1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/optcom.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <sys/sunddi.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <rpc/pmap_prot.h> 126 127 /* 128 * Values for squeue switch: 129 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 130 * IP_SQUEUE_ENTER: squeue_enter 131 * IP_SQUEUE_FILL: squeue_fill 132 */ 133 int ip_squeue_enter = 2; 134 squeue_func_t ip_input_proc; 135 /* 136 * IP statistics. 137 */ 138 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 139 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 typedef struct ip_stat { 143 kstat_named_t ipsec_fanout_proto; 144 kstat_named_t ip_udp_fannorm; 145 kstat_named_t ip_udp_fanmb; 146 kstat_named_t ip_udp_fanothers; 147 kstat_named_t ip_udp_fast_path; 148 kstat_named_t ip_udp_slow_path; 149 kstat_named_t ip_udp_input_err; 150 kstat_named_t ip_tcppullup; 151 kstat_named_t ip_tcpoptions; 152 kstat_named_t ip_multipkttcp; 153 kstat_named_t ip_tcp_fast_path; 154 kstat_named_t ip_tcp_slow_path; 155 kstat_named_t ip_tcp_input_error; 156 kstat_named_t ip_db_ref; 157 kstat_named_t ip_notaligned1; 158 kstat_named_t ip_notaligned2; 159 kstat_named_t ip_multimblk3; 160 kstat_named_t ip_multimblk4; 161 kstat_named_t ip_ipoptions; 162 kstat_named_t ip_classify_fail; 163 kstat_named_t ip_opt; 164 kstat_named_t ip_udp_rput_local; 165 kstat_named_t ipsec_proto_ahesp; 166 kstat_named_t ip_conn_flputbq; 167 kstat_named_t ip_conn_walk_drain; 168 kstat_named_t ip_out_sw_cksum; 169 kstat_named_t ip_in_sw_cksum; 170 kstat_named_t ip_trash_ire_reclaim_calls; 171 kstat_named_t ip_trash_ire_reclaim_success; 172 kstat_named_t ip_ire_arp_timer_expired; 173 kstat_named_t ip_ire_redirect_timer_expired; 174 kstat_named_t ip_ire_pmtu_timer_expired; 175 kstat_named_t ip_input_multi_squeue; 176 kstat_named_t ip_tcp_in_full_hw_cksum_err; 177 kstat_named_t ip_tcp_in_part_hw_cksum_err; 178 kstat_named_t ip_tcp_in_sw_cksum_err; 179 kstat_named_t ip_tcp_out_sw_cksum_bytes; 180 kstat_named_t ip_udp_in_full_hw_cksum_err; 181 kstat_named_t ip_udp_in_part_hw_cksum_err; 182 kstat_named_t ip_udp_in_sw_cksum_err; 183 kstat_named_t ip_udp_out_sw_cksum_bytes; 184 kstat_named_t ip_frag_mdt_pkt_out; 185 kstat_named_t ip_frag_mdt_discarded; 186 kstat_named_t ip_frag_mdt_allocfail; 187 kstat_named_t ip_frag_mdt_addpdescfail; 188 kstat_named_t ip_frag_mdt_allocd; 189 } ip_stat_t; 190 191 static ip_stat_t ip_statistics = { 192 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 194 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 195 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 196 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 197 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 198 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 199 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 200 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 201 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 202 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 203 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 204 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 205 { "ip_db_ref", KSTAT_DATA_UINT64 }, 206 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 207 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 208 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 209 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 210 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 211 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 212 { "ip_opt", KSTAT_DATA_UINT64 }, 213 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 214 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 215 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 216 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 217 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 218 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 219 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 220 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 221 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 222 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 223 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 224 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 230 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 231 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 232 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 235 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 236 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 237 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 238 }; 239 240 static kstat_t *ip_kstat; 241 242 #define TCP6 "tcp6" 243 #define TCP "tcp" 244 #define SCTP "sctp" 245 #define SCTP6 "sctp6" 246 247 major_t TCP6_MAJ; 248 major_t TCP_MAJ; 249 major_t SCTP_MAJ; 250 major_t SCTP6_MAJ; 251 252 int ip_poll_normal_ms = 100; 253 int ip_poll_normal_ticks = 0; 254 255 /* 256 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 257 */ 258 259 struct listptr_s { 260 mblk_t *lp_head; /* pointer to the head of the list */ 261 mblk_t *lp_tail; /* pointer to the tail of the list */ 262 }; 263 264 typedef struct listptr_s listptr_t; 265 266 /* 267 * This is used by ip_snmp_get_mib2_ip_route_media and 268 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 269 */ 270 typedef struct iproutedata_s { 271 uint_t ird_idx; 272 listptr_t ird_route; /* ipRouteEntryTable */ 273 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 274 listptr_t ird_attrs; /* ipRouteAttributeTable */ 275 } iproutedata_t; 276 277 /* 278 * Cluster specific hooks. These should be NULL when booted as a non-cluster 279 */ 280 281 /* 282 * Hook functions to enable cluster networking 283 * On non-clustered systems these vectors must always be NULL. 284 * 285 * Hook function to Check ip specified ip address is a shared ip address 286 * in the cluster 287 * 288 */ 289 int (*cl_inet_isclusterwide)(uint8_t protocol, 290 sa_family_t addr_family, uint8_t *laddrp) = NULL; 291 292 /* 293 * Hook function to generate cluster wide ip fragment identifier 294 */ 295 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 296 uint8_t *laddrp, uint8_t *faddrp) = NULL; 297 298 /* 299 * Synchronization notes: 300 * 301 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 302 * MT level protection given by STREAMS. IP uses a combination of its own 303 * internal serialization mechanism and standard Solaris locking techniques. 304 * The internal serialization is per phyint (no IPMP) or per IPMP group. 305 * This is used to serialize plumbing operations, IPMP operations, certain 306 * multicast operations, most set ioctls, igmp/mld timers etc. 307 * 308 * Plumbing is a long sequence of operations involving message 309 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 310 * involved in plumbing operations. A natural model is to serialize these 311 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 312 * parallel without any interference. But various set ioctls on hme0 are best 313 * serialized. However if the system uses IPMP, the operations are easier if 314 * they are serialized on a per IPMP group basis since IPMP operations 315 * happen across ill's of a group. Thus the lowest common denominator is to 316 * serialize most set ioctls, multicast join/leave operations, IPMP operations 317 * igmp/mld timer operations, and processing of DLPI control messages received 318 * from drivers on a per IPMP group basis. If the system does not employ 319 * IPMP the serialization is on a per phyint basis. This serialization is 320 * provided by the ipsq_t and primitives operating on this. Details can 321 * be found in ip_if.c above the core primitives operating on ipsq_t. 322 * 323 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 324 * Simiarly lookup of an ire by a thread also returns a refheld ire. 325 * In addition ipif's and ill's referenced by the ire are also indirectly 326 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 327 * the ipif's address or netmask change as long as an ipif is refheld 328 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 329 * address of an ipif has to go through the ipsq_t. This ensures that only 330 * 1 such exclusive operation proceeds at any time on the ipif. It then 331 * deletes all ires associated with this ipif, and waits for all refcnts 332 * associated with this ipif to come down to zero. The address is changed 333 * only after the ipif has been quiesced. Then the ipif is brought up again. 334 * More details are described above the comment in ip_sioctl_flags. 335 * 336 * Packet processing is based mostly on IREs and are fully multi-threaded 337 * using standard Solaris MT techniques. 338 * 339 * There are explicit locks in IP to handle: 340 * - The ip_g_head list maintained by mi_open_link() and friends. 341 * 342 * - The reassembly data structures (one lock per hash bucket) 343 * 344 * - conn_lock is meant to protect conn_t fields. The fields actually 345 * protected by conn_lock are documented in the conn_t definition. 346 * 347 * - ire_lock to protect some of the fields of the ire, IRE tables 348 * (one lock per hash bucket). Refer to ip_ire.c for details. 349 * 350 * - ndp_g_lock and nce_lock for protecting NCEs. 351 * 352 * - ill_lock protects fields of the ill and ipif. Details in ip.h 353 * 354 * - ill_g_lock: This is a global reader/writer lock. Protects the following 355 * * The AVL tree based global multi list of all ills. 356 * * The linked list of all ipifs of an ill 357 * * The <ill-ipsq> mapping 358 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 359 * * The illgroup list threaded by ill_group_next. 360 * * <ill-phyint> association 361 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 362 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 363 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 364 * will all have to hold the ill_g_lock as writer for the actual duration 365 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 366 * may be found in the IPMP section. 367 * 368 * - ill_lock: This is a per ill mutex. 369 * It protects some members of the ill and is documented below. 370 * It also protects the <ill-ipsq> mapping 371 * It also protects the illgroup list threaded by ill_group_next. 372 * It also protects the <ill-phyint> assoc. 373 * It also protects the list of ipifs hanging off the ill. 374 * 375 * - ipsq_lock: This is a per ipsq_t mutex lock. 376 * This protects all the other members of the ipsq struct except 377 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 378 * 379 * - illgrp_lock: This is a per ill_group mutex lock. 380 * The only thing it protects is the illgrp_ill_schednext member of ill_group 381 * which dictates which is the next ill in an ill_group that is to be chosen 382 * for sending outgoing packets, through creation of an IRE_CACHE that 383 * references this ill. 384 * 385 * - phyint_lock: This is a per phyint mutex lock. Protects just the 386 * phyint_flags 387 * 388 * - ip_g_nd_lock: This is a global reader/writer lock. 389 * Any call to nd_load to load a new parameter to the ND table must hold the 390 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 391 * as reader. 392 * 393 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 394 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 395 * uniqueness check also done atomically. 396 * 397 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 398 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 399 * as a writer when adding or deleting elements from these lists, and 400 * as a reader when walking these lists to send a SADB update to the 401 * IPsec capable ills. 402 * 403 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 404 * group list linked by ill_usesrc_grp_next. It also protects the 405 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 406 * group is being added or deleted. This lock is taken as a reader when 407 * walking the list/group(eg: to get the number of members in a usesrc group). 408 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 409 * field is changing state i.e from NULL to non-NULL or vice-versa. For 410 * example, it is not necessary to take this lock in the initial portion 411 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 412 * ip_sioctl_flags since the these operations are executed exclusively and 413 * that ensures that the "usesrc group state" cannot change. The "usesrc 414 * group state" change can happen only in the latter part of 415 * ip_sioctl_slifusesrc and in ill_delete. 416 * 417 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 418 * 419 * To change the <ill-phyint> association, the ill_g_lock must be held 420 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 421 * must be held. 422 * 423 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 424 * and the ill_lock of the ill in question must be held. 425 * 426 * To change the <ill-illgroup> association the ill_g_lock must be held as 427 * writer and the ill_lock of the ill in question must be held. 428 * 429 * To add or delete an ipif from the list of ipifs hanging off the ill, 430 * ill_g_lock (writer) and ill_lock must be held and the thread must be 431 * a writer on the associated ipsq,. 432 * 433 * To add or delete an ill to the system, the ill_g_lock must be held as 434 * writer and the thread must be a writer on the associated ipsq. 435 * 436 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 437 * must be a writer on the associated ipsq. 438 * 439 * Lock hierarchy 440 * 441 * Some lock hierarchy scenarios are listed below. 442 * 443 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 444 * ill_g_lock -> illgrp_lock -> ill_lock 445 * ill_g_lock -> ill_lock(s) -> phyint_lock 446 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 447 * ill_g_lock -> ip_addr_avail_lock 448 * conn_lock -> irb_lock -> ill_lock -> ire_lock 449 * ill_g_lock -> ip_g_nd_lock 450 * 451 * When more than 1 ill lock is needed to be held, all ill lock addresses 452 * are sorted on address and locked starting from highest addressed lock 453 * downward. 454 * 455 * Mobile-IP scenarios 456 * 457 * irb_lock -> ill_lock -> ire_mrtun_lock 458 * irb_lock -> ill_lock -> ire_srcif_table_lock 459 * 460 * IPsec scenarios 461 * 462 * ipsa_lock -> ill_g_lock -> ill_lock 463 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 464 * ipsec_capab_ills_lock -> ipsa_lock 465 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 466 * 467 * Trusted Solaris scenarios 468 * 469 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 470 * igsa_lock -> gcdb_lock 471 * gcgrp_rwlock -> ire_lock 472 * gcgrp_rwlock -> gcdb_lock 473 * 474 * 475 * Routing/forwarding table locking notes: 476 * 477 * Lock acquisition order: Radix tree lock, irb_lock. 478 * Requirements: 479 * i. Walker must not hold any locks during the walker callback. 480 * ii Walker must not see a truncated tree during the walk because of any node 481 * deletion. 482 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 483 * in many places in the code to walk the irb list. Thus even if all the 484 * ires in a bucket have been deleted, we still can't free the radix node 485 * until the ires have actually been inactive'd (freed). 486 * 487 * Tree traversal - Need to hold the global tree lock in read mode. 488 * Before dropping the global tree lock, need to either increment the ire_refcnt 489 * to ensure that the radix node can't be deleted. 490 * 491 * Tree add - Need to hold the global tree lock in write mode to add a 492 * radix node. To prevent the node from being deleted, increment the 493 * irb_refcnt, after the node is added to the tree. The ire itself is 494 * added later while holding the irb_lock, but not the tree lock. 495 * 496 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 497 * All associated ires must be inactive (i.e. freed), and irb_refcnt 498 * must be zero. 499 * 500 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 501 * global tree lock (read mode) for traversal. 502 * 503 * IPSEC notes : 504 * 505 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 506 * in front of the actual packet. For outbound datagrams, the M_CTL 507 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 508 * information used by the IPSEC code for applying the right level of 509 * protection. The information initialized by IP in the ipsec_out_t 510 * is determined by the per-socket policy or global policy in the system. 511 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 512 * ipsec_info.h) which starts out with nothing in it. It gets filled 513 * with the right information if it goes through the AH/ESP code, which 514 * happens if the incoming packet is secure. The information initialized 515 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 516 * the policy requirements needed by per-socket policy or global policy 517 * is met or not. 518 * 519 * If there is both per-socket policy (set using setsockopt) and there 520 * is also global policy match for the 5 tuples of the socket, 521 * ipsec_override_policy() makes the decision of which one to use. 522 * 523 * For fully connected sockets i.e dst, src [addr, port] is known, 524 * conn_policy_cached is set indicating that policy has been cached. 525 * conn_in_enforce_policy may or may not be set depending on whether 526 * there is a global policy match or per-socket policy match. 527 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 528 * Once the right policy is set on the conn_t, policy cannot change for 529 * this socket. This makes life simpler for TCP (UDP ?) where 530 * re-transmissions go out with the same policy. For symmetry, policy 531 * is cached for fully connected UDP sockets also. Thus if policy is cached, 532 * it also implies that policy is latched i.e policy cannot change 533 * on these sockets. As we have the right policy on the conn, we don't 534 * have to lookup global policy for every outbound and inbound datagram 535 * and thus serving as an optimization. Note that a global policy change 536 * does not affect fully connected sockets if they have policy. If fully 537 * connected sockets did not have any policy associated with it, global 538 * policy change may affect them. 539 * 540 * IP Flow control notes: 541 * 542 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 543 * cannot be sent down to the driver by IP, because of a canput failure, IP 544 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 545 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 546 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 547 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 548 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 549 * the queued messages, and removes the conn from the drain list, if all 550 * messages were drained. It also qenables the next conn in the drain list to 551 * continue the drain process. 552 * 553 * In reality the drain list is not a single list, but a configurable number 554 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 555 * list. If the ip_wsrv of the next qenabled conn does not run, because the 556 * stream closes, ip_close takes responsibility to qenable the next conn in 557 * the drain list. The directly called ip_wput path always does a putq, if 558 * it cannot putnext. Thus synchronization problems are handled between 559 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 560 * functions that manipulate this drain list. Furthermore conn_drain_insert 561 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 562 * running on a queue at any time. conn_drain_tail can be simultaneously called 563 * from both ip_wsrv and ip_close. 564 * 565 * IPQOS notes: 566 * 567 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 568 * and IPQoS modules. IPPF includes hooks in IP at different control points 569 * (callout positions) which direct packets to IPQoS modules for policy 570 * processing. Policies, if present, are global. 571 * 572 * The callout positions are located in the following paths: 573 * o local_in (packets destined for this host) 574 * o local_out (packets orginating from this host ) 575 * o fwd_in (packets forwarded by this m/c - inbound) 576 * o fwd_out (packets forwarded by this m/c - outbound) 577 * Hooks at these callout points can be enabled/disabled using the ndd variable 578 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 579 * By default all the callout positions are enabled. 580 * 581 * Outbound (local_out) 582 * Hooks are placed in ip_wput_ire and ipsec_out_process. 583 * 584 * Inbound (local_in) 585 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 586 * TCP and UDP fanout routines. 587 * 588 * Forwarding (in and out) 589 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 590 * 591 * IP Policy Framework processing (IPPF processing) 592 * Policy processing for a packet is initiated by ip_process, which ascertains 593 * that the classifier (ipgpc) is loaded and configured, failing which the 594 * packet resumes normal processing in IP. If the clasifier is present, the 595 * packet is acted upon by one or more IPQoS modules (action instances), per 596 * filters configured in ipgpc and resumes normal IP processing thereafter. 597 * An action instance can drop a packet in course of its processing. 598 * 599 * A boolean variable, ip_policy, is used in all the fanout routines that can 600 * invoke ip_process for a packet. This variable indicates if the packet should 601 * to be sent for policy processing. The variable is set to B_TRUE by default, 602 * i.e. when the routines are invoked in the normal ip procesing path for a 603 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 604 * ip_policy is set to B_FALSE for all the routines called in these two 605 * functions because, in the former case, we don't process loopback traffic 606 * currently while in the latter, the packets have already been processed in 607 * icmp_inbound. 608 * 609 * Zones notes: 610 * 611 * The partitioning rules for networking are as follows: 612 * 1) Packets coming from a zone must have a source address belonging to that 613 * zone. 614 * 2) Packets coming from a zone can only be sent on a physical interface on 615 * which the zone has an IP address. 616 * 3) Between two zones on the same machine, packet delivery is only allowed if 617 * there's a matching route for the destination and zone in the forwarding 618 * table. 619 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 620 * different zones can bind to the same port with the wildcard address 621 * (INADDR_ANY). 622 * 623 * The granularity of interface partitioning is at the logical interface level. 624 * Therefore, every zone has its own IP addresses, and incoming packets can be 625 * attributed to a zone unambiguously. A logical interface is placed into a zone 626 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 627 * structure. Rule (1) is implemented by modifying the source address selection 628 * algorithm so that the list of eligible addresses is filtered based on the 629 * sending process zone. 630 * 631 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 632 * across all zones, depending on their type. Here is the break-up: 633 * 634 * IRE type Shared/exclusive 635 * -------- ---------------- 636 * IRE_BROADCAST Exclusive 637 * IRE_DEFAULT (default routes) Shared (*) 638 * IRE_LOCAL Exclusive (x) 639 * IRE_LOOPBACK Exclusive 640 * IRE_PREFIX (net routes) Shared (*) 641 * IRE_CACHE Exclusive 642 * IRE_IF_NORESOLVER (interface routes) Exclusive 643 * IRE_IF_RESOLVER (interface routes) Exclusive 644 * IRE_HOST (host routes) Shared (*) 645 * 646 * (*) A zone can only use a default or off-subnet route if the gateway is 647 * directly reachable from the zone, that is, if the gateway's address matches 648 * one of the zone's logical interfaces. 649 * 650 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 651 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 652 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 653 * address of the zone itself (the destination). Since IRE_LOCAL is used 654 * for communication between zones, ip_wput_ire has special logic to set 655 * the right source address when sending using an IRE_LOCAL. 656 * 657 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 658 * ire_cache_lookup restricts loopback using an IRE_LOCAL 659 * between zone to the case when L2 would have conceptually looped the packet 660 * back, i.e. the loopback which is required since neither Ethernet drivers 661 * nor Ethernet hardware loops them back. This is the case when the normal 662 * routes (ignoring IREs with different zoneids) would send out the packet on 663 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 664 * associated. 665 * 666 * Multiple zones can share a common broadcast address; typically all zones 667 * share the 255.255.255.255 address. Incoming as well as locally originated 668 * broadcast packets must be dispatched to all the zones on the broadcast 669 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 670 * since some zones may not be on the 10.16.72/24 network. To handle this, each 671 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 672 * sent to every zone that has an IRE_BROADCAST entry for the destination 673 * address on the input ill, see conn_wantpacket(). 674 * 675 * Applications in different zones can join the same multicast group address. 676 * For IPv4, group memberships are per-logical interface, so they're already 677 * inherently part of a zone. For IPv6, group memberships are per-physical 678 * interface, so we distinguish IPv6 group memberships based on group address, 679 * interface and zoneid. In both cases, received multicast packets are sent to 680 * every zone for which a group membership entry exists. On IPv6 we need to 681 * check that the target zone still has an address on the receiving physical 682 * interface; it could have been removed since the application issued the 683 * IPV6_JOIN_GROUP. 684 */ 685 686 /* 687 * Squeue Fanout flags: 688 * 0: No fanout. 689 * 1: Fanout across all squeues 690 */ 691 boolean_t ip_squeue_fanout = 0; 692 693 /* 694 * Maximum dups allowed per packet. 695 */ 696 uint_t ip_max_frag_dups = 10; 697 698 #define IS_SIMPLE_IPH(ipha) \ 699 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 700 701 /* RFC1122 Conformance */ 702 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 703 704 #define ILL_MAX_NAMELEN LIFNAMSIZ 705 706 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 707 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 709 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 712 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 713 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 714 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 715 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 716 mblk_t *, int); 717 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 718 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 719 ill_t *, zoneid_t); 720 static void icmp_options_update(ipha_t *); 721 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 722 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 723 zoneid_t zoneid); 724 static mblk_t *icmp_pkt_err_ok(mblk_t *); 725 static void icmp_redirect(mblk_t *); 726 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 727 728 static void ip_arp_news(queue_t *, mblk_t *); 729 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 730 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 731 char *ip_dot_addr(ipaddr_t, char *); 732 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 733 int ip_close(queue_t *, int); 734 static char *ip_dot_saddr(uchar_t *, char *); 735 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 736 boolean_t, boolean_t, ill_t *, zoneid_t); 737 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 738 boolean_t, boolean_t, zoneid_t); 739 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 740 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 741 static void ip_lrput(queue_t *, mblk_t *); 742 ipaddr_t ip_massage_options(ipha_t *); 743 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 744 ipaddr_t ip_net_mask(ipaddr_t); 745 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 746 zoneid_t); 747 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 748 conn_t *, uint32_t, zoneid_t); 749 char *ip_nv_lookup(nv_t *, int); 750 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 751 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 752 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 754 size_t); 755 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 756 void ip_rput(queue_t *, mblk_t *); 757 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 758 void *dummy_arg); 759 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 760 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 761 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 762 ire_t *); 763 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 764 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 765 uint16_t *); 766 int ip_snmp_get(queue_t *, mblk_t *); 767 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 768 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 769 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 771 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 772 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 780 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 781 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 782 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 783 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 784 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 785 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 786 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 787 static boolean_t ip_source_routed(ipha_t *); 788 static boolean_t ip_source_route_included(ipha_t *); 789 790 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 791 zoneid_t); 792 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 793 static void ip_wput_local_options(ipha_t *); 794 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 795 zoneid_t); 796 797 static void conn_drain_init(void); 798 static void conn_drain_fini(void); 799 static void conn_drain_tail(conn_t *connp, boolean_t closing); 800 801 static void conn_walk_drain(void); 802 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 803 zoneid_t); 804 805 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 806 zoneid_t); 807 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 808 void *dummy_arg); 809 810 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 811 812 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 813 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 814 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 815 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 816 817 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 818 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 819 caddr_t, cred_t *); 820 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 821 caddr_t cp, cred_t *cr); 822 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 823 cred_t *); 824 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 825 caddr_t cp, cred_t *cr); 826 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 827 cred_t *); 828 static squeue_func_t ip_squeue_switch(int); 829 830 static void ip_kstat_init(void); 831 static void ip_kstat_fini(void); 832 static int ip_kstat_update(kstat_t *kp, int rw); 833 static void icmp_kstat_init(void); 834 static void icmp_kstat_fini(void); 835 static int icmp_kstat_update(kstat_t *kp, int rw); 836 837 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 838 839 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 840 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 841 842 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 843 ipha_t *, ill_t *, boolean_t); 844 845 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 846 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 847 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 848 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 849 850 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 851 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 852 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 853 854 /* How long, in seconds, we allow frags to hang around. */ 855 #define IP_FRAG_TIMEOUT 60 856 857 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 858 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 859 860 /* 861 * Threshold which determines whether MDT should be used when 862 * generating IP fragments; payload size must be greater than 863 * this threshold for MDT to take place. 864 */ 865 #define IP_WPUT_FRAG_MDT_MIN 32768 866 867 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 868 869 /* Protected by ip_mi_lock */ 870 static void *ip_g_head; /* Instance Data List Head */ 871 kmutex_t ip_mi_lock; /* Lock for list of instances */ 872 873 /* Only modified during _init and _fini thus no locking is needed. */ 874 caddr_t ip_g_nd; /* Named Dispatch List Head */ 875 876 877 static long ip_rput_pullups; 878 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 879 880 vmem_t *ip_minor_arena; 881 882 /* 883 * MIB-2 stuff for SNMP (both IP and ICMP) 884 */ 885 mib2_ip_t ip_mib; 886 mib2_icmp_t icmp_mib; 887 888 #ifdef DEBUG 889 uint32_t ipsechw_debug = 0; 890 #endif 891 892 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 893 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 894 895 uint_t loopback_packets = 0; 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 901 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 902 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 903 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 904 hrtime_t ip_multirt_log_interval = 1000; 905 /* Time since last warning issued. */ 906 static hrtime_t multirt_bad_mtu_last_time = 0; 907 908 kmutex_t ip_trash_timer_lock; 909 krwlock_t ip_g_nd_lock; 910 911 /* 912 * XXX following really should only be in a header. Would need more 913 * header and .c clean up first. 914 */ 915 extern optdb_obj_t ip_opt_obj; 916 917 ulong_t ip_squeue_enter_unbound = 0; 918 919 /* 920 * Named Dispatch Parameter Table. 921 * All of these are alterable, within the min/max values given, at run time. 922 */ 923 static ipparam_t lcl_param_arr[] = { 924 /* min max value name */ 925 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 926 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 927 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 928 { 0, 1, 0, "ip_respond_to_timestamp"}, 929 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 930 { 0, 1, 1, "ip_send_redirects"}, 931 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 932 { 0, 10, 0, "ip_debug"}, 933 { 0, 10, 0, "ip_mrtdebug"}, 934 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 935 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 936 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 937 { 1, 255, 255, "ip_def_ttl" }, 938 { 0, 1, 0, "ip_forward_src_routed"}, 939 { 0, 256, 32, "ip_wroff_extra" }, 940 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 941 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 942 { 0, 1, 1, "ip_path_mtu_discovery" }, 943 { 0, 240, 30, "ip_ignore_delete_time" }, 944 { 0, 1, 0, "ip_ignore_redirect" }, 945 { 0, 1, 1, "ip_output_queue" }, 946 { 1, 254, 1, "ip_broadcast_ttl" }, 947 { 0, 99999, 100, "ip_icmp_err_interval" }, 948 { 1, 99999, 10, "ip_icmp_err_burst" }, 949 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 950 { 0, 1, 0, "ip_strict_dst_multihoming" }, 951 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 952 { 0, 1, 0, "ipsec_override_persocket_policy" }, 953 { 0, 1, 1, "icmp_accept_clear_messages" }, 954 { 0, 1, 1, "igmp_accept_clear_messages" }, 955 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 956 "ip_ndp_delay_first_probe_time"}, 957 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 958 "ip_ndp_max_unicast_solicit"}, 959 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 960 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 961 { 0, 1, 0, "ip6_forward_src_routed"}, 962 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 963 { 0, 1, 1, "ip6_send_redirects"}, 964 { 0, 1, 0, "ip6_ignore_redirect" }, 965 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 966 967 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 968 969 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 970 971 { 0, 1, 1, "pim_accept_clear_messages" }, 972 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 973 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 974 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 975 { 0, 15, 0, "ip_policy_mask" }, 976 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 977 { 0, 255, 1, "ip_multirt_ttl" }, 978 { 0, 1, 1, "ip_multidata_outbound" }, 979 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 980 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 981 { 0, 1000, 1, "ip_max_temp_defend" }, 982 { 0, 1000, 3, "ip_max_defend" }, 983 { 0, 999999, 30, "ip_defend_interval" }, 984 { 0, 3600000, 300000, "ip_dup_recovery" }, 985 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 986 { 0, 1, 1, "ip_lso_outbound" }, 987 #ifdef DEBUG 988 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 989 #endif 990 }; 991 992 ipparam_t *ip_param_arr = lcl_param_arr; 993 994 /* Extended NDP table */ 995 static ipndp_t lcl_ndp_arr[] = { 996 /* getf setf data name */ 997 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 998 "ip_forwarding" }, 999 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 1000 "ip6_forwarding" }, 1001 { ip_ill_report, NULL, NULL, 1002 "ip_ill_status" }, 1003 { ip_ipif_report, NULL, NULL, 1004 "ip_ipif_status" }, 1005 { ip_ire_report, NULL, NULL, 1006 "ipv4_ire_status" }, 1007 { ip_ire_report_mrtun, NULL, NULL, 1008 "ipv4_mrtun_ire_status" }, 1009 { ip_ire_report_srcif, NULL, NULL, 1010 "ipv4_srcif_ire_status" }, 1011 { ip_ire_report_v6, NULL, NULL, 1012 "ipv6_ire_status" }, 1013 { ip_conn_report, NULL, NULL, 1014 "ip_conn_status" }, 1015 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1016 "ip_rput_pullups" }, 1017 { ndp_report, NULL, NULL, 1018 "ip_ndp_cache_report" }, 1019 { ip_srcid_report, NULL, NULL, 1020 "ip_srcid_status" }, 1021 { ip_param_generic_get, ip_squeue_profile_set, 1022 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1023 { ip_param_generic_get, ip_squeue_bind_set, 1024 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1025 { ip_param_generic_get, ip_input_proc_set, 1026 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1027 { ip_param_generic_get, ip_int_set, 1028 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1029 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1030 "ip_cgtp_filter" }, 1031 { ip_param_generic_get, ip_int_set, 1032 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1033 }; 1034 1035 /* 1036 * ip_g_forward controls IP forwarding. It takes two values: 1037 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1038 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1039 * 1040 * RFC1122 says there must be a configuration switch to control forwarding, 1041 * but that the default MUST be to not forward packets ever. Implicit 1042 * control based on configuration of multiple interfaces MUST NOT be 1043 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1044 * and, in fact, it was the default. That capability is now provided in the 1045 * /etc/rc2.d/S69inet script. 1046 */ 1047 int ip_g_forward = IP_FORWARD_DEFAULT; 1048 1049 /* It also has an IPv6 counterpart. */ 1050 1051 int ipv6_forward = IP_FORWARD_DEFAULT; 1052 1053 /* 1054 * Table of IP ioctls encoding the various properties of the ioctl and 1055 * indexed based on the last byte of the ioctl command. Occasionally there 1056 * is a clash, and there is more than 1 ioctl with the same last byte. 1057 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1058 * ioctls are encoded in the misc table. An entry in the ndx table is 1059 * retrieved by indexing on the last byte of the ioctl command and comparing 1060 * the ioctl command with the value in the ndx table. In the event of a 1061 * mismatch the misc table is then searched sequentially for the desired 1062 * ioctl command. 1063 * 1064 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1065 */ 1066 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1067 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 1078 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1079 MISC_CMD, ip_siocaddrt, NULL }, 1080 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1081 MISC_CMD, ip_siocdelrt, NULL }, 1082 1083 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1084 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1085 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1086 IF_CMD, ip_sioctl_get_addr, NULL }, 1087 1088 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1089 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1090 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1091 IPI_GET_CMD | IPI_REPL, 1092 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1093 1094 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1095 IPI_PRIV | IPI_WR | IPI_REPL, 1096 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1097 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1098 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1099 IF_CMD, ip_sioctl_get_flags, NULL }, 1100 1101 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 1104 /* copyin size cannot be coded for SIOCGIFCONF */ 1105 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1106 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1107 1108 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1109 IF_CMD, ip_sioctl_mtu, NULL }, 1110 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1111 IF_CMD, ip_sioctl_get_mtu, NULL }, 1112 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1113 IPI_GET_CMD | IPI_REPL, 1114 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1115 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1116 IF_CMD, ip_sioctl_brdaddr, NULL }, 1117 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1118 IPI_GET_CMD | IPI_REPL, 1119 IF_CMD, ip_sioctl_get_netmask, NULL }, 1120 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1121 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1122 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1123 IPI_GET_CMD | IPI_REPL, 1124 IF_CMD, ip_sioctl_get_metric, NULL }, 1125 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1126 IF_CMD, ip_sioctl_metric, NULL }, 1127 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 1129 /* See 166-168 below for extended SIOC*XARP ioctls */ 1130 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1131 MISC_CMD, ip_sioctl_arp, NULL }, 1132 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1133 MISC_CMD, ip_sioctl_arp, NULL }, 1134 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1135 MISC_CMD, ip_sioctl_arp, NULL }, 1136 1137 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 1159 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1160 MISC_CMD, if_unitsel, if_unitsel_restart }, 1161 1162 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 1181 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1182 IPI_PRIV | IPI_WR | IPI_MODOK, 1183 IF_CMD, ip_sioctl_sifname, NULL }, 1184 1185 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1190 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 1199 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1200 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1201 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1202 IF_CMD, ip_sioctl_get_muxid, NULL }, 1203 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1204 IPI_PRIV | IPI_WR | IPI_REPL, 1205 IF_CMD, ip_sioctl_muxid, NULL }, 1206 1207 /* Both if and lif variants share same func */ 1208 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1209 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1210 /* Both if and lif variants share same func */ 1211 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1212 IPI_PRIV | IPI_WR | IPI_REPL, 1213 IF_CMD, ip_sioctl_slifindex, NULL }, 1214 1215 /* copyin size cannot be coded for SIOCGIFCONF */ 1216 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1217 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1218 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1219 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1223 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 1236 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1237 IPI_PRIV | IPI_WR | IPI_REPL, 1238 LIF_CMD, ip_sioctl_removeif, 1239 ip_sioctl_removeif_restart }, 1240 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1241 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1242 LIF_CMD, ip_sioctl_addif, NULL }, 1243 #define SIOCLIFADDR_NDX 112 1244 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1245 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1246 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1247 IPI_GET_CMD | IPI_REPL, 1248 LIF_CMD, ip_sioctl_get_addr, NULL }, 1249 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1250 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1251 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1252 IPI_GET_CMD | IPI_REPL, 1253 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1254 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1255 IPI_PRIV | IPI_WR | IPI_REPL, 1256 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1257 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1258 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1259 LIF_CMD, ip_sioctl_get_flags, NULL }, 1260 1261 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1262 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1263 1264 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1265 ip_sioctl_get_lifconf, NULL }, 1266 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1267 LIF_CMD, ip_sioctl_mtu, NULL }, 1268 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1269 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1270 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1271 IPI_GET_CMD | IPI_REPL, 1272 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1273 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1274 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1275 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1276 IPI_GET_CMD | IPI_REPL, 1277 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1278 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1279 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1280 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1281 IPI_GET_CMD | IPI_REPL, 1282 LIF_CMD, ip_sioctl_get_metric, NULL }, 1283 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_metric, NULL }, 1285 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1286 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1287 LIF_CMD, ip_sioctl_slifname, 1288 ip_sioctl_slifname_restart }, 1289 1290 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1291 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1292 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1293 IPI_GET_CMD | IPI_REPL, 1294 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1295 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1296 IPI_PRIV | IPI_WR | IPI_REPL, 1297 LIF_CMD, ip_sioctl_muxid, NULL }, 1298 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1299 IPI_GET_CMD | IPI_REPL, 1300 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1301 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1302 IPI_PRIV | IPI_WR | IPI_REPL, 1303 LIF_CMD, ip_sioctl_slifindex, 0 }, 1304 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1305 LIF_CMD, ip_sioctl_token, NULL }, 1306 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1307 IPI_GET_CMD | IPI_REPL, 1308 LIF_CMD, ip_sioctl_get_token, NULL }, 1309 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1310 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1311 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1312 IPI_GET_CMD | IPI_REPL, 1313 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1314 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1315 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1316 1317 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1318 IPI_GET_CMD | IPI_REPL, 1319 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1320 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1321 LIF_CMD, ip_siocdelndp_v6, NULL }, 1322 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1323 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1324 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1325 LIF_CMD, ip_siocsetndp_v6, NULL }, 1326 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1327 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1328 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1329 MISC_CMD, ip_sioctl_tonlink, NULL }, 1330 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1331 MISC_CMD, ip_sioctl_tmysite, NULL }, 1332 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1333 TUN_CMD, ip_sioctl_tunparam, NULL }, 1334 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1335 IPI_PRIV | IPI_WR, 1336 TUN_CMD, ip_sioctl_tunparam, NULL }, 1337 1338 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1339 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1340 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1341 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1342 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1343 1344 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1345 IPI_PRIV | IPI_WR | IPI_REPL, 1346 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1347 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1348 IPI_PRIV | IPI_WR | IPI_REPL, 1349 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1350 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1351 IPI_PRIV | IPI_WR, 1352 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1353 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1354 IPI_GET_CMD | IPI_REPL, 1355 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1356 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1357 IPI_GET_CMD | IPI_REPL, 1358 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1359 1360 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1361 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1362 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1363 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1364 1365 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1366 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1367 1368 /* These are handled in ip_sioctl_copyin_setup itself */ 1369 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1370 MISC_CMD, NULL, NULL }, 1371 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1372 MISC_CMD, NULL, NULL }, 1373 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1374 1375 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1376 ip_sioctl_get_lifconf, NULL }, 1377 1378 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1379 MISC_CMD, ip_sioctl_xarp, NULL }, 1380 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1381 MISC_CMD, ip_sioctl_xarp, NULL }, 1382 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1383 MISC_CMD, ip_sioctl_xarp, NULL }, 1384 1385 /* SIOCPOPSOCKFS is not handled by IP */ 1386 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1387 1388 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1389 IPI_GET_CMD | IPI_REPL, 1390 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1391 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1392 IPI_PRIV | IPI_WR | IPI_REPL, 1393 LIF_CMD, ip_sioctl_slifzone, 1394 ip_sioctl_slifzone_restart }, 1395 /* 172-174 are SCTP ioctls and not handled by IP */ 1396 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1397 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1398 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1399 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1400 IPI_GET_CMD, LIF_CMD, 1401 ip_sioctl_get_lifusesrc, 0 }, 1402 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1403 IPI_PRIV | IPI_WR, 1404 LIF_CMD, ip_sioctl_slifusesrc, 1405 NULL }, 1406 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1407 ip_sioctl_get_lifsrcof, NULL }, 1408 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1409 MISC_CMD, ip_sioctl_msfilter, NULL }, 1410 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1411 MISC_CMD, ip_sioctl_msfilter, NULL }, 1412 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1413 MISC_CMD, ip_sioctl_msfilter, NULL }, 1414 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1415 MISC_CMD, ip_sioctl_msfilter, NULL }, 1416 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1417 ip_sioctl_set_ipmpfailback, NULL } 1418 }; 1419 1420 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1421 1422 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1423 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1424 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1425 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1426 TUN_CMD, ip_sioctl_tunparam, NULL }, 1427 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1428 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1429 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1430 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1431 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1432 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1433 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1434 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1435 MISC_CMD, mrt_ioctl}, 1436 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1437 MISC_CMD, mrt_ioctl}, 1438 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1439 MISC_CMD, mrt_ioctl} 1440 }; 1441 1442 int ip_misc_ioctl_count = 1443 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1444 1445 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1446 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1447 static int conn_drain_list_index; /* Next drain_list to be used */ 1448 int conn_drain_nthreads; /* Number of drainers reqd. */ 1449 /* Settable in /etc/system */ 1450 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1451 1452 /* Defined in ip_ire.c */ 1453 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1454 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1455 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1456 1457 static nv_t ire_nv_arr[] = { 1458 { IRE_BROADCAST, "BROADCAST" }, 1459 { IRE_LOCAL, "LOCAL" }, 1460 { IRE_LOOPBACK, "LOOPBACK" }, 1461 { IRE_CACHE, "CACHE" }, 1462 { IRE_DEFAULT, "DEFAULT" }, 1463 { IRE_PREFIX, "PREFIX" }, 1464 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1465 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1466 { IRE_HOST, "HOST" }, 1467 { 0 } 1468 }; 1469 1470 nv_t *ire_nv_tbl = ire_nv_arr; 1471 1472 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1473 extern krwlock_t ipsec_capab_ills_lock; 1474 1475 /* Defined in ip_netinfo.c */ 1476 extern ddi_taskq_t *eventq_queue_nic; 1477 1478 /* Packet dropper for IP IPsec processing failures */ 1479 ipdropper_t ip_dropper; 1480 1481 /* Simple ICMP IP Header Template */ 1482 static ipha_t icmp_ipha = { 1483 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1484 }; 1485 1486 struct module_info ip_mod_info = { 1487 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1488 }; 1489 1490 /* 1491 * Duplicate static symbols within a module confuses mdb; so we avoid the 1492 * problem by making the symbols here distinct from those in udp.c. 1493 */ 1494 1495 static struct qinit iprinit = { 1496 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1497 &ip_mod_info 1498 }; 1499 1500 static struct qinit ipwinit = { 1501 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1502 &ip_mod_info 1503 }; 1504 1505 static struct qinit iplrinit = { 1506 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1507 &ip_mod_info 1508 }; 1509 1510 static struct qinit iplwinit = { 1511 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1512 &ip_mod_info 1513 }; 1514 1515 struct streamtab ipinfo = { 1516 &iprinit, &ipwinit, &iplrinit, &iplwinit 1517 }; 1518 1519 #ifdef DEBUG 1520 static boolean_t skip_sctp_cksum = B_FALSE; 1521 #endif 1522 1523 /* 1524 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1525 * ip_rput_v6(), ip_output(), etc. If the message 1526 * block already has a M_CTL at the front of it, then simply set the zoneid 1527 * appropriately. 1528 */ 1529 mblk_t * 1530 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1531 { 1532 mblk_t *first_mp; 1533 ipsec_out_t *io; 1534 1535 ASSERT(zoneid != ALL_ZONES); 1536 if (mp->b_datap->db_type == M_CTL) { 1537 io = (ipsec_out_t *)mp->b_rptr; 1538 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1539 io->ipsec_out_zoneid = zoneid; 1540 return (mp); 1541 } 1542 1543 first_mp = ipsec_alloc_ipsec_out(); 1544 if (first_mp == NULL) 1545 return (NULL); 1546 io = (ipsec_out_t *)first_mp->b_rptr; 1547 /* This is not a secure packet */ 1548 io->ipsec_out_secure = B_FALSE; 1549 io->ipsec_out_zoneid = zoneid; 1550 first_mp->b_cont = mp; 1551 return (first_mp); 1552 } 1553 1554 /* 1555 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1556 */ 1557 mblk_t * 1558 ip_copymsg(mblk_t *mp) 1559 { 1560 mblk_t *nmp; 1561 ipsec_info_t *in; 1562 1563 if (mp->b_datap->db_type != M_CTL) 1564 return (copymsg(mp)); 1565 1566 in = (ipsec_info_t *)mp->b_rptr; 1567 1568 /* 1569 * Note that M_CTL is also used for delivering ICMP error messages 1570 * upstream to transport layers. 1571 */ 1572 if (in->ipsec_info_type != IPSEC_OUT && 1573 in->ipsec_info_type != IPSEC_IN) 1574 return (copymsg(mp)); 1575 1576 nmp = copymsg(mp->b_cont); 1577 1578 if (in->ipsec_info_type == IPSEC_OUT) 1579 return (ipsec_out_tag(mp, nmp)); 1580 else 1581 return (ipsec_in_tag(mp, nmp)); 1582 } 1583 1584 /* Generate an ICMP fragmentation needed message. */ 1585 static void 1586 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1587 { 1588 icmph_t icmph; 1589 mblk_t *first_mp; 1590 boolean_t mctl_present; 1591 1592 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1593 1594 if (!(mp = icmp_pkt_err_ok(mp))) { 1595 if (mctl_present) 1596 freeb(first_mp); 1597 return; 1598 } 1599 1600 bzero(&icmph, sizeof (icmph_t)); 1601 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1602 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1603 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1604 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1605 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1606 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1607 } 1608 1609 /* 1610 * icmp_inbound deals with ICMP messages in the following ways. 1611 * 1612 * 1) It needs to send a reply back and possibly delivering it 1613 * to the "interested" upper clients. 1614 * 2) It needs to send it to the upper clients only. 1615 * 3) It needs to change some values in IP only. 1616 * 4) It needs to change some values in IP and upper layers e.g TCP. 1617 * 1618 * We need to accomodate icmp messages coming in clear until we get 1619 * everything secure from the wire. If icmp_accept_clear_messages 1620 * is zero we check with the global policy and act accordingly. If 1621 * it is non-zero, we accept the message without any checks. But 1622 * *this does not mean* that this will be delivered to the upper 1623 * clients. By accepting we might send replies back, change our MTU 1624 * value etc. but delivery to the ULP/clients depends on their policy 1625 * dispositions. 1626 * 1627 * We handle the above 4 cases in the context of IPSEC in the 1628 * following way : 1629 * 1630 * 1) Send the reply back in the same way as the request came in. 1631 * If it came in encrypted, it goes out encrypted. If it came in 1632 * clear, it goes out in clear. Thus, this will prevent chosen 1633 * plain text attack. 1634 * 2) The client may or may not expect things to come in secure. 1635 * If it comes in secure, the policy constraints are checked 1636 * before delivering it to the upper layers. If it comes in 1637 * clear, ipsec_inbound_accept_clear will decide whether to 1638 * accept this in clear or not. In both the cases, if the returned 1639 * message (IP header + 8 bytes) that caused the icmp message has 1640 * AH/ESP headers, it is sent up to AH/ESP for validation before 1641 * sending up. If there are only 8 bytes of returned message, then 1642 * upper client will not be notified. 1643 * 3) Check with global policy to see whether it matches the constaints. 1644 * But this will be done only if icmp_accept_messages_in_clear is 1645 * zero. 1646 * 4) If we need to change both in IP and ULP, then the decision taken 1647 * while affecting the values in IP and while delivering up to TCP 1648 * should be the same. 1649 * 1650 * There are two cases. 1651 * 1652 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1653 * failed), we will not deliver it to the ULP, even though they 1654 * are *willing* to accept in *clear*. This is fine as our global 1655 * disposition to icmp messages asks us reject the datagram. 1656 * 1657 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1658 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1659 * to deliver it to ULP (policy failed), it can lead to 1660 * consistency problems. The cases known at this time are 1661 * ICMP_DESTINATION_UNREACHABLE messages with following code 1662 * values : 1663 * 1664 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1665 * and Upper layer rejects. Then the communication will 1666 * come to a stop. This is solved by making similar decisions 1667 * at both levels. Currently, when we are unable to deliver 1668 * to the Upper Layer (due to policy failures) while IP has 1669 * adjusted ire_max_frag, the next outbound datagram would 1670 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1671 * will be with the right level of protection. Thus the right 1672 * value will be communicated even if we are not able to 1673 * communicate when we get from the wire initially. But this 1674 * assumes there would be at least one outbound datagram after 1675 * IP has adjusted its ire_max_frag value. To make things 1676 * simpler, we accept in clear after the validation of 1677 * AH/ESP headers. 1678 * 1679 * - Other ICMP ERRORS : We may not be able to deliver it to the 1680 * upper layer depending on the level of protection the upper 1681 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1682 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1683 * should be accepted in clear when the Upper layer expects secure. 1684 * Thus the communication may get aborted by some bad ICMP 1685 * packets. 1686 * 1687 * IPQoS Notes: 1688 * The only instance when a packet is sent for processing is when there 1689 * isn't an ICMP client and if we are interested in it. 1690 * If there is a client, IPPF processing will take place in the 1691 * ip_fanout_proto routine. 1692 * 1693 * Zones notes: 1694 * The packet is only processed in the context of the specified zone: typically 1695 * only this zone will reply to an echo request, and only interested clients in 1696 * this zone will receive a copy of the packet. This means that the caller must 1697 * call icmp_inbound() for each relevant zone. 1698 */ 1699 static void 1700 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1701 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1702 ill_t *recv_ill, zoneid_t zoneid) 1703 { 1704 icmph_t *icmph; 1705 ipha_t *ipha; 1706 int iph_hdr_length; 1707 int hdr_length; 1708 boolean_t interested; 1709 uint32_t ts; 1710 uchar_t *wptr; 1711 ipif_t *ipif; 1712 mblk_t *first_mp; 1713 ipsec_in_t *ii; 1714 ire_t *src_ire; 1715 boolean_t onlink; 1716 timestruc_t now; 1717 uint32_t ill_index; 1718 1719 ASSERT(ill != NULL); 1720 1721 first_mp = mp; 1722 if (mctl_present) { 1723 mp = first_mp->b_cont; 1724 ASSERT(mp != NULL); 1725 } 1726 1727 ipha = (ipha_t *)mp->b_rptr; 1728 if (icmp_accept_clear_messages == 0) { 1729 first_mp = ipsec_check_global_policy(first_mp, NULL, 1730 ipha, NULL, mctl_present); 1731 if (first_mp == NULL) 1732 return; 1733 } 1734 1735 /* 1736 * On a labeled system, we have to check whether the zone itself is 1737 * permitted to receive raw traffic. 1738 */ 1739 if (is_system_labeled()) { 1740 if (zoneid == ALL_ZONES) 1741 zoneid = tsol_packet_to_zoneid(mp); 1742 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1743 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1744 zoneid)); 1745 BUMP_MIB(&icmp_mib, icmpInErrors); 1746 freemsg(first_mp); 1747 return; 1748 } 1749 } 1750 1751 /* 1752 * We have accepted the ICMP message. It means that we will 1753 * respond to the packet if needed. It may not be delivered 1754 * to the upper client depending on the policy constraints 1755 * and the disposition in ipsec_inbound_accept_clear. 1756 */ 1757 1758 ASSERT(ill != NULL); 1759 1760 BUMP_MIB(&icmp_mib, icmpInMsgs); 1761 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1762 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1763 /* Last chance to get real. */ 1764 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1765 BUMP_MIB(&icmp_mib, icmpInErrors); 1766 freemsg(first_mp); 1767 return; 1768 } 1769 /* Refresh iph following the pullup. */ 1770 ipha = (ipha_t *)mp->b_rptr; 1771 } 1772 /* ICMP header checksum, including checksum field, should be zero. */ 1773 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1774 IP_CSUM(mp, iph_hdr_length, 0)) { 1775 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1776 freemsg(first_mp); 1777 return; 1778 } 1779 /* The IP header will always be a multiple of four bytes */ 1780 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1781 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1782 icmph->icmph_code)); 1783 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1784 /* We will set "interested" to "true" if we want a copy */ 1785 interested = B_FALSE; 1786 switch (icmph->icmph_type) { 1787 case ICMP_ECHO_REPLY: 1788 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1789 break; 1790 case ICMP_DEST_UNREACHABLE: 1791 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1792 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1793 interested = B_TRUE; /* Pass up to transport */ 1794 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1795 break; 1796 case ICMP_SOURCE_QUENCH: 1797 interested = B_TRUE; /* Pass up to transport */ 1798 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1799 break; 1800 case ICMP_REDIRECT: 1801 if (!ip_ignore_redirect) 1802 interested = B_TRUE; 1803 BUMP_MIB(&icmp_mib, icmpInRedirects); 1804 break; 1805 case ICMP_ECHO_REQUEST: 1806 /* 1807 * Whether to respond to echo requests that come in as IP 1808 * broadcasts or as IP multicast is subject to debate 1809 * (what isn't?). We aim to please, you pick it. 1810 * Default is do it. 1811 */ 1812 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1813 /* unicast: always respond */ 1814 interested = B_TRUE; 1815 } else if (CLASSD(ipha->ipha_dst)) { 1816 /* multicast: respond based on tunable */ 1817 interested = ip_g_resp_to_echo_mcast; 1818 } else if (broadcast) { 1819 /* broadcast: respond based on tunable */ 1820 interested = ip_g_resp_to_echo_bcast; 1821 } 1822 BUMP_MIB(&icmp_mib, icmpInEchos); 1823 break; 1824 case ICMP_ROUTER_ADVERTISEMENT: 1825 case ICMP_ROUTER_SOLICITATION: 1826 break; 1827 case ICMP_TIME_EXCEEDED: 1828 interested = B_TRUE; /* Pass up to transport */ 1829 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1830 break; 1831 case ICMP_PARAM_PROBLEM: 1832 interested = B_TRUE; /* Pass up to transport */ 1833 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1834 break; 1835 case ICMP_TIME_STAMP_REQUEST: 1836 /* Response to Time Stamp Requests is local policy. */ 1837 if (ip_g_resp_to_timestamp && 1838 /* So is whether to respond if it was an IP broadcast. */ 1839 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1840 int tstamp_len = 3 * sizeof (uint32_t); 1841 1842 if (wptr + tstamp_len > mp->b_wptr) { 1843 if (!pullupmsg(mp, wptr + tstamp_len - 1844 mp->b_rptr)) { 1845 BUMP_MIB(&ip_mib, ipInDiscards); 1846 freemsg(first_mp); 1847 return; 1848 } 1849 /* Refresh ipha following the pullup. */ 1850 ipha = (ipha_t *)mp->b_rptr; 1851 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1852 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1853 } 1854 interested = B_TRUE; 1855 } 1856 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1857 break; 1858 case ICMP_TIME_STAMP_REPLY: 1859 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1860 break; 1861 case ICMP_INFO_REQUEST: 1862 /* Per RFC 1122 3.2.2.7, ignore this. */ 1863 case ICMP_INFO_REPLY: 1864 break; 1865 case ICMP_ADDRESS_MASK_REQUEST: 1866 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1867 /* TODO m_pullup of complete header? */ 1868 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1869 interested = B_TRUE; 1870 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1871 break; 1872 case ICMP_ADDRESS_MASK_REPLY: 1873 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1874 break; 1875 default: 1876 interested = B_TRUE; /* Pass up to transport */ 1877 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1878 break; 1879 } 1880 /* See if there is an ICMP client. */ 1881 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1882 /* If there is an ICMP client and we want one too, copy it. */ 1883 mblk_t *first_mp1; 1884 1885 if (!interested) { 1886 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1887 ip_policy, recv_ill, zoneid); 1888 return; 1889 } 1890 first_mp1 = ip_copymsg(first_mp); 1891 if (first_mp1 != NULL) { 1892 ip_fanout_proto(q, first_mp1, ill, ipha, 1893 0, mctl_present, ip_policy, recv_ill, zoneid); 1894 } 1895 } else if (!interested) { 1896 freemsg(first_mp); 1897 return; 1898 } else { 1899 /* 1900 * Initiate policy processing for this packet if ip_policy 1901 * is true. 1902 */ 1903 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1904 ill_index = ill->ill_phyint->phyint_ifindex; 1905 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1906 if (mp == NULL) { 1907 if (mctl_present) { 1908 freeb(first_mp); 1909 } 1910 BUMP_MIB(&icmp_mib, icmpInErrors); 1911 return; 1912 } 1913 } 1914 } 1915 /* We want to do something with it. */ 1916 /* Check db_ref to make sure we can modify the packet. */ 1917 if (mp->b_datap->db_ref > 1) { 1918 mblk_t *first_mp1; 1919 1920 first_mp1 = ip_copymsg(first_mp); 1921 freemsg(first_mp); 1922 if (!first_mp1) { 1923 BUMP_MIB(&icmp_mib, icmpOutDrops); 1924 return; 1925 } 1926 first_mp = first_mp1; 1927 if (mctl_present) { 1928 mp = first_mp->b_cont; 1929 ASSERT(mp != NULL); 1930 } else { 1931 mp = first_mp; 1932 } 1933 ipha = (ipha_t *)mp->b_rptr; 1934 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1935 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1936 } 1937 switch (icmph->icmph_type) { 1938 case ICMP_ADDRESS_MASK_REQUEST: 1939 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1940 if (ipif == NULL) { 1941 freemsg(first_mp); 1942 return; 1943 } 1944 /* 1945 * outging interface must be IPv4 1946 */ 1947 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1948 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1949 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1950 ipif_refrele(ipif); 1951 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1952 break; 1953 case ICMP_ECHO_REQUEST: 1954 icmph->icmph_type = ICMP_ECHO_REPLY; 1955 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1956 break; 1957 case ICMP_TIME_STAMP_REQUEST: { 1958 uint32_t *tsp; 1959 1960 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1961 tsp = (uint32_t *)wptr; 1962 tsp++; /* Skip past 'originate time' */ 1963 /* Compute # of milliseconds since midnight */ 1964 gethrestime(&now); 1965 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1966 now.tv_nsec / (NANOSEC / MILLISEC); 1967 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1968 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1969 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1970 break; 1971 } 1972 default: 1973 ipha = (ipha_t *)&icmph[1]; 1974 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1975 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1976 BUMP_MIB(&ip_mib, ipInDiscards); 1977 freemsg(first_mp); 1978 return; 1979 } 1980 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1981 ipha = (ipha_t *)&icmph[1]; 1982 } 1983 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1984 BUMP_MIB(&ip_mib, ipInDiscards); 1985 freemsg(first_mp); 1986 return; 1987 } 1988 hdr_length = IPH_HDR_LENGTH(ipha); 1989 if (hdr_length < sizeof (ipha_t)) { 1990 BUMP_MIB(&ip_mib, ipInDiscards); 1991 freemsg(first_mp); 1992 return; 1993 } 1994 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1995 if (!pullupmsg(mp, 1996 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1997 BUMP_MIB(&ip_mib, ipInDiscards); 1998 freemsg(first_mp); 1999 return; 2000 } 2001 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2002 ipha = (ipha_t *)&icmph[1]; 2003 } 2004 switch (icmph->icmph_type) { 2005 case ICMP_REDIRECT: 2006 /* 2007 * As there is no upper client to deliver, we don't 2008 * need the first_mp any more. 2009 */ 2010 if (mctl_present) { 2011 freeb(first_mp); 2012 } 2013 icmp_redirect(mp); 2014 return; 2015 case ICMP_DEST_UNREACHABLE: 2016 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2017 if (!icmp_inbound_too_big(icmph, ipha, ill, 2018 zoneid, mp, iph_hdr_length)) { 2019 freemsg(first_mp); 2020 return; 2021 } 2022 /* 2023 * icmp_inbound_too_big() may alter mp. 2024 * Resynch ipha and icmph accordingly. 