IPP_FWD_IN, &mp, ill_index); 7212 if (mp == NULL) { 7213 ip2dbg(("ip_mrtun_forward: inbound pkt " 7214 "dropped during IPPF processing\n")); 7215 return; 7216 } 7217 } 7218 7219 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7220 ILLF_ROUTER) == 0) || 7221 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7222 BUMP_MIB(&ip_mib, ipForwProhibits); 7223 ip0dbg(("ip_mrtun_forward: Can't forward :" 7224 "forwarding is not turned on\n")); 7225 goto drop_pkt; 7226 } 7227 7228 /* 7229 * Don't forward if the interface is down 7230 */ 7231 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7232 BUMP_MIB(&ip_mib, ipInDiscards); 7233 goto drop_pkt; 7234 } 7235 7236 ipha = (ipha_t *)mp->b_rptr; 7237 pkt_len = ntohs(ipha->ipha_length); 7238 /* Adjust the checksum to reflect the ttl decrement. */ 7239 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7240 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7241 if (ipha->ipha_ttl-- <= 1) { 7242 if (ip_csum_hdr(ipha)) { 7243 BUMP_MIB(&ip_mib, ipInCksumErrs); 7244 goto drop_pkt; 7245 } 7246 q = ire->ire_stq; 7247 if ((first_mp = allocb(sizeof (ipsec_info_t), 7248 BPRI_HI)) == NULL) { 7249 goto drop_pkt; 7250 } 7251 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7252 /* Sent by forwarding path, and router is global zone */ 7253 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7254 GLOBAL_ZONEID); 7255 return; 7256 } 7257 7258 /* Get the ill_index of the ILL */ 7259 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7260 7261 /* 7262 * ip_mrtun_forward is only used by foreign agent to reverse 7263 * tunnel the incoming packet. So it does not do any option 7264 * processing for source routing. 7265 */ 7266 max_frag = ire->ire_max_frag; 7267 if (pkt_len > max_frag) { 7268 /* 7269 * It needs fragging on its way out. We haven't 7270 * verified the header checksum yet. Since we 7271 * are going to put a surely good checksum in the 7272 * outgoing header, we have to make sure that it 7273 * was good coming in. 7274 */ 7275 if (ip_csum_hdr(ipha)) { 7276 BUMP_MIB(&ip_mib, ipInCksumErrs); 7277 goto drop_pkt; 7278 } 7279 7280 /* Initiate write side IPPF processing */ 7281 if (IPP_ENABLED(IPP_FWD_OUT)) { 7282 ip_process(IPP_FWD_OUT, &mp, ill_index); 7283 if (mp == NULL) { 7284 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7285 "dropped/deferred during ip policy "\ 7286 "processing\n")); 7287 return; 7288 } 7289 } 7290 if ((first_mp = allocb(sizeof (ipsec_info_t), 7291 BPRI_HI)) == NULL) { 7292 goto drop_pkt; 7293 } 7294 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7295 mp = first_mp; 7296 7297 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7298 return; 7299 } 7300 7301 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7302 7303 ASSERT(ire->ire_ipif != NULL); 7304 7305 /* Now send the packet to the tunnel interface */ 7306 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7307 q = ire->ire_stq; 7308 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7309 if ((pktxmit_state == SEND_FAILED) || 7310 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7311 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7312 q->q_ptr)); 7313 } 7314 7315 return; 7316 7317 drop_pkt:; 7318 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7319 freemsg(mp); 7320 #undef rptr 7321 } 7322 7323 /* 7324 * Fills the ipsec_out_t data structure with appropriate fields and 7325 * prepends it to mp which contains the IP hdr + data that was meant 7326 * to be forwarded. Please note that ipsec_out_info data structure 7327 * is used here to communicate the outgoing ill path at ip_wput() 7328 * for the ICMP error packet. This has nothing to do with ipsec IP 7329 * security. ipsec_out_t is really used to pass the info to the module 7330 * IP where this information cannot be extracted from conn. 7331 * This functions is called by ip_mrtun_forward(). 7332 */ 7333 void 7334 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7335 { 7336 ipsec_out_t *io; 7337 7338 ASSERT(xmit_ill != NULL); 7339 first_mp->b_datap->db_type = M_CTL; 7340 first_mp->b_wptr += sizeof (ipsec_info_t); 7341 /* 7342 * This is to pass info to ip_wput in absence of conn. 7343 * ipsec_out_secure will be B_FALSE because of this. 7344 * Thus ipsec_out_secure being B_FALSE indicates that 7345 * this is not IPSEC security related information. 7346 */ 7347 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7348 io = (ipsec_out_t *)first_mp->b_rptr; 7349 io->ipsec_out_type = IPSEC_OUT; 7350 io->ipsec_out_len = sizeof (ipsec_out_t); 7351 first_mp->b_cont = mp; 7352 io->ipsec_out_ill_index = 7353 xmit_ill->ill_phyint->phyint_ifindex; 7354 io->ipsec_out_xmit_if = B_TRUE; 7355 } 7356 7357 /* 7358 * Return the network mask 7359 * associated with the specified address. 7360 */ 7361 ipaddr_t 7362 ip_net_mask(ipaddr_t addr) 7363 { 7364 uchar_t *up = (uchar_t *)&addr; 7365 ipaddr_t mask = 0; 7366 uchar_t *maskp = (uchar_t *)&mask; 7367 7368 #if defined(__i386) || defined(__amd64) 7369 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7370 #endif 7371 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7372 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7373 #endif 7374 if (CLASSD(addr)) { 7375 maskp[0] = 0xF0; 7376 return (mask); 7377 } 7378 if (addr == 0) 7379 return (0); 7380 maskp[0] = 0xFF; 7381 if ((up[0] & 0x80) == 0) 7382 return (mask); 7383 7384 maskp[1] = 0xFF; 7385 if ((up[0] & 0xC0) == 0x80) 7386 return (mask); 7387 7388 maskp[2] = 0xFF; 7389 if ((up[0] & 0xE0) == 0xC0) 7390 return (mask); 7391 7392 /* Must be experimental or multicast, indicate as much */ 7393 return ((ipaddr_t)0); 7394 } 7395 7396 /* 7397 * Select an ill for the packet by considering load spreading across 7398 * a different ill in the group if dst_ill is part of some group. 7399 */ 7400 ill_t * 7401 ip_newroute_get_dst_ill(ill_t *dst_ill) 7402 { 7403 ill_t *ill; 7404 7405 /* 7406 * We schedule irrespective of whether the source address is 7407 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7408 */ 7409 ill = illgrp_scheduler(dst_ill); 7410 if (ill == NULL) 7411 return (NULL); 7412 7413 /* 7414 * For groups with names ip_sioctl_groupname ensures that all 7415 * ills are of same type. For groups without names, ifgrp_insert 7416 * ensures this. 7417 */ 7418 ASSERT(dst_ill->ill_type == ill->ill_type); 7419 7420 return (ill); 7421 } 7422 7423 /* 7424 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7425 */ 7426 ill_t * 7427 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7428 { 7429 ill_t *ret_ill; 7430 7431 ASSERT(ifindex != 0); 7432 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7433 if (ret_ill == NULL || 7434 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7435 if (isv6) { 7436 if (ill != NULL) { 7437 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7438 } else { 7439 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7440 } 7441 ip1dbg(("ip_grab_attach_ill (IPv6): " 7442 "bad ifindex %d.\n", ifindex)); 7443 } else { 7444 BUMP_MIB(&ip_mib, ipOutDiscards); 7445 ip1dbg(("ip_grab_attach_ill (IPv4): " 7446 "bad ifindex %d.\n", ifindex)); 7447 } 7448 if (ret_ill != NULL) 7449 ill_refrele(ret_ill); 7450 freemsg(first_mp); 7451 return (NULL); 7452 } 7453 7454 return (ret_ill); 7455 } 7456 7457 /* 7458 * IPv4 - 7459 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7460 * out a packet to a destination address for which we do not have specific 7461 * (or sufficient) routing information. 7462 * 7463 * NOTE : These are the scopes of some of the variables that point at IRE, 7464 * which needs to be followed while making any future modifications 7465 * to avoid memory leaks. 7466 * 7467 * - ire and sire are the entries looked up initially by 7468 * ire_ftable_lookup. 7469 * - ipif_ire is used to hold the interface ire associated with 7470 * the new cache ire. But it's scope is limited, so we always REFRELE 7471 * it before branching out to error paths. 7472 * - save_ire is initialized before ire_create, so that ire returned 7473 * by ire_create will not over-write the ire. We REFRELE save_ire 7474 * before breaking out of the switch. 7475 * 7476 * Thus on failures, we have to REFRELE only ire and sire, if they 7477 * are not NULL. 7478 */ 7479 void 7480 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7481 zoneid_t zoneid) 7482 { 7483 areq_t *areq; 7484 ipaddr_t gw = 0; 7485 ire_t *ire = NULL; 7486 mblk_t *res_mp; 7487 ipaddr_t *addrp; 7488 ipaddr_t nexthop_addr; 7489 ipif_t *src_ipif = NULL; 7490 ill_t *dst_ill = NULL; 7491 ipha_t *ipha; 7492 ire_t *sire = NULL; 7493 mblk_t *first_mp; 7494 ire_t *save_ire; 7495 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7496 ushort_t ire_marks = 0; 7497 boolean_t mctl_present; 7498 ipsec_out_t *io; 7499 mblk_t *saved_mp; 7500 ire_t *first_sire = NULL; 7501 mblk_t *copy_mp = NULL; 7502 mblk_t *xmit_mp = NULL; 7503 ipaddr_t save_dst; 7504 uint32_t multirt_flags = 7505 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7506 boolean_t multirt_is_resolvable; 7507 boolean_t multirt_resolve_next; 7508 boolean_t do_attach_ill = B_FALSE; 7509 boolean_t ip_nexthop = B_FALSE; 7510 tsol_ire_gw_secattr_t *attrp = NULL; 7511 tsol_gcgrp_t *gcgrp = NULL; 7512 tsol_gcgrp_addr_t ga; 7513 7514 if (ip_debug > 2) { 7515 /* ip1dbg */ 7516 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7517 } 7518 7519 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7520 if (mctl_present) { 7521 io = (ipsec_out_t *)first_mp->b_rptr; 7522 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7523 ASSERT(zoneid == io->ipsec_out_zoneid); 7524 ASSERT(zoneid != ALL_ZONES); 7525 } 7526 7527 ipha = (ipha_t *)mp->b_rptr; 7528 7529 /* All multicast lookups come through ip_newroute_ipif() */ 7530 if (CLASSD(dst)) { 7531 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7532 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7533 freemsg(first_mp); 7534 return; 7535 } 7536 7537 if (mctl_present && io->ipsec_out_attach_if) { 7538 /* ip_grab_attach_ill returns a held ill */ 7539 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7540 io->ipsec_out_ill_index, B_FALSE); 7541 7542 /* Failure case frees things for us. */ 7543 if (attach_ill == NULL) 7544 return; 7545 7546 /* 7547 * Check if we need an ire that will not be 7548 * looked up by anybody else i.e. HIDDEN. 7549 */ 7550 if (ill_is_probeonly(attach_ill)) 7551 ire_marks = IRE_MARK_HIDDEN; 7552 } 7553 if (mctl_present && io->ipsec_out_ip_nexthop) { 7554 ip_nexthop = B_TRUE; 7555 nexthop_addr = io->ipsec_out_nexthop_addr; 7556 } 7557 /* 7558 * If this IRE is created for forwarding or it is not for 7559 * traffic for congestion controlled protocols, mark it as temporary. 7560 */ 7561 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7562 ire_marks |= IRE_MARK_TEMPORARY; 7563 7564 /* 7565 * Get what we can from ire_ftable_lookup which will follow an IRE 7566 * chain until it gets the most specific information available. 7567 * For example, we know that there is no IRE_CACHE for this dest, 7568 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7569 * ire_ftable_lookup will look up the gateway, etc. 7570 * Check if in_ill != NULL. If it is true, the packet must be 7571 * from an incoming interface where RTA_SRCIFP is set. 7572 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7573 * to the destination, of equal netmask length in the forward table, 7574 * will be recursively explored. If no information is available 7575 * for the final gateway of that route, we force the returned ire 7576 * to be equal to sire using MATCH_IRE_PARENT. 7577 * At least, in this case we have a starting point (in the buckets) 7578 * to look for other routes to the destination in the forward table. 7579 * This is actually used only for multirouting, where a list 7580 * of routes has to be processed in sequence. 7581 * 7582 * In the process of coming up with the most specific information, 7583 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7584 * for the gateway (i.e., one for which the ire_nce->nce_state is 7585 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7586 * Two caveats when handling incomplete ire's in ip_newroute: 7587 * - we should be careful when accessing its ire_nce (specifically 7588 * the nce_res_mp) ast it might change underneath our feet, and, 7589 * - not all legacy code path callers are prepared to handle 7590 * incomplete ire's, so we should not create/add incomplete 7591 * ire_cache entries here. (See discussion about temporary solution 7592 * further below). 7593 * 7594 * In order to minimize packet dropping, and to preserve existing 7595 * behavior, we treat this case as if there were no IRE_CACHE for the 7596 * gateway, and instead use the IF_RESOLVER ire to send out 7597 * another request to ARP (this is achieved by passing the 7598 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7599 * arp response comes back in ip_wput_nondata, we will create 7600 * a per-dst ire_cache that has an ND_COMPLETE ire. 7601 * 7602 * Note that this is a temporary solution; the correct solution is 7603 * to create an incomplete per-dst ire_cache entry, and send the 7604 * packet out when the gw's nce is resolved. In order to achieve this, 7605 * all packet processing must have been completed prior to calling 7606 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7607 * to be modified to accomodate this solution. 7608 */ 7609 if (in_ill != NULL) { 7610 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7611 in_ill, MATCH_IRE_TYPE); 7612 } else if (ip_nexthop) { 7613 /* 7614 * The first time we come here, we look for an IRE_INTERFACE 7615 * entry for the specified nexthop, set the dst to be the 7616 * nexthop address and create an IRE_CACHE entry for the 7617 * nexthop. The next time around, we are able to find an 7618 * IRE_CACHE entry for the nexthop, set the gateway to be the 7619 * nexthop address and create an IRE_CACHE entry for the 7620 * destination address via the specified nexthop. 7621 */ 7622 ire = ire_cache_lookup(nexthop_addr, zoneid, 7623 MBLK_GETLABEL(mp)); 7624 if (ire != NULL) { 7625 gw = nexthop_addr; 7626 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7627 } else { 7628 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7629 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7630 MBLK_GETLABEL(mp), 7631 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7632 if (ire != NULL) { 7633 dst = nexthop_addr; 7634 } 7635 } 7636 } else if (attach_ill == NULL) { 7637 ire = ire_ftable_lookup(dst, 0, 0, 0, 7638 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7639 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7640 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7641 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7642 } else { 7643 /* 7644 * attach_ill is set only for communicating with 7645 * on-link hosts. So, don't look for DEFAULT. 7646 */ 7647 ipif_t *attach_ipif; 7648 7649 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7650 if (attach_ipif == NULL) { 7651 ill_refrele(attach_ill); 7652 goto icmp_err_ret; 7653 } 7654 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7655 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7656 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7657 MATCH_IRE_SECATTR); 7658 ipif_refrele(attach_ipif); 7659 } 7660 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7661 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7662 7663 /* 7664 * This loop is run only once in most cases. 7665 * We loop to resolve further routes only when the destination 7666 * can be reached through multiple RTF_MULTIRT-flagged ires. 7667 */ 7668 do { 7669 /* Clear the previous iteration's values */ 7670 if (src_ipif != NULL) { 7671 ipif_refrele(src_ipif); 7672 src_ipif = NULL; 7673 } 7674 if (dst_ill != NULL) { 7675 ill_refrele(dst_ill); 7676 dst_ill = NULL; 7677 } 7678 7679 multirt_resolve_next = B_FALSE; 7680 /* 7681 * We check if packets have to be multirouted. 7682 * In this case, given the current <ire, sire> couple, 7683 * we look for the next suitable <ire, sire>. 7684 * This check is done in ire_multirt_lookup(), 7685 * which applies various criteria to find the next route 7686 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7687 * unchanged if it detects it has not been tried yet. 7688 */ 7689 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7690 ip3dbg(("ip_newroute: starting next_resolution " 7691 "with first_mp %p, tag %d\n", 7692 (void *)first_mp, 7693 MULTIRT_DEBUG_TAGGED(first_mp))); 7694 7695 ASSERT(sire != NULL); 7696 multirt_is_resolvable = 7697 ire_multirt_lookup(&ire, &sire, multirt_flags, 7698 MBLK_GETLABEL(mp)); 7699 7700 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7701 "ire %p, sire %p\n", 7702 multirt_is_resolvable, 7703 (void *)ire, (void *)sire)); 7704 7705 if (!multirt_is_resolvable) { 7706 /* 7707 * No more multirt route to resolve; give up 7708 * (all routes resolved or no more 7709 * resolvable routes). 7710 */ 7711 if (ire != NULL) { 7712 ire_refrele(ire); 7713 ire = NULL; 7714 } 7715 } else { 7716 ASSERT(sire != NULL); 7717 ASSERT(ire != NULL); 7718 /* 7719 * We simply use first_sire as a flag that 7720 * indicates if a resolvable multirt route 7721 * has already been found. 7722 * If it is not the case, we may have to send 7723 * an ICMP error to report that the 7724 * destination is unreachable. 7725 * We do not IRE_REFHOLD first_sire. 7726 */ 7727 if (first_sire == NULL) { 7728 first_sire = sire; 7729 } 7730 } 7731 } 7732 if (ire == NULL) { 7733 if (ip_debug > 3) { 7734 /* ip2dbg */ 7735 pr_addr_dbg("ip_newroute: " 7736 "can't resolve %s\n", AF_INET, &dst); 7737 } 7738 ip3dbg(("ip_newroute: " 7739 "ire %p, sire %p, first_sire %p\n", 7740 (void *)ire, (void *)sire, (void *)first_sire)); 7741 7742 if (sire != NULL) { 7743 ire_refrele(sire); 7744 sire = NULL; 7745 } 7746 7747 if (first_sire != NULL) { 7748 /* 7749 * At least one multirt route has been found 7750 * in the same call to ip_newroute(); 7751 * there is no need to report an ICMP error. 7752 * first_sire was not IRE_REFHOLDed. 7753 */ 7754 MULTIRT_DEBUG_UNTAG(first_mp); 7755 freemsg(first_mp); 7756 return; 7757 } 7758 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7759 RTA_DST); 7760 if (attach_ill != NULL) 7761 ill_refrele(attach_ill); 7762 goto icmp_err_ret; 7763 } 7764 7765 /* 7766 * When RTA_SRCIFP is used to add a route, then an interface 7767 * route is added in the source interface's routing table. 7768 * If the outgoing interface of this route is of type 7769 * IRE_IF_RESOLVER, then upon creation of the ire, 7770 * ire_nce->nce_res_mp is set to NULL. 7771 * Later, when this route is first used for forwarding 7772 * a packet, ip_newroute() is called 7773 * to resolve the hardware address of the outgoing ipif. 7774 * We do not come here for IRE_IF_NORESOLVER entries in the 7775 * source interface based table. We only come here if the 7776 * outgoing interface is a resolver interface and we don't 7777 * have the ire_nce->nce_res_mp information yet. 7778 * If in_ill is not null that means it is called from 7779 * ip_rput. 7780 */ 7781 7782 ASSERT(ire->ire_in_ill == NULL || 7783 (ire->ire_type == IRE_IF_RESOLVER && 7784 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7785 7786 /* 7787 * Verify that the returned IRE does not have either 7788 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7789 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7790 */ 7791 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7792 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7793 if (attach_ill != NULL) 7794 ill_refrele(attach_ill); 7795 goto icmp_err_ret; 7796 } 7797 /* 7798 * Increment the ire_ob_pkt_count field for ire if it is an 7799 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7800 * increment the same for the parent IRE, sire, if it is some 7801 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7802 * and HOST_REDIRECT). 7803 */ 7804 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7805 UPDATE_OB_PKT_COUNT(ire); 7806 ire->ire_last_used_time = lbolt; 7807 } 7808 7809 if (sire != NULL) { 7810 gw = sire->ire_gateway_addr; 7811 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7812 IRE_INTERFACE)) == 0); 7813 UPDATE_OB_PKT_COUNT(sire); 7814 sire->ire_last_used_time = lbolt; 7815 } 7816 /* 7817 * We have a route to reach the destination. 7818 * 7819 * 1) If the interface is part of ill group, try to get a new 7820 * ill taking load spreading into account. 7821 * 7822 * 2) After selecting the ill, get a source address that 7823 * might create good inbound load spreading. 7824 * ipif_select_source does this for us. 7825 * 7826 * If the application specified the ill (ifindex), we still 7827 * load spread. Only if the packets needs to go out 7828 * specifically on a given ill e.g. binding to 7829 * IPIF_NOFAILOVER address, then we don't try to use a 7830 * different ill for load spreading. 7831 */ 7832 if (attach_ill == NULL) { 7833 /* 7834 * Don't perform outbound load spreading in the 7835 * case of an RTF_MULTIRT route, as we actually 7836 * typically want to replicate outgoing packets 7837 * through particular interfaces. 7838 */ 7839 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7840 dst_ill = ire->ire_ipif->ipif_ill; 7841 /* for uniformity */ 7842 ill_refhold(dst_ill); 7843 } else { 7844 /* 7845 * If we are here trying to create an IRE_CACHE 7846 * for an offlink destination and have the 7847 * IRE_CACHE for the next hop and the latter is 7848 * using virtual IP source address selection i.e 7849 * it's ire->ire_ipif is pointing to a virtual 7850 * network interface (vni) then 7851 * ip_newroute_get_dst_ll() will return the vni 7852 * interface as the dst_ill. Since the vni is 7853 * virtual i.e not associated with any physical 7854 * interface, it cannot be the dst_ill, hence 7855 * in such a case call ip_newroute_get_dst_ll() 7856 * with the stq_ill instead of the ire_ipif ILL. 7857 * The function returns a refheld ill. 7858 */ 7859 if ((ire->ire_type == IRE_CACHE) && 7860 IS_VNI(ire->ire_ipif->ipif_ill)) 7861 dst_ill = ip_newroute_get_dst_ill( 7862 ire->ire_stq->q_ptr); 7863 else 7864 dst_ill = ip_newroute_get_dst_ill( 7865 ire->ire_ipif->ipif_ill); 7866 } 7867 if (dst_ill == NULL) { 7868 if (ip_debug > 2) { 7869 pr_addr_dbg("ip_newroute: " 7870 "no dst ill for dst" 7871 " %s\n", AF_INET, &dst); 7872 } 7873 goto icmp_err_ret; 7874 } 7875 } else { 7876 dst_ill = ire->ire_ipif->ipif_ill; 7877 /* for uniformity */ 7878 ill_refhold(dst_ill); 7879 /* 7880 * We should have found a route matching ill as we 7881 * called ire_ftable_lookup with MATCH_IRE_ILL. 7882 * Rather than asserting, when there is a mismatch, 7883 * we just drop the packet. 7884 */ 7885 if (dst_ill != attach_ill) { 7886 ip0dbg(("ip_newroute: Packet dropped as " 7887 "IPIF_NOFAILOVER ill is %s, " 7888 "ire->ire_ipif->ipif_ill is %s\n", 7889 attach_ill->ill_name, 7890 dst_ill->ill_name)); 7891 ill_refrele(attach_ill); 7892 goto icmp_err_ret; 7893 } 7894 } 7895 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7896 if (attach_ill != NULL) { 7897 ill_refrele(attach_ill); 7898 attach_ill = NULL; 7899 do_attach_ill = B_TRUE; 7900 } 7901 ASSERT(dst_ill != NULL); 7902 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7903 7904 /* 7905 * Pick the best source address from dst_ill. 7906 * 7907 * 1) If it is part of a multipathing group, we would 7908 * like to spread the inbound packets across different 7909 * interfaces. ipif_select_source picks a random source 7910 * across the different ills in the group. 7911 * 7912 * 2) If it is not part of a multipathing group, we try 7913 * to pick the source address from the destination 7914 * route. Clustering assumes that when we have multiple 7915 * prefixes hosted on an interface, the prefix of the 7916 * source address matches the prefix of the destination 7917 * route. We do this only if the address is not 7918 * DEPRECATED. 7919 * 7920 * 3) If the conn is in a different zone than the ire, we 7921 * need to pick a source address from the right zone. 7922 * 7923 * NOTE : If we hit case (1) above, the prefix of the source 7924 * address picked may not match the prefix of the 7925 * destination routes prefix as ipif_select_source 7926 * does not look at "dst" while picking a source 7927 * address. 7928 * If we want the same behavior as (2), we will need 7929 * to change the behavior of ipif_select_source. 7930 */ 7931 ASSERT(src_ipif == NULL); 7932 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7933 /* 7934 * The RTF_SETSRC flag is set in the parent ire (sire). 7935 * Check that the ipif matching the requested source 7936 * address still exists. 7937 */ 7938 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7939 zoneid, NULL, NULL, NULL, NULL); 7940 } 7941 if (src_ipif == NULL) { 7942 ire_marks |= IRE_MARK_USESRC_CHECK; 7943 if ((dst_ill->ill_group != NULL) || 7944 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7945 (connp != NULL && ire->ire_zoneid != zoneid && 7946 ire->ire_zoneid != ALL_ZONES) || 7947 (dst_ill->ill_usesrc_ifindex != 0)) { 7948 /* 7949 * If the destination is reachable via a 7950 * given gateway, the selected source address 7951 * should be in the same subnet as the gateway. 7952 * Otherwise, the destination is not reachable. 7953 * 7954 * If there are no interfaces on the same subnet 7955 * as the destination, ipif_select_source gives 7956 * first non-deprecated interface which might be 7957 * on a different subnet than the gateway. 7958 * This is not desirable. Hence pass the dst_ire 7959 * source address to ipif_select_source. 7960 * It is sure that the destination is reachable 7961 * with the dst_ire source address subnet. 7962 * So passing dst_ire source address to 7963 * ipif_select_source will make sure that the 7964 * selected source will be on the same subnet 7965 * as dst_ire source address. 7966 */ 7967 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7968 src_ipif = ipif_select_source(dst_ill, saddr, 7969 zoneid); 7970 if (src_ipif == NULL) { 7971 if (ip_debug > 2) { 7972 pr_addr_dbg("ip_newroute: " 7973 "no src for dst %s ", 7974 AF_INET, &dst); 7975 printf("through interface %s\n", 7976 dst_ill->ill_name); 7977 } 7978 goto icmp_err_ret; 7979 } 7980 } else { 7981 src_ipif = ire->ire_ipif; 7982 ASSERT(src_ipif != NULL); 7983 /* hold src_ipif for uniformity */ 7984 ipif_refhold(src_ipif); 7985 } 7986 } 7987 7988 /* 7989 * Assign a source address while we have the conn. 7990 * We can't have ip_wput_ire pick a source address when the 7991 * packet returns from arp since we need to look at 7992 * conn_unspec_src and conn_zoneid, and we lose the conn when 7993 * going through arp. 7994 * 7995 * NOTE : ip_newroute_v6 does not have this piece of code as 7996 * it uses ip6i to store this information. 7997 */ 7998 if (ipha->ipha_src == INADDR_ANY && 7999 (connp == NULL || !connp->conn_unspec_src)) { 8000 ipha->ipha_src = src_ipif->ipif_src_addr; 8001 } 8002 if (ip_debug > 3) { 8003 /* ip2dbg */ 8004 pr_addr_dbg("ip_newroute: first hop %s\n", 8005 AF_INET, &gw); 8006 } 8007 ip2dbg(("\tire type %s (%d)\n", 8008 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8009 8010 /* 8011 * The TTL of multirouted packets is bounded by the 8012 * ip_multirt_ttl ndd variable. 8013 */ 8014 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8015 /* Force TTL of multirouted packets */ 8016 if ((ip_multirt_ttl > 0) && 8017 (ipha->ipha_ttl > ip_multirt_ttl)) { 8018 ip2dbg(("ip_newroute: forcing multirt TTL " 8019 "to %d (was %d), dst 0x%08x\n", 8020 ip_multirt_ttl, ipha->ipha_ttl, 8021 ntohl(sire->ire_addr))); 8022 ipha->ipha_ttl = ip_multirt_ttl; 8023 } 8024 } 8025 /* 8026 * At this point in ip_newroute(), ire is either the 8027 * IRE_CACHE of the next-hop gateway for an off-subnet 8028 * destination or an IRE_INTERFACE type that should be used 8029 * to resolve an on-subnet destination or an on-subnet 8030 * next-hop gateway. 8031 * 8032 * In the IRE_CACHE case, we have the following : 8033 * 8034 * 1) src_ipif - used for getting a source address. 8035 * 8036 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8037 * means packets using this IRE_CACHE will go out on 8038 * dst_ill. 8039 * 8040 * 3) The IRE sire will point to the prefix that is the 8041 * longest matching route for the destination. These 8042 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 8043 * and IRE_HOST_REDIRECT. 8044 * 8045 * The newly created IRE_CACHE entry for the off-subnet 8046 * destination is tied to both the prefix route and the 8047 * interface route used to resolve the next-hop gateway 8048 * via the ire_phandle and ire_ihandle fields, 8049 * respectively. 8050 * 8051 * In the IRE_INTERFACE case, we have the following : 8052 * 8053 * 1) src_ipif - used for getting a source address. 8054 * 8055 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8056 * means packets using the IRE_CACHE that we will build 8057 * here will go out on dst_ill. 8058 * 8059 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8060 * to be created will only be tied to the IRE_INTERFACE 8061 * that was derived from the ire_ihandle field. 8062 * 8063 * If sire is non-NULL, it means the destination is 8064 * off-link and we will first create the IRE_CACHE for the 8065 * gateway. Next time through ip_newroute, we will create 8066 * the IRE_CACHE for the final destination as described 8067 * above. 8068 * 8069 * In both cases, after the current resolution has been 8070 * completed (or possibly initialised, in the IRE_INTERFACE 8071 * case), the loop may be re-entered to attempt the resolution 8072 * of another RTF_MULTIRT route. 8073 * 8074 * When an IRE_CACHE entry for the off-subnet destination is 8075 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8076 * for further processing in emission loops. 8077 */ 8078 save_ire = ire; 8079 switch (ire->ire_type) { 8080 case IRE_CACHE: { 8081 ire_t *ipif_ire; 8082 mblk_t *ire_fp_mp; 8083 8084 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8085 if (gw == 0) 8086 gw = ire->ire_gateway_addr; 8087 /* 8088 * We need 3 ire's to create a new cache ire for an 8089 * off-link destination from the cache ire of the 8090 * gateway. 8091 * 8092 * 1. The prefix ire 'sire' (Note that this does 8093 * not apply to the conn_nexthop_set case) 8094 * 2. The cache ire of the gateway 'ire' 8095 * 3. The interface ire 'ipif_ire' 8096 * 8097 * We have (1) and (2). We lookup (3) below. 8098 * 8099 * If there is no interface route to the gateway, 8100 * it is a race condition, where we found the cache 8101 * but the interface route has been deleted. 8102 */ 8103 if (ip_nexthop) { 8104 ipif_ire = ire_ihandle_lookup_onlink(ire); 8105 } else { 8106 ipif_ire = 8107 ire_ihandle_lookup_offlink(ire, sire); 8108 } 8109 if (ipif_ire == NULL) { 8110 ip1dbg(("ip_newroute: " 8111 "ire_ihandle_lookup_offlink failed\n")); 8112 goto icmp_err_ret; 8113 } 8114 /* 8115 * XXX We are using the same res_mp 8116 * (DL_UNITDATA_REQ) though the save_ire is not 8117 * pointing at the same ill. 8118 * This is incorrect. We need to send it up to the 8119 * resolver to get the right res_mp. For ethernets 8120 * this may be okay (ill_type == DL_ETHER). 8121 */ 8122 res_mp = save_ire->ire_nce->nce_res_mp; 8123 ire_fp_mp = NULL; 8124 /* 8125 * save_ire's nce_fp_mp can't change since it is 8126 * not an IRE_MIPRTUN or IRE_BROADCAST 8127 * LOCK_IRE_FP_MP does not do any useful work in 8128 * the case of IRE_CACHE. So we don't use it below. 8129 */ 8130 if (save_ire->ire_stq == dst_ill->ill_wq) 8131 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8132 8133 /* 8134 * Check cached gateway IRE for any security 8135 * attributes; if found, associate the gateway 8136 * credentials group to the destination IRE. 8137 */ 8138 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8139 mutex_enter(&attrp->igsa_lock); 8140 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8141 GCGRP_REFHOLD(gcgrp); 8142 mutex_exit(&attrp->igsa_lock); 8143 } 8144 8145 ire = ire_create( 8146 (uchar_t *)&dst, /* dest address */ 8147 (uchar_t *)&ip_g_all_ones, /* mask */ 8148 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8149 (uchar_t *)&gw, /* gateway address */ 8150 NULL, 8151 &save_ire->ire_max_frag, 8152 ire_fp_mp, /* Fast Path header */ 8153 dst_ill->ill_rq, /* recv-from queue */ 8154 dst_ill->ill_wq, /* send-to queue */ 8155 IRE_CACHE, /* IRE type */ 8156 res_mp, 8157 src_ipif, 8158 in_ill, /* incoming ill */ 8159 (sire != NULL) ? 8160 sire->ire_mask : 0, /* Parent mask */ 8161 (sire != NULL) ? 8162 sire->ire_phandle : 0, /* Parent handle */ 8163 ipif_ire->ire_ihandle, /* Interface handle */ 8164 (sire != NULL) ? (sire->ire_flags & 8165 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8166 (sire != NULL) ? 8167 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8168 NULL, 8169 gcgrp); 8170 8171 if (ire == NULL) { 8172 if (gcgrp != NULL) { 8173 GCGRP_REFRELE(gcgrp); 8174 gcgrp = NULL; 8175 } 8176 ire_refrele(ipif_ire); 8177 ire_refrele(save_ire); 8178 break; 8179 } 8180 8181 /* reference now held by IRE */ 8182 gcgrp = NULL; 8183 8184 ire->ire_marks |= ire_marks; 8185 8186 /* 8187 * Prevent sire and ipif_ire from getting deleted. 8188 * The newly created ire is tied to both of them via 8189 * the phandle and ihandle respectively. 8190 */ 8191 if (sire != NULL) { 8192 IRB_REFHOLD(sire->ire_bucket); 8193 /* Has it been removed already ? */ 8194 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8195 IRB_REFRELE(sire->ire_bucket); 8196 ire_refrele(ipif_ire); 8197 ire_refrele(save_ire); 8198 break; 8199 } 8200 } 8201 8202 IRB_REFHOLD(ipif_ire->ire_bucket); 8203 /* Has it been removed already ? */ 8204 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8205 IRB_REFRELE(ipif_ire->ire_bucket); 8206 if (sire != NULL) 8207 IRB_REFRELE(sire->ire_bucket); 8208 ire_refrele(ipif_ire); 8209 ire_refrele(save_ire); 8210 break; 8211 } 8212 8213 xmit_mp = first_mp; 8214 /* 8215 * In the case of multirouting, a copy 8216 * of the packet is done before its sending. 8217 * The copy is used to attempt another 8218 * route resolution, in a next loop. 8219 */ 8220 if (ire->ire_flags & RTF_MULTIRT) { 8221 copy_mp = copymsg(first_mp); 8222 if (copy_mp != NULL) { 8223 xmit_mp = copy_mp; 8224 MULTIRT_DEBUG_TAG(first_mp); 8225 } 8226 } 8227 ire_add_then_send(q, ire, xmit_mp); 8228 ire_refrele(save_ire); 8229 8230 /* Assert that sire is not deleted yet. */ 8231 if (sire != NULL) { 8232 ASSERT(sire->ire_ptpn != NULL); 8233 IRB_REFRELE(sire->ire_bucket); 8234 } 8235 8236 /* Assert that ipif_ire is not deleted yet. */ 8237 ASSERT(ipif_ire->ire_ptpn != NULL); 8238 IRB_REFRELE(ipif_ire->ire_bucket); 8239 ire_refrele(ipif_ire); 8240 8241 /* 8242 * If copy_mp is not NULL, multirouting was 8243 * requested. We loop to initiate a next 8244 * route resolution attempt, starting from sire. 8245 */ 8246 if (copy_mp != NULL) { 8247 /* 8248 * Search for the next unresolved 8249 * multirt route. 8250 */ 8251 copy_mp = NULL; 8252 ipif_ire = NULL; 8253 ire = NULL; 8254 multirt_resolve_next = B_TRUE; 8255 continue; 8256 } 8257 if (sire != NULL) 8258 ire_refrele(sire); 8259 ipif_refrele(src_ipif); 8260 ill_refrele(dst_ill); 8261 return; 8262 } 8263 case IRE_IF_NORESOLVER: { 8264 /* 8265 * We have what we need to build an IRE_CACHE. 8266 * 8267 * Create a new res_mp with the IP gateway address 8268 * in destination address in the DLPI hdr if the 8269 * physical length is exactly 4 bytes. 8270 */ 8271 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8272 uchar_t *addr; 8273 8274 if (gw) 8275 addr = (uchar_t *)&gw; 8276 else 8277 addr = (uchar_t *)&dst; 8278 8279 res_mp = ill_dlur_gen(addr, 8280 dst_ill->ill_phys_addr_length, 8281 dst_ill->ill_sap, 8282 dst_ill->ill_sap_length); 8283 8284 if (res_mp == NULL) { 8285 ip1dbg(("ip_newroute: res_mp NULL\n")); 8286 break; 8287 } 8288 } else { 8289 res_mp = NULL; 8290 } 8291 8292 /* 8293 * TSol note: We are creating the ire cache for the 8294 * destination 'dst'. If 'dst' is offlink, going 8295 * through the first hop 'gw', the security attributes 8296 * of 'dst' must be set to point to the gateway 8297 * credentials of gateway 'gw'. If 'dst' is onlink, it 8298 * is possible that 'dst' is a potential gateway that is 8299 * referenced by some route that has some security 8300 * attributes. Thus in the former case, we need to do a 8301 * gcgrp_lookup of 'gw' while in the latter case we 8302 * need to do gcgrp_lookup of 'dst' itself. 8303 */ 8304 ga.ga_af = AF_INET; 8305 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8306 &ga.ga_addr); 8307 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8308 8309 ire = ire_create( 8310 (uchar_t *)&dst, /* dest address */ 8311 (uchar_t *)&ip_g_all_ones, /* mask */ 8312 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8313 (uchar_t *)&gw, /* gateway address */ 8314 NULL, 8315 &save_ire->ire_max_frag, 8316 NULL, /* Fast Path header */ 8317 dst_ill->ill_rq, /* recv-from queue */ 8318 dst_ill->ill_wq, /* send-to queue */ 8319 IRE_CACHE, 8320 res_mp, 8321 src_ipif, 8322 in_ill, /* Incoming ill */ 8323 save_ire->ire_mask, /* Parent mask */ 8324 (sire != NULL) ? /* Parent handle */ 8325 sire->ire_phandle : 0, 8326 save_ire->ire_ihandle, /* Interface handle */ 8327 (sire != NULL) ? sire->ire_flags & 8328 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8329 &(save_ire->ire_uinfo), 8330 NULL, 8331 gcgrp); 8332 8333 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8334 freeb(res_mp); 8335 8336 if (ire == NULL) { 8337 if (gcgrp != NULL) { 8338 GCGRP_REFRELE(gcgrp); 8339 gcgrp = NULL; 8340 } 8341 ire_refrele(save_ire); 8342 break; 8343 } 8344 8345 /* reference now held by IRE */ 8346 gcgrp = NULL; 8347 8348 ire->ire_marks |= ire_marks; 8349 8350 /* Prevent save_ire from getting deleted */ 8351 IRB_REFHOLD(save_ire->ire_bucket); 8352 /* Has it been removed already ? */ 8353 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8354 IRB_REFRELE(save_ire->ire_bucket); 8355 ire_refrele(save_ire); 8356 break; 8357 } 8358 8359 /* 8360 * In the case of multirouting, a copy 8361 * of the packet is made before it is sent. 8362 * The copy is used in the next 8363 * loop to attempt another resolution. 8364 */ 8365 xmit_mp = first_mp; 8366 if ((sire != NULL) && 8367 (sire->ire_flags & RTF_MULTIRT)) { 8368 copy_mp = copymsg(first_mp); 8369 if (copy_mp != NULL) { 8370 xmit_mp = copy_mp; 8371 MULTIRT_DEBUG_TAG(first_mp); 8372 } 8373 } 8374 ire_add_then_send(q, ire, xmit_mp); 8375 8376 /* Assert that it is not deleted yet. */ 8377 ASSERT(save_ire->ire_ptpn != NULL); 8378 IRB_REFRELE(save_ire->ire_bucket); 8379 ire_refrele(save_ire); 8380 8381 if (copy_mp != NULL) { 8382 /* 8383 * If we found a (no)resolver, we ignore any 8384 * trailing top priority IRE_CACHE in further 8385 * loops. This ensures that we do not omit any 8386 * (no)resolver. 8387 * This IRE_CACHE, if any, will be processed 8388 * by another thread entering ip_newroute(). 8389 * IRE_CACHE entries, if any, will be processed 8390 * by another thread entering ip_newroute(), 8391 * (upon resolver response, for instance). 8392 * This aims to force parallel multirt 8393 * resolutions as soon as a packet must be sent. 8394 * In the best case, after the tx of only one 8395 * packet, all reachable routes are resolved. 8396 * Otherwise, the resolution of all RTF_MULTIRT 8397 * routes would require several emissions. 8398 */ 8399 multirt_flags &= ~MULTIRT_CACHEGW; 8400 8401 /* 8402 * Search for the next unresolved multirt 8403 * route. 8404 */ 8405 copy_mp = NULL; 8406 save_ire = NULL; 8407 ire = NULL; 8408 multirt_resolve_next = B_TRUE; 8409 continue; 8410 } 8411 8412 /* 8413 * Don't need sire anymore 8414 */ 8415 if (sire != NULL) 8416 ire_refrele(sire); 8417 8418 ipif_refrele(src_ipif); 8419 ill_refrele(dst_ill); 8420 return; 8421 } 8422 case IRE_IF_RESOLVER: 8423 /* 8424 * We can't build an IRE_CACHE yet, but at least we 8425 * found a resolver that can help. 8426 */ 8427 res_mp = dst_ill->ill_resolver_mp; 8428 if (!OK_RESOLVER_MP(res_mp)) 8429 break; 8430 8431 /* 8432 * To be at this point in the code with a non-zero gw 8433 * means that dst is reachable through a gateway that 8434 * we have never resolved. By changing dst to the gw 8435 * addr we resolve the gateway first. 8436 * When ire_add_then_send() tries to put the IP dg 8437 * to dst, it will reenter ip_newroute() at which 8438 * time we will find the IRE_CACHE for the gw and 8439 * create another IRE_CACHE in case IRE_CACHE above. 8440 */ 8441 if (gw != INADDR_ANY) { 8442 /* 8443 * The source ipif that was determined above was 8444 * relative to the destination address, not the 8445 * gateway's. If src_ipif was not taken out of 8446 * the IRE_IF_RESOLVER entry, we'll need to call 8447 * ipif_select_source() again. 8448 */ 8449 if (src_ipif != ire->ire_ipif) { 8450 ipif_refrele(src_ipif); 8451 src_ipif = ipif_select_source(dst_ill, 8452 gw, zoneid); 8453 if (src_ipif == NULL) { 8454 if (ip_debug > 2) { 8455 pr_addr_dbg( 8456 "ip_newroute: no " 8457 "src for gw %s ", 8458 AF_INET, &gw); 8459 printf("through " 8460 "interface %s\n", 8461 dst_ill->ill_name); 8462 } 8463 goto icmp_err_ret; 8464 } 8465 } 8466 save_dst = dst; 8467 dst = gw; 8468 gw = INADDR_ANY; 8469 } 8470 8471 /* 8472 * We obtain a partial IRE_CACHE which we will pass 8473 * along with the resolver query. When the response 8474 * comes back it will be there ready for us to add. 8475 * The ire_max_frag is atomically set under the 8476 * irebucket lock in ire_add_v[46]. 8477 */ 8478 8479 ire = ire_create_mp( 8480 (uchar_t *)&dst, /* dest address */ 8481 (uchar_t *)&ip_g_all_ones, /* mask */ 8482 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8483 (uchar_t *)&gw, /* gateway address */ 8484 NULL, /* no in_src_addr */ 8485 NULL, /* ire_max_frag */ 8486 NULL, /* Fast Path header */ 8487 dst_ill->ill_rq, /* recv-from queue */ 8488 dst_ill->ill_wq, /* send-to queue */ 8489 IRE_CACHE, 8490 NULL, 8491 src_ipif, /* Interface ipif */ 8492 in_ill, /* Incoming ILL */ 8493 save_ire->ire_mask, /* Parent mask */ 8494 0, 8495 save_ire->ire_ihandle, /* Interface handle */ 8496 0, /* flags if any */ 8497 &(save_ire->ire_uinfo), 8498 NULL, 8499 NULL); 8500 8501 if (ire == NULL) { 8502 ire_refrele(save_ire); 8503 break; 8504 } 8505 8506 if ((sire != NULL) && 8507 (sire->ire_flags & RTF_MULTIRT)) { 8508 copy_mp = copymsg(first_mp); 8509 if (copy_mp != NULL) 8510 MULTIRT_DEBUG_TAG(copy_mp); 8511 } 8512 8513 ire->ire_marks |= ire_marks; 8514 8515 /* 8516 * Construct message chain for the resolver 8517 * of the form: 8518 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8519 * Packet could contain a IPSEC_OUT mp. 8520 * 8521 * NOTE : ire will be added later when the response 8522 * comes back from ARP. If the response does not 8523 * come back, ARP frees the packet. For this reason, 8524 * we can't REFHOLD the bucket of save_ire to prevent 8525 * deletions. We may not be able to REFRELE the bucket 8526 * if the response never comes back. Thus, before 8527 * adding the ire, ire_add_v4 will make sure that the 8528 * interface route does not get deleted. This is the 8529 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8530 * where we can always prevent deletions because of 8531 * the synchronous nature of adding IRES i.e 8532 * ire_add_then_send is called after creating the IRE. 8533 */ 8534 ASSERT(ire->ire_mp != NULL); 8535 ire->ire_mp->b_cont = first_mp; 8536 /* Have saved_mp handy, for cleanup if canput fails */ 8537 saved_mp = mp; 8538 mp = copyb(res_mp); 8539 ASSERT(mp != NULL); 8540 linkb(mp, ire->ire_mp); 8541 8542 8543 /* 8544 * Fill in the source and dest addrs for the resolver. 8545 * NOTE: this depends on memory layouts imposed by 8546 * ill_init(). 8547 */ 8548 areq = (areq_t *)mp->b_rptr; 8549 addrp = (ipaddr_t *)((char *)areq + 8550 areq->areq_sender_addr_offset); 8551 if (do_attach_ill) { 8552 /* 8553 * This is bind to no failover case. 8554 * arp packet also must go out on attach_ill. 8555 */ 8556 ASSERT(ipha->ipha_src != NULL); 8557 *addrp = ipha->ipha_src; 8558 } else { 8559 *addrp = save_ire->ire_src_addr; 8560 } 8561 8562 ire_refrele(save_ire); 8563 addrp = (ipaddr_t *)((char *)areq + 8564 areq->areq_target_addr_offset); 8565 *addrp = dst; 8566 /* Up to the resolver. */ 8567 if (canputnext(dst_ill->ill_rq) && 8568 !(dst_ill->ill_arp_closing)) { 8569 putnext(dst_ill->ill_rq, mp); 8570 ire = NULL; 8571 if (copy_mp != NULL) { 8572 /* 8573 * If we found a resolver, we ignore 8574 * any trailing top priority IRE_CACHE 8575 * in the further loops. This ensures 8576 * that we do not omit any resolver. 8577 * IRE_CACHE entries, if any, will be 8578 * processed next time we enter 8579 * ip_newroute(). 8580 */ 8581 multirt_flags &= ~MULTIRT_CACHEGW; 8582 /* 8583 * Search for the next unresolved 8584 * multirt route. 8585 */ 8586 first_mp = copy_mp; 8587 copy_mp = NULL; 8588 /* Prepare the next resolution loop. */ 8589 mp = first_mp; 8590 EXTRACT_PKT_MP(mp, first_mp, 8591 mctl_present); 8592 if (mctl_present) 8593 io = (ipsec_out_t *) 8594 first_mp->b_rptr; 8595 ipha = (ipha_t *)mp->b_rptr; 8596 8597 ASSERT(sire != NULL); 8598 8599 dst = save_dst; 8600 multirt_resolve_next = B_TRUE; 8601 continue; 8602 } 8603 8604 if (sire != NULL) 8605 ire_refrele(sire); 8606 8607 /* 8608 * The response will come back in ip_wput 8609 * with db_type IRE_DB_TYPE. 8610 */ 8611 ipif_refrele(src_ipif); 8612 ill_refrele(dst_ill); 8613 return; 8614 } else { 8615 /* Prepare for cleanup */ 8616 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8617 mp); 8618 mp->b_cont = NULL; 8619 freeb(mp); /* areq */ 8620 /* 8621 * this is an ire that is not added to the 8622 * cache. ire_freemblk will handle the release 8623 * of any resources associated with the ire. 8624 */ 8625 ire_delete(ire); /* ire_mp */ 8626 mp = saved_mp; /* pkt */ 8627 ire = NULL; 8628 if (copy_mp != NULL) { 8629 MULTIRT_DEBUG_UNTAG(copy_mp); 8630 freemsg(copy_mp); 8631 copy_mp = NULL; 8632 } 8633 break; 8634 } 8635 default: 8636 break; 8637 } 8638 } while (multirt_resolve_next); 8639 8640 ip1dbg(("ip_newroute: dropped\n")); 8641 /* Did this packet originate externally? */ 8642 if (mp->b_prev) { 8643 mp->b_next = NULL; 8644 mp->b_prev = NULL; 8645 BUMP_MIB(&ip_mib, ipInDiscards); 8646 } else { 8647 BUMP_MIB(&ip_mib, ipOutDiscards); 8648 } 8649 ASSERT(copy_mp == NULL); 8650 MULTIRT_DEBUG_UNTAG(first_mp); 8651 freemsg(first_mp); 8652 if (ire != NULL) 8653 ire_refrele(ire); 8654 if (sire != NULL) 8655 ire_refrele(sire); 8656 if (src_ipif != NULL) 8657 ipif_refrele(src_ipif); 8658 if (dst_ill != NULL) 8659 ill_refrele(dst_ill); 8660 return; 8661 8662 icmp_err_ret: 8663 ip1dbg(("ip_newroute: no route\n")); 8664 if (src_ipif != NULL) 8665 ipif_refrele(src_ipif); 8666 if (dst_ill != NULL) 8667 ill_refrele(dst_ill); 8668 if (sire != NULL) 8669 ire_refrele(sire); 8670 /* Did this packet originate externally? */ 8671 if (mp->b_prev) { 8672 mp->b_next = NULL; 8673 mp->b_prev = NULL; 8674 /* XXX ipInNoRoutes */ 8675 q = WR(q); 8676 } else { 8677 /* 8678 * Since ip_wput() isn't close to finished, we fill 8679 * in enough of the header for credible error reporting. 8680 */ 8681 if (ip_hdr_complete(ipha, zoneid)) { 8682 /* Failed */ 8683 MULTIRT_DEBUG_UNTAG(first_mp); 8684 freemsg(first_mp); 8685 if (ire != NULL) 8686 ire_refrele(ire); 8687 return; 8688 } 8689 } 8690 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8691 8692 /* 8693 * At this point we will have ire only if RTF_BLACKHOLE 8694 * or RTF_REJECT flags are set on the IRE. It will not 8695 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8696 */ 8697 if (ire != NULL) { 8698 if (ire->ire_flags & RTF_BLACKHOLE) { 8699 ire_refrele(ire); 8700 MULTIRT_DEBUG_UNTAG(first_mp); 8701 freemsg(first_mp); 8702 return; 8703 } 8704 ire_refrele(ire); 8705 } 8706 if (ip_source_routed(ipha)) { 8707 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8708 zoneid); 8709 return; 8710 } 8711 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8712 } 8713 8714 /* 8715 * IPv4 - 8716 * ip_newroute_ipif is called by ip_wput_multicast and 8717 * ip_rput_forward_multicast whenever we need to send 8718 * out a packet to a destination address for which we do not have specific 8719 * routing information. It is used when the packet will be sent out 8720 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8721 * socket option is set or icmp error message wants to go out on a particular 8722 * interface for a unicast packet. 8723 * 8724 * In most cases, the destination address is resolved thanks to the ipif 8725 * intrinsic resolver. However, there are some cases where the call to 8726 * ip_newroute_ipif must take into account the potential presence of 8727 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8728 * that uses the interface. This is specified through flags, 8729 * which can be a combination of: 8730 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8731 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8732 * and flags. Additionally, the packet source address has to be set to 8733 * the specified address. The caller is thus expected to set this flag 8734 * if the packet has no specific source address yet. 8735 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8736 * flag, the resulting ire will inherit the flag. All unresolved routes 8737 * to the destination must be explored in the same call to 8738 * ip_newroute_ipif(). 8739 */ 8740 static void 8741 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8742 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8743 { 8744 areq_t *areq; 8745 ire_t *ire = NULL; 8746 mblk_t *res_mp; 8747 ipaddr_t *addrp; 8748 mblk_t *first_mp; 8749 ire_t *save_ire = NULL; 8750 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8751 ipif_t *src_ipif = NULL; 8752 ushort_t ire_marks = 0; 8753 ill_t *dst_ill = NULL; 8754 boolean_t mctl_present; 8755 ipsec_out_t *io; 8756 ipha_t *ipha; 8757 int ihandle = 0; 8758 mblk_t *saved_mp; 8759 ire_t *fire = NULL; 8760 mblk_t *copy_mp = NULL; 8761 boolean_t multirt_resolve_next; 8762 ipaddr_t ipha_dst; 8763 8764 /* 8765 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8766 * here for uniformity 8767 */ 8768 ipif_refhold(ipif); 8769 8770 /* 8771 * This loop is run only once in most cases. 8772 * We loop to resolve further routes only when the destination 8773 * can be reached through multiple RTF_MULTIRT-flagged ires. 8774 */ 8775 do { 8776 if (dst_ill != NULL) { 8777 ill_refrele(dst_ill); 8778 dst_ill = NULL; 8779 } 8780 if (src_ipif != NULL) { 8781 ipif_refrele(src_ipif); 8782 src_ipif = NULL; 8783 } 8784 multirt_resolve_next = B_FALSE; 8785 8786 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8787 ipif->ipif_ill->ill_name)); 8788 8789 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8790 if (mctl_present) 8791 io = (ipsec_out_t *)first_mp->b_rptr; 8792 8793 ipha = (ipha_t *)mp->b_rptr; 8794 8795 /* 8796 * Save the packet destination address, we may need it after 8797 * the packet has been consumed. 8798 */ 8799 ipha_dst = ipha->ipha_dst; 8800 8801 /* 8802 * If the interface is a pt-pt interface we look for an 8803 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8804 * local_address and the pt-pt destination address. Otherwise 8805 * we just match the local address. 8806 * NOTE: dst could be different than ipha->ipha_dst in case 8807 * of sending igmp multicast packets over a point-to-point 8808 * connection. 8809 * Thus we must be careful enough to check ipha_dst to be a 8810 * multicast address, otherwise it will take xmit_if path for 8811 * multicast packets resulting into kernel stack overflow by 8812 * repeated calls to ip_newroute_ipif from ire_send(). 8813 */ 8814 if (CLASSD(ipha_dst) && 8815 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8816 goto err_ret; 8817 } 8818 8819 /* 8820 * We check if an IRE_OFFSUBNET for the addr that goes through 8821 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8822 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8823 * propagate its flags to the new ire. 8824 */ 8825 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8826 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8827 ip2dbg(("ip_newroute_ipif: " 8828 "ipif_lookup_multi_ire(" 8829 "ipif %p, dst %08x) = fire %p\n", 8830 (void *)ipif, ntohl(dst), (void *)fire)); 8831 } 8832 8833 if (mctl_present && io->ipsec_out_attach_if) { 8834 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8835 io->ipsec_out_ill_index, B_FALSE); 8836 8837 /* Failure case frees things for us. */ 8838 if (attach_ill == NULL) { 8839 ipif_refrele(ipif); 8840 if (fire != NULL) 8841 ire_refrele(fire); 8842 return; 8843 } 8844 8845 /* 8846 * Check if we need an ire that will not be 8847 * looked up by anybody else i.e. HIDDEN. 8848 */ 8849 if (ill_is_probeonly(attach_ill)) { 8850 ire_marks = IRE_MARK_HIDDEN; 8851 } 8852 /* 8853 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8854 * case. 8855 */ 8856 dst_ill = ipif->ipif_ill; 8857 /* attach_ill has been refheld by ip_grab_attach_ill */ 8858 ASSERT(dst_ill == attach_ill); 8859 } else { 8860 /* 8861 * If this is set by IP_XMIT_IF, then make sure that 8862 * ipif is pointing to the same ill as the IP_XMIT_IF 8863 * specified ill. 8864 */ 8865 ASSERT((connp == NULL) || 8866 (connp->conn_xmit_if_ill == NULL) || 8867 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8868 /* 8869 * If the interface belongs to an interface group, 8870 * make sure the next possible interface in the group 8871 * is used. This encourages load spreading among 8872 * peers in an interface group. 8873 * Note: load spreading is disabled for RTF_MULTIRT 8874 * routes. 8875 */ 8876 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8877 (fire->ire_flags & RTF_MULTIRT)) { 8878 /* 8879 * Don't perform outbound load spreading 8880 * in the case of an RTF_MULTIRT issued route, 8881 * we actually typically want to replicate 8882 * outgoing packets through particular 8883 * interfaces. 8884 */ 8885 dst_ill = ipif->ipif_ill; 8886 ill_refhold(dst_ill); 8887 } else { 8888 dst_ill = ip_newroute_get_dst_ill( 8889 ipif->ipif_ill); 8890 } 8891 if (dst_ill == NULL) { 8892 if (ip_debug > 2) { 8893 pr_addr_dbg("ip_newroute_ipif: " 8894 "no dst ill for dst %s\n", 8895 AF_INET, &dst); 8896 } 8897 goto err_ret; 8898 } 8899 } 8900 8901 /* 8902 * Pick a source address preferring non-deprecated ones. 8903 * Unlike ip_newroute, we don't do any source address 8904 * selection here since for multicast it really does not help 8905 * in inbound load spreading as in the unicast case. 8906 */ 8907 if ((flags & RTF_SETSRC) && (fire != NULL) && 8908 (fire->ire_flags & RTF_SETSRC)) { 8909 /* 8910 * As requested by flags, an IRE_OFFSUBNET was looked up 8911 * on that interface. This ire has RTF_SETSRC flag, so 8912 * the source address of the packet must be changed. 8913 * Check that the ipif matching the requested source 8914 * address still exists. 8915 */ 8916 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8917 zoneid, NULL, NULL, NULL, NULL); 8918 } 8919 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8920 (connp != NULL && ipif->ipif_zoneid != zoneid && 8921 ipif->ipif_zoneid != ALL_ZONES)) && 8922 (src_ipif == NULL)) { 8923 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8924 if (src_ipif == NULL) { 8925 if (ip_debug > 2) { 8926 /* ip1dbg */ 8927 pr_addr_dbg("ip_newroute_ipif: " 8928 "no src for dst %s", 8929 AF_INET, &dst); 8930 } 8931 ip1dbg((" through interface %s\n", 8932 dst_ill->ill_name)); 8933 goto err_ret; 8934 } 8935 ipif_refrele(ipif); 8936 ipif = src_ipif; 8937 ipif_refhold(ipif); 8938 } 8939 if (src_ipif == NULL) { 8940 src_ipif = ipif; 8941 ipif_refhold(src_ipif); 8942 } 8943 8944 /* 8945 * Assign a source address while we have the conn. 8946 * We can't have ip_wput_ire pick a source address when the 8947 * packet returns from arp since conn_unspec_src might be set 8948 * and we loose the conn when going through arp. 8949 */ 8950 if (ipha->ipha_src == INADDR_ANY && 8951 (connp == NULL || !connp->conn_unspec_src)) { 8952 ipha->ipha_src = src_ipif->ipif_src_addr; 8953 } 8954 8955 /* 8956 * In case of IP_XMIT_IF, it is possible that the outgoing 8957 * interface does not have an interface ire. 8958 * Example: Thousands of mobileip PPP interfaces to mobile 8959 * nodes. We don't want to create interface ires because 8960 * packets from other mobile nodes must not take the route 8961 * via interface ires to the visiting mobile node without 8962 * going through the home agent, in absence of mobileip 8963 * route optimization. 8964 */ 8965 if (CLASSD(ipha_dst) && (connp == NULL || 8966 connp->conn_xmit_if_ill == NULL)) { 8967 /* ipif_to_ire returns an held ire */ 8968 ire = ipif_to_ire(ipif); 8969 if (ire == NULL) 8970 goto err_ret; 8971 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8972 goto err_ret; 8973 /* 8974 * ihandle is needed when the ire is added to 8975 * cache table. 8976 */ 8977 save_ire = ire; 8978 ihandle = save_ire->ire_ihandle; 8979 8980 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8981 "flags %04x\n", 8982 (void *)ire, (void *)ipif, flags)); 8983 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8984 (fire->ire_flags & RTF_MULTIRT)) { 8985 /* 8986 * As requested by flags, an IRE_OFFSUBNET was 8987 * looked up on that interface. This ire has 8988 * RTF_MULTIRT flag, so the resolution loop will 8989 * be re-entered to resolve additional routes on 8990 * other interfaces. For that purpose, a copy of 8991 * the packet is performed at this point. 8992 */ 8993 fire->ire_last_used_time = lbolt; 8994 copy_mp = copymsg(first_mp); 8995 if (copy_mp) { 8996 MULTIRT_DEBUG_TAG(copy_mp); 8997 } 8998 } 8999 if ((flags & RTF_SETSRC) && (fire != NULL) && 9000 (fire->ire_flags & RTF_SETSRC)) { 9001 /* 9002 * As requested by flags, an IRE_OFFSUBET was 9003 * looked up on that interface. This ire has 9004 * RTF_SETSRC flag, so the source address of the 9005 * packet must be changed. 9006 */ 9007 ipha->ipha_src = fire->ire_src_addr; 9008 } 9009 } else { 9010 ASSERT((connp == NULL) || 9011 (connp->conn_xmit_if_ill != NULL) || 9012 (connp->conn_dontroute)); 9013 /* 9014 * The only ways we can come here are: 9015 * 1) IP_XMIT_IF socket option is set 9016 * 2) ICMP error message generated from 9017 * ip_mrtun_forward() routine and it needs 9018 * to go through the specified ill. 9019 * 3) SO_DONTROUTE socket option is set 9020 * In all cases, the new ire will not be added 9021 * into cache table. 9022 */ 9023 ire_marks |= IRE_MARK_NOADD; 9024 } 9025 9026 switch (ipif->ipif_net_type) { 9027 case IRE_IF_NORESOLVER: { 9028 /* We have what we need to build an IRE_CACHE. */ 9029 mblk_t *res_mp; 9030 9031 /* 9032 * Create a new res_mp with the 9033 * IP gateway address as destination address in the 9034 * DLPI hdr if the physical length is exactly 4 bytes. 9035 */ 9036 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9037 res_mp = ill_dlur_gen((uchar_t *)&dst, 9038 dst_ill->ill_phys_addr_length, 9039 dst_ill->ill_sap, 9040 dst_ill->ill_sap_length); 9041 } else { 9042 /* use the value set in ip_ll_subnet_defaults */ 9043 res_mp = ill_dlur_gen(NULL, 9044 dst_ill->ill_phys_addr_length, 9045 dst_ill->ill_sap, 9046 dst_ill->ill_sap_length); 9047 } 9048 9049 if (res_mp == NULL) 9050 break; 9051 /* 9052 * The new ire inherits the IRE_OFFSUBNET flags 9053 * and source address, if this was requested. 9054 */ 9055 ire = ire_create( 9056 (uchar_t *)&dst, /* dest address */ 9057 (uchar_t *)&ip_g_all_ones, /* mask */ 9058 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9059 NULL, /* gateway address */ 9060 NULL, 9061 &ipif->ipif_mtu, 9062 NULL, /* Fast Path header */ 9063 dst_ill->ill_rq, /* recv-from queue */ 9064 dst_ill->ill_wq, /* send-to queue */ 9065 IRE_CACHE, 9066 res_mp, 9067 src_ipif, 9068 NULL, 9069 (save_ire != NULL ? save_ire->ire_mask : 0), 9070 (fire != NULL) ? /* Parent handle */ 9071 fire->ire_phandle : 0, 9072 ihandle, /* Interface handle */ 9073 (fire != NULL) ? 9074 (fire->ire_flags & 9075 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9076 (save_ire == NULL ? &ire_uinfo_null : 9077 &save_ire->ire_uinfo), 9078 NULL, 9079 NULL); 9080 9081 freeb(res_mp); 9082 9083 if (ire == NULL) { 9084 if (save_ire != NULL) 9085 ire_refrele(save_ire); 9086 break; 9087 } 9088 9089 ire->ire_marks |= ire_marks; 9090 9091 /* 9092 * If IRE_MARK_NOADD is set then we need to convert 9093 * the max_fragp to a useable value now. This is 9094 * normally done in ire_add_v[46]. We also need to 9095 * associate the ire with an nce (normally would be 9096 * done in ip_wput_nondata()). 9097 * 9098 * Note that IRE_MARK_NOADD packets created here 9099 * do not have a non-null ire_mp pointer. The null 9100 * value of ire_bucket indicates that they were 9101 * never added. 9102 */ 9103 if (ire->ire_marks & IRE_MARK_NOADD) { 9104 uint_t max_frag; 9105 9106 max_frag = *ire->ire_max_fragp; 9107 ire->ire_max_fragp = NULL; 9108 ire->ire_max_frag = max_frag; 9109 9110 if ((ire->ire_nce = ndp_lookup_v4( 9111 ire_to_ill(ire), 9112 (ire->ire_gateway_addr != INADDR_ANY ? 9113 &ire->ire_gateway_addr : &ire->ire_addr), 9114 B_FALSE)) == NULL) { 9115 if (save_ire != NULL) 9116 ire_refrele(save_ire); 9117 break; 9118 } 9119 ASSERT(ire->ire_nce->nce_state == 9120 ND_REACHABLE); 9121 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9122 } 9123 9124 /* Prevent save_ire from getting deleted */ 9125 if (save_ire != NULL) { 9126 IRB_REFHOLD(save_ire->ire_bucket); 9127 /* Has it been removed already ? */ 9128 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9129 IRB_REFRELE(save_ire->ire_bucket); 9130 ire_refrele(save_ire); 9131 break; 9132 } 9133 } 9134 9135 ire_add_then_send(q, ire, first_mp); 9136 9137 /* Assert that save_ire is not deleted yet. */ 9138 if (save_ire != NULL) { 9139 ASSERT(save_ire->ire_ptpn != NULL); 9140 IRB_REFRELE(save_ire->ire_bucket); 9141 ire_refrele(save_ire); 9142 save_ire = NULL; 9143 } 9144 if (fire != NULL) { 9145 ire_refrele(fire); 9146 fire = NULL; 9147 } 9148 9149 /* 9150 * the resolution loop is re-entered if this 9151 * was requested through flags and if we 9152 * actually are in a multirouting case. 9153 */ 9154 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9155 boolean_t need_resolve = 9156 ire_multirt_need_resolve(ipha_dst, 9157 MBLK_GETLABEL(copy_mp)); 9158 if (!need_resolve) { 9159 MULTIRT_DEBUG_UNTAG(copy_mp); 9160 freemsg(copy_mp); 9161 copy_mp = NULL; 9162 } else { 9163 /* 9164 * ipif_lookup_group() calls 9165 * ire_lookup_multi() that uses 9166 * ire_ftable_lookup() to find 9167 * an IRE_INTERFACE for the group. 9168 * In the multirt case, 9169 * ire_lookup_multi() then invokes 9170 * ire_multirt_lookup() to find 9171 * the next resolvable ire. 9172 * As a result, we obtain an new 9173 * interface, derived from the 9174 * next ire. 9175 */ 9176 ipif_refrele(ipif); 9177 ipif = ipif_lookup_group(ipha_dst, 9178 zoneid); 9179 ip2dbg(("ip_newroute_ipif: " 9180 "multirt dst %08x, ipif %p\n", 9181 htonl(dst), (void *)ipif)); 9182 if (ipif != NULL) { 9183 mp = copy_mp; 9184 copy_mp = NULL; 9185 multirt_resolve_next = B_TRUE; 9186 continue; 9187 } else { 9188 freemsg(copy_mp); 9189 } 9190 } 9191 } 9192 if (ipif != NULL) 9193 ipif_refrele(ipif); 9194 ill_refrele(dst_ill); 9195 ipif_refrele(src_ipif); 9196 return; 9197 } 9198 case IRE_IF_RESOLVER: 9199 /* 9200 * We can't build an IRE_CACHE yet, but at least 9201 * we found a resolver that can help. 9202 */ 9203 res_mp = dst_ill->ill_resolver_mp; 9204 if (!OK_RESOLVER_MP(res_mp)) 9205 break; 9206 9207 /* 9208 * We obtain a partial IRE_CACHE which we will pass 9209 * along with the resolver query. When the response 9210 * comes back it will be there ready for us to add. 9211 * The new ire inherits the IRE_OFFSUBNET flags 9212 * and source address, if this was requested. 9213 * The ire_max_frag is atomically set under the 9214 * irebucket lock in ire_add_v[46]. Only in the 9215 * case of IRE_MARK_NOADD, we set it here itself. 9216 */ 9217 ire = ire_create_mp( 9218 (uchar_t *)&dst, /* dest address */ 9219 (uchar_t *)&ip_g_all_ones, /* mask */ 9220 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9221 NULL, /* gateway address */ 9222 NULL, /* no in_src_addr */ 9223 (ire_marks & IRE_MARK_NOADD) ? 9224 ipif->ipif_mtu : 0, /* max_frag */ 9225 NULL, /* Fast path header */ 9226 dst_ill->ill_rq, /* recv-from queue */ 9227 dst_ill->ill_wq, /* send-to queue */ 9228 IRE_CACHE, 9229 NULL, /* let ire_nce_init figure res_mp out */ 9230 src_ipif, 9231 NULL, 9232 (save_ire != NULL ? save_ire->ire_mask : 0), 9233 (fire != NULL) ? /* Parent handle */ 9234 fire->ire_phandle : 0, 9235 ihandle, /* Interface handle */ 9236 (fire != NULL) ? /* flags if any */ 9237 (fire->ire_flags & 9238 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9239 (save_ire == NULL ? &ire_uinfo_null : 9240 &save_ire->ire_uinfo), 9241 NULL, 9242 NULL); 9243 9244 if (save_ire != NULL) { 9245 ire_refrele(save_ire); 9246 save_ire = NULL; 9247 } 9248 if (ire == NULL) 9249 break; 9250 9251 ire->ire_marks |= ire_marks; 9252 /* 9253 * Construct message chain for the resolver of the 9254 * form: 9255 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9256 * 9257 * NOTE : ire will be added later when the response 9258 * comes back from ARP. If the response does not 9259 * come back, ARP frees the packet. For this reason, 9260 * we can't REFHOLD the bucket of save_ire to prevent 9261 * deletions. We may not be able to REFRELE the 9262 * bucket if the response never comes back. 9263 * Thus, before adding the ire, ire_add_v4 will make 9264 * sure that the interface route does not get deleted. 9265 * This is the only case unlike ip_newroute_v6, 9266 * ip_newroute_ipif_v6 where we can always prevent 9267 * deletions because ire_add_then_send is called after 9268 * creating the IRE. 9269 * If IRE_MARK_NOADD is set, then ire_add_then_send 9270 * does not add this IRE into the IRE CACHE. 9271 */ 9272 ASSERT(ire->ire_mp != NULL); 9273 ire->ire_mp->b_cont = first_mp; 9274 /* Have saved_mp handy, for cleanup if canput fails */ 9275 saved_mp = mp; 9276 mp = copyb(res_mp); 9277 ASSERT(mp != NULL); 9278 linkb(mp, ire->ire_mp); 9279 9280 /* 9281 * Fill in the source and dest addrs for the resolver. 9282 * NOTE: this depends on memory layouts imposed by 9283 * ill_init(). 9284 */ 9285 areq = (areq_t *)mp->b_rptr; 9286 addrp = (ipaddr_t *)((char *)areq + 9287 areq->areq_sender_addr_offset); 9288 *addrp = ire->ire_src_addr; 9289 addrp = (ipaddr_t *)((char *)areq + 9290 areq->areq_target_addr_offset); 9291 *addrp = dst; 9292 /* Up to the resolver. */ 9293 if (canputnext(dst_ill->ill_rq) && 9294 !(dst_ill->ill_arp_closing)) { 9295 putnext(dst_ill->ill_rq, mp); 9296 /* 9297 * The response will come back in ip_wput 9298 * with db_type IRE_DB_TYPE. 9299 */ 9300 } else { 9301 mp->b_cont = NULL; 9302 freeb(mp); /* areq */ 9303 ire_delete(ire); /* ire_mp */ 9304 saved_mp->b_next = NULL; 9305 saved_mp->b_prev = NULL; 9306 freemsg(first_mp); /* pkt */ 9307 ip2dbg(("ip_newroute_ipif: dropped\n")); 9308 } 9309 9310 if (fire != NULL) { 9311 ire_refrele(fire); 9312 fire = NULL; 9313 } 9314 9315 9316 /* 9317 * The resolution loop is re-entered if this was 9318 * requested through flags and we actually are 9319 * in a multirouting case. 9320 */ 9321 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9322 boolean_t need_resolve = 9323 ire_multirt_need_resolve(ipha_dst, 9324 MBLK_GETLABEL(copy_mp)); 9325 if (!need_resolve) { 9326 MULTIRT_DEBUG_UNTAG(copy_mp); 9327 freemsg(copy_mp); 9328 copy_mp = NULL; 9329 } else { 9330 /* 9331 * ipif_lookup_group() calls 9332 * ire_lookup_multi() that uses 9333 * ire_ftable_lookup() to find 9334 * an IRE_INTERFACE for the group. 9335 * In the multirt case, 9336 * ire_lookup_multi() then invokes 9337 * ire_multirt_lookup() to find 9338 * the next resolvable ire. 9339 * As a result, we obtain an new 9340 * interface, derived from the 9341 * next ire. 9342 */ 9343 ipif_refrele(ipif); 9344 ipif = ipif_lookup_group(ipha_dst, 9345 zoneid); 9346 if (ipif != NULL) { 9347 mp = copy_mp; 9348 copy_mp = NULL; 9349 multirt_resolve_next = B_TRUE; 9350 continue; 9351 } else { 9352 freemsg(copy_mp); 9353 } 9354 } 9355 } 9356 if (ipif != NULL) 9357 ipif_refrele(ipif); 9358 ill_refrele(dst_ill); 9359 ipif_refrele(src_ipif); 9360 return; 9361 default: 9362 break; 9363 } 9364 } while (multirt_resolve_next); 9365 9366 err_ret: 9367 ip2dbg(("ip_newroute_ipif: dropped\n")); 9368 if (fire != NULL) 9369 ire_refrele(fire); 9370 ipif_refrele(ipif); 9371 /* Did this packet originate externally? */ 9372 if (dst_ill != NULL) 9373 ill_refrele(dst_ill); 9374 if (src_ipif != NULL) 9375 ipif_refrele(src_ipif); 9376 if (mp->b_prev || mp->b_next) { 9377 mp->b_next = NULL; 9378 mp->b_prev = NULL; 9379 } else { 9380 /* 9381 * Since ip_wput() isn't close to finished, we fill 9382 * in enough of the header for credible error reporting. 9383 */ 9384 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9385 /* Failed */ 9386 freemsg(first_mp); 9387 if (ire != NULL) 9388 ire_refrele(ire); 9389 return; 9390 } 9391 } 9392 /* 9393 * At this point we will have ire only if RTF_BLACKHOLE 9394 * or RTF_REJECT flags are set on the IRE. It will not 9395 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9396 */ 9397 if (ire != NULL) { 9398 if (ire->ire_flags & RTF_BLACKHOLE) { 9399 ire_refrele(ire); 9400 freemsg(first_mp); 9401 return; 9402 } 9403 ire_refrele(ire); 9404 } 9405 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9406 } 9407 9408 /* Name/Value Table Lookup Routine */ 9409 char * 9410 ip_nv_lookup(nv_t *nv, int value) 9411 { 9412 if (!nv) 9413 return (NULL); 9414 for (; nv->nv_name; nv++) { 9415 if (nv->nv_value == value) 9416 return (nv->nv_name); 9417 } 9418 return ("unknown"); 9419 } 9420 9421 /* 9422 * one day it can be patched to 1 from /etc/system for machines that have few 9423 * fast network interfaces feeding multiple cpus. 9424 */ 9425 int ill_stream_putlocks = 0; 9426 9427 /* 9428 * This is a module open, i.e. this is a control stream for access 9429 * to a DLPI device. We allocate an ill_t as the instance data in 9430 * this case. 9431 */ 9432 int 9433 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9434 { 9435 uint32_t mem_cnt; 9436 uint32_t cpu_cnt; 9437 uint32_t min_cnt; 9438 pgcnt_t mem_avail; 9439 ill_t *ill; 9440 int err; 9441 9442 /* 9443 * Prevent unprivileged processes from pushing IP so that 9444 * they can't send raw IP. 9445 */ 9446 if (secpolicy_net_rawaccess(credp) != 0) 9447 return (EPERM); 9448 9449 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9450 q->q_ptr = WR(q)->q_ptr = ill; 9451 9452 /* 9453 * ill_init initializes the ill fields and then sends down 9454 * down a DL_INFO_REQ after calling qprocson. 9455 */ 9456 err = ill_init(q, ill); 9457 if (err != 0) { 9458 mi_free(ill); 9459 q->q_ptr = NULL; 9460 WR(q)->q_ptr = NULL; 9461 return (err); 9462 } 9463 9464 /* ill_init initializes the ipsq marking this thread as writer */ 9465 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9466 /* Wait for the DL_INFO_ACK */ 9467 mutex_enter(&ill->ill_lock); 9468 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9469 /* 9470 * Return value of 0 indicates a pending signal. 9471 */ 9472 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9473 if (err == 0) { 9474 mutex_exit(&ill->ill_lock); 9475 (void) ip_close(q, 0); 9476 return (EINTR); 9477 } 9478 } 9479 mutex_exit(&ill->ill_lock); 9480 9481 /* 9482 * ip_rput_other could have set an error in ill_error on 9483 * receipt of M_ERROR. 9484 */ 9485 9486 err = ill->ill_error; 9487 if (err != 0) { 9488 (void) ip_close(q, 0); 9489 return (err); 9490 } 9491 9492 /* 9493 * ip_ire_max_bucket_cnt is sized below based on the memory 9494 * size and the cpu speed of the machine. This is upper 9495 * bounded by the compile time value of ip_ire_max_bucket_cnt 9496 * and is lower bounded by the compile time value of 9497 * ip_ire_min_bucket_cnt. Similar logic applies to 9498 * ip6_ire_max_bucket_cnt. 9499 */ 9500 mem_avail = kmem_avail(); 9501 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9502 ip_cache_table_size / sizeof (ire_t); 9503 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9504 9505 min_cnt = MIN(cpu_cnt, mem_cnt); 9506 if (min_cnt < ip_ire_min_bucket_cnt) 9507 min_cnt = ip_ire_min_bucket_cnt; 9508 if (ip_ire_max_bucket_cnt > min_cnt) { 9509 ip_ire_max_bucket_cnt = min_cnt; 9510 } 9511 9512 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9513 ip6_cache_table_size / sizeof (ire_t); 9514 min_cnt = MIN(cpu_cnt, mem_cnt); 9515 if (min_cnt < ip6_ire_min_bucket_cnt) 9516 min_cnt = ip6_ire_min_bucket_cnt; 9517 if (ip6_ire_max_bucket_cnt > min_cnt) { 9518 ip6_ire_max_bucket_cnt = min_cnt; 9519 } 9520 9521 ill->ill_credp = credp; 9522 crhold(credp); 9523 9524 mutex_enter(&ip_mi_lock); 9525 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9526 mutex_exit(&ip_mi_lock); 9527 if (err) { 9528 (void) ip_close(q, 0); 9529 return (err); 9530 } 9531 return (0); 9532 } 9533 9534 /* IP open routine. */ 9535 int 9536 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9537 { 9538 conn_t *connp; 9539 major_t maj; 9540 9541 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9542 9543 /* Allow reopen. */ 9544 if (q->q_ptr != NULL) 9545 return (0); 9546 9547 if (sflag & MODOPEN) { 9548 /* This is a module open */ 9549 return (ip_modopen(q, devp, flag, sflag, credp)); 9550 } 9551 9552 /* 9553 * We are opening as a device. This is an IP client stream, and we 9554 * allocate an conn_t as the instance data. 9555 */ 9556 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9557 connp->conn_upq = q; 9558 q->q_ptr = WR(q)->q_ptr = connp; 9559 9560 if (flag & SO_SOCKSTR) 9561 connp->conn_flags |= IPCL_SOCKET; 9562 9563 /* Minor tells us which /dev entry was opened */ 9564 if (geteminor(*devp) == IPV6_MINOR) { 9565 connp->conn_flags |= IPCL_ISV6; 9566 connp->conn_af_isv6 = B_TRUE; 9567 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9568 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9569 } else { 9570 connp->conn_af_isv6 = B_FALSE; 9571 connp->conn_pkt_isv6 = B_FALSE; 9572 } 9573 9574 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9575 q->q_ptr = WR(q)->q_ptr = NULL; 9576 CONN_DEC_REF(connp); 9577 return (EBUSY); 9578 } 9579 9580 maj = getemajor(*devp); 9581 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9582 9583 /* 9584 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9585 */ 9586 connp->conn_cred = credp; 9587 crhold(connp->conn_cred); 9588 9589 /* 9590 * If the caller has the process-wide flag set, then default to MAC 9591 * exempt mode. This allows read-down to unlabeled hosts. 9592 */ 9593 if (getpflags(NET_MAC_AWARE, credp) != 0) 9594 connp->conn_mac_exempt = B_TRUE; 9595 9596 connp->conn_zoneid = getzoneid(); 9597 9598 /* 9599 * This should only happen for ndd, netstat, raw socket or other SCTP 9600 * administrative ops. In these cases, we just need a normal conn_t 9601 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9602 * an error will be returned. 9603 */ 9604 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9605 connp->conn_rq = q; 9606 connp->conn_wq = WR(q); 9607 } else { 9608 connp->conn_ulp = IPPROTO_SCTP; 9609 connp->conn_rq = connp->conn_wq = NULL; 9610 } 9611 /* Non-zero default values */ 9612 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9613 9614 /* 9615 * Make the conn globally visible to walkers 9616 */ 9617 mutex_enter(&connp->conn_lock); 9618 connp->conn_state_flags &= ~CONN_INCIPIENT; 9619 mutex_exit(&connp->conn_lock); 9620 ASSERT(connp->conn_ref == 1); 9621 9622 qprocson(q); 9623 9624 return (0); 9625 } 9626 9627 /* 9628 * Change q_qinfo based on the value of isv6. 9629 * This can not called on an ill queue. 9630 * Note that there is no race since either q_qinfo works for conn queues - it 9631 * is just an optimization to enter the best wput routine directly. 9632 */ 9633 void 9634 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9635 { 9636 ASSERT(q->q_flag & QREADR); 9637 ASSERT(WR(q)->q_next == NULL); 9638 ASSERT(q->q_ptr != NULL); 9639 9640 if (minor == IPV6_MINOR) { 9641 if (bump_mib) 9642 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9643 q->q_qinfo = &rinit_ipv6; 9644 WR(q)->q_qinfo = &winit_ipv6; 9645 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9646 } else { 9647 if (bump_mib) 9648 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9649 q->q_qinfo = &iprinit; 9650 WR(q)->q_qinfo = &ipwinit; 9651 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9652 } 9653 9654 } 9655 9656 /* 9657 * See if IPsec needs loading because of the options in mp. 9658 */ 9659 static boolean_t 9660 ipsec_opt_present(mblk_t *mp) 9661 { 9662 uint8_t *optcp, *next_optcp, *opt_endcp; 9663 struct opthdr *opt; 9664 struct T_opthdr *topt; 9665 int opthdr_len; 9666 t_uscalar_t optname, optlevel; 9667 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9668 ipsec_req_t *ipsr; 9669 9670 /* 9671 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9672 * return TRUE. 9673 */ 9674 9675 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9676 opt_endcp = optcp + tor->OPT_length; 9677 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9678 opthdr_len = sizeof (struct T_opthdr); 9679 } else { /* O_OPTMGMT_REQ */ 9680 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9681 opthdr_len = sizeof (struct opthdr); 9682 } 9683 for (; optcp < opt_endcp; optcp = next_optcp) { 9684 if (optcp + opthdr_len > opt_endcp) 9685 return (B_FALSE); /* Not enough option header. */ 9686 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9687 topt = (struct T_opthdr *)optcp; 9688 optlevel = topt->level; 9689 optname = topt->name; 9690 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9691 } else { 9692 opt = (struct opthdr *)optcp; 9693 optlevel = opt->level; 9694 optname = opt->name; 9695 next_optcp = optcp + opthdr_len + 9696 _TPI_ALIGN_OPT(opt->len); 9697 } 9698 if ((next_optcp < optcp) || /* wraparound pointer space */ 9699 ((next_optcp >= opt_endcp) && /* last option bad len */ 9700 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9701 return (B_FALSE); /* bad option buffer */ 9702 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9703 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9704 /* 9705 * Check to see if it's an all-bypass or all-zeroes 9706 * IPsec request. Don't bother loading IPsec if 9707 * the socket doesn't want to use it. (A good example 9708 * is a bypass request.) 9709 * 9710 * Basically, if any of the non-NEVER bits are set, 9711 * load IPsec. 9712 */ 9713 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9714 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9715 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9716 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9717 != 0) 9718 return (B_TRUE); 9719 } 9720 } 9721 return (B_FALSE); 9722 } 9723 9724 /* 9725 * If conn is is waiting for ipsec to finish loading, kick it. 9726 */ 9727 /* ARGSUSED */ 9728 static void 9729 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9730 { 9731 t_scalar_t optreq_prim; 9732 mblk_t *mp; 9733 cred_t *cr; 9734 int err = 0; 9735 9736 /* 9737 * This function is called, after ipsec loading is complete. 9738 * Since IP checks exclusively and atomically (i.e it prevents 9739 * ipsec load from completing until ip_optcom_req completes) 9740 * whether ipsec load is complete, there cannot be a race with IP 9741 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9742 */ 9743 mutex_enter(&connp->conn_lock); 9744 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9745 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9746 mp = connp->conn_ipsec_opt_mp; 9747 connp->conn_ipsec_opt_mp = NULL; 9748 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9749 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9750 mutex_exit(&connp->conn_lock); 9751 9752 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9753 9754 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9755 if (optreq_prim == T_OPTMGMT_REQ) { 9756 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9757 &ip_opt_obj); 9758 } else { 9759 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9760 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9761 &ip_opt_obj); 9762 } 9763 if (err != EINPROGRESS) 9764 CONN_OPER_PENDING_DONE(connp); 9765 return; 9766 } 9767 mutex_exit(&connp->conn_lock); 9768 } 9769 9770 /* 9771 * Called from the ipsec_loader thread, outside any perimeter, to tell 9772 * ip qenable any of the queues waiting for the ipsec loader to 9773 * complete. 9774 * 9775 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9776 * are done with this lock held, so it's guaranteed that none of the 9777 * links will change along the way. 9778 */ 9779 void 9780 ip_ipsec_load_complete() 9781 { 9782 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9783 } 9784 9785 /* 9786 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9787 * determines the grp on which it has to become exclusive, queues the mp 9788 * and sq draining restarts the optmgmt 9789 */ 9790 static boolean_t 9791 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9792 { 9793 conn_t *connp; 9794 9795 /* 9796 * Take IPsec requests and treat them special. 9797 */ 9798 if (ipsec_opt_present(mp)) { 9799 /* First check if IPsec is loaded. */ 9800 mutex_enter(&ipsec_loader_lock); 9801 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9802 mutex_exit(&ipsec_loader_lock); 9803 return (B_FALSE); 9804 } 9805 connp = Q_TO_CONN(q); 9806 mutex_enter(&connp->conn_lock); 9807 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9808 9809 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9810 connp->conn_ipsec_opt_mp = mp; 9811 mutex_exit(&connp->conn_lock); 9812 mutex_exit(&ipsec_loader_lock); 9813 9814 ipsec_loader_loadnow(); 9815 return (B_TRUE); 9816 } 9817 return (B_FALSE); 9818 } 9819 9820 /* 9821 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9822 * all of them are copied to the conn_t. If the req is "zero", the policy is 9823 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9824 * fields. 9825 * We keep only the latest setting of the policy and thus policy setting 9826 * is not incremental/cumulative. 9827 * 9828 * Requests to set policies with multiple alternative actions will 9829 * go through a different API. 9830 */ 9831 int 9832 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9833 { 9834 uint_t ah_req = 0; 9835 uint_t esp_req = 0; 9836 uint_t se_req = 0; 9837 ipsec_selkey_t sel; 9838 ipsec_act_t *actp = NULL; 9839 uint_t nact; 9840 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9841 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9842 ipsec_policy_root_t *pr; 9843 ipsec_policy_head_t *ph; 9844 int fam; 9845 boolean_t is_pol_reset; 9846 int error = 0; 9847 9848 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9849 9850 /* 9851 * The IP_SEC_OPT option does not allow variable length parameters, 9852 * hence a request cannot be NULL. 9853 */ 9854 if (req == NULL) 9855 return (EINVAL); 9856 9857 ah_req = req->ipsr_ah_req; 9858 esp_req = req->ipsr_esp_req; 9859 se_req = req->ipsr_self_encap_req; 9860 9861 /* 9862 * Are we dealing with a request to reset the policy (i.e. 9863 * zero requests). 9864 */ 9865 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9866 (esp_req & REQ_MASK) == 0 && 9867 (se_req & REQ_MASK) == 0); 9868 9869 if (!is_pol_reset) { 9870 /* 9871 * If we couldn't load IPsec, fail with "protocol 9872 * not supported". 