2025 */ 2026 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2027 ipha = (ipha_t *)&icmph[1]; 2028 } 2029 /* FALLTHRU */ 2030 default : 2031 /* 2032 * IPQoS notes: Since we have already done IPQoS 2033 * processing we don't want to do it again in 2034 * the fanout routines called by 2035 * icmp_inbound_error_fanout, hence the last 2036 * argument, ip_policy, is B_FALSE. 2037 */ 2038 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2039 ipha, iph_hdr_length, hdr_length, mctl_present, 2040 B_FALSE, recv_ill, zoneid); 2041 } 2042 return; 2043 } 2044 /* Send out an ICMP packet */ 2045 icmph->icmph_checksum = 0; 2046 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2047 if (icmph->icmph_checksum == 0) 2048 icmph->icmph_checksum = 0xFFFF; 2049 if (broadcast || CLASSD(ipha->ipha_dst)) { 2050 ipif_t *ipif_chosen; 2051 /* 2052 * Make it look like it was directed to us, so we don't look 2053 * like a fool with a broadcast or multicast source address. 2054 */ 2055 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2056 /* 2057 * Make sure that we haven't grabbed an interface that's DOWN. 2058 */ 2059 if (ipif != NULL) { 2060 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2061 ipha->ipha_src, zoneid); 2062 if (ipif_chosen != NULL) { 2063 ipif_refrele(ipif); 2064 ipif = ipif_chosen; 2065 } 2066 } 2067 if (ipif == NULL) { 2068 ip0dbg(("icmp_inbound: " 2069 "No source for broadcast/multicast:\n" 2070 "\tsrc 0x%x dst 0x%x ill %p " 2071 "ipif_lcl_addr 0x%x\n", 2072 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2073 (void *)ill, 2074 ill->ill_ipif->ipif_lcl_addr)); 2075 freemsg(first_mp); 2076 return; 2077 } 2078 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2079 ipha->ipha_dst = ipif->ipif_src_addr; 2080 ipif_refrele(ipif); 2081 } 2082 /* Reset time to live. */ 2083 ipha->ipha_ttl = ip_def_ttl; 2084 { 2085 /* Swap source and destination addresses */ 2086 ipaddr_t tmp; 2087 2088 tmp = ipha->ipha_src; 2089 ipha->ipha_src = ipha->ipha_dst; 2090 ipha->ipha_dst = tmp; 2091 } 2092 ipha->ipha_ident = 0; 2093 if (!IS_SIMPLE_IPH(ipha)) 2094 icmp_options_update(ipha); 2095 2096 /* 2097 * ICMP echo replies should go out on the same interface 2098 * the request came on as probes used by in.mpathd for detecting 2099 * NIC failures are ECHO packets. We turn-off load spreading 2100 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2101 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2102 * function. This is in turn handled by ip_wput and ip_newroute 2103 * to make sure that the packet goes out on the interface it came 2104 * in on. If we don't turnoff load spreading, the packets might get 2105 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2106 * to go out and in.mpathd would wrongly detect a failure or 2107 * mis-detect a NIC failure for link failure. As load spreading 2108 * can happen only if ill_group is not NULL, we do only for 2109 * that case and this does not affect the normal case. 2110 * 2111 * We turn off load spreading only on echo packets that came from 2112 * on-link hosts. If the interface route has been deleted, this will 2113 * not be enforced as we can't do much. For off-link hosts, as the 2114 * default routes in IPv4 does not typically have an ire_ipif 2115 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2116 * Moreover, expecting a default route through this interface may 2117 * not be correct. We use ipha_dst because of the swap above. 2118 */ 2119 onlink = B_FALSE; 2120 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2121 /* 2122 * First, we need to make sure that it is not one of our 2123 * local addresses. If we set onlink when it is one of 2124 * our local addresses, we will end up creating IRE_CACHES 2125 * for one of our local addresses. Then, we will never 2126 * accept packets for them afterwards. 2127 */ 2128 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2129 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2130 if (src_ire == NULL) { 2131 ipif = ipif_get_next_ipif(NULL, ill); 2132 if (ipif == NULL) { 2133 BUMP_MIB(&ip_mib, ipInDiscards); 2134 freemsg(mp); 2135 return; 2136 } 2137 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2138 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2139 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2140 ipif_refrele(ipif); 2141 if (src_ire != NULL) { 2142 onlink = B_TRUE; 2143 ire_refrele(src_ire); 2144 } 2145 } else { 2146 ire_refrele(src_ire); 2147 } 2148 } 2149 if (!mctl_present) { 2150 /* 2151 * This packet should go out the same way as it 2152 * came in i.e in clear. To make sure that global 2153 * policy will not be applied to this in ip_wput_ire, 2154 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2155 */ 2156 ASSERT(first_mp == mp); 2157 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2158 BUMP_MIB(&ip_mib, ipInDiscards); 2159 freemsg(mp); 2160 return; 2161 } 2162 ii = (ipsec_in_t *)first_mp->b_rptr; 2163 2164 /* This is not a secure packet */ 2165 ii->ipsec_in_secure = B_FALSE; 2166 if (onlink) { 2167 ii->ipsec_in_attach_if = B_TRUE; 2168 ii->ipsec_in_ill_index = 2169 ill->ill_phyint->phyint_ifindex; 2170 ii->ipsec_in_rill_index = 2171 recv_ill->ill_phyint->phyint_ifindex; 2172 } 2173 first_mp->b_cont = mp; 2174 } else if (onlink) { 2175 ii = (ipsec_in_t *)first_mp->b_rptr; 2176 ii->ipsec_in_attach_if = B_TRUE; 2177 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2178 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2179 } else { 2180 ii = (ipsec_in_t *)first_mp->b_rptr; 2181 } 2182 ii->ipsec_in_zoneid = zoneid; 2183 ASSERT(zoneid != ALL_ZONES); 2184 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2185 BUMP_MIB(&ip_mib, ipInDiscards); 2186 return; 2187 } 2188 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2189 put(WR(q), first_mp); 2190 } 2191 2192 static ipaddr_t 2193 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2194 { 2195 conn_t *connp; 2196 connf_t *connfp; 2197 ipaddr_t nexthop_addr = INADDR_ANY; 2198 int hdr_length = IPH_HDR_LENGTH(ipha); 2199 uint16_t *up; 2200 uint32_t ports; 2201 2202 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2203 switch (ipha->ipha_protocol) { 2204 case IPPROTO_TCP: 2205 { 2206 tcph_t *tcph; 2207 2208 /* do a reverse lookup */ 2209 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2210 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2211 TCPS_LISTEN); 2212 break; 2213 } 2214 case IPPROTO_UDP: 2215 { 2216 uint32_t dstport, srcport; 2217 2218 ((uint16_t *)&ports)[0] = up[1]; 2219 ((uint16_t *)&ports)[1] = up[0]; 2220 2221 /* Extract ports in net byte order */ 2222 dstport = htons(ntohl(ports) & 0xFFFF); 2223 srcport = htons(ntohl(ports) >> 16); 2224 2225 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2226 mutex_enter(&connfp->connf_lock); 2227 connp = connfp->connf_head; 2228 2229 /* do a reverse lookup */ 2230 while ((connp != NULL) && 2231 (!IPCL_UDP_MATCH(connp, dstport, 2232 ipha->ipha_src, srcport, ipha->ipha_dst) || 2233 !IPCL_ZONE_MATCH(connp, zoneid))) { 2234 connp = connp->conn_next; 2235 } 2236 if (connp != NULL) 2237 CONN_INC_REF(connp); 2238 mutex_exit(&connfp->connf_lock); 2239 break; 2240 } 2241 case IPPROTO_SCTP: 2242 { 2243 in6_addr_t map_src, map_dst; 2244 2245 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2246 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2247 ((uint16_t *)&ports)[0] = up[1]; 2248 ((uint16_t *)&ports)[1] = up[0]; 2249 2250 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2251 0, zoneid)) == NULL) { 2252 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2253 zoneid, ports, ipha); 2254 } else { 2255 CONN_INC_REF(connp); 2256 SCTP_REFRELE(CONN2SCTP(connp)); 2257 } 2258 break; 2259 } 2260 default: 2261 { 2262 ipha_t ripha; 2263 2264 ripha.ipha_src = ipha->ipha_dst; 2265 ripha.ipha_dst = ipha->ipha_src; 2266 ripha.ipha_protocol = ipha->ipha_protocol; 2267 2268 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2269 mutex_enter(&connfp->connf_lock); 2270 connp = connfp->connf_head; 2271 for (connp = connfp->connf_head; connp != NULL; 2272 connp = connp->conn_next) { 2273 if (IPCL_PROTO_MATCH(connp, 2274 ipha->ipha_protocol, &ripha, ill, 2275 0, zoneid)) { 2276 CONN_INC_REF(connp); 2277 break; 2278 } 2279 } 2280 mutex_exit(&connfp->connf_lock); 2281 } 2282 } 2283 if (connp != NULL) { 2284 if (connp->conn_nexthop_set) 2285 nexthop_addr = connp->conn_nexthop_v4; 2286 CONN_DEC_REF(connp); 2287 } 2288 return (nexthop_addr); 2289 } 2290 2291 /* Table from RFC 1191 */ 2292 static int icmp_frag_size_table[] = 2293 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2294 2295 /* 2296 * Process received ICMP Packet too big. 2297 * After updating any IRE it does the fanout to any matching transport streams. 2298 * Assumes the message has been pulled up till the IP header that caused 2299 * the error. 2300 * 2301 * Returns B_FALSE on failure and B_TRUE on success. 2302 */ 2303 static boolean_t 2304 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2305 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2306 { 2307 ire_t *ire, *first_ire; 2308 int mtu; 2309 int hdr_length; 2310 ipaddr_t nexthop_addr; 2311 2312 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2313 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2314 2315 hdr_length = IPH_HDR_LENGTH(ipha); 2316 2317 /* Drop if the original packet contained a source route */ 2318 if (ip_source_route_included(ipha)) { 2319 return (B_FALSE); 2320 } 2321 /* 2322 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2323 * header. 2324 */ 2325 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2326 mp->b_wptr) { 2327 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2328 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2329 BUMP_MIB(&ip_mib, ipInDiscards); 2330 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2331 return (B_FALSE); 2332 } 2333 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2334 ipha = (ipha_t *)&icmph[1]; 2335 } 2336 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2337 if (nexthop_addr != INADDR_ANY) { 2338 /* nexthop set */ 2339 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2340 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2341 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2342 } else { 2343 /* nexthop not set */ 2344 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2345 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2346 } 2347 2348 if (!first_ire) { 2349 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2350 ntohl(ipha->ipha_dst))); 2351 return (B_FALSE); 2352 } 2353 /* Check for MTU discovery advice as described in RFC 1191 */ 2354 mtu = ntohs(icmph->icmph_du_mtu); 2355 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2356 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2357 ire = ire->ire_next) { 2358 /* 2359 * Look for the connection to which this ICMP message is 2360 * directed. If it has the IP_NEXTHOP option set, then the 2361 * search is limited to IREs with the MATCH_IRE_PRIVATE 2362 * option. Else the search is limited to regular IREs. 2363 */ 2364 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2365 (nexthop_addr != ire->ire_gateway_addr)) || 2366 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2367 (nexthop_addr != INADDR_ANY))) 2368 continue; 2369 2370 mutex_enter(&ire->ire_lock); 2371 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2372 /* Reduce the IRE max frag value as advised. */ 2373 ip1dbg(("Received mtu from router: %d (was %d)\n", 2374 mtu, ire->ire_max_frag)); 2375 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2376 } else { 2377 uint32_t length; 2378 int i; 2379 2380 /* 2381 * Use the table from RFC 1191 to figure out 2382 * the next "plateau" based on the length in 2383 * the original IP packet. 2384 */ 2385 length = ntohs(ipha->ipha_length); 2386 if (ire->ire_max_frag <= length && 2387 ire->ire_max_frag >= length - hdr_length) { 2388 /* 2389 * Handle broken BSD 4.2 systems that 2390 * return the wrong iph_length in ICMP 2391 * errors. 2392 */ 2393 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2394 length, ire->ire_max_frag)); 2395 length -= hdr_length; 2396 } 2397 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2398 if (length > icmp_frag_size_table[i]) 2399 break; 2400 } 2401 if (i == A_CNT(icmp_frag_size_table)) { 2402 /* Smaller than 68! */ 2403 ip1dbg(("Too big for packet size %d\n", 2404 length)); 2405 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2406 ire->ire_frag_flag = 0; 2407 } else { 2408 mtu = icmp_frag_size_table[i]; 2409 ip1dbg(("Calculated mtu %d, packet size %d, " 2410 "before %d", mtu, length, 2411 ire->ire_max_frag)); 2412 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2413 ip1dbg((", after %d\n", ire->ire_max_frag)); 2414 } 2415 /* Record the new max frag size for the ULP. */ 2416 icmph->icmph_du_zero = 0; 2417 icmph->icmph_du_mtu = 2418 htons((uint16_t)ire->ire_max_frag); 2419 } 2420 mutex_exit(&ire->ire_lock); 2421 } 2422 rw_exit(&first_ire->ire_bucket->irb_lock); 2423 ire_refrele(first_ire); 2424 return (B_TRUE); 2425 } 2426 2427 /* 2428 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2429 * calls this function. 2430 */ 2431 static mblk_t * 2432 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2433 { 2434 ipha_t *ipha; 2435 icmph_t *icmph; 2436 ipha_t *in_ipha; 2437 int length; 2438 2439 ASSERT(mp->b_datap->db_type == M_DATA); 2440 2441 /* 2442 * For Self-encapsulated packets, we added an extra IP header 2443 * without the options. Inner IP header is the one from which 2444 * the outer IP header was formed. Thus, we need to remove the 2445 * outer IP header. To do this, we pullup the whole message 2446 * and overlay whatever follows the outer IP header over the 2447 * outer IP header. 2448 */ 2449 2450 if (!pullupmsg(mp, -1)) { 2451 BUMP_MIB(&ip_mib, ipInDiscards); 2452 return (NULL); 2453 } 2454 2455 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2456 ipha = (ipha_t *)&icmph[1]; 2457 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2458 2459 /* 2460 * The length that we want to overlay is following the inner 2461 * IP header. Subtracting the IP header + icmp header + outer 2462 * IP header's length should give us the length that we want to 2463 * overlay. 2464 */ 2465 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2466 hdr_length; 2467 /* 2468 * Overlay whatever follows the inner header over the 2469 * outer header. 2470 */ 2471 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2472 2473 /* Set the wptr to account for the outer header */ 2474 mp->b_wptr -= hdr_length; 2475 return (mp); 2476 } 2477 2478 /* 2479 * Try to pass the ICMP message upstream in case the ULP cares. 2480 * 2481 * If the packet that caused the ICMP error is secure, we send 2482 * it to AH/ESP to make sure that the attached packet has a 2483 * valid association. ipha in the code below points to the 2484 * IP header of the packet that caused the error. 2485 * 2486 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2487 * in the context of IPSEC. Normally we tell the upper layer 2488 * whenever we send the ire (including ip_bind), the IPSEC header 2489 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2490 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2491 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2492 * same thing. As TCP has the IPSEC options size that needs to be 2493 * adjusted, we just pass the MTU unchanged. 2494 * 2495 * IFN could have been generated locally or by some router. 2496 * 2497 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2498 * This happens because IP adjusted its value of MTU on an 2499 * earlier IFN message and could not tell the upper layer, 2500 * the new adjusted value of MTU e.g. Packet was encrypted 2501 * or there was not enough information to fanout to upper 2502 * layers. Thus on the next outbound datagram, ip_wput_ire 2503 * generates the IFN, where IPSEC processing has *not* been 2504 * done. 2505 * 2506 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2507 * could have generated this. This happens because ire_max_frag 2508 * value in IP was set to a new value, while the IPSEC processing 2509 * was being done and after we made the fragmentation check in 2510 * ip_wput_ire. Thus on return from IPSEC processing, 2511 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2512 * and generates the IFN. As IPSEC processing is over, we fanout 2513 * to AH/ESP to remove the header. 2514 * 2515 * In both these cases, ipsec_in_loopback will be set indicating 2516 * that IFN was generated locally. 2517 * 2518 * ROUTER : IFN could be secure or non-secure. 2519 * 2520 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2521 * packet in error has AH/ESP headers to validate the AH/ESP 2522 * headers. AH/ESP will verify whether there is a valid SA or 2523 * not and send it back. We will fanout again if we have more 2524 * data in the packet. 2525 * 2526 * If the packet in error does not have AH/ESP, we handle it 2527 * like any other case. 2528 * 2529 * * NON_SECURE : If the packet in error has AH/ESP headers, 2530 * we attach a dummy ipsec_in and send it up to AH/ESP 2531 * for validation. AH/ESP will verify whether there is a 2532 * valid SA or not and send it back. We will fanout again if 2533 * we have more data in the packet. 2534 * 2535 * If the packet in error does not have AH/ESP, we handle it 2536 * like any other case. 2537 */ 2538 static void 2539 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2540 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2541 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2542 zoneid_t zoneid) 2543 { 2544 uint16_t *up; /* Pointer to ports in ULP header */ 2545 uint32_t ports; /* reversed ports for fanout */ 2546 ipha_t ripha; /* With reversed addresses */ 2547 mblk_t *first_mp; 2548 ipsec_in_t *ii; 2549 tcph_t *tcph; 2550 conn_t *connp; 2551 2552 first_mp = mp; 2553 if (mctl_present) { 2554 mp = first_mp->b_cont; 2555 ASSERT(mp != NULL); 2556 2557 ii = (ipsec_in_t *)first_mp->b_rptr; 2558 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2559 } else { 2560 ii = NULL; 2561 } 2562 2563 switch (ipha->ipha_protocol) { 2564 case IPPROTO_UDP: 2565 /* 2566 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2567 * transport header. 2568 */ 2569 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2570 mp->b_wptr) { 2571 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2572 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2573 BUMP_MIB(&ip_mib, ipInDiscards); 2574 goto drop_pkt; 2575 } 2576 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2577 ipha = (ipha_t *)&icmph[1]; 2578 } 2579 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2580 2581 /* 2582 * Attempt to find a client stream based on port. 2583 * Note that we do a reverse lookup since the header is 2584 * in the form we sent it out. 2585 * The ripha header is only used for the IP_UDP_MATCH and we 2586 * only set the src and dst addresses and protocol. 2587 */ 2588 ripha.ipha_src = ipha->ipha_dst; 2589 ripha.ipha_dst = ipha->ipha_src; 2590 ripha.ipha_protocol = ipha->ipha_protocol; 2591 ((uint16_t *)&ports)[0] = up[1]; 2592 ((uint16_t *)&ports)[1] = up[0]; 2593 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2594 ntohl(ipha->ipha_src), ntohs(up[0]), 2595 ntohl(ipha->ipha_dst), ntohs(up[1]), 2596 icmph->icmph_type, icmph->icmph_code)); 2597 2598 /* Have to change db_type after any pullupmsg */ 2599 DB_TYPE(mp) = M_CTL; 2600 2601 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2602 mctl_present, ip_policy, recv_ill, zoneid); 2603 return; 2604 2605 case IPPROTO_TCP: 2606 /* 2607 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2608 * transport header. 2609 */ 2610 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2611 mp->b_wptr) { 2612 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2613 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2614 BUMP_MIB(&ip_mib, ipInDiscards); 2615 goto drop_pkt; 2616 } 2617 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2618 ipha = (ipha_t *)&icmph[1]; 2619 } 2620 /* 2621 * Find a TCP client stream for this packet. 2622 * Note that we do a reverse lookup since the header is 2623 * in the form we sent it out. 2624 */ 2625 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2626 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2627 if (connp == NULL) { 2628 BUMP_MIB(&ip_mib, ipInDiscards); 2629 goto drop_pkt; 2630 } 2631 2632 /* Have to change db_type after any pullupmsg */ 2633 DB_TYPE(mp) = M_CTL; 2634 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2635 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2636 return; 2637 2638 case IPPROTO_SCTP: 2639 /* 2640 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2641 * transport header. 2642 */ 2643 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2644 mp->b_wptr) { 2645 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2646 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2647 BUMP_MIB(&ip_mib, ipInDiscards); 2648 goto drop_pkt; 2649 } 2650 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2651 ipha = (ipha_t *)&icmph[1]; 2652 } 2653 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2654 /* 2655 * Find a SCTP client stream for this packet. 2656 * Note that we do a reverse lookup since the header is 2657 * in the form we sent it out. 2658 * The ripha header is only used for the matching and we 2659 * only set the src and dst addresses, protocol, and version. 2660 */ 2661 ripha.ipha_src = ipha->ipha_dst; 2662 ripha.ipha_dst = ipha->ipha_src; 2663 ripha.ipha_protocol = ipha->ipha_protocol; 2664 ripha.ipha_version_and_hdr_length = 2665 ipha->ipha_version_and_hdr_length; 2666 ((uint16_t *)&ports)[0] = up[1]; 2667 ((uint16_t *)&ports)[1] = up[0]; 2668 2669 /* Have to change db_type after any pullupmsg */ 2670 DB_TYPE(mp) = M_CTL; 2671 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2672 mctl_present, ip_policy, 0, zoneid); 2673 return; 2674 2675 case IPPROTO_ESP: 2676 case IPPROTO_AH: { 2677 int ipsec_rc; 2678 2679 /* 2680 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2681 * We will re-use the IPSEC_IN if it is already present as 2682 * AH/ESP will not affect any fields in the IPSEC_IN for 2683 * ICMP errors. If there is no IPSEC_IN, allocate a new 2684 * one and attach it in the front. 2685 */ 2686 if (ii != NULL) { 2687 /* 2688 * ip_fanout_proto_again converts the ICMP errors 2689 * that come back from AH/ESP to M_DATA so that 2690 * if it is non-AH/ESP and we do a pullupmsg in 2691 * this function, it would work. Convert it back 2692 * to M_CTL before we send up as this is a ICMP 2693 * error. This could have been generated locally or 2694 * by some router. Validate the inner IPSEC 2695 * headers. 2696 * 2697 * NOTE : ill_index is used by ip_fanout_proto_again 2698 * to locate the ill. 2699 */ 2700 ASSERT(ill != NULL); 2701 ii->ipsec_in_ill_index = 2702 ill->ill_phyint->phyint_ifindex; 2703 ii->ipsec_in_rill_index = 2704 recv_ill->ill_phyint->phyint_ifindex; 2705 DB_TYPE(first_mp->b_cont) = M_CTL; 2706 } else { 2707 /* 2708 * IPSEC_IN is not present. We attach a ipsec_in 2709 * message and send up to IPSEC for validating 2710 * and removing the IPSEC headers. Clear 2711 * ipsec_in_secure so that when we return 2712 * from IPSEC, we don't mistakenly think that this 2713 * is a secure packet came from the network. 2714 * 2715 * NOTE : ill_index is used by ip_fanout_proto_again 2716 * to locate the ill. 2717 */ 2718 ASSERT(first_mp == mp); 2719 first_mp = ipsec_in_alloc(B_TRUE); 2720 if (first_mp == NULL) { 2721 freemsg(mp); 2722 BUMP_MIB(&ip_mib, ipInDiscards); 2723 return; 2724 } 2725 ii = (ipsec_in_t *)first_mp->b_rptr; 2726 2727 /* This is not a secure packet */ 2728 ii->ipsec_in_secure = B_FALSE; 2729 first_mp->b_cont = mp; 2730 DB_TYPE(mp) = M_CTL; 2731 ASSERT(ill != NULL); 2732 ii->ipsec_in_ill_index = 2733 ill->ill_phyint->phyint_ifindex; 2734 ii->ipsec_in_rill_index = 2735 recv_ill->ill_phyint->phyint_ifindex; 2736 } 2737 ip2dbg(("icmp_inbound_error: ipsec\n")); 2738 2739 if (!ipsec_loaded()) { 2740 ip_proto_not_sup(q, first_mp, 0, zoneid); 2741 return; 2742 } 2743 2744 if (ipha->ipha_protocol == IPPROTO_ESP) 2745 ipsec_rc = ipsecesp_icmp_error(first_mp); 2746 else 2747 ipsec_rc = ipsecah_icmp_error(first_mp); 2748 if (ipsec_rc == IPSEC_STATUS_FAILED) 2749 return; 2750 2751 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2752 return; 2753 } 2754 default: 2755 /* 2756 * The ripha header is only used for the lookup and we 2757 * only set the src and dst addresses and protocol. 2758 */ 2759 ripha.ipha_src = ipha->ipha_dst; 2760 ripha.ipha_dst = ipha->ipha_src; 2761 ripha.ipha_protocol = ipha->ipha_protocol; 2762 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2763 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2764 ntohl(ipha->ipha_dst), 2765 icmph->icmph_type, icmph->icmph_code)); 2766 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2767 ipha_t *in_ipha; 2768 2769 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2770 mp->b_wptr) { 2771 if (!pullupmsg(mp, (uchar_t *)ipha + 2772 hdr_length + sizeof (ipha_t) - 2773 mp->b_rptr)) { 2774 2775 BUMP_MIB(&ip_mib, ipInDiscards); 2776 goto drop_pkt; 2777 } 2778 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2779 ipha = (ipha_t *)&icmph[1]; 2780 } 2781 /* 2782 * Caller has verified that length has to be 2783 * at least the size of IP header. 2784 */ 2785 ASSERT(hdr_length >= sizeof (ipha_t)); 2786 /* 2787 * Check the sanity of the inner IP header like 2788 * we did for the outer header. 2789 */ 2790 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2791 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2792 BUMP_MIB(&ip_mib, ipInDiscards); 2793 goto drop_pkt; 2794 } 2795 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2796 BUMP_MIB(&ip_mib, ipInDiscards); 2797 goto drop_pkt; 2798 } 2799 /* Check for Self-encapsulated tunnels */ 2800 if (in_ipha->ipha_src == ipha->ipha_src && 2801 in_ipha->ipha_dst == ipha->ipha_dst) { 2802 2803 mp = icmp_inbound_self_encap_error(mp, 2804 iph_hdr_length, hdr_length); 2805 if (mp == NULL) 2806 goto drop_pkt; 2807 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2808 ipha = (ipha_t *)&icmph[1]; 2809 hdr_length = IPH_HDR_LENGTH(ipha); 2810 /* 2811 * The packet in error is self-encapsualted. 2812 * And we are finding it further encapsulated 2813 * which we could not have possibly generated. 2814 */ 2815 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2816 BUMP_MIB(&ip_mib, ipInDiscards); 2817 goto drop_pkt; 2818 } 2819 icmp_inbound_error_fanout(q, ill, first_mp, 2820 icmph, ipha, iph_hdr_length, hdr_length, 2821 mctl_present, ip_policy, recv_ill, zoneid); 2822 return; 2823 } 2824 } 2825 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2826 ipha->ipha_protocol == IPPROTO_IPV6) && 2827 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2828 ii != NULL && 2829 ii->ipsec_in_loopback && 2830 ii->ipsec_in_secure) { 2831 /* 2832 * For IP tunnels that get a looped-back 2833 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2834 * reported new MTU to take into account the IPsec 2835 * headers protecting this configured tunnel. 2836 * 2837 * This allows the tunnel module (tun.c) to blindly 2838 * accept the MTU reported in an ICMP "too big" 2839 * message. 2840 * 2841 * Non-looped back ICMP messages will just be 2842 * handled by the security protocols (if needed), 2843 * and the first subsequent packet will hit this 2844 * path. 2845 */ 2846 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2847 ipsec_in_extra_length(first_mp)); 2848 } 2849 /* Have to change db_type after any pullupmsg */ 2850 DB_TYPE(mp) = M_CTL; 2851 2852 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2853 ip_policy, recv_ill, zoneid); 2854 return; 2855 } 2856 /* NOTREACHED */ 2857 drop_pkt:; 2858 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2859 freemsg(first_mp); 2860 } 2861 2862 /* 2863 * Common IP options parser. 2864 * 2865 * Setup routine: fill in *optp with options-parsing state, then 2866 * tail-call ipoptp_next to return the first option. 2867 */ 2868 uint8_t 2869 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2870 { 2871 uint32_t totallen; /* total length of all options */ 2872 2873 totallen = ipha->ipha_version_and_hdr_length - 2874 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2875 totallen <<= 2; 2876 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2877 optp->ipoptp_end = optp->ipoptp_next + totallen; 2878 optp->ipoptp_flags = 0; 2879 return (ipoptp_next(optp)); 2880 } 2881 2882 /* 2883 * Common IP options parser: extract next option. 2884 */ 2885 uint8_t 2886 ipoptp_next(ipoptp_t *optp) 2887 { 2888 uint8_t *end = optp->ipoptp_end; 2889 uint8_t *cur = optp->ipoptp_next; 2890 uint8_t opt, len, pointer; 2891 2892 /* 2893 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2894 * has been corrupted. 2895 */ 2896 ASSERT(cur <= end); 2897 2898 if (cur == end) 2899 return (IPOPT_EOL); 2900 2901 opt = cur[IPOPT_OPTVAL]; 2902 2903 /* 2904 * Skip any NOP options. 2905 */ 2906 while (opt == IPOPT_NOP) { 2907 cur++; 2908 if (cur == end) 2909 return (IPOPT_EOL); 2910 opt = cur[IPOPT_OPTVAL]; 2911 } 2912 2913 if (opt == IPOPT_EOL) 2914 return (IPOPT_EOL); 2915 2916 /* 2917 * Option requiring a length. 2918 */ 2919 if ((cur + 1) >= end) { 2920 optp->ipoptp_flags |= IPOPTP_ERROR; 2921 return (IPOPT_EOL); 2922 } 2923 len = cur[IPOPT_OLEN]; 2924 if (len < 2) { 2925 optp->ipoptp_flags |= IPOPTP_ERROR; 2926 return (IPOPT_EOL); 2927 } 2928 optp->ipoptp_cur = cur; 2929 optp->ipoptp_len = len; 2930 optp->ipoptp_next = cur + len; 2931 if (cur + len > end) { 2932 optp->ipoptp_flags |= IPOPTP_ERROR; 2933 return (IPOPT_EOL); 2934 } 2935 2936 /* 2937 * For the options which require a pointer field, make sure 2938 * its there, and make sure it points to either something 2939 * inside this option, or the end of the option. 2940 */ 2941 switch (opt) { 2942 case IPOPT_RR: 2943 case IPOPT_TS: 2944 case IPOPT_LSRR: 2945 case IPOPT_SSRR: 2946 if (len <= IPOPT_OFFSET) { 2947 optp->ipoptp_flags |= IPOPTP_ERROR; 2948 return (opt); 2949 } 2950 pointer = cur[IPOPT_OFFSET]; 2951 if (pointer - 1 > len) { 2952 optp->ipoptp_flags |= IPOPTP_ERROR; 2953 return (opt); 2954 } 2955 break; 2956 } 2957 2958 /* 2959 * Sanity check the pointer field based on the type of the 2960 * option. 2961 */ 2962 switch (opt) { 2963 case IPOPT_RR: 2964 case IPOPT_SSRR: 2965 case IPOPT_LSRR: 2966 if (pointer < IPOPT_MINOFF_SR) 2967 optp->ipoptp_flags |= IPOPTP_ERROR; 2968 break; 2969 case IPOPT_TS: 2970 if (pointer < IPOPT_MINOFF_IT) 2971 optp->ipoptp_flags |= IPOPTP_ERROR; 2972 /* 2973 * Note that the Internet Timestamp option also 2974 * contains two four bit fields (the Overflow field, 2975 * and the Flag field), which follow the pointer 2976 * field. We don't need to check that these fields 2977 * fall within the length of the option because this 2978 * was implicitely done above. We've checked that the 2979 * pointer value is at least IPOPT_MINOFF_IT, and that 2980 * it falls within the option. Since IPOPT_MINOFF_IT > 2981 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2982 */ 2983 ASSERT(len > IPOPT_POS_OV_FLG); 2984 break; 2985 } 2986 2987 return (opt); 2988 } 2989 2990 /* 2991 * Use the outgoing IP header to create an IP_OPTIONS option the way 2992 * it was passed down from the application. 2993 */ 2994 int 2995 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2996 { 2997 ipoptp_t opts; 2998 const uchar_t *opt; 2999 uint8_t optval; 3000 uint8_t optlen; 3001 uint32_t len = 0; 3002 uchar_t *buf1 = buf; 3003 3004 buf += IP_ADDR_LEN; /* Leave room for final destination */ 3005 len += IP_ADDR_LEN; 3006 bzero(buf1, IP_ADDR_LEN); 3007 3008 /* 3009 * OK to cast away const here, as we don't store through the returned 3010 * opts.ipoptp_cur pointer. 3011 */ 3012 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3013 optval != IPOPT_EOL; 3014 optval = ipoptp_next(&opts)) { 3015 int off; 3016 3017 opt = opts.ipoptp_cur; 3018 optlen = opts.ipoptp_len; 3019 switch (optval) { 3020 case IPOPT_SSRR: 3021 case IPOPT_LSRR: 3022 3023 /* 3024 * Insert ipha_dst as the first entry in the source 3025 * route and move down the entries on step. 3026 * The last entry gets placed at buf1. 3027 */ 3028 buf[IPOPT_OPTVAL] = optval; 3029 buf[IPOPT_OLEN] = optlen; 3030 buf[IPOPT_OFFSET] = optlen; 3031 3032 off = optlen - IP_ADDR_LEN; 3033 if (off < 0) { 3034 /* No entries in source route */ 3035 break; 3036 } 3037 /* Last entry in source route */ 3038 bcopy(opt + off, buf1, IP_ADDR_LEN); 3039 off -= IP_ADDR_LEN; 3040 3041 while (off > 0) { 3042 bcopy(opt + off, 3043 buf + off + IP_ADDR_LEN, 3044 IP_ADDR_LEN); 3045 off -= IP_ADDR_LEN; 3046 } 3047 /* ipha_dst into first slot */ 3048 bcopy(&ipha->ipha_dst, 3049 buf + off + IP_ADDR_LEN, 3050 IP_ADDR_LEN); 3051 buf += optlen; 3052 len += optlen; 3053 break; 3054 3055 case IPOPT_COMSEC: 3056 case IPOPT_SECURITY: 3057 /* if passing up a label is not ok, then remove */ 3058 if (is_system_labeled()) 3059 break; 3060 /* FALLTHROUGH */ 3061 default: 3062 bcopy(opt, buf, optlen); 3063 buf += optlen; 3064 len += optlen; 3065 break; 3066 } 3067 } 3068 done: 3069 /* Pad the resulting options */ 3070 while (len & 0x3) { 3071 *buf++ = IPOPT_EOL; 3072 len++; 3073 } 3074 return (len); 3075 } 3076 3077 /* 3078 * Update any record route or timestamp options to include this host. 3079 * Reverse any source route option. 3080 * This routine assumes that the options are well formed i.e. that they 3081 * have already been checked. 3082 */ 3083 static void 3084 icmp_options_update(ipha_t *ipha) 3085 { 3086 ipoptp_t opts; 3087 uchar_t *opt; 3088 uint8_t optval; 3089 ipaddr_t src; /* Our local address */ 3090 ipaddr_t dst; 3091 3092 ip2dbg(("icmp_options_update\n")); 3093 src = ipha->ipha_src; 3094 dst = ipha->ipha_dst; 3095 3096 for (optval = ipoptp_first(&opts, ipha); 3097 optval != IPOPT_EOL; 3098 optval = ipoptp_next(&opts)) { 3099 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3100 opt = opts.ipoptp_cur; 3101 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3102 optval, opts.ipoptp_len)); 3103 switch (optval) { 3104 int off1, off2; 3105 case IPOPT_SSRR: 3106 case IPOPT_LSRR: 3107 /* 3108 * Reverse the source route. The first entry 3109 * should be the next to last one in the current 3110 * source route (the last entry is our address). 3111 * The last entry should be the final destination. 3112 */ 3113 off1 = IPOPT_MINOFF_SR - 1; 3114 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3115 if (off2 < 0) { 3116 /* No entries in source route */ 3117 ip1dbg(( 3118 "icmp_options_update: bad src route\n")); 3119 break; 3120 } 3121 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3122 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3123 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3124 off2 -= IP_ADDR_LEN; 3125 3126 while (off1 < off2) { 3127 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3128 bcopy((char *)opt + off2, (char *)opt + off1, 3129 IP_ADDR_LEN); 3130 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3131 off1 += IP_ADDR_LEN; 3132 off2 -= IP_ADDR_LEN; 3133 } 3134 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3135 break; 3136 } 3137 } 3138 } 3139 3140 /* 3141 * Process received ICMP Redirect messages. 3142 */ 3143 /* ARGSUSED */ 3144 static void 3145 icmp_redirect(mblk_t *mp) 3146 { 3147 ipha_t *ipha; 3148 int iph_hdr_length; 3149 icmph_t *icmph; 3150 ipha_t *ipha_err; 3151 ire_t *ire; 3152 ire_t *prev_ire; 3153 ire_t *save_ire; 3154 ipaddr_t src, dst, gateway; 3155 iulp_t ulp_info = { 0 }; 3156 int error; 3157 3158 ipha = (ipha_t *)mp->b_rptr; 3159 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3160 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3161 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3162 BUMP_MIB(&icmp_mib, icmpInErrors); 3163 freemsg(mp); 3164 return; 3165 } 3166 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3167 ipha_err = (ipha_t *)&icmph[1]; 3168 src = ipha->ipha_src; 3169 dst = ipha_err->ipha_dst; 3170 gateway = icmph->icmph_rd_gateway; 3171 /* Make sure the new gateway is reachable somehow. */ 3172 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3173 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3174 /* 3175 * Make sure we had a route for the dest in question and that 3176 * that route was pointing to the old gateway (the source of the 3177 * redirect packet.) 3178 */ 3179 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3180 NULL, MATCH_IRE_GW); 3181 /* 3182 * Check that 3183 * the redirect was not from ourselves 3184 * the new gateway and the old gateway are directly reachable 3185 */ 3186 if (!prev_ire || 3187 !ire || 3188 ire->ire_type == IRE_LOCAL) { 3189 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3190 freemsg(mp); 3191 if (ire != NULL) 3192 ire_refrele(ire); 3193 if (prev_ire != NULL) 3194 ire_refrele(prev_ire); 3195 return; 3196 } 3197 3198 /* 3199 * Should we use the old ULP info to create the new gateway? From 3200 * a user's perspective, we should inherit the info so that it 3201 * is a "smooth" transition. If we do not do that, then new 3202 * connections going thru the new gateway will have no route metrics, 3203 * which is counter-intuitive to user. From a network point of 3204 * view, this may or may not make sense even though the new gateway 3205 * is still directly connected to us so the route metrics should not 3206 * change much. 3207 * 3208 * But if the old ire_uinfo is not initialized, we do another 3209 * recursive lookup on the dest using the new gateway. There may 3210 * be a route to that. If so, use it to initialize the redirect 3211 * route. 3212 */ 3213 if (prev_ire->ire_uinfo.iulp_set) { 3214 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3215 } else { 3216 ire_t *tmp_ire; 3217 ire_t *sire; 3218 3219 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3220 ALL_ZONES, 0, NULL, 3221 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3222 if (sire != NULL) { 3223 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3224 /* 3225 * If sire != NULL, ire_ftable_lookup() should not 3226 * return a NULL value. 3227 */ 3228 ASSERT(tmp_ire != NULL); 3229 ire_refrele(tmp_ire); 3230 ire_refrele(sire); 3231 } else if (tmp_ire != NULL) { 3232 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3233 sizeof (iulp_t)); 3234 ire_refrele(tmp_ire); 3235 } 3236 } 3237 if (prev_ire->ire_type == IRE_CACHE) 3238 ire_delete(prev_ire); 3239 ire_refrele(prev_ire); 3240 /* 3241 * TODO: more precise handling for cases 0, 2, 3, the latter two 3242 * require TOS routing 3243 */ 3244 switch (icmph->icmph_code) { 3245 case 0: 3246 case 1: 3247 /* TODO: TOS specificity for cases 2 and 3 */ 3248 case 2: 3249 case 3: 3250 break; 3251 default: 3252 freemsg(mp); 3253 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3254 ire_refrele(ire); 3255 return; 3256 } 3257 /* 3258 * Create a Route Association. This will allow us to remember that 3259 * someone we believe told us to use the particular gateway. 3260 */ 3261 save_ire = ire; 3262 ire = ire_create( 3263 (uchar_t *)&dst, /* dest addr */ 3264 (uchar_t *)&ip_g_all_ones, /* mask */ 3265 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3266 (uchar_t *)&gateway, /* gateway addr */ 3267 NULL, /* no in_srcaddr */ 3268 &save_ire->ire_max_frag, /* max frag */ 3269 NULL, /* Fast Path header */ 3270 NULL, /* no rfq */ 3271 NULL, /* no stq */ 3272 IRE_HOST, 3273 NULL, 3274 NULL, 3275 NULL, 3276 0, 3277 0, 3278 0, 3279 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3280 &ulp_info, 3281 NULL, 3282 NULL); 3283 3284 if (ire == NULL) { 3285 freemsg(mp); 3286 ire_refrele(save_ire); 3287 return; 3288 } 3289 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3290 ire_refrele(save_ire); 3291 atomic_inc_32(&ip_redirect_cnt); 3292 3293 if (error == 0) { 3294 ire_refrele(ire); /* Held in ire_add_v4 */ 3295 /* tell routing sockets that we received a redirect */ 3296 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3297 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3298 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3299 } 3300 3301 /* 3302 * Delete any existing IRE_HOST type redirect ires for this destination. 3303 * This together with the added IRE has the effect of 3304 * modifying an existing redirect. 3305 */ 3306 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3307 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3308 if (prev_ire != NULL) { 3309 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3310 ire_delete(prev_ire); 3311 ire_refrele(prev_ire); 3312 } 3313 3314 freemsg(mp); 3315 } 3316 3317 /* 3318 * Generate an ICMP parameter problem message. 3319 */ 3320 static void 3321 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3322 { 3323 icmph_t icmph; 3324 boolean_t mctl_present; 3325 mblk_t *first_mp; 3326 3327 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3328 3329 if (!(mp = icmp_pkt_err_ok(mp))) { 3330 if (mctl_present) 3331 freeb(first_mp); 3332 return; 3333 } 3334 3335 bzero(&icmph, sizeof (icmph_t)); 3336 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3337 icmph.icmph_pp_ptr = ptr; 3338 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3339 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3340 } 3341 3342 /* 3343 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3344 * the ICMP header pointed to by "stuff". (May be called as writer.) 3345 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3346 * an icmp error packet can be sent. 3347 * Assigns an appropriate source address to the packet. If ipha_dst is 3348 * one of our addresses use it for source. Otherwise pick a source based 3349 * on a route lookup back to ipha_src. 3350 * Note that ipha_src must be set here since the 3351 * packet is likely to arrive on an ill queue in ip_wput() which will 3352 * not set a source address. 3353 */ 3354 static void 3355 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3356 boolean_t mctl_present, zoneid_t zoneid) 3357 { 3358 ipaddr_t dst; 3359 icmph_t *icmph; 3360 ipha_t *ipha; 3361 uint_t len_needed; 3362 size_t msg_len; 3363 mblk_t *mp1; 3364 ipaddr_t src; 3365 ire_t *ire; 3366 mblk_t *ipsec_mp; 3367 ipsec_out_t *io = NULL; 3368 boolean_t xmit_if_on = B_FALSE; 3369 3370 if (mctl_present) { 3371 /* 3372 * If it is : 3373 * 3374 * 1) a IPSEC_OUT, then this is caused by outbound 3375 * datagram originating on this host. IPSEC processing 3376 * may or may not have been done. Refer to comments above 3377 * icmp_inbound_error_fanout for details. 3378 * 3379 * 2) a IPSEC_IN if we are generating a icmp_message 3380 * for an incoming datagram destined for us i.e called 3381 * from ip_fanout_send_icmp. 3382 */ 3383 ipsec_info_t *in; 3384 ipsec_mp = mp; 3385 mp = ipsec_mp->b_cont; 3386 3387 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3388 ipha = (ipha_t *)mp->b_rptr; 3389 3390 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3391 in->ipsec_info_type == IPSEC_IN); 3392 3393 if (in->ipsec_info_type == IPSEC_IN) { 3394 /* 3395 * Convert the IPSEC_IN to IPSEC_OUT. 3396 */ 3397 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3398 BUMP_MIB(&ip_mib, ipOutDiscards); 3399 return; 3400 } 3401 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3402 } else { 3403 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3404 io = (ipsec_out_t *)in; 3405 if (io->ipsec_out_xmit_if) 3406 xmit_if_on = B_TRUE; 3407 /* 3408 * Clear out ipsec_out_proc_begin, so we do a fresh 3409 * ire lookup. 3410 */ 3411 io->ipsec_out_proc_begin = B_FALSE; 3412 } 3413 ASSERT(zoneid == io->ipsec_out_zoneid); 3414 ASSERT(zoneid != ALL_ZONES); 3415 } else { 3416 /* 3417 * This is in clear. The icmp message we are building 3418 * here should go out in clear. 3419 * 3420 * Pardon the convolution of it all, but it's easier to 3421 * allocate a "use cleartext" IPSEC_IN message and convert 3422 * it than it is to allocate a new one. 3423 */ 3424 ipsec_in_t *ii; 3425 ASSERT(DB_TYPE(mp) == M_DATA); 3426 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3427 freemsg(mp); 3428 BUMP_MIB(&ip_mib, ipOutDiscards); 3429 return; 3430 } 3431 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3432 3433 /* This is not a secure packet */ 3434 ii->ipsec_in_secure = B_FALSE; 3435 /* 3436 * For trusted extensions using a shared IP address we can 3437 * send using any zoneid. 3438 */ 3439 if (zoneid == ALL_ZONES) 3440 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3441 else 3442 ii->ipsec_in_zoneid = zoneid; 3443 ipsec_mp->b_cont = mp; 3444 ipha = (ipha_t *)mp->b_rptr; 3445 /* 3446 * Convert the IPSEC_IN to IPSEC_OUT. 3447 */ 3448 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3449 BUMP_MIB(&ip_mib, ipOutDiscards); 3450 return; 3451 } 3452 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3453 } 3454 3455 /* Remember our eventual destination */ 3456 dst = ipha->ipha_src; 3457 3458 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3459 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3460 if (ire != NULL && 3461 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3462 src = ipha->ipha_dst; 3463 } else if (!xmit_if_on) { 3464 if (ire != NULL) 3465 ire_refrele(ire); 3466 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3467 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3468 if (ire == NULL) { 3469 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3470 freemsg(ipsec_mp); 3471 return; 3472 } 3473 src = ire->ire_src_addr; 3474 } else { 3475 ipif_t *ipif = NULL; 3476 ill_t *ill; 3477 /* 3478 * This must be an ICMP error coming from 3479 * ip_mrtun_forward(). The src addr should 3480 * be equal to the IP-addr of the outgoing 3481 * interface. 3482 */ 3483 if (io == NULL) { 3484 /* This is not a IPSEC_OUT type control msg */ 3485 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3486 freemsg(ipsec_mp); 3487 return; 3488 } 3489 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3490 NULL, NULL, NULL, NULL); 3491 if (ill != NULL) { 3492 ipif = ipif_get_next_ipif(NULL, ill); 3493 ill_refrele(ill); 3494 } 3495 if (ipif == NULL) { 3496 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3497 freemsg(ipsec_mp); 3498 return; 3499 } 3500 src = ipif->ipif_src_addr; 3501 ipif_refrele(ipif); 3502 } 3503 3504 if (ire != NULL) 3505 ire_refrele(ire); 3506 3507 /* 3508 * Check if we can send back more then 8 bytes in addition 3509 * to the IP header. We will include as much as 64 bytes. 3510 */ 3511 len_needed = IPH_HDR_LENGTH(ipha); 3512 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3513 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3514 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3515 } 3516 len_needed += ip_icmp_return; 3517 msg_len = msgdsize(mp); 3518 if (msg_len > len_needed) { 3519 (void) adjmsg(mp, len_needed - msg_len); 3520 msg_len = len_needed; 3521 } 3522 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3523 if (mp1 == NULL) { 3524 BUMP_MIB(&icmp_mib, icmpOutErrors); 3525 freemsg(ipsec_mp); 3526 return; 3527 } 3528 /* 3529 * On an unlabeled system, dblks don't necessarily have creds. 3530 */ 3531 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3532 if (DB_CRED(mp) != NULL) 3533 mblk_setcred(mp1, DB_CRED(mp)); 3534 mp1->b_cont = mp; 3535 mp = mp1; 3536 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3537 ipsec_mp->b_rptr == (uint8_t *)io && 3538 io->ipsec_out_type == IPSEC_OUT); 3539 ipsec_mp->b_cont = mp; 3540 3541 /* 3542 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3543 * node generates be accepted in peace by all on-host destinations. 3544 * If we do NOT assume that all on-host destinations trust 3545 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3546 * (Look for ipsec_out_icmp_loopback). 3547 */ 3548 io->ipsec_out_icmp_loopback = B_TRUE; 3549 3550 ipha = (ipha_t *)mp->b_rptr; 3551 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3552 *ipha = icmp_ipha; 3553 ipha->ipha_src = src; 3554 ipha->ipha_dst = dst; 3555 ipha->ipha_ttl = ip_def_ttl; 3556 msg_len += sizeof (icmp_ipha) + len; 3557 if (msg_len > IP_MAXPACKET) { 3558 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3559 msg_len = IP_MAXPACKET; 3560 } 3561 ipha->ipha_length = htons((uint16_t)msg_len); 3562 icmph = (icmph_t *)&ipha[1]; 3563 bcopy(stuff, icmph, len); 3564 icmph->icmph_checksum = 0; 3565 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3566 if (icmph->icmph_checksum == 0) 3567 icmph->icmph_checksum = 0xFFFF; 3568 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3569 put(q, ipsec_mp); 3570 } 3571 3572 /* 3573 * Determine if an ICMP error packet can be sent given the rate limit. 3574 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3575 * in milliseconds) and a burst size. Burst size number of packets can 3576 * be sent arbitrarely closely spaced. 3577 * The state is tracked using two variables to implement an approximate 3578 * token bucket filter: 3579 * icmp_pkt_err_last - lbolt value when the last burst started 3580 * icmp_pkt_err_sent - number of packets sent in current burst 3581 */ 3582 boolean_t 3583 icmp_err_rate_limit(void) 3584 { 3585 clock_t now = TICK_TO_MSEC(lbolt); 3586 uint_t refilled; /* Number of packets refilled in tbf since last */ 3587 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3588 3589 if (err_interval == 0) 3590 return (B_FALSE); 3591 3592 if (icmp_pkt_err_last > now) { 3593 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3594 icmp_pkt_err_last = 0; 3595 icmp_pkt_err_sent = 0; 3596 } 3597 /* 3598 * If we are in a burst update the token bucket filter. 3599 * Update the "last" time to be close to "now" but make sure 3600 * we don't loose precision. 3601 */ 3602 if (icmp_pkt_err_sent != 0) { 3603 refilled = (now - icmp_pkt_err_last)/err_interval; 3604 if (refilled > icmp_pkt_err_sent) { 3605 icmp_pkt_err_sent = 0; 3606 } else { 3607 icmp_pkt_err_sent -= refilled; 3608 icmp_pkt_err_last += refilled * err_interval; 3609 } 3610 } 3611 if (icmp_pkt_err_sent == 0) { 3612 /* Start of new burst */ 3613 icmp_pkt_err_last = now; 3614 } 3615 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3616 icmp_pkt_err_sent++; 3617 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3618 icmp_pkt_err_sent)); 3619 return (B_FALSE); 3620 } 3621 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3622 return (B_TRUE); 3623 } 3624 3625 /* 3626 * Check if it is ok to send an IPv4 ICMP error packet in 3627 * response to the IPv4 packet in mp. 3628 * Free the message and return null if no 3629 * ICMP error packet should be sent. 3630 */ 3631 static mblk_t * 3632 icmp_pkt_err_ok(mblk_t *mp) 3633 { 3634 icmph_t *icmph; 3635 ipha_t *ipha; 3636 uint_t len_needed; 3637 ire_t *src_ire; 3638 ire_t *dst_ire; 3639 3640 if (!mp) 3641 return (NULL); 3642 ipha = (ipha_t *)mp->b_rptr; 3643 if (ip_csum_hdr(ipha)) { 3644 BUMP_MIB(&ip_mib, ipInCksumErrs); 3645 freemsg(mp); 3646 return (NULL); 3647 } 3648 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3649 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3650 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3651 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3652 if (src_ire != NULL || dst_ire != NULL || 3653 CLASSD(ipha->ipha_dst) || 3654 CLASSD(ipha->ipha_src) || 3655 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3656 /* Note: only errors to the fragment with offset 0 */ 3657 BUMP_MIB(&icmp_mib, icmpOutDrops); 3658 freemsg(mp); 3659 if (src_ire != NULL) 3660 ire_refrele(src_ire); 3661 if (dst_ire != NULL) 3662 ire_refrele(dst_ire); 3663 return (NULL); 3664 } 3665 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3666 /* 3667 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3668 * errors in response to any ICMP errors. 3669 */ 3670 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3671 if (mp->b_wptr - mp->b_rptr < len_needed) { 3672 if (!pullupmsg(mp, len_needed)) { 3673 BUMP_MIB(&icmp_mib, icmpInErrors); 3674 freemsg(mp); 3675 return (NULL); 3676 } 3677 ipha = (ipha_t *)mp->b_rptr; 3678 } 3679 icmph = (icmph_t *) 3680 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3681 switch (icmph->icmph_type) { 3682 case ICMP_DEST_UNREACHABLE: 3683 case ICMP_SOURCE_QUENCH: 3684 case ICMP_TIME_EXCEEDED: 3685 case ICMP_PARAM_PROBLEM: 3686 case ICMP_REDIRECT: 3687 BUMP_MIB(&icmp_mib, icmpOutDrops); 3688 freemsg(mp); 3689 return (NULL); 3690 default: 3691 break; 3692 } 3693 } 3694 /* 3695 * If this is a labeled system, then check to see if we're allowed to 3696 * send a response to this particular sender. If not, then just drop. 3697 */ 3698 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3699 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3700 BUMP_MIB(&icmp_mib, icmpOutDrops); 3701 freemsg(mp); 3702 return (NULL); 3703 } 3704 if (icmp_err_rate_limit()) { 3705 /* 3706 * Only send ICMP error packets every so often. 3707 * This should be done on a per port/source basis, 3708 * but for now this will suffice. 3709 */ 3710 freemsg(mp); 3711 return (NULL); 3712 } 3713 return (mp); 3714 } 3715 3716 /* 3717 * Generate an ICMP redirect message. 3718 */ 3719 static void 3720 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3721 { 3722 icmph_t icmph; 3723 3724 /* 3725 * We are called from ip_rput where we could 3726 * not have attached an IPSEC_IN. 3727 */ 3728 ASSERT(mp->b_datap->db_type == M_DATA); 3729 3730 if (!(mp = icmp_pkt_err_ok(mp))) { 3731 return; 3732 } 3733 3734 bzero(&icmph, sizeof (icmph_t)); 3735 icmph.icmph_type = ICMP_REDIRECT; 3736 icmph.icmph_code = 1; 3737 icmph.icmph_rd_gateway = gateway; 3738 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3739 /* Redirects sent by router, and router is global zone */ 3740 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3741 } 3742 3743 /* 3744 * Generate an ICMP time exceeded message. 3745 */ 3746 void 3747 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3748 { 3749 icmph_t icmph; 3750 boolean_t mctl_present; 3751 mblk_t *first_mp; 3752 3753 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3754 3755 if (!(mp = icmp_pkt_err_ok(mp))) { 3756 if (mctl_present) 3757 freeb(first_mp); 3758 return; 3759 } 3760 3761 bzero(&icmph, sizeof (icmph_t)); 3762 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3763 icmph.icmph_code = code; 3764 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3765 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3766 } 3767 3768 /* 3769 * Generate an ICMP unreachable message. 3770 */ 3771 void 3772 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3773 { 3774 icmph_t icmph; 3775 mblk_t *first_mp; 3776 boolean_t mctl_present; 3777 3778 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3779 3780 if (!(mp = icmp_pkt_err_ok(mp))) { 3781 if (mctl_present) 3782 freeb(first_mp); 3783 return; 3784 } 3785 3786 bzero(&icmph, sizeof (icmph_t)); 3787 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3788 icmph.icmph_code = code; 3789 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3790 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3791 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3792 zoneid); 3793 } 3794 3795 /* 3796 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3797 * duplicate. As long as someone else holds the address, the interface will 3798 * stay down. When that conflict goes away, the interface is brought back up. 3799 * This is done so that accidental shutdowns of addresses aren't made 3800 * permanent. Your server will recover from a failure. 3801 * 3802 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3803 * user space process (dhcpagent). 3804 * 3805 * Recovery completes if ARP reports that the address is now ours (via 3806 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3807 * 3808 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3809 */ 3810 static void 3811 ipif_dup_recovery(void *arg) 3812 { 3813 ipif_t *ipif = arg; 3814 ill_t *ill = ipif->ipif_ill; 3815 mblk_t *arp_add_mp; 3816 mblk_t *arp_del_mp; 3817 area_t *area; 3818 3819 ipif->ipif_recovery_id = 0; 3820 3821 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3822 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3823 /* No reason to try to bring this address back. */ 3824 return; 3825 } 3826 3827 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3828 goto alloc_fail; 3829 3830 if (ipif->ipif_arp_del_mp == NULL) { 3831 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3832 goto alloc_fail; 3833 ipif->ipif_arp_del_mp = arp_del_mp; 3834 } 3835 3836 /* Setting the 'unverified' flag restarts DAD */ 3837 area = (area_t *)arp_add_mp->b_rptr; 3838 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3839 ACE_F_UNVERIFIED; 3840 putnext(ill->ill_rq, arp_add_mp); 3841 return; 3842 3843 alloc_fail: 3844 /* On allocation failure, just restart the timer */ 3845 freemsg(arp_add_mp); 3846 if (ip_dup_recovery > 0) { 3847 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3848 MSEC_TO_TICK(ip_dup_recovery)); 3849 } 3850 } 3851 3852 /* 3853 * This is for exclusive changes due to ARP. Either tear down an interface due 3854 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3855 */ 3856 /* ARGSUSED */ 3857 static void 3858 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3859 { 3860 ill_t *ill = rq->q_ptr; 3861 arh_t *arh; 3862 ipaddr_t src; 3863 ipif_t *ipif; 3864 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3865 char hbuf[MAC_STR_LEN]; 3866 char sbuf[INET_ADDRSTRLEN]; 3867 const char *failtype; 3868 boolean_t bring_up; 3869 3870 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3871 case AR_CN_READY: 3872 failtype = NULL; 3873 bring_up = B_TRUE; 3874 break; 3875 case AR_CN_FAILED: 3876 failtype = "in use"; 3877 bring_up = B_FALSE; 3878 break; 3879 default: 3880 failtype = "claimed"; 3881 bring_up = B_FALSE; 3882 break; 3883 } 3884 3885 arh = (arh_t *)mp->b_cont->b_rptr; 3886 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3887 3888 /* Handle failures due to probes */ 3889 if (src == 0) { 3890 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3891 IP_ADDR_LEN); 3892 } 3893 3894 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3895 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3896 sizeof (hbuf)); 3897 (void) ip_dot_addr(src, sbuf); 3898 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3899 3900 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3901 ipif->ipif_lcl_addr != src) { 3902 continue; 3903 } 3904 3905 /* 3906 * If we failed on a recovery probe, then restart the timer to 3907 * try again later. 3908 */ 3909 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3910 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3911 ill->ill_net_type == IRE_IF_RESOLVER && 3912 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3913 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3914 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3915 continue; 3916 } 3917 3918 /* 3919 * If what we're trying to do has already been done, then do 3920 * nothing. 3921 */ 3922 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3923 continue; 3924 3925 if (ipif->ipif_id != 0) { 3926 (void) snprintf(ibuf + ill->ill_name_length - 1, 3927 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3928 ipif->ipif_id); 3929 } 3930 if (failtype == NULL) { 3931 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3932 ibuf); 3933 } else { 3934 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3935 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3936 } 3937 3938 if (bring_up) { 3939 ASSERT(ill->ill_dl_up); 3940 /* 3941 * Free up the ARP delete message so we can allocate 3942 * a fresh one through the normal path. 3943 */ 3944 freemsg(ipif->ipif_arp_del_mp); 3945 ipif->ipif_arp_del_mp = NULL; 3946 if (ipif_resolver_up(ipif, Res_act_initial) != 3947 EINPROGRESS) { 3948 ipif->ipif_addr_ready = 1; 3949 (void) ipif_up_done(ipif); 3950 } 3951 continue; 3952 } 3953 3954 mutex_enter(&ill->ill_lock); 3955 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3956 ipif->ipif_flags |= IPIF_DUPLICATE; 3957 ill->ill_ipif_dup_count++; 3958 mutex_exit(&ill->ill_lock); 3959 /* 3960 * Already exclusive on the ill; no need to handle deferred 3961 * processing here. 3962 */ 3963 (void) ipif_down(ipif, NULL, NULL); 3964 ipif_down_tail(ipif); 3965 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3966 ill->ill_net_type == IRE_IF_RESOLVER && 3967 ip_dup_recovery > 0) { 3968 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3969 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3970 } 3971 } 3972 freemsg(mp); 3973 } 3974 3975 /* ARGSUSED */ 3976 static void 3977 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3978 { 3979 ill_t *ill = rq->q_ptr; 3980 arh_t *arh; 3981 ipaddr_t src; 3982 ipif_t *ipif; 3983 3984 arh = (arh_t *)mp->b_cont->b_rptr; 3985 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3986 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3987 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3988 (void) ipif_resolver_up(ipif, Res_act_defend); 3989 } 3990 freemsg(mp); 3991 } 3992 3993 /* 3994 * News from ARP. ARP sends notification of interesting events down 3995 * to its clients using M_CTL messages with the interesting ARP packet 3996 * attached via b_cont. 3997 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3998 * queue as opposed to ARP sending the message to all the clients, i.e. all 3999 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 4000 * table if a cache IRE is found to delete all the entries for the address in 4001 * the packet. 4002 */ 4003 static void 4004 ip_arp_news(queue_t *q, mblk_t *mp) 4005 { 4006 arcn_t *arcn; 4007 arh_t *arh; 4008 ire_t *ire = NULL; 4009 char hbuf[MAC_STR_LEN]; 4010 char sbuf[INET_ADDRSTRLEN]; 4011 ipaddr_t src; 4012 in6_addr_t v6src; 4013 boolean_t isv6 = B_FALSE; 4014 ipif_t *ipif; 4015 ill_t *ill; 4016 4017 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4018 if (q->q_next) { 4019 putnext(q, mp); 4020 } else 4021 freemsg(mp); 4022 return; 4023 } 4024 arh = (arh_t *)mp->b_cont->b_rptr; 4025 /* Is it one we are interested in? */ 4026 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4027 isv6 = B_TRUE; 4028 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4029 IPV6_ADDR_LEN); 4030 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4031 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4032 IP_ADDR_LEN); 4033 } else { 4034 freemsg(mp); 4035 return; 4036 } 4037 4038 ill = q->q_ptr; 4039 4040 arcn = (arcn_t *)mp->b_rptr; 4041 switch (arcn->arcn_code) { 4042 case AR_CN_BOGON: 4043 /* 4044 * Someone is sending ARP packets with a source protocol 4045 * address that we have published and for which we believe our 4046 * entry is authoritative and (when ill_arp_extend is set) 4047 * verified to be unique on the network. 4048 * 4049 * The ARP module internally handles the cases where the sender 4050 * is just probing (for DAD) and where the hardware address of 4051 * a non-authoritative entry has changed. Thus, these are the 4052 * real conflicts, and we have to do resolution. 4053 * 4054 * We back away quickly from the address if it's from DHCP or 4055 * otherwise temporary and hasn't been used recently (or at 4056 * all). We'd like to include "deprecated" addresses here as 4057 * well (as there's no real reason to defend something we're 4058 * discarding), but IPMP "reuses" this flag to mean something 4059 * other than the standard meaning. 4060 * 4061 * If the ARP module above is not extended (meaning that it 4062 * doesn't know how to defend the address), then we just log 4063 * the problem as we always did and continue on. It's not 4064 * right, but there's little else we can do, and those old ATM 4065 * users are going away anyway. 4066 */ 4067 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4068 hbuf, sizeof (hbuf)); 4069 (void) ip_dot_addr(src, sbuf); 4070 if (isv6) 4071 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4072 else 4073 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4074 4075 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4076 uint32_t now; 4077 uint32_t maxage; 4078 clock_t lused; 4079 uint_t maxdefense; 4080 uint_t defs; 4081 4082 /* 4083 * First, figure out if this address hasn't been used 4084 * in a while. If it hasn't, then it's a better 4085 * candidate for abandoning. 4086 */ 4087 ipif = ire->ire_ipif; 4088 ASSERT(ipif != NULL); 4089 now = gethrestime_sec(); 4090 maxage = now - ire->ire_create_time; 4091 if (maxage > ip_max_temp_idle) 4092 maxage = ip_max_temp_idle; 4093 lused = drv_hztousec(ddi_get_lbolt() - 4094 ire->ire_last_used_time) / MICROSEC + 1; 4095 if (lused >= maxage && (ipif->ipif_flags & 4096 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4097 maxdefense = ip_max_temp_defend; 4098 else 4099 maxdefense = ip_max_defend; 4100 4101 /* 4102 * Now figure out how many times we've defended 4103 * ourselves. Ignore defenses that happened long in 4104 * the past. 4105 */ 4106 mutex_enter(&ire->ire_lock); 4107 if ((defs = ire->ire_defense_count) > 0 && 4108 now - ire->ire_defense_time > ip_defend_interval) { 4109 ire->ire_defense_count = defs = 0; 4110 } 4111 ire->ire_defense_count++; 4112 ire->ire_defense_time = now; 4113 mutex_exit(&ire->ire_lock); 4114 ill_refhold(ill); 4115 ire_refrele(ire); 4116 4117 /* 4118 * If we've defended ourselves too many times already, 4119 * then give up and tear down the interface(s) using 4120 * this address. Otherwise, defend by sending out a 4121 * gratuitous ARP. 4122 */ 4123 if (defs >= maxdefense && ill->ill_arp_extend) { 4124 (void) qwriter_ip(NULL, ill, q, mp, 4125 ip_arp_excl, CUR_OP, B_FALSE); 4126 } else { 4127 cmn_err(CE_WARN, 4128 "node %s is using our IP address %s on %s", 4129 hbuf, sbuf, ill->ill_name); 4130 /* 4131 * If this is an old (ATM) ARP module, then 4132 * don't try to defend the address. Remain 4133 * compatible with the old behavior. Defend 4134 * only with new ARP. 4135 */ 4136 if (ill->ill_arp_extend) { 4137 (void) qwriter_ip(NULL, ill, q, mp, 4138 ip_arp_defend, CUR_OP, B_FALSE); 4139 } else { 4140 ill_refrele(ill); 4141 } 4142 } 4143 return; 4144 } 4145 cmn_err(CE_WARN, 4146 "proxy ARP problem? Node '%s' is using %s on %s", 4147 hbuf, sbuf, ill->ill_name); 4148 if (ire != NULL) 4149 ire_refrele(ire); 4150 break; 4151 case AR_CN_ANNOUNCE: 4152 if (isv6) { 4153 /* 4154 * For XRESOLV interfaces. 