9873 * IPsec may not have been loaded for a request with zero 9874 * policies, so we don't fail in this case. 9875 */ 9876 mutex_enter(&ipsec_loader_lock); 9877 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9878 mutex_exit(&ipsec_loader_lock); 9879 return (EPROTONOSUPPORT); 9880 } 9881 mutex_exit(&ipsec_loader_lock); 9882 9883 /* 9884 * Test for valid requests. Invalid algorithms 9885 * need to be tested by IPSEC code because new 9886 * algorithms can be added dynamically. 9887 */ 9888 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9889 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9890 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9891 return (EINVAL); 9892 } 9893 9894 /* 9895 * Only privileged users can issue these 9896 * requests. 9897 */ 9898 if (((ah_req & IPSEC_PREF_NEVER) || 9899 (esp_req & IPSEC_PREF_NEVER) || 9900 (se_req & IPSEC_PREF_NEVER)) && 9901 secpolicy_net_config(cr, B_FALSE) != 0) { 9902 return (EPERM); 9903 } 9904 9905 /* 9906 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9907 * are mutually exclusive. 9908 */ 9909 if (((ah_req & REQ_MASK) == REQ_MASK) || 9910 ((esp_req & REQ_MASK) == REQ_MASK) || 9911 ((se_req & REQ_MASK) == REQ_MASK)) { 9912 /* Both of them are set */ 9913 return (EINVAL); 9914 } 9915 } 9916 9917 mutex_enter(&connp->conn_lock); 9918 9919 /* 9920 * If we have already cached policies in ip_bind_connected*(), don't 9921 * let them change now. We cache policies for connections 9922 * whose src,dst [addr, port] is known. The exception to this is 9923 * tunnels. Tunnels are allowed to change policies after having 9924 * become fully bound. 9925 */ 9926 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9927 mutex_exit(&connp->conn_lock); 9928 return (EINVAL); 9929 } 9930 9931 /* 9932 * We have a zero policies, reset the connection policy if already 9933 * set. This will cause the connection to inherit the 9934 * global policy, if any. 9935 */ 9936 if (is_pol_reset) { 9937 if (connp->conn_policy != NULL) { 9938 IPPH_REFRELE(connp->conn_policy); 9939 connp->conn_policy = NULL; 9940 } 9941 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9942 connp->conn_in_enforce_policy = B_FALSE; 9943 connp->conn_out_enforce_policy = B_FALSE; 9944 mutex_exit(&connp->conn_lock); 9945 return (0); 9946 } 9947 9948 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9949 if (ph == NULL) 9950 goto enomem; 9951 9952 ipsec_actvec_from_req(req, &actp, &nact); 9953 if (actp == NULL) 9954 goto enomem; 9955 9956 /* 9957 * Always allocate IPv4 policy entries, since they can also 9958 * apply to ipv6 sockets being used in ipv4-compat mode. 9959 */ 9960 bzero(&sel, sizeof (sel)); 9961 sel.ipsl_valid = IPSL_IPV4; 9962 9963 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9964 if (pin4 == NULL) 9965 goto enomem; 9966 9967 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9968 if (pout4 == NULL) 9969 goto enomem; 9970 9971 if (connp->conn_pkt_isv6) { 9972 /* 9973 * We're looking at a v6 socket, also allocate the 9974 * v6-specific entries... 9975 */ 9976 sel.ipsl_valid = IPSL_IPV6; 9977 pin6 = ipsec_policy_create(&sel, actp, nact, 9978 IPSEC_PRIO_SOCKET); 9979 if (pin6 == NULL) 9980 goto enomem; 9981 9982 pout6 = ipsec_policy_create(&sel, actp, nact, 9983 IPSEC_PRIO_SOCKET); 9984 if (pout6 == NULL) 9985 goto enomem; 9986 9987 /* 9988 * .. and file them away in the right place. 9989 */ 9990 fam = IPSEC_AF_V6; 9991 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9992 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9993 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9994 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9995 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9996 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9997 } 9998 9999 ipsec_actvec_free(actp, nact); 10000 10001 /* 10002 * File the v4 policies. 10003 */ 10004 fam = IPSEC_AF_V4; 10005 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10006 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10007 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10008 10009 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10010 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10011 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10012 10013 /* 10014 * If the requests need security, set enforce_policy. 10015 * If the requests are IPSEC_PREF_NEVER, one should 10016 * still set conn_out_enforce_policy so that an ipsec_out 10017 * gets attached in ip_wput. This is needed so that 10018 * for connections that we don't cache policy in ip_bind, 10019 * if global policy matches in ip_wput_attach_policy, we 10020 * don't wrongly inherit global policy. Similarly, we need 10021 * to set conn_in_enforce_policy also so that we don't verify 10022 * policy wrongly. 10023 */ 10024 if ((ah_req & REQ_MASK) != 0 || 10025 (esp_req & REQ_MASK) != 0 || 10026 (se_req & REQ_MASK) != 0) { 10027 connp->conn_in_enforce_policy = B_TRUE; 10028 connp->conn_out_enforce_policy = B_TRUE; 10029 connp->conn_flags |= IPCL_CHECK_POLICY; 10030 } 10031 10032 /* 10033 * Tunnels are allowed to set policy after having been fully bound. 10034 * If that's the case, cache policy here. 10035 */ 10036 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 10037 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 10038 10039 mutex_exit(&connp->conn_lock); 10040 return (error); 10041 #undef REQ_MASK 10042 10043 /* 10044 * Common memory-allocation-failure exit path. 10045 */ 10046 enomem: 10047 mutex_exit(&connp->conn_lock); 10048 if (actp != NULL) 10049 ipsec_actvec_free(actp, nact); 10050 if (pin4 != NULL) 10051 IPPOL_REFRELE(pin4); 10052 if (pout4 != NULL) 10053 IPPOL_REFRELE(pout4); 10054 if (pin6 != NULL) 10055 IPPOL_REFRELE(pin6); 10056 if (pout6 != NULL) 10057 IPPOL_REFRELE(pout6); 10058 return (ENOMEM); 10059 } 10060 10061 /* 10062 * Only for options that pass in an IP addr. Currently only V4 options 10063 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10064 * So this function assumes level is IPPROTO_IP 10065 */ 10066 int 10067 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10068 mblk_t *first_mp) 10069 { 10070 ipif_t *ipif = NULL; 10071 int error; 10072 ill_t *ill; 10073 int zoneid; 10074 10075 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10076 10077 if (addr != INADDR_ANY || checkonly) { 10078 ASSERT(connp != NULL); 10079 zoneid = IPCL_ZONEID(connp); 10080 if (option == IP_NEXTHOP) { 10081 ipif = ipif_lookup_onlink_addr(addr, zoneid); 10082 } else { 10083 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10084 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10085 &error); 10086 } 10087 if (ipif == NULL) { 10088 if (error == EINPROGRESS) 10089 return (error); 10090 else if ((option == IP_MULTICAST_IF) || 10091 (option == IP_NEXTHOP)) 10092 return (EHOSTUNREACH); 10093 else 10094 return (EINVAL); 10095 } else if (checkonly) { 10096 if (option == IP_MULTICAST_IF) { 10097 ill = ipif->ipif_ill; 10098 /* not supported by the virtual network iface */ 10099 if (IS_VNI(ill)) { 10100 ipif_refrele(ipif); 10101 return (EINVAL); 10102 } 10103 } 10104 ipif_refrele(ipif); 10105 return (0); 10106 } 10107 ill = ipif->ipif_ill; 10108 mutex_enter(&connp->conn_lock); 10109 mutex_enter(&ill->ill_lock); 10110 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10111 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10112 mutex_exit(&ill->ill_lock); 10113 mutex_exit(&connp->conn_lock); 10114 ipif_refrele(ipif); 10115 return (option == IP_MULTICAST_IF ? 10116 EHOSTUNREACH : EINVAL); 10117 } 10118 } else { 10119 mutex_enter(&connp->conn_lock); 10120 } 10121 10122 /* None of the options below are supported on the VNI */ 10123 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10124 mutex_exit(&ill->ill_lock); 10125 mutex_exit(&connp->conn_lock); 10126 ipif_refrele(ipif); 10127 return (EINVAL); 10128 } 10129 10130 switch (option) { 10131 case IP_DONTFAILOVER_IF: 10132 /* 10133 * This option is used by in.mpathd to ensure 10134 * that IPMP probe packets only go out on the 10135 * test interfaces. in.mpathd sets this option 10136 * on the non-failover interfaces. 10137 * For backward compatibility, this option 10138 * implicitly sets IP_MULTICAST_IF, as used 10139 * be done in bind(), so that ip_wput gets 10140 * this ipif to send mcast packets. 10141 */ 10142 if (ipif != NULL) { 10143 ASSERT(addr != INADDR_ANY); 10144 connp->conn_nofailover_ill = ipif->ipif_ill; 10145 connp->conn_multicast_ipif = ipif; 10146 } else { 10147 ASSERT(addr == INADDR_ANY); 10148 connp->conn_nofailover_ill = NULL; 10149 connp->conn_multicast_ipif = NULL; 10150 } 10151 break; 10152 10153 case IP_MULTICAST_IF: 10154 connp->conn_multicast_ipif = ipif; 10155 break; 10156 case IP_NEXTHOP: 10157 connp->conn_nexthop_v4 = addr; 10158 connp->conn_nexthop_set = B_TRUE; 10159 break; 10160 } 10161 10162 if (ipif != NULL) { 10163 mutex_exit(&ill->ill_lock); 10164 mutex_exit(&connp->conn_lock); 10165 ipif_refrele(ipif); 10166 return (0); 10167 } 10168 mutex_exit(&connp->conn_lock); 10169 /* We succeded in cleared the option */ 10170 return (0); 10171 } 10172 10173 /* 10174 * For options that pass in an ifindex specifying the ill. V6 options always 10175 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10176 */ 10177 int 10178 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10179 int level, int option, mblk_t *first_mp) 10180 { 10181 ill_t *ill = NULL; 10182 int error = 0; 10183 10184 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10185 if (ifindex != 0) { 10186 ASSERT(connp != NULL); 10187 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10188 first_mp, ip_restart_optmgmt, &error); 10189 if (ill != NULL) { 10190 if (checkonly) { 10191 /* not supported by the virtual network iface */ 10192 if (IS_VNI(ill)) { 10193 ill_refrele(ill); 10194 return (EINVAL); 10195 } 10196 ill_refrele(ill); 10197 return (0); 10198 } 10199 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10200 0, NULL)) { 10201 ill_refrele(ill); 10202 ill = NULL; 10203 mutex_enter(&connp->conn_lock); 10204 goto setit; 10205 } 10206 mutex_enter(&connp->conn_lock); 10207 mutex_enter(&ill->ill_lock); 10208 if (ill->ill_state_flags & ILL_CONDEMNED) { 10209 mutex_exit(&ill->ill_lock); 10210 mutex_exit(&connp->conn_lock); 10211 ill_refrele(ill); 10212 ill = NULL; 10213 mutex_enter(&connp->conn_lock); 10214 } 10215 goto setit; 10216 } else if (error == EINPROGRESS) { 10217 return (error); 10218 } else { 10219 error = 0; 10220 } 10221 } 10222 mutex_enter(&connp->conn_lock); 10223 setit: 10224 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10225 10226 /* 10227 * The options below assume that the ILL (if any) transmits and/or 10228 * receives traffic. Neither of which is true for the virtual network 10229 * interface, so fail setting these on a VNI. 10230 */ 10231 if (IS_VNI(ill)) { 10232 ASSERT(ill != NULL); 10233 mutex_exit(&ill->ill_lock); 10234 mutex_exit(&connp->conn_lock); 10235 ill_refrele(ill); 10236 return (EINVAL); 10237 } 10238 10239 if (level == IPPROTO_IP) { 10240 switch (option) { 10241 case IP_BOUND_IF: 10242 connp->conn_incoming_ill = ill; 10243 connp->conn_outgoing_ill = ill; 10244 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10245 0 : ifindex; 10246 break; 10247 10248 case IP_XMIT_IF: 10249 /* 10250 * Similar to IP_BOUND_IF, but this only 10251 * determines the outgoing interface for 10252 * unicast packets. Also no IRE_CACHE entry 10253 * is added for the destination of the 10254 * outgoing packets. This feature is needed 10255 * for mobile IP. 10256 */ 10257 connp->conn_xmit_if_ill = ill; 10258 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10259 0 : ifindex; 10260 break; 10261 10262 case IP_MULTICAST_IF: 10263 /* 10264 * This option is an internal special. The socket 10265 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10266 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10267 * specifies an ifindex and we try first on V6 ill's. 10268 * If we don't find one, we they try using on v4 ill's 10269 * intenally and we come here. 10270 */ 10271 if (!checkonly && ill != NULL) { 10272 ipif_t *ipif; 10273 ipif = ill->ill_ipif; 10274 10275 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10276 mutex_exit(&ill->ill_lock); 10277 mutex_exit(&connp->conn_lock); 10278 ill_refrele(ill); 10279 ill = NULL; 10280 mutex_enter(&connp->conn_lock); 10281 } else { 10282 connp->conn_multicast_ipif = ipif; 10283 } 10284 } 10285 break; 10286 } 10287 } else { 10288 switch (option) { 10289 case IPV6_BOUND_IF: 10290 connp->conn_incoming_ill = ill; 10291 connp->conn_outgoing_ill = ill; 10292 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10293 0 : ifindex; 10294 break; 10295 10296 case IPV6_BOUND_PIF: 10297 /* 10298 * Limit all transmit to this ill. 10299 * Unlike IPV6_BOUND_IF, using this option 10300 * prevents load spreading and failover from 10301 * happening when the interface is part of the 10302 * group. That's why we don't need to remember 10303 * the ifindex in orig_bound_ifindex as in 10304 * IPV6_BOUND_IF. 10305 */ 10306 connp->conn_outgoing_pill = ill; 10307 break; 10308 10309 case IPV6_DONTFAILOVER_IF: 10310 /* 10311 * This option is used by in.mpathd to ensure 10312 * that IPMP probe packets only go out on the 10313 * test interfaces. in.mpathd sets this option 10314 * on the non-failover interfaces. 10315 */ 10316 connp->conn_nofailover_ill = ill; 10317 /* 10318 * For backward compatibility, this option 10319 * implicitly sets ip_multicast_ill as used in 10320 * IP_MULTICAST_IF so that ip_wput gets 10321 * this ipif to send mcast packets. 10322 */ 10323 connp->conn_multicast_ill = ill; 10324 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10325 0 : ifindex; 10326 break; 10327 10328 case IPV6_MULTICAST_IF: 10329 /* 10330 * Set conn_multicast_ill to be the IPv6 ill. 10331 * Set conn_multicast_ipif to be an IPv4 ipif 10332 * for ifindex to make IPv4 mapped addresses 10333 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10334 * Even if no IPv6 ill exists for the ifindex 10335 * we need to check for an IPv4 ifindex in order 10336 * for this to work with mapped addresses. In that 10337 * case only set conn_multicast_ipif. 10338 */ 10339 if (!checkonly) { 10340 if (ifindex == 0) { 10341 connp->conn_multicast_ill = NULL; 10342 connp->conn_orig_multicast_ifindex = 0; 10343 connp->conn_multicast_ipif = NULL; 10344 } else if (ill != NULL) { 10345 connp->conn_multicast_ill = ill; 10346 connp->conn_orig_multicast_ifindex = 10347 ifindex; 10348 } 10349 } 10350 break; 10351 } 10352 } 10353 10354 if (ill != NULL) { 10355 mutex_exit(&ill->ill_lock); 10356 mutex_exit(&connp->conn_lock); 10357 ill_refrele(ill); 10358 return (0); 10359 } 10360 mutex_exit(&connp->conn_lock); 10361 /* 10362 * We succeeded in clearing the option (ifindex == 0) or failed to 10363 * locate the ill and could not set the option (ifindex != 0) 10364 */ 10365 return (ifindex == 0 ? 0 : EINVAL); 10366 } 10367 10368 /* This routine sets socket options. */ 10369 /* ARGSUSED */ 10370 int 10371 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10372 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10373 void *dummy, cred_t *cr, mblk_t *first_mp) 10374 { 10375 int *i1 = (int *)invalp; 10376 conn_t *connp = Q_TO_CONN(q); 10377 int error = 0; 10378 boolean_t checkonly; 10379 ire_t *ire; 10380 boolean_t found; 10381 10382 switch (optset_context) { 10383 10384 case SETFN_OPTCOM_CHECKONLY: 10385 checkonly = B_TRUE; 10386 /* 10387 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10388 * inlen != 0 implies value supplied and 10389 * we have to "pretend" to set it. 10390 * inlen == 0 implies that there is no 10391 * value part in T_CHECK request and just validation 10392 * done elsewhere should be enough, we just return here. 10393 */ 10394 if (inlen == 0) { 10395 *outlenp = 0; 10396 return (0); 10397 } 10398 break; 10399 case SETFN_OPTCOM_NEGOTIATE: 10400 case SETFN_UD_NEGOTIATE: 10401 case SETFN_CONN_NEGOTIATE: 10402 checkonly = B_FALSE; 10403 break; 10404 default: 10405 /* 10406 * We should never get here 10407 */ 10408 *outlenp = 0; 10409 return (EINVAL); 10410 } 10411 10412 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10413 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10414 10415 /* 10416 * For fixed length options, no sanity check 10417 * of passed in length is done. It is assumed *_optcom_req() 10418 * routines do the right thing. 10419 */ 10420 10421 switch (level) { 10422 case SOL_SOCKET: 10423 /* 10424 * conn_lock protects the bitfields, and is used to 10425 * set the fields atomically. 10426 */ 10427 switch (name) { 10428 case SO_BROADCAST: 10429 if (!checkonly) { 10430 /* TODO: use value someplace? */ 10431 mutex_enter(&connp->conn_lock); 10432 connp->conn_broadcast = *i1 ? 1 : 0; 10433 mutex_exit(&connp->conn_lock); 10434 } 10435 break; /* goto sizeof (int) option return */ 10436 case SO_USELOOPBACK: 10437 if (!checkonly) { 10438 /* TODO: use value someplace? */ 10439 mutex_enter(&connp->conn_lock); 10440 connp->conn_loopback = *i1 ? 1 : 0; 10441 mutex_exit(&connp->conn_lock); 10442 } 10443 break; /* goto sizeof (int) option return */ 10444 case SO_DONTROUTE: 10445 if (!checkonly) { 10446 mutex_enter(&connp->conn_lock); 10447 connp->conn_dontroute = *i1 ? 1 : 0; 10448 mutex_exit(&connp->conn_lock); 10449 } 10450 break; /* goto sizeof (int) option return */ 10451 case SO_REUSEADDR: 10452 if (!checkonly) { 10453 mutex_enter(&connp->conn_lock); 10454 connp->conn_reuseaddr = *i1 ? 1 : 0; 10455 mutex_exit(&connp->conn_lock); 10456 } 10457 break; /* goto sizeof (int) option return */ 10458 case SO_PROTOTYPE: 10459 if (!checkonly) { 10460 mutex_enter(&connp->conn_lock); 10461 connp->conn_proto = *i1; 10462 mutex_exit(&connp->conn_lock); 10463 } 10464 break; /* goto sizeof (int) option return */ 10465 case SO_ALLZONES: 10466 if (!checkonly) { 10467 mutex_enter(&connp->conn_lock); 10468 if (IPCL_IS_BOUND(connp)) { 10469 mutex_exit(&connp->conn_lock); 10470 return (EINVAL); 10471 } 10472 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10473 mutex_exit(&connp->conn_lock); 10474 } 10475 break; /* goto sizeof (int) option return */ 10476 case SO_ANON_MLP: 10477 if (!checkonly) { 10478 mutex_enter(&connp->conn_lock); 10479 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10480 mutex_exit(&connp->conn_lock); 10481 } 10482 break; /* goto sizeof (int) option return */ 10483 case SO_MAC_EXEMPT: 10484 if (secpolicy_net_mac_aware(cr) != 0 || 10485 IPCL_IS_BOUND(connp)) 10486 return (EACCES); 10487 if (!checkonly) { 10488 mutex_enter(&connp->conn_lock); 10489 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10490 mutex_exit(&connp->conn_lock); 10491 } 10492 break; /* goto sizeof (int) option return */ 10493 default: 10494 /* 10495 * "soft" error (negative) 10496 * option not handled at this level 10497 * Note: Do not modify *outlenp 10498 */ 10499 return (-EINVAL); 10500 } 10501 break; 10502 case IPPROTO_IP: 10503 switch (name) { 10504 case IP_NEXTHOP: 10505 if (secpolicy_net_config(cr, B_FALSE) != 0) 10506 return (EPERM); 10507 /* FALLTHRU */ 10508 case IP_MULTICAST_IF: 10509 case IP_DONTFAILOVER_IF: { 10510 ipaddr_t addr = *i1; 10511 10512 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10513 first_mp); 10514 if (error != 0) 10515 return (error); 10516 break; /* goto sizeof (int) option return */ 10517 } 10518 10519 case IP_MULTICAST_TTL: 10520 /* Recorded in transport above IP */ 10521 *outvalp = *invalp; 10522 *outlenp = sizeof (uchar_t); 10523 return (0); 10524 case IP_MULTICAST_LOOP: 10525 if (!checkonly) { 10526 mutex_enter(&connp->conn_lock); 10527 connp->conn_multicast_loop = *invalp ? 1 : 0; 10528 mutex_exit(&connp->conn_lock); 10529 } 10530 *outvalp = *invalp; 10531 *outlenp = sizeof (uchar_t); 10532 return (0); 10533 case IP_ADD_MEMBERSHIP: 10534 case MCAST_JOIN_GROUP: 10535 case IP_DROP_MEMBERSHIP: 10536 case MCAST_LEAVE_GROUP: { 10537 struct ip_mreq *mreqp; 10538 struct group_req *greqp; 10539 ire_t *ire; 10540 boolean_t done = B_FALSE; 10541 ipaddr_t group, ifaddr; 10542 struct sockaddr_in *sin; 10543 uint32_t *ifindexp; 10544 boolean_t mcast_opt = B_TRUE; 10545 mcast_record_t fmode; 10546 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10547 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10548 10549 switch (name) { 10550 case IP_ADD_MEMBERSHIP: 10551 mcast_opt = B_FALSE; 10552 /* FALLTHRU */ 10553 case MCAST_JOIN_GROUP: 10554 fmode = MODE_IS_EXCLUDE; 10555 optfn = ip_opt_add_group; 10556 break; 10557 10558 case IP_DROP_MEMBERSHIP: 10559 mcast_opt = B_FALSE; 10560 /* FALLTHRU */ 10561 case MCAST_LEAVE_GROUP: 10562 fmode = MODE_IS_INCLUDE; 10563 optfn = ip_opt_delete_group; 10564 break; 10565 } 10566 10567 if (mcast_opt) { 10568 greqp = (struct group_req *)i1; 10569 sin = (struct sockaddr_in *)&greqp->gr_group; 10570 if (sin->sin_family != AF_INET) { 10571 *outlenp = 0; 10572 return (ENOPROTOOPT); 10573 } 10574 group = (ipaddr_t)sin->sin_addr.s_addr; 10575 ifaddr = INADDR_ANY; 10576 ifindexp = &greqp->gr_interface; 10577 } else { 10578 mreqp = (struct ip_mreq *)i1; 10579 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10580 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10581 ifindexp = NULL; 10582 } 10583 10584 /* 10585 * In the multirouting case, we need to replicate 10586 * the request on all interfaces that will take part 10587 * in replication. We do so because multirouting is 10588 * reflective, thus we will probably receive multi- 10589 * casts on those interfaces. 10590 * The ip_multirt_apply_membership() succeeds if the 10591 * operation succeeds on at least one interface. 10592 */ 10593 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10594 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10595 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10596 if (ire != NULL) { 10597 if (ire->ire_flags & RTF_MULTIRT) { 10598 error = ip_multirt_apply_membership( 10599 optfn, ire, connp, checkonly, group, 10600 fmode, INADDR_ANY, first_mp); 10601 done = B_TRUE; 10602 } 10603 ire_refrele(ire); 10604 } 10605 if (!done) { 10606 error = optfn(connp, checkonly, group, ifaddr, 10607 ifindexp, fmode, INADDR_ANY, first_mp); 10608 } 10609 if (error) { 10610 /* 10611 * EINPROGRESS is a soft error, needs retry 10612 * so don't make *outlenp zero. 10613 */ 10614 if (error != EINPROGRESS) 10615 *outlenp = 0; 10616 return (error); 10617 } 10618 /* OK return - copy input buffer into output buffer */ 10619 if (invalp != outvalp) { 10620 /* don't trust bcopy for identical src/dst */ 10621 bcopy(invalp, outvalp, inlen); 10622 } 10623 *outlenp = inlen; 10624 return (0); 10625 } 10626 case IP_BLOCK_SOURCE: 10627 case IP_UNBLOCK_SOURCE: 10628 case IP_ADD_SOURCE_MEMBERSHIP: 10629 case IP_DROP_SOURCE_MEMBERSHIP: 10630 case MCAST_BLOCK_SOURCE: 10631 case MCAST_UNBLOCK_SOURCE: 10632 case MCAST_JOIN_SOURCE_GROUP: 10633 case MCAST_LEAVE_SOURCE_GROUP: { 10634 struct ip_mreq_source *imreqp; 10635 struct group_source_req *gsreqp; 10636 in_addr_t grp, src, ifaddr = INADDR_ANY; 10637 uint32_t ifindex = 0; 10638 mcast_record_t fmode; 10639 struct sockaddr_in *sin; 10640 ire_t *ire; 10641 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10642 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10643 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10644 10645 switch (name) { 10646 case IP_BLOCK_SOURCE: 10647 mcast_opt = B_FALSE; 10648 /* FALLTHRU */ 10649 case MCAST_BLOCK_SOURCE: 10650 fmode = MODE_IS_EXCLUDE; 10651 optfn = ip_opt_add_group; 10652 break; 10653 10654 case IP_UNBLOCK_SOURCE: 10655 mcast_opt = B_FALSE; 10656 /* FALLTHRU */ 10657 case MCAST_UNBLOCK_SOURCE: 10658 fmode = MODE_IS_EXCLUDE; 10659 optfn = ip_opt_delete_group; 10660 break; 10661 10662 case IP_ADD_SOURCE_MEMBERSHIP: 10663 mcast_opt = B_FALSE; 10664 /* FALLTHRU */ 10665 case MCAST_JOIN_SOURCE_GROUP: 10666 fmode = MODE_IS_INCLUDE; 10667 optfn = ip_opt_add_group; 10668 break; 10669 10670 case IP_DROP_SOURCE_MEMBERSHIP: 10671 mcast_opt = B_FALSE; 10672 /* FALLTHRU */ 10673 case MCAST_LEAVE_SOURCE_GROUP: 10674 fmode = MODE_IS_INCLUDE; 10675 optfn = ip_opt_delete_group; 10676 break; 10677 } 10678 10679 if (mcast_opt) { 10680 gsreqp = (struct group_source_req *)i1; 10681 if (gsreqp->gsr_group.ss_family != AF_INET) { 10682 *outlenp = 0; 10683 return (ENOPROTOOPT); 10684 } 10685 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10686 grp = (ipaddr_t)sin->sin_addr.s_addr; 10687 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10688 src = (ipaddr_t)sin->sin_addr.s_addr; 10689 ifindex = gsreqp->gsr_interface; 10690 } else { 10691 imreqp = (struct ip_mreq_source *)i1; 10692 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10693 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10694 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10695 } 10696 10697 /* 10698 * In the multirouting case, we need to replicate 10699 * the request as noted in the mcast cases above. 10700 */ 10701 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10702 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10703 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10704 if (ire != NULL) { 10705 if (ire->ire_flags & RTF_MULTIRT) { 10706 error = ip_multirt_apply_membership( 10707 optfn, ire, connp, checkonly, grp, 10708 fmode, src, first_mp); 10709 done = B_TRUE; 10710 } 10711 ire_refrele(ire); 10712 } 10713 if (!done) { 10714 error = optfn(connp, checkonly, grp, ifaddr, 10715 &ifindex, fmode, src, first_mp); 10716 } 10717 if (error != 0) { 10718 /* 10719 * EINPROGRESS is a soft error, needs retry 10720 * so don't make *outlenp zero. 10721 */ 10722 if (error != EINPROGRESS) 10723 *outlenp = 0; 10724 return (error); 10725 } 10726 /* OK return - copy input buffer into output buffer */ 10727 if (invalp != outvalp) { 10728 bcopy(invalp, outvalp, inlen); 10729 } 10730 *outlenp = inlen; 10731 return (0); 10732 } 10733 case IP_SEC_OPT: 10734 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10735 if (error != 0) { 10736 *outlenp = 0; 10737 return (error); 10738 } 10739 break; 10740 case IP_HDRINCL: 10741 case IP_OPTIONS: 10742 case T_IP_OPTIONS: 10743 case IP_TOS: 10744 case T_IP_TOS: 10745 case IP_TTL: 10746 case IP_RECVDSTADDR: 10747 case IP_RECVOPTS: 10748 /* OK return - copy input buffer into output buffer */ 10749 if (invalp != outvalp) { 10750 /* don't trust bcopy for identical src/dst */ 10751 bcopy(invalp, outvalp, inlen); 10752 } 10753 *outlenp = inlen; 10754 return (0); 10755 case IP_RECVIF: 10756 /* Retrieve the inbound interface index */ 10757 if (!checkonly) { 10758 mutex_enter(&connp->conn_lock); 10759 connp->conn_recvif = *i1 ? 1 : 0; 10760 mutex_exit(&connp->conn_lock); 10761 } 10762 break; /* goto sizeof (int) option return */ 10763 case IP_RECVSLLA: 10764 /* Retrieve the source link layer address */ 10765 if (!checkonly) { 10766 mutex_enter(&connp->conn_lock); 10767 connp->conn_recvslla = *i1 ? 1 : 0; 10768 mutex_exit(&connp->conn_lock); 10769 } 10770 break; /* goto sizeof (int) option return */ 10771 case MRT_INIT: 10772 case MRT_DONE: 10773 case MRT_ADD_VIF: 10774 case MRT_DEL_VIF: 10775 case MRT_ADD_MFC: 10776 case MRT_DEL_MFC: 10777 case MRT_ASSERT: 10778 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10779 *outlenp = 0; 10780 return (error); 10781 } 10782 error = ip_mrouter_set((int)name, q, checkonly, 10783 (uchar_t *)invalp, inlen, first_mp); 10784 if (error) { 10785 *outlenp = 0; 10786 return (error); 10787 } 10788 /* OK return - copy input buffer into output buffer */ 10789 if (invalp != outvalp) { 10790 /* don't trust bcopy for identical src/dst */ 10791 bcopy(invalp, outvalp, inlen); 10792 } 10793 *outlenp = inlen; 10794 return (0); 10795 case IP_BOUND_IF: 10796 case IP_XMIT_IF: 10797 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10798 level, name, first_mp); 10799 if (error != 0) 10800 return (error); 10801 break; /* goto sizeof (int) option return */ 10802 10803 case IP_UNSPEC_SRC: 10804 /* Allow sending with a zero source address */ 10805 if (!checkonly) { 10806 mutex_enter(&connp->conn_lock); 10807 connp->conn_unspec_src = *i1 ? 1 : 0; 10808 mutex_exit(&connp->conn_lock); 10809 } 10810 break; /* goto sizeof (int) option return */ 10811 default: 10812 /* 10813 * "soft" error (negative) 10814 * option not handled at this level 10815 * Note: Do not modify *outlenp 10816 */ 10817 return (-EINVAL); 10818 } 10819 break; 10820 case IPPROTO_IPV6: 10821 switch (name) { 10822 case IPV6_BOUND_IF: 10823 case IPV6_BOUND_PIF: 10824 case IPV6_DONTFAILOVER_IF: 10825 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10826 level, name, first_mp); 10827 if (error != 0) 10828 return (error); 10829 break; /* goto sizeof (int) option return */ 10830 10831 case IPV6_MULTICAST_IF: 10832 /* 10833 * The only possible errors are EINPROGRESS and 10834 * EINVAL. EINPROGRESS will be restarted and is not 10835 * a hard error. We call this option on both V4 and V6 10836 * If both return EINVAL, then this call returns 10837 * EINVAL. If at least one of them succeeds we 10838 * return success. 10839 */ 10840 found = B_FALSE; 10841 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10842 level, name, first_mp); 10843 if (error == EINPROGRESS) 10844 return (error); 10845 if (error == 0) 10846 found = B_TRUE; 10847 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10848 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10849 if (error == 0) 10850 found = B_TRUE; 10851 if (!found) 10852 return (error); 10853 break; /* goto sizeof (int) option return */ 10854 10855 case IPV6_MULTICAST_HOPS: 10856 /* Recorded in transport above IP */ 10857 break; /* goto sizeof (int) option return */ 10858 case IPV6_MULTICAST_LOOP: 10859 if (!checkonly) { 10860 mutex_enter(&connp->conn_lock); 10861 connp->conn_multicast_loop = *i1; 10862 mutex_exit(&connp->conn_lock); 10863 } 10864 break; /* goto sizeof (int) option return */ 10865 case IPV6_JOIN_GROUP: 10866 case MCAST_JOIN_GROUP: 10867 case IPV6_LEAVE_GROUP: 10868 case MCAST_LEAVE_GROUP: { 10869 struct ipv6_mreq *ip_mreqp; 10870 struct group_req *greqp; 10871 ire_t *ire; 10872 boolean_t done = B_FALSE; 10873 in6_addr_t groupv6; 10874 uint32_t ifindex; 10875 boolean_t mcast_opt = B_TRUE; 10876 mcast_record_t fmode; 10877 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10878 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10879 10880 switch (name) { 10881 case IPV6_JOIN_GROUP: 10882 mcast_opt = B_FALSE; 10883 /* FALLTHRU */ 10884 case MCAST_JOIN_GROUP: 10885 fmode = MODE_IS_EXCLUDE; 10886 optfn = ip_opt_add_group_v6; 10887 break; 10888 10889 case IPV6_LEAVE_GROUP: 10890 mcast_opt = B_FALSE; 10891 /* FALLTHRU */ 10892 case MCAST_LEAVE_GROUP: 10893 fmode = MODE_IS_INCLUDE; 10894 optfn = ip_opt_delete_group_v6; 10895 break; 10896 } 10897 10898 if (mcast_opt) { 10899 struct sockaddr_in *sin; 10900 struct sockaddr_in6 *sin6; 10901 greqp = (struct group_req *)i1; 10902 if (greqp->gr_group.ss_family == AF_INET) { 10903 sin = (struct sockaddr_in *) 10904 &(greqp->gr_group); 10905 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10906 &groupv6); 10907 } else { 10908 sin6 = (struct sockaddr_in6 *) 10909 &(greqp->gr_group); 10910 groupv6 = sin6->sin6_addr; 10911 } 10912 ifindex = greqp->gr_interface; 10913 } else { 10914 ip_mreqp = (struct ipv6_mreq *)i1; 10915 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10916 ifindex = ip_mreqp->ipv6mr_interface; 10917 } 10918 /* 10919 * In the multirouting case, we need to replicate 10920 * the request on all interfaces that will take part 10921 * in replication. We do so because multirouting is 10922 * reflective, thus we will probably receive multi- 10923 * casts on those interfaces. 10924 * The ip_multirt_apply_membership_v6() succeeds if 10925 * the operation succeeds on at least one interface. 10926 */ 10927 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10928 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10929 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10930 if (ire != NULL) { 10931 if (ire->ire_flags & RTF_MULTIRT) { 10932 error = ip_multirt_apply_membership_v6( 10933 optfn, ire, connp, checkonly, 10934 &groupv6, fmode, &ipv6_all_zeros, 10935 first_mp); 10936 done = B_TRUE; 10937 } 10938 ire_refrele(ire); 10939 } 10940 if (!done) { 10941 error = optfn(connp, checkonly, &groupv6, 10942 ifindex, fmode, &ipv6_all_zeros, first_mp); 10943 } 10944 if (error) { 10945 /* 10946 * EINPROGRESS is a soft error, needs retry 10947 * so don't make *outlenp zero. 10948 */ 10949 if (error != EINPROGRESS) 10950 *outlenp = 0; 10951 return (error); 10952 } 10953 /* OK return - copy input buffer into output buffer */ 10954 if (invalp != outvalp) { 10955 /* don't trust bcopy for identical src/dst */ 10956 bcopy(invalp, outvalp, inlen); 10957 } 10958 *outlenp = inlen; 10959 return (0); 10960 } 10961 case MCAST_BLOCK_SOURCE: 10962 case MCAST_UNBLOCK_SOURCE: 10963 case MCAST_JOIN_SOURCE_GROUP: 10964 case MCAST_LEAVE_SOURCE_GROUP: { 10965 struct group_source_req *gsreqp; 10966 in6_addr_t v6grp, v6src; 10967 uint32_t ifindex; 10968 mcast_record_t fmode; 10969 ire_t *ire; 10970 boolean_t done = B_FALSE; 10971 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10972 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10973 10974 switch (name) { 10975 case MCAST_BLOCK_SOURCE: 10976 fmode = MODE_IS_EXCLUDE; 10977 optfn = ip_opt_add_group_v6; 10978 break; 10979 case MCAST_UNBLOCK_SOURCE: 10980 fmode = MODE_IS_EXCLUDE; 10981 optfn = ip_opt_delete_group_v6; 10982 break; 10983 case MCAST_JOIN_SOURCE_GROUP: 10984 fmode = MODE_IS_INCLUDE; 10985 optfn = ip_opt_add_group_v6; 10986 break; 10987 case MCAST_LEAVE_SOURCE_GROUP: 10988 fmode = MODE_IS_INCLUDE; 10989 optfn = ip_opt_delete_group_v6; 10990 break; 10991 } 10992 10993 gsreqp = (struct group_source_req *)i1; 10994 ifindex = gsreqp->gsr_interface; 10995 if (gsreqp->gsr_group.ss_family == AF_INET) { 10996 struct sockaddr_in *s; 10997 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10998 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10999 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11000 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11001 } else { 11002 struct sockaddr_in6 *s6; 11003 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11004 v6grp = s6->sin6_addr; 11005 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11006 v6src = s6->sin6_addr; 11007 } 11008 11009 /* 11010 * In the multirouting case, we need to replicate 11011 * the request as noted in the mcast cases above. 11012 */ 11013 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11014 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11015 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11016 if (ire != NULL) { 11017 if (ire->ire_flags & RTF_MULTIRT) { 11018 error = ip_multirt_apply_membership_v6( 11019 optfn, ire, connp, checkonly, 11020 &v6grp, fmode, &v6src, first_mp); 11021 done = B_TRUE; 11022 } 11023 ire_refrele(ire); 11024 } 11025 if (!done) { 11026 error = optfn(connp, checkonly, &v6grp, 11027 ifindex, fmode, &v6src, first_mp); 11028 } 11029 if (error != 0) { 11030 /* 11031 * EINPROGRESS is a soft error, needs retry 11032 * so don't make *outlenp zero. 11033 */ 11034 if (error != EINPROGRESS) 11035 *outlenp = 0; 11036 return (error); 11037 } 11038 /* OK return - copy input buffer into output buffer */ 11039 if (invalp != outvalp) { 11040 bcopy(invalp, outvalp, inlen); 11041 } 11042 *outlenp = inlen; 11043 return (0); 11044 } 11045 case IPV6_UNICAST_HOPS: 11046 /* Recorded in transport above IP */ 11047 break; /* goto sizeof (int) option return */ 11048 case IPV6_UNSPEC_SRC: 11049 /* Allow sending with a zero source address */ 11050 if (!checkonly) { 11051 mutex_enter(&connp->conn_lock); 11052 connp->conn_unspec_src = *i1 ? 1 : 0; 11053 mutex_exit(&connp->conn_lock); 11054 } 11055 break; /* goto sizeof (int) option return */ 11056 case IPV6_RECVPKTINFO: 11057 if (!checkonly) { 11058 mutex_enter(&connp->conn_lock); 11059 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11060 mutex_exit(&connp->conn_lock); 11061 } 11062 break; /* goto sizeof (int) option return */ 11063 case IPV6_RECVTCLASS: 11064 if (!checkonly) { 11065 if (*i1 < 0 || *i1 > 1) { 11066 return (EINVAL); 11067 } 11068 mutex_enter(&connp->conn_lock); 11069 connp->conn_ipv6_recvtclass = *i1; 11070 mutex_exit(&connp->conn_lock); 11071 } 11072 break; 11073 case IPV6_RECVPATHMTU: 11074 if (!checkonly) { 11075 if (*i1 < 0 || *i1 > 1) { 11076 return (EINVAL); 11077 } 11078 mutex_enter(&connp->conn_lock); 11079 connp->conn_ipv6_recvpathmtu = *i1; 11080 mutex_exit(&connp->conn_lock); 11081 } 11082 break; 11083 case IPV6_RECVHOPLIMIT: 11084 if (!checkonly) { 11085 mutex_enter(&connp->conn_lock); 11086 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11087 mutex_exit(&connp->conn_lock); 11088 } 11089 break; /* goto sizeof (int) option return */ 11090 case IPV6_RECVHOPOPTS: 11091 if (!checkonly) { 11092 mutex_enter(&connp->conn_lock); 11093 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11094 mutex_exit(&connp->conn_lock); 11095 } 11096 break; /* goto sizeof (int) option return */ 11097 case IPV6_RECVDSTOPTS: 11098 if (!checkonly) { 11099 mutex_enter(&connp->conn_lock); 11100 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11101 mutex_exit(&connp->conn_lock); 11102 } 11103 break; /* goto sizeof (int) option return */ 11104 case IPV6_RECVRTHDR: 11105 if (!checkonly) { 11106 mutex_enter(&connp->conn_lock); 11107 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11108 mutex_exit(&connp->conn_lock); 11109 } 11110 break; /* goto sizeof (int) option return */ 11111 case IPV6_RECVRTHDRDSTOPTS: 11112 if (!checkonly) { 11113 mutex_enter(&connp->conn_lock); 11114 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11115 mutex_exit(&connp->conn_lock); 11116 } 11117 break; /* goto sizeof (int) option return */ 11118 case IPV6_PKTINFO: 11119 if (inlen == 0) 11120 return (-EINVAL); /* clearing option */ 11121 error = ip6_set_pktinfo(cr, connp, 11122 (struct in6_pktinfo *)invalp, first_mp); 11123 if (error != 0) 11124 *outlenp = 0; 11125 else 11126 *outlenp = inlen; 11127 return (error); 11128 case IPV6_NEXTHOP: { 11129 struct sockaddr_in6 *sin6; 11130 11131 /* Verify that the nexthop is reachable */ 11132 if (inlen == 0) 11133 return (-EINVAL); /* clearing option */ 11134 11135 sin6 = (struct sockaddr_in6 *)invalp; 11136 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11137 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11138 NULL, MATCH_IRE_DEFAULT); 11139 11140 if (ire == NULL) { 11141 *outlenp = 0; 11142 return (EHOSTUNREACH); 11143 } 11144 ire_refrele(ire); 11145 return (-EINVAL); 11146 } 11147 case IPV6_SEC_OPT: 11148 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11149 if (error != 0) { 11150 *outlenp = 0; 11151 return (error); 11152 } 11153 break; 11154 case IPV6_SRC_PREFERENCES: { 11155 /* 11156 * This is implemented strictly in the ip module 11157 * (here and in tcp_opt_*() to accomodate tcp 11158 * sockets). Modules above ip pass this option 11159 * down here since ip is the only one that needs to 11160 * be aware of source address preferences. 11161 * 11162 * This socket option only affects connected 11163 * sockets that haven't already bound to a specific 11164 * IPv6 address. In other words, sockets that 11165 * don't call bind() with an address other than the 11166 * unspecified address and that call connect(). 11167 * ip_bind_connected_v6() passes these preferences 11168 * to the ipif_select_source_v6() function. 11169 */ 11170 if (inlen != sizeof (uint32_t)) 11171 return (EINVAL); 11172 error = ip6_set_src_preferences(connp, 11173 *(uint32_t *)invalp); 11174 if (error != 0) { 11175 *outlenp = 0; 11176 return (error); 11177 } else { 11178 *outlenp = sizeof (uint32_t); 11179 } 11180 break; 11181 } 11182 case IPV6_V6ONLY: 11183 if (*i1 < 0 || *i1 > 1) { 11184 return (EINVAL); 11185 } 11186 mutex_enter(&connp->conn_lock); 11187 connp->conn_ipv6_v6only = *i1; 11188 mutex_exit(&connp->conn_lock); 11189 break; 11190 default: 11191 return (-EINVAL); 11192 } 11193 break; 11194 default: 11195 /* 11196 * "soft" error (negative) 11197 * option not handled at this level 11198 * Note: Do not modify *outlenp 11199 */ 11200 return (-EINVAL); 11201 } 11202 /* 11203 * Common case of return from an option that is sizeof (int) 11204 */ 11205 *(int *)outvalp = *i1; 11206 *outlenp = sizeof (int); 11207 return (0); 11208 } 11209 11210 /* 11211 * This routine gets default values of certain options whose default 11212 * values are maintained by protocol specific code 11213 */ 11214 /* ARGSUSED */ 11215 int 11216 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11217 { 11218 int *i1 = (int *)ptr; 11219 11220 switch (level) { 11221 case IPPROTO_IP: 11222 switch (name) { 11223 case IP_MULTICAST_TTL: 11224 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11225 return (sizeof (uchar_t)); 11226 case IP_MULTICAST_LOOP: 11227 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11228 return (sizeof (uchar_t)); 11229 default: 11230 return (-1); 11231 } 11232 case IPPROTO_IPV6: 11233 switch (name) { 11234 case IPV6_UNICAST_HOPS: 11235 *i1 = ipv6_def_hops; 11236 return (sizeof (int)); 11237 case IPV6_MULTICAST_HOPS: 11238 *i1 = IP_DEFAULT_MULTICAST_TTL; 11239 return (sizeof (int)); 11240 case IPV6_MULTICAST_LOOP: 11241 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11242 return (sizeof (int)); 11243 case IPV6_V6ONLY: 11244 *i1 = 1; 11245 return (sizeof (int)); 11246 default: 11247 return (-1); 11248 } 11249 default: 11250 return (-1); 11251 } 11252 /* NOTREACHED */ 11253 } 11254 11255 /* 11256 * Given a destination address and a pointer to where to put the information 11257 * this routine fills in the mtuinfo. 11258 */ 11259 int 11260 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11261 struct ip6_mtuinfo *mtuinfo) 11262 { 11263 ire_t *ire; 11264 11265 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11266 return (-1); 11267 11268 bzero(mtuinfo, sizeof (*mtuinfo)); 11269 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11270 mtuinfo->ip6m_addr.sin6_port = port; 11271 mtuinfo->ip6m_addr.sin6_addr = *in6; 11272 11273 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11274 if (ire != NULL) { 11275 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11276 ire_refrele(ire); 11277 } else { 11278 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11279 } 11280 return (sizeof (struct ip6_mtuinfo)); 11281 } 11282 11283 /* 11284 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11285 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11286 * isn't. This doesn't matter as the error checking is done properly for the 11287 * other MRT options coming in through ip_opt_set. 11288 */ 11289 int 11290 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11291 { 11292 conn_t *connp = Q_TO_CONN(q); 11293 ipsec_req_t *req = (ipsec_req_t *)ptr; 11294 11295 switch (level) { 11296 case IPPROTO_IP: 11297 switch (name) { 11298 case MRT_VERSION: 11299 case MRT_ASSERT: 11300 (void) ip_mrouter_get(name, q, ptr); 11301 return (sizeof (int)); 11302 case IP_SEC_OPT: 11303 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11304 case IP_NEXTHOP: 11305 if (connp->conn_nexthop_set) { 11306 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11307 return (sizeof (ipaddr_t)); 11308 } else 11309 return (0); 11310 default: 11311 break; 11312 } 11313 break; 11314 case IPPROTO_IPV6: 11315 switch (name) { 11316 case IPV6_SEC_OPT: 11317 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11318 case IPV6_SRC_PREFERENCES: { 11319 return (ip6_get_src_preferences(connp, 11320 (uint32_t *)ptr)); 11321 } 11322 case IPV6_V6ONLY: 11323 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11324 return (sizeof (int)); 11325 case IPV6_PATHMTU: 11326 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11327 (struct ip6_mtuinfo *)ptr)); 11328 default: 11329 break; 11330 } 11331 break; 11332 default: 11333 break; 11334 } 11335 return (-1); 11336 } 11337 11338 /* Named Dispatch routine to get a current value out of our parameter table. */ 11339 /* ARGSUSED */ 11340 static int 11341 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11342 { 11343 ipparam_t *ippa = (ipparam_t *)cp; 11344 11345 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11346 return (0); 11347 } 11348 11349 /* ARGSUSED */ 11350 static int 11351 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11352 { 11353 11354 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11355 return (0); 11356 } 11357 11358 /* 11359 * Set ip{,6}_forwarding values. This means walking through all of the 11360 * ill's and toggling their forwarding values. 11361 */ 11362 /* ARGSUSED */ 11363 static int 11364 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11365 { 11366 long new_value; 11367 int *forwarding_value = (int *)cp; 11368 ill_t *walker; 11369 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11370 ill_walk_context_t ctx; 11371 11372 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11373 new_value < 0 || new_value > 1) { 11374 return (EINVAL); 11375 } 11376 11377 *forwarding_value = new_value; 11378 11379 /* 11380 * Regardless of the current value of ip_forwarding, set all per-ill 11381 * values of ip_forwarding to the value being set. 11382 * 11383 * Bring all the ill's up to date with the new global value. 11384 */ 11385 rw_enter(&ill_g_lock, RW_READER); 11386 11387 if (isv6) 11388 walker = ILL_START_WALK_V6(&ctx); 11389 else 11390 walker = ILL_START_WALK_V4(&ctx); 11391 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11392 (void) ill_forward_set(q, mp, (new_value != 0), 11393 (caddr_t)walker); 11394 } 11395 rw_exit(&ill_g_lock); 11396 11397 return (0); 11398 } 11399 11400 /* 11401 * Walk through the param array specified registering each element with the 11402 * Named Dispatch handler. This is called only during init. So it is ok 11403 * not to acquire any locks 11404 */ 11405 static boolean_t 11406 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11407 ipndp_t *ipnd, size_t ipnd_cnt) 11408 { 11409 for (; ippa_cnt-- > 0; ippa++) { 11410 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11411 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11412 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11413 nd_free(&ip_g_nd); 11414 return (B_FALSE); 11415 } 11416 } 11417 } 11418 11419 for (; ipnd_cnt-- > 0; ipnd++) { 11420 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11421 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11422 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11423 ipnd->ip_ndp_data)) { 11424 nd_free(&ip_g_nd); 11425 return (B_FALSE); 11426 } 11427 } 11428 } 11429 11430 return (B_TRUE); 11431 } 11432 11433 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11434 /* ARGSUSED */ 11435 static int 11436 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11437 { 11438 long new_value; 11439 ipparam_t *ippa = (ipparam_t *)cp; 11440 11441 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11442 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11443 return (EINVAL); 11444 } 11445 ippa->ip_param_value = new_value; 11446 return (0); 11447 } 11448 11449 /* 11450 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11451 * When an ipf is passed here for the first time, if 11452 * we already have in-order fragments on the queue, we convert from the fast- 11453 * path reassembly scheme to the hard-case scheme. From then on, additional 11454 * fragments are reassembled here. We keep track of the start and end offsets 11455 * of each piece, and the number of holes in the chain. When the hole count 11456 * goes to zero, we are done! 11457 * 11458 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11459 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11460 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11461 * after the call to ip_reassemble(). 11462 */ 11463 int 11464 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11465 size_t msg_len) 11466 { 11467 uint_t end; 11468 mblk_t *next_mp; 11469 mblk_t *mp1; 11470 uint_t offset; 11471 boolean_t incr_dups = B_TRUE; 11472 boolean_t offset_zero_seen = B_FALSE; 11473 boolean_t pkt_boundary_checked = B_FALSE; 11474 11475 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11476 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11477 11478 /* Add in byte count */ 11479 ipf->ipf_count += msg_len; 11480 if (ipf->ipf_end) { 11481 /* 11482 * We were part way through in-order reassembly, but now there 11483 * is a hole. We walk through messages already queued, and 11484 * mark them for hard case reassembly. We know that up till 11485 * now they were in order starting from offset zero. 11486 */ 11487 offset = 0; 11488 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11489 IP_REASS_SET_START(mp1, offset); 11490 if (offset == 0) { 11491 ASSERT(ipf->ipf_nf_hdr_len != 0); 11492 offset = -ipf->ipf_nf_hdr_len; 11493 } 11494 offset += mp1->b_wptr - mp1->b_rptr; 11495 IP_REASS_SET_END(mp1, offset); 11496 } 11497 /* One hole at the end. */ 11498 ipf->ipf_hole_cnt = 1; 11499 /* Brand it as a hard case, forever. */ 11500 ipf->ipf_end = 0; 11501 } 11502 /* Walk through all the new pieces. */ 11503 do { 11504 end = start + (mp->b_wptr - mp->b_rptr); 11505 /* 11506 * If start is 0, decrease 'end' only for the first mblk of 11507 * the fragment. Otherwise 'end' can get wrong value in the 11508 * second pass of the loop if first mblk is exactly the 11509 * size of ipf_nf_hdr_len. 11510 */ 11511 if (start == 0 && !offset_zero_seen) { 11512 /* First segment */ 11513 ASSERT(ipf->ipf_nf_hdr_len != 0); 11514 end -= ipf->ipf_nf_hdr_len; 11515 offset_zero_seen = B_TRUE; 11516 } 11517 next_mp = mp->b_cont; 11518 /* 11519 * We are checking to see if there is any interesing data 11520 * to process. If there isn't and the mblk isn't the 11521 * one which carries the unfragmentable header then we 11522 * drop it. It's possible to have just the unfragmentable 11523 * header come through without any data. That needs to be 11524 * saved. 11525 * 11526 * If the assert at the top of this function holds then the 11527 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11528 * is infrequently traveled enough that the test is left in 11529 * to protect against future code changes which break that 11530 * invariant. 11531 */ 11532 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11533 /* Empty. Blast it. */ 11534 IP_REASS_SET_START(mp, 0); 11535 IP_REASS_SET_END(mp, 0); 11536 /* 11537 * If the ipf points to the mblk we are about to free, 11538 * update ipf to point to the next mblk (or NULL 11539 * if none). 11540 */ 11541 if (ipf->ipf_mp->b_cont == mp) 11542 ipf->ipf_mp->b_cont = next_mp; 11543 freeb(mp); 11544 continue; 11545 } 11546 mp->b_cont = NULL; 11547 IP_REASS_SET_START(mp, start); 11548 IP_REASS_SET_END(mp, end); 11549 if (!ipf->ipf_tail_mp) { 11550 ipf->ipf_tail_mp = mp; 11551 ipf->ipf_mp->b_cont = mp; 11552 if (start == 0 || !more) { 11553 ipf->ipf_hole_cnt = 1; 11554 /* 11555 * if the first fragment comes in more than one 11556 * mblk, this loop will be executed for each 11557 * mblk. Need to adjust hole count so exiting 11558 * this routine will leave hole count at 1. 11559 */ 11560 if (next_mp) 11561 ipf->ipf_hole_cnt++; 11562 } else 11563 ipf->ipf_hole_cnt = 2; 11564 continue; 11565 } else if (ipf->ipf_last_frag_seen && !more && 11566 !pkt_boundary_checked) { 11567 /* 11568 * We check datagram boundary only if this fragment 11569 * claims to be the last fragment and we have seen a 11570 * last fragment in the past too. We do this only 11571 * once for a given fragment. 11572 * 11573 * start cannot be 0 here as fragments with start=0 11574 * and MF=0 gets handled as a complete packet. These 11575 * fragments should not reach here. 11576 */ 11577 11578 if (start + msgdsize(mp) != 11579 IP_REASS_END(ipf->ipf_tail_mp)) { 11580 /* 11581 * We have two fragments both of which claim 11582 * to be the last fragment but gives conflicting 11583 * information about the whole datagram size. 11584 * Something fishy is going on. Drop the 11585 * fragment and free up the reassembly list. 11586 */ 11587 return (IP_REASS_FAILED); 11588 } 11589 11590 /* 11591 * We shouldn't come to this code block again for this 11592 * particular fragment. 11593 */ 11594 pkt_boundary_checked = B_TRUE; 11595 } 11596 11597 /* New stuff at or beyond tail? */ 11598 offset = IP_REASS_END(ipf->ipf_tail_mp); 11599 if (start >= offset) { 11600 if (ipf->ipf_last_frag_seen) { 11601 /* current fragment is beyond last fragment */ 11602 return (IP_REASS_FAILED); 11603 } 11604 /* Link it on end. */ 11605 ipf->ipf_tail_mp->b_cont = mp; 11606 ipf->ipf_tail_mp = mp; 11607 if (more) { 11608 if (start != offset) 11609 ipf->ipf_hole_cnt++; 11610 } else if (start == offset && next_mp == NULL) 11611 ipf->ipf_hole_cnt--; 11612 continue; 11613 } 11614 mp1 = ipf->ipf_mp->b_cont; 11615 offset = IP_REASS_START(mp1); 11616 /* New stuff at the front? */ 11617 if (start < offset) { 11618 if (start == 0) { 11619 if (end >= offset) { 11620 /* Nailed the hole at the begining. */ 11621 ipf->ipf_hole_cnt--; 11622 } 11623 } else if (end < offset) { 11624 /* 11625 * A hole, stuff, and a hole where there used 11626 * to be just a hole. 11627 */ 11628 ipf->ipf_hole_cnt++; 11629 } 11630 mp->b_cont = mp1; 11631 /* Check for overlap. */ 11632 while (end > offset) { 11633 if (end < IP_REASS_END(mp1)) { 11634 mp->b_wptr -= end - offset; 11635 IP_REASS_SET_END(mp, offset); 11636 if (ill->ill_isv6) { 11637 BUMP_MIB(ill->ill_ip6_mib, 11638 ipv6ReasmPartDups); 11639 } else { 11640 BUMP_MIB(&ip_mib, 11641 ipReasmPartDups); 11642 } 11643 break; 11644 } 11645 /* Did we cover another hole? */ 11646 if ((mp1->b_cont && 11647 IP_REASS_END(mp1) != 11648 IP_REASS_START(mp1->b_cont) && 11649 end >= IP_REASS_START(mp1->b_cont)) || 11650 (!ipf->ipf_last_frag_seen && !more)) { 11651 ipf->ipf_hole_cnt--; 11652 } 11653 /* Clip out mp1. */ 11654 if ((mp->b_cont = mp1->b_cont) == NULL) { 11655 /* 11656 * After clipping out mp1, this guy 11657 * is now hanging off the end. 11658 */ 11659 ipf->ipf_tail_mp = mp; 11660 } 11661 IP_REASS_SET_START(mp1, 0); 11662 IP_REASS_SET_END(mp1, 0); 11663 /* Subtract byte count */ 11664 ipf->ipf_count -= mp1->b_datap->db_lim - 11665 mp1->b_datap->db_base; 11666 freeb(mp1); 11667 if (ill->ill_isv6) { 11668 BUMP_MIB(ill->ill_ip6_mib, 11669 ipv6ReasmPartDups); 11670 } else { 11671 BUMP_MIB(&ip_mib, ipReasmPartDups); 11672 } 11673 mp1 = mp->b_cont; 11674 if (!mp1) 11675 break; 11676 offset = IP_REASS_START(mp1); 11677 } 11678 ipf->ipf_mp->b_cont = mp; 11679 continue; 11680 } 11681 /* 11682 * The new piece starts somewhere between the start of the head 11683 * and before the end of the tail. 11684 */ 11685 for (; mp1; mp1 = mp1->b_cont) { 11686 offset = IP_REASS_END(mp1); 11687 if (start < offset) { 11688 if (end <= offset) { 11689 /* Nothing new. */ 11690 IP_REASS_SET_START(mp, 0); 11691 IP_REASS_SET_END(mp, 0); 11692 /* Subtract byte count */ 11693 ipf->ipf_count -= mp->b_datap->db_lim - 11694 mp->b_datap->db_base; 11695 if (incr_dups) { 11696 ipf->ipf_num_dups++; 11697 incr_dups = B_FALSE; 11698 } 11699 freeb(mp); 11700 if (ill->ill_isv6) { 11701 BUMP_MIB(ill->ill_ip6_mib, 11702 ipv6ReasmDuplicates); 11703 } else { 11704 BUMP_MIB(&ip_mib, 11705 ipReasmDuplicates); 11706 } 11707 break; 11708 } 11709 /* 11710 * Trim redundant stuff off beginning of new 11711 * piece. 11712 */ 11713 IP_REASS_SET_START(mp, offset); 11714 mp->b_rptr += offset - start; 11715 if (ill->ill_isv6) { 11716 BUMP_MIB(ill->ill_ip6_mib, 11717 ipv6ReasmPartDups); 11718 } else { 11719 BUMP_MIB(&ip_mib, ipReasmPartDups); 11720 } 11721 start = offset; 11722 if (!mp1->b_cont) { 11723 /* 11724 * After trimming, this guy is now 11725 * hanging off the end. 11726 */ 11727 mp1->b_cont = mp; 11728 ipf->ipf_tail_mp = mp; 11729 if (!more) { 11730 ipf->ipf_hole_cnt--; 11731 } 11732 break; 11733 } 11734 } 11735 if (start >= IP_REASS_START(mp1->b_cont)) 11736 continue; 11737 /* Fill a hole */ 11738 if (start > offset) 11739 ipf->ipf_hole_cnt++; 11740 mp->b_cont = mp1->b_cont; 11741 mp1->b_cont = mp; 11742 mp1 = mp->b_cont; 11743 offset = IP_REASS_START(mp1); 11744 if (end >= offset) { 11745 ipf->ipf_hole_cnt--; 11746 /* Check for overlap. */ 11747 while (end > offset) { 11748 if (end < IP_REASS_END(mp1)) { 11749 mp->b_wptr -= end - offset; 11750 IP_REASS_SET_END(mp, offset); 11751 /* 11752 * TODO we might bump 11753 * this up twice if there is 11754 * overlap at both ends. 11755 */ 11756 if (ill->ill_isv6) { 11757 BUMP_MIB( 11758 ill->ill_ip6_mib, 11759 ipv6ReasmPartDups); 11760 } else { 11761 BUMP_MIB(&ip_mib, 11762 ipReasmPartDups); 11763 } 11764 break; 11765 } 11766 /* Did we cover another hole? */ 11767 if ((mp1->b_cont && 11768 IP_REASS_END(mp1) 11769 != IP_REASS_START(mp1->b_cont) && 11770 end >= 11771 IP_REASS_START(mp1->b_cont)) || 11772 (!ipf->ipf_last_frag_seen && 11773 !more)) { 11774 ipf->ipf_hole_cnt--; 11775 } 11776 /* Clip out mp1. */ 11777 if ((mp->b_cont = mp1->b_cont) == 11778 NULL) { 11779 /* 11780 * After clipping out mp1, 11781 * this guy is now hanging 11782 * off the end. 11783 */ 11784 ipf->ipf_tail_mp = mp; 11785 } 11786 IP_REASS_SET_START(mp1, 0); 11787 IP_REASS_SET_END(mp1, 0); 11788 /* Subtract byte count */ 11789 ipf->ipf_count -= 11790 mp1->b_datap->db_lim - 11791 mp1->b_datap->db_base; 11792 freeb(mp1); 11793 if (ill->ill_isv6) { 11794 BUMP_MIB(ill->ill_ip6_mib, 11795 ipv6ReasmPartDups); 11796 } else { 11797 BUMP_MIB(&ip_mib, 11798 ipReasmPartDups); 11799 } 11800 mp1 = mp->b_cont; 11801 if (!mp1) 11802 break; 11803 offset = IP_REASS_START(mp1); 11804 } 11805 } 11806 break; 11807 } 11808 } while (start = end, mp = next_mp); 11809 11810 /* Fragment just processed could be the last one. Remember this fact */ 11811 if (!more) 11812 ipf->ipf_last_frag_seen = B_TRUE; 11813 11814 /* Still got holes? */ 11815 if (ipf->ipf_hole_cnt) 11816 return (IP_REASS_PARTIAL); 11817 /* Clean up overloaded fields to avoid upstream disasters. */ 11818 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11819 IP_REASS_SET_START(mp1, 0); 11820 IP_REASS_SET_END(mp1, 0); 11821 } 11822 return (IP_REASS_COMPLETE); 11823 } 11824 11825 /* 11826 * ipsec processing for the fast path, used for input UDP Packets 11827 */ 11828 static boolean_t 11829 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11830 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11831 { 11832 uint32_t ill_index; 11833 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11834 11835 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11836 /* The ill_index of the incoming ILL */ 11837 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11838 11839 /* pass packet up to the transport */ 11840 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11841 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11842 NULL, mctl_present); 11843 if (*first_mpp == NULL) { 11844 return (B_FALSE); 11845 } 11846 } 11847 11848 /* Initiate IPPF processing for fastpath UDP */ 11849 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11850 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11851 if (*mpp == NULL) { 11852 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11853 "deferred/dropped during IPPF processing\n")); 11854 return (B_FALSE); 11855 } 11856 } 11857 /* 11858 * We make the checks as below since we are in the fast path 11859 * and want to minimize the number of checks if the IP_RECVIF and/or 11860 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11861 */ 11862 if (connp->conn_recvif || connp->conn_recvslla || 11863 connp->conn_ipv6_recvpktinfo) { 11864 if (connp->conn_recvif || 11865 connp->conn_ipv6_recvpktinfo) { 11866 in_flags = IPF_RECVIF; 11867 } 11868 if (connp->conn_recvslla) { 11869 in_flags |= IPF_RECVSLLA; 11870 } 11871 /* 11872 * since in_flags are being set ill will be 11873 * referenced in ip_add_info, so it better not 11874 * be NULL. 11875 */ 11876 /* 11877 * the actual data will be contained in b_cont 11878 * upon successful return of the following call. 11879 * If the call fails then the original mblk is 11880 * returned. 11881 */ 11882 *mpp = ip_add_info(*mpp, ill, in_flags); 11883 } 11884 11885 return (B_TRUE); 11886 } 11887 11888 /* 11889 * Fragmentation reassembly. Each ILL has a hash table for 11890 * queuing packets undergoing reassembly for all IPIFs 11891 * associated with the ILL. The hash is based on the packet 11892 * IP ident field. The ILL frag hash table was allocated 11893 * as a timer block at the time the ILL was created. Whenever 11894 * there is anything on the reassembly queue, the timer will 11895 * be running. Returns B_TRUE if successful else B_FALSE; 11896 * frees mp on failure. 11897 */ 11898 static boolean_t 11899 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11900 uint32_t *cksum_val, uint16_t *cksum_flags) 11901 { 11902 uint32_t frag_offset_flags; 11903 ill_t *ill = (ill_t *)q->q_ptr; 11904 mblk_t *mp = *mpp; 11905 mblk_t *t_mp; 11906 ipaddr_t dst; 11907 uint8_t proto = ipha->ipha_protocol; 11908 uint32_t sum_val; 11909 uint16_t sum_flags; 11910 ipf_t *ipf; 11911 ipf_t **ipfp; 11912 ipfb_t *ipfb; 11913 uint16_t ident; 11914 uint32_t offset; 11915 ipaddr_t src; 11916 uint_t hdr_length; 11917 uint32_t end; 11918 mblk_t *mp1; 11919 mblk_t *tail_mp; 11920 size_t count; 11921 size_t msg_len; 11922 uint8_t ecn_info = 0; 11923 uint32_t packet_size; 11924 boolean_t pruned = B_FALSE; 11925 11926 if (cksum_val != NULL) 11927 *cksum_val = 0; 11928 if (cksum_flags != NULL) 11929 *cksum_flags = 0; 11930 11931 /* 11932 * Drop the fragmented as early as possible, if 11933 * we don't have resource(s) to re-assemble. 11934 */ 11935 if (ip_reass_queue_bytes == 0) { 11936 freemsg(mp); 11937 return (B_FALSE); 11938 } 11939 11940 /* Check for fragmentation offset; return if there's none */ 11941 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11942 (IPH_MF | IPH_OFFSET)) == 0) 11943 return (B_TRUE); 11944 11945 /* 11946 * We utilize hardware computed checksum info only for UDP since 11947 * IP fragmentation is a normal occurence for the protocol. In 11948 * addition, checksum offload support for IP fragments carrying 11949 * UDP payload is commonly implemented across network adapters. 11950 */ 11951 ASSERT(ill != NULL); 11952 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11953 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11954 mblk_t *mp1 = mp->b_cont; 11955 int32_t len; 11956 11957 /* Record checksum information from the packet */ 11958 sum_val = (uint32_t)DB_CKSUM16(mp); 11959 sum_flags = DB_CKSUMFLAGS(mp); 11960 11961 /* IP payload offset from beginning of mblk */ 11962 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11963 11964 if ((sum_flags & HCK_PARTIALCKSUM) && 11965 (mp1 == NULL || mp1->b_cont == NULL) && 11966 offset >= DB_CKSUMSTART(mp) && 11967 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11968 uint32_t adj; 11969 /* 11970 * Partial checksum has been calculated by hardware 11971 * and attached to the packet; in addition, any 11972 * prepended extraneous data is even byte aligned. 11973 * If any such data exists, we adjust the checksum; 11974 * this would also handle any postpended data. 11975 */ 11976 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11977 mp, mp1, len, adj); 11978 11979 /* One's complement subtract extraneous checksum */ 11980 if (adj >= sum_val) 11981 sum_val = ~(adj - sum_val) & 0xFFFF; 11982 else 11983 sum_val -= adj; 11984 } 11985 } else { 11986 sum_val = 0; 11987 sum_flags = 0; 11988 } 11989 11990 /* Clear hardware checksumming flag */ 11991 DB_CKSUMFLAGS(mp) = 0; 11992 11993 ident = ipha->ipha_ident; 11994 offset = (frag_offset_flags << 3) & 0xFFFF; 11995 src = ipha->ipha_src; 11996 dst = ipha->ipha_dst; 11997 hdr_length = IPH_HDR_LENGTH(ipha); 11998 end = ntohs(ipha->ipha_length) - hdr_length; 11999 12000 /* If end == 0 then we have a packet with no data, so just free it */ 12001 if (end == 0) { 12002 freemsg(mp); 12003 return (B_FALSE); 12004 } 12005 12006 /* Record the ECN field info. */ 12007 ecn_info = (ipha->ipha_type_of_service & 0x3); 12008 if (offset != 0) { 12009 /* 12010 * If this isn't the first piece, strip the header, and 12011 * add the offset to the end value. 12012 */ 12013 mp->b_rptr += hdr_length; 12014 end += offset; 12015 } 12016 12017 msg_len = MBLKSIZE(mp); 12018 tail_mp = mp; 12019 while (tail_mp->b_cont != NULL) { 12020 tail_mp = tail_mp->b_cont; 12021 msg_len += MBLKSIZE(tail_mp); 12022 } 12023 12024 /* If the reassembly list for this ILL will get too big, prune it */ 12025 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12026 ip_reass_queue_bytes) { 12027 ill_frag_prune(ill, 12028 (ip_reass_queue_bytes < msg_len) ? 0 : 12029 (ip_reass_queue_bytes - msg_len)); 12030 pruned = B_TRUE; 12031 } 12032 12033 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12034 mutex_enter(&ipfb->ipfb_lock); 12035 12036 ipfp = &ipfb->ipfb_ipf; 12037 /* Try to find an existing fragment queue for this packet. */ 12038 for (;;) { 12039 ipf = ipfp[0]; 12040 if (ipf != NULL) { 12041 /* 12042 * It has to match on ident and src/dst address. 12043 */ 12044 if (ipf->ipf_ident == ident && 12045 ipf->ipf_src == src && 12046 ipf->ipf_dst == dst && 12047 ipf->ipf_protocol == proto) { 12048 /* 12049 * If we have received too many 12050 * duplicate fragments for this packet 12051 * free it. 12052 */ 12053 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12054 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12055 freemsg(mp); 12056 mutex_exit(&ipfb->ipfb_lock); 12057 return (B_FALSE); 12058 } 12059 /* Found it. */ 12060 break; 12061 } 12062 ipfp = &ipf->ipf_hash_next; 12063 continue; 12064 } 12065 12066 /* 12067 * If we pruned the list, do we want to store this new 12068 * fragment?. We apply an optimization here based on the 12069 * fact that most fragments will be received in order. 12070 * So if the offset of this incoming fragment is zero, 12071 * it is the first fragment of a new packet. We will 12072 * keep it. Otherwise drop the fragment, as we have 12073 * probably pruned the packet already (since the 12074 * packet cannot be found). 12075 */ 12076 if (pruned && offset != 0) { 12077 mutex_exit(&ipfb->ipfb_lock); 12078 freemsg(mp); 12079 return (B_FALSE); 12080 } 12081 12082 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12083 /* 12084 * Too many fragmented packets in this hash 12085 * bucket. Free the oldest. 12086 */ 12087 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12088 } 12089 12090 /* New guy. Allocate a frag message. */ 12091 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12092 if (mp1 == NULL) { 12093 BUMP_MIB(&ip_mib, ipInDiscards); 12094 freemsg(mp); 12095 reass_done: 12096 mutex_exit(&ipfb->ipfb_lock); 12097 return (B_FALSE); 12098 } 12099 12100 12101 BUMP_MIB(&ip_mib, ipReasmReqds); 12102 mp1->b_cont = mp; 12103 12104 /* Initialize the fragment header. */ 12105 ipf = (ipf_t *)mp1->b_rptr; 12106 ipf->ipf_mp = mp1; 12107 ipf->ipf_ptphn = ipfp; 12108 ipfp[0] = ipf; 12109 ipf->ipf_hash_next = NULL; 12110 ipf->ipf_ident = ident; 12111 ipf->ipf_protocol = proto; 12112 ipf->ipf_src = src; 12113 ipf->ipf_dst = dst; 12114 ipf->ipf_nf_hdr_len = 0; 12115 /* Record reassembly start time. */ 12116 ipf->ipf_timestamp = gethrestime_sec(); 12117 /* Record ipf generation and account for frag header */ 12118 ipf->ipf_gen = ill->ill_ipf_gen++; 12119 ipf->ipf_count = MBLKSIZE(mp1); 12120 ipf->ipf_last_frag_seen = B_FALSE; 12121 ipf->ipf_ecn = ecn_info; 12122 ipf->ipf_num_dups = 0; 12123 ipfb->ipfb_frag_pkts++; 12124 ipf->ipf_checksum = 0; 12125 ipf->ipf_checksum_flags = 0; 12126 12127 /* Store checksum value in fragment header */ 12128 if (sum_flags != 0) { 12129 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12130 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12131 ipf->ipf_checksum = sum_val; 12132 ipf->ipf_checksum_flags = sum_flags; 12133 } 12134 12135 /* 12136 * We handle reassembly two ways. In the easy case, 12137 * where all the fragments show up in order, we do 12138 * minimal bookkeeping, and just clip new pieces on 12139 * the end. If we ever see a hole, then we go off 12140 * to ip_reassemble which has to mark the pieces and 12141 * keep track of the number of holes, etc. Obviously, 12142 * the point of having both mechanisms is so we can 12143 * handle the easy case as efficiently as possible. 12144 */ 12145 if (offset == 0) { 12146 /* Easy case, in-order reassembly so far. */ 12147 ipf->ipf_count += msg_len; 12148 ipf->ipf_tail_mp = tail_mp; 12149 /* 12150 * Keep track of next expected offset in 12151 * ipf_end. 12152 */ 12153 ipf->ipf_end = end; 12154 ipf->ipf_nf_hdr_len = hdr_length; 12155 } else { 12156 /* Hard case, hole at the beginning. */ 12157 ipf->ipf_tail_mp = NULL; 12158 /* 12159 * ipf_end == 0 means that we have given up 12160 * on easy reassembly. 12161 */ 12162 ipf->ipf_end = 0; 12163 12164 /* Forget checksum offload from now on */ 12165 ipf->ipf_checksum_flags = 0; 12166 12167 /* 12168 * ipf_hole_cnt is set by ip_reassemble. 12169 * ipf_count is updated by ip_reassemble. 12170 * No need to check for return value here 12171 * as we don't expect reassembly to complete 12172 * or fail for the first fragment itself. 12173 */ 12174 (void) ip_reassemble(mp, ipf, 12175 (frag_offset_flags & IPH_OFFSET) << 3, 12176 (frag_offset_flags & IPH_MF), ill, msg_len); 12177 } 12178 /* Update per ipfb and ill byte counts */ 12179 ipfb->ipfb_count += ipf->ipf_count; 12180 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12181 ill->ill_frag_count += ipf->ipf_count; 12182 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12183 /* If the frag timer wasn't already going, start it. */ 12184 mutex_enter(&ill->ill_lock); 12185 ill_frag_timer_start(ill); 12186 mutex_exit(&ill->ill_lock); 12187 goto reass_done; 12188 } 12189 12190 /* 12191 * If the packet's flag has changed (it could be coming up 12192 * from an interface different than the previous, therefore 12193 * possibly different checksum capability), then forget about 12194 * any stored checksum states. Otherwise add the value to 12195 * the existing one stored in the fragment header. 12196 */ 12197 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12198 sum_val += ipf->ipf_checksum; 12199 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12200 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12201 ipf->ipf_checksum = sum_val; 12202 } else if (ipf->ipf_checksum_flags != 0) { 12203 /* Forget checksum offload from now on */ 12204 ipf->ipf_checksum_flags = 0; 12205 } 12206 12207 /* 12208 * We have a new piece of a datagram which is already being 12209 * reassembled. Update the ECN info if all IP fragments 12210 * are ECN capable. If there is one which is not, clear 12211 * all the info. If there is at least one which has CE 12212 * code point, IP needs to report that up to transport. 12213 */ 12214 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12215 if (ecn_info == IPH_ECN_CE) 12216 ipf->ipf_ecn = IPH_ECN_CE; 12217 } else { 12218 ipf->ipf_ecn = IPH_ECN_NECT; 12219 } 12220 if (offset && ipf->ipf_end == offset) { 12221 /* The new fragment fits at the end */ 12222 ipf->ipf_tail_mp->b_cont = mp; 12223 /* Update the byte count */ 12224 ipf->ipf_count += msg_len; 12225 /* Update per ipfb and ill byte counts */ 12226 ipfb->ipfb_count += msg_len; 12227 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12228 ill->ill_frag_count += msg_len; 12229 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12230 if (frag_offset_flags & IPH_MF) { 12231 /* More to come. */ 12232 ipf->ipf_end = end; 12233 ipf->ipf_tail_mp = tail_mp; 12234 goto reass_done; 12235 } 12236 } else { 12237 /* Go do the hard cases. */ 12238 int ret; 12239 12240 if (offset == 0) 12241 ipf->ipf_nf_hdr_len = hdr_length; 12242 12243 /* Save current byte count */ 12244 count = ipf->ipf_count; 12245 ret = ip_reassemble(mp, ipf, 12246 (frag_offset_flags & IPH_OFFSET) << 3, 12247 (frag_offset_flags & IPH_MF), ill, msg_len); 12248 /* Count of bytes added and subtracted (freeb()ed) */ 12249 count = ipf->ipf_count - count; 12250 if (count) { 12251 /* Update per ipfb and ill byte counts */ 12252 ipfb->ipfb_count += count; 12253 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12254 ill->ill_frag_count += count; 12255 ASSERT(ill->ill_frag_count > 0); 12256 } 12257 if (ret == IP_REASS_PARTIAL) { 12258 goto reass_done; 12259 } else if (ret == IP_REASS_FAILED) { 12260 /* Reassembly failed. Free up all resources */ 12261 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12262 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12263 IP_REASS_SET_START(t_mp, 0); 12264 IP_REASS_SET_END(t_mp, 0); 12265 } 12266 freemsg(mp); 12267 goto reass_done; 12268 } 12269 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12270 } 12271 /* 12272 * We have completed reassembly. Unhook the frag header from 12273 * the reassembly list. 12274 * 12275 * Before we free the frag header, record the ECN info 12276 * to report back to the transport. 12277 */ 12278 ecn_info = ipf->ipf_ecn; 12279 BUMP_MIB(&ip_mib, ipReasmOKs); 12280 ipfp = ipf->ipf_ptphn; 12281 12282 /* We need to supply these to caller */ 12283 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12284 sum_val = ipf->ipf_checksum; 12285 else 12286 sum_val = 0; 12287 12288 mp1 = ipf->ipf_mp; 12289 count = ipf->ipf_count; 12290 ipf = ipf->ipf_hash_next; 12291 if (ipf != NULL) 12292 ipf->ipf_ptphn = ipfp; 12293 ipfp[0] = ipf; 12294 ill->ill_frag_count -= count; 12295 ASSERT(ipfb->ipfb_count >= count); 12296 ipfb->ipfb_count -= count; 12297 ipfb->ipfb_frag_pkts--; 12298 mutex_exit(&ipfb->ipfb_lock); 12299 /* Ditch the frag header. */ 12300 mp = mp1->b_cont; 12301 12302 freeb(mp1); 12303 12304 /* Restore original IP length in header. */ 12305 packet_size = (uint32_t)msgdsize(mp); 12306 if (packet_size > IP_MAXPACKET) { 12307 freemsg(mp); 12308 BUMP_MIB(&ip_mib, ipInHdrErrors); 12309 return (B_FALSE); 12310 } 12311 12312 if (DB_REF(mp) > 1) { 12313 mblk_t *mp2 = copymsg(mp); 12314 12315 freemsg(mp); 12316 if (mp2 == NULL) { 12317 BUMP_MIB(&ip_mib, ipInDiscards); 12318 return (B_FALSE); 12319 } 12320 mp = mp2; 12321 } 12322 ipha = (ipha_t *)mp->b_rptr; 12323 12324 ipha->ipha_length = htons((uint16_t)packet_size); 12325 /* We're now complete, zip the frag state */ 12326 ipha->ipha_fragment_offset_and_flags = 0; 12327 /* Record the ECN info. */ 12328 ipha->ipha_type_of_service &= 0xFC; 12329 ipha->ipha_type_of_service |= ecn_info; 12330 *mpp = mp; 12331 12332 /* Reassembly is successful; return checksum information if needed */ 12333 if (cksum_val != NULL) 12334 *cksum_val = sum_val; 12335 if (cksum_flags != NULL) 12336 *cksum_flags = sum_flags; 12337 12338 return (B_TRUE); 12339 } 12340 12341 /* 12342 * Perform ip header check sum update local options. 12343 * return B_TRUE if all is well, else return B_FALSE and release 12344 * the mp. caller is responsible for decrementing ire ref cnt. 12345 */ 12346 static boolean_t 12347 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12348 { 12349 mblk_t *first_mp; 12350 boolean_t mctl_present; 12351 uint16_t sum; 12352 12353 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12354 /* 12355 * Don't do the checksum if it has gone through AH/ESP 12356 * processing. 12357 */ 12358 if (!mctl_present) { 12359 sum = ip_csum_hdr(ipha); 12360 if (sum != 0) { 12361 BUMP_MIB(&ip_mib, ipInCksumErrs); 12362 freemsg(first_mp); 12363 return (B_FALSE); 12364 } 12365 } 12366 12367 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12368 if (mctl_present) 12369 freeb(first_mp); 12370 return (B_FALSE); 12371 } 12372 12373 return (B_TRUE); 12374 } 12375 12376 /* 12377 * All udp packet are delivered to the local host via this routine. 12378 */ 12379 void 12380 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12381 ill_t *recv_ill) 12382 { 12383 uint32_t sum; 12384 uint32_t u1; 12385 boolean_t mctl_present; 12386 conn_t *connp; 12387 mblk_t *first_mp; 12388 uint16_t *up; 12389 ill_t *ill = (ill_t *)q->q_ptr; 12390 uint16_t reass_hck_flags = 0; 12391 12392 #define rptr ((uchar_t *)ipha) 12393 12394 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12395 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12396 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12397 12398 /* 12399 * FAST PATH for udp packets 12400 */ 12401 12402 /* u1 is # words of IP options */ 12403 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12404 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12405 12406 /* IP options present */ 12407 if (u1 != 0) 12408 goto ipoptions; 12409 12410 /* Check the IP header checksum. */ 12411 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12412 /* Clear the IP header h/w cksum flag */ 12413 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12414 } else { 12415 #define uph ((uint16_t *)ipha) 12416 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12417 uph[6] + uph[7] + uph[8] + uph[9]; 12418 #undef uph 12419 /* finish doing IP checksum */ 12420 sum = (sum & 0xFFFF) + (sum >> 16); 12421 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12422 /* 12423 * Don't verify header checksum if this packet is coming 12424 * back from AH/ESP as we already did it. 12425 */ 12426 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12427 BUMP_MIB(&ip_mib, ipInCksumErrs); 12428 freemsg(first_mp); 12429 return; 12430 } 12431 } 12432 12433 /* 12434 * Count for SNMP of inbound packets for ire. 12435 * if mctl is present this might be a secure packet and 12436 * has already been counted for in ip_proto_input(). 12437 */ 12438 if (!mctl_present) { 12439 UPDATE_IB_PKT_COUNT(ire); 12440 ire->ire_last_used_time = lbolt; 12441 } 12442 12443 /* packet part of fragmented IP packet? */ 12444 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12445 if (u1 & (IPH_MF | IPH_OFFSET)) { 12446 goto fragmented; 12447 } 12448 12449 /* u1 = IP header length (20 bytes) */ 12450 u1 = IP_SIMPLE_HDR_LENGTH; 12451 12452 /* packet does not contain complete IP & UDP headers */ 12453 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12454 goto udppullup; 12455 12456 /* up points to UDP header */ 12457 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12458 #define iphs ((uint16_t *)ipha) 12459 12460 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12461 if (up[3] != 0) { 12462 mblk_t *mp1 = mp->b_cont; 12463 boolean_t cksum_err; 12464 uint16_t hck_flags = 0; 12465 12466 /* Pseudo-header checksum */ 12467 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12468 iphs[9] + up[2]; 12469 12470 /* 12471 * Revert to software checksum calculation if the interface 12472 * isn't capable of checksum offload or if IPsec is present. 12473 */ 12474 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12475 hck_flags = DB_CKSUMFLAGS(mp); 12476 12477 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12478 IP_STAT(ip_in_sw_cksum); 12479 12480 IP_CKSUM_RECV(hck_flags, u1, 12481 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12482 (int32_t)((uchar_t *)up - rptr), 12483 mp, mp1, cksum_err); 12484 12485 if (cksum_err) { 12486 BUMP_MIB(&ip_mib, udpInCksumErrs); 12487 12488 if (hck_flags & HCK_FULLCKSUM) 12489 IP_STAT(ip_udp_in_full_hw_cksum_err); 12490 else if (hck_flags & HCK_PARTIALCKSUM) 12491 IP_STAT(ip_udp_in_part_hw_cksum_err); 12492 else 12493 IP_STAT(ip_udp_in_sw_cksum_err); 12494 12495 freemsg(first_mp); 12496 return; 12497 } 12498 } 12499 12500 /* Non-fragmented broadcast or multicast packet? */ 12501 if (ire->ire_type == IRE_BROADCAST) 12502 goto udpslowpath; 12503 12504 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12505 ire->ire_zoneid)) != NULL) { 12506 ASSERT(connp->conn_upq != NULL); 12507 IP_STAT(ip_udp_fast_path); 12508 12509 if (CONN_UDP_FLOWCTLD(connp)) { 12510 freemsg(mp); 12511 BUMP_MIB(&ip_mib, udpInOverflows); 12512 } else { 12513 if (!mctl_present) { 12514 BUMP_MIB(&ip_mib, ipInDelivers); 12515 } 12516 /* 12517 * mp and first_mp can change. 12518 */ 12519 if (ip_udp_check(q, connp, recv_ill, 12520 ipha, &mp, &first_mp, mctl_present)) { 12521 /* Send it upstream */ 12522 CONN_UDP_RECV(connp, mp); 12523 } 12524 } 12525 /* 12526 * freeb() cannot deal with null mblk being passed 12527 * in and first_mp can be set to null in the call 12528 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12529 */ 12530 if (mctl_present && first_mp != NULL) { 12531 freeb(first_mp); 12532 } 12533 CONN_DEC_REF(connp); 12534 return; 12535 } 12536 12537 /* 12538 * if we got here we know the packet is not fragmented and 12539 * has no options. The classifier could not find a conn_t and 12540 * most likely its an icmp packet so send it through slow path. 12541 */ 12542 12543 goto udpslowpath; 12544 12545 ipoptions: 12546 if (!ip_options_cksum(q, mp, ipha, ire)) { 12547 goto slow_done; 12548 } 12549 12550 UPDATE_IB_PKT_COUNT(ire); 12551 ire->ire_last_used_time = lbolt; 12552 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12553 if (u1 & (IPH_MF | IPH_OFFSET)) { 12554 fragmented: 12555 /* 12556 * "sum" and "reass_hck_flags" are non-zero if the 12557 * reassembled packet has a valid hardware computed 12558 * checksum information associated with it. 12559 */ 12560 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12561 goto slow_done; 12562 /* 12563 * Make sure that first_mp points back to mp as 12564 * the mp we came in with could have changed in 12565 * ip_rput_fragment(). 12566 */ 12567 ASSERT(!mctl_present); 12568 ipha = (ipha_t *)mp->b_rptr; 12569 first_mp = mp; 12570 } 12571 12572 /* Now we have a complete datagram, destined for this machine. */ 12573 u1 = IPH_HDR_LENGTH(ipha); 12574 /* Pull up the UDP header, if necessary. */ 12575 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12576 udppullup: 12577 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12578 BUMP_MIB(&ip_mib, ipInDiscards); 12579 freemsg(first_mp); 12580 goto slow_done; 12581 } 12582 ipha = (ipha_t *)mp->b_rptr; 12583 } 12584 12585 /* 12586 * Validate the checksum for the reassembled packet; for the 12587 * pullup case we calculate the payload checksum in software. 12588 */ 12589 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12590 if (up[3] != 0) { 12591 boolean_t cksum_err; 12592 12593 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12594 IP_STAT(ip_in_sw_cksum); 12595 12596 IP_CKSUM_RECV_REASS(reass_hck_flags, 12597 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12598 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12599 iphs[9] + up[2], sum, cksum_err); 12600 12601 if (cksum_err) { 12602 BUMP_MIB(&ip_mib, udpInCksumErrs); 12603 12604 if (reass_hck_flags & HCK_FULLCKSUM) 12605 IP_STAT(ip_udp_in_full_hw_cksum_err); 12606 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12607 IP_STAT(ip_udp_in_part_hw_cksum_err); 12608 else 12609 IP_STAT(ip_udp_in_sw_cksum_err); 12610 12611 freemsg(first_mp); 12612 goto slow_done; 12613 } 12614 } 12615 udpslowpath: 12616 12617 /* Clear hardware checksum flag to be safe */ 12618 DB_CKSUMFLAGS(mp) = 0; 12619 12620 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12621 (ire->ire_type == IRE_BROADCAST), 12622 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12623 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12624 12625 slow_done: 12626 IP_STAT(ip_udp_slow_path); 12627 return; 12628 12629 #undef iphs 12630 #undef rptr 12631 } 12632 12633 /* ARGSUSED */ 12634 static mblk_t * 12635 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12636 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12637 ill_rx_ring_t *ill_ring) 12638 { 12639 conn_t *connp; 12640 uint32_t sum; 12641 uint32_t u1; 12642 uint16_t *up; 12643 int offset; 12644 ssize_t len; 12645 mblk_t *mp1; 12646 boolean_t syn_present = B_FALSE; 12647 tcph_t *tcph; 12648 uint_t ip_hdr_len; 12649 ill_t *ill = (ill_t *)q->q_ptr; 12650 zoneid_t zoneid = ire->ire_zoneid; 12651 boolean_t cksum_err; 12652 uint16_t hck_flags = 0; 12653 12654 #define rptr ((uchar_t *)ipha) 12655 12656 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12657 12658 /* 12659 * FAST PATH for tcp packets 12660 */ 12661 12662 /* u1 is # words of IP options */ 12663 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12664 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12665 12666 /* IP options present */ 12667 if (u1) { 12668 goto ipoptions; 12669 } else { 12670 /* Check the IP header checksum. */ 12671 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12672 /* Clear the IP header h/w cksum flag */ 12673 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12674 } else { 12675 #define uph ((uint16_t *)ipha) 12676 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12677 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12678 #undef uph 12679 /* finish doing IP checksum */ 12680 sum = (sum & 0xFFFF) + (sum >> 16); 12681 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12682 /* 12683 * Don't verify header checksum if this packet 12684 * is coming back from AH/ESP as we already did it. 12685 */ 12686 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12687 BUMP_MIB(&ip_mib, ipInCksumErrs); 12688 goto error; 12689 } 12690 } 12691 } 12692 12693 if (!mctl_present) { 12694 UPDATE_IB_PKT_COUNT(ire); 12695 ire->ire_last_used_time = lbolt; 12696 } 12697 12698 /* packet part of fragmented IP packet? */ 12699 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12700 if (u1 & (IPH_MF | IPH_OFFSET)) { 12701 goto fragmented; 12702 } 12703 12704 /* u1 = IP header length (20 bytes) */ 12705 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12706 12707 /* does packet contain IP+TCP headers? */ 12708 len = mp->b_wptr - rptr; 12709 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12710 IP_STAT(ip_tcppullup); 12711 goto tcppullup; 12712 } 12713 12714 /* TCP options present? */ 12715 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12716 12717 /* 12718 * If options need to be pulled up, then goto tcpoptions. 12719 * otherwise we are still in the fast path 12720 */ 12721 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12722 IP_STAT(ip_tcpoptions); 12723 goto tcpoptions; 12724 } 12725 12726 /* multiple mblks of tcp data? */ 12727 if ((mp1 = mp->b_cont) != NULL) { 12728 /* more then two? */ 12729 if (mp1->b_cont != NULL) { 12730 IP_STAT(ip_multipkttcp); 12731 goto multipkttcp; 12732 } 12733 len += mp1->b_wptr - mp1->b_rptr; 12734 } 12735 12736 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12737 12738 /* part of pseudo checksum */ 12739 12740 /* TCP datagram length */ 12741 u1 = len - IP_SIMPLE_HDR_LENGTH; 12742 12743 #define iphs ((uint16_t *)ipha) 12744 12745 #ifdef _BIG_ENDIAN 12746 u1 += IPPROTO_TCP; 12747 #else 12748 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12749 #endif 12750 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12751 12752 /* 12753 * Revert to software checksum calculation if the interface 12754 * isn't capable of checksum offload or if IPsec is present. 12755 */ 12756 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12757 hck_flags = DB_CKSUMFLAGS(mp); 12758 12759 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12760 IP_STAT(ip_in_sw_cksum); 12761 12762 IP_CKSUM_RECV(hck_flags, u1, 12763 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12764 (int32_t)((uchar_t *)up - rptr), 12765 mp, mp1, cksum_err); 12766 12767 if (cksum_err) { 12768 BUMP_MIB(&ip_mib, tcpInErrs); 12769 12770 if (hck_flags & HCK_FULLCKSUM) 12771 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12772 else if (hck_flags & HCK_PARTIALCKSUM) 12773 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12774 else 12775 IP_STAT(ip_tcp_in_sw_cksum_err); 12776 12777 goto error; 12778 } 12779 12780 try_again: 12781 12782 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12783 NULL) { 12784 /* Send the TH_RST */ 12785 goto no_conn; 12786 } 12787 12788 /* 12789 * TCP FAST PATH for AF_INET socket. 12790 * 12791 * TCP fast path to avoid extra work. An AF_INET socket type 12792 * does not have facility to receive extra information via 12793 * ip_process or ip_add_info. Also, when the connection was 12794 * established, we made a check if this connection is impacted 12795 * by any global IPSec policy or per connection policy (a 12796 * policy that comes in effect later will not apply to this 12797 * connection). Since all this can be determined at the 12798 * connection establishment time, a quick check of flags 12799 * can avoid extra work. 12800 */ 12801 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12802 !IPP_ENABLED(IPP_LOCAL_IN)) { 12803 ASSERT(first_mp == mp); 12804 SET_SQUEUE(mp, tcp_rput_data, connp); 12805 return (mp); 12806 } 12807 12808 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12809 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12810 if (IPCL_IS_TCP(connp)) { 12811 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12812 DB_CKSUMSTART(mp) = 12813 (intptr_t)ip_squeue_get(ill_ring); 12814 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12815 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12816 SET_SQUEUE(mp, connp->conn_recv, connp); 12817 return (mp); 12818 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12819 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12820 ip_squeue_enter_unbound++; 12821 SET_SQUEUE(mp, tcp_conn_request_unbound, 12822 connp); 12823 return (mp); 12824 } 12825 syn_present = B_TRUE; 12826 } 12827 12828 } 12829 12830 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12831 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12832 12833 /* No need to send this packet to TCP */ 12834 if ((flags & TH_RST) || (flags & TH_URG)) { 12835 CONN_DEC_REF(connp); 12836 freemsg(first_mp); 12837 return (NULL); 12838 } 12839 if (flags & TH_ACK) { 12840 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 12841 CONN_DEC_REF(connp); 12842 return (NULL); 12843 } 12844 12845 CONN_DEC_REF(connp); 12846 freemsg(first_mp); 12847 return (NULL); 12848 } 12849 12850 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12851 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12852 ipha, NULL, mctl_present); 12853 if (first_mp == NULL) { 12854 CONN_DEC_REF(connp); 12855 return (NULL); 12856 } 12857 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12858 ASSERT(syn_present); 12859 if (mctl_present) { 12860 ASSERT(first_mp != mp); 12861 first_mp->b_datap->db_struioflag |= 12862 STRUIO_POLICY; 12863 } else { 12864 ASSERT(first_mp == mp); 12865 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12866 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12867 } 12868 } else { 12869 /* 12870 * Discard first_mp early since we're dealing with a 12871 * fully-connected conn_t and tcp doesn't do policy in 12872 * this case. 12873 */ 12874 if (mctl_present) { 12875 freeb(first_mp); 12876 mctl_present = B_FALSE; 12877 } 12878 first_mp = mp; 12879 } 12880 } 12881 12882 /* Initiate IPPF processing for fastpath */ 12883 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12884 uint32_t ill_index; 12885 12886 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12887 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12888 if (mp == NULL) { 12889 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12890 "deferred/dropped during IPPF processing\n")); 12891 CONN_DEC_REF(connp); 12892 if (mctl_present) 12893 freeb(first_mp); 12894 return (NULL); 12895 } else if (mctl_present) { 12896 /* 12897 * ip_process might return a new mp. 12898 */ 12899 ASSERT(first_mp != mp); 12900 first_mp->b_cont = mp; 12901 } else { 12902 first_mp = mp; 12903 } 12904 12905 } 12906 12907 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12908 mp = ip_add_info(mp, recv_ill, flags); 12909 if (mp == NULL) { 12910 CONN_DEC_REF(connp); 12911 if (mctl_present) 12912 freeb(first_mp); 12913 return (NULL); 12914 } else if (mctl_present) { 12915 /* 12916 * ip_add_info might return a new mp. 12917 */ 12918 ASSERT(first_mp != mp); 12919 first_mp->b_cont = mp; 12920 } else { 12921 first_mp = mp; 12922 } 12923 } 12924 12925 if (IPCL_IS_TCP(connp)) { 12926 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12927 return (first_mp); 12928 } else { 12929 putnext(connp->conn_rq, first_mp); 12930 CONN_DEC_REF(connp); 12931 return (NULL); 12932 } 12933 12934 no_conn: 12935 /* Initiate IPPf processing, if needed. */ 12936 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12937 uint32_t ill_index; 12938 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12939 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12940 if (first_mp == NULL) { 12941 return (NULL); 12942 } 12943 } 12944 BUMP_MIB(&ip_mib, ipInDelivers); 12945 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 12946 return (NULL); 12947 ipoptions: 12948 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12949 goto slow_done; 12950 } 12951 12952 UPDATE_IB_PKT_COUNT(ire); 12953 ire->ire_last_used_time = lbolt; 12954 12955 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12956 if (u1 & (IPH_MF | IPH_OFFSET)) { 12957 fragmented: 12958 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12959 if (mctl_present) 12960 freeb(first_mp); 12961 goto slow_done; 12962 } 12963 /* 12964 * Make sure that first_mp points back to mp as 12965 * the mp we came in with could have changed in 12966 * ip_rput_fragment(). 12967 */ 12968 ASSERT(!mctl_present); 12969 ipha = (ipha_t *)mp->b_rptr; 12970 first_mp = mp; 12971 } 12972 12973 /* Now we have a complete datagram, destined for this machine. */ 12974 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12975 12976 len = mp->b_wptr - mp->b_rptr; 12977 /* Pull up a minimal TCP header, if necessary. */ 12978 if (len < (u1 + 20)) { 12979 tcppullup: 12980 if (!pullupmsg(mp, u1 + 20)) { 12981 BUMP_MIB(&ip_mib, ipInDiscards); 12982 goto error; 12983 } 12984 ipha = (ipha_t *)mp->b_rptr; 12985 len = mp->b_wptr - mp->b_rptr; 12986 } 12987 12988 /* 12989 * Extract the offset field from the TCP header. As usual, we 12990 * try to help the compiler more than the reader. 12991 */ 12992 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12993 if (offset != 5) { 12994 tcpoptions: 12995 if (offset < 5) { 12996 BUMP_MIB(&ip_mib, ipInDiscards); 12997 goto error; 12998 } 12999 /* 13000 * There must be TCP options. 13001 * Make sure we can grab them. 13002 */ 13003 offset <<= 2; 13004 offset += u1; 13005 if (len < offset) { 13006 if (!pullupmsg(mp, offset)) { 13007 BUMP_MIB(&ip_mib, ipInDiscards); 13008 goto error; 13009 } 13010 ipha = (ipha_t *)mp->b_rptr; 13011 len = mp->b_wptr - rptr; 13012 } 13013 } 13014 13015 /* Get the total packet length in len, including headers. */ 13016 if (mp->b_cont) { 13017 multipkttcp: 13018 len = msgdsize(mp); 13019 } 13020 13021 /* 13022 * Check the TCP checksum by pulling together the pseudo- 13023 * header checksum, and passing it to ip_csum to be added in 13024 * with the TCP datagram. 13025 * 13026 * Since we are not using the hwcksum if available we must 13027 * clear the flag. We may come here via tcppullup or tcpoptions. 13028 * If either of these fails along the way the mblk is freed. 13029 * If this logic ever changes and mblk is reused to say send 13030 * ICMP's back, then this flag may need to be cleared in 13031 * other places as well. 13032 */ 13033 DB_CKSUMFLAGS(mp) = 0; 13034 13035 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13036 13037 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13038 #ifdef _BIG_ENDIAN 13039 u1 += IPPROTO_TCP; 13040 #else 13041 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13042 #endif 13043 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13044 /* 13045 * Not M_DATA mblk or its a dup, so do the checksum now. 13046 */ 13047 IP_STAT(ip_in_sw_cksum); 13048 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13049 BUMP_MIB(&ip_mib, tcpInErrs); 13050 goto error; 13051 } 13052 13053 IP_STAT(ip_tcp_slow_path); 13054 goto try_again; 13055 #undef iphs 13056 #undef rptr 13057 13058 error: 13059 freemsg(first_mp); 13060 slow_done: 13061 return (NULL); 13062 } 13063 13064 /* ARGSUSED */ 13065 static void 13066 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13067 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13068 { 13069 conn_t *connp; 13070 uint32_t sum; 13071 uint32_t u1; 13072 ssize_t len; 13073 sctp_hdr_t *sctph; 13074 zoneid_t zoneid = ire->ire_zoneid; 13075 uint32_t pktsum; 13076 uint32_t calcsum; 13077 uint32_t ports; 13078 uint_t ipif_seqid; 13079 in6_addr_t map_src, map_dst; 13080 ill_t *ill = (ill_t *)q->q_ptr; 13081 13082 #define rptr ((uchar_t *)ipha) 13083 13084 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13085 13086 /* u1 is # words of IP options */ 13087 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13088 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13089 13090 /* IP options present */ 13091 if (u1 > 0) { 13092 goto ipoptions; 13093 } else { 13094 /* Check the IP header checksum. */ 13095 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13096 #define uph ((uint16_t *)ipha) 13097 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13098 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13099 #undef uph 13100 /* finish doing IP checksum */ 13101 sum = (sum & 0xFFFF) + (sum >> 16); 13102 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13103 /* 13104 * Don't verify header checksum if this packet 13105 * is coming back from AH/ESP as we already did it. 13106 */ 13107 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13108 BUMP_MIB(&ip_mib, ipInCksumErrs); 13109 goto error; 13110 } 13111 } 13112 /* 13113 * Since there is no SCTP h/w cksum support yet, just 13114 * clear the flag. 13115 */ 13116 DB_CKSUMFLAGS(mp) = 0; 13117 } 13118 13119 /* 13120 * Don't verify header checksum if this packet is coming 13121 * back from AH/ESP as we already did it. 13122 */ 13123 if (!mctl_present) { 13124 UPDATE_IB_PKT_COUNT(ire); 13125 ire->ire_last_used_time = lbolt; 13126 } 13127 13128 /* packet part of fragmented IP packet? */ 13129 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13130 if (u1 & (IPH_MF | IPH_OFFSET)) 13131 goto fragmented; 13132 13133 /* u1 = IP header length (20 bytes) */ 13134 u1 = IP_SIMPLE_HDR_LENGTH; 13135 13136 find_sctp_client: 13137 /* Pullup if we don't have the sctp common header. */ 13138 len = MBLKL(mp); 13139 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13140 if (mp->b_cont == NULL || 13141 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13142 BUMP_MIB(&ip_mib, ipInDiscards); 13143 goto error; 13144 } 13145 ipha = (ipha_t *)mp->b_rptr; 13146 len = MBLKL(mp); 13147 } 13148 13149 sctph = (sctp_hdr_t *)(rptr + u1); 13150 #ifdef DEBUG 13151 if (!skip_sctp_cksum) { 13152 #endif 13153 pktsum = sctph->sh_chksum; 13154 sctph->sh_chksum = 0; 13155 calcsum = sctp_cksum(mp, u1); 13156 if (calcsum != pktsum) { 13157 BUMP_MIB(&sctp_mib, sctpChecksumError); 13158 goto error; 13159 } 13160 sctph->sh_chksum = pktsum; 13161 #ifdef DEBUG /* skip_sctp_cksum */ 13162 } 13163 #endif 13164 /* get the ports */ 13165 ports = *(uint32_t *)&sctph->sh_sport; 13166 13167 ipif_seqid = ire->ire_ipif->ipif_seqid; 13168 IRE_REFRELE(ire); 13169 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13170 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13171 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13172 mp)) == NULL) { 13173 /* Check for raw socket or OOTB handling */ 13174 goto no_conn; 13175 } 13176 13177 /* Found a client; up it goes */ 13178 BUMP_MIB(&ip_mib, ipInDelivers); 13179 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13180 return; 13181 13182 no_conn: 13183 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13184 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13185 return; 13186 13187 ipoptions: 13188 DB_CKSUMFLAGS(mp) = 0; 13189 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13190 goto slow_done; 13191 13192 UPDATE_IB_PKT_COUNT(ire); 13193 ire->ire_last_used_time = lbolt; 13194 13195 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13196 if (u1 & (IPH_MF | IPH_OFFSET)) { 13197 fragmented: 13198 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13199 goto slow_done; 13200 /* 13201 * Make sure that first_mp points back to mp as 13202 * the mp we came in with could have changed in 13203 * ip_rput_fragment(). 13204 */ 13205 ASSERT(!mctl_present); 13206 ipha = (ipha_t *)mp->b_rptr; 13207 first_mp = mp; 13208 } 13209 13210 /* Now we have a complete datagram, destined for this machine. */ 13211 u1 = IPH_HDR_LENGTH(ipha); 13212 goto find_sctp_client; 13213 #undef iphs 13214 #undef rptr 13215 13216 error: 13217 freemsg(first_mp); 13218 slow_done: 13219 IRE_REFRELE(ire); 13220 } 13221 13222 #define VER_BITS 0xF0 13223 #define VERSION_6 0x60 13224 13225 static boolean_t 13226 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13227 ipaddr_t *dstp) 13228 { 13229 uint_t opt_len; 13230 ipha_t *ipha; 13231 ssize_t len; 13232 uint_t pkt_len; 13233 13234 IP_STAT(ip_ipoptions); 13235 ipha = *iphapp; 13236 13237 #define rptr ((uchar_t *)ipha) 13238 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13239 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13240 BUMP_MIB(&ip_mib, ipInIPv6); 13241 freemsg(mp); 13242 return (B_FALSE); 13243 } 13244 13245 /* multiple mblk or too short */ 13246 pkt_len = ntohs(ipha->ipha_length); 13247 13248 /* Get the number of words of IP options in the IP header. */ 13249 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13250 if (opt_len) { 13251 /* IP Options present! Validate and process. */ 13252 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13253 BUMP_MIB(&ip_mib, ipInHdrErrors); 13254 goto done; 13255 } 13256 /* 13257 * Recompute complete header length and make sure we 13258 * have access to all of it. 13259 */ 13260 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13261 if (len > (mp->b_wptr - rptr)) { 13262 if (len > pkt_len) { 13263 BUMP_MIB(&ip_mib, ipInHdrErrors); 13264 goto done; 13265 } 13266 if (!pullupmsg(mp, len)) { 13267 BUMP_MIB(&ip_mib, ipInDiscards); 13268 goto done; 13269 } 13270 ipha = (ipha_t *)mp->b_rptr; 13271 } 13272 /* 13273 * Go off to ip_rput_options which returns the next hop 13274 * destination address, which may have been affected 13275 * by source routing. 13276 */ 13277 IP_STAT(ip_opt); 13278 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13279 return (B_FALSE); 13280 } 13281 } 13282 *iphapp = ipha; 13283 return (B_TRUE); 13284 done: 13285 /* clear b_prev - used by ip_mroute_decap */ 13286 mp->b_prev = NULL; 13287 freemsg(mp); 13288 return (B_FALSE); 13289 #undef rptr 13290 } 13291 13292 /* 13293 * Deal with the fact that there is no ire for the destination. 13294 * The incoming ill (in_ill) is passed in to ip_newroute only 13295 * in the case of packets coming from mobile ip forward tunnel. 13296 * It must be null otherwise. 13297 */ 13298 static ire_t * 13299 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13300 ipaddr_t dst) 13301 { 13302 ipha_t *ipha; 13303 ill_t *ill; 13304 ire_t *ire; 13305 boolean_t check_multirt = B_FALSE; 13306 13307 ipha = (ipha_t *)mp->b_rptr; 13308 ill = (ill_t *)q->q_ptr; 13309 13310 ASSERT(ill != NULL); 13311 /* 13312 * No IRE for this destination, so it can't be for us. 13313 * Unless we are forwarding, drop the packet. 13314 * We have to let source routed packets through 13315 * since we don't yet know if they are 'ping -l' 13316 * packets i.e. if they will go out over the 13317 * same interface as they came in on. 13318 */ 13319 if (ll_multicast) { 13320 freemsg(mp); 13321 return (NULL); 13322 } 13323 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13324 BUMP_MIB(&ip_mib, ipForwProhibits); 13325 freemsg(mp); 13326 return (NULL); 13327 } 13328 13329 /* 13330 * Mark this packet as having originated externally. 13331 * 13332 * For non-forwarding code path, ire_send later double 13333 * checks this interface to see if it is still exists 13334 * post-ARP resolution. 13335 * 13336 * Also, IPQOS uses this to differentiate between 13337 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13338 * QOS packet processing in ip_wput_attach_llhdr(). 13339 * The QoS module can mark the b_band for a fastpath message 13340 * or the dl_priority field in a unitdata_req header for 13341 * CoS marking. This info can only be found in 13342 * ip_wput_attach_llhdr(). 13343 */ 13344 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13345 /* 13346 * Clear the indication that this may have a hardware checksum 13347 * as we are not using it 13348 */ 13349 DB_CKSUMFLAGS(mp) = 0; 13350 13351 if (in_ill != NULL) { 13352 /* 13353 * Now hand the packet to ip_newroute. 13354 */ 13355 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13356 return (NULL); 13357 } 13358 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13359 MBLK_GETLABEL(mp)); 13360 13361 if (ire == NULL && check_multirt) { 13362 /* Let ip_newroute handle CGTP */ 13363 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13364 return (NULL); 13365 } 13366 13367 if (ire != NULL) 13368 return (ire); 13369 13370 mp->b_prev = mp->b_next = 0; 13371 /* send icmp unreachable */ 13372 q = WR(q); 13373 /* Sent by forwarding path, and router is global zone */ 13374 if (ip_source_routed(ipha)) { 13375 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13376 GLOBAL_ZONEID); 13377 } else { 13378 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13379 } 13380 13381 return (NULL); 13382 13383 } 13384 13385 /* 13386 * check ip header length and align it. 13387 */ 13388 static boolean_t 13389 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13390 { 13391 ssize_t len; 13392 ill_t *ill; 13393 ipha_t *ipha; 13394 13395 len = MBLKL(mp); 13396 13397 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13398 if (!OK_32PTR(mp->b_rptr)) 13399 IP_STAT(ip_notaligned1); 13400 else 13401 IP_STAT(ip_notaligned2); 13402 /* Guard against bogus device drivers */ 13403 if (len < 0) { 13404 /* clear b_prev - used by ip_mroute_decap */ 13405 mp->b_prev = NULL; 13406 BUMP_MIB(&ip_mib, ipInHdrErrors); 13407 freemsg(mp); 13408 return (B_FALSE); 13409 } 13410 13411 if (ip_rput_pullups++ == 0) { 13412 ill = (ill_t *)q->q_ptr; 13413 ipha = (ipha_t *)mp->b_rptr; 13414 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13415 "ip_check_and_align_header: %s forced us to " 13416 " pullup pkt, hdr len %ld, hdr addr %p", 13417 ill->ill_name, len, ipha); 13418 } 13419 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13420 /* clear b_prev - used by ip_mroute_decap */ 13421 mp->b_prev = NULL; 13422 BUMP_MIB(&ip_mib, ipInDiscards); 13423 freemsg(mp); 13424 return (B_FALSE); 13425 } 13426 } 13427 return (B_TRUE); 13428 } 13429 13430 static boolean_t 13431 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13432 { 13433 ill_group_t *ill_group; 13434 ill_group_t *ire_group; 13435 queue_t *q; 13436 ill_t *ire_ill; 13437 uint_t ill_ifindex; 13438 13439 q = *qp; 13440 /* 13441 * We need to check to make sure the packet came in 13442 * on the queue associated with the destination IRE. 13443 * Note that for multicast packets and broadcast packets sent to 13444 * a broadcast address which is shared between multiple interfaces 13445 * we should not do this since we just got a random broadcast ire. 13446 */ 13447 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13448 boolean_t check_multi = B_TRUE; 13449 13450 /* 13451 * This packet came in on an interface other than the 13452 * one associated with the destination address. 13453 * "Gateway" it to the appropriate interface here. 13454 * As long as the ills belong to the same group, 13455 * we don't consider them to arriving on the wrong 13456 * interface. Thus, when the switch is doing inbound 13457 * load spreading, we won't drop packets when we 13458 * are doing strict multihoming checks. Note, the 13459 * same holds true for 'usesrc groups' where the 13460 * destination address may belong to another interface 13461 * to allow multipathing to happen 13462 */ 13463 ill_group = ill->ill_group; 13464 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13465 ill_ifindex = ill->ill_usesrc_ifindex; 13466 ire_group = ire_ill->ill_group; 13467 13468 /* 13469 * If it's part of the same IPMP group, or if it's a legal 13470 * address on the 'usesrc' interface, then bypass strict 13471 * checks. 13472 */ 13473 if (ill_group != NULL && ill_group == ire_group) { 13474 check_multi = B_FALSE; 13475 } else if (ill_ifindex != 0 && 13476 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13477 check_multi = B_FALSE; 13478 } 13479 13480 if (check_multi && 13481 ip_strict_dst_multihoming && 13482 ((ill->ill_flags & 13483 ire->ire_ipif->ipif_ill->ill_flags & 13484 ILLF_ROUTER) == 0)) { 13485 /* Drop packet */ 13486 BUMP_MIB(&ip_mib, ipForwProhibits); 13487 freemsg(mp); 13488 return (B_TRUE); 13489 } 13490 13491 /* 13492 * Change the queue (for non-virtual destination network 13493 * interfaces) and ip_rput_local will be called with the right 13494 * queue 13495 */ 13496 q = ire->ire_rfq; 13497 } 13498 /* Must be broadcast. We'll take it. */ 13499 *qp = q; 13500 return (B_FALSE); 13501 } 13502 13503 #define SEND_PKT(ire, mp) \ 13504 { \ 13505 UPDATE_IB_PKT_COUNT(ire); \ 13506 (ire)->ire_last_used_time = lbolt; \ 13507 BUMP_MIB(&ip_mib, ipForwDatagrams); \ 13508 putnext((ire)->ire_stq, mp); \ 13509 } 13510 13511 ire_t * 13512 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13513 { 13514 ipha_t *ipha; 13515 ipaddr_t ip_dst, ip_src; 13516 ire_t *src_ire = NULL; 13517 ill_t *stq_ill; 13518 uint_t hlen; 13519 uint32_t sum; 13520 queue_t *dev_q; 13521 boolean_t check_multirt = B_FALSE; 13522 13523 13524 ipha = (ipha_t *)mp->b_rptr; 13525 13526 /* 13527 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13528 * The loopback address check for both src and dst has already 13529 * been checked in ip_input 13530 */ 13531 ip_dst = ntohl(dst); 13532 ip_src = ntohl(ipha->ipha_src); 13533 13534 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13535 IN_CLASSD(ip_src)) { 13536 BUMP_MIB(&ip_mib, ipForwProhibits); 13537 goto drop; 13538 } 13539 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13540 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13541 13542 if (src_ire != NULL) { 13543 BUMP_MIB(&ip_mib, ipForwProhibits); 13544 goto drop; 13545 } 13546 13547 /* No ire cache of nexthop. So first create one */ 13548 if (ire == NULL) { 13549 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13550 /* 13551 * We only come to ip_fast_forward if ip_cgtp_filter is 13552 * is not set. So upon return from ire_forward 13553 * check_multirt should remain as false. 13554 */ 13555 ASSERT(!check_multirt); 13556 if (ire == NULL) { 13557 BUMP_MIB(&ip_mib, ipInDiscards); 13558 mp->b_prev = mp->b_next = 0; 13559 /* send icmp unreachable */ 13560 /* Sent by forwarding path, and router is global zone */ 13561 if (ip_source_routed(ipha)) { 13562 icmp_unreachable(ill->ill_wq, mp, 13563 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13564 } else { 13565 icmp_unreachable(ill->ill_wq, mp, 13566 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13567 } 13568 return (ire); 13569 } 13570 } 13571 13572 /* 13573 * Forwarding fastpath exception case: 13574 * If either of the follwoing case is true, we take 13575 * the slowpath 13576 * o forwarding is not enabled 13577 * o IPMP is enabled 13578 * o corresponding ire is in incomplete state 13579 * o packet needs fragmentation 13580 * 13581 * The codeflow from here on is thus: 13582 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13583 */ 13584 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13585 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13586 !(ill->ill_flags & ILLF_ROUTER) || SAME_IPMP_GROUP(ill, stq_ill) || 13587 (ire->ire_nce == NULL) || 13588 (ire->ire_nce->nce_state != ND_REACHABLE) || 13589 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13590 ipha->ipha_ttl <= 1) { 13591 ip_rput_process_forward(ill->ill_rq, mp, ire, 13592 ipha, ill, B_FALSE); 13593 return (ire); 13594 } 13595 13596 mp->b_datap->db_struioun.cksum.flags = 0; 13597 /* Adjust the checksum to reflect the ttl decrement. */ 13598 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13599 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13600 ipha->ipha_ttl--; 13601 13602 dev_q = ire->ire_stq->q_next; 13603 if ((dev_q->q_next != NULL || 13604 dev_q->q_first != NULL) && !canput(dev_q)) { 13605 goto indiscard; 13606 } 13607 13608 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13609 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13610 13611 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13612 mp = ip_wput_attach_llhdr(mp, ire, 0, 0); 13613 if (mp != NULL) { 13614 SEND_PKT(ire, mp); 13615 return (ire); 13616 } 13617 } 13618 13619 indiscard: 13620 BUMP_MIB(&ip_mib, ipInDiscards); 13621 drop: 13622 if (mp != NULL) 13623 freemsg(mp); 13624 if (src_ire != NULL) 13625 ire_refrele(src_ire); 13626 return (ire); 13627 13628 } 13629 13630 /* 13631 * This function is called in the forwarding slowpath, when 13632 * either the ire lacks the link-layer address, or the packet needs 13633 * further processing(eg. fragmentation), before transmission. 13634 */ 13635 static void 13636 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13637 ill_t *ill, boolean_t ll_multicast) 13638 { 13639 ill_group_t *ill_group; 13640 ill_group_t *ire_group; 13641 queue_t *dev_q; 13642 ire_t *src_ire; 13643 13644 ASSERT(ire->ire_stq != NULL); 13645 13646 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13647 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13648 13649 if (ll_multicast != 0) 13650 goto drop_pkt; 13651 13652 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13653 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13654 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13655 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13656 if (src_ire != NULL) 13657 ire_refrele(src_ire); 13658 BUMP_MIB(&ip_mib, ipForwProhibits); 13659 ip2dbg(("ip_rput_process_forward: Received packet with" 13660 " bad src/dst address on %s\n", ill->ill_name)); 13661 } 13662 13663 ill_group = ill->ill_group; 13664 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13665 /* 13666 * Check if we want to forward this one at this time. 13667 * We allow source routed packets on a host provided that 13668 * they go out the same interface or same interface group 13669 * as they came in on. 13670 * 13671 * XXX To be quicker, we may wish to not chase pointers to 13672 * get the ILLF_ROUTER flag and instead store the 13673 * forwarding policy in the ire. An unfortunate 13674 * side-effect of that would be requiring an ire flush 13675 * whenever the ILLF_ROUTER flag changes. 13676 */ 13677 if (((ill->ill_flags & 13678 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13679 ILLF_ROUTER) == 0) && 13680 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13681 (ill_group != NULL && ill_group == ire_group)))) { 13682 BUMP_MIB(&ip_mib, ipForwProhibits); 13683 if (ip_source_routed(ipha)) { 13684 q = WR(q); 13685 /* 13686 * Clear the indication that this may have 13687 * hardware checksum as we are not using it. 13688 */ 13689 DB_CKSUMFLAGS(mp) = 0; 13690 /* Sent by forwarding path, and router is global zone */ 13691 icmp_unreachable(q, mp, 13692 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13693 return; 13694 } 13695 goto drop_pkt; 13696 } 13697 13698 /* Packet is being forwarded. Turning off hwcksum flag. */ 13699 DB_CKSUMFLAGS(mp) = 0; 13700 if (ip_g_send_redirects) { 13701 /* 13702 * Check whether the incoming interface and outgoing 13703 * interface is part of the same group. If so, 13704 * send redirects. 13705 * 13706 * Check the source address to see if it originated 13707 * on the same logical subnet it is going back out on. 13708 * If so, we should be able to send it a redirect. 13709 * Avoid sending a redirect if the destination 13710 * is directly connected (gw_addr == 0), 13711 * or if the packet was source routed out this 13712 * interface. 13713 */ 13714 ipaddr_t src; 13715 mblk_t *mp1; 13716 ire_t *src_ire = NULL; 13717 13718 /* 13719 * Check whether ire_rfq and q are from the same ill 13720 * or if they are not same, they at least belong 13721 * to the same group. If so, send redirects. 13722 */ 13723 if ((ire->ire_rfq == q || 13724 (ill_group != NULL && ill_group == ire_group)) && 13725 (ire->ire_gateway_addr != 0) && 13726 !ip_source_routed(ipha)) { 13727 13728 src = ipha->ipha_src; 13729 src_ire = ire_ftable_lookup(src, 0, 0, 13730 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13731 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13732 13733 if (src_ire != NULL) { 13734 /* 13735 * The source is directly connected. 13736 * Just copy the ip header (which is 13737 * in the first mblk) 13738 */ 13739 mp1 = copyb(mp); 13740 if (mp1 != NULL) { 13741 icmp_send_redirect(WR(q), mp1, 13742 ire->ire_gateway_addr); 13743 } 13744 ire_refrele(src_ire); 13745 } 13746 } 13747 } 13748 13749 dev_q = ire->ire_stq->q_next; 13750 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13751 BUMP_MIB(&ip_mib, ipInDiscards); 13752 freemsg(mp); 13753 return; 13754 } 13755 13756 ip_rput_forward(ire, ipha, mp, ill); 13757 return; 13758 13759 drop_pkt: 13760 ip2dbg(("ip_rput_forward: drop pkt\n")); 13761 freemsg(mp); 13762 } 13763 13764 ire_t * 13765 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13766 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13767 { 13768 queue_t *q; 13769 uint16_t hcksumflags; 13770 13771 q = *qp; 13772 13773 /* 13774 * Clear the indication that this may have hardware 13775 * checksum as we are not using it for forwarding. 13776 */ 13777 hcksumflags = DB_CKSUMFLAGS(mp); 13778 DB_CKSUMFLAGS(mp) = 0; 13779 13780 /* 13781 * Directed broadcast forwarding: if the packet came in over a 13782 * different interface then it is routed out over we can forward it. 13783 */ 13784 if (ipha->ipha_protocol == IPPROTO_TCP) { 13785 ire_refrele(ire); 13786 freemsg(mp); 13787 BUMP_MIB(&ip_mib, ipInDiscards); 13788 return (NULL); 13789 } 13790 /* 13791 * For multicast we have set dst to be INADDR_BROADCAST 13792 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13793 * only for broadcast packets. 13794 */ 13795 if (!CLASSD(ipha->ipha_dst)) { 13796 ire_t *new_ire; 13797 ipif_t *ipif; 13798 /* 13799 * For ill groups, as the switch duplicates broadcasts 13800 * across all the ports, we need to filter out and 13801 * send up only one copy. There is one copy for every 13802 * broadcast address on each ill. Thus, we look for a 13803 * specific IRE on this ill and look at IRE_MARK_NORECV 13804 * later to see whether this ill is eligible to receive 13805 * them or not. ill_nominate_bcast_rcv() nominates only 13806 * one set of IREs for receiving. 13807 */ 13808 13809 ipif = ipif_get_next_ipif(NULL, ill); 13810 if (ipif == NULL) { 13811 ire_refrele(ire); 13812 freemsg(mp); 13813 BUMP_MIB(&ip_mib, ipInDiscards); 13814 return (NULL); 13815 } 13816 new_ire = ire_ctable_lookup(dst, 0, 0, 13817 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13818 ipif_refrele(ipif); 13819 13820 if (new_ire != NULL) { 13821 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13822 ire_refrele(ire); 13823 ire_refrele(new_ire); 13824 freemsg(mp); 13825 BUMP_MIB(&ip_mib, ipInDiscards); 13826 return (NULL); 13827 } 13828 /* 13829 * In the special case of multirouted broadcast 13830 * packets, we unconditionally need to "gateway" 13831 * them to the appropriate interface here. 13832 * In the normal case, this cannot happen, because 13833 * there is no broadcast IRE tagged with the 13834 * RTF_MULTIRT flag. 13835 */ 13836 if (new_ire->ire_flags & RTF_MULTIRT) { 13837 ire_refrele(new_ire); 13838 if (ire->ire_rfq != NULL) { 13839 q = ire->ire_rfq; 13840 *qp = q; 13841 } 13842 } else { 13843 ire_refrele(ire); 13844 ire = new_ire; 13845 } 13846 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13847 if (!ip_g_forward_directed_bcast) { 13848 /* 13849 * Free the message if 13850 * ip_g_forward_directed_bcast is turned 13851 * off for non-local broadcast. 13852 */ 13853 ire_refrele(ire); 13854 freemsg(mp); 13855 BUMP_MIB(&ip_mib, ipInDiscards); 13856 return (NULL); 13857 } 13858 } else { 13859 /* 13860 * This CGTP packet successfully passed the 13861 * CGTP filter, but the related CGTP 13862 * broadcast IRE has not been found, 13863 * meaning that the redundant ipif is 13864 * probably down. However, if we discarded 13865 * this packet, its duplicate would be 13866 * filtered out by the CGTP filter so none 13867 * of them would get through. So we keep 13868 * going with this one. 13869 */ 13870 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13871 if (ire->ire_rfq != NULL) { 13872 q = ire->ire_rfq; 13873 *qp = q; 13874 } 13875 } 13876 } 13877 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13878 /* 13879 * Verify that there are not more then one 13880 * IRE_BROADCAST with this broadcast address which 13881 * has ire_stq set. 13882 * TODO: simplify, loop over all IRE's 13883 */ 13884 ire_t *ire1; 13885 int num_stq = 0; 13886 mblk_t *mp1; 13887 13888 /* Find the first one with ire_stq set */ 13889 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13890 for (ire1 = ire; ire1 && 13891 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13892 ire1 = ire1->ire_next) 13893 ; 13894 if (ire1) { 13895 ire_refrele(ire); 13896 ire = ire1; 13897 IRE_REFHOLD(ire); 13898 } 13899 13900 /* Check if there are additional ones with stq set */ 13901 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13902 if (ire->ire_addr != ire1->ire_addr) 13903 break; 13904 if (ire1->ire_stq) { 13905 num_stq++; 13906 break; 13907 } 13908 } 13909 rw_exit(&ire->ire_bucket->irb_lock); 13910 if (num_stq == 1 && ire->ire_stq != NULL) { 13911 ip1dbg(("ip_rput_process_broadcast: directed " 13912 "broadcast to 0x%x\n", 13913 ntohl(ire->ire_addr))); 13914 mp1 = copymsg(mp); 13915 if (mp1) { 13916 switch (ipha->ipha_protocol) { 13917 case IPPROTO_UDP: 13918 ip_udp_input(q, mp1, ipha, ire, ill); 13919 break; 13920 default: 13921 ip_proto_input(q, mp1, ipha, ire, ill); 13922 break; 13923 } 13924 } 13925 /* 13926 * Adjust ttl to 2 (1+1 - the forward engine 13927 * will decrement it by one. 13928 */ 13929 if (ip_csum_hdr(ipha)) { 13930 BUMP_MIB(&ip_mib, ipInCksumErrs); 13931 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13932 freemsg(mp); 13933 ire_refrele(ire); 13934 return (NULL); 13935 } 13936 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13937 ipha->ipha_hdr_checksum = 0; 13938 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13939 ip_rput_process_forward(q, mp, ire, ipha, 13940 ill, ll_multicast); 13941 ire_refrele(ire); 13942 return (NULL); 13943 } 13944 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13945 ntohl(ire->ire_addr))); 13946 } 13947 13948 13949 /* Restore any hardware checksum flags */ 13950 DB_CKSUMFLAGS(mp) = hcksumflags; 13951 return (ire); 13952 } 13953 13954 /* ARGSUSED */ 13955 static boolean_t 13956 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13957 int *ll_multicast, ipaddr_t *dstp) 13958 { 13959 /* 13960 * Forward packets only if we have joined the allmulti 13961 * group on this interface. 13962 */ 13963 if (ip_g_mrouter && ill->ill_join_allmulti) { 13964 int retval; 13965 13966 /* 13967 * Clear the indication that this may have hardware 13968 * checksum as we are not using it. 13969 */ 13970 DB_CKSUMFLAGS(mp) = 0; 13971 retval = ip_mforward(ill, ipha, mp); 13972 /* ip_mforward updates mib variables if needed */ 13973 /* clear b_prev - used by ip_mroute_decap */ 13974 mp->b_prev = NULL; 13975 13976 switch (retval) { 13977 case 0: 13978 /* 13979 * pkt is okay and arrived on phyint. 13980 * 13981 * If we are running as a multicast router 13982 * we need to see all IGMP and/or PIM packets. 13983 */ 13984 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 13985 (ipha->ipha_protocol == IPPROTO_PIM)) { 13986 goto done; 13987 } 13988 break; 13989 case -1: 13990 /* pkt is mal-formed, toss it */ 13991 goto drop_pkt; 13992 case 1: 13993 /* pkt is okay and arrived on a tunnel */ 13994 /* 13995 * If we are running a multicast router 13996 * we need to see all igmp packets. 13997 */ 13998 if (ipha->ipha_protocol == IPPROTO_IGMP) { 13999 *dstp = INADDR_BROADCAST; 14000 *ll_multicast = 1; 14001 return (B_FALSE); 14002 } 14003 14004 goto drop_pkt; 14005 } 14006 } 14007 14008 ILM_WALKER_HOLD(ill); 14009 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14010 /* 14011 * This might just be caused by the fact that 14012 * multiple IP Multicast addresses map to the same 14013 * link layer multicast - no need to increment counter! 14014 */ 14015 ILM_WALKER_RELE(ill); 14016 freemsg(mp); 14017 return (B_TRUE); 14018 } 14019 ILM_WALKER_RELE(ill); 14020 done: 14021 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14022 /* 14023 * This assumes the we deliver to all streams for multicast 14024 * and broadcast packets. 14025 */ 14026 *dstp = INADDR_BROADCAST; 14027 *ll_multicast = 1; 14028 return (B_FALSE); 14029 drop_pkt: 14030 ip2dbg(("ip_rput: drop pkt\n")); 14031 freemsg(mp); 14032 return (B_TRUE); 14033 } 14034 14035 static boolean_t 14036 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14037 int *ll_multicast, mblk_t **mpp) 14038 { 14039 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14040 boolean_t must_copy = B_FALSE; 14041 struct iocblk *iocp; 14042 ipha_t *ipha; 14043 14044 #define rptr ((uchar_t *)ipha) 14045 14046 first_mp = *first_mpp; 14047 mp = *mpp; 14048 14049 ASSERT(first_mp == mp); 14050 14051 /* 14052 * if db_ref > 1 then copymsg and free original. Packet may be 14053 * changed and do not want other entity who has a reference to this 14054 * message to trip over the changes. This is a blind change because 14055 * trying to catch all places that might change packet is too 14056 * difficult (since it may be a module above this one) 14057 * 14058 * This corresponds to the non-fast path case. We walk down the full 14059 * chain in this case, and check the db_ref count of all the dblks, 14060 * and do a copymsg if required. It is possible that the db_ref counts 14061 * of the data blocks in the mblk chain can be different. 14062 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14063 * count of 1, followed by a M_DATA block with a ref count of 2, if 14064 * 'snoop' is running. 14065 */ 14066 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14067 if (mp1->b_datap->db_ref > 1) { 14068 must_copy = B_TRUE; 14069 break; 14070 } 14071 } 14072 14073 if (must_copy) { 14074 mp1 = copymsg(mp); 14075 if (mp1 == NULL) { 14076 for (mp1 = mp; mp1 != NULL; 14077 mp1 = mp1->b_cont) { 14078 mp1->b_next = NULL; 14079 mp1->b_prev = NULL; 14080 } 14081 freemsg(mp); 14082 BUMP_MIB(&ip_mib, ipInDiscards); 14083 return (B_TRUE); 14084 } 14085 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14086 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14087 /* Copy b_prev - used by ip_mroute_decap */ 14088 to_mp->b_prev = from_mp->b_prev; 14089 from_mp->b_prev = NULL; 14090 } 14091 *first_mpp = first_mp = mp1; 14092 freemsg(mp); 14093 mp = mp1; 14094 *mpp = mp1; 14095 } 14096 14097 ipha = (ipha_t *)mp->b_rptr; 14098 14099 /* 14100 * previous code has a case for M_DATA. 14101 * We want to check how that happens. 14102 */ 14103 ASSERT(first_mp->b_datap->db_type != M_DATA); 14104 switch (first_mp->b_datap->db_type) { 14105 case M_PROTO: 14106 case M_PCPROTO: 14107 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14108 DL_UNITDATA_IND) { 14109 /* Go handle anything other than data elsewhere. */ 14110 ip_rput_dlpi(q, mp); 14111 return (B_TRUE); 14112 } 14113 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14114 /* Ditch the DLPI header. */ 14115 mp1 = mp->b_cont; 14116 ASSERT(first_mp == mp); 14117 *first_mpp = mp1; 14118 freeb(mp); 14119 *mpp = mp1; 14120 return (B_FALSE); 14121 case M_IOCACK: 14122 ip1dbg(("got iocack ")); 14123 iocp = (struct iocblk *)mp->b_rptr; 14124 switch (iocp->ioc_cmd) { 14125 case DL_IOC_HDR_INFO: 14126 ill = (ill_t *)q->q_ptr; 14127 ill_fastpath_ack(ill, mp); 14128 return (B_TRUE); 14129 case SIOCSTUNPARAM: 14130 case OSIOCSTUNPARAM: 14131 /* Go through qwriter_ip */ 14132 break; 14133 case SIOCGTUNPARAM: 14134 case OSIOCGTUNPARAM: 14135 ip_rput_other(NULL, q, mp, NULL); 14136 return (B_TRUE); 14137 default: 14138 putnext(q, mp); 14139 return (B_TRUE); 14140 } 14141 /* FALLTHRU */ 14142 case M_ERROR: 14143 case M_HANGUP: 14144 /* 14145 * Since this is on the ill stream we unconditionally 14146 * bump up the refcount 14147 */ 14148 ill_refhold(ill); 14149 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14150 B_FALSE); 14151 return (B_TRUE); 14152 case M_CTL: 14153 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14154 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14155 IPHADA_M_CTL)) { 14156 /* 14157 * It's an IPsec accelerated packet. 14158 * Make sure that the ill from which we received the 14159 * packet has enabled IPsec hardware acceleration. 14160 */ 14161 if (!(ill->ill_capabilities & 14162 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14163 /* IPsec kstats: bean counter */ 14164 freemsg(mp); 14165 return (B_TRUE); 14166 } 14167 14168 /* 14169 * Make mp point to the mblk following the M_CTL, 14170 * then process according to type of mp. 14171 * After this processing, first_mp will point to 14172 * the data-attributes and mp to the pkt following 14173 * the M_CTL. 14174 */ 14175 mp = first_mp->b_cont; 14176 if (mp == NULL) { 14177 freemsg(first_mp); 14178 return (B_TRUE); 14179 } 14180 /* 14181 * A Hardware Accelerated packet can only be M_DATA 14182 * ESP or AH packet. 14183 */ 14184 if (mp->b_datap->db_type != M_DATA) { 14185 /* non-M_DATA IPsec accelerated packet */ 14186 IPSECHW_DEBUG(IPSECHW_PKT, 14187 ("non-M_DATA IPsec accelerated pkt\n")); 14188 freemsg(first_mp); 14189 return (B_TRUE); 14190 } 14191 ipha = (ipha_t *)mp->b_rptr; 14192 if (ipha->ipha_protocol != IPPROTO_AH && 14193 ipha->ipha_protocol != IPPROTO_ESP) { 14194 IPSECHW_DEBUG(IPSECHW_PKT, 14195 ("non-M_DATA IPsec accelerated pkt\n")); 14196 freemsg(first_mp); 14197 return (B_TRUE); 14198 } 14199 *mpp = mp; 14200 return (B_FALSE); 14201 } 14202 putnext(q, mp); 14203 return (B_TRUE); 14204 case M_FLUSH: 14205 if (*mp->b_rptr & FLUSHW) { 14206 *mp->b_rptr &= ~FLUSHR; 14207 qreply(q, mp); 14208 return (B_TRUE); 14209 } 14210 freemsg(mp); 14211 return (B_TRUE); 14212 case M_IOCNAK: 14213 ip1dbg(("got iocnak ")); 14214 iocp = (struct iocblk *)mp->b_rptr; 14215 switch (iocp->ioc_cmd) { 14216 case DL_IOC_HDR_INFO: 14217 case SIOCSTUNPARAM: 14218 case OSIOCSTUNPARAM: 14219 /* 14220 * Since this is on the ill stream we unconditionally 14221 * bump up the refcount 14222 */ 14223 ill_refhold(ill); 14224 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14225 CUR_OP, B_FALSE); 14226 return (B_TRUE); 14227 case SIOCGTUNPARAM: 14228 case OSIOCGTUNPARAM: 14229 ip_rput_other(NULL, q, mp, NULL); 14230 return (B_TRUE); 14231 default: 14232 break; 14233 } 14234 /* FALLTHRU */ 14235 default: 14236 putnext(q, mp); 14237 return (B_TRUE); 14238 } 14239 } 14240 14241 /* Read side put procedure. Packets coming from the wire arrive here. */ 14242 void 14243 ip_rput(queue_t *q, mblk_t *mp) 14244 { 14245 ill_t *ill; 14246 mblk_t *dmp = NULL; 14247 14248 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14249 14250 ill = (ill_t *)q->q_ptr; 14251 14252 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14253 union DL_primitives *dl; 14254 14255 /* 14256 * Things are opening or closing. Only accept DLPI control 14257 * messages. In the open case, the ill->ill_ipif has not yet 14258 * been created. In the close case, things hanging off the 14259 * ill could have been freed already. In either case it 14260 * may not be safe to proceed further. 14261 */ 14262 14263 dl = (union DL_primitives *)mp->b_rptr; 14264 if ((mp->b_datap->db_type != M_PCPROTO) || 14265 (dl->dl_primitive == DL_UNITDATA_IND)) { 14266 /* 14267 * Also SIOC[GS]TUN* ioctls can come here. 14268 */ 14269 inet_freemsg(mp); 14270 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14271 "ip_input_end: q %p (%S)", q, "uninit"); 14272 return; 14273 } 14274 } 14275 14276 /* 14277 * if db_ref > 1 then copymsg and free original. Packet may be 14278 * changed and we do not want the other entity who has a reference to 14279 * this message to trip over the changes. This is a blind change because 14280 * trying to catch all places that might change the packet is too 14281 * difficult. 14282 * 14283 * This corresponds to the fast path case, where we have a chain of 14284 * M_DATA mblks. We check the db_ref count of only the 1st data block 14285 * in the mblk chain. There doesn't seem to be a reason why a device 14286 * driver would send up data with varying db_ref counts in the mblk 14287 * chain. In any case the Fast path is a private interface, and our 14288 * drivers don't do such a thing. Given the above assumption, there is 14289 * no need to walk down the entire mblk chain (which could have a 14290 * potential performance problem) 14291 */ 14292 if (mp->b_datap->db_ref > 1) { 14293 mblk_t *mp1; 14294 boolean_t adjusted = B_FALSE; 14295 IP_STAT(ip_db_ref); 14296 14297 /* 14298 * The IP_RECVSLLA option depends on having the link layer 14299 * header. First check that: 14300 * a> the underlying device is of type ether, since this 14301 * option is currently supported only over ethernet. 14302 * b> there is enough room to copy over the link layer header. 14303 * 14304 * Once the checks are done, adjust rptr so that the link layer 14305 * header will be copied via copymsg. Note that, IFT_ETHER may 14306 * be returned by some non-ethernet drivers but in this case the 14307 * second check will fail. 14308 */ 14309 if (ill->ill_type == IFT_ETHER && 14310 (mp->b_rptr - mp->b_datap->db_base) >= 14311 sizeof (struct ether_header)) { 14312 mp->b_rptr -= sizeof (struct ether_header); 14313 adjusted = B_TRUE; 14314 } 14315 mp1 = copymsg(mp); 14316 if (mp1 == NULL) { 14317 mp->b_next = NULL; 14318 /* clear b_prev - used by ip_mroute_decap */ 14319 mp->b_prev = NULL; 14320 freemsg(mp); 14321 BUMP_MIB(&ip_mib, ipInDiscards); 14322 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14323 "ip_rput_end: q %p (%S)", q, "copymsg"); 14324 return; 14325 } 14326 if (adjusted) { 14327 /* 14328 * Copy is done. Restore the pointer in the _new_ mblk 14329 */ 14330 mp1->b_rptr += sizeof (struct ether_header); 14331 } 14332 /* Copy b_prev - used by ip_mroute_decap */ 14333 mp1->b_prev = mp->b_prev; 14334 mp->b_prev = NULL; 14335 freemsg(mp); 14336 mp = mp1; 14337 } 14338 if (DB_TYPE(mp) == M_DATA) { 14339 dmp = mp; 14340 } else if (DB_TYPE(mp) == M_PROTO && 14341 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14342 dmp = mp->b_cont; 14343 } 14344 if (dmp != NULL) { 14345 /* 14346 * IP header ptr not aligned? 14347 * OR IP header not complete in first mblk 14348 */ 14349 if (!OK_32PTR(dmp->b_rptr) || 14350 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14351 if (!ip_check_and_align_header(q, dmp)) 14352 return; 14353 } 14354 } 14355 14356 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14357 "ip_rput_end: q %p (%S)", q, "end"); 14358 14359 ip_input(ill, NULL, mp, NULL); 14360 } 14361 14362 /* 14363 * Direct read side procedure capable of dealing with chains. GLDv3 based 14364 * drivers call this function directly with mblk chains while STREAMS 14365 * read side procedure ip_rput() calls this for single packet with ip_ring 14366 * set to NULL to process one packet at a time. 14367 * 14368 * The ill will always be valid if this function is called directly from 14369 * the driver. 14370 * 14371 * If ip_input() is called from GLDv3: 14372 * 14373 * - This must be a non-VLAN IP stream. 14374 * - 'mp' is either an untagged or a special priority-tagged packet. 14375 * - Any VLAN tag that was in the MAC header has been stripped. 14376 * 14377 * Thus, there is no need to adjust b_rptr in this function. 14378 */ 14379 /* ARGSUSED */ 14380 void 14381 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14382 struct mac_header_info_s *mhip) 14383 { 14384 ipaddr_t dst = NULL; 14385 ipaddr_t prev_dst; 14386 ire_t *ire = NULL; 14387 ipha_t *ipha; 14388 uint_t pkt_len; 14389 ssize_t len; 14390 uint_t opt_len; 14391 int ll_multicast; 14392 int cgtp_flt_pkt; 14393 queue_t *q = ill->ill_rq; 14394 squeue_t *curr_sqp = NULL; 14395 mblk_t *head = NULL; 14396 mblk_t *tail = NULL; 14397 mblk_t *first_mp; 14398 mblk_t *mp; 14399 int cnt = 0; 14400 14401 ASSERT(mp_chain != NULL); 14402 ASSERT(ill != NULL); 14403 14404 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14405 14406 #define rptr ((uchar_t *)ipha) 14407 14408 while (mp_chain != NULL) { 14409 first_mp = mp = mp_chain; 14410 mp_chain = mp_chain->b_next; 14411 mp->b_next = NULL; 14412 ll_multicast = 0; 14413 14414 /* 14415 * We do ire caching from one iteration to 14416 * another. In the event the packet chain contains 14417 * all packets from the same dst, this caching saves 14418 * an ire_cache_lookup for each of the succeeding 14419 * packets in a packet chain. 14420 */ 14421 prev_dst = dst; 14422 14423 /* 14424 * ip_input fast path 14425 */ 14426 14427 /* mblk type is not M_DATA */ 14428 if (mp->b_datap->db_type != M_DATA) { 14429 if (ip_rput_process_notdata(q, &first_mp, ill, 14430 &ll_multicast, &mp)) 14431 continue; 14432 } 14433 14434 /* Make sure its an M_DATA and that its aligned */ 14435 ASSERT(mp->b_datap->db_type == M_DATA); 14436 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14437 14438 ipha = (ipha_t *)mp->b_rptr; 14439 len = mp->b_wptr - rptr; 14440 14441 BUMP_MIB(&ip_mib, ipInReceives); 14442 14443 14444 /* multiple mblk or too short */ 14445 pkt_len = ntohs(ipha->ipha_length); 14446 len -= pkt_len; 14447 if (len != 0) { 14448 /* 14449 * Make sure we have data length consistent 14450 * with the IP header. 14451 */ 14452 if (mp->b_cont == NULL) { 14453 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14454 BUMP_MIB(&ip_mib, ipInHdrErrors); 14455 ip2dbg(("ip_input: drop pkt\n")); 14456 freemsg(mp); 14457 continue; 14458 } 14459 mp->b_wptr = rptr + pkt_len; 14460 } else if (len += msgdsize(mp->b_cont)) { 14461 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14462 BUMP_MIB(&ip_mib, ipInHdrErrors); 14463 ip2dbg(("ip_input: drop pkt\n")); 14464 freemsg(mp); 14465 continue; 14466 } 14467 (void) adjmsg(mp, -len); 14468 IP_STAT(ip_multimblk3); 14469 } 14470 } 14471 14472 /* Obtain the dst of the current packet */ 14473 dst = ipha->ipha_dst; 14474 14475 if (IP_LOOPBACK_ADDR(dst) || 14476 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14477 BUMP_MIB(&ip_mib, ipInAddrErrors); 14478 cmn_err(CE_CONT, "dst %X src %X\n", 14479 dst, ipha->ipha_src); 14480 freemsg(mp); 14481 continue; 14482 } 14483 14484 /* 14485 * Attach any necessary label information to 14486 * this packet 14487 */ 14488 if (is_system_labeled() && 14489 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14490 BUMP_MIB(&ip_mib, ipInDiscards); 14491 freemsg(mp); 14492 continue; 14493 } 14494 14495 /* 14496 * Reuse the cached ire only if the ipha_dst of the previous 14497 * packet is the same as the current packet AND it is not 14498 * INADDR_ANY. 14499 */ 14500 if (!(dst == prev_dst && dst != INADDR_ANY) && 14501 (ire != NULL)) { 14502 ire_refrele(ire); 14503 ire = NULL; 14504 } 14505 opt_len = ipha->ipha_version_and_hdr_length - 14506 IP_SIMPLE_HDR_VERSION; 14507 14508 /* 14509 * Check to see if we can take the fastpath. 14510 * That is possible if the following conditions are met 14511 * o Tsol disabled 14512 * o CGTP disabled 14513 * o ipp_action_count is 0 14514 * o Mobile IP not running 14515 * o no options in the packet 14516 * o not a RSVP packet 14517 * o not a multicast packet 14518 */ 14519 if (!is_system_labeled() && 14520 !ip_cgtp_filter && ipp_action_count == 0 && 14521 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14522 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14523 !ll_multicast && !CLASSD(dst)) { 14524 if (ire == NULL) 14525 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14526 14527 /* incoming packet is for forwarding */ 14528 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14529 ire = ip_fast_forward(ire, dst, ill, mp); 14530 continue; 14531 } 14532 /* incoming packet is for local consumption */ 14533 if (ire->ire_type & IRE_LOCAL) 14534 goto local; 14535 } 14536 14537 /* 14538 * Disable ire caching for anything more complex 14539 * than the simple fast path case we checked for above. 14540 */ 14541 if (ire != NULL) { 14542 ire_refrele(ire); 14543 ire = NULL; 14544 } 14545 14546 /* Full-blown slow path */ 14547 if (opt_len != 0) { 14548 if (len != 0) 14549 IP_STAT(ip_multimblk4); 14550 else 14551 IP_STAT(ip_ipoptions); 14552 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14553 continue; 14554 } 14555 14556 /* 14557 * Invoke the CGTP (multirouting) filtering module to process 14558 * the incoming packet. Packets identified as duplicates 14559 * must be discarded. Filtering is active only if the 14560 * the ip_cgtp_filter ndd variable is non-zero. 14561 */ 14562 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14563 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14564 cgtp_flt_pkt = 14565 ip_cgtp_filter_ops->cfo_filter(q, mp); 14566 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14567 freemsg(first_mp); 14568 continue; 14569 } 14570 } 14571 14572 /* 14573 * If rsvpd is running, let RSVP daemon handle its processing 14574 * and forwarding of RSVP multicast/unicast packets. 14575 * If rsvpd is not running but mrouted is running, RSVP 14576 * multicast packets are forwarded as multicast traffic 14577 * and RSVP unicast packets are forwarded by unicast router. 14578 * If neither rsvpd nor mrouted is running, RSVP multicast 14579 * packets are not forwarded, but the unicast packets are 14580 * forwarded like unicast traffic. 14581 */ 14582 if (ipha->ipha_protocol == IPPROTO_RSVP && 14583 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14584 /* RSVP packet and rsvpd running. Treat as ours */ 14585 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14586 /* 14587 * This assumes that we deliver to all streams for 14588 * multicast and broadcast packets. 14589 * We have to force ll_multicast to 1 to handle the 14590 * M_DATA messages passed in from ip_mroute_decap. 14591 */ 14592 dst = INADDR_BROADCAST; 14593 ll_multicast = 1; 14594 } else if (CLASSD(dst)) { 14595 /* packet is multicast */ 14596 mp->b_next = NULL; 14597 if (ip_rput_process_multicast(q, mp, ill, ipha, 14598 &ll_multicast, &dst)) 14599 continue; 14600 } 14601 14602 14603 /* 14604 * Check if the packet is coming from the Mobile IP 14605 * forward tunnel interface 14606 */ 14607 if (ill->ill_srcif_refcnt > 0) { 14608 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14609 NULL, ill, MATCH_IRE_TYPE); 14610 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14611 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14612 14613 /* We need to resolve the link layer info */ 14614 ire_refrele(ire); 14615 ire = NULL; 14616 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14617 ll_multicast, dst); 14618 continue; 14619 } 14620 } 14621 14622 if (ire == NULL) { 14623 ire = ire_cache_lookup(dst, ALL_ZONES, 14624 MBLK_GETLABEL(mp)); 14625 } 14626 14627 /* 14628 * If mipagent is running and reverse tunnel is created as per 14629 * mobile node request, then any packet coming through the 14630 * incoming interface from the mobile-node, should be reverse 14631 * tunneled to it's home agent except those that are destined 14632 * to foreign agent only. 14633 * This needs source address based ire lookup. The routing 14634 * entries for source address based lookup are only created by 14635 * mipagent program only when a reverse tunnel is created. 14636 * Reference : RFC2002, RFC2344 14637 */ 14638 if (ill->ill_mrtun_refcnt > 0) { 14639 ipaddr_t srcaddr; 14640 ire_t *tmp_ire; 14641 14642 tmp_ire = ire; /* Save, we might need it later */ 14643 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14644 ire->ire_type != IRE_BROADCAST)) { 14645 srcaddr = ipha->ipha_src; 14646 ire = ire_mrtun_lookup(srcaddr, ill); 14647 if (ire != NULL) { 14648 /* 14649 * Should not be getting iphada packet 14650 * here. we should only get those for 14651 * IRE_LOCAL traffic, excluded above. 14652 * Fail-safe (drop packet) in the event 14653 * hardware is misbehaving. 14654 */ 14655 if (first_mp != mp) { 14656 /* IPsec KSTATS: beancount me */ 14657 freemsg(first_mp); 14658 } else { 14659 /* 14660 * This packet must be forwarded 14661 * to Reverse Tunnel 14662 */ 14663 ip_mrtun_forward(ire, ill, mp); 14664 } 14665 ire_refrele(ire); 14666 ire = NULL; 14667 if (tmp_ire != NULL) { 14668 ire_refrele(tmp_ire); 14669 tmp_ire = NULL; 14670 } 14671 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14672 "ip_input_end: q %p (%S)", 14673 q, "uninit"); 14674 continue; 14675 } 14676 } 14677 /* 14678 * If this packet is from a non-mobilenode or a 14679 * mobile-node which does not request reverse 14680 * tunnel service 14681 */ 14682 ire = tmp_ire; 14683 } 14684 14685 14686 /* 14687 * If we reach here that means the incoming packet satisfies 14688 * one of the following conditions: 14689 * - packet is from a mobile node which does not request 14690 * reverse tunnel 14691 * - packet is from a non-mobile node, which is the most 14692 * common case 14693 * - packet is from a reverse tunnel enabled mobile node 14694 * and destined to foreign agent only 14695 */ 14696 14697 if (ire == NULL) { 14698 /* 14699 * No IRE for this destination, so it can't be for us. 14700 * Unless we are forwarding, drop the packet. 14701 * We have to let source routed packets through 14702 * since we don't yet know if they are 'ping -l' 14703 * packets i.e. if they will go out over the 14704 * same interface as they came in on. 14705 */ 14706 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14707 if (ire == NULL) 14708 continue; 14709 } 14710 14711 /* 14712 * Broadcast IRE may indicate either broadcast or 14713 * multicast packet 14714 */ 14715 if (ire->ire_type == IRE_BROADCAST) { 14716 /* 14717 * Skip broadcast checks if packet is UDP multicast; 14718 * we'd rather not enter ip_rput_process_broadcast() 14719 * unless the packet is broadcast for real, since 14720 * that routine is a no-op for multicast. 14721 */ 14722 if (ipha->ipha_protocol != IPPROTO_UDP || 14723 !CLASSD(ipha->ipha_dst)) { 14724 ire = ip_rput_process_broadcast(&q, mp, 14725 ire, ipha, ill, dst, cgtp_flt_pkt, 14726 ll_multicast); 14727 if (ire == NULL) 14728 continue; 14729 } 14730 } else if (ire->ire_stq != NULL) { 14731 /* fowarding? */ 14732 ip_rput_process_forward(q, mp, ire, ipha, ill, 14733 ll_multicast); 14734 /* ip_rput_process_forward consumed the packet */ 14735 continue; 14736 } 14737 14738 local: 14739 /* packet not for us */ 14740 if (ire->ire_rfq != q) { 14741 if (ip_rput_notforus(&q, mp, ire, ill)) 14742 continue; 14743 } 14744 14745 switch (ipha->ipha_protocol) { 14746 case IPPROTO_TCP: 14747 ASSERT(first_mp == mp); 14748 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14749 mp, 0, q, ip_ring)) != NULL) { 14750 if (curr_sqp == NULL) { 14751 curr_sqp = GET_SQUEUE(mp); 14752 ASSERT(cnt == 0); 14753 cnt++; 14754 head = tail = mp; 14755 } else if (curr_sqp == GET_SQUEUE(mp)) { 14756 ASSERT(tail != NULL); 14757 cnt++; 14758 tail->b_next = mp; 14759 tail = mp; 14760 } else { 14761 /* 14762 * A different squeue. Send the 14763 * chain for the previous squeue on 14764 * its way. This shouldn't happen 14765 * often unless interrupt binding 14766 * changes. 14767 */ 14768 IP_STAT(ip_input_multi_squeue); 14769 squeue_enter_chain(curr_sqp, head, 14770 tail, cnt, SQTAG_IP_INPUT); 14771 curr_sqp = GET_SQUEUE(mp); 14772 head = mp; 14773 tail = mp; 14774 cnt = 1; 14775 } 14776 } 14777 continue; 14778 case IPPROTO_UDP: 14779 ASSERT(first_mp == mp); 14780 ip_udp_input(q, mp, ipha, ire, ill); 14781 continue; 14782 case IPPROTO_SCTP: 14783 ASSERT(first_mp == mp); 14784 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14785 q, dst); 14786 /* ire has been released by ip_sctp_input */ 14787 ire = NULL; 14788 continue; 14789 default: 14790 ip_proto_input(q, first_mp, ipha, ire, ill); 14791 continue; 14792 } 14793 } 14794 14795 if (ire != NULL) 14796 ire_refrele(ire); 14797 14798 if (head != NULL) 14799 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14800 14801 /* 14802 * This code is there just to make netperf/ttcp look good. 14803 * 14804 * Its possible that after being in polling mode (and having cleared 14805 * the backlog), squeues have turned the interrupt frequency higher 14806 * to improve latency at the expense of more CPU utilization (less 14807 * packets per interrupts or more number of interrupts). Workloads 14808 * like ttcp/netperf do manage to tickle polling once in a while 14809 * but for the remaining time, stay in higher interrupt mode since 14810 * their packet arrival rate is pretty uniform and this shows up 14811 * as higher CPU utilization. Since people care about CPU utilization 14812 * while running netperf/ttcp, turn the interrupt frequency back to 14813 * normal/default if polling has not been used in ip_poll_normal_ticks. 14814 */ 14815 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14816 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14817 ip_ring->rr_poll_state &= ~ILL_POLLING; 14818 ip_ring->rr_blank(ip_ring->rr_handle, 14819 ip_ring->rr_normal_blank_time, 14820 ip_ring->rr_normal_pkt_cnt); 14821 } 14822 } 14823 14824 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14825 "ip_input_end: q %p (%S)", q, "end"); 14826 #undef rptr 14827 } 14828 14829 static void 14830 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14831 t_uscalar_t err) 14832 { 14833 if (dl_err == DL_SYSERR) { 14834 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14835 "%s: %s failed: DL_SYSERR (errno %u)\n", 14836 ill->ill_name, dlpi_prim_str(prim), err); 14837 return; 14838 } 14839 14840 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14841 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14842 dlpi_err_str(dl_err)); 14843 } 14844 14845 /* 14846 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14847 * than DL_UNITDATA_IND messages. If we need to process this message 14848 * exclusively, we call qwriter_ip, in which case we also need to call 14849 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14850 */ 14851 void 14852 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14853 { 14854 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14855 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14856 ill_t *ill; 14857 14858 ip1dbg(("ip_rput_dlpi")); 14859 ill = (ill_t *)q->q_ptr; 14860 switch (dloa->dl_primitive) { 14861 case DL_ERROR_ACK: 14862 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14863 "%s (0x%x), unix %u\n", ill->ill_name, 14864 dlpi_prim_str(dlea->dl_error_primitive), 14865 dlea->dl_error_primitive, 14866 dlpi_err_str(dlea->dl_errno), 14867 dlea->dl_errno, 14868 dlea->dl_unix_errno)); 14869 switch (dlea->dl_error_primitive) { 14870 case DL_UNBIND_REQ: 14871 mutex_enter(&ill->ill_lock); 14872 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14873 cv_signal(&ill->ill_cv); 14874 mutex_exit(&ill->ill_lock); 14875 /* FALLTHRU */ 14876 case DL_NOTIFY_REQ: 14877 case DL_ATTACH_REQ: 14878 case DL_DETACH_REQ: 14879 case DL_INFO_REQ: 14880 case DL_BIND_REQ: 14881 case DL_ENABMULTI_REQ: 14882 case DL_PHYS_ADDR_REQ: 14883 case DL_CAPABILITY_REQ: 14884 case DL_CONTROL_REQ: 14885 /* 14886 * Refhold the ill to match qwriter_ip which does a 14887 * refrele. Since this is on the ill stream we 14888 * unconditionally bump up the refcount without 14889 * checking for ILL_CAN_LOOKUP 14890 */ 14891 ill_refhold(ill); 14892 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14893 CUR_OP, B_FALSE); 14894 return; 14895 case DL_DISABMULTI_REQ: 14896 freemsg(mp); /* Don't want to pass this up */ 14897 return; 14898 default: 14899 break; 14900 } 14901 ip_dlpi_error(ill, dlea->dl_error_primitive, 14902 dlea->dl_errno, dlea->dl_unix_errno); 14903 freemsg(mp); 14904 return; 14905 case DL_INFO_ACK: 14906 case DL_BIND_ACK: 14907 case DL_PHYS_ADDR_ACK: 14908 case DL_NOTIFY_ACK: 14909 case DL_CAPABILITY_ACK: 14910 case DL_CONTROL_ACK: 14911 /* 14912 * Refhold the ill to match qwriter_ip which does a refrele 14913 * Since this is on the ill stream we unconditionally 14914 * bump up the refcount without doing ILL_CAN_LOOKUP. 14915 */ 14916 ill_refhold(ill); 14917 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14918 CUR_OP, B_FALSE); 14919 return; 14920 case DL_NOTIFY_IND: 14921 ill_refhold(ill); 14922 /* 14923 * The DL_NOTIFY_IND is an asynchronous message that has no 14924 * relation to the current ioctl in progress (if any). Hence we 14925 * pass in NEW_OP in this case. 14926 */ 14927 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14928 NEW_OP, B_FALSE); 14929 return; 14930 case DL_OK_ACK: 14931 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14932 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14933 switch (dloa->dl_correct_primitive) { 14934 case DL_UNBIND_REQ: 14935 mutex_enter(&ill->ill_lock); 14936 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14937 cv_signal(&ill->ill_cv); 14938 mutex_exit(&ill->ill_lock); 14939 /* FALLTHRU */ 14940 case DL_ATTACH_REQ: 14941 case DL_DETACH_REQ: 14942 /* 14943 * Refhold the ill to match qwriter_ip which does a 14944 * refrele. Since this is on the ill stream we 14945 * unconditionally bump up the refcount 14946 */ 14947 ill_refhold(ill); 14948 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14949 CUR_OP, B_FALSE); 14950 return; 14951 case DL_ENABMULTI_REQ: 14952 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14953 ill->ill_dlpi_multicast_state = IDMS_OK; 14954 break; 14955 14956 } 14957 break; 14958 default: 14959 break; 14960 } 14961 freemsg(mp); 14962 } 14963 14964 /* 14965 * Handling of DLPI messages that require exclusive access to the ipsq. 14966 * 14967 * Need to do ill_pending_mp_release on ioctl completion, which could 14968 * happen here. (along with mi_copy_done) 14969 */ 14970 /* ARGSUSED */ 14971 static void 14972 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14973 { 14974 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14975 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14976 int err = 0; 14977 ill_t *ill; 14978 ipif_t *ipif = NULL; 14979 mblk_t *mp1 = NULL; 14980 conn_t *connp = NULL; 14981 t_uscalar_t physaddr_req; 14982 mblk_t *mp_hw; 14983 union DL_primitives *dlp; 14984 boolean_t success; 14985 boolean_t ioctl_aborted = B_FALSE; 14986 boolean_t log = B_TRUE; 14987 14988 ip1dbg(("ip_rput_dlpi_writer ..")); 14989 ill = (ill_t *)q->q_ptr; 14990 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14991 14992 ASSERT(IAM_WRITER_ILL(ill)); 14993 14994 /* 14995 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 14996 * both are null or non-null. However we can assert that only 14997 * after grabbing the ipsq_lock. So we don't make any assertion 14998 * here and in other places in the code. 14999 */ 15000 ipif = ipsq->ipsq_pending_ipif; 15001 /* 15002 * The current ioctl could have been aborted by the user and a new 15003 * ioctl to bring up another ill could have started. We could still 15004 * get a response from the driver later. 15005 */ 15006 if (ipif != NULL && ipif->ipif_ill != ill) 15007 ioctl_aborted = B_TRUE; 15008 15009 switch (dloa->dl_primitive) { 15010 case DL_ERROR_ACK: 15011 switch (dlea->dl_error_primitive) { 15012 case DL_UNBIND_REQ: 15013 case DL_ATTACH_REQ: 15014 case DL_DETACH_REQ: 15015 case DL_INFO_REQ: 15016 ill_dlpi_done(ill, dlea->dl_error_primitive); 15017 break; 15018 case DL_NOTIFY_REQ: 15019 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15020 log = B_FALSE; 15021 break; 15022 case DL_PHYS_ADDR_REQ: 15023 /* 15024 * For IPv6 only, there are two additional 15025 * phys_addr_req's sent to the driver to get the 15026 * IPv6 token and lla. This allows IP to acquire 15027 * the hardware address format for a given interface 15028 * without having built in knowledge of the hardware 15029 * address. ill_phys_addr_pend keeps track of the last 15030 * DL_PAR sent so we know which response we are 15031 * dealing with. ill_dlpi_done will update 15032 * ill_phys_addr_pend when it sends the next req. 15033 * We don't complete the IOCTL until all three DL_PARs 15034 * have been attempted, so set *_len to 0 and break. 15035 */ 15036 physaddr_req = ill->ill_phys_addr_pend; 15037 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15038 if (physaddr_req == DL_IPV6_TOKEN) { 15039 ill->ill_token_length = 0; 15040 log = B_FALSE; 15041 break; 15042 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15043 ill->ill_nd_lla_len = 0; 15044 log = B_FALSE; 15045 break; 15046 } 15047 /* 15048 * Something went wrong with the DL_PHYS_ADDR_REQ. 15049 * We presumably have an IOCTL hanging out waiting 15050 * for completion. Find it and complete the IOCTL 15051 * with the error noted. 15052 * However, ill_dl_phys was called on an ill queue 15053 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15054 * set. But the ioctl is known to be pending on ill_wq. 15055 */ 15056 if (!ill->ill_ifname_pending) 15057 break; 15058 ill->ill_ifname_pending = 0; 15059 if (!ioctl_aborted) 15060 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15061 if (mp1 != NULL) { 15062 /* 15063 * This operation (SIOCSLIFNAME) must have 15064 * happened on the ill. Assert there is no conn 15065 */ 15066 ASSERT(connp == NULL); 15067 q = ill->ill_wq; 15068 } 15069 break; 15070 case DL_BIND_REQ: 15071 ill_dlpi_done(ill, DL_BIND_REQ); 15072 if (ill->ill_ifname_pending) 15073 break; 15074 /* 15075 * Something went wrong with the bind. We presumably 15076 * have an IOCTL hanging out waiting for completion. 15077 * Find it, take down the interface that was coming 15078 * up, and complete the IOCTL with the error noted. 15079 */ 15080 if (!ioctl_aborted) 15081 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15082 if (mp1 != NULL) { 15083 /* 15084 * This operation (SIOCSLIFFLAGS) must have 15085 * happened from a conn. 15086 */ 15087 ASSERT(connp != NULL); 15088 q = CONNP_TO_WQ(connp); 15089 if (ill->ill_move_in_progress) { 15090 ILL_CLEAR_MOVE(ill); 15091 } 15092 (void) ipif_down(ipif, NULL, NULL); 15093 /* error is set below the switch */ 15094 } 15095 break; 15096 case DL_ENABMULTI_REQ: 15097 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15098 15099 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 15100 ill->ill_dlpi_multicast_state = IDMS_FAILED; 15101 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 15102 ipif_t *ipif; 15103 15104 log = B_FALSE; 15105 printf("ip: joining multicasts failed (%d)" 15106 " on %s - will use link layer " 15107 "broadcasts for multicast\n", 15108 dlea->dl_errno, ill->ill_name); 15109 15110 /* 15111 * Set up the multicast mapping alone. 15112 * writer, so ok to access ill->ill_ipif 15113 * without any lock. 15114 */ 15115 ipif = ill->ill_ipif; 15116 mutex_enter(&ill->ill_phyint->phyint_lock); 15117 ill->ill_phyint->phyint_flags |= 15118 PHYI_MULTI_BCAST; 15119 mutex_exit(&ill->ill_phyint->phyint_lock); 15120 15121 if (!ill->ill_isv6) { 15122 (void) ipif_arp_setup_multicast(ipif, 15123 NULL); 15124 } else { 15125 (void) ipif_ndp_setup_multicast(ipif, 15126 NULL); 15127 } 15128 } 15129 freemsg(mp); /* Don't want to pass this up */ 15130 return; 15131 case DL_CAPABILITY_REQ: 15132 case DL_CONTROL_REQ: 15133 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15134 "DL_CAPABILITY/CONTROL REQ\n")); 15135 ill_dlpi_done(ill, dlea->dl_error_primitive); 15136 ill->ill_capab_state = IDMS_FAILED; 15137 freemsg(mp); 15138 return; 15139 } 15140 /* 15141 * Note the error for IOCTL completion (mp1 is set when 15142 * ready to complete ioctl). If ill_ifname_pending_err is 15143 * set, an error occured during plumbing (ill_ifname_pending), 15144 * so we want to report that error. 15145 * 15146 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15147 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15148 * expected to get errack'd if the driver doesn't support 15149 * these flags (e.g. ethernet). log will be set to B_FALSE 15150 * if these error conditions are encountered. 15151 */ 15152 if (mp1 != NULL) { 15153 if (ill->ill_ifname_pending_err != 0) { 15154 err = ill->ill_ifname_pending_err; 15155 ill->ill_ifname_pending_err = 0; 15156 } else { 15157 err = dlea->dl_unix_errno ? 15158 dlea->dl_unix_errno : ENXIO; 15159 } 15160 /* 15161 * If we're plumbing an interface and an error hasn't already 15162 * been saved, set ill_ifname_pending_err to the error passed 15163 * up. Ignore the error if log is B_FALSE (see comment above). 15164 */ 15165 } else if (log && ill->ill_ifname_pending && 15166 ill->ill_ifname_pending_err == 0) { 15167 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15168 dlea->dl_unix_errno : ENXIO; 15169 } 15170 15171 if (log) 15172 ip_dlpi_error(ill, dlea->dl_error_primitive, 15173 dlea->dl_errno, dlea->dl_unix_errno); 15174 break; 15175 case DL_CAPABILITY_ACK: { 15176 boolean_t reneg_flag = B_FALSE; 15177 /* Call a routine to handle this one. */ 15178 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15179 /* 15180 * Check if the ACK is due to renegotiation case since we 15181 * will need to send a new CAPABILITY_REQ later. 15182 */ 15183 if (ill->ill_capab_state == IDMS_RENEG) { 15184 /* This is the ack for a renogiation case */ 15185 reneg_flag = B_TRUE; 15186 ill->ill_capab_state = IDMS_UNKNOWN; 15187 } 15188 ill_capability_ack(ill, mp); 15189 if (reneg_flag) 15190 ill_capability_probe(ill); 15191 break; 15192 } 15193 case DL_CONTROL_ACK: 15194 /* We treat all of these as "fire and forget" */ 15195 ill_dlpi_done(ill, DL_CONTROL_REQ); 15196 break; 15197 case DL_INFO_ACK: 15198 /* Call a routine to handle this one. */ 15199 ill_dlpi_done(ill, DL_INFO_REQ); 15200 ip_ll_subnet_defaults(ill, mp); 15201 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15202 return; 15203 case DL_BIND_ACK: 15204 /* 15205 * We should have an IOCTL waiting on this unless 15206 * sent by ill_dl_phys, in which case just return 15207 */ 15208 ill_dlpi_done(ill, DL_BIND_REQ); 15209 if (ill->ill_ifname_pending) 15210 break; 15211 15212 if (!ioctl_aborted) 15213 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15214 if (mp1 == NULL) 15215 break; 15216 ASSERT(connp != NULL); 15217 q = CONNP_TO_WQ(connp); 15218 15219 /* 15220 * We are exclusive. So nothing can change even after 15221 * we get the pending mp. If need be we can put it back 15222 * and restart, as in calling ipif_arp_up() below. 15223 */ 15224 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15225 15226 mutex_enter(&ill->ill_lock); 15227 ill->ill_dl_up = 1; 15228 mutex_exit(&ill->ill_lock); 15229 15230 /* 15231 * Now bring up the resolver; when that is complete, we'll 15232 * create IREs. Note that we intentionally mirror what 15233 * ipif_up() would have done, because we got here by way of 15234 * ill_dl_up(), which stopped ipif_up()'s processing. 15235 */ 15236 if (ill->ill_isv6) { 15237 /* 15238 * v6 interfaces. 15239 * Unlike ARP which has to do another bind 15240 * and attach, once we get here we are 15241 * done with NDP. Except in the case of 15242 * ILLF_XRESOLV, in which case we send an 15243 * AR_INTERFACE_UP to the external resolver. 15244 * If all goes well, the ioctl will complete 15245 * in ip_rput(). If there's an error, we 15246 * complete it here. 15247 */ 15248 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15249 B_FALSE); 15250 if (err == 0) { 15251 if (ill->ill_flags & ILLF_XRESOLV) { 15252 mutex_enter(&connp->conn_lock); 15253 mutex_enter(&ill->ill_lock); 15254 success = ipsq_pending_mp_add( 15255 connp, ipif, q, mp1, 0); 15256 mutex_exit(&ill->ill_lock); 15257 mutex_exit(&connp->conn_lock); 15258 if (success) { 15259 err = ipif_resolver_up(ipif, 15260 Res_act_initial); 15261 if (err == EINPROGRESS) { 15262 freemsg(mp); 15263 return; 15264 } 15265 ASSERT(err != 0); 15266 mp1 = ipsq_pending_mp_get(ipsq, 15267 &connp); 15268 ASSERT(mp1 != NULL); 15269 } else { 15270 /* conn has started closing */ 15271 err = EINTR; 15272 } 15273 } else { /* Non XRESOLV interface */ 15274 (void) ipif_resolver_up(ipif, 15275 Res_act_initial); 15276 err = ipif_up_done_v6(ipif); 15277 } 15278 } 15279 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15280 /* 15281 * ARP and other v4 external resolvers. 15282 * Leave the pending mblk intact so that 15283 * the ioctl completes in ip_rput(). 15284 */ 15285 mutex_enter(&connp->conn_lock); 15286 mutex_enter(&ill->ill_lock); 15287 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15288 mutex_exit(&ill->ill_lock); 15289 mutex_exit(&connp->conn_lock); 15290 if (success) { 15291 err = ipif_resolver_up(ipif, Res_act_initial); 15292 if (err == EINPROGRESS) { 15293 freemsg(mp); 15294 return; 15295 } 15296 ASSERT(err != 0); 15297 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15298 } else { 15299 /* The conn has started closing */ 15300 err = EINTR; 15301 } 15302 } else { 15303 /* 15304 * This one is complete. Reply to pending ioctl. 15305 */ 15306 (void) ipif_resolver_up(ipif, Res_act_initial); 15307 err = ipif_up_done(ipif); 15308 } 15309 15310 if ((err == 0) && (ill->ill_up_ipifs)) { 15311 err = ill_up_ipifs(ill, q, mp1); 15312 if (err == EINPROGRESS) { 15313 freemsg(mp); 15314 return; 15315 } 15316 } 15317 15318 if (ill->ill_up_ipifs) { 15319 ill_group_cleanup(ill); 15320 } 15321 15322 break; 15323 case DL_NOTIFY_IND: { 15324 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15325 ire_t *ire; 15326 boolean_t need_ire_walk_v4 = B_FALSE; 15327 boolean_t need_ire_walk_v6 = B_FALSE; 15328 15329 /* 15330 * Change the address everywhere we need to. 15331 * What we're getting here is a link-level addr or phys addr. 15332 * The new addr is at notify + notify->dl_addr_offset 15333 * The address length is notify->dl_addr_length; 15334 */ 15335 switch (notify->dl_notification) { 15336 case DL_NOTE_PHYS_ADDR: 15337 mp_hw = copyb(mp); 15338 if (mp_hw == NULL) { 15339 err = ENOMEM; 15340 break; 15341 } 15342 dlp = (union DL_primitives *)mp_hw->b_rptr; 15343 /* 15344 * We currently don't support changing 15345 * the token via DL_NOTIFY_IND. 15346 * When we do support it, we have to consider 15347 * what the implications are with respect to 15348 * the token and the link local address. 