4155 * Delete the IRE cache entry and NCE for this 4156 * v6 address 4157 */ 4158 ip_ire_clookup_and_delete_v6(&v6src); 4159 /* 4160 * If v6src is a non-zero, it's a router address 4161 * as below. Do the same sort of thing to clean 4162 * out off-net IRE_CACHE entries that go through 4163 * the router. 4164 */ 4165 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4166 ire_walk_v6(ire_delete_cache_gw_v6, 4167 (char *)&v6src, ALL_ZONES); 4168 } 4169 } else { 4170 nce_hw_map_t hwm; 4171 4172 /* 4173 * ARP gives us a copy of any packet where it thinks 4174 * the address has changed, so that we can update our 4175 * caches. We're responsible for caching known answers 4176 * in the current design. We check whether the 4177 * hardware address really has changed in all of our 4178 * entries that have cached this mapping, and if so, we 4179 * blow them away. This way we will immediately pick 4180 * up the rare case of a host changing hardware 4181 * address. 4182 */ 4183 if (src == 0) 4184 break; 4185 hwm.hwm_addr = src; 4186 hwm.hwm_hwlen = arh->arh_hlen; 4187 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4188 ndp_walk_common(&ndp4, NULL, 4189 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4190 } 4191 break; 4192 case AR_CN_READY: 4193 /* No external v6 resolver has a contract to use this */ 4194 if (isv6) 4195 break; 4196 /* If the link is down, we'll retry this later */ 4197 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4198 break; 4199 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4200 NULL, NULL); 4201 if (ipif != NULL) { 4202 /* 4203 * If this is a duplicate recovery, then we now need to 4204 * go exclusive to bring this thing back up. 4205 */ 4206 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4207 IPIF_DUPLICATE) { 4208 ipif_refrele(ipif); 4209 ill_refhold(ill); 4210 (void) qwriter_ip(NULL, ill, q, mp, 4211 ip_arp_excl, CUR_OP, B_FALSE); 4212 return; 4213 } 4214 /* 4215 * If this is the first notice that this address is 4216 * ready, then let the user know now. 4217 */ 4218 if ((ipif->ipif_flags & IPIF_UP) && 4219 !ipif->ipif_addr_ready) { 4220 ipif_mask_reply(ipif); 4221 ip_rts_ifmsg(ipif); 4222 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4223 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4224 } 4225 ipif->ipif_addr_ready = 1; 4226 ipif_refrele(ipif); 4227 } 4228 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4229 if (ire != NULL) { 4230 ire->ire_defense_count = 0; 4231 ire_refrele(ire); 4232 } 4233 break; 4234 case AR_CN_FAILED: 4235 /* No external v6 resolver has a contract to use this */ 4236 if (isv6) 4237 break; 4238 ill_refhold(ill); 4239 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4240 B_FALSE); 4241 return; 4242 } 4243 freemsg(mp); 4244 } 4245 4246 /* 4247 * Create a mblk suitable for carrying the interface index and/or source link 4248 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4249 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4250 * application. 4251 */ 4252 mblk_t * 4253 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4254 { 4255 mblk_t *mp; 4256 in_pktinfo_t *pinfo; 4257 ipha_t *ipha; 4258 struct ether_header *pether; 4259 4260 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4261 if (mp == NULL) { 4262 ip1dbg(("ip_add_info: allocation failure.\n")); 4263 return (data_mp); 4264 } 4265 4266 ipha = (ipha_t *)data_mp->b_rptr; 4267 pinfo = (in_pktinfo_t *)mp->b_rptr; 4268 bzero(pinfo, sizeof (in_pktinfo_t)); 4269 pinfo->in_pkt_flags = (uchar_t)flags; 4270 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4271 4272 if (flags & IPF_RECVIF) 4273 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4274 4275 pether = (struct ether_header *)((char *)ipha 4276 - sizeof (struct ether_header)); 4277 /* 4278 * Make sure the interface is an ethernet type, since this option 4279 * is currently supported only on this type of interface. Also make 4280 * sure we are pointing correctly above db_base. 4281 */ 4282 4283 if ((flags & IPF_RECVSLLA) && 4284 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4285 (ill->ill_type == IFT_ETHER) && 4286 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4287 4288 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4289 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4290 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4291 } else { 4292 /* 4293 * Clear the bit. Indicate to upper layer that IP is not 4294 * sending this ancillary info. 4295 */ 4296 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4297 } 4298 4299 mp->b_datap->db_type = M_CTL; 4300 mp->b_wptr += sizeof (in_pktinfo_t); 4301 mp->b_cont = data_mp; 4302 4303 return (mp); 4304 } 4305 4306 /* 4307 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4308 * part of the bind request. 4309 */ 4310 4311 boolean_t 4312 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4313 { 4314 ipsec_in_t *ii; 4315 4316 ASSERT(policy_mp != NULL); 4317 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4318 4319 ii = (ipsec_in_t *)policy_mp->b_rptr; 4320 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4321 4322 connp->conn_policy = ii->ipsec_in_policy; 4323 ii->ipsec_in_policy = NULL; 4324 4325 if (ii->ipsec_in_action != NULL) { 4326 if (connp->conn_latch == NULL) { 4327 connp->conn_latch = iplatch_create(); 4328 if (connp->conn_latch == NULL) 4329 return (B_FALSE); 4330 } 4331 ipsec_latch_inbound(connp->conn_latch, ii); 4332 } 4333 return (B_TRUE); 4334 } 4335 4336 /* 4337 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4338 * and to arrange for power-fanout assist. The ULP is identified by 4339 * adding a single byte at the end of the original bind message. 4340 * A ULP other than UDP or TCP that wishes to be recognized passes 4341 * down a bind with a zero length address. 4342 * 4343 * The binding works as follows: 4344 * - A zero byte address means just bind to the protocol. 4345 * - A four byte address is treated as a request to validate 4346 * that the address is a valid local address, appropriate for 4347 * an application to bind to. This does not affect any fanout 4348 * information in IP. 4349 * - A sizeof sin_t byte address is used to bind to only the local address 4350 * and port. 4351 * - A sizeof ipa_conn_t byte address contains complete fanout information 4352 * consisting of local and remote addresses and ports. In 4353 * this case, the addresses are both validated as appropriate 4354 * for this operation, and, if so, the information is retained 4355 * for use in the inbound fanout. 4356 * 4357 * The ULP (except in the zero-length bind) can append an 4358 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4359 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4360 * a copy of the source or destination IRE (source for local bind; 4361 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4362 * policy information contained should be copied on to the conn. 4363 * 4364 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4365 */ 4366 mblk_t * 4367 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4368 { 4369 ssize_t len; 4370 struct T_bind_req *tbr; 4371 sin_t *sin; 4372 ipa_conn_t *ac; 4373 uchar_t *ucp; 4374 mblk_t *mp1; 4375 boolean_t ire_requested; 4376 boolean_t ipsec_policy_set = B_FALSE; 4377 int error = 0; 4378 int protocol; 4379 ipa_conn_x_t *acx; 4380 4381 ASSERT(!connp->conn_af_isv6); 4382 connp->conn_pkt_isv6 = B_FALSE; 4383 4384 len = MBLKL(mp); 4385 if (len < (sizeof (*tbr) + 1)) { 4386 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4387 "ip_bind: bogus msg, len %ld", len); 4388 /* XXX: Need to return something better */ 4389 goto bad_addr; 4390 } 4391 /* Back up and extract the protocol identifier. */ 4392 mp->b_wptr--; 4393 protocol = *mp->b_wptr & 0xFF; 4394 tbr = (struct T_bind_req *)mp->b_rptr; 4395 /* Reset the message type in preparation for shipping it back. */ 4396 DB_TYPE(mp) = M_PCPROTO; 4397 4398 connp->conn_ulp = (uint8_t)protocol; 4399 4400 /* 4401 * Check for a zero length address. This is from a protocol that 4402 * wants to register to receive all packets of its type. 4403 */ 4404 if (tbr->ADDR_length == 0) { 4405 /* 4406 * These protocols are now intercepted in ip_bind_v6(). 4407 * Reject protocol-level binds here for now. 4408 * 4409 * For SCTP raw socket, ICMP sends down a bind with sin_t 4410 * so that the protocol type cannot be SCTP. 4411 */ 4412 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4413 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4414 goto bad_addr; 4415 } 4416 4417 /* 4418 * 4419 * The udp module never sends down a zero-length address, 4420 * and allowing this on a labeled system will break MLP 4421 * functionality. 4422 */ 4423 if (is_system_labeled() && protocol == IPPROTO_UDP) 4424 goto bad_addr; 4425 4426 if (connp->conn_mac_exempt) 4427 goto bad_addr; 4428 4429 /* No hash here really. The table is big enough. */ 4430 connp->conn_srcv6 = ipv6_all_zeros; 4431 4432 ipcl_proto_insert(connp, protocol); 4433 4434 tbr->PRIM_type = T_BIND_ACK; 4435 return (mp); 4436 } 4437 4438 /* Extract the address pointer from the message. */ 4439 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4440 tbr->ADDR_length); 4441 if (ucp == NULL) { 4442 ip1dbg(("ip_bind: no address\n")); 4443 goto bad_addr; 4444 } 4445 if (!OK_32PTR(ucp)) { 4446 ip1dbg(("ip_bind: unaligned address\n")); 4447 goto bad_addr; 4448 } 4449 /* 4450 * Check for trailing mps. 4451 */ 4452 4453 mp1 = mp->b_cont; 4454 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4455 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4456 4457 switch (tbr->ADDR_length) { 4458 default: 4459 ip1dbg(("ip_bind: bad address length %d\n", 4460 (int)tbr->ADDR_length)); 4461 goto bad_addr; 4462 4463 case IP_ADDR_LEN: 4464 /* Verification of local address only */ 4465 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4466 ire_requested, ipsec_policy_set, B_FALSE); 4467 break; 4468 4469 case sizeof (sin_t): 4470 sin = (sin_t *)ucp; 4471 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4472 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4473 break; 4474 4475 case sizeof (ipa_conn_t): 4476 ac = (ipa_conn_t *)ucp; 4477 /* For raw socket, the local port is not set. */ 4478 if (ac->ac_lport == 0) 4479 ac->ac_lport = connp->conn_lport; 4480 /* Always verify destination reachability. */ 4481 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4482 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4483 ipsec_policy_set, B_TRUE, B_TRUE); 4484 break; 4485 4486 case sizeof (ipa_conn_x_t): 4487 acx = (ipa_conn_x_t *)ucp; 4488 /* 4489 * Whether or not to verify destination reachability depends 4490 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4491 */ 4492 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4493 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4494 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4495 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4496 break; 4497 } 4498 if (error == EINPROGRESS) 4499 return (NULL); 4500 else if (error != 0) 4501 goto bad_addr; 4502 /* 4503 * Pass the IPSEC headers size in ire_ipsec_overhead. 4504 * We can't do this in ip_bind_insert_ire because the policy 4505 * may not have been inherited at that point in time and hence 4506 * conn_out_enforce_policy may not be set. 4507 */ 4508 mp1 = mp->b_cont; 4509 if (ire_requested && connp->conn_out_enforce_policy && 4510 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4511 ire_t *ire = (ire_t *)mp1->b_rptr; 4512 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4513 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4514 } 4515 4516 /* Send it home. */ 4517 mp->b_datap->db_type = M_PCPROTO; 4518 tbr->PRIM_type = T_BIND_ACK; 4519 return (mp); 4520 4521 bad_addr: 4522 /* 4523 * If error = -1 then we generate a TBADADDR - otherwise error is 4524 * a unix errno. 4525 */ 4526 if (error > 0) 4527 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4528 else 4529 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4530 return (mp); 4531 } 4532 4533 /* 4534 * Here address is verified to be a valid local address. 4535 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4536 * address is also considered a valid local address. 4537 * In the case of a broadcast/multicast address, however, the 4538 * upper protocol is expected to reset the src address 4539 * to 0 if it sees a IRE_BROADCAST type returned so that 4540 * no packets are emitted with broadcast/multicast address as 4541 * source address (that violates hosts requirements RFC1122) 4542 * The addresses valid for bind are: 4543 * (1) - INADDR_ANY (0) 4544 * (2) - IP address of an UP interface 4545 * (3) - IP address of a DOWN interface 4546 * (4) - valid local IP broadcast addresses. In this case 4547 * the conn will only receive packets destined to 4548 * the specified broadcast address. 4549 * (5) - a multicast address. In this case 4550 * the conn will only receive packets destined to 4551 * the specified multicast address. Note: the 4552 * application still has to issue an 4553 * IP_ADD_MEMBERSHIP socket option. 4554 * 4555 * On error, return -1 for TBADADDR otherwise pass the 4556 * errno with TSYSERR reply. 4557 * 4558 * In all the above cases, the bound address must be valid in the current zone. 4559 * When the address is loopback, multicast or broadcast, there might be many 4560 * matching IREs so bind has to look up based on the zone. 4561 * 4562 * Note: lport is in network byte order. 4563 */ 4564 int 4565 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4566 boolean_t ire_requested, boolean_t ipsec_policy_set, 4567 boolean_t fanout_insert) 4568 { 4569 int error = 0; 4570 ire_t *src_ire; 4571 mblk_t *policy_mp; 4572 ipif_t *ipif; 4573 zoneid_t zoneid; 4574 4575 if (ipsec_policy_set) { 4576 policy_mp = mp->b_cont; 4577 } 4578 4579 /* 4580 * If it was previously connected, conn_fully_bound would have 4581 * been set. 4582 */ 4583 connp->conn_fully_bound = B_FALSE; 4584 4585 src_ire = NULL; 4586 ipif = NULL; 4587 4588 zoneid = IPCL_ZONEID(connp); 4589 4590 if (src_addr) { 4591 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4592 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4593 /* 4594 * If an address other than 0.0.0.0 is requested, 4595 * we verify that it is a valid address for bind 4596 * Note: Following code is in if-else-if form for 4597 * readability compared to a condition check. 4598 */ 4599 /* LINTED - statement has no consequent */ 4600 if (IRE_IS_LOCAL(src_ire)) { 4601 /* 4602 * (2) Bind to address of local UP interface 4603 */ 4604 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4605 /* 4606 * (4) Bind to broadcast address 4607 * Note: permitted only from transports that 4608 * request IRE 4609 */ 4610 if (!ire_requested) 4611 error = EADDRNOTAVAIL; 4612 } else { 4613 /* 4614 * (3) Bind to address of local DOWN interface 4615 * (ipif_lookup_addr() looks up all interfaces 4616 * but we do not get here for UP interfaces 4617 * - case (2) above) 4618 * We put the protocol byte back into the mblk 4619 * since we may come back via ip_wput_nondata() 4620 * later with this mblk if ipif_lookup_addr chooses 4621 * to defer processing. 4622 */ 4623 *mp->b_wptr++ = (char)connp->conn_ulp; 4624 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4625 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4626 &error)) != NULL) { 4627 ipif_refrele(ipif); 4628 } else if (error == EINPROGRESS) { 4629 if (src_ire != NULL) 4630 ire_refrele(src_ire); 4631 return (EINPROGRESS); 4632 } else if (CLASSD(src_addr)) { 4633 error = 0; 4634 if (src_ire != NULL) 4635 ire_refrele(src_ire); 4636 /* 4637 * (5) bind to multicast address. 4638 * Fake out the IRE returned to upper 4639 * layer to be a broadcast IRE. 4640 */ 4641 src_ire = ire_ctable_lookup( 4642 INADDR_BROADCAST, INADDR_ANY, 4643 IRE_BROADCAST, NULL, zoneid, NULL, 4644 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4645 if (src_ire == NULL || !ire_requested) 4646 error = EADDRNOTAVAIL; 4647 } else { 4648 /* 4649 * Not a valid address for bind 4650 */ 4651 error = EADDRNOTAVAIL; 4652 } 4653 /* 4654 * Just to keep it consistent with the processing in 4655 * ip_bind_v4() 4656 */ 4657 mp->b_wptr--; 4658 } 4659 if (error) { 4660 /* Red Alert! Attempting to be a bogon! */ 4661 ip1dbg(("ip_bind: bad src address 0x%x\n", 4662 ntohl(src_addr))); 4663 goto bad_addr; 4664 } 4665 } 4666 4667 /* 4668 * Allow setting new policies. For example, disconnects come 4669 * down as ipa_t bind. As we would have set conn_policy_cached 4670 * to B_TRUE before, we should set it to B_FALSE, so that policy 4671 * can change after the disconnect. 4672 */ 4673 connp->conn_policy_cached = B_FALSE; 4674 4675 /* 4676 * If not fanout_insert this was just an address verification 4677 */ 4678 if (fanout_insert) { 4679 /* 4680 * The addresses have been verified. Time to insert in 4681 * the correct fanout list. 4682 */ 4683 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4684 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4685 connp->conn_lport = lport; 4686 connp->conn_fport = 0; 4687 /* 4688 * Do we need to add a check to reject Multicast packets 4689 * 4690 * We need to make sure that the conn_recv is set to a non-null 4691 * value before we insert the conn into the classifier table. 4692 * This is to avoid a race with an incoming packet which does an 4693 * ipcl_classify(). 4694 */ 4695 if (*mp->b_wptr == IPPROTO_TCP) 4696 connp->conn_recv = tcp_conn_request; 4697 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4698 } 4699 4700 if (error == 0) { 4701 if (ire_requested) { 4702 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4703 error = -1; 4704 /* Falls through to bad_addr */ 4705 } 4706 } else if (ipsec_policy_set) { 4707 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4708 error = -1; 4709 /* Falls through to bad_addr */ 4710 } 4711 } 4712 } else if (connp->conn_ulp == IPPROTO_TCP) { 4713 connp->conn_recv = tcp_input; 4714 } 4715 bad_addr: 4716 if (error != 0) { 4717 if (connp->conn_anon_port) { 4718 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4719 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4720 B_FALSE); 4721 } 4722 connp->conn_mlp_type = mlptSingle; 4723 } 4724 if (src_ire != NULL) 4725 IRE_REFRELE(src_ire); 4726 if (ipsec_policy_set) { 4727 ASSERT(policy_mp == mp->b_cont); 4728 ASSERT(policy_mp != NULL); 4729 freeb(policy_mp); 4730 /* 4731 * As of now assume that nothing else accompanies 4732 * IPSEC_POLICY_SET. 4733 */ 4734 mp->b_cont = NULL; 4735 } 4736 return (error); 4737 } 4738 4739 /* 4740 * Verify that both the source and destination addresses 4741 * are valid. If verify_dst is false, then the destination address may be 4742 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4743 * destination reachability, while tunnels do not. 4744 * Note that we allow connect to broadcast and multicast 4745 * addresses when ire_requested is set. Thus the ULP 4746 * has to check for IRE_BROADCAST and multicast. 4747 * 4748 * Returns zero if ok. 4749 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4750 * (for use with TSYSERR reply). 4751 * 4752 * Note: lport and fport are in network byte order. 4753 */ 4754 int 4755 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4756 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4757 boolean_t ire_requested, boolean_t ipsec_policy_set, 4758 boolean_t fanout_insert, boolean_t verify_dst) 4759 { 4760 ire_t *src_ire; 4761 ire_t *dst_ire; 4762 int error = 0; 4763 int protocol; 4764 mblk_t *policy_mp; 4765 ire_t *sire = NULL; 4766 ire_t *md_dst_ire = NULL; 4767 ire_t *lso_dst_ire = NULL; 4768 ill_t *ill = NULL; 4769 zoneid_t zoneid; 4770 ipaddr_t src_addr = *src_addrp; 4771 4772 src_ire = dst_ire = NULL; 4773 protocol = *mp->b_wptr & 0xFF; 4774 4775 /* 4776 * If we never got a disconnect before, clear it now. 4777 */ 4778 connp->conn_fully_bound = B_FALSE; 4779 4780 if (ipsec_policy_set) { 4781 policy_mp = mp->b_cont; 4782 } 4783 4784 zoneid = IPCL_ZONEID(connp); 4785 4786 if (CLASSD(dst_addr)) { 4787 /* Pick up an IRE_BROADCAST */ 4788 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4789 NULL, zoneid, MBLK_GETLABEL(mp), 4790 (MATCH_IRE_RECURSIVE | 4791 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4792 MATCH_IRE_SECATTR)); 4793 } else { 4794 /* 4795 * If conn_dontroute is set or if conn_nexthop_set is set, 4796 * and onlink ipif is not found set ENETUNREACH error. 4797 */ 4798 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4799 ipif_t *ipif; 4800 4801 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4802 dst_addr : connp->conn_nexthop_v4, 4803 connp->conn_zoneid); 4804 if (ipif == NULL) { 4805 error = ENETUNREACH; 4806 goto bad_addr; 4807 } 4808 ipif_refrele(ipif); 4809 } 4810 4811 if (connp->conn_nexthop_set) { 4812 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4813 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4814 MATCH_IRE_SECATTR); 4815 } else { 4816 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4817 &sire, zoneid, MBLK_GETLABEL(mp), 4818 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4819 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4820 MATCH_IRE_SECATTR)); 4821 } 4822 } 4823 /* 4824 * dst_ire can't be a broadcast when not ire_requested. 4825 * We also prevent ire's with src address INADDR_ANY to 4826 * be used, which are created temporarily for 4827 * sending out packets from endpoints that have 4828 * conn_unspec_src set. If verify_dst is true, the destination must be 4829 * reachable. If verify_dst is false, the destination needn't be 4830 * reachable. 4831 * 4832 * If we match on a reject or black hole, then we've got a 4833 * local failure. May as well fail out the connect() attempt, 4834 * since it's never going to succeed. 4835 */ 4836 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4837 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4838 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4839 /* 4840 * If we're verifying destination reachability, we always want 4841 * to complain here. 4842 * 4843 * If we're not verifying destination reachability but the 4844 * destination has a route, we still want to fail on the 4845 * temporary address and broadcast address tests. 4846 */ 4847 if (verify_dst || (dst_ire != NULL)) { 4848 if (ip_debug > 2) { 4849 pr_addr_dbg("ip_bind_connected: bad connected " 4850 "dst %s\n", AF_INET, &dst_addr); 4851 } 4852 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4853 error = ENETUNREACH; 4854 else 4855 error = EHOSTUNREACH; 4856 goto bad_addr; 4857 } 4858 } 4859 4860 /* 4861 * We now know that routing will allow us to reach the destination. 4862 * Check whether Trusted Solaris policy allows communication with this 4863 * host, and pretend that the destination is unreachable if not. 4864 * 4865 * This is never a problem for TCP, since that transport is known to 4866 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4867 * handling. If the remote is unreachable, it will be detected at that 4868 * point, so there's no reason to check it here. 4869 * 4870 * Note that for sendto (and other datagram-oriented friends), this 4871 * check is done as part of the data path label computation instead. 4872 * The check here is just to make non-TCP connect() report the right 4873 * error. 4874 */ 4875 if (dst_ire != NULL && is_system_labeled() && 4876 !IPCL_IS_TCP(connp) && 4877 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4878 connp->conn_mac_exempt) != 0) { 4879 error = EHOSTUNREACH; 4880 if (ip_debug > 2) { 4881 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4882 AF_INET, &dst_addr); 4883 } 4884 goto bad_addr; 4885 } 4886 4887 /* 4888 * If the app does a connect(), it means that it will most likely 4889 * send more than 1 packet to the destination. It makes sense 4890 * to clear the temporary flag. 4891 */ 4892 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4893 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4894 irb_t *irb = dst_ire->ire_bucket; 4895 4896 rw_enter(&irb->irb_lock, RW_WRITER); 4897 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4898 irb->irb_tmp_ire_cnt--; 4899 rw_exit(&irb->irb_lock); 4900 } 4901 4902 /* 4903 * See if we should notify ULP about LSO/MDT; we do this whether or not 4904 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4905 * eligibility tests for passive connects are handled separately 4906 * through tcp_adapt_ire(). We do this before the source address 4907 * selection, because dst_ire may change after a call to 4908 * ipif_select_source(). This is a best-effort check, as the 4909 * packet for this connection may not actually go through 4910 * dst_ire->ire_stq, and the exact IRE can only be known after 4911 * calling ip_newroute(). This is why we further check on the 4912 * IRE during LSO/Multidata packet transmission in 4913 * tcp_lsosend()/tcp_multisend(). 4914 */ 4915 if (!ipsec_policy_set && dst_ire != NULL && 4916 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4917 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4918 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4919 lso_dst_ire = dst_ire; 4920 IRE_REFHOLD(lso_dst_ire); 4921 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 4922 md_dst_ire = dst_ire; 4923 IRE_REFHOLD(md_dst_ire); 4924 } 4925 } 4926 4927 if (dst_ire != NULL && 4928 dst_ire->ire_type == IRE_LOCAL && 4929 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4930 /* 4931 * If the IRE belongs to a different zone, look for a matching 4932 * route in the forwarding table and use the source address from 4933 * that route. 4934 */ 4935 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4936 zoneid, 0, NULL, 4937 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4938 MATCH_IRE_RJ_BHOLE); 4939 if (src_ire == NULL) { 4940 error = EHOSTUNREACH; 4941 goto bad_addr; 4942 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4943 if (!(src_ire->ire_type & IRE_HOST)) 4944 error = ENETUNREACH; 4945 else 4946 error = EHOSTUNREACH; 4947 goto bad_addr; 4948 } 4949 if (src_addr == INADDR_ANY) 4950 src_addr = src_ire->ire_src_addr; 4951 ire_refrele(src_ire); 4952 src_ire = NULL; 4953 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4954 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4955 src_addr = sire->ire_src_addr; 4956 ire_refrele(dst_ire); 4957 dst_ire = sire; 4958 sire = NULL; 4959 } else { 4960 /* 4961 * Pick a source address so that a proper inbound 4962 * load spreading would happen. 4963 */ 4964 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4965 ipif_t *src_ipif = NULL; 4966 ire_t *ipif_ire; 4967 4968 /* 4969 * Supply a local source address such that inbound 4970 * load spreading happens. 4971 * 4972 * Determine the best source address on this ill for 4973 * the destination. 4974 * 4975 * 1) For broadcast, we should return a broadcast ire 4976 * found above so that upper layers know that the 4977 * destination address is a broadcast address. 4978 * 4979 * 2) If this is part of a group, select a better 4980 * source address so that better inbound load 4981 * balancing happens. Do the same if the ipif 4982 * is DEPRECATED. 4983 * 4984 * 3) If the outgoing interface is part of a usesrc 4985 * group, then try selecting a source address from 4986 * the usesrc ILL. 4987 */ 4988 if ((dst_ire->ire_zoneid != zoneid && 4989 dst_ire->ire_zoneid != ALL_ZONES) || 4990 (!(dst_ire->ire_type & IRE_BROADCAST) && 4991 ((dst_ill->ill_group != NULL) || 4992 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4993 (dst_ill->ill_usesrc_ifindex != 0)))) { 4994 /* 4995 * If the destination is reachable via a 4996 * given gateway, the selected source address 4997 * should be in the same subnet as the gateway. 4998 * Otherwise, the destination is not reachable. 4999 * 5000 * If there are no interfaces on the same subnet 5001 * as the destination, ipif_select_source gives 5002 * first non-deprecated interface which might be 5003 * on a different subnet than the gateway. 5004 * This is not desirable. Hence pass the dst_ire 5005 * source address to ipif_select_source. 5006 * It is sure that the destination is reachable 5007 * with the dst_ire source address subnet. 5008 * So passing dst_ire source address to 5009 * ipif_select_source will make sure that the 5010 * selected source will be on the same subnet 5011 * as dst_ire source address. 5012 */ 5013 ipaddr_t saddr = 5014 dst_ire->ire_ipif->ipif_src_addr; 5015 src_ipif = ipif_select_source(dst_ill, 5016 saddr, zoneid); 5017 if (src_ipif != NULL) { 5018 if (IS_VNI(src_ipif->ipif_ill)) { 5019 /* 5020 * For VNI there is no 5021 * interface route 5022 */ 5023 src_addr = 5024 src_ipif->ipif_src_addr; 5025 } else { 5026 ipif_ire = 5027 ipif_to_ire(src_ipif); 5028 if (ipif_ire != NULL) { 5029 IRE_REFRELE(dst_ire); 5030 dst_ire = ipif_ire; 5031 } 5032 src_addr = 5033 dst_ire->ire_src_addr; 5034 } 5035 ipif_refrele(src_ipif); 5036 } else { 5037 src_addr = dst_ire->ire_src_addr; 5038 } 5039 } else { 5040 src_addr = dst_ire->ire_src_addr; 5041 } 5042 } 5043 } 5044 5045 /* 5046 * We do ire_route_lookup() here (and not 5047 * interface lookup as we assert that 5048 * src_addr should only come from an 5049 * UP interface for hard binding. 5050 */ 5051 ASSERT(src_ire == NULL); 5052 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5053 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5054 /* src_ire must be a local|loopback */ 5055 if (!IRE_IS_LOCAL(src_ire)) { 5056 if (ip_debug > 2) { 5057 pr_addr_dbg("ip_bind_connected: bad connected " 5058 "src %s\n", AF_INET, &src_addr); 5059 } 5060 error = EADDRNOTAVAIL; 5061 goto bad_addr; 5062 } 5063 5064 /* 5065 * If the source address is a loopback address, the 5066 * destination had best be local or multicast. 5067 * The transports that can't handle multicast will reject 5068 * those addresses. 5069 */ 5070 if (src_ire->ire_type == IRE_LOOPBACK && 5071 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5072 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5073 error = -1; 5074 goto bad_addr; 5075 } 5076 5077 /* 5078 * Allow setting new policies. For example, disconnects come 5079 * down as ipa_t bind. As we would have set conn_policy_cached 5080 * to B_TRUE before, we should set it to B_FALSE, so that policy 5081 * can change after the disconnect. 5082 */ 5083 connp->conn_policy_cached = B_FALSE; 5084 5085 /* 5086 * Set the conn addresses/ports immediately, so the IPsec policy calls 5087 * can handle their passed-in conn's. 5088 */ 5089 5090 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5091 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5092 connp->conn_lport = lport; 5093 connp->conn_fport = fport; 5094 *src_addrp = src_addr; 5095 5096 ASSERT(!(ipsec_policy_set && ire_requested)); 5097 if (ire_requested) { 5098 iulp_t *ulp_info = NULL; 5099 5100 /* 5101 * Note that sire will not be NULL if this is an off-link 5102 * connection and there is not cache for that dest yet. 5103 * 5104 * XXX Because of an existing bug, if there are multiple 5105 * default routes, the IRE returned now may not be the actual 5106 * default route used (default routes are chosen in a 5107 * round robin fashion). So if the metrics for different 5108 * default routes are different, we may return the wrong 5109 * metrics. This will not be a problem if the existing 5110 * bug is fixed. 5111 */ 5112 if (sire != NULL) { 5113 ulp_info = &(sire->ire_uinfo); 5114 } 5115 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5116 error = -1; 5117 goto bad_addr; 5118 } 5119 } else if (ipsec_policy_set) { 5120 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5121 error = -1; 5122 goto bad_addr; 5123 } 5124 } 5125 5126 /* 5127 * Cache IPsec policy in this conn. If we have per-socket policy, 5128 * we'll cache that. If we don't, we'll inherit global policy. 5129 * 5130 * We can't insert until the conn reflects the policy. Note that 5131 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5132 * connections where we don't have a policy. This is to prevent 5133 * global policy lookups in the inbound path. 5134 * 5135 * If we insert before we set conn_policy_cached, 5136 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5137 * because global policy cound be non-empty. We normally call 5138 * ipsec_check_policy() for conn_policy_cached connections only if 5139 * ipc_in_enforce_policy is set. But in this case, 5140 * conn_policy_cached can get set anytime since we made the 5141 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5142 * called, which will make the above assumption false. Thus, we 5143 * need to insert after we set conn_policy_cached. 5144 */ 5145 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5146 goto bad_addr; 5147 5148 if (fanout_insert) { 5149 /* 5150 * The addresses have been verified. Time to insert in 5151 * the correct fanout list. 5152 * We need to make sure that the conn_recv is set to a non-null 5153 * value before we insert into the classifier table to avoid a 5154 * race with an incoming packet which does an ipcl_classify(). 5155 */ 5156 if (protocol == IPPROTO_TCP) 5157 connp->conn_recv = tcp_input; 5158 error = ipcl_conn_insert(connp, protocol, src_addr, 5159 dst_addr, connp->conn_ports); 5160 } 5161 5162 if (error == 0) { 5163 connp->conn_fully_bound = B_TRUE; 5164 /* 5165 * Our initial checks for LSO/MDT have passed; the IRE is not 5166 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5167 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5168 * ip_xxinfo_return(), which performs further checks 5169 * against them and upon success, returns the LSO/MDT info 5170 * mblk which we will attach to the bind acknowledgment. 5171 */ 5172 if (lso_dst_ire != NULL) { 5173 mblk_t *lsoinfo_mp; 5174 5175 ASSERT(ill->ill_lso_capab != NULL); 5176 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5177 ill->ill_name, ill->ill_lso_capab)) != NULL) 5178 linkb(mp, lsoinfo_mp); 5179 } else if (md_dst_ire != NULL) { 5180 mblk_t *mdinfo_mp; 5181 5182 ASSERT(ill->ill_mdt_capab != NULL); 5183 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5184 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5185 linkb(mp, mdinfo_mp); 5186 } 5187 } 5188 bad_addr: 5189 if (ipsec_policy_set) { 5190 ASSERT(policy_mp == mp->b_cont); 5191 ASSERT(policy_mp != NULL); 5192 freeb(policy_mp); 5193 /* 5194 * As of now assume that nothing else accompanies 5195 * IPSEC_POLICY_SET. 5196 */ 5197 mp->b_cont = NULL; 5198 } 5199 if (src_ire != NULL) 5200 IRE_REFRELE(src_ire); 5201 if (dst_ire != NULL) 5202 IRE_REFRELE(dst_ire); 5203 if (sire != NULL) 5204 IRE_REFRELE(sire); 5205 if (md_dst_ire != NULL) 5206 IRE_REFRELE(md_dst_ire); 5207 if (lso_dst_ire != NULL) 5208 IRE_REFRELE(lso_dst_ire); 5209 return (error); 5210 } 5211 5212 /* 5213 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5214 * Prefers dst_ire over src_ire. 5215 */ 5216 static boolean_t 5217 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5218 { 5219 mblk_t *mp1; 5220 ire_t *ret_ire = NULL; 5221 5222 mp1 = mp->b_cont; 5223 ASSERT(mp1 != NULL); 5224 5225 if (ire != NULL) { 5226 /* 5227 * mp1 initialized above to IRE_DB_REQ_TYPE 5228 * appended mblk. Its <upper protocol>'s 5229 * job to make sure there is room. 5230 */ 5231 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5232 return (0); 5233 5234 mp1->b_datap->db_type = IRE_DB_TYPE; 5235 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5236 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5237 ret_ire = (ire_t *)mp1->b_rptr; 5238 /* 5239 * Pass the latest setting of the ip_path_mtu_discovery and 5240 * copy the ulp info if any. 5241 */ 5242 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5243 IPH_DF : 0; 5244 if (ulp_info != NULL) { 5245 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5246 sizeof (iulp_t)); 5247 } 5248 ret_ire->ire_mp = mp1; 5249 } else { 5250 /* 5251 * No IRE was found. Remove IRE mblk. 5252 */ 5253 mp->b_cont = mp1->b_cont; 5254 freeb(mp1); 5255 } 5256 5257 return (1); 5258 } 5259 5260 /* 5261 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5262 * the final piece where we don't. Return a pointer to the first mblk in the 5263 * result, and update the pointer to the next mblk to chew on. If anything 5264 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5265 * NULL pointer. 5266 */ 5267 mblk_t * 5268 ip_carve_mp(mblk_t **mpp, ssize_t len) 5269 { 5270 mblk_t *mp0; 5271 mblk_t *mp1; 5272 mblk_t *mp2; 5273 5274 if (!len || !mpp || !(mp0 = *mpp)) 5275 return (NULL); 5276 /* If we aren't going to consume the first mblk, we need a dup. */ 5277 if (mp0->b_wptr - mp0->b_rptr > len) { 5278 mp1 = dupb(mp0); 5279 if (mp1) { 5280 /* Partition the data between the two mblks. */ 5281 mp1->b_wptr = mp1->b_rptr + len; 5282 mp0->b_rptr = mp1->b_wptr; 5283 /* 5284 * after adjustments if mblk not consumed is now 5285 * unaligned, try to align it. If this fails free 5286 * all messages and let upper layer recover. 5287 */ 5288 if (!OK_32PTR(mp0->b_rptr)) { 5289 if (!pullupmsg(mp0, -1)) { 5290 freemsg(mp0); 5291 freemsg(mp1); 5292 *mpp = NULL; 5293 return (NULL); 5294 } 5295 } 5296 } 5297 return (mp1); 5298 } 5299 /* Eat through as many mblks as we need to get len bytes. */ 5300 len -= mp0->b_wptr - mp0->b_rptr; 5301 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5302 if (mp2->b_wptr - mp2->b_rptr > len) { 5303 /* 5304 * We won't consume the entire last mblk. Like 5305 * above, dup and partition it. 5306 */ 5307 mp1->b_cont = dupb(mp2); 5308 mp1 = mp1->b_cont; 5309 if (!mp1) { 5310 /* 5311 * Trouble. Rather than go to a lot of 5312 * trouble to clean up, we free the messages. 5313 * This won't be any worse than losing it on 5314 * the wire. 5315 */ 5316 freemsg(mp0); 5317 freemsg(mp2); 5318 *mpp = NULL; 5319 return (NULL); 5320 } 5321 mp1->b_wptr = mp1->b_rptr + len; 5322 mp2->b_rptr = mp1->b_wptr; 5323 /* 5324 * after adjustments if mblk not consumed is now 5325 * unaligned, try to align it. If this fails free 5326 * all messages and let upper layer recover. 5327 */ 5328 if (!OK_32PTR(mp2->b_rptr)) { 5329 if (!pullupmsg(mp2, -1)) { 5330 freemsg(mp0); 5331 freemsg(mp2); 5332 *mpp = NULL; 5333 return (NULL); 5334 } 5335 } 5336 *mpp = mp2; 5337 return (mp0); 5338 } 5339 /* Decrement len by the amount we just got. */ 5340 len -= mp2->b_wptr - mp2->b_rptr; 5341 } 5342 /* 5343 * len should be reduced to zero now. If not our caller has 5344 * screwed up. 5345 */ 5346 if (len) { 5347 /* Shouldn't happen! */ 5348 freemsg(mp0); 5349 *mpp = NULL; 5350 return (NULL); 5351 } 5352 /* 5353 * We consumed up to exactly the end of an mblk. Detach the part 5354 * we are returning from the rest of the chain. 5355 */ 5356 mp1->b_cont = NULL; 5357 *mpp = mp2; 5358 return (mp0); 5359 } 5360 5361 /* The ill stream is being unplumbed. Called from ip_close */ 5362 int 5363 ip_modclose(ill_t *ill) 5364 { 5365 5366 boolean_t success; 5367 ipsq_t *ipsq; 5368 ipif_t *ipif; 5369 queue_t *q = ill->ill_rq; 5370 hook_nic_event_t *info; 5371 5372 /* 5373 * Forcibly enter the ipsq after some delay. This is to take 5374 * care of the case when some ioctl does not complete because 5375 * we sent a control message to the driver and it did not 5376 * send us a reply. We want to be able to at least unplumb 5377 * and replumb rather than force the user to reboot the system. 5378 */ 5379 success = ipsq_enter(ill, B_FALSE); 5380 5381 /* 5382 * Open/close/push/pop is guaranteed to be single threaded 5383 * per stream by STREAMS. FS guarantees that all references 5384 * from top are gone before close is called. So there can't 5385 * be another close thread that has set CONDEMNED on this ill. 5386 * and cause ipsq_enter to return failure. 5387 */ 5388 ASSERT(success); 5389 ipsq = ill->ill_phyint->phyint_ipsq; 5390 5391 /* 5392 * Mark it condemned. No new reference will be made to this ill. 5393 * Lookup functions will return an error. Threads that try to 5394 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5395 * that the refcnt will drop down to zero. 5396 */ 5397 mutex_enter(&ill->ill_lock); 5398 ill->ill_state_flags |= ILL_CONDEMNED; 5399 for (ipif = ill->ill_ipif; ipif != NULL; 5400 ipif = ipif->ipif_next) { 5401 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5402 } 5403 /* 5404 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5405 * returns error if ILL_CONDEMNED is set 5406 */ 5407 cv_broadcast(&ill->ill_cv); 5408 mutex_exit(&ill->ill_lock); 5409 5410 /* 5411 * Shut down fragmentation reassembly. 5412 * ill_frag_timer won't start a timer again. 5413 * Now cancel any existing timer 5414 */ 5415 (void) untimeout(ill->ill_frag_timer_id); 5416 (void) ill_frag_timeout(ill, 0); 5417 5418 /* 5419 * If MOVE was in progress, clear the 5420 * move_in_progress fields also. 5421 */ 5422 if (ill->ill_move_in_progress) { 5423 ILL_CLEAR_MOVE(ill); 5424 } 5425 5426 /* 5427 * Call ill_delete to bring down the ipifs, ilms and ill on 5428 * this ill. Then wait for the refcnts to drop to zero. 5429 * ill_is_quiescent checks whether the ill is really quiescent. 5430 * Then make sure that threads that are waiting to enter the 5431 * ipsq have seen the error returned by ipsq_enter and have 5432 * gone away. Then we call ill_delete_tail which does the 5433 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5434 */ 5435 ill_delete(ill); 5436 mutex_enter(&ill->ill_lock); 5437 while (!ill_is_quiescent(ill)) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 while (ill->ill_waiters) 5440 cv_wait(&ill->ill_cv, &ill->ill_lock); 5441 5442 mutex_exit(&ill->ill_lock); 5443 5444 /* qprocsoff is called in ill_delete_tail */ 5445 ill_delete_tail(ill); 5446 5447 /* 5448 * Walk through all upper (conn) streams and qenable 5449 * those that have queued data. 5450 * close synchronization needs this to 5451 * be done to ensure that all upper layers blocked 5452 * due to flow control to the closing device 5453 * get unblocked. 5454 */ 5455 ip1dbg(("ip_wsrv: walking\n")); 5456 conn_walk_drain(); 5457 5458 mutex_enter(&ip_mi_lock); 5459 mi_close_unlink(&ip_g_head, (IDP)ill); 5460 mutex_exit(&ip_mi_lock); 5461 5462 /* 5463 * credp could be null if the open didn't succeed and ip_modopen 5464 * itself calls ip_close. 5465 */ 5466 if (ill->ill_credp != NULL) 5467 crfree(ill->ill_credp); 5468 5469 /* 5470 * Unhook the nic event message from the ill and enqueue it into the nic 5471 * event taskq. 5472 */ 5473 if ((info = ill->ill_nic_event_info) != NULL) { 5474 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, 5475 (void *)info, DDI_SLEEP) == DDI_FAILURE) { 5476 ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n")); 5477 if (info->hne_data != NULL) 5478 kmem_free(info->hne_data, info->hne_datalen); 5479 kmem_free(info, sizeof (hook_nic_event_t)); 5480 } 5481 ill->ill_nic_event_info = NULL; 5482 } 5483 5484 mi_close_free((IDP)ill); 5485 q->q_ptr = WR(q)->q_ptr = NULL; 5486 5487 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5488 5489 return (0); 5490 } 5491 5492 /* 5493 * This is called as part of close() for both IP and UDP 5494 * in order to quiesce the conn. 5495 */ 5496 void 5497 ip_quiesce_conn(conn_t *connp) 5498 { 5499 boolean_t drain_cleanup_reqd = B_FALSE; 5500 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5501 boolean_t ilg_cleanup_reqd = B_FALSE; 5502 5503 ASSERT(!IPCL_IS_TCP(connp)); 5504 5505 /* 5506 * Mark the conn as closing, and this conn must not be 5507 * inserted in future into any list. Eg. conn_drain_insert(), 5508 * won't insert this conn into the conn_drain_list. 5509 * Similarly ill_pending_mp_add() will not add any mp to 5510 * the pending mp list, after this conn has started closing. 5511 * 5512 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5513 * cannot get set henceforth. 5514 */ 5515 mutex_enter(&connp->conn_lock); 5516 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5517 connp->conn_state_flags |= CONN_CLOSING; 5518 if (connp->conn_idl != NULL) 5519 drain_cleanup_reqd = B_TRUE; 5520 if (connp->conn_oper_pending_ill != NULL) 5521 conn_ioctl_cleanup_reqd = B_TRUE; 5522 if (connp->conn_ilg_inuse != 0) 5523 ilg_cleanup_reqd = B_TRUE; 5524 mutex_exit(&connp->conn_lock); 5525 5526 if (IPCL_IS_UDP(connp)) 5527 udp_quiesce_conn(connp); 5528 5529 if (conn_ioctl_cleanup_reqd) 5530 conn_ioctl_cleanup(connp); 5531 5532 if (is_system_labeled() && connp->conn_anon_port) { 5533 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5534 connp->conn_mlp_type, connp->conn_ulp, 5535 ntohs(connp->conn_lport), B_FALSE); 5536 connp->conn_anon_port = 0; 5537 } 5538 connp->conn_mlp_type = mlptSingle; 5539 5540 /* 5541 * Remove this conn from any fanout list it is on. 5542 * and then wait for any threads currently operating 5543 * on this endpoint to finish 5544 */ 5545 ipcl_hash_remove(connp); 5546 5547 /* 5548 * Remove this conn from the drain list, and do 5549 * any other cleanup that may be required. 5550 * (Only non-tcp streams may have a non-null conn_idl. 5551 * TCP streams are never flow controlled, and 5552 * conn_idl will be null) 5553 */ 5554 if (drain_cleanup_reqd) 5555 conn_drain_tail(connp, B_TRUE); 5556 5557 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5558 (void) ip_mrouter_done(NULL); 5559 5560 if (ilg_cleanup_reqd) 5561 ilg_delete_all(connp); 5562 5563 conn_delete_ire(connp, NULL); 5564 5565 /* 5566 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5567 * callers from write side can't be there now because close 5568 * is in progress. The only other caller is ipcl_walk 5569 * which checks for the condemned flag. 5570 */ 5571 mutex_enter(&connp->conn_lock); 5572 connp->conn_state_flags |= CONN_CONDEMNED; 5573 while (connp->conn_ref != 1) 5574 cv_wait(&connp->conn_cv, &connp->conn_lock); 5575 connp->conn_state_flags |= CONN_QUIESCED; 5576 mutex_exit(&connp->conn_lock); 5577 } 5578 5579 /* ARGSUSED */ 5580 int 5581 ip_close(queue_t *q, int flags) 5582 { 5583 conn_t *connp; 5584 5585 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5586 5587 /* 5588 * Call the appropriate delete routine depending on whether this is 5589 * a module or device. 5590 */ 5591 if (WR(q)->q_next != NULL) { 5592 /* This is a module close */ 5593 return (ip_modclose((ill_t *)q->q_ptr)); 5594 } 5595 5596 connp = q->q_ptr; 5597 ip_quiesce_conn(connp); 5598 5599 qprocsoff(q); 5600 5601 /* 5602 * Now we are truly single threaded on this stream, and can 5603 * delete the things hanging off the connp, and finally the connp. 5604 * We removed this connp from the fanout list, it cannot be 5605 * accessed thru the fanouts, and we already waited for the 5606 * conn_ref to drop to 0. We are already in close, so 5607 * there cannot be any other thread from the top. qprocsoff 5608 * has completed, and service has completed or won't run in 5609 * future. 5610 */ 5611 ASSERT(connp->conn_ref == 1); 5612 5613 /* 5614 * A conn which was previously marked as IPCL_UDP cannot 5615 * retain the flag because it would have been cleared by 5616 * udp_close(). 5617 */ 5618 ASSERT(!IPCL_IS_UDP(connp)); 5619 5620 if (connp->conn_latch != NULL) { 5621 IPLATCH_REFRELE(connp->conn_latch); 5622 connp->conn_latch = NULL; 5623 } 5624 if (connp->conn_policy != NULL) { 5625 IPPH_REFRELE(connp->conn_policy); 5626 connp->conn_policy = NULL; 5627 } 5628 if (connp->conn_ipsec_opt_mp != NULL) { 5629 freemsg(connp->conn_ipsec_opt_mp); 5630 connp->conn_ipsec_opt_mp = NULL; 5631 } 5632 5633 inet_minor_free(ip_minor_arena, connp->conn_dev); 5634 5635 connp->conn_ref--; 5636 ipcl_conn_destroy(connp); 5637 5638 q->q_ptr = WR(q)->q_ptr = NULL; 5639 return (0); 5640 } 5641 5642 int 5643 ip_snmpmod_close(queue_t *q) 5644 { 5645 conn_t *connp = Q_TO_CONN(q); 5646 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5647 5648 qprocsoff(q); 5649 5650 if (connp->conn_flags & IPCL_UDPMOD) 5651 udp_close_free(connp); 5652 5653 if (connp->conn_cred != NULL) { 5654 crfree(connp->conn_cred); 5655 connp->conn_cred = NULL; 5656 } 5657 CONN_DEC_REF(connp); 5658 q->q_ptr = WR(q)->q_ptr = NULL; 5659 return (0); 5660 } 5661 5662 /* 5663 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5664 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5665 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5666 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5667 * queues as we never enqueue messages there and we don't handle any ioctls. 5668 * Everything else is freed. 5669 */ 5670 void 5671 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5672 { 5673 conn_t *connp = q->q_ptr; 5674 pfi_t setfn; 5675 pfi_t getfn; 5676 5677 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5678 5679 switch (DB_TYPE(mp)) { 5680 case M_PROTO: 5681 case M_PCPROTO: 5682 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5683 ((((union T_primitives *)mp->b_rptr)->type == 5684 T_SVR4_OPTMGMT_REQ) || 5685 (((union T_primitives *)mp->b_rptr)->type == 5686 T_OPTMGMT_REQ))) { 5687 /* 5688 * This is the only TPI primitive supported. Its 5689 * handling does not require tcp_t, but it does require 5690 * conn_t to check permissions. 5691 */ 5692 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5693 5694 if (connp->conn_flags & IPCL_TCPMOD) { 5695 setfn = tcp_snmp_set; 5696 getfn = tcp_snmp_get; 5697 } else { 5698 setfn = udp_snmp_set; 5699 getfn = udp_snmp_get; 5700 } 5701 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5702 freemsg(mp); 5703 return; 5704 } 5705 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5706 != NULL) 5707 qreply(q, mp); 5708 break; 5709 case M_FLUSH: 5710 case M_IOCTL: 5711 putnext(q, mp); 5712 break; 5713 default: 5714 freemsg(mp); 5715 break; 5716 } 5717 } 5718 5719 /* Return the IP checksum for the IP header at "iph". */ 5720 uint16_t 5721 ip_csum_hdr(ipha_t *ipha) 5722 { 5723 uint16_t *uph; 5724 uint32_t sum; 5725 int opt_len; 5726 5727 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5728 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5729 uph = (uint16_t *)ipha; 5730 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5731 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5732 if (opt_len > 0) { 5733 do { 5734 sum += uph[10]; 5735 sum += uph[11]; 5736 uph += 2; 5737 } while (--opt_len); 5738 } 5739 sum = (sum & 0xFFFF) + (sum >> 16); 5740 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5741 if (sum == 0xffff) 5742 sum = 0; 5743 return ((uint16_t)sum); 5744 } 5745 5746 void 5747 ip_ddi_destroy(void) 5748 { 5749 ipv4_hook_destroy(); 5750 ipv6_hook_destroy(); 5751 ip_net_destroy(); 5752 5753 tnet_fini(); 5754 tcp_ddi_destroy(); 5755 sctp_ddi_destroy(); 5756 ipsec_loader_destroy(); 5757 ipsec_policy_destroy(); 5758 ipsec_kstat_destroy(); 5759 nd_free(&ip_g_nd); 5760 mutex_destroy(&igmp_timer_lock); 5761 mutex_destroy(&mld_timer_lock); 5762 mutex_destroy(&igmp_slowtimeout_lock); 5763 mutex_destroy(&mld_slowtimeout_lock); 5764 mutex_destroy(&ip_mi_lock); 5765 mutex_destroy(&rts_clients.connf_lock); 5766 ip_ire_fini(); 5767 ip6_asp_free(); 5768 conn_drain_fini(); 5769 ipcl_destroy(); 5770 inet_minor_destroy(ip_minor_arena); 5771 icmp_kstat_fini(); 5772 ip_kstat_fini(); 5773 rw_destroy(&ipsec_capab_ills_lock); 5774 rw_destroy(&ill_g_usesrc_lock); 5775 ip_drop_unregister(&ip_dropper); 5776 } 5777 5778 5779 void 5780 ip_ddi_init(void) 5781 { 5782 TCP6_MAJ = ddi_name_to_major(TCP6); 5783 TCP_MAJ = ddi_name_to_major(TCP); 5784 SCTP_MAJ = ddi_name_to_major(SCTP); 5785 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5786 5787 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5788 5789 /* IP's IPsec code calls the packet dropper */ 5790 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5791 5792 if (!ip_g_nd) { 5793 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5794 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5795 nd_free(&ip_g_nd); 5796 } 5797 } 5798 5799 ipsec_loader_init(); 5800 ipsec_policy_init(); 5801 ipsec_kstat_init(); 5802 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5803 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5804 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5805 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5806 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5807 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5808 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5809 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5810 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5811 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5812 5813 /* 5814 * For IP and TCP the minor numbers should start from 2 since we have 4 5815 * initial devices: ip, ip6, tcp, tcp6. 5816 */ 5817 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5818 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5819 cmn_err(CE_PANIC, 5820 "ip_ddi_init: ip_minor_arena creation failed\n"); 5821 } 5822 5823 ipcl_init(); 5824 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5825 ip_ire_init(); 5826 ip6_asp_init(); 5827 ipif_init(); 5828 conn_drain_init(); 5829 tcp_ddi_init(); 5830 sctp_ddi_init(); 5831 5832 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5833 5834 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5835 "net", KSTAT_TYPE_NAMED, 5836 sizeof (ip_statistics) / sizeof (kstat_named_t), 5837 KSTAT_FLAG_VIRTUAL)) != NULL) { 5838 ip_kstat->ks_data = &ip_statistics; 5839 kstat_install(ip_kstat); 5840 } 5841 ip_kstat_init(); 5842 ip6_kstat_init(); 5843 icmp_kstat_init(); 5844 ipsec_loader_start(); 5845 tnet_init(); 5846 5847 ip_net_init(); 5848 ipv4_hook_init(); 5849 ipv6_hook_init(); 5850 } 5851 5852 /* 5853 * Allocate and initialize a DLPI template of the specified length. (May be 5854 * called as writer.) 5855 */ 5856 mblk_t * 5857 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5858 { 5859 mblk_t *mp; 5860 5861 mp = allocb(len, BPRI_MED); 5862 if (!mp) 5863 return (NULL); 5864 5865 /* 5866 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5867 * of which we don't seem to use) are sent with M_PCPROTO, and 5868 * that other DLPI are M_PROTO. 5869 */ 5870 if (prim == DL_INFO_REQ) { 5871 mp->b_datap->db_type = M_PCPROTO; 5872 } else { 5873 mp->b_datap->db_type = M_PROTO; 5874 } 5875 5876 mp->b_wptr = mp->b_rptr + len; 5877 bzero(mp->b_rptr, len); 5878 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5879 return (mp); 5880 } 5881 5882 const char * 5883 dlpi_prim_str(int prim) 5884 { 5885 switch (prim) { 5886 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5887 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5888 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5889 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5890 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5891 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5892 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5893 case DL_OK_ACK: return ("DL_OK_ACK"); 5894 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5895 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5896 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5897 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5898 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5899 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5900 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5901 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5902 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5903 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5904 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5905 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5906 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5907 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5908 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5909 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5910 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5911 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5912 default: return ("<unknown primitive>"); 5913 } 5914 } 5915 5916 const char * 5917 dlpi_err_str(int err) 5918 { 5919 switch (err) { 5920 case DL_ACCESS: return ("DL_ACCESS"); 5921 case DL_BADADDR: return ("DL_BADADDR"); 5922 case DL_BADCORR: return ("DL_BADCORR"); 5923 case DL_BADDATA: return ("DL_BADDATA"); 5924 case DL_BADPPA: return ("DL_BADPPA"); 5925 case DL_BADPRIM: return ("DL_BADPRIM"); 5926 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5927 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5928 case DL_BADSAP: return ("DL_BADSAP"); 5929 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5930 case DL_BOUND: return ("DL_BOUND"); 5931 case DL_INITFAILED: return ("DL_INITFAILED"); 5932 case DL_NOADDR: return ("DL_NOADDR"); 5933 case DL_NOTINIT: return ("DL_NOTINIT"); 5934 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5935 case DL_SYSERR: return ("DL_SYSERR"); 5936 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5937 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5938 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5939 case DL_TOOMANY: return ("DL_TOOMANY"); 5940 case DL_NOTENAB: return ("DL_NOTENAB"); 5941 case DL_BUSY: return ("DL_BUSY"); 5942 case DL_NOAUTO: return ("DL_NOAUTO"); 5943 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5944 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5945 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5946 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5947 case DL_PENDING: return ("DL_PENDING"); 5948 default: return ("<unknown error>"); 5949 } 5950 } 5951 5952 /* 5953 * Debug formatting routine. Returns a character string representation of the 5954 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5955 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5956 * 5957 * Once the ndd table-printing interfaces are removed, this can be changed to 5958 * standard dotted-decimal form. 5959 */ 5960 char * 5961 ip_dot_addr(ipaddr_t addr, char *buf) 5962 { 5963 uint8_t *ap = (uint8_t *)&addr; 5964 5965 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5966 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5967 return (buf); 5968 } 5969 5970 /* 5971 * Write the given MAC address as a printable string in the usual colon- 5972 * separated format. 5973 */ 5974 const char * 5975 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 5976 { 5977 char *bp; 5978 5979 if (alen == 0 || buflen < 4) 5980 return ("?"); 5981 bp = buf; 5982 for (;;) { 5983 /* 5984 * If there are more MAC address bytes available, but we won't 5985 * have any room to print them, then add "..." to the string 5986 * instead. See below for the 'magic number' explanation. 5987 */ 5988 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 5989 (void) strcpy(bp, "..."); 5990 break; 5991 } 5992 (void) sprintf(bp, "%02x", *addr++); 5993 bp += 2; 5994 if (--alen == 0) 5995 break; 5996 *bp++ = ':'; 5997 buflen -= 3; 5998 /* 5999 * At this point, based on the first 'if' statement above, 6000 * either alen == 1 and buflen >= 3, or alen > 1 and 6001 * buflen >= 4. The first case leaves room for the final "xx" 6002 * number and trailing NUL byte. The second leaves room for at 6003 * least "...". Thus the apparently 'magic' numbers chosen for 6004 * that statement. 6005 */ 6006 } 6007 return (buf); 6008 } 6009 6010 /* 6011 * Send an ICMP error after patching up the packet appropriately. Returns 6012 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6013 */ 6014 static boolean_t 6015 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6016 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 6017 { 6018 ipha_t *ipha; 6019 mblk_t *first_mp; 6020 boolean_t secure; 6021 unsigned char db_type; 6022 6023 first_mp = mp; 6024 if (mctl_present) { 6025 mp = mp->b_cont; 6026 secure = ipsec_in_is_secure(first_mp); 6027 ASSERT(mp != NULL); 6028 } else { 6029 /* 6030 * If this is an ICMP error being reported - which goes 6031 * up as M_CTLs, we need to convert them to M_DATA till 6032 * we finish checking with global policy because 6033 * ipsec_check_global_policy() assumes M_DATA as clear 6034 * and M_CTL as secure. 6035 */ 6036 db_type = DB_TYPE(mp); 6037 DB_TYPE(mp) = M_DATA; 6038 secure = B_FALSE; 6039 } 6040 /* 6041 * We are generating an icmp error for some inbound packet. 6042 * Called from all ip_fanout_(udp, tcp, proto) functions. 6043 * Before we generate an error, check with global policy 6044 * to see whether this is allowed to enter the system. As 6045 * there is no "conn", we are checking with global policy. 6046 */ 6047 ipha = (ipha_t *)mp->b_rptr; 6048 if (secure || ipsec_inbound_v4_policy_present) { 6049 first_mp = ipsec_check_global_policy(first_mp, NULL, 6050 ipha, NULL, mctl_present); 6051 if (first_mp == NULL) 6052 return (B_FALSE); 6053 } 6054 6055 if (!mctl_present) 6056 DB_TYPE(mp) = db_type; 6057 6058 if (flags & IP_FF_SEND_ICMP) { 6059 if (flags & IP_FF_HDR_COMPLETE) { 6060 if (ip_hdr_complete(ipha, zoneid)) { 6061 freemsg(first_mp); 6062 return (B_TRUE); 6063 } 6064 } 6065 if (flags & IP_FF_CKSUM) { 6066 /* 6067 * Have to correct checksum since 6068 * the packet might have been 6069 * fragmented and the reassembly code in ip_rput 6070 * does not restore the IP checksum. 6071 */ 6072 ipha->ipha_hdr_checksum = 0; 6073 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6074 } 6075 switch (icmp_type) { 6076 case ICMP_DEST_UNREACHABLE: 6077 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6078 break; 6079 default: 6080 freemsg(first_mp); 6081 break; 6082 } 6083 } else { 6084 freemsg(first_mp); 6085 return (B_FALSE); 6086 } 6087 6088 return (B_TRUE); 6089 } 6090 6091 /* 6092 * Used to send an ICMP error message when a packet is received for 6093 * a protocol that is not supported. The mblk passed as argument 6094 * is consumed by this function. 6095 */ 6096 void 6097 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6098 { 6099 mblk_t *mp; 6100 ipha_t *ipha; 6101 ill_t *ill; 6102 ipsec_in_t *ii; 6103 6104 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6105 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6106 6107 mp = ipsec_mp->b_cont; 6108 ipsec_mp->b_cont = NULL; 6109 ipha = (ipha_t *)mp->b_rptr; 6110 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6111 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 6112 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6113 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6114 } 6115 } else { 6116 /* Get ill from index in ipsec_in_t. */ 6117 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6118 B_TRUE, NULL, NULL, NULL, NULL); 6119 if (ill != NULL) { 6120 if (ip_fanout_send_icmp_v6(q, mp, flags, 6121 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6122 0, B_FALSE, zoneid)) { 6123 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 6124 } 6125 6126 ill_refrele(ill); 6127 } else { /* re-link for the freemsg() below. */ 6128 ipsec_mp->b_cont = mp; 6129 } 6130 } 6131 6132 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6133 freemsg(ipsec_mp); 6134 } 6135 6136 /* 6137 * See if the inbound datagram has had IPsec processing applied to it. 6138 */ 6139 boolean_t 6140 ipsec_in_is_secure(mblk_t *ipsec_mp) 6141 { 6142 ipsec_in_t *ii; 6143 6144 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6145 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6146 6147 if (ii->ipsec_in_loopback) { 6148 return (ii->ipsec_in_secure); 6149 } else { 6150 return (ii->ipsec_in_ah_sa != NULL || 6151 ii->ipsec_in_esp_sa != NULL || 6152 ii->ipsec_in_decaps); 6153 } 6154 } 6155 6156 /* 6157 * Handle protocols with which IP is less intimate. There 6158 * can be more than one stream bound to a particular 6159 * protocol. When this is the case, normally each one gets a copy 6160 * of any incoming packets. 6161 * 6162 * IPSEC NOTE : 6163 * 6164 * Don't allow a secure packet going up a non-secure connection. 6165 * We don't allow this because 6166 * 6167 * 1) Reply might go out in clear which will be dropped at 6168 * the sending side. 6169 * 2) If the reply goes out in clear it will give the 6170 * adversary enough information for getting the key in 6171 * most of the cases. 6172 * 6173 * Moreover getting a secure packet when we expect clear 6174 * implies that SA's were added without checking for 6175 * policy on both ends. This should not happen once ISAKMP 6176 * is used to negotiate SAs as SAs will be added only after 6177 * verifying the policy. 6178 * 6179 * NOTE : If the packet was tunneled and not multicast we only send 6180 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6181 * back to delivering packets to AF_INET6 raw sockets. 6182 * 6183 * IPQoS Notes: 6184 * Once we have determined the client, invoke IPPF processing. 6185 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6186 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6187 * ip_policy will be false. 6188 * 6189 * Zones notes: 6190 * Currently only applications in the global zone can create raw sockets for 6191 * protocols other than ICMP. So unlike the broadcast / multicast case of 6192 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6193 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6194 */ 6195 static void 6196 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6197 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6198 zoneid_t zoneid) 6199 { 6200 queue_t *rq; 6201 mblk_t *mp1, *first_mp1; 6202 uint_t protocol = ipha->ipha_protocol; 6203 ipaddr_t dst; 6204 boolean_t one_only; 6205 mblk_t *first_mp = mp; 6206 boolean_t secure; 6207 uint32_t ill_index; 6208 conn_t *connp, *first_connp, *next_connp; 6209 connf_t *connfp; 6210 boolean_t shared_addr; 6211 6212 if (mctl_present) { 6213 mp = first_mp->b_cont; 6214 secure = ipsec_in_is_secure(first_mp); 6215 ASSERT(mp != NULL); 6216 } else { 6217 secure = B_FALSE; 6218 } 6219 dst = ipha->ipha_dst; 6220 /* 6221 * If the packet was tunneled and not multicast we only send to it 6222 * the first match. 6223 */ 6224 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6225 !CLASSD(dst)); 6226 6227 shared_addr = (zoneid == ALL_ZONES); 6228 if (shared_addr) { 6229 /* 6230 * We don't allow multilevel ports for raw IP, so no need to 6231 * check for that here. 6232 */ 6233 zoneid = tsol_packet_to_zoneid(mp); 6234 } 6235 6236 connfp = &ipcl_proto_fanout[protocol]; 6237 mutex_enter(&connfp->connf_lock); 6238 connp = connfp->connf_head; 6239 for (connp = connfp->connf_head; connp != NULL; 6240 connp = connp->conn_next) { 6241 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6242 zoneid) && 6243 (!is_system_labeled() || 6244 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6245 connp))) 6246 break; 6247 } 6248 6249 if (connp == NULL || connp->conn_upq == NULL) { 6250 /* 6251 * No one bound to these addresses. Is 6252 * there a client that wants all 6253 * unclaimed datagrams? 6254 */ 6255 mutex_exit(&connfp->connf_lock); 6256 /* 6257 * Check for IPPROTO_ENCAP... 6258 */ 6259 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6260 /* 6261 * If an IPsec mblk is here on a multicast 6262 * tunnel (using ip_mroute stuff), check policy here, 6263 * THEN ship off to ip_mroute_decap(). 6264 * 6265 * BTW, If I match a configured IP-in-IP 6266 * tunnel, this path will not be reached, and 6267 * ip_mroute_decap will never be called. 6268 */ 6269 first_mp = ipsec_check_global_policy(first_mp, connp, 6270 ipha, NULL, mctl_present); 6271 if (first_mp != NULL) { 6272 if (mctl_present) 6273 freeb(first_mp); 6274 ip_mroute_decap(q, mp); 6275 } /* Else we already freed everything! */ 6276 } else { 6277 /* 6278 * Otherwise send an ICMP protocol unreachable. 6279 */ 6280 if (ip_fanout_send_icmp(q, first_mp, flags, 6281 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6282 mctl_present, zoneid)) { 6283 BUMP_MIB(&ip_mib, ipInUnknownProtos); 6284 } 6285 } 6286 return; 6287 } 6288 CONN_INC_REF(connp); 6289 first_connp = connp; 6290 6291 /* 6292 * Only send message to one tunnel driver by immediately 6293 * terminating the loop. 6294 */ 6295 connp = one_only ? NULL : connp->conn_next; 6296 6297 for (;;) { 6298 while (connp != NULL) { 6299 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6300 flags, zoneid) && 6301 (!is_system_labeled() || 6302 tsol_receive_local(mp, &dst, IPV4_VERSION, 6303 shared_addr, connp))) 6304 break; 6305 connp = connp->conn_next; 6306 } 6307 6308 /* 6309 * Copy the packet. 6310 */ 6311 if (connp == NULL || connp->conn_upq == NULL || 6312 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6313 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6314 /* 6315 * No more interested clients or memory 6316 * allocation failed 6317 */ 6318 connp = first_connp; 6319 break; 6320 } 6321 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6322 CONN_INC_REF(connp); 6323 mutex_exit(&connfp->connf_lock); 6324 rq = connp->conn_rq; 6325 if (!canputnext(rq)) { 6326 if (flags & IP_FF_RAWIP) { 6327 BUMP_MIB(&ip_mib, rawipInOverflows); 6328 } else { 6329 BUMP_MIB(&icmp_mib, icmpInOverflows); 6330 } 6331 6332 freemsg(first_mp1); 6333 } else { 6334 /* 6335 * Don't enforce here if we're an actual tunnel - 6336 * let "tun" do it instead. 6337 */ 6338 if (!IPCL_IS_IPTUN(connp) && 6339 (CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6340 first_mp1 = ipsec_check_inbound_policy 6341 (first_mp1, connp, ipha, NULL, 6342 mctl_present); 6343 } 6344 if (first_mp1 != NULL) { 6345 /* 6346 * ip_fanout_proto also gets called from 6347 * icmp_inbound_error_fanout, in which case 6348 * the msg type is M_CTL. Don't add info 6349 * in this case for the time being. In future 6350 * when there is a need for knowing the 6351 * inbound iface index for ICMP error msgs, 6352 * then this can be changed. 6353 */ 6354 if ((connp->conn_recvif != 0) && 6355 (mp->b_datap->db_type != M_CTL)) { 6356 /* 6357 * the actual data will be 6358 * contained in b_cont upon 6359 * successful return of the 6360 * following call else 6361 * original mblk is returned 6362 */ 6363 ASSERT(recv_ill != NULL); 6364 mp1 = ip_add_info(mp1, recv_ill, 6365 IPF_RECVIF); 6366 } 6367 BUMP_MIB(&ip_mib, ipInDelivers); 6368 if (mctl_present) 6369 freeb(first_mp1); 6370 putnext(rq, mp1); 6371 } 6372 } 6373 mutex_enter(&connfp->connf_lock); 6374 /* Follow the next pointer before releasing the conn. */ 6375 next_connp = connp->conn_next; 6376 CONN_DEC_REF(connp); 6377 connp = next_connp; 6378 } 6379 6380 /* Last one. Send it upstream. */ 6381 mutex_exit(&connfp->connf_lock); 6382 6383 /* 6384 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6385 * will be set to false. 