15349 */ 15350 mutex_enter(&ill->ill_lock); 15351 if (dlp->notify_ind.dl_data == 15352 DL_IPV6_LINK_LAYER_ADDR) { 15353 if (ill->ill_nd_lla_mp != NULL) 15354 freemsg(ill->ill_nd_lla_mp); 15355 ill->ill_nd_lla_mp = mp_hw; 15356 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15357 dlp->notify_ind.dl_addr_offset; 15358 ill->ill_nd_lla_len = 15359 dlp->notify_ind.dl_addr_length - 15360 ABS(ill->ill_sap_length); 15361 mutex_exit(&ill->ill_lock); 15362 break; 15363 } else if (dlp->notify_ind.dl_data == 15364 DL_CURR_PHYS_ADDR) { 15365 if (ill->ill_phys_addr_mp != NULL) 15366 freemsg(ill->ill_phys_addr_mp); 15367 ill->ill_phys_addr_mp = mp_hw; 15368 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15369 dlp->notify_ind.dl_addr_offset; 15370 ill->ill_phys_addr_length = 15371 dlp->notify_ind.dl_addr_length - 15372 ABS(ill->ill_sap_length); 15373 if (ill->ill_isv6 && 15374 !(ill->ill_flags & ILLF_XRESOLV)) { 15375 if (ill->ill_nd_lla_mp != NULL) 15376 freemsg(ill->ill_nd_lla_mp); 15377 ill->ill_nd_lla_mp = copyb(mp_hw); 15378 ill->ill_nd_lla = (uchar_t *) 15379 ill->ill_nd_lla_mp->b_rptr + 15380 dlp->notify_ind.dl_addr_offset; 15381 ill->ill_nd_lla_len = 15382 ill->ill_phys_addr_length; 15383 } 15384 } 15385 mutex_exit(&ill->ill_lock); 15386 /* 15387 * Send out gratuitous arp request for our new 15388 * hardware address. 15389 */ 15390 for (ipif = ill->ill_ipif; ipif != NULL; 15391 ipif = ipif->ipif_next) { 15392 if (!(ipif->ipif_flags & IPIF_UP)) 15393 continue; 15394 if (ill->ill_isv6) { 15395 ipif_ndp_down(ipif); 15396 /* 15397 * Set B_TRUE to enable 15398 * ipif_ndp_up() to send out 15399 * unsolicited advertisements. 15400 */ 15401 err = ipif_ndp_up(ipif, 15402 &ipif->ipif_v6lcl_addr, 15403 B_TRUE); 15404 if (err) { 15405 ip1dbg(( 15406 "ip_rput_dlpi_writer: " 15407 "Failed to update ndp " 15408 "err %d\n", err)); 15409 } 15410 } else { 15411 /* 15412 * IPv4 ARP case 15413 * 15414 * Set Res_act_move, as we only want 15415 * ipif_resolver_up to send an 15416 * AR_ENTRY_ADD request up to 15417 * ARP. 15418 */ 15419 err = ipif_resolver_up(ipif, 15420 Res_act_move); 15421 if (err) { 15422 ip1dbg(( 15423 "ip_rput_dlpi_writer: " 15424 "Failed to update arp " 15425 "err %d\n", err)); 15426 } 15427 } 15428 } 15429 /* 15430 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15431 * case so that all old fastpath information can be 15432 * purged from IRE caches. 15433 */ 15434 /* FALLTHRU */ 15435 case DL_NOTE_FASTPATH_FLUSH: 15436 /* 15437 * Any fastpath probe sent henceforth will get the 15438 * new fp mp. So we first delete any ires that are 15439 * waiting for the fastpath. Then walk all ires and 15440 * delete the ire or delete the fp mp. In the case of 15441 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15442 * recreate the ire's without going through a complex 15443 * ipif up/down dance. So we don't delete the ire 15444 * itself, but just the nce_fp_mp for these 2 ire's 15445 * In the case of the other ire's we delete the ire's 15446 * themselves. Access to nce_fp_mp is completely 15447 * protected by ire_lock for IRE_MIPRTUN and 15448 * IRE_BROADCAST. Deleting the ire is preferable in the 15449 * other cases for performance. 15450 */ 15451 if (ill->ill_isv6) { 15452 nce_fastpath_list_dispatch(ill, NULL, NULL); 15453 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15454 NULL); 15455 } else { 15456 ire_fastpath_list_dispatch(ill, NULL, NULL); 15457 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15458 IRE_CACHE | IRE_BROADCAST, 15459 ire_fastpath_flush, NULL, ill); 15460 mutex_enter(&ire_mrtun_lock); 15461 if (ire_mrtun_count != 0) { 15462 mutex_exit(&ire_mrtun_lock); 15463 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15464 IRE_MIPRTUN, ire_fastpath_flush, 15465 NULL, ill); 15466 } else { 15467 mutex_exit(&ire_mrtun_lock); 15468 } 15469 } 15470 break; 15471 case DL_NOTE_SDU_SIZE: 15472 /* 15473 * Change the MTU size of the interface, of all 15474 * attached ipif's, and of all relevant ire's. The 15475 * new value's a uint32_t at notify->dl_data. 15476 * Mtu change Vs. new ire creation - protocol below. 15477 * 15478 * a Mark the ipif as IPIF_CHANGING. 15479 * b Set the new mtu in the ipif. 15480 * c Change the ire_max_frag on all affected ires 15481 * d Unmark the IPIF_CHANGING 15482 * 15483 * To see how the protocol works, assume an interface 15484 * route is also being added simultaneously by 15485 * ip_rt_add and let 'ipif' be the ipif referenced by 15486 * the ire. If the ire is created before step a, 15487 * it will be cleaned up by step c. If the ire is 15488 * created after step d, it will see the new value of 15489 * ipif_mtu. Any attempt to create the ire between 15490 * steps a to d will fail because of the IPIF_CHANGING 15491 * flag. Note that ire_create() is passed a pointer to 15492 * the ipif_mtu, and not the value. During ire_add 15493 * under the bucket lock, the ire_max_frag of the 15494 * new ire being created is set from the ipif/ire from 15495 * which it is being derived. 15496 */ 15497 mutex_enter(&ill->ill_lock); 15498 ill->ill_max_frag = (uint_t)notify->dl_data; 15499 15500 /* 15501 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15502 * leave it alone 15503 */ 15504 if (ill->ill_mtu_userspecified) { 15505 mutex_exit(&ill->ill_lock); 15506 break; 15507 } 15508 ill->ill_max_mtu = ill->ill_max_frag; 15509 if (ill->ill_isv6) { 15510 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15511 ill->ill_max_mtu = IPV6_MIN_MTU; 15512 } else { 15513 if (ill->ill_max_mtu < IP_MIN_MTU) 15514 ill->ill_max_mtu = IP_MIN_MTU; 15515 } 15516 for (ipif = ill->ill_ipif; ipif != NULL; 15517 ipif = ipif->ipif_next) { 15518 /* 15519 * Don't override the mtu if the user 15520 * has explicitly set it. 15521 */ 15522 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15523 continue; 15524 ipif->ipif_mtu = (uint_t)notify->dl_data; 15525 if (ipif->ipif_isv6) 15526 ire = ipif_to_ire_v6(ipif); 15527 else 15528 ire = ipif_to_ire(ipif); 15529 if (ire != NULL) { 15530 ire->ire_max_frag = ipif->ipif_mtu; 15531 ire_refrele(ire); 15532 } 15533 if (ipif->ipif_flags & IPIF_UP) { 15534 if (ill->ill_isv6) 15535 need_ire_walk_v6 = B_TRUE; 15536 else 15537 need_ire_walk_v4 = B_TRUE; 15538 } 15539 } 15540 mutex_exit(&ill->ill_lock); 15541 if (need_ire_walk_v4) 15542 ire_walk_v4(ill_mtu_change, (char *)ill, 15543 ALL_ZONES); 15544 if (need_ire_walk_v6) 15545 ire_walk_v6(ill_mtu_change, (char *)ill, 15546 ALL_ZONES); 15547 break; 15548 case DL_NOTE_LINK_UP: 15549 case DL_NOTE_LINK_DOWN: { 15550 /* 15551 * We are writer. ill / phyint / ipsq assocs stable. 15552 * The RUNNING flag reflects the state of the link. 15553 */ 15554 phyint_t *phyint = ill->ill_phyint; 15555 uint64_t new_phyint_flags; 15556 boolean_t changed = B_FALSE; 15557 boolean_t went_up; 15558 15559 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15560 mutex_enter(&phyint->phyint_lock); 15561 new_phyint_flags = went_up ? 15562 phyint->phyint_flags | PHYI_RUNNING : 15563 phyint->phyint_flags & ~PHYI_RUNNING; 15564 if (new_phyint_flags != phyint->phyint_flags) { 15565 phyint->phyint_flags = new_phyint_flags; 15566 changed = B_TRUE; 15567 } 15568 mutex_exit(&phyint->phyint_lock); 15569 /* 15570 * ill_restart_dad handles the DAD restart and routing 15571 * socket notification logic. 15572 */ 15573 if (changed) { 15574 ill_restart_dad(phyint->phyint_illv4, went_up); 15575 ill_restart_dad(phyint->phyint_illv6, went_up); 15576 } 15577 break; 15578 } 15579 case DL_NOTE_PROMISC_ON_PHYS: 15580 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15581 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15582 mutex_enter(&ill->ill_lock); 15583 ill->ill_promisc_on_phys = B_TRUE; 15584 mutex_exit(&ill->ill_lock); 15585 break; 15586 case DL_NOTE_PROMISC_OFF_PHYS: 15587 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15588 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15589 mutex_enter(&ill->ill_lock); 15590 ill->ill_promisc_on_phys = B_FALSE; 15591 mutex_exit(&ill->ill_lock); 15592 break; 15593 case DL_NOTE_CAPAB_RENEG: 15594 /* 15595 * Something changed on the driver side. 15596 * It wants us to renegotiate the capabilities 15597 * on this ill. The most likely cause is the 15598 * aggregation interface under us where a 15599 * port got added or went away. 15600 * 15601 * We reset the capabilities and set the 15602 * state to IDMS_RENG so that when the ack 15603 * comes back, we can start the 15604 * renegotiation process. 15605 */ 15606 ill_capability_reset(ill); 15607 ill->ill_capab_state = IDMS_RENEG; 15608 break; 15609 default: 15610 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15611 "type 0x%x for DL_NOTIFY_IND\n", 15612 notify->dl_notification)); 15613 break; 15614 } 15615 15616 /* 15617 * As this is an asynchronous operation, we 15618 * should not call ill_dlpi_done 15619 */ 15620 break; 15621 } 15622 case DL_NOTIFY_ACK: { 15623 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15624 15625 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15626 ill->ill_note_link = 1; 15627 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15628 break; 15629 } 15630 case DL_PHYS_ADDR_ACK: { 15631 /* 15632 * We should have an IOCTL waiting on this when request 15633 * sent by ill_dl_phys. 15634 * However, ill_dl_phys was called on an ill queue (from 15635 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15636 * ioctl is known to be pending on ill_wq. 15637 * There are two additional phys_addr_req's sent to the 15638 * driver to get the token and lla. ill_phys_addr_pend 15639 * keeps track of the last one sent so we know which 15640 * response we are dealing with. ill_dlpi_done will 15641 * update ill_phys_addr_pend when it sends the next req. 15642 * We don't complete the IOCTL until all three DL_PARs 15643 * have been attempted. 15644 * 15645 * We don't need any lock to update ill_nd_lla* fields, 15646 * since the ill is not yet up, We grab the lock just 15647 * for uniformity with other code that accesses ill_nd_lla. 15648 */ 15649 physaddr_req = ill->ill_phys_addr_pend; 15650 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15651 if (physaddr_req == DL_IPV6_TOKEN || 15652 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15653 if (physaddr_req == DL_IPV6_TOKEN) { 15654 /* 15655 * bcopy to low-order bits of ill_token 15656 * 15657 * XXX Temporary hack - currently, 15658 * all known tokens are 64 bits, 15659 * so I'll cheat for the moment. 15660 */ 15661 dlp = (union DL_primitives *)mp->b_rptr; 15662 15663 mutex_enter(&ill->ill_lock); 15664 bcopy((uchar_t *)(mp->b_rptr + 15665 dlp->physaddr_ack.dl_addr_offset), 15666 (void *)&ill->ill_token.s6_addr32[2], 15667 dlp->physaddr_ack.dl_addr_length); 15668 ill->ill_token_length = 15669 dlp->physaddr_ack.dl_addr_length; 15670 mutex_exit(&ill->ill_lock); 15671 } else { 15672 ASSERT(ill->ill_nd_lla_mp == NULL); 15673 mp_hw = copyb(mp); 15674 if (mp_hw == NULL) { 15675 err = ENOMEM; 15676 break; 15677 } 15678 dlp = (union DL_primitives *)mp_hw->b_rptr; 15679 mutex_enter(&ill->ill_lock); 15680 ill->ill_nd_lla_mp = mp_hw; 15681 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15682 dlp->physaddr_ack.dl_addr_offset; 15683 ill->ill_nd_lla_len = 15684 dlp->physaddr_ack.dl_addr_length; 15685 mutex_exit(&ill->ill_lock); 15686 } 15687 break; 15688 } 15689 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15690 ASSERT(ill->ill_phys_addr_mp == NULL); 15691 if (!ill->ill_ifname_pending) 15692 break; 15693 ill->ill_ifname_pending = 0; 15694 if (!ioctl_aborted) 15695 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15696 if (mp1 != NULL) { 15697 ASSERT(connp == NULL); 15698 q = ill->ill_wq; 15699 } 15700 /* 15701 * If any error acks received during the plumbing sequence, 15702 * ill_ifname_pending_err will be set. Break out and send up 15703 * the error to the pending ioctl. 15704 */ 15705 if (ill->ill_ifname_pending_err != 0) { 15706 err = ill->ill_ifname_pending_err; 15707 ill->ill_ifname_pending_err = 0; 15708 break; 15709 } 15710 /* 15711 * Get the interface token. If the zeroth interface 15712 * address is zero then set the address to the link local 15713 * address 15714 */ 15715 mp_hw = copyb(mp); 15716 if (mp_hw == NULL) { 15717 err = ENOMEM; 15718 break; 15719 } 15720 dlp = (union DL_primitives *)mp_hw->b_rptr; 15721 ill->ill_phys_addr_mp = mp_hw; 15722 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15723 dlp->physaddr_ack.dl_addr_offset; 15724 if (dlp->physaddr_ack.dl_addr_length == 0 || 15725 ill->ill_phys_addr_length == 0 || 15726 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15727 /* 15728 * Compatibility: atun driver returns a length of 0. 15729 * ipdptp has an ill_phys_addr_length of zero(from 15730 * DL_BIND_ACK) but a non-zero length here. 15731 * ipd has an ill_phys_addr_length of 4(from 15732 * DL_BIND_ACK) but a non-zero length here. 15733 */ 15734 ill->ill_phys_addr = NULL; 15735 } else if (dlp->physaddr_ack.dl_addr_length != 15736 ill->ill_phys_addr_length) { 15737 ip0dbg(("DL_PHYS_ADDR_ACK: " 15738 "Address length mismatch %d %d\n", 15739 dlp->physaddr_ack.dl_addr_length, 15740 ill->ill_phys_addr_length)); 15741 err = EINVAL; 15742 break; 15743 } 15744 mutex_enter(&ill->ill_lock); 15745 if (ill->ill_nd_lla_mp == NULL) { 15746 ill->ill_nd_lla_mp = copyb(mp_hw); 15747 if (ill->ill_nd_lla_mp == NULL) { 15748 err = ENOMEM; 15749 mutex_exit(&ill->ill_lock); 15750 break; 15751 } 15752 ill->ill_nd_lla = 15753 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15754 dlp->physaddr_ack.dl_addr_offset; 15755 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15756 } 15757 mutex_exit(&ill->ill_lock); 15758 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15759 (void) ill_setdefaulttoken(ill); 15760 15761 /* 15762 * If the ill zero interface has a zero address assign 15763 * it the proper link local address. 15764 */ 15765 ASSERT(ill->ill_ipif->ipif_id == 0); 15766 if (ipif != NULL && 15767 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15768 (void) ipif_setlinklocal(ipif); 15769 break; 15770 } 15771 case DL_OK_ACK: 15772 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15773 dlpi_prim_str((int)dloa->dl_correct_primitive), 15774 dloa->dl_correct_primitive)); 15775 switch (dloa->dl_correct_primitive) { 15776 case DL_UNBIND_REQ: 15777 case DL_ATTACH_REQ: 15778 case DL_DETACH_REQ: 15779 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15780 break; 15781 } 15782 break; 15783 default: 15784 break; 15785 } 15786 15787 freemsg(mp); 15788 if (mp1) { 15789 struct iocblk *iocp; 15790 int mode; 15791 15792 /* 15793 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15794 * SIOCSLIFNAME do a copyout. 15795 */ 15796 iocp = (struct iocblk *)mp1->b_rptr; 15797 15798 if (iocp->ioc_cmd == SIOCLIFADDIF || 15799 iocp->ioc_cmd == SIOCSLIFNAME) 15800 mode = COPYOUT; 15801 else 15802 mode = NO_COPYOUT; 15803 /* 15804 * The ioctl must complete now without EINPROGRESS 15805 * since ipsq_pending_mp_get has removed the ioctl mblk 15806 * from ipsq_pending_mp. Otherwise the ioctl will be 15807 * stuck for ever in the ipsq. 15808 */ 15809 ASSERT(err != EINPROGRESS); 15810 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15811 15812 } 15813 } 15814 15815 /* 15816 * ip_rput_other is called by ip_rput to handle messages modifying the global 15817 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15818 */ 15819 /* ARGSUSED */ 15820 void 15821 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15822 { 15823 ill_t *ill; 15824 struct iocblk *iocp; 15825 mblk_t *mp1; 15826 conn_t *connp = NULL; 15827 15828 ip1dbg(("ip_rput_other ")); 15829 ill = (ill_t *)q->q_ptr; 15830 /* 15831 * This routine is not a writer in the case of SIOCGTUNPARAM 15832 * in which case ipsq is NULL. 15833 */ 15834 if (ipsq != NULL) { 15835 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15836 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15837 } 15838 15839 switch (mp->b_datap->db_type) { 15840 case M_ERROR: 15841 case M_HANGUP: 15842 /* 15843 * The device has a problem. We force the ILL down. It can 15844 * be brought up again manually using SIOCSIFFLAGS (via 15845 * ifconfig or equivalent). 15846 */ 15847 ASSERT(ipsq != NULL); 15848 if (mp->b_rptr < mp->b_wptr) 15849 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15850 if (ill->ill_error == 0) 15851 ill->ill_error = ENXIO; 15852 if (!ill_down_start(q, mp)) 15853 return; 15854 ipif_all_down_tail(ipsq, q, mp, NULL); 15855 break; 15856 case M_IOCACK: 15857 iocp = (struct iocblk *)mp->b_rptr; 15858 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15859 switch (iocp->ioc_cmd) { 15860 case SIOCSTUNPARAM: 15861 case OSIOCSTUNPARAM: 15862 ASSERT(ipsq != NULL); 15863 /* 15864 * Finish socket ioctl passed through to tun. 15865 * We should have an IOCTL waiting on this. 15866 */ 15867 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15868 if (ill->ill_isv6) { 15869 struct iftun_req *ta; 15870 15871 /* 15872 * if a source or destination is 15873 * being set, try and set the link 15874 * local address for the tunnel 15875 */ 15876 ta = (struct iftun_req *)mp->b_cont-> 15877 b_cont->b_rptr; 15878 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15879 ipif_set_tun_llink(ill, ta); 15880 } 15881 15882 } 15883 if (mp1 != NULL) { 15884 /* 15885 * Now copy back the b_next/b_prev used by 15886 * mi code for the mi_copy* functions. 15887 * See ip_sioctl_tunparam() for the reason. 15888 * Also protect against missing b_cont. 15889 */ 15890 if (mp->b_cont != NULL) { 15891 mp->b_cont->b_next = 15892 mp1->b_cont->b_next; 15893 mp->b_cont->b_prev = 15894 mp1->b_cont->b_prev; 15895 } 15896 inet_freemsg(mp1); 15897 ASSERT(ipsq->ipsq_current_ipif != NULL); 15898 ASSERT(connp != NULL); 15899 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15900 iocp->ioc_error, NO_COPYOUT, 15901 ipsq->ipsq_current_ipif, ipsq); 15902 } else { 15903 ASSERT(connp == NULL); 15904 putnext(q, mp); 15905 } 15906 break; 15907 case SIOCGTUNPARAM: 15908 case OSIOCGTUNPARAM: 15909 /* 15910 * This is really M_IOCDATA from the tunnel driver. 15911 * convert back and complete the ioctl. 15912 * We should have an IOCTL waiting on this. 15913 */ 15914 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15915 if (mp1) { 15916 /* 15917 * Now copy back the b_next/b_prev used by 15918 * mi code for the mi_copy* functions. 15919 * See ip_sioctl_tunparam() for the reason. 15920 * Also protect against missing b_cont. 15921 */ 15922 if (mp->b_cont != NULL) { 15923 mp->b_cont->b_next = 15924 mp1->b_cont->b_next; 15925 mp->b_cont->b_prev = 15926 mp1->b_cont->b_prev; 15927 } 15928 inet_freemsg(mp1); 15929 if (iocp->ioc_error == 0) 15930 mp->b_datap->db_type = M_IOCDATA; 15931 ASSERT(connp != NULL); 15932 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15933 iocp->ioc_error, COPYOUT, NULL, NULL); 15934 } else { 15935 ASSERT(connp == NULL); 15936 putnext(q, mp); 15937 } 15938 break; 15939 default: 15940 break; 15941 } 15942 break; 15943 case M_IOCNAK: 15944 iocp = (struct iocblk *)mp->b_rptr; 15945 15946 switch (iocp->ioc_cmd) { 15947 int mode; 15948 ipif_t *ipif; 15949 15950 case DL_IOC_HDR_INFO: 15951 /* 15952 * If this was the first attempt turn of the 15953 * fastpath probing. 15954 */ 15955 mutex_enter(&ill->ill_lock); 15956 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 15957 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 15958 mutex_exit(&ill->ill_lock); 15959 ill_fastpath_nack(ill); 15960 ip1dbg(("ip_rput: DLPI fastpath off on " 15961 "interface %s\n", 15962 ill->ill_name)); 15963 } else { 15964 mutex_exit(&ill->ill_lock); 15965 } 15966 freemsg(mp); 15967 break; 15968 case SIOCSTUNPARAM: 15969 case OSIOCSTUNPARAM: 15970 ASSERT(ipsq != NULL); 15971 /* 15972 * Finish socket ioctl passed through to tun 15973 * We should have an IOCTL waiting on this. 15974 */ 15975 /* FALLTHRU */ 15976 case SIOCGTUNPARAM: 15977 case OSIOCGTUNPARAM: 15978 /* 15979 * This is really M_IOCDATA from the tunnel driver. 15980 * convert back and complete the ioctl. 15981 * We should have an IOCTL waiting on this. 15982 */ 15983 if (iocp->ioc_cmd == SIOCGTUNPARAM || 15984 iocp->ioc_cmd == OSIOCGTUNPARAM) { 15985 mp1 = ill_pending_mp_get(ill, &connp, 15986 iocp->ioc_id); 15987 mode = COPYOUT; 15988 ipsq = NULL; 15989 ipif = NULL; 15990 } else { 15991 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15992 mode = NO_COPYOUT; 15993 ASSERT(ipsq->ipsq_current_ipif != NULL); 15994 ipif = ipsq->ipsq_current_ipif; 15995 } 15996 if (mp1 != NULL) { 15997 /* 15998 * Now copy back the b_next/b_prev used by 15999 * mi code for the mi_copy* functions. 16000 * See ip_sioctl_tunparam() for the reason. 16001 * Also protect against missing b_cont. 16002 */ 16003 if (mp->b_cont != NULL) { 16004 mp->b_cont->b_next = 16005 mp1->b_cont->b_next; 16006 mp->b_cont->b_prev = 16007 mp1->b_cont->b_prev; 16008 } 16009 inet_freemsg(mp1); 16010 if (iocp->ioc_error == 0) 16011 iocp->ioc_error = EINVAL; 16012 ASSERT(connp != NULL); 16013 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16014 iocp->ioc_error, mode, ipif, ipsq); 16015 } else { 16016 ASSERT(connp == NULL); 16017 putnext(q, mp); 16018 } 16019 break; 16020 default: 16021 break; 16022 } 16023 default: 16024 break; 16025 } 16026 } 16027 16028 /* 16029 * NOTE : This function does not ire_refrele the ire argument passed in. 16030 * 16031 * IPQoS notes 16032 * IP policy is invoked twice for a forwarded packet, once on the read side 16033 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16034 * enabled. An additional parameter, in_ill, has been added for this purpose. 16035 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16036 * because ip_mroute drops this information. 16037 * 16038 */ 16039 void 16040 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16041 { 16042 uint32_t pkt_len; 16043 queue_t *q; 16044 uint32_t sum; 16045 #define rptr ((uchar_t *)ipha) 16046 uint32_t max_frag; 16047 uint32_t ill_index; 16048 16049 /* Get the ill_index of the incoming ILL */ 16050 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16051 16052 /* Initiate Read side IPPF processing */ 16053 if (IPP_ENABLED(IPP_FWD_IN)) { 16054 ip_process(IPP_FWD_IN, &mp, ill_index); 16055 if (mp == NULL) { 16056 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16057 "during IPPF processing\n")); 16058 return; 16059 } 16060 } 16061 16062 pkt_len = ntohs(ipha->ipha_length); 16063 16064 /* Adjust the checksum to reflect the ttl decrement. */ 16065 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16066 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16067 16068 if (ipha->ipha_ttl-- <= 1) { 16069 if (ip_csum_hdr(ipha)) { 16070 BUMP_MIB(&ip_mib, ipInCksumErrs); 16071 goto drop_pkt; 16072 } 16073 /* 16074 * Note: ire_stq this will be NULL for multicast 16075 * datagrams using the long path through arp (the IRE 16076 * is not an IRE_CACHE). This should not cause 16077 * problems since we don't generate ICMP errors for 16078 * multicast packets. 16079 */ 16080 q = ire->ire_stq; 16081 if (q != NULL) { 16082 /* Sent by forwarding path, and router is global zone */ 16083 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16084 GLOBAL_ZONEID); 16085 } else 16086 freemsg(mp); 16087 return; 16088 } 16089 16090 /* 16091 * Don't forward if the interface is down 16092 */ 16093 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16094 BUMP_MIB(&ip_mib, ipInDiscards); 16095 ip2dbg(("ip_rput_forward:interface is down\n")); 16096 goto drop_pkt; 16097 } 16098 16099 /* Get the ill_index of the outgoing ILL */ 16100 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16101 16102 if (is_system_labeled()) { 16103 mblk_t *mp1; 16104 16105 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16106 BUMP_MIB(&ip_mib, ipForwProhibits); 16107 goto drop_pkt; 16108 } 16109 /* Size may have changed */ 16110 mp = mp1; 16111 ipha = (ipha_t *)mp->b_rptr; 16112 pkt_len = ntohs(ipha->ipha_length); 16113 } 16114 16115 /* Check if there are options to update */ 16116 if (!IS_SIMPLE_IPH(ipha)) { 16117 if (ip_csum_hdr(ipha)) { 16118 BUMP_MIB(&ip_mib, ipInCksumErrs); 16119 goto drop_pkt; 16120 } 16121 if (ip_rput_forward_options(mp, ipha, ire)) { 16122 return; 16123 } 16124 16125 ipha->ipha_hdr_checksum = 0; 16126 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16127 } 16128 max_frag = ire->ire_max_frag; 16129 if (pkt_len > max_frag) { 16130 /* 16131 * It needs fragging on its way out. We haven't 16132 * verified the header checksum yet. Since we 16133 * are going to put a surely good checksum in the 16134 * outgoing header, we have to make sure that it 16135 * was good coming in. 16136 */ 16137 if (ip_csum_hdr(ipha)) { 16138 BUMP_MIB(&ip_mib, ipInCksumErrs); 16139 goto drop_pkt; 16140 } 16141 /* Initiate Write side IPPF processing */ 16142 if (IPP_ENABLED(IPP_FWD_OUT)) { 16143 ip_process(IPP_FWD_OUT, &mp, ill_index); 16144 if (mp == NULL) { 16145 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16146 " during IPPF processing\n")); 16147 return; 16148 } 16149 } 16150 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16151 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16152 return; 16153 } 16154 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16155 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16156 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16157 /* ip_xmit_v4 always consumes the packet */ 16158 return; 16159 16160 drop_pkt:; 16161 ip1dbg(("ip_rput_forward: drop pkt\n")); 16162 freemsg(mp); 16163 #undef rptr 16164 } 16165 16166 void 16167 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16168 { 16169 ire_t *ire; 16170 16171 ASSERT(!ipif->ipif_isv6); 16172 /* 16173 * Find an IRE which matches the destination and the outgoing 16174 * queue in the cache table. All we need is an IRE_CACHE which 16175 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16176 * then it is enough to have some IRE_CACHE in the group. 16177 */ 16178 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16179 dst = ipif->ipif_pp_dst_addr; 16180 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16181 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16182 if (ire == NULL) { 16183 /* 16184 * Mark this packet to make it be delivered to 16185 * ip_rput_forward after the new ire has been 16186 * created. 16187 */ 16188 mp->b_prev = NULL; 16189 mp->b_next = mp; 16190 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16191 NULL, 0, GLOBAL_ZONEID); 16192 } else { 16193 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16194 IRE_REFRELE(ire); 16195 } 16196 } 16197 16198 /* Update any source route, record route or timestamp options */ 16199 static int 16200 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16201 { 16202 ipoptp_t opts; 16203 uchar_t *opt; 16204 uint8_t optval; 16205 uint8_t optlen; 16206 ipaddr_t dst; 16207 uint32_t ts; 16208 ire_t *dst_ire = NULL; 16209 ire_t *tmp_ire = NULL; 16210 timestruc_t now; 16211 16212 ip2dbg(("ip_rput_forward_options\n")); 16213 dst = ipha->ipha_dst; 16214 for (optval = ipoptp_first(&opts, ipha); 16215 optval != IPOPT_EOL; 16216 optval = ipoptp_next(&opts)) { 16217 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16218 opt = opts.ipoptp_cur; 16219 optlen = opts.ipoptp_len; 16220 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16221 optval, opts.ipoptp_len)); 16222 switch (optval) { 16223 uint32_t off; 16224 case IPOPT_SSRR: 16225 case IPOPT_LSRR: 16226 /* Check if adminstratively disabled */ 16227 if (!ip_forward_src_routed) { 16228 BUMP_MIB(&ip_mib, ipForwProhibits); 16229 if (ire->ire_stq != NULL) { 16230 /* 16231 * Sent by forwarding path, and router 16232 * is global zone 16233 */ 16234 icmp_unreachable(ire->ire_stq, mp, 16235 ICMP_SOURCE_ROUTE_FAILED, 16236 GLOBAL_ZONEID); 16237 } else { 16238 ip0dbg(("ip_rput_forward_options: " 16239 "unable to send unreach\n")); 16240 freemsg(mp); 16241 } 16242 return (-1); 16243 } 16244 16245 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16246 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16247 if (dst_ire == NULL) { 16248 /* 16249 * Must be partial since ip_rput_options 16250 * checked for strict. 16251 */ 16252 break; 16253 } 16254 off = opt[IPOPT_OFFSET]; 16255 off--; 16256 redo_srr: 16257 if (optlen < IP_ADDR_LEN || 16258 off > optlen - IP_ADDR_LEN) { 16259 /* End of source route */ 16260 ip1dbg(( 16261 "ip_rput_forward_options: end of SR\n")); 16262 ire_refrele(dst_ire); 16263 break; 16264 } 16265 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16266 bcopy(&ire->ire_src_addr, (char *)opt + off, 16267 IP_ADDR_LEN); 16268 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16269 ntohl(dst))); 16270 16271 /* 16272 * Check if our address is present more than 16273 * once as consecutive hops in source route. 16274 */ 16275 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16276 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16277 if (tmp_ire != NULL) { 16278 ire_refrele(tmp_ire); 16279 off += IP_ADDR_LEN; 16280 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16281 goto redo_srr; 16282 } 16283 ipha->ipha_dst = dst; 16284 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16285 ire_refrele(dst_ire); 16286 break; 16287 case IPOPT_RR: 16288 off = opt[IPOPT_OFFSET]; 16289 off--; 16290 if (optlen < IP_ADDR_LEN || 16291 off > optlen - IP_ADDR_LEN) { 16292 /* No more room - ignore */ 16293 ip1dbg(( 16294 "ip_rput_forward_options: end of RR\n")); 16295 break; 16296 } 16297 bcopy(&ire->ire_src_addr, (char *)opt + off, 16298 IP_ADDR_LEN); 16299 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16300 break; 16301 case IPOPT_TS: 16302 /* Insert timestamp if there is room */ 16303 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16304 case IPOPT_TS_TSONLY: 16305 off = IPOPT_TS_TIMELEN; 16306 break; 16307 case IPOPT_TS_PRESPEC: 16308 case IPOPT_TS_PRESPEC_RFC791: 16309 /* Verify that the address matched */ 16310 off = opt[IPOPT_OFFSET] - 1; 16311 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16312 dst_ire = ire_ctable_lookup(dst, 0, 16313 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16314 MATCH_IRE_TYPE); 16315 16316 if (dst_ire == NULL) { 16317 /* Not for us */ 16318 break; 16319 } 16320 ire_refrele(dst_ire); 16321 /* FALLTHRU */ 16322 case IPOPT_TS_TSANDADDR: 16323 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16324 break; 16325 default: 16326 /* 16327 * ip_*put_options should have already 16328 * dropped this packet. 16329 */ 16330 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16331 "unknown IT - bug in ip_rput_options?\n"); 16332 return (0); /* Keep "lint" happy */ 16333 } 16334 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16335 /* Increase overflow counter */ 16336 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16337 opt[IPOPT_POS_OV_FLG] = 16338 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16339 (off << 4)); 16340 break; 16341 } 16342 off = opt[IPOPT_OFFSET] - 1; 16343 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16344 case IPOPT_TS_PRESPEC: 16345 case IPOPT_TS_PRESPEC_RFC791: 16346 case IPOPT_TS_TSANDADDR: 16347 bcopy(&ire->ire_src_addr, 16348 (char *)opt + off, IP_ADDR_LEN); 16349 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16350 /* FALLTHRU */ 16351 case IPOPT_TS_TSONLY: 16352 off = opt[IPOPT_OFFSET] - 1; 16353 /* Compute # of milliseconds since midnight */ 16354 gethrestime(&now); 16355 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16356 now.tv_nsec / (NANOSEC / MILLISEC); 16357 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16358 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16359 break; 16360 } 16361 break; 16362 } 16363 } 16364 return (0); 16365 } 16366 16367 /* 16368 * This is called after processing at least one of AH/ESP headers. 16369 * 16370 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16371 * the actual, physical interface on which the packet was received, 16372 * but, when ip_strict_dst_multihoming is set to 1, could be the 16373 * interface which had the ipha_dst configured when the packet went 16374 * through ip_rput. The ill_index corresponding to the recv_ill 16375 * is saved in ipsec_in_rill_index 16376 */ 16377 void 16378 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16379 { 16380 mblk_t *mp; 16381 ipaddr_t dst; 16382 in6_addr_t *v6dstp; 16383 ipha_t *ipha; 16384 ip6_t *ip6h; 16385 ipsec_in_t *ii; 16386 boolean_t ill_need_rele = B_FALSE; 16387 boolean_t rill_need_rele = B_FALSE; 16388 boolean_t ire_need_rele = B_FALSE; 16389 16390 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16391 ASSERT(ii->ipsec_in_ill_index != 0); 16392 16393 mp = ipsec_mp->b_cont; 16394 ASSERT(mp != NULL); 16395 16396 16397 if (ill == NULL) { 16398 ASSERT(recv_ill == NULL); 16399 /* 16400 * We need to get the original queue on which ip_rput_local 16401 * or ip_rput_data_v6 was called. 16402 */ 16403 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16404 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16405 ill_need_rele = B_TRUE; 16406 16407 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16408 recv_ill = ill_lookup_on_ifindex( 16409 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16410 NULL, NULL, NULL, NULL); 16411 rill_need_rele = B_TRUE; 16412 } else { 16413 recv_ill = ill; 16414 } 16415 16416 if ((ill == NULL) || (recv_ill == NULL)) { 16417 ip0dbg(("ip_fanout_proto_again: interface " 16418 "disappeared\n")); 16419 if (ill != NULL) 16420 ill_refrele(ill); 16421 if (recv_ill != NULL) 16422 ill_refrele(recv_ill); 16423 freemsg(ipsec_mp); 16424 return; 16425 } 16426 } 16427 16428 ASSERT(ill != NULL && recv_ill != NULL); 16429 16430 if (mp->b_datap->db_type == M_CTL) { 16431 /* 16432 * AH/ESP is returning the ICMP message after 16433 * removing their headers. Fanout again till 16434 * it gets to the right protocol. 16435 */ 16436 if (ii->ipsec_in_v4) { 16437 icmph_t *icmph; 16438 int iph_hdr_length; 16439 int hdr_length; 16440 16441 ipha = (ipha_t *)mp->b_rptr; 16442 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16443 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16444 ipha = (ipha_t *)&icmph[1]; 16445 hdr_length = IPH_HDR_LENGTH(ipha); 16446 /* 16447 * icmp_inbound_error_fanout may need to do pullupmsg. 16448 * Reset the type to M_DATA. 16449 */ 16450 mp->b_datap->db_type = M_DATA; 16451 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16452 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16453 B_FALSE, ill, ii->ipsec_in_zoneid); 16454 } else { 16455 icmp6_t *icmp6; 16456 int hdr_length; 16457 16458 ip6h = (ip6_t *)mp->b_rptr; 16459 /* Don't call hdr_length_v6() unless you have to. */ 16460 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16461 hdr_length = ip_hdr_length_v6(mp, ip6h); 16462 else 16463 hdr_length = IPV6_HDR_LEN; 16464 16465 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16466 /* 16467 * icmp_inbound_error_fanout_v6 may need to do 16468 * pullupmsg. Reset the type to M_DATA. 16469 */ 16470 mp->b_datap->db_type = M_DATA; 16471 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16472 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16473 } 16474 if (ill_need_rele) 16475 ill_refrele(ill); 16476 if (rill_need_rele) 16477 ill_refrele(recv_ill); 16478 return; 16479 } 16480 16481 if (ii->ipsec_in_v4) { 16482 ipha = (ipha_t *)mp->b_rptr; 16483 dst = ipha->ipha_dst; 16484 if (CLASSD(dst)) { 16485 /* 16486 * Multicast has to be delivered to all streams. 16487 */ 16488 dst = INADDR_BROADCAST; 16489 } 16490 16491 if (ire == NULL) { 16492 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16493 MBLK_GETLABEL(mp)); 16494 if (ire == NULL) { 16495 if (ill_need_rele) 16496 ill_refrele(ill); 16497 if (rill_need_rele) 16498 ill_refrele(recv_ill); 16499 ip1dbg(("ip_fanout_proto_again: " 16500 "IRE not found")); 16501 freemsg(ipsec_mp); 16502 return; 16503 } 16504 ire_need_rele = B_TRUE; 16505 } 16506 16507 switch (ipha->ipha_protocol) { 16508 case IPPROTO_UDP: 16509 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16510 recv_ill); 16511 if (ire_need_rele) 16512 ire_refrele(ire); 16513 break; 16514 case IPPROTO_TCP: 16515 if (!ire_need_rele) 16516 IRE_REFHOLD(ire); 16517 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16518 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16519 IRE_REFRELE(ire); 16520 if (mp != NULL) 16521 squeue_enter_chain(GET_SQUEUE(mp), mp, 16522 mp, 1, SQTAG_IP_PROTO_AGAIN); 16523 break; 16524 case IPPROTO_SCTP: 16525 if (!ire_need_rele) 16526 IRE_REFHOLD(ire); 16527 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16528 ipsec_mp, 0, ill->ill_rq, dst); 16529 break; 16530 default: 16531 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16532 recv_ill); 16533 if (ire_need_rele) 16534 ire_refrele(ire); 16535 break; 16536 } 16537 } else { 16538 uint32_t rput_flags = 0; 16539 16540 ip6h = (ip6_t *)mp->b_rptr; 16541 v6dstp = &ip6h->ip6_dst; 16542 /* 16543 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16544 * address. 16545 * 16546 * Currently, we don't store that state in the IPSEC_IN 16547 * message, and we may need to. 16548 */ 16549 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16550 IP6_IN_LLMCAST : 0); 16551 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16552 NULL, NULL); 16553 } 16554 if (ill_need_rele) 16555 ill_refrele(ill); 16556 if (rill_need_rele) 16557 ill_refrele(recv_ill); 16558 } 16559 16560 /* 16561 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16562 * returns 'true' if there are still fragments left on the queue, in 16563 * which case we restart the timer. 16564 */ 16565 void 16566 ill_frag_timer(void *arg) 16567 { 16568 ill_t *ill = (ill_t *)arg; 16569 boolean_t frag_pending; 16570 16571 mutex_enter(&ill->ill_lock); 16572 ASSERT(!ill->ill_fragtimer_executing); 16573 if (ill->ill_state_flags & ILL_CONDEMNED) { 16574 ill->ill_frag_timer_id = 0; 16575 mutex_exit(&ill->ill_lock); 16576 return; 16577 } 16578 ill->ill_fragtimer_executing = 1; 16579 mutex_exit(&ill->ill_lock); 16580 16581 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16582 16583 /* 16584 * Restart the timer, if we have fragments pending or if someone 16585 * wanted us to be scheduled again. 16586 */ 16587 mutex_enter(&ill->ill_lock); 16588 ill->ill_fragtimer_executing = 0; 16589 ill->ill_frag_timer_id = 0; 16590 if (frag_pending || ill->ill_fragtimer_needrestart) 16591 ill_frag_timer_start(ill); 16592 mutex_exit(&ill->ill_lock); 16593 } 16594 16595 void 16596 ill_frag_timer_start(ill_t *ill) 16597 { 16598 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16599 16600 /* If the ill is closing or opening don't proceed */ 16601 if (ill->ill_state_flags & ILL_CONDEMNED) 16602 return; 16603 16604 if (ill->ill_fragtimer_executing) { 16605 /* 16606 * ill_frag_timer is currently executing. Just record the 16607 * the fact that we want the timer to be restarted. 16608 * ill_frag_timer will post a timeout before it returns, 16609 * ensuring it will be called again. 16610 */ 16611 ill->ill_fragtimer_needrestart = 1; 16612 return; 16613 } 16614 16615 if (ill->ill_frag_timer_id == 0) { 16616 /* 16617 * The timer is neither running nor is the timeout handler 16618 * executing. Post a timeout so that ill_frag_timer will be 16619 * called 16620 */ 16621 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16622 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16623 ill->ill_fragtimer_needrestart = 0; 16624 } 16625 } 16626 16627 /* 16628 * This routine is needed for loopback when forwarding multicasts. 16629 * 16630 * IPQoS Notes: 16631 * IPPF processing is done in fanout routines. 16632 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16633 * processing for IPSec packets is done when it comes back in clear. 16634 * NOTE : The callers of this function need to do the ire_refrele for the 16635 * ire that is being passed in. 16636 */ 16637 void 16638 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16639 ill_t *recv_ill) 16640 { 16641 ill_t *ill = (ill_t *)q->q_ptr; 16642 uint32_t sum; 16643 uint32_t u1; 16644 uint32_t u2; 16645 int hdr_length; 16646 boolean_t mctl_present; 16647 mblk_t *first_mp = mp; 16648 mblk_t *hada_mp = NULL; 16649 ipha_t *inner_ipha; 16650 16651 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16652 "ip_rput_locl_start: q %p", q); 16653 16654 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16655 16656 16657 #define rptr ((uchar_t *)ipha) 16658 #define iphs ((uint16_t *)ipha) 16659 16660 /* 16661 * no UDP or TCP packet should come here anymore. 16662 */ 16663 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16664 (ipha->ipha_protocol != IPPROTO_UDP)); 16665 16666 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16667 if (mctl_present && 16668 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16669 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16670 16671 /* 16672 * It's an IPsec accelerated packet. 16673 * Keep a pointer to the data attributes around until 16674 * we allocate the ipsec_info_t. 16675 */ 16676 IPSECHW_DEBUG(IPSECHW_PKT, 16677 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16678 hada_mp = first_mp; 16679 hada_mp->b_cont = NULL; 16680 /* 16681 * Since it is accelerated, it comes directly from 16682 * the ill and the data attributes is followed by 16683 * the packet data. 16684 */ 16685 ASSERT(mp->b_datap->db_type != M_CTL); 16686 first_mp = mp; 16687 mctl_present = B_FALSE; 16688 } 16689 16690 /* 16691 * IF M_CTL is not present, then ipsec_in_is_secure 16692 * should return B_TRUE. There is a case where loopback 16693 * packets has an M_CTL in the front with all the 16694 * IPSEC options set to IPSEC_PREF_NEVER - which means 16695 * ipsec_in_is_secure will return B_FALSE. As loopback 16696 * packets never comes here, it is safe to ASSERT the 16697 * following. 16698 */ 16699 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16700 16701 16702 /* u1 is # words of IP options */ 16703 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16704 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16705 16706 if (u1) { 16707 if (!ip_options_cksum(q, mp, ipha, ire)) { 16708 if (hada_mp != NULL) 16709 freemsg(hada_mp); 16710 return; 16711 } 16712 } else { 16713 /* Check the IP header checksum. */ 16714 #define uph ((uint16_t *)ipha) 16715 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16716 uph[6] + uph[7] + uph[8] + uph[9]; 16717 #undef uph 16718 /* finish doing IP checksum */ 16719 sum = (sum & 0xFFFF) + (sum >> 16); 16720 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16721 /* 16722 * Don't verify header checksum if this packet is coming 16723 * back from AH/ESP as we already did it. 16724 */ 16725 if (!mctl_present && (sum && sum != 0xFFFF)) { 16726 BUMP_MIB(&ip_mib, ipInCksumErrs); 16727 goto drop_pkt; 16728 } 16729 } 16730 16731 /* 16732 * Count for SNMP of inbound packets for ire. As ip_proto_input 16733 * might be called more than once for secure packets, count only 16734 * the first time. 16735 */ 16736 if (!mctl_present) { 16737 UPDATE_IB_PKT_COUNT(ire); 16738 ire->ire_last_used_time = lbolt; 16739 } 16740 16741 /* Check for fragmentation offset. */ 16742 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16743 u1 = u2 & (IPH_MF | IPH_OFFSET); 16744 if (u1) { 16745 /* 16746 * We re-assemble fragments before we do the AH/ESP 16747 * processing. Thus, M_CTL should not be present 16748 * while we are re-assembling. 16749 */ 16750 ASSERT(!mctl_present); 16751 ASSERT(first_mp == mp); 16752 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16753 return; 16754 } 16755 /* 16756 * Make sure that first_mp points back to mp as 16757 * the mp we came in with could have changed in 16758 * ip_rput_fragment(). 16759 */ 16760 ipha = (ipha_t *)mp->b_rptr; 16761 first_mp = mp; 16762 } 16763 16764 /* 16765 * Clear hardware checksumming flag as it is currently only 16766 * used by TCP and UDP. 16767 */ 16768 DB_CKSUMFLAGS(mp) = 0; 16769 16770 /* Now we have a complete datagram, destined for this machine. */ 16771 u1 = IPH_HDR_LENGTH(ipha); 16772 switch (ipha->ipha_protocol) { 16773 case IPPROTO_ICMP: { 16774 ire_t *ire_zone; 16775 ilm_t *ilm; 16776 mblk_t *mp1; 16777 zoneid_t last_zoneid; 16778 16779 if (CLASSD(ipha->ipha_dst) && 16780 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16781 ASSERT(ire->ire_type == IRE_BROADCAST); 16782 /* 16783 * In the multicast case, applications may have joined 16784 * the group from different zones, so we need to deliver 16785 * the packet to each of them. Loop through the 16786 * multicast memberships structures (ilm) on the receive 16787 * ill and send a copy of the packet up each matching 16788 * one. However, we don't do this for multicasts sent on 16789 * the loopback interface (PHYI_LOOPBACK flag set) as 16790 * they must stay in the sender's zone. 16791 * 16792 * ilm_add_v6() ensures that ilms in the same zone are 16793 * contiguous in the ill_ilm list. We use this property 16794 * to avoid sending duplicates needed when two 16795 * applications in the same zone join the same group on 16796 * different logical interfaces: we ignore the ilm if 16797 * its zoneid is the same as the last matching one. 16798 * In addition, the sending of the packet for 16799 * ire_zoneid is delayed until all of the other ilms 16800 * have been exhausted. 16801 */ 16802 last_zoneid = -1; 16803 ILM_WALKER_HOLD(recv_ill); 16804 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16805 ilm = ilm->ilm_next) { 16806 if ((ilm->ilm_flags & ILM_DELETED) || 16807 ipha->ipha_dst != ilm->ilm_addr || 16808 ilm->ilm_zoneid == last_zoneid || 16809 ilm->ilm_zoneid == ire->ire_zoneid || 16810 ilm->ilm_zoneid == ALL_ZONES || 16811 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16812 continue; 16813 mp1 = ip_copymsg(first_mp); 16814 if (mp1 == NULL) 16815 continue; 16816 icmp_inbound(q, mp1, B_TRUE, ill, 16817 0, sum, mctl_present, B_TRUE, 16818 recv_ill, ilm->ilm_zoneid); 16819 last_zoneid = ilm->ilm_zoneid; 16820 } 16821 ILM_WALKER_RELE(recv_ill); 16822 } else if (ire->ire_type == IRE_BROADCAST) { 16823 /* 16824 * In the broadcast case, there may be many zones 16825 * which need a copy of the packet delivered to them. 16826 * There is one IRE_BROADCAST per broadcast address 16827 * and per zone; we walk those using a helper function. 16828 * In addition, the sending of the packet for ire is 16829 * delayed until all of the other ires have been 16830 * processed. 16831 */ 16832 IRB_REFHOLD(ire->ire_bucket); 16833 ire_zone = NULL; 16834 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16835 ire)) != NULL) { 16836 mp1 = ip_copymsg(first_mp); 16837 if (mp1 == NULL) 16838 continue; 16839 16840 UPDATE_IB_PKT_COUNT(ire_zone); 16841 ire_zone->ire_last_used_time = lbolt; 16842 icmp_inbound(q, mp1, B_TRUE, ill, 16843 0, sum, mctl_present, B_TRUE, 16844 recv_ill, ire_zone->ire_zoneid); 16845 } 16846 IRB_REFRELE(ire->ire_bucket); 16847 } 16848 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16849 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16850 ire->ire_zoneid); 16851 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16852 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16853 return; 16854 } 16855 case IPPROTO_IGMP: 16856 /* 16857 * If we are not willing to accept IGMP packets in clear, 16858 * then check with global policy. 16859 */ 16860 if (igmp_accept_clear_messages == 0) { 16861 first_mp = ipsec_check_global_policy(first_mp, NULL, 16862 ipha, NULL, mctl_present); 16863 if (first_mp == NULL) 16864 return; 16865 } 16866 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16867 freemsg(first_mp); 16868 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16869 BUMP_MIB(&ip_mib, ipInDiscards); 16870 return; 16871 } 16872 if (igmp_input(q, mp, ill)) { 16873 /* Bad packet - discarded by igmp_input */ 16874 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16875 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16876 if (mctl_present) 16877 freeb(first_mp); 16878 return; 16879 } 16880 /* 16881 * igmp_input() may have pulled up the message so ipha needs to 16882 * be reinitialized. 16883 */ 16884 ipha = (ipha_t *)mp->b_rptr; 16885 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16886 /* No user-level listener for IGMP packets */ 16887 goto drop_pkt; 16888 } 16889 /* deliver to local raw users */ 16890 break; 16891 case IPPROTO_PIM: 16892 /* 16893 * If we are not willing to accept PIM packets in clear, 16894 * then check with global policy. 16895 */ 16896 if (pim_accept_clear_messages == 0) { 16897 first_mp = ipsec_check_global_policy(first_mp, NULL, 16898 ipha, NULL, mctl_present); 16899 if (first_mp == NULL) 16900 return; 16901 } 16902 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16903 freemsg(first_mp); 16904 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16905 BUMP_MIB(&ip_mib, ipInDiscards); 16906 return; 16907 } 16908 if (pim_input(q, mp) != 0) { 16909 /* Bad packet - discarded by pim_input */ 16910 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16911 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16912 if (mctl_present) 16913 freeb(first_mp); 16914 return; 16915 } 16916 16917 /* 16918 * pim_input() may have pulled up the message so ipha needs to 16919 * be reinitialized. 16920 */ 16921 ipha = (ipha_t *)mp->b_rptr; 16922 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16923 /* No user-level listener for PIM packets */ 16924 goto drop_pkt; 16925 } 16926 /* deliver to local raw users */ 16927 break; 16928 case IPPROTO_ENCAP: 16929 /* 16930 * Handle self-encapsulated packets (IP-in-IP where 16931 * the inner addresses == the outer addresses). 16932 */ 16933 hdr_length = IPH_HDR_LENGTH(ipha); 16934 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16935 mp->b_wptr) { 16936 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16937 sizeof (ipha_t) - mp->b_rptr)) { 16938 BUMP_MIB(&ip_mib, ipInDiscards); 16939 freemsg(first_mp); 16940 return; 16941 } 16942 ipha = (ipha_t *)mp->b_rptr; 16943 } 16944 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16945 /* 16946 * Check the sanity of the inner IP header. 16947 */ 16948 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16949 BUMP_MIB(&ip_mib, ipInDiscards); 16950 freemsg(first_mp); 16951 return; 16952 } 16953 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16954 BUMP_MIB(&ip_mib, ipInDiscards); 16955 freemsg(first_mp); 16956 return; 16957 } 16958 if (inner_ipha->ipha_src == ipha->ipha_src && 16959 inner_ipha->ipha_dst == ipha->ipha_dst) { 16960 ipsec_in_t *ii; 16961 16962 /* 16963 * Self-encapsulated tunnel packet. Remove 16964 * the outer IP header and fanout again. 16965 * We also need to make sure that the inner 16966 * header is pulled up until options. 16967 */ 16968 mp->b_rptr = (uchar_t *)inner_ipha; 16969 ipha = inner_ipha; 16970 hdr_length = IPH_HDR_LENGTH(ipha); 16971 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16972 if (!pullupmsg(mp, (uchar_t *)ipha + 16973 + hdr_length - mp->b_rptr)) { 16974 freemsg(first_mp); 16975 return; 16976 } 16977 ipha = (ipha_t *)mp->b_rptr; 16978 } 16979 if (!mctl_present) { 16980 ASSERT(first_mp == mp); 16981 /* 16982 * This means that somebody is sending 16983 * Self-encapsualted packets without AH/ESP. 16984 * If AH/ESP was present, we would have already 16985 * allocated the first_mp. 16986 */ 16987 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 16988 NULL) { 16989 ip1dbg(("ip_proto_input: IPSEC_IN " 16990 "allocation failure.\n")); 16991 BUMP_MIB(&ip_mib, ipInDiscards); 16992 freemsg(mp); 16993 return; 16994 } 16995 first_mp->b_cont = mp; 16996 } 16997 /* 16998 * We generally store the ill_index if we need to 16999 * do IPSEC processing as we lose the ill queue when 17000 * we come back. But in this case, we never should 17001 * have to store the ill_index here as it should have 17002 * been stored previously when we processed the 17003 * AH/ESP header in this routine or for non-ipsec 17004 * cases, we still have the queue. But for some bad 17005 * packets from the wire, we can get to IPSEC after 17006 * this and we better store the index for that case. 17007 */ 17008 ill = (ill_t *)q->q_ptr; 17009 ii = (ipsec_in_t *)first_mp->b_rptr; 17010 ii->ipsec_in_ill_index = 17011 ill->ill_phyint->phyint_ifindex; 17012 ii->ipsec_in_rill_index = 17013 recv_ill->ill_phyint->phyint_ifindex; 17014 if (ii->ipsec_in_decaps) { 17015 /* 17016 * This packet is self-encapsulated multiple 17017 * times. We don't want to recurse infinitely. 17018 * To keep it simple, drop the packet. 17019 */ 17020 BUMP_MIB(&ip_mib, ipInDiscards); 17021 freemsg(first_mp); 17022 return; 17023 } 17024 ii->ipsec_in_decaps = B_TRUE; 17025 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 17026 return; 17027 } 17028 break; 17029 case IPPROTO_AH: 17030 case IPPROTO_ESP: { 17031 /* 17032 * Fast path for AH/ESP. If this is the first time 17033 * we are sending a datagram to AH/ESP, allocate 17034 * a IPSEC_IN message and prepend it. Otherwise, 17035 * just fanout. 17036 */ 17037 17038 int ipsec_rc; 17039 ipsec_in_t *ii; 17040 17041 IP_STAT(ipsec_proto_ahesp); 17042 if (!mctl_present) { 17043 ASSERT(first_mp == mp); 17044 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17045 ip1dbg(("ip_proto_input: IPSEC_IN " 17046 "allocation failure.\n")); 17047 freemsg(hada_mp); /* okay ifnull */ 17048 BUMP_MIB(&ip_mib, ipInDiscards); 17049 freemsg(mp); 17050 return; 17051 } 17052 /* 17053 * Store the ill_index so that when we come back 17054 * from IPSEC we ride on the same queue. 17055 */ 17056 ill = (ill_t *)q->q_ptr; 17057 ii = (ipsec_in_t *)first_mp->b_rptr; 17058 ii->ipsec_in_ill_index = 17059 ill->ill_phyint->phyint_ifindex; 17060 ii->ipsec_in_rill_index = 17061 recv_ill->ill_phyint->phyint_ifindex; 17062 first_mp->b_cont = mp; 17063 /* 17064 * Cache hardware acceleration info. 17065 */ 17066 if (hada_mp != NULL) { 17067 IPSECHW_DEBUG(IPSECHW_PKT, 17068 ("ip_rput_local: caching data attr.\n")); 17069 ii->ipsec_in_accelerated = B_TRUE; 17070 ii->ipsec_in_da = hada_mp; 17071 hada_mp = NULL; 17072 } 17073 } else { 17074 ii = (ipsec_in_t *)first_mp->b_rptr; 17075 } 17076 17077 if (!ipsec_loaded()) { 17078 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17079 ire->ire_zoneid); 17080 return; 17081 } 17082 17083 /* select inbound SA and have IPsec process the pkt */ 17084 if (ipha->ipha_protocol == IPPROTO_ESP) { 17085 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17086 if (esph == NULL) 17087 return; 17088 ASSERT(ii->ipsec_in_esp_sa != NULL); 17089 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17090 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17091 first_mp, esph); 17092 } else { 17093 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17094 if (ah == NULL) 17095 return; 17096 ASSERT(ii->ipsec_in_ah_sa != NULL); 17097 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17098 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17099 first_mp, ah); 17100 } 17101 17102 switch (ipsec_rc) { 17103 case IPSEC_STATUS_SUCCESS: 17104 break; 17105 case IPSEC_STATUS_FAILED: 17106 BUMP_MIB(&ip_mib, ipInDiscards); 17107 /* FALLTHRU */ 17108 case IPSEC_STATUS_PENDING: 17109 return; 17110 } 17111 /* we're done with IPsec processing, send it up */ 17112 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17113 return; 17114 } 17115 default: 17116 break; 17117 } 17118 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17119 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17120 ire->ire_zoneid)); 17121 goto drop_pkt; 17122 } 17123 /* 17124 * Handle protocols with which IP is less intimate. There 17125 * can be more than one stream bound to a particular 17126 * protocol. When this is the case, each one gets a copy 17127 * of any incoming packets. 17128 */ 17129 ip_fanout_proto(q, first_mp, ill, ipha, 17130 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17131 B_TRUE, recv_ill, ire->ire_zoneid); 17132 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17133 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17134 return; 17135 17136 drop_pkt: 17137 freemsg(first_mp); 17138 if (hada_mp != NULL) 17139 freeb(hada_mp); 17140 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17141 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17142 #undef rptr 17143 #undef iphs 17144 17145 } 17146 17147 /* 17148 * Update any source route, record route or timestamp options. 17149 * Check that we are at end of strict source route. 17150 * The options have already been checked for sanity in ip_rput_options(). 17151 */ 17152 static boolean_t 17153 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17154 { 17155 ipoptp_t opts; 17156 uchar_t *opt; 17157 uint8_t optval; 17158 uint8_t optlen; 17159 ipaddr_t dst; 17160 uint32_t ts; 17161 ire_t *dst_ire; 17162 timestruc_t now; 17163 zoneid_t zoneid; 17164 ill_t *ill; 17165 17166 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17167 17168 ip2dbg(("ip_rput_local_options\n")); 17169 17170 for (optval = ipoptp_first(&opts, ipha); 17171 optval != IPOPT_EOL; 17172 optval = ipoptp_next(&opts)) { 17173 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17174 opt = opts.ipoptp_cur; 17175 optlen = opts.ipoptp_len; 17176 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17177 optval, optlen)); 17178 switch (optval) { 17179 uint32_t off; 17180 case IPOPT_SSRR: 17181 case IPOPT_LSRR: 17182 off = opt[IPOPT_OFFSET]; 17183 off--; 17184 if (optlen < IP_ADDR_LEN || 17185 off > optlen - IP_ADDR_LEN) { 17186 /* End of source route */ 17187 ip1dbg(("ip_rput_local_options: end of SR\n")); 17188 break; 17189 } 17190 /* 17191 * This will only happen if two consecutive entries 17192 * in the source route contains our address or if 17193 * it is a packet with a loose source route which 17194 * reaches us before consuming the whole source route 17195 */ 17196 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17197 if (optval == IPOPT_SSRR) { 17198 goto bad_src_route; 17199 } 17200 /* 17201 * Hack: instead of dropping the packet truncate the 17202 * source route to what has been used by filling the 17203 * rest with IPOPT_NOP. 17204 */ 17205 opt[IPOPT_OLEN] = (uint8_t)off; 17206 while (off < optlen) { 17207 opt[off++] = IPOPT_NOP; 17208 } 17209 break; 17210 case IPOPT_RR: 17211 off = opt[IPOPT_OFFSET]; 17212 off--; 17213 if (optlen < IP_ADDR_LEN || 17214 off > optlen - IP_ADDR_LEN) { 17215 /* No more room - ignore */ 17216 ip1dbg(( 17217 "ip_rput_local_options: end of RR\n")); 17218 break; 17219 } 17220 bcopy(&ire->ire_src_addr, (char *)opt + off, 17221 IP_ADDR_LEN); 17222 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17223 break; 17224 case IPOPT_TS: 17225 /* Insert timestamp if there is romm */ 17226 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17227 case IPOPT_TS_TSONLY: 17228 off = IPOPT_TS_TIMELEN; 17229 break; 17230 case IPOPT_TS_PRESPEC: 17231 case IPOPT_TS_PRESPEC_RFC791: 17232 /* Verify that the address matched */ 17233 off = opt[IPOPT_OFFSET] - 1; 17234 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17235 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17236 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17237 if (dst_ire == NULL) { 17238 /* Not for us */ 17239 break; 17240 } 17241 ire_refrele(dst_ire); 17242 /* FALLTHRU */ 17243 case IPOPT_TS_TSANDADDR: 17244 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17245 break; 17246 default: 17247 /* 17248 * ip_*put_options should have already 17249 * dropped this packet. 17250 */ 17251 cmn_err(CE_PANIC, "ip_rput_local_options: " 17252 "unknown IT - bug in ip_rput_options?\n"); 17253 return (B_TRUE); /* Keep "lint" happy */ 17254 } 17255 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17256 /* Increase overflow counter */ 17257 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17258 opt[IPOPT_POS_OV_FLG] = 17259 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17260 (off << 4)); 17261 break; 17262 } 17263 off = opt[IPOPT_OFFSET] - 1; 17264 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17265 case IPOPT_TS_PRESPEC: 17266 case IPOPT_TS_PRESPEC_RFC791: 17267 case IPOPT_TS_TSANDADDR: 17268 bcopy(&ire->ire_src_addr, (char *)opt + off, 17269 IP_ADDR_LEN); 17270 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17271 /* FALLTHRU */ 17272 case IPOPT_TS_TSONLY: 17273 off = opt[IPOPT_OFFSET] - 1; 17274 /* Compute # of milliseconds since midnight */ 17275 gethrestime(&now); 17276 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17277 now.tv_nsec / (NANOSEC / MILLISEC); 17278 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17279 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17280 break; 17281 } 17282 break; 17283 } 17284 } 17285 return (B_TRUE); 17286 17287 bad_src_route: 17288 q = WR(q); 17289 if (q->q_next != NULL) 17290 ill = q->q_ptr; 17291 else 17292 ill = NULL; 17293 17294 /* make sure we clear any indication of a hardware checksum */ 17295 DB_CKSUMFLAGS(mp) = 0; 17296 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17297 if (zoneid == ALL_ZONES) 17298 freemsg(mp); 17299 else 17300 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17301 return (B_FALSE); 17302 17303 } 17304 17305 /* 17306 * Process IP options in an inbound packet. If an option affects the 17307 * effective destination address, return the next hop address via dstp. 17308 * Returns -1 if something fails in which case an ICMP error has been sent 17309 * and mp freed. 17310 */ 17311 static int 17312 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17313 { 17314 ipoptp_t opts; 17315 uchar_t *opt; 17316 uint8_t optval; 17317 uint8_t optlen; 17318 ipaddr_t dst; 17319 intptr_t code = 0; 17320 ire_t *ire = NULL; 17321 zoneid_t zoneid; 17322 ill_t *ill; 17323 17324 ip2dbg(("ip_rput_options\n")); 17325 dst = ipha->ipha_dst; 17326 for (optval = ipoptp_first(&opts, ipha); 17327 optval != IPOPT_EOL; 17328 optval = ipoptp_next(&opts)) { 17329 opt = opts.ipoptp_cur; 17330 optlen = opts.ipoptp_len; 17331 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17332 optval, optlen)); 17333 /* 17334 * Note: we need to verify the checksum before we 17335 * modify anything thus this routine only extracts the next 17336 * hop dst from any source route. 17337 */ 17338 switch (optval) { 17339 uint32_t off; 17340 case IPOPT_SSRR: 17341 case IPOPT_LSRR: 17342 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17343 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17344 if (ire == NULL) { 17345 if (optval == IPOPT_SSRR) { 17346 ip1dbg(("ip_rput_options: not next" 17347 " strict source route 0x%x\n", 17348 ntohl(dst))); 17349 code = (char *)&ipha->ipha_dst - 17350 (char *)ipha; 17351 goto param_prob; /* RouterReq's */ 17352 } 17353 ip2dbg(("ip_rput_options: " 17354 "not next source route 0x%x\n", 17355 ntohl(dst))); 17356 break; 17357 } 17358 ire_refrele(ire); 17359 17360 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17361 ip1dbg(( 17362 "ip_rput_options: bad option offset\n")); 17363 code = (char *)&opt[IPOPT_OLEN] - 17364 (char *)ipha; 17365 goto param_prob; 17366 } 17367 off = opt[IPOPT_OFFSET]; 17368 off--; 17369 redo_srr: 17370 if (optlen < IP_ADDR_LEN || 17371 off > optlen - IP_ADDR_LEN) { 17372 /* End of source route */ 17373 ip1dbg(("ip_rput_options: end of SR\n")); 17374 break; 17375 } 17376 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17377 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17378 ntohl(dst))); 17379 17380 /* 17381 * Check if our address is present more than 17382 * once as consecutive hops in source route. 17383 * XXX verify per-interface ip_forwarding 17384 * for source route? 17385 */ 17386 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17387 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17388 17389 if (ire != NULL) { 17390 ire_refrele(ire); 17391 off += IP_ADDR_LEN; 17392 goto redo_srr; 17393 } 17394 17395 if (dst == htonl(INADDR_LOOPBACK)) { 17396 ip1dbg(("ip_rput_options: loopback addr in " 17397 "source route!\n")); 17398 goto bad_src_route; 17399 } 17400 /* 17401 * For strict: verify that dst is directly 17402 * reachable. 17403 */ 17404 if (optval == IPOPT_SSRR) { 17405 ire = ire_ftable_lookup(dst, 0, 0, 17406 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17407 MBLK_GETLABEL(mp), 17408 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17409 if (ire == NULL) { 17410 ip1dbg(("ip_rput_options: SSRR not " 17411 "directly reachable: 0x%x\n", 17412 ntohl(dst))); 17413 goto bad_src_route; 17414 } 17415 ire_refrele(ire); 17416 } 17417 /* 17418 * Defer update of the offset and the record route 17419 * until the packet is forwarded. 17420 */ 17421 break; 17422 case IPOPT_RR: 17423 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17424 ip1dbg(( 17425 "ip_rput_options: bad option offset\n")); 17426 code = (char *)&opt[IPOPT_OLEN] - 17427 (char *)ipha; 17428 goto param_prob; 17429 } 17430 break; 17431 case IPOPT_TS: 17432 /* 17433 * Verify that length >= 5 and that there is either 17434 * room for another timestamp or that the overflow 17435 * counter is not maxed out. 17436 */ 17437 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17438 if (optlen < IPOPT_MINLEN_IT) { 17439 goto param_prob; 17440 } 17441 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17442 ip1dbg(( 17443 "ip_rput_options: bad option offset\n")); 17444 code = (char *)&opt[IPOPT_OFFSET] - 17445 (char *)ipha; 17446 goto param_prob; 17447 } 17448 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17449 case IPOPT_TS_TSONLY: 17450 off = IPOPT_TS_TIMELEN; 17451 break; 17452 case IPOPT_TS_TSANDADDR: 17453 case IPOPT_TS_PRESPEC: 17454 case IPOPT_TS_PRESPEC_RFC791: 17455 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17456 break; 17457 default: 17458 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17459 (char *)ipha; 17460 goto param_prob; 17461 } 17462 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17463 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17464 /* 17465 * No room and the overflow counter is 15 17466 * already. 17467 */ 17468 goto param_prob; 17469 } 17470 break; 17471 } 17472 } 17473 17474 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17475 *dstp = dst; 17476 return (0); 17477 } 17478 17479 ip1dbg(("ip_rput_options: error processing IP options.")); 17480 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17481 17482 param_prob: 17483 q = WR(q); 17484 if (q->q_next != NULL) 17485 ill = q->q_ptr; 17486 else 17487 ill = NULL; 17488 17489 /* make sure we clear any indication of a hardware checksum */ 17490 DB_CKSUMFLAGS(mp) = 0; 17491 /* Don't know whether this is for non-global or global/forwarding */ 17492 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17493 if (zoneid == ALL_ZONES) 17494 freemsg(mp); 17495 else 17496 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17497 return (-1); 17498 17499 bad_src_route: 17500 q = WR(q); 17501 if (q->q_next != NULL) 17502 ill = q->q_ptr; 17503 else 17504 ill = NULL; 17505 17506 /* make sure we clear any indication of a hardware checksum */ 17507 DB_CKSUMFLAGS(mp) = 0; 17508 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17509 if (zoneid == ALL_ZONES) 17510 freemsg(mp); 17511 else 17512 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17513 return (-1); 17514 } 17515 17516 /* 17517 * IP & ICMP info in >=14 msg's ... 17518 * - ip fixed part (mib2_ip_t) 17519 * - icmp fixed part (mib2_icmp_t) 17520 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17521 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17522 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 17523 * - ipRouteAttributeTable (ip 102) labeled routes 17524 * - ip multicast membership (ip_member_t) 17525 * - ip multicast source filtering (ip_grpsrc_t) 17526 * - igmp fixed part (struct igmpstat) 17527 * - multicast routing stats (struct mrtstat) 17528 * - multicast routing vifs (array of struct vifctl) 17529 * - multicast routing routes (array of struct mfcctl) 17530 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17531 * One per ill plus one generic 17532 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17533 * One per ill plus one generic 17534 * - ipv6RouteEntry all IPv6 IREs 17535 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17536 * - ipv6NetToMediaEntry all Neighbor Cache entries 17537 * - ipv6AddrEntry all IPv6 ipifs 17538 * - ipv6 multicast membership (ipv6_member_t) 17539 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17540 * 17541 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 17542 * already present. 17543 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17544 * already filled in by the caller. 17545 * Return value of 0 indicates that no messages were sent and caller 17546 * should free mpctl. 17547 */ 17548 int 17549 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17550 { 17551 17552 if (mpctl == NULL || mpctl->b_cont == NULL) { 17553 return (0); 17554 } 17555 17556 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17557 return (1); 17558 } 17559 17560 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17561 return (1); 17562 } 17563 17564 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17565 return (1); 17566 } 17567 17568 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17569 return (1); 17570 } 17571 17572 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17573 return (1); 17574 } 17575 17576 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17577 return (1); 17578 } 17579 17580 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17581 return (1); 17582 } 17583 17584 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17585 return (1); 17586 } 17587 17588 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17589 return (1); 17590 } 17591 17592 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17593 return (1); 17594 } 17595 17596 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17597 return (1); 17598 } 17599 17600 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17601 return (1); 17602 } 17603 17604 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17605 return (1); 17606 } 17607 17608 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17609 return (1); 17610 } 17611 17612 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17613 return (1); 17614 } 17615 17616 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17617 return (1); 17618 } 17619 17620 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17621 return (1); 17622 } 17623 freemsg(mpctl); 17624 return (1); 17625 } 17626 17627 17628 /* Get global IPv4 statistics */ 17629 static mblk_t * 17630 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17631 { 17632 struct opthdr *optp; 17633 mblk_t *mp2ctl; 17634 17635 /* 17636 * make a copy of the original message 17637 */ 17638 mp2ctl = copymsg(mpctl); 17639 17640 /* fixed length IP structure... */ 17641 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17642 optp->level = MIB2_IP; 17643 optp->name = 0; 17644 SET_MIB(ip_mib.ipForwarding, 17645 (WE_ARE_FORWARDING ? 1 : 2)); 17646 SET_MIB(ip_mib.ipDefaultTTL, 17647 (uint32_t)ip_def_ttl); 17648 SET_MIB(ip_mib.ipReasmTimeout, 17649 ip_g_frag_timeout); 17650 SET_MIB(ip_mib.ipAddrEntrySize, 17651 sizeof (mib2_ipAddrEntry_t)); 17652 SET_MIB(ip_mib.ipRouteEntrySize, 17653 sizeof (mib2_ipRouteEntry_t)); 17654 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17655 sizeof (mib2_ipNetToMediaEntry_t)); 17656 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17657 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17658 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17659 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17660 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17661 (int)sizeof (ip_mib))) { 17662 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17663 (uint_t)sizeof (ip_mib))); 17664 } 17665 17666 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17667 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17668 (int)optp->level, (int)optp->name, (int)optp->len)); 17669 qreply(q, mpctl); 17670 return (mp2ctl); 17671 } 17672 17673 /* Global IPv4 ICMP statistics */ 17674 static mblk_t * 17675 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17676 { 17677 struct opthdr *optp; 17678 mblk_t *mp2ctl; 17679 17680 /* 17681 * Make a copy of the original message 17682 */ 17683 mp2ctl = copymsg(mpctl); 17684 17685 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17686 optp->level = MIB2_ICMP; 17687 optp->name = 0; 17688 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17689 (int)sizeof (icmp_mib))) { 17690 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17691 (uint_t)sizeof (icmp_mib))); 17692 } 17693 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17694 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17695 (int)optp->level, (int)optp->name, (int)optp->len)); 17696 qreply(q, mpctl); 17697 return (mp2ctl); 17698 } 17699 17700 /* Global IPv4 IGMP statistics */ 17701 static mblk_t * 17702 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17703 { 17704 struct opthdr *optp; 17705 mblk_t *mp2ctl; 17706 17707 /* 17708 * make a copy of the original message 17709 */ 17710 mp2ctl = copymsg(mpctl); 17711 17712 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17713 optp->level = EXPER_IGMP; 17714 optp->name = 0; 17715 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17716 (int)sizeof (igmpstat))) { 17717 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17718 (uint_t)sizeof (igmpstat))); 17719 } 17720 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17721 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17722 (int)optp->level, (int)optp->name, (int)optp->len)); 17723 qreply(q, mpctl); 17724 return (mp2ctl); 17725 } 17726 17727 /* Global IPv4 Multicast Routing statistics */ 17728 static mblk_t * 17729 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17730 { 17731 struct opthdr *optp; 17732 mblk_t *mp2ctl; 17733 17734 /* 17735 * make a copy of the original message 17736 */ 17737 mp2ctl = copymsg(mpctl); 17738 17739 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17740 optp->level = EXPER_DVMRP; 17741 optp->name = 0; 17742 if (!ip_mroute_stats(mpctl->b_cont)) { 17743 ip0dbg(("ip_mroute_stats: failed\n")); 17744 } 17745 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17746 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17747 (int)optp->level, (int)optp->name, (int)optp->len)); 17748 qreply(q, mpctl); 17749 return (mp2ctl); 17750 } 17751 17752 /* IPv4 address information */ 17753 static mblk_t * 17754 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17755 { 17756 struct opthdr *optp; 17757 mblk_t *mp2ctl; 17758 mblk_t *mp_tail = NULL; 17759 ill_t *ill; 17760 ipif_t *ipif; 17761 uint_t bitval; 17762 mib2_ipAddrEntry_t mae; 17763 zoneid_t zoneid; 17764 ill_walk_context_t ctx; 17765 17766 /* 17767 * make a copy of the original message 17768 */ 17769 mp2ctl = copymsg(mpctl); 17770 17771 /* ipAddrEntryTable */ 17772 17773 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17774 optp->level = MIB2_IP; 17775 optp->name = MIB2_IP_ADDR; 17776 zoneid = Q_TO_CONN(q)->conn_zoneid; 17777 17778 rw_enter(&ill_g_lock, RW_READER); 17779 ill = ILL_START_WALK_V4(&ctx); 17780 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17781 for (ipif = ill->ill_ipif; ipif != NULL; 17782 ipif = ipif->ipif_next) { 17783 if (ipif->ipif_zoneid != zoneid && 17784 ipif->ipif_zoneid != ALL_ZONES) 17785 continue; 17786 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17787 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17788 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17789 17790 (void) ipif_get_name(ipif, 17791 mae.ipAdEntIfIndex.o_bytes, 17792 OCTET_LENGTH); 17793 mae.ipAdEntIfIndex.o_length = 17794 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17795 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17796 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17797 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17798 mae.ipAdEntInfo.ae_subnet_len = 17799 ip_mask_to_plen(ipif->ipif_net_mask); 17800 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17801 for (bitval = 1; 17802 bitval && 17803 !(bitval & ipif->ipif_brd_addr); 17804 bitval <<= 1) 17805 noop; 17806 mae.ipAdEntBcastAddr = bitval; 17807 mae.ipAdEntReasmMaxSize = 65535; 17808 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17809 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17810 mae.ipAdEntInfo.ae_broadcast_addr = 17811 ipif->ipif_brd_addr; 17812 mae.ipAdEntInfo.ae_pp_dst_addr = 17813 ipif->ipif_pp_dst_addr; 17814 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17815 ill->ill_flags | ill->ill_phyint->phyint_flags; 17816 17817 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17818 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17819 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17820 "allocate %u bytes\n", 17821 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17822 } 17823 } 17824 } 17825 rw_exit(&ill_g_lock); 17826 17827 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17828 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17829 (int)optp->level, (int)optp->name, (int)optp->len)); 17830 qreply(q, mpctl); 17831 return (mp2ctl); 17832 } 17833 17834 /* IPv6 address information */ 17835 static mblk_t * 17836 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17837 { 17838 struct opthdr *optp; 17839 mblk_t *mp2ctl; 17840 mblk_t *mp_tail = NULL; 17841 ill_t *ill; 17842 ipif_t *ipif; 17843 mib2_ipv6AddrEntry_t mae6; 17844 zoneid_t zoneid; 17845 ill_walk_context_t ctx; 17846 17847 /* 17848 * make a copy of the original message 17849 */ 17850 mp2ctl = copymsg(mpctl); 17851 17852 /* ipv6AddrEntryTable */ 17853 17854 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17855 optp->level = MIB2_IP6; 17856 optp->name = MIB2_IP6_ADDR; 17857 zoneid = Q_TO_CONN(q)->conn_zoneid; 17858 17859 rw_enter(&ill_g_lock, RW_READER); 17860 ill = ILL_START_WALK_V6(&ctx); 17861 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17862 for (ipif = ill->ill_ipif; ipif != NULL; 17863 ipif = ipif->ipif_next) { 17864 if (ipif->ipif_zoneid != zoneid && 17865 ipif->ipif_zoneid != ALL_ZONES) 17866 continue; 17867 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17868 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17869 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17870 17871 (void) ipif_get_name(ipif, 17872 mae6.ipv6AddrIfIndex.o_bytes, 17873 OCTET_LENGTH); 17874 mae6.ipv6AddrIfIndex.o_length = 17875 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17876 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17877 mae6.ipv6AddrPfxLength = 17878 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17879 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17880 mae6.ipv6AddrInfo.ae_subnet_len = 17881 mae6.ipv6AddrPfxLength; 17882 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17883 17884 /* Type: stateless(1), stateful(2), unknown(3) */ 17885 if (ipif->ipif_flags & IPIF_ADDRCONF) 17886 mae6.ipv6AddrType = 1; 17887 else 17888 mae6.ipv6AddrType = 2; 17889 /* Anycast: true(1), false(2) */ 17890 if (ipif->ipif_flags & IPIF_ANYCAST) 17891 mae6.ipv6AddrAnycastFlag = 1; 17892 else 17893 mae6.ipv6AddrAnycastFlag = 2; 17894 17895 /* 17896 * Address status: preferred(1), deprecated(2), 17897 * invalid(3), inaccessible(4), unknown(5) 17898 */ 17899 if (ipif->ipif_flags & IPIF_NOLOCAL) 17900 mae6.ipv6AddrStatus = 3; 17901 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17902 mae6.ipv6AddrStatus = 2; 17903 else 17904 mae6.ipv6AddrStatus = 1; 17905 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17906 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17907 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17908 ipif->ipif_v6pp_dst_addr; 17909 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17910 ill->ill_flags | ill->ill_phyint->phyint_flags; 17911 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17912 (char *)&mae6, 17913 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17914 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17915 "allocate %u bytes\n", 17916 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17917 } 17918 } 17919 } 17920 rw_exit(&ill_g_lock); 17921 17922 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17923 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17924 (int)optp->level, (int)optp->name, (int)optp->len)); 17925 qreply(q, mpctl); 17926 return (mp2ctl); 17927 } 17928 17929 /* IPv4 multicast group membership. */ 17930 static mblk_t * 17931 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17932 { 17933 struct opthdr *optp; 17934 mblk_t *mp2ctl; 17935 ill_t *ill; 17936 ipif_t *ipif; 17937 ilm_t *ilm; 17938 ip_member_t ipm; 17939 mblk_t *mp_tail = NULL; 17940 ill_walk_context_t ctx; 17941 zoneid_t zoneid; 17942 17943 /* 17944 * make a copy of the original message 17945 */ 17946 mp2ctl = copymsg(mpctl); 17947 zoneid = Q_TO_CONN(q)->conn_zoneid; 17948 17949 /* ipGroupMember table */ 17950 optp = (struct opthdr *)&mpctl->b_rptr[ 17951 sizeof (struct T_optmgmt_ack)]; 17952 optp->level = MIB2_IP; 17953 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17954 17955 rw_enter(&ill_g_lock, RW_READER); 17956 ill = ILL_START_WALK_V4(&ctx); 17957 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17958 ILM_WALKER_HOLD(ill); 17959 for (ipif = ill->ill_ipif; ipif != NULL; 17960 ipif = ipif->ipif_next) { 17961 if (ipif->ipif_zoneid != zoneid && 17962 ipif->ipif_zoneid != ALL_ZONES) 17963 continue; /* not this zone */ 17964 (void) ipif_get_name(ipif, 17965 ipm.ipGroupMemberIfIndex.o_bytes, 17966 OCTET_LENGTH); 17967 ipm.ipGroupMemberIfIndex.o_length = 17968 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17969 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17970 ASSERT(ilm->ilm_ipif != NULL); 17971 ASSERT(ilm->ilm_ill == NULL); 17972 if (ilm->ilm_ipif != ipif) 17973 continue; 17974 ipm.ipGroupMemberAddress = ilm->ilm_addr; 17975 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 17976 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 17977 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17978 (char *)&ipm, (int)sizeof (ipm))) { 17979 ip1dbg(("ip_snmp_get_mib2_ip_group: " 17980 "failed to allocate %u bytes\n", 17981 (uint_t)sizeof (ipm))); 17982 } 17983 } 17984 } 17985 ILM_WALKER_RELE(ill); 17986 } 17987 rw_exit(&ill_g_lock); 17988 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17989 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17990 (int)optp->level, (int)optp->name, (int)optp->len)); 17991 qreply(q, mpctl); 17992 return (mp2ctl); 17993 } 17994 17995 /* IPv6 multicast group membership. */ 17996 static mblk_t * 17997 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 17998 { 17999 struct opthdr *optp; 18000 mblk_t *mp2ctl; 18001 ill_t *ill; 18002 ilm_t *ilm; 18003 ipv6_member_t ipm6; 18004 mblk_t *mp_tail = NULL; 18005 ill_walk_context_t ctx; 18006 zoneid_t zoneid; 18007 18008 /* 18009 * make a copy of the original message 18010 */ 18011 mp2ctl = copymsg(mpctl); 18012 zoneid = Q_TO_CONN(q)->conn_zoneid; 18013 18014 /* ip6GroupMember table */ 18015 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18016 optp->level = MIB2_IP6; 18017 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18018 18019 rw_enter(&ill_g_lock, RW_READER); 18020 ill = ILL_START_WALK_V6(&ctx); 18021 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18022 ILM_WALKER_HOLD(ill); 18023 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18024 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18025 ASSERT(ilm->ilm_ipif == NULL); 18026 ASSERT(ilm->ilm_ill != NULL); 18027 if (ilm->ilm_zoneid != zoneid) 18028 continue; /* not this zone */ 18029 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18030 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18031 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18032 if (!snmp_append_data2(mpctl->b_cont, 18033 &mp_tail, 18034 (char *)&ipm6, (int)sizeof (ipm6))) { 18035 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18036 "failed to allocate %u bytes\n", 18037 (uint_t)sizeof (ipm6))); 18038 } 18039 } 18040 ILM_WALKER_RELE(ill); 18041 } 18042 rw_exit(&ill_g_lock); 18043 18044 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18045 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18046 (int)optp->level, (int)optp->name, (int)optp->len)); 18047 qreply(q, mpctl); 18048 return (mp2ctl); 18049 } 18050 18051 /* IP multicast filtered sources */ 18052 static mblk_t * 18053 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18054 { 18055 struct opthdr *optp; 18056 mblk_t *mp2ctl; 18057 ill_t *ill; 18058 ipif_t *ipif; 18059 ilm_t *ilm; 18060 ip_grpsrc_t ips; 18061 mblk_t *mp_tail = NULL; 18062 ill_walk_context_t ctx; 18063 zoneid_t zoneid; 18064 int i; 18065 slist_t *sl; 18066 18067 /* 18068 * make a copy of the original message 18069 */ 18070 mp2ctl = copymsg(mpctl); 18071 zoneid = Q_TO_CONN(q)->conn_zoneid; 18072 18073 /* ipGroupSource table */ 18074 optp = (struct opthdr *)&mpctl->b_rptr[ 18075 sizeof (struct T_optmgmt_ack)]; 18076 optp->level = MIB2_IP; 18077 optp->name = EXPER_IP_GROUP_SOURCES; 18078 18079 rw_enter(&ill_g_lock, RW_READER); 18080 ill = ILL_START_WALK_V4(&ctx); 18081 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18082 ILM_WALKER_HOLD(ill); 18083 for (ipif = ill->ill_ipif; ipif != NULL; 18084 ipif = ipif->ipif_next) { 18085 if (ipif->ipif_zoneid != zoneid) 18086 continue; /* not this zone */ 18087 (void) ipif_get_name(ipif, 18088 ips.ipGroupSourceIfIndex.o_bytes, 18089 OCTET_LENGTH); 18090 ips.ipGroupSourceIfIndex.o_length = 18091 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18092 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18093 ASSERT(ilm->ilm_ipif != NULL); 18094 ASSERT(ilm->ilm_ill == NULL); 18095 sl = ilm->ilm_filter; 18096 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18097 continue; 18098 ips.ipGroupSourceGroup = ilm->ilm_addr; 18099 for (i = 0; i < sl->sl_numsrc; i++) { 18100 if (!IN6_IS_ADDR_V4MAPPED( 18101 &sl->sl_addr[i])) 18102 continue; 18103 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18104 ips.ipGroupSourceAddress); 18105 if (snmp_append_data2(mpctl->b_cont, 18106 &mp_tail, (char *)&ips, 18107 (int)sizeof (ips)) == 0) { 18108 ip1dbg(("ip_snmp_get_mib2_" 18109 "ip_group_src: failed to " 18110 "allocate %u bytes\n", 18111 (uint_t)sizeof (ips))); 18112 } 18113 } 18114 } 18115 } 18116 ILM_WALKER_RELE(ill); 18117 } 18118 rw_exit(&ill_g_lock); 18119 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18120 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18121 (int)optp->level, (int)optp->name, (int)optp->len)); 18122 qreply(q, mpctl); 18123 return (mp2ctl); 18124 } 18125 18126 /* IPv6 multicast filtered sources. */ 18127 static mblk_t * 18128 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18129 { 18130 struct opthdr *optp; 18131 mblk_t *mp2ctl; 18132 ill_t *ill; 18133 ilm_t *ilm; 18134 ipv6_grpsrc_t ips6; 18135 mblk_t *mp_tail = NULL; 18136 ill_walk_context_t ctx; 18137 zoneid_t zoneid; 18138 int i; 18139 slist_t *sl; 18140 18141 /* 18142 * make a copy of the original message 18143 */ 18144 mp2ctl = copymsg(mpctl); 18145 zoneid = Q_TO_CONN(q)->conn_zoneid; 18146 18147 /* ip6GroupMember table */ 18148 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18149 optp->level = MIB2_IP6; 18150 optp->name = EXPER_IP6_GROUP_SOURCES; 18151 18152 rw_enter(&ill_g_lock, RW_READER); 18153 ill = ILL_START_WALK_V6(&ctx); 18154 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18155 ILM_WALKER_HOLD(ill); 18156 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18157 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18158 ASSERT(ilm->ilm_ipif == NULL); 18159 ASSERT(ilm->ilm_ill != NULL); 18160 sl = ilm->ilm_filter; 18161 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18162 continue; 18163 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18164 for (i = 0; i < sl->sl_numsrc; i++) { 18165 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18166 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18167 (char *)&ips6, (int)sizeof (ips6))) { 18168 ip1dbg(("ip_snmp_get_mib2_ip6_" 18169 "group_src: failed to allocate " 18170 "%u bytes\n", 18171 (uint_t)sizeof (ips6))); 18172 } 18173 } 18174 } 18175 ILM_WALKER_RELE(ill); 18176 } 18177 rw_exit(&ill_g_lock); 18178 18179 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18180 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18181 (int)optp->level, (int)optp->name, (int)optp->len)); 18182 qreply(q, mpctl); 18183 return (mp2ctl); 18184 } 18185 18186 /* Multicast routing virtual interface table. */ 18187 static mblk_t * 18188 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18189 { 18190 struct opthdr *optp; 18191 mblk_t *mp2ctl; 18192 18193 /* 18194 * make a copy of the original message 18195 */ 18196 mp2ctl = copymsg(mpctl); 18197 18198 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18199 optp->level = EXPER_DVMRP; 18200 optp->name = EXPER_DVMRP_VIF; 18201 if (!ip_mroute_vif(mpctl->b_cont)) { 18202 ip0dbg(("ip_mroute_vif: failed\n")); 18203 } 18204 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18205 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18206 (int)optp->level, (int)optp->name, (int)optp->len)); 18207 qreply(q, mpctl); 18208 return (mp2ctl); 18209 } 18210 18211 /* Multicast routing table. */ 18212 static mblk_t * 18213 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18214 { 18215 struct opthdr *optp; 18216 mblk_t *mp2ctl; 18217 18218 /* 18219 * make a copy of the original message 18220 */ 18221 mp2ctl = copymsg(mpctl); 18222 18223 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18224 optp->level = EXPER_DVMRP; 18225 optp->name = EXPER_DVMRP_MRT; 18226 if (!ip_mroute_mrt(mpctl->b_cont)) { 18227 ip0dbg(("ip_mroute_mrt: failed\n")); 18228 } 18229 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18230 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18231 (int)optp->level, (int)optp->name, (int)optp->len)); 18232 qreply(q, mpctl); 18233 return (mp2ctl); 18234 } 18235 18236 /* 18237 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18238 * in one IRE walk. 18239 */ 18240 static mblk_t * 18241 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18242 { 18243 struct opthdr *optp; 18244 mblk_t *mp2ctl; /* Returned */ 18245 mblk_t *mp3ctl; /* nettomedia */ 18246 mblk_t *mp4ctl; /* routeattrs */ 18247 iproutedata_t ird; 18248 zoneid_t zoneid; 18249 18250 /* 18251 * make copies of the original message 18252 * - mp2ctl is returned unchanged to the caller for his use 18253 * - mpctl is sent upstream as ipRouteEntryTable 18254 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18255 * - mp4ctl is sent upstream as ipRouteAttributeTable 18256 */ 18257 mp2ctl = copymsg(mpctl); 18258 mp3ctl = copymsg(mpctl); 18259 mp4ctl = copymsg(mpctl); 18260 if (mp3ctl == NULL || mp4ctl == NULL) { 18261 freemsg(mp4ctl); 18262 freemsg(mp3ctl); 18263 freemsg(mp2ctl); 18264 freemsg(mpctl); 18265 return (NULL); 18266 } 18267 18268 bzero(&ird, sizeof (ird)); 18269 18270 ird.ird_route.lp_head = mpctl->b_cont; 18271 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18272 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18273 18274 zoneid = Q_TO_CONN(q)->conn_zoneid; 18275 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18276 if (zoneid == GLOBAL_ZONEID) { 18277 /* 18278 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18279 * the sys_net_config privilege, it can only run in the global 18280 * zone, so we don't display these IREs in the other zones. 18281 */ 18282 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18283 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18284 } 18285 18286 /* ipRouteEntryTable in mpctl */ 18287 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18288 optp->level = MIB2_IP; 18289 optp->name = MIB2_IP_ROUTE; 18290 optp->len = msgdsize(ird.ird_route.lp_head); 18291 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18292 (int)optp->level, (int)optp->name, (int)optp->len)); 18293 qreply(q, mpctl); 18294 18295 /* ipNetToMediaEntryTable in mp3ctl */ 18296 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18297 optp->level = MIB2_IP; 18298 optp->name = MIB2_IP_MEDIA; 18299 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18300 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18301 (int)optp->level, (int)optp->name, (int)optp->len)); 18302 qreply(q, mp3ctl); 18303 18304 /* ipRouteAttributeTable in mp4ctl */ 18305 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18306 optp->level = MIB2_IP; 18307 optp->name = EXPER_IP_RTATTR; 18308 optp->len = msgdsize(ird.ird_attrs.lp_head); 18309 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18310 (int)optp->level, (int)optp->name, (int)optp->len)); 18311 if (optp->len == 0) 18312 freemsg(mp4ctl); 18313 else 18314 qreply(q, mp4ctl); 18315 18316 return (mp2ctl); 18317 } 18318 18319 /* 18320 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18321 * ipv6NetToMediaEntryTable in an NDP walk. 18322 */ 18323 static mblk_t * 18324 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18325 { 18326 struct opthdr *optp; 18327 mblk_t *mp2ctl; /* Returned */ 18328 mblk_t *mp3ctl; /* nettomedia */ 18329 mblk_t *mp4ctl; /* routeattrs */ 18330 iproutedata_t ird; 18331 zoneid_t zoneid; 18332 18333 /* 18334 * make copies of the original message 18335 * - mp2ctl is returned unchanged to the caller for his use 18336 * - mpctl is sent upstream as ipv6RouteEntryTable 18337 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18338 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18339 */ 18340 mp2ctl = copymsg(mpctl); 18341 mp3ctl = copymsg(mpctl); 18342 mp4ctl = copymsg(mpctl); 18343 if (mp3ctl == NULL || mp4ctl == NULL) { 18344 freemsg(mp4ctl); 18345 freemsg(mp3ctl); 18346 freemsg(mp2ctl); 18347 freemsg(mpctl); 18348 return (NULL); 18349 } 18350 18351 bzero(&ird, sizeof (ird)); 18352 18353 ird.ird_route.lp_head = mpctl->b_cont; 18354 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18355 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18356 18357 zoneid = Q_TO_CONN(q)->conn_zoneid; 18358 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18359 18360 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18361 optp->level = MIB2_IP6; 18362 optp->name = MIB2_IP6_ROUTE; 18363 optp->len = msgdsize(ird.ird_route.lp_head); 18364 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18365 (int)optp->level, (int)optp->name, (int)optp->len)); 18366 qreply(q, mpctl); 18367 18368 /* ipv6NetToMediaEntryTable in mp3ctl */ 18369 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18370 18371 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18372 optp->level = MIB2_IP6; 18373 optp->name = MIB2_IP6_MEDIA; 18374 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18375 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18376 (int)optp->level, (int)optp->name, (int)optp->len)); 18377 qreply(q, mp3ctl); 18378 18379 /* ipv6RouteAttributeTable in mp4ctl */ 18380 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18381 optp->level = MIB2_IP6; 18382 optp->name = EXPER_IP_RTATTR; 18383 optp->len = msgdsize(ird.ird_attrs.lp_head); 18384 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18385 (int)optp->level, (int)optp->name, (int)optp->len)); 18386 if (optp->len == 0) 18387 freemsg(mp4ctl); 18388 else 18389 qreply(q, mp4ctl); 18390 18391 return (mp2ctl); 18392 } 18393 18394 /* 18395 * ICMPv6 mib: One per ill 18396 */ 18397 static mblk_t * 18398 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18399 { 18400 struct opthdr *optp; 18401 mblk_t *mp2ctl; 18402 ill_t *ill; 18403 ill_walk_context_t ctx; 18404 mblk_t *mp_tail = NULL; 18405 18406 /* 18407 * Make a copy of the original message 18408 */ 18409 mp2ctl = copymsg(mpctl); 18410 18411 /* fixed length IPv6 structure ... */ 18412 18413 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18414 optp->level = MIB2_IP6; 18415 optp->name = 0; 18416 /* Include "unknown interface" ip6_mib */ 18417 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18418 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18419 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18420 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18421 sizeof (mib2_ipv6IfStatsEntry_t)); 18422 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18423 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18424 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18425 sizeof (mib2_ipv6NetToMediaEntry_t)); 18426 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18427 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18428 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18429 (int)sizeof (ip6_mib))) { 18430 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18431 (uint_t)sizeof (ip6_mib))); 18432 } 18433 18434 rw_enter(&ill_g_lock, RW_READER); 18435 ill = ILL_START_WALK_V6(&ctx); 18436 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18437 ill->ill_ip6_mib->ipv6IfIndex = 18438 ill->ill_phyint->phyint_ifindex; 18439 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18440 ipv6_forward ? 1 : 2); 18441 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18442 ill->ill_max_hops); 18443 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18444 sizeof (mib2_ipv6IfStatsEntry_t)); 18445 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18446 sizeof (mib2_ipv6AddrEntry_t)); 18447 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18448 sizeof (mib2_ipv6RouteEntry_t)); 18449 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18450 sizeof (mib2_ipv6NetToMediaEntry_t)); 18451 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18452 sizeof (ipv6_member_t)); 18453 18454 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18455 (char *)ill->ill_ip6_mib, 18456 (int)sizeof (*ill->ill_ip6_mib))) { 18457 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18458 "%u bytes\n", 18459 (uint_t)sizeof (*ill->ill_ip6_mib))); 18460 } 18461 } 18462 rw_exit(&ill_g_lock); 18463 18464 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18465 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18466 (int)optp->level, (int)optp->name, (int)optp->len)); 18467 qreply(q, mpctl); 18468 return (mp2ctl); 18469 } 18470 18471 /* 18472 * ICMPv6 mib: One per ill 18473 */ 18474 static mblk_t * 18475 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18476 { 18477 struct opthdr *optp; 18478 mblk_t *mp2ctl; 18479 ill_t *ill; 18480 ill_walk_context_t ctx; 18481 mblk_t *mp_tail = NULL; 18482 /* 18483 * Make a copy of the original message 18484 */ 18485 mp2ctl = copymsg(mpctl); 18486 18487 /* fixed length ICMPv6 structure ... */ 18488 18489 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18490 optp->level = MIB2_ICMP6; 18491 optp->name = 0; 18492 /* Include "unknown interface" icmp6_mib */ 18493 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18494 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18495 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18496 (int)sizeof (icmp6_mib))) { 18497 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18498 (uint_t)sizeof (icmp6_mib))); 18499 } 18500 18501 rw_enter(&ill_g_lock, RW_READER); 18502 ill = ILL_START_WALK_V6(&ctx); 18503 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18504 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18505 ill->ill_phyint->phyint_ifindex; 18506 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18507 sizeof (mib2_ipv6IfIcmpEntry_t); 18508 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18509 (char *)ill->ill_icmp6_mib, 18510 (int)sizeof (*ill->ill_icmp6_mib))) { 18511 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18512 "%u bytes\n", 18513 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18514 } 18515 } 18516 rw_exit(&ill_g_lock); 18517 18518 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18519 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18520 (int)optp->level, (int)optp->name, (int)optp->len)); 18521 qreply(q, mpctl); 18522 return (mp2ctl); 18523 } 18524 18525 /* 18526 * ire_walk routine to create both ipRouteEntryTable and 18527 * ipNetToMediaEntryTable in one IRE walk 18528 */ 18529 static void 18530 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18531 { 18532 ill_t *ill; 18533 ipif_t *ipif; 18534 mblk_t *llmp; 18535 dl_unitdata_req_t *dlup; 18536 mib2_ipRouteEntry_t *re; 18537 mib2_ipNetToMediaEntry_t ntme; 18538 mib2_ipAttributeEntry_t *iae, *iaeptr; 18539 ipaddr_t gw_addr; 18540 tsol_ire_gw_secattr_t *attrp; 18541 tsol_gc_t *gc = NULL; 18542 tsol_gcgrp_t *gcgrp = NULL; 18543 uint_t sacnt = 0; 18544 int i; 18545 18546 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18547 18548 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18549 return; 18550 18551 if ((attrp = ire->ire_gw_secattr) != NULL) { 18552 mutex_enter(&attrp->igsa_lock); 18553 if ((gc = attrp->igsa_gc) != NULL) { 18554 gcgrp = gc->gc_grp; 18555 ASSERT(gcgrp != NULL); 18556 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18557 sacnt = 1; 18558 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18559 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18560 gc = gcgrp->gcgrp_head; 18561 sacnt = gcgrp->gcgrp_count; 18562 } 18563 mutex_exit(&attrp->igsa_lock); 18564 18565 /* do nothing if there's no gc to report */ 18566 if (gc == NULL) { 18567 ASSERT(sacnt == 0); 18568 if (gcgrp != NULL) { 18569 /* we might as well drop the lock now */ 18570 rw_exit(&gcgrp->gcgrp_rwlock); 18571 gcgrp = NULL; 18572 } 18573 attrp = NULL; 18574 } 18575 18576 ASSERT(gc == NULL || (gcgrp != NULL && 18577 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18578 } 18579 ASSERT(sacnt == 0 || gc != NULL); 18580 18581 if (sacnt != 0 && 18582 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18583 kmem_free(re, sizeof (*re)); 18584 rw_exit(&gcgrp->gcgrp_rwlock); 18585 return; 18586 } 18587 18588 /* 18589 * Return all IRE types for route table... let caller pick and choose 18590 */ 18591 re->ipRouteDest = ire->ire_addr; 18592 ipif = ire->ire_ipif; 18593 re->ipRouteIfIndex.o_length = 0; 18594 if (ire->ire_type == IRE_CACHE) { 18595 ill = (ill_t *)ire->ire_stq->q_ptr; 18596 re->ipRouteIfIndex.o_length = 18597 ill->ill_name_length == 0 ? 0 : 18598 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18599 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18600 re->ipRouteIfIndex.o_length); 18601 } else if (ipif != NULL) { 18602 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18603 OCTET_LENGTH); 18604 re->ipRouteIfIndex.o_length = 18605 mi_strlen(re->ipRouteIfIndex.o_bytes); 18606 } 18607 re->ipRouteMetric1 = -1; 18608 re->ipRouteMetric2 = -1; 18609 re->ipRouteMetric3 = -1; 18610 re->ipRouteMetric4 = -1; 18611 18612 gw_addr = ire->ire_gateway_addr; 18613 18614 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18615 re->ipRouteNextHop = ire->ire_src_addr; 18616 else 18617 re->ipRouteNextHop = gw_addr; 18618 /* indirect(4), direct(3), or invalid(2) */ 18619 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18620 re->ipRouteType = 2; 18621 else 18622 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18623 re->ipRouteProto = -1; 18624 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18625 re->ipRouteMask = ire->ire_mask; 18626 re->ipRouteMetric5 = -1; 18627 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18628 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18629 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18630 if (ire->ire_nce && 18631 ire->ire_nce->nce_state == ND_REACHABLE) 18632 llmp = ire->ire_nce->nce_res_mp; 18633 else 18634 llmp = NULL; 18635 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18636 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18637 re->ipRouteInfo.re_ire_type = ire->ire_type; 18638 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18639 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18640 re->ipRouteInfo.re_flags = ire->ire_flags; 18641 re->ipRouteInfo.re_in_ill.o_length = 0; 18642 if (ire->ire_in_ill != NULL) { 18643 re->ipRouteInfo.re_in_ill.o_length = 18644 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18645 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18646 bcopy(ire->ire_in_ill->ill_name, 18647 re->ipRouteInfo.re_in_ill.o_bytes, 18648 re->ipRouteInfo.re_in_ill.o_length); 18649 } 18650 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18651 18652 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18653 (char *)re, (int)sizeof (*re))) { 18654 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18655 (uint_t)sizeof (*re))); 18656 } 18657 18658 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18659 iaeptr->iae_routeidx = ird->ird_idx; 18660 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18661 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18662 } 18663 18664 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18665 (char *)iae, sacnt * sizeof (*iae))) { 18666 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18667 (unsigned)(sacnt * sizeof (*iae)))); 18668 } 18669 18670 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 18671 goto done; 18672 /* 18673 * only IRE_CACHE entries that are for a directly connected subnet 18674 * get appended to net -> phys addr table 18675 * (others in arp) 18676 */ 18677 ntme.ipNetToMediaIfIndex.o_length = 0; 18678 ill = ire_to_ill(ire); 18679 ASSERT(ill != NULL); 18680 ntme.ipNetToMediaIfIndex.o_length = 18681 ill->ill_name_length == 0 ? 0 : 18682 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18683 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 18684 ntme.ipNetToMediaIfIndex.o_length); 18685 18686 ntme.ipNetToMediaPhysAddress.o_length = 0; 18687 if (llmp) { 18688 uchar_t *addr; 18689 18690 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 18691 /* Remove sap from address */ 18692 if (ill->ill_sap_length < 0) 18693 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18694 else 18695 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18696 ill->ill_sap_length; 18697 18698 ntme.ipNetToMediaPhysAddress.o_length = 18699 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18700 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18701 ntme.ipNetToMediaPhysAddress.o_length); 18702 } 18703 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18704 /* assume dynamic (may be changed in arp) */ 18705 ntme.ipNetToMediaType = 3; 18706 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18707 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18708 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18709 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18710 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18711 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18712 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18713 (uint_t)sizeof (ntme))); 18714 } 18715 done: 18716 /* bump route index for next pass */ 18717 ird->ird_idx++; 18718 18719 kmem_free(re, sizeof (*re)); 18720 if (sacnt != 0) 18721 kmem_free(iae, sacnt * sizeof (*iae)); 18722 18723 if (gcgrp != NULL) 18724 rw_exit(&gcgrp->gcgrp_rwlock); 18725 } 18726 18727 /* 18728 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18729 */ 18730 static void 18731 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18732 { 18733 ill_t *ill; 18734 ipif_t *ipif; 18735 mib2_ipv6RouteEntry_t *re; 18736 mib2_ipAttributeEntry_t *iae, *iaeptr; 18737 in6_addr_t gw_addr_v6; 18738 tsol_ire_gw_secattr_t *attrp; 18739 tsol_gc_t *gc = NULL; 18740 tsol_gcgrp_t *gcgrp = NULL; 18741 uint_t sacnt = 0; 18742 int i; 18743 18744 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18745 18746 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18747 return; 18748 18749 if ((attrp = ire->ire_gw_secattr) != NULL) { 18750 mutex_enter(&attrp->igsa_lock); 18751 if ((gc = attrp->igsa_gc) != NULL) { 18752 gcgrp = gc->gc_grp; 18753 ASSERT(gcgrp != NULL); 18754 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18755 sacnt = 1; 18756 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18757 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18758 gc = gcgrp->gcgrp_head; 18759 sacnt = gcgrp->gcgrp_count; 18760 } 18761 mutex_exit(&attrp->igsa_lock); 18762 18763 /* do nothing if there's no gc to report */ 18764 if (gc == NULL) { 18765 ASSERT(sacnt == 0); 18766 if (gcgrp != NULL) { 18767 /* we might as well drop the lock now */ 18768 rw_exit(&gcgrp->gcgrp_rwlock); 18769 gcgrp = NULL; 18770 } 18771 attrp = NULL; 18772 } 18773 18774 ASSERT(gc == NULL || (gcgrp != NULL && 18775 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18776 } 18777 ASSERT(sacnt == 0 || gc != NULL); 18778 18779 if (sacnt != 0 && 18780 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18781 kmem_free(re, sizeof (*re)); 18782 rw_exit(&gcgrp->gcgrp_rwlock); 18783 return; 18784 } 18785 18786 /* 18787 * Return all IRE types for route table... let caller pick and choose 18788 */ 18789 re->ipv6RouteDest = ire->ire_addr_v6; 18790 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18791 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18792 re->ipv6RouteIfIndex.o_length = 0; 18793 ipif = ire->ire_ipif; 18794 if (ire->ire_type == IRE_CACHE) { 18795 ill = (ill_t *)ire->ire_stq->q_ptr; 18796 re->ipv6RouteIfIndex.o_length = 18797 ill->ill_name_length == 0 ? 0 : 18798 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18799 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18800 re->ipv6RouteIfIndex.o_length); 18801 } else if (ipif != NULL) { 18802 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18803 OCTET_LENGTH); 18804 re->ipv6RouteIfIndex.o_length = 18805 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18806 } 18807 18808 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18809 18810 mutex_enter(&ire->ire_lock); 18811 gw_addr_v6 = ire->ire_gateway_addr_v6; 18812 mutex_exit(&ire->ire_lock); 18813 18814 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18815 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18816 else 18817 re->ipv6RouteNextHop = gw_addr_v6; 18818 18819 /* remote(4), local(3), or discard(2) */ 18820 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18821 re->ipv6RouteType = 2; 18822 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18823 re->ipv6RouteType = 3; 18824 else 18825 re->ipv6RouteType = 4; 18826 18827 re->ipv6RouteProtocol = -1; 18828 re->ipv6RoutePolicy = 0; 18829 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18830 re->ipv6RouteNextHopRDI = 0; 18831 re->ipv6RouteWeight = 0; 18832 re->ipv6RouteMetric = 0; 18833 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18834 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18835 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18836 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18837 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18838 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18839 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18840 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18841 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18842 18843 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18844 (char *)re, (int)sizeof (*re))) { 18845 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18846 (uint_t)sizeof (*re))); 18847 } 18848 18849 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18850 iaeptr->iae_routeidx = ird->ird_idx; 18851 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18852 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18853 } 18854 18855 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18856 (char *)iae, sacnt * sizeof (*iae))) { 18857 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18858 (unsigned)(sacnt * sizeof (*iae)))); 18859 } 18860 18861 /* bump route index for next pass */ 18862 ird->ird_idx++; 18863 18864 kmem_free(re, sizeof (*re)); 18865 if (sacnt != 0) 18866 kmem_free(iae, sacnt * sizeof (*iae)); 18867 18868 if (gcgrp != NULL) 18869 rw_exit(&gcgrp->gcgrp_rwlock); 18870 } 18871 18872 /* 18873 * ndp_walk routine to create ipv6NetToMediaEntryTable 18874 */ 18875 static int 18876 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18877 { 18878 ill_t *ill; 18879 mib2_ipv6NetToMediaEntry_t ntme; 18880 dl_unitdata_req_t *dl; 18881 18882 ill = nce->nce_ill; 18883 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 18884 return (0); 18885 18886 /* 18887 * Neighbor cache entry attached to IRE with on-link 18888 * destination. 18889 */ 18890 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18891 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18892 if ((ill->ill_flags & ILLF_XRESOLV) && 18893 (nce->nce_res_mp != NULL)) { 18894 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18895 ntme.ipv6NetToMediaPhysAddress.o_length = 18896 dl->dl_dest_addr_length; 18897 } else { 18898 ntme.ipv6NetToMediaPhysAddress.o_length = 18899 ill->ill_phys_addr_length; 18900 } 18901 if (nce->nce_res_mp != NULL) { 18902 bcopy((char *)nce->nce_res_mp->b_rptr + 18903 NCE_LL_ADDR_OFFSET(ill), 18904 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18905 ntme.ipv6NetToMediaPhysAddress.o_length); 18906 } else { 18907 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18908 ill->ill_phys_addr_length); 18909 } 18910 /* 18911 * Note: Returns ND_* states. Should be: 18912 * reachable(1), stale(2), delay(3), probe(4), 18913 * invalid(5), unknown(6) 18914 */ 18915 ntme.ipv6NetToMediaState = nce->nce_state; 18916 ntme.ipv6NetToMediaLastUpdated = 0; 18917 18918 /* other(1), dynamic(2), static(3), local(4) */ 18919 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18920 ntme.ipv6NetToMediaType = 4; 18921 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18922 ntme.ipv6NetToMediaType = 1; 18923 } else { 18924 ntme.ipv6NetToMediaType = 2; 18925 } 18926 18927 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18928 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18929 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18930 (uint_t)sizeof (ntme))); 18931 } 18932 return (0); 18933 } 18934 18935 /* 18936 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18937 */ 18938 /* ARGSUSED */ 18939 int 18940 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18941 { 18942 switch (level) { 18943 case MIB2_IP: 18944 case MIB2_ICMP: 18945 switch (name) { 18946 default: 18947 break; 18948 } 18949 return (1); 18950 default: 18951 return (1); 18952 } 18953 } 18954 18955 /* 18956 * Called before the options are updated to check if this packet will 18957 * be source routed from here. 18958 * This routine assumes that the options are well formed i.e. that they 18959 * have already been checked. 18960 */ 18961 static boolean_t 18962 ip_source_routed(ipha_t *ipha) 18963 { 18964 ipoptp_t opts; 18965 uchar_t *opt; 18966 uint8_t optval; 18967 uint8_t optlen; 18968 ipaddr_t dst; 18969 ire_t *ire; 18970 18971 if (IS_SIMPLE_IPH(ipha)) { 18972 ip2dbg(("not source routed\n")); 18973 return (B_FALSE); 18974 } 18975 dst = ipha->ipha_dst; 18976 for (optval = ipoptp_first(&opts, ipha); 18977 optval != IPOPT_EOL; 18978 optval = ipoptp_next(&opts)) { 18979 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18980 opt = opts.ipoptp_cur; 18981 optlen = opts.ipoptp_len; 18982 ip2dbg(("ip_source_routed: opt %d, len %d\n", 18983 optval, optlen)); 18984 switch (optval) { 18985 uint32_t off; 18986 case IPOPT_SSRR: 18987 case IPOPT_LSRR: 18988 /* 18989 * If dst is one of our addresses and there are some 18990 * entries left in the source route return (true). 18991 */ 18992 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18993 ALL_ZONES, NULL, MATCH_IRE_TYPE); 18994 if (ire == NULL) { 18995 ip2dbg(("ip_source_routed: not next" 18996 " source route 0x%x\n", 18997 ntohl(dst))); 18998 return (B_FALSE); 18999 } 19000 ire_refrele(ire); 19001 off = opt[IPOPT_OFFSET]; 19002 off--; 19003 if (optlen < IP_ADDR_LEN || 19004 off > optlen - IP_ADDR_LEN) { 19005 /* End of source route */ 19006 ip1dbg(("ip_source_routed: end of SR\n")); 19007 return (B_FALSE); 19008 } 19009 return (B_TRUE); 19010 } 19011 } 19012 ip2dbg(("not source routed\n")); 19013 return (B_FALSE); 19014 } 19015 19016 /* 19017 * Check if the packet contains any source route. 19018 */ 19019 static boolean_t 19020 ip_source_route_included(ipha_t *ipha) 19021 { 19022 ipoptp_t opts; 19023 uint8_t optval; 19024 19025 if (IS_SIMPLE_IPH(ipha)) 19026 return (B_FALSE); 19027 for (optval = ipoptp_first(&opts, ipha); 19028 optval != IPOPT_EOL; 19029 optval = ipoptp_next(&opts)) { 19030 switch (optval) { 19031 case IPOPT_SSRR: 19032 case IPOPT_LSRR: 19033 return (B_TRUE); 19034 } 19035 } 19036 return (B_FALSE); 19037 } 19038 19039 /* 19040 * Called when the IRE expiration timer fires. 19041 */ 19042 /* ARGSUSED */ 19043 void 19044 ip_trash_timer_expire(void *args) 19045 { 19046 int flush_flag = 0; 19047 19048 /* 19049 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19050 * This lock makes sure that a new invocation of this function 19051 * that occurs due to an almost immediate timer firing will not 19052 * progress beyond this point until the current invocation is done 19053 */ 19054 mutex_enter(&ip_trash_timer_lock); 19055 ip_ire_expire_id = 0; 19056 mutex_exit(&ip_trash_timer_lock); 19057 19058 /* Periodic timer */ 19059 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19060 /* 19061 * Remove all IRE_CACHE entries since they might 19062 * contain arp information. 19063 */ 19064 flush_flag |= FLUSH_ARP_TIME; 19065 ip_ire_arp_time_elapsed = 0; 19066 IP_STAT(ip_ire_arp_timer_expired); 19067 } 19068 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19069 /* Remove all redirects */ 19070 flush_flag |= FLUSH_REDIRECT_TIME; 19071 ip_ire_rd_time_elapsed = 0; 19072 IP_STAT(ip_ire_redirect_timer_expired); 19073 } 19074 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19075 /* Increase path mtu */ 19076 flush_flag |= FLUSH_MTU_TIME; 19077 ip_ire_pmtu_time_elapsed = 0; 19078 IP_STAT(ip_ire_pmtu_timer_expired); 19079 } 19080 19081 /* 19082 * Optimize for the case when there are no redirects in the 19083 * ftable, that is, no need to walk the ftable in that case. 19084 */ 19085 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19086 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19087 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19088 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19089 } 19090 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19091 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19092 ire_expire, (char *)(uintptr_t)flush_flag, 19093 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19094 } 19095 if (flush_flag & FLUSH_MTU_TIME) { 19096 /* 19097 * Walk all IPv6 IRE's and update them 19098 * Note that ARP and redirect timers are not 19099 * needed since NUD handles stale entries. 19100 */ 19101 flush_flag = FLUSH_MTU_TIME; 19102 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19103 ALL_ZONES); 19104 } 19105 19106 ip_ire_arp_time_elapsed += ip_timer_interval; 19107 ip_ire_rd_time_elapsed += ip_timer_interval; 19108 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19109 19110 /* 19111 * Hold the lock to serialize timeout calls and prevent 19112 * stale values in ip_ire_expire_id. Otherwise it is possible 19113 * for the timer to fire and a new invocation of this function 19114 * to start before the return value of timeout has been stored 19115 * in ip_ire_expire_id by the current invocation. 19116 */ 19117 mutex_enter(&ip_trash_timer_lock); 19118 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19119 MSEC_TO_TICK(ip_timer_interval)); 19120 mutex_exit(&ip_trash_timer_lock); 19121 } 19122 19123 /* 19124 * Called by the memory allocator subsystem directly, when the system 19125 * is running low on memory. 19126 */ 19127 /* ARGSUSED */ 19128 void 19129 ip_trash_ire_reclaim(void *args) 19130 { 19131 ire_cache_count_t icc; 19132 ire_cache_reclaim_t icr; 19133 ncc_cache_count_t ncc; 19134 nce_cache_reclaim_t ncr; 19135 uint_t delete_cnt; 19136 /* 19137 * Memory reclaim call back. 19138 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19139 * Then, with a target of freeing 1/Nth of IRE_CACHE 19140 * entries, determine what fraction to free for 19141 * each category of IRE_CACHE entries giving absolute priority 19142 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19143 * entry will be freed unless all offlink entries are freed). 19144 */ 19145 icc.icc_total = 0; 19146 icc.icc_unused = 0; 19147 icc.icc_offlink = 0; 19148 icc.icc_pmtu = 0; 19149 icc.icc_onlink = 0; 19150 ire_walk(ire_cache_count, (char *)&icc); 19151 19152 /* 19153 * Free NCEs for IPv6 like the onlink ires. 19154 */ 19155 ncc.ncc_total = 0; 19156 ncc.ncc_host = 0; 19157 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19158 19159 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19160 icc.icc_pmtu + icc.icc_onlink); 19161 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19162 IP_STAT(ip_trash_ire_reclaim_calls); 19163 if (delete_cnt == 0) 19164 return; 19165 IP_STAT(ip_trash_ire_reclaim_success); 19166 /* Always delete all unused offlink entries */ 19167 icr.icr_unused = 1; 19168 if (delete_cnt <= icc.icc_unused) { 19169 /* 19170 * Only need to free unused entries. In other words, 19171 * there are enough unused entries to free to meet our 19172 * target number of freed ire cache entries. 19173 */ 19174 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19175 ncr.ncr_host = 0; 19176 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19177 /* 19178 * Only need to free unused entries, plus a fraction of offlink 19179 * entries. It follows from the first if statement that 19180 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19181 */ 19182 delete_cnt -= icc.icc_unused; 19183 /* Round up # deleted by truncating fraction */ 19184 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19185 icr.icr_pmtu = icr.icr_onlink = 0; 19186 ncr.ncr_host = 0; 19187 } else if (delete_cnt <= 19188 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19189 /* 19190 * Free all unused and offlink entries, plus a fraction of 19191 * pmtu entries. It follows from the previous if statement 19192 * that icc_pmtu is non-zero, and that 19193 * delete_cnt != icc_unused + icc_offlink. 19194 */ 19195 icr.icr_offlink = 1; 19196 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19197 /* Round up # deleted by truncating fraction */ 19198 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19199 icr.icr_onlink = 0; 19200 ncr.ncr_host = 0; 19201 } else { 19202 /* 19203 * Free all unused, offlink, and pmtu entries, plus a fraction 19204 * of onlink entries. If we're here, then we know that 19205 * icc_onlink is non-zero, and that 19206 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19207 */ 19208 icr.icr_offlink = icr.icr_pmtu = 1; 19209 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19210 icc.icc_pmtu; 19211 /* Round up # deleted by truncating fraction */ 19212 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19213 /* Using the same delete fraction as for onlink IREs */ 19214 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19215 } 19216 #ifdef DEBUG 19217 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19218 "fractions %d/%d/%d/%d\n", 19219 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19220 icc.icc_unused, icc.icc_offlink, 19221 icc.icc_pmtu, icc.icc_onlink, 19222 icr.icr_unused, icr.icr_offlink, 19223 icr.icr_pmtu, icr.icr_onlink)); 19224 #endif 19225 ire_walk(ire_cache_reclaim, (char *)&icr); 19226 if (ncr.ncr_host != 0) 19227 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19228 (uchar_t *)&ncr); 19229 #ifdef DEBUG 19230 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19231 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19232 ire_walk(ire_cache_count, (char *)&icc); 19233 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19234 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19235 icc.icc_pmtu, icc.icc_onlink)); 19236 #endif 19237 } 19238 19239 /* 19240 * ip_unbind is called when a copy of an unbind request is received from the 19241 * upper level protocol. We remove this conn from any fanout hash list it is 19242 * on, and zero out the bind information. No reply is expected up above. 19243 */ 19244 mblk_t * 19245 ip_unbind(queue_t *q, mblk_t *mp) 19246 { 19247 conn_t *connp = Q_TO_CONN(q); 19248 19249 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19250 19251 if (is_system_labeled() && connp->conn_anon_port) { 19252 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19253 connp->conn_mlp_type, connp->conn_ulp, 19254 ntohs(connp->conn_lport), B_FALSE); 19255 connp->conn_anon_port = 0; 19256 } 19257 connp->conn_mlp_type = mlptSingle; 19258 19259 ipcl_hash_remove(connp); 19260 19261 ASSERT(mp->b_cont == NULL); 19262 /* 19263 * Convert mp into a T_OK_ACK 19264 */ 19265 mp = mi_tpi_ok_ack_alloc(mp); 19266 19267 /* 19268 * should not happen in practice... T_OK_ACK is smaller than the 19269 * original message. 19270 */ 19271 if (mp == NULL) 19272 return (NULL); 19273 19274 /* 19275 * Don't bzero the ports if its TCP since TCP still needs the 19276 * lport to remove it from its own bind hash. TCP will do the 19277 * cleanup. 19278 */ 19279 if (!IPCL_IS_TCP(connp)) 19280 bzero(&connp->u_port, sizeof (connp->u_port)); 19281 19282 return (mp); 19283 } 19284 19285 /* 19286 * Write side put procedure. Outbound data, IOCTLs, responses from 19287 * resolvers, etc, come down through here. 19288 * 19289 * arg2 is always a queue_t *. 19290 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19291 * the zoneid. 19292 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19293 */ 19294 void 19295 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19296 { 19297 conn_t *connp = NULL; 19298 queue_t *q = (queue_t *)arg2; 19299 ipha_t *ipha; 19300 #define rptr ((uchar_t *)ipha) 19301 ire_t *ire = NULL; 19302 ire_t *sctp_ire = NULL; 19303 uint32_t v_hlen_tos_len; 19304 ipaddr_t dst; 19305 mblk_t *first_mp = NULL; 19306 boolean_t mctl_present; 19307 ipsec_out_t *io; 19308 int match_flags; 19309 ill_t *attach_ill = NULL; 19310 /* Bind to IPIF_NOFAILOVER ill etc. */ 19311 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19312 ipif_t *dst_ipif; 19313 boolean_t multirt_need_resolve = B_FALSE; 19314 mblk_t *copy_mp = NULL; 19315 int err; 19316 zoneid_t zoneid; 19317 int adjust; 19318 uint16_t iplen; 19319 boolean_t need_decref = B_FALSE; 19320 boolean_t ignore_dontroute = B_FALSE; 19321 boolean_t ignore_nexthop = B_FALSE; 19322 boolean_t ip_nexthop = B_FALSE; 19323 ipaddr_t nexthop_addr; 19324 19325 #ifdef _BIG_ENDIAN 19326 #define V_HLEN (v_hlen_tos_len >> 24) 19327 #else 19328 #define V_HLEN (v_hlen_tos_len & 0xFF) 19329 #endif 19330 19331 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19332 "ip_wput_start: q %p", q); 19333 19334 /* 19335 * ip_wput fast path 19336 */ 19337 19338 /* is packet from ARP ? */ 19339 if (q->q_next != NULL) { 19340 zoneid = (zoneid_t)(uintptr_t)arg; 19341 goto qnext; 19342 } 19343 19344 connp = (conn_t *)arg; 19345 ASSERT(connp != NULL); 19346 zoneid = connp->conn_zoneid; 19347 19348 /* is queue flow controlled? */ 19349 if ((q->q_first != NULL || connp->conn_draining) && 19350 (caller == IP_WPUT)) { 19351 ASSERT(!need_decref); 19352 (void) putq(q, mp); 19353 return; 19354 } 19355 19356 /* Multidata transmit? */ 19357 if (DB_TYPE(mp) == M_MULTIDATA) { 19358 /* 19359 * We should never get here, since all Multidata messages 19360 * originating from tcp should have been directed over to 19361 * tcp_multisend() in the first place. 19362 */ 19363 BUMP_MIB(&ip_mib, ipOutDiscards); 19364 freemsg(mp); 19365 return; 19366 } else if (DB_TYPE(mp) != M_DATA) 19367 goto notdata; 19368 19369 if (mp->b_flag & MSGHASREF) { 19370 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19371 mp->b_flag &= ~MSGHASREF; 19372 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19373 need_decref = B_TRUE; 19374 } 19375 ipha = (ipha_t *)mp->b_rptr; 19376 19377 /* is IP header non-aligned or mblk smaller than basic IP header */ 19378 #ifndef SAFETY_BEFORE_SPEED 19379 if (!OK_32PTR(rptr) || 19380 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19381 goto hdrtoosmall; 19382 #endif 19383 19384 ASSERT(OK_32PTR(ipha)); 19385 19386 /* 19387 * This function assumes that mp points to an IPv4 packet. If it's the 19388 * wrong version, we'll catch it again in ip_output_v6. 19389 * 19390 * Note that this is *only* locally-generated output here, and never 19391 * forwarded data, and that we need to deal only with transports that 19392 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19393 * label.) 19394 */ 19395 if (is_system_labeled() && 19396 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19397 !connp->conn_ulp_labeled) { 19398 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19399 connp->conn_mac_exempt); 19400 ipha = (ipha_t *)mp->b_rptr; 19401 if (err != 0) { 19402 first_mp = mp; 19403 if (err == EINVAL) 19404 goto icmp_parameter_problem; 19405 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19406 goto drop_pkt; 19407 } 19408 iplen = ntohs(ipha->ipha_length) + adjust; 19409 ipha->ipha_length = htons(iplen); 19410 } 19411 19412 /* 19413 * If there is a policy, try to attach an ipsec_out in 19414 * the front. At the end, first_mp either points to a 19415 * M_DATA message or IPSEC_OUT message linked to a 19416 * M_DATA message. We have to do it now as we might 19417 * lose the "conn" if we go through ip_newroute. 19418 */ 19419 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19420 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19421 ipha->ipha_protocol)) == NULL)) { 19422 if (need_decref) 19423 CONN_DEC_REF(connp); 19424 return; 19425 } else { 19426 ASSERT(mp->b_datap->db_type == M_CTL); 19427 first_mp = mp; 19428 mp = mp->b_cont; 19429 mctl_present = B_TRUE; 19430 } 19431 } else { 19432 first_mp = mp; 19433 mctl_present = B_FALSE; 19434 } 19435 19436 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19437 19438 /* is wrong version or IP options present */ 19439 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19440 goto version_hdrlen_check; 19441 dst = ipha->ipha_dst; 19442 19443 if (connp->conn_nofailover_ill != NULL) { 19444 attach_ill = conn_get_held_ill(connp, 19445 &connp->conn_nofailover_ill, &err); 19446 if (err == ILL_LOOKUP_FAILED) { 19447 if (need_decref) 19448 CONN_DEC_REF(connp); 19449 freemsg(first_mp); 19450 return; 19451 } 19452 } 19453 19454 /* is packet multicast? */ 19455 if (CLASSD(dst)) 19456 goto multicast; 19457 19458 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19459 (connp->conn_nexthop_set)) { 19460 /* 19461 * If the destination is a broadcast or a loopback 19462 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19463 * through the standard path. But in the case of local 19464 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19465 * the standard path not IP_XMIT_IF. 19466 */ 19467 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19468 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19469 (ire->ire_type != IRE_LOOPBACK))) { 19470 if ((connp->conn_dontroute || 19471 connp->conn_nexthop_set) && (ire != NULL) && 19472 (ire->ire_type == IRE_LOCAL)) 19473 goto standard_path; 19474 19475 if (ire != NULL) { 19476 ire_refrele(ire); 19477 /* No more access to ire */ 19478 ire = NULL; 19479 } 19480 /* 19481 * bypass routing checks and go directly to 19482 * interface. 19483 */ 19484 if (connp->conn_dontroute) { 19485 goto dontroute; 19486 } else if (connp->conn_nexthop_set) { 19487 ip_nexthop = B_TRUE; 19488 nexthop_addr = connp->conn_nexthop_v4; 19489 goto send_from_ill; 19490 } 19491 19492 /* 19493 * If IP_XMIT_IF socket option is set, 19494 * then we allow unicast and multicast 19495 * packets to go through the ill. It is 19496 * quite possible that the destination 19497 * is not in the ire cache table and we 19498 * do not want to go to ip_newroute() 19499 * instead we call ip_newroute_ipif. 19500 */ 19501 xmit_ill = conn_get_held_ill(connp, 19502 &connp->conn_xmit_if_ill, &err); 19503 if (err == ILL_LOOKUP_FAILED) { 19504 if (attach_ill != NULL) 19505 ill_refrele(attach_ill); 19506 if (need_decref) 19507 CONN_DEC_REF(connp); 19508 freemsg(first_mp); 19509 return; 19510 } 19511 goto send_from_ill; 19512 } 19513 standard_path: 19514 /* Must be a broadcast, a loopback or a local ire */ 19515 if (ire != NULL) { 19516 ire_refrele(ire); 19517 /* No more access to ire */ 19518 ire = NULL; 19519 } 19520 } 19521 19522 if (attach_ill != NULL) 19523 goto send_from_ill; 19524 19525 /* 19526 * We cache IRE_CACHEs to avoid lookups. We don't do 19527 * this for the tcp global queue and listen end point 19528 * as it does not really have a real destination to 19529 * talk to. This is also true for SCTP. 19530 */ 19531 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19532 !connp->conn_fully_bound) { 19533 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19534 if (ire == NULL) 19535 goto noirefound; 19536 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19537 "ip_wput_end: q %p (%S)", q, "end"); 19538 19539 /* 19540 * Check if the ire has the RTF_MULTIRT flag, inherited 19541 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19542 */ 19543 if (ire->ire_flags & RTF_MULTIRT) { 19544 19545 /* 19546 * Force the TTL of multirouted packets if required. 19547 * The TTL of such packets is bounded by the 19548 * ip_multirt_ttl ndd variable. 19549 */ 19550 if ((ip_multirt_ttl > 0) && 19551 (ipha->ipha_ttl > ip_multirt_ttl)) { 19552 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19553 "(was %d), dst 0x%08x\n", 19554 ip_multirt_ttl, ipha->ipha_ttl, 19555 ntohl(ire->ire_addr))); 19556 ipha->ipha_ttl = ip_multirt_ttl; 19557 } 19558 /* 19559 * We look at this point if there are pending 19560 * unresolved routes. ire_multirt_resolvable() 19561 * checks in O(n) that all IRE_OFFSUBNET ire 19562 * entries for the packet's destination and 19563 * flagged RTF_MULTIRT are currently resolved. 19564 * If some remain unresolved, we make a copy 19565 * of the current message. It will be used 19566 * to initiate additional route resolutions. 19567 */ 19568 multirt_need_resolve = 19569 ire_multirt_need_resolve(ire->ire_addr, 19570 MBLK_GETLABEL(first_mp)); 19571 ip2dbg(("ip_wput[TCP]: ire %p, " 19572 "multirt_need_resolve %d, first_mp %p\n", 19573 (void *)ire, multirt_need_resolve, 19574 (void *)first_mp)); 19575 if (multirt_need_resolve) { 19576 copy_mp = copymsg(first_mp); 19577 if (copy_mp != NULL) { 19578 MULTIRT_DEBUG_TAG(copy_mp); 19579 } 19580 } 19581 } 19582 19583 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19584 19585 /* 19586 * Try to resolve another multiroute if 19587 * ire_multirt_need_resolve() deemed it necessary. 19588 */ 19589 if (copy_mp != NULL) { 19590 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19591 } 19592 if (need_decref) 19593 CONN_DEC_REF(connp); 19594 return; 19595 } 19596 19597 /* 19598 * Access to conn_ire_cache. (protected by conn_lock) 19599 * 19600 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19601 * the ire bucket lock here to check for CONDEMNED as it is okay to 19602 * send a packet or two with the IRE_CACHE that is going away. 19603 * Access to the ire requires an ire refhold on the ire prior to 19604 * its use since an interface unplumb thread may delete the cached 19605 * ire and release the refhold at any time. 19606 * 19607 * Caching an ire in the conn_ire_cache 19608 * 19609 * o Caching an ire pointer in the conn requires a strict check for 19610 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19611 * ires before cleaning up the conns. So the caching of an ire pointer 19612 * in the conn is done after making sure under the bucket lock that the 19613 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19614 * caching an ire after the unplumb thread has cleaned up the conn. 19615 * If the conn does not send a packet subsequently the unplumb thread 19616 * will be hanging waiting for the ire count to drop to zero. 19617 * 19618 * o We also need to atomically test for a null conn_ire_cache and 19619 * set the conn_ire_cache under the the protection of the conn_lock 19620 * to avoid races among concurrent threads trying to simultaneously 19621 * cache an ire in the conn_ire_cache. 19622 */ 19623 mutex_enter(&connp->conn_lock); 19624 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19625 19626 if (ire != NULL && ire->ire_addr == dst && 19627 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19628 19629 IRE_REFHOLD(ire); 19630 mutex_exit(&connp->conn_lock); 19631 19632 } else { 19633 boolean_t cached = B_FALSE; 19634 connp->conn_ire_cache = NULL; 19635 mutex_exit(&connp->conn_lock); 19636 /* Release the old ire */ 19637 if (ire != NULL && sctp_ire == NULL) 19638 IRE_REFRELE_NOTR(ire); 19639 19640 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19641 if (ire == NULL) 19642 goto noirefound; 19643 IRE_REFHOLD_NOTR(ire); 19644 19645 mutex_enter(&connp->conn_lock); 19646 if (!(connp->conn_state_flags & CONN_CLOSING) && 19647 connp->conn_ire_cache == NULL) { 19648 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19649 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19650 connp->conn_ire_cache = ire; 19651 cached = B_TRUE; 19652 } 19653 rw_exit(&ire->ire_bucket->irb_lock); 19654 } 19655 mutex_exit(&connp->conn_lock); 19656 19657 /* 19658 * We can continue to use the ire but since it was 19659 * not cached, we should drop the extra reference. 19660 */ 19661 if (!cached) 19662 IRE_REFRELE_NOTR(ire); 19663 } 19664 19665 19666 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19667 "ip_wput_end: q %p (%S)", q, "end"); 19668 19669 /* 19670 * Check if the ire has the RTF_MULTIRT flag, inherited 19671 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19672 */ 19673 if (ire->ire_flags & RTF_MULTIRT) { 19674 19675 /* 19676 * Force the TTL of multirouted packets if required. 19677 * The TTL of such packets is bounded by the 19678 * ip_multirt_ttl ndd variable. 19679 */ 19680 if ((ip_multirt_ttl > 0) && 19681 (ipha->ipha_ttl > ip_multirt_ttl)) { 19682 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19683 "(was %d), dst 0x%08x\n", 19684 ip_multirt_ttl, ipha->ipha_ttl, 19685 ntohl(ire->ire_addr))); 19686 ipha->ipha_ttl = ip_multirt_ttl; 19687 } 19688 19689 /* 19690 * At this point, we check to see if there are any pending 19691 * unresolved routes. ire_multirt_resolvable() 19692 * checks in O(n) that all IRE_OFFSUBNET ire 19693 * entries for the packet's destination and 19694 * flagged RTF_MULTIRT are currently resolved. 19695 * If some remain unresolved, we make a copy 19696 * of the current message. It will be used 19697 * to initiate additional route resolutions. 19698 */ 19699 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19700 MBLK_GETLABEL(first_mp)); 19701 ip2dbg(("ip_wput[not TCP]: ire %p, " 19702 "multirt_need_resolve %d, first_mp %p\n", 19703 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19704 if (multirt_need_resolve) { 19705 copy_mp = copymsg(first_mp); 19706 if (copy_mp != NULL) { 19707 MULTIRT_DEBUG_TAG(copy_mp); 19708 } 19709 } 19710 } 19711 19712 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19713 19714 /* 19715 * Try to resolve another multiroute if 19716 * ire_multirt_resolvable() deemed it necessary 19717 */ 19718 if (copy_mp != NULL) { 19719 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19720 } 19721 if (need_decref) 19722 CONN_DEC_REF(connp); 19723 return; 19724 19725 qnext: 19726 /* 19727 * Upper Level Protocols pass down complete IP datagrams 19728 * as M_DATA messages. Everything else is a sideshow. 19729 * 19730 * 1) We could be re-entering ip_wput because of ip_neworute 19731 * in which case we could have a IPSEC_OUT message. We 19732 * need to pass through ip_wput like other datagrams and 19733 * hence cannot branch to ip_wput_nondata. 19734 * 19735 * 2) ARP, AH, ESP, and other clients who are on the module 19736 * instance of IP stream, give us something to deal with. 19737 * We will handle AH and ESP here and rest in ip_wput_nondata. 19738 * 19739 * 3) ICMP replies also could come here. 19740 */ 19741 if (DB_TYPE(mp) != M_DATA) { 19742 notdata: 19743 if (DB_TYPE(mp) == M_CTL) { 19744 /* 19745 * M_CTL messages are used by ARP, AH and ESP to 19746 * communicate with IP. We deal with IPSEC_IN and 19747 * IPSEC_OUT here. ip_wput_nondata handles other 19748 * cases. 19749 */ 19750 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19751 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19752 first_mp = mp->b_cont; 19753 first_mp->b_flag &= ~MSGHASREF; 19754 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19755 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19756 CONN_DEC_REF(connp); 19757 connp = NULL; 19758 } 19759 if (ii->ipsec_info_type == IPSEC_IN) { 19760 /* 19761 * Either this message goes back to 19762 * IPSEC for further processing or to 19763 * ULP after policy checks. 19764 */ 19765 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19766 return; 19767 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19768 io = (ipsec_out_t *)ii; 19769 if (io->ipsec_out_proc_begin) { 19770 /* 19771 * IPSEC processing has already started. 19772 * Complete it. 19773 * IPQoS notes: We don't care what is 19774 * in ipsec_out_ill_index since this 19775 * won't be processed for IPQoS policies 19776 * in ipsec_out_process. 19777 */ 19778 ipsec_out_process(q, mp, NULL, 19779 io->ipsec_out_ill_index); 19780 return; 19781 } else { 19782 connp = (q->q_next != NULL) ? 19783 NULL : Q_TO_CONN(q); 19784 first_mp = mp; 19785 mp = mp->b_cont; 19786 mctl_present = B_TRUE; 19787 } 19788 zoneid = io->ipsec_out_zoneid; 19789 ASSERT(zoneid != ALL_ZONES); 19790 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19791 /* 19792 * It's an IPsec control message requesting 19793 * an SADB update to be sent to the IPsec 19794 * hardware acceleration capable ills. 19795 */ 19796 ipsec_ctl_t *ipsec_ctl = 19797 (ipsec_ctl_t *)mp->b_rptr; 19798 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19799 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19800 mblk_t *cmp = mp->b_cont; 19801 19802 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19803 ASSERT(cmp != NULL); 19804 19805 freeb(mp); 19806 ill_ipsec_capab_send_all(satype, cmp, sa); 19807 return; 19808 } else { 19809 /* 19810 * This must be ARP or special TSOL signaling. 19811 */ 19812 ip_wput_nondata(NULL, q, mp, NULL); 19813 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19814 "ip_wput_end: q %p (%S)", q, "nondata"); 19815 return; 19816 } 19817 } else { 19818 /* 19819 * This must be non-(ARP/AH/ESP) messages. 19820 */ 19821 ASSERT(!need_decref); 19822 ip_wput_nondata(NULL, q, mp, NULL); 19823 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19824 "ip_wput_end: q %p (%S)", q, "nondata"); 19825 return; 19826 } 19827 } else { 19828 first_mp = mp; 19829 mctl_present = B_FALSE; 19830 } 19831 19832 ASSERT(first_mp != NULL); 19833 /* 19834 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19835 * to make sure that this packet goes out on the same interface it 19836 * came in. We handle that here. 19837 */ 19838 if (mctl_present) { 19839 uint_t ifindex; 19840 19841 io = (ipsec_out_t *)first_mp->b_rptr; 19842 if (io->ipsec_out_attach_if || 19843 io->ipsec_out_xmit_if || 19844 io->ipsec_out_ip_nexthop) { 19845 ill_t *ill; 19846 19847 /* 19848 * We may have lost the conn context if we are 19849 * coming here from ip_newroute(). Copy the 19850 * nexthop information. 19851 */ 19852 if (io->ipsec_out_ip_nexthop) { 19853 ip_nexthop = B_TRUE; 19854 nexthop_addr = io->ipsec_out_nexthop_addr; 19855 19856 ipha = (ipha_t *)mp->b_rptr; 19857 dst = ipha->ipha_dst; 19858 goto send_from_ill; 19859 } else { 19860 ASSERT(io->ipsec_out_ill_index != 0); 19861 ifindex = io->ipsec_out_ill_index; 19862 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19863 NULL, NULL, NULL, NULL); 19864 /* 19865 * ipsec_out_xmit_if bit is used to tell 19866 * ip_wput to use the ill to send outgoing data 19867 * as we have no conn when data comes from ICMP 19868 * error msg routines. Currently this feature is 19869 * only used by ip_mrtun_forward routine. 19870 */ 19871 if (io->ipsec_out_xmit_if) { 19872 xmit_ill = ill; 19873 if (xmit_ill == NULL) { 19874 ip1dbg(("ip_output:bad ifindex " 19875 "for xmit_ill %d\n", 19876 ifindex)); 19877 freemsg(first_mp); 19878 BUMP_MIB(&ip_mib, 19879 ipOutDiscards); 19880 ASSERT(!need_decref); 19881 return; 19882 } 19883 /* Free up the ipsec_out_t mblk */ 19884 ASSERT(first_mp->b_cont == mp); 19885 first_mp->b_cont = NULL; 19886 freeb(first_mp); 19887 /* Just send the IP header+ICMP+data */ 19888 first_mp = mp; 19889 ipha = (ipha_t *)mp->b_rptr; 19890 dst = ipha->ipha_dst; 19891 goto send_from_ill; 19892 } else { 19893 attach_ill = ill; 19894 } 19895 19896 if (attach_ill == NULL) { 19897 ASSERT(xmit_ill == NULL); 19898 ip1dbg(("ip_output: bad ifindex for " 19899 "(BIND TO IPIF_NOFAILOVER) %d\n", 19900 ifindex)); 19901 freemsg(first_mp); 19902 BUMP_MIB(&ip_mib, ipOutDiscards); 19903 ASSERT(!need_decref); 19904 return; 19905 } 19906 } 19907 } 19908 } 19909 19910 ASSERT(xmit_ill == NULL); 19911 19912 /* We have a complete IP datagram heading outbound. */ 19913 ipha = (ipha_t *)mp->b_rptr; 19914 19915 #ifndef SPEED_BEFORE_SAFETY 19916 /* 19917 * Make sure we have a full-word aligned message and that at least 19918 * a simple IP header is accessible in the first message. If not, 19919 * try a pullup. 19920 */ 19921 if (!OK_32PTR(rptr) || 19922 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19923 hdrtoosmall: 19924 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19925 BUMP_MIB(&ip_mib, ipOutDiscards); 19926 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19927 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19928 if (first_mp == NULL) 19929 first_mp = mp; 19930 goto drop_pkt; 19931 } 19932 19933 /* This function assumes that mp points to an IPv4 packet. */ 19934 if (is_system_labeled() && q->q_next == NULL && 19935 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19936 !connp->conn_ulp_labeled) { 19937 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19938 &adjust, connp->conn_mac_exempt); 19939 ipha = (ipha_t *)mp->b_rptr; 19940 if (first_mp != NULL) 19941 first_mp->b_cont = mp; 19942 if (err != 0) { 19943 if (first_mp == NULL) 19944 first_mp = mp; 19945 if (err == EINVAL) 19946 goto icmp_parameter_problem; 19947 ip2dbg(("ip_wput: label check failed (%d)\n", 19948 err)); 19949 goto drop_pkt; 19950 } 19951 iplen = ntohs(ipha->ipha_length) + adjust; 19952 ipha->ipha_length = htons(iplen); 19953 } 19954 19955 ipha = (ipha_t *)mp->b_rptr; 19956 if (first_mp == NULL) { 19957 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19958 /* 19959 * If we got here because of "goto hdrtoosmall" 19960 * We need to attach a IPSEC_OUT. 19961 */ 19962 if (connp->conn_out_enforce_policy) { 19963 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19964 NULL, ipha->ipha_protocol)) == NULL)) { 19965 if (need_decref) 19966 CONN_DEC_REF(connp); 19967 return; 19968 } else { 19969 ASSERT(mp->b_datap->db_type == M_CTL); 19970 first_mp = mp; 19971 mp = mp->b_cont; 19972 mctl_present = B_TRUE; 19973 } 19974 } else { 19975 first_mp = mp; 19976 mctl_present = B_FALSE; 19977 } 19978 } 19979 } 19980 #endif 19981 19982 /* Most of the code below is written for speed, not readability */ 19983 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19984 19985 /* 19986 * If ip_newroute() fails, we're going to need a full 19987 * header for the icmp wraparound. 19988 */ 19989 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 19990 uint_t v_hlen; 19991 version_hdrlen_check: 19992 ASSERT(first_mp != NULL); 19993 v_hlen = V_HLEN; 19994 /* 19995 * siphon off IPv6 packets coming down from transport 19996 * layer modules here. 19997 * Note: high-order bit carries NUD reachability confirmation 19998 */ 19999 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20000 /* 20001 * XXX implement a IPv4 and IPv6 packet counter per 20002 * conn and switch when ratio exceeds e.g. 10:1 20003 */ 20004 #ifdef notyet 20005 if (q->q_next == NULL) /* Avoid ill queue */ 20006 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20007 #endif 20008 BUMP_MIB(&ip_mib, ipOutIPv6); 20009 ASSERT(xmit_ill == NULL); 20010 if (attach_ill != NULL) 20011 ill_refrele(attach_ill); 20012 if (need_decref) 20013 mp->b_flag |= MSGHASREF; 20014 (void) ip_output_v6(arg, first_mp, arg2, caller); 20015 return; 20016 } 20017 20018 if ((v_hlen >> 4) != IP_VERSION) { 20019 BUMP_MIB(&ip_mib, ipOutDiscards); 20020 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20021 "ip_wput_end: q %p (%S)", q, "badvers"); 20022 goto drop_pkt; 20023 } 20024 /* 20025 * Is the header length at least 20 bytes? 20026 * 20027 * Are there enough bytes accessible in the header? If 20028 * not, try a pullup. 20029 */ 20030 v_hlen &= 0xF; 20031 v_hlen <<= 2; 20032 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20033 BUMP_MIB(&ip_mib, ipOutDiscards); 20034 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20035 "ip_wput_end: q %p (%S)", q, "badlen"); 20036 goto drop_pkt; 20037 } 20038 if (v_hlen > (mp->b_wptr - rptr)) { 20039 if (!pullupmsg(mp, v_hlen)) { 20040 BUMP_MIB(&ip_mib, ipOutDiscards); 20041 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20042 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20043 goto drop_pkt; 20044 } 20045 ipha = (ipha_t *)mp->b_rptr; 20046 } 20047 /* 20048 * Move first entry from any source route into ipha_dst and 20049 * verify the options 20050 */ 20051 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20052 ASSERT(xmit_ill == NULL); 20053 if (attach_ill != NULL) 20054 ill_refrele(attach_ill); 20055 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20056 "ip_wput_end: q %p (%S)", q, "badopts"); 20057 if (need_decref) 20058 CONN_DEC_REF(connp); 20059 return; 20060 } 20061 } 20062 dst = ipha->ipha_dst; 20063 20064 /* 20065 * Try to get an IRE_CACHE for the destination address. If we can't, 20066 * we have to run the packet through ip_newroute which will take 20067 * the appropriate action to arrange for an IRE_CACHE, such as querying 20068 * a resolver, or assigning a default gateway, etc. 20069 */ 20070 if (CLASSD(dst)) { 20071 ipif_t *ipif; 20072 uint32_t setsrc = 0; 20073 20074 multicast: 20075 ASSERT(first_mp != NULL); 20076 ASSERT(xmit_ill == NULL); 20077 ip2dbg(("ip_wput: CLASSD\n")); 20078 if (connp == NULL) { 20079 /* 20080 * Use the first good ipif on the ill. 20081 * XXX Should this ever happen? (Appears 20082 * to show up with just ppp and no ethernet due 20083 * to in.rdisc.) 20084 * However, ire_send should be able to 20085 * call ip_wput_ire directly. 20086 * 20087 * XXX Also, this can happen for ICMP and other packets 20088 * with multicast source addresses. Perhaps we should 20089 * fix things so that we drop the packet in question, 20090 * but for now, just run with it. 20091 */ 20092 ill_t *ill = (ill_t *)q->q_ptr; 20093 20094 /* 20095 * Don't honor attach_if for this case. If ill 20096 * is part of the group, ipif could belong to 20097 * any ill and we cannot maintain attach_ill 20098 * and ipif_ill same anymore and the assert 20099 * below would fail. 20100 */ 20101 if (mctl_present) { 20102 io->ipsec_out_ill_index = 0; 20103 io->ipsec_out_attach_if = B_FALSE; 20104 ASSERT(attach_ill != NULL); 20105 ill_refrele(attach_ill); 20106 attach_ill = NULL; 20107 } 20108 20109 ASSERT(attach_ill == NULL); 20110 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20111 if (ipif == NULL) { 20112 if (need_decref) 20113 CONN_DEC_REF(connp); 20114 freemsg(first_mp); 20115 return; 20116 } 20117 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20118 ntohl(dst), ill->ill_name)); 20119 } else { 20120 /* 20121 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20122 * IP_XMIT_IF is honoured. 20123 * Block comment above this function explains the 20124 * locking mechanism used here 20125 */ 20126 xmit_ill = conn_get_held_ill(connp, 20127 &connp->conn_xmit_if_ill, &err); 20128 if (err == ILL_LOOKUP_FAILED) { 20129 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20130 goto drop_pkt; 20131 } 20132 if (xmit_ill == NULL) { 20133 ipif = conn_get_held_ipif(connp, 20134 &connp->conn_multicast_ipif, &err); 20135 if (err == IPIF_LOOKUP_FAILED) { 20136 ip1dbg(("ip_wput: No ipif for " 20137 "multicast\n")); 20138 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20139 goto drop_pkt; 20140 } 20141 } 20142 if (xmit_ill != NULL) { 20143 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20144 if (ipif == NULL) { 20145 ip1dbg(("ip_wput: No ipif for " 20146 "IP_XMIT_IF\n")); 20147 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20148 goto drop_pkt; 20149 } 20150 } else if (ipif == NULL || ipif->ipif_isv6) { 20151 /* 20152 * We must do this ipif determination here 20153 * else we could pass through ip_newroute 20154 * and come back here without the conn context. 20155 * 20156 * Note: we do late binding i.e. we bind to 20157 * the interface when the first packet is sent. 20158 * For performance reasons we do not rebind on 20159 * each packet but keep the binding until the 20160 * next IP_MULTICAST_IF option. 20161 * 20162 * conn_multicast_{ipif,ill} are shared between 20163 * IPv4 and IPv6 and AF_INET6 sockets can 20164 * send both IPv4 and IPv6 packets. Hence 20165 * we have to check that "isv6" matches above. 20166 */ 20167 if (ipif != NULL) 20168 ipif_refrele(ipif); 20169 ipif = ipif_lookup_group(dst, zoneid); 20170 if (ipif == NULL) { 20171 ip1dbg(("ip_wput: No ipif for " 20172 "multicast\n")); 20173 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20174 goto drop_pkt; 20175 } 20176 err = conn_set_held_ipif(connp, 20177 &connp->conn_multicast_ipif, ipif); 20178 if (err == IPIF_LOOKUP_FAILED) { 20179 ipif_refrele(ipif); 20180 ip1dbg(("ip_wput: No ipif for " 20181 "multicast\n")); 20182 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20183 goto drop_pkt; 20184 } 20185 } 20186 } 20187 ASSERT(!ipif->ipif_isv6); 20188 /* 20189 * As we may lose the conn by the time we reach ip_wput_ire, 20190 * we copy conn_multicast_loop and conn_dontroute on to an 20191 * ipsec_out. In case if this datagram goes out secure, 20192 * we need the ill_index also. Copy that also into the 20193 * ipsec_out. 20194 */ 20195 if (mctl_present) { 20196 io = (ipsec_out_t *)first_mp->b_rptr; 20197 ASSERT(first_mp->b_datap->db_type == M_CTL); 20198 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20199 } else { 20200 ASSERT(mp == first_mp); 20201 if ((first_mp = allocb(sizeof (ipsec_info_t), 20202 BPRI_HI)) == NULL) { 20203 ipif_refrele(ipif); 20204 first_mp = mp; 20205 goto drop_pkt; 20206 } 20207 first_mp->b_datap->db_type = M_CTL; 20208 first_mp->b_wptr += sizeof (ipsec_info_t); 20209 /* ipsec_out_secure is B_FALSE now */ 20210 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20211 io = (ipsec_out_t *)first_mp->b_rptr; 20212 io->ipsec_out_type = IPSEC_OUT; 20213 io->ipsec_out_len = sizeof (ipsec_out_t); 20214 io->ipsec_out_use_global_policy = B_TRUE; 20215 first_mp->b_cont = mp; 20216 mctl_present = B_TRUE; 20217 } 20218 if (attach_ill != NULL) { 20219 ASSERT(attach_ill == ipif->ipif_ill); 20220 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20221 20222 /* 20223 * Check if we need an ire that will not be 20224 * looked up by anybody else i.e. HIDDEN. 20225 */ 20226 if (ill_is_probeonly(attach_ill)) { 20227 match_flags |= MATCH_IRE_MARK_HIDDEN; 20228 } 20229 io->ipsec_out_ill_index = 20230 attach_ill->ill_phyint->phyint_ifindex; 20231 io->ipsec_out_attach_if = B_TRUE; 20232 } else { 20233 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20234 io->ipsec_out_ill_index = 20235 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20236 } 20237 if (connp != NULL) { 20238 io->ipsec_out_multicast_loop = 20239 connp->conn_multicast_loop; 20240 io->ipsec_out_dontroute = connp->conn_dontroute; 20241 io->ipsec_out_zoneid = connp->conn_zoneid; 20242 } 20243 /* 20244 * If the application uses IP_MULTICAST_IF with 20245 * different logical addresses of the same ILL, we 20246 * need to make sure that the soruce address of 20247 * the packet matches the logical IP address used 20248 * in the option. We do it by initializing ipha_src 20249 * here. This should keep IPSEC also happy as 20250 * when we return from IPSEC processing, we don't 20251 * have to worry about getting the right address on 20252 * the packet. Thus it is sufficient to look for 20253 * IRE_CACHE using MATCH_IRE_ILL rathen than 20254 * MATCH_IRE_IPIF. 20255 * 20256 * NOTE : We need to do it for non-secure case also as 20257 * this might go out secure if there is a global policy 20258 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20259 * address, the source should be initialized already and 20260 * hence we won't be initializing here. 20261 * 20262 * As we do not have the ire yet, it is possible that 20263 * we set the source address here and then later discover 20264 * that the ire implies the source address to be assigned 20265 * through the RTF_SETSRC flag. 20266 * In that case, the setsrc variable will remind us 20267 * that overwritting the source address by the one 20268 * of the RTF_SETSRC-flagged ire is allowed. 20269 */ 20270 if (ipha->ipha_src == INADDR_ANY && 20271 (connp == NULL || !connp->conn_unspec_src)) { 20272 ipha->ipha_src = ipif->ipif_src_addr; 20273 setsrc = RTF_SETSRC; 20274 } 20275 /* 20276 * Find an IRE which matches the destination and the outgoing 20277 * queue (i.e. the outgoing interface.) 20278 * For loopback use a unicast IP address for 20279 * the ire lookup. 20280 */ 20281 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20282 PHYI_LOOPBACK) { 20283 dst = ipif->ipif_lcl_addr; 20284 } 20285 /* 20286 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20287 * We don't need to lookup ire in ctable as the packet 20288 * needs to be sent to the destination through the specified 20289 * ill irrespective of ires in the cache table. 20290 */ 20291 ire = NULL; 20292 if (xmit_ill == NULL) { 20293 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20294 zoneid, MBLK_GETLABEL(mp), match_flags); 20295 } 20296 20297 /* 20298 * refrele attach_ill as its not needed anymore. 20299 */ 20300 if (attach_ill != NULL) { 20301 ill_refrele(attach_ill); 20302 attach_ill = NULL; 20303 } 20304 20305 if (ire == NULL) { 20306 /* 20307 * Multicast loopback and multicast forwarding is 20308 * done in ip_wput_ire. 20309 * 20310 * Mark this packet to make it be delivered to 20311 * ip_wput_ire after the new ire has been 20312 * created. 20313 * 20314 * The call to ip_newroute_ipif takes into account 20315 * the setsrc reminder. In any case, we take care 20316 * of the RTF_MULTIRT flag. 20317 */ 20318 mp->b_prev = mp->b_next = NULL; 20319 if (xmit_ill == NULL || 20320 xmit_ill->ill_ipif_up_count > 0) { 20321 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20322 setsrc | RTF_MULTIRT, zoneid); 20323 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20324 "ip_wput_end: q %p (%S)", q, "noire"); 20325 } else { 20326 freemsg(first_mp); 20327 } 20328 ipif_refrele(ipif); 20329 if (xmit_ill != NULL) 20330 ill_refrele(xmit_ill); 20331 if (need_decref) 20332 CONN_DEC_REF(connp); 20333 return; 20334 } 20335 20336 ipif_refrele(ipif); 20337 ipif = NULL; 20338 ASSERT(xmit_ill == NULL); 20339 20340 /* 20341 * Honor the RTF_SETSRC flag for multicast packets, 20342 * if allowed by the setsrc reminder. 20343 */ 20344 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20345 ipha->ipha_src = ire->ire_src_addr; 20346 } 20347 20348 /* 20349 * Unconditionally force the TTL to 1 for 20350 * multirouted multicast packets: 20351 * multirouted multicast should not cross 20352 * multicast routers. 20353 */ 20354 if (ire->ire_flags & RTF_MULTIRT) { 20355 if (ipha->ipha_ttl > 1) { 20356 ip2dbg(("ip_wput: forcing multicast " 20357 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20358 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20359 ipha->ipha_ttl = 1; 20360 } 20361 } 20362 } else { 20363 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20364 if ((ire != NULL) && (ire->ire_type & 20365 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20366 ignore_dontroute = B_TRUE; 20367 ignore_nexthop = B_TRUE; 20368 } 20369 if (ire != NULL) { 20370 ire_refrele(ire); 20371 ire = NULL; 20372 } 20373 /* 20374 * Guard against coming in from arp in which case conn is NULL. 20375 * Also guard against non M_DATA with dontroute set but 20376 * destined to local, loopback or broadcast addresses. 20377 */ 20378 if (connp != NULL && connp->conn_dontroute && 20379 !ignore_dontroute) { 20380 dontroute: 20381 /* 20382 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20383 * routing protocols from seeing false direct 20384 * connectivity. 20385 */ 20386 ipha->ipha_ttl = 1; 20387 /* 20388 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20389 * along with SO_DONTROUTE, higher precedence is 20390 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20391 */ 20392 if (connp->conn_xmit_if_ill == NULL) { 20393 /* If suitable ipif not found, drop packet */ 20394 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20395 if (dst_ipif == NULL) { 20396 ip1dbg(("ip_wput: no route for " 20397 "dst using SO_DONTROUTE\n")); 20398 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20399 mp->b_prev = mp->b_next = NULL; 20400 if (first_mp == NULL) 20401 first_mp = mp; 20402 goto drop_pkt; 20403 } else { 20404 /* 20405 * If suitable ipif has been found, set 20406 * xmit_ill to the corresponding 20407 * ipif_ill because we'll be following 20408 * the IP_XMIT_IF logic. 20409 */ 20410 ASSERT(xmit_ill == NULL); 20411 xmit_ill = dst_ipif->ipif_ill; 20412 mutex_enter(&xmit_ill->ill_lock); 20413 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20414 mutex_exit(&xmit_ill->ill_lock); 20415 xmit_ill = NULL; 20416 ipif_refrele(dst_ipif); 20417 ip1dbg(("ip_wput: no route for" 20418 " dst using" 20419 " SO_DONTROUTE\n")); 20420 BUMP_MIB(&ip_mib, 20421 ipOutNoRoutes); 20422 mp->b_prev = mp->b_next = NULL; 20423 if (first_mp == NULL) 20424 first_mp = mp; 20425 goto drop_pkt; 20426 } 20427 ill_refhold_locked(xmit_ill); 20428 mutex_exit(&xmit_ill->ill_lock); 20429 ipif_refrele(dst_ipif); 20430 } 20431 } 20432 20433 } 20434 /* 20435 * If we are bound to IPIF_NOFAILOVER address, look for 20436 * an IRE_CACHE matching the ill. 20437 */ 20438 send_from_ill: 20439 if (attach_ill != NULL) { 20440 ipif_t *attach_ipif; 20441 20442 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20443 20444 /* 20445 * Check if we need an ire that will not be 20446 * looked up by anybody else i.e. HIDDEN. 20447 */ 20448 if (ill_is_probeonly(attach_ill)) { 20449 match_flags |= MATCH_IRE_MARK_HIDDEN; 20450 } 20451 20452 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20453 if (attach_ipif == NULL) { 20454 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20455 goto drop_pkt; 20456 } 20457 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20458 zoneid, MBLK_GETLABEL(mp), match_flags); 20459 ipif_refrele(attach_ipif); 20460 } else if (xmit_ill != NULL || (connp != NULL && 20461 connp->conn_xmit_if_ill != NULL)) { 20462 /* 20463 * Mark this packet as originated locally 20464 */ 20465 mp->b_prev = mp->b_next = NULL; 20466 /* 20467 * xmit_ill could be NULL if SO_DONTROUTE 20468 * is also set. 20469 */ 20470 if (xmit_ill == NULL) { 20471 xmit_ill = conn_get_held_ill(connp, 20472 &connp->conn_xmit_if_ill, &err); 20473 if (err == ILL_LOOKUP_FAILED) { 20474 if (need_decref) 20475 CONN_DEC_REF(connp); 20476 freemsg(first_mp); 20477 return; 20478 } 20479 if (xmit_ill == NULL) { 20480 if (connp->conn_dontroute) 20481 goto dontroute; 20482 goto send_from_ill; 20483 } 20484 } 20485 /* 20486 * could be SO_DONTROUTE case also. 20487 * check at least one interface is UP as 20488 * spcified by this ILL, and then call 20489 * ip_newroute_ipif() 20490 */ 20491 if (xmit_ill->ill_ipif_up_count > 0) { 20492 ipif_t *ipif; 20493 20494 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20495 if (ipif != NULL) { 20496 ip_newroute_ipif(q, first_mp, ipif, 20497 dst, connp, 0, zoneid); 20498 ipif_refrele(ipif); 20499 ip1dbg(("ip_wput: ip_unicast_if\n")); 20500 } 20501 } else { 20502 freemsg(first_mp); 20503 } 20504 ill_refrele(xmit_ill); 20505 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20506 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20507 if (need_decref) 20508 CONN_DEC_REF(connp); 20509 return; 20510 } else if (ip_nexthop || (connp != NULL && 20511 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20512 if (!ip_nexthop) { 20513 ip_nexthop = B_TRUE; 20514 nexthop_addr = connp->conn_nexthop_v4; 20515 } 20516 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20517 MATCH_IRE_GW; 20518 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20519 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20520 } else { 20521 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20522 } 20523 if (!ire) { 20524 /* 20525 * Make sure we don't load spread if this 20526 * is IPIF_NOFAILOVER case. 20527 */ 20528 if ((attach_ill != NULL) || 20529 (ip_nexthop && !ignore_nexthop)) { 20530 if (mctl_present) { 20531 io = (ipsec_out_t *)first_mp->b_rptr; 20532 ASSERT(first_mp->b_datap->db_type == 20533 M_CTL); 20534 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20535 } else { 20536 ASSERT(mp == first_mp); 20537 first_mp = allocb( 20538 sizeof (ipsec_info_t), BPRI_HI); 20539 if (first_mp == NULL) { 20540 first_mp = mp; 20541 goto drop_pkt; 20542 } 20543 first_mp->b_datap->db_type = M_CTL; 20544 first_mp->b_wptr += 20545 sizeof (ipsec_info_t); 20546 /* ipsec_out_secure is B_FALSE now */ 20547 bzero(first_mp->b_rptr, 20548 sizeof (ipsec_info_t)); 20549 io = (ipsec_out_t *)first_mp->b_rptr; 20550 io->ipsec_out_type = IPSEC_OUT; 20551 io->ipsec_out_len = 20552 sizeof (ipsec_out_t); 20553 io->ipsec_out_use_global_policy = 20554 B_TRUE; 20555 first_mp->b_cont = mp; 20556 mctl_present = B_TRUE; 20557 } 20558 if (attach_ill != NULL) { 20559 io->ipsec_out_ill_index = attach_ill-> 20560 ill_phyint->phyint_ifindex; 20561 io->ipsec_out_attach_if = B_TRUE; 20562 } else { 20563 io->ipsec_out_ip_nexthop = ip_nexthop; 20564 io->ipsec_out_nexthop_addr = 20565 nexthop_addr; 20566 } 20567 } 20568 noirefound: 20569 /* 20570 * Mark this packet as having originated on 20571 * this machine. This will be noted in 20572 * ire_add_then_send, which needs to know 20573 * whether to run it back through ip_wput or 20574 * ip_rput following successful resolution. 20575 */ 20576 mp->b_prev = NULL; 20577 mp->b_next = NULL; 20578 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 20579 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20580 "ip_wput_end: q %p (%S)", q, "newroute"); 20581 if (attach_ill != NULL) 20582 ill_refrele(attach_ill); 20583 if (xmit_ill != NULL) 20584 ill_refrele(xmit_ill); 20585 if (need_decref) 20586 CONN_DEC_REF(connp); 20587 return; 20588 } 20589 } 20590 20591 /* We now know where we are going with it. */ 20592 20593 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20594 "ip_wput_end: q %p (%S)", q, "end"); 20595 20596 /* 20597 * Check if the ire has the RTF_MULTIRT flag, inherited 20598 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20599 */ 20600 if (ire->ire_flags & RTF_MULTIRT) { 20601 /* 20602 * Force the TTL of multirouted packets if required. 