6386 */ 6387 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6388 ill_index = ill->ill_phyint->phyint_ifindex; 6389 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6390 if (mp == NULL) { 6391 CONN_DEC_REF(connp); 6392 if (mctl_present) { 6393 freeb(first_mp); 6394 } 6395 return; 6396 } 6397 } 6398 6399 rq = connp->conn_rq; 6400 if (!canputnext(rq)) { 6401 if (flags & IP_FF_RAWIP) { 6402 BUMP_MIB(&ip_mib, rawipInOverflows); 6403 } else { 6404 BUMP_MIB(&icmp_mib, icmpInOverflows); 6405 } 6406 6407 freemsg(first_mp); 6408 } else { 6409 if (IPCL_IS_IPTUN(connp)) { 6410 /* 6411 * Tunneled packet. We enforce policy in the tunnel 6412 * module itself. 6413 * 6414 * Send the WHOLE packet up (incl. IPSEC_IN) without 6415 * a policy check. 6416 */ 6417 putnext(rq, first_mp); 6418 CONN_DEC_REF(connp); 6419 return; 6420 } 6421 6422 if ((CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6423 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6424 ipha, NULL, mctl_present); 6425 } 6426 6427 if (first_mp != NULL) { 6428 /* 6429 * ip_fanout_proto also gets called 6430 * from icmp_inbound_error_fanout, in 6431 * which case the msg type is M_CTL. 6432 * Don't add info in this case for time 6433 * being. In future when there is a 6434 * need for knowing the inbound iface 6435 * index for ICMP error msgs, then this 6436 * can be changed 6437 */ 6438 if ((connp->conn_recvif != 0) && 6439 (mp->b_datap->db_type != M_CTL)) { 6440 /* 6441 * the actual data will be contained in 6442 * b_cont upon successful return 6443 * of the following call else original 6444 * mblk is returned 6445 */ 6446 ASSERT(recv_ill != NULL); 6447 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6448 } 6449 BUMP_MIB(&ip_mib, ipInDelivers); 6450 putnext(rq, mp); 6451 if (mctl_present) 6452 freeb(first_mp); 6453 } 6454 } 6455 CONN_DEC_REF(connp); 6456 } 6457 6458 /* 6459 * Fanout for TCP packets 6460 * The caller puts <fport, lport> in the ports parameter. 6461 * 6462 * IPQoS Notes 6463 * Before sending it to the client, invoke IPPF processing. 6464 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6465 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6466 * ip_policy is false. 6467 */ 6468 static void 6469 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6470 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6471 { 6472 mblk_t *first_mp; 6473 boolean_t secure; 6474 uint32_t ill_index; 6475 int ip_hdr_len; 6476 tcph_t *tcph; 6477 boolean_t syn_present = B_FALSE; 6478 conn_t *connp; 6479 6480 first_mp = mp; 6481 if (mctl_present) { 6482 ASSERT(first_mp->b_datap->db_type == M_CTL); 6483 mp = first_mp->b_cont; 6484 secure = ipsec_in_is_secure(first_mp); 6485 ASSERT(mp != NULL); 6486 } else { 6487 secure = B_FALSE; 6488 } 6489 6490 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6491 6492 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6493 NULL) { 6494 /* 6495 * No connected connection or listener. Send a 6496 * TH_RST via tcp_xmit_listeners_reset. 6497 */ 6498 6499 /* Initiate IPPf processing, if needed. */ 6500 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6501 uint32_t ill_index; 6502 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6503 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6504 if (first_mp == NULL) 6505 return; 6506 } 6507 BUMP_MIB(&ip_mib, ipInDelivers); 6508 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6509 zoneid)); 6510 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6511 return; 6512 } 6513 6514 /* 6515 * Allocate the SYN for the TCP connection here itself 6516 */ 6517 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6518 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6519 if (IPCL_IS_TCP(connp)) { 6520 squeue_t *sqp; 6521 6522 /* 6523 * For fused tcp loopback, assign the eager's 6524 * squeue to be that of the active connect's. 6525 * Note that we don't check for IP_FF_LOOPBACK 6526 * here since this routine gets called only 6527 * for loopback (unlike the IPv6 counterpart). 6528 */ 6529 ASSERT(Q_TO_CONN(q) != NULL); 6530 if (do_tcp_fusion && 6531 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6532 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6533 IPCL_IS_TCP(Q_TO_CONN(q))) { 6534 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6535 sqp = Q_TO_CONN(q)->conn_sqp; 6536 } else { 6537 sqp = IP_SQUEUE_GET(lbolt); 6538 } 6539 6540 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6541 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6542 syn_present = B_TRUE; 6543 } 6544 } 6545 6546 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6547 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6548 if ((flags & TH_RST) || (flags & TH_URG)) { 6549 CONN_DEC_REF(connp); 6550 freemsg(first_mp); 6551 return; 6552 } 6553 if (flags & TH_ACK) { 6554 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6555 CONN_DEC_REF(connp); 6556 return; 6557 } 6558 6559 CONN_DEC_REF(connp); 6560 freemsg(first_mp); 6561 return; 6562 } 6563 6564 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6565 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6566 NULL, mctl_present); 6567 if (first_mp == NULL) { 6568 CONN_DEC_REF(connp); 6569 return; 6570 } 6571 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6572 ASSERT(syn_present); 6573 if (mctl_present) { 6574 ASSERT(first_mp != mp); 6575 first_mp->b_datap->db_struioflag |= 6576 STRUIO_POLICY; 6577 } else { 6578 ASSERT(first_mp == mp); 6579 mp->b_datap->db_struioflag &= 6580 ~STRUIO_EAGER; 6581 mp->b_datap->db_struioflag |= 6582 STRUIO_POLICY; 6583 } 6584 } else { 6585 /* 6586 * Discard first_mp early since we're dealing with a 6587 * fully-connected conn_t and tcp doesn't do policy in 6588 * this case. 6589 */ 6590 if (mctl_present) { 6591 freeb(first_mp); 6592 mctl_present = B_FALSE; 6593 } 6594 first_mp = mp; 6595 } 6596 } 6597 6598 /* 6599 * Initiate policy processing here if needed. If we get here from 6600 * icmp_inbound_error_fanout, ip_policy is false. 6601 */ 6602 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6603 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6604 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6605 if (mp == NULL) { 6606 CONN_DEC_REF(connp); 6607 if (mctl_present) 6608 freeb(first_mp); 6609 return; 6610 } else if (mctl_present) { 6611 ASSERT(first_mp != mp); 6612 first_mp->b_cont = mp; 6613 } else { 6614 first_mp = mp; 6615 } 6616 } 6617 6618 6619 6620 /* Handle IPv6 socket options. */ 6621 if (!syn_present && 6622 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6623 /* Add header */ 6624 ASSERT(recv_ill != NULL); 6625 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6626 if (mp == NULL) { 6627 CONN_DEC_REF(connp); 6628 if (mctl_present) 6629 freeb(first_mp); 6630 return; 6631 } else if (mctl_present) { 6632 /* 6633 * ip_add_info might return a new mp. 6634 */ 6635 ASSERT(first_mp != mp); 6636 first_mp->b_cont = mp; 6637 } else { 6638 first_mp = mp; 6639 } 6640 } 6641 6642 BUMP_MIB(&ip_mib, ipInDelivers); 6643 if (IPCL_IS_TCP(connp)) { 6644 (*ip_input_proc)(connp->conn_sqp, first_mp, 6645 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6646 } else { 6647 putnext(connp->conn_rq, first_mp); 6648 CONN_DEC_REF(connp); 6649 } 6650 } 6651 6652 /* 6653 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6654 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6655 * Caller is responsible for dropping references to the conn, and freeing 6656 * first_mp. 6657 * 6658 * IPQoS Notes 6659 * Before sending it to the client, invoke IPPF processing. Policy processing 6660 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6661 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6662 * ip_wput_local, ip_policy is false. 6663 */ 6664 static void 6665 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6666 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6667 boolean_t ip_policy) 6668 { 6669 boolean_t mctl_present = (first_mp != NULL); 6670 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6671 uint32_t ill_index; 6672 6673 if (mctl_present) 6674 first_mp->b_cont = mp; 6675 else 6676 first_mp = mp; 6677 6678 if (CONN_UDP_FLOWCTLD(connp)) { 6679 BUMP_MIB(&ip_mib, udpInOverflows); 6680 freemsg(first_mp); 6681 return; 6682 } 6683 6684 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6685 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6686 NULL, mctl_present); 6687 if (first_mp == NULL) 6688 return; /* Freed by ipsec_check_inbound_policy(). */ 6689 } 6690 if (mctl_present) 6691 freeb(first_mp); 6692 6693 if (connp->conn_recvif) 6694 in_flags = IPF_RECVIF; 6695 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6696 in_flags |= IPF_RECVSLLA; 6697 6698 /* Handle IPv6 options. */ 6699 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6700 in_flags |= IPF_RECVIF; 6701 6702 /* 6703 * Initiate IPPF processing here, if needed. Note first_mp won't be 6704 * freed if the packet is dropped. The caller will do so. 6705 */ 6706 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6707 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6708 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6709 if (mp == NULL) { 6710 return; 6711 } 6712 } 6713 if ((in_flags != 0) && 6714 (mp->b_datap->db_type != M_CTL)) { 6715 /* 6716 * The actual data will be contained in b_cont 6717 * upon successful return of the following call 6718 * else original mblk is returned 6719 */ 6720 ASSERT(recv_ill != NULL); 6721 mp = ip_add_info(mp, recv_ill, in_flags); 6722 } 6723 BUMP_MIB(&ip_mib, ipInDelivers); 6724 6725 /* Send it upstream */ 6726 CONN_UDP_RECV(connp, mp); 6727 } 6728 6729 /* 6730 * Fanout for UDP packets. 6731 * The caller puts <fport, lport> in the ports parameter. 6732 * 6733 * If SO_REUSEADDR is set all multicast and broadcast packets 6734 * will be delivered to all streams bound to the same port. 6735 * 6736 * Zones notes: 6737 * Multicast and broadcast packets will be distributed to streams in all zones. 6738 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6739 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6740 * packets. To maintain this behavior with multiple zones, the conns are grouped 6741 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6742 * each zone. If unset, all the following conns in the same zone are skipped. 6743 */ 6744 static void 6745 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6746 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6747 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6748 { 6749 uint32_t dstport, srcport; 6750 ipaddr_t dst; 6751 mblk_t *first_mp; 6752 boolean_t secure; 6753 in6_addr_t v6src; 6754 conn_t *connp; 6755 connf_t *connfp; 6756 conn_t *first_connp; 6757 conn_t *next_connp; 6758 mblk_t *mp1, *first_mp1; 6759 ipaddr_t src; 6760 zoneid_t last_zoneid; 6761 boolean_t reuseaddr; 6762 boolean_t shared_addr; 6763 6764 first_mp = mp; 6765 if (mctl_present) { 6766 mp = first_mp->b_cont; 6767 first_mp->b_cont = NULL; 6768 secure = ipsec_in_is_secure(first_mp); 6769 ASSERT(mp != NULL); 6770 } else { 6771 first_mp = NULL; 6772 secure = B_FALSE; 6773 } 6774 6775 /* Extract ports in net byte order */ 6776 dstport = htons(ntohl(ports) & 0xFFFF); 6777 srcport = htons(ntohl(ports) >> 16); 6778 dst = ipha->ipha_dst; 6779 src = ipha->ipha_src; 6780 6781 shared_addr = (zoneid == ALL_ZONES); 6782 if (shared_addr) { 6783 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6784 if (zoneid == ALL_ZONES) 6785 zoneid = tsol_packet_to_zoneid(mp); 6786 } 6787 6788 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6789 mutex_enter(&connfp->connf_lock); 6790 connp = connfp->connf_head; 6791 if (!broadcast && !CLASSD(dst)) { 6792 /* 6793 * Not broadcast or multicast. Send to the one (first) 6794 * client we find. No need to check conn_wantpacket() 6795 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6796 * IPv4 unicast packets. 6797 */ 6798 while ((connp != NULL) && 6799 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 6800 !IPCL_ZONE_MATCH(connp, zoneid))) { 6801 connp = connp->conn_next; 6802 } 6803 6804 if (connp == NULL || connp->conn_upq == NULL) 6805 goto notfound; 6806 6807 if (is_system_labeled() && 6808 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6809 connp)) 6810 goto notfound; 6811 6812 CONN_INC_REF(connp); 6813 mutex_exit(&connfp->connf_lock); 6814 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6815 recv_ill, ip_policy); 6816 IP_STAT(ip_udp_fannorm); 6817 CONN_DEC_REF(connp); 6818 return; 6819 } 6820 6821 /* 6822 * Broadcast and multicast case 6823 * 6824 * Need to check conn_wantpacket(). 6825 * If SO_REUSEADDR has been set on the first we send the 6826 * packet to all clients that have joined the group and 6827 * match the port. 6828 */ 6829 6830 while (connp != NULL) { 6831 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6832 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6833 (!is_system_labeled() || 6834 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6835 connp))) 6836 break; 6837 connp = connp->conn_next; 6838 } 6839 6840 if (connp == NULL || connp->conn_upq == NULL) 6841 goto notfound; 6842 6843 first_connp = connp; 6844 /* 6845 * When SO_REUSEADDR is not set, send the packet only to the first 6846 * matching connection in its zone by keeping track of the zoneid. 6847 */ 6848 reuseaddr = first_connp->conn_reuseaddr; 6849 last_zoneid = first_connp->conn_zoneid; 6850 6851 CONN_INC_REF(connp); 6852 connp = connp->conn_next; 6853 for (;;) { 6854 while (connp != NULL) { 6855 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6856 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6857 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6858 (!is_system_labeled() || 6859 tsol_receive_local(mp, &dst, IPV4_VERSION, 6860 shared_addr, connp))) 6861 break; 6862 connp = connp->conn_next; 6863 } 6864 /* 6865 * Just copy the data part alone. The mctl part is 6866 * needed just for verifying policy and it is never 6867 * sent up. 6868 */ 6869 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6870 ((mp1 = copymsg(mp)) == NULL))) { 6871 /* 6872 * No more interested clients or memory 6873 * allocation failed 6874 */ 6875 connp = first_connp; 6876 break; 6877 } 6878 if (connp->conn_zoneid != last_zoneid) { 6879 /* 6880 * Update the zoneid so that the packet isn't sent to 6881 * any more conns in the same zone unless SO_REUSEADDR 6882 * is set. 6883 */ 6884 reuseaddr = connp->conn_reuseaddr; 6885 last_zoneid = connp->conn_zoneid; 6886 } 6887 if (first_mp != NULL) { 6888 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6889 ipsec_info_type == IPSEC_IN); 6890 first_mp1 = ipsec_in_tag(first_mp, NULL); 6891 if (first_mp1 == NULL) { 6892 freemsg(mp1); 6893 connp = first_connp; 6894 break; 6895 } 6896 } else { 6897 first_mp1 = NULL; 6898 } 6899 CONN_INC_REF(connp); 6900 mutex_exit(&connfp->connf_lock); 6901 /* 6902 * IPQoS notes: We don't send the packet for policy 6903 * processing here, will do it for the last one (below). 6904 * i.e. we do it per-packet now, but if we do policy 6905 * processing per-conn, then we would need to do it 6906 * here too. 6907 */ 6908 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6909 ipha, flags, recv_ill, B_FALSE); 6910 mutex_enter(&connfp->connf_lock); 6911 /* Follow the next pointer before releasing the conn. */ 6912 next_connp = connp->conn_next; 6913 IP_STAT(ip_udp_fanmb); 6914 CONN_DEC_REF(connp); 6915 connp = next_connp; 6916 } 6917 6918 /* Last one. Send it upstream. */ 6919 mutex_exit(&connfp->connf_lock); 6920 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6921 ip_policy); 6922 IP_STAT(ip_udp_fanmb); 6923 CONN_DEC_REF(connp); 6924 return; 6925 6926 notfound: 6927 6928 mutex_exit(&connfp->connf_lock); 6929 IP_STAT(ip_udp_fanothers); 6930 /* 6931 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6932 * have already been matched above, since they live in the IPv4 6933 * fanout tables. This implies we only need to 6934 * check for IPv6 in6addr_any endpoints here. 6935 * Thus we compare using ipv6_all_zeros instead of the destination 6936 * address, except for the multicast group membership lookup which 6937 * uses the IPv4 destination. 6938 */ 6939 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6940 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6941 mutex_enter(&connfp->connf_lock); 6942 connp = connfp->connf_head; 6943 if (!broadcast && !CLASSD(dst)) { 6944 while (connp != NULL) { 6945 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6946 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6947 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6948 !connp->conn_ipv6_v6only) 6949 break; 6950 connp = connp->conn_next; 6951 } 6952 6953 if (connp != NULL && is_system_labeled() && 6954 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6955 connp)) 6956 connp = NULL; 6957 6958 if (connp == NULL || connp->conn_upq == NULL) { 6959 /* 6960 * No one bound to this port. Is 6961 * there a client that wants all 6962 * unclaimed datagrams? 6963 */ 6964 mutex_exit(&connfp->connf_lock); 6965 6966 if (mctl_present) 6967 first_mp->b_cont = mp; 6968 else 6969 first_mp = mp; 6970 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6971 ip_fanout_proto(q, first_mp, ill, ipha, 6972 flags | IP_FF_RAWIP, mctl_present, 6973 ip_policy, recv_ill, zoneid); 6974 } else { 6975 if (ip_fanout_send_icmp(q, first_mp, flags, 6976 ICMP_DEST_UNREACHABLE, 6977 ICMP_PORT_UNREACHABLE, 6978 mctl_present, zoneid)) { 6979 BUMP_MIB(&ip_mib, udpNoPorts); 6980 } 6981 } 6982 return; 6983 } 6984 6985 CONN_INC_REF(connp); 6986 mutex_exit(&connfp->connf_lock); 6987 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6988 recv_ill, ip_policy); 6989 CONN_DEC_REF(connp); 6990 return; 6991 } 6992 /* 6993 * IPv4 multicast packet being delivered to an AF_INET6 6994 * in6addr_any endpoint. 6995 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6996 * and not conn_wantpacket_v6() since any multicast membership is 6997 * for an IPv4-mapped multicast address. 6998 * The packet is sent to all clients in all zones that have joined the 6999 * group and match the port. 7000 */ 7001 while (connp != NULL) { 7002 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7003 srcport, v6src) && 7004 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7005 (!is_system_labeled() || 7006 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7007 connp))) 7008 break; 7009 connp = connp->conn_next; 7010 } 7011 7012 if (connp == NULL || connp->conn_upq == NULL) { 7013 /* 7014 * No one bound to this port. Is 7015 * there a client that wants all 7016 * unclaimed datagrams? 7017 */ 7018 mutex_exit(&connfp->connf_lock); 7019 7020 if (mctl_present) 7021 first_mp->b_cont = mp; 7022 else 7023 first_mp = mp; 7024 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 7025 ip_fanout_proto(q, first_mp, ill, ipha, 7026 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7027 recv_ill, zoneid); 7028 } else { 7029 /* 7030 * We used to attempt to send an icmp error here, but 7031 * since this is known to be a multicast packet 7032 * and we don't send icmp errors in response to 7033 * multicast, just drop the packet and give up sooner. 7034 */ 7035 BUMP_MIB(&ip_mib, udpNoPorts); 7036 freemsg(first_mp); 7037 } 7038 return; 7039 } 7040 7041 first_connp = connp; 7042 7043 CONN_INC_REF(connp); 7044 connp = connp->conn_next; 7045 for (;;) { 7046 while (connp != NULL) { 7047 if (IPCL_UDP_MATCH_V6(connp, dstport, 7048 ipv6_all_zeros, srcport, v6src) && 7049 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7050 (!is_system_labeled() || 7051 tsol_receive_local(mp, &dst, IPV4_VERSION, 7052 shared_addr, connp))) 7053 break; 7054 connp = connp->conn_next; 7055 } 7056 /* 7057 * Just copy the data part alone. The mctl part is 7058 * needed just for verifying policy and it is never 7059 * sent up. 7060 */ 7061 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7062 ((mp1 = copymsg(mp)) == NULL))) { 7063 /* 7064 * No more intested clients or memory 7065 * allocation failed 7066 */ 7067 connp = first_connp; 7068 break; 7069 } 7070 if (first_mp != NULL) { 7071 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7072 ipsec_info_type == IPSEC_IN); 7073 first_mp1 = ipsec_in_tag(first_mp, NULL); 7074 if (first_mp1 == NULL) { 7075 freemsg(mp1); 7076 connp = first_connp; 7077 break; 7078 } 7079 } else { 7080 first_mp1 = NULL; 7081 } 7082 CONN_INC_REF(connp); 7083 mutex_exit(&connfp->connf_lock); 7084 /* 7085 * IPQoS notes: We don't send the packet for policy 7086 * processing here, will do it for the last one (below). 7087 * i.e. we do it per-packet now, but if we do policy 7088 * processing per-conn, then we would need to do it 7089 * here too. 7090 */ 7091 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 7092 ipha, flags, recv_ill, B_FALSE); 7093 mutex_enter(&connfp->connf_lock); 7094 /* Follow the next pointer before releasing the conn. */ 7095 next_connp = connp->conn_next; 7096 CONN_DEC_REF(connp); 7097 connp = next_connp; 7098 } 7099 7100 /* Last one. Send it upstream. */ 7101 mutex_exit(&connfp->connf_lock); 7102 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 7103 ip_policy); 7104 CONN_DEC_REF(connp); 7105 } 7106 7107 /* 7108 * Complete the ip_wput header so that it 7109 * is possible to generate ICMP 7110 * errors. 7111 */ 7112 int 7113 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7114 { 7115 ire_t *ire; 7116 7117 if (ipha->ipha_src == INADDR_ANY) { 7118 ire = ire_lookup_local(zoneid); 7119 if (ire == NULL) { 7120 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7121 return (1); 7122 } 7123 ipha->ipha_src = ire->ire_addr; 7124 ire_refrele(ire); 7125 } 7126 ipha->ipha_ttl = ip_def_ttl; 7127 ipha->ipha_hdr_checksum = 0; 7128 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7129 return (0); 7130 } 7131 7132 /* 7133 * Nobody should be sending 7134 * packets up this stream 7135 */ 7136 static void 7137 ip_lrput(queue_t *q, mblk_t *mp) 7138 { 7139 mblk_t *mp1; 7140 7141 switch (mp->b_datap->db_type) { 7142 case M_FLUSH: 7143 /* Turn around */ 7144 if (*mp->b_rptr & FLUSHW) { 7145 *mp->b_rptr &= ~FLUSHR; 7146 qreply(q, mp); 7147 return; 7148 } 7149 break; 7150 } 7151 /* Could receive messages that passed through ar_rput */ 7152 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7153 mp1->b_prev = mp1->b_next = NULL; 7154 freemsg(mp); 7155 } 7156 7157 /* Nobody should be sending packets down this stream */ 7158 /* ARGSUSED */ 7159 void 7160 ip_lwput(queue_t *q, mblk_t *mp) 7161 { 7162 freemsg(mp); 7163 } 7164 7165 /* 7166 * Move the first hop in any source route to ipha_dst and remove that part of 7167 * the source route. Called by other protocols. Errors in option formatting 7168 * are ignored - will be handled by ip_wput_options Return the final 7169 * destination (either ipha_dst or the last entry in a source route.) 7170 */ 7171 ipaddr_t 7172 ip_massage_options(ipha_t *ipha) 7173 { 7174 ipoptp_t opts; 7175 uchar_t *opt; 7176 uint8_t optval; 7177 uint8_t optlen; 7178 ipaddr_t dst; 7179 int i; 7180 ire_t *ire; 7181 7182 ip2dbg(("ip_massage_options\n")); 7183 dst = ipha->ipha_dst; 7184 for (optval = ipoptp_first(&opts, ipha); 7185 optval != IPOPT_EOL; 7186 optval = ipoptp_next(&opts)) { 7187 opt = opts.ipoptp_cur; 7188 switch (optval) { 7189 uint8_t off; 7190 case IPOPT_SSRR: 7191 case IPOPT_LSRR: 7192 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7193 ip1dbg(("ip_massage_options: bad src route\n")); 7194 break; 7195 } 7196 optlen = opts.ipoptp_len; 7197 off = opt[IPOPT_OFFSET]; 7198 off--; 7199 redo_srr: 7200 if (optlen < IP_ADDR_LEN || 7201 off > optlen - IP_ADDR_LEN) { 7202 /* End of source route */ 7203 ip1dbg(("ip_massage_options: end of SR\n")); 7204 break; 7205 } 7206 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7207 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7208 ntohl(dst))); 7209 /* 7210 * Check if our address is present more than 7211 * once as consecutive hops in source route. 7212 * XXX verify per-interface ip_forwarding 7213 * for source route? 7214 */ 7215 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7216 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7217 if (ire != NULL) { 7218 ire_refrele(ire); 7219 off += IP_ADDR_LEN; 7220 goto redo_srr; 7221 } 7222 if (dst == htonl(INADDR_LOOPBACK)) { 7223 ip1dbg(("ip_massage_options: loopback addr in " 7224 "source route!\n")); 7225 break; 7226 } 7227 /* 7228 * Update ipha_dst to be the first hop and remove the 7229 * first hop from the source route (by overwriting 7230 * part of the option with NOP options). 7231 */ 7232 ipha->ipha_dst = dst; 7233 /* Put the last entry in dst */ 7234 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7235 3; 7236 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7237 7238 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7239 ntohl(dst))); 7240 /* Move down and overwrite */ 7241 opt[IP_ADDR_LEN] = opt[0]; 7242 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7243 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7244 for (i = 0; i < IP_ADDR_LEN; i++) 7245 opt[i] = IPOPT_NOP; 7246 break; 7247 } 7248 } 7249 return (dst); 7250 } 7251 7252 /* 7253 * This function's job is to forward data to the reverse tunnel (FA->HA) 7254 * after doing a few checks. It is assumed that the incoming interface 7255 * of the packet is always different than the outgoing interface and the 7256 * ire_type of the found ire has to be a non-resolver type. 7257 * 7258 * IPQoS notes 7259 * IP policy is invoked twice for a forwarded packet, once on the read side 7260 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7261 * enabled. 7262 */ 7263 static void 7264 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7265 { 7266 ipha_t *ipha; 7267 queue_t *q; 7268 uint32_t pkt_len; 7269 #define rptr ((uchar_t *)ipha) 7270 uint32_t sum; 7271 uint32_t max_frag; 7272 mblk_t *first_mp; 7273 uint32_t ill_index; 7274 ipxmit_state_t pktxmit_state; 7275 ill_t *out_ill; 7276 7277 ASSERT(ire != NULL); 7278 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7279 ASSERT(ire->ire_stq != NULL); 7280 7281 /* Initiate read side IPPF processing */ 7282 if (IPP_ENABLED(IPP_FWD_IN)) { 7283 ill_index = in_ill->ill_phyint->phyint_ifindex; 7284 ip_process(IPP_FWD_IN, &mp, ill_index); 7285 if (mp == NULL) { 7286 ip2dbg(("ip_mrtun_forward: inbound pkt " 7287 "dropped during IPPF processing\n")); 7288 return; 7289 } 7290 } 7291 7292 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7293 ILLF_ROUTER) == 0) || 7294 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7295 BUMP_MIB(&ip_mib, ipForwProhibits); 7296 ip0dbg(("ip_mrtun_forward: Can't forward :" 7297 "forwarding is not turned on\n")); 7298 goto drop_pkt; 7299 } 7300 7301 /* 7302 * Don't forward if the interface is down 7303 */ 7304 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7305 BUMP_MIB(&ip_mib, ipInDiscards); 7306 goto drop_pkt; 7307 } 7308 7309 ipha = (ipha_t *)mp->b_rptr; 7310 pkt_len = ntohs(ipha->ipha_length); 7311 /* Adjust the checksum to reflect the ttl decrement. */ 7312 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7313 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7314 if (ipha->ipha_ttl-- <= 1) { 7315 if (ip_csum_hdr(ipha)) { 7316 BUMP_MIB(&ip_mib, ipInCksumErrs); 7317 goto drop_pkt; 7318 } 7319 q = ire->ire_stq; 7320 if ((first_mp = allocb(sizeof (ipsec_info_t), 7321 BPRI_HI)) == NULL) { 7322 goto drop_pkt; 7323 } 7324 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7325 /* Sent by forwarding path, and router is global zone */ 7326 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7327 GLOBAL_ZONEID); 7328 return; 7329 } 7330 7331 /* Get the ill_index of the ILL */ 7332 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7333 7334 /* 7335 * This location is chosen for the placement of the forwarding hook 7336 * because at this point we know that we have a path out for the 7337 * packet but haven't yet applied any logic (such as fragmenting) 7338 * that happen as part of transmitting the packet out. 7339 */ 7340 out_ill = ire->ire_ipif->ipif_ill; 7341 7342 DTRACE_PROBE4(ip4__forwarding__start, 7343 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7344 7345 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 7346 in_ill, out_ill, ipha, mp, mp); 7347 7348 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7349 7350 if (mp == NULL) 7351 return; 7352 pkt_len = ntohs(ipha->ipha_length); 7353 7354 /* 7355 * ip_mrtun_forward is only used by foreign agent to reverse 7356 * tunnel the incoming packet. So it does not do any option 7357 * processing for source routing. 7358 */ 7359 max_frag = ire->ire_max_frag; 7360 if (pkt_len > max_frag) { 7361 /* 7362 * It needs fragging on its way out. We haven't 7363 * verified the header checksum yet. Since we 7364 * are going to put a surely good checksum in the 7365 * outgoing header, we have to make sure that it 7366 * was good coming in. 7367 */ 7368 if (ip_csum_hdr(ipha)) { 7369 BUMP_MIB(&ip_mib, ipInCksumErrs); 7370 goto drop_pkt; 7371 } 7372 7373 /* Initiate write side IPPF processing */ 7374 if (IPP_ENABLED(IPP_FWD_OUT)) { 7375 ip_process(IPP_FWD_OUT, &mp, ill_index); 7376 if (mp == NULL) { 7377 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7378 "dropped/deferred during ip policy "\ 7379 "processing\n")); 7380 return; 7381 } 7382 } 7383 if ((first_mp = allocb(sizeof (ipsec_info_t), 7384 BPRI_HI)) == NULL) { 7385 goto drop_pkt; 7386 } 7387 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7388 mp = first_mp; 7389 7390 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7391 return; 7392 } 7393 7394 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7395 7396 ASSERT(ire->ire_ipif != NULL); 7397 7398 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7399 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7400 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 7401 NULL, out_ill, ipha, mp, mp); 7402 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7403 if (mp == NULL) 7404 return; 7405 7406 /* Now send the packet to the tunnel interface */ 7407 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7408 q = ire->ire_stq; 7409 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7410 if ((pktxmit_state == SEND_FAILED) || 7411 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7412 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7413 q->q_ptr)); 7414 } 7415 7416 return; 7417 7418 drop_pkt:; 7419 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7420 freemsg(mp); 7421 #undef rptr 7422 } 7423 7424 /* 7425 * Fills the ipsec_out_t data structure with appropriate fields and 7426 * prepends it to mp which contains the IP hdr + data that was meant 7427 * to be forwarded. Please note that ipsec_out_info data structure 7428 * is used here to communicate the outgoing ill path at ip_wput() 7429 * for the ICMP error packet. This has nothing to do with ipsec IP 7430 * security. ipsec_out_t is really used to pass the info to the module 7431 * IP where this information cannot be extracted from conn. 7432 * This functions is called by ip_mrtun_forward(). 7433 */ 7434 void 7435 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7436 { 7437 ipsec_out_t *io; 7438 7439 ASSERT(xmit_ill != NULL); 7440 first_mp->b_datap->db_type = M_CTL; 7441 first_mp->b_wptr += sizeof (ipsec_info_t); 7442 /* 7443 * This is to pass info to ip_wput in absence of conn. 7444 * ipsec_out_secure will be B_FALSE because of this. 7445 * Thus ipsec_out_secure being B_FALSE indicates that 7446 * this is not IPSEC security related information. 7447 */ 7448 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7449 io = (ipsec_out_t *)first_mp->b_rptr; 7450 io->ipsec_out_type = IPSEC_OUT; 7451 io->ipsec_out_len = sizeof (ipsec_out_t); 7452 first_mp->b_cont = mp; 7453 io->ipsec_out_ill_index = 7454 xmit_ill->ill_phyint->phyint_ifindex; 7455 io->ipsec_out_xmit_if = B_TRUE; 7456 } 7457 7458 /* 7459 * Return the network mask 7460 * associated with the specified address. 7461 */ 7462 ipaddr_t 7463 ip_net_mask(ipaddr_t addr) 7464 { 7465 uchar_t *up = (uchar_t *)&addr; 7466 ipaddr_t mask = 0; 7467 uchar_t *maskp = (uchar_t *)&mask; 7468 7469 #if defined(__i386) || defined(__amd64) 7470 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7471 #endif 7472 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7473 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7474 #endif 7475 if (CLASSD(addr)) { 7476 maskp[0] = 0xF0; 7477 return (mask); 7478 } 7479 if (addr == 0) 7480 return (0); 7481 maskp[0] = 0xFF; 7482 if ((up[0] & 0x80) == 0) 7483 return (mask); 7484 7485 maskp[1] = 0xFF; 7486 if ((up[0] & 0xC0) == 0x80) 7487 return (mask); 7488 7489 maskp[2] = 0xFF; 7490 if ((up[0] & 0xE0) == 0xC0) 7491 return (mask); 7492 7493 /* Must be experimental or multicast, indicate as much */ 7494 return ((ipaddr_t)0); 7495 } 7496 7497 /* 7498 * Select an ill for the packet by considering load spreading across 7499 * a different ill in the group if dst_ill is part of some group. 7500 */ 7501 ill_t * 7502 ip_newroute_get_dst_ill(ill_t *dst_ill) 7503 { 7504 ill_t *ill; 7505 7506 /* 7507 * We schedule irrespective of whether the source address is 7508 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7509 */ 7510 ill = illgrp_scheduler(dst_ill); 7511 if (ill == NULL) 7512 return (NULL); 7513 7514 /* 7515 * For groups with names ip_sioctl_groupname ensures that all 7516 * ills are of same type. For groups without names, ifgrp_insert 7517 * ensures this. 7518 */ 7519 ASSERT(dst_ill->ill_type == ill->ill_type); 7520 7521 return (ill); 7522 } 7523 7524 /* 7525 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7526 */ 7527 ill_t * 7528 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7529 { 7530 ill_t *ret_ill; 7531 7532 ASSERT(ifindex != 0); 7533 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7534 if (ret_ill == NULL || 7535 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7536 if (isv6) { 7537 if (ill != NULL) { 7538 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7539 } else { 7540 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7541 } 7542 ip1dbg(("ip_grab_attach_ill (IPv6): " 7543 "bad ifindex %d.\n", ifindex)); 7544 } else { 7545 BUMP_MIB(&ip_mib, ipOutDiscards); 7546 ip1dbg(("ip_grab_attach_ill (IPv4): " 7547 "bad ifindex %d.\n", ifindex)); 7548 } 7549 if (ret_ill != NULL) 7550 ill_refrele(ret_ill); 7551 freemsg(first_mp); 7552 return (NULL); 7553 } 7554 7555 return (ret_ill); 7556 } 7557 7558 /* 7559 * IPv4 - 7560 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7561 * out a packet to a destination address for which we do not have specific 7562 * (or sufficient) routing information. 7563 * 7564 * NOTE : These are the scopes of some of the variables that point at IRE, 7565 * which needs to be followed while making any future modifications 7566 * to avoid memory leaks. 7567 * 7568 * - ire and sire are the entries looked up initially by 7569 * ire_ftable_lookup. 7570 * - ipif_ire is used to hold the interface ire associated with 7571 * the new cache ire. But it's scope is limited, so we always REFRELE 7572 * it before branching out to error paths. 7573 * - save_ire is initialized before ire_create, so that ire returned 7574 * by ire_create will not over-write the ire. We REFRELE save_ire 7575 * before breaking out of the switch. 7576 * 7577 * Thus on failures, we have to REFRELE only ire and sire, if they 7578 * are not NULL. 7579 */ 7580 void 7581 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7582 zoneid_t zoneid) 7583 { 7584 areq_t *areq; 7585 ipaddr_t gw = 0; 7586 ire_t *ire = NULL; 7587 mblk_t *res_mp; 7588 ipaddr_t *addrp; 7589 ipaddr_t nexthop_addr; 7590 ipif_t *src_ipif = NULL; 7591 ill_t *dst_ill = NULL; 7592 ipha_t *ipha; 7593 ire_t *sire = NULL; 7594 mblk_t *first_mp; 7595 ire_t *save_ire; 7596 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7597 ushort_t ire_marks = 0; 7598 boolean_t mctl_present; 7599 ipsec_out_t *io; 7600 mblk_t *saved_mp; 7601 ire_t *first_sire = NULL; 7602 mblk_t *copy_mp = NULL; 7603 mblk_t *xmit_mp = NULL; 7604 ipaddr_t save_dst; 7605 uint32_t multirt_flags = 7606 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7607 boolean_t multirt_is_resolvable; 7608 boolean_t multirt_resolve_next; 7609 boolean_t do_attach_ill = B_FALSE; 7610 boolean_t ip_nexthop = B_FALSE; 7611 tsol_ire_gw_secattr_t *attrp = NULL; 7612 tsol_gcgrp_t *gcgrp = NULL; 7613 tsol_gcgrp_addr_t ga; 7614 7615 if (ip_debug > 2) { 7616 /* ip1dbg */ 7617 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7618 } 7619 7620 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7621 if (mctl_present) { 7622 io = (ipsec_out_t *)first_mp->b_rptr; 7623 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7624 ASSERT(zoneid == io->ipsec_out_zoneid); 7625 ASSERT(zoneid != ALL_ZONES); 7626 } 7627 7628 ipha = (ipha_t *)mp->b_rptr; 7629 7630 /* All multicast lookups come through ip_newroute_ipif() */ 7631 if (CLASSD(dst)) { 7632 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7633 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7634 freemsg(first_mp); 7635 return; 7636 } 7637 7638 if (mctl_present && io->ipsec_out_attach_if) { 7639 /* ip_grab_attach_ill returns a held ill */ 7640 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7641 io->ipsec_out_ill_index, B_FALSE); 7642 7643 /* Failure case frees things for us. */ 7644 if (attach_ill == NULL) 7645 return; 7646 7647 /* 7648 * Check if we need an ire that will not be 7649 * looked up by anybody else i.e. HIDDEN. 7650 */ 7651 if (ill_is_probeonly(attach_ill)) 7652 ire_marks = IRE_MARK_HIDDEN; 7653 } 7654 if (mctl_present && io->ipsec_out_ip_nexthop) { 7655 ip_nexthop = B_TRUE; 7656 nexthop_addr = io->ipsec_out_nexthop_addr; 7657 } 7658 /* 7659 * If this IRE is created for forwarding or it is not for 7660 * traffic for congestion controlled protocols, mark it as temporary. 7661 */ 7662 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7663 ire_marks |= IRE_MARK_TEMPORARY; 7664 7665 /* 7666 * Get what we can from ire_ftable_lookup which will follow an IRE 7667 * chain until it gets the most specific information available. 7668 * For example, we know that there is no IRE_CACHE for this dest, 7669 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7670 * ire_ftable_lookup will look up the gateway, etc. 7671 * Check if in_ill != NULL. If it is true, the packet must be 7672 * from an incoming interface where RTA_SRCIFP is set. 7673 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7674 * to the destination, of equal netmask length in the forward table, 7675 * will be recursively explored. If no information is available 7676 * for the final gateway of that route, we force the returned ire 7677 * to be equal to sire using MATCH_IRE_PARENT. 7678 * At least, in this case we have a starting point (in the buckets) 7679 * to look for other routes to the destination in the forward table. 7680 * This is actually used only for multirouting, where a list 7681 * of routes has to be processed in sequence. 7682 * 7683 * In the process of coming up with the most specific information, 7684 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7685 * for the gateway (i.e., one for which the ire_nce->nce_state is 7686 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7687 * Two caveats when handling incomplete ire's in ip_newroute: 7688 * - we should be careful when accessing its ire_nce (specifically 7689 * the nce_res_mp) ast it might change underneath our feet, and, 7690 * - not all legacy code path callers are prepared to handle 7691 * incomplete ire's, so we should not create/add incomplete 7692 * ire_cache entries here. (See discussion about temporary solution 7693 * further below). 7694 * 7695 * In order to minimize packet dropping, and to preserve existing 7696 * behavior, we treat this case as if there were no IRE_CACHE for the 7697 * gateway, and instead use the IF_RESOLVER ire to send out 7698 * another request to ARP (this is achieved by passing the 7699 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7700 * arp response comes back in ip_wput_nondata, we will create 7701 * a per-dst ire_cache that has an ND_COMPLETE ire. 7702 * 7703 * Note that this is a temporary solution; the correct solution is 7704 * to create an incomplete per-dst ire_cache entry, and send the 7705 * packet out when the gw's nce is resolved. In order to achieve this, 7706 * all packet processing must have been completed prior to calling 7707 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7708 * to be modified to accomodate this solution. 7709 */ 7710 if (in_ill != NULL) { 7711 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7712 in_ill, MATCH_IRE_TYPE); 7713 } else if (ip_nexthop) { 7714 /* 7715 * The first time we come here, we look for an IRE_INTERFACE 7716 * entry for the specified nexthop, set the dst to be the 7717 * nexthop address and create an IRE_CACHE entry for the 7718 * nexthop. The next time around, we are able to find an 7719 * IRE_CACHE entry for the nexthop, set the gateway to be the 7720 * nexthop address and create an IRE_CACHE entry for the 7721 * destination address via the specified nexthop. 7722 */ 7723 ire = ire_cache_lookup(nexthop_addr, zoneid, 7724 MBLK_GETLABEL(mp)); 7725 if (ire != NULL) { 7726 gw = nexthop_addr; 7727 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7728 } else { 7729 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7730 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7731 MBLK_GETLABEL(mp), 7732 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7733 if (ire != NULL) { 7734 dst = nexthop_addr; 7735 } 7736 } 7737 } else if (attach_ill == NULL) { 7738 ire = ire_ftable_lookup(dst, 0, 0, 0, 7739 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7740 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7741 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7742 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7743 } else { 7744 /* 7745 * attach_ill is set only for communicating with 7746 * on-link hosts. So, don't look for DEFAULT. 7747 */ 7748 ipif_t *attach_ipif; 7749 7750 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7751 if (attach_ipif == NULL) { 7752 ill_refrele(attach_ill); 7753 goto icmp_err_ret; 7754 } 7755 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7756 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7757 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7758 MATCH_IRE_SECATTR); 7759 ipif_refrele(attach_ipif); 7760 } 7761 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7762 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7763 7764 /* 7765 * This loop is run only once in most cases. 7766 * We loop to resolve further routes only when the destination 7767 * can be reached through multiple RTF_MULTIRT-flagged ires. 7768 */ 7769 do { 7770 /* Clear the previous iteration's values */ 7771 if (src_ipif != NULL) { 7772 ipif_refrele(src_ipif); 7773 src_ipif = NULL; 7774 } 7775 if (dst_ill != NULL) { 7776 ill_refrele(dst_ill); 7777 dst_ill = NULL; 7778 } 7779 7780 multirt_resolve_next = B_FALSE; 7781 /* 7782 * We check if packets have to be multirouted. 7783 * In this case, given the current <ire, sire> couple, 7784 * we look for the next suitable <ire, sire>. 7785 * This check is done in ire_multirt_lookup(), 7786 * which applies various criteria to find the next route 7787 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7788 * unchanged if it detects it has not been tried yet. 7789 */ 7790 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7791 ip3dbg(("ip_newroute: starting next_resolution " 7792 "with first_mp %p, tag %d\n", 7793 (void *)first_mp, 7794 MULTIRT_DEBUG_TAGGED(first_mp))); 7795 7796 ASSERT(sire != NULL); 7797 multirt_is_resolvable = 7798 ire_multirt_lookup(&ire, &sire, multirt_flags, 7799 MBLK_GETLABEL(mp)); 7800 7801 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7802 "ire %p, sire %p\n", 7803 multirt_is_resolvable, 7804 (void *)ire, (void *)sire)); 7805 7806 if (!multirt_is_resolvable) { 7807 /* 7808 * No more multirt route to resolve; give up 7809 * (all routes resolved or no more 7810 * resolvable routes). 7811 */ 7812 if (ire != NULL) { 7813 ire_refrele(ire); 7814 ire = NULL; 7815 } 7816 } else { 7817 ASSERT(sire != NULL); 7818 ASSERT(ire != NULL); 7819 /* 7820 * We simply use first_sire as a flag that 7821 * indicates if a resolvable multirt route 7822 * has already been found. 7823 * If it is not the case, we may have to send 7824 * an ICMP error to report that the 7825 * destination is unreachable. 7826 * We do not IRE_REFHOLD first_sire. 7827 */ 7828 if (first_sire == NULL) { 7829 first_sire = sire; 7830 } 7831 } 7832 } 7833 if (ire == NULL) { 7834 if (ip_debug > 3) { 7835 /* ip2dbg */ 7836 pr_addr_dbg("ip_newroute: " 7837 "can't resolve %s\n", AF_INET, &dst); 7838 } 7839 ip3dbg(("ip_newroute: " 7840 "ire %p, sire %p, first_sire %p\n", 7841 (void *)ire, (void *)sire, (void *)first_sire)); 7842 7843 if (sire != NULL) { 7844 ire_refrele(sire); 7845 sire = NULL; 7846 } 7847 7848 if (first_sire != NULL) { 7849 /* 7850 * At least one multirt route has been found 7851 * in the same call to ip_newroute(); 7852 * there is no need to report an ICMP error. 7853 * first_sire was not IRE_REFHOLDed. 7854 */ 7855 MULTIRT_DEBUG_UNTAG(first_mp); 7856 freemsg(first_mp); 7857 return; 7858 } 7859 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7860 RTA_DST); 7861 if (attach_ill != NULL) 7862 ill_refrele(attach_ill); 7863 goto icmp_err_ret; 7864 } 7865 7866 /* 7867 * When RTA_SRCIFP is used to add a route, then an interface 7868 * route is added in the source interface's routing table. 7869 * If the outgoing interface of this route is of type 7870 * IRE_IF_RESOLVER, then upon creation of the ire, 7871 * ire_nce->nce_res_mp is set to NULL. 7872 * Later, when this route is first used for forwarding 7873 * a packet, ip_newroute() is called 7874 * to resolve the hardware address of the outgoing ipif. 7875 * We do not come here for IRE_IF_NORESOLVER entries in the 7876 * source interface based table. We only come here if the 7877 * outgoing interface is a resolver interface and we don't 7878 * have the ire_nce->nce_res_mp information yet. 7879 * If in_ill is not null that means it is called from 7880 * ip_rput. 7881 */ 7882 7883 ASSERT(ire->ire_in_ill == NULL || 7884 (ire->ire_type == IRE_IF_RESOLVER && 7885 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7886 7887 /* 7888 * Verify that the returned IRE does not have either 7889 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7890 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7891 */ 7892 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7893 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7894 if (attach_ill != NULL) 7895 ill_refrele(attach_ill); 7896 goto icmp_err_ret; 7897 } 7898 /* 7899 * Increment the ire_ob_pkt_count field for ire if it is an 7900 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7901 * increment the same for the parent IRE, sire, if it is some 7902 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7903 * and HOST_REDIRECT). 7904 */ 7905 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7906 UPDATE_OB_PKT_COUNT(ire); 7907 ire->ire_last_used_time = lbolt; 7908 } 7909 7910 if (sire != NULL) { 7911 gw = sire->ire_gateway_addr; 7912 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7913 IRE_INTERFACE)) == 0); 7914 UPDATE_OB_PKT_COUNT(sire); 7915 sire->ire_last_used_time = lbolt; 7916 } 7917 /* 7918 * We have a route to reach the destination. 7919 * 7920 * 1) If the interface is part of ill group, try to get a new 7921 * ill taking load spreading into account. 7922 * 7923 * 2) After selecting the ill, get a source address that 7924 * might create good inbound load spreading. 7925 * ipif_select_source does this for us. 7926 * 7927 * If the application specified the ill (ifindex), we still 7928 * load spread. Only if the packets needs to go out 7929 * specifically on a given ill e.g. binding to 7930 * IPIF_NOFAILOVER address, then we don't try to use a 7931 * different ill for load spreading. 7932 */ 7933 if (attach_ill == NULL) { 7934 /* 7935 * Don't perform outbound load spreading in the 7936 * case of an RTF_MULTIRT route, as we actually 7937 * typically want to replicate outgoing packets 7938 * through particular interfaces. 7939 */ 7940 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7941 dst_ill = ire->ire_ipif->ipif_ill; 7942 /* for uniformity */ 7943 ill_refhold(dst_ill); 7944 } else { 7945 /* 7946 * If we are here trying to create an IRE_CACHE 7947 * for an offlink destination and have the 7948 * IRE_CACHE for the next hop and the latter is 7949 * using virtual IP source address selection i.e 7950 * it's ire->ire_ipif is pointing to a virtual 7951 * network interface (vni) then 7952 * ip_newroute_get_dst_ll() will return the vni 7953 * interface as the dst_ill. Since the vni is 7954 * virtual i.e not associated with any physical 7955 * interface, it cannot be the dst_ill, hence 7956 * in such a case call ip_newroute_get_dst_ll() 7957 * with the stq_ill instead of the ire_ipif ILL. 7958 * The function returns a refheld ill. 7959 */ 7960 if ((ire->ire_type == IRE_CACHE) && 7961 IS_VNI(ire->ire_ipif->ipif_ill)) 7962 dst_ill = ip_newroute_get_dst_ill( 7963 ire->ire_stq->q_ptr); 7964 else 7965 dst_ill = ip_newroute_get_dst_ill( 7966 ire->ire_ipif->ipif_ill); 7967 } 7968 if (dst_ill == NULL) { 7969 if (ip_debug > 2) { 7970 pr_addr_dbg("ip_newroute: " 7971 "no dst ill for dst" 7972 " %s\n", AF_INET, &dst); 7973 } 7974 goto icmp_err_ret; 7975 } 7976 } else { 7977 dst_ill = ire->ire_ipif->ipif_ill; 7978 /* for uniformity */ 7979 ill_refhold(dst_ill); 7980 /* 7981 * We should have found a route matching ill as we 7982 * called ire_ftable_lookup with MATCH_IRE_ILL. 7983 * Rather than asserting, when there is a mismatch, 7984 * we just drop the packet. 7985 */ 7986 if (dst_ill != attach_ill) { 7987 ip0dbg(("ip_newroute: Packet dropped as " 7988 "IPIF_NOFAILOVER ill is %s, " 7989 "ire->ire_ipif->ipif_ill is %s\n", 7990 attach_ill->ill_name, 7991 dst_ill->ill_name)); 7992 ill_refrele(attach_ill); 7993 goto icmp_err_ret; 7994 } 7995 } 7996 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7997 if (attach_ill != NULL) { 7998 ill_refrele(attach_ill); 7999 attach_ill = NULL; 8000 do_attach_ill = B_TRUE; 8001 } 8002 ASSERT(dst_ill != NULL); 8003 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8004 8005 /* 8006 * Pick the best source address from dst_ill. 8007 * 8008 * 1) If it is part of a multipathing group, we would 8009 * like to spread the inbound packets across different 8010 * interfaces. ipif_select_source picks a random source 8011 * across the different ills in the group. 8012 * 8013 * 2) If it is not part of a multipathing group, we try 8014 * to pick the source address from the destination 8015 * route. Clustering assumes that when we have multiple 8016 * prefixes hosted on an interface, the prefix of the 8017 * source address matches the prefix of the destination 8018 * route. We do this only if the address is not 8019 * DEPRECATED. 8020 * 8021 * 3) If the conn is in a different zone than the ire, we 8022 * need to pick a source address from the right zone. 8023 * 8024 * NOTE : If we hit case (1) above, the prefix of the source 8025 * address picked may not match the prefix of the 8026 * destination routes prefix as ipif_select_source 8027 * does not look at "dst" while picking a source 8028 * address. 8029 * If we want the same behavior as (2), we will need 8030 * to change the behavior of ipif_select_source. 8031 */ 8032 ASSERT(src_ipif == NULL); 8033 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8034 /* 8035 * The RTF_SETSRC flag is set in the parent ire (sire). 8036 * Check that the ipif matching the requested source 8037 * address still exists. 8038 */ 8039 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8040 zoneid, NULL, NULL, NULL, NULL); 8041 } 8042 if (src_ipif == NULL) { 8043 ire_marks |= IRE_MARK_USESRC_CHECK; 8044 if ((dst_ill->ill_group != NULL) || 8045 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8046 (connp != NULL && ire->ire_zoneid != zoneid && 8047 ire->ire_zoneid != ALL_ZONES) || 8048 (dst_ill->ill_usesrc_ifindex != 0)) { 8049 /* 8050 * If the destination is reachable via a 8051 * given gateway, the selected source address 8052 * should be in the same subnet as the gateway. 8053 * Otherwise, the destination is not reachable. 8054 * 8055 * If there are no interfaces on the same subnet 8056 * as the destination, ipif_select_source gives 8057 * first non-deprecated interface which might be 8058 * on a different subnet than the gateway. 8059 * This is not desirable. Hence pass the dst_ire 8060 * source address to ipif_select_source. 8061 * It is sure that the destination is reachable 8062 * with the dst_ire source address subnet. 8063 * So passing dst_ire source address to 8064 * ipif_select_source will make sure that the 8065 * selected source will be on the same subnet 8066 * as dst_ire source address. 8067 */ 8068 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8069 src_ipif = ipif_select_source(dst_ill, saddr, 8070 zoneid); 8071 if (src_ipif == NULL) { 8072 if (ip_debug > 2) { 8073 pr_addr_dbg("ip_newroute: " 8074 "no src for dst %s ", 8075 AF_INET, &dst); 8076 printf("through interface %s\n", 8077 dst_ill->ill_name); 8078 } 8079 goto icmp_err_ret; 8080 } 8081 } else { 8082 src_ipif = ire->ire_ipif; 8083 ASSERT(src_ipif != NULL); 8084 /* hold src_ipif for uniformity */ 8085 ipif_refhold(src_ipif); 8086 } 8087 } 8088 8089 /* 8090 * Assign a source address while we have the conn. 8091 * We can't have ip_wput_ire pick a source address when the 8092 * packet returns from arp since we need to look at 8093 * conn_unspec_src and conn_zoneid, and we lose the conn when 8094 * going through arp. 8095 * 8096 * NOTE : ip_newroute_v6 does not have this piece of code as 8097 * it uses ip6i to store this information. 8098 */ 8099 if (ipha->ipha_src == INADDR_ANY && 8100 (connp == NULL || !connp->conn_unspec_src)) { 8101 ipha->ipha_src = src_ipif->ipif_src_addr; 8102 } 8103 if (ip_debug > 3) { 8104 /* ip2dbg */ 8105 pr_addr_dbg("ip_newroute: first hop %s\n", 8106 AF_INET, &gw); 8107 } 8108 ip2dbg(("\tire type %s (%d)\n", 8109 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8110 8111 /* 8112 * The TTL of multirouted packets is bounded by the 8113 * ip_multirt_ttl ndd variable. 8114 */ 8115 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8116 /* Force TTL of multirouted packets */ 8117 if ((ip_multirt_ttl > 0) && 8118 (ipha->ipha_ttl > ip_multirt_ttl)) { 8119 ip2dbg(("ip_newroute: forcing multirt TTL " 8120 "to %d (was %d), dst 0x%08x\n", 8121 ip_multirt_ttl, ipha->ipha_ttl, 8122 ntohl(sire->ire_addr))); 8123 ipha->ipha_ttl = ip_multirt_ttl; 8124 } 8125 } 8126 /* 8127 * At this point in ip_newroute(), ire is either the 8128 * IRE_CACHE of the next-hop gateway for an off-subnet 8129 * destination or an IRE_INTERFACE type that should be used 8130 * to resolve an on-subnet destination or an on-subnet 8131 * next-hop gateway. 8132 * 8133 * In the IRE_CACHE case, we have the following : 8134 * 8135 * 1) src_ipif - used for getting a source address. 8136 * 8137 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8138 * means packets using this IRE_CACHE will go out on 8139 * dst_ill. 8140 * 8141 * 3) The IRE sire will point to the prefix that is the 8142 * longest matching route for the destination. These 8143 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8144 * 8145 * The newly created IRE_CACHE entry for the off-subnet 8146 * destination is tied to both the prefix route and the 8147 * interface route used to resolve the next-hop gateway 8148 * via the ire_phandle and ire_ihandle fields, 8149 * respectively. 8150 * 8151 * In the IRE_INTERFACE case, we have the following : 8152 * 8153 * 1) src_ipif - used for getting a source address. 8154 * 8155 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8156 * means packets using the IRE_CACHE that we will build 8157 * here will go out on dst_ill. 8158 * 8159 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8160 * to be created will only be tied to the IRE_INTERFACE 8161 * that was derived from the ire_ihandle field. 8162 * 8163 * If sire is non-NULL, it means the destination is 8164 * off-link and we will first create the IRE_CACHE for the 8165 * gateway. Next time through ip_newroute, we will create 8166 * the IRE_CACHE for the final destination as described 8167 * above. 8168 * 8169 * In both cases, after the current resolution has been 8170 * completed (or possibly initialised, in the IRE_INTERFACE 8171 * case), the loop may be re-entered to attempt the resolution 8172 * of another RTF_MULTIRT route. 8173 * 8174 * When an IRE_CACHE entry for the off-subnet destination is 8175 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8176 * for further processing in emission loops. 8177 */ 8178 save_ire = ire; 8179 switch (ire->ire_type) { 8180 case IRE_CACHE: { 8181 ire_t *ipif_ire; 8182 mblk_t *ire_fp_mp; 8183 8184 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8185 if (gw == 0) 8186 gw = ire->ire_gateway_addr; 8187 /* 8188 * We need 3 ire's to create a new cache ire for an 8189 * off-link destination from the cache ire of the 8190 * gateway. 8191 * 8192 * 1. The prefix ire 'sire' (Note that this does 8193 * not apply to the conn_nexthop_set case) 8194 * 2. The cache ire of the gateway 'ire' 8195 * 3. The interface ire 'ipif_ire' 8196 * 8197 * We have (1) and (2). We lookup (3) below. 8198 * 8199 * If there is no interface route to the gateway, 8200 * it is a race condition, where we found the cache 8201 * but the interface route has been deleted. 8202 */ 8203 if (ip_nexthop) { 8204 ipif_ire = ire_ihandle_lookup_onlink(ire); 8205 } else { 8206 ipif_ire = 8207 ire_ihandle_lookup_offlink(ire, sire); 8208 } 8209 if (ipif_ire == NULL) { 8210 ip1dbg(("ip_newroute: " 8211 "ire_ihandle_lookup_offlink failed\n")); 8212 goto icmp_err_ret; 8213 } 8214 /* 8215 * XXX We are using the same res_mp 8216 * (DL_UNITDATA_REQ) though the save_ire is not 8217 * pointing at the same ill. 8218 * This is incorrect. We need to send it up to the 8219 * resolver to get the right res_mp. For ethernets 8220 * this may be okay (ill_type == DL_ETHER). 8221 */ 8222 res_mp = save_ire->ire_nce->nce_res_mp; 8223 ire_fp_mp = NULL; 8224 /* 8225 * save_ire's nce_fp_mp can't change since it is 8226 * not an IRE_MIPRTUN or IRE_BROADCAST 8227 * LOCK_IRE_FP_MP does not do any useful work in 8228 * the case of IRE_CACHE. So we don't use it below. 8229 */ 8230 if (save_ire->ire_stq == dst_ill->ill_wq) 8231 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8232 8233 /* 8234 * Check cached gateway IRE for any security 8235 * attributes; if found, associate the gateway 8236 * credentials group to the destination IRE. 8237 */ 8238 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8239 mutex_enter(&attrp->igsa_lock); 8240 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8241 GCGRP_REFHOLD(gcgrp); 8242 mutex_exit(&attrp->igsa_lock); 8243 } 8244 8245 ire = ire_create( 8246 (uchar_t *)&dst, /* dest address */ 8247 (uchar_t *)&ip_g_all_ones, /* mask */ 8248 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8249 (uchar_t *)&gw, /* gateway address */ 8250 NULL, 8251 &save_ire->ire_max_frag, 8252 ire_fp_mp, /* Fast Path header */ 8253 dst_ill->ill_rq, /* recv-from queue */ 8254 dst_ill->ill_wq, /* send-to queue */ 8255 IRE_CACHE, /* IRE type */ 8256 res_mp, 8257 src_ipif, 8258 in_ill, /* incoming ill */ 8259 (sire != NULL) ? 8260 sire->ire_mask : 0, /* Parent mask */ 8261 (sire != NULL) ? 8262 sire->ire_phandle : 0, /* Parent handle */ 8263 ipif_ire->ire_ihandle, /* Interface handle */ 8264 (sire != NULL) ? (sire->ire_flags & 8265 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8266 (sire != NULL) ? 8267 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8268 NULL, 8269 gcgrp); 8270 8271 if (ire == NULL) { 8272 if (gcgrp != NULL) { 8273 GCGRP_REFRELE(gcgrp); 8274 gcgrp = NULL; 8275 } 8276 ire_refrele(ipif_ire); 8277 ire_refrele(save_ire); 8278 break; 8279 } 8280 8281 /* reference now held by IRE */ 8282 gcgrp = NULL; 8283 8284 ire->ire_marks |= ire_marks; 8285 8286 /* 8287 * Prevent sire and ipif_ire from getting deleted. 8288 * The newly created ire is tied to both of them via 8289 * the phandle and ihandle respectively. 8290 */ 8291 if (sire != NULL) { 8292 IRB_REFHOLD(sire->ire_bucket); 8293 /* Has it been removed already ? */ 8294 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8295 IRB_REFRELE(sire->ire_bucket); 8296 ire_refrele(ipif_ire); 8297 ire_refrele(save_ire); 8298 break; 8299 } 8300 } 8301 8302 IRB_REFHOLD(ipif_ire->ire_bucket); 8303 /* Has it been removed already ? */ 8304 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8305 IRB_REFRELE(ipif_ire->ire_bucket); 8306 if (sire != NULL) 8307 IRB_REFRELE(sire->ire_bucket); 8308 ire_refrele(ipif_ire); 8309 ire_refrele(save_ire); 8310 break; 8311 } 8312 8313 xmit_mp = first_mp; 8314 /* 8315 * In the case of multirouting, a copy 8316 * of the packet is done before its sending. 8317 * The copy is used to attempt another 8318 * route resolution, in a next loop. 8319 */ 8320 if (ire->ire_flags & RTF_MULTIRT) { 8321 copy_mp = copymsg(first_mp); 8322 if (copy_mp != NULL) { 8323 xmit_mp = copy_mp; 8324 MULTIRT_DEBUG_TAG(first_mp); 8325 } 8326 } 8327 ire_add_then_send(q, ire, xmit_mp); 8328 ire_refrele(save_ire); 8329 8330 /* Assert that sire is not deleted yet. */ 8331 if (sire != NULL) { 8332 ASSERT(sire->ire_ptpn != NULL); 8333 IRB_REFRELE(sire->ire_bucket); 8334 } 8335 8336 /* Assert that ipif_ire is not deleted yet. */ 8337 ASSERT(ipif_ire->ire_ptpn != NULL); 8338 IRB_REFRELE(ipif_ire->ire_bucket); 8339 ire_refrele(ipif_ire); 8340 8341 /* 8342 * If copy_mp is not NULL, multirouting was 8343 * requested. We loop to initiate a next 8344 * route resolution attempt, starting from sire. 8345 */ 8346 if (copy_mp != NULL) { 8347 /* 8348 * Search for the next unresolved 8349 * multirt route. 8350 */ 8351 copy_mp = NULL; 8352 ipif_ire = NULL; 8353 ire = NULL; 8354 multirt_resolve_next = B_TRUE; 8355 continue; 8356 } 8357 if (sire != NULL) 8358 ire_refrele(sire); 8359 ipif_refrele(src_ipif); 8360 ill_refrele(dst_ill); 8361 return; 8362 } 8363 case IRE_IF_NORESOLVER: { 8364 /* 8365 * We have what we need to build an IRE_CACHE. 8366 * 8367 * Create a new res_mp with the IP gateway address 8368 * in destination address in the DLPI hdr if the 8369 * physical length is exactly 4 bytes. 8370 */ 8371 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8372 uchar_t *addr; 8373 8374 if (gw) 8375 addr = (uchar_t *)&gw; 8376 else 8377 addr = (uchar_t *)&dst; 8378 8379 res_mp = ill_dlur_gen(addr, 8380 dst_ill->ill_phys_addr_length, 8381 dst_ill->ill_sap, 8382 dst_ill->ill_sap_length); 8383 8384 if (res_mp == NULL) { 8385 ip1dbg(("ip_newroute: res_mp NULL\n")); 8386 break; 8387 } 8388 } else { 8389 res_mp = NULL; 8390 } 8391 8392 /* 8393 * TSol note: We are creating the ire cache for the 8394 * destination 'dst'. If 'dst' is offlink, going 8395 * through the first hop 'gw', the security attributes 8396 * of 'dst' must be set to point to the gateway 8397 * credentials of gateway 'gw'. If 'dst' is onlink, it 8398 * is possible that 'dst' is a potential gateway that is 8399 * referenced by some route that has some security 8400 * attributes. Thus in the former case, we need to do a 8401 * gcgrp_lookup of 'gw' while in the latter case we 8402 * need to do gcgrp_lookup of 'dst' itself. 8403 */ 8404 ga.ga_af = AF_INET; 8405 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8406 &ga.ga_addr); 8407 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8408 8409 ire = ire_create( 8410 (uchar_t *)&dst, /* dest address */ 8411 (uchar_t *)&ip_g_all_ones, /* mask */ 8412 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8413 (uchar_t *)&gw, /* gateway address */ 8414 NULL, 8415 &save_ire->ire_max_frag, 8416 NULL, /* Fast Path header */ 8417 dst_ill->ill_rq, /* recv-from queue */ 8418 dst_ill->ill_wq, /* send-to queue */ 8419 IRE_CACHE, 8420 res_mp, 8421 src_ipif, 8422 in_ill, /* Incoming ill */ 8423 save_ire->ire_mask, /* Parent mask */ 8424 (sire != NULL) ? /* Parent handle */ 8425 sire->ire_phandle : 0, 8426 save_ire->ire_ihandle, /* Interface handle */ 8427 (sire != NULL) ? sire->ire_flags & 8428 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8429 &(save_ire->ire_uinfo), 8430 NULL, 8431 gcgrp); 8432 8433 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8434 freeb(res_mp); 8435 8436 if (ire == NULL) { 8437 if (gcgrp != NULL) { 8438 GCGRP_REFRELE(gcgrp); 8439 gcgrp = NULL; 8440 } 8441 ire_refrele(save_ire); 8442 break; 8443 } 8444 8445 /* reference now held by IRE */ 8446 gcgrp = NULL; 8447 8448 ire->ire_marks |= ire_marks; 8449 8450 /* Prevent save_ire from getting deleted */ 8451 IRB_REFHOLD(save_ire->ire_bucket); 8452 /* Has it been removed already ? */ 8453 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8454 IRB_REFRELE(save_ire->ire_bucket); 8455 ire_refrele(save_ire); 8456 break; 8457 } 8458 8459 /* 8460 * In the case of multirouting, a copy 8461 * of the packet is made before it is sent. 8462 * The copy is used in the next 8463 * loop to attempt another resolution. 8464 */ 8465 xmit_mp = first_mp; 8466 if ((sire != NULL) && 8467 (sire->ire_flags & RTF_MULTIRT)) { 8468 copy_mp = copymsg(first_mp); 8469 if (copy_mp != NULL) { 8470 xmit_mp = copy_mp; 8471 MULTIRT_DEBUG_TAG(first_mp); 8472 } 8473 } 8474 ire_add_then_send(q, ire, xmit_mp); 8475 8476 /* Assert that it is not deleted yet. */ 8477 ASSERT(save_ire->ire_ptpn != NULL); 8478 IRB_REFRELE(save_ire->ire_bucket); 8479 ire_refrele(save_ire); 8480 8481 if (copy_mp != NULL) { 8482 /* 8483 * If we found a (no)resolver, we ignore any 8484 * trailing top priority IRE_CACHE in further 8485 * loops. This ensures that we do not omit any 8486 * (no)resolver. 8487 * This IRE_CACHE, if any, will be processed 8488 * by another thread entering ip_newroute(). 8489 * IRE_CACHE entries, if any, will be processed 8490 * by another thread entering ip_newroute(), 8491 * (upon resolver response, for instance). 8492 * This aims to force parallel multirt 8493 * resolutions as soon as a packet must be sent. 8494 * In the best case, after the tx of only one 8495 * packet, all reachable routes are resolved. 8496 * Otherwise, the resolution of all RTF_MULTIRT 8497 * routes would require several emissions. 8498 */ 8499 multirt_flags &= ~MULTIRT_CACHEGW; 8500 8501 /* 8502 * Search for the next unresolved multirt 8503 * route. 8504 */ 8505 copy_mp = NULL; 8506 save_ire = NULL; 8507 ire = NULL; 8508 multirt_resolve_next = B_TRUE; 8509 continue; 8510 } 8511 8512 /* 8513 * Don't need sire anymore 8514 */ 8515 if (sire != NULL) 8516 ire_refrele(sire); 8517 8518 ipif_refrele(src_ipif); 8519 ill_refrele(dst_ill); 8520 return; 8521 } 8522 case IRE_IF_RESOLVER: 8523 /* 8524 * We can't build an IRE_CACHE yet, but at least we 8525 * found a resolver that can help. 8526 */ 8527 res_mp = dst_ill->ill_resolver_mp; 8528 if (!OK_RESOLVER_MP(res_mp)) 8529 break; 8530 8531 /* 8532 * To be at this point in the code with a non-zero gw 8533 * means that dst is reachable through a gateway that 8534 * we have never resolved. By changing dst to the gw 8535 * addr we resolve the gateway first. 8536 * When ire_add_then_send() tries to put the IP dg 8537 * to dst, it will reenter ip_newroute() at which 8538 * time we will find the IRE_CACHE for the gw and 8539 * create another IRE_CACHE in case IRE_CACHE above. 8540 */ 8541 if (gw != INADDR_ANY) { 8542 /* 8543 * The source ipif that was determined above was 8544 * relative to the destination address, not the 8545 * gateway's. If src_ipif was not taken out of 8546 * the IRE_IF_RESOLVER entry, we'll need to call 8547 * ipif_select_source() again. 8548 */ 8549 if (src_ipif != ire->ire_ipif) { 8550 ipif_refrele(src_ipif); 8551 src_ipif = ipif_select_source(dst_ill, 8552 gw, zoneid); 8553 if (src_ipif == NULL) { 8554 if (ip_debug > 2) { 8555 pr_addr_dbg( 8556 "ip_newroute: no " 8557 "src for gw %s ", 8558 AF_INET, &gw); 8559 printf("through " 8560 "interface %s\n", 8561 dst_ill->ill_name); 8562 } 8563 goto icmp_err_ret; 8564 } 8565 } 8566 save_dst = dst; 8567 dst = gw; 8568 gw = INADDR_ANY; 8569 } 8570 8571 /* 8572 * We obtain a partial IRE_CACHE which we will pass 8573 * along with the resolver query. When the response 8574 * comes back it will be there ready for us to add. 8575 * The ire_max_frag is atomically set under the 8576 * irebucket lock in ire_add_v[46]. 8577 */ 8578 8579 ire = ire_create_mp( 8580 (uchar_t *)&dst, /* dest address */ 8581 (uchar_t *)&ip_g_all_ones, /* mask */ 8582 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8583 (uchar_t *)&gw, /* gateway address */ 8584 NULL, /* no in_src_addr */ 8585 NULL, /* ire_max_frag */ 8586 NULL, /* Fast Path header */ 8587 dst_ill->ill_rq, /* recv-from queue */ 8588 dst_ill->ill_wq, /* send-to queue */ 8589 IRE_CACHE, 8590 NULL, 8591 src_ipif, /* Interface ipif */ 8592 in_ill, /* Incoming ILL */ 8593 save_ire->ire_mask, /* Parent mask */ 8594 0, 8595 save_ire->ire_ihandle, /* Interface handle */ 8596 0, /* flags if any */ 8597 &(save_ire->ire_uinfo), 8598 NULL, 8599 NULL); 8600 8601 if (ire == NULL) { 8602 ire_refrele(save_ire); 8603 break; 8604 } 8605 8606 if ((sire != NULL) && 8607 (sire->ire_flags & RTF_MULTIRT)) { 8608 copy_mp = copymsg(first_mp); 8609 if (copy_mp != NULL) 8610 MULTIRT_DEBUG_TAG(copy_mp); 8611 } 8612 8613 ire->ire_marks |= ire_marks; 8614 8615 /* 8616 * Construct message chain for the resolver 8617 * of the form: 8618 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8619 * Packet could contain a IPSEC_OUT mp. 8620 * 8621 * NOTE : ire will be added later when the response 8622 * comes back from ARP. If the response does not 8623 * come back, ARP frees the packet. For this reason, 8624 * we can't REFHOLD the bucket of save_ire to prevent 8625 * deletions. We may not be able to REFRELE the bucket 8626 * if the response never comes back. Thus, before 8627 * adding the ire, ire_add_v4 will make sure that the 8628 * interface route does not get deleted. This is the 8629 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8630 * where we can always prevent deletions because of 8631 * the synchronous nature of adding IRES i.e 8632 * ire_add_then_send is called after creating the IRE. 8633 */ 8634 ASSERT(ire->ire_mp != NULL); 8635 ire->ire_mp->b_cont = first_mp; 8636 /* Have saved_mp handy, for cleanup if canput fails */ 8637 saved_mp = mp; 8638 mp = copyb(res_mp); 8639 if (mp == NULL) { 8640 /* Prepare for cleanup */ 8641 mp = saved_mp; /* pkt */ 8642 ire_delete(ire); /* ire_mp */ 8643 ire = NULL; 8644 ire_refrele(save_ire); 8645 if (copy_mp != NULL) { 8646 MULTIRT_DEBUG_UNTAG(copy_mp); 8647 freemsg(copy_mp); 8648 copy_mp = NULL; 8649 } 8650 break; 8651 } 8652 linkb(mp, ire->ire_mp); 8653 8654 /* 8655 * Fill in the source and dest addrs for the resolver. 