20603 * The TTL of such packets is bounded by the 20604 * ip_multirt_ttl ndd variable. 20605 */ 20606 if ((ip_multirt_ttl > 0) && 20607 (ipha->ipha_ttl > ip_multirt_ttl)) { 20608 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20609 "(was %d), dst 0x%08x\n", 20610 ip_multirt_ttl, ipha->ipha_ttl, 20611 ntohl(ire->ire_addr))); 20612 ipha->ipha_ttl = ip_multirt_ttl; 20613 } 20614 /* 20615 * At this point, we check to see if there are any pending 20616 * unresolved routes. ire_multirt_resolvable() 20617 * checks in O(n) that all IRE_OFFSUBNET ire 20618 * entries for the packet's destination and 20619 * flagged RTF_MULTIRT are currently resolved. 20620 * If some remain unresolved, we make a copy 20621 * of the current message. It will be used 20622 * to initiate additional route resolutions. 20623 */ 20624 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20625 MBLK_GETLABEL(first_mp)); 20626 ip2dbg(("ip_wput[noirefound]: ire %p, " 20627 "multirt_need_resolve %d, first_mp %p\n", 20628 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20629 if (multirt_need_resolve) { 20630 copy_mp = copymsg(first_mp); 20631 if (copy_mp != NULL) { 20632 MULTIRT_DEBUG_TAG(copy_mp); 20633 } 20634 } 20635 } 20636 20637 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20638 /* 20639 * Try to resolve another multiroute if 20640 * ire_multirt_resolvable() deemed it necessary. 20641 * At this point, we need to distinguish 20642 * multicasts from other packets. For multicasts, 20643 * we call ip_newroute_ipif() and request that both 20644 * multirouting and setsrc flags are checked. 20645 */ 20646 if (copy_mp != NULL) { 20647 if (CLASSD(dst)) { 20648 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20649 if (ipif) { 20650 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20651 RTF_SETSRC | RTF_MULTIRT, zoneid); 20652 ipif_refrele(ipif); 20653 } else { 20654 MULTIRT_DEBUG_UNTAG(copy_mp); 20655 freemsg(copy_mp); 20656 copy_mp = NULL; 20657 } 20658 } else { 20659 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20660 } 20661 } 20662 if (attach_ill != NULL) 20663 ill_refrele(attach_ill); 20664 if (xmit_ill != NULL) 20665 ill_refrele(xmit_ill); 20666 if (need_decref) 20667 CONN_DEC_REF(connp); 20668 return; 20669 20670 icmp_parameter_problem: 20671 /* could not have originated externally */ 20672 ASSERT(mp->b_prev == NULL); 20673 if (ip_hdr_complete(ipha, zoneid) == 0) { 20674 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20675 /* it's the IP header length that's in trouble */ 20676 icmp_param_problem(q, first_mp, 0, zoneid); 20677 first_mp = NULL; 20678 } 20679 20680 drop_pkt: 20681 ip1dbg(("ip_wput: dropped packet\n")); 20682 if (ire != NULL) 20683 ire_refrele(ire); 20684 if (need_decref) 20685 CONN_DEC_REF(connp); 20686 freemsg(first_mp); 20687 if (attach_ill != NULL) 20688 ill_refrele(attach_ill); 20689 if (xmit_ill != NULL) 20690 ill_refrele(xmit_ill); 20691 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20692 "ip_wput_end: q %p (%S)", q, "droppkt"); 20693 } 20694 20695 /* 20696 * If this is a conn_t queue, then we pass in the conn. This includes the 20697 * zoneid. 20698 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 20699 * in which case we use the global zoneid since those are all part of 20700 * the global zone. 20701 */ 20702 void 20703 ip_wput(queue_t *q, mblk_t *mp) 20704 { 20705 if (CONN_Q(q)) 20706 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20707 else 20708 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 20709 } 20710 20711 /* 20712 * 20713 * The following rules must be observed when accessing any ipif or ill 20714 * that has been cached in the conn. Typically conn_nofailover_ill, 20715 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20716 * 20717 * Access: The ipif or ill pointed to from the conn can be accessed under 20718 * the protection of the conn_lock or after it has been refheld under the 20719 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20720 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20721 * The reason for this is that a concurrent unplumb could actually be 20722 * cleaning up these cached pointers by walking the conns and might have 20723 * finished cleaning up the conn in question. The macros check that an 20724 * unplumb has not yet started on the ipif or ill. 20725 * 20726 * Caching: An ipif or ill pointer may be cached in the conn only after 20727 * making sure that an unplumb has not started. So the caching is done 20728 * while holding both the conn_lock and the ill_lock and after using the 20729 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20730 * flag before starting the cleanup of conns. 20731 * 20732 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20733 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20734 * or a reference to the ipif or a reference to an ire that references the 20735 * ipif. An ipif does not change its ill except for failover/failback. Since 20736 * failover/failback happens only after bringing down the ipif and making sure 20737 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20738 * the above holds. 20739 */ 20740 ipif_t * 20741 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20742 { 20743 ipif_t *ipif; 20744 ill_t *ill; 20745 20746 *err = 0; 20747 rw_enter(&ill_g_lock, RW_READER); 20748 mutex_enter(&connp->conn_lock); 20749 ipif = *ipifp; 20750 if (ipif != NULL) { 20751 ill = ipif->ipif_ill; 20752 mutex_enter(&ill->ill_lock); 20753 if (IPIF_CAN_LOOKUP(ipif)) { 20754 ipif_refhold_locked(ipif); 20755 mutex_exit(&ill->ill_lock); 20756 mutex_exit(&connp->conn_lock); 20757 rw_exit(&ill_g_lock); 20758 return (ipif); 20759 } else { 20760 *err = IPIF_LOOKUP_FAILED; 20761 } 20762 mutex_exit(&ill->ill_lock); 20763 } 20764 mutex_exit(&connp->conn_lock); 20765 rw_exit(&ill_g_lock); 20766 return (NULL); 20767 } 20768 20769 ill_t * 20770 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20771 { 20772 ill_t *ill; 20773 20774 *err = 0; 20775 mutex_enter(&connp->conn_lock); 20776 ill = *illp; 20777 if (ill != NULL) { 20778 mutex_enter(&ill->ill_lock); 20779 if (ILL_CAN_LOOKUP(ill)) { 20780 ill_refhold_locked(ill); 20781 mutex_exit(&ill->ill_lock); 20782 mutex_exit(&connp->conn_lock); 20783 return (ill); 20784 } else { 20785 *err = ILL_LOOKUP_FAILED; 20786 } 20787 mutex_exit(&ill->ill_lock); 20788 } 20789 mutex_exit(&connp->conn_lock); 20790 return (NULL); 20791 } 20792 20793 static int 20794 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20795 { 20796 ill_t *ill; 20797 20798 ill = ipif->ipif_ill; 20799 mutex_enter(&connp->conn_lock); 20800 mutex_enter(&ill->ill_lock); 20801 if (IPIF_CAN_LOOKUP(ipif)) { 20802 *ipifp = ipif; 20803 mutex_exit(&ill->ill_lock); 20804 mutex_exit(&connp->conn_lock); 20805 return (0); 20806 } 20807 mutex_exit(&ill->ill_lock); 20808 mutex_exit(&connp->conn_lock); 20809 return (IPIF_LOOKUP_FAILED); 20810 } 20811 20812 /* 20813 * This is called if the outbound datagram needs fragmentation. 20814 * 20815 * NOTE : This function does not ire_refrele the ire argument passed in. 20816 */ 20817 static void 20818 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 20819 { 20820 ipha_t *ipha; 20821 mblk_t *mp; 20822 uint32_t v_hlen_tos_len; 20823 uint32_t max_frag; 20824 uint32_t frag_flag; 20825 boolean_t dont_use; 20826 20827 if (ipsec_mp->b_datap->db_type == M_CTL) { 20828 mp = ipsec_mp->b_cont; 20829 } else { 20830 mp = ipsec_mp; 20831 } 20832 20833 ipha = (ipha_t *)mp->b_rptr; 20834 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20835 20836 #ifdef _BIG_ENDIAN 20837 #define V_HLEN (v_hlen_tos_len >> 24) 20838 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20839 #else 20840 #define V_HLEN (v_hlen_tos_len & 0xFF) 20841 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20842 #endif 20843 20844 #ifndef SPEED_BEFORE_SAFETY 20845 /* 20846 * Check that ipha_length is consistent with 20847 * the mblk length 20848 */ 20849 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20850 ip0dbg(("Packet length mismatch: %d, %ld\n", 20851 LENGTH, msgdsize(mp))); 20852 freemsg(ipsec_mp); 20853 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20854 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20855 "packet length mismatch"); 20856 return; 20857 } 20858 #endif 20859 /* 20860 * Don't use frag_flag if pre-built packet or source 20861 * routed or if multicast (since multicast packets do not solicit 20862 * ICMP "packet too big" messages). Get the values of 20863 * max_frag and frag_flag atomically by acquiring the 20864 * ire_lock. 20865 */ 20866 mutex_enter(&ire->ire_lock); 20867 max_frag = ire->ire_max_frag; 20868 frag_flag = ire->ire_frag_flag; 20869 mutex_exit(&ire->ire_lock); 20870 20871 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20872 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20873 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20874 20875 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20876 (dont_use ? 0 : frag_flag), zoneid); 20877 } 20878 20879 /* 20880 * Used for deciding the MSS size for the upper layer. Thus 20881 * we need to check the outbound policy values in the conn. 20882 */ 20883 int 20884 conn_ipsec_length(conn_t *connp) 20885 { 20886 ipsec_latch_t *ipl; 20887 20888 ipl = connp->conn_latch; 20889 if (ipl == NULL) 20890 return (0); 20891 20892 if (ipl->ipl_out_policy == NULL) 20893 return (0); 20894 20895 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20896 } 20897 20898 /* 20899 * Returns an estimate of the IPSEC headers size. This is used if 20900 * we don't want to call into IPSEC to get the exact size. 20901 */ 20902 int 20903 ipsec_out_extra_length(mblk_t *ipsec_mp) 20904 { 20905 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20906 ipsec_action_t *a; 20907 20908 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20909 if (!io->ipsec_out_secure) 20910 return (0); 20911 20912 a = io->ipsec_out_act; 20913 20914 if (a == NULL) { 20915 ASSERT(io->ipsec_out_policy != NULL); 20916 a = io->ipsec_out_policy->ipsp_act; 20917 } 20918 ASSERT(a != NULL); 20919 20920 return (a->ipa_ovhd); 20921 } 20922 20923 /* 20924 * Returns an estimate of the IPSEC headers size. This is used if 20925 * we don't want to call into IPSEC to get the exact size. 20926 */ 20927 int 20928 ipsec_in_extra_length(mblk_t *ipsec_mp) 20929 { 20930 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20931 ipsec_action_t *a; 20932 20933 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20934 20935 a = ii->ipsec_in_action; 20936 return (a == NULL ? 0 : a->ipa_ovhd); 20937 } 20938 20939 /* 20940 * If there are any source route options, return the true final 20941 * destination. Otherwise, return the destination. 20942 */ 20943 ipaddr_t 20944 ip_get_dst(ipha_t *ipha) 20945 { 20946 ipoptp_t opts; 20947 uchar_t *opt; 20948 uint8_t optval; 20949 uint8_t optlen; 20950 ipaddr_t dst; 20951 uint32_t off; 20952 20953 dst = ipha->ipha_dst; 20954 20955 if (IS_SIMPLE_IPH(ipha)) 20956 return (dst); 20957 20958 for (optval = ipoptp_first(&opts, ipha); 20959 optval != IPOPT_EOL; 20960 optval = ipoptp_next(&opts)) { 20961 opt = opts.ipoptp_cur; 20962 optlen = opts.ipoptp_len; 20963 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20964 switch (optval) { 20965 case IPOPT_SSRR: 20966 case IPOPT_LSRR: 20967 off = opt[IPOPT_OFFSET]; 20968 /* 20969 * If one of the conditions is true, it means 20970 * end of options and dst already has the right 20971 * value. 20972 */ 20973 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 20974 off = optlen - IP_ADDR_LEN; 20975 bcopy(&opt[off], &dst, IP_ADDR_LEN); 20976 } 20977 return (dst); 20978 default: 20979 break; 20980 } 20981 } 20982 20983 return (dst); 20984 } 20985 20986 mblk_t * 20987 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 20988 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 20989 { 20990 ipsec_out_t *io; 20991 mblk_t *first_mp; 20992 boolean_t policy_present; 20993 20994 first_mp = mp; 20995 if (mp->b_datap->db_type == M_CTL) { 20996 io = (ipsec_out_t *)first_mp->b_rptr; 20997 /* 20998 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 20999 * 21000 * 1) There is per-socket policy (including cached global 21001 * policy). 21002 * 2) There is no per-socket policy, but it is 21003 * a multicast packet that needs to go out 21004 * on a specific interface. This is the case 21005 * where (ip_wput and ip_wput_multicast) attaches 21006 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21007 * 21008 * In case (2) we check with global policy to 21009 * see if there is a match and set the ill_index 21010 * appropriately so that we can lookup the ire 21011 * properly in ip_wput_ipsec_out. 21012 */ 21013 21014 /* 21015 * ipsec_out_use_global_policy is set to B_FALSE 21016 * in ipsec_in_to_out(). Refer to that function for 21017 * details. 21018 */ 21019 if ((io->ipsec_out_latch == NULL) && 21020 (io->ipsec_out_use_global_policy)) { 21021 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21022 ire, connp, unspec_src, zoneid)); 21023 } 21024 if (!io->ipsec_out_secure) { 21025 /* 21026 * If this is not a secure packet, drop 21027 * the IPSEC_OUT mp and treat it as a clear 21028 * packet. This happens when we are sending 21029 * a ICMP reply back to a clear packet. See 21030 * ipsec_in_to_out() for details. 21031 */ 21032 mp = first_mp->b_cont; 21033 freeb(first_mp); 21034 } 21035 return (mp); 21036 } 21037 /* 21038 * See whether we need to attach a global policy here. We 21039 * don't depend on the conn (as it could be null) for deciding 21040 * what policy this datagram should go through because it 21041 * should have happened in ip_wput if there was some 21042 * policy. This normally happens for connections which are not 21043 * fully bound preventing us from caching policies in 21044 * ip_bind. Packets coming from the TCP listener/global queue 21045 * - which are non-hard_bound - could also be affected by 21046 * applying policy here. 21047 * 21048 * If this packet is coming from tcp global queue or listener, 21049 * we will be applying policy here. This may not be *right* 21050 * if these packets are coming from the detached connection as 21051 * it could have gone in clear before. This happens only if a 21052 * TCP connection started when there is no policy and somebody 21053 * added policy before it became detached. Thus packets of the 21054 * detached connection could go out secure and the other end 21055 * would drop it because it will be expecting in clear. The 21056 * converse is not true i.e if somebody starts a TCP 21057 * connection and deletes the policy, all the packets will 21058 * still go out with the policy that existed before deleting 21059 * because ip_unbind sends up policy information which is used 21060 * by TCP on subsequent ip_wputs. The right solution is to fix 21061 * TCP to attach a dummy IPSEC_OUT and set 21062 * ipsec_out_use_global_policy to B_FALSE. As this might 21063 * affect performance for normal cases, we are not doing it. 21064 * Thus, set policy before starting any TCP connections. 21065 * 21066 * NOTE - We might apply policy even for a hard bound connection 21067 * - for which we cached policy in ip_bind - if somebody added 21068 * global policy after we inherited the policy in ip_bind. 21069 * This means that the packets that were going out in clear 21070 * previously would start going secure and hence get dropped 21071 * on the other side. To fix this, TCP attaches a dummy 21072 * ipsec_out and make sure that we don't apply global policy. 21073 */ 21074 if (ipha != NULL) 21075 policy_present = ipsec_outbound_v4_policy_present; 21076 else 21077 policy_present = ipsec_outbound_v6_policy_present; 21078 if (!policy_present) 21079 return (mp); 21080 21081 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21082 zoneid)); 21083 } 21084 21085 ire_t * 21086 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21087 { 21088 ipaddr_t addr; 21089 ire_t *save_ire; 21090 irb_t *irb; 21091 ill_group_t *illgrp; 21092 int err; 21093 21094 save_ire = ire; 21095 addr = ire->ire_addr; 21096 21097 ASSERT(ire->ire_type == IRE_BROADCAST); 21098 21099 illgrp = connp->conn_outgoing_ill->ill_group; 21100 if (illgrp == NULL) { 21101 *conn_outgoing_ill = conn_get_held_ill(connp, 21102 &connp->conn_outgoing_ill, &err); 21103 if (err == ILL_LOOKUP_FAILED) { 21104 ire_refrele(save_ire); 21105 return (NULL); 21106 } 21107 return (save_ire); 21108 } 21109 /* 21110 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21111 * If it is part of the group, we need to send on the ire 21112 * that has been cleared of IRE_MARK_NORECV and that belongs 21113 * to this group. This is okay as IP_BOUND_IF really means 21114 * any ill in the group. We depend on the fact that the 21115 * first ire in the group is always cleared of IRE_MARK_NORECV 21116 * if such an ire exists. This is possible only if you have 21117 * at least one ill in the group that has not failed. 21118 * 21119 * First get to the ire that matches the address and group. 21120 * 21121 * We don't look for an ire with a matching zoneid because a given zone 21122 * won't always have broadcast ires on all ills in the group. 21123 */ 21124 irb = ire->ire_bucket; 21125 rw_enter(&irb->irb_lock, RW_READER); 21126 if (ire->ire_marks & IRE_MARK_NORECV) { 21127 /* 21128 * If the current zone only has an ire broadcast for this 21129 * address marked NORECV, the ire we want is ahead in the 21130 * bucket, so we look it up deliberately ignoring the zoneid. 21131 */ 21132 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21133 if (ire->ire_addr != addr) 21134 continue; 21135 /* skip over deleted ires */ 21136 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21137 continue; 21138 } 21139 } 21140 while (ire != NULL) { 21141 /* 21142 * If a new interface is coming up, we could end up 21143 * seeing the loopback ire and the non-loopback ire 21144 * may not have been added yet. So check for ire_stq 21145 */ 21146 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21147 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21148 break; 21149 } 21150 ire = ire->ire_next; 21151 } 21152 if (ire != NULL && ire->ire_addr == addr && 21153 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21154 IRE_REFHOLD(ire); 21155 rw_exit(&irb->irb_lock); 21156 ire_refrele(save_ire); 21157 *conn_outgoing_ill = ire_to_ill(ire); 21158 /* 21159 * Refhold the ill to make the conn_outgoing_ill 21160 * independent of the ire. ip_wput_ire goes in a loop 21161 * and may refrele the ire. Since we have an ire at this 21162 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21163 */ 21164 ill_refhold(*conn_outgoing_ill); 21165 return (ire); 21166 } 21167 rw_exit(&irb->irb_lock); 21168 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21169 /* 21170 * If we can't find a suitable ire, return the original ire. 21171 */ 21172 return (save_ire); 21173 } 21174 21175 /* 21176 * This function does the ire_refrele of the ire passed in as the 21177 * argument. As this function looks up more ires i.e broadcast ires, 21178 * it needs to REFRELE them. Currently, for simplicity we don't 21179 * differentiate the one passed in and looked up here. We always 21180 * REFRELE. 21181 * IPQoS Notes: 21182 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21183 * IPSec packets are done in ipsec_out_process. 21184 * 21185 */ 21186 void 21187 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21188 zoneid_t zoneid) 21189 { 21190 ipha_t *ipha; 21191 #define rptr ((uchar_t *)ipha) 21192 queue_t *stq; 21193 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21194 uint32_t v_hlen_tos_len; 21195 uint32_t ttl_protocol; 21196 ipaddr_t src; 21197 ipaddr_t dst; 21198 uint32_t cksum; 21199 ipaddr_t orig_src; 21200 ire_t *ire1; 21201 mblk_t *next_mp; 21202 uint_t hlen; 21203 uint16_t *up; 21204 uint32_t max_frag = ire->ire_max_frag; 21205 ill_t *ill = ire_to_ill(ire); 21206 int clusterwide; 21207 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21208 int ipsec_len; 21209 mblk_t *first_mp; 21210 ipsec_out_t *io; 21211 boolean_t conn_dontroute; /* conn value for multicast */ 21212 boolean_t conn_multicast_loop; /* conn value for multicast */ 21213 boolean_t multicast_forward; /* Should we forward ? */ 21214 boolean_t unspec_src; 21215 ill_t *conn_outgoing_ill = NULL; 21216 ill_t *ire_ill; 21217 ill_t *ire1_ill; 21218 uint32_t ill_index = 0; 21219 boolean_t multirt_send = B_FALSE; 21220 int err; 21221 ipxmit_state_t pktxmit_state; 21222 21223 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21224 "ip_wput_ire_start: q %p", q); 21225 21226 multicast_forward = B_FALSE; 21227 unspec_src = (connp != NULL && connp->conn_unspec_src); 21228 21229 if (ire->ire_flags & RTF_MULTIRT) { 21230 /* 21231 * Multirouting case. The bucket where ire is stored 21232 * probably holds other RTF_MULTIRT flagged ire 21233 * to the destination. In this call to ip_wput_ire, 21234 * we attempt to send the packet through all 21235 * those ires. Thus, we first ensure that ire is the 21236 * first RTF_MULTIRT ire in the bucket, 21237 * before walking the ire list. 21238 */ 21239 ire_t *first_ire; 21240 irb_t *irb = ire->ire_bucket; 21241 ASSERT(irb != NULL); 21242 21243 /* Make sure we do not omit any multiroute ire. */ 21244 IRB_REFHOLD(irb); 21245 for (first_ire = irb->irb_ire; 21246 first_ire != NULL; 21247 first_ire = first_ire->ire_next) { 21248 if ((first_ire->ire_flags & RTF_MULTIRT) && 21249 (first_ire->ire_addr == ire->ire_addr) && 21250 !(first_ire->ire_marks & 21251 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21252 break; 21253 } 21254 21255 if ((first_ire != NULL) && (first_ire != ire)) { 21256 IRE_REFHOLD(first_ire); 21257 ire_refrele(ire); 21258 ire = first_ire; 21259 ill = ire_to_ill(ire); 21260 } 21261 IRB_REFRELE(irb); 21262 } 21263 21264 /* 21265 * conn_outgoing_ill is used only in the broadcast loop. 21266 * for performance we don't grab the mutexs in the fastpath 21267 */ 21268 if ((connp != NULL) && 21269 (connp->conn_xmit_if_ill == NULL) && 21270 (ire->ire_type == IRE_BROADCAST) && 21271 ((connp->conn_nofailover_ill != NULL) || 21272 (connp->conn_outgoing_ill != NULL))) { 21273 /* 21274 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21275 * option. So, see if this endpoint is bound to a 21276 * IPIF_NOFAILOVER address. If so, honor it. This implies 21277 * that if the interface is failed, we will still send 21278 * the packet on the same ill which is what we want. 21279 */ 21280 conn_outgoing_ill = conn_get_held_ill(connp, 21281 &connp->conn_nofailover_ill, &err); 21282 if (err == ILL_LOOKUP_FAILED) { 21283 ire_refrele(ire); 21284 freemsg(mp); 21285 return; 21286 } 21287 if (conn_outgoing_ill == NULL) { 21288 /* 21289 * Choose a good ill in the group to send the 21290 * packets on. 21291 */ 21292 ire = conn_set_outgoing_ill(connp, ire, 21293 &conn_outgoing_ill); 21294 if (ire == NULL) { 21295 freemsg(mp); 21296 return; 21297 } 21298 } 21299 } 21300 21301 if (mp->b_datap->db_type != M_CTL) { 21302 ipha = (ipha_t *)mp->b_rptr; 21303 } else { 21304 io = (ipsec_out_t *)mp->b_rptr; 21305 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21306 ASSERT(zoneid == io->ipsec_out_zoneid); 21307 ASSERT(zoneid != ALL_ZONES); 21308 ipha = (ipha_t *)mp->b_cont->b_rptr; 21309 dst = ipha->ipha_dst; 21310 /* 21311 * For the multicast case, ipsec_out carries conn_dontroute and 21312 * conn_multicast_loop as conn may not be available here. We 21313 * need this for multicast loopback and forwarding which is done 21314 * later in the code. 21315 */ 21316 if (CLASSD(dst)) { 21317 conn_dontroute = io->ipsec_out_dontroute; 21318 conn_multicast_loop = io->ipsec_out_multicast_loop; 21319 /* 21320 * If conn_dontroute is not set or conn_multicast_loop 21321 * is set, we need to do forwarding/loopback. For 21322 * datagrams from ip_wput_multicast, conn_dontroute is 21323 * set to B_TRUE and conn_multicast_loop is set to 21324 * B_FALSE so that we neither do forwarding nor 21325 * loopback. 21326 */ 21327 if (!conn_dontroute || conn_multicast_loop) 21328 multicast_forward = B_TRUE; 21329 } 21330 } 21331 21332 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21333 ire->ire_zoneid != ALL_ZONES) { 21334 /* 21335 * When a zone sends a packet to another zone, we try to deliver 21336 * the packet under the same conditions as if the destination 21337 * was a real node on the network. To do so, we look for a 21338 * matching route in the forwarding table. 21339 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21340 * ip_newroute() does. 21341 * Note that IRE_LOCAL are special, since they are used 21342 * when the zoneid doesn't match in some cases. This means that 21343 * we need to handle ipha_src differently since ire_src_addr 21344 * belongs to the receiving zone instead of the sending zone. 21345 * When ip_restrict_interzone_loopback is set, then 21346 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21347 * for loopback between zones when the logical "Ethernet" would 21348 * have looped them back. 21349 */ 21350 ire_t *src_ire; 21351 21352 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21353 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21354 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21355 if (src_ire != NULL && 21356 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21357 (!ip_restrict_interzone_loopback || 21358 ire_local_same_ill_group(ire, src_ire))) { 21359 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21360 ipha->ipha_src = src_ire->ire_src_addr; 21361 ire_refrele(src_ire); 21362 } else { 21363 ire_refrele(ire); 21364 if (conn_outgoing_ill != NULL) 21365 ill_refrele(conn_outgoing_ill); 21366 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21367 if (src_ire != NULL) { 21368 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21369 ire_refrele(src_ire); 21370 freemsg(mp); 21371 return; 21372 } 21373 ire_refrele(src_ire); 21374 } 21375 if (ip_hdr_complete(ipha, zoneid)) { 21376 /* Failed */ 21377 freemsg(mp); 21378 return; 21379 } 21380 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21381 return; 21382 } 21383 } 21384 21385 if (mp->b_datap->db_type == M_CTL || 21386 ipsec_outbound_v4_policy_present) { 21387 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21388 unspec_src, zoneid); 21389 if (mp == NULL) { 21390 ire_refrele(ire); 21391 if (conn_outgoing_ill != NULL) 21392 ill_refrele(conn_outgoing_ill); 21393 return; 21394 } 21395 } 21396 21397 first_mp = mp; 21398 ipsec_len = 0; 21399 21400 if (first_mp->b_datap->db_type == M_CTL) { 21401 io = (ipsec_out_t *)first_mp->b_rptr; 21402 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21403 mp = first_mp->b_cont; 21404 ipsec_len = ipsec_out_extra_length(first_mp); 21405 ASSERT(ipsec_len >= 0); 21406 /* We already picked up the zoneid from the M_CTL above */ 21407 ASSERT(zoneid == io->ipsec_out_zoneid); 21408 ASSERT(zoneid != ALL_ZONES); 21409 21410 /* 21411 * Drop M_CTL here if IPsec processing is not needed. 21412 * (Non-IPsec use of M_CTL extracted any information it 21413 * needed above). 21414 */ 21415 if (ipsec_len == 0) { 21416 freeb(first_mp); 21417 first_mp = mp; 21418 } 21419 } 21420 21421 /* 21422 * Fast path for ip_wput_ire 21423 */ 21424 21425 ipha = (ipha_t *)mp->b_rptr; 21426 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21427 dst = ipha->ipha_dst; 21428 21429 /* 21430 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21431 * if the socket is a SOCK_RAW type. The transport checksum should 21432 * be provided in the pre-built packet, so we don't need to compute it. 21433 * Also, other application set flags, like DF, should not be altered. 21434 * Other transport MUST pass down zero. 21435 */ 21436 ip_hdr_included = ipha->ipha_ident; 21437 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21438 21439 if (CLASSD(dst)) { 21440 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21441 ntohl(dst), 21442 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21443 ntohl(ire->ire_addr))); 21444 } 21445 21446 /* Macros to extract header fields from data already in registers */ 21447 #ifdef _BIG_ENDIAN 21448 #define V_HLEN (v_hlen_tos_len >> 24) 21449 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21450 #define PROTO (ttl_protocol & 0xFF) 21451 #else 21452 #define V_HLEN (v_hlen_tos_len & 0xFF) 21453 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21454 #define PROTO (ttl_protocol >> 8) 21455 #endif 21456 21457 21458 orig_src = src = ipha->ipha_src; 21459 /* (The loop back to "another" is explained down below.) */ 21460 another:; 21461 /* 21462 * Assign an ident value for this packet. We assign idents on 21463 * a per destination basis out of the IRE. There could be 21464 * other threads targeting the same destination, so we have to 21465 * arrange for a atomic increment. Note that we use a 32-bit 21466 * atomic add because it has better performance than its 21467 * 16-bit sibling. 21468 * 21469 * If running in cluster mode and if the source address 21470 * belongs to a replicated service then vector through 21471 * cl_inet_ipident vector to allocate ip identifier 21472 * NOTE: This is a contract private interface with the 21473 * clustering group. 21474 */ 21475 clusterwide = 0; 21476 if (cl_inet_ipident) { 21477 ASSERT(cl_inet_isclusterwide); 21478 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21479 AF_INET, (uint8_t *)(uintptr_t)src)) { 21480 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21481 AF_INET, (uint8_t *)(uintptr_t)src, 21482 (uint8_t *)(uintptr_t)dst); 21483 clusterwide = 1; 21484 } 21485 } 21486 if (!clusterwide) { 21487 ipha->ipha_ident = 21488 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21489 } 21490 21491 #ifndef _BIG_ENDIAN 21492 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21493 #endif 21494 21495 /* 21496 * Set source address unless sent on an ill or conn_unspec_src is set. 21497 * This is needed to obey conn_unspec_src when packets go through 21498 * ip_newroute + arp. 21499 * Assumes ip_newroute{,_multi} sets the source address as well. 21500 */ 21501 if (src == INADDR_ANY && !unspec_src) { 21502 /* 21503 * Assign the appropriate source address from the IRE if none 21504 * was specified. 21505 */ 21506 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21507 21508 /* 21509 * With IP multipathing, broadcast packets are sent on the ire 21510 * that has been cleared of IRE_MARK_NORECV and that belongs to 21511 * the group. However, this ire might not be in the same zone so 21512 * we can't always use its source address. We look for a 21513 * broadcast ire in the same group and in the right zone. 21514 */ 21515 if (ire->ire_type == IRE_BROADCAST && 21516 ire->ire_zoneid != zoneid) { 21517 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21518 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21519 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21520 if (src_ire != NULL) { 21521 src = src_ire->ire_src_addr; 21522 ire_refrele(src_ire); 21523 } else { 21524 ire_refrele(ire); 21525 if (conn_outgoing_ill != NULL) 21526 ill_refrele(conn_outgoing_ill); 21527 freemsg(first_mp); 21528 BUMP_MIB(&ip_mib, ipOutDiscards); 21529 return; 21530 } 21531 } else { 21532 src = ire->ire_src_addr; 21533 } 21534 21535 if (connp == NULL) { 21536 ip1dbg(("ip_wput_ire: no connp and no src " 21537 "address for dst 0x%x, using src 0x%x\n", 21538 ntohl(dst), 21539 ntohl(src))); 21540 } 21541 ipha->ipha_src = src; 21542 } 21543 stq = ire->ire_stq; 21544 21545 /* 21546 * We only allow ire chains for broadcasts since there will 21547 * be multiple IRE_CACHE entries for the same multicast 21548 * address (one per ipif). 21549 */ 21550 next_mp = NULL; 21551 21552 /* broadcast packet */ 21553 if (ire->ire_type == IRE_BROADCAST) 21554 goto broadcast; 21555 21556 /* loopback ? */ 21557 if (stq == NULL) 21558 goto nullstq; 21559 21560 /* The ill_index for outbound ILL */ 21561 ill_index = Q_TO_INDEX(stq); 21562 21563 BUMP_MIB(&ip_mib, ipOutRequests); 21564 ttl_protocol = ((uint16_t *)ipha)[4]; 21565 21566 /* pseudo checksum (do it in parts for IP header checksum) */ 21567 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21568 21569 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21570 queue_t *dev_q = stq->q_next; 21571 21572 /* flow controlled */ 21573 if ((dev_q->q_next || dev_q->q_first) && 21574 !canput(dev_q)) 21575 goto blocked; 21576 if ((PROTO == IPPROTO_UDP) && 21577 (ip_hdr_included != IP_HDR_INCLUDED)) { 21578 hlen = (V_HLEN & 0xF) << 2; 21579 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21580 if (*up != 0) { 21581 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21582 hlen, LENGTH, max_frag, ipsec_len, cksum); 21583 /* Software checksum? */ 21584 if (DB_CKSUMFLAGS(mp) == 0) { 21585 IP_STAT(ip_out_sw_cksum); 21586 IP_STAT_UPDATE( 21587 ip_udp_out_sw_cksum_bytes, 21588 LENGTH - hlen); 21589 } 21590 } 21591 } 21592 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21593 hlen = (V_HLEN & 0xF) << 2; 21594 if (PROTO == IPPROTO_TCP) { 21595 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21596 /* 21597 * The packet header is processed once and for all, even 21598 * in the multirouting case. We disable hardware 21599 * checksum if the packet is multirouted, as it will be 21600 * replicated via several interfaces, and not all of 21601 * them may have this capability. 21602 */ 21603 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21604 LENGTH, max_frag, ipsec_len, cksum); 21605 /* Software checksum? */ 21606 if (DB_CKSUMFLAGS(mp) == 0) { 21607 IP_STAT(ip_out_sw_cksum); 21608 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21609 LENGTH - hlen); 21610 } 21611 } else { 21612 sctp_hdr_t *sctph; 21613 21614 ASSERT(PROTO == IPPROTO_SCTP); 21615 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21616 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21617 /* 21618 * Zero out the checksum field to ensure proper 21619 * checksum calculation. 21620 */ 21621 sctph->sh_chksum = 0; 21622 #ifdef DEBUG 21623 if (!skip_sctp_cksum) 21624 #endif 21625 sctph->sh_chksum = sctp_cksum(mp, hlen); 21626 } 21627 } 21628 21629 /* 21630 * If this is a multicast packet and originated from ip_wput 21631 * we need to do loopback and forwarding checks. If it comes 21632 * from ip_wput_multicast, we SHOULD not do this. 21633 */ 21634 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21635 21636 /* checksum */ 21637 cksum += ttl_protocol; 21638 21639 /* fragment the packet */ 21640 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21641 goto fragmentit; 21642 /* 21643 * Don't use frag_flag if packet is pre-built or source 21644 * routed or if multicast (since multicast packets do 21645 * not solicit ICMP "packet too big" messages). 21646 */ 21647 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21648 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21649 !ip_source_route_included(ipha)) && 21650 !CLASSD(ipha->ipha_dst)) 21651 ipha->ipha_fragment_offset_and_flags |= 21652 htons(ire->ire_frag_flag); 21653 21654 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21655 /* calculate IP header checksum */ 21656 cksum += ipha->ipha_ident; 21657 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21658 cksum += ipha->ipha_fragment_offset_and_flags; 21659 21660 /* IP options present */ 21661 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21662 if (hlen) 21663 goto checksumoptions; 21664 21665 /* calculate hdr checksum */ 21666 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21667 cksum = ~(cksum + (cksum >> 16)); 21668 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21669 } 21670 if (ipsec_len != 0) { 21671 /* 21672 * We will do the rest of the processing after 21673 * we come back from IPSEC in ip_wput_ipsec_out(). 21674 */ 21675 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21676 21677 io = (ipsec_out_t *)first_mp->b_rptr; 21678 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21679 ill_phyint->phyint_ifindex; 21680 21681 ipsec_out_process(q, first_mp, ire, ill_index); 21682 ire_refrele(ire); 21683 if (conn_outgoing_ill != NULL) 21684 ill_refrele(conn_outgoing_ill); 21685 return; 21686 } 21687 21688 /* 21689 * In most cases, the emission loop below is entered only 21690 * once. Only in the case where the ire holds the 21691 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21692 * flagged ires in the bucket, and send the packet 21693 * through all crossed RTF_MULTIRT routes. 21694 */ 21695 if (ire->ire_flags & RTF_MULTIRT) { 21696 multirt_send = B_TRUE; 21697 } 21698 do { 21699 if (multirt_send) { 21700 irb_t *irb; 21701 /* 21702 * We are in a multiple send case, need to get 21703 * the next ire and make a duplicate of the packet. 21704 * ire1 holds here the next ire to process in the 21705 * bucket. If multirouting is expected, 21706 * any non-RTF_MULTIRT ire that has the 21707 * right destination address is ignored. 21708 */ 21709 irb = ire->ire_bucket; 21710 ASSERT(irb != NULL); 21711 21712 IRB_REFHOLD(irb); 21713 for (ire1 = ire->ire_next; 21714 ire1 != NULL; 21715 ire1 = ire1->ire_next) { 21716 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21717 continue; 21718 if (ire1->ire_addr != ire->ire_addr) 21719 continue; 21720 if (ire1->ire_marks & 21721 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21722 continue; 21723 21724 /* Got one */ 21725 IRE_REFHOLD(ire1); 21726 break; 21727 } 21728 IRB_REFRELE(irb); 21729 21730 if (ire1 != NULL) { 21731 next_mp = copyb(mp); 21732 if ((next_mp == NULL) || 21733 ((mp->b_cont != NULL) && 21734 ((next_mp->b_cont = 21735 dupmsg(mp->b_cont)) == NULL))) { 21736 freemsg(next_mp); 21737 next_mp = NULL; 21738 ire_refrele(ire1); 21739 ire1 = NULL; 21740 } 21741 } 21742 21743 /* Last multiroute ire; don't loop anymore. */ 21744 if (ire1 == NULL) { 21745 multirt_send = B_FALSE; 21746 } 21747 } 21748 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21749 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21750 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21751 if ((pktxmit_state == SEND_FAILED) || 21752 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21753 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21754 "- packet dropped\n")); 21755 ire_refrele(ire); 21756 if (next_mp != NULL) { 21757 freemsg(next_mp); 21758 ire_refrele(ire1); 21759 } 21760 if (conn_outgoing_ill != NULL) 21761 ill_refrele(conn_outgoing_ill); 21762 return; 21763 } 21764 21765 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21766 "ip_wput_ire_end: q %p (%S)", 21767 q, "last copy out"); 21768 IRE_REFRELE(ire); 21769 21770 if (multirt_send) { 21771 ASSERT(ire1); 21772 /* 21773 * Proceed with the next RTF_MULTIRT ire, 21774 * Also set up the send-to queue accordingly. 21775 */ 21776 ire = ire1; 21777 ire1 = NULL; 21778 stq = ire->ire_stq; 21779 mp = next_mp; 21780 next_mp = NULL; 21781 ipha = (ipha_t *)mp->b_rptr; 21782 ill_index = Q_TO_INDEX(stq); 21783 } 21784 } while (multirt_send); 21785 if (conn_outgoing_ill != NULL) 21786 ill_refrele(conn_outgoing_ill); 21787 return; 21788 21789 /* 21790 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21791 */ 21792 broadcast: 21793 { 21794 /* 21795 * Avoid broadcast storms by setting the ttl to 1 21796 * for broadcasts. This parameter can be set 21797 * via ndd, so make sure that for the SO_DONTROUTE 21798 * case that ipha_ttl is always set to 1. 21799 * In the event that we are replying to incoming 21800 * ICMP packets, conn could be NULL. 21801 */ 21802 if ((connp != NULL) && connp->conn_dontroute) 21803 ipha->ipha_ttl = 1; 21804 else 21805 ipha->ipha_ttl = ip_broadcast_ttl; 21806 21807 /* 21808 * Note that we are not doing a IRB_REFHOLD here. 21809 * Actually we don't care if the list changes i.e 21810 * if somebody deletes an IRE from the list while 21811 * we drop the lock, the next time we come around 21812 * ire_next will be NULL and hence we won't send 21813 * out multiple copies which is fine. 21814 */ 21815 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21816 ire1 = ire->ire_next; 21817 if (conn_outgoing_ill != NULL) { 21818 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21819 ASSERT(ire1 == ire->ire_next); 21820 if (ire1 != NULL && ire1->ire_addr == dst) { 21821 ire_refrele(ire); 21822 ire = ire1; 21823 IRE_REFHOLD(ire); 21824 ire1 = ire->ire_next; 21825 continue; 21826 } 21827 rw_exit(&ire->ire_bucket->irb_lock); 21828 /* Did not find a matching ill */ 21829 ip1dbg(("ip_wput_ire: broadcast with no " 21830 "matching IP_BOUND_IF ill %s\n", 21831 conn_outgoing_ill->ill_name)); 21832 freemsg(first_mp); 21833 if (ire != NULL) 21834 ire_refrele(ire); 21835 ill_refrele(conn_outgoing_ill); 21836 return; 21837 } 21838 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21839 /* 21840 * If the next IRE has the same address and is not one 21841 * of the two copies that we need to send, try to see 21842 * whether this copy should be sent at all. This 21843 * assumes that we insert loopbacks first and then 21844 * non-loopbacks. This is acheived by inserting the 21845 * loopback always before non-loopback. 21846 * This is used to send a single copy of a broadcast 21847 * packet out all physical interfaces that have an 21848 * matching IRE_BROADCAST while also looping 21849 * back one copy (to ip_wput_local) for each 21850 * matching physical interface. However, we avoid 21851 * sending packets out different logical that match by 21852 * having ipif_up/ipif_down supress duplicate 21853 * IRE_BROADCASTS. 21854 * 21855 * This feature is currently used to get broadcasts 21856 * sent to multiple interfaces, when the broadcast 21857 * address being used applies to multiple interfaces. 21858 * For example, a whole net broadcast will be 21859 * replicated on every connected subnet of 21860 * the target net. 21861 * 21862 * Each zone has its own set of IRE_BROADCASTs, so that 21863 * we're able to distribute inbound packets to multiple 21864 * zones who share a broadcast address. We avoid looping 21865 * back outbound packets in different zones but on the 21866 * same ill, as the application would see duplicates. 21867 * 21868 * If the interfaces are part of the same group, 21869 * we would want to send only one copy out for 21870 * whole group. 21871 * 21872 * This logic assumes that ire_add_v4() groups the 21873 * IRE_BROADCAST entries so that those with the same 21874 * ire_addr and ill_group are kept together. 21875 */ 21876 ire_ill = ire->ire_ipif->ipif_ill; 21877 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21878 if (ire_ill->ill_group != NULL && 21879 (ire->ire_marks & IRE_MARK_NORECV)) { 21880 /* 21881 * If the current zone only has an ire 21882 * broadcast for this address marked 21883 * NORECV, the ire we want is ahead in 21884 * the bucket, so we look it up 21885 * deliberately ignoring the zoneid. 21886 */ 21887 for (ire1 = ire->ire_bucket->irb_ire; 21888 ire1 != NULL; 21889 ire1 = ire1->ire_next) { 21890 ire1_ill = 21891 ire1->ire_ipif->ipif_ill; 21892 if (ire1->ire_addr != dst) 21893 continue; 21894 /* skip over the current ire */ 21895 if (ire1 == ire) 21896 continue; 21897 /* skip over deleted ires */ 21898 if (ire1->ire_marks & 21899 IRE_MARK_CONDEMNED) 21900 continue; 21901 /* 21902 * non-loopback ire in our 21903 * group: use it for the next 21904 * pass in the loop 21905 */ 21906 if (ire1->ire_stq != NULL && 21907 ire1_ill->ill_group == 21908 ire_ill->ill_group) 21909 break; 21910 } 21911 } 21912 } else { 21913 while (ire1 != NULL && ire1->ire_addr == dst) { 21914 ire1_ill = ire1->ire_ipif->ipif_ill; 21915 /* 21916 * We can have two broadcast ires on the 21917 * same ill in different zones; here 21918 * we'll send a copy of the packet on 21919 * each ill and the fanout code will 21920 * call conn_wantpacket() to check that 21921 * the zone has the broadcast address 21922 * configured on the ill. If the two 21923 * ires are in the same group we only 21924 * send one copy up. 21925 */ 21926 if (ire1_ill != ire_ill && 21927 (ire1_ill->ill_group == NULL || 21928 ire_ill->ill_group == NULL || 21929 ire1_ill->ill_group != 21930 ire_ill->ill_group)) { 21931 break; 21932 } 21933 ire1 = ire1->ire_next; 21934 } 21935 } 21936 } 21937 ASSERT(multirt_send == B_FALSE); 21938 if (ire1 != NULL && ire1->ire_addr == dst) { 21939 if ((ire->ire_flags & RTF_MULTIRT) && 21940 (ire1->ire_flags & RTF_MULTIRT)) { 21941 /* 21942 * We are in the multirouting case. 21943 * The message must be sent at least 21944 * on both ires. These ires have been 21945 * inserted AFTER the standard ones 21946 * in ip_rt_add(). There are thus no 21947 * other ire entries for the destination 21948 * address in the rest of the bucket 21949 * that do not have the RTF_MULTIRT 21950 * flag. We don't process a copy 21951 * of the message here. This will be 21952 * done in the final sending loop. 21953 */ 21954 multirt_send = B_TRUE; 21955 } else { 21956 next_mp = ip_copymsg(first_mp); 21957 if (next_mp != NULL) 21958 IRE_REFHOLD(ire1); 21959 } 21960 } 21961 rw_exit(&ire->ire_bucket->irb_lock); 21962 } 21963 21964 if (stq) { 21965 /* 21966 * A non-NULL send-to queue means this packet is going 21967 * out of this machine. 21968 */ 21969 21970 BUMP_MIB(&ip_mib, ipOutRequests); 21971 ttl_protocol = ((uint16_t *)ipha)[4]; 21972 /* 21973 * We accumulate the pseudo header checksum in cksum. 21974 * This is pretty hairy code, so watch close. One 21975 * thing to keep in mind is that UDP and TCP have 21976 * stored their respective datagram lengths in their 21977 * checksum fields. This lines things up real nice. 21978 */ 21979 cksum = (dst >> 16) + (dst & 0xFFFF) + 21980 (src >> 16) + (src & 0xFFFF); 21981 /* 21982 * We assume the udp checksum field contains the 21983 * length, so to compute the pseudo header checksum, 21984 * all we need is the protocol number and src/dst. 21985 */ 21986 /* Provide the checksums for UDP and TCP. */ 21987 if ((PROTO == IPPROTO_TCP) && 21988 (ip_hdr_included != IP_HDR_INCLUDED)) { 21989 /* hlen gets the number of uchar_ts in the IP header */ 21990 hlen = (V_HLEN & 0xF) << 2; 21991 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21992 IP_STAT(ip_out_sw_cksum); 21993 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21994 LENGTH - hlen); 21995 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 21996 if (*up == 0) 21997 *up = 0xFFFF; 21998 } else if (PROTO == IPPROTO_SCTP && 21999 (ip_hdr_included != IP_HDR_INCLUDED)) { 22000 sctp_hdr_t *sctph; 22001 22002 hlen = (V_HLEN & 0xF) << 2; 22003 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22004 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22005 sctph->sh_chksum = 0; 22006 #ifdef DEBUG 22007 if (!skip_sctp_cksum) 22008 #endif 22009 sctph->sh_chksum = sctp_cksum(mp, hlen); 22010 } else { 22011 queue_t *dev_q = stq->q_next; 22012 22013 if ((dev_q->q_next || dev_q->q_first) && 22014 !canput(dev_q)) { 22015 blocked: 22016 ipha->ipha_ident = ip_hdr_included; 22017 /* 22018 * If we don't have a conn to apply 22019 * backpressure, free the message. 22020 * In the ire_send path, we don't know 22021 * the position to requeue the packet. Rather 22022 * than reorder packets, we just drop this 22023 * packet. 22024 */ 22025 if (ip_output_queue && connp != NULL && 22026 caller != IRE_SEND) { 22027 if (caller == IP_WSRV) { 22028 connp->conn_did_putbq = 1; 22029 (void) putbq(connp->conn_wq, 22030 first_mp); 22031 conn_drain_insert(connp); 22032 /* 22033 * This is the service thread, 22034 * and the queue is already 22035 * noenabled. The check for 22036 * canput and the putbq is not 22037 * atomic. So we need to check 22038 * again. 22039 */ 22040 if (canput(stq->q_next)) 22041 connp->conn_did_putbq 22042 = 0; 22043 IP_STAT(ip_conn_flputbq); 22044 } else { 22045 /* 22046 * We are not the service proc. 22047 * ip_wsrv will be scheduled or 22048 * is already running. 22049 */ 22050 (void) putq(connp->conn_wq, 22051 first_mp); 22052 } 22053 } else { 22054 BUMP_MIB(&ip_mib, ipOutDiscards); 22055 freemsg(first_mp); 22056 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22057 "ip_wput_ire_end: q %p (%S)", 22058 q, "discard"); 22059 } 22060 ire_refrele(ire); 22061 if (next_mp) { 22062 ire_refrele(ire1); 22063 freemsg(next_mp); 22064 } 22065 if (conn_outgoing_ill != NULL) 22066 ill_refrele(conn_outgoing_ill); 22067 return; 22068 } 22069 if ((PROTO == IPPROTO_UDP) && 22070 (ip_hdr_included != IP_HDR_INCLUDED)) { 22071 /* 22072 * hlen gets the number of uchar_ts in the 22073 * IP header 22074 */ 22075 hlen = (V_HLEN & 0xF) << 2; 22076 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22077 max_frag = ire->ire_max_frag; 22078 if (*up != 0) { 22079 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22080 up, PROTO, hlen, LENGTH, max_frag, 22081 ipsec_len, cksum); 22082 /* Software checksum? */ 22083 if (DB_CKSUMFLAGS(mp) == 0) { 22084 IP_STAT(ip_out_sw_cksum); 22085 IP_STAT_UPDATE( 22086 ip_udp_out_sw_cksum_bytes, 22087 LENGTH - hlen); 22088 } 22089 } 22090 } 22091 } 22092 /* 22093 * Need to do this even when fragmenting. The local 22094 * loopback can be done without computing checksums 22095 * but forwarding out other interface must be done 22096 * after the IP checksum (and ULP checksums) have been 22097 * computed. 22098 * 22099 * NOTE : multicast_forward is set only if this packet 22100 * originated from ip_wput. For packets originating from 22101 * ip_wput_multicast, it is not set. 22102 */ 22103 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22104 multi_loopback: 22105 ip2dbg(("ip_wput: multicast, loop %d\n", 22106 conn_multicast_loop)); 22107 22108 /* Forget header checksum offload */ 22109 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22110 22111 /* 22112 * Local loopback of multicasts? Check the 22113 * ill. 22114 * 22115 * Note that the loopback function will not come 22116 * in through ip_rput - it will only do the 22117 * client fanout thus we need to do an mforward 22118 * as well. The is different from the BSD 22119 * logic. 22120 */ 22121 if (ill != NULL) { 22122 ilm_t *ilm; 22123 22124 ILM_WALKER_HOLD(ill); 22125 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22126 ALL_ZONES); 22127 ILM_WALKER_RELE(ill); 22128 if (ilm != NULL) { 22129 /* 22130 * Pass along the virtual output q. 22131 * ip_wput_local() will distribute the 22132 * packet to all the matching zones, 22133 * except the sending zone when 22134 * IP_MULTICAST_LOOP is false. 22135 */ 22136 ip_multicast_loopback(q, ill, first_mp, 22137 conn_multicast_loop ? 0 : 22138 IP_FF_NO_MCAST_LOOP, zoneid); 22139 } 22140 } 22141 if (ipha->ipha_ttl == 0) { 22142 /* 22143 * 0 => only to this host i.e. we are 22144 * done. We are also done if this was the 22145 * loopback interface since it is sufficient 22146 * to loopback one copy of a multicast packet. 22147 */ 22148 freemsg(first_mp); 22149 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22150 "ip_wput_ire_end: q %p (%S)", 22151 q, "loopback"); 22152 ire_refrele(ire); 22153 if (conn_outgoing_ill != NULL) 22154 ill_refrele(conn_outgoing_ill); 22155 return; 22156 } 22157 /* 22158 * ILLF_MULTICAST is checked in ip_newroute 22159 * i.e. we don't need to check it here since 22160 * all IRE_CACHEs come from ip_newroute. 22161 * For multicast traffic, SO_DONTROUTE is interpreted 22162 * to mean only send the packet out the interface 22163 * (optionally specified with IP_MULTICAST_IF) 22164 * and do not forward it out additional interfaces. 22165 * RSVP and the rsvp daemon is an example of a 22166 * protocol and user level process that 22167 * handles it's own routing. Hence, it uses the 22168 * SO_DONTROUTE option to accomplish this. 22169 */ 22170 22171 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22172 /* Unconditionally redo the checksum */ 22173 ipha->ipha_hdr_checksum = 0; 22174 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22175 22176 /* 22177 * If this needs to go out secure, we need 22178 * to wait till we finish the IPSEC 22179 * processing. 22180 */ 22181 if (ipsec_len == 0 && 22182 ip_mforward(ill, ipha, mp)) { 22183 freemsg(first_mp); 22184 ip1dbg(("ip_wput: mforward failed\n")); 22185 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22186 "ip_wput_ire_end: q %p (%S)", 22187 q, "mforward failed"); 22188 ire_refrele(ire); 22189 if (conn_outgoing_ill != NULL) 22190 ill_refrele(conn_outgoing_ill); 22191 return; 22192 } 22193 } 22194 } 22195 max_frag = ire->ire_max_frag; 22196 cksum += ttl_protocol; 22197 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22198 /* No fragmentation required for this one. */ 22199 /* 22200 * Don't use frag_flag if packet is pre-built or source 22201 * routed or if multicast (since multicast packets do 22202 * not solicit ICMP "packet too big" messages). 22203 */ 22204 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22205 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22206 !ip_source_route_included(ipha)) && 22207 !CLASSD(ipha->ipha_dst)) 22208 ipha->ipha_fragment_offset_and_flags |= 22209 htons(ire->ire_frag_flag); 22210 22211 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22212 /* Complete the IP header checksum. */ 22213 cksum += ipha->ipha_ident; 22214 cksum += (v_hlen_tos_len >> 16)+ 22215 (v_hlen_tos_len & 0xFFFF); 22216 cksum += ipha->ipha_fragment_offset_and_flags; 22217 hlen = (V_HLEN & 0xF) - 22218 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22219 if (hlen) { 22220 checksumoptions: 22221 /* 22222 * Account for the IP Options in the IP 22223 * header checksum. 22224 */ 22225 up = (uint16_t *)(rptr+ 22226 IP_SIMPLE_HDR_LENGTH); 22227 do { 22228 cksum += up[0]; 22229 cksum += up[1]; 22230 up += 2; 22231 } while (--hlen); 22232 } 22233 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22234 cksum = ~(cksum + (cksum >> 16)); 22235 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22236 } 22237 if (ipsec_len != 0) { 22238 ipsec_out_process(q, first_mp, ire, ill_index); 22239 if (!next_mp) { 22240 ire_refrele(ire); 22241 if (conn_outgoing_ill != NULL) 22242 ill_refrele(conn_outgoing_ill); 22243 return; 22244 } 22245 goto next; 22246 } 22247 22248 /* 22249 * multirt_send has already been handled 22250 * for broadcast, but not yet for multicast 22251 * or IP options. 22252 */ 22253 if (next_mp == NULL) { 22254 if (ire->ire_flags & RTF_MULTIRT) { 22255 multirt_send = B_TRUE; 22256 } 22257 } 22258 22259 /* 22260 * In most cases, the emission loop below is 22261 * entered only once. Only in the case where 22262 * the ire holds the RTF_MULTIRT flag, do we loop 22263 * to process all RTF_MULTIRT ires in the bucket, 22264 * and send the packet through all crossed 22265 * RTF_MULTIRT routes. 22266 */ 22267 do { 22268 if (multirt_send) { 22269 irb_t *irb; 22270 22271 irb = ire->ire_bucket; 22272 ASSERT(irb != NULL); 22273 /* 22274 * We are in a multiple send case, 22275 * need to get the next IRE and make 22276 * a duplicate of the packet. 22277 */ 22278 IRB_REFHOLD(irb); 22279 for (ire1 = ire->ire_next; 22280 ire1 != NULL; 22281 ire1 = ire1->ire_next) { 22282 if (!(ire1->ire_flags & 22283 RTF_MULTIRT)) 22284 continue; 22285 if (ire1->ire_addr != 22286 ire->ire_addr) 22287 continue; 22288 if (ire1->ire_marks & 22289 (IRE_MARK_CONDEMNED| 22290 IRE_MARK_HIDDEN)) 22291 continue; 22292 22293 /* Got one */ 22294 IRE_REFHOLD(ire1); 22295 break; 22296 } 22297 IRB_REFRELE(irb); 22298 22299 if (ire1 != NULL) { 22300 next_mp = copyb(mp); 22301 if ((next_mp == NULL) || 22302 ((mp->b_cont != NULL) && 22303 ((next_mp->b_cont = 22304 dupmsg(mp->b_cont)) 22305 == NULL))) { 22306 freemsg(next_mp); 22307 next_mp = NULL; 22308 ire_refrele(ire1); 22309 ire1 = NULL; 22310 } 22311 } 22312 22313 /* 22314 * Last multiroute ire; don't loop 22315 * anymore. The emission is over 22316 * and next_mp is NULL. 22317 */ 22318 if (ire1 == NULL) { 22319 multirt_send = B_FALSE; 22320 } 22321 } 22322 22323 ASSERT(ipsec_len == 0); 22324 mp->b_prev = 22325 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22326 DTRACE_PROBE2(ip__xmit__2, 22327 mblk_t *, mp, ire_t *, ire); 22328 pktxmit_state = ip_xmit_v4(mp, ire, 22329 NULL, B_TRUE); 22330 if ((pktxmit_state == SEND_FAILED) || 22331 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22332 if (next_mp) { 22333 freemsg(next_mp); 22334 ire_refrele(ire1); 22335 } 22336 ire_refrele(ire); 22337 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22338 "ip_wput_ire_end: q %p (%S)", 22339 q, "discard MDATA"); 22340 if (conn_outgoing_ill != NULL) 22341 ill_refrele(conn_outgoing_ill); 22342 return; 22343 } 22344 22345 if (multirt_send) { 22346 /* 22347 * We are in a multiple send case, 22348 * need to re-enter the sending loop 22349 * using the next ire. 22350 */ 22351 ire_refrele(ire); 22352 ire = ire1; 22353 stq = ire->ire_stq; 22354 mp = next_mp; 22355 next_mp = NULL; 22356 ipha = (ipha_t *)mp->b_rptr; 22357 ill_index = Q_TO_INDEX(stq); 22358 } 22359 } while (multirt_send); 22360 22361 if (!next_mp) { 22362 /* 22363 * Last copy going out (the ultra-common 22364 * case). Note that we intentionally replicate 22365 * the putnext rather than calling it before 22366 * the next_mp check in hopes of a little 22367 * tail-call action out of the compiler. 22368 */ 22369 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22370 "ip_wput_ire_end: q %p (%S)", 22371 q, "last copy out(1)"); 22372 ire_refrele(ire); 22373 if (conn_outgoing_ill != NULL) 22374 ill_refrele(conn_outgoing_ill); 22375 return; 22376 } 22377 /* More copies going out below. */ 22378 } else { 22379 int offset; 22380 fragmentit: 22381 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22382 /* 22383 * If this would generate a icmp_frag_needed message, 22384 * we need to handle it before we do the IPSEC 22385 * processing. Otherwise, we need to strip the IPSEC 22386 * headers before we send up the message to the ULPs 22387 * which becomes messy and difficult. 22388 */ 22389 if (ipsec_len != 0) { 22390 if ((max_frag < (unsigned int)(LENGTH + 22391 ipsec_len)) && (offset & IPH_DF)) { 22392 22393 BUMP_MIB(&ip_mib, ipFragFails); 22394 ipha->ipha_hdr_checksum = 0; 22395 ipha->ipha_hdr_checksum = 22396 (uint16_t)ip_csum_hdr(ipha); 22397 icmp_frag_needed(ire->ire_stq, first_mp, 22398 max_frag, zoneid); 22399 if (!next_mp) { 22400 ire_refrele(ire); 22401 if (conn_outgoing_ill != NULL) { 22402 ill_refrele( 22403 conn_outgoing_ill); 22404 } 22405 return; 22406 } 22407 } else { 22408 /* 22409 * This won't cause a icmp_frag_needed 22410 * message. to be gnerated. Send it on 22411 * the wire. Note that this could still 22412 * cause fragmentation and all we 22413 * do is the generation of the message 22414 * to the ULP if needed before IPSEC. 22415 */ 22416 if (!next_mp) { 22417 ipsec_out_process(q, first_mp, 22418 ire, ill_index); 22419 TRACE_2(TR_FAC_IP, 22420 TR_IP_WPUT_IRE_END, 22421 "ip_wput_ire_end: q %p " 22422 "(%S)", q, 22423 "last ipsec_out_process"); 22424 ire_refrele(ire); 22425 if (conn_outgoing_ill != NULL) { 22426 ill_refrele( 22427 conn_outgoing_ill); 22428 } 22429 return; 22430 } 22431 ipsec_out_process(q, first_mp, 22432 ire, ill_index); 22433 } 22434 } else { 22435 /* 22436 * Initiate IPPF processing. For 22437 * fragmentable packets we finish 22438 * all QOS packet processing before 22439 * calling: 22440 * ip_wput_ire_fragmentit->ip_wput_frag 22441 */ 22442 22443 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22444 ip_process(IPP_LOCAL_OUT, &mp, 22445 ill_index); 22446 if (mp == NULL) { 22447 BUMP_MIB(&ip_mib, 22448 ipOutDiscards); 22449 if (next_mp != NULL) { 22450 freemsg(next_mp); 22451 ire_refrele(ire1); 22452 } 22453 ire_refrele(ire); 22454 TRACE_2(TR_FAC_IP, 22455 TR_IP_WPUT_IRE_END, 22456 "ip_wput_ire: q %p (%S)", 22457 q, "discard MDATA"); 22458 if (conn_outgoing_ill != NULL) { 22459 ill_refrele( 22460 conn_outgoing_ill); 22461 } 22462 return; 22463 } 22464 } 22465 if (!next_mp) { 22466 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22467 "ip_wput_ire_end: q %p (%S)", 22468 q, "last fragmentation"); 22469 ip_wput_ire_fragmentit(mp, ire, 22470 zoneid); 22471 ire_refrele(ire); 22472 if (conn_outgoing_ill != NULL) 22473 ill_refrele(conn_outgoing_ill); 22474 return; 22475 } 22476 ip_wput_ire_fragmentit(mp, ire, zoneid); 22477 } 22478 } 22479 } else { 22480 nullstq: 22481 /* A NULL stq means the destination address is local. */ 22482 UPDATE_OB_PKT_COUNT(ire); 22483 ire->ire_last_used_time = lbolt; 22484 ASSERT(ire->ire_ipif != NULL); 22485 if (!next_mp) { 22486 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22487 "ip_wput_ire_end: q %p (%S)", 22488 q, "local address"); 22489 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 22490 first_mp, ire, 0, ire->ire_zoneid); 22491 ire_refrele(ire); 22492 if (conn_outgoing_ill != NULL) 22493 ill_refrele(conn_outgoing_ill); 22494 return; 22495 } 22496 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 22497 ire, 0, ire->ire_zoneid); 22498 } 22499 next: 22500 /* 22501 * More copies going out to additional interfaces. 22502 * ire1 has already been held. We don't need the 22503 * "ire" anymore. 22504 */ 22505 ire_refrele(ire); 22506 ire = ire1; 22507 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22508 mp = next_mp; 22509 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22510 ill = ire_to_ill(ire); 22511 first_mp = mp; 22512 if (ipsec_len != 0) { 22513 ASSERT(first_mp->b_datap->db_type == M_CTL); 22514 mp = mp->b_cont; 22515 } 22516 dst = ire->ire_addr; 22517 ipha = (ipha_t *)mp->b_rptr; 22518 /* 22519 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22520 * Restore ipha_ident "no checksum" flag. 22521 */ 22522 src = orig_src; 22523 ipha->ipha_ident = ip_hdr_included; 22524 goto another; 22525 22526 #undef rptr 22527 #undef Q_TO_INDEX 22528 } 22529 22530 /* 22531 * Routine to allocate a message that is used to notify the ULP about MDT. 22532 * The caller may provide a pointer to the link-layer MDT capabilities, 22533 * or NULL if MDT is to be disabled on the stream. 22534 */ 22535 mblk_t * 22536 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22537 { 22538 mblk_t *mp; 22539 ip_mdt_info_t *mdti; 22540 ill_mdt_capab_t *idst; 22541 22542 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22543 DB_TYPE(mp) = M_CTL; 22544 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22545 mdti = (ip_mdt_info_t *)mp->b_rptr; 22546 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22547 idst = &(mdti->mdt_capab); 22548 22549 /* 22550 * If the caller provides us with the capability, copy 22551 * it over into our notification message; otherwise 22552 * we zero out the capability portion. 22553 */ 22554 if (isrc != NULL) 22555 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22556 else 22557 bzero((caddr_t)idst, sizeof (*idst)); 22558 } 22559 return (mp); 22560 } 22561 22562 /* 22563 * Routine which determines whether MDT can be enabled on the destination 22564 * IRE and IPC combination, and if so, allocates and returns the MDT 22565 * notification mblk that may be used by ULP. We also check if we need to 22566 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22567 * MDT usage in the past have been lifted. This gets called during IP 22568 * and ULP binding. 22569 */ 22570 mblk_t * 22571 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22572 ill_mdt_capab_t *mdt_cap) 22573 { 22574 mblk_t *mp; 22575 boolean_t rc = B_FALSE; 22576 22577 ASSERT(dst_ire != NULL); 22578 ASSERT(connp != NULL); 22579 ASSERT(mdt_cap != NULL); 22580 22581 /* 22582 * Currently, we only support simple TCP/{IPv4,IPv6} with 22583 * Multidata, which is handled in tcp_multisend(). This 22584 * is the reason why we do all these checks here, to ensure 22585 * that we don't enable Multidata for the cases which we 22586 * can't handle at the moment. 22587 */ 22588 do { 22589 /* Only do TCP at the moment */ 22590 if (connp->conn_ulp != IPPROTO_TCP) 22591 break; 22592 22593 /* 22594 * IPSEC outbound policy present? Note that we get here 22595 * after calling ipsec_conn_cache_policy() where the global 22596 * policy checking is performed. conn_latch will be 22597 * non-NULL as long as there's a policy defined, 22598 * i.e. conn_out_enforce_policy may be NULL in such case 22599 * when the connection is non-secure, and hence we check 22600 * further if the latch refers to an outbound policy. 22601 */ 22602 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22603 break; 22604 22605 /* CGTP (multiroute) is enabled? */ 22606 if (dst_ire->ire_flags & RTF_MULTIRT) 22607 break; 22608 22609 /* Outbound IPQoS enabled? */ 22610 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22611 /* 22612 * In this case, we disable MDT for this and all 22613 * future connections going over the interface. 22614 */ 22615 mdt_cap->ill_mdt_on = 0; 22616 break; 22617 } 22618 22619 /* socket option(s) present? */ 22620 if (!CONN_IS_MD_FASTPATH(connp)) 22621 break; 22622 22623 rc = B_TRUE; 22624 /* CONSTCOND */ 22625 } while (0); 22626 22627 /* Remember the result */ 22628 connp->conn_mdt_ok = rc; 22629 22630 if (!rc) 22631 return (NULL); 22632 else if (!mdt_cap->ill_mdt_on) { 22633 /* 22634 * If MDT has been previously turned off in the past, and we 22635 * currently can do MDT (due to IPQoS policy removal, etc.) 22636 * then enable it for this interface. 22637 */ 22638 mdt_cap->ill_mdt_on = 1; 22639 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22640 "interface %s\n", ill_name)); 22641 } 22642 22643 /* Allocate the MDT info mblk */ 22644 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22645 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22646 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22647 return (NULL); 22648 } 22649 return (mp); 22650 } 22651 22652 /* 22653 * Create destination address attribute, and fill it with the physical 22654 * destination address and SAP taken from the template DL_UNITDATA_REQ 22655 * message block. 22656 */ 22657 boolean_t 22658 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 22659 { 22660 dl_unitdata_req_t *dlurp; 22661 pattr_t *pa; 22662 pattrinfo_t pa_info; 22663 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 22664 uint_t das_len, das_off; 22665 22666 ASSERT(dlmp != NULL); 22667 22668 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 22669 das_len = dlurp->dl_dest_addr_length; 22670 das_off = dlurp->dl_dest_addr_offset; 22671 22672 pa_info.type = PATTR_DSTADDRSAP; 22673 pa_info.len = sizeof (**das) + das_len - 1; 22674 22675 /* create and associate the attribute */ 22676 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22677 if (pa != NULL) { 22678 ASSERT(*das != NULL); 22679 (*das)->addr_is_group = 0; 22680 (*das)->addr_len = (uint8_t)das_len; 22681 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 22682 } 22683 22684 return (pa != NULL); 22685 } 22686 22687 /* 22688 * Create hardware checksum attribute and fill it with the values passed. 22689 */ 22690 boolean_t 22691 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 22692 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 22693 { 22694 pattr_t *pa; 22695 pattrinfo_t pa_info; 22696 22697 ASSERT(mmd != NULL); 22698 22699 pa_info.type = PATTR_HCKSUM; 22700 pa_info.len = sizeof (pattr_hcksum_t); 22701 22702 /* create and associate the attribute */ 22703 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22704 if (pa != NULL) { 22705 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 22706 22707 hck->hcksum_start_offset = start_offset; 22708 hck->hcksum_stuff_offset = stuff_offset; 22709 hck->hcksum_end_offset = end_offset; 22710 hck->hcksum_flags = flags; 22711 } 22712 return (pa != NULL); 22713 } 22714 22715 /* 22716 * Create zerocopy attribute and fill it with the specified flags 22717 */ 22718 boolean_t 22719 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 22720 { 22721 pattr_t *pa; 22722 pattrinfo_t pa_info; 22723 22724 ASSERT(mmd != NULL); 22725 pa_info.type = PATTR_ZCOPY; 22726 pa_info.len = sizeof (pattr_zcopy_t); 22727 22728 /* create and associate the attribute */ 22729 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 22730 if (pa != NULL) { 22731 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 22732 22733 zcopy->zcopy_flags = flags; 22734 } 22735 return (pa != NULL); 22736 } 22737 22738 /* 22739 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 22740 * block chain. We could rewrite to handle arbitrary message block chains but 22741 * that would make the code complicated and slow. Right now there three 22742 * restrictions: 22743 * 22744 * 1. The first message block must contain the complete IP header and 22745 * at least 1 byte of payload data. 22746 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22747 * so that we can use a single Multidata message. 22748 * 3. No frag must be distributed over two or more message blocks so 22749 * that we don't need more than two packet descriptors per frag. 22750 * 22751 * The above restrictions allow us to support userland applications (which 22752 * will send down a single message block) and NFS over UDP (which will 22753 * send down a chain of at most three message blocks). 22754 * 22755 * We also don't use MDT for payloads with less than or equal to 22756 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22757 */ 22758 boolean_t 22759 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22760 { 22761 int blocks; 22762 ssize_t total, missing, size; 22763 22764 ASSERT(mp != NULL); 22765 ASSERT(hdr_len > 0); 22766 22767 size = MBLKL(mp) - hdr_len; 22768 if (size <= 0) 22769 return (B_FALSE); 22770 22771 /* The first mblk contains the header and some payload. */ 22772 blocks = 1; 22773 total = size; 22774 size %= len; 22775 missing = (size == 0) ? 0 : (len - size); 22776 mp = mp->b_cont; 22777 22778 while (mp != NULL) { 22779 /* 22780 * Give up if we encounter a zero length message block. 22781 * In practice, this should rarely happen and therefore 22782 * not worth the trouble of freeing and re-linking the 22783 * mblk from the chain to handle such case. 22784 */ 22785 if ((size = MBLKL(mp)) == 0) 22786 return (B_FALSE); 22787 22788 /* Too many payload buffers for a single Multidata message? */ 22789 if (++blocks > MULTIDATA_MAX_PBUFS) 22790 return (B_FALSE); 22791 22792 total += size; 22793 /* Is a frag distributed over two or more message blocks? */ 22794 if (missing > size) 22795 return (B_FALSE); 22796 size -= missing; 22797 22798 size %= len; 22799 missing = (size == 0) ? 0 : (len - size); 22800 22801 mp = mp->b_cont; 22802 } 22803 22804 return (total > ip_wput_frag_mdt_min); 22805 } 22806 22807 /* 22808 * Outbound IPv4 fragmentation routine using MDT. 22809 */ 22810 static void 22811 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22812 uint32_t frag_flag, int offset) 22813 { 22814 ipha_t *ipha_orig; 22815 int i1, ip_data_end; 22816 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22817 mblk_t *hdr_mp, *md_mp = NULL; 22818 unsigned char *hdr_ptr, *pld_ptr; 22819 multidata_t *mmd; 22820 ip_pdescinfo_t pdi; 22821 22822 ASSERT(DB_TYPE(mp) == M_DATA); 22823 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22824 22825 ipha_orig = (ipha_t *)mp->b_rptr; 22826 mp->b_rptr += sizeof (ipha_t); 22827 22828 /* Calculate how many packets we will send out */ 22829 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22830 pkts = (i1 + len - 1) / len; 22831 ASSERT(pkts > 1); 22832 22833 /* Allocate a message block which will hold all the IP Headers. */ 22834 wroff = ip_wroff_extra; 22835 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22836 22837 i1 = pkts * hdr_chunk_len; 22838 /* 22839 * Create the header buffer, Multidata and destination address 22840 * and SAP attribute that should be associated with it. 22841 */ 22842 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22843 ((hdr_mp->b_wptr += i1), 22844 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22845 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 22846 freemsg(mp); 22847 if (md_mp == NULL) { 22848 freemsg(hdr_mp); 22849 } else { 22850 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22851 freemsg(md_mp); 22852 } 22853 IP_STAT(ip_frag_mdt_allocfail); 22854 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22855 return; 22856 } 22857 IP_STAT(ip_frag_mdt_allocd); 22858 22859 /* 22860 * Add a payload buffer to the Multidata; this operation must not 22861 * fail, or otherwise our logic in this routine is broken. There 22862 * is no memory allocation done by the routine, so any returned 22863 * failure simply tells us that we've done something wrong. 22864 * 22865 * A failure tells us that either we're adding the same payload 22866 * buffer more than once, or we're trying to add more buffers than 22867 * allowed. None of the above cases should happen, and we panic 22868 * because either there's horrible heap corruption, and/or 22869 * programming mistake. 22870 */ 22871 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22872 goto pbuf_panic; 22873 22874 hdr_ptr = hdr_mp->b_rptr; 22875 pld_ptr = mp->b_rptr; 22876 22877 /* Establish the ending byte offset, based on the starting offset. */ 22878 offset <<= 3; 22879 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22880 IP_SIMPLE_HDR_LENGTH; 22881 22882 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22883 22884 while (pld_ptr < mp->b_wptr) { 22885 ipha_t *ipha; 22886 uint16_t offset_and_flags; 22887 uint16_t ip_len; 22888 int error; 22889 22890 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22891 ipha = (ipha_t *)(hdr_ptr + wroff); 22892 ASSERT(OK_32PTR(ipha)); 22893 *ipha = *ipha_orig; 22894 22895 if (ip_data_end - offset > len) { 22896 offset_and_flags = IPH_MF; 22897 } else { 22898 /* 22899 * Last frag. Set len to the length of this last piece. 22900 */ 22901 len = ip_data_end - offset; 22902 /* A frag of a frag might have IPH_MF non-zero */ 22903 offset_and_flags = 22904 ntohs(ipha->ipha_fragment_offset_and_flags) & 22905 IPH_MF; 22906 } 22907 offset_and_flags |= (uint16_t)(offset >> 3); 22908 offset_and_flags |= (uint16_t)frag_flag; 22909 /* Store the offset and flags in the IP header. */ 22910 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22911 22912 /* Store the length in the IP header. */ 22913 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22914 ipha->ipha_length = htons(ip_len); 22915 22916 /* 22917 * Set the IP header checksum. Note that mp is just 22918 * the header, so this is easy to pass to ip_csum. 22919 */ 22920 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22921 22922 /* 22923 * Record offset and size of header and data of the next packet 22924 * in the multidata message. 22925 */ 22926 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22927 PDESC_PLD_INIT(&pdi); 22928 i1 = MIN(mp->b_wptr - pld_ptr, len); 22929 ASSERT(i1 > 0); 22930 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22931 if (i1 == len) { 22932 pld_ptr += len; 22933 } else { 22934 i1 = len - i1; 22935 mp = mp->b_cont; 22936 ASSERT(mp != NULL); 22937 ASSERT(MBLKL(mp) >= i1); 22938 /* 22939 * Attach the next payload message block to the 22940 * multidata message. 22941 */ 22942 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22943 goto pbuf_panic; 22944 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22945 pld_ptr = mp->b_rptr + i1; 22946 } 22947 22948 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22949 KM_NOSLEEP)) == NULL) { 22950 /* 22951 * Any failure other than ENOMEM indicates that we 22952 * have passed in invalid pdesc info or parameters 22953 * to mmd_addpdesc, which must not happen. 22954 * 22955 * EINVAL is a result of failure on boundary checks 22956 * against the pdesc info contents. It should not 22957 * happen, and we panic because either there's 22958 * horrible heap corruption, and/or programming 22959 * mistake. 22960 */ 22961 if (error != ENOMEM) { 22962 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22963 "pdesc logic error detected for " 22964 "mmd %p pinfo %p (%d)\n", 22965 (void *)mmd, (void *)&pdi, error); 22966 /* NOTREACHED */ 22967 } 22968 IP_STAT(ip_frag_mdt_addpdescfail); 22969 /* Free unattached payload message blocks as well */ 22970 md_mp->b_cont = mp->b_cont; 22971 goto free_mmd; 22972 } 22973 22974 /* Advance fragment offset. */ 22975 offset += len; 22976 22977 /* Advance to location for next header in the buffer. */ 22978 hdr_ptr += hdr_chunk_len; 22979 22980 /* Did we reach the next payload message block? */ 22981 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 22982 mp = mp->b_cont; 22983 /* 22984 * Attach the next message block with payload 22985 * data to the multidata message. 22986 */ 22987 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22988 goto pbuf_panic; 22989 pld_ptr = mp->b_rptr; 22990 } 22991 } 22992 22993 ASSERT(hdr_mp->b_wptr == hdr_ptr); 22994 ASSERT(mp->b_wptr == pld_ptr); 22995 22996 /* Update IP statistics */ 22997 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 22998 BUMP_MIB(&ip_mib, ipFragOKs); 22999 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23000 23001 if (pkt_type == OB_PKT) { 23002 ire->ire_ob_pkt_count += pkts; 23003 if (ire->ire_ipif != NULL) 23004 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23005 } else { 23006 /* 23007 * The type is IB_PKT in the forwarding path and in 23008 * the mobile IP case when the packet is being reverse- 23009 * tunneled to the home agent. 23010 */ 23011 ire->ire_ib_pkt_count += pkts; 23012 ASSERT(!IRE_IS_LOCAL(ire)); 23013 if (ire->ire_type & IRE_BROADCAST) 23014 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23015 else 23016 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23017 } 23018 ire->ire_last_used_time = lbolt; 23019 /* Send it down */ 23020 putnext(ire->ire_stq, md_mp); 23021 return; 23022 23023 pbuf_panic: 23024 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23025 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23026 pbuf_idx); 23027 /* NOTREACHED */ 23028 } 23029 23030 /* 23031 * Outbound IP fragmentation routine. 23032 * 23033 * NOTE : This routine does not ire_refrele the ire that is passed in 23034 * as the argument. 23035 */ 23036 static void 23037 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23038 uint32_t frag_flag, zoneid_t zoneid) 23039 { 23040 int i1; 23041 mblk_t *ll_hdr_mp; 23042 int ll_hdr_len; 23043 int hdr_len; 23044 mblk_t *hdr_mp; 23045 ipha_t *ipha; 23046 int ip_data_end; 23047 int len; 23048 mblk_t *mp = mp_orig; 23049 int offset; 23050 queue_t *q; 23051 uint32_t v_hlen_tos_len; 23052 mblk_t *first_mp; 23053 boolean_t mctl_present; 23054 ill_t *ill; 23055 mblk_t *xmit_mp; 23056 mblk_t *carve_mp; 23057 ire_t *ire1 = NULL; 23058 ire_t *save_ire = NULL; 23059 mblk_t *next_mp = NULL; 23060 boolean_t last_frag = B_FALSE; 23061 boolean_t multirt_send = B_FALSE; 23062 ire_t *first_ire = NULL; 23063 irb_t *irb = NULL; 23064 23065 /* 23066 * IPSEC does not allow hw accelerated packets to be fragmented 23067 * This check is made in ip_wput_ipsec_out prior to coming here 23068 * via ip_wput_ire_fragmentit. 23069 * 23070 * If at this point we have an ire whose ARP request has not 23071 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23072 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23073 * This packet and all fragmentable packets for this ire will 23074 * continue to get dropped while ire_nce->nce_state remains in 23075 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23076 * ND_REACHABLE, all subsquent large packets for this ire will 23077 * get fragemented and sent out by this function. 23078 */ 23079 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23080 /* If nce_state is ND_INITIAL, trigger ARP query */ 23081 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23082 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23083 " - dropping packet\n")); 23084 BUMP_MIB(&ip_mib, ipFragFails); 23085 freemsg(mp); 23086 return; 23087 } 23088 23089 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23090 "ip_wput_frag_start:"); 23091 23092 if (mp->b_datap->db_type == M_CTL) { 23093 first_mp = mp; 23094 mp_orig = mp = mp->b_cont; 23095 mctl_present = B_TRUE; 23096 } else { 23097 first_mp = mp; 23098 mctl_present = B_FALSE; 23099 } 23100 23101 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23102 ipha = (ipha_t *)mp->b_rptr; 23103 23104 /* 23105 * If the Don't Fragment flag is on, generate an ICMP destination 23106 * unreachable, fragmentation needed. 23107 */ 23108 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23109 if (offset & IPH_DF) { 23110 BUMP_MIB(&ip_mib, ipFragFails); 23111 /* 23112 * Need to compute hdr checksum if called from ip_wput_ire. 23113 * Note that ip_rput_forward verifies the checksum before 23114 * calling this routine so in that case this is a noop. 23115 */ 23116 ipha->ipha_hdr_checksum = 0; 23117 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23118 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23119 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23120 "ip_wput_frag_end:(%S)", 23121 "don't fragment"); 23122 return; 23123 } 23124 if (mctl_present) 23125 freeb(first_mp); 23126 /* 23127 * Establish the starting offset. May not be zero if we are fragging 23128 * a fragment that is being forwarded. 23129 */ 23130 offset = offset & IPH_OFFSET; 23131 23132 /* TODO why is this test needed? */ 23133 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23134 if (((max_frag - LENGTH) & ~7) < 8) { 23135 /* TODO: notify ulp somehow */ 23136 BUMP_MIB(&ip_mib, ipFragFails); 23137 freemsg(mp); 23138 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23139 "ip_wput_frag_end:(%S)", 23140 "len < 8"); 23141 return; 23142 } 23143 23144 hdr_len = (V_HLEN & 0xF) << 2; 23145 23146 ipha->ipha_hdr_checksum = 0; 23147 23148 /* 23149 * Establish the number of bytes maximum per frag, after putting 23150 * in the header. 23151 */ 23152 len = (max_frag - hdr_len) & ~7; 23153 23154 /* Check if we can use MDT to send out the frags. */ 23155 ASSERT(!IRE_IS_LOCAL(ire)); 23156 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23157 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23158 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23159 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23160 ASSERT(ill->ill_mdt_capab != NULL); 23161 if (!ill->ill_mdt_capab->ill_mdt_on) { 23162 /* 23163 * If MDT has been previously turned off in the past, 23164 * and we currently can do MDT (due to IPQoS policy 23165 * removal, etc.) then enable it for this interface. 23166 */ 23167 ill->ill_mdt_capab->ill_mdt_on = 1; 23168 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23169 ill->ill_name)); 23170 } 23171 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23172 offset); 23173 return; 23174 } 23175 23176 /* Get a copy of the header for the trailing frags */ 23177 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23178 if (!hdr_mp) { 23179 BUMP_MIB(&ip_mib, ipOutDiscards); 23180 freemsg(mp); 23181 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23182 "ip_wput_frag_end:(%S)", 23183 "couldn't copy hdr"); 23184 return; 23185 } 23186 if (DB_CRED(mp) != NULL) 23187 mblk_setcred(hdr_mp, DB_CRED(mp)); 23188 23189 /* Store the starting offset, with the MoreFrags flag. */ 23190 i1 = offset | IPH_MF | frag_flag; 23191 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23192 23193 /* Establish the ending byte offset, based on the starting offset. */ 23194 offset <<= 3; 23195 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23196 23197 /* Store the length of the first fragment in the IP header. */ 23198 i1 = len + hdr_len; 23199 ASSERT(i1 <= IP_MAXPACKET); 23200 ipha->ipha_length = htons((uint16_t)i1); 23201 23202 /* 23203 * Compute the IP header checksum for the first frag. We have to 23204 * watch out that we stop at the end of the header. 