8656 * NOTE: this depends on memory layouts imposed by 8657 * ill_init(). 8658 */ 8659 areq = (areq_t *)mp->b_rptr; 8660 addrp = (ipaddr_t *)((char *)areq + 8661 areq->areq_sender_addr_offset); 8662 if (do_attach_ill) { 8663 /* 8664 * This is bind to no failover case. 8665 * arp packet also must go out on attach_ill. 8666 */ 8667 ASSERT(ipha->ipha_src != NULL); 8668 *addrp = ipha->ipha_src; 8669 } else { 8670 *addrp = save_ire->ire_src_addr; 8671 } 8672 8673 ire_refrele(save_ire); 8674 addrp = (ipaddr_t *)((char *)areq + 8675 areq->areq_target_addr_offset); 8676 *addrp = dst; 8677 /* Up to the resolver. */ 8678 if (canputnext(dst_ill->ill_rq) && 8679 !(dst_ill->ill_arp_closing)) { 8680 putnext(dst_ill->ill_rq, mp); 8681 ire = NULL; 8682 if (copy_mp != NULL) { 8683 /* 8684 * If we found a resolver, we ignore 8685 * any trailing top priority IRE_CACHE 8686 * in the further loops. This ensures 8687 * that we do not omit any resolver. 8688 * IRE_CACHE entries, if any, will be 8689 * processed next time we enter 8690 * ip_newroute(). 8691 */ 8692 multirt_flags &= ~MULTIRT_CACHEGW; 8693 /* 8694 * Search for the next unresolved 8695 * multirt route. 8696 */ 8697 first_mp = copy_mp; 8698 copy_mp = NULL; 8699 /* Prepare the next resolution loop. */ 8700 mp = first_mp; 8701 EXTRACT_PKT_MP(mp, first_mp, 8702 mctl_present); 8703 if (mctl_present) 8704 io = (ipsec_out_t *) 8705 first_mp->b_rptr; 8706 ipha = (ipha_t *)mp->b_rptr; 8707 8708 ASSERT(sire != NULL); 8709 8710 dst = save_dst; 8711 multirt_resolve_next = B_TRUE; 8712 continue; 8713 } 8714 8715 if (sire != NULL) 8716 ire_refrele(sire); 8717 8718 /* 8719 * The response will come back in ip_wput 8720 * with db_type IRE_DB_TYPE. 8721 */ 8722 ipif_refrele(src_ipif); 8723 ill_refrele(dst_ill); 8724 return; 8725 } else { 8726 /* Prepare for cleanup */ 8727 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8728 mp); 8729 mp->b_cont = NULL; 8730 freeb(mp); /* areq */ 8731 /* 8732 * this is an ire that is not added to the 8733 * cache. ire_freemblk will handle the release 8734 * of any resources associated with the ire. 8735 */ 8736 ire_delete(ire); /* ire_mp */ 8737 mp = saved_mp; /* pkt */ 8738 ire = NULL; 8739 if (copy_mp != NULL) { 8740 MULTIRT_DEBUG_UNTAG(copy_mp); 8741 freemsg(copy_mp); 8742 copy_mp = NULL; 8743 } 8744 break; 8745 } 8746 default: 8747 break; 8748 } 8749 } while (multirt_resolve_next); 8750 8751 ip1dbg(("ip_newroute: dropped\n")); 8752 /* Did this packet originate externally? */ 8753 if (mp->b_prev) { 8754 mp->b_next = NULL; 8755 mp->b_prev = NULL; 8756 BUMP_MIB(&ip_mib, ipInDiscards); 8757 } else { 8758 BUMP_MIB(&ip_mib, ipOutDiscards); 8759 } 8760 ASSERT(copy_mp == NULL); 8761 MULTIRT_DEBUG_UNTAG(first_mp); 8762 freemsg(first_mp); 8763 if (ire != NULL) 8764 ire_refrele(ire); 8765 if (sire != NULL) 8766 ire_refrele(sire); 8767 if (src_ipif != NULL) 8768 ipif_refrele(src_ipif); 8769 if (dst_ill != NULL) 8770 ill_refrele(dst_ill); 8771 return; 8772 8773 icmp_err_ret: 8774 ip1dbg(("ip_newroute: no route\n")); 8775 if (src_ipif != NULL) 8776 ipif_refrele(src_ipif); 8777 if (dst_ill != NULL) 8778 ill_refrele(dst_ill); 8779 if (sire != NULL) 8780 ire_refrele(sire); 8781 /* Did this packet originate externally? */ 8782 if (mp->b_prev) { 8783 mp->b_next = NULL; 8784 mp->b_prev = NULL; 8785 /* XXX ipInNoRoutes */ 8786 q = WR(q); 8787 } else { 8788 /* 8789 * Since ip_wput() isn't close to finished, we fill 8790 * in enough of the header for credible error reporting. 8791 */ 8792 if (ip_hdr_complete(ipha, zoneid)) { 8793 /* Failed */ 8794 MULTIRT_DEBUG_UNTAG(first_mp); 8795 freemsg(first_mp); 8796 if (ire != NULL) 8797 ire_refrele(ire); 8798 return; 8799 } 8800 } 8801 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8802 8803 /* 8804 * At this point we will have ire only if RTF_BLACKHOLE 8805 * or RTF_REJECT flags are set on the IRE. It will not 8806 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8807 */ 8808 if (ire != NULL) { 8809 if (ire->ire_flags & RTF_BLACKHOLE) { 8810 ire_refrele(ire); 8811 MULTIRT_DEBUG_UNTAG(first_mp); 8812 freemsg(first_mp); 8813 return; 8814 } 8815 ire_refrele(ire); 8816 } 8817 if (ip_source_routed(ipha)) { 8818 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8819 zoneid); 8820 return; 8821 } 8822 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8823 } 8824 8825 /* 8826 * IPv4 - 8827 * ip_newroute_ipif is called by ip_wput_multicast and 8828 * ip_rput_forward_multicast whenever we need to send 8829 * out a packet to a destination address for which we do not have specific 8830 * routing information. It is used when the packet will be sent out 8831 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8832 * socket option is set or icmp error message wants to go out on a particular 8833 * interface for a unicast packet. 8834 * 8835 * In most cases, the destination address is resolved thanks to the ipif 8836 * intrinsic resolver. However, there are some cases where the call to 8837 * ip_newroute_ipif must take into account the potential presence of 8838 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8839 * that uses the interface. This is specified through flags, 8840 * which can be a combination of: 8841 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8842 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8843 * and flags. Additionally, the packet source address has to be set to 8844 * the specified address. The caller is thus expected to set this flag 8845 * if the packet has no specific source address yet. 8846 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8847 * flag, the resulting ire will inherit the flag. All unresolved routes 8848 * to the destination must be explored in the same call to 8849 * ip_newroute_ipif(). 8850 */ 8851 static void 8852 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8853 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8854 { 8855 areq_t *areq; 8856 ire_t *ire = NULL; 8857 mblk_t *res_mp; 8858 ipaddr_t *addrp; 8859 mblk_t *first_mp; 8860 ire_t *save_ire = NULL; 8861 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8862 ipif_t *src_ipif = NULL; 8863 ushort_t ire_marks = 0; 8864 ill_t *dst_ill = NULL; 8865 boolean_t mctl_present; 8866 ipsec_out_t *io; 8867 ipha_t *ipha; 8868 int ihandle = 0; 8869 mblk_t *saved_mp; 8870 ire_t *fire = NULL; 8871 mblk_t *copy_mp = NULL; 8872 boolean_t multirt_resolve_next; 8873 ipaddr_t ipha_dst; 8874 8875 /* 8876 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8877 * here for uniformity 8878 */ 8879 ipif_refhold(ipif); 8880 8881 /* 8882 * This loop is run only once in most cases. 8883 * We loop to resolve further routes only when the destination 8884 * can be reached through multiple RTF_MULTIRT-flagged ires. 8885 */ 8886 do { 8887 if (dst_ill != NULL) { 8888 ill_refrele(dst_ill); 8889 dst_ill = NULL; 8890 } 8891 if (src_ipif != NULL) { 8892 ipif_refrele(src_ipif); 8893 src_ipif = NULL; 8894 } 8895 multirt_resolve_next = B_FALSE; 8896 8897 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8898 ipif->ipif_ill->ill_name)); 8899 8900 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8901 if (mctl_present) 8902 io = (ipsec_out_t *)first_mp->b_rptr; 8903 8904 ipha = (ipha_t *)mp->b_rptr; 8905 8906 /* 8907 * Save the packet destination address, we may need it after 8908 * the packet has been consumed. 8909 */ 8910 ipha_dst = ipha->ipha_dst; 8911 8912 /* 8913 * If the interface is a pt-pt interface we look for an 8914 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8915 * local_address and the pt-pt destination address. Otherwise 8916 * we just match the local address. 8917 * NOTE: dst could be different than ipha->ipha_dst in case 8918 * of sending igmp multicast packets over a point-to-point 8919 * connection. 8920 * Thus we must be careful enough to check ipha_dst to be a 8921 * multicast address, otherwise it will take xmit_if path for 8922 * multicast packets resulting into kernel stack overflow by 8923 * repeated calls to ip_newroute_ipif from ire_send(). 8924 */ 8925 if (CLASSD(ipha_dst) && 8926 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8927 goto err_ret; 8928 } 8929 8930 /* 8931 * We check if an IRE_OFFSUBNET for the addr that goes through 8932 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8933 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8934 * propagate its flags to the new ire. 8935 */ 8936 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8937 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8938 ip2dbg(("ip_newroute_ipif: " 8939 "ipif_lookup_multi_ire(" 8940 "ipif %p, dst %08x) = fire %p\n", 8941 (void *)ipif, ntohl(dst), (void *)fire)); 8942 } 8943 8944 if (mctl_present && io->ipsec_out_attach_if) { 8945 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8946 io->ipsec_out_ill_index, B_FALSE); 8947 8948 /* Failure case frees things for us. */ 8949 if (attach_ill == NULL) { 8950 ipif_refrele(ipif); 8951 if (fire != NULL) 8952 ire_refrele(fire); 8953 return; 8954 } 8955 8956 /* 8957 * Check if we need an ire that will not be 8958 * looked up by anybody else i.e. HIDDEN. 8959 */ 8960 if (ill_is_probeonly(attach_ill)) { 8961 ire_marks = IRE_MARK_HIDDEN; 8962 } 8963 /* 8964 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8965 * case. 8966 */ 8967 dst_ill = ipif->ipif_ill; 8968 /* attach_ill has been refheld by ip_grab_attach_ill */ 8969 ASSERT(dst_ill == attach_ill); 8970 } else { 8971 /* 8972 * If this is set by IP_XMIT_IF, then make sure that 8973 * ipif is pointing to the same ill as the IP_XMIT_IF 8974 * specified ill. 8975 */ 8976 ASSERT((connp == NULL) || 8977 (connp->conn_xmit_if_ill == NULL) || 8978 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8979 /* 8980 * If the interface belongs to an interface group, 8981 * make sure the next possible interface in the group 8982 * is used. This encourages load spreading among 8983 * peers in an interface group. 8984 * Note: load spreading is disabled for RTF_MULTIRT 8985 * routes. 8986 */ 8987 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8988 (fire->ire_flags & RTF_MULTIRT)) { 8989 /* 8990 * Don't perform outbound load spreading 8991 * in the case of an RTF_MULTIRT issued route, 8992 * we actually typically want to replicate 8993 * outgoing packets through particular 8994 * interfaces. 8995 */ 8996 dst_ill = ipif->ipif_ill; 8997 ill_refhold(dst_ill); 8998 } else { 8999 dst_ill = ip_newroute_get_dst_ill( 9000 ipif->ipif_ill); 9001 } 9002 if (dst_ill == NULL) { 9003 if (ip_debug > 2) { 9004 pr_addr_dbg("ip_newroute_ipif: " 9005 "no dst ill for dst %s\n", 9006 AF_INET, &dst); 9007 } 9008 goto err_ret; 9009 } 9010 } 9011 9012 /* 9013 * Pick a source address preferring non-deprecated ones. 9014 * Unlike ip_newroute, we don't do any source address 9015 * selection here since for multicast it really does not help 9016 * in inbound load spreading as in the unicast case. 9017 */ 9018 if ((flags & RTF_SETSRC) && (fire != NULL) && 9019 (fire->ire_flags & RTF_SETSRC)) { 9020 /* 9021 * As requested by flags, an IRE_OFFSUBNET was looked up 9022 * on that interface. This ire has RTF_SETSRC flag, so 9023 * the source address of the packet must be changed. 9024 * Check that the ipif matching the requested source 9025 * address still exists. 9026 */ 9027 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9028 zoneid, NULL, NULL, NULL, NULL); 9029 } 9030 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9031 (connp != NULL && ipif->ipif_zoneid != zoneid && 9032 ipif->ipif_zoneid != ALL_ZONES)) && 9033 (src_ipif == NULL)) { 9034 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9035 if (src_ipif == NULL) { 9036 if (ip_debug > 2) { 9037 /* ip1dbg */ 9038 pr_addr_dbg("ip_newroute_ipif: " 9039 "no src for dst %s", 9040 AF_INET, &dst); 9041 } 9042 ip1dbg((" through interface %s\n", 9043 dst_ill->ill_name)); 9044 goto err_ret; 9045 } 9046 ipif_refrele(ipif); 9047 ipif = src_ipif; 9048 ipif_refhold(ipif); 9049 } 9050 if (src_ipif == NULL) { 9051 src_ipif = ipif; 9052 ipif_refhold(src_ipif); 9053 } 9054 9055 /* 9056 * Assign a source address while we have the conn. 9057 * We can't have ip_wput_ire pick a source address when the 9058 * packet returns from arp since conn_unspec_src might be set 9059 * and we loose the conn when going through arp. 9060 */ 9061 if (ipha->ipha_src == INADDR_ANY && 9062 (connp == NULL || !connp->conn_unspec_src)) { 9063 ipha->ipha_src = src_ipif->ipif_src_addr; 9064 } 9065 9066 /* 9067 * In case of IP_XMIT_IF, it is possible that the outgoing 9068 * interface does not have an interface ire. 9069 * Example: Thousands of mobileip PPP interfaces to mobile 9070 * nodes. We don't want to create interface ires because 9071 * packets from other mobile nodes must not take the route 9072 * via interface ires to the visiting mobile node without 9073 * going through the home agent, in absence of mobileip 9074 * route optimization. 9075 */ 9076 if (CLASSD(ipha_dst) && (connp == NULL || 9077 connp->conn_xmit_if_ill == NULL)) { 9078 /* ipif_to_ire returns an held ire */ 9079 ire = ipif_to_ire(ipif); 9080 if (ire == NULL) 9081 goto err_ret; 9082 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9083 goto err_ret; 9084 /* 9085 * ihandle is needed when the ire is added to 9086 * cache table. 9087 */ 9088 save_ire = ire; 9089 ihandle = save_ire->ire_ihandle; 9090 9091 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9092 "flags %04x\n", 9093 (void *)ire, (void *)ipif, flags)); 9094 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9095 (fire->ire_flags & RTF_MULTIRT)) { 9096 /* 9097 * As requested by flags, an IRE_OFFSUBNET was 9098 * looked up on that interface. This ire has 9099 * RTF_MULTIRT flag, so the resolution loop will 9100 * be re-entered to resolve additional routes on 9101 * other interfaces. For that purpose, a copy of 9102 * the packet is performed at this point. 9103 */ 9104 fire->ire_last_used_time = lbolt; 9105 copy_mp = copymsg(first_mp); 9106 if (copy_mp) { 9107 MULTIRT_DEBUG_TAG(copy_mp); 9108 } 9109 } 9110 if ((flags & RTF_SETSRC) && (fire != NULL) && 9111 (fire->ire_flags & RTF_SETSRC)) { 9112 /* 9113 * As requested by flags, an IRE_OFFSUBET was 9114 * looked up on that interface. This ire has 9115 * RTF_SETSRC flag, so the source address of the 9116 * packet must be changed. 9117 */ 9118 ipha->ipha_src = fire->ire_src_addr; 9119 } 9120 } else { 9121 ASSERT((connp == NULL) || 9122 (connp->conn_xmit_if_ill != NULL) || 9123 (connp->conn_dontroute)); 9124 /* 9125 * The only ways we can come here are: 9126 * 1) IP_XMIT_IF socket option is set 9127 * 2) ICMP error message generated from 9128 * ip_mrtun_forward() routine and it needs 9129 * to go through the specified ill. 9130 * 3) SO_DONTROUTE socket option is set 9131 * In all cases, the new ire will not be added 9132 * into cache table. 9133 */ 9134 ire_marks |= IRE_MARK_NOADD; 9135 } 9136 9137 switch (ipif->ipif_net_type) { 9138 case IRE_IF_NORESOLVER: { 9139 /* We have what we need to build an IRE_CACHE. */ 9140 mblk_t *res_mp; 9141 9142 /* 9143 * Create a new res_mp with the 9144 * IP gateway address as destination address in the 9145 * DLPI hdr if the physical length is exactly 4 bytes. 9146 */ 9147 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9148 res_mp = ill_dlur_gen((uchar_t *)&dst, 9149 dst_ill->ill_phys_addr_length, 9150 dst_ill->ill_sap, 9151 dst_ill->ill_sap_length); 9152 } else { 9153 /* use the value set in ip_ll_subnet_defaults */ 9154 res_mp = ill_dlur_gen(NULL, 9155 dst_ill->ill_phys_addr_length, 9156 dst_ill->ill_sap, 9157 dst_ill->ill_sap_length); 9158 } 9159 9160 if (res_mp == NULL) 9161 break; 9162 /* 9163 * The new ire inherits the IRE_OFFSUBNET flags 9164 * and source address, if this was requested. 9165 */ 9166 ire = ire_create( 9167 (uchar_t *)&dst, /* dest address */ 9168 (uchar_t *)&ip_g_all_ones, /* mask */ 9169 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9170 NULL, /* gateway address */ 9171 NULL, 9172 &ipif->ipif_mtu, 9173 NULL, /* Fast Path header */ 9174 dst_ill->ill_rq, /* recv-from queue */ 9175 dst_ill->ill_wq, /* send-to queue */ 9176 IRE_CACHE, 9177 res_mp, 9178 src_ipif, 9179 NULL, 9180 (save_ire != NULL ? save_ire->ire_mask : 0), 9181 (fire != NULL) ? /* Parent handle */ 9182 fire->ire_phandle : 0, 9183 ihandle, /* Interface handle */ 9184 (fire != NULL) ? 9185 (fire->ire_flags & 9186 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9187 (save_ire == NULL ? &ire_uinfo_null : 9188 &save_ire->ire_uinfo), 9189 NULL, 9190 NULL); 9191 9192 freeb(res_mp); 9193 9194 if (ire == NULL) { 9195 if (save_ire != NULL) 9196 ire_refrele(save_ire); 9197 break; 9198 } 9199 9200 ire->ire_marks |= ire_marks; 9201 9202 /* 9203 * If IRE_MARK_NOADD is set then we need to convert 9204 * the max_fragp to a useable value now. This is 9205 * normally done in ire_add_v[46]. We also need to 9206 * associate the ire with an nce (normally would be 9207 * done in ip_wput_nondata()). 9208 * 9209 * Note that IRE_MARK_NOADD packets created here 9210 * do not have a non-null ire_mp pointer. The null 9211 * value of ire_bucket indicates that they were 9212 * never added. 9213 */ 9214 if (ire->ire_marks & IRE_MARK_NOADD) { 9215 uint_t max_frag; 9216 9217 max_frag = *ire->ire_max_fragp; 9218 ire->ire_max_fragp = NULL; 9219 ire->ire_max_frag = max_frag; 9220 9221 if ((ire->ire_nce = ndp_lookup_v4( 9222 ire_to_ill(ire), 9223 (ire->ire_gateway_addr != INADDR_ANY ? 9224 &ire->ire_gateway_addr : &ire->ire_addr), 9225 B_FALSE)) == NULL) { 9226 if (save_ire != NULL) 9227 ire_refrele(save_ire); 9228 break; 9229 } 9230 ASSERT(ire->ire_nce->nce_state == 9231 ND_REACHABLE); 9232 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9233 } 9234 9235 /* Prevent save_ire from getting deleted */ 9236 if (save_ire != NULL) { 9237 IRB_REFHOLD(save_ire->ire_bucket); 9238 /* Has it been removed already ? */ 9239 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9240 IRB_REFRELE(save_ire->ire_bucket); 9241 ire_refrele(save_ire); 9242 break; 9243 } 9244 } 9245 9246 ire_add_then_send(q, ire, first_mp); 9247 9248 /* Assert that save_ire is not deleted yet. */ 9249 if (save_ire != NULL) { 9250 ASSERT(save_ire->ire_ptpn != NULL); 9251 IRB_REFRELE(save_ire->ire_bucket); 9252 ire_refrele(save_ire); 9253 save_ire = NULL; 9254 } 9255 if (fire != NULL) { 9256 ire_refrele(fire); 9257 fire = NULL; 9258 } 9259 9260 /* 9261 * the resolution loop is re-entered if this 9262 * was requested through flags and if we 9263 * actually are in a multirouting case. 9264 */ 9265 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9266 boolean_t need_resolve = 9267 ire_multirt_need_resolve(ipha_dst, 9268 MBLK_GETLABEL(copy_mp)); 9269 if (!need_resolve) { 9270 MULTIRT_DEBUG_UNTAG(copy_mp); 9271 freemsg(copy_mp); 9272 copy_mp = NULL; 9273 } else { 9274 /* 9275 * ipif_lookup_group() calls 9276 * ire_lookup_multi() that uses 9277 * ire_ftable_lookup() to find 9278 * an IRE_INTERFACE for the group. 9279 * In the multirt case, 9280 * ire_lookup_multi() then invokes 9281 * ire_multirt_lookup() to find 9282 * the next resolvable ire. 9283 * As a result, we obtain an new 9284 * interface, derived from the 9285 * next ire. 9286 */ 9287 ipif_refrele(ipif); 9288 ipif = ipif_lookup_group(ipha_dst, 9289 zoneid); 9290 ip2dbg(("ip_newroute_ipif: " 9291 "multirt dst %08x, ipif %p\n", 9292 htonl(dst), (void *)ipif)); 9293 if (ipif != NULL) { 9294 mp = copy_mp; 9295 copy_mp = NULL; 9296 multirt_resolve_next = B_TRUE; 9297 continue; 9298 } else { 9299 freemsg(copy_mp); 9300 } 9301 } 9302 } 9303 if (ipif != NULL) 9304 ipif_refrele(ipif); 9305 ill_refrele(dst_ill); 9306 ipif_refrele(src_ipif); 9307 return; 9308 } 9309 case IRE_IF_RESOLVER: 9310 /* 9311 * We can't build an IRE_CACHE yet, but at least 9312 * we found a resolver that can help. 9313 */ 9314 res_mp = dst_ill->ill_resolver_mp; 9315 if (!OK_RESOLVER_MP(res_mp)) 9316 break; 9317 9318 /* 9319 * We obtain a partial IRE_CACHE which we will pass 9320 * along with the resolver query. When the response 9321 * comes back it will be there ready for us to add. 9322 * The new ire inherits the IRE_OFFSUBNET flags 9323 * and source address, if this was requested. 9324 * The ire_max_frag is atomically set under the 9325 * irebucket lock in ire_add_v[46]. Only in the 9326 * case of IRE_MARK_NOADD, we set it here itself. 9327 */ 9328 ire = ire_create_mp( 9329 (uchar_t *)&dst, /* dest address */ 9330 (uchar_t *)&ip_g_all_ones, /* mask */ 9331 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9332 NULL, /* gateway address */ 9333 NULL, /* no in_src_addr */ 9334 (ire_marks & IRE_MARK_NOADD) ? 9335 ipif->ipif_mtu : 0, /* max_frag */ 9336 NULL, /* Fast path header */ 9337 dst_ill->ill_rq, /* recv-from queue */ 9338 dst_ill->ill_wq, /* send-to queue */ 9339 IRE_CACHE, 9340 NULL, /* let ire_nce_init figure res_mp out */ 9341 src_ipif, 9342 NULL, 9343 (save_ire != NULL ? save_ire->ire_mask : 0), 9344 (fire != NULL) ? /* Parent handle */ 9345 fire->ire_phandle : 0, 9346 ihandle, /* Interface handle */ 9347 (fire != NULL) ? /* flags if any */ 9348 (fire->ire_flags & 9349 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9350 (save_ire == NULL ? &ire_uinfo_null : 9351 &save_ire->ire_uinfo), 9352 NULL, 9353 NULL); 9354 9355 if (save_ire != NULL) { 9356 ire_refrele(save_ire); 9357 save_ire = NULL; 9358 } 9359 if (ire == NULL) 9360 break; 9361 9362 ire->ire_marks |= ire_marks; 9363 /* 9364 * Construct message chain for the resolver of the 9365 * form: 9366 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9367 * 9368 * NOTE : ire will be added later when the response 9369 * comes back from ARP. If the response does not 9370 * come back, ARP frees the packet. For this reason, 9371 * we can't REFHOLD the bucket of save_ire to prevent 9372 * deletions. We may not be able to REFRELE the 9373 * bucket if the response never comes back. 9374 * Thus, before adding the ire, ire_add_v4 will make 9375 * sure that the interface route does not get deleted. 9376 * This is the only case unlike ip_newroute_v6, 9377 * ip_newroute_ipif_v6 where we can always prevent 9378 * deletions because ire_add_then_send is called after 9379 * creating the IRE. 9380 * If IRE_MARK_NOADD is set, then ire_add_then_send 9381 * does not add this IRE into the IRE CACHE. 9382 */ 9383 ASSERT(ire->ire_mp != NULL); 9384 ire->ire_mp->b_cont = first_mp; 9385 /* Have saved_mp handy, for cleanup if canput fails */ 9386 saved_mp = mp; 9387 mp = copyb(res_mp); 9388 if (mp == NULL) { 9389 /* Prepare for cleanup */ 9390 mp = saved_mp; /* pkt */ 9391 ire_delete(ire); /* ire_mp */ 9392 ire = NULL; 9393 if (copy_mp != NULL) { 9394 MULTIRT_DEBUG_UNTAG(copy_mp); 9395 freemsg(copy_mp); 9396 copy_mp = NULL; 9397 } 9398 break; 9399 } 9400 linkb(mp, ire->ire_mp); 9401 9402 /* 9403 * Fill in the source and dest addrs for the resolver. 9404 * NOTE: this depends on memory layouts imposed by 9405 * ill_init(). 9406 */ 9407 areq = (areq_t *)mp->b_rptr; 9408 addrp = (ipaddr_t *)((char *)areq + 9409 areq->areq_sender_addr_offset); 9410 *addrp = ire->ire_src_addr; 9411 addrp = (ipaddr_t *)((char *)areq + 9412 areq->areq_target_addr_offset); 9413 *addrp = dst; 9414 /* Up to the resolver. */ 9415 if (canputnext(dst_ill->ill_rq) && 9416 !(dst_ill->ill_arp_closing)) { 9417 putnext(dst_ill->ill_rq, mp); 9418 /* 9419 * The response will come back in ip_wput 9420 * with db_type IRE_DB_TYPE. 9421 */ 9422 } else { 9423 mp->b_cont = NULL; 9424 freeb(mp); /* areq */ 9425 ire_delete(ire); /* ire_mp */ 9426 saved_mp->b_next = NULL; 9427 saved_mp->b_prev = NULL; 9428 freemsg(first_mp); /* pkt */ 9429 ip2dbg(("ip_newroute_ipif: dropped\n")); 9430 } 9431 9432 if (fire != NULL) { 9433 ire_refrele(fire); 9434 fire = NULL; 9435 } 9436 9437 9438 /* 9439 * The resolution loop is re-entered if this was 9440 * requested through flags and we actually are 9441 * in a multirouting case. 9442 */ 9443 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9444 boolean_t need_resolve = 9445 ire_multirt_need_resolve(ipha_dst, 9446 MBLK_GETLABEL(copy_mp)); 9447 if (!need_resolve) { 9448 MULTIRT_DEBUG_UNTAG(copy_mp); 9449 freemsg(copy_mp); 9450 copy_mp = NULL; 9451 } else { 9452 /* 9453 * ipif_lookup_group() calls 9454 * ire_lookup_multi() that uses 9455 * ire_ftable_lookup() to find 9456 * an IRE_INTERFACE for the group. 9457 * In the multirt case, 9458 * ire_lookup_multi() then invokes 9459 * ire_multirt_lookup() to find 9460 * the next resolvable ire. 9461 * As a result, we obtain an new 9462 * interface, derived from the 9463 * next ire. 9464 */ 9465 ipif_refrele(ipif); 9466 ipif = ipif_lookup_group(ipha_dst, 9467 zoneid); 9468 if (ipif != NULL) { 9469 mp = copy_mp; 9470 copy_mp = NULL; 9471 multirt_resolve_next = B_TRUE; 9472 continue; 9473 } else { 9474 freemsg(copy_mp); 9475 } 9476 } 9477 } 9478 if (ipif != NULL) 9479 ipif_refrele(ipif); 9480 ill_refrele(dst_ill); 9481 ipif_refrele(src_ipif); 9482 return; 9483 default: 9484 break; 9485 } 9486 } while (multirt_resolve_next); 9487 9488 err_ret: 9489 ip2dbg(("ip_newroute_ipif: dropped\n")); 9490 if (fire != NULL) 9491 ire_refrele(fire); 9492 ipif_refrele(ipif); 9493 /* Did this packet originate externally? */ 9494 if (dst_ill != NULL) 9495 ill_refrele(dst_ill); 9496 if (src_ipif != NULL) 9497 ipif_refrele(src_ipif); 9498 if (mp->b_prev || mp->b_next) { 9499 mp->b_next = NULL; 9500 mp->b_prev = NULL; 9501 } else { 9502 /* 9503 * Since ip_wput() isn't close to finished, we fill 9504 * in enough of the header for credible error reporting. 9505 */ 9506 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9507 /* Failed */ 9508 freemsg(first_mp); 9509 if (ire != NULL) 9510 ire_refrele(ire); 9511 return; 9512 } 9513 } 9514 /* 9515 * At this point we will have ire only if RTF_BLACKHOLE 9516 * or RTF_REJECT flags are set on the IRE. It will not 9517 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9518 */ 9519 if (ire != NULL) { 9520 if (ire->ire_flags & RTF_BLACKHOLE) { 9521 ire_refrele(ire); 9522 freemsg(first_mp); 9523 return; 9524 } 9525 ire_refrele(ire); 9526 } 9527 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9528 } 9529 9530 /* Name/Value Table Lookup Routine */ 9531 char * 9532 ip_nv_lookup(nv_t *nv, int value) 9533 { 9534 if (!nv) 9535 return (NULL); 9536 for (; nv->nv_name; nv++) { 9537 if (nv->nv_value == value) 9538 return (nv->nv_name); 9539 } 9540 return ("unknown"); 9541 } 9542 9543 /* 9544 * one day it can be patched to 1 from /etc/system for machines that have few 9545 * fast network interfaces feeding multiple cpus. 9546 */ 9547 int ill_stream_putlocks = 0; 9548 9549 /* 9550 * This is a module open, i.e. this is a control stream for access 9551 * to a DLPI device. We allocate an ill_t as the instance data in 9552 * this case. 9553 */ 9554 int 9555 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9556 { 9557 uint32_t mem_cnt; 9558 uint32_t cpu_cnt; 9559 uint32_t min_cnt; 9560 pgcnt_t mem_avail; 9561 ill_t *ill; 9562 int err; 9563 9564 /* 9565 * Prevent unprivileged processes from pushing IP so that 9566 * they can't send raw IP. 9567 */ 9568 if (secpolicy_net_rawaccess(credp) != 0) 9569 return (EPERM); 9570 9571 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9572 q->q_ptr = WR(q)->q_ptr = ill; 9573 9574 /* 9575 * ill_init initializes the ill fields and then sends down 9576 * down a DL_INFO_REQ after calling qprocson. 9577 */ 9578 err = ill_init(q, ill); 9579 if (err != 0) { 9580 mi_free(ill); 9581 q->q_ptr = NULL; 9582 WR(q)->q_ptr = NULL; 9583 return (err); 9584 } 9585 9586 /* ill_init initializes the ipsq marking this thread as writer */ 9587 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9588 /* Wait for the DL_INFO_ACK */ 9589 mutex_enter(&ill->ill_lock); 9590 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9591 /* 9592 * Return value of 0 indicates a pending signal. 9593 */ 9594 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9595 if (err == 0) { 9596 mutex_exit(&ill->ill_lock); 9597 (void) ip_close(q, 0); 9598 return (EINTR); 9599 } 9600 } 9601 mutex_exit(&ill->ill_lock); 9602 9603 /* 9604 * ip_rput_other could have set an error in ill_error on 9605 * receipt of M_ERROR. 9606 */ 9607 9608 err = ill->ill_error; 9609 if (err != 0) { 9610 (void) ip_close(q, 0); 9611 return (err); 9612 } 9613 9614 /* 9615 * ip_ire_max_bucket_cnt is sized below based on the memory 9616 * size and the cpu speed of the machine. This is upper 9617 * bounded by the compile time value of ip_ire_max_bucket_cnt 9618 * and is lower bounded by the compile time value of 9619 * ip_ire_min_bucket_cnt. Similar logic applies to 9620 * ip6_ire_max_bucket_cnt. 9621 */ 9622 mem_avail = kmem_avail(); 9623 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9624 ip_cache_table_size / sizeof (ire_t); 9625 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9626 9627 min_cnt = MIN(cpu_cnt, mem_cnt); 9628 if (min_cnt < ip_ire_min_bucket_cnt) 9629 min_cnt = ip_ire_min_bucket_cnt; 9630 if (ip_ire_max_bucket_cnt > min_cnt) { 9631 ip_ire_max_bucket_cnt = min_cnt; 9632 } 9633 9634 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9635 ip6_cache_table_size / sizeof (ire_t); 9636 min_cnt = MIN(cpu_cnt, mem_cnt); 9637 if (min_cnt < ip6_ire_min_bucket_cnt) 9638 min_cnt = ip6_ire_min_bucket_cnt; 9639 if (ip6_ire_max_bucket_cnt > min_cnt) { 9640 ip6_ire_max_bucket_cnt = min_cnt; 9641 } 9642 9643 ill->ill_credp = credp; 9644 crhold(credp); 9645 9646 mutex_enter(&ip_mi_lock); 9647 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9648 mutex_exit(&ip_mi_lock); 9649 if (err) { 9650 (void) ip_close(q, 0); 9651 return (err); 9652 } 9653 return (0); 9654 } 9655 9656 /* IP open routine. */ 9657 int 9658 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9659 { 9660 conn_t *connp; 9661 major_t maj; 9662 9663 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9664 9665 /* Allow reopen. */ 9666 if (q->q_ptr != NULL) 9667 return (0); 9668 9669 if (sflag & MODOPEN) { 9670 /* This is a module open */ 9671 return (ip_modopen(q, devp, flag, sflag, credp)); 9672 } 9673 9674 /* 9675 * We are opening as a device. This is an IP client stream, and we 9676 * allocate an conn_t as the instance data. 9677 */ 9678 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9679 connp->conn_upq = q; 9680 q->q_ptr = WR(q)->q_ptr = connp; 9681 9682 if (flag & SO_SOCKSTR) 9683 connp->conn_flags |= IPCL_SOCKET; 9684 9685 /* Minor tells us which /dev entry was opened */ 9686 if (geteminor(*devp) == IPV6_MINOR) { 9687 connp->conn_flags |= IPCL_ISV6; 9688 connp->conn_af_isv6 = B_TRUE; 9689 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9690 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9691 } else { 9692 connp->conn_af_isv6 = B_FALSE; 9693 connp->conn_pkt_isv6 = B_FALSE; 9694 } 9695 9696 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9697 q->q_ptr = WR(q)->q_ptr = NULL; 9698 CONN_DEC_REF(connp); 9699 return (EBUSY); 9700 } 9701 9702 maj = getemajor(*devp); 9703 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9704 9705 /* 9706 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9707 */ 9708 connp->conn_cred = credp; 9709 crhold(connp->conn_cred); 9710 9711 /* 9712 * If the caller has the process-wide flag set, then default to MAC 9713 * exempt mode. This allows read-down to unlabeled hosts. 9714 */ 9715 if (getpflags(NET_MAC_AWARE, credp) != 0) 9716 connp->conn_mac_exempt = B_TRUE; 9717 9718 connp->conn_zoneid = getzoneid(); 9719 9720 /* 9721 * This should only happen for ndd, netstat, raw socket or other SCTP 9722 * administrative ops. In these cases, we just need a normal conn_t 9723 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9724 * an error will be returned. 9725 */ 9726 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9727 connp->conn_rq = q; 9728 connp->conn_wq = WR(q); 9729 } else { 9730 connp->conn_ulp = IPPROTO_SCTP; 9731 connp->conn_rq = connp->conn_wq = NULL; 9732 } 9733 /* Non-zero default values */ 9734 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9735 9736 /* 9737 * Make the conn globally visible to walkers 9738 */ 9739 mutex_enter(&connp->conn_lock); 9740 connp->conn_state_flags &= ~CONN_INCIPIENT; 9741 mutex_exit(&connp->conn_lock); 9742 ASSERT(connp->conn_ref == 1); 9743 9744 qprocson(q); 9745 9746 return (0); 9747 } 9748 9749 /* 9750 * Change q_qinfo based on the value of isv6. 9751 * This can not called on an ill queue. 9752 * Note that there is no race since either q_qinfo works for conn queues - it 9753 * is just an optimization to enter the best wput routine directly. 9754 */ 9755 void 9756 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9757 { 9758 ASSERT(q->q_flag & QREADR); 9759 ASSERT(WR(q)->q_next == NULL); 9760 ASSERT(q->q_ptr != NULL); 9761 9762 if (minor == IPV6_MINOR) { 9763 if (bump_mib) 9764 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9765 q->q_qinfo = &rinit_ipv6; 9766 WR(q)->q_qinfo = &winit_ipv6; 9767 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9768 } else { 9769 if (bump_mib) 9770 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9771 q->q_qinfo = &iprinit; 9772 WR(q)->q_qinfo = &ipwinit; 9773 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9774 } 9775 9776 } 9777 9778 /* 9779 * See if IPsec needs loading because of the options in mp. 9780 */ 9781 static boolean_t 9782 ipsec_opt_present(mblk_t *mp) 9783 { 9784 uint8_t *optcp, *next_optcp, *opt_endcp; 9785 struct opthdr *opt; 9786 struct T_opthdr *topt; 9787 int opthdr_len; 9788 t_uscalar_t optname, optlevel; 9789 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9790 ipsec_req_t *ipsr; 9791 9792 /* 9793 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9794 * return TRUE. 9795 */ 9796 9797 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9798 opt_endcp = optcp + tor->OPT_length; 9799 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9800 opthdr_len = sizeof (struct T_opthdr); 9801 } else { /* O_OPTMGMT_REQ */ 9802 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9803 opthdr_len = sizeof (struct opthdr); 9804 } 9805 for (; optcp < opt_endcp; optcp = next_optcp) { 9806 if (optcp + opthdr_len > opt_endcp) 9807 return (B_FALSE); /* Not enough option header. */ 9808 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9809 topt = (struct T_opthdr *)optcp; 9810 optlevel = topt->level; 9811 optname = topt->name; 9812 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9813 } else { 9814 opt = (struct opthdr *)optcp; 9815 optlevel = opt->level; 9816 optname = opt->name; 9817 next_optcp = optcp + opthdr_len + 9818 _TPI_ALIGN_OPT(opt->len); 9819 } 9820 if ((next_optcp < optcp) || /* wraparound pointer space */ 9821 ((next_optcp >= opt_endcp) && /* last option bad len */ 9822 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9823 return (B_FALSE); /* bad option buffer */ 9824 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9825 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9826 /* 9827 * Check to see if it's an all-bypass or all-zeroes 9828 * IPsec request. Don't bother loading IPsec if 9829 * the socket doesn't want to use it. (A good example 9830 * is a bypass request.) 9831 * 9832 * Basically, if any of the non-NEVER bits are set, 9833 * load IPsec. 9834 */ 9835 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9836 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9837 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9838 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9839 != 0) 9840 return (B_TRUE); 9841 } 9842 } 9843 return (B_FALSE); 9844 } 9845 9846 /* 9847 * If conn is is waiting for ipsec to finish loading, kick it. 9848 */ 9849 /* ARGSUSED */ 9850 static void 9851 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9852 { 9853 t_scalar_t optreq_prim; 9854 mblk_t *mp; 9855 cred_t *cr; 9856 int err = 0; 9857 9858 /* 9859 * This function is called, after ipsec loading is complete. 9860 * Since IP checks exclusively and atomically (i.e it prevents 9861 * ipsec load from completing until ip_optcom_req completes) 9862 * whether ipsec load is complete, there cannot be a race with IP 9863 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9864 */ 9865 mutex_enter(&connp->conn_lock); 9866 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9867 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9868 mp = connp->conn_ipsec_opt_mp; 9869 connp->conn_ipsec_opt_mp = NULL; 9870 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9871 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9872 mutex_exit(&connp->conn_lock); 9873 9874 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9875 9876 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9877 if (optreq_prim == T_OPTMGMT_REQ) { 9878 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9879 &ip_opt_obj); 9880 } else { 9881 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9882 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9883 &ip_opt_obj); 9884 } 9885 if (err != EINPROGRESS) 9886 CONN_OPER_PENDING_DONE(connp); 9887 return; 9888 } 9889 mutex_exit(&connp->conn_lock); 9890 } 9891 9892 /* 9893 * Called from the ipsec_loader thread, outside any perimeter, to tell 9894 * ip qenable any of the queues waiting for the ipsec loader to 9895 * complete. 9896 * 9897 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9898 * are done with this lock held, so it's guaranteed that none of the 9899 * links will change along the way. 9900 */ 9901 void 9902 ip_ipsec_load_complete() 9903 { 9904 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9905 } 9906 9907 /* 9908 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9909 * determines the grp on which it has to become exclusive, queues the mp 9910 * and sq draining restarts the optmgmt 9911 */ 9912 static boolean_t 9913 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9914 { 9915 conn_t *connp; 9916 9917 /* 9918 * Take IPsec requests and treat them special. 9919 */ 9920 if (ipsec_opt_present(mp)) { 9921 /* First check if IPsec is loaded. */ 9922 mutex_enter(&ipsec_loader_lock); 9923 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9924 mutex_exit(&ipsec_loader_lock); 9925 return (B_FALSE); 9926 } 9927 connp = Q_TO_CONN(q); 9928 mutex_enter(&connp->conn_lock); 9929 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9930 9931 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9932 connp->conn_ipsec_opt_mp = mp; 9933 mutex_exit(&connp->conn_lock); 9934 mutex_exit(&ipsec_loader_lock); 9935 9936 ipsec_loader_loadnow(); 9937 return (B_TRUE); 9938 } 9939 return (B_FALSE); 9940 } 9941 9942 /* 9943 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9944 * all of them are copied to the conn_t. If the req is "zero", the policy is 9945 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9946 * fields. 9947 * We keep only the latest setting of the policy and thus policy setting 9948 * is not incremental/cumulative. 9949 * 9950 * Requests to set policies with multiple alternative actions will 9951 * go through a different API. 9952 */ 9953 int 9954 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9955 { 9956 uint_t ah_req = 0; 9957 uint_t esp_req = 0; 9958 uint_t se_req = 0; 9959 ipsec_selkey_t sel; 9960 ipsec_act_t *actp = NULL; 9961 uint_t nact; 9962 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9963 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9964 ipsec_policy_root_t *pr; 9965 ipsec_policy_head_t *ph; 9966 int fam; 9967 boolean_t is_pol_reset; 9968 int error = 0; 9969 9970 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9971 9972 /* 9973 * The IP_SEC_OPT option does not allow variable length parameters, 9974 * hence a request cannot be NULL. 9975 */ 9976 if (req == NULL) 9977 return (EINVAL); 9978 9979 ah_req = req->ipsr_ah_req; 9980 esp_req = req->ipsr_esp_req; 9981 se_req = req->ipsr_self_encap_req; 9982 9983 /* 9984 * Are we dealing with a request to reset the policy (i.e. 9985 * zero requests). 9986 */ 9987 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9988 (esp_req & REQ_MASK) == 0 && 9989 (se_req & REQ_MASK) == 0); 9990 9991 if (!is_pol_reset) { 9992 /* 9993 * If we couldn't load IPsec, fail with "protocol 9994 * not supported". 9995 * IPsec may not have been loaded for a request with zero 9996 * policies, so we don't fail in this case. 9997 */ 9998 mutex_enter(&ipsec_loader_lock); 9999 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10000 mutex_exit(&ipsec_loader_lock); 10001 return (EPROTONOSUPPORT); 10002 } 10003 mutex_exit(&ipsec_loader_lock); 10004 10005 /* 10006 * Test for valid requests. Invalid algorithms 10007 * need to be tested by IPSEC code because new 10008 * algorithms can be added dynamically. 10009 */ 10010 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10011 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10012 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10013 return (EINVAL); 10014 } 10015 10016 /* 10017 * Only privileged users can issue these 10018 * requests. 10019 */ 10020 if (((ah_req & IPSEC_PREF_NEVER) || 10021 (esp_req & IPSEC_PREF_NEVER) || 10022 (se_req & IPSEC_PREF_NEVER)) && 10023 secpolicy_net_config(cr, B_FALSE) != 0) { 10024 return (EPERM); 10025 } 10026 10027 /* 10028 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10029 * are mutually exclusive. 10030 */ 10031 if (((ah_req & REQ_MASK) == REQ_MASK) || 10032 ((esp_req & REQ_MASK) == REQ_MASK) || 10033 ((se_req & REQ_MASK) == REQ_MASK)) { 10034 /* Both of them are set */ 10035 return (EINVAL); 10036 } 10037 } 10038 10039 mutex_enter(&connp->conn_lock); 10040 10041 /* 10042 * If we have already cached policies in ip_bind_connected*(), don't 10043 * let them change now. We cache policies for connections 10044 * whose src,dst [addr, port] is known. 10045 */ 10046 if (connp->conn_policy_cached) { 10047 mutex_exit(&connp->conn_lock); 10048 return (EINVAL); 10049 } 10050 10051 /* 10052 * We have a zero policies, reset the connection policy if already 10053 * set. This will cause the connection to inherit the 10054 * global policy, if any. 10055 */ 10056 if (is_pol_reset) { 10057 if (connp->conn_policy != NULL) { 10058 IPPH_REFRELE(connp->conn_policy); 10059 connp->conn_policy = NULL; 10060 } 10061 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10062 connp->conn_in_enforce_policy = B_FALSE; 10063 connp->conn_out_enforce_policy = B_FALSE; 10064 mutex_exit(&connp->conn_lock); 10065 return (0); 10066 } 10067 10068 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 10069 if (ph == NULL) 10070 goto enomem; 10071 10072 ipsec_actvec_from_req(req, &actp, &nact); 10073 if (actp == NULL) 10074 goto enomem; 10075 10076 /* 10077 * Always allocate IPv4 policy entries, since they can also 10078 * apply to ipv6 sockets being used in ipv4-compat mode. 10079 */ 10080 bzero(&sel, sizeof (sel)); 10081 sel.ipsl_valid = IPSL_IPV4; 10082 10083 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10084 if (pin4 == NULL) 10085 goto enomem; 10086 10087 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10088 if (pout4 == NULL) 10089 goto enomem; 10090 10091 if (connp->conn_pkt_isv6) { 10092 /* 10093 * We're looking at a v6 socket, also allocate the 10094 * v6-specific entries... 10095 */ 10096 sel.ipsl_valid = IPSL_IPV6; 10097 pin6 = ipsec_policy_create(&sel, actp, nact, 10098 IPSEC_PRIO_SOCKET, NULL); 10099 if (pin6 == NULL) 10100 goto enomem; 10101 10102 pout6 = ipsec_policy_create(&sel, actp, nact, 10103 IPSEC_PRIO_SOCKET, NULL); 10104 if (pout6 == NULL) 10105 goto enomem; 10106 10107 /* 10108 * .. and file them away in the right place. 10109 */ 10110 fam = IPSEC_AF_V6; 10111 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10112 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10113 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10114 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10115 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10116 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10117 } 10118 10119 ipsec_actvec_free(actp, nact); 10120 10121 /* 10122 * File the v4 policies. 10123 */ 10124 fam = IPSEC_AF_V4; 10125 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10126 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10127 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10128 10129 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10130 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10131 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10132 10133 /* 10134 * If the requests need security, set enforce_policy. 10135 * If the requests are IPSEC_PREF_NEVER, one should 10136 * still set conn_out_enforce_policy so that an ipsec_out 10137 * gets attached in ip_wput. This is needed so that 10138 * for connections that we don't cache policy in ip_bind, 10139 * if global policy matches in ip_wput_attach_policy, we 10140 * don't wrongly inherit global policy. Similarly, we need 10141 * to set conn_in_enforce_policy also so that we don't verify 10142 * policy wrongly. 10143 */ 10144 if ((ah_req & REQ_MASK) != 0 || 10145 (esp_req & REQ_MASK) != 0 || 10146 (se_req & REQ_MASK) != 0) { 10147 connp->conn_in_enforce_policy = B_TRUE; 10148 connp->conn_out_enforce_policy = B_TRUE; 10149 connp->conn_flags |= IPCL_CHECK_POLICY; 10150 } 10151 10152 mutex_exit(&connp->conn_lock); 10153 return (error); 10154 #undef REQ_MASK 10155 10156 /* 10157 * Common memory-allocation-failure exit path. 10158 */ 10159 enomem: 10160 mutex_exit(&connp->conn_lock); 10161 if (actp != NULL) 10162 ipsec_actvec_free(actp, nact); 10163 if (pin4 != NULL) 10164 IPPOL_REFRELE(pin4); 10165 if (pout4 != NULL) 10166 IPPOL_REFRELE(pout4); 10167 if (pin6 != NULL) 10168 IPPOL_REFRELE(pin6); 10169 if (pout6 != NULL) 10170 IPPOL_REFRELE(pout6); 10171 return (ENOMEM); 10172 } 10173 10174 /* 10175 * Only for options that pass in an IP addr. Currently only V4 options 10176 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10177 * So this function assumes level is IPPROTO_IP 10178 */ 10179 int 10180 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10181 mblk_t *first_mp) 10182 { 10183 ipif_t *ipif = NULL; 10184 int error; 10185 ill_t *ill; 10186 int zoneid; 10187 10188 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10189 10190 if (addr != INADDR_ANY || checkonly) { 10191 ASSERT(connp != NULL); 10192 zoneid = IPCL_ZONEID(connp); 10193 if (option == IP_NEXTHOP) { 10194 ipif = ipif_lookup_onlink_addr(addr, 10195 connp->conn_zoneid); 10196 } else { 10197 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10198 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10199 &error); 10200 } 10201 if (ipif == NULL) { 10202 if (error == EINPROGRESS) 10203 return (error); 10204 else if ((option == IP_MULTICAST_IF) || 10205 (option == IP_NEXTHOP)) 10206 return (EHOSTUNREACH); 10207 else 10208 return (EINVAL); 10209 } else if (checkonly) { 10210 if (option == IP_MULTICAST_IF) { 10211 ill = ipif->ipif_ill; 10212 /* not supported by the virtual network iface */ 10213 if (IS_VNI(ill)) { 10214 ipif_refrele(ipif); 10215 return (EINVAL); 10216 } 10217 } 10218 ipif_refrele(ipif); 10219 return (0); 10220 } 10221 ill = ipif->ipif_ill; 10222 mutex_enter(&connp->conn_lock); 10223 mutex_enter(&ill->ill_lock); 10224 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10225 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10226 mutex_exit(&ill->ill_lock); 10227 mutex_exit(&connp->conn_lock); 10228 ipif_refrele(ipif); 10229 return (option == IP_MULTICAST_IF ? 10230 EHOSTUNREACH : EINVAL); 10231 } 10232 } else { 10233 mutex_enter(&connp->conn_lock); 10234 } 10235 10236 /* None of the options below are supported on the VNI */ 10237 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10238 mutex_exit(&ill->ill_lock); 10239 mutex_exit(&connp->conn_lock); 10240 ipif_refrele(ipif); 10241 return (EINVAL); 10242 } 10243 10244 switch (option) { 10245 case IP_DONTFAILOVER_IF: 10246 /* 10247 * This option is used by in.mpathd to ensure 10248 * that IPMP probe packets only go out on the 10249 * test interfaces. in.mpathd sets this option 10250 * on the non-failover interfaces. 10251 * For backward compatibility, this option 10252 * implicitly sets IP_MULTICAST_IF, as used 10253 * be done in bind(), so that ip_wput gets 10254 * this ipif to send mcast packets. 10255 */ 10256 if (ipif != NULL) { 10257 ASSERT(addr != INADDR_ANY); 10258 connp->conn_nofailover_ill = ipif->ipif_ill; 10259 connp->conn_multicast_ipif = ipif; 10260 } else { 10261 ASSERT(addr == INADDR_ANY); 10262 connp->conn_nofailover_ill = NULL; 10263 connp->conn_multicast_ipif = NULL; 10264 } 10265 break; 10266 10267 case IP_MULTICAST_IF: 10268 connp->conn_multicast_ipif = ipif; 10269 break; 10270 case IP_NEXTHOP: 10271 connp->conn_nexthop_v4 = addr; 10272 connp->conn_nexthop_set = B_TRUE; 10273 break; 10274 } 10275 10276 if (ipif != NULL) { 10277 mutex_exit(&ill->ill_lock); 10278 mutex_exit(&connp->conn_lock); 10279 ipif_refrele(ipif); 10280 return (0); 10281 } 10282 mutex_exit(&connp->conn_lock); 10283 /* We succeded in cleared the option */ 10284 return (0); 10285 } 10286 10287 /* 10288 * For options that pass in an ifindex specifying the ill. V6 options always 10289 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10290 */ 10291 int 10292 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10293 int level, int option, mblk_t *first_mp) 10294 { 10295 ill_t *ill = NULL; 10296 int error = 0; 10297 10298 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10299 if (ifindex != 0) { 10300 ASSERT(connp != NULL); 10301 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10302 first_mp, ip_restart_optmgmt, &error); 10303 if (ill != NULL) { 10304 if (checkonly) { 10305 /* not supported by the virtual network iface */ 10306 if (IS_VNI(ill)) { 10307 ill_refrele(ill); 10308 return (EINVAL); 10309 } 10310 ill_refrele(ill); 10311 return (0); 10312 } 10313 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10314 0, NULL)) { 10315 ill_refrele(ill); 10316 ill = NULL; 10317 mutex_enter(&connp->conn_lock); 10318 goto setit; 10319 } 10320 mutex_enter(&connp->conn_lock); 10321 mutex_enter(&ill->ill_lock); 10322 if (ill->ill_state_flags & ILL_CONDEMNED) { 10323 mutex_exit(&ill->ill_lock); 10324 mutex_exit(&connp->conn_lock); 10325 ill_refrele(ill); 10326 ill = NULL; 10327 mutex_enter(&connp->conn_lock); 10328 } 10329 goto setit; 10330 } else if (error == EINPROGRESS) { 10331 return (error); 10332 } else { 10333 error = 0; 10334 } 10335 } 10336 mutex_enter(&connp->conn_lock); 10337 setit: 10338 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10339 10340 /* 10341 * The options below assume that the ILL (if any) transmits and/or 10342 * receives traffic. Neither of which is true for the virtual network 10343 * interface, so fail setting these on a VNI. 10344 */ 10345 if (IS_VNI(ill)) { 10346 ASSERT(ill != NULL); 10347 mutex_exit(&ill->ill_lock); 10348 mutex_exit(&connp->conn_lock); 10349 ill_refrele(ill); 10350 return (EINVAL); 10351 } 10352 10353 if (level == IPPROTO_IP) { 10354 switch (option) { 10355 case IP_BOUND_IF: 10356 connp->conn_incoming_ill = ill; 10357 connp->conn_outgoing_ill = ill; 10358 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10359 0 : ifindex; 10360 break; 10361 10362 case IP_XMIT_IF: 10363 /* 10364 * Similar to IP_BOUND_IF, but this only 10365 * determines the outgoing interface for 10366 * unicast packets. Also no IRE_CACHE entry 10367 * is added for the destination of the 10368 * outgoing packets. This feature is needed 10369 * for mobile IP. 10370 */ 10371 connp->conn_xmit_if_ill = ill; 10372 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10373 0 : ifindex; 10374 break; 10375 10376 case IP_MULTICAST_IF: 10377 /* 10378 * This option is an internal special. The socket 10379 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10380 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10381 * specifies an ifindex and we try first on V6 ill's. 10382 * If we don't find one, we they try using on v4 ill's 10383 * intenally and we come here. 10384 */ 10385 if (!checkonly && ill != NULL) { 10386 ipif_t *ipif; 10387 ipif = ill->ill_ipif; 10388 10389 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10390 mutex_exit(&ill->ill_lock); 10391 mutex_exit(&connp->conn_lock); 10392 ill_refrele(ill); 10393 ill = NULL; 10394 mutex_enter(&connp->conn_lock); 10395 } else { 10396 connp->conn_multicast_ipif = ipif; 10397 } 10398 } 10399 break; 10400 } 10401 } else { 10402 switch (option) { 10403 case IPV6_BOUND_IF: 10404 connp->conn_incoming_ill = ill; 10405 connp->conn_outgoing_ill = ill; 10406 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10407 0 : ifindex; 10408 break; 10409 10410 case IPV6_BOUND_PIF: 10411 /* 10412 * Limit all transmit to this ill. 10413 * Unlike IPV6_BOUND_IF, using this option 10414 * prevents load spreading and failover from 10415 * happening when the interface is part of the 10416 * group. That's why we don't need to remember 10417 * the ifindex in orig_bound_ifindex as in 10418 * IPV6_BOUND_IF. 10419 */ 10420 connp->conn_outgoing_pill = ill; 10421 break; 10422 10423 case IPV6_DONTFAILOVER_IF: 10424 /* 10425 * This option is used by in.mpathd to ensure 10426 * that IPMP probe packets only go out on the 10427 * test interfaces. in.mpathd sets this option 10428 * on the non-failover interfaces. 10429 */ 10430 connp->conn_nofailover_ill = ill; 10431 /* 10432 * For backward compatibility, this option 10433 * implicitly sets ip_multicast_ill as used in 10434 * IP_MULTICAST_IF so that ip_wput gets 10435 * this ipif to send mcast packets. 10436 */ 10437 connp->conn_multicast_ill = ill; 10438 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10439 0 : ifindex; 10440 break; 10441 10442 case IPV6_MULTICAST_IF: 10443 /* 10444 * Set conn_multicast_ill to be the IPv6 ill. 10445 * Set conn_multicast_ipif to be an IPv4 ipif 10446 * for ifindex to make IPv4 mapped addresses 10447 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10448 * Even if no IPv6 ill exists for the ifindex 10449 * we need to check for an IPv4 ifindex in order 10450 * for this to work with mapped addresses. In that 10451 * case only set conn_multicast_ipif. 10452 */ 10453 if (!checkonly) { 10454 if (ifindex == 0) { 10455 connp->conn_multicast_ill = NULL; 10456 connp->conn_orig_multicast_ifindex = 0; 10457 connp->conn_multicast_ipif = NULL; 10458 } else if (ill != NULL) { 10459 connp->conn_multicast_ill = ill; 10460 connp->conn_orig_multicast_ifindex = 10461 ifindex; 10462 } 10463 } 10464 break; 10465 } 10466 } 10467 10468 if (ill != NULL) { 10469 mutex_exit(&ill->ill_lock); 10470 mutex_exit(&connp->conn_lock); 10471 ill_refrele(ill); 10472 return (0); 10473 } 10474 mutex_exit(&connp->conn_lock); 10475 /* 10476 * We succeeded in clearing the option (ifindex == 0) or failed to 10477 * locate the ill and could not set the option (ifindex != 0) 10478 */ 10479 return (ifindex == 0 ? 0 : EINVAL); 10480 } 10481 10482 /* This routine sets socket options. */ 10483 /* ARGSUSED */ 10484 int 10485 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10486 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10487 void *dummy, cred_t *cr, mblk_t *first_mp) 10488 { 10489 int *i1 = (int *)invalp; 10490 conn_t *connp = Q_TO_CONN(q); 10491 int error = 0; 10492 boolean_t checkonly; 10493 ire_t *ire; 10494 boolean_t found; 10495 10496 switch (optset_context) { 10497 10498 case SETFN_OPTCOM_CHECKONLY: 10499 checkonly = B_TRUE; 10500 /* 10501 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10502 * inlen != 0 implies value supplied and 10503 * we have to "pretend" to set it. 10504 * inlen == 0 implies that there is no 10505 * value part in T_CHECK request and just validation 10506 * done elsewhere should be enough, we just return here. 10507 */ 10508 if (inlen == 0) { 10509 *outlenp = 0; 10510 return (0); 10511 } 10512 break; 10513 case SETFN_OPTCOM_NEGOTIATE: 10514 case SETFN_UD_NEGOTIATE: 10515 case SETFN_CONN_NEGOTIATE: 10516 checkonly = B_FALSE; 10517 break; 10518 default: 10519 /* 10520 * We should never get here 10521 */ 10522 *outlenp = 0; 10523 return (EINVAL); 10524 } 10525 10526 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10527 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10528 10529 /* 10530 * For fixed length options, no sanity check 10531 * of passed in length is done. It is assumed *_optcom_req() 10532 * routines do the right thing. 10533 */ 10534 10535 switch (level) { 10536 case SOL_SOCKET: 10537 /* 10538 * conn_lock protects the bitfields, and is used to 10539 * set the fields atomically. 10540 */ 10541 switch (name) { 10542 case SO_BROADCAST: 10543 if (!checkonly) { 10544 /* TODO: use value someplace? */ 10545 mutex_enter(&connp->conn_lock); 10546 connp->conn_broadcast = *i1 ? 1 : 0; 10547 mutex_exit(&connp->conn_lock); 10548 } 10549 break; /* goto sizeof (int) option return */ 10550 case SO_USELOOPBACK: 10551 if (!checkonly) { 10552 /* TODO: use value someplace? */ 10553 mutex_enter(&connp->conn_lock); 10554 connp->conn_loopback = *i1 ? 1 : 0; 10555 mutex_exit(&connp->conn_lock); 10556 } 10557 break; /* goto sizeof (int) option return */ 10558 case SO_DONTROUTE: 10559 if (!checkonly) { 10560 mutex_enter(&connp->conn_lock); 10561 connp->conn_dontroute = *i1 ? 1 : 0; 10562 mutex_exit(&connp->conn_lock); 10563 } 10564 break; /* goto sizeof (int) option return */ 10565 case SO_REUSEADDR: 10566 if (!checkonly) { 10567 mutex_enter(&connp->conn_lock); 10568 connp->conn_reuseaddr = *i1 ? 1 : 0; 10569 mutex_exit(&connp->conn_lock); 10570 } 10571 break; /* goto sizeof (int) option return */ 10572 case SO_PROTOTYPE: 10573 if (!checkonly) { 10574 mutex_enter(&connp->conn_lock); 10575 connp->conn_proto = *i1; 10576 mutex_exit(&connp->conn_lock); 10577 } 10578 break; /* goto sizeof (int) option return */ 10579 case SO_ALLZONES: 10580 if (!checkonly) { 10581 mutex_enter(&connp->conn_lock); 10582 if (IPCL_IS_BOUND(connp)) { 10583 mutex_exit(&connp->conn_lock); 10584 return (EINVAL); 10585 } 10586 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10587 mutex_exit(&connp->conn_lock); 10588 } 10589 break; /* goto sizeof (int) option return */ 10590 case SO_ANON_MLP: 10591 if (!checkonly) { 10592 mutex_enter(&connp->conn_lock); 10593 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10594 mutex_exit(&connp->conn_lock); 10595 } 10596 break; /* goto sizeof (int) option return */ 10597 case SO_MAC_EXEMPT: 10598 if (secpolicy_net_mac_aware(cr) != 0 || 10599 IPCL_IS_BOUND(connp)) 10600 return (EACCES); 10601 if (!checkonly) { 10602 mutex_enter(&connp->conn_lock); 10603 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10604 mutex_exit(&connp->conn_lock); 10605 } 10606 break; /* goto sizeof (int) option return */ 10607 default: 10608 /* 10609 * "soft" error (negative) 10610 * option not handled at this level 10611 * Note: Do not modify *outlenp 10612 */ 10613 return (-EINVAL); 10614 } 10615 break; 10616 case IPPROTO_IP: 10617 switch (name) { 10618 case IP_NEXTHOP: 10619 if (secpolicy_net_config(cr, B_FALSE) != 0) 10620 return (EPERM); 10621 /* FALLTHRU */ 10622 case IP_MULTICAST_IF: 10623 case IP_DONTFAILOVER_IF: { 10624 ipaddr_t addr = *i1; 10625 10626 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10627 first_mp); 10628 if (error != 0) 10629 return (error); 10630 break; /* goto sizeof (int) option return */ 10631 } 10632 10633 case IP_MULTICAST_TTL: 10634 /* Recorded in transport above IP */ 10635 *outvalp = *invalp; 10636 *outlenp = sizeof (uchar_t); 10637 return (0); 10638 case IP_MULTICAST_LOOP: 10639 if (!checkonly) { 10640 mutex_enter(&connp->conn_lock); 10641 connp->conn_multicast_loop = *invalp ? 1 : 0; 10642 mutex_exit(&connp->conn_lock); 10643 } 10644 *outvalp = *invalp; 10645 *outlenp = sizeof (uchar_t); 10646 return (0); 10647 case IP_ADD_MEMBERSHIP: 10648 case MCAST_JOIN_GROUP: 10649 case IP_DROP_MEMBERSHIP: 10650 case MCAST_LEAVE_GROUP: { 10651 struct ip_mreq *mreqp; 10652 struct group_req *greqp; 10653 ire_t *ire; 10654 boolean_t done = B_FALSE; 10655 ipaddr_t group, ifaddr; 10656 struct sockaddr_in *sin; 10657 uint32_t *ifindexp; 10658 boolean_t mcast_opt = B_TRUE; 10659 mcast_record_t fmode; 10660 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10661 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10662 10663 switch (name) { 10664 case IP_ADD_MEMBERSHIP: 10665 mcast_opt = B_FALSE; 10666 /* FALLTHRU */ 10667 case MCAST_JOIN_GROUP: 10668 fmode = MODE_IS_EXCLUDE; 10669 optfn = ip_opt_add_group; 10670 break; 10671 10672 case IP_DROP_MEMBERSHIP: 10673 mcast_opt = B_FALSE; 10674 /* FALLTHRU */ 10675 case MCAST_LEAVE_GROUP: 10676 fmode = MODE_IS_INCLUDE; 10677 optfn = ip_opt_delete_group; 10678 break; 10679 } 10680 10681 if (mcast_opt) { 10682 greqp = (struct group_req *)i1; 10683 sin = (struct sockaddr_in *)&greqp->gr_group; 10684 if (sin->sin_family != AF_INET) { 10685 *outlenp = 0; 10686 return (ENOPROTOOPT); 10687 } 10688 group = (ipaddr_t)sin->sin_addr.s_addr; 10689 ifaddr = INADDR_ANY; 10690 ifindexp = &greqp->gr_interface; 10691 } else { 10692 mreqp = (struct ip_mreq *)i1; 10693 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10694 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10695 ifindexp = NULL; 10696 } 10697 10698 /* 10699 * In the multirouting case, we need to replicate 10700 * the request on all interfaces that will take part 10701 * in replication. We do so because multirouting is 10702 * reflective, thus we will probably receive multi- 10703 * casts on those interfaces. 10704 * The ip_multirt_apply_membership() succeeds if the 10705 * operation succeeds on at least one interface. 10706 */ 10707 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10708 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10709 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10710 if (ire != NULL) { 10711 if (ire->ire_flags & RTF_MULTIRT) { 10712 error = ip_multirt_apply_membership( 10713 optfn, ire, connp, checkonly, group, 10714 fmode, INADDR_ANY, first_mp); 10715 done = B_TRUE; 10716 } 10717 ire_refrele(ire); 10718 } 10719 if (!done) { 10720 error = optfn(connp, checkonly, group, ifaddr, 10721 ifindexp, fmode, INADDR_ANY, first_mp); 10722 } 10723 if (error) { 10724 /* 10725 * EINPROGRESS is a soft error, needs retry 10726 * so don't make *outlenp zero. 10727 */ 10728 if (error != EINPROGRESS) 10729 *outlenp = 0; 10730 return (error); 10731 } 10732 /* OK return - copy input buffer into output buffer */ 10733 if (invalp != outvalp) { 10734 /* don't trust bcopy for identical src/dst */ 10735 bcopy(invalp, outvalp, inlen); 10736 } 10737 *outlenp = inlen; 10738 return (0); 10739 } 10740 case IP_BLOCK_SOURCE: 10741 case IP_UNBLOCK_SOURCE: 10742 case IP_ADD_SOURCE_MEMBERSHIP: 10743 case IP_DROP_SOURCE_MEMBERSHIP: 10744 case MCAST_BLOCK_SOURCE: 10745 case MCAST_UNBLOCK_SOURCE: 10746 case MCAST_JOIN_SOURCE_GROUP: 10747 case MCAST_LEAVE_SOURCE_GROUP: { 10748 struct ip_mreq_source *imreqp; 10749 struct group_source_req *gsreqp; 10750 in_addr_t grp, src, ifaddr = INADDR_ANY; 10751 uint32_t ifindex = 0; 10752 mcast_record_t fmode; 10753 struct sockaddr_in *sin; 10754 ire_t *ire; 10755 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10756 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10757 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10758 10759 switch (name) { 10760 case IP_BLOCK_SOURCE: 10761 mcast_opt = B_FALSE; 10762 /* FALLTHRU */ 10763 case MCAST_BLOCK_SOURCE: 10764 fmode = MODE_IS_EXCLUDE; 10765 optfn = ip_opt_add_group; 10766 break; 10767 10768 case IP_UNBLOCK_SOURCE: 10769 mcast_opt = B_FALSE; 10770 /* FALLTHRU */ 10771 case MCAST_UNBLOCK_SOURCE: 10772 fmode = MODE_IS_EXCLUDE; 10773 optfn = ip_opt_delete_group; 10774 break; 10775 10776 case IP_ADD_SOURCE_MEMBERSHIP: 10777 mcast_opt = B_FALSE; 10778 /* FALLTHRU */ 10779 case MCAST_JOIN_SOURCE_GROUP: 10780 fmode = MODE_IS_INCLUDE; 10781 optfn = ip_opt_add_group; 10782 break; 10783 10784 case IP_DROP_SOURCE_MEMBERSHIP: 10785 mcast_opt = B_FALSE; 10786 /* FALLTHRU */ 10787 case MCAST_LEAVE_SOURCE_GROUP: 10788 fmode = MODE_IS_INCLUDE; 10789 optfn = ip_opt_delete_group; 10790 break; 10791 } 10792 10793 if (mcast_opt) { 10794 gsreqp = (struct group_source_req *)i1; 10795 if (gsreqp->gsr_group.ss_family != AF_INET) { 10796 *outlenp = 0; 10797 return (ENOPROTOOPT); 10798 } 10799 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10800 grp = (ipaddr_t)sin->sin_addr.s_addr; 10801 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10802 src = (ipaddr_t)sin->sin_addr.s_addr; 10803 ifindex = gsreqp->gsr_interface; 10804 } else { 10805 imreqp = (struct ip_mreq_source *)i1; 10806 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10807 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10808 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10809 } 10810 10811 /* 10812 * In the multirouting case, we need to replicate 10813 * the request as noted in the mcast cases above. 10814 */ 10815 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10816 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10817 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10818 if (ire != NULL) { 10819 if (ire->ire_flags & RTF_MULTIRT) { 10820 error = ip_multirt_apply_membership( 10821 optfn, ire, connp, checkonly, grp, 10822 fmode, src, first_mp); 10823 done = B_TRUE; 10824 } 10825 ire_refrele(ire); 10826 } 10827 if (!done) { 10828 error = optfn(connp, checkonly, grp, ifaddr, 10829 &ifindex, fmode, src, first_mp); 10830 } 10831 if (error != 0) { 10832 /* 10833 * EINPROGRESS is a soft error, needs retry 10834 * so don't make *outlenp zero. 10835 */ 10836 if (error != EINPROGRESS) 10837 *outlenp = 0; 10838 return (error); 10839 } 10840 /* OK return - copy input buffer into output buffer */ 10841 if (invalp != outvalp) { 10842 bcopy(invalp, outvalp, inlen); 10843 } 10844 *outlenp = inlen; 10845 return (0); 10846 } 10847 case IP_SEC_OPT: 10848 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10849 if (error != 0) { 10850 *outlenp = 0; 10851 return (error); 10852 } 10853 break; 10854 case IP_HDRINCL: 10855 case IP_OPTIONS: 10856 case T_IP_OPTIONS: 10857 case IP_TOS: 10858 case T_IP_TOS: 10859 case IP_TTL: 10860 case IP_RECVDSTADDR: 10861 case IP_RECVOPTS: 10862 /* OK return - copy input buffer into output buffer */ 10863 if (invalp != outvalp) { 10864 /* don't trust bcopy for identical src/dst */ 10865 bcopy(invalp, outvalp, inlen); 10866 } 10867 *outlenp = inlen; 10868 return (0); 10869 case IP_RECVIF: 10870 /* Retrieve the inbound interface index */ 10871 if (!checkonly) { 10872 mutex_enter(&connp->conn_lock); 10873 connp->conn_recvif = *i1 ? 1 : 0; 10874 mutex_exit(&connp->conn_lock); 10875 } 10876 break; /* goto sizeof (int) option return */ 10877 case IP_RECVSLLA: 10878 /* Retrieve the source link layer address */ 10879 if (!checkonly) { 10880 mutex_enter(&connp->conn_lock); 10881 connp->conn_recvslla = *i1 ? 1 : 0; 10882 mutex_exit(&connp->conn_lock); 10883 } 10884 break; /* goto sizeof (int) option return */ 10885 case MRT_INIT: 10886 case MRT_DONE: 10887 case MRT_ADD_VIF: 10888 case MRT_DEL_VIF: 10889 case MRT_ADD_MFC: 10890 case MRT_DEL_MFC: 10891 case MRT_ASSERT: 10892 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10893 *outlenp = 0; 10894 return (error); 10895 } 10896 error = ip_mrouter_set((int)name, q, checkonly, 10897 (uchar_t *)invalp, inlen, first_mp); 10898 if (error) { 10899 *outlenp = 0; 10900 return (error); 10901 } 10902 /* OK return - copy input buffer into output buffer */ 10903 if (invalp != outvalp) { 10904 /* don't trust bcopy for identical src/dst */ 10905 bcopy(invalp, outvalp, inlen); 10906 } 10907 *outlenp = inlen; 10908 return (0); 10909 case IP_BOUND_IF: 10910 case IP_XMIT_IF: 10911 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10912 level, name, first_mp); 10913 if (error != 0) 10914 return (error); 10915 break; /* goto sizeof (int) option return */ 10916 10917 case IP_UNSPEC_SRC: 10918 /* Allow sending with a zero source address */ 10919 if (!checkonly) { 10920 mutex_enter(&connp->conn_lock); 10921 connp->conn_unspec_src = *i1 ? 1 : 0; 10922 mutex_exit(&connp->conn_lock); 10923 } 10924 break; /* goto sizeof (int) option return */ 10925 default: 10926 /* 10927 * "soft" error (negative) 10928 * option not handled at this level 10929 * Note: Do not modify *outlenp 10930 */ 10931 return (-EINVAL); 10932 } 10933 break; 10934 case IPPROTO_IPV6: 10935 switch (name) { 10936 case IPV6_BOUND_IF: 10937 case IPV6_BOUND_PIF: 10938 case IPV6_DONTFAILOVER_IF: 10939 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10940 level, name, first_mp); 10941 if (error != 0) 10942 return (error); 10943 break; /* goto sizeof (int) option return */ 10944 10945 case IPV6_MULTICAST_IF: 10946 /* 10947 * The only possible errors are EINPROGRESS and 10948 * EINVAL. EINPROGRESS will be restarted and is not 10949 * a hard error. We call this option on both V4 and V6 10950 * If both return EINVAL, then this call returns 10951 * EINVAL. If at least one of them succeeds we 10952 * return success. 10953 */ 10954 found = B_FALSE; 10955 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10956 level, name, first_mp); 10957 if (error == EINPROGRESS) 10958 return (error); 10959 if (error == 0) 10960 found = B_TRUE; 10961 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10962 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10963 if (error == 0) 10964 found = B_TRUE; 10965 if (!found) 10966 return (error); 10967 break; /* goto sizeof (int) option return */ 10968 10969 case IPV6_MULTICAST_HOPS: 10970 /* Recorded in transport above IP */ 10971 break; /* goto sizeof (int) option return */ 10972 case IPV6_MULTICAST_LOOP: 10973 if (!checkonly) { 10974 mutex_enter(&connp->conn_lock); 10975 connp->conn_multicast_loop = *i1; 10976 mutex_exit(&connp->conn_lock); 10977 } 10978 break; /* goto sizeof (int) option return */ 10979 case IPV6_JOIN_GROUP: 10980 case MCAST_JOIN_GROUP: 10981 case IPV6_LEAVE_GROUP: 10982 case MCAST_LEAVE_GROUP: { 10983 struct ipv6_mreq *ip_mreqp; 10984 struct group_req *greqp; 10985 ire_t *ire; 10986 boolean_t done = B_FALSE; 10987 in6_addr_t groupv6; 10988 uint32_t ifindex; 10989 boolean_t mcast_opt = B_TRUE; 10990 mcast_record_t fmode; 10991 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10992 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10993 10994 switch (name) { 10995 case IPV6_JOIN_GROUP: 10996 mcast_opt = B_FALSE; 10997 /* FALLTHRU */ 10998 case MCAST_JOIN_GROUP: 10999 fmode = MODE_IS_EXCLUDE; 11000 optfn = ip_opt_add_group_v6; 11001 break; 11002 11003 case IPV6_LEAVE_GROUP: 11004 mcast_opt = B_FALSE; 11005 /* FALLTHRU */ 11006 case MCAST_LEAVE_GROUP: 11007 fmode = MODE_IS_INCLUDE; 11008 optfn = ip_opt_delete_group_v6; 11009 break; 11010 } 11011 11012 if (mcast_opt) { 11013 struct sockaddr_in *sin; 11014 struct sockaddr_in6 *sin6; 11015 greqp = (struct group_req *)i1; 11016 if (greqp->gr_group.ss_family == AF_INET) { 11017 sin = (struct sockaddr_in *) 11018 &(greqp->gr_group); 11019 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11020 &groupv6); 11021 } else { 11022 sin6 = (struct sockaddr_in6 *) 11023 &(greqp->gr_group); 11024 groupv6 = sin6->sin6_addr; 11025 } 11026 ifindex = greqp->gr_interface; 11027 } else { 11028 ip_mreqp = (struct ipv6_mreq *)i1; 11029 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11030 ifindex = ip_mreqp->ipv6mr_interface; 11031 } 11032 /* 11033 * In the multirouting case, we need to replicate 11034 * the request on all interfaces that will take part 11035 * in replication. We do so because multirouting is 11036 * reflective, thus we will probably receive multi- 11037 * casts on those interfaces. 11038 * The ip_multirt_apply_membership_v6() succeeds if 11039 * the operation succeeds on at least one interface. 11040 */ 11041 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11042 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11043 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11044 if (ire != NULL) { 11045 if (ire->ire_flags & RTF_MULTIRT) { 11046 error = ip_multirt_apply_membership_v6( 11047 optfn, ire, connp, checkonly, 11048 &groupv6, fmode, &ipv6_all_zeros, 11049 first_mp); 11050 done = B_TRUE; 11051 } 11052 ire_refrele(ire); 11053 } 11054 if (!done) { 11055 error = optfn(connp, checkonly, &groupv6, 11056 ifindex, fmode, &ipv6_all_zeros, first_mp); 11057 } 11058 if (error) { 11059 /* 11060 * EINPROGRESS is a soft error, needs retry 11061 * so don't make *outlenp zero. 11062 */ 11063 if (error != EINPROGRESS) 11064 *outlenp = 0; 11065 return (error); 11066 } 11067 /* OK return - copy input buffer into output buffer */ 11068 if (invalp != outvalp) { 11069 /* don't trust bcopy for identical src/dst */ 11070 bcopy(invalp, outvalp, inlen); 11071 } 11072 *outlenp = inlen; 11073 return (0); 11074 } 11075 case MCAST_BLOCK_SOURCE: 11076 case MCAST_UNBLOCK_SOURCE: 11077 case MCAST_JOIN_SOURCE_GROUP: 11078 case MCAST_LEAVE_SOURCE_GROUP: { 11079 struct group_source_req *gsreqp; 11080 in6_addr_t v6grp, v6src; 11081 uint32_t ifindex; 11082 mcast_record_t fmode; 11083 ire_t *ire; 11084 boolean_t done = B_FALSE; 11085 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11086 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11087 11088 switch (name) { 11089 case MCAST_BLOCK_SOURCE: 11090 fmode = MODE_IS_EXCLUDE; 11091 optfn = ip_opt_add_group_v6; 11092 break; 11093 case MCAST_UNBLOCK_SOURCE: 11094 fmode = MODE_IS_EXCLUDE; 11095 optfn = ip_opt_delete_group_v6; 11096 break; 11097 case MCAST_JOIN_SOURCE_GROUP: 11098 fmode = MODE_IS_INCLUDE; 11099 optfn = ip_opt_add_group_v6; 11100 break; 11101 case MCAST_LEAVE_SOURCE_GROUP: 11102 fmode = MODE_IS_INCLUDE; 11103 optfn = ip_opt_delete_group_v6; 11104 break; 11105 } 11106 11107 gsreqp = (struct group_source_req *)i1; 11108 ifindex = gsreqp->gsr_interface; 11109 if (gsreqp->gsr_group.ss_family == AF_INET) { 11110 struct sockaddr_in *s; 11111 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11112 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11113 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11114 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11115 } else { 11116 struct sockaddr_in6 *s6; 11117 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11118 v6grp = s6->sin6_addr; 11119 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11120 v6src = s6->sin6_addr; 11121 } 11122 11123 /* 11124 * In the multirouting case, we need to replicate 11125 * the request as noted in the mcast cases above. 11126 */ 11127 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11128 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11129 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11130 if (ire != NULL) { 11131 if (ire->ire_flags & RTF_MULTIRT) { 11132 error = ip_multirt_apply_membership_v6( 11133 optfn, ire, connp, checkonly, 11134 &v6grp, fmode, &v6src, first_mp); 11135 done = B_TRUE; 11136 } 11137 ire_refrele(ire); 11138 } 11139 if (!done) { 11140 error = optfn(connp, checkonly, &v6grp, 11141 ifindex, fmode, &v6src, first_mp); 11142 } 11143 if (error != 0) { 11144 /* 11145 * EINPROGRESS is a soft error, needs retry 11146 * so don't make *outlenp zero. 11147 */ 11148 if (error != EINPROGRESS) 11149 *outlenp = 0; 11150 return (error); 11151 } 11152 /* OK return - copy input buffer into output buffer */ 11153 if (invalp != outvalp) { 11154 bcopy(invalp, outvalp, inlen); 11155 } 11156 *outlenp = inlen; 11157 return (0); 11158 } 11159 case IPV6_UNICAST_HOPS: 11160 /* Recorded in transport above IP */ 11161 break; /* goto sizeof (int) option return */ 11162 case IPV6_UNSPEC_SRC: 11163 /* Allow sending with a zero source address */ 11164 if (!checkonly) { 11165 mutex_enter(&connp->conn_lock); 11166 connp->conn_unspec_src = *i1 ? 1 : 0; 11167 mutex_exit(&connp->conn_lock); 11168 } 11169 break; /* goto sizeof (int) option return */ 11170 case IPV6_RECVPKTINFO: 11171 if (!checkonly) { 11172 mutex_enter(&connp->conn_lock); 11173 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11174 mutex_exit(&connp->conn_lock); 11175 } 11176 break; /* goto sizeof (int) option return */ 11177 case IPV6_RECVTCLASS: 11178 if (!checkonly) { 11179 if (*i1 < 0 || *i1 > 1) { 11180 return (EINVAL); 11181 } 11182 mutex_enter(&connp->conn_lock); 11183 connp->conn_ipv6_recvtclass = *i1; 11184 mutex_exit(&connp->conn_lock); 11185 } 11186 break; 11187 case IPV6_RECVPATHMTU: 11188 if (!checkonly) { 11189 if (*i1 < 0 || *i1 > 1) { 11190 return (EINVAL); 11191 } 11192 mutex_enter(&connp->conn_lock); 11193 connp->conn_ipv6_recvpathmtu = *i1; 11194 mutex_exit(&connp->conn_lock); 11195 } 11196 break; 11197 case IPV6_RECVHOPLIMIT: 11198 if (!checkonly) { 11199 mutex_enter(&connp->conn_lock); 11200 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11201 mutex_exit(&connp->conn_lock); 11202 } 11203 break; /* goto sizeof (int) option return */ 11204 case IPV6_RECVHOPOPTS: 11205 if (!checkonly) { 11206 mutex_enter(&connp->conn_lock); 11207 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11208 mutex_exit(&connp->conn_lock); 11209 } 11210 break; /* goto sizeof (int) option return */ 11211 case IPV6_RECVDSTOPTS: 11212 if (!checkonly) { 11213 mutex_enter(&connp->conn_lock); 11214 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11215 mutex_exit(&connp->conn_lock); 11216 } 11217 break; /* goto sizeof (int) option return */ 11218 case IPV6_RECVRTHDR: 11219 if (!checkonly) { 11220 mutex_enter(&connp->conn_lock); 11221 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11222 mutex_exit(&connp->conn_lock); 11223 } 11224 break; /* goto sizeof (int) option return */ 11225 case IPV6_RECVRTHDRDSTOPTS: 11226 if (!checkonly) { 11227 mutex_enter(&connp->conn_lock); 11228 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11229 mutex_exit(&connp->conn_lock); 11230 } 11231 break; /* goto sizeof (int) option return */ 11232 case IPV6_PKTINFO: 11233 if (inlen == 0) 11234 return (-EINVAL); /* clearing option */ 11235 error = ip6_set_pktinfo(cr, connp, 11236 (struct in6_pktinfo *)invalp, first_mp); 11237 if (error != 0) 11238 *outlenp = 0; 11239 else 11240 *outlenp = inlen; 11241 return (error); 11242 case IPV6_NEXTHOP: { 11243 struct sockaddr_in6 *sin6; 11244 11245 /* Verify that the nexthop is reachable */ 11246 if (inlen == 0) 11247 return (-EINVAL); /* clearing option */ 11248 11249 sin6 = (struct sockaddr_in6 *)invalp; 11250 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11251 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11252 NULL, MATCH_IRE_DEFAULT); 11253 11254 if (ire == NULL) { 11255 *outlenp = 0; 11256 return (EHOSTUNREACH); 11257 } 11258 ire_refrele(ire); 11259 return (-EINVAL); 11260 } 11261 case IPV6_SEC_OPT: 11262 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11263 if (error != 0) { 11264 *outlenp = 0; 11265 return (error); 11266 } 11267 break; 11268 case IPV6_SRC_PREFERENCES: { 11269 /* 11270 * This is implemented strictly in the ip module 11271 * (here and in tcp_opt_*() to accomodate tcp 11272 * sockets). Modules above ip pass this option 11273 * down here since ip is the only one that needs to 11274 * be aware of source address preferences. 11275 * 11276 * This socket option only affects connected 11277 * sockets that haven't already bound to a specific 11278 * IPv6 address. In other words, sockets that 11279 * don't call bind() with an address other than the 11280 * unspecified address and that call connect(). 11281 * ip_bind_connected_v6() passes these preferences 11282 * to the ipif_select_source_v6() function. 11283 */ 11284 if (inlen != sizeof (uint32_t)) 11285 return (EINVAL); 11286 error = ip6_set_src_preferences(connp, 11287 *(uint32_t *)invalp); 11288 if (error != 0) { 11289 *outlenp = 0; 11290 return (error); 11291 } else { 11292 *outlenp = sizeof (uint32_t); 11293 } 11294 break; 11295 } 11296 case IPV6_V6ONLY: 11297 if (*i1 < 0 || *i1 > 1) { 11298 return (EINVAL); 11299 } 11300 mutex_enter(&connp->conn_lock); 11301 connp->conn_ipv6_v6only = *i1; 11302 mutex_exit(&connp->conn_lock); 11303 break; 11304 default: 11305 return (-EINVAL); 11306 } 11307 break; 11308 default: 11309 /* 11310 * "soft" error (negative) 11311 * option not handled at this level 11312 * Note: Do not modify *outlenp 11313 */ 11314 return (-EINVAL); 11315 } 11316 /* 11317 * Common case of return from an option that is sizeof (int) 11318 */ 11319 *(int *)outvalp = *i1; 11320 *outlenp = sizeof (int); 11321 return (0); 11322 } 11323 11324 /* 11325 * This routine gets default values of certain options whose default 11326 * values are maintained by protocol specific code 11327 */ 11328 /* ARGSUSED */ 11329 int 11330 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11331 { 11332 int *i1 = (int *)ptr; 11333 11334 switch (level) { 11335 case IPPROTO_IP: 11336 switch (name) { 11337 case IP_MULTICAST_TTL: 11338 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11339 return (sizeof (uchar_t)); 11340 case IP_MULTICAST_LOOP: 11341 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11342 return (sizeof (uchar_t)); 11343 default: 11344 return (-1); 11345 } 11346 case IPPROTO_IPV6: 11347 switch (name) { 11348 case IPV6_UNICAST_HOPS: 11349 *i1 = ipv6_def_hops; 11350 return (sizeof (int)); 11351 case IPV6_MULTICAST_HOPS: 11352 *i1 = IP_DEFAULT_MULTICAST_TTL; 11353 return (sizeof (int)); 11354 case IPV6_MULTICAST_LOOP: 11355 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11356 return (sizeof (int)); 11357 case IPV6_V6ONLY: 11358 *i1 = 1; 11359 return (sizeof (int)); 11360 default: 11361 return (-1); 11362 } 11363 default: 11364 return (-1); 11365 } 11366 /* NOTREACHED */ 11367 } 11368 11369 /* 11370 * Given a destination address and a pointer to where to put the information 11371 * this routine fills in the mtuinfo. 11372 */ 11373 int 11374 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11375 struct ip6_mtuinfo *mtuinfo) 11376 { 11377 ire_t *ire; 11378 11379 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11380 return (-1); 11381 11382 bzero(mtuinfo, sizeof (*mtuinfo)); 11383 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11384 mtuinfo->ip6m_addr.sin6_port = port; 11385 mtuinfo->ip6m_addr.sin6_addr = *in6; 11386 11387 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11388 if (ire != NULL) { 11389 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11390 ire_refrele(ire); 11391 } else { 11392 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11393 } 11394 return (sizeof (struct ip6_mtuinfo)); 11395 } 11396 11397 /* 11398 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11399 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11400 * isn't. This doesn't matter as the error checking is done properly for the 11401 * other MRT options coming in through ip_opt_set. 11402 */ 11403 int 11404 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11405 { 11406 conn_t *connp = Q_TO_CONN(q); 11407 ipsec_req_t *req = (ipsec_req_t *)ptr; 11408 11409 switch (level) { 11410 case IPPROTO_IP: 11411 switch (name) { 11412 case MRT_VERSION: 11413 case MRT_ASSERT: 11414 (void) ip_mrouter_get(name, q, ptr); 11415 return (sizeof (int)); 11416 case IP_SEC_OPT: 11417 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11418 case IP_NEXTHOP: 11419 if (connp->conn_nexthop_set) { 11420 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11421 return (sizeof (ipaddr_t)); 11422 } else 11423 return (0); 11424 default: 11425 break; 11426 } 11427 break; 11428 case IPPROTO_IPV6: 11429 switch (name) { 11430 case IPV6_SEC_OPT: 11431 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11432 case IPV6_SRC_PREFERENCES: { 11433 return (ip6_get_src_preferences(connp, 11434 (uint32_t *)ptr)); 11435 } 11436 case IPV6_V6ONLY: 11437 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11438 return (sizeof (int)); 11439 case IPV6_PATHMTU: 11440 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11441 (struct ip6_mtuinfo *)ptr)); 11442 default: 11443 break; 11444 } 11445 break; 11446 default: 11447 break; 11448 } 11449 return (-1); 11450 } 11451 11452 /* Named Dispatch routine to get a current value out of our parameter table. */ 11453 /* ARGSUSED */ 11454 static int 11455 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11456 { 11457 ipparam_t *ippa = (ipparam_t *)cp; 11458 11459 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11460 return (0); 11461 } 11462 11463 /* ARGSUSED */ 11464 static int 11465 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11466 { 11467 11468 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11469 return (0); 11470 } 11471 11472 /* 11473 * Set ip{,6}_forwarding values. This means walking through all of the 11474 * ill's and toggling their forwarding values. 11475 */ 11476 /* ARGSUSED */ 11477 static int 11478 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11479 { 11480 long new_value; 11481 int *forwarding_value = (int *)cp; 11482 ill_t *walker; 11483 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11484 ill_walk_context_t ctx; 11485 11486 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11487 new_value < 0 || new_value > 1) { 11488 return (EINVAL); 11489 } 11490 11491 *forwarding_value = new_value; 11492 11493 /* 11494 * Regardless of the current value of ip_forwarding, set all per-ill 11495 * values of ip_forwarding to the value being set. 11496 * 11497 * Bring all the ill's up to date with the new global value. 11498 */ 11499 rw_enter(&ill_g_lock, RW_READER); 11500 11501 if (isv6) 11502 walker = ILL_START_WALK_V6(&ctx); 11503 else 11504 walker = ILL_START_WALK_V4(&ctx); 11505 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11506 (void) ill_forward_set(q, mp, (new_value != 0), 11507 (caddr_t)walker); 11508 } 11509 rw_exit(&ill_g_lock); 11510 11511 return (0); 11512 } 11513 11514 /* 11515 * Walk through the param array specified registering each element with the 11516 * Named Dispatch handler. This is called only during init. So it is ok 11517 * not to acquire any locks 11518 */ 11519 static boolean_t 11520 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11521 ipndp_t *ipnd, size_t ipnd_cnt) 11522 { 11523 for (; ippa_cnt-- > 0; ippa++) { 11524 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11525 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11526 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11527 nd_free(&ip_g_nd); 11528 return (B_FALSE); 11529 } 11530 } 11531 } 11532 11533 for (; ipnd_cnt-- > 0; ipnd++) { 11534 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11535 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11536 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11537 ipnd->ip_ndp_data)) { 11538 nd_free(&ip_g_nd); 11539 return (B_FALSE); 11540 } 11541 } 11542 } 11543 11544 return (B_TRUE); 11545 } 11546 11547 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11548 /* ARGSUSED */ 11549 static int 11550 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11551 { 11552 long new_value; 11553 ipparam_t *ippa = (ipparam_t *)cp; 11554 11555 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11556 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11557 return (EINVAL); 11558 } 11559 ippa->ip_param_value = new_value; 11560 return (0); 11561 } 11562 11563 /* 11564 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11565 * When an ipf is passed here for the first time, if 11566 * we already have in-order fragments on the queue, we convert from the fast- 11567 * path reassembly scheme to the hard-case scheme. From then on, additional 11568 * fragments are reassembled here. We keep track of the start and end offsets 11569 * of each piece, and the number of holes in the chain. When the hole count 11570 * goes to zero, we are done! 11571 * 11572 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11573 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11574 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11575 * after the call to ip_reassemble(). 11576 */ 11577 int 11578 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11579 size_t msg_len) 11580 { 11581 uint_t end; 11582 mblk_t *next_mp; 11583 mblk_t *mp1; 11584 uint_t offset; 11585 boolean_t incr_dups = B_TRUE; 11586 boolean_t offset_zero_seen = B_FALSE; 11587 boolean_t pkt_boundary_checked = B_FALSE; 11588 11589 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11590 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11591 11592 /* Add in byte count */ 11593 ipf->ipf_count += msg_len; 11594 if (ipf->ipf_end) { 11595 /* 11596 * We were part way through in-order reassembly, but now there 11597 * is a hole. We walk through messages already queued, and 11598 * mark them for hard case reassembly. We know that up till 11599 * now they were in order starting from offset zero. 11600 */ 11601 offset = 0; 11602 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11603 IP_REASS_SET_START(mp1, offset); 11604 if (offset == 0) { 11605 ASSERT(ipf->ipf_nf_hdr_len != 0); 11606 offset = -ipf->ipf_nf_hdr_len; 11607 } 11608 offset += mp1->b_wptr - mp1->b_rptr; 11609 IP_REASS_SET_END(mp1, offset); 11610 } 11611 /* One hole at the end. */ 11612 ipf->ipf_hole_cnt = 1; 11613 /* Brand it as a hard case, forever. */ 11614 ipf->ipf_end = 0; 11615 } 11616 /* Walk through all the new pieces. */ 11617 do { 11618 end = start + (mp->b_wptr - mp->b_rptr); 11619 /* 11620 * If start is 0, decrease 'end' only for the first mblk of 11621 * the fragment. Otherwise 'end' can get wrong value in the 11622 * second pass of the loop if first mblk is exactly the 11623 * size of ipf_nf_hdr_len. 11624 */ 11625 if (start == 0 && !offset_zero_seen) { 11626 /* First segment */ 11627 ASSERT(ipf->ipf_nf_hdr_len != 0); 11628 end -= ipf->ipf_nf_hdr_len; 11629 offset_zero_seen = B_TRUE; 11630 } 11631 next_mp = mp->b_cont; 11632 /* 11633 * We are checking to see if there is any interesing data 11634 * to process. If there isn't and the mblk isn't the 11635 * one which carries the unfragmentable header then we 11636 * drop it. It's possible to have just the unfragmentable 11637 * header come through without any data. That needs to be 11638 * saved. 11639 * 11640 * If the assert at the top of this function holds then the 11641 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11642 * is infrequently traveled enough that the test is left in 11643 * to protect against future code changes which break that 11644 * invariant. 11645 */ 11646 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11647 /* Empty. Blast it. */ 11648 IP_REASS_SET_START(mp, 0); 11649 IP_REASS_SET_END(mp, 0); 11650 /* 11651 * If the ipf points to the mblk we are about to free, 11652 * update ipf to point to the next mblk (or NULL 11653 * if none). 11654 */ 11655 if (ipf->ipf_mp->b_cont == mp) 11656 ipf->ipf_mp->b_cont = next_mp; 11657 freeb(mp); 11658 continue; 11659 } 11660 mp->b_cont = NULL; 11661 IP_REASS_SET_START(mp, start); 11662 IP_REASS_SET_END(mp, end); 11663 if (!ipf->ipf_tail_mp) { 11664 ipf->ipf_tail_mp = mp; 11665 ipf->ipf_mp->b_cont = mp; 11666 if (start == 0 || !more) { 11667 ipf->ipf_hole_cnt = 1; 11668 /* 11669 * if the first fragment comes in more than one 11670 * mblk, this loop will be executed for each 11671 * mblk. Need to adjust hole count so exiting 11672 * this routine will leave hole count at 1. 11673 */ 11674 if (next_mp) 11675 ipf->ipf_hole_cnt++; 11676 } else 11677 ipf->ipf_hole_cnt = 2; 11678 continue; 11679 } else if (ipf->ipf_last_frag_seen && !more && 11680 !pkt_boundary_checked) { 11681 /* 11682 * We check datagram boundary only if this fragment 11683 * claims to be the last fragment and we have seen a 11684 * last fragment in the past too. We do this only 11685 * once for a given fragment. 11686 * 11687 * start cannot be 0 here as fragments with start=0 11688 * and MF=0 gets handled as a complete packet. These 11689 * fragments should not reach here. 11690 */ 11691 11692 if (start + msgdsize(mp) != 11693 IP_REASS_END(ipf->ipf_tail_mp)) { 11694 /* 11695 * We have two fragments both of which claim 11696 * to be the last fragment but gives conflicting 11697 * information about the whole datagram size. 11698 * Something fishy is going on. Drop the 11699 * fragment and free up the reassembly list. 11700 */ 11701 return (IP_REASS_FAILED); 11702 } 11703 11704 /* 11705 * We shouldn't come to this code block again for this 11706 * particular fragment. 11707 */ 11708 pkt_boundary_checked = B_TRUE; 11709 } 11710 11711 /* New stuff at or beyond tail? */ 11712 offset = IP_REASS_END(ipf->ipf_tail_mp); 11713 if (start >= offset) { 11714 if (ipf->ipf_last_frag_seen) { 11715 /* current fragment is beyond last fragment */ 11716 return (IP_REASS_FAILED); 11717 } 11718 /* Link it on end. */ 11719 ipf->ipf_tail_mp->b_cont = mp; 11720 ipf->ipf_tail_mp = mp; 11721 if (more) { 11722 if (start != offset) 11723 ipf->ipf_hole_cnt++; 11724 } else if (start == offset && next_mp == NULL) 11725 ipf->ipf_hole_cnt--; 11726 continue; 11727 } 11728 mp1 = ipf->ipf_mp->b_cont; 11729 offset = IP_REASS_START(mp1); 11730 /* New stuff at the front? */ 11731 if (start < offset) { 11732 if (start == 0) { 11733 if (end >= offset) { 11734 /* Nailed the hole at the begining. */ 11735 ipf->ipf_hole_cnt--; 11736 } 11737 } else if (end < offset) { 11738 /* 11739 * A hole, stuff, and a hole where there used 11740 * to be just a hole. 11741 */ 11742 ipf->ipf_hole_cnt++; 11743 } 11744 mp->b_cont = mp1; 11745 /* Check for overlap. */ 11746 while (end > offset) { 11747 if (end < IP_REASS_END(mp1)) { 11748 mp->b_wptr -= end - offset; 11749 IP_REASS_SET_END(mp, offset); 11750 if (ill->ill_isv6) { 11751 BUMP_MIB(ill->ill_ip6_mib, 11752 ipv6ReasmPartDups); 11753 } else { 11754 BUMP_MIB(&ip_mib, 11755 ipReasmPartDups); 11756 } 11757 break; 11758 } 11759 /* Did we cover another hole? */ 11760 if ((mp1->b_cont && 11761 IP_REASS_END(mp1) != 11762 IP_REASS_START(mp1->b_cont) && 11763 end >= IP_REASS_START(mp1->b_cont)) || 11764 (!ipf->ipf_last_frag_seen && !more)) { 11765 ipf->ipf_hole_cnt--; 11766 } 11767 /* Clip out mp1. */ 11768 if ((mp->b_cont = mp1->b_cont) == NULL) { 11769 /* 11770 * After clipping out mp1, this guy 11771 * is now hanging off the end. 11772 */ 11773 ipf->ipf_tail_mp = mp; 11774 } 11775 IP_REASS_SET_START(mp1, 0); 11776 IP_REASS_SET_END(mp1, 0); 11777 /* Subtract byte count */ 11778 ipf->ipf_count -= mp1->b_datap->db_lim - 11779 mp1->b_datap->db_base; 11780 freeb(mp1); 11781 if (ill->ill_isv6) { 11782 BUMP_MIB(ill->ill_ip6_mib, 11783 ipv6ReasmPartDups); 11784 } else { 11785 BUMP_MIB(&ip_mib, ipReasmPartDups); 11786 } 11787 mp1 = mp->b_cont; 11788 if (!mp1) 11789 break; 11790 offset = IP_REASS_START(mp1); 11791 } 11792 ipf->ipf_mp->b_cont = mp; 11793 continue; 11794 } 11795 /* 11796 * The new piece starts somewhere between the start of the head 11797 * and before the end of the tail. 11798 */ 11799 for (; mp1; mp1 = mp1->b_cont) { 11800 offset = IP_REASS_END(mp1); 11801 if (start < offset) { 11802 if (end <= offset) { 11803 /* Nothing new. */ 11804 IP_REASS_SET_START(mp, 0); 11805 IP_REASS_SET_END(mp, 0); 11806 /* Subtract byte count */ 11807 ipf->ipf_count -= mp->b_datap->db_lim - 11808 mp->b_datap->db_base; 11809 if (incr_dups) { 11810 ipf->ipf_num_dups++; 11811 incr_dups = B_FALSE; 11812 } 11813 freeb(mp); 11814 if (ill->ill_isv6) { 11815 BUMP_MIB(ill->ill_ip6_mib, 11816 ipv6ReasmDuplicates); 11817 } else { 11818 BUMP_MIB(&ip_mib, 11819 ipReasmDuplicates); 11820 } 11821 break; 11822 } 11823 /* 11824 * Trim redundant stuff off beginning of new 11825 * piece. 11826 */ 11827 IP_REASS_SET_START(mp, offset); 11828 mp->b_rptr += offset - start; 11829 if (ill->ill_isv6) { 11830 BUMP_MIB(ill->ill_ip6_mib, 11831 ipv6ReasmPartDups); 11832 } else { 11833 BUMP_MIB(&ip_mib, ipReasmPartDups); 11834 } 11835 start = offset; 11836 if (!mp1->b_cont) { 11837 /* 11838 * After trimming, this guy is now 11839 * hanging off the end. 11840 */ 11841 mp1->b_cont = mp; 11842 ipf->ipf_tail_mp = mp; 11843 if (!more) { 11844 ipf->ipf_hole_cnt--; 11845 } 11846 break; 11847 } 11848 } 11849 if (start >= IP_REASS_START(mp1->b_cont)) 11850 continue; 11851 /* Fill a hole */ 11852 if (start > offset) 11853 ipf->ipf_hole_cnt++; 11854 mp->b_cont = mp1->b_cont; 11855 mp1->b_cont = mp; 11856 mp1 = mp->b_cont; 11857 offset = IP_REASS_START(mp1); 11858 if (end >= offset) { 11859 ipf->ipf_hole_cnt--; 11860 /* Check for overlap. */ 11861 while (end > offset) { 11862 if (end < IP_REASS_END(mp1)) { 11863 mp->b_wptr -= end - offset; 11864 IP_REASS_SET_END(mp, offset); 11865 /* 11866 * TODO we might bump 11867 * this up twice if there is 11868 * overlap at both ends. 11869 */ 11870 if (ill->ill_isv6) { 11871 BUMP_MIB( 11872 ill->ill_ip6_mib, 11873 ipv6ReasmPartDups); 11874 } else { 11875 BUMP_MIB(&ip_mib, 11876 ipReasmPartDups); 11877 } 11878 break; 11879 } 11880 /* Did we cover another hole? */ 11881 if ((mp1->b_cont && 11882 IP_REASS_END(mp1) 11883 != IP_REASS_START(mp1->b_cont) && 11884 end >= 11885 IP_REASS_START(mp1->b_cont)) || 11886 (!ipf->ipf_last_frag_seen && 11887 !more)) { 11888 ipf->ipf_hole_cnt--; 11889 } 11890 /* Clip out mp1. */ 11891 if ((mp->b_cont = mp1->b_cont) == 11892 NULL) { 11893 /* 11894 * After clipping out mp1, 11895 * this guy is now hanging 11896 * off the end. 11897 */ 11898 ipf->ipf_tail_mp = mp; 11899 } 11900 IP_REASS_SET_START(mp1, 0); 11901 IP_REASS_SET_END(mp1, 0); 11902 /* Subtract byte count */ 11903 ipf->ipf_count -= 11904 mp1->b_datap->db_lim - 11905 mp1->b_datap->db_base; 11906 freeb(mp1); 11907 if (ill->ill_isv6) { 11908 BUMP_MIB(ill->ill_ip6_mib, 11909 ipv6ReasmPartDups); 11910 } else { 11911 BUMP_MIB(&ip_mib, 11912 ipReasmPartDups); 11913 } 11914 mp1 = mp->b_cont; 11915 if (!mp1) 11916 break; 11917 offset = IP_REASS_START(mp1); 11918 } 11919 } 11920 break; 11921 } 11922 } while (start = end, mp = next_mp); 11923 11924 /* Fragment just processed could be the last one. Remember this fact */ 11925 if (!more) 11926 ipf->ipf_last_frag_seen = B_TRUE; 11927 11928 /* Still got holes? */ 11929 if (ipf->ipf_hole_cnt) 11930 return (IP_REASS_PARTIAL); 11931 /* Clean up overloaded fields to avoid upstream disasters. */ 11932 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11933 IP_REASS_SET_START(mp1, 0); 11934 IP_REASS_SET_END(mp1, 0); 11935 } 11936 return (IP_REASS_COMPLETE); 11937 } 11938 11939 /* 11940 * ipsec processing for the fast path, used for input UDP Packets 11941 */ 11942 static boolean_t 11943 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11944 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11945 { 11946 uint32_t ill_index; 11947 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11948 11949 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11950 /* The ill_index of the incoming ILL */ 11951 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11952 11953 /* pass packet up to the transport */ 11954 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11955 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11956 NULL, mctl_present); 11957 if (*first_mpp == NULL) { 11958 return (B_FALSE); 11959 } 11960 } 11961 11962 /* Initiate IPPF processing for fastpath UDP */ 11963 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11964 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11965 if (*mpp == NULL) { 11966 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11967 "deferred/dropped during IPPF processing\n")); 11968 return (B_FALSE); 11969 } 11970 } 11971 /* 11972 * We make the checks as below since we are in the fast path 11973 * and want to minimize the number of checks if the IP_RECVIF and/or 11974 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11975 */ 11976 if (connp->conn_recvif || connp->conn_recvslla || 11977 connp->conn_ipv6_recvpktinfo) { 11978 if (connp->conn_recvif || 11979 connp->conn_ipv6_recvpktinfo) { 11980 in_flags = IPF_RECVIF; 11981 } 11982 if (connp->conn_recvslla) { 11983 in_flags |= IPF_RECVSLLA; 11984 } 11985 /* 11986 * since in_flags are being set ill will be 11987 * referenced in ip_add_info, so it better not 11988 * be NULL. 11989 */ 11990 /* 11991 * the actual data will be contained in b_cont 11992 * upon successful return of the following call. 11993 * If the call fails then the original mblk is 11994 * returned. 11995 */ 11996 *mpp = ip_add_info(*mpp, ill, in_flags); 11997 } 11998 11999 return (B_TRUE); 12000 } 12001 12002 /* 12003 * Fragmentation reassembly. Each ILL has a hash table for 12004 * queuing packets undergoing reassembly for all IPIFs 12005 * associated with the ILL. The hash is based on the packet 12006 * IP ident field. The ILL frag hash table was allocated 12007 * as a timer block at the time the ILL was created. Whenever 12008 * there is anything on the reassembly queue, the timer will 12009 * be running. Returns B_TRUE if successful else B_FALSE; 12010 * frees mp on failure. 12011 */ 12012 static boolean_t 12013 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12014 uint32_t *cksum_val, uint16_t *cksum_flags) 12015 { 12016 uint32_t frag_offset_flags; 12017 ill_t *ill = (ill_t *)q->q_ptr; 12018 mblk_t *mp = *mpp; 12019 mblk_t *t_mp; 12020 ipaddr_t dst; 12021 uint8_t proto = ipha->ipha_protocol; 12022 uint32_t sum_val; 12023 uint16_t sum_flags; 12024 ipf_t *ipf; 12025 ipf_t **ipfp; 12026 ipfb_t *ipfb; 12027 uint16_t ident; 12028 uint32_t offset; 12029 ipaddr_t src; 12030 uint_t hdr_length; 12031 uint32_t end; 12032 mblk_t *mp1; 12033 mblk_t *tail_mp; 12034 size_t count; 12035 size_t msg_len; 12036 uint8_t ecn_info = 0; 12037 uint32_t packet_size; 12038 boolean_t pruned = B_FALSE; 12039 12040 if (cksum_val != NULL) 12041 *cksum_val = 0; 12042 if (cksum_flags != NULL) 12043 *cksum_flags = 0; 12044 12045 /* 12046 * Drop the fragmented as early as possible, if 12047 * we don't have resource(s) to re-assemble. 12048 */ 12049 if (ip_reass_queue_bytes == 0) { 12050 freemsg(mp); 12051 return (B_FALSE); 12052 } 12053 12054 /* Check for fragmentation offset; return if there's none */ 12055 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12056 (IPH_MF | IPH_OFFSET)) == 0) 12057 return (B_TRUE); 12058 12059 /* 12060 * We utilize hardware computed checksum info only for UDP since 12061 * IP fragmentation is a normal occurence for the protocol. In 12062 * addition, checksum offload support for IP fragments carrying 12063 * UDP payload is commonly implemented across network adapters. 12064 */ 12065 ASSERT(ill != NULL); 12066 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12067 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12068 mblk_t *mp1 = mp->b_cont; 12069 int32_t len; 12070 12071 /* Record checksum information from the packet */ 12072 sum_val = (uint32_t)DB_CKSUM16(mp); 12073 sum_flags = DB_CKSUMFLAGS(mp); 12074 12075 /* IP payload offset from beginning of mblk */ 12076 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12077 12078 if ((sum_flags & HCK_PARTIALCKSUM) && 12079 (mp1 == NULL || mp1->b_cont == NULL) && 12080 offset >= DB_CKSUMSTART(mp) && 12081 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12082 uint32_t adj; 12083 /* 12084 * Partial checksum has been calculated by hardware 12085 * and attached to the packet; in addition, any 12086 * prepended extraneous data is even byte aligned. 12087 * If any such data exists, we adjust the checksum; 12088 * this would also handle any postpended data. 12089 */ 12090 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12091 mp, mp1, len, adj); 12092 12093 /* One's complement subtract extraneous checksum */ 12094 if (adj >= sum_val) 12095 sum_val = ~(adj - sum_val) & 0xFFFF; 12096 else 12097 sum_val -= adj; 12098 } 12099 } else { 12100 sum_val = 0; 12101 sum_flags = 0; 12102 } 12103 12104 /* Clear hardware checksumming flag */ 12105 DB_CKSUMFLAGS(mp) = 0; 12106 12107 ident = ipha->ipha_ident; 12108 offset = (frag_offset_flags << 3) & 0xFFFF; 12109 src = ipha->ipha_src; 12110 dst = ipha->ipha_dst; 12111 hdr_length = IPH_HDR_LENGTH(ipha); 12112 end = ntohs(ipha->ipha_length) - hdr_length; 12113 12114 /* If end == 0 then we have a packet with no data, so just free it */ 12115 if (end == 0) { 12116 freemsg(mp); 12117 return (B_FALSE); 12118 } 12119 12120 /* Record the ECN field info. */ 12121 ecn_info = (ipha->ipha_type_of_service & 0x3); 12122 if (offset != 0) { 12123 /* 12124 * If this isn't the first piece, strip the header, and 12125 * add the offset to the end value. 12126 */ 12127 mp->b_rptr += hdr_length; 12128 end += offset; 12129 } 12130 12131 msg_len = MBLKSIZE(mp); 12132 tail_mp = mp; 12133 while (tail_mp->b_cont != NULL) { 12134 tail_mp = tail_mp->b_cont; 12135 msg_len += MBLKSIZE(tail_mp); 12136 } 12137 12138 /* If the reassembly list for this ILL will get too big, prune it */ 12139 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12140 ip_reass_queue_bytes) { 12141 ill_frag_prune(ill, 12142 (ip_reass_queue_bytes < msg_len) ? 0 : 12143 (ip_reass_queue_bytes - msg_len)); 12144 pruned = B_TRUE; 12145 } 12146 12147 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12148 mutex_enter(&ipfb->ipfb_lock); 12149 12150 ipfp = &ipfb->ipfb_ipf; 12151 /* Try to find an existing fragment queue for this packet. */ 12152 for (;;) { 12153 ipf = ipfp[0]; 12154 if (ipf != NULL) { 12155 /* 12156 * It has to match on ident and src/dst address. 12157 */ 12158 if (ipf->ipf_ident == ident && 12159 ipf->ipf_src == src && 12160 ipf->ipf_dst == dst && 12161 ipf->ipf_protocol == proto) { 12162 /* 12163 * If we have received too many 12164 * duplicate fragments for this packet 12165 * free it. 12166 */ 12167 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12168 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12169 freemsg(mp); 12170 mutex_exit(&ipfb->ipfb_lock); 12171 return (B_FALSE); 12172 } 12173 /* Found it. */ 12174 break; 12175 } 12176 ipfp = &ipf->ipf_hash_next; 12177 continue; 12178 } 12179 12180 /* 12181 * If we pruned the list, do we want to store this new 12182 * fragment?. We apply an optimization here based on the 12183 * fact that most fragments will be received in order. 12184 * So if the offset of this incoming fragment is zero, 12185 * it is the first fragment of a new packet. We will 12186 * keep it. Otherwise drop the fragment, as we have 12187 * probably pruned the packet already (since the 12188 * packet cannot be found). 12189 */ 12190 if (pruned && offset != 0) { 12191 mutex_exit(&ipfb->ipfb_lock); 12192 freemsg(mp); 12193 return (B_FALSE); 12194 } 12195 12196 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12197 /* 12198 * Too many fragmented packets in this hash 12199 * bucket. Free the oldest. 12200 */ 12201 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12202 } 12203 12204 /* New guy. Allocate a frag message. */ 12205 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12206 if (mp1 == NULL) { 12207 BUMP_MIB(&ip_mib, ipInDiscards); 12208 freemsg(mp); 12209 reass_done: 12210 mutex_exit(&ipfb->ipfb_lock); 12211 return (B_FALSE); 12212 } 12213 12214 12215 BUMP_MIB(&ip_mib, ipReasmReqds); 12216 mp1->b_cont = mp; 12217 12218 /* Initialize the fragment header. */ 12219 ipf = (ipf_t *)mp1->b_rptr; 12220 ipf->ipf_mp = mp1; 12221 ipf->ipf_ptphn = ipfp; 12222 ipfp[0] = ipf; 12223 ipf->ipf_hash_next = NULL; 12224 ipf->ipf_ident = ident; 12225 ipf->ipf_protocol = proto; 12226 ipf->ipf_src = src; 12227 ipf->ipf_dst = dst; 12228 ipf->ipf_nf_hdr_len = 0; 12229 /* Record reassembly start time. */ 12230 ipf->ipf_timestamp = gethrestime_sec(); 12231 /* Record ipf generation and account for frag header */ 12232 ipf->ipf_gen = ill->ill_ipf_gen++; 12233 ipf->ipf_count = MBLKSIZE(mp1); 12234 ipf->ipf_last_frag_seen = B_FALSE; 12235 ipf->ipf_ecn = ecn_info; 12236 ipf->ipf_num_dups = 0; 12237 ipfb->ipfb_frag_pkts++; 12238 ipf->ipf_checksum = 0; 12239 ipf->ipf_checksum_flags = 0; 12240 12241 /* Store checksum value in fragment header */ 12242 if (sum_flags != 0) { 12243 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12244 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12245 ipf->ipf_checksum = sum_val; 12246 ipf->ipf_checksum_flags = sum_flags; 12247 } 12248 12249 /* 12250 * We handle reassembly two ways. In the easy case, 12251 * where all the fragments show up in order, we do 12252 * minimal bookkeeping, and just clip new pieces on 12253 * the end. If we ever see a hole, then we go off 12254 * to ip_reassemble which has to mark the pieces and 12255 * keep track of the number of holes, etc. Obviously, 12256 * the point of having both mechanisms is so we can 12257 * handle the easy case as efficiently as possible. 12258 */ 12259 if (offset == 0) { 12260 /* Easy case, in-order reassembly so far. */ 12261 ipf->ipf_count += msg_len; 12262 ipf->ipf_tail_mp = tail_mp; 12263 /* 12264 * Keep track of next expected offset in 12265 * ipf_end. 12266 */ 12267 ipf->ipf_end = end; 12268 ipf->ipf_nf_hdr_len = hdr_length; 12269 } else { 12270 /* Hard case, hole at the beginning. */ 12271 ipf->ipf_tail_mp = NULL; 12272 /* 12273 * ipf_end == 0 means that we have given up 12274 * on easy reassembly. 12275 */ 12276 ipf->ipf_end = 0; 12277 12278 /* Forget checksum offload from now on */ 12279 ipf->ipf_checksum_flags = 0; 12280 12281 /* 12282 * ipf_hole_cnt is set by ip_reassemble. 12283 * ipf_count is updated by ip_reassemble. 12284 * No need to check for return value here 12285 * as we don't expect reassembly to complete 12286 * or fail for the first fragment itself. 12287 */ 12288 (void) ip_reassemble(mp, ipf, 12289 (frag_offset_flags & IPH_OFFSET) << 3, 12290 (frag_offset_flags & IPH_MF), ill, msg_len); 12291 } 12292 /* Update per ipfb and ill byte counts */ 12293 ipfb->ipfb_count += ipf->ipf_count; 12294 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12295 ill->ill_frag_count += ipf->ipf_count; 12296 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12297 /* If the frag timer wasn't already going, start it. */ 12298 mutex_enter(&ill->ill_lock); 12299 ill_frag_timer_start(ill); 12300 mutex_exit(&ill->ill_lock); 12301 goto reass_done; 12302 } 12303 12304 /* 12305 * If the packet's flag has changed (it could be coming up 12306 * from an interface different than the previous, therefore 12307 * possibly different checksum capability), then forget about 12308 * any stored checksum states. Otherwise add the value to 12309 * the existing one stored in the fragment header. 12310 */ 12311 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12312 sum_val += ipf->ipf_checksum; 12313 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12314 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12315 ipf->ipf_checksum = sum_val; 12316 } else if (ipf->ipf_checksum_flags != 0) { 12317 /* Forget checksum offload from now on */ 12318 ipf->ipf_checksum_flags = 0; 12319 } 12320 12321 /* 12322 * We have a new piece of a datagram which is already being 12323 * reassembled. Update the ECN info if all IP fragments 12324 * are ECN capable. If there is one which is not, clear 12325 * all the info. If there is at least one which has CE 12326 * code point, IP needs to report that up to transport. 12327 */ 12328 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12329 if (ecn_info == IPH_ECN_CE) 12330 ipf->ipf_ecn = IPH_ECN_CE; 12331 } else { 12332 ipf->ipf_ecn = IPH_ECN_NECT; 12333 } 12334 if (offset && ipf->ipf_end == offset) { 12335 /* The new fragment fits at the end */ 12336 ipf->ipf_tail_mp->b_cont = mp; 12337 /* Update the byte count */ 12338 ipf->ipf_count += msg_len; 12339 /* Update per ipfb and ill byte counts */ 12340 ipfb->ipfb_count += msg_len; 12341 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12342 ill->ill_frag_count += msg_len; 12343 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12344 if (frag_offset_flags & IPH_MF) { 12345 /* More to come. */ 12346 ipf->ipf_end = end; 12347 ipf->ipf_tail_mp = tail_mp; 12348 goto reass_done; 12349 } 12350 } else { 12351 /* Go do the hard cases. */ 12352 int ret; 12353 12354 if (offset == 0) 12355 ipf->ipf_nf_hdr_len = hdr_length; 12356 12357 /* Save current byte count */ 12358 count = ipf->ipf_count; 12359 ret = ip_reassemble(mp, ipf, 12360 (frag_offset_flags & IPH_OFFSET) << 3, 12361 (frag_offset_flags & IPH_MF), ill, msg_len); 12362 /* Count of bytes added and subtracted (freeb()ed) */ 12363 count = ipf->ipf_count - count; 12364 if (count) { 12365 /* Update per ipfb and ill byte counts */ 12366 ipfb->ipfb_count += count; 12367 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12368 ill->ill_frag_count += count; 12369 ASSERT(ill->ill_frag_count > 0); 12370 } 12371 if (ret == IP_REASS_PARTIAL) { 12372 goto reass_done; 12373 } else if (ret == IP_REASS_FAILED) { 12374 /* Reassembly failed. Free up all resources */ 12375 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12376 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12377 IP_REASS_SET_START(t_mp, 0); 12378 IP_REASS_SET_END(t_mp, 0); 12379 } 12380 freemsg(mp); 12381 goto reass_done; 12382 } 12383 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12384 } 12385 /* 12386 * We have completed reassembly. Unhook the frag header from 12387 * the reassembly list. 12388 * 12389 * Before we free the frag header, record the ECN info 12390 * to report back to the transport. 12391 */ 12392 ecn_info = ipf->ipf_ecn; 12393 BUMP_MIB(&ip_mib, ipReasmOKs); 12394 ipfp = ipf->ipf_ptphn; 12395 12396 /* We need to supply these to caller */ 12397 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12398 sum_val = ipf->ipf_checksum; 12399 else 12400 sum_val = 0; 12401 12402 mp1 = ipf->ipf_mp; 12403 count = ipf->ipf_count; 12404 ipf = ipf->ipf_hash_next; 12405 if (ipf != NULL) 12406 ipf->ipf_ptphn = ipfp; 12407 ipfp[0] = ipf; 12408 ill->ill_frag_count -= count; 12409 ASSERT(ipfb->ipfb_count >= count); 12410 ipfb->ipfb_count -= count; 12411 ipfb->ipfb_frag_pkts--; 12412 mutex_exit(&ipfb->ipfb_lock); 12413 /* Ditch the frag header. */ 12414 mp = mp1->b_cont; 12415 12416 freeb(mp1); 12417 12418 /* Restore original IP length in header. */ 12419 packet_size = (uint32_t)msgdsize(mp); 12420 if (packet_size > IP_MAXPACKET) { 12421 freemsg(mp); 12422 BUMP_MIB(&ip_mib, ipInHdrErrors); 12423 return (B_FALSE); 12424 } 12425 12426 if (DB_REF(mp) > 1) { 12427 mblk_t *mp2 = copymsg(mp); 12428 12429 freemsg(mp); 12430 if (mp2 == NULL) { 12431 BUMP_MIB(&ip_mib, ipInDiscards); 12432 return (B_FALSE); 12433 } 12434 mp = mp2; 12435 } 12436 ipha = (ipha_t *)mp->b_rptr; 12437 12438 ipha->ipha_length = htons((uint16_t)packet_size); 12439 /* We're now complete, zip the frag state */ 12440 ipha->ipha_fragment_offset_and_flags = 0; 12441 /* Record the ECN info. */ 12442 ipha->ipha_type_of_service &= 0xFC; 12443 ipha->ipha_type_of_service |= ecn_info; 12444 *mpp = mp; 12445 12446 /* Reassembly is successful; return checksum information if needed */ 12447 if (cksum_val != NULL) 12448 *cksum_val = sum_val; 12449 if (cksum_flags != NULL) 12450 *cksum_flags = sum_flags; 12451 12452 return (B_TRUE); 12453 } 12454 12455 /* 12456 * Perform ip header check sum update local options. 12457 * return B_TRUE if all is well, else return B_FALSE and release 12458 * the mp. caller is responsible for decrementing ire ref cnt. 12459 */ 12460 static boolean_t 12461 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12462 { 12463 mblk_t *first_mp; 12464 boolean_t mctl_present; 12465 uint16_t sum; 12466 12467 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12468 /* 12469 * Don't do the checksum if it has gone through AH/ESP 12470 * processing. 12471 */ 12472 if (!mctl_present) { 12473 sum = ip_csum_hdr(ipha); 12474 if (sum != 0) { 12475 BUMP_MIB(&ip_mib, ipInCksumErrs); 12476 freemsg(first_mp); 12477 return (B_FALSE); 12478 } 12479 } 12480 12481 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12482 if (mctl_present) 12483 freeb(first_mp); 12484 return (B_FALSE); 12485 } 12486 12487 return (B_TRUE); 12488 } 12489 12490 /* 12491 * All udp packet are delivered to the local host via this routine. 12492 */ 12493 void 12494 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12495 ill_t *recv_ill) 12496 { 12497 uint32_t sum; 12498 uint32_t u1; 12499 boolean_t mctl_present; 12500 conn_t *connp; 12501 mblk_t *first_mp; 12502 uint16_t *up; 12503 ill_t *ill = (ill_t *)q->q_ptr; 12504 uint16_t reass_hck_flags = 0; 12505 12506 #define rptr ((uchar_t *)ipha) 12507 12508 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12509 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12510 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12511 12512 /* 12513 * FAST PATH for udp packets 12514 */ 12515 12516 /* u1 is # words of IP options */ 12517 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12518 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12519 12520 /* IP options present */ 12521 if (u1 != 0) 12522 goto ipoptions; 12523 12524 /* Check the IP header checksum. */ 12525 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12526 /* Clear the IP header h/w cksum flag */ 12527 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12528 } else { 12529 #define uph ((uint16_t *)ipha) 12530 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12531 uph[6] + uph[7] + uph[8] + uph[9]; 12532 #undef uph 12533 /* finish doing IP checksum */ 12534 sum = (sum & 0xFFFF) + (sum >> 16); 12535 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12536 /* 12537 * Don't verify header checksum if this packet is coming 12538 * back from AH/ESP as we already did it. 12539 */ 12540 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12541 BUMP_MIB(&ip_mib, ipInCksumErrs); 12542 freemsg(first_mp); 12543 return; 12544 } 12545 } 12546 12547 /* 12548 * Count for SNMP of inbound packets for ire. 12549 * if mctl is present this might be a secure packet and 12550 * has already been counted for in ip_proto_input(). 12551 */ 12552 if (!mctl_present) { 12553 UPDATE_IB_PKT_COUNT(ire); 12554 ire->ire_last_used_time = lbolt; 12555 } 12556 12557 /* packet part of fragmented IP packet? */ 12558 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12559 if (u1 & (IPH_MF | IPH_OFFSET)) { 12560 goto fragmented; 12561 } 12562 12563 /* u1 = IP header length (20 bytes) */ 12564 u1 = IP_SIMPLE_HDR_LENGTH; 12565 12566 /* packet does not contain complete IP & UDP headers */ 12567 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12568 goto udppullup; 12569 12570 /* up points to UDP header */ 12571 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12572 #define iphs ((uint16_t *)ipha) 12573 12574 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12575 if (up[3] != 0) { 12576 mblk_t *mp1 = mp->b_cont; 12577 boolean_t cksum_err; 12578 uint16_t hck_flags = 0; 12579 12580 /* Pseudo-header checksum */ 12581 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12582 iphs[9] + up[2]; 12583 12584 /* 12585 * Revert to software checksum calculation if the interface 12586 * isn't capable of checksum offload or if IPsec is present. 12587 */ 12588 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12589 hck_flags = DB_CKSUMFLAGS(mp); 12590 12591 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12592 IP_STAT(ip_in_sw_cksum); 12593 12594 IP_CKSUM_RECV(hck_flags, u1, 12595 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12596 (int32_t)((uchar_t *)up - rptr), 12597 mp, mp1, cksum_err); 12598 12599 if (cksum_err) { 12600 BUMP_MIB(&ip_mib, udpInCksumErrs); 12601 12602 if (hck_flags & HCK_FULLCKSUM) 12603 IP_STAT(ip_udp_in_full_hw_cksum_err); 12604 else if (hck_flags & HCK_PARTIALCKSUM) 12605 IP_STAT(ip_udp_in_part_hw_cksum_err); 12606 else 12607 IP_STAT(ip_udp_in_sw_cksum_err); 12608 12609 freemsg(first_mp); 12610 return; 12611 } 12612 } 12613 12614 /* Non-fragmented broadcast or multicast packet? */ 12615 if (ire->ire_type == IRE_BROADCAST) 12616 goto udpslowpath; 12617 12618 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12619 ire->ire_zoneid)) != NULL) { 12620 ASSERT(connp->conn_upq != NULL); 12621 IP_STAT(ip_udp_fast_path); 12622 12623 if (CONN_UDP_FLOWCTLD(connp)) { 12624 freemsg(mp); 12625 BUMP_MIB(&ip_mib, udpInOverflows); 12626 } else { 12627 if (!mctl_present) { 12628 BUMP_MIB(&ip_mib, ipInDelivers); 12629 } 12630 /* 12631 * mp and first_mp can change. 12632 */ 12633 if (ip_udp_check(q, connp, recv_ill, 12634 ipha, &mp, &first_mp, mctl_present)) { 12635 /* Send it upstream */ 12636 CONN_UDP_RECV(connp, mp); 12637 } 12638 } 12639 /* 12640 * freeb() cannot deal with null mblk being passed 12641 * in and first_mp can be set to null in the call 12642 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12643 */ 12644 if (mctl_present && first_mp != NULL) { 12645 freeb(first_mp); 12646 } 12647 CONN_DEC_REF(connp); 12648 return; 12649 } 12650 12651 /* 12652 * if we got here we know the packet is not fragmented and 12653 * has no options. The classifier could not find a conn_t and 12654 * most likely its an icmp packet so send it through slow path. 12655 */ 12656 12657 goto udpslowpath; 12658 12659 ipoptions: 12660 if (!ip_options_cksum(q, mp, ipha, ire)) { 12661 goto slow_done; 12662 } 12663 12664 UPDATE_IB_PKT_COUNT(ire); 12665 ire->ire_last_used_time = lbolt; 12666 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12667 if (u1 & (IPH_MF | IPH_OFFSET)) { 12668 fragmented: 12669 /* 12670 * "sum" and "reass_hck_flags" are non-zero if the 12671 * reassembled packet has a valid hardware computed 12672 * checksum information associated with it. 12673 */ 12674 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12675 goto slow_done; 12676 /* 12677 * Make sure that first_mp points back to mp as 12678 * the mp we came in with could have changed in 12679 * ip_rput_fragment(). 12680 */ 12681 ASSERT(!mctl_present); 12682 ipha = (ipha_t *)mp->b_rptr; 12683 first_mp = mp; 12684 } 12685 12686 /* Now we have a complete datagram, destined for this machine. */ 12687 u1 = IPH_HDR_LENGTH(ipha); 12688 /* Pull up the UDP header, if necessary. */ 12689 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12690 udppullup: 12691 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12692 BUMP_MIB(&ip_mib, ipInDiscards); 12693 freemsg(first_mp); 12694 goto slow_done; 12695 } 12696 ipha = (ipha_t *)mp->b_rptr; 12697 } 12698 12699 /* 12700 * Validate the checksum for the reassembled packet; for the 12701 * pullup case we calculate the payload checksum in software. 12702 */ 12703 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12704 if (up[3] != 0) { 12705 boolean_t cksum_err; 12706 12707 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12708 IP_STAT(ip_in_sw_cksum); 12709 12710 IP_CKSUM_RECV_REASS(reass_hck_flags, 12711 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12712 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12713 iphs[9] + up[2], sum, cksum_err); 12714 12715 if (cksum_err) { 12716 BUMP_MIB(&ip_mib, udpInCksumErrs); 12717 12718 if (reass_hck_flags & HCK_FULLCKSUM) 12719 IP_STAT(ip_udp_in_full_hw_cksum_err); 12720 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12721 IP_STAT(ip_udp_in_part_hw_cksum_err); 12722 else 12723 IP_STAT(ip_udp_in_sw_cksum_err); 12724 12725 freemsg(first_mp); 12726 goto slow_done; 12727 } 12728 } 12729 udpslowpath: 12730 12731 /* Clear hardware checksum flag to be safe */ 12732 DB_CKSUMFLAGS(mp) = 0; 12733 12734 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12735 (ire->ire_type == IRE_BROADCAST), 12736 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12737 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12738 12739 slow_done: 12740 IP_STAT(ip_udp_slow_path); 12741 return; 12742 12743 #undef iphs 12744 #undef rptr 12745 } 12746 12747 /* ARGSUSED */ 12748 static mblk_t * 12749 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12750 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12751 ill_rx_ring_t *ill_ring) 12752 { 12753 conn_t *connp; 12754 uint32_t sum; 12755 uint32_t u1; 12756 uint16_t *up; 12757 int offset; 12758 ssize_t len; 12759 mblk_t *mp1; 12760 boolean_t syn_present = B_FALSE; 12761 tcph_t *tcph; 12762 uint_t ip_hdr_len; 12763 ill_t *ill = (ill_t *)q->q_ptr; 12764 zoneid_t zoneid = ire->ire_zoneid; 12765 boolean_t cksum_err; 12766 uint16_t hck_flags = 0; 12767 12768 #define rptr ((uchar_t *)ipha) 12769 12770 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12771 12772 /* 12773 * FAST PATH for tcp packets 12774 */ 12775 12776 /* u1 is # words of IP options */ 12777 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12778 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12779 12780 /* IP options present */ 12781 if (u1) { 12782 goto ipoptions; 12783 } else { 12784 /* Check the IP header checksum. */ 12785 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12786 /* Clear the IP header h/w cksum flag */ 12787 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12788 } else { 12789 #define uph ((uint16_t *)ipha) 12790 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12791 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12792 #undef uph 12793 /* finish doing IP checksum */ 12794 sum = (sum & 0xFFFF) + (sum >> 16); 12795 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12796 /* 12797 * Don't verify header checksum if this packet 12798 * is coming back from AH/ESP as we already did it. 12799 */ 12800 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12801 BUMP_MIB(&ip_mib, ipInCksumErrs); 12802 goto error; 12803 } 12804 } 12805 } 12806 12807 if (!mctl_present) { 12808 UPDATE_IB_PKT_COUNT(ire); 12809 ire->ire_last_used_time = lbolt; 12810 } 12811 12812 /* packet part of fragmented IP packet? */ 12813 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12814 if (u1 & (IPH_MF | IPH_OFFSET)) { 12815 goto fragmented; 12816 } 12817 12818 /* u1 = IP header length (20 bytes) */ 12819 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12820 12821 /* does packet contain IP+TCP headers? */ 12822 len = mp->b_wptr - rptr; 12823 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12824 IP_STAT(ip_tcppullup); 12825 goto tcppullup; 12826 } 12827 12828 /* TCP options present? */ 12829 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12830 12831 /* 12832 * If options need to be pulled up, then goto tcpoptions. 12833 * otherwise we are still in the fast path 12834 */ 12835 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12836 IP_STAT(ip_tcpoptions); 12837 goto tcpoptions; 12838 } 12839 12840 /* multiple mblks of tcp data? */ 12841 if ((mp1 = mp->b_cont) != NULL) { 12842 /* more then two? */ 12843 if (mp1->b_cont != NULL) { 12844 IP_STAT(ip_multipkttcp); 12845 goto multipkttcp; 12846 } 12847 len += mp1->b_wptr - mp1->b_rptr; 12848 } 12849 12850 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12851 12852 /* part of pseudo checksum */ 12853 12854 /* TCP datagram length */ 12855 u1 = len - IP_SIMPLE_HDR_LENGTH; 12856 12857 #define iphs ((uint16_t *)ipha) 12858 12859 #ifdef _BIG_ENDIAN 12860 u1 += IPPROTO_TCP; 12861 #else 12862 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12863 #endif 12864 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12865 12866 /* 12867 * Revert to software checksum calculation if the interface 12868 * isn't capable of checksum offload or if IPsec is present. 12869 */ 12870 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12871 hck_flags = DB_CKSUMFLAGS(mp); 12872 12873 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12874 IP_STAT(ip_in_sw_cksum); 12875 12876 IP_CKSUM_RECV(hck_flags, u1, 12877 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12878 (int32_t)((uchar_t *)up - rptr), 12879 mp, mp1, cksum_err); 12880 12881 if (cksum_err) { 12882 BUMP_MIB(&ip_mib, tcpInErrs); 12883 12884 if (hck_flags & HCK_FULLCKSUM) 12885 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12886 else if (hck_flags & HCK_PARTIALCKSUM) 12887 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12888 else 12889 IP_STAT(ip_tcp_in_sw_cksum_err); 12890 12891 goto error; 12892 } 12893 12894 try_again: 12895 12896 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12897 NULL) { 12898 /* Send the TH_RST */ 12899 goto no_conn; 12900 } 12901 12902 /* 12903 * TCP FAST PATH for AF_INET socket. 12904 * 12905 * TCP fast path to avoid extra work. An AF_INET socket type 12906 * does not have facility to receive extra information via 12907 * ip_process or ip_add_info. Also, when the connection was 12908 * established, we made a check if this connection is impacted 12909 * by any global IPSec policy or per connection policy (a 12910 * policy that comes in effect later will not apply to this 12911 * connection). Since all this can be determined at the 12912 * connection establishment time, a quick check of flags 12913 * can avoid extra work. 12914 */ 12915 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12916 !IPP_ENABLED(IPP_LOCAL_IN)) { 12917 ASSERT(first_mp == mp); 12918 SET_SQUEUE(mp, tcp_rput_data, connp); 12919 return (mp); 12920 } 12921 12922 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12923 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12924 if (IPCL_IS_TCP(connp)) { 12925 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12926 DB_CKSUMSTART(mp) = 12927 (intptr_t)ip_squeue_get(ill_ring); 12928 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12929 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12930 SET_SQUEUE(mp, connp->conn_recv, connp); 12931 return (mp); 12932 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12933 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12934 ip_squeue_enter_unbound++; 12935 SET_SQUEUE(mp, tcp_conn_request_unbound, 12936 connp); 12937 return (mp); 12938 } 12939 syn_present = B_TRUE; 12940 } 12941 12942 } 12943 12944 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12945 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12946 12947 /* No need to send this packet to TCP */ 12948 if ((flags & TH_RST) || (flags & TH_URG)) { 12949 CONN_DEC_REF(connp); 12950 freemsg(first_mp); 12951 return (NULL); 12952 } 12953 if (flags & TH_ACK) { 12954 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 12955 CONN_DEC_REF(connp); 12956 return (NULL); 12957 } 12958 12959 CONN_DEC_REF(connp); 12960 freemsg(first_mp); 12961 return (NULL); 12962 } 12963 12964 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12965 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12966 ipha, NULL, mctl_present); 12967 if (first_mp == NULL) { 12968 CONN_DEC_REF(connp); 12969 return (NULL); 12970 } 12971 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12972 ASSERT(syn_present); 12973 if (mctl_present) { 12974 ASSERT(first_mp != mp); 12975 first_mp->b_datap->db_struioflag |= 12976 STRUIO_POLICY; 12977 } else { 12978 ASSERT(first_mp == mp); 12979 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12980 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12981 } 12982 } else { 12983 /* 12984 * Discard first_mp early since we're dealing with a 12985 * fully-connected conn_t and tcp doesn't do policy in 12986 * this case. 12987 */ 12988 if (mctl_present) { 12989 freeb(first_mp); 12990 mctl_present = B_FALSE; 12991 } 12992 first_mp = mp; 12993 } 12994 } 12995 12996 /* Initiate IPPF processing for fastpath */ 12997 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12998 uint32_t ill_index; 12999 13000 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13001 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13002 if (mp == NULL) { 13003 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13004 "deferred/dropped during IPPF processing\n")); 13005 CONN_DEC_REF(connp); 13006 if (mctl_present) 13007 freeb(first_mp); 13008 return (NULL); 13009 } else if (mctl_present) { 13010 /* 13011 * ip_process might return a new mp. 13012 */ 13013 ASSERT(first_mp != mp); 13014 first_mp->b_cont = mp; 13015 } else { 13016 first_mp = mp; 13017 } 13018 13019 } 13020 13021 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 13022 mp = ip_add_info(mp, recv_ill, flags); 13023 if (mp == NULL) { 13024 CONN_DEC_REF(connp); 13025 if (mctl_present) 13026 freeb(first_mp); 13027 return (NULL); 13028 } else if (mctl_present) { 13029 /* 13030 * ip_add_info might return a new mp. 13031 */ 13032 ASSERT(first_mp != mp); 13033 first_mp->b_cont = mp; 13034 } else { 13035 first_mp = mp; 13036 } 13037 } 13038 13039 if (IPCL_IS_TCP(connp)) { 13040 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13041 return (first_mp); 13042 } else { 13043 putnext(connp->conn_rq, first_mp); 13044 CONN_DEC_REF(connp); 13045 return (NULL); 13046 } 13047 13048 no_conn: 13049 /* Initiate IPPf processing, if needed. */ 13050 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13051 uint32_t ill_index; 13052 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13053 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13054 if (first_mp == NULL) { 13055 return (NULL); 13056 } 13057 } 13058 BUMP_MIB(&ip_mib, ipInDelivers); 13059 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 13060 return (NULL); 13061 ipoptions: 13062 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 13063 goto slow_done; 13064 } 13065 13066 UPDATE_IB_PKT_COUNT(ire); 13067 ire->ire_last_used_time = lbolt; 13068 13069 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13070 if (u1 & (IPH_MF | IPH_OFFSET)) { 13071 fragmented: 13072 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13073 if (mctl_present) 13074 freeb(first_mp); 13075 goto slow_done; 13076 } 13077 /* 13078 * Make sure that first_mp points back to mp as 13079 * the mp we came in with could have changed in 13080 * ip_rput_fragment(). 13081 */ 13082 ASSERT(!mctl_present); 13083 ipha = (ipha_t *)mp->b_rptr; 13084 first_mp = mp; 13085 } 13086 13087 /* Now we have a complete datagram, destined for this machine. */ 13088 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13089 13090 len = mp->b_wptr - mp->b_rptr; 13091 /* Pull up a minimal TCP header, if necessary. */ 13092 if (len < (u1 + 20)) { 13093 tcppullup: 13094 if (!pullupmsg(mp, u1 + 20)) { 13095 BUMP_MIB(&ip_mib, ipInDiscards); 13096 goto error; 13097 } 13098 ipha = (ipha_t *)mp->b_rptr; 13099 len = mp->b_wptr - mp->b_rptr; 13100 } 13101 13102 /* 13103 * Extract the offset field from the TCP header. As usual, we 13104 * try to help the compiler more than the reader. 13105 */ 13106 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13107 if (offset != 5) { 13108 tcpoptions: 13109 if (offset < 5) { 13110 BUMP_MIB(&ip_mib, ipInDiscards); 13111 goto error; 13112 } 13113 /* 13114 * There must be TCP options. 13115 * Make sure we can grab them. 13116 */ 13117 offset <<= 2; 13118 offset += u1; 13119 if (len < offset) { 13120 if (!pullupmsg(mp, offset)) { 13121 BUMP_MIB(&ip_mib, ipInDiscards); 13122 goto error; 13123 } 13124 ipha = (ipha_t *)mp->b_rptr; 13125 len = mp->b_wptr - rptr; 13126 } 13127 } 13128 13129 /* Get the total packet length in len, including headers. */ 13130 if (mp->b_cont) { 13131 multipkttcp: 13132 len = msgdsize(mp); 13133 } 13134 13135 /* 13136 * Check the TCP checksum by pulling together the pseudo- 13137 * header checksum, and passing it to ip_csum to be added in 13138 * with the TCP datagram. 13139 * 13140 * Since we are not using the hwcksum if available we must 13141 * clear the flag. We may come here via tcppullup or tcpoptions. 13142 * If either of these fails along the way the mblk is freed. 13143 * If this logic ever changes and mblk is reused to say send 13144 * ICMP's back, then this flag may need to be cleared in 13145 * other places as well. 13146 */ 13147 DB_CKSUMFLAGS(mp) = 0; 13148 13149 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13150 13151 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13152 #ifdef _BIG_ENDIAN 13153 u1 += IPPROTO_TCP; 13154 #else 13155 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13156 #endif 13157 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13158 /* 13159 * Not M_DATA mblk or its a dup, so do the checksum now. 13160 */ 13161 IP_STAT(ip_in_sw_cksum); 13162 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13163 BUMP_MIB(&ip_mib, tcpInErrs); 13164 goto error; 13165 } 13166 13167 IP_STAT(ip_tcp_slow_path); 13168 goto try_again; 13169 #undef iphs 13170 #undef rptr 13171 13172 error: 13173 freemsg(first_mp); 13174 slow_done: 13175 return (NULL); 13176 } 13177 13178 /* ARGSUSED */ 13179 static void 13180 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13181 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13182 { 13183 conn_t *connp; 13184 uint32_t sum; 13185 uint32_t u1; 13186 ssize_t len; 13187 sctp_hdr_t *sctph; 13188 zoneid_t zoneid = ire->ire_zoneid; 13189 uint32_t pktsum; 13190 uint32_t calcsum; 13191 uint32_t ports; 13192 uint_t ipif_seqid; 13193 in6_addr_t map_src, map_dst; 13194 ill_t *ill = (ill_t *)q->q_ptr; 13195 13196 #define rptr ((uchar_t *)ipha) 13197 13198 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13199 13200 /* u1 is # words of IP options */ 13201 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13202 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13203 13204 /* IP options present */ 13205 if (u1 > 0) { 13206 goto ipoptions; 13207 } else { 13208 /* Check the IP header checksum. */ 13209 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13210 #define uph ((uint16_t *)ipha) 13211 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13212 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13213 #undef uph 13214 /* finish doing IP checksum */ 13215 sum = (sum & 0xFFFF) + (sum >> 16); 13216 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13217 /* 13218 * Don't verify header checksum if this packet 13219 * is coming back from AH/ESP as we already did it. 13220 */ 13221 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13222 BUMP_MIB(&ip_mib, ipInCksumErrs); 13223 goto error; 13224 } 13225 } 13226 /* 13227 * Since there is no SCTP h/w cksum support yet, just 13228 * clear the flag. 13229 */ 13230 DB_CKSUMFLAGS(mp) = 0; 13231 } 13232 13233 /* 13234 * Don't verify header checksum if this packet is coming 13235 * back from AH/ESP as we already did it. 13236 */ 13237 if (!mctl_present) { 13238 UPDATE_IB_PKT_COUNT(ire); 13239 ire->ire_last_used_time = lbolt; 13240 } 13241 13242 /* packet part of fragmented IP packet? */ 13243 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13244 if (u1 & (IPH_MF | IPH_OFFSET)) 13245 goto fragmented; 13246 13247 /* u1 = IP header length (20 bytes) */ 13248 u1 = IP_SIMPLE_HDR_LENGTH; 13249 13250 find_sctp_client: 13251 /* Pullup if we don't have the sctp common header. */ 13252 len = MBLKL(mp); 13253 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13254 if (mp->b_cont == NULL || 13255 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13256 BUMP_MIB(&ip_mib, ipInDiscards); 13257 goto error; 13258 } 13259 ipha = (ipha_t *)mp->b_rptr; 13260 len = MBLKL(mp); 13261 } 13262 13263 sctph = (sctp_hdr_t *)(rptr + u1); 13264 #ifdef DEBUG 13265 if (!skip_sctp_cksum) { 13266 #endif 13267 pktsum = sctph->sh_chksum; 13268 sctph->sh_chksum = 0; 13269 calcsum = sctp_cksum(mp, u1); 13270 if (calcsum != pktsum) { 13271 BUMP_MIB(&sctp_mib, sctpChecksumError); 13272 goto error; 13273 } 13274 sctph->sh_chksum = pktsum; 13275 #ifdef DEBUG /* skip_sctp_cksum */ 13276 } 13277 #endif 13278 /* get the ports */ 13279 ports = *(uint32_t *)&sctph->sh_sport; 13280 13281 ipif_seqid = ire->ire_ipif->ipif_seqid; 13282 IRE_REFRELE(ire); 13283 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13284 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13285 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13286 mp)) == NULL) { 13287 /* Check for raw socket or OOTB handling */ 13288 goto no_conn; 13289 } 13290 13291 /* Found a client; up it goes */ 13292 BUMP_MIB(&ip_mib, ipInDelivers); 13293 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13294 return; 13295 13296 no_conn: 13297 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13298 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13299 return; 13300 13301 ipoptions: 13302 DB_CKSUMFLAGS(mp) = 0; 13303 if (!ip_options_cksum(q, first_mp, ipha, ire)) 13304 goto slow_done; 13305 13306 UPDATE_IB_PKT_COUNT(ire); 13307 ire->ire_last_used_time = lbolt; 13308 13309 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13310 if (u1 & (IPH_MF | IPH_OFFSET)) { 13311 fragmented: 13312 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13313 goto slow_done; 13314 /* 13315 * Make sure that first_mp points back to mp as 13316 * the mp we came in with could have changed in 13317 * ip_rput_fragment(). 