23205 */ 23206 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23207 23208 /* 23209 * Now carve off the first frag. Note that this will include the 23210 * original IP header. 23211 */ 23212 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23213 BUMP_MIB(&ip_mib, ipOutDiscards); 23214 freeb(hdr_mp); 23215 freemsg(mp_orig); 23216 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23217 "ip_wput_frag_end:(%S)", 23218 "couldn't carve first"); 23219 return; 23220 } 23221 23222 /* 23223 * Multirouting case. Each fragment is replicated 23224 * via all non-condemned RTF_MULTIRT routes 23225 * currently resolved. 23226 * We ensure that first_ire is the first RTF_MULTIRT 23227 * ire in the bucket. 23228 */ 23229 if (ire->ire_flags & RTF_MULTIRT) { 23230 irb = ire->ire_bucket; 23231 ASSERT(irb != NULL); 23232 23233 multirt_send = B_TRUE; 23234 23235 /* Make sure we do not omit any multiroute ire. */ 23236 IRB_REFHOLD(irb); 23237 for (first_ire = irb->irb_ire; 23238 first_ire != NULL; 23239 first_ire = first_ire->ire_next) { 23240 if ((first_ire->ire_flags & RTF_MULTIRT) && 23241 (first_ire->ire_addr == ire->ire_addr) && 23242 !(first_ire->ire_marks & 23243 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23244 break; 23245 } 23246 23247 if (first_ire != NULL) { 23248 if (first_ire != ire) { 23249 IRE_REFHOLD(first_ire); 23250 /* 23251 * Do not release the ire passed in 23252 * as the argument. 23253 */ 23254 ire = first_ire; 23255 } else { 23256 first_ire = NULL; 23257 } 23258 } 23259 IRB_REFRELE(irb); 23260 23261 /* 23262 * Save the first ire; we will need to restore it 23263 * for the trailing frags. 23264 * We REFHOLD save_ire, as each iterated ire will be 23265 * REFRELEd. 23266 */ 23267 save_ire = ire; 23268 IRE_REFHOLD(save_ire); 23269 } 23270 23271 /* 23272 * First fragment emission loop. 23273 * In most cases, the emission loop below is entered only 23274 * once. Only in the case where the ire holds the RTF_MULTIRT 23275 * flag, do we loop to process all RTF_MULTIRT ires in the 23276 * bucket, and send the fragment through all crossed 23277 * RTF_MULTIRT routes. 23278 */ 23279 do { 23280 if (ire->ire_flags & RTF_MULTIRT) { 23281 /* 23282 * We are in a multiple send case, need to get 23283 * the next ire and make a copy of the packet. 23284 * ire1 holds here the next ire to process in the 23285 * bucket. If multirouting is expected, 23286 * any non-RTF_MULTIRT ire that has the 23287 * right destination address is ignored. 23288 * 23289 * We have to take into account the MTU of 23290 * each walked ire. max_frag is set by the 23291 * the caller and generally refers to 23292 * the primary ire entry. Here we ensure that 23293 * no route with a lower MTU will be used, as 23294 * fragments are carved once for all ires, 23295 * then replicated. 23296 */ 23297 ASSERT(irb != NULL); 23298 IRB_REFHOLD(irb); 23299 for (ire1 = ire->ire_next; 23300 ire1 != NULL; 23301 ire1 = ire1->ire_next) { 23302 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23303 continue; 23304 if (ire1->ire_addr != ire->ire_addr) 23305 continue; 23306 if (ire1->ire_marks & 23307 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23308 continue; 23309 /* 23310 * Ensure we do not exceed the MTU 23311 * of the next route. 23312 */ 23313 if (ire1->ire_max_frag < max_frag) { 23314 ip_multirt_bad_mtu(ire1, max_frag); 23315 continue; 23316 } 23317 23318 /* Got one. */ 23319 IRE_REFHOLD(ire1); 23320 break; 23321 } 23322 IRB_REFRELE(irb); 23323 23324 if (ire1 != NULL) { 23325 next_mp = copyb(mp); 23326 if ((next_mp == NULL) || 23327 ((mp->b_cont != NULL) && 23328 ((next_mp->b_cont = 23329 dupmsg(mp->b_cont)) == NULL))) { 23330 freemsg(next_mp); 23331 next_mp = NULL; 23332 ire_refrele(ire1); 23333 ire1 = NULL; 23334 } 23335 } 23336 23337 /* Last multiroute ire; don't loop anymore. */ 23338 if (ire1 == NULL) { 23339 multirt_send = B_FALSE; 23340 } 23341 } 23342 23343 ll_hdr_len = 0; 23344 LOCK_IRE_FP_MP(ire); 23345 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23346 if (ll_hdr_mp != NULL) { 23347 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23348 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23349 } else { 23350 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23351 } 23352 23353 /* If there is a transmit header, get a copy for this frag. */ 23354 /* 23355 * TODO: should check db_ref before calling ip_carve_mp since 23356 * it might give us a dup. 23357 */ 23358 if (!ll_hdr_mp) { 23359 /* No xmit header. */ 23360 xmit_mp = mp; 23361 23362 /* We have a link-layer header that can fit in our mblk. */ 23363 } else if (mp->b_datap->db_ref == 1 && 23364 ll_hdr_len != 0 && 23365 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23366 /* M_DATA fastpath */ 23367 mp->b_rptr -= ll_hdr_len; 23368 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23369 xmit_mp = mp; 23370 23371 /* Corner case if copyb has failed */ 23372 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23373 UNLOCK_IRE_FP_MP(ire); 23374 BUMP_MIB(&ip_mib, ipOutDiscards); 23375 freeb(hdr_mp); 23376 freemsg(mp); 23377 freemsg(mp_orig); 23378 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23379 "ip_wput_frag_end:(%S)", 23380 "discard"); 23381 23382 if (multirt_send) { 23383 ASSERT(ire1); 23384 ASSERT(next_mp); 23385 23386 freemsg(next_mp); 23387 ire_refrele(ire1); 23388 } 23389 if (save_ire != NULL) 23390 IRE_REFRELE(save_ire); 23391 23392 if (first_ire != NULL) 23393 ire_refrele(first_ire); 23394 return; 23395 23396 /* 23397 * Case of res_mp OR the fastpath mp can't fit 23398 * in the mblk 23399 */ 23400 } else { 23401 xmit_mp->b_cont = mp; 23402 if (DB_CRED(mp) != NULL) 23403 mblk_setcred(xmit_mp, DB_CRED(mp)); 23404 /* 23405 * Get priority marking, if any. 23406 * We propagate the CoS marking from the 23407 * original packet that went to QoS processing 23408 * in ip_wput_ire to the newly carved mp. 23409 */ 23410 if (DB_TYPE(xmit_mp) == M_DATA) 23411 xmit_mp->b_band = mp->b_band; 23412 } 23413 UNLOCK_IRE_FP_MP(ire); 23414 q = ire->ire_stq; 23415 BUMP_MIB(&ip_mib, ipFragCreates); 23416 putnext(q, xmit_mp); 23417 if (pkt_type != OB_PKT) { 23418 /* 23419 * Update the packet count of trailing 23420 * RTF_MULTIRT ires. 23421 */ 23422 UPDATE_OB_PKT_COUNT(ire); 23423 } 23424 23425 if (multirt_send) { 23426 /* 23427 * We are in a multiple send case; look for 23428 * the next ire and re-enter the loop. 23429 */ 23430 ASSERT(ire1); 23431 ASSERT(next_mp); 23432 /* REFRELE the current ire before looping */ 23433 ire_refrele(ire); 23434 ire = ire1; 23435 ire1 = NULL; 23436 mp = next_mp; 23437 next_mp = NULL; 23438 } 23439 } while (multirt_send); 23440 23441 ASSERT(ire1 == NULL); 23442 23443 /* Restore the original ire; we need it for the trailing frags */ 23444 if (save_ire != NULL) { 23445 /* REFRELE the last iterated ire */ 23446 ire_refrele(ire); 23447 /* save_ire has been REFHOLDed */ 23448 ire = save_ire; 23449 save_ire = NULL; 23450 q = ire->ire_stq; 23451 } 23452 23453 if (pkt_type == OB_PKT) { 23454 UPDATE_OB_PKT_COUNT(ire); 23455 } else { 23456 UPDATE_IB_PKT_COUNT(ire); 23457 } 23458 23459 /* Advance the offset to the second frag starting point. */ 23460 offset += len; 23461 /* 23462 * Update hdr_len from the copied header - there might be less options 23463 * in the later fragments. 23464 */ 23465 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23466 /* Loop until done. */ 23467 for (;;) { 23468 uint16_t offset_and_flags; 23469 uint16_t ip_len; 23470 23471 if (ip_data_end - offset > len) { 23472 /* 23473 * Carve off the appropriate amount from the original 23474 * datagram. 23475 */ 23476 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23477 mp = NULL; 23478 break; 23479 } 23480 /* 23481 * More frags after this one. Get another copy 23482 * of the header. 23483 */ 23484 if (carve_mp->b_datap->db_ref == 1 && 23485 hdr_mp->b_wptr - hdr_mp->b_rptr < 23486 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23487 /* Inline IP header */ 23488 carve_mp->b_rptr -= hdr_mp->b_wptr - 23489 hdr_mp->b_rptr; 23490 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23491 hdr_mp->b_wptr - hdr_mp->b_rptr); 23492 mp = carve_mp; 23493 } else { 23494 if (!(mp = copyb(hdr_mp))) { 23495 freemsg(carve_mp); 23496 break; 23497 } 23498 /* Get priority marking, if any. */ 23499 mp->b_band = carve_mp->b_band; 23500 mp->b_cont = carve_mp; 23501 } 23502 ipha = (ipha_t *)mp->b_rptr; 23503 offset_and_flags = IPH_MF; 23504 } else { 23505 /* 23506 * Last frag. Consume the header. Set len to 23507 * the length of this last piece. 23508 */ 23509 len = ip_data_end - offset; 23510 23511 /* 23512 * Carve off the appropriate amount from the original 23513 * datagram. 23514 */ 23515 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23516 mp = NULL; 23517 break; 23518 } 23519 if (carve_mp->b_datap->db_ref == 1 && 23520 hdr_mp->b_wptr - hdr_mp->b_rptr < 23521 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23522 /* Inline IP header */ 23523 carve_mp->b_rptr -= hdr_mp->b_wptr - 23524 hdr_mp->b_rptr; 23525 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23526 hdr_mp->b_wptr - hdr_mp->b_rptr); 23527 mp = carve_mp; 23528 freeb(hdr_mp); 23529 hdr_mp = mp; 23530 } else { 23531 mp = hdr_mp; 23532 /* Get priority marking, if any. */ 23533 mp->b_band = carve_mp->b_band; 23534 mp->b_cont = carve_mp; 23535 } 23536 ipha = (ipha_t *)mp->b_rptr; 23537 /* A frag of a frag might have IPH_MF non-zero */ 23538 offset_and_flags = 23539 ntohs(ipha->ipha_fragment_offset_and_flags) & 23540 IPH_MF; 23541 } 23542 offset_and_flags |= (uint16_t)(offset >> 3); 23543 offset_and_flags |= (uint16_t)frag_flag; 23544 /* Store the offset and flags in the IP header. */ 23545 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23546 23547 /* Store the length in the IP header. */ 23548 ip_len = (uint16_t)(len + hdr_len); 23549 ipha->ipha_length = htons(ip_len); 23550 23551 /* 23552 * Set the IP header checksum. Note that mp is just 23553 * the header, so this is easy to pass to ip_csum. 23554 */ 23555 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23556 23557 /* Attach a transmit header, if any, and ship it. */ 23558 if (pkt_type == OB_PKT) { 23559 UPDATE_OB_PKT_COUNT(ire); 23560 } else { 23561 UPDATE_IB_PKT_COUNT(ire); 23562 } 23563 23564 if (ire->ire_flags & RTF_MULTIRT) { 23565 irb = ire->ire_bucket; 23566 ASSERT(irb != NULL); 23567 23568 multirt_send = B_TRUE; 23569 23570 /* 23571 * Save the original ire; we will need to restore it 23572 * for the tailing frags. 23573 */ 23574 save_ire = ire; 23575 IRE_REFHOLD(save_ire); 23576 } 23577 /* 23578 * Emission loop for this fragment, similar 23579 * to what is done for the first fragment. 23580 */ 23581 do { 23582 if (multirt_send) { 23583 /* 23584 * We are in a multiple send case, need to get 23585 * the next ire and make a copy of the packet. 23586 */ 23587 ASSERT(irb != NULL); 23588 IRB_REFHOLD(irb); 23589 for (ire1 = ire->ire_next; 23590 ire1 != NULL; 23591 ire1 = ire1->ire_next) { 23592 if (!(ire1->ire_flags & RTF_MULTIRT)) 23593 continue; 23594 if (ire1->ire_addr != ire->ire_addr) 23595 continue; 23596 if (ire1->ire_marks & 23597 (IRE_MARK_CONDEMNED| 23598 IRE_MARK_HIDDEN)) 23599 continue; 23600 /* 23601 * Ensure we do not exceed the MTU 23602 * of the next route. 23603 */ 23604 if (ire1->ire_max_frag < max_frag) { 23605 ip_multirt_bad_mtu(ire1, 23606 max_frag); 23607 continue; 23608 } 23609 23610 /* Got one. */ 23611 IRE_REFHOLD(ire1); 23612 break; 23613 } 23614 IRB_REFRELE(irb); 23615 23616 if (ire1 != NULL) { 23617 next_mp = copyb(mp); 23618 if ((next_mp == NULL) || 23619 ((mp->b_cont != NULL) && 23620 ((next_mp->b_cont = 23621 dupmsg(mp->b_cont)) == NULL))) { 23622 freemsg(next_mp); 23623 next_mp = NULL; 23624 ire_refrele(ire1); 23625 ire1 = NULL; 23626 } 23627 } 23628 23629 /* Last multiroute ire; don't loop anymore. */ 23630 if (ire1 == NULL) { 23631 multirt_send = B_FALSE; 23632 } 23633 } 23634 23635 /* Update transmit header */ 23636 ll_hdr_len = 0; 23637 LOCK_IRE_FP_MP(ire); 23638 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23639 if (ll_hdr_mp != NULL) { 23640 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23641 ll_hdr_len = MBLKL(ll_hdr_mp); 23642 } else { 23643 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23644 } 23645 23646 if (!ll_hdr_mp) { 23647 xmit_mp = mp; 23648 23649 /* 23650 * We have link-layer header that can fit in 23651 * our mblk. 23652 */ 23653 } else if (mp->b_datap->db_ref == 1 && 23654 ll_hdr_len != 0 && 23655 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23656 /* M_DATA fastpath */ 23657 mp->b_rptr -= ll_hdr_len; 23658 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 23659 ll_hdr_len); 23660 xmit_mp = mp; 23661 23662 /* 23663 * Case of res_mp OR the fastpath mp can't fit 23664 * in the mblk 23665 */ 23666 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 23667 xmit_mp->b_cont = mp; 23668 if (DB_CRED(mp) != NULL) 23669 mblk_setcred(xmit_mp, DB_CRED(mp)); 23670 /* Get priority marking, if any. */ 23671 if (DB_TYPE(xmit_mp) == M_DATA) 23672 xmit_mp->b_band = mp->b_band; 23673 23674 /* Corner case if copyb failed */ 23675 } else { 23676 /* 23677 * Exit both the replication and 23678 * fragmentation loops. 23679 */ 23680 UNLOCK_IRE_FP_MP(ire); 23681 goto drop_pkt; 23682 } 23683 UNLOCK_IRE_FP_MP(ire); 23684 BUMP_MIB(&ip_mib, ipFragCreates); 23685 putnext(q, xmit_mp); 23686 23687 if (pkt_type != OB_PKT) { 23688 /* 23689 * Update the packet count of trailing 23690 * RTF_MULTIRT ires. 23691 */ 23692 UPDATE_OB_PKT_COUNT(ire); 23693 } 23694 23695 /* All done if we just consumed the hdr_mp. */ 23696 if (mp == hdr_mp) { 23697 last_frag = B_TRUE; 23698 } 23699 23700 if (multirt_send) { 23701 /* 23702 * We are in a multiple send case; look for 23703 * the next ire and re-enter the loop. 23704 */ 23705 ASSERT(ire1); 23706 ASSERT(next_mp); 23707 /* REFRELE the current ire before looping */ 23708 ire_refrele(ire); 23709 ire = ire1; 23710 ire1 = NULL; 23711 q = ire->ire_stq; 23712 mp = next_mp; 23713 next_mp = NULL; 23714 } 23715 } while (multirt_send); 23716 /* 23717 * Restore the original ire; we need it for the 23718 * trailing frags 23719 */ 23720 if (save_ire != NULL) { 23721 ASSERT(ire1 == NULL); 23722 /* REFRELE the last iterated ire */ 23723 ire_refrele(ire); 23724 /* save_ire has been REFHOLDed */ 23725 ire = save_ire; 23726 q = ire->ire_stq; 23727 save_ire = NULL; 23728 } 23729 23730 if (last_frag) { 23731 BUMP_MIB(&ip_mib, ipFragOKs); 23732 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23733 "ip_wput_frag_end:(%S)", 23734 "consumed hdr_mp"); 23735 23736 if (first_ire != NULL) 23737 ire_refrele(first_ire); 23738 return; 23739 } 23740 /* Otherwise, advance and loop. */ 23741 offset += len; 23742 } 23743 23744 drop_pkt: 23745 /* Clean up following allocation failure. */ 23746 BUMP_MIB(&ip_mib, ipOutDiscards); 23747 freemsg(mp); 23748 if (mp != hdr_mp) 23749 freeb(hdr_mp); 23750 if (mp != mp_orig) 23751 freemsg(mp_orig); 23752 23753 if (save_ire != NULL) 23754 IRE_REFRELE(save_ire); 23755 if (first_ire != NULL) 23756 ire_refrele(first_ire); 23757 23758 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23759 "ip_wput_frag_end:(%S)", 23760 "end--alloc failure"); 23761 } 23762 23763 /* 23764 * Copy the header plus those options which have the copy bit set 23765 */ 23766 static mblk_t * 23767 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 23768 { 23769 mblk_t *mp; 23770 uchar_t *up; 23771 23772 /* 23773 * Quick check if we need to look for options without the copy bit 23774 * set 23775 */ 23776 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 23777 if (!mp) 23778 return (mp); 23779 mp->b_rptr += ip_wroff_extra; 23780 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 23781 bcopy(rptr, mp->b_rptr, hdr_len); 23782 mp->b_wptr += hdr_len + ip_wroff_extra; 23783 return (mp); 23784 } 23785 up = mp->b_rptr; 23786 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 23787 up += IP_SIMPLE_HDR_LENGTH; 23788 rptr += IP_SIMPLE_HDR_LENGTH; 23789 hdr_len -= IP_SIMPLE_HDR_LENGTH; 23790 while (hdr_len > 0) { 23791 uint32_t optval; 23792 uint32_t optlen; 23793 23794 optval = *rptr; 23795 if (optval == IPOPT_EOL) 23796 break; 23797 if (optval == IPOPT_NOP) 23798 optlen = 1; 23799 else 23800 optlen = rptr[1]; 23801 if (optval & IPOPT_COPY) { 23802 bcopy(rptr, up, optlen); 23803 up += optlen; 23804 } 23805 rptr += optlen; 23806 hdr_len -= optlen; 23807 } 23808 /* 23809 * Make sure that we drop an even number of words by filling 23810 * with EOL to the next word boundary. 23811 */ 23812 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23813 hdr_len & 0x3; hdr_len++) 23814 *up++ = IPOPT_EOL; 23815 mp->b_wptr = up; 23816 /* Update header length */ 23817 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23818 return (mp); 23819 } 23820 23821 /* 23822 * Delivery to local recipients including fanout to multiple recipients. 23823 * Does not do checksumming of UDP/TCP. 23824 * Note: q should be the read side queue for either the ill or conn. 23825 * Note: rq should be the read side q for the lower (ill) stream. 23826 * We don't send packets to IPPF processing, thus the last argument 23827 * to all the fanout calls are B_FALSE. 23828 */ 23829 void 23830 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23831 int fanout_flags, zoneid_t zoneid) 23832 { 23833 uint32_t protocol; 23834 mblk_t *first_mp; 23835 boolean_t mctl_present; 23836 int ire_type; 23837 #define rptr ((uchar_t *)ipha) 23838 23839 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23840 "ip_wput_local_start: q %p", q); 23841 23842 if (ire != NULL) { 23843 ire_type = ire->ire_type; 23844 } else { 23845 /* 23846 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23847 * packet is not multicast, we can't tell the ire type. 23848 */ 23849 ASSERT(CLASSD(ipha->ipha_dst)); 23850 ire_type = IRE_BROADCAST; 23851 } 23852 23853 first_mp = mp; 23854 if (first_mp->b_datap->db_type == M_CTL) { 23855 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23856 if (!io->ipsec_out_secure) { 23857 /* 23858 * This ipsec_out_t was allocated in ip_wput 23859 * for multicast packets to store the ill_index. 23860 * As this is being delivered locally, we don't 23861 * need this anymore. 23862 */ 23863 mp = first_mp->b_cont; 23864 freeb(first_mp); 23865 first_mp = mp; 23866 mctl_present = B_FALSE; 23867 } else { 23868 mctl_present = B_TRUE; 23869 mp = first_mp->b_cont; 23870 ASSERT(mp != NULL); 23871 ipsec_out_to_in(first_mp); 23872 } 23873 } else { 23874 mctl_present = B_FALSE; 23875 } 23876 23877 loopback_packets++; 23878 23879 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23880 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23881 if (!IS_SIMPLE_IPH(ipha)) { 23882 ip_wput_local_options(ipha); 23883 } 23884 23885 protocol = ipha->ipha_protocol; 23886 switch (protocol) { 23887 case IPPROTO_ICMP: { 23888 ire_t *ire_zone; 23889 ilm_t *ilm; 23890 mblk_t *mp1; 23891 zoneid_t last_zoneid; 23892 23893 if (CLASSD(ipha->ipha_dst) && 23894 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23895 ASSERT(ire_type == IRE_BROADCAST); 23896 /* 23897 * In the multicast case, applications may have joined 23898 * the group from different zones, so we need to deliver 23899 * the packet to each of them. Loop through the 23900 * multicast memberships structures (ilm) on the receive 23901 * ill and send a copy of the packet up each matching 23902 * one. However, we don't do this for multicasts sent on 23903 * the loopback interface (PHYI_LOOPBACK flag set) as 23904 * they must stay in the sender's zone. 23905 * 23906 * ilm_add_v6() ensures that ilms in the same zone are 23907 * contiguous in the ill_ilm list. We use this property 23908 * to avoid sending duplicates needed when two 23909 * applications in the same zone join the same group on 23910 * different logical interfaces: we ignore the ilm if 23911 * it's zoneid is the same as the last matching one. 23912 * In addition, the sending of the packet for 23913 * ire_zoneid is delayed until all of the other ilms 23914 * have been exhausted. 23915 */ 23916 last_zoneid = -1; 23917 ILM_WALKER_HOLD(ill); 23918 for (ilm = ill->ill_ilm; ilm != NULL; 23919 ilm = ilm->ilm_next) { 23920 if ((ilm->ilm_flags & ILM_DELETED) || 23921 ipha->ipha_dst != ilm->ilm_addr || 23922 ilm->ilm_zoneid == last_zoneid || 23923 ilm->ilm_zoneid == zoneid || 23924 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23925 continue; 23926 mp1 = ip_copymsg(first_mp); 23927 if (mp1 == NULL) 23928 continue; 23929 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23930 mctl_present, B_FALSE, ill, 23931 ilm->ilm_zoneid); 23932 last_zoneid = ilm->ilm_zoneid; 23933 } 23934 ILM_WALKER_RELE(ill); 23935 /* 23936 * Loopback case: the sending endpoint has 23937 * IP_MULTICAST_LOOP disabled, therefore we don't 23938 * dispatch the multicast packet to the sending zone. 23939 */ 23940 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23941 freemsg(first_mp); 23942 return; 23943 } 23944 } else if (ire_type == IRE_BROADCAST) { 23945 /* 23946 * In the broadcast case, there may be many zones 23947 * which need a copy of the packet delivered to them. 23948 * There is one IRE_BROADCAST per broadcast address 23949 * and per zone; we walk those using a helper function. 23950 * In addition, the sending of the packet for zoneid is 23951 * delayed until all of the other ires have been 23952 * processed. 23953 */ 23954 IRB_REFHOLD(ire->ire_bucket); 23955 ire_zone = NULL; 23956 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23957 ire)) != NULL) { 23958 mp1 = ip_copymsg(first_mp); 23959 if (mp1 == NULL) 23960 continue; 23961 23962 UPDATE_IB_PKT_COUNT(ire_zone); 23963 ire_zone->ire_last_used_time = lbolt; 23964 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23965 mctl_present, B_FALSE, ill, 23966 ire_zone->ire_zoneid); 23967 } 23968 IRB_REFRELE(ire->ire_bucket); 23969 } 23970 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23971 0, mctl_present, B_FALSE, ill, zoneid); 23972 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23973 "ip_wput_local_end: q %p (%S)", 23974 q, "icmp"); 23975 return; 23976 } 23977 case IPPROTO_IGMP: 23978 if (igmp_input(q, mp, ill)) { 23979 /* Bad packet - discarded by igmp_input */ 23980 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23981 "ip_wput_local_end: q %p (%S)", 23982 q, "igmp_input--bad packet"); 23983 if (mctl_present) 23984 freeb(first_mp); 23985 return; 23986 } 23987 /* 23988 * igmp_input() may have pulled up the message so ipha needs to 23989 * be reinitialized. 23990 */ 23991 ipha = (ipha_t *)mp->b_rptr; 23992 /* deliver to local raw users */ 23993 break; 23994 case IPPROTO_ENCAP: 23995 /* 23996 * This case is covered by either ip_fanout_proto, or by 23997 * the above security processing for self-tunneled packets. 23998 */ 23999 break; 24000 case IPPROTO_UDP: { 24001 uint16_t *up; 24002 uint32_t ports; 24003 24004 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24005 UDP_PORTS_OFFSET); 24006 /* Force a 'valid' checksum. */ 24007 up[3] = 0; 24008 24009 ports = *(uint32_t *)up; 24010 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24011 (ire_type == IRE_BROADCAST), 24012 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24013 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24014 ill, zoneid); 24015 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24016 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24017 return; 24018 } 24019 case IPPROTO_TCP: { 24020 24021 /* 24022 * For TCP, discard broadcast packets. 24023 */ 24024 if ((ushort_t)ire_type == IRE_BROADCAST) { 24025 freemsg(first_mp); 24026 BUMP_MIB(&ip_mib, ipInDiscards); 24027 ip2dbg(("ip_wput_local: discard broadcast\n")); 24028 return; 24029 } 24030 24031 if (mp->b_datap->db_type == M_DATA) { 24032 /* 24033 * M_DATA mblk, so init mblk (chain) for no struio(). 24034 */ 24035 mblk_t *mp1 = mp; 24036 24037 do 24038 mp1->b_datap->db_struioflag = 0; 24039 while ((mp1 = mp1->b_cont) != NULL); 24040 } 24041 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24042 <= mp->b_wptr); 24043 ip_fanout_tcp(q, first_mp, ill, ipha, 24044 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24045 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24046 mctl_present, B_FALSE, zoneid); 24047 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24048 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24049 return; 24050 } 24051 case IPPROTO_SCTP: 24052 { 24053 uint32_t ports; 24054 24055 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24056 ip_fanout_sctp(first_mp, ill, ipha, ports, 24057 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24058 IP_FF_IP6INFO, 24059 mctl_present, B_FALSE, 0, zoneid); 24060 return; 24061 } 24062 24063 default: 24064 break; 24065 } 24066 /* 24067 * Find a client for some other protocol. We give 24068 * copies to multiple clients, if more than one is 24069 * bound. 24070 */ 24071 ip_fanout_proto(q, first_mp, ill, ipha, 24072 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24073 mctl_present, B_FALSE, ill, zoneid); 24074 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24075 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24076 #undef rptr 24077 } 24078 24079 /* 24080 * Update any source route, record route, or timestamp options. 24081 * Check that we are at end of strict source route. 24082 * The options have been sanity checked by ip_wput_options(). 24083 */ 24084 static void 24085 ip_wput_local_options(ipha_t *ipha) 24086 { 24087 ipoptp_t opts; 24088 uchar_t *opt; 24089 uint8_t optval; 24090 uint8_t optlen; 24091 ipaddr_t dst; 24092 uint32_t ts; 24093 ire_t *ire; 24094 timestruc_t now; 24095 24096 ip2dbg(("ip_wput_local_options\n")); 24097 for (optval = ipoptp_first(&opts, ipha); 24098 optval != IPOPT_EOL; 24099 optval = ipoptp_next(&opts)) { 24100 opt = opts.ipoptp_cur; 24101 optlen = opts.ipoptp_len; 24102 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24103 switch (optval) { 24104 uint32_t off; 24105 case IPOPT_SSRR: 24106 case IPOPT_LSRR: 24107 off = opt[IPOPT_OFFSET]; 24108 off--; 24109 if (optlen < IP_ADDR_LEN || 24110 off > optlen - IP_ADDR_LEN) { 24111 /* End of source route */ 24112 break; 24113 } 24114 /* 24115 * This will only happen if two consecutive entries 24116 * in the source route contains our address or if 24117 * it is a packet with a loose source route which 24118 * reaches us before consuming the whole source route 24119 */ 24120 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24121 if (optval == IPOPT_SSRR) { 24122 return; 24123 } 24124 /* 24125 * Hack: instead of dropping the packet truncate the 24126 * source route to what has been used by filling the 24127 * rest with IPOPT_NOP. 24128 */ 24129 opt[IPOPT_OLEN] = (uint8_t)off; 24130 while (off < optlen) { 24131 opt[off++] = IPOPT_NOP; 24132 } 24133 break; 24134 case IPOPT_RR: 24135 off = opt[IPOPT_OFFSET]; 24136 off--; 24137 if (optlen < IP_ADDR_LEN || 24138 off > optlen - IP_ADDR_LEN) { 24139 /* No more room - ignore */ 24140 ip1dbg(( 24141 "ip_wput_forward_options: end of RR\n")); 24142 break; 24143 } 24144 dst = htonl(INADDR_LOOPBACK); 24145 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24146 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24147 break; 24148 case IPOPT_TS: 24149 /* Insert timestamp if there is romm */ 24150 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24151 case IPOPT_TS_TSONLY: 24152 off = IPOPT_TS_TIMELEN; 24153 break; 24154 case IPOPT_TS_PRESPEC: 24155 case IPOPT_TS_PRESPEC_RFC791: 24156 /* Verify that the address matched */ 24157 off = opt[IPOPT_OFFSET] - 1; 24158 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24159 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24160 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24161 if (ire == NULL) { 24162 /* Not for us */ 24163 break; 24164 } 24165 ire_refrele(ire); 24166 /* FALLTHRU */ 24167 case IPOPT_TS_TSANDADDR: 24168 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24169 break; 24170 default: 24171 /* 24172 * ip_*put_options should have already 24173 * dropped this packet. 24174 */ 24175 cmn_err(CE_PANIC, "ip_wput_local_options: " 24176 "unknown IT - bug in ip_wput_options?\n"); 24177 return; /* Keep "lint" happy */ 24178 } 24179 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24180 /* Increase overflow counter */ 24181 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24182 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24183 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24184 (off << 4); 24185 break; 24186 } 24187 off = opt[IPOPT_OFFSET] - 1; 24188 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24189 case IPOPT_TS_PRESPEC: 24190 case IPOPT_TS_PRESPEC_RFC791: 24191 case IPOPT_TS_TSANDADDR: 24192 dst = htonl(INADDR_LOOPBACK); 24193 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24194 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24195 /* FALLTHRU */ 24196 case IPOPT_TS_TSONLY: 24197 off = opt[IPOPT_OFFSET] - 1; 24198 /* Compute # of milliseconds since midnight */ 24199 gethrestime(&now); 24200 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24201 now.tv_nsec / (NANOSEC / MILLISEC); 24202 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24203 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24204 break; 24205 } 24206 break; 24207 } 24208 } 24209 } 24210 24211 /* 24212 * Send out a multicast packet on interface ipif. 24213 * The sender does not have an conn. 24214 * Caller verifies that this isn't a PHYI_LOOPBACK. 24215 */ 24216 void 24217 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 24218 { 24219 ipha_t *ipha; 24220 ire_t *ire; 24221 ipaddr_t dst; 24222 mblk_t *first_mp; 24223 24224 /* igmp_sendpkt always allocates a ipsec_out_t */ 24225 ASSERT(mp->b_datap->db_type == M_CTL); 24226 ASSERT(!ipif->ipif_isv6); 24227 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24228 24229 first_mp = mp; 24230 mp = first_mp->b_cont; 24231 ASSERT(mp->b_datap->db_type == M_DATA); 24232 ipha = (ipha_t *)mp->b_rptr; 24233 24234 /* 24235 * Find an IRE which matches the destination and the outgoing 24236 * queue (i.e. the outgoing interface.) 24237 */ 24238 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24239 dst = ipif->ipif_pp_dst_addr; 24240 else 24241 dst = ipha->ipha_dst; 24242 /* 24243 * The source address has already been initialized by the 24244 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24245 * be sufficient rather than MATCH_IRE_IPIF. 24246 * 24247 * This function is used for sending IGMP packets. We need 24248 * to make sure that we send the packet out of the interface 24249 * (ipif->ipif_ill) where we joined the group. This is to 24250 * prevent from switches doing IGMP snooping to send us multicast 24251 * packets for a given group on the interface we have joined. 24252 * If we can't find an ire, igmp_sendpkt has already initialized 24253 * ipsec_out_attach_if so that this will not be load spread in 24254 * ip_newroute_ipif. 24255 */ 24256 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 24257 MATCH_IRE_ILL); 24258 if (!ire) { 24259 /* 24260 * Mark this packet to make it be delivered to 24261 * ip_wput_ire after the new ire has been 24262 * created. 24263 */ 24264 mp->b_prev = NULL; 24265 mp->b_next = NULL; 24266 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 24267 zoneid); 24268 return; 24269 } 24270 24271 /* 24272 * Honor the RTF_SETSRC flag; this is the only case 24273 * where we force this addr whatever the current src addr is, 24274 * because this address is set by igmp_sendpkt(), and 24275 * cannot be specified by any user. 24276 */ 24277 if (ire->ire_flags & RTF_SETSRC) { 24278 ipha->ipha_src = ire->ire_src_addr; 24279 } 24280 24281 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 24282 } 24283 24284 /* 24285 * NOTE : This function does not ire_refrele the ire argument passed in. 24286 * 24287 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24288 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24289 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24290 * the ire_lock to access the nce_fp_mp in this case. 24291 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24292 * prepending a fastpath message IPQoS processing must precede it, we also set 24293 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24294 * (IPQoS might have set the b_band for CoS marking). 24295 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24296 * must follow it so that IPQoS can mark the dl_priority field for CoS 24297 * marking, if needed. 24298 */ 24299 static mblk_t * 24300 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24301 { 24302 uint_t hlen; 24303 ipha_t *ipha; 24304 mblk_t *mp1; 24305 boolean_t qos_done = B_FALSE; 24306 uchar_t *ll_hdr; 24307 24308 #define rptr ((uchar_t *)ipha) 24309 24310 ipha = (ipha_t *)mp->b_rptr; 24311 hlen = 0; 24312 LOCK_IRE_FP_MP(ire); 24313 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24314 ASSERT(DB_TYPE(mp1) == M_DATA); 24315 /* Initiate IPPF processing */ 24316 if ((proc != 0) && IPP_ENABLED(proc)) { 24317 UNLOCK_IRE_FP_MP(ire); 24318 ip_process(proc, &mp, ill_index); 24319 if (mp == NULL) 24320 return (NULL); 24321 24322 ipha = (ipha_t *)mp->b_rptr; 24323 LOCK_IRE_FP_MP(ire); 24324 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24325 qos_done = B_TRUE; 24326 goto no_fp_mp; 24327 } 24328 ASSERT(DB_TYPE(mp1) == M_DATA); 24329 } 24330 hlen = MBLKL(mp1); 24331 /* 24332 * Check if we have enough room to prepend fastpath 24333 * header 24334 */ 24335 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24336 ll_hdr = rptr - hlen; 24337 bcopy(mp1->b_rptr, ll_hdr, hlen); 24338 /* 24339 * Set the b_rptr to the start of the link layer 24340 * header 24341 */ 24342 mp->b_rptr = ll_hdr; 24343 mp1 = mp; 24344 } else { 24345 mp1 = copyb(mp1); 24346 if (mp1 == NULL) 24347 goto unlock_err; 24348 mp1->b_band = mp->b_band; 24349 mp1->b_cont = mp; 24350 /* 24351 * certain system generated traffic may not 24352 * have cred/label in ip header block. This 24353 * is true even for a labeled system. But for 24354 * labeled traffic, inherit the label in the 24355 * new header. 24356 */ 24357 if (DB_CRED(mp) != NULL) 24358 mblk_setcred(mp1, DB_CRED(mp)); 24359 /* 24360 * XXX disable ICK_VALID and compute checksum 24361 * here; can happen if nce_fp_mp changes and 24362 * it can't be copied now due to insufficient 24363 * space. (unlikely, fp mp can change, but it 24364 * does not increase in length) 24365 */ 24366 } 24367 UNLOCK_IRE_FP_MP(ire); 24368 } else { 24369 no_fp_mp: 24370 mp1 = copyb(ire->ire_nce->nce_res_mp); 24371 if (mp1 == NULL) { 24372 unlock_err: 24373 UNLOCK_IRE_FP_MP(ire); 24374 freemsg(mp); 24375 return (NULL); 24376 } 24377 UNLOCK_IRE_FP_MP(ire); 24378 mp1->b_cont = mp; 24379 /* 24380 * certain system generated traffic may not 24381 * have cred/label in ip header block. This 24382 * is true even for a labeled system. But for 24383 * labeled traffic, inherit the label in the 24384 * new header. 24385 */ 24386 if (DB_CRED(mp) != NULL) 24387 mblk_setcred(mp1, DB_CRED(mp)); 24388 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24389 ip_process(proc, &mp1, ill_index); 24390 if (mp1 == NULL) 24391 return (NULL); 24392 } 24393 } 24394 return (mp1); 24395 #undef rptr 24396 } 24397 24398 /* 24399 * Finish the outbound IPsec processing for an IPv6 packet. This function 24400 * is called from ipsec_out_process() if the IPsec packet was processed 24401 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24402 * asynchronously. 24403 */ 24404 void 24405 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24406 ire_t *ire_arg) 24407 { 24408 in6_addr_t *v6dstp; 24409 ire_t *ire; 24410 mblk_t *mp; 24411 uint_t ill_index; 24412 ipsec_out_t *io; 24413 boolean_t attach_if, hwaccel; 24414 uint32_t flags = IP6_NO_IPPOLICY; 24415 int match_flags; 24416 zoneid_t zoneid; 24417 boolean_t ill_need_rele = B_FALSE; 24418 boolean_t ire_need_rele = B_FALSE; 24419 24420 mp = ipsec_mp->b_cont; 24421 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24422 ill_index = io->ipsec_out_ill_index; 24423 if (io->ipsec_out_reachable) { 24424 flags |= IPV6_REACHABILITY_CONFIRMATION; 24425 } 24426 attach_if = io->ipsec_out_attach_if; 24427 hwaccel = io->ipsec_out_accelerated; 24428 zoneid = io->ipsec_out_zoneid; 24429 ASSERT(zoneid != ALL_ZONES); 24430 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24431 /* Multicast addresses should have non-zero ill_index. */ 24432 v6dstp = &ip6h->ip6_dst; 24433 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24434 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24435 ASSERT(!attach_if || ill_index != 0); 24436 if (ill_index != 0) { 24437 if (ill == NULL) { 24438 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24439 B_TRUE); 24440 24441 /* Failure case frees things for us. */ 24442 if (ill == NULL) 24443 return; 24444 24445 ill_need_rele = B_TRUE; 24446 } 24447 /* 24448 * If this packet needs to go out on a particular interface 24449 * honor it. 24450 */ 24451 if (attach_if) { 24452 match_flags = MATCH_IRE_ILL; 24453 24454 /* 24455 * Check if we need an ire that will not be 24456 * looked up by anybody else i.e. HIDDEN. 24457 */ 24458 if (ill_is_probeonly(ill)) { 24459 match_flags |= MATCH_IRE_MARK_HIDDEN; 24460 } 24461 } 24462 } 24463 ASSERT(mp != NULL); 24464 24465 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24466 boolean_t unspec_src; 24467 ipif_t *ipif; 24468 24469 /* 24470 * Use the ill_index to get the right ill. 24471 */ 24472 unspec_src = io->ipsec_out_unspec_src; 24473 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24474 if (ipif == NULL) { 24475 if (ill_need_rele) 24476 ill_refrele(ill); 24477 freemsg(ipsec_mp); 24478 return; 24479 } 24480 24481 if (ire_arg != NULL) { 24482 ire = ire_arg; 24483 } else { 24484 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24485 zoneid, MBLK_GETLABEL(mp), match_flags); 24486 ire_need_rele = B_TRUE; 24487 } 24488 if (ire != NULL) { 24489 ipif_refrele(ipif); 24490 /* 24491 * XXX Do the multicast forwarding now, as the IPSEC 24492 * processing has been done. 24493 */ 24494 goto send; 24495 } 24496 24497 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24498 mp->b_prev = NULL; 24499 mp->b_next = NULL; 24500 24501 /* 24502 * If the IPsec packet was processed asynchronously, 24503 * drop it now. 24504 */ 24505 if (q == NULL) { 24506 if (ill_need_rele) 24507 ill_refrele(ill); 24508 freemsg(ipsec_mp); 24509 return; 24510 } 24511 24512 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24513 unspec_src, zoneid); 24514 ipif_refrele(ipif); 24515 } else { 24516 if (attach_if) { 24517 ipif_t *ipif; 24518 24519 ipif = ipif_get_next_ipif(NULL, ill); 24520 if (ipif == NULL) { 24521 if (ill_need_rele) 24522 ill_refrele(ill); 24523 freemsg(ipsec_mp); 24524 return; 24525 } 24526 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24527 zoneid, MBLK_GETLABEL(mp), match_flags); 24528 ire_need_rele = B_TRUE; 24529 ipif_refrele(ipif); 24530 } else { 24531 if (ire_arg != NULL) { 24532 ire = ire_arg; 24533 } else { 24534 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24535 ire_need_rele = B_TRUE; 24536 } 24537 } 24538 if (ire != NULL) 24539 goto send; 24540 /* 24541 * ire disappeared underneath. 24542 * 24543 * What we need to do here is the ip_newroute 24544 * logic to get the ire without doing the IPSEC 24545 * processing. Follow the same old path. But this 24546 * time, ip_wput or ire_add_then_send will call us 24547 * directly as all the IPSEC operations are done. 24548 */ 24549 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24550 mp->b_prev = NULL; 24551 mp->b_next = NULL; 24552 24553 /* 24554 * If the IPsec packet was processed asynchronously, 24555 * drop it now. 24556 */ 24557 if (q == NULL) { 24558 if (ill_need_rele) 24559 ill_refrele(ill); 24560 freemsg(ipsec_mp); 24561 return; 24562 } 24563 24564 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24565 zoneid); 24566 } 24567 if (ill != NULL && ill_need_rele) 24568 ill_refrele(ill); 24569 return; 24570 send: 24571 if (ill != NULL && ill_need_rele) 24572 ill_refrele(ill); 24573 24574 /* Local delivery */ 24575 if (ire->ire_stq == NULL) { 24576 ASSERT(q != NULL); 24577 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 24578 ire, 0); 24579 if (ire_need_rele) 24580 ire_refrele(ire); 24581 return; 24582 } 24583 /* 24584 * Everything is done. Send it out on the wire. 24585 * We force the insertion of a fragment header using the 24586 * IPH_FRAG_HDR flag in two cases: 24587 * - after reception of an ICMPv6 "packet too big" message 24588 * with a MTU < 1280 (cf. RFC 2460 section 5) 24589 * - for multirouted IPv6 packets, so that the receiver can 24590 * discard duplicates according to their fragment identifier 24591 */ 24592 /* XXX fix flow control problems. */ 24593 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 24594 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 24595 if (hwaccel) { 24596 /* 24597 * hardware acceleration does not handle these 24598 * "slow path" cases. 24599 */ 24600 /* IPsec KSTATS: should bump bean counter here. */ 24601 if (ire_need_rele) 24602 ire_refrele(ire); 24603 freemsg(ipsec_mp); 24604 return; 24605 } 24606 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 24607 (mp->b_cont ? msgdsize(mp) : 24608 mp->b_wptr - (uchar_t *)ip6h)) { 24609 /* IPsec KSTATS: should bump bean counter here. */ 24610 ip0dbg(("Packet length mismatch: %d, %ld\n", 24611 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 24612 msgdsize(mp))); 24613 if (ire_need_rele) 24614 ire_refrele(ire); 24615 freemsg(ipsec_mp); 24616 return; 24617 } 24618 ASSERT(mp->b_prev == NULL); 24619 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 24620 ntohs(ip6h->ip6_plen) + 24621 IPV6_HDR_LEN, ire->ire_max_frag)); 24622 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 24623 ire->ire_max_frag); 24624 } else { 24625 UPDATE_OB_PKT_COUNT(ire); 24626 ire->ire_last_used_time = lbolt; 24627 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 24628 } 24629 if (ire_need_rele) 24630 ire_refrele(ire); 24631 freeb(ipsec_mp); 24632 } 24633 24634 void 24635 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 24636 { 24637 mblk_t *hada_mp; /* attributes M_CTL mblk */ 24638 da_ipsec_t *hada; /* data attributes */ 24639 ill_t *ill = (ill_t *)q->q_ptr; 24640 24641 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 24642 24643 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 24644 /* IPsec KSTATS: Bump lose counter here! */ 24645 freemsg(mp); 24646 return; 24647 } 24648 24649 /* 24650 * It's an IPsec packet that must be 24651 * accelerated by the Provider, and the 24652 * outbound ill is IPsec acceleration capable. 24653 * Prepends the mblk with an IPHADA_M_CTL, and ship it 24654 * to the ill. 24655 * IPsec KSTATS: should bump packet counter here. 24656 */ 24657 24658 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 24659 if (hada_mp == NULL) { 24660 /* IPsec KSTATS: should bump packet counter here. */ 24661 freemsg(mp); 24662 return; 24663 } 24664 24665 hada_mp->b_datap->db_type = M_CTL; 24666 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 24667 hada_mp->b_cont = mp; 24668 24669 hada = (da_ipsec_t *)hada_mp->b_rptr; 24670 bzero(hada, sizeof (da_ipsec_t)); 24671 hada->da_type = IPHADA_M_CTL; 24672 24673 putnext(q, hada_mp); 24674 } 24675 24676 /* 24677 * Finish the outbound IPsec processing. This function is called from 24678 * ipsec_out_process() if the IPsec packet was processed 24679 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24680 * asynchronously. 24681 */ 24682 void 24683 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 24684 ire_t *ire_arg) 24685 { 24686 uint32_t v_hlen_tos_len; 24687 ipaddr_t dst; 24688 ipif_t *ipif = NULL; 24689 ire_t *ire; 24690 ire_t *ire1 = NULL; 24691 mblk_t *next_mp = NULL; 24692 uint32_t max_frag; 24693 boolean_t multirt_send = B_FALSE; 24694 mblk_t *mp; 24695 mblk_t *mp1; 24696 uint_t ill_index; 24697 ipsec_out_t *io; 24698 boolean_t attach_if; 24699 int match_flags, offset; 24700 irb_t *irb = NULL; 24701 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 24702 zoneid_t zoneid; 24703 uint32_t cksum; 24704 uint16_t *up; 24705 ipxmit_state_t pktxmit_state; 24706 #ifdef _BIG_ENDIAN 24707 #define LENGTH (v_hlen_tos_len & 0xFFFF) 24708 #else 24709 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 24710 #endif 24711 24712 mp = ipsec_mp->b_cont; 24713 ASSERT(mp != NULL); 24714 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24715 dst = ipha->ipha_dst; 24716 24717 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24718 ill_index = io->ipsec_out_ill_index; 24719 attach_if = io->ipsec_out_attach_if; 24720 zoneid = io->ipsec_out_zoneid; 24721 ASSERT(zoneid != ALL_ZONES); 24722 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24723 if (ill_index != 0) { 24724 if (ill == NULL) { 24725 ill = ip_grab_attach_ill(NULL, ipsec_mp, 24726 ill_index, B_FALSE); 24727 24728 /* Failure case frees things for us. */ 24729 if (ill == NULL) 24730 return; 24731 24732 ill_need_rele = B_TRUE; 24733 } 24734 /* 24735 * If this packet needs to go out on a particular interface 24736 * honor it. 24737 */ 24738 if (attach_if) { 24739 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 24740 24741 /* 24742 * Check if we need an ire that will not be 24743 * looked up by anybody else i.e. HIDDEN. 24744 */ 24745 if (ill_is_probeonly(ill)) { 24746 match_flags |= MATCH_IRE_MARK_HIDDEN; 24747 } 24748 } 24749 } 24750 24751 if (CLASSD(dst)) { 24752 boolean_t conn_dontroute; 24753 /* 24754 * Use the ill_index to get the right ipif. 24755 */ 24756 conn_dontroute = io->ipsec_out_dontroute; 24757 if (ill_index == 0) 24758 ipif = ipif_lookup_group(dst, zoneid); 24759 else 24760 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24761 if (ipif == NULL) { 24762 ip1dbg(("ip_wput_ipsec_out: No ipif for" 24763 " multicast\n")); 24764 BUMP_MIB(&ip_mib, ipOutNoRoutes); 24765 freemsg(ipsec_mp); 24766 goto done; 24767 } 24768 /* 24769 * ipha_src has already been intialized with the 24770 * value of the ipif in ip_wput. All we need now is 24771 * an ire to send this downstream. 24772 */ 24773 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 24774 MBLK_GETLABEL(mp), match_flags); 24775 if (ire != NULL) { 24776 ill_t *ill1; 24777 /* 24778 * Do the multicast forwarding now, as the IPSEC 24779 * processing has been done. 24780 */ 24781 if (ip_g_mrouter && !conn_dontroute && 24782 (ill1 = ire_to_ill(ire))) { 24783 if (ip_mforward(ill1, ipha, mp)) { 24784 freemsg(ipsec_mp); 24785 ip1dbg(("ip_wput_ipsec_out: mforward " 24786 "failed\n")); 24787 ire_refrele(ire); 24788 goto done; 24789 } 24790 } 24791 goto send; 24792 } 24793 24794 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24795 mp->b_prev = NULL; 24796 mp->b_next = NULL; 24797 24798 /* 24799 * If the IPsec packet was processed asynchronously, 24800 * drop it now. 24801 */ 24802 if (q == NULL) { 24803 freemsg(ipsec_mp); 24804 goto done; 24805 } 24806 24807 /* 24808 * We may be using a wrong ipif to create the ire. 24809 * But it is okay as the source address is assigned 24810 * for the packet already. Next outbound packet would 24811 * create the IRE with the right IPIF in ip_wput. 24812 * 24813 * Also handle RTF_MULTIRT routes. 24814 */ 24815 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 24816 zoneid); 24817 } else { 24818 if (attach_if) { 24819 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24820 zoneid, MBLK_GETLABEL(mp), match_flags); 24821 } else { 24822 if (ire_arg != NULL) { 24823 ire = ire_arg; 24824 ire_need_rele = B_FALSE; 24825 } else { 24826 ire = ire_cache_lookup(dst, zoneid, 24827 MBLK_GETLABEL(mp)); 24828 } 24829 } 24830 if (ire != NULL) { 24831 goto send; 24832 } 24833 24834 /* 24835 * ire disappeared underneath. 24836 * 24837 * What we need to do here is the ip_newroute 24838 * logic to get the ire without doing the IPSEC 24839 * processing. Follow the same old path. But this 24840 * time, ip_wput or ire_add_then_put will call us 24841 * directly as all the IPSEC operations are done. 24842 */ 24843 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24844 mp->b_prev = NULL; 24845 mp->b_next = NULL; 24846 24847 /* 24848 * If the IPsec packet was processed asynchronously, 24849 * drop it now. 24850 */ 24851 if (q == NULL) { 24852 freemsg(ipsec_mp); 24853 goto done; 24854 } 24855 24856 /* 24857 * Since we're going through ip_newroute() again, we 24858 * need to make sure we don't: 24859 * 24860 * 1.) Trigger the ASSERT() with the ipha_ident 24861 * overloading. 24862 * 2.) Redo transport-layer checksumming, since we've 24863 * already done all that to get this far. 24864 * 24865 * The easiest way not do either of the above is to set 24866 * the ipha_ident field to IP_HDR_INCLUDED. 24867 */ 24868 ipha->ipha_ident = IP_HDR_INCLUDED; 24869 ip_newroute(q, ipsec_mp, dst, NULL, 24870 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 24871 } 24872 goto done; 24873 send: 24874 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24875 /* 24876 * ESP NAT-Traversal packet. 24877 * 24878 * Just do software checksum for now. 24879 */ 24880 24881 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24882 IP_STAT(ip_out_sw_cksum); 24883 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24884 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24885 #define iphs ((uint16_t *)ipha) 24886 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24887 iphs[9] + ntohs(htons(ipha->ipha_length) - 24888 IP_SIMPLE_HDR_LENGTH); 24889 #undef iphs 24890 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24891 cksum = 0xFFFF; 24892 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24893 if (mp1->b_wptr - mp1->b_rptr >= 24894 offset + sizeof (uint16_t)) { 24895 up = (uint16_t *)(mp1->b_rptr + offset); 24896 *up = cksum; 24897 break; /* out of for loop */ 24898 } else { 24899 offset -= (mp->b_wptr - mp->b_rptr); 24900 } 24901 } /* Otherwise, just keep the all-zero checksum. */ 24902 24903 if (ire->ire_stq == NULL) { 24904 /* 24905 * Loopbacks go through ip_wput_local except for one case. 24906 * We come here if we generate a icmp_frag_needed message 24907 * after IPSEC processing is over. When this function calls 24908 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24909 * icmp_frag_needed. The message generated comes back here 24910 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24911 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24912 * source address as it is usually set in ip_wput_ire. As 24913 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24914 * and we end up here. We can't enter ip_wput_ire once the 24915 * IPSEC processing is over and hence we need to do it here. 24916 */ 24917 ASSERT(q != NULL); 24918 UPDATE_OB_PKT_COUNT(ire); 24919 ire->ire_last_used_time = lbolt; 24920 if (ipha->ipha_src == 0) 24921 ipha->ipha_src = ire->ire_src_addr; 24922 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24923 ire, 0, zoneid); 24924 if (ire_need_rele) 24925 ire_refrele(ire); 24926 goto done; 24927 } 24928 24929 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24930 /* 24931 * We are through with IPSEC processing. 24932 * Fragment this and send it on the wire. 24933 */ 24934 if (io->ipsec_out_accelerated) { 24935 /* 24936 * The packet has been accelerated but must 24937 * be fragmented. This should not happen 24938 * since AH and ESP must not accelerate 24939 * packets that need fragmentation, however 24940 * the configuration could have changed 24941 * since the AH or ESP processing. 24942 * Drop packet. 24943 * IPsec KSTATS: bump bean counter here. 24944 */ 24945 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24946 "fragmented accelerated packet!\n")); 24947 freemsg(ipsec_mp); 24948 } else { 24949 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 24950 } 24951 if (ire_need_rele) 24952 ire_refrele(ire); 24953 goto done; 24954 } 24955 24956 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24957 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24958 (void *)ire->ire_ipif, (void *)ipif)); 24959 24960 /* 24961 * Multiroute the secured packet, unless IPsec really 24962 * requires the packet to go out only through a particular 24963 * interface. 24964 */ 24965 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24966 ire_t *first_ire; 24967 irb = ire->ire_bucket; 24968 ASSERT(irb != NULL); 24969 /* 24970 * This ire has been looked up as the one that 24971 * goes through the given ipif; 24972 * make sure we do not omit any other multiroute ire 24973 * that may be present in the bucket before this one. 24974 */ 24975 IRB_REFHOLD(irb); 24976 for (first_ire = irb->irb_ire; 24977 first_ire != NULL; 24978 first_ire = first_ire->ire_next) { 24979 if ((first_ire->ire_flags & RTF_MULTIRT) && 24980 (first_ire->ire_addr == ire->ire_addr) && 24981 !(first_ire->ire_marks & 24982 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24983 break; 24984 } 24985 24986 if ((first_ire != NULL) && (first_ire != ire)) { 24987 /* 24988 * Don't change the ire if the packet must 24989 * be fragmented if sent via this new one. 24990 */ 24991 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 24992 IRE_REFHOLD(first_ire); 24993 if (ire_need_rele) 24994 ire_refrele(ire); 24995 else 24996 ire_need_rele = B_TRUE; 24997 ire = first_ire; 24998 } 24999 } 25000 IRB_REFRELE(irb); 25001 25002 multirt_send = B_TRUE; 25003 max_frag = ire->ire_max_frag; 25004 } else { 25005 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25006 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25007 "flag, attach_if %d\n", attach_if)); 25008 } 25009 } 25010 25011 /* 25012 * In most cases, the emission loop below is entered only once. 25013 * Only in the case where the ire holds the RTF_MULTIRT 25014 * flag, we loop to process all RTF_MULTIRT ires in the 25015 * bucket, and send the packet through all crossed 25016 * RTF_MULTIRT routes. 25017 */ 25018 do { 25019 if (multirt_send) { 25020 /* 25021 * ire1 holds here the next ire to process in the 25022 * bucket. If multirouting is expected, 25023 * any non-RTF_MULTIRT ire that has the 25024 * right destination address is ignored. 25025 */ 25026 ASSERT(irb != NULL); 25027 IRB_REFHOLD(irb); 25028 for (ire1 = ire->ire_next; 25029 ire1 != NULL; 25030 ire1 = ire1->ire_next) { 25031 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25032 continue; 25033 if (ire1->ire_addr != ire->ire_addr) 25034 continue; 25035 if (ire1->ire_marks & 25036 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25037 continue; 25038 /* No loopback here */ 25039 if (ire1->ire_stq == NULL) 25040 continue; 25041 /* 25042 * Ensure we do not exceed the MTU 25043 * of the next route. 25044 */ 25045 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25046 ip_multirt_bad_mtu(ire1, max_frag); 25047 continue; 25048 } 25049 25050 IRE_REFHOLD(ire1); 25051 break; 25052 } 25053 IRB_REFRELE(irb); 25054 if (ire1 != NULL) { 25055 /* 25056 * We are in a multiple send case, need to 25057 * make a copy of the packet. 25058 */ 25059 next_mp = copymsg(ipsec_mp); 25060 if (next_mp == NULL) { 25061 ire_refrele(ire1); 25062 ire1 = NULL; 25063 } 25064 } 25065 } 25066 /* 25067 * Everything is done. Send it out on the wire 25068 * 25069 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25070 * either send it on the wire or, in the case of 25071 * HW acceleration, call ipsec_hw_putnext. 25072 */ 25073 if (ire->ire_nce && 25074 ire->ire_nce->nce_state != ND_REACHABLE) { 25075 DTRACE_PROBE2(ip__wput__ipsec__bail, 25076 (ire_t *), ire, (mblk_t *), ipsec_mp); 25077 /* 25078 * If ire's link-layer is unresolved (this 25079 * would only happen if the incomplete ire 25080 * was added to cachetable via forwarding path) 25081 * don't bother going to ip_xmit_v4. Just drop the 25082 * packet. 25083 * There is a slight risk here, in that, if we 25084 * have the forwarding path create an incomplete 25085 * IRE, then until the IRE is completed, any 25086 * transmitted IPSEC packets will be dropped 25087 * instead of being queued waiting for resolution. 25088 * 25089 * But the likelihood of a forwarding packet and a wput 25090 * packet sending to the same dst at the same time 25091 * and there not yet be an ARP entry for it is small. 25092 * Furthermore, if this actually happens, it might 25093 * be likely that wput would generate multiple 25094 * packets (and forwarding would also have a train 25095 * of packets) for that destination. If this is 25096 * the case, some of them would have been dropped 25097 * anyway, since ARP only queues a few packets while 25098 * waiting for resolution 25099 * 25100 * NOTE: We should really call ip_xmit_v4, 25101 * and let it queue the packet and send the 25102 * ARP query and have ARP come back thus: 25103 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 25104 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 25105 * hw accel work. But it's too complex to get 25106 * the IPsec hw acceleration approach to fit 25107 * well with ip_xmit_v4 doing ARP without 25108 * doing IPSEC simplification. For now, we just 25109 * poke ip_xmit_v4 to trigger the arp resolve, so 25110 * that we can continue with the send on the next 25111 * attempt. 25112 * 25113 * XXX THis should be revisited, when 25114 * the IPsec/IP interaction is cleaned up 25115 */ 25116 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 25117 " - dropping packet\n")); 25118 freemsg(ipsec_mp); 25119 /* 25120 * Call ip_xmit_v4() to trigger ARP query 25121 * in case the nce_state is ND_INITIAL 25122 */ 25123 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 25124 goto drop_pkt; 25125 } 25126 25127 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 25128 pktxmit_state = ip_xmit_v4(mp, ire, 25129 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 25130 25131 if ((pktxmit_state == SEND_FAILED) || 25132 (pktxmit_state == LLHDR_RESLV_FAILED)) { 25133 25134 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 25135 drop_pkt: 25136 BUMP_MIB(&ip_mib, ipOutDiscards); 25137 if (ire_need_rele) 25138 ire_refrele(ire); 25139 if (ire1 != NULL) { 25140 ire_refrele(ire1); 25141 freemsg(next_mp); 25142 } 25143 goto done; 25144 } 25145 25146 freeb(ipsec_mp); 25147 if (ire_need_rele) 25148 ire_refrele(ire); 25149 25150 if (ire1 != NULL) { 25151 ire = ire1; 25152 ire_need_rele = B_TRUE; 25153 ASSERT(next_mp); 25154 ipsec_mp = next_mp; 25155 mp = ipsec_mp->b_cont; 25156 ire1 = NULL; 25157 next_mp = NULL; 25158 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25159 } else { 25160 multirt_send = B_FALSE; 25161 } 25162 } while (multirt_send); 25163 done: 25164 if (ill != NULL && ill_need_rele) 25165 ill_refrele(ill); 25166 if (ipif != NULL) 25167 ipif_refrele(ipif); 25168 } 25169 25170 /* 25171 * Get the ill corresponding to the specified ire, and compare its 25172 * capabilities with the protocol and algorithms specified by the 25173 * the SA obtained from ipsec_out. If they match, annotate the 25174 * ipsec_out structure to indicate that the packet needs acceleration. 25175 * 25176 * 25177 * A packet is eligible for outbound hardware acceleration if the 25178 * following conditions are satisfied: 25179 * 25180 * 1. the packet will not be fragmented 25181 * 2. the provider supports the algorithm 25182 * 3. there is no pending control message being exchanged 25183 * 4. snoop is not attached 25184 * 5. the destination address is not a broadcast or multicast address. 25185 * 25186 * Rationale: 25187 * - Hardware drivers do not support fragmentation with 25188 * the current interface. 25189 * - snoop, multicast, and broadcast may result in exposure of 25190 * a cleartext datagram. 25191 * We check all five of these conditions here. 25192 * 25193 * XXX would like to nuke "ire_t *" parameter here; problem is that 25194 * IRE is only way to figure out if a v4 address is a broadcast and 25195 * thus ineligible for acceleration... 25196 */ 25197 static void 25198 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25199 { 25200 ipsec_out_t *io; 25201 mblk_t *data_mp; 25202 uint_t plen, overhead; 25203 25204 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25205 return; 25206 25207 if (ill == NULL) 25208 return; 25209 25210 /* 25211 * Destination address is a broadcast or multicast. Punt. 25212 */ 25213 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25214 IRE_LOCAL))) 25215 return; 25216 25217 data_mp = ipsec_mp->b_cont; 25218 25219 if (ill->ill_isv6) { 25220 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25221 25222 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25223 return; 25224 25225 plen = ip6h->ip6_plen; 25226 } else { 25227 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25228 25229 if (CLASSD(ipha->ipha_dst)) 25230 return; 25231 25232 plen = ipha->ipha_length; 25233 } 25234 /* 25235 * Is there a pending DLPI control message being exchanged 25236 * between IP/IPsec and the DLS Provider? If there is, it 25237 * could be a SADB update, and the state of the DLS Provider 25238 * SADB might not be in sync with the SADB maintained by 25239 * IPsec. To avoid dropping packets or using the wrong keying 25240 * material, we do not accelerate this packet. 25241 */ 25242 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25243 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25244 "ill_dlpi_pending! don't accelerate packet\n")); 25245 return; 25246 } 25247 25248 /* 25249 * Is the Provider in promiscous mode? If it does, we don't 25250 * accelerate the packet since it will bounce back up to the 25251 * listeners in the clear. 25252 */ 25253 if (ill->ill_promisc_on_phys) { 25254 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25255 "ill in promiscous mode, don't accelerate packet\n")); 25256 return; 25257 } 25258 25259 /* 25260 * Will the packet require fragmentation? 25261 */ 25262 25263 /* 25264 * IPsec ESP note: this is a pessimistic estimate, but the same 25265 * as is used elsewhere. 25266 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25267 * + 2-byte trailer 25268 */ 25269 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25270 IPSEC_BASE_ESP_HDR_SIZE(sa); 25271 25272 if ((plen + overhead) > ill->ill_max_mtu) 25273 return; 25274 25275 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25276 25277 /* 25278 * Can the ill accelerate this IPsec protocol and algorithm 25279 * specified by the SA? 25280 */ 25281 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25282 ill->ill_isv6, sa)) { 25283 return; 25284 } 25285 25286 /* 25287 * Tell AH or ESP that the outbound ill is capable of 25288 * accelerating this packet. 25289 */ 25290 io->ipsec_out_is_capab_ill = B_TRUE; 25291 } 25292 25293 /* 25294 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25295 * 25296 * If this function returns B_TRUE, the requested SA's have been filled 25297 * into the ipsec_out_*_sa pointers. 25298 * 25299 * If the function returns B_FALSE, the packet has been "consumed", most 25300 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25301 * 25302 * The SA references created by the protocol-specific "select" 25303 * function will be released when the ipsec_mp is freed, thanks to the 25304 * ipsec_out_free destructor -- see spd.c. 25305 */ 25306 static boolean_t 25307 ipsec_out_select_sa(mblk_t *ipsec_mp) 25308 { 25309 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25310 ipsec_out_t *io; 25311 ipsec_policy_t *pp; 25312 ipsec_action_t *ap; 25313 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25314 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25315 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25316 25317 if (!io->ipsec_out_secure) { 25318 /* 25319 * We came here by mistake. 25320 * Don't bother with ipsec processing 25321 * We should "discourage" this path in the future. 25322 */ 25323 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25324 return (B_FALSE); 25325 } 25326 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25327 ASSERT((io->ipsec_out_policy != NULL) || 25328 (io->ipsec_out_act != NULL)); 25329 25330 ASSERT(io->ipsec_out_failed == B_FALSE); 25331 25332 /* 25333 * IPSEC processing has started. 25334 */ 25335 io->ipsec_out_proc_begin = B_TRUE; 25336 ap = io->ipsec_out_act; 25337 if (ap == NULL) { 25338 pp = io->ipsec_out_policy; 25339 ASSERT(pp != NULL); 25340 ap = pp->ipsp_act; 25341 ASSERT(ap != NULL); 25342 } 25343 25344 /* 25345 * We have an action. now, let's select SA's. 25346 * (In the future, we can cache this in the conn_t..) 25347 */ 25348 if (ap->ipa_want_esp) { 25349 if (io->ipsec_out_esp_sa == NULL) { 25350 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25351 IPPROTO_ESP); 25352 } 25353 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25354 } 25355 25356 if (ap->ipa_want_ah) { 25357 if (io->ipsec_out_ah_sa == NULL) { 25358 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25359 IPPROTO_AH); 25360 } 25361 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25362 /* 25363 * The ESP and AH processing order needs to be preserved 25364 * when both protocols are required (ESP should be applied 25365 * before AH for an outbound packet). Force an ESP ACQUIRE 25366 * when both ESP and AH are required, and an AH ACQUIRE 25367 * is needed. 25368 */ 25369 if (ap->ipa_want_esp && need_ah_acquire) 25370 need_esp_acquire = B_TRUE; 25371 } 25372 25373 /* 25374 * Send an ACQUIRE (extended, regular, or both) if we need one. 25375 * Release SAs that got referenced, but will not be used until we 25376 * acquire _all_ of the SAs we need. 25377 */ 25378 if (need_ah_acquire || need_esp_acquire) { 25379 if (io->ipsec_out_ah_sa != NULL) { 25380 IPSA_REFRELE(io->ipsec_out_ah_sa); 25381 io->ipsec_out_ah_sa = NULL; 25382 } 25383 if (io->ipsec_out_esp_sa != NULL) { 25384 IPSA_REFRELE(io->ipsec_out_esp_sa); 25385 io->ipsec_out_esp_sa = NULL; 25386 } 25387 25388 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25389 return (B_FALSE); 25390 } 25391 25392 return (B_TRUE); 25393 } 25394 25395 /* 25396 * Process an IPSEC_OUT message and see what you can 25397 * do with it. 25398 * IPQoS Notes: 25399 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25400 * IPSec. 25401 * XXX would like to nuke ire_t. 25402 * XXX ill_index better be "real" 25403 */ 25404 void 25405 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25406 { 25407 ipsec_out_t *io; 25408 ipsec_policy_t *pp; 25409 ipsec_action_t *ap; 25410 ipha_t *ipha; 25411 ip6_t *ip6h; 25412 mblk_t *mp; 25413 ill_t *ill; 25414 zoneid_t zoneid; 25415 ipsec_status_t ipsec_rc; 25416 boolean_t ill_need_rele = B_FALSE; 25417 25418 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25419 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25420 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25421 mp = ipsec_mp->b_cont; 25422 25423 /* 25424 * Initiate IPPF processing. We do it here to account for packets 25425 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25426 * We can check for ipsec_out_proc_begin even for such packets, as 25427 * they will always be false (asserted below). 25428 */ 25429 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25430 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25431 io->ipsec_out_ill_index : ill_index); 25432 if (mp == NULL) { 25433 ip2dbg(("ipsec_out_process: packet dropped "\ 25434 "during IPPF processing\n")); 25435 freeb(ipsec_mp); 25436 BUMP_MIB(&ip_mib, ipOutDiscards); 25437 return; 25438 } 25439 } 25440 25441 if (!io->ipsec_out_secure) { 25442 /* 25443 * We came here by mistake. 25444 * Don't bother with ipsec processing 25445 * Should "discourage" this path in the future. 25446 */ 25447 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25448 goto done; 25449 } 25450 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25451 ASSERT((io->ipsec_out_policy != NULL) || 25452 (io->ipsec_out_act != NULL)); 25453 ASSERT(io->ipsec_out_failed == B_FALSE); 25454 25455 if (!ipsec_loaded()) { 25456 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25457 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25458 BUMP_MIB(&ip_mib, ipOutDiscards); 25459 } else { 25460 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25461 } 25462 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25463 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25464 return; 25465 } 25466 25467 /* 25468 * IPSEC processing has started. 25469 */ 25470 io->ipsec_out_proc_begin = B_TRUE; 25471 ap = io->ipsec_out_act; 25472 if (ap == NULL) { 25473 pp = io->ipsec_out_policy; 25474 ASSERT(pp != NULL); 25475 ap = pp->ipsp_act; 25476 ASSERT(ap != NULL); 25477 } 25478 25479 /* 25480 * Save the outbound ill index. When the packet comes back 25481 * from IPsec, we make sure the ill hasn't changed or disappeared 25482 * before sending it the accelerated packet. 25483 */ 25484 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25485 int ifindex; 25486 ill = ire_to_ill(ire); 25487 ifindex = ill->ill_phyint->phyint_ifindex; 25488 io->ipsec_out_capab_ill_index = ifindex; 25489 } 25490 25491 /* 25492 * The order of processing is first insert a IP header if needed. 25493 * Then insert the ESP header and then the AH header. 25494 */ 25495 if ((io->ipsec_out_se_done == B_FALSE) && 25496 (ap->ipa_want_se)) { 25497 /* 25498 * First get the outer IP header before sending 25499 * it to ESP. 25500 */ 25501 ipha_t *oipha, *iipha; 25502 mblk_t *outer_mp, *inner_mp; 25503 25504 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25505 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25506 "ipsec_out_process: " 25507 "Self-Encapsulation failed: Out of memory\n"); 25508 freemsg(ipsec_mp); 25509 BUMP_MIB(&ip_mib, ipOutDiscards); 25510 return; 25511 } 25512 inner_mp = ipsec_mp->b_cont; 25513 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25514 oipha = (ipha_t *)outer_mp->b_rptr; 25515 iipha = (ipha_t *)inner_mp->b_rptr; 25516 *oipha = *iipha; 25517 outer_mp->b_wptr += sizeof (ipha_t); 25518 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25519 sizeof (ipha_t)); 25520 oipha->ipha_protocol = IPPROTO_ENCAP; 25521 oipha->ipha_version_and_hdr_length = 25522 IP_SIMPLE_HDR_VERSION; 25523 oipha->ipha_hdr_checksum = 0; 25524 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25525 outer_mp->b_cont = inner_mp; 25526 ipsec_mp->b_cont = outer_mp; 25527 25528 io->ipsec_out_se_done = B_TRUE; 25529 io->ipsec_out_encaps = B_TRUE; 25530 } 25531 25532 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 25533 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 25534 !ipsec_out_select_sa(ipsec_mp)) 25535 return; 25536 25537 /* 25538 * By now, we know what SA's to use. Toss over to ESP & AH 25539 * to do the heavy lifting. 25540 */ 25541 zoneid = io->ipsec_out_zoneid; 25542 ASSERT(zoneid != ALL_ZONES); 25543 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 25544 ASSERT(io->ipsec_out_esp_sa != NULL); 25545 io->ipsec_out_esp_done = B_TRUE; 25546 /* 25547 * Note that since hw accel can only apply one transform, 25548 * not two, we skip hw accel for ESP if we also have AH 25549 * This is an design limitation of the interface 25550 * which should be revisited. 25551 */ 25552 ASSERT(ire != NULL); 25553 if (io->ipsec_out_ah_sa == NULL) { 25554 ill = (ill_t *)ire->ire_stq->q_ptr; 25555 ipsec_out_is_accelerated(ipsec_mp, 25556 io->ipsec_out_esp_sa, ill, ire); 25557 } 25558 25559 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 25560 switch (ipsec_rc) { 25561 case IPSEC_STATUS_SUCCESS: 25562 break; 25563 case IPSEC_STATUS_FAILED: 25564 BUMP_MIB(&ip_mib, ipOutDiscards); 25565 /* FALLTHRU */ 25566 case IPSEC_STATUS_PENDING: 25567 return; 25568 } 25569 } 25570 25571 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 25572 ASSERT(io->ipsec_out_ah_sa != NULL); 25573 io->ipsec_out_ah_done = B_TRUE; 25574 if (ire == NULL) { 25575 int idx = io->ipsec_out_capab_ill_index; 25576 ill = ill_lookup_on_ifindex(idx, B_FALSE, 25577 NULL, NULL, NULL, NULL); 25578 ill_need_rele = B_TRUE; 25579 } else { 25580 ill = (ill_t *)ire->ire_stq->q_ptr; 25581 } 25582 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 25583 ire); 25584 25585 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 25586 switch (ipsec_rc) { 25587 case IPSEC_STATUS_SUCCESS: 25588 break; 25589 case IPSEC_STATUS_FAILED: 25590 BUMP_MIB(&ip_mib, ipOutDiscards); 25591 /* FALLTHRU */ 25592 case IPSEC_STATUS_PENDING: 25593 if (ill != NULL && ill_need_rele) 25594 ill_refrele(ill); 25595 return; 25596 } 25597 } 25598 /* 25599 * We are done with IPSEC processing. Send it over 25600 * the wire. 25601 */ 25602 done: 25603 mp = ipsec_mp->b_cont; 25604 ipha = (ipha_t *)mp->b_rptr; 25605 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25606 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 25607 } else { 25608 ip6h = (ip6_t *)ipha; 25609 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 25610 } 25611 if (ill != NULL && ill_need_rele) 25612 ill_refrele(ill); 25613 } 25614 25615 /* ARGSUSED */ 25616 void 25617 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 25618 { 25619 opt_restart_t *or; 25620 int err; 25621 conn_t *connp; 25622 25623 ASSERT(CONN_Q(q)); 25624 connp = Q_TO_CONN(q); 25625 25626 ASSERT(first_mp->b_datap->db_type == M_CTL); 25627 or = (opt_restart_t *)first_mp->b_rptr; 25628 /* 25629 * We don't need to pass any credentials here since this is just 25630 * a restart. The credentials are passed in when svr4_optcom_req 25631 * is called the first time (from ip_wput_nondata). 25632 */ 25633 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 25634 err = svr4_optcom_req(q, first_mp, NULL, 25635 &ip_opt_obj); 25636 } else { 25637 ASSERT(or->or_type == T_OPTMGMT_REQ); 25638 err = tpi_optcom_req(q, first_mp, NULL, 25639 &ip_opt_obj); 25640 } 25641 if (err != EINPROGRESS) { 25642 /* operation is done */ 25643 CONN_OPER_PENDING_DONE(connp); 25644 } 25645 } 25646 25647 /* 25648 * ioctls that go through a down/up sequence may need to wait for the down 25649 * to complete. This involves waiting for the ire and ipif refcnts to go down 25650 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 25651 */ 25652 /* ARGSUSED */ 25653 void 25654 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25655 { 25656 struct iocblk *iocp; 25657 mblk_t *mp1; 25658 ipif_t *ipif; 25659 ip_ioctl_cmd_t *ipip; 25660 int err; 25661 sin_t *sin; 25662 struct lifreq *lifr; 25663 struct ifreq *ifr; 25664 25665 iocp = (struct iocblk *)mp->b_rptr; 25666 ASSERT(ipsq != NULL); 25667 /* Existence of mp1 verified in ip_wput_nondata */ 25668 mp1 = mp->b_cont->b_cont; 25669 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25670 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 25671 ill_t *ill; 25672 /* 25673 * Special case where ipsq_current_ipif may not be set. 25674 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 25675 * ill could also have become part of a ipmp group in the 25676 * process, we are here as were not able to complete the 25677 * operation in ipif_set_values because we could not become 25678 * exclusive on the new ipsq, In such a case ipsq_current_ipif 25679 * will not be set so we need to set it. 25680 */ 25681 ill = (ill_t *)q->q_ptr; 25682 ipsq->ipsq_current_ipif = ill->ill_ipif; 25683 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25684 } 25685 25686 ipif = ipsq->ipsq_current_ipif; 25687 ASSERT(ipif != NULL); 25688 if (ipip->ipi_cmd_type == IF_CMD) { 25689 /* This a old style SIOC[GS]IF* command */ 25690 ifr = (struct ifreq *)mp1->b_rptr; 25691 sin = (sin_t *)&ifr->ifr_addr; 25692 } else if (ipip->ipi_cmd_type == LIF_CMD) { 25693 /* This a new style SIOC[GS]LIF* command */ 25694 lifr = (struct lifreq *)mp1->b_rptr; 25695 sin = (sin_t *)&lifr->lifr_addr; 25696 } else { 25697 sin = NULL; 25698 } 25699 25700 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 25701 (void *)mp1->b_rptr); 25702 25703 /* SIOCLIFREMOVEIF could have removed the ipif */ 25704 ip_ioctl_finish(q, mp, err, 25705 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25706 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 25707 } 25708 25709 /* 25710 * ioctl processing 25711 * 25712 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 25713 * the ioctl command in the ioctl tables and determines the copyin data size 25714 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 25715 * size. 25716 * 25717 * ioctl processing then continues when the M_IOCDATA makes its way down. 25718 * Now the ioctl is looked up again in the ioctl table, and its properties are 25719 * extracted. The associated 'conn' is then refheld till the end of the ioctl 25720 * and the general ioctl processing function ip_process_ioctl is called. 25721 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 25722 * so goes thru the serialization primitive ipsq_try_enter. Then the 25723 * appropriate function to handle the ioctl is called based on the entry in 25724 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 25725 * which also refreleases the 'conn' that was refheld at the start of the 25726 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 25727 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 25728 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 25729 * 25730 * Many exclusive ioctls go thru an internal down up sequence as part of 25731 * the operation. For example an attempt to change the IP address of an 25732 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 25733 * does all the cleanup such as deleting all ires that use this address. 25734 * Then we need to wait till all references to the interface go away. 25735 */ 25736 void 25737 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 25738 { 25739 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 25740 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 25741 cmd_info_t ci; 25742 int err; 25743 boolean_t entered_ipsq = B_FALSE; 25744 25745 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 25746 25747 if (ipip == NULL) 25748 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25749 25750 /* 25751 * SIOCLIFADDIF needs to go thru a special path since the 25752 * ill may not exist yet. This happens in the case of lo0 25753 * which is created using this ioctl. 25754 */ 25755 if (ipip->ipi_cmd == SIOCLIFADDIF) { 25756 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 25757 ip_ioctl_finish(q, mp, err, 25758 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25759 NULL, NULL); 25760 return; 25761 } 25762 25763 ci.ci_ipif = NULL; 25764 switch (ipip->ipi_cmd_type) { 25765 case IF_CMD: 25766 case LIF_CMD: 25767 /* 25768 * ioctls that pass in a [l]ifreq appear here. 25769 * ip_extract_lifreq_cmn returns a refheld ipif in 25770 * ci.ci_ipif 25771 */ 25772 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 25773 ipip->ipi_flags, &ci, ip_process_ioctl); 25774 if (err != 0) { 25775 ip_ioctl_finish(q, mp, err, 25776 ipip->ipi_flags & IPI_GET_CMD ? 25777 COPYOUT : NO_COPYOUT, NULL, NULL); 25778 return; 25779 } 25780 ASSERT(ci.ci_ipif != NULL); 25781 break; 25782 25783 case TUN_CMD: 25784 /* 25785 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 25786 * a refheld ipif in ci.ci_ipif 25787 */ 25788 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 25789 if (err != 0) { 25790 ip_ioctl_finish(q, mp, err, 25791 ipip->ipi_flags & IPI_GET_CMD ? 25792 COPYOUT : NO_COPYOUT, NULL, NULL); 25793 return; 25794 } 25795 ASSERT(ci.ci_ipif != NULL); 25796 break; 25797 25798 case MISC_CMD: 25799 /* 25800 * ioctls that neither pass in [l]ifreq or iftun_req come here 25801 * For eg. SIOCGLIFCONF will appear here. 25802 */ 25803 switch (ipip->ipi_cmd) { 25804 case IF_UNITSEL: 25805 /* ioctl comes down the ill */ 25806 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 25807 ipif_refhold(ci.ci_ipif); 25808 break; 25809 case SIOCGMSFILTER: 25810 case SIOCSMSFILTER: 25811 case SIOCGIPMSFILTER: 25812 case SIOCSIPMSFILTER: 25813 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 25814 ip_process_ioctl); 25815 if (err != 0) { 25816 ip_ioctl_finish(q, mp, err, 25817 ipip->ipi_flags & IPI_GET_CMD ? 25818 COPYOUT : NO_COPYOUT, NULL, NULL); 25819 return; 25820 } 25821 break; 25822 } 25823 err = 0; 25824 ci.ci_sin = NULL; 25825 ci.ci_sin6 = NULL; 25826 ci.ci_lifr = NULL; 25827 break; 25828 } 25829 25830 /* 25831 * If ipsq is non-null, we are already being called exclusively 25832 */ 25833 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 25834 if (!(ipip->ipi_flags & IPI_WR)) { 25835 /* 25836 * A return value of EINPROGRESS means the ioctl is 25837 * either queued and waiting for some reason or has 25838 * already completed. 25839 */ 25840 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25841 ci.ci_lifr); 25842 if (ci.ci_ipif != NULL) 25843 ipif_refrele(ci.ci_ipif); 25844 ip_ioctl_finish(q, mp, err, 25845 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25846 NULL, NULL); 25847 return; 25848 } 25849 25850 ASSERT(ci.ci_ipif != NULL); 25851 25852 if (ipsq == NULL) { 25853 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25854 ip_process_ioctl, NEW_OP, B_TRUE); 25855 entered_ipsq = B_TRUE; 25856 } 25857 /* 25858 * Release the ipif so that ipif_down and friends that wait for 25859 * references to go away are not misled about the current ipif_refcnt 25860 * values. We are writer so we can access the ipif even after releasing 25861 * the ipif. 25862 */ 25863 ipif_refrele(ci.ci_ipif); 25864 if (ipsq == NULL) 25865 return; 25866 25867 mutex_enter(&ipsq->ipsq_lock); 25868 ASSERT(ipsq->ipsq_current_ipif == NULL); 25869 ipsq->ipsq_current_ipif = ci.ci_ipif; 25870 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25871 mutex_exit(&ipsq->ipsq_lock); 25872 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25873 /* 25874 * For most set ioctls that come here, this serves as a single point 25875 * where we set the IPIF_CHANGING flag. This ensures that there won't 25876 * be any new references to the ipif. This helps functions that go 25877 * through this path and end up trying to wait for the refcnts 25878 * associated with the ipif to go down to zero. Some exceptions are 25879 * Failover, Failback, and Groupname commands that operate on more than 25880 * just the ci.ci_ipif. These commands internally determine the 25881 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25882 * flags on that set. Another exception is the Removeif command that 25883 * sets the IPIF_CONDEMNED flag internally after identifying the right 25884 * ipif to operate on. 25885 */ 25886 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25887 ipip->ipi_cmd != SIOCLIFFAILOVER && 25888 ipip->ipi_cmd != SIOCLIFFAILBACK && 25889 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25890 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25891 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25892 25893 /* 25894 * A return value of EINPROGRESS means the ioctl is 25895 * either queued and waiting for some reason or has 25896 * already completed. 