13318 */ 13319 ASSERT(!mctl_present); 13320 ipha = (ipha_t *)mp->b_rptr; 13321 first_mp = mp; 13322 } 13323 13324 /* Now we have a complete datagram, destined for this machine. */ 13325 u1 = IPH_HDR_LENGTH(ipha); 13326 goto find_sctp_client; 13327 #undef iphs 13328 #undef rptr 13329 13330 error: 13331 freemsg(first_mp); 13332 slow_done: 13333 IRE_REFRELE(ire); 13334 } 13335 13336 #define VER_BITS 0xF0 13337 #define VERSION_6 0x60 13338 13339 static boolean_t 13340 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 13341 ipaddr_t *dstp) 13342 { 13343 uint_t opt_len; 13344 ipha_t *ipha; 13345 ssize_t len; 13346 uint_t pkt_len; 13347 13348 IP_STAT(ip_ipoptions); 13349 ipha = *iphapp; 13350 13351 #define rptr ((uchar_t *)ipha) 13352 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13353 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13354 BUMP_MIB(&ip_mib, ipInIPv6); 13355 freemsg(mp); 13356 return (B_FALSE); 13357 } 13358 13359 /* multiple mblk or too short */ 13360 pkt_len = ntohs(ipha->ipha_length); 13361 13362 /* Get the number of words of IP options in the IP header. */ 13363 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13364 if (opt_len) { 13365 /* IP Options present! Validate and process. */ 13366 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13367 BUMP_MIB(&ip_mib, ipInHdrErrors); 13368 goto done; 13369 } 13370 /* 13371 * Recompute complete header length and make sure we 13372 * have access to all of it. 13373 */ 13374 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13375 if (len > (mp->b_wptr - rptr)) { 13376 if (len > pkt_len) { 13377 BUMP_MIB(&ip_mib, ipInHdrErrors); 13378 goto done; 13379 } 13380 if (!pullupmsg(mp, len)) { 13381 BUMP_MIB(&ip_mib, ipInDiscards); 13382 goto done; 13383 } 13384 ipha = (ipha_t *)mp->b_rptr; 13385 } 13386 /* 13387 * Go off to ip_rput_options which returns the next hop 13388 * destination address, which may have been affected 13389 * by source routing. 13390 */ 13391 IP_STAT(ip_opt); 13392 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13393 return (B_FALSE); 13394 } 13395 } 13396 *iphapp = ipha; 13397 return (B_TRUE); 13398 done: 13399 /* clear b_prev - used by ip_mroute_decap */ 13400 mp->b_prev = NULL; 13401 freemsg(mp); 13402 return (B_FALSE); 13403 #undef rptr 13404 } 13405 13406 /* 13407 * Deal with the fact that there is no ire for the destination. 13408 * The incoming ill (in_ill) is passed in to ip_newroute only 13409 * in the case of packets coming from mobile ip forward tunnel. 13410 * It must be null otherwise. 13411 */ 13412 static ire_t * 13413 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13414 ipaddr_t dst) 13415 { 13416 ipha_t *ipha; 13417 ill_t *ill; 13418 ire_t *ire; 13419 boolean_t check_multirt = B_FALSE; 13420 13421 ipha = (ipha_t *)mp->b_rptr; 13422 ill = (ill_t *)q->q_ptr; 13423 13424 ASSERT(ill != NULL); 13425 /* 13426 * No IRE for this destination, so it can't be for us. 13427 * Unless we are forwarding, drop the packet. 13428 * We have to let source routed packets through 13429 * since we don't yet know if they are 'ping -l' 13430 * packets i.e. if they will go out over the 13431 * same interface as they came in on. 13432 */ 13433 if (ll_multicast) { 13434 freemsg(mp); 13435 return (NULL); 13436 } 13437 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13438 BUMP_MIB(&ip_mib, ipForwProhibits); 13439 freemsg(mp); 13440 return (NULL); 13441 } 13442 13443 /* 13444 * Mark this packet as having originated externally. 13445 * 13446 * For non-forwarding code path, ire_send later double 13447 * checks this interface to see if it is still exists 13448 * post-ARP resolution. 13449 * 13450 * Also, IPQOS uses this to differentiate between 13451 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13452 * QOS packet processing in ip_wput_attach_llhdr(). 13453 * The QoS module can mark the b_band for a fastpath message 13454 * or the dl_priority field in a unitdata_req header for 13455 * CoS marking. This info can only be found in 13456 * ip_wput_attach_llhdr(). 13457 */ 13458 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13459 /* 13460 * Clear the indication that this may have a hardware checksum 13461 * as we are not using it 13462 */ 13463 DB_CKSUMFLAGS(mp) = 0; 13464 13465 if (in_ill != NULL) { 13466 /* 13467 * Now hand the packet to ip_newroute. 13468 */ 13469 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13470 return (NULL); 13471 } 13472 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13473 MBLK_GETLABEL(mp)); 13474 13475 if (ire == NULL && check_multirt) { 13476 /* Let ip_newroute handle CGTP */ 13477 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13478 return (NULL); 13479 } 13480 13481 if (ire != NULL) 13482 return (ire); 13483 13484 mp->b_prev = mp->b_next = 0; 13485 /* send icmp unreachable */ 13486 q = WR(q); 13487 /* Sent by forwarding path, and router is global zone */ 13488 if (ip_source_routed(ipha)) { 13489 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13490 GLOBAL_ZONEID); 13491 } else { 13492 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13493 } 13494 13495 return (NULL); 13496 13497 } 13498 13499 /* 13500 * check ip header length and align it. 13501 */ 13502 static boolean_t 13503 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13504 { 13505 ssize_t len; 13506 ill_t *ill; 13507 ipha_t *ipha; 13508 13509 len = MBLKL(mp); 13510 13511 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13512 if (!OK_32PTR(mp->b_rptr)) 13513 IP_STAT(ip_notaligned1); 13514 else 13515 IP_STAT(ip_notaligned2); 13516 /* Guard against bogus device drivers */ 13517 if (len < 0) { 13518 /* clear b_prev - used by ip_mroute_decap */ 13519 mp->b_prev = NULL; 13520 BUMP_MIB(&ip_mib, ipInHdrErrors); 13521 freemsg(mp); 13522 return (B_FALSE); 13523 } 13524 13525 if (ip_rput_pullups++ == 0) { 13526 ill = (ill_t *)q->q_ptr; 13527 ipha = (ipha_t *)mp->b_rptr; 13528 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13529 "ip_check_and_align_header: %s forced us to " 13530 " pullup pkt, hdr len %ld, hdr addr %p", 13531 ill->ill_name, len, ipha); 13532 } 13533 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13534 /* clear b_prev - used by ip_mroute_decap */ 13535 mp->b_prev = NULL; 13536 BUMP_MIB(&ip_mib, ipInDiscards); 13537 freemsg(mp); 13538 return (B_FALSE); 13539 } 13540 } 13541 return (B_TRUE); 13542 } 13543 13544 static boolean_t 13545 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13546 { 13547 ill_group_t *ill_group; 13548 ill_group_t *ire_group; 13549 queue_t *q; 13550 ill_t *ire_ill; 13551 uint_t ill_ifindex; 13552 13553 q = *qp; 13554 /* 13555 * We need to check to make sure the packet came in 13556 * on the queue associated with the destination IRE. 13557 * Note that for multicast packets and broadcast packets sent to 13558 * a broadcast address which is shared between multiple interfaces 13559 * we should not do this since we just got a random broadcast ire. 13560 */ 13561 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13562 boolean_t check_multi = B_TRUE; 13563 13564 /* 13565 * This packet came in on an interface other than the 13566 * one associated with the destination address. 13567 * "Gateway" it to the appropriate interface here. 13568 * As long as the ills belong to the same group, 13569 * we don't consider them to arriving on the wrong 13570 * interface. Thus, when the switch is doing inbound 13571 * load spreading, we won't drop packets when we 13572 * are doing strict multihoming checks. Note, the 13573 * same holds true for 'usesrc groups' where the 13574 * destination address may belong to another interface 13575 * to allow multipathing to happen 13576 */ 13577 ill_group = ill->ill_group; 13578 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13579 ill_ifindex = ill->ill_usesrc_ifindex; 13580 ire_group = ire_ill->ill_group; 13581 13582 /* 13583 * If it's part of the same IPMP group, or if it's a legal 13584 * address on the 'usesrc' interface, then bypass strict 13585 * checks. 13586 */ 13587 if (ill_group != NULL && ill_group == ire_group) { 13588 check_multi = B_FALSE; 13589 } else if (ill_ifindex != 0 && 13590 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13591 check_multi = B_FALSE; 13592 } 13593 13594 if (check_multi && 13595 ip_strict_dst_multihoming && 13596 ((ill->ill_flags & 13597 ire->ire_ipif->ipif_ill->ill_flags & 13598 ILLF_ROUTER) == 0)) { 13599 /* Drop packet */ 13600 BUMP_MIB(&ip_mib, ipForwProhibits); 13601 freemsg(mp); 13602 return (B_TRUE); 13603 } 13604 13605 /* 13606 * Change the queue (for non-virtual destination network 13607 * interfaces) and ip_rput_local will be called with the right 13608 * queue 13609 */ 13610 q = ire->ire_rfq; 13611 } 13612 /* Must be broadcast. We'll take it. */ 13613 *qp = q; 13614 return (B_FALSE); 13615 } 13616 13617 ire_t * 13618 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13619 { 13620 ipha_t *ipha; 13621 ipaddr_t ip_dst, ip_src; 13622 ire_t *src_ire = NULL; 13623 ill_t *stq_ill; 13624 uint_t hlen; 13625 uint32_t sum; 13626 queue_t *dev_q; 13627 boolean_t check_multirt = B_FALSE; 13628 13629 13630 ipha = (ipha_t *)mp->b_rptr; 13631 13632 /* 13633 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13634 * The loopback address check for both src and dst has already 13635 * been checked in ip_input 13636 */ 13637 ip_dst = ntohl(dst); 13638 ip_src = ntohl(ipha->ipha_src); 13639 13640 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13641 IN_CLASSD(ip_src)) { 13642 BUMP_MIB(&ip_mib, ipForwProhibits); 13643 goto drop; 13644 } 13645 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13646 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13647 13648 if (src_ire != NULL) { 13649 BUMP_MIB(&ip_mib, ipForwProhibits); 13650 goto drop; 13651 } 13652 13653 /* No ire cache of nexthop. So first create one */ 13654 if (ire == NULL) { 13655 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13656 /* 13657 * We only come to ip_fast_forward if ip_cgtp_filter is 13658 * is not set. So upon return from ire_forward 13659 * check_multirt should remain as false. 13660 */ 13661 ASSERT(!check_multirt); 13662 if (ire == NULL) { 13663 BUMP_MIB(&ip_mib, ipInDiscards); 13664 mp->b_prev = mp->b_next = 0; 13665 /* send icmp unreachable */ 13666 /* Sent by forwarding path, and router is global zone */ 13667 if (ip_source_routed(ipha)) { 13668 icmp_unreachable(ill->ill_wq, mp, 13669 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13670 } else { 13671 icmp_unreachable(ill->ill_wq, mp, 13672 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13673 } 13674 return (ire); 13675 } 13676 } 13677 13678 /* 13679 * Forwarding fastpath exception case: 13680 * If either of the follwoing case is true, we take 13681 * the slowpath 13682 * o forwarding is not enabled 13683 * o incoming and outgoing interface are the same, or the same 13684 * IPMP group 13685 * o corresponding ire is in incomplete state 13686 * o packet needs fragmentation 13687 * 13688 * The codeflow from here on is thus: 13689 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13690 */ 13691 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13692 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13693 !(ill->ill_flags & ILLF_ROUTER) || 13694 (ill == stq_ill) || 13695 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13696 (ire->ire_nce == NULL) || 13697 (ire->ire_nce->nce_state != ND_REACHABLE) || 13698 (ntohs(ipha->ipha_length) > ire->ire_max_frag) || 13699 ipha->ipha_ttl <= 1) { 13700 ip_rput_process_forward(ill->ill_rq, mp, ire, 13701 ipha, ill, B_FALSE); 13702 return (ire); 13703 } 13704 13705 DTRACE_PROBE4(ip4__forwarding__start, 13706 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13707 13708 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 13709 ill, stq_ill, ipha, mp, mp); 13710 13711 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13712 13713 if (mp == NULL) 13714 goto drop; 13715 13716 mp->b_datap->db_struioun.cksum.flags = 0; 13717 /* Adjust the checksum to reflect the ttl decrement. */ 13718 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13719 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13720 ipha->ipha_ttl--; 13721 13722 dev_q = ire->ire_stq->q_next; 13723 if ((dev_q->q_next != NULL || 13724 dev_q->q_first != NULL) && !canput(dev_q)) { 13725 goto indiscard; 13726 } 13727 13728 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13729 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13730 13731 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13732 mblk_t *mpip = mp; 13733 13734 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13735 if (mp != NULL) { 13736 DTRACE_PROBE4(ip4__physical__out__start, 13737 ill_t *, NULL, ill_t *, stq_ill, 13738 ipha_t *, ipha, mblk_t *, mp); 13739 FW_HOOKS(ip4_physical_out_event, 13740 ipv4firewall_physical_out, 13741 NULL, stq_ill, ipha, mp, mpip); 13742 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13743 mp); 13744 if (mp == NULL) 13745 goto drop; 13746 13747 UPDATE_IB_PKT_COUNT(ire); 13748 ire->ire_last_used_time = lbolt; 13749 BUMP_MIB(&ip_mib, ipForwDatagrams); 13750 putnext(ire->ire_stq, mp); 13751 return (ire); 13752 } 13753 } 13754 13755 indiscard: 13756 BUMP_MIB(&ip_mib, ipInDiscards); 13757 drop: 13758 if (mp != NULL) 13759 freemsg(mp); 13760 if (src_ire != NULL) 13761 ire_refrele(src_ire); 13762 return (ire); 13763 13764 } 13765 13766 /* 13767 * This function is called in the forwarding slowpath, when 13768 * either the ire lacks the link-layer address, or the packet needs 13769 * further processing(eg. fragmentation), before transmission. 13770 */ 13771 13772 static void 13773 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13774 ill_t *ill, boolean_t ll_multicast) 13775 { 13776 ill_group_t *ill_group; 13777 ill_group_t *ire_group; 13778 queue_t *dev_q; 13779 ire_t *src_ire; 13780 13781 ASSERT(ire->ire_stq != NULL); 13782 13783 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13784 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13785 13786 if (ll_multicast != 0) 13787 goto drop_pkt; 13788 13789 /* 13790 * check if ipha_src is a broadcast address. Note that this 13791 * check is redundant when we get here from ip_fast_forward() 13792 * which has already done this check. However, since we can 13793 * also get here from ip_rput_process_broadcast() or, for 13794 * for the slow path through ip_fast_forward(), we perform 13795 * the check again for code-reusability 13796 */ 13797 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13798 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13799 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13800 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13801 if (src_ire != NULL) 13802 ire_refrele(src_ire); 13803 BUMP_MIB(&ip_mib, ipForwProhibits); 13804 ip2dbg(("ip_rput_process_forward: Received packet with" 13805 " bad src/dst address on %s\n", ill->ill_name)); 13806 goto drop_pkt; 13807 } 13808 13809 ill_group = ill->ill_group; 13810 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13811 /* 13812 * Check if we want to forward this one at this time. 13813 * We allow source routed packets on a host provided that 13814 * they go out the same interface or same interface group 13815 * as they came in on. 13816 * 13817 * XXX To be quicker, we may wish to not chase pointers to 13818 * get the ILLF_ROUTER flag and instead store the 13819 * forwarding policy in the ire. An unfortunate 13820 * side-effect of that would be requiring an ire flush 13821 * whenever the ILLF_ROUTER flag changes. 13822 */ 13823 if (((ill->ill_flags & 13824 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13825 ILLF_ROUTER) == 0) && 13826 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13827 (ill_group != NULL && ill_group == ire_group)))) { 13828 BUMP_MIB(&ip_mib, ipForwProhibits); 13829 if (ip_source_routed(ipha)) { 13830 q = WR(q); 13831 /* 13832 * Clear the indication that this may have 13833 * hardware checksum as we are not using it. 13834 */ 13835 DB_CKSUMFLAGS(mp) = 0; 13836 /* Sent by forwarding path, and router is global zone */ 13837 icmp_unreachable(q, mp, 13838 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13839 return; 13840 } 13841 goto drop_pkt; 13842 } 13843 13844 /* Packet is being forwarded. Turning off hwcksum flag. */ 13845 DB_CKSUMFLAGS(mp) = 0; 13846 if (ip_g_send_redirects) { 13847 /* 13848 * Check whether the incoming interface and outgoing 13849 * interface is part of the same group. If so, 13850 * send redirects. 13851 * 13852 * Check the source address to see if it originated 13853 * on the same logical subnet it is going back out on. 13854 * If so, we should be able to send it a redirect. 13855 * Avoid sending a redirect if the destination 13856 * is directly connected (i.e., ipha_dst is the same 13857 * as ire_gateway_addr or the ire_addr of the 13858 * nexthop IRE_CACHE ), or if the packet was source 13859 * routed out this interface. 13860 */ 13861 ipaddr_t src, nhop; 13862 mblk_t *mp1; 13863 ire_t *nhop_ire = NULL; 13864 13865 /* 13866 * Check whether ire_rfq and q are from the same ill 13867 * or if they are not same, they at least belong 13868 * to the same group. If so, send redirects. 13869 */ 13870 if ((ire->ire_rfq == q || 13871 (ill_group != NULL && ill_group == ire_group)) && 13872 !ip_source_routed(ipha)) { 13873 13874 nhop = (ire->ire_gateway_addr != 0 ? 13875 ire->ire_gateway_addr : ire->ire_addr); 13876 13877 if (ipha->ipha_dst == nhop) { 13878 /* 13879 * We avoid sending a redirect if the 13880 * destination is directly connected 13881 * because it is possible that multiple 13882 * IP subnets may have been configured on 13883 * the link, and the source may not 13884 * be on the same subnet as ip destination, 13885 * even though they are on the same 13886 * physical link. 13887 */ 13888 goto sendit; 13889 } 13890 13891 src = ipha->ipha_src; 13892 13893 /* 13894 * We look up the interface ire for the nexthop, 13895 * to see if ipha_src is in the same subnet 13896 * as the nexthop. 13897 * 13898 * Note that, if, in the future, IRE_CACHE entries 13899 * are obsoleted, this lookup will not be needed, 13900 * as the ire passed to this function will be the 13901 * same as the nhop_ire computed below. 13902 */ 13903 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 13904 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 13905 0, NULL, MATCH_IRE_TYPE); 13906 13907 if (nhop_ire != NULL) { 13908 if ((src & nhop_ire->ire_mask) == 13909 (nhop & nhop_ire->ire_mask)) { 13910 /* 13911 * The source is directly connected. 13912 * Just copy the ip header (which is 13913 * in the first mblk) 13914 */ 13915 mp1 = copyb(mp); 13916 if (mp1 != NULL) { 13917 icmp_send_redirect(WR(q), mp1, 13918 nhop); 13919 } 13920 } 13921 ire_refrele(nhop_ire); 13922 } 13923 } 13924 } 13925 sendit: 13926 dev_q = ire->ire_stq->q_next; 13927 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13928 BUMP_MIB(&ip_mib, ipInDiscards); 13929 freemsg(mp); 13930 return; 13931 } 13932 13933 ip_rput_forward(ire, ipha, mp, ill); 13934 return; 13935 13936 drop_pkt: 13937 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 13938 freemsg(mp); 13939 } 13940 13941 ire_t * 13942 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13943 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13944 { 13945 queue_t *q; 13946 uint16_t hcksumflags; 13947 13948 q = *qp; 13949 13950 /* 13951 * Clear the indication that this may have hardware 13952 * checksum as we are not using it for forwarding. 13953 */ 13954 hcksumflags = DB_CKSUMFLAGS(mp); 13955 DB_CKSUMFLAGS(mp) = 0; 13956 13957 /* 13958 * Directed broadcast forwarding: if the packet came in over a 13959 * different interface then it is routed out over we can forward it. 13960 */ 13961 if (ipha->ipha_protocol == IPPROTO_TCP) { 13962 ire_refrele(ire); 13963 freemsg(mp); 13964 BUMP_MIB(&ip_mib, ipInDiscards); 13965 return (NULL); 13966 } 13967 /* 13968 * For multicast we have set dst to be INADDR_BROADCAST 13969 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13970 * only for broadcast packets. 13971 */ 13972 if (!CLASSD(ipha->ipha_dst)) { 13973 ire_t *new_ire; 13974 ipif_t *ipif; 13975 /* 13976 * For ill groups, as the switch duplicates broadcasts 13977 * across all the ports, we need to filter out and 13978 * send up only one copy. There is one copy for every 13979 * broadcast address on each ill. Thus, we look for a 13980 * specific IRE on this ill and look at IRE_MARK_NORECV 13981 * later to see whether this ill is eligible to receive 13982 * them or not. ill_nominate_bcast_rcv() nominates only 13983 * one set of IREs for receiving. 13984 */ 13985 13986 ipif = ipif_get_next_ipif(NULL, ill); 13987 if (ipif == NULL) { 13988 ire_refrele(ire); 13989 freemsg(mp); 13990 BUMP_MIB(&ip_mib, ipInDiscards); 13991 return (NULL); 13992 } 13993 new_ire = ire_ctable_lookup(dst, 0, 0, 13994 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13995 ipif_refrele(ipif); 13996 13997 if (new_ire != NULL) { 13998 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13999 ire_refrele(ire); 14000 ire_refrele(new_ire); 14001 freemsg(mp); 14002 BUMP_MIB(&ip_mib, ipInDiscards); 14003 return (NULL); 14004 } 14005 /* 14006 * In the special case of multirouted broadcast 14007 * packets, we unconditionally need to "gateway" 14008 * them to the appropriate interface here. 14009 * In the normal case, this cannot happen, because 14010 * there is no broadcast IRE tagged with the 14011 * RTF_MULTIRT flag. 14012 */ 14013 if (new_ire->ire_flags & RTF_MULTIRT) { 14014 ire_refrele(new_ire); 14015 if (ire->ire_rfq != NULL) { 14016 q = ire->ire_rfq; 14017 *qp = q; 14018 } 14019 } else { 14020 ire_refrele(ire); 14021 ire = new_ire; 14022 } 14023 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14024 if (!ip_g_forward_directed_bcast) { 14025 /* 14026 * Free the message if 14027 * ip_g_forward_directed_bcast is turned 14028 * off for non-local broadcast. 14029 */ 14030 ire_refrele(ire); 14031 freemsg(mp); 14032 BUMP_MIB(&ip_mib, ipInDiscards); 14033 return (NULL); 14034 } 14035 } else { 14036 /* 14037 * This CGTP packet successfully passed the 14038 * CGTP filter, but the related CGTP 14039 * broadcast IRE has not been found, 14040 * meaning that the redundant ipif is 14041 * probably down. However, if we discarded 14042 * this packet, its duplicate would be 14043 * filtered out by the CGTP filter so none 14044 * of them would get through. So we keep 14045 * going with this one. 14046 */ 14047 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14048 if (ire->ire_rfq != NULL) { 14049 q = ire->ire_rfq; 14050 *qp = q; 14051 } 14052 } 14053 } 14054 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 14055 /* 14056 * Verify that there are not more then one 14057 * IRE_BROADCAST with this broadcast address which 14058 * has ire_stq set. 14059 * TODO: simplify, loop over all IRE's 14060 */ 14061 ire_t *ire1; 14062 int num_stq = 0; 14063 mblk_t *mp1; 14064 14065 /* Find the first one with ire_stq set */ 14066 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14067 for (ire1 = ire; ire1 && 14068 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14069 ire1 = ire1->ire_next) 14070 ; 14071 if (ire1) { 14072 ire_refrele(ire); 14073 ire = ire1; 14074 IRE_REFHOLD(ire); 14075 } 14076 14077 /* Check if there are additional ones with stq set */ 14078 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14079 if (ire->ire_addr != ire1->ire_addr) 14080 break; 14081 if (ire1->ire_stq) { 14082 num_stq++; 14083 break; 14084 } 14085 } 14086 rw_exit(&ire->ire_bucket->irb_lock); 14087 if (num_stq == 1 && ire->ire_stq != NULL) { 14088 ip1dbg(("ip_rput_process_broadcast: directed " 14089 "broadcast to 0x%x\n", 14090 ntohl(ire->ire_addr))); 14091 mp1 = copymsg(mp); 14092 if (mp1) { 14093 switch (ipha->ipha_protocol) { 14094 case IPPROTO_UDP: 14095 ip_udp_input(q, mp1, ipha, ire, ill); 14096 break; 14097 default: 14098 ip_proto_input(q, mp1, ipha, ire, ill); 14099 break; 14100 } 14101 } 14102 /* 14103 * Adjust ttl to 2 (1+1 - the forward engine 14104 * will decrement it by one. 14105 */ 14106 if (ip_csum_hdr(ipha)) { 14107 BUMP_MIB(&ip_mib, ipInCksumErrs); 14108 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14109 freemsg(mp); 14110 ire_refrele(ire); 14111 return (NULL); 14112 } 14113 ipha->ipha_ttl = ip_broadcast_ttl + 1; 14114 ipha->ipha_hdr_checksum = 0; 14115 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14116 ip_rput_process_forward(q, mp, ire, ipha, 14117 ill, ll_multicast); 14118 ire_refrele(ire); 14119 return (NULL); 14120 } 14121 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14122 ntohl(ire->ire_addr))); 14123 } 14124 14125 14126 /* Restore any hardware checksum flags */ 14127 DB_CKSUMFLAGS(mp) = hcksumflags; 14128 return (ire); 14129 } 14130 14131 /* ARGSUSED */ 14132 static boolean_t 14133 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14134 int *ll_multicast, ipaddr_t *dstp) 14135 { 14136 /* 14137 * Forward packets only if we have joined the allmulti 14138 * group on this interface. 14139 */ 14140 if (ip_g_mrouter && ill->ill_join_allmulti) { 14141 int retval; 14142 14143 /* 14144 * Clear the indication that this may have hardware 14145 * checksum as we are not using it. 14146 */ 14147 DB_CKSUMFLAGS(mp) = 0; 14148 retval = ip_mforward(ill, ipha, mp); 14149 /* ip_mforward updates mib variables if needed */ 14150 /* clear b_prev - used by ip_mroute_decap */ 14151 mp->b_prev = NULL; 14152 14153 switch (retval) { 14154 case 0: 14155 /* 14156 * pkt is okay and arrived on phyint. 14157 * 14158 * If we are running as a multicast router 14159 * we need to see all IGMP and/or PIM packets. 14160 */ 14161 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14162 (ipha->ipha_protocol == IPPROTO_PIM)) { 14163 goto done; 14164 } 14165 break; 14166 case -1: 14167 /* pkt is mal-formed, toss it */ 14168 goto drop_pkt; 14169 case 1: 14170 /* pkt is okay and arrived on a tunnel */ 14171 /* 14172 * If we are running a multicast router 14173 * we need to see all igmp packets. 14174 */ 14175 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14176 *dstp = INADDR_BROADCAST; 14177 *ll_multicast = 1; 14178 return (B_FALSE); 14179 } 14180 14181 goto drop_pkt; 14182 } 14183 } 14184 14185 ILM_WALKER_HOLD(ill); 14186 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14187 /* 14188 * This might just be caused by the fact that 14189 * multiple IP Multicast addresses map to the same 14190 * link layer multicast - no need to increment counter! 14191 */ 14192 ILM_WALKER_RELE(ill); 14193 freemsg(mp); 14194 return (B_TRUE); 14195 } 14196 ILM_WALKER_RELE(ill); 14197 done: 14198 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14199 /* 14200 * This assumes the we deliver to all streams for multicast 14201 * and broadcast packets. 14202 */ 14203 *dstp = INADDR_BROADCAST; 14204 *ll_multicast = 1; 14205 return (B_FALSE); 14206 drop_pkt: 14207 ip2dbg(("ip_rput: drop pkt\n")); 14208 freemsg(mp); 14209 return (B_TRUE); 14210 } 14211 14212 static boolean_t 14213 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14214 int *ll_multicast, mblk_t **mpp) 14215 { 14216 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14217 boolean_t must_copy = B_FALSE; 14218 struct iocblk *iocp; 14219 ipha_t *ipha; 14220 14221 #define rptr ((uchar_t *)ipha) 14222 14223 first_mp = *first_mpp; 14224 mp = *mpp; 14225 14226 ASSERT(first_mp == mp); 14227 14228 /* 14229 * if db_ref > 1 then copymsg and free original. Packet may be 14230 * changed and do not want other entity who has a reference to this 14231 * message to trip over the changes. This is a blind change because 14232 * trying to catch all places that might change packet is too 14233 * difficult (since it may be a module above this one) 14234 * 14235 * This corresponds to the non-fast path case. We walk down the full 14236 * chain in this case, and check the db_ref count of all the dblks, 14237 * and do a copymsg if required. It is possible that the db_ref counts 14238 * of the data blocks in the mblk chain can be different. 14239 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14240 * count of 1, followed by a M_DATA block with a ref count of 2, if 14241 * 'snoop' is running. 14242 */ 14243 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14244 if (mp1->b_datap->db_ref > 1) { 14245 must_copy = B_TRUE; 14246 break; 14247 } 14248 } 14249 14250 if (must_copy) { 14251 mp1 = copymsg(mp); 14252 if (mp1 == NULL) { 14253 for (mp1 = mp; mp1 != NULL; 14254 mp1 = mp1->b_cont) { 14255 mp1->b_next = NULL; 14256 mp1->b_prev = NULL; 14257 } 14258 freemsg(mp); 14259 BUMP_MIB(&ip_mib, ipInDiscards); 14260 return (B_TRUE); 14261 } 14262 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14263 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14264 /* Copy b_prev - used by ip_mroute_decap */ 14265 to_mp->b_prev = from_mp->b_prev; 14266 from_mp->b_prev = NULL; 14267 } 14268 *first_mpp = first_mp = mp1; 14269 freemsg(mp); 14270 mp = mp1; 14271 *mpp = mp1; 14272 } 14273 14274 ipha = (ipha_t *)mp->b_rptr; 14275 14276 /* 14277 * previous code has a case for M_DATA. 14278 * We want to check how that happens. 14279 */ 14280 ASSERT(first_mp->b_datap->db_type != M_DATA); 14281 switch (first_mp->b_datap->db_type) { 14282 case M_PROTO: 14283 case M_PCPROTO: 14284 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14285 DL_UNITDATA_IND) { 14286 /* Go handle anything other than data elsewhere. */ 14287 ip_rput_dlpi(q, mp); 14288 return (B_TRUE); 14289 } 14290 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14291 /* Ditch the DLPI header. */ 14292 mp1 = mp->b_cont; 14293 ASSERT(first_mp == mp); 14294 *first_mpp = mp1; 14295 freeb(mp); 14296 *mpp = mp1; 14297 return (B_FALSE); 14298 case M_IOCACK: 14299 ip1dbg(("got iocack ")); 14300 iocp = (struct iocblk *)mp->b_rptr; 14301 switch (iocp->ioc_cmd) { 14302 case DL_IOC_HDR_INFO: 14303 ill = (ill_t *)q->q_ptr; 14304 ill_fastpath_ack(ill, mp); 14305 return (B_TRUE); 14306 case SIOCSTUNPARAM: 14307 case OSIOCSTUNPARAM: 14308 /* Go through qwriter_ip */ 14309 break; 14310 case SIOCGTUNPARAM: 14311 case OSIOCGTUNPARAM: 14312 ip_rput_other(NULL, q, mp, NULL); 14313 return (B_TRUE); 14314 default: 14315 putnext(q, mp); 14316 return (B_TRUE); 14317 } 14318 /* FALLTHRU */ 14319 case M_ERROR: 14320 case M_HANGUP: 14321 /* 14322 * Since this is on the ill stream we unconditionally 14323 * bump up the refcount 14324 */ 14325 ill_refhold(ill); 14326 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14327 B_FALSE); 14328 return (B_TRUE); 14329 case M_CTL: 14330 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14331 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14332 IPHADA_M_CTL)) { 14333 /* 14334 * It's an IPsec accelerated packet. 14335 * Make sure that the ill from which we received the 14336 * packet has enabled IPsec hardware acceleration. 14337 */ 14338 if (!(ill->ill_capabilities & 14339 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14340 /* IPsec kstats: bean counter */ 14341 freemsg(mp); 14342 return (B_TRUE); 14343 } 14344 14345 /* 14346 * Make mp point to the mblk following the M_CTL, 14347 * then process according to type of mp. 14348 * After this processing, first_mp will point to 14349 * the data-attributes and mp to the pkt following 14350 * the M_CTL. 14351 */ 14352 mp = first_mp->b_cont; 14353 if (mp == NULL) { 14354 freemsg(first_mp); 14355 return (B_TRUE); 14356 } 14357 /* 14358 * A Hardware Accelerated packet can only be M_DATA 14359 * ESP or AH packet. 14360 */ 14361 if (mp->b_datap->db_type != M_DATA) { 14362 /* non-M_DATA IPsec accelerated packet */ 14363 IPSECHW_DEBUG(IPSECHW_PKT, 14364 ("non-M_DATA IPsec accelerated pkt\n")); 14365 freemsg(first_mp); 14366 return (B_TRUE); 14367 } 14368 ipha = (ipha_t *)mp->b_rptr; 14369 if (ipha->ipha_protocol != IPPROTO_AH && 14370 ipha->ipha_protocol != IPPROTO_ESP) { 14371 IPSECHW_DEBUG(IPSECHW_PKT, 14372 ("non-M_DATA IPsec accelerated pkt\n")); 14373 freemsg(first_mp); 14374 return (B_TRUE); 14375 } 14376 *mpp = mp; 14377 return (B_FALSE); 14378 } 14379 putnext(q, mp); 14380 return (B_TRUE); 14381 case M_FLUSH: 14382 if (*mp->b_rptr & FLUSHW) { 14383 *mp->b_rptr &= ~FLUSHR; 14384 qreply(q, mp); 14385 return (B_TRUE); 14386 } 14387 freemsg(mp); 14388 return (B_TRUE); 14389 case M_IOCNAK: 14390 ip1dbg(("got iocnak ")); 14391 iocp = (struct iocblk *)mp->b_rptr; 14392 switch (iocp->ioc_cmd) { 14393 case DL_IOC_HDR_INFO: 14394 case SIOCSTUNPARAM: 14395 case OSIOCSTUNPARAM: 14396 /* 14397 * Since this is on the ill stream we unconditionally 14398 * bump up the refcount 14399 */ 14400 ill_refhold(ill); 14401 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14402 CUR_OP, B_FALSE); 14403 return (B_TRUE); 14404 case SIOCGTUNPARAM: 14405 case OSIOCGTUNPARAM: 14406 ip_rput_other(NULL, q, mp, NULL); 14407 return (B_TRUE); 14408 default: 14409 break; 14410 } 14411 /* FALLTHRU */ 14412 default: 14413 putnext(q, mp); 14414 return (B_TRUE); 14415 } 14416 } 14417 14418 /* Read side put procedure. Packets coming from the wire arrive here. */ 14419 void 14420 ip_rput(queue_t *q, mblk_t *mp) 14421 { 14422 ill_t *ill; 14423 mblk_t *dmp = NULL; 14424 14425 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14426 14427 ill = (ill_t *)q->q_ptr; 14428 14429 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14430 union DL_primitives *dl; 14431 14432 /* 14433 * Things are opening or closing. Only accept DLPI control 14434 * messages. In the open case, the ill->ill_ipif has not yet 14435 * been created. In the close case, things hanging off the 14436 * ill could have been freed already. In either case it 14437 * may not be safe to proceed further. 14438 */ 14439 14440 dl = (union DL_primitives *)mp->b_rptr; 14441 if ((mp->b_datap->db_type != M_PCPROTO) || 14442 (dl->dl_primitive == DL_UNITDATA_IND)) { 14443 /* 14444 * Also SIOC[GS]TUN* ioctls can come here. 14445 */ 14446 inet_freemsg(mp); 14447 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14448 "ip_input_end: q %p (%S)", q, "uninit"); 14449 return; 14450 } 14451 } 14452 14453 /* 14454 * if db_ref > 1 then copymsg and free original. Packet may be 14455 * changed and we do not want the other entity who has a reference to 14456 * this message to trip over the changes. This is a blind change because 14457 * trying to catch all places that might change the packet is too 14458 * difficult. 14459 * 14460 * This corresponds to the fast path case, where we have a chain of 14461 * M_DATA mblks. We check the db_ref count of only the 1st data block 14462 * in the mblk chain. There doesn't seem to be a reason why a device 14463 * driver would send up data with varying db_ref counts in the mblk 14464 * chain. In any case the Fast path is a private interface, and our 14465 * drivers don't do such a thing. Given the above assumption, there is 14466 * no need to walk down the entire mblk chain (which could have a 14467 * potential performance problem) 14468 */ 14469 if (mp->b_datap->db_ref > 1) { 14470 mblk_t *mp1; 14471 boolean_t adjusted = B_FALSE; 14472 IP_STAT(ip_db_ref); 14473 14474 /* 14475 * The IP_RECVSLLA option depends on having the link layer 14476 * header. First check that: 14477 * a> the underlying device is of type ether, since this 14478 * option is currently supported only over ethernet. 14479 * b> there is enough room to copy over the link layer header. 14480 * 14481 * Once the checks are done, adjust rptr so that the link layer 14482 * header will be copied via copymsg. Note that, IFT_ETHER may 14483 * be returned by some non-ethernet drivers but in this case the 14484 * second check will fail. 14485 */ 14486 if (ill->ill_type == IFT_ETHER && 14487 (mp->b_rptr - mp->b_datap->db_base) >= 14488 sizeof (struct ether_header)) { 14489 mp->b_rptr -= sizeof (struct ether_header); 14490 adjusted = B_TRUE; 14491 } 14492 mp1 = copymsg(mp); 14493 if (mp1 == NULL) { 14494 mp->b_next = NULL; 14495 /* clear b_prev - used by ip_mroute_decap */ 14496 mp->b_prev = NULL; 14497 freemsg(mp); 14498 BUMP_MIB(&ip_mib, ipInDiscards); 14499 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14500 "ip_rput_end: q %p (%S)", q, "copymsg"); 14501 return; 14502 } 14503 if (adjusted) { 14504 /* 14505 * Copy is done. Restore the pointer in the _new_ mblk 14506 */ 14507 mp1->b_rptr += sizeof (struct ether_header); 14508 } 14509 /* Copy b_prev - used by ip_mroute_decap */ 14510 mp1->b_prev = mp->b_prev; 14511 mp->b_prev = NULL; 14512 freemsg(mp); 14513 mp = mp1; 14514 } 14515 if (DB_TYPE(mp) == M_DATA) { 14516 dmp = mp; 14517 } else if (DB_TYPE(mp) == M_PROTO && 14518 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14519 dmp = mp->b_cont; 14520 } 14521 if (dmp != NULL) { 14522 /* 14523 * IP header ptr not aligned? 14524 * OR IP header not complete in first mblk 14525 */ 14526 if (!OK_32PTR(dmp->b_rptr) || 14527 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14528 if (!ip_check_and_align_header(q, dmp)) 14529 return; 14530 } 14531 } 14532 14533 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14534 "ip_rput_end: q %p (%S)", q, "end"); 14535 14536 ip_input(ill, NULL, mp, NULL); 14537 } 14538 14539 /* 14540 * Direct read side procedure capable of dealing with chains. GLDv3 based 14541 * drivers call this function directly with mblk chains while STREAMS 14542 * read side procedure ip_rput() calls this for single packet with ip_ring 14543 * set to NULL to process one packet at a time. 14544 * 14545 * The ill will always be valid if this function is called directly from 14546 * the driver. 14547 * 14548 * If ip_input() is called from GLDv3: 14549 * 14550 * - This must be a non-VLAN IP stream. 14551 * - 'mp' is either an untagged or a special priority-tagged packet. 14552 * - Any VLAN tag that was in the MAC header has been stripped. 14553 * 14554 * Thus, there is no need to adjust b_rptr in this function. 14555 */ 14556 /* ARGSUSED */ 14557 void 14558 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14559 struct mac_header_info_s *mhip) 14560 { 14561 ipaddr_t dst = NULL; 14562 ipaddr_t prev_dst; 14563 ire_t *ire = NULL; 14564 ipha_t *ipha; 14565 uint_t pkt_len; 14566 ssize_t len; 14567 uint_t opt_len; 14568 int ll_multicast; 14569 int cgtp_flt_pkt; 14570 queue_t *q = ill->ill_rq; 14571 squeue_t *curr_sqp = NULL; 14572 mblk_t *head = NULL; 14573 mblk_t *tail = NULL; 14574 mblk_t *first_mp; 14575 mblk_t *mp; 14576 int cnt = 0; 14577 14578 ASSERT(mp_chain != NULL); 14579 ASSERT(ill != NULL); 14580 14581 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14582 14583 #define rptr ((uchar_t *)ipha) 14584 14585 while (mp_chain != NULL) { 14586 first_mp = mp = mp_chain; 14587 mp_chain = mp_chain->b_next; 14588 mp->b_next = NULL; 14589 ll_multicast = 0; 14590 14591 /* 14592 * We do ire caching from one iteration to 14593 * another. In the event the packet chain contains 14594 * all packets from the same dst, this caching saves 14595 * an ire_cache_lookup for each of the succeeding 14596 * packets in a packet chain. 14597 */ 14598 prev_dst = dst; 14599 14600 /* 14601 * ip_input fast path 14602 */ 14603 14604 /* mblk type is not M_DATA */ 14605 if (mp->b_datap->db_type != M_DATA) { 14606 if (ip_rput_process_notdata(q, &first_mp, ill, 14607 &ll_multicast, &mp)) 14608 continue; 14609 } 14610 14611 /* Make sure its an M_DATA and that its aligned */ 14612 ASSERT(mp->b_datap->db_type == M_DATA); 14613 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14614 14615 ipha = (ipha_t *)mp->b_rptr; 14616 len = mp->b_wptr - rptr; 14617 14618 BUMP_MIB(&ip_mib, ipInReceives); 14619 14620 14621 /* multiple mblk or too short */ 14622 pkt_len = ntohs(ipha->ipha_length); 14623 len -= pkt_len; 14624 if (len != 0) { 14625 /* 14626 * Make sure we have data length consistent 14627 * with the IP header. 14628 */ 14629 if (mp->b_cont == NULL) { 14630 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14631 BUMP_MIB(&ip_mib, ipInHdrErrors); 14632 ip2dbg(("ip_input: drop pkt\n")); 14633 freemsg(mp); 14634 continue; 14635 } 14636 mp->b_wptr = rptr + pkt_len; 14637 } else if (len += msgdsize(mp->b_cont)) { 14638 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14639 BUMP_MIB(&ip_mib, ipInHdrErrors); 14640 ip2dbg(("ip_input: drop pkt\n")); 14641 freemsg(mp); 14642 continue; 14643 } 14644 (void) adjmsg(mp, -len); 14645 IP_STAT(ip_multimblk3); 14646 } 14647 } 14648 14649 /* Obtain the dst of the current packet */ 14650 dst = ipha->ipha_dst; 14651 14652 if (IP_LOOPBACK_ADDR(dst) || 14653 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14654 BUMP_MIB(&ip_mib, ipInAddrErrors); 14655 cmn_err(CE_CONT, "dst %X src %X\n", 14656 dst, ipha->ipha_src); 14657 freemsg(mp); 14658 continue; 14659 } 14660 14661 /* 14662 * The event for packets being received from a 'physical' 14663 * interface is placed after validation of the source and/or 14664 * destination address as being local so that packets can be 14665 * redirected to loopback addresses using ipnat. 14666 */ 14667 DTRACE_PROBE4(ip4__physical__in__start, 14668 ill_t *, ill, ill_t *, NULL, 14669 ipha_t *, ipha, mblk_t *, first_mp); 14670 14671 FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in, 14672 ill, NULL, ipha, first_mp, mp); 14673 14674 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14675 14676 if (first_mp == NULL) { 14677 continue; 14678 } 14679 dst = ipha->ipha_dst; 14680 14681 /* 14682 * Attach any necessary label information to 14683 * this packet 14684 */ 14685 if (is_system_labeled() && 14686 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14687 BUMP_MIB(&ip_mib, ipInDiscards); 14688 freemsg(mp); 14689 continue; 14690 } 14691 14692 /* 14693 * Reuse the cached ire only if the ipha_dst of the previous 14694 * packet is the same as the current packet AND it is not 14695 * INADDR_ANY. 14696 */ 14697 if (!(dst == prev_dst && dst != INADDR_ANY) && 14698 (ire != NULL)) { 14699 ire_refrele(ire); 14700 ire = NULL; 14701 } 14702 opt_len = ipha->ipha_version_and_hdr_length - 14703 IP_SIMPLE_HDR_VERSION; 14704 14705 /* 14706 * Check to see if we can take the fastpath. 14707 * That is possible if the following conditions are met 14708 * o Tsol disabled 14709 * o CGTP disabled 14710 * o ipp_action_count is 0 14711 * o Mobile IP not running 14712 * o no options in the packet 14713 * o not a RSVP packet 14714 * o not a multicast packet 14715 */ 14716 if (!is_system_labeled() && 14717 !ip_cgtp_filter && ipp_action_count == 0 && 14718 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14719 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14720 !ll_multicast && !CLASSD(dst)) { 14721 if (ire == NULL) 14722 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14723 14724 /* incoming packet is for forwarding */ 14725 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14726 ire = ip_fast_forward(ire, dst, ill, mp); 14727 continue; 14728 } 14729 /* incoming packet is for local consumption */ 14730 if (ire->ire_type & IRE_LOCAL) 14731 goto local; 14732 } 14733 14734 /* 14735 * Disable ire caching for anything more complex 14736 * than the simple fast path case we checked for above. 14737 */ 14738 if (ire != NULL) { 14739 ire_refrele(ire); 14740 ire = NULL; 14741 } 14742 14743 /* Full-blown slow path */ 14744 if (opt_len != 0) { 14745 if (len != 0) 14746 IP_STAT(ip_multimblk4); 14747 else 14748 IP_STAT(ip_ipoptions); 14749 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 14750 continue; 14751 } 14752 14753 /* 14754 * Invoke the CGTP (multirouting) filtering module to process 14755 * the incoming packet. Packets identified as duplicates 14756 * must be discarded. Filtering is active only if the 14757 * the ip_cgtp_filter ndd variable is non-zero. 14758 */ 14759 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14760 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14761 cgtp_flt_pkt = 14762 ip_cgtp_filter_ops->cfo_filter(q, mp); 14763 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14764 freemsg(first_mp); 14765 continue; 14766 } 14767 } 14768 14769 /* 14770 * If rsvpd is running, let RSVP daemon handle its processing 14771 * and forwarding of RSVP multicast/unicast packets. 14772 * If rsvpd is not running but mrouted is running, RSVP 14773 * multicast packets are forwarded as multicast traffic 14774 * and RSVP unicast packets are forwarded by unicast router. 14775 * If neither rsvpd nor mrouted is running, RSVP multicast 14776 * packets are not forwarded, but the unicast packets are 14777 * forwarded like unicast traffic. 14778 */ 14779 if (ipha->ipha_protocol == IPPROTO_RSVP && 14780 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14781 /* RSVP packet and rsvpd running. Treat as ours */ 14782 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14783 /* 14784 * This assumes that we deliver to all streams for 14785 * multicast and broadcast packets. 14786 * We have to force ll_multicast to 1 to handle the 14787 * M_DATA messages passed in from ip_mroute_decap. 14788 */ 14789 dst = INADDR_BROADCAST; 14790 ll_multicast = 1; 14791 } else if (CLASSD(dst)) { 14792 /* packet is multicast */ 14793 mp->b_next = NULL; 14794 if (ip_rput_process_multicast(q, mp, ill, ipha, 14795 &ll_multicast, &dst)) 14796 continue; 14797 } 14798 14799 14800 /* 14801 * Check if the packet is coming from the Mobile IP 14802 * forward tunnel interface 14803 */ 14804 if (ill->ill_srcif_refcnt > 0) { 14805 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14806 NULL, ill, MATCH_IRE_TYPE); 14807 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14808 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14809 14810 /* We need to resolve the link layer info */ 14811 ire_refrele(ire); 14812 ire = NULL; 14813 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14814 ll_multicast, dst); 14815 continue; 14816 } 14817 } 14818 14819 if (ire == NULL) { 14820 ire = ire_cache_lookup(dst, ALL_ZONES, 14821 MBLK_GETLABEL(mp)); 14822 } 14823 14824 /* 14825 * If mipagent is running and reverse tunnel is created as per 14826 * mobile node request, then any packet coming through the 14827 * incoming interface from the mobile-node, should be reverse 14828 * tunneled to it's home agent except those that are destined 14829 * to foreign agent only. 14830 * This needs source address based ire lookup. The routing 14831 * entries for source address based lookup are only created by 14832 * mipagent program only when a reverse tunnel is created. 14833 * Reference : RFC2002, RFC2344 14834 */ 14835 if (ill->ill_mrtun_refcnt > 0) { 14836 ipaddr_t srcaddr; 14837 ire_t *tmp_ire; 14838 14839 tmp_ire = ire; /* Save, we might need it later */ 14840 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14841 ire->ire_type != IRE_BROADCAST)) { 14842 srcaddr = ipha->ipha_src; 14843 ire = ire_mrtun_lookup(srcaddr, ill); 14844 if (ire != NULL) { 14845 /* 14846 * Should not be getting iphada packet 14847 * here. we should only get those for 14848 * IRE_LOCAL traffic, excluded above. 14849 * Fail-safe (drop packet) in the event 14850 * hardware is misbehaving. 14851 */ 14852 if (first_mp != mp) { 14853 /* IPsec KSTATS: beancount me */ 14854 freemsg(first_mp); 14855 } else { 14856 /* 14857 * This packet must be forwarded 14858 * to Reverse Tunnel 14859 */ 14860 ip_mrtun_forward(ire, ill, mp); 14861 } 14862 ire_refrele(ire); 14863 ire = NULL; 14864 if (tmp_ire != NULL) { 14865 ire_refrele(tmp_ire); 14866 tmp_ire = NULL; 14867 } 14868 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14869 "ip_input_end: q %p (%S)", 14870 q, "uninit"); 14871 continue; 14872 } 14873 } 14874 /* 14875 * If this packet is from a non-mobilenode or a 14876 * mobile-node which does not request reverse 14877 * tunnel service 14878 */ 14879 ire = tmp_ire; 14880 } 14881 14882 14883 /* 14884 * If we reach here that means the incoming packet satisfies 14885 * one of the following conditions: 14886 * - packet is from a mobile node which does not request 14887 * reverse tunnel 14888 * - packet is from a non-mobile node, which is the most 14889 * common case 14890 * - packet is from a reverse tunnel enabled mobile node 14891 * and destined to foreign agent only 14892 */ 14893 14894 if (ire == NULL) { 14895 /* 14896 * No IRE for this destination, so it can't be for us. 14897 * Unless we are forwarding, drop the packet. 14898 * We have to let source routed packets through 14899 * since we don't yet know if they are 'ping -l' 14900 * packets i.e. if they will go out over the 14901 * same interface as they came in on. 14902 */ 14903 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14904 if (ire == NULL) 14905 continue; 14906 } 14907 14908 /* 14909 * Broadcast IRE may indicate either broadcast or 14910 * multicast packet 14911 */ 14912 if (ire->ire_type == IRE_BROADCAST) { 14913 /* 14914 * Skip broadcast checks if packet is UDP multicast; 14915 * we'd rather not enter ip_rput_process_broadcast() 14916 * unless the packet is broadcast for real, since 14917 * that routine is a no-op for multicast. 14918 */ 14919 if (ipha->ipha_protocol != IPPROTO_UDP || 14920 !CLASSD(ipha->ipha_dst)) { 14921 ire = ip_rput_process_broadcast(&q, mp, 14922 ire, ipha, ill, dst, cgtp_flt_pkt, 14923 ll_multicast); 14924 if (ire == NULL) 14925 continue; 14926 } 14927 } else if (ire->ire_stq != NULL) { 14928 /* fowarding? */ 14929 ip_rput_process_forward(q, mp, ire, ipha, ill, 14930 ll_multicast); 14931 /* ip_rput_process_forward consumed the packet */ 14932 continue; 14933 } 14934 14935 local: 14936 /* packet not for us */ 14937 if (ire->ire_rfq != q) { 14938 if (ip_rput_notforus(&q, mp, ire, ill)) 14939 continue; 14940 } 14941 14942 switch (ipha->ipha_protocol) { 14943 case IPPROTO_TCP: 14944 ASSERT(first_mp == mp); 14945 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14946 mp, 0, q, ip_ring)) != NULL) { 14947 if (curr_sqp == NULL) { 14948 curr_sqp = GET_SQUEUE(mp); 14949 ASSERT(cnt == 0); 14950 cnt++; 14951 head = tail = mp; 14952 } else if (curr_sqp == GET_SQUEUE(mp)) { 14953 ASSERT(tail != NULL); 14954 cnt++; 14955 tail->b_next = mp; 14956 tail = mp; 14957 } else { 14958 /* 14959 * A different squeue. Send the 14960 * chain for the previous squeue on 14961 * its way. This shouldn't happen 14962 * often unless interrupt binding 14963 * changes. 14964 */ 14965 IP_STAT(ip_input_multi_squeue); 14966 squeue_enter_chain(curr_sqp, head, 14967 tail, cnt, SQTAG_IP_INPUT); 14968 curr_sqp = GET_SQUEUE(mp); 14969 head = mp; 14970 tail = mp; 14971 cnt = 1; 14972 } 14973 } 14974 continue; 14975 case IPPROTO_UDP: 14976 ASSERT(first_mp == mp); 14977 ip_udp_input(q, mp, ipha, ire, ill); 14978 continue; 14979 case IPPROTO_SCTP: 14980 ASSERT(first_mp == mp); 14981 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14982 q, dst); 14983 /* ire has been released by ip_sctp_input */ 14984 ire = NULL; 14985 continue; 14986 default: 14987 ip_proto_input(q, first_mp, ipha, ire, ill); 14988 continue; 14989 } 14990 } 14991 14992 if (ire != NULL) 14993 ire_refrele(ire); 14994 14995 if (head != NULL) 14996 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14997 14998 /* 14999 * This code is there just to make netperf/ttcp look good. 15000 * 15001 * Its possible that after being in polling mode (and having cleared 15002 * the backlog), squeues have turned the interrupt frequency higher 15003 * to improve latency at the expense of more CPU utilization (less 15004 * packets per interrupts or more number of interrupts). Workloads 15005 * like ttcp/netperf do manage to tickle polling once in a while 15006 * but for the remaining time, stay in higher interrupt mode since 15007 * their packet arrival rate is pretty uniform and this shows up 15008 * as higher CPU utilization. Since people care about CPU utilization 15009 * while running netperf/ttcp, turn the interrupt frequency back to 15010 * normal/default if polling has not been used in ip_poll_normal_ticks. 15011 */ 15012 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15013 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15014 ip_ring->rr_poll_state &= ~ILL_POLLING; 15015 ip_ring->rr_blank(ip_ring->rr_handle, 15016 ip_ring->rr_normal_blank_time, 15017 ip_ring->rr_normal_pkt_cnt); 15018 } 15019 } 15020 15021 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15022 "ip_input_end: q %p (%S)", q, "end"); 15023 #undef rptr 15024 } 15025 15026 static void 15027 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15028 t_uscalar_t err) 15029 { 15030 if (dl_err == DL_SYSERR) { 15031 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15032 "%s: %s failed: DL_SYSERR (errno %u)\n", 15033 ill->ill_name, dlpi_prim_str(prim), err); 15034 return; 15035 } 15036 15037 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15038 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15039 dlpi_err_str(dl_err)); 15040 } 15041 15042 /* 15043 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15044 * than DL_UNITDATA_IND messages. If we need to process this message 15045 * exclusively, we call qwriter_ip, in which case we also need to call 15046 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15047 */ 15048 void 15049 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15050 { 15051 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15052 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15053 ill_t *ill; 15054 15055 ip1dbg(("ip_rput_dlpi")); 15056 ill = (ill_t *)q->q_ptr; 15057 switch (dloa->dl_primitive) { 15058 case DL_ERROR_ACK: 15059 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15060 "%s (0x%x), unix %u\n", ill->ill_name, 15061 dlpi_prim_str(dlea->dl_error_primitive), 15062 dlea->dl_error_primitive, 15063 dlpi_err_str(dlea->dl_errno), 15064 dlea->dl_errno, 15065 dlea->dl_unix_errno)); 15066 switch (dlea->dl_error_primitive) { 15067 case DL_UNBIND_REQ: 15068 mutex_enter(&ill->ill_lock); 15069 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15070 cv_signal(&ill->ill_cv); 15071 mutex_exit(&ill->ill_lock); 15072 /* FALLTHRU */ 15073 case DL_NOTIFY_REQ: 15074 case DL_ATTACH_REQ: 15075 case DL_DETACH_REQ: 15076 case DL_INFO_REQ: 15077 case DL_BIND_REQ: 15078 case DL_ENABMULTI_REQ: 15079 case DL_PHYS_ADDR_REQ: 15080 case DL_CAPABILITY_REQ: 15081 case DL_CONTROL_REQ: 15082 /* 15083 * Refhold the ill to match qwriter_ip which does a 15084 * refrele. Since this is on the ill stream we 15085 * unconditionally bump up the refcount without 15086 * checking for ILL_CAN_LOOKUP 15087 */ 15088 ill_refhold(ill); 15089 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15090 CUR_OP, B_FALSE); 15091 return; 15092 case DL_DISABMULTI_REQ: 15093 freemsg(mp); /* Don't want to pass this up */ 15094 return; 15095 default: 15096 break; 15097 } 15098 ip_dlpi_error(ill, dlea->dl_error_primitive, 15099 dlea->dl_errno, dlea->dl_unix_errno); 15100 freemsg(mp); 15101 return; 15102 case DL_INFO_ACK: 15103 case DL_BIND_ACK: 15104 case DL_PHYS_ADDR_ACK: 15105 case DL_NOTIFY_ACK: 15106 case DL_CAPABILITY_ACK: 15107 case DL_CONTROL_ACK: 15108 /* 15109 * Refhold the ill to match qwriter_ip which does a refrele 15110 * Since this is on the ill stream we unconditionally 15111 * bump up the refcount without doing ILL_CAN_LOOKUP. 15112 */ 15113 ill_refhold(ill); 15114 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15115 CUR_OP, B_FALSE); 15116 return; 15117 case DL_NOTIFY_IND: 15118 ill_refhold(ill); 15119 /* 15120 * The DL_NOTIFY_IND is an asynchronous message that has no 15121 * relation to the current ioctl in progress (if any). Hence we 15122 * pass in NEW_OP in this case. 15123 */ 15124 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15125 NEW_OP, B_FALSE); 15126 return; 15127 case DL_OK_ACK: 15128 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15129 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15130 switch (dloa->dl_correct_primitive) { 15131 case DL_UNBIND_REQ: 15132 mutex_enter(&ill->ill_lock); 15133 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15134 cv_signal(&ill->ill_cv); 15135 mutex_exit(&ill->ill_lock); 15136 /* FALLTHRU */ 15137 case DL_ATTACH_REQ: 15138 case DL_DETACH_REQ: 15139 /* 15140 * Refhold the ill to match qwriter_ip which does a 15141 * refrele. Since this is on the ill stream we 15142 * unconditionally bump up the refcount 15143 */ 15144 ill_refhold(ill); 15145 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15146 CUR_OP, B_FALSE); 15147 return; 15148 case DL_ENABMULTI_REQ: 15149 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15150 ill->ill_dlpi_multicast_state = IDS_OK; 15151 break; 15152 15153 } 15154 break; 15155 default: 15156 break; 15157 } 15158 freemsg(mp); 15159 } 15160 15161 /* 15162 * Handling of DLPI messages that require exclusive access to the ipsq. 15163 * 15164 * Need to do ill_pending_mp_release on ioctl completion, which could 15165 * happen here. (along with mi_copy_done) 15166 */ 15167 /* ARGSUSED */ 15168 static void 15169 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15170 { 15171 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15172 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15173 int err = 0; 15174 ill_t *ill; 15175 ipif_t *ipif = NULL; 15176 mblk_t *mp1 = NULL; 15177 conn_t *connp = NULL; 15178 t_uscalar_t physaddr_req; 15179 mblk_t *mp_hw; 15180 union DL_primitives *dlp; 15181 boolean_t success; 15182 boolean_t ioctl_aborted = B_FALSE; 15183 boolean_t log = B_TRUE; 15184 hook_nic_event_t *info; 15185 15186 ip1dbg(("ip_rput_dlpi_writer ..")); 15187 ill = (ill_t *)q->q_ptr; 15188 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15189 15190 ASSERT(IAM_WRITER_ILL(ill)); 15191 15192 /* 15193 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15194 * both are null or non-null. However we can assert that only 15195 * after grabbing the ipsq_lock. So we don't make any assertion 15196 * here and in other places in the code. 15197 */ 15198 ipif = ipsq->ipsq_pending_ipif; 15199 /* 15200 * The current ioctl could have been aborted by the user and a new 15201 * ioctl to bring up another ill could have started. We could still 15202 * get a response from the driver later. 15203 */ 15204 if (ipif != NULL && ipif->ipif_ill != ill) 15205 ioctl_aborted = B_TRUE; 15206 15207 switch (dloa->dl_primitive) { 15208 case DL_ERROR_ACK: 15209 switch (dlea->dl_error_primitive) { 15210 case DL_UNBIND_REQ: 15211 case DL_ATTACH_REQ: 15212 case DL_DETACH_REQ: 15213 case DL_INFO_REQ: 15214 ill_dlpi_done(ill, dlea->dl_error_primitive); 15215 break; 15216 case DL_NOTIFY_REQ: 15217 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15218 log = B_FALSE; 15219 break; 15220 case DL_PHYS_ADDR_REQ: 15221 /* 15222 * For IPv6 only, there are two additional 15223 * phys_addr_req's sent to the driver to get the 15224 * IPv6 token and lla. This allows IP to acquire 15225 * the hardware address format for a given interface 15226 * without having built in knowledge of the hardware 15227 * address. ill_phys_addr_pend keeps track of the last 15228 * DL_PAR sent so we know which response we are 15229 * dealing with. ill_dlpi_done will update 15230 * ill_phys_addr_pend when it sends the next req. 15231 * We don't complete the IOCTL until all three DL_PARs 15232 * have been attempted, so set *_len to 0 and break. 15233 */ 15234 physaddr_req = ill->ill_phys_addr_pend; 15235 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15236 if (physaddr_req == DL_IPV6_TOKEN) { 15237 ill->ill_token_length = 0; 15238 log = B_FALSE; 15239 break; 15240 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15241 ill->ill_nd_lla_len = 0; 15242 log = B_FALSE; 15243 break; 15244 } 15245 /* 15246 * Something went wrong with the DL_PHYS_ADDR_REQ. 15247 * We presumably have an IOCTL hanging out waiting 15248 * for completion. Find it and complete the IOCTL 15249 * with the error noted. 15250 * However, ill_dl_phys was called on an ill queue 15251 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15252 * set. But the ioctl is known to be pending on ill_wq. 15253 */ 15254 if (!ill->ill_ifname_pending) 15255 break; 15256 ill->ill_ifname_pending = 0; 15257 if (!ioctl_aborted) 15258 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15259 if (mp1 != NULL) { 15260 /* 15261 * This operation (SIOCSLIFNAME) must have 15262 * happened on the ill. Assert there is no conn 15263 */ 15264 ASSERT(connp == NULL); 15265 q = ill->ill_wq; 15266 } 15267 break; 15268 case DL_BIND_REQ: 15269 ill_dlpi_done(ill, DL_BIND_REQ); 15270 if (ill->ill_ifname_pending) 15271 break; 15272 /* 15273 * Something went wrong with the bind. We presumably 15274 * have an IOCTL hanging out waiting for completion. 15275 * Find it, take down the interface that was coming 15276 * up, and complete the IOCTL with the error noted. 15277 */ 15278 if (!ioctl_aborted) 15279 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15280 if (mp1 != NULL) { 15281 /* 15282 * This operation (SIOCSLIFFLAGS) must have 15283 * happened from a conn. 15284 */ 15285 ASSERT(connp != NULL); 15286 q = CONNP_TO_WQ(connp); 15287 if (ill->ill_move_in_progress) { 15288 ILL_CLEAR_MOVE(ill); 15289 } 15290 (void) ipif_down(ipif, NULL, NULL); 15291 /* error is set below the switch */ 15292 } 15293 break; 15294 case DL_ENABMULTI_REQ: 15295 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15296 15297 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15298 ill->ill_dlpi_multicast_state = IDS_FAILED; 15299 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15300 ipif_t *ipif; 15301 15302 log = B_FALSE; 15303 printf("ip: joining multicasts failed (%d)" 15304 " on %s - will use link layer " 15305 "broadcasts for multicast\n", 15306 dlea->dl_errno, ill->ill_name); 15307 15308 /* 15309 * Set up the multicast mapping alone. 15310 * writer, so ok to access ill->ill_ipif 15311 * without any lock. 15312 */ 15313 ipif = ill->ill_ipif; 15314 mutex_enter(&ill->ill_phyint->phyint_lock); 15315 ill->ill_phyint->phyint_flags |= 15316 PHYI_MULTI_BCAST; 15317 mutex_exit(&ill->ill_phyint->phyint_lock); 15318 15319 if (!ill->ill_isv6) { 15320 (void) ipif_arp_setup_multicast(ipif, 15321 NULL); 15322 } else { 15323 (void) ipif_ndp_setup_multicast(ipif, 15324 NULL); 15325 } 15326 } 15327 freemsg(mp); /* Don't want to pass this up */ 15328 return; 15329 case DL_CAPABILITY_REQ: 15330 case DL_CONTROL_REQ: 15331 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15332 "DL_CAPABILITY/CONTROL REQ\n")); 15333 ill_dlpi_done(ill, dlea->dl_error_primitive); 15334 ill->ill_dlpi_capab_state = IDS_FAILED; 15335 freemsg(mp); 15336 return; 15337 } 15338 /* 15339 * Note the error for IOCTL completion (mp1 is set when 15340 * ready to complete ioctl). If ill_ifname_pending_err is 15341 * set, an error occured during plumbing (ill_ifname_pending), 15342 * so we want to report that error. 15343 * 15344 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15345 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15346 * expected to get errack'd if the driver doesn't support 15347 * these flags (e.g. ethernet). log will be set to B_FALSE 15348 * if these error conditions are encountered. 15349 */ 15350 if (mp1 != NULL) { 15351 if (ill->ill_ifname_pending_err != 0) { 15352 err = ill->ill_ifname_pending_err; 15353 ill->ill_ifname_pending_err = 0; 15354 } else { 15355 err = dlea->dl_unix_errno ? 15356 dlea->dl_unix_errno : ENXIO; 15357 } 15358 /* 15359 * If we're plumbing an interface and an error hasn't already 15360 * been saved, set ill_ifname_pending_err to the error passed 15361 * up. Ignore the error if log is B_FALSE (see comment above). 15362 */ 15363 } else if (log && ill->ill_ifname_pending && 15364 ill->ill_ifname_pending_err == 0) { 15365 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15366 dlea->dl_unix_errno : ENXIO; 15367 } 15368 15369 if (log) 15370 ip_dlpi_error(ill, dlea->dl_error_primitive, 15371 dlea->dl_errno, dlea->dl_unix_errno); 15372 break; 15373 case DL_CAPABILITY_ACK: { 15374 boolean_t reneg_flag = B_FALSE; 15375 /* Call a routine to handle this one. */ 15376 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15377 /* 15378 * Check if the ACK is due to renegotiation case since we 15379 * will need to send a new CAPABILITY_REQ later. 15380 */ 15381 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15382 /* This is the ack for a renogiation case */ 15383 reneg_flag = B_TRUE; 15384 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15385 } 15386 ill_capability_ack(ill, mp); 15387 if (reneg_flag) 15388 ill_capability_probe(ill); 15389 break; 15390 } 15391 case DL_CONTROL_ACK: 15392 /* We treat all of these as "fire and forget" */ 15393 ill_dlpi_done(ill, DL_CONTROL_REQ); 15394 break; 15395 case DL_INFO_ACK: 15396 /* Call a routine to handle this one. */ 15397 ill_dlpi_done(ill, DL_INFO_REQ); 15398 ip_ll_subnet_defaults(ill, mp); 15399 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15400 return; 15401 case DL_BIND_ACK: 15402 /* 15403 * We should have an IOCTL waiting on this unless 15404 * sent by ill_dl_phys, in which case just return 15405 */ 15406 ill_dlpi_done(ill, DL_BIND_REQ); 15407 if (ill->ill_ifname_pending) 15408 break; 15409 15410 if (!ioctl_aborted) 15411 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15412 if (mp1 == NULL) 15413 break; 15414 ASSERT(connp != NULL); 15415 q = CONNP_TO_WQ(connp); 15416 15417 /* 15418 * We are exclusive. So nothing can change even after 15419 * we get the pending mp. If need be we can put it back 15420 * and restart, as in calling ipif_arp_up() below. 15421 */ 15422 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15423 15424 mutex_enter(&ill->ill_lock); 15425 15426 ill->ill_dl_up = 1; 15427 15428 if ((info = ill->ill_nic_event_info) != NULL) { 15429 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15430 "attached for %s\n", info->hne_event, 15431 ill->ill_name)); 15432 if (info->hne_data != NULL) 15433 kmem_free(info->hne_data, info->hne_datalen); 15434 kmem_free(info, sizeof (hook_nic_event_t)); 15435 } 15436 15437 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15438 if (info != NULL) { 15439 info->hne_nic = ill->ill_phyint->phyint_ifindex; 15440 info->hne_lif = 0; 15441 info->hne_event = NE_UP; 15442 info->hne_data = NULL; 15443 info->hne_datalen = 0; 15444 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 15445 } else 15446 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15447 "event information for %s (ENOMEM)\n", 15448 ill->ill_name)); 15449 15450 ill->ill_nic_event_info = info; 15451 15452 mutex_exit(&ill->ill_lock); 15453 15454 /* 15455 * Now bring up the resolver; when that is complete, we'll 15456 * create IREs. Note that we intentionally mirror what 15457 * ipif_up() would have done, because we got here by way of 15458 * ill_dl_up(), which stopped ipif_up()'s processing. 15459 */ 15460 if (ill->ill_isv6) { 15461 /* 15462 * v6 interfaces. 15463 * Unlike ARP which has to do another bind 15464 * and attach, once we get here we are 15465 * done with NDP. Except in the case of 15466 * ILLF_XRESOLV, in which case we send an 15467 * AR_INTERFACE_UP to the external resolver. 15468 * If all goes well, the ioctl will complete 15469 * in ip_rput(). If there's an error, we 15470 * complete it here. 15471 */ 15472 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15473 B_FALSE); 15474 if (err == 0) { 15475 if (ill->ill_flags & ILLF_XRESOLV) { 15476 mutex_enter(&connp->conn_lock); 15477 mutex_enter(&ill->ill_lock); 15478 success = ipsq_pending_mp_add( 15479 connp, ipif, q, mp1, 0); 15480 mutex_exit(&ill->ill_lock); 15481 mutex_exit(&connp->conn_lock); 15482 if (success) { 15483 err = ipif_resolver_up(ipif, 15484 Res_act_initial); 15485 if (err == EINPROGRESS) { 15486 freemsg(mp); 15487 return; 15488 } 15489 ASSERT(err != 0); 15490 mp1 = ipsq_pending_mp_get(ipsq, 15491 &connp); 15492 ASSERT(mp1 != NULL); 15493 } else { 15494 /* conn has started closing */ 15495 err = EINTR; 15496 } 15497 } else { /* Non XRESOLV interface */ 15498 (void) ipif_resolver_up(ipif, 15499 Res_act_initial); 15500 err = ipif_up_done_v6(ipif); 15501 } 15502 } 15503 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15504 /* 15505 * ARP and other v4 external resolvers. 15506 * Leave the pending mblk intact so that 15507 * the ioctl completes in ip_rput(). 15508 */ 15509 mutex_enter(&connp->conn_lock); 15510 mutex_enter(&ill->ill_lock); 15511 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15512 mutex_exit(&ill->ill_lock); 15513 mutex_exit(&connp->conn_lock); 15514 if (success) { 15515 err = ipif_resolver_up(ipif, Res_act_initial); 15516 if (err == EINPROGRESS) { 15517 freemsg(mp); 15518 return; 15519 } 15520 ASSERT(err != 0); 15521 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15522 } else { 15523 /* The conn has started closing */ 15524 err = EINTR; 15525 } 15526 } else { 15527 /* 15528 * This one is complete. Reply to pending ioctl. 15529 */ 15530 (void) ipif_resolver_up(ipif, Res_act_initial); 15531 err = ipif_up_done(ipif); 15532 } 15533 15534 if ((err == 0) && (ill->ill_up_ipifs)) { 15535 err = ill_up_ipifs(ill, q, mp1); 15536 if (err == EINPROGRESS) { 15537 freemsg(mp); 15538 return; 15539 } 15540 } 15541 15542 if (ill->ill_up_ipifs) { 15543 ill_group_cleanup(ill); 15544 } 15545 15546 break; 15547 case DL_NOTIFY_IND: { 15548 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15549 ire_t *ire; 15550 boolean_t need_ire_walk_v4 = B_FALSE; 15551 boolean_t need_ire_walk_v6 = B_FALSE; 15552 15553 /* 15554 * Change the address everywhere we need to. 15555 * What we're getting here is a link-level addr or phys addr. 15556 * The new addr is at notify + notify->dl_addr_offset 15557 * The address length is notify->dl_addr_length; 15558 */ 15559 switch (notify->dl_notification) { 15560 case DL_NOTE_PHYS_ADDR: 15561 mp_hw = copyb(mp); 15562 if (mp_hw == NULL) { 15563 err = ENOMEM; 15564 break; 15565 } 15566 dlp = (union DL_primitives *)mp_hw->b_rptr; 15567 /* 15568 * We currently don't support changing 15569 * the token via DL_NOTIFY_IND. 15570 * When we do support it, we have to consider 15571 * what the implications are with respect to 15572 * the token and the link local address. 