25897 */ 25898 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25899 ci.ci_lifr); 25900 25901 /* SIOCLIFREMOVEIF could have removed the ipif */ 25902 ip_ioctl_finish(q, mp, err, 25903 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25904 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25905 25906 if (entered_ipsq) 25907 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25908 } 25909 25910 /* 25911 * Complete the ioctl. Typically ioctls use the mi package and need to 25912 * do mi_copyout/mi_copy_done. 25913 */ 25914 void 25915 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25916 ipif_t *ipif, ipsq_t *ipsq) 25917 { 25918 conn_t *connp = NULL; 25919 25920 if (err == EINPROGRESS) 25921 return; 25922 25923 if (CONN_Q(q)) { 25924 connp = Q_TO_CONN(q); 25925 ASSERT(connp->conn_ref >= 2); 25926 } 25927 25928 switch (mode) { 25929 case COPYOUT: 25930 if (err == 0) 25931 mi_copyout(q, mp); 25932 else 25933 mi_copy_done(q, mp, err); 25934 break; 25935 25936 case NO_COPYOUT: 25937 mi_copy_done(q, mp, err); 25938 break; 25939 25940 default: 25941 /* An ioctl aborted through a conn close would take this path */ 25942 break; 25943 } 25944 25945 /* 25946 * The refhold placed at the start of the ioctl is released here. 25947 */ 25948 if (connp != NULL) 25949 CONN_OPER_PENDING_DONE(connp); 25950 25951 /* 25952 * If the ioctl were an exclusive ioctl it would have set 25953 * IPIF_CHANGING at the start of the ioctl which is undone here. 25954 */ 25955 if (ipif != NULL) { 25956 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25957 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25958 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25959 } 25960 25961 /* 25962 * Clear the current ipif in the ipsq at the completion of the ioctl. 25963 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25964 * entering the ipsq 25965 */ 25966 if (ipsq != NULL) { 25967 mutex_enter(&ipsq->ipsq_lock); 25968 ipsq->ipsq_current_ipif = NULL; 25969 mutex_exit(&ipsq->ipsq_lock); 25970 } 25971 } 25972 25973 /* 25974 * This is called from ip_wput_nondata to resume a deferred TCP bind. 25975 */ 25976 /* ARGSUSED */ 25977 void 25978 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 25979 { 25980 conn_t *connp = arg; 25981 tcp_t *tcp; 25982 25983 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 25984 tcp = connp->conn_tcp; 25985 25986 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 25987 freemsg(mp); 25988 else 25989 tcp_rput_other(tcp, mp); 25990 CONN_OPER_PENDING_DONE(connp); 25991 } 25992 25993 /* Called from ip_wput for all non data messages */ 25994 /* ARGSUSED */ 25995 void 25996 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25997 { 25998 mblk_t *mp1; 25999 ire_t *ire, *fake_ire; 26000 ill_t *ill; 26001 struct iocblk *iocp; 26002 ip_ioctl_cmd_t *ipip; 26003 cred_t *cr; 26004 conn_t *connp = NULL; 26005 int cmd, err; 26006 nce_t *nce; 26007 ipif_t *ipif; 26008 26009 if (CONN_Q(q)) 26010 connp = Q_TO_CONN(q); 26011 26012 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26013 26014 /* Check if it is a queue to /dev/sctp. */ 26015 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26016 connp->conn_rq == NULL) { 26017 sctp_wput(q, mp); 26018 return; 26019 } 26020 26021 switch (DB_TYPE(mp)) { 26022 case M_IOCTL: 26023 /* 26024 * IOCTL processing begins in ip_sioctl_copyin_setup which 26025 * will arrange to copy in associated control structures. 26026 */ 26027 ip_sioctl_copyin_setup(q, mp); 26028 return; 26029 case M_IOCDATA: 26030 /* 26031 * Ensure that this is associated with one of our trans- 26032 * parent ioctls. If it's not ours, discard it if we're 26033 * running as a driver, or pass it on if we're a module. 26034 */ 26035 iocp = (struct iocblk *)mp->b_rptr; 26036 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26037 if (ipip == NULL) { 26038 if (q->q_next == NULL) { 26039 goto nak; 26040 } else { 26041 putnext(q, mp); 26042 } 26043 return; 26044 } else if ((q->q_next != NULL) && 26045 !(ipip->ipi_flags & IPI_MODOK)) { 26046 /* 26047 * the ioctl is one we recognise, but is not 26048 * consumed by IP as a module, pass M_IOCDATA 26049 * for processing downstream, but only for 26050 * common Streams ioctls. 26051 */ 26052 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26053 putnext(q, mp); 26054 return; 26055 } else { 26056 goto nak; 26057 } 26058 } 26059 26060 /* IOCTL continuation following copyin or copyout. */ 26061 if (mi_copy_state(q, mp, NULL) == -1) { 26062 /* 26063 * The copy operation failed. mi_copy_state already 26064 * cleaned up, so we're out of here. 26065 */ 26066 return; 26067 } 26068 /* 26069 * If we just completed a copy in, we become writer and 26070 * continue processing in ip_sioctl_copyin_done. If it 26071 * was a copy out, we call mi_copyout again. If there is 26072 * nothing more to copy out, it will complete the IOCTL. 26073 */ 26074 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26075 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26076 mi_copy_done(q, mp, EPROTO); 26077 return; 26078 } 26079 /* 26080 * Check for cases that need more copying. A return 26081 * value of 0 means a second copyin has been started, 26082 * so we return; a return value of 1 means no more 26083 * copying is needed, so we continue. 26084 */ 26085 cmd = iocp->ioc_cmd; 26086 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 26087 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 26088 MI_COPY_COUNT(mp) == 1) { 26089 if (ip_copyin_msfilter(q, mp) == 0) 26090 return; 26091 } 26092 /* 26093 * Refhold the conn, till the ioctl completes. This is 26094 * needed in case the ioctl ends up in the pending mp 26095 * list. Every mp in the ill_pending_mp list and 26096 * the ipsq_pending_mp must have a refhold on the conn 26097 * to resume processing. The refhold is released when 26098 * the ioctl completes. (normally or abnormally) 26099 * In all cases ip_ioctl_finish is called to finish 26100 * the ioctl. 26101 */ 26102 if (connp != NULL) { 26103 /* This is not a reentry */ 26104 ASSERT(ipsq == NULL); 26105 CONN_INC_REF(connp); 26106 } else { 26107 if (!(ipip->ipi_flags & IPI_MODOK)) { 26108 mi_copy_done(q, mp, EINVAL); 26109 return; 26110 } 26111 } 26112 26113 ip_process_ioctl(ipsq, q, mp, ipip); 26114 26115 } else { 26116 mi_copyout(q, mp); 26117 } 26118 return; 26119 nak: 26120 iocp->ioc_error = EINVAL; 26121 mp->b_datap->db_type = M_IOCNAK; 26122 iocp->ioc_count = 0; 26123 qreply(q, mp); 26124 return; 26125 26126 case M_IOCNAK: 26127 /* 26128 * The only way we could get here is if a resolver didn't like 26129 * an IOCTL we sent it. This shouldn't happen. 26130 */ 26131 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 26132 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 26133 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 26134 freemsg(mp); 26135 return; 26136 case M_IOCACK: 26137 /* Finish socket ioctls passed through to ARP. */ 26138 ip_sioctl_iocack(q, mp); 26139 return; 26140 case M_FLUSH: 26141 if (*mp->b_rptr & FLUSHW) 26142 flushq(q, FLUSHALL); 26143 if (q->q_next) { 26144 /* 26145 * M_FLUSH is sent up to IP by some drivers during 26146 * unbind. ip_rput has already replied to it. We are 26147 * here for the M_FLUSH that we originated in IP 26148 * before sending the unbind request to the driver. 26149 * Just free it as we don't queue packets in IP 26150 * on the write side of the device instance. 26151 */ 26152 freemsg(mp); 26153 return; 26154 } 26155 if (*mp->b_rptr & FLUSHR) { 26156 *mp->b_rptr &= ~FLUSHW; 26157 qreply(q, mp); 26158 return; 26159 } 26160 freemsg(mp); 26161 return; 26162 case IRE_DB_REQ_TYPE: 26163 /* An Upper Level Protocol wants a copy of an IRE. */ 26164 ip_ire_req(q, mp); 26165 return; 26166 case M_CTL: 26167 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26168 break; 26169 26170 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26171 IP_ULP_OUT_LABELED) { 26172 out_labeled_t *olp; 26173 26174 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26175 break; 26176 olp = (out_labeled_t *)mp->b_rptr; 26177 connp->conn_ulp_labeled = olp->out_qnext == q; 26178 freemsg(mp); 26179 return; 26180 } 26181 26182 /* M_CTL messages are used by ARP to tell us things. */ 26183 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26184 break; 26185 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26186 case AR_ENTRY_SQUERY: 26187 ip_wput_ctl(q, mp); 26188 return; 26189 case AR_CLIENT_NOTIFY: 26190 ip_arp_news(q, mp); 26191 return; 26192 case AR_DLPIOP_DONE: 26193 ASSERT(q->q_next != NULL); 26194 ill = (ill_t *)q->q_ptr; 26195 /* qwriter_ip releases the refhold */ 26196 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26197 ill_refhold(ill); 26198 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26199 CUR_OP, B_FALSE); 26200 return; 26201 case AR_ARP_CLOSING: 26202 /* 26203 * ARP (above us) is closing. If no ARP bringup is 26204 * currently pending, ack the message so that ARP 26205 * can complete its close. Also mark ill_arp_closing 26206 * so that new ARP bringups will fail. If any 26207 * ARP bringup is currently in progress, we will 26208 * ack this when the current ARP bringup completes. 26209 */ 26210 ASSERT(q->q_next != NULL); 26211 ill = (ill_t *)q->q_ptr; 26212 mutex_enter(&ill->ill_lock); 26213 ill->ill_arp_closing = 1; 26214 if (!ill->ill_arp_bringup_pending) { 26215 mutex_exit(&ill->ill_lock); 26216 qreply(q, mp); 26217 } else { 26218 mutex_exit(&ill->ill_lock); 26219 freemsg(mp); 26220 } 26221 return; 26222 case AR_ARP_EXTEND: 26223 /* 26224 * The ARP module above us is capable of duplicate 26225 * address detection. Old ATM drivers will not send 26226 * this message. 26227 */ 26228 ASSERT(q->q_next != NULL); 26229 ill = (ill_t *)q->q_ptr; 26230 ill->ill_arp_extend = B_TRUE; 26231 freemsg(mp); 26232 return; 26233 default: 26234 break; 26235 } 26236 break; 26237 case M_PROTO: 26238 case M_PCPROTO: 26239 /* 26240 * The only PROTO messages we expect are ULP binds and 26241 * copies of option negotiation acknowledgements. 26242 */ 26243 switch (((union T_primitives *)mp->b_rptr)->type) { 26244 case O_T_BIND_REQ: 26245 case T_BIND_REQ: { 26246 /* Request can get queued in bind */ 26247 ASSERT(connp != NULL); 26248 /* 26249 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26250 * instead of going through this path. We only get 26251 * here in the following cases: 26252 * 26253 * a. Bind retries, where ipsq is non-NULL. 26254 * b. T_BIND_REQ is issued from non TCP/UDP 26255 * transport, e.g. icmp for raw socket, 26256 * in which case ipsq will be NULL. 26257 */ 26258 ASSERT(ipsq != NULL || 26259 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26260 26261 /* Don't increment refcnt if this is a re-entry */ 26262 if (ipsq == NULL) 26263 CONN_INC_REF(connp); 26264 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26265 connp, NULL) : ip_bind_v4(q, mp, connp); 26266 if (mp == NULL) 26267 return; 26268 if (IPCL_IS_TCP(connp)) { 26269 /* 26270 * In the case of TCP endpoint we 26271 * come here only for bind retries 26272 */ 26273 ASSERT(ipsq != NULL); 26274 CONN_INC_REF(connp); 26275 squeue_fill(connp->conn_sqp, mp, 26276 ip_resume_tcp_bind, connp, 26277 SQTAG_BIND_RETRY); 26278 return; 26279 } else if (IPCL_IS_UDP(connp)) { 26280 /* 26281 * In the case of UDP endpoint we 26282 * come here only for bind retries 26283 */ 26284 ASSERT(ipsq != NULL); 26285 udp_resume_bind(connp, mp); 26286 return; 26287 } 26288 qreply(q, mp); 26289 CONN_OPER_PENDING_DONE(connp); 26290 return; 26291 } 26292 case T_SVR4_OPTMGMT_REQ: 26293 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26294 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26295 26296 ASSERT(connp != NULL); 26297 if (!snmpcom_req(q, mp, ip_snmp_set, 26298 ip_snmp_get, cr)) { 26299 /* 26300 * Call svr4_optcom_req so that it can 26301 * generate the ack. We don't come here 26302 * if this operation is being restarted. 26303 * ip_restart_optmgmt will drop the conn ref. 26304 * In the case of ipsec option after the ipsec 26305 * load is complete conn_restart_ipsec_waiter 26306 * drops the conn ref. 26307 */ 26308 ASSERT(ipsq == NULL); 26309 CONN_INC_REF(connp); 26310 if (ip_check_for_ipsec_opt(q, mp)) 26311 return; 26312 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26313 if (err != EINPROGRESS) { 26314 /* Operation is done */ 26315 CONN_OPER_PENDING_DONE(connp); 26316 } 26317 } 26318 return; 26319 case T_OPTMGMT_REQ: 26320 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26321 /* 26322 * Note: No snmpcom_req support through new 26323 * T_OPTMGMT_REQ. 26324 * Call tpi_optcom_req so that it can 26325 * generate the ack. 26326 */ 26327 ASSERT(connp != NULL); 26328 ASSERT(ipsq == NULL); 26329 /* 26330 * We don't come here for restart. ip_restart_optmgmt 26331 * will drop the conn ref. In the case of ipsec option 26332 * after the ipsec load is complete 26333 * conn_restart_ipsec_waiter drops the conn ref. 26334 */ 26335 CONN_INC_REF(connp); 26336 if (ip_check_for_ipsec_opt(q, mp)) 26337 return; 26338 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26339 if (err != EINPROGRESS) { 26340 /* Operation is done */ 26341 CONN_OPER_PENDING_DONE(connp); 26342 } 26343 return; 26344 case T_UNBIND_REQ: 26345 mp = ip_unbind(q, mp); 26346 qreply(q, mp); 26347 return; 26348 default: 26349 /* 26350 * Have to drop any DLPI messages coming down from 26351 * arp (such as an info_req which would cause ip 26352 * to receive an extra info_ack if it was passed 26353 * through. 26354 */ 26355 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26356 (int)*(uint_t *)mp->b_rptr)); 26357 freemsg(mp); 26358 return; 26359 } 26360 /* NOTREACHED */ 26361 case IRE_DB_TYPE: { 26362 nce_t *nce; 26363 ill_t *ill; 26364 in6_addr_t gw_addr_v6; 26365 26366 26367 /* 26368 * This is a response back from a resolver. It 26369 * consists of a message chain containing: 26370 * IRE_MBLK-->LL_HDR_MBLK->pkt 26371 * The IRE_MBLK is the one we allocated in ip_newroute. 26372 * The LL_HDR_MBLK is the DLPI header to use to get 26373 * the attached packet, and subsequent ones for the 26374 * same destination, transmitted. 26375 */ 26376 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26377 break; 26378 /* 26379 * First, check to make sure the resolution succeeded. 26380 * If it failed, the second mblk will be empty. 26381 * If it is, free the chain, dropping the packet. 26382 * (We must ire_delete the ire; that frees the ire mblk) 26383 * We're doing this now to support PVCs for ATM; it's 26384 * a partial xresolv implementation. When we fully implement 26385 * xresolv interfaces, instead of freeing everything here 26386 * we'll initiate neighbor discovery. 26387 * 26388 * For v4 (ARP and other external resolvers) the resolver 26389 * frees the message, so no check is needed. This check 26390 * is required, though, for a full xresolve implementation. 26391 * Including this code here now both shows how external 26392 * resolvers can NACK a resolution request using an 26393 * existing design that has no specific provisions for NACKs, 26394 * and also takes into account that the current non-ARP 26395 * external resolver has been coded to use this method of 26396 * NACKing for all IPv6 (xresolv) cases, 26397 * whether our xresolv implementation is complete or not. 26398 * 26399 */ 26400 ire = (ire_t *)mp->b_rptr; 26401 ill = ire_to_ill(ire); 26402 mp1 = mp->b_cont; /* dl_unitdata_req */ 26403 if (mp1->b_rptr == mp1->b_wptr) { 26404 if (ire->ire_ipversion == IPV6_VERSION) { 26405 /* 26406 * XRESOLV interface. 26407 */ 26408 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26409 mutex_enter(&ire->ire_lock); 26410 gw_addr_v6 = ire->ire_gateway_addr_v6; 26411 mutex_exit(&ire->ire_lock); 26412 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26413 nce = ndp_lookup_v6(ill, 26414 &ire->ire_addr_v6, B_FALSE); 26415 } else { 26416 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26417 B_FALSE); 26418 } 26419 if (nce != NULL) { 26420 nce_resolv_failed(nce); 26421 ndp_delete(nce); 26422 NCE_REFRELE(nce); 26423 } 26424 } 26425 mp->b_cont = NULL; 26426 freemsg(mp1); /* frees the pkt as well */ 26427 ASSERT(ire->ire_nce == NULL); 26428 ire_delete((ire_t *)mp->b_rptr); 26429 return; 26430 } 26431 26432 /* 26433 * Split them into IRE_MBLK and pkt and feed it into 26434 * ire_add_then_send. Then in ire_add_then_send 26435 * the IRE will be added, and then the packet will be 26436 * run back through ip_wput. This time it will make 26437 * it to the wire. 26438 */ 26439 mp->b_cont = NULL; 26440 mp = mp1->b_cont; /* now, mp points to pkt */ 26441 mp1->b_cont = NULL; 26442 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26443 if (ire->ire_ipversion == IPV6_VERSION) { 26444 /* 26445 * XRESOLV interface. Find the nce and put a copy 26446 * of the dl_unitdata_req in nce_res_mp 26447 */ 26448 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26449 mutex_enter(&ire->ire_lock); 26450 gw_addr_v6 = ire->ire_gateway_addr_v6; 26451 mutex_exit(&ire->ire_lock); 26452 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26453 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26454 B_FALSE); 26455 } else { 26456 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26457 } 26458 if (nce != NULL) { 26459 /* 26460 * We have to protect nce_res_mp here 26461 * from being accessed by other threads 26462 * while we change the mblk pointer. 26463 * Other functions will also lock the nce when 26464 * accessing nce_res_mp. 26465 * 26466 * The reason we change the mblk pointer 26467 * here rather than copying the resolved address 26468 * into the template is that, unlike with 26469 * ethernet, we have no guarantee that the 26470 * resolved address length will be 26471 * smaller than or equal to the lla length 26472 * with which the template was allocated, 26473 * (for ethernet, they're equal) 26474 * so we have to use the actual resolved 26475 * address mblk - which holds the real 26476 * dl_unitdata_req with the resolved address. 26477 * 26478 * Doing this is the same behavior as was 26479 * previously used in the v4 ARP case. 26480 */ 26481 mutex_enter(&nce->nce_lock); 26482 if (nce->nce_res_mp != NULL) 26483 freemsg(nce->nce_res_mp); 26484 nce->nce_res_mp = mp1; 26485 mutex_exit(&nce->nce_lock); 26486 /* 26487 * We do a fastpath probe here because 26488 * we have resolved the address without 26489 * using Neighbor Discovery. 26490 * In the non-XRESOLV v6 case, the fastpath 26491 * probe is done right after neighbor 26492 * discovery completes. 26493 */ 26494 if (nce->nce_res_mp != NULL) { 26495 int res; 26496 nce_fastpath_list_add(nce); 26497 res = ill_fastpath_probe(ill, 26498 nce->nce_res_mp); 26499 if (res != 0 && res != EAGAIN) 26500 nce_fastpath_list_delete(nce); 26501 } 26502 26503 ire_add_then_send(q, ire, mp); 26504 /* 26505 * Now we have to clean out any packets 26506 * that may have been queued on the nce 26507 * while it was waiting for address resolution 26508 * to complete. 26509 */ 26510 mutex_enter(&nce->nce_lock); 26511 mp1 = nce->nce_qd_mp; 26512 nce->nce_qd_mp = NULL; 26513 mutex_exit(&nce->nce_lock); 26514 while (mp1 != NULL) { 26515 mblk_t *nxt_mp; 26516 queue_t *fwdq = NULL; 26517 ill_t *inbound_ill; 26518 uint_t ifindex; 26519 26520 nxt_mp = mp1->b_next; 26521 mp1->b_next = NULL; 26522 /* 26523 * Retrieve ifindex stored in 26524 * ip_rput_data_v6() 26525 */ 26526 ifindex = 26527 (uint_t)(uintptr_t)mp1->b_prev; 26528 inbound_ill = 26529 ill_lookup_on_ifindex(ifindex, 26530 B_TRUE, NULL, NULL, NULL, 26531 NULL); 26532 mp1->b_prev = NULL; 26533 if (inbound_ill != NULL) 26534 fwdq = inbound_ill->ill_rq; 26535 26536 if (fwdq != NULL) { 26537 put(fwdq, mp1); 26538 ill_refrele(inbound_ill); 26539 } else 26540 put(WR(ill->ill_rq), mp1); 26541 mp1 = nxt_mp; 26542 } 26543 NCE_REFRELE(nce); 26544 } else { /* nce is NULL; clean up */ 26545 ire_delete(ire); 26546 freemsg(mp); 26547 freemsg(mp1); 26548 return; 26549 } 26550 } else { 26551 nce_t *arpce; 26552 /* 26553 * Link layer resolution succeeded. Recompute the 26554 * ire_nce. 26555 */ 26556 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 26557 if ((arpce = ndp_lookup_v4(ill, 26558 (ire->ire_gateway_addr != INADDR_ANY ? 26559 &ire->ire_gateway_addr : &ire->ire_addr), 26560 B_FALSE)) == NULL) { 26561 freeb(ire->ire_mp); 26562 freeb(mp1); 26563 freemsg(mp); 26564 return; 26565 } 26566 mutex_enter(&arpce->nce_lock); 26567 arpce->nce_last = TICK_TO_MSEC(lbolt64); 26568 if (arpce->nce_state == ND_REACHABLE) { 26569 /* 26570 * Someone resolved this before us; 26571 * cleanup the res_mp. Since ire has 26572 * not been added yet, the call to ire_add_v4 26573 * from ire_add_then_send (when a dup is 26574 * detected) will clean up the ire. 26575 */ 26576 freeb(mp1); 26577 } else { 26578 if (arpce->nce_res_mp != NULL) 26579 freemsg(arpce->nce_res_mp); 26580 arpce->nce_res_mp = mp1; 26581 arpce->nce_state = ND_REACHABLE; 26582 } 26583 mutex_exit(&arpce->nce_lock); 26584 if (ire->ire_marks & IRE_MARK_NOADD) { 26585 /* 26586 * this ire will not be added to the ire 26587 * cache table, so we can set the ire_nce 26588 * here, as there are no atomicity constraints. 26589 */ 26590 ire->ire_nce = arpce; 26591 /* 26592 * We are associating this nce with the ire 26593 * so change the nce ref taken in 26594 * ndp_lookup_v4() from 26595 * NCE_REFHOLD to NCE_REFHOLD_NOTR 26596 */ 26597 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 26598 } else { 26599 NCE_REFRELE(arpce); 26600 } 26601 ire_add_then_send(q, ire, mp); 26602 } 26603 return; /* All is well, the packet has been sent. */ 26604 } 26605 case IRE_ARPRESOLVE_TYPE: { 26606 26607 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 26608 break; 26609 mp1 = mp->b_cont; /* dl_unitdata_req */ 26610 mp->b_cont = NULL; 26611 /* 26612 * First, check to make sure the resolution succeeded. 26613 * If it failed, the second mblk will be empty. 26614 */ 26615 if (mp1->b_rptr == mp1->b_wptr) { 26616 /* cleanup the incomplete ire, free queued packets */ 26617 freemsg(mp); /* fake ire */ 26618 freeb(mp1); /* dl_unitdata response */ 26619 return; 26620 } 26621 26622 /* 26623 * update any incomplete nce_t found. we lookup the ctable 26624 * and find the nce from the ire->ire_nce because we need 26625 * to pass the ire to ip_xmit_v4 later, and can find both 26626 * ire and nce in one lookup from the ctable. 26627 */ 26628 fake_ire = (ire_t *)mp->b_rptr; 26629 /* 26630 * By the time we come back here from ARP 26631 * the logical outgoing interface of the incomplete ire 26632 * we added in ire_forward could have disappeared, 26633 * causing the incomplete ire to also have 26634 * dissapeared. So we need to retreive the 26635 * proper ipif for the ire before looking 26636 * in ctable; do the ctablelookup based on ire_ipif_seqid 26637 */ 26638 ill = q->q_ptr; 26639 26640 /* Get the outgoing ipif */ 26641 mutex_enter(&ill->ill_lock); 26642 if (ill->ill_state_flags & ILL_CONDEMNED) { 26643 mutex_exit(&ill->ill_lock); 26644 freemsg(mp); /* fake ire */ 26645 freeb(mp1); /* dl_unitdata response */ 26646 return; 26647 } 26648 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 26649 26650 if (ipif == NULL) { 26651 mutex_exit(&ill->ill_lock); 26652 ip1dbg(("logical intrf to incomplete ire vanished\n")); 26653 freemsg(mp); 26654 freeb(mp1); 26655 return; 26656 } 26657 ipif_refhold_locked(ipif); 26658 mutex_exit(&ill->ill_lock); 26659 ire = ire_ctable_lookup(fake_ire->ire_addr, 26660 fake_ire->ire_gateway_addr, IRE_CACHE, 26661 ipif, fake_ire->ire_zoneid, NULL, 26662 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 26663 ipif_refrele(ipif); 26664 if (ire == NULL) { 26665 /* 26666 * no ire was found; check if there is an nce 26667 * for this lookup; if it has no ire's pointing at it 26668 * cleanup. 26669 */ 26670 if ((nce = ndp_lookup_v4(ill, 26671 (fake_ire->ire_gateway_addr != INADDR_ANY ? 26672 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 26673 B_FALSE)) != NULL) { 26674 /* 26675 * cleanup: just reset nce. 26676 * We check for refcnt 2 (one for the nce 26677 * hash list + 1 for the ref taken by 26678 * ndp_lookup_v4) to ensure that there are 26679 * no ire's pointing at the nce. 26680 */ 26681 if (nce->nce_refcnt == 2) { 26682 nce = nce_reinit(nce); 26683 } 26684 if (nce != NULL) 26685 NCE_REFRELE(nce); 26686 } 26687 freeb(mp1); /* dl_unitdata response */ 26688 freemsg(mp); /* fake ire */ 26689 return; 26690 } 26691 nce = ire->ire_nce; 26692 DTRACE_PROBE2(ire__arpresolve__type, 26693 ire_t *, ire, nce_t *, nce); 26694 ASSERT(nce->nce_state != ND_INITIAL); 26695 mutex_enter(&nce->nce_lock); 26696 nce->nce_last = TICK_TO_MSEC(lbolt64); 26697 if (nce->nce_state == ND_REACHABLE) { 26698 /* 26699 * Someone resolved this before us; 26700 * our response is not needed any more. 26701 */ 26702 mutex_exit(&nce->nce_lock); 26703 freeb(mp1); /* dl_unitdata response */ 26704 } else { 26705 if (nce->nce_res_mp != NULL) { 26706 freemsg(nce->nce_res_mp); 26707 /* existing dl_unitdata template */ 26708 } 26709 nce->nce_res_mp = mp1; 26710 nce->nce_state = ND_REACHABLE; 26711 mutex_exit(&nce->nce_lock); 26712 ire_fastpath(ire); 26713 } 26714 /* 26715 * The cached nce_t has been updated to be reachable; 26716 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 26717 */ 26718 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 26719 freemsg(mp); 26720 /* 26721 * send out queued packets. 26722 */ 26723 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26724 26725 IRE_REFRELE(ire); 26726 return; 26727 } 26728 default: 26729 break; 26730 } 26731 if (q->q_next) { 26732 putnext(q, mp); 26733 } else 26734 freemsg(mp); 26735 } 26736 26737 /* 26738 * Process IP options in an outbound packet. Modify the destination if there 26739 * is a source route option. 26740 * Returns non-zero if something fails in which case an ICMP error has been 26741 * sent and mp freed. 26742 */ 26743 static int 26744 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 26745 boolean_t mctl_present, zoneid_t zoneid) 26746 { 26747 ipoptp_t opts; 26748 uchar_t *opt; 26749 uint8_t optval; 26750 uint8_t optlen; 26751 ipaddr_t dst; 26752 intptr_t code = 0; 26753 mblk_t *mp; 26754 ire_t *ire = NULL; 26755 26756 ip2dbg(("ip_wput_options\n")); 26757 mp = ipsec_mp; 26758 if (mctl_present) { 26759 mp = ipsec_mp->b_cont; 26760 } 26761 26762 dst = ipha->ipha_dst; 26763 for (optval = ipoptp_first(&opts, ipha); 26764 optval != IPOPT_EOL; 26765 optval = ipoptp_next(&opts)) { 26766 opt = opts.ipoptp_cur; 26767 optlen = opts.ipoptp_len; 26768 ip2dbg(("ip_wput_options: opt %d, len %d\n", 26769 optval, optlen)); 26770 switch (optval) { 26771 uint32_t off; 26772 case IPOPT_SSRR: 26773 case IPOPT_LSRR: 26774 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26775 ip1dbg(( 26776 "ip_wput_options: bad option offset\n")); 26777 code = (char *)&opt[IPOPT_OLEN] - 26778 (char *)ipha; 26779 goto param_prob; 26780 } 26781 off = opt[IPOPT_OFFSET]; 26782 ip1dbg(("ip_wput_options: next hop 0x%x\n", 26783 ntohl(dst))); 26784 /* 26785 * For strict: verify that dst is directly 26786 * reachable. 26787 */ 26788 if (optval == IPOPT_SSRR) { 26789 ire = ire_ftable_lookup(dst, 0, 0, 26790 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 26791 MBLK_GETLABEL(mp), 26792 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 26793 if (ire == NULL) { 26794 ip1dbg(("ip_wput_options: SSRR not" 26795 " directly reachable: 0x%x\n", 26796 ntohl(dst))); 26797 goto bad_src_route; 26798 } 26799 ire_refrele(ire); 26800 } 26801 break; 26802 case IPOPT_RR: 26803 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26804 ip1dbg(( 26805 "ip_wput_options: bad option offset\n")); 26806 code = (char *)&opt[IPOPT_OLEN] - 26807 (char *)ipha; 26808 goto param_prob; 26809 } 26810 break; 26811 case IPOPT_TS: 26812 /* 26813 * Verify that length >=5 and that there is either 26814 * room for another timestamp or that the overflow 26815 * counter is not maxed out. 26816 */ 26817 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 26818 if (optlen < IPOPT_MINLEN_IT) { 26819 goto param_prob; 26820 } 26821 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 26822 ip1dbg(( 26823 "ip_wput_options: bad option offset\n")); 26824 code = (char *)&opt[IPOPT_OFFSET] - 26825 (char *)ipha; 26826 goto param_prob; 26827 } 26828 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 26829 case IPOPT_TS_TSONLY: 26830 off = IPOPT_TS_TIMELEN; 26831 break; 26832 case IPOPT_TS_TSANDADDR: 26833 case IPOPT_TS_PRESPEC: 26834 case IPOPT_TS_PRESPEC_RFC791: 26835 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 26836 break; 26837 default: 26838 code = (char *)&opt[IPOPT_POS_OV_FLG] - 26839 (char *)ipha; 26840 goto param_prob; 26841 } 26842 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 26843 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 26844 /* 26845 * No room and the overflow counter is 15 26846 * already. 26847 */ 26848 goto param_prob; 26849 } 26850 break; 26851 } 26852 } 26853 26854 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 26855 return (0); 26856 26857 ip1dbg(("ip_wput_options: error processing IP options.")); 26858 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 26859 26860 param_prob: 26861 /* 26862 * Since ip_wput() isn't close to finished, we fill 26863 * in enough of the header for credible error reporting. 26864 */ 26865 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26866 /* Failed */ 26867 freemsg(ipsec_mp); 26868 return (-1); 26869 } 26870 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 26871 return (-1); 26872 26873 bad_src_route: 26874 /* 26875 * Since ip_wput() isn't close to finished, we fill 26876 * in enough of the header for credible error reporting. 26877 */ 26878 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 26879 /* Failed */ 26880 freemsg(ipsec_mp); 26881 return (-1); 26882 } 26883 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 26884 return (-1); 26885 } 26886 26887 /* 26888 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 26889 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 26890 * thru /etc/system. 26891 */ 26892 #define CONN_MAXDRAINCNT 64 26893 26894 static void 26895 conn_drain_init(void) 26896 { 26897 int i; 26898 26899 conn_drain_list_cnt = conn_drain_nthreads; 26900 26901 if ((conn_drain_list_cnt == 0) || 26902 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 26903 /* 26904 * Default value of the number of drainers is the 26905 * number of cpus, subject to maximum of 8 drainers. 26906 */ 26907 if (boot_max_ncpus != -1) 26908 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 26909 else 26910 conn_drain_list_cnt = MIN(max_ncpus, 8); 26911 } 26912 26913 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 26914 KM_SLEEP); 26915 26916 for (i = 0; i < conn_drain_list_cnt; i++) { 26917 mutex_init(&conn_drain_list[i].idl_lock, NULL, 26918 MUTEX_DEFAULT, NULL); 26919 } 26920 } 26921 26922 static void 26923 conn_drain_fini(void) 26924 { 26925 int i; 26926 26927 for (i = 0; i < conn_drain_list_cnt; i++) 26928 mutex_destroy(&conn_drain_list[i].idl_lock); 26929 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 26930 conn_drain_list = NULL; 26931 } 26932 26933 /* 26934 * Note: For an overview of how flowcontrol is handled in IP please see the 26935 * IP Flowcontrol notes at the top of this file. 26936 * 26937 * Flow control has blocked us from proceeding. Insert the given conn in one 26938 * of the conn drain lists. These conn wq's will be qenabled later on when 26939 * STREAMS flow control does a backenable. conn_walk_drain will enable 26940 * the first conn in each of these drain lists. Each of these qenabled conns 26941 * in turn enables the next in the list, after it runs, or when it closes, 26942 * thus sustaining the drain process. 26943 * 26944 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 26945 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 26946 * running at any time, on a given conn, since there can be only 1 service proc 26947 * running on a queue at any time. 26948 */ 26949 void 26950 conn_drain_insert(conn_t *connp) 26951 { 26952 idl_t *idl; 26953 uint_t index; 26954 26955 mutex_enter(&connp->conn_lock); 26956 if (connp->conn_state_flags & CONN_CLOSING) { 26957 /* 26958 * The conn is closing as a result of which CONN_CLOSING 26959 * is set. Return. 26960 */ 26961 mutex_exit(&connp->conn_lock); 26962 return; 26963 } else if (connp->conn_idl == NULL) { 26964 /* 26965 * Assign the next drain list round robin. We dont' use 26966 * a lock, and thus it may not be strictly round robin. 26967 * Atomicity of load/stores is enough to make sure that 26968 * conn_drain_list_index is always within bounds. 26969 */ 26970 index = conn_drain_list_index; 26971 ASSERT(index < conn_drain_list_cnt); 26972 connp->conn_idl = &conn_drain_list[index]; 26973 index++; 26974 if (index == conn_drain_list_cnt) 26975 index = 0; 26976 conn_drain_list_index = index; 26977 } 26978 mutex_exit(&connp->conn_lock); 26979 26980 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26981 if ((connp->conn_drain_prev != NULL) || 26982 (connp->conn_state_flags & CONN_CLOSING)) { 26983 /* 26984 * The conn is already in the drain list, OR 26985 * the conn is closing. We need to check again for 26986 * the closing case again since close can happen 26987 * after we drop the conn_lock, and before we 26988 * acquire the CONN_DRAIN_LIST_LOCK. 26989 */ 26990 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26991 return; 26992 } else { 26993 idl = connp->conn_idl; 26994 } 26995 26996 /* 26997 * The conn is not in the drain list. Insert it at the 26998 * tail of the drain list. The drain list is circular 26999 * and doubly linked. idl_conn points to the 1st element 27000 * in the list. 27001 */ 27002 if (idl->idl_conn == NULL) { 27003 idl->idl_conn = connp; 27004 connp->conn_drain_next = connp; 27005 connp->conn_drain_prev = connp; 27006 } else { 27007 conn_t *head = idl->idl_conn; 27008 27009 connp->conn_drain_next = head; 27010 connp->conn_drain_prev = head->conn_drain_prev; 27011 head->conn_drain_prev->conn_drain_next = connp; 27012 head->conn_drain_prev = connp; 27013 } 27014 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27015 } 27016 27017 /* 27018 * This conn is closing, and we are called from ip_close. OR 27019 * This conn has been serviced by ip_wsrv, and we need to do the tail 27020 * processing. 27021 * If this conn is part of the drain list, we may need to sustain the drain 27022 * process by qenabling the next conn in the drain list. We may also need to 27023 * remove this conn from the list, if it is done. 27024 */ 27025 static void 27026 conn_drain_tail(conn_t *connp, boolean_t closing) 27027 { 27028 idl_t *idl; 27029 27030 /* 27031 * connp->conn_idl is stable at this point, and no lock is needed 27032 * to check it. If we are called from ip_close, close has already 27033 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27034 * called us only because conn_idl is non-null. If we are called thru 27035 * service, conn_idl could be null, but it cannot change because 27036 * service is single-threaded per queue, and there cannot be another 27037 * instance of service trying to call conn_drain_insert on this conn 27038 * now. 27039 */ 27040 ASSERT(!closing || (connp->conn_idl != NULL)); 27041 27042 /* 27043 * If connp->conn_idl is null, the conn has not been inserted into any 27044 * drain list even once since creation of the conn. Just return. 27045 */ 27046 if (connp->conn_idl == NULL) 27047 return; 27048 27049 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27050 27051 if (connp->conn_drain_prev == NULL) { 27052 /* This conn is currently not in the drain list. */ 27053 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27054 return; 27055 } 27056 idl = connp->conn_idl; 27057 if (idl->idl_conn_draining == connp) { 27058 /* 27059 * This conn is the current drainer. If this is the last conn 27060 * in the drain list, we need to do more checks, in the 'if' 27061 * below. Otherwwise we need to just qenable the next conn, 27062 * to sustain the draining, and is handled in the 'else' 27063 * below. 27064 */ 27065 if (connp->conn_drain_next == idl->idl_conn) { 27066 /* 27067 * This conn is the last in this list. This round 27068 * of draining is complete. If idl_repeat is set, 27069 * it means another flow enabling has happened from 27070 * the driver/streams and we need to another round 27071 * of draining. 27072 * If there are more than 2 conns in the drain list, 27073 * do a left rotate by 1, so that all conns except the 27074 * conn at the head move towards the head by 1, and the 27075 * the conn at the head goes to the tail. This attempts 27076 * a more even share for all queues that are being 27077 * drained. 27078 */ 27079 if ((connp->conn_drain_next != connp) && 27080 (idl->idl_conn->conn_drain_next != connp)) { 27081 idl->idl_conn = idl->idl_conn->conn_drain_next; 27082 } 27083 if (idl->idl_repeat) { 27084 qenable(idl->idl_conn->conn_wq); 27085 idl->idl_conn_draining = idl->idl_conn; 27086 idl->idl_repeat = 0; 27087 } else { 27088 idl->idl_conn_draining = NULL; 27089 } 27090 } else { 27091 /* 27092 * If the next queue that we are now qenable'ing, 27093 * is closing, it will remove itself from this list 27094 * and qenable the subsequent queue in ip_close(). 27095 * Serialization is acheived thru idl_lock. 27096 */ 27097 qenable(connp->conn_drain_next->conn_wq); 27098 idl->idl_conn_draining = connp->conn_drain_next; 27099 } 27100 } 27101 if (!connp->conn_did_putbq || closing) { 27102 /* 27103 * Remove ourself from the drain list, if we did not do 27104 * a putbq, or if the conn is closing. 27105 * Note: It is possible that q->q_first is non-null. It means 27106 * that these messages landed after we did a enableok() in 27107 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 27108 * service them. 27109 */ 27110 if (connp->conn_drain_next == connp) { 27111 /* Singleton in the list */ 27112 ASSERT(connp->conn_drain_prev == connp); 27113 idl->idl_conn = NULL; 27114 idl->idl_conn_draining = NULL; 27115 } else { 27116 connp->conn_drain_prev->conn_drain_next = 27117 connp->conn_drain_next; 27118 connp->conn_drain_next->conn_drain_prev = 27119 connp->conn_drain_prev; 27120 if (idl->idl_conn == connp) 27121 idl->idl_conn = connp->conn_drain_next; 27122 ASSERT(idl->idl_conn_draining != connp); 27123 27124 } 27125 connp->conn_drain_next = NULL; 27126 connp->conn_drain_prev = NULL; 27127 } 27128 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27129 } 27130 27131 /* 27132 * Write service routine. Shared perimeter entry point. 27133 * ip_wsrv can be called in any of the following ways. 27134 * 1. The device queue's messages has fallen below the low water mark 27135 * and STREAMS has backenabled the ill_wq. We walk thru all the 27136 * the drain lists and backenable the first conn in each list. 27137 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27138 * qenabled non-tcp upper layers. We start dequeing messages and call 27139 * ip_wput for each message. 27140 */ 27141 27142 void 27143 ip_wsrv(queue_t *q) 27144 { 27145 conn_t *connp; 27146 ill_t *ill; 27147 mblk_t *mp; 27148 27149 if (q->q_next) { 27150 ill = (ill_t *)q->q_ptr; 27151 if (ill->ill_state_flags == 0) { 27152 /* 27153 * The device flow control has opened up. 27154 * Walk through conn drain lists and qenable the 27155 * first conn in each list. This makes sense only 27156 * if the stream is fully plumbed and setup. 27157 * Hence the if check above. 27158 */ 27159 ip1dbg(("ip_wsrv: walking\n")); 27160 conn_walk_drain(); 27161 } 27162 return; 27163 } 27164 27165 connp = Q_TO_CONN(q); 27166 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27167 27168 /* 27169 * 1. Set conn_draining flag to signal that service is active. 27170 * 27171 * 2. ip_output determines whether it has been called from service, 27172 * based on the last parameter. If it is IP_WSRV it concludes it 27173 * has been called from service. 27174 * 27175 * 3. Message ordering is preserved by the following logic. 27176 * i. A directly called ip_output (i.e. not thru service) will queue 27177 * the message at the tail, if conn_draining is set (i.e. service 27178 * is running) or if q->q_first is non-null. 27179 * 27180 * ii. If ip_output is called from service, and if ip_output cannot 27181 * putnext due to flow control, it does a putbq. 27182 * 27183 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27184 * (causing an infinite loop). 27185 */ 27186 ASSERT(!connp->conn_did_putbq); 27187 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27188 connp->conn_draining = 1; 27189 noenable(q); 27190 while ((mp = getq(q)) != NULL) { 27191 ASSERT(CONN_Q(q)); 27192 27193 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27194 if (connp->conn_did_putbq) { 27195 /* ip_wput did a putbq */ 27196 break; 27197 } 27198 } 27199 /* 27200 * At this point, a thread coming down from top, calling 27201 * ip_wput, may end up queueing the message. We have not yet 27202 * enabled the queue, so ip_wsrv won't be called again. 27203 * To avoid this race, check q->q_first again (in the loop) 27204 * If the other thread queued the message before we call 27205 * enableok(), we will catch it in the q->q_first check. 27206 * If the other thread queues the message after we call 27207 * enableok(), ip_wsrv will be called again by STREAMS. 27208 */ 27209 connp->conn_draining = 0; 27210 enableok(q); 27211 } 27212 27213 /* Enable the next conn for draining */ 27214 conn_drain_tail(connp, B_FALSE); 27215 27216 connp->conn_did_putbq = 0; 27217 } 27218 27219 /* 27220 * Walk the list of all conn's calling the function provided with the 27221 * specified argument for each. Note that this only walks conn's that 27222 * have been bound. 27223 * Applies to both IPv4 and IPv6. 27224 */ 27225 static void 27226 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27227 { 27228 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27229 func, arg, zoneid); 27230 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27231 func, arg, zoneid); 27232 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27233 func, arg, zoneid); 27234 conn_walk_fanout_table(ipcl_proto_fanout, 27235 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27236 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27237 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27238 } 27239 27240 /* 27241 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27242 * of conns that need to be drained, check if drain is already in progress. 27243 * If so set the idl_repeat bit, indicating that the last conn in the list 27244 * needs to reinitiate the drain once again, for the list. If drain is not 27245 * in progress for the list, initiate the draining, by qenabling the 1st 27246 * conn in the list. The drain is self-sustaining, each qenabled conn will 27247 * in turn qenable the next conn, when it is done/blocked/closing. 27248 */ 27249 static void 27250 conn_walk_drain(void) 27251 { 27252 int i; 27253 idl_t *idl; 27254 27255 IP_STAT(ip_conn_walk_drain); 27256 27257 for (i = 0; i < conn_drain_list_cnt; i++) { 27258 idl = &conn_drain_list[i]; 27259 mutex_enter(&idl->idl_lock); 27260 if (idl->idl_conn == NULL) { 27261 mutex_exit(&idl->idl_lock); 27262 continue; 27263 } 27264 /* 27265 * If this list is not being drained currently by 27266 * an ip_wsrv thread, start the process. 27267 */ 27268 if (idl->idl_conn_draining == NULL) { 27269 ASSERT(idl->idl_repeat == 0); 27270 qenable(idl->idl_conn->conn_wq); 27271 idl->idl_conn_draining = idl->idl_conn; 27272 } else { 27273 idl->idl_repeat = 1; 27274 } 27275 mutex_exit(&idl->idl_lock); 27276 } 27277 } 27278 27279 /* 27280 * Walk an conn hash table of `count' buckets, calling func for each entry. 27281 */ 27282 static void 27283 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27284 zoneid_t zoneid) 27285 { 27286 conn_t *connp; 27287 27288 while (count-- > 0) { 27289 mutex_enter(&connfp->connf_lock); 27290 for (connp = connfp->connf_head; connp != NULL; 27291 connp = connp->conn_next) { 27292 if (zoneid == GLOBAL_ZONEID || 27293 zoneid == connp->conn_zoneid) { 27294 CONN_INC_REF(connp); 27295 mutex_exit(&connfp->connf_lock); 27296 (*func)(connp, arg); 27297 mutex_enter(&connfp->connf_lock); 27298 CONN_DEC_REF(connp); 27299 } 27300 } 27301 mutex_exit(&connfp->connf_lock); 27302 connfp++; 27303 } 27304 } 27305 27306 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27307 static void 27308 conn_report1(conn_t *connp, void *mp) 27309 { 27310 char buf1[INET6_ADDRSTRLEN]; 27311 char buf2[INET6_ADDRSTRLEN]; 27312 uint_t print_len, buf_len; 27313 27314 ASSERT(connp != NULL); 27315 27316 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27317 if (buf_len <= 0) 27318 return; 27319 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27320 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27321 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27322 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27323 "%5d %s/%05d %s/%05d\n", 27324 (void *)connp, (void *)CONNP_TO_RQ(connp), 27325 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27326 buf1, connp->conn_lport, 27327 buf2, connp->conn_fport); 27328 if (print_len < buf_len) { 27329 ((mblk_t *)mp)->b_wptr += print_len; 27330 } else { 27331 ((mblk_t *)mp)->b_wptr += buf_len; 27332 } 27333 } 27334 27335 /* 27336 * Named Dispatch routine to produce a formatted report on all conns 27337 * that are listed in one of the fanout tables. 27338 * This report is accessed by using the ndd utility to "get" ND variable 27339 * "ip_conn_status". 27340 */ 27341 /* ARGSUSED */ 27342 static int 27343 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27344 { 27345 (void) mi_mpprintf(mp, 27346 "CONN " MI_COL_HDRPAD_STR 27347 "rfq " MI_COL_HDRPAD_STR 27348 "stq " MI_COL_HDRPAD_STR 27349 " zone local remote"); 27350 27351 /* 27352 * Because of the ndd constraint, at most we can have 64K buffer 27353 * to put in all conn info. So to be more efficient, just 27354 * allocate a 64K buffer here, assuming we need that large buffer. 27355 * This should be OK as only privileged processes can do ndd /dev/ip. 27356 */ 27357 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27358 /* The following may work even if we cannot get a large buf. */ 27359 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27360 return (0); 27361 } 27362 27363 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27364 return (0); 27365 } 27366 27367 /* 27368 * Determine if the ill and multicast aspects of that packets 27369 * "matches" the conn. 27370 */ 27371 boolean_t 27372 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27373 zoneid_t zoneid) 27374 { 27375 ill_t *in_ill; 27376 boolean_t found; 27377 ipif_t *ipif; 27378 ire_t *ire; 27379 ipaddr_t dst, src; 27380 27381 dst = ipha->ipha_dst; 27382 src = ipha->ipha_src; 27383 27384 /* 27385 * conn_incoming_ill is set by IP_BOUND_IF which limits 27386 * unicast, broadcast and multicast reception to 27387 * conn_incoming_ill. conn_wantpacket itself is called 27388 * only for BROADCAST and multicast. 27389 * 27390 * 1) ip_rput supresses duplicate broadcasts if the ill 27391 * is part of a group. Hence, we should be receiving 27392 * just one copy of broadcast for the whole group. 27393 * Thus, if it is part of the group the packet could 27394 * come on any ill of the group and hence we need a 27395 * match on the group. Otherwise, match on ill should 27396 * be sufficient. 27397 * 27398 * 2) ip_rput does not suppress duplicate multicast packets. 27399 * If there are two interfaces in a ill group and we have 27400 * 2 applications (conns) joined a multicast group G on 27401 * both the interfaces, ilm_lookup_ill filter in ip_rput 27402 * will give us two packets because we join G on both the 27403 * interfaces rather than nominating just one interface 27404 * for receiving multicast like broadcast above. So, 27405 * we have to call ilg_lookup_ill to filter out duplicate 27406 * copies, if ill is part of a group. 27407 */ 27408 in_ill = connp->conn_incoming_ill; 27409 if (in_ill != NULL) { 27410 if (in_ill->ill_group == NULL) { 27411 if (in_ill != ill) 27412 return (B_FALSE); 27413 } else if (in_ill->ill_group != ill->ill_group) { 27414 return (B_FALSE); 27415 } 27416 } 27417 27418 if (!CLASSD(dst)) { 27419 if (IPCL_ZONE_MATCH(connp, zoneid)) 27420 return (B_TRUE); 27421 /* 27422 * The conn is in a different zone; we need to check that this 27423 * broadcast address is configured in the application's zone and 27424 * on one ill in the group. 27425 */ 27426 ipif = ipif_get_next_ipif(NULL, ill); 27427 if (ipif == NULL) 27428 return (B_FALSE); 27429 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27430 connp->conn_zoneid, NULL, 27431 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27432 ipif_refrele(ipif); 27433 if (ire != NULL) { 27434 ire_refrele(ire); 27435 return (B_TRUE); 27436 } else { 27437 return (B_FALSE); 27438 } 27439 } 27440 27441 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27442 connp->conn_zoneid == zoneid) { 27443 /* 27444 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27445 * disabled, therefore we don't dispatch the multicast packet to 27446 * the sending zone. 27447 */ 27448 return (B_FALSE); 27449 } 27450 27451 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27452 connp->conn_zoneid != zoneid) { 27453 /* 27454 * Multicast packet on the loopback interface: we only match 27455 * conns who joined the group in the specified zone. 27456 */ 27457 return (B_FALSE); 27458 } 27459 27460 if (connp->conn_multi_router) { 27461 /* multicast packet and multicast router socket: send up */ 27462 return (B_TRUE); 27463 } 27464 27465 mutex_enter(&connp->conn_lock); 27466 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27467 mutex_exit(&connp->conn_lock); 27468 return (found); 27469 } 27470 27471 /* 27472 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27473 */ 27474 /* ARGSUSED */ 27475 static void 27476 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27477 { 27478 ill_t *ill = (ill_t *)q->q_ptr; 27479 mblk_t *mp1, *mp2; 27480 ipif_t *ipif; 27481 int err = 0; 27482 conn_t *connp = NULL; 27483 ipsq_t *ipsq; 27484 arc_t *arc; 27485 27486 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27487 27488 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27489 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27490 27491 ASSERT(IAM_WRITER_ILL(ill)); 27492 mp2 = mp->b_cont; 27493 mp->b_cont = NULL; 27494 27495 /* 27496 * We have now received the arp bringup completion message 27497 * from ARP. Mark the arp bringup as done. Also if the arp 27498 * stream has already started closing, send up the AR_ARP_CLOSING 27499 * ack now since ARP is waiting in close for this ack. 27500 */ 27501 mutex_enter(&ill->ill_lock); 27502 ill->ill_arp_bringup_pending = 0; 27503 if (ill->ill_arp_closing) { 27504 mutex_exit(&ill->ill_lock); 27505 /* Let's reuse the mp for sending the ack */ 27506 arc = (arc_t *)mp->b_rptr; 27507 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 27508 arc->arc_cmd = AR_ARP_CLOSING; 27509 qreply(q, mp); 27510 } else { 27511 mutex_exit(&ill->ill_lock); 27512 freeb(mp); 27513 } 27514 27515 /* We should have an IOCTL waiting on this. */ 27516 ipsq = ill->ill_phyint->phyint_ipsq; 27517 ipif = ipsq->ipsq_pending_ipif; 27518 mp1 = ipsq_pending_mp_get(ipsq, &connp); 27519 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 27520 if (mp1 == NULL) { 27521 /* bringup was aborted by the user */ 27522 freemsg(mp2); 27523 return; 27524 } 27525 ASSERT(connp != NULL); 27526 q = CONNP_TO_WQ(connp); 27527 /* 27528 * If the DL_BIND_REQ fails, it is noted 27529 * in arc_name_offset. 27530 */ 27531 err = *((int *)mp2->b_rptr); 27532 if (err == 0) { 27533 if (ipif->ipif_isv6) { 27534 if ((err = ipif_up_done_v6(ipif)) != 0) 27535 ip0dbg(("ip_arp_done: init failed\n")); 27536 } else { 27537 if ((err = ipif_up_done(ipif)) != 0) 27538 ip0dbg(("ip_arp_done: init failed\n")); 27539 } 27540 } else { 27541 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 27542 } 27543 27544 freemsg(mp2); 27545 27546 if ((err == 0) && (ill->ill_up_ipifs)) { 27547 err = ill_up_ipifs(ill, q, mp1); 27548 if (err == EINPROGRESS) 27549 return; 27550 } 27551 27552 if (ill->ill_up_ipifs) { 27553 ill_group_cleanup(ill); 27554 } 27555 27556 /* 27557 * The ioctl must complete now without EINPROGRESS 27558 * since ipsq_pending_mp_get has removed the ioctl mblk 27559 * from ipsq_pending_mp. Otherwise the ioctl will be 27560 * stuck for ever in the ipsq. 27561 */ 27562 ASSERT(err != EINPROGRESS); 27563 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 27564 } 27565 27566 /* Allocate the private structure */ 27567 static int 27568 ip_priv_alloc(void **bufp) 27569 { 27570 void *buf; 27571 27572 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 27573 return (ENOMEM); 27574 27575 *bufp = buf; 27576 return (0); 27577 } 27578 27579 /* Function to delete the private structure */ 27580 void 27581 ip_priv_free(void *buf) 27582 { 27583 ASSERT(buf != NULL); 27584 kmem_free(buf, sizeof (ip_priv_t)); 27585 } 27586 27587 /* 27588 * The entry point for IPPF processing. 27589 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 27590 * routine just returns. 27591 * 27592 * When called, ip_process generates an ipp_packet_t structure 27593 * which holds the state information for this packet and invokes the 27594 * the classifier (via ipp_packet_process). The classification, depending on 27595 * configured filters, results in a list of actions for this packet. Invoking 27596 * an action may cause the packet to be dropped, in which case the resulting 27597 * mblk (*mpp) is NULL. proc indicates the callout position for 27598 * this packet and ill_index is the interface this packet on or will leave 27599 * on (inbound and outbound resp.). 27600 */ 27601 void 27602 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 27603 { 27604 mblk_t *mp; 27605 ip_priv_t *priv; 27606 ipp_action_id_t aid; 27607 int rc = 0; 27608 ipp_packet_t *pp; 27609 #define IP_CLASS "ip" 27610 27611 /* If the classifier is not loaded, return */ 27612 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 27613 return; 27614 } 27615 27616 mp = *mpp; 27617 ASSERT(mp != NULL); 27618 27619 /* Allocate the packet structure */ 27620 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 27621 if (rc != 0) { 27622 *mpp = NULL; 27623 freemsg(mp); 27624 return; 27625 } 27626 27627 /* Allocate the private structure */ 27628 rc = ip_priv_alloc((void **)&priv); 27629 if (rc != 0) { 27630 *mpp = NULL; 27631 freemsg(mp); 27632 ipp_packet_free(pp); 27633 return; 27634 } 27635 priv->proc = proc; 27636 priv->ill_index = ill_index; 27637 ipp_packet_set_private(pp, priv, ip_priv_free); 27638 ipp_packet_set_data(pp, mp); 27639 27640 /* Invoke the classifier */ 27641 rc = ipp_packet_process(&pp); 27642 if (pp != NULL) { 27643 mp = ipp_packet_get_data(pp); 27644 ipp_packet_free(pp); 27645 if (rc != 0) { 27646 freemsg(mp); 27647 *mpp = NULL; 27648 } 27649 } else { 27650 *mpp = NULL; 27651 } 27652 #undef IP_CLASS 27653 } 27654 27655 /* 27656 * Propagate a multicast group membership operation (add/drop) on 27657 * all the interfaces crossed by the related multirt routes. 27658 * The call is considered successful if the operation succeeds 27659 * on at least one interface. 27660 */ 27661 static int 27662 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 27663 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 27664 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 27665 mblk_t *first_mp) 27666 { 27667 ire_t *ire_gw; 27668 irb_t *irb; 27669 int error = 0; 27670 opt_restart_t *or; 27671 27672 irb = ire->ire_bucket; 27673 ASSERT(irb != NULL); 27674 27675 ASSERT(DB_TYPE(first_mp) == M_CTL); 27676 27677 or = (opt_restart_t *)first_mp->b_rptr; 27678 IRB_REFHOLD(irb); 27679 for (; ire != NULL; ire = ire->ire_next) { 27680 if ((ire->ire_flags & RTF_MULTIRT) == 0) 27681 continue; 27682 if (ire->ire_addr != group) 27683 continue; 27684 27685 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 27686 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 27687 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 27688 /* No resolver exists for the gateway; skip this ire. */ 27689 if (ire_gw == NULL) 27690 continue; 27691 27692 /* 27693 * This function can return EINPROGRESS. If so the operation 27694 * will be restarted from ip_restart_optmgmt which will 27695 * call ip_opt_set and option processing will restart for 27696 * this option. So we may end up calling 'fn' more than once. 27697 * This requires that 'fn' is idempotent except for the 27698 * return value. The operation is considered a success if 27699 * it succeeds at least once on any one interface. 27700 */ 27701 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 27702 NULL, fmode, src, first_mp); 27703 if (error == 0) 27704 or->or_private = CGTP_MCAST_SUCCESS; 27705 27706 if (ip_debug > 0) { 27707 ulong_t off; 27708 char *ksym; 27709 ksym = kobj_getsymname((uintptr_t)fn, &off); 27710 ip2dbg(("ip_multirt_apply_membership: " 27711 "called %s, multirt group 0x%08x via itf 0x%08x, " 27712 "error %d [success %u]\n", 27713 ksym ? ksym : "?", 27714 ntohl(group), ntohl(ire_gw->ire_src_addr), 27715 error, or->or_private)); 27716 } 27717 27718 ire_refrele(ire_gw); 27719 if (error == EINPROGRESS) { 27720 IRB_REFRELE(irb); 27721 return (error); 27722 } 27723 } 27724 IRB_REFRELE(irb); 27725 /* 27726 * Consider the call as successful if we succeeded on at least 27727 * one interface. Otherwise, return the last encountered error. 27728 */ 27729 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 27730 } 27731 27732 27733 /* 27734 * Issue a warning regarding a route crossing an interface with an 27735 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 27736 * amount of time is logged. 27737 */ 27738 static void 27739 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 27740 { 27741 hrtime_t current = gethrtime(); 27742 char buf[INET_ADDRSTRLEN]; 27743 27744 /* Convert interval in ms to hrtime in ns */ 27745 if (multirt_bad_mtu_last_time + 27746 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 27747 current) { 27748 cmn_err(CE_WARN, "ip: ignoring multiroute " 27749 "to %s, incorrect MTU %u (expected %u)\n", 27750 ip_dot_addr(ire->ire_addr, buf), 27751 ire->ire_max_frag, max_frag); 27752 27753 multirt_bad_mtu_last_time = current; 27754 } 27755 } 27756 27757 27758 /* 27759 * Get the CGTP (multirouting) filtering status. 27760 * If 0, the CGTP hooks are transparent. 27761 */ 27762 /* ARGSUSED */ 27763 static int 27764 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 27765 { 27766 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27767 27768 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 27769 return (0); 27770 } 27771 27772 27773 /* 27774 * Set the CGTP (multirouting) filtering status. 27775 * If the status is changed from active to transparent 27776 * or from transparent to active, forward the new status 27777 * to the filtering module (if loaded). 27778 */ 27779 /* ARGSUSED */ 27780 static int 27781 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 27782 cred_t *ioc_cr) 27783 { 27784 long new_value; 27785 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 27786 27787 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 27788 new_value < 0 || new_value > 1) { 27789 return (EINVAL); 27790 } 27791 27792 /* 27793 * Do not enable CGTP filtering - thus preventing the hooks 27794 * from being invoked - if the version number of the 27795 * filtering module hooks does not match. 27796 */ 27797 if ((ip_cgtp_filter_ops != NULL) && 27798 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 27799 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 27800 "(module hooks version %d, expecting %d)\n", 27801 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 27802 return (ENOTSUP); 27803 } 27804 27805 if ((!*ip_cgtp_filter_value) && new_value) { 27806 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 27807 ip_cgtp_filter_ops == NULL ? 27808 " (module not loaded)" : ""); 27809 } 27810 if (*ip_cgtp_filter_value && (!new_value)) { 27811 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 27812 ip_cgtp_filter_ops == NULL ? 27813 " (module not loaded)" : ""); 27814 } 27815 27816 if (ip_cgtp_filter_ops != NULL) { 27817 int res; 27818 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 27819 return (res); 27820 } 27821 } 27822 27823 *ip_cgtp_filter_value = (boolean_t)new_value; 27824 27825 return (0); 27826 } 27827 27828 27829 /* 27830 * Return the expected CGTP hooks version number. 27831 */ 27832 int 27833 ip_cgtp_filter_supported(void) 27834 { 27835 return (ip_cgtp_filter_rev); 27836 } 27837 27838 27839 /* 27840 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 27841 * or by invoking this function. In the first case, the version number 27842 * of the registered structure is checked at hooks activation time 27843 * in ip_cgtp_filter_set(). 27844 */ 27845 int 27846 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 27847 { 27848 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 27849 return (ENOTSUP); 27850 27851 ip_cgtp_filter_ops = ops; 27852 return (0); 27853 } 27854 27855 static squeue_func_t 27856 ip_squeue_switch(int val) 27857 { 27858 squeue_func_t rval = squeue_fill; 27859 27860 switch (val) { 27861 case IP_SQUEUE_ENTER_NODRAIN: 27862 rval = squeue_enter_nodrain; 27863 break; 27864 case IP_SQUEUE_ENTER: 27865 rval = squeue_enter; 27866 break; 27867 default: 27868 break; 27869 } 27870 return (rval); 27871 } 27872 27873 /* ARGSUSED */ 27874 static int 27875 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 27876 caddr_t addr, cred_t *cr) 27877 { 27878 int *v = (int *)addr; 27879 long new_value; 27880 27881 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27882 return (EINVAL); 27883 27884 ip_input_proc = ip_squeue_switch(new_value); 27885 *v = new_value; 27886 return (0); 27887 } 27888 27889 /* ARGSUSED */ 27890 static int 27891 ip_int_set(queue_t *q, mblk_t *mp, char *value, 27892 caddr_t addr, cred_t *cr) 27893 { 27894 int *v = (int *)addr; 27895 long new_value; 27896 27897 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 27898 return (EINVAL); 27899 27900 *v = new_value; 27901 return (0); 27902 } 27903 27904 static void 27905 ip_kstat_init(void) 27906 { 27907 ip_named_kstat_t template = { 27908 { "forwarding", KSTAT_DATA_UINT32, 0 }, 27909 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 27910 { "inReceives", KSTAT_DATA_UINT32, 0 }, 27911 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 27912 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 27913 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 27914 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 27915 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 27916 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 27917 { "outRequests", KSTAT_DATA_UINT32, 0 }, 27918 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 27919 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 27920 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 27921 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 27922 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 27923 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 27924 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 27925 { "fragFails", KSTAT_DATA_UINT32, 0 }, 27926 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 27927 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 27928 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 27929 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 27930 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 27931 { "inErrs", KSTAT_DATA_UINT32, 0 }, 27932 { "noPorts", KSTAT_DATA_UINT32, 0 }, 27933 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 27934 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 27935 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 27936 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 27937 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 27938 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 27939 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 27940 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 27941 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 27942 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 27943 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 27944 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 27945 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 27946 }; 27947 27948 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 27949 NUM_OF_FIELDS(ip_named_kstat_t), 27950 0); 27951 if (!ip_mibkp) 27952 return; 27953 27954 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 27955 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 27956 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 27957 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 27958 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 27959 27960 template.netToMediaEntrySize.value.i32 = 27961 sizeof (mib2_ipNetToMediaEntry_t); 27962 27963 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 27964 27965 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 27966 27967 ip_mibkp->ks_update = ip_kstat_update; 27968 27969 kstat_install(ip_mibkp); 27970 } 27971 27972 static void 27973 ip_kstat_fini(void) 27974 { 27975 27976 if (ip_mibkp != NULL) { 27977 kstat_delete(ip_mibkp); 27978 ip_mibkp = NULL; 27979 } 27980 } 27981 27982 static int 27983 ip_kstat_update(kstat_t *kp, int rw) 27984 { 27985 ip_named_kstat_t *ipkp; 27986 27987 if (!kp || !kp->ks_data) 27988 return (EIO); 27989 27990 if (rw == KSTAT_WRITE) 27991 return (EACCES); 27992 27993 ipkp = (ip_named_kstat_t *)kp->ks_data; 27994 27995 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 27996 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 27997 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 27998 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 27999 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 28000 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 28001 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 28002 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 28003 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 28004 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 28005 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 28006 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 28007 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 28008 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 28009 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 28010 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 28011 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 28012 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 28013 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 28014 28015 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 28016 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 28017 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 28018 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 28019 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 28020 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 28021 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 28022 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 28023 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 28024 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 28025 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 28026 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 28027 28028 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 28029 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 28030 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 28031 28032 return (0); 28033 } 28034 28035 static void 28036 icmp_kstat_init(void) 28037 { 28038 icmp_named_kstat_t template = { 28039 { "inMsgs", KSTAT_DATA_UINT32 }, 28040 { "inErrors", KSTAT_DATA_UINT32 }, 28041 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 28042 { "inTimeExcds", KSTAT_DATA_UINT32 }, 28043 { "inParmProbs", KSTAT_DATA_UINT32 }, 28044 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 28045 { "inRedirects", KSTAT_DATA_UINT32 }, 28046 { "inEchos", KSTAT_DATA_UINT32 }, 28047 { "inEchoReps", KSTAT_DATA_UINT32 }, 28048 { "inTimestamps", KSTAT_DATA_UINT32 }, 28049 { "inTimestampReps", KSTAT_DATA_UINT32 }, 28050 { "inAddrMasks", KSTAT_DATA_UINT32 }, 28051 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 28052 { "outMsgs", KSTAT_DATA_UINT32 }, 28053 { "outErrors", KSTAT_DATA_UINT32 }, 28054 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 28055 { "outTimeExcds", KSTAT_DATA_UINT32 }, 28056 { "outParmProbs", KSTAT_DATA_UINT32 }, 28057 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 28058 { "outRedirects", KSTAT_DATA_UINT32 }, 28059 { "outEchos", KSTAT_DATA_UINT32 }, 28060 { "outEchoReps", KSTAT_DATA_UINT32 }, 28061 { "outTimestamps", KSTAT_DATA_UINT32 }, 28062 { "outTimestampReps", KSTAT_DATA_UINT32 }, 28063 { "outAddrMasks", KSTAT_DATA_UINT32 }, 28064 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 28065 { "inChksumErrs", KSTAT_DATA_UINT32 }, 28066 { "inUnknowns", KSTAT_DATA_UINT32 }, 28067 { "inFragNeeded", KSTAT_DATA_UINT32 }, 28068 { "outFragNeeded", KSTAT_DATA_UINT32 }, 28069 { "outDrops", KSTAT_DATA_UINT32 }, 28070 { "inOverFlows", KSTAT_DATA_UINT32 }, 28071 { "inBadRedirects", KSTAT_DATA_UINT32 }, 28072 }; 28073 28074 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 28075 NUM_OF_FIELDS(icmp_named_kstat_t), 28076 0); 28077 if (icmp_mibkp == NULL) 28078 return; 28079 28080 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 28081 28082 icmp_mibkp->ks_update = icmp_kstat_update; 28083 28084 kstat_install(icmp_mibkp); 28085 } 28086 28087 static void 28088 icmp_kstat_fini(void) 28089 { 28090 28091 if (icmp_mibkp != NULL) { 28092 kstat_delete(icmp_mibkp); 28093 icmp_mibkp = NULL; 28094 } 28095 } 28096 28097 static int 28098 icmp_kstat_update(kstat_t *kp, int rw) 28099 { 28100 icmp_named_kstat_t *icmpkp; 28101 28102 if ((kp == NULL) || (kp->ks_data == NULL)) 28103 return (EIO); 28104 28105 if (rw == KSTAT_WRITE) 28106 return (EACCES); 28107 28108 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 28109 28110 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 28111 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 28112 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 28113 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 28114 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 28115 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 28116 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 28117 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 28118 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 28119 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 28120 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 28121 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 28122 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 28123 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 28124 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 28125 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 28126 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 28127 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 28128 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 28129 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 28130 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 28131 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 28132 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 28133 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 28134 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 28135 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 28136 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 28137 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 28138 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 28139 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28140 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28141 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28142 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28143 28144 return (0); 28145 } 28146 28147 /* 28148 * This is the fanout function for raw socket opened for SCTP. Note 28149 * that it is called after SCTP checks that there is no socket which 28150 * wants a packet. Then before SCTP handles this out of the blue packet, 28151 * this function is called to see if there is any raw socket for SCTP. 28152 * If there is and it is bound to the correct address, the packet will 28153 * be sent to that socket. Note that only one raw socket can be bound to 28154 * a port. This is assured in ipcl_sctp_hash_insert(); 28155 */ 28156 void 28157 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28158 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28159 uint_t ipif_seqid, zoneid_t zoneid) 28160 { 28161 conn_t *connp; 28162 queue_t *rq; 28163 mblk_t *first_mp; 28164 boolean_t secure; 28165 ip6_t *ip6h; 28166 28167 first_mp = mp; 28168 if (mctl_present) { 28169 mp = first_mp->b_cont; 28170 secure = ipsec_in_is_secure(first_mp); 28171 ASSERT(mp != NULL); 28172 } else { 28173 secure = B_FALSE; 28174 } 28175 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28176 28177 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28178 if (connp == NULL) { 28179 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28180 mctl_present); 28181 return; 28182 } 28183 rq = connp->conn_rq; 28184 if (!canputnext(rq)) { 28185 CONN_DEC_REF(connp); 28186 BUMP_MIB(&ip_mib, rawipInOverflows); 28187 freemsg(first_mp); 28188 return; 28189 } 28190 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28191 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28192 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28193 (isv4 ? ipha : NULL), ip6h, mctl_present); 28194 if (first_mp == NULL) { 28195 CONN_DEC_REF(connp); 28196 return; 28197 } 28198 } 28199 /* 28200 * We probably should not send M_CTL message up to 28201 * raw socket. 28202 */ 28203 if (mctl_present) 28204 freeb(first_mp); 28205 28206 /* Initiate IPPF processing here if needed. */ 28207 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28208 (!isv4 && IP6_IN_IPP(flags))) { 28209 ip_process(IPP_LOCAL_IN, &mp, 28210 recv_ill->ill_phyint->phyint_ifindex); 28211 if (mp == NULL) { 28212 CONN_DEC_REF(connp); 28213 return; 28214 } 28215 } 28216 28217 if (connp->conn_recvif || connp->conn_recvslla || 28218 ((connp->conn_ipv6_recvpktinfo || 28219 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28220 (flags & IP_FF_IP6INFO))) { 28221 int in_flags = 0; 28222 28223 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28224 in_flags = IPF_RECVIF; 28225 } 28226 if (connp->conn_recvslla) { 28227 in_flags |= IPF_RECVSLLA; 28228 } 28229 if (isv4) { 28230 mp = ip_add_info(mp, recv_ill, in_flags); 28231 } else { 28232 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28233 if (mp == NULL) { 28234 CONN_DEC_REF(connp); 28235 return; 28236 } 28237 } 28238 } 28239 28240 BUMP_MIB(&ip_mib, ipInDelivers); 28241 /* 28242 * We are sending the IPSEC_IN message also up. Refer 28243 * to comments above this function. 28244 */ 28245 putnext(rq, mp); 28246 CONN_DEC_REF(connp); 28247 } 28248 28249 /* 28250 * This function should be called only if all packet processing 28251 * including fragmentation is complete. Callers of this function 28252 * must set mp->b_prev to one of these values: 28253 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28254 * prior to handing over the mp as first argument to this function. 28255 * 28256 * If the ire passed by caller is incomplete, this function 28257 * queues the packet and if necessary, sends ARP request and bails. 28258 * If the ire passed is fully resolved, we simply prepend 28259 * the link-layer header to the packet, do ipsec hw acceleration 28260 * work if necessary, and send the packet out on the wire. 28261 * 28262 * NOTE: IPSEC will only call this function with fully resolved 28263 * ires if hw acceleration is involved. 28264 * TODO list : 28265 * a Handle M_MULTIDATA so that 28266 * tcp_multisend->tcp_multisend_data can 28267 * call ip_xmit_v4 directly 28268 * b Handle post-ARP work for fragments so that 28269 * ip_wput_frag can call this function. 28270 */ 28271 ipxmit_state_t 28272 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28273 { 28274 nce_t *arpce; 28275 queue_t *q; 28276 int ill_index; 28277 mblk_t *nxt_mp; 28278 boolean_t xmit_drop = B_FALSE; 28279 ip_proc_t proc; 28280 28281 arpce = ire->ire_nce; 28282 ASSERT(arpce != NULL); 28283 28284 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28285 28286 mutex_enter(&arpce->nce_lock); 28287 switch (arpce->nce_state) { 28288 case ND_REACHABLE: 28289 /* If there are other queued packets, queue this packet */ 28290 if (arpce->nce_qd_mp != NULL) { 28291 if (mp != NULL) 28292 nce_queue_mp_common(arpce, mp, B_FALSE); 28293 mp = arpce->nce_qd_mp; 28294 } 28295 arpce->nce_qd_mp = NULL; 28296 mutex_exit(&arpce->nce_lock); 28297 28298 /* 28299 * Flush the queue. In the common case, where the 28300 * ARP is already resolved, it will go through the 28301 * while loop only once. 28302 */ 28303 while (mp != NULL) { 28304 28305 nxt_mp = mp->b_next; 28306 mp->b_next = NULL; 28307 /* 28308 * This info is needed for IPQOS to do COS marking 28309 * in ip_wput_attach_llhdr->ip_process. 28310 */ 28311 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28312 mp->b_prev = NULL; 28313 28314 /* set up ill index for outbound qos processing */ 28315 ill_index = 28316 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 28317 mp = ip_wput_attach_llhdr(mp, ire, proc, ill_index); 28318 if (mp == NULL) { 28319 xmit_drop = B_TRUE; 28320 if (proc == IPP_FWD_OUT) { 28321 BUMP_MIB(&ip_mib, ipInDiscards); 28322 } else { 28323 BUMP_MIB(&ip_mib, ipOutDiscards); 28324 } 28325 goto next_mp; 28326 } 28327 /* non-ipsec hw accel case */ 28328 if (io == NULL || !io->ipsec_out_accelerated) { 28329 /* send it */ 28330 q = ire->ire_stq; 28331 if (proc == IPP_FWD_OUT) { 28332 UPDATE_IB_PKT_COUNT(ire); 28333 } else { 28334 UPDATE_OB_PKT_COUNT(ire); 28335 } 28336 ire->ire_last_used_time = lbolt; 28337 28338 if (flow_ctl_enabled) { 28339 /* 28340 * We are here from ip_wout_ire 28341 * which has already done canput 28342 * check and has enabled flow 28343 * control, so skip the canputnext 28344 * check. 28345 */ 28346 putnext(q, mp); 28347 goto next_mp; 28348 } 28349 if (canputnext(q)) { 28350 if (proc == IPP_FWD_OUT) { 28351 BUMP_MIB(&ip_mib, 28352 ipForwDatagrams); 28353 } 28354 putnext(q, mp); 28355 } else { 28356 BUMP_MIB(&ip_mib, 28357 ipOutDiscards); 28358 xmit_drop = B_TRUE; 28359 freemsg(mp); 28360 } 28361 } else { 28362 /* 28363 * Safety Pup says: make sure this 28364 * is going to the right interface! 28365 */ 28366 ill_t *ill1 = 28367 (ill_t *)ire->ire_stq->q_ptr; 28368 int ifindex = 28369 ill1->ill_phyint->phyint_ifindex; 28370 if (ifindex != 28371 io->ipsec_out_capab_ill_index) { 28372 xmit_drop = B_TRUE; 28373 freemsg(mp); 28374 } else { 28375 ipsec_hw_putnext(ire->ire_stq, 28376 mp); 28377 } 28378 } 28379 next_mp: 28380 mp = nxt_mp; 28381 } /* while (mp != NULL) */ 28382 if (xmit_drop) 28383 return (SEND_FAILED); 28384 else 28385 return (SEND_PASSED); 28386 28387 case ND_INITIAL: 28388 case ND_INCOMPLETE: 28389 28390 /* 28391 * While we do send off packets to dests that 28392 * use fully-resolved CGTP routes, we do not 28393 * handle unresolved CGTP routes. 28394 */ 28395 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28396 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28397 28398 if (mp != NULL) { 28399 /* queue the packet */ 28400 nce_queue_mp_common(arpce, mp, B_FALSE); 28401 } 28402 28403 if (arpce->nce_state == ND_INCOMPLETE) { 28404 mutex_exit(&arpce->nce_lock); 28405 DTRACE_PROBE3(ip__xmit__incomplete, 28406 (ire_t *), ire, (mblk_t *), mp, 28407 (ipsec_out_t *), io); 28408 return (LOOKUP_IN_PROGRESS); 28409 } 28410 28411 arpce->nce_state = ND_INCOMPLETE; 28412 mutex_exit(&arpce->nce_lock); 28413 /* 28414 * Note that ire_add() (called from ire_forward()) 28415 * holds a ref on the ire until ARP is completed. 28416 */ 28417 28418 ire_arpresolve(ire, ire->ire_ipif->ipif_ill); 28419 return (LOOKUP_IN_PROGRESS); 28420 default: 28421 ASSERT(0); 28422 mutex_exit(&arpce->nce_lock); 28423 return (LLHDR_RESLV_FAILED); 28424 } 28425 } 28426 28427 /* 28428 * Return B_TRUE if the buffers differ in length or content. 28429 * This is used for comparing extension header buffers. 28430 * Note that an extension header would be declared different 28431 * even if all that changed was the next header value in that header i.e. 28432 * what really changed is the next extension header. 28433 */ 28434 boolean_t 28435 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28436 uint_t blen) 28437 { 28438 if (!b_valid) 28439 blen = 0; 28440 28441 if (alen != blen) 28442 return (B_TRUE); 28443 if (alen == 0) 28444 return (B_FALSE); /* Both zero length */ 28445 return (bcmp(abuf, bbuf, alen)); 28446 } 28447 28448 /* 28449 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28450 * Return B_FALSE if memory allocation fails - don't change any state! 28451 */ 28452 boolean_t 28453 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28454 const void *src, uint_t srclen) 28455 { 28456 void *dst; 28457 28458 if (!src_valid) 28459 srclen = 0; 28460 28461 ASSERT(*dstlenp == 0); 28462 if (src != NULL && srclen != 0) { 28463 dst = mi_alloc(srclen, BPRI_MED); 28464 if (dst == NULL) 28465 return (B_FALSE); 28466 } else { 28467 dst = NULL; 28468 } 28469 if (*dstp != NULL) 28470 mi_free(*dstp); 28471 *dstp = dst; 28472 *dstlenp = dst == NULL ? 0 : srclen; 28473 return (B_TRUE); 28474 } 28475 28476 /* 28477 * Replace what is in *dst, *dstlen with the source. 28478 * Assumes ip_allocbuf has already been called. 28479 */ 28480 void 28481 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28482 const void *src, uint_t srclen) 28483 { 28484 if (!src_valid) 28485 srclen = 0; 28486 28487 ASSERT(*dstlenp == srclen); 28488 if (src != NULL && srclen != 0) 28489 bcopy(src, *dstp, srclen); 28490 } 28491 28492 /* 28493 * Free the storage pointed to by the members of an ip6_pkt_t. 28494 */ 28495 void 28496 ip6_pkt_free(ip6_pkt_t *ipp) 28497 { 28498 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28499 28500 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28501 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28502 ipp->ipp_hopopts = NULL; 28503 ipp->ipp_hopoptslen = 0; 28504 } 28505 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 28506 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 28507 ipp->ipp_rtdstopts = NULL; 28508 ipp->ipp_rtdstoptslen = 0; 28509 } 28510 if (ipp->ipp_fields & IPPF_DSTOPTS) { 28511 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 28512 ipp->ipp_dstopts = NULL; 28513 ipp->ipp_dstoptslen = 0; 28514 } 28515 if (ipp->ipp_fields & IPPF_RTHDR) { 28516 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 28517 ipp->ipp_rthdr = NULL; 28518 ipp->ipp_rthdrlen = 0; 28519 } 28520 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 28521 IPPF_RTHDR); 28522 } 28523