15573 */ 15574 mutex_enter(&ill->ill_lock); 15575 if (dlp->notify_ind.dl_data == 15576 DL_IPV6_LINK_LAYER_ADDR) { 15577 if (ill->ill_nd_lla_mp != NULL) 15578 freemsg(ill->ill_nd_lla_mp); 15579 ill->ill_nd_lla_mp = mp_hw; 15580 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15581 dlp->notify_ind.dl_addr_offset; 15582 ill->ill_nd_lla_len = 15583 dlp->notify_ind.dl_addr_length - 15584 ABS(ill->ill_sap_length); 15585 mutex_exit(&ill->ill_lock); 15586 break; 15587 } else if (dlp->notify_ind.dl_data == 15588 DL_CURR_PHYS_ADDR) { 15589 if (ill->ill_phys_addr_mp != NULL) 15590 freemsg(ill->ill_phys_addr_mp); 15591 ill->ill_phys_addr_mp = mp_hw; 15592 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15593 dlp->notify_ind.dl_addr_offset; 15594 ill->ill_phys_addr_length = 15595 dlp->notify_ind.dl_addr_length - 15596 ABS(ill->ill_sap_length); 15597 if (ill->ill_isv6 && 15598 !(ill->ill_flags & ILLF_XRESOLV)) { 15599 if (ill->ill_nd_lla_mp != NULL) 15600 freemsg(ill->ill_nd_lla_mp); 15601 ill->ill_nd_lla_mp = copyb(mp_hw); 15602 ill->ill_nd_lla = (uchar_t *) 15603 ill->ill_nd_lla_mp->b_rptr + 15604 dlp->notify_ind.dl_addr_offset; 15605 ill->ill_nd_lla_len = 15606 ill->ill_phys_addr_length; 15607 } 15608 } 15609 mutex_exit(&ill->ill_lock); 15610 /* 15611 * Send out gratuitous arp request for our new 15612 * hardware address. 15613 */ 15614 for (ipif = ill->ill_ipif; ipif != NULL; 15615 ipif = ipif->ipif_next) { 15616 if (!(ipif->ipif_flags & IPIF_UP)) 15617 continue; 15618 if (ill->ill_isv6) { 15619 ipif_ndp_down(ipif); 15620 /* 15621 * Set B_TRUE to enable 15622 * ipif_ndp_up() to send out 15623 * unsolicited advertisements. 15624 */ 15625 err = ipif_ndp_up(ipif, 15626 &ipif->ipif_v6lcl_addr, 15627 B_TRUE); 15628 if (err) { 15629 ip1dbg(( 15630 "ip_rput_dlpi_writer: " 15631 "Failed to update ndp " 15632 "err %d\n", err)); 15633 } 15634 } else { 15635 /* 15636 * IPv4 ARP case 15637 * 15638 * Set Res_act_move, as we only want 15639 * ipif_resolver_up to send an 15640 * AR_ENTRY_ADD request up to 15641 * ARP. 15642 */ 15643 err = ipif_resolver_up(ipif, 15644 Res_act_move); 15645 if (err) { 15646 ip1dbg(( 15647 "ip_rput_dlpi_writer: " 15648 "Failed to update arp " 15649 "err %d\n", err)); 15650 } 15651 } 15652 } 15653 /* 15654 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15655 * case so that all old fastpath information can be 15656 * purged from IRE caches. 15657 */ 15658 /* FALLTHRU */ 15659 case DL_NOTE_FASTPATH_FLUSH: 15660 /* 15661 * Any fastpath probe sent henceforth will get the 15662 * new fp mp. So we first delete any ires that are 15663 * waiting for the fastpath. Then walk all ires and 15664 * delete the ire or delete the fp mp. In the case of 15665 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15666 * recreate the ire's without going through a complex 15667 * ipif up/down dance. So we don't delete the ire 15668 * itself, but just the nce_fp_mp for these 2 ire's 15669 * In the case of the other ire's we delete the ire's 15670 * themselves. Access to nce_fp_mp is completely 15671 * protected by ire_lock for IRE_MIPRTUN and 15672 * IRE_BROADCAST. Deleting the ire is preferable in the 15673 * other cases for performance. 15674 */ 15675 if (ill->ill_isv6) { 15676 nce_fastpath_list_dispatch(ill, NULL, NULL); 15677 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15678 NULL); 15679 } else { 15680 ire_fastpath_list_dispatch(ill, NULL, NULL); 15681 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15682 IRE_CACHE | IRE_BROADCAST, 15683 ire_fastpath_flush, NULL, ill); 15684 mutex_enter(&ire_mrtun_lock); 15685 if (ire_mrtun_count != 0) { 15686 mutex_exit(&ire_mrtun_lock); 15687 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15688 IRE_MIPRTUN, ire_fastpath_flush, 15689 NULL, ill); 15690 } else { 15691 mutex_exit(&ire_mrtun_lock); 15692 } 15693 } 15694 break; 15695 case DL_NOTE_SDU_SIZE: 15696 /* 15697 * Change the MTU size of the interface, of all 15698 * attached ipif's, and of all relevant ire's. The 15699 * new value's a uint32_t at notify->dl_data. 15700 * Mtu change Vs. new ire creation - protocol below. 15701 * 15702 * a Mark the ipif as IPIF_CHANGING. 15703 * b Set the new mtu in the ipif. 15704 * c Change the ire_max_frag on all affected ires 15705 * d Unmark the IPIF_CHANGING 15706 * 15707 * To see how the protocol works, assume an interface 15708 * route is also being added simultaneously by 15709 * ip_rt_add and let 'ipif' be the ipif referenced by 15710 * the ire. If the ire is created before step a, 15711 * it will be cleaned up by step c. If the ire is 15712 * created after step d, it will see the new value of 15713 * ipif_mtu. Any attempt to create the ire between 15714 * steps a to d will fail because of the IPIF_CHANGING 15715 * flag. Note that ire_create() is passed a pointer to 15716 * the ipif_mtu, and not the value. During ire_add 15717 * under the bucket lock, the ire_max_frag of the 15718 * new ire being created is set from the ipif/ire from 15719 * which it is being derived. 15720 */ 15721 mutex_enter(&ill->ill_lock); 15722 ill->ill_max_frag = (uint_t)notify->dl_data; 15723 15724 /* 15725 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15726 * leave it alone 15727 */ 15728 if (ill->ill_mtu_userspecified) { 15729 mutex_exit(&ill->ill_lock); 15730 break; 15731 } 15732 ill->ill_max_mtu = ill->ill_max_frag; 15733 if (ill->ill_isv6) { 15734 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15735 ill->ill_max_mtu = IPV6_MIN_MTU; 15736 } else { 15737 if (ill->ill_max_mtu < IP_MIN_MTU) 15738 ill->ill_max_mtu = IP_MIN_MTU; 15739 } 15740 for (ipif = ill->ill_ipif; ipif != NULL; 15741 ipif = ipif->ipif_next) { 15742 /* 15743 * Don't override the mtu if the user 15744 * has explicitly set it. 15745 */ 15746 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15747 continue; 15748 ipif->ipif_mtu = (uint_t)notify->dl_data; 15749 if (ipif->ipif_isv6) 15750 ire = ipif_to_ire_v6(ipif); 15751 else 15752 ire = ipif_to_ire(ipif); 15753 if (ire != NULL) { 15754 ire->ire_max_frag = ipif->ipif_mtu; 15755 ire_refrele(ire); 15756 } 15757 if (ipif->ipif_flags & IPIF_UP) { 15758 if (ill->ill_isv6) 15759 need_ire_walk_v6 = B_TRUE; 15760 else 15761 need_ire_walk_v4 = B_TRUE; 15762 } 15763 } 15764 mutex_exit(&ill->ill_lock); 15765 if (need_ire_walk_v4) 15766 ire_walk_v4(ill_mtu_change, (char *)ill, 15767 ALL_ZONES); 15768 if (need_ire_walk_v6) 15769 ire_walk_v6(ill_mtu_change, (char *)ill, 15770 ALL_ZONES); 15771 break; 15772 case DL_NOTE_LINK_UP: 15773 case DL_NOTE_LINK_DOWN: { 15774 /* 15775 * We are writer. ill / phyint / ipsq assocs stable. 15776 * The RUNNING flag reflects the state of the link. 15777 */ 15778 phyint_t *phyint = ill->ill_phyint; 15779 uint64_t new_phyint_flags; 15780 boolean_t changed = B_FALSE; 15781 boolean_t went_up; 15782 15783 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15784 mutex_enter(&phyint->phyint_lock); 15785 new_phyint_flags = went_up ? 15786 phyint->phyint_flags | PHYI_RUNNING : 15787 phyint->phyint_flags & ~PHYI_RUNNING; 15788 if (new_phyint_flags != phyint->phyint_flags) { 15789 phyint->phyint_flags = new_phyint_flags; 15790 changed = B_TRUE; 15791 } 15792 mutex_exit(&phyint->phyint_lock); 15793 /* 15794 * ill_restart_dad handles the DAD restart and routing 15795 * socket notification logic. 15796 */ 15797 if (changed) { 15798 ill_restart_dad(phyint->phyint_illv4, went_up); 15799 ill_restart_dad(phyint->phyint_illv6, went_up); 15800 } 15801 break; 15802 } 15803 case DL_NOTE_PROMISC_ON_PHYS: 15804 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15805 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15806 mutex_enter(&ill->ill_lock); 15807 ill->ill_promisc_on_phys = B_TRUE; 15808 mutex_exit(&ill->ill_lock); 15809 break; 15810 case DL_NOTE_PROMISC_OFF_PHYS: 15811 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15812 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15813 mutex_enter(&ill->ill_lock); 15814 ill->ill_promisc_on_phys = B_FALSE; 15815 mutex_exit(&ill->ill_lock); 15816 break; 15817 case DL_NOTE_CAPAB_RENEG: 15818 /* 15819 * Something changed on the driver side. 15820 * It wants us to renegotiate the capabilities 15821 * on this ill. The most likely cause is the 15822 * aggregation interface under us where a 15823 * port got added or went away. 15824 * 15825 * We reset the capabilities and set the 15826 * state to IDS_RENG so that when the ack 15827 * comes back, we can start the 15828 * renegotiation process. 15829 */ 15830 ill_capability_reset(ill); 15831 ill->ill_dlpi_capab_state = IDS_RENEG; 15832 break; 15833 default: 15834 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15835 "type 0x%x for DL_NOTIFY_IND\n", 15836 notify->dl_notification)); 15837 break; 15838 } 15839 15840 /* 15841 * As this is an asynchronous operation, we 15842 * should not call ill_dlpi_done 15843 */ 15844 break; 15845 } 15846 case DL_NOTIFY_ACK: { 15847 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15848 15849 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15850 ill->ill_note_link = 1; 15851 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15852 break; 15853 } 15854 case DL_PHYS_ADDR_ACK: { 15855 /* 15856 * We should have an IOCTL waiting on this when request 15857 * sent by ill_dl_phys. 15858 * However, ill_dl_phys was called on an ill queue (from 15859 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15860 * ioctl is known to be pending on ill_wq. 15861 * There are two additional phys_addr_req's sent to the 15862 * driver to get the token and lla. ill_phys_addr_pend 15863 * keeps track of the last one sent so we know which 15864 * response we are dealing with. ill_dlpi_done will 15865 * update ill_phys_addr_pend when it sends the next req. 15866 * We don't complete the IOCTL until all three DL_PARs 15867 * have been attempted. 15868 * 15869 * We don't need any lock to update ill_nd_lla* fields, 15870 * since the ill is not yet up, We grab the lock just 15871 * for uniformity with other code that accesses ill_nd_lla. 15872 */ 15873 physaddr_req = ill->ill_phys_addr_pend; 15874 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15875 if (physaddr_req == DL_IPV6_TOKEN || 15876 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15877 if (physaddr_req == DL_IPV6_TOKEN) { 15878 /* 15879 * bcopy to low-order bits of ill_token 15880 * 15881 * XXX Temporary hack - currently, 15882 * all known tokens are 64 bits, 15883 * so I'll cheat for the moment. 15884 */ 15885 dlp = (union DL_primitives *)mp->b_rptr; 15886 15887 mutex_enter(&ill->ill_lock); 15888 bcopy((uchar_t *)(mp->b_rptr + 15889 dlp->physaddr_ack.dl_addr_offset), 15890 (void *)&ill->ill_token.s6_addr32[2], 15891 dlp->physaddr_ack.dl_addr_length); 15892 ill->ill_token_length = 15893 dlp->physaddr_ack.dl_addr_length; 15894 mutex_exit(&ill->ill_lock); 15895 } else { 15896 ASSERT(ill->ill_nd_lla_mp == NULL); 15897 mp_hw = copyb(mp); 15898 if (mp_hw == NULL) { 15899 err = ENOMEM; 15900 break; 15901 } 15902 dlp = (union DL_primitives *)mp_hw->b_rptr; 15903 mutex_enter(&ill->ill_lock); 15904 ill->ill_nd_lla_mp = mp_hw; 15905 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15906 dlp->physaddr_ack.dl_addr_offset; 15907 ill->ill_nd_lla_len = 15908 dlp->physaddr_ack.dl_addr_length; 15909 mutex_exit(&ill->ill_lock); 15910 } 15911 break; 15912 } 15913 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15914 ASSERT(ill->ill_phys_addr_mp == NULL); 15915 if (!ill->ill_ifname_pending) 15916 break; 15917 ill->ill_ifname_pending = 0; 15918 if (!ioctl_aborted) 15919 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15920 if (mp1 != NULL) { 15921 ASSERT(connp == NULL); 15922 q = ill->ill_wq; 15923 } 15924 /* 15925 * If any error acks received during the plumbing sequence, 15926 * ill_ifname_pending_err will be set. Break out and send up 15927 * the error to the pending ioctl. 15928 */ 15929 if (ill->ill_ifname_pending_err != 0) { 15930 err = ill->ill_ifname_pending_err; 15931 ill->ill_ifname_pending_err = 0; 15932 break; 15933 } 15934 /* 15935 * Get the interface token. If the zeroth interface 15936 * address is zero then set the address to the link local 15937 * address 15938 */ 15939 mp_hw = copyb(mp); 15940 if (mp_hw == NULL) { 15941 err = ENOMEM; 15942 break; 15943 } 15944 dlp = (union DL_primitives *)mp_hw->b_rptr; 15945 ill->ill_phys_addr_mp = mp_hw; 15946 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15947 dlp->physaddr_ack.dl_addr_offset; 15948 if (dlp->physaddr_ack.dl_addr_length == 0 || 15949 ill->ill_phys_addr_length == 0 || 15950 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15951 /* 15952 * Compatibility: atun driver returns a length of 0. 15953 * ipdptp has an ill_phys_addr_length of zero(from 15954 * DL_BIND_ACK) but a non-zero length here. 15955 * ipd has an ill_phys_addr_length of 4(from 15956 * DL_BIND_ACK) but a non-zero length here. 15957 */ 15958 ill->ill_phys_addr = NULL; 15959 } else if (dlp->physaddr_ack.dl_addr_length != 15960 ill->ill_phys_addr_length) { 15961 ip0dbg(("DL_PHYS_ADDR_ACK: " 15962 "Address length mismatch %d %d\n", 15963 dlp->physaddr_ack.dl_addr_length, 15964 ill->ill_phys_addr_length)); 15965 err = EINVAL; 15966 break; 15967 } 15968 mutex_enter(&ill->ill_lock); 15969 if (ill->ill_nd_lla_mp == NULL) { 15970 ill->ill_nd_lla_mp = copyb(mp_hw); 15971 if (ill->ill_nd_lla_mp == NULL) { 15972 err = ENOMEM; 15973 mutex_exit(&ill->ill_lock); 15974 break; 15975 } 15976 ill->ill_nd_lla = 15977 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15978 dlp->physaddr_ack.dl_addr_offset; 15979 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15980 } 15981 mutex_exit(&ill->ill_lock); 15982 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15983 (void) ill_setdefaulttoken(ill); 15984 15985 /* 15986 * If the ill zero interface has a zero address assign 15987 * it the proper link local address. 15988 */ 15989 ASSERT(ill->ill_ipif->ipif_id == 0); 15990 if (ipif != NULL && 15991 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15992 (void) ipif_setlinklocal(ipif); 15993 break; 15994 } 15995 case DL_OK_ACK: 15996 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15997 dlpi_prim_str((int)dloa->dl_correct_primitive), 15998 dloa->dl_correct_primitive)); 15999 switch (dloa->dl_correct_primitive) { 16000 case DL_UNBIND_REQ: 16001 case DL_ATTACH_REQ: 16002 case DL_DETACH_REQ: 16003 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16004 break; 16005 } 16006 break; 16007 default: 16008 break; 16009 } 16010 16011 freemsg(mp); 16012 if (mp1) { 16013 struct iocblk *iocp; 16014 int mode; 16015 16016 /* 16017 * Complete the waiting IOCTL. For SIOCLIFADDIF or 16018 * SIOCSLIFNAME do a copyout. 16019 */ 16020 iocp = (struct iocblk *)mp1->b_rptr; 16021 16022 if (iocp->ioc_cmd == SIOCLIFADDIF || 16023 iocp->ioc_cmd == SIOCSLIFNAME) 16024 mode = COPYOUT; 16025 else 16026 mode = NO_COPYOUT; 16027 /* 16028 * The ioctl must complete now without EINPROGRESS 16029 * since ipsq_pending_mp_get has removed the ioctl mblk 16030 * from ipsq_pending_mp. Otherwise the ioctl will be 16031 * stuck for ever in the ipsq. 16032 */ 16033 ASSERT(err != EINPROGRESS); 16034 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 16035 16036 } 16037 } 16038 16039 /* 16040 * ip_rput_other is called by ip_rput to handle messages modifying the global 16041 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16042 */ 16043 /* ARGSUSED */ 16044 void 16045 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16046 { 16047 ill_t *ill; 16048 struct iocblk *iocp; 16049 mblk_t *mp1; 16050 conn_t *connp = NULL; 16051 16052 ip1dbg(("ip_rput_other ")); 16053 ill = (ill_t *)q->q_ptr; 16054 /* 16055 * This routine is not a writer in the case of SIOCGTUNPARAM 16056 * in which case ipsq is NULL. 16057 */ 16058 if (ipsq != NULL) { 16059 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16060 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16061 } 16062 16063 switch (mp->b_datap->db_type) { 16064 case M_ERROR: 16065 case M_HANGUP: 16066 /* 16067 * The device has a problem. We force the ILL down. It can 16068 * be brought up again manually using SIOCSIFFLAGS (via 16069 * ifconfig or equivalent). 16070 */ 16071 ASSERT(ipsq != NULL); 16072 if (mp->b_rptr < mp->b_wptr) 16073 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16074 if (ill->ill_error == 0) 16075 ill->ill_error = ENXIO; 16076 if (!ill_down_start(q, mp)) 16077 return; 16078 ipif_all_down_tail(ipsq, q, mp, NULL); 16079 break; 16080 case M_IOCACK: 16081 iocp = (struct iocblk *)mp->b_rptr; 16082 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16083 switch (iocp->ioc_cmd) { 16084 case SIOCSTUNPARAM: 16085 case OSIOCSTUNPARAM: 16086 ASSERT(ipsq != NULL); 16087 /* 16088 * Finish socket ioctl passed through to tun. 16089 * We should have an IOCTL waiting on this. 16090 */ 16091 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16092 if (ill->ill_isv6) { 16093 struct iftun_req *ta; 16094 16095 /* 16096 * if a source or destination is 16097 * being set, try and set the link 16098 * local address for the tunnel 16099 */ 16100 ta = (struct iftun_req *)mp->b_cont-> 16101 b_cont->b_rptr; 16102 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16103 ipif_set_tun_llink(ill, ta); 16104 } 16105 16106 } 16107 if (mp1 != NULL) { 16108 /* 16109 * Now copy back the b_next/b_prev used by 16110 * mi code for the mi_copy* functions. 16111 * See ip_sioctl_tunparam() for the reason. 16112 * Also protect against missing b_cont. 16113 */ 16114 if (mp->b_cont != NULL) { 16115 mp->b_cont->b_next = 16116 mp1->b_cont->b_next; 16117 mp->b_cont->b_prev = 16118 mp1->b_cont->b_prev; 16119 } 16120 inet_freemsg(mp1); 16121 ASSERT(ipsq->ipsq_current_ipif != NULL); 16122 ASSERT(connp != NULL); 16123 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16124 iocp->ioc_error, NO_COPYOUT, 16125 ipsq->ipsq_current_ipif, ipsq); 16126 } else { 16127 ASSERT(connp == NULL); 16128 putnext(q, mp); 16129 } 16130 break; 16131 case SIOCGTUNPARAM: 16132 case OSIOCGTUNPARAM: 16133 /* 16134 * This is really M_IOCDATA from the tunnel driver. 16135 * convert back and complete the ioctl. 16136 * We should have an IOCTL waiting on this. 16137 */ 16138 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16139 if (mp1) { 16140 /* 16141 * Now copy back the b_next/b_prev used by 16142 * mi code for the mi_copy* functions. 16143 * See ip_sioctl_tunparam() for the reason. 16144 * Also protect against missing b_cont. 16145 */ 16146 if (mp->b_cont != NULL) { 16147 mp->b_cont->b_next = 16148 mp1->b_cont->b_next; 16149 mp->b_cont->b_prev = 16150 mp1->b_cont->b_prev; 16151 } 16152 inet_freemsg(mp1); 16153 if (iocp->ioc_error == 0) 16154 mp->b_datap->db_type = M_IOCDATA; 16155 ASSERT(connp != NULL); 16156 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16157 iocp->ioc_error, COPYOUT, NULL, NULL); 16158 } else { 16159 ASSERT(connp == NULL); 16160 putnext(q, mp); 16161 } 16162 break; 16163 default: 16164 break; 16165 } 16166 break; 16167 case M_IOCNAK: 16168 iocp = (struct iocblk *)mp->b_rptr; 16169 16170 switch (iocp->ioc_cmd) { 16171 int mode; 16172 ipif_t *ipif; 16173 16174 case DL_IOC_HDR_INFO: 16175 /* 16176 * If this was the first attempt turn of the 16177 * fastpath probing. 16178 */ 16179 mutex_enter(&ill->ill_lock); 16180 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16181 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16182 mutex_exit(&ill->ill_lock); 16183 ill_fastpath_nack(ill); 16184 ip1dbg(("ip_rput: DLPI fastpath off on " 16185 "interface %s\n", 16186 ill->ill_name)); 16187 } else { 16188 mutex_exit(&ill->ill_lock); 16189 } 16190 freemsg(mp); 16191 break; 16192 case SIOCSTUNPARAM: 16193 case OSIOCSTUNPARAM: 16194 ASSERT(ipsq != NULL); 16195 /* 16196 * Finish socket ioctl passed through to tun 16197 * We should have an IOCTL waiting on this. 16198 */ 16199 /* FALLTHRU */ 16200 case SIOCGTUNPARAM: 16201 case OSIOCGTUNPARAM: 16202 /* 16203 * This is really M_IOCDATA from the tunnel driver. 16204 * convert back and complete the ioctl. 16205 * We should have an IOCTL waiting on this. 16206 */ 16207 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16208 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16209 mp1 = ill_pending_mp_get(ill, &connp, 16210 iocp->ioc_id); 16211 mode = COPYOUT; 16212 ipsq = NULL; 16213 ipif = NULL; 16214 } else { 16215 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16216 mode = NO_COPYOUT; 16217 ASSERT(ipsq->ipsq_current_ipif != NULL); 16218 ipif = ipsq->ipsq_current_ipif; 16219 } 16220 if (mp1 != NULL) { 16221 /* 16222 * Now copy back the b_next/b_prev used by 16223 * mi code for the mi_copy* functions. 16224 * See ip_sioctl_tunparam() for the reason. 16225 * Also protect against missing b_cont. 16226 */ 16227 if (mp->b_cont != NULL) { 16228 mp->b_cont->b_next = 16229 mp1->b_cont->b_next; 16230 mp->b_cont->b_prev = 16231 mp1->b_cont->b_prev; 16232 } 16233 inet_freemsg(mp1); 16234 if (iocp->ioc_error == 0) 16235 iocp->ioc_error = EINVAL; 16236 ASSERT(connp != NULL); 16237 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16238 iocp->ioc_error, mode, ipif, ipsq); 16239 } else { 16240 ASSERT(connp == NULL); 16241 putnext(q, mp); 16242 } 16243 break; 16244 default: 16245 break; 16246 } 16247 default: 16248 break; 16249 } 16250 } 16251 16252 /* 16253 * NOTE : This function does not ire_refrele the ire argument passed in. 16254 * 16255 * IPQoS notes 16256 * IP policy is invoked twice for a forwarded packet, once on the read side 16257 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16258 * enabled. An additional parameter, in_ill, has been added for this purpose. 16259 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16260 * because ip_mroute drops this information. 16261 * 16262 */ 16263 void 16264 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16265 { 16266 uint32_t pkt_len; 16267 queue_t *q; 16268 uint32_t sum; 16269 #define rptr ((uchar_t *)ipha) 16270 uint32_t max_frag; 16271 uint32_t ill_index; 16272 ill_t *out_ill; 16273 16274 /* Get the ill_index of the incoming ILL */ 16275 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16276 16277 /* Initiate Read side IPPF processing */ 16278 if (IPP_ENABLED(IPP_FWD_IN)) { 16279 ip_process(IPP_FWD_IN, &mp, ill_index); 16280 if (mp == NULL) { 16281 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16282 "during IPPF processing\n")); 16283 return; 16284 } 16285 } 16286 16287 pkt_len = ntohs(ipha->ipha_length); 16288 16289 /* Adjust the checksum to reflect the ttl decrement. */ 16290 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16291 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16292 16293 if (ipha->ipha_ttl-- <= 1) { 16294 if (ip_csum_hdr(ipha)) { 16295 BUMP_MIB(&ip_mib, ipInCksumErrs); 16296 goto drop_pkt; 16297 } 16298 /* 16299 * Note: ire_stq this will be NULL for multicast 16300 * datagrams using the long path through arp (the IRE 16301 * is not an IRE_CACHE). This should not cause 16302 * problems since we don't generate ICMP errors for 16303 * multicast packets. 16304 */ 16305 q = ire->ire_stq; 16306 if (q != NULL) { 16307 /* Sent by forwarding path, and router is global zone */ 16308 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16309 GLOBAL_ZONEID); 16310 } else 16311 freemsg(mp); 16312 return; 16313 } 16314 16315 /* 16316 * Don't forward if the interface is down 16317 */ 16318 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16319 BUMP_MIB(&ip_mib, ipInDiscards); 16320 ip2dbg(("ip_rput_forward:interface is down\n")); 16321 goto drop_pkt; 16322 } 16323 16324 /* Get the ill_index of the outgoing ILL */ 16325 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16326 16327 out_ill = ire->ire_ipif->ipif_ill; 16328 16329 DTRACE_PROBE4(ip4__forwarding__start, 16330 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16331 16332 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 16333 in_ill, out_ill, ipha, mp, mp); 16334 16335 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16336 16337 if (mp == NULL) 16338 return; 16339 pkt_len = ntohs(ipha->ipha_length); 16340 16341 if (is_system_labeled()) { 16342 mblk_t *mp1; 16343 16344 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16345 BUMP_MIB(&ip_mib, ipForwProhibits); 16346 goto drop_pkt; 16347 } 16348 /* Size may have changed */ 16349 mp = mp1; 16350 ipha = (ipha_t *)mp->b_rptr; 16351 pkt_len = ntohs(ipha->ipha_length); 16352 } 16353 16354 /* Check if there are options to update */ 16355 if (!IS_SIMPLE_IPH(ipha)) { 16356 if (ip_csum_hdr(ipha)) { 16357 BUMP_MIB(&ip_mib, ipInCksumErrs); 16358 goto drop_pkt; 16359 } 16360 if (ip_rput_forward_options(mp, ipha, ire)) { 16361 return; 16362 } 16363 16364 ipha->ipha_hdr_checksum = 0; 16365 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16366 } 16367 max_frag = ire->ire_max_frag; 16368 if (pkt_len > max_frag) { 16369 /* 16370 * It needs fragging on its way out. We haven't 16371 * verified the header checksum yet. Since we 16372 * are going to put a surely good checksum in the 16373 * outgoing header, we have to make sure that it 16374 * was good coming in. 16375 */ 16376 if (ip_csum_hdr(ipha)) { 16377 BUMP_MIB(&ip_mib, ipInCksumErrs); 16378 goto drop_pkt; 16379 } 16380 /* Initiate Write side IPPF processing */ 16381 if (IPP_ENABLED(IPP_FWD_OUT)) { 16382 ip_process(IPP_FWD_OUT, &mp, ill_index); 16383 if (mp == NULL) { 16384 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16385 " during IPPF processing\n")); 16386 return; 16387 } 16388 } 16389 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16390 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16391 return; 16392 } 16393 16394 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16395 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16396 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 16397 NULL, out_ill, ipha, mp, mp); 16398 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16399 if (mp == NULL) 16400 return; 16401 16402 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16403 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16404 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16405 /* ip_xmit_v4 always consumes the packet */ 16406 return; 16407 16408 drop_pkt:; 16409 ip1dbg(("ip_rput_forward: drop pkt\n")); 16410 freemsg(mp); 16411 #undef rptr 16412 } 16413 16414 void 16415 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16416 { 16417 ire_t *ire; 16418 16419 ASSERT(!ipif->ipif_isv6); 16420 /* 16421 * Find an IRE which matches the destination and the outgoing 16422 * queue in the cache table. All we need is an IRE_CACHE which 16423 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16424 * then it is enough to have some IRE_CACHE in the group. 16425 */ 16426 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16427 dst = ipif->ipif_pp_dst_addr; 16428 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16429 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16430 if (ire == NULL) { 16431 /* 16432 * Mark this packet to make it be delivered to 16433 * ip_rput_forward after the new ire has been 16434 * created. 16435 */ 16436 mp->b_prev = NULL; 16437 mp->b_next = mp; 16438 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16439 NULL, 0, GLOBAL_ZONEID); 16440 } else { 16441 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16442 IRE_REFRELE(ire); 16443 } 16444 } 16445 16446 /* Update any source route, record route or timestamp options */ 16447 static int 16448 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16449 { 16450 ipoptp_t opts; 16451 uchar_t *opt; 16452 uint8_t optval; 16453 uint8_t optlen; 16454 ipaddr_t dst; 16455 uint32_t ts; 16456 ire_t *dst_ire = NULL; 16457 ire_t *tmp_ire = NULL; 16458 timestruc_t now; 16459 16460 ip2dbg(("ip_rput_forward_options\n")); 16461 dst = ipha->ipha_dst; 16462 for (optval = ipoptp_first(&opts, ipha); 16463 optval != IPOPT_EOL; 16464 optval = ipoptp_next(&opts)) { 16465 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16466 opt = opts.ipoptp_cur; 16467 optlen = opts.ipoptp_len; 16468 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16469 optval, opts.ipoptp_len)); 16470 switch (optval) { 16471 uint32_t off; 16472 case IPOPT_SSRR: 16473 case IPOPT_LSRR: 16474 /* Check if adminstratively disabled */ 16475 if (!ip_forward_src_routed) { 16476 BUMP_MIB(&ip_mib, ipForwProhibits); 16477 if (ire->ire_stq != NULL) { 16478 /* 16479 * Sent by forwarding path, and router 16480 * is global zone 16481 */ 16482 icmp_unreachable(ire->ire_stq, mp, 16483 ICMP_SOURCE_ROUTE_FAILED, 16484 GLOBAL_ZONEID); 16485 } else { 16486 ip0dbg(("ip_rput_forward_options: " 16487 "unable to send unreach\n")); 16488 freemsg(mp); 16489 } 16490 return (-1); 16491 } 16492 16493 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16494 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16495 if (dst_ire == NULL) { 16496 /* 16497 * Must be partial since ip_rput_options 16498 * checked for strict. 16499 */ 16500 break; 16501 } 16502 off = opt[IPOPT_OFFSET]; 16503 off--; 16504 redo_srr: 16505 if (optlen < IP_ADDR_LEN || 16506 off > optlen - IP_ADDR_LEN) { 16507 /* End of source route */ 16508 ip1dbg(( 16509 "ip_rput_forward_options: end of SR\n")); 16510 ire_refrele(dst_ire); 16511 break; 16512 } 16513 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16514 bcopy(&ire->ire_src_addr, (char *)opt + off, 16515 IP_ADDR_LEN); 16516 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16517 ntohl(dst))); 16518 16519 /* 16520 * Check if our address is present more than 16521 * once as consecutive hops in source route. 16522 */ 16523 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16524 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16525 if (tmp_ire != NULL) { 16526 ire_refrele(tmp_ire); 16527 off += IP_ADDR_LEN; 16528 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16529 goto redo_srr; 16530 } 16531 ipha->ipha_dst = dst; 16532 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16533 ire_refrele(dst_ire); 16534 break; 16535 case IPOPT_RR: 16536 off = opt[IPOPT_OFFSET]; 16537 off--; 16538 if (optlen < IP_ADDR_LEN || 16539 off > optlen - IP_ADDR_LEN) { 16540 /* No more room - ignore */ 16541 ip1dbg(( 16542 "ip_rput_forward_options: end of RR\n")); 16543 break; 16544 } 16545 bcopy(&ire->ire_src_addr, (char *)opt + off, 16546 IP_ADDR_LEN); 16547 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16548 break; 16549 case IPOPT_TS: 16550 /* Insert timestamp if there is room */ 16551 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16552 case IPOPT_TS_TSONLY: 16553 off = IPOPT_TS_TIMELEN; 16554 break; 16555 case IPOPT_TS_PRESPEC: 16556 case IPOPT_TS_PRESPEC_RFC791: 16557 /* Verify that the address matched */ 16558 off = opt[IPOPT_OFFSET] - 1; 16559 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16560 dst_ire = ire_ctable_lookup(dst, 0, 16561 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16562 MATCH_IRE_TYPE); 16563 16564 if (dst_ire == NULL) { 16565 /* Not for us */ 16566 break; 16567 } 16568 ire_refrele(dst_ire); 16569 /* FALLTHRU */ 16570 case IPOPT_TS_TSANDADDR: 16571 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16572 break; 16573 default: 16574 /* 16575 * ip_*put_options should have already 16576 * dropped this packet. 16577 */ 16578 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16579 "unknown IT - bug in ip_rput_options?\n"); 16580 return (0); /* Keep "lint" happy */ 16581 } 16582 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16583 /* Increase overflow counter */ 16584 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16585 opt[IPOPT_POS_OV_FLG] = 16586 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16587 (off << 4)); 16588 break; 16589 } 16590 off = opt[IPOPT_OFFSET] - 1; 16591 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16592 case IPOPT_TS_PRESPEC: 16593 case IPOPT_TS_PRESPEC_RFC791: 16594 case IPOPT_TS_TSANDADDR: 16595 bcopy(&ire->ire_src_addr, 16596 (char *)opt + off, IP_ADDR_LEN); 16597 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16598 /* FALLTHRU */ 16599 case IPOPT_TS_TSONLY: 16600 off = opt[IPOPT_OFFSET] - 1; 16601 /* Compute # of milliseconds since midnight */ 16602 gethrestime(&now); 16603 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16604 now.tv_nsec / (NANOSEC / MILLISEC); 16605 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16606 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16607 break; 16608 } 16609 break; 16610 } 16611 } 16612 return (0); 16613 } 16614 16615 /* 16616 * This is called after processing at least one of AH/ESP headers. 16617 * 16618 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16619 * the actual, physical interface on which the packet was received, 16620 * but, when ip_strict_dst_multihoming is set to 1, could be the 16621 * interface which had the ipha_dst configured when the packet went 16622 * through ip_rput. The ill_index corresponding to the recv_ill 16623 * is saved in ipsec_in_rill_index 16624 */ 16625 void 16626 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16627 { 16628 mblk_t *mp; 16629 ipaddr_t dst; 16630 in6_addr_t *v6dstp; 16631 ipha_t *ipha; 16632 ip6_t *ip6h; 16633 ipsec_in_t *ii; 16634 boolean_t ill_need_rele = B_FALSE; 16635 boolean_t rill_need_rele = B_FALSE; 16636 boolean_t ire_need_rele = B_FALSE; 16637 16638 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16639 ASSERT(ii->ipsec_in_ill_index != 0); 16640 16641 mp = ipsec_mp->b_cont; 16642 ASSERT(mp != NULL); 16643 16644 16645 if (ill == NULL) { 16646 ASSERT(recv_ill == NULL); 16647 /* 16648 * We need to get the original queue on which ip_rput_local 16649 * or ip_rput_data_v6 was called. 16650 */ 16651 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16652 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16653 ill_need_rele = B_TRUE; 16654 16655 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16656 recv_ill = ill_lookup_on_ifindex( 16657 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16658 NULL, NULL, NULL, NULL); 16659 rill_need_rele = B_TRUE; 16660 } else { 16661 recv_ill = ill; 16662 } 16663 16664 if ((ill == NULL) || (recv_ill == NULL)) { 16665 ip0dbg(("ip_fanout_proto_again: interface " 16666 "disappeared\n")); 16667 if (ill != NULL) 16668 ill_refrele(ill); 16669 if (recv_ill != NULL) 16670 ill_refrele(recv_ill); 16671 freemsg(ipsec_mp); 16672 return; 16673 } 16674 } 16675 16676 ASSERT(ill != NULL && recv_ill != NULL); 16677 16678 if (mp->b_datap->db_type == M_CTL) { 16679 /* 16680 * AH/ESP is returning the ICMP message after 16681 * removing their headers. Fanout again till 16682 * it gets to the right protocol. 16683 */ 16684 if (ii->ipsec_in_v4) { 16685 icmph_t *icmph; 16686 int iph_hdr_length; 16687 int hdr_length; 16688 16689 ipha = (ipha_t *)mp->b_rptr; 16690 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16691 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16692 ipha = (ipha_t *)&icmph[1]; 16693 hdr_length = IPH_HDR_LENGTH(ipha); 16694 /* 16695 * icmp_inbound_error_fanout may need to do pullupmsg. 16696 * Reset the type to M_DATA. 16697 */ 16698 mp->b_datap->db_type = M_DATA; 16699 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16700 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16701 B_FALSE, ill, ii->ipsec_in_zoneid); 16702 } else { 16703 icmp6_t *icmp6; 16704 int hdr_length; 16705 16706 ip6h = (ip6_t *)mp->b_rptr; 16707 /* Don't call hdr_length_v6() unless you have to. */ 16708 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16709 hdr_length = ip_hdr_length_v6(mp, ip6h); 16710 else 16711 hdr_length = IPV6_HDR_LEN; 16712 16713 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16714 /* 16715 * icmp_inbound_error_fanout_v6 may need to do 16716 * pullupmsg. Reset the type to M_DATA. 16717 */ 16718 mp->b_datap->db_type = M_DATA; 16719 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16720 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16721 } 16722 if (ill_need_rele) 16723 ill_refrele(ill); 16724 if (rill_need_rele) 16725 ill_refrele(recv_ill); 16726 return; 16727 } 16728 16729 if (ii->ipsec_in_v4) { 16730 ipha = (ipha_t *)mp->b_rptr; 16731 dst = ipha->ipha_dst; 16732 if (CLASSD(dst)) { 16733 /* 16734 * Multicast has to be delivered to all streams. 16735 */ 16736 dst = INADDR_BROADCAST; 16737 } 16738 16739 if (ire == NULL) { 16740 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16741 MBLK_GETLABEL(mp)); 16742 if (ire == NULL) { 16743 if (ill_need_rele) 16744 ill_refrele(ill); 16745 if (rill_need_rele) 16746 ill_refrele(recv_ill); 16747 ip1dbg(("ip_fanout_proto_again: " 16748 "IRE not found")); 16749 freemsg(ipsec_mp); 16750 return; 16751 } 16752 ire_need_rele = B_TRUE; 16753 } 16754 16755 switch (ipha->ipha_protocol) { 16756 case IPPROTO_UDP: 16757 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16758 recv_ill); 16759 if (ire_need_rele) 16760 ire_refrele(ire); 16761 break; 16762 case IPPROTO_TCP: 16763 if (!ire_need_rele) 16764 IRE_REFHOLD(ire); 16765 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16766 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16767 IRE_REFRELE(ire); 16768 if (mp != NULL) 16769 squeue_enter_chain(GET_SQUEUE(mp), mp, 16770 mp, 1, SQTAG_IP_PROTO_AGAIN); 16771 break; 16772 case IPPROTO_SCTP: 16773 if (!ire_need_rele) 16774 IRE_REFHOLD(ire); 16775 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16776 ipsec_mp, 0, ill->ill_rq, dst); 16777 break; 16778 default: 16779 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16780 recv_ill); 16781 if (ire_need_rele) 16782 ire_refrele(ire); 16783 break; 16784 } 16785 } else { 16786 uint32_t rput_flags = 0; 16787 16788 ip6h = (ip6_t *)mp->b_rptr; 16789 v6dstp = &ip6h->ip6_dst; 16790 /* 16791 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16792 * address. 16793 * 16794 * Currently, we don't store that state in the IPSEC_IN 16795 * message, and we may need to. 16796 */ 16797 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16798 IP6_IN_LLMCAST : 0); 16799 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16800 NULL, NULL); 16801 } 16802 if (ill_need_rele) 16803 ill_refrele(ill); 16804 if (rill_need_rele) 16805 ill_refrele(recv_ill); 16806 } 16807 16808 /* 16809 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16810 * returns 'true' if there are still fragments left on the queue, in 16811 * which case we restart the timer. 16812 */ 16813 void 16814 ill_frag_timer(void *arg) 16815 { 16816 ill_t *ill = (ill_t *)arg; 16817 boolean_t frag_pending; 16818 16819 mutex_enter(&ill->ill_lock); 16820 ASSERT(!ill->ill_fragtimer_executing); 16821 if (ill->ill_state_flags & ILL_CONDEMNED) { 16822 ill->ill_frag_timer_id = 0; 16823 mutex_exit(&ill->ill_lock); 16824 return; 16825 } 16826 ill->ill_fragtimer_executing = 1; 16827 mutex_exit(&ill->ill_lock); 16828 16829 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16830 16831 /* 16832 * Restart the timer, if we have fragments pending or if someone 16833 * wanted us to be scheduled again. 16834 */ 16835 mutex_enter(&ill->ill_lock); 16836 ill->ill_fragtimer_executing = 0; 16837 ill->ill_frag_timer_id = 0; 16838 if (frag_pending || ill->ill_fragtimer_needrestart) 16839 ill_frag_timer_start(ill); 16840 mutex_exit(&ill->ill_lock); 16841 } 16842 16843 void 16844 ill_frag_timer_start(ill_t *ill) 16845 { 16846 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16847 16848 /* If the ill is closing or opening don't proceed */ 16849 if (ill->ill_state_flags & ILL_CONDEMNED) 16850 return; 16851 16852 if (ill->ill_fragtimer_executing) { 16853 /* 16854 * ill_frag_timer is currently executing. Just record the 16855 * the fact that we want the timer to be restarted. 16856 * ill_frag_timer will post a timeout before it returns, 16857 * ensuring it will be called again. 16858 */ 16859 ill->ill_fragtimer_needrestart = 1; 16860 return; 16861 } 16862 16863 if (ill->ill_frag_timer_id == 0) { 16864 /* 16865 * The timer is neither running nor is the timeout handler 16866 * executing. Post a timeout so that ill_frag_timer will be 16867 * called 16868 */ 16869 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16870 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16871 ill->ill_fragtimer_needrestart = 0; 16872 } 16873 } 16874 16875 /* 16876 * This routine is needed for loopback when forwarding multicasts. 16877 * 16878 * IPQoS Notes: 16879 * IPPF processing is done in fanout routines. 16880 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16881 * processing for IPSec packets is done when it comes back in clear. 16882 * NOTE : The callers of this function need to do the ire_refrele for the 16883 * ire that is being passed in. 16884 */ 16885 void 16886 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16887 ill_t *recv_ill) 16888 { 16889 ill_t *ill = (ill_t *)q->q_ptr; 16890 uint32_t sum; 16891 uint32_t u1; 16892 uint32_t u2; 16893 int hdr_length; 16894 boolean_t mctl_present; 16895 mblk_t *first_mp = mp; 16896 mblk_t *hada_mp = NULL; 16897 ipha_t *inner_ipha; 16898 16899 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16900 "ip_rput_locl_start: q %p", q); 16901 16902 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16903 16904 16905 #define rptr ((uchar_t *)ipha) 16906 #define iphs ((uint16_t *)ipha) 16907 16908 /* 16909 * no UDP or TCP packet should come here anymore. 16910 */ 16911 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16912 (ipha->ipha_protocol != IPPROTO_UDP)); 16913 16914 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16915 if (mctl_present && 16916 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16917 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16918 16919 /* 16920 * It's an IPsec accelerated packet. 16921 * Keep a pointer to the data attributes around until 16922 * we allocate the ipsec_info_t. 16923 */ 16924 IPSECHW_DEBUG(IPSECHW_PKT, 16925 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16926 hada_mp = first_mp; 16927 hada_mp->b_cont = NULL; 16928 /* 16929 * Since it is accelerated, it comes directly from 16930 * the ill and the data attributes is followed by 16931 * the packet data. 16932 */ 16933 ASSERT(mp->b_datap->db_type != M_CTL); 16934 first_mp = mp; 16935 mctl_present = B_FALSE; 16936 } 16937 16938 /* 16939 * IF M_CTL is not present, then ipsec_in_is_secure 16940 * should return B_TRUE. There is a case where loopback 16941 * packets has an M_CTL in the front with all the 16942 * IPSEC options set to IPSEC_PREF_NEVER - which means 16943 * ipsec_in_is_secure will return B_FALSE. As loopback 16944 * packets never comes here, it is safe to ASSERT the 16945 * following. 16946 */ 16947 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16948 16949 16950 /* u1 is # words of IP options */ 16951 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16952 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16953 16954 if (u1) { 16955 if (!ip_options_cksum(q, mp, ipha, ire)) { 16956 if (hada_mp != NULL) 16957 freemsg(hada_mp); 16958 return; 16959 } 16960 } else { 16961 /* Check the IP header checksum. */ 16962 #define uph ((uint16_t *)ipha) 16963 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16964 uph[6] + uph[7] + uph[8] + uph[9]; 16965 #undef uph 16966 /* finish doing IP checksum */ 16967 sum = (sum & 0xFFFF) + (sum >> 16); 16968 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16969 /* 16970 * Don't verify header checksum if this packet is coming 16971 * back from AH/ESP as we already did it. 16972 */ 16973 if (!mctl_present && (sum && sum != 0xFFFF)) { 16974 BUMP_MIB(&ip_mib, ipInCksumErrs); 16975 goto drop_pkt; 16976 } 16977 } 16978 16979 /* 16980 * Count for SNMP of inbound packets for ire. As ip_proto_input 16981 * might be called more than once for secure packets, count only 16982 * the first time. 16983 */ 16984 if (!mctl_present) { 16985 UPDATE_IB_PKT_COUNT(ire); 16986 ire->ire_last_used_time = lbolt; 16987 } 16988 16989 /* Check for fragmentation offset. */ 16990 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16991 u1 = u2 & (IPH_MF | IPH_OFFSET); 16992 if (u1) { 16993 /* 16994 * We re-assemble fragments before we do the AH/ESP 16995 * processing. Thus, M_CTL should not be present 16996 * while we are re-assembling. 16997 */ 16998 ASSERT(!mctl_present); 16999 ASSERT(first_mp == mp); 17000 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17001 return; 17002 } 17003 /* 17004 * Make sure that first_mp points back to mp as 17005 * the mp we came in with could have changed in 17006 * ip_rput_fragment(). 17007 */ 17008 ipha = (ipha_t *)mp->b_rptr; 17009 first_mp = mp; 17010 } 17011 17012 /* 17013 * Clear hardware checksumming flag as it is currently only 17014 * used by TCP and UDP. 17015 */ 17016 DB_CKSUMFLAGS(mp) = 0; 17017 17018 /* Now we have a complete datagram, destined for this machine. */ 17019 u1 = IPH_HDR_LENGTH(ipha); 17020 switch (ipha->ipha_protocol) { 17021 case IPPROTO_ICMP: { 17022 ire_t *ire_zone; 17023 ilm_t *ilm; 17024 mblk_t *mp1; 17025 zoneid_t last_zoneid; 17026 17027 if (CLASSD(ipha->ipha_dst) && 17028 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17029 ASSERT(ire->ire_type == IRE_BROADCAST); 17030 /* 17031 * In the multicast case, applications may have joined 17032 * the group from different zones, so we need to deliver 17033 * the packet to each of them. Loop through the 17034 * multicast memberships structures (ilm) on the receive 17035 * ill and send a copy of the packet up each matching 17036 * one. However, we don't do this for multicasts sent on 17037 * the loopback interface (PHYI_LOOPBACK flag set) as 17038 * they must stay in the sender's zone. 17039 * 17040 * ilm_add_v6() ensures that ilms in the same zone are 17041 * contiguous in the ill_ilm list. We use this property 17042 * to avoid sending duplicates needed when two 17043 * applications in the same zone join the same group on 17044 * different logical interfaces: we ignore the ilm if 17045 * its zoneid is the same as the last matching one. 17046 * In addition, the sending of the packet for 17047 * ire_zoneid is delayed until all of the other ilms 17048 * have been exhausted. 17049 */ 17050 last_zoneid = -1; 17051 ILM_WALKER_HOLD(recv_ill); 17052 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17053 ilm = ilm->ilm_next) { 17054 if ((ilm->ilm_flags & ILM_DELETED) || 17055 ipha->ipha_dst != ilm->ilm_addr || 17056 ilm->ilm_zoneid == last_zoneid || 17057 ilm->ilm_zoneid == ire->ire_zoneid || 17058 ilm->ilm_zoneid == ALL_ZONES || 17059 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17060 continue; 17061 mp1 = ip_copymsg(first_mp); 17062 if (mp1 == NULL) 17063 continue; 17064 icmp_inbound(q, mp1, B_TRUE, ill, 17065 0, sum, mctl_present, B_TRUE, 17066 recv_ill, ilm->ilm_zoneid); 17067 last_zoneid = ilm->ilm_zoneid; 17068 } 17069 ILM_WALKER_RELE(recv_ill); 17070 } else if (ire->ire_type == IRE_BROADCAST) { 17071 /* 17072 * In the broadcast case, there may be many zones 17073 * which need a copy of the packet delivered to them. 17074 * There is one IRE_BROADCAST per broadcast address 17075 * and per zone; we walk those using a helper function. 17076 * In addition, the sending of the packet for ire is 17077 * delayed until all of the other ires have been 17078 * processed. 17079 */ 17080 IRB_REFHOLD(ire->ire_bucket); 17081 ire_zone = NULL; 17082 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17083 ire)) != NULL) { 17084 mp1 = ip_copymsg(first_mp); 17085 if (mp1 == NULL) 17086 continue; 17087 17088 UPDATE_IB_PKT_COUNT(ire_zone); 17089 ire_zone->ire_last_used_time = lbolt; 17090 icmp_inbound(q, mp1, B_TRUE, ill, 17091 0, sum, mctl_present, B_TRUE, 17092 recv_ill, ire_zone->ire_zoneid); 17093 } 17094 IRB_REFRELE(ire->ire_bucket); 17095 } 17096 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17097 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17098 ire->ire_zoneid); 17099 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17100 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17101 return; 17102 } 17103 case IPPROTO_IGMP: 17104 /* 17105 * If we are not willing to accept IGMP packets in clear, 17106 * then check with global policy. 17107 */ 17108 if (igmp_accept_clear_messages == 0) { 17109 first_mp = ipsec_check_global_policy(first_mp, NULL, 17110 ipha, NULL, mctl_present); 17111 if (first_mp == NULL) 17112 return; 17113 } 17114 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17115 freemsg(first_mp); 17116 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17117 BUMP_MIB(&ip_mib, ipInDiscards); 17118 return; 17119 } 17120 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17121 /* Bad packet - discarded by igmp_input */ 17122 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17123 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17124 if (mctl_present) 17125 freeb(first_mp); 17126 return; 17127 } 17128 /* 17129 * igmp_input() may have returned the pulled up message. 17130 * So first_mp and ipha need to be reinitialized. 17131 */ 17132 ipha = (ipha_t *)mp->b_rptr; 17133 if (mctl_present) 17134 first_mp->b_cont = mp; 17135 else 17136 first_mp = mp; 17137 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17138 /* No user-level listener for IGMP packets */ 17139 goto drop_pkt; 17140 } 17141 /* deliver to local raw users */ 17142 break; 17143 case IPPROTO_PIM: 17144 /* 17145 * If we are not willing to accept PIM packets in clear, 17146 * then check with global policy. 17147 */ 17148 if (pim_accept_clear_messages == 0) { 17149 first_mp = ipsec_check_global_policy(first_mp, NULL, 17150 ipha, NULL, mctl_present); 17151 if (first_mp == NULL) 17152 return; 17153 } 17154 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17155 freemsg(first_mp); 17156 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17157 BUMP_MIB(&ip_mib, ipInDiscards); 17158 return; 17159 } 17160 if (pim_input(q, mp) != 0) { 17161 /* Bad packet - discarded by pim_input */ 17162 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17163 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17164 if (mctl_present) 17165 freeb(first_mp); 17166 return; 17167 } 17168 17169 /* 17170 * pim_input() may have pulled up the message so ipha needs to 17171 * be reinitialized. 17172 */ 17173 ipha = (ipha_t *)mp->b_rptr; 17174 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17175 /* No user-level listener for PIM packets */ 17176 goto drop_pkt; 17177 } 17178 /* deliver to local raw users */ 17179 break; 17180 case IPPROTO_ENCAP: 17181 /* 17182 * Handle self-encapsulated packets (IP-in-IP where 17183 * the inner addresses == the outer addresses). 17184 */ 17185 hdr_length = IPH_HDR_LENGTH(ipha); 17186 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17187 mp->b_wptr) { 17188 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17189 sizeof (ipha_t) - mp->b_rptr)) { 17190 BUMP_MIB(&ip_mib, ipInDiscards); 17191 freemsg(first_mp); 17192 return; 17193 } 17194 ipha = (ipha_t *)mp->b_rptr; 17195 } 17196 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17197 /* 17198 * Check the sanity of the inner IP header. 17199 */ 17200 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17201 BUMP_MIB(&ip_mib, ipInDiscards); 17202 freemsg(first_mp); 17203 return; 17204 } 17205 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17206 BUMP_MIB(&ip_mib, ipInDiscards); 17207 freemsg(first_mp); 17208 return; 17209 } 17210 if (inner_ipha->ipha_src == ipha->ipha_src && 17211 inner_ipha->ipha_dst == ipha->ipha_dst) { 17212 ipsec_in_t *ii; 17213 17214 /* 17215 * Self-encapsulated tunnel packet. Remove 17216 * the outer IP header and fanout again. 17217 * We also need to make sure that the inner 17218 * header is pulled up until options. 17219 */ 17220 mp->b_rptr = (uchar_t *)inner_ipha; 17221 ipha = inner_ipha; 17222 hdr_length = IPH_HDR_LENGTH(ipha); 17223 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17224 if (!pullupmsg(mp, (uchar_t *)ipha + 17225 + hdr_length - mp->b_rptr)) { 17226 freemsg(first_mp); 17227 return; 17228 } 17229 ipha = (ipha_t *)mp->b_rptr; 17230 } 17231 if (!mctl_present) { 17232 ASSERT(first_mp == mp); 17233 /* 17234 * This means that somebody is sending 17235 * Self-encapsualted packets without AH/ESP. 17236 * If AH/ESP was present, we would have already 17237 * allocated the first_mp. 17238 */ 17239 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 17240 NULL) { 17241 ip1dbg(("ip_proto_input: IPSEC_IN " 17242 "allocation failure.\n")); 17243 BUMP_MIB(&ip_mib, ipInDiscards); 17244 freemsg(mp); 17245 return; 17246 } 17247 first_mp->b_cont = mp; 17248 } 17249 /* 17250 * We generally store the ill_index if we need to 17251 * do IPSEC processing as we lose the ill queue when 17252 * we come back. But in this case, we never should 17253 * have to store the ill_index here as it should have 17254 * been stored previously when we processed the 17255 * AH/ESP header in this routine or for non-ipsec 17256 * cases, we still have the queue. But for some bad 17257 * packets from the wire, we can get to IPSEC after 17258 * this and we better store the index for that case. 17259 */ 17260 ill = (ill_t *)q->q_ptr; 17261 ii = (ipsec_in_t *)first_mp->b_rptr; 17262 ii->ipsec_in_ill_index = 17263 ill->ill_phyint->phyint_ifindex; 17264 ii->ipsec_in_rill_index = 17265 recv_ill->ill_phyint->phyint_ifindex; 17266 if (ii->ipsec_in_decaps) { 17267 /* 17268 * This packet is self-encapsulated multiple 17269 * times. We don't want to recurse infinitely. 17270 * To keep it simple, drop the packet. 17271 */ 17272 BUMP_MIB(&ip_mib, ipInDiscards); 17273 freemsg(first_mp); 17274 return; 17275 } 17276 ii->ipsec_in_decaps = B_TRUE; 17277 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17278 ire); 17279 return; 17280 } 17281 break; 17282 case IPPROTO_AH: 17283 case IPPROTO_ESP: { 17284 /* 17285 * Fast path for AH/ESP. If this is the first time 17286 * we are sending a datagram to AH/ESP, allocate 17287 * a IPSEC_IN message and prepend it. Otherwise, 17288 * just fanout. 17289 */ 17290 17291 int ipsec_rc; 17292 ipsec_in_t *ii; 17293 17294 IP_STAT(ipsec_proto_ahesp); 17295 if (!mctl_present) { 17296 ASSERT(first_mp == mp); 17297 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17298 ip1dbg(("ip_proto_input: IPSEC_IN " 17299 "allocation failure.\n")); 17300 freemsg(hada_mp); /* okay ifnull */ 17301 BUMP_MIB(&ip_mib, ipInDiscards); 17302 freemsg(mp); 17303 return; 17304 } 17305 /* 17306 * Store the ill_index so that when we come back 17307 * from IPSEC we ride on the same queue. 17308 */ 17309 ill = (ill_t *)q->q_ptr; 17310 ii = (ipsec_in_t *)first_mp->b_rptr; 17311 ii->ipsec_in_ill_index = 17312 ill->ill_phyint->phyint_ifindex; 17313 ii->ipsec_in_rill_index = 17314 recv_ill->ill_phyint->phyint_ifindex; 17315 first_mp->b_cont = mp; 17316 /* 17317 * Cache hardware acceleration info. 17318 */ 17319 if (hada_mp != NULL) { 17320 IPSECHW_DEBUG(IPSECHW_PKT, 17321 ("ip_rput_local: caching data attr.\n")); 17322 ii->ipsec_in_accelerated = B_TRUE; 17323 ii->ipsec_in_da = hada_mp; 17324 hada_mp = NULL; 17325 } 17326 } else { 17327 ii = (ipsec_in_t *)first_mp->b_rptr; 17328 } 17329 17330 if (!ipsec_loaded()) { 17331 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17332 ire->ire_zoneid); 17333 return; 17334 } 17335 17336 /* select inbound SA and have IPsec process the pkt */ 17337 if (ipha->ipha_protocol == IPPROTO_ESP) { 17338 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17339 if (esph == NULL) 17340 return; 17341 ASSERT(ii->ipsec_in_esp_sa != NULL); 17342 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17343 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17344 first_mp, esph); 17345 } else { 17346 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17347 if (ah == NULL) 17348 return; 17349 ASSERT(ii->ipsec_in_ah_sa != NULL); 17350 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17351 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17352 first_mp, ah); 17353 } 17354 17355 switch (ipsec_rc) { 17356 case IPSEC_STATUS_SUCCESS: 17357 break; 17358 case IPSEC_STATUS_FAILED: 17359 BUMP_MIB(&ip_mib, ipInDiscards); 17360 /* FALLTHRU */ 17361 case IPSEC_STATUS_PENDING: 17362 return; 17363 } 17364 /* we're done with IPsec processing, send it up */ 17365 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17366 return; 17367 } 17368 default: 17369 break; 17370 } 17371 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17372 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17373 ire->ire_zoneid)); 17374 goto drop_pkt; 17375 } 17376 /* 17377 * Handle protocols with which IP is less intimate. There 17378 * can be more than one stream bound to a particular 17379 * protocol. When this is the case, each one gets a copy 17380 * of any incoming packets. 17381 */ 17382 ip_fanout_proto(q, first_mp, ill, ipha, 17383 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17384 B_TRUE, recv_ill, ire->ire_zoneid); 17385 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17386 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17387 return; 17388 17389 drop_pkt: 17390 freemsg(first_mp); 17391 if (hada_mp != NULL) 17392 freeb(hada_mp); 17393 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17394 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17395 #undef rptr 17396 #undef iphs 17397 17398 } 17399 17400 /* 17401 * Update any source route, record route or timestamp options. 17402 * Check that we are at end of strict source route. 17403 * The options have already been checked for sanity in ip_rput_options(). 17404 */ 17405 static boolean_t 17406 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17407 { 17408 ipoptp_t opts; 17409 uchar_t *opt; 17410 uint8_t optval; 17411 uint8_t optlen; 17412 ipaddr_t dst; 17413 uint32_t ts; 17414 ire_t *dst_ire; 17415 timestruc_t now; 17416 zoneid_t zoneid; 17417 ill_t *ill; 17418 17419 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17420 17421 ip2dbg(("ip_rput_local_options\n")); 17422 17423 for (optval = ipoptp_first(&opts, ipha); 17424 optval != IPOPT_EOL; 17425 optval = ipoptp_next(&opts)) { 17426 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17427 opt = opts.ipoptp_cur; 17428 optlen = opts.ipoptp_len; 17429 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17430 optval, optlen)); 17431 switch (optval) { 17432 uint32_t off; 17433 case IPOPT_SSRR: 17434 case IPOPT_LSRR: 17435 off = opt[IPOPT_OFFSET]; 17436 off--; 17437 if (optlen < IP_ADDR_LEN || 17438 off > optlen - IP_ADDR_LEN) { 17439 /* End of source route */ 17440 ip1dbg(("ip_rput_local_options: end of SR\n")); 17441 break; 17442 } 17443 /* 17444 * This will only happen if two consecutive entries 17445 * in the source route contains our address or if 17446 * it is a packet with a loose source route which 17447 * reaches us before consuming the whole source route 17448 */ 17449 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17450 if (optval == IPOPT_SSRR) { 17451 goto bad_src_route; 17452 } 17453 /* 17454 * Hack: instead of dropping the packet truncate the 17455 * source route to what has been used by filling the 17456 * rest with IPOPT_NOP. 17457 */ 17458 opt[IPOPT_OLEN] = (uint8_t)off; 17459 while (off < optlen) { 17460 opt[off++] = IPOPT_NOP; 17461 } 17462 break; 17463 case IPOPT_RR: 17464 off = opt[IPOPT_OFFSET]; 17465 off--; 17466 if (optlen < IP_ADDR_LEN || 17467 off > optlen - IP_ADDR_LEN) { 17468 /* No more room - ignore */ 17469 ip1dbg(( 17470 "ip_rput_local_options: end of RR\n")); 17471 break; 17472 } 17473 bcopy(&ire->ire_src_addr, (char *)opt + off, 17474 IP_ADDR_LEN); 17475 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17476 break; 17477 case IPOPT_TS: 17478 /* Insert timestamp if there is romm */ 17479 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17480 case IPOPT_TS_TSONLY: 17481 off = IPOPT_TS_TIMELEN; 17482 break; 17483 case IPOPT_TS_PRESPEC: 17484 case IPOPT_TS_PRESPEC_RFC791: 17485 /* Verify that the address matched */ 17486 off = opt[IPOPT_OFFSET] - 1; 17487 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17488 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17489 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17490 if (dst_ire == NULL) { 17491 /* Not for us */ 17492 break; 17493 } 17494 ire_refrele(dst_ire); 17495 /* FALLTHRU */ 17496 case IPOPT_TS_TSANDADDR: 17497 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17498 break; 17499 default: 17500 /* 17501 * ip_*put_options should have already 17502 * dropped this packet. 17503 */ 17504 cmn_err(CE_PANIC, "ip_rput_local_options: " 17505 "unknown IT - bug in ip_rput_options?\n"); 17506 return (B_TRUE); /* Keep "lint" happy */ 17507 } 17508 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17509 /* Increase overflow counter */ 17510 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17511 opt[IPOPT_POS_OV_FLG] = 17512 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17513 (off << 4)); 17514 break; 17515 } 17516 off = opt[IPOPT_OFFSET] - 1; 17517 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17518 case IPOPT_TS_PRESPEC: 17519 case IPOPT_TS_PRESPEC_RFC791: 17520 case IPOPT_TS_TSANDADDR: 17521 bcopy(&ire->ire_src_addr, (char *)opt + off, 17522 IP_ADDR_LEN); 17523 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17524 /* FALLTHRU */ 17525 case IPOPT_TS_TSONLY: 17526 off = opt[IPOPT_OFFSET] - 1; 17527 /* Compute # of milliseconds since midnight */ 17528 gethrestime(&now); 17529 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17530 now.tv_nsec / (NANOSEC / MILLISEC); 17531 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17532 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17533 break; 17534 } 17535 break; 17536 } 17537 } 17538 return (B_TRUE); 17539 17540 bad_src_route: 17541 q = WR(q); 17542 if (q->q_next != NULL) 17543 ill = q->q_ptr; 17544 else 17545 ill = NULL; 17546 17547 /* make sure we clear any indication of a hardware checksum */ 17548 DB_CKSUMFLAGS(mp) = 0; 17549 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17550 if (zoneid == ALL_ZONES) 17551 freemsg(mp); 17552 else 17553 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17554 return (B_FALSE); 17555 17556 } 17557 17558 /* 17559 * Process IP options in an inbound packet. If an option affects the 17560 * effective destination address, return the next hop address via dstp. 17561 * Returns -1 if something fails in which case an ICMP error has been sent 17562 * and mp freed. 17563 */ 17564 static int 17565 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17566 { 17567 ipoptp_t opts; 17568 uchar_t *opt; 17569 uint8_t optval; 17570 uint8_t optlen; 17571 ipaddr_t dst; 17572 intptr_t code = 0; 17573 ire_t *ire = NULL; 17574 zoneid_t zoneid; 17575 ill_t *ill; 17576 17577 ip2dbg(("ip_rput_options\n")); 17578 dst = ipha->ipha_dst; 17579 for (optval = ipoptp_first(&opts, ipha); 17580 optval != IPOPT_EOL; 17581 optval = ipoptp_next(&opts)) { 17582 opt = opts.ipoptp_cur; 17583 optlen = opts.ipoptp_len; 17584 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17585 optval, optlen)); 17586 /* 17587 * Note: we need to verify the checksum before we 17588 * modify anything thus this routine only extracts the next 17589 * hop dst from any source route. 17590 */ 17591 switch (optval) { 17592 uint32_t off; 17593 case IPOPT_SSRR: 17594 case IPOPT_LSRR: 17595 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17596 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17597 if (ire == NULL) { 17598 if (optval == IPOPT_SSRR) { 17599 ip1dbg(("ip_rput_options: not next" 17600 " strict source route 0x%x\n", 17601 ntohl(dst))); 17602 code = (char *)&ipha->ipha_dst - 17603 (char *)ipha; 17604 goto param_prob; /* RouterReq's */ 17605 } 17606 ip2dbg(("ip_rput_options: " 17607 "not next source route 0x%x\n", 17608 ntohl(dst))); 17609 break; 17610 } 17611 ire_refrele(ire); 17612 17613 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17614 ip1dbg(( 17615 "ip_rput_options: bad option offset\n")); 17616 code = (char *)&opt[IPOPT_OLEN] - 17617 (char *)ipha; 17618 goto param_prob; 17619 } 17620 off = opt[IPOPT_OFFSET]; 17621 off--; 17622 redo_srr: 17623 if (optlen < IP_ADDR_LEN || 17624 off > optlen - IP_ADDR_LEN) { 17625 /* End of source route */ 17626 ip1dbg(("ip_rput_options: end of SR\n")); 17627 break; 17628 } 17629 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17630 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17631 ntohl(dst))); 17632 17633 /* 17634 * Check if our address is present more than 17635 * once as consecutive hops in source route. 17636 * XXX verify per-interface ip_forwarding 17637 * for source route? 17638 */ 17639 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17640 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17641 17642 if (ire != NULL) { 17643 ire_refrele(ire); 17644 off += IP_ADDR_LEN; 17645 goto redo_srr; 17646 } 17647 17648 if (dst == htonl(INADDR_LOOPBACK)) { 17649 ip1dbg(("ip_rput_options: loopback addr in " 17650 "source route!\n")); 17651 goto bad_src_route; 17652 } 17653 /* 17654 * For strict: verify that dst is directly 17655 * reachable. 17656 */ 17657 if (optval == IPOPT_SSRR) { 17658 ire = ire_ftable_lookup(dst, 0, 0, 17659 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17660 MBLK_GETLABEL(mp), 17661 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17662 if (ire == NULL) { 17663 ip1dbg(("ip_rput_options: SSRR not " 17664 "directly reachable: 0x%x\n", 17665 ntohl(dst))); 17666 goto bad_src_route; 17667 } 17668 ire_refrele(ire); 17669 } 17670 /* 17671 * Defer update of the offset and the record route 17672 * until the packet is forwarded. 17673 */ 17674 break; 17675 case IPOPT_RR: 17676 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17677 ip1dbg(( 17678 "ip_rput_options: bad option offset\n")); 17679 code = (char *)&opt[IPOPT_OLEN] - 17680 (char *)ipha; 17681 goto param_prob; 17682 } 17683 break; 17684 case IPOPT_TS: 17685 /* 17686 * Verify that length >= 5 and that there is either 17687 * room for another timestamp or that the overflow 17688 * counter is not maxed out. 17689 */ 17690 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17691 if (optlen < IPOPT_MINLEN_IT) { 17692 goto param_prob; 17693 } 17694 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17695 ip1dbg(( 17696 "ip_rput_options: bad option offset\n")); 17697 code = (char *)&opt[IPOPT_OFFSET] - 17698 (char *)ipha; 17699 goto param_prob; 17700 } 17701 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17702 case IPOPT_TS_TSONLY: 17703 off = IPOPT_TS_TIMELEN; 17704 break; 17705 case IPOPT_TS_TSANDADDR: 17706 case IPOPT_TS_PRESPEC: 17707 case IPOPT_TS_PRESPEC_RFC791: 17708 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17709 break; 17710 default: 17711 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17712 (char *)ipha; 17713 goto param_prob; 17714 } 17715 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17716 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17717 /* 17718 * No room and the overflow counter is 15 17719 * already. 17720 */ 17721 goto param_prob; 17722 } 17723 break; 17724 } 17725 } 17726 17727 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17728 *dstp = dst; 17729 return (0); 17730 } 17731 17732 ip1dbg(("ip_rput_options: error processing IP options.")); 17733 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17734 17735 param_prob: 17736 q = WR(q); 17737 if (q->q_next != NULL) 17738 ill = q->q_ptr; 17739 else 17740 ill = NULL; 17741 17742 /* make sure we clear any indication of a hardware checksum */ 17743 DB_CKSUMFLAGS(mp) = 0; 17744 /* Don't know whether this is for non-global or global/forwarding */ 17745 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17746 if (zoneid == ALL_ZONES) 17747 freemsg(mp); 17748 else 17749 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17750 return (-1); 17751 17752 bad_src_route: 17753 q = WR(q); 17754 if (q->q_next != NULL) 17755 ill = q->q_ptr; 17756 else 17757 ill = NULL; 17758 17759 /* make sure we clear any indication of a hardware checksum */ 17760 DB_CKSUMFLAGS(mp) = 0; 17761 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17762 if (zoneid == ALL_ZONES) 17763 freemsg(mp); 17764 else 17765 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17766 return (-1); 17767 } 17768 17769 /* 17770 * IP & ICMP info in >=14 msg's ... 17771 * - ip fixed part (mib2_ip_t) 17772 * - icmp fixed part (mib2_icmp_t) 17773 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17774 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17775 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17776 * - ipRouteAttributeTable (ip 102) labeled routes 17777 * - ip multicast membership (ip_member_t) 17778 * - ip multicast source filtering (ip_grpsrc_t) 17779 * - igmp fixed part (struct igmpstat) 17780 * - multicast routing stats (struct mrtstat) 17781 * - multicast routing vifs (array of struct vifctl) 17782 * - multicast routing routes (array of struct mfcctl) 17783 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17784 * One per ill plus one generic 17785 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17786 * One per ill plus one generic 17787 * - ipv6RouteEntry all IPv6 IREs 17788 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17789 * - ipv6NetToMediaEntry all Neighbor Cache entries 17790 * - ipv6AddrEntry all IPv6 ipifs 17791 * - ipv6 multicast membership (ipv6_member_t) 17792 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17793 * 17794 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17795 * 17796 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17797 * already filled in by the caller. 17798 * Return value of 0 indicates that no messages were sent and caller 17799 * should free mpctl. 17800 */ 17801 int 17802 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17803 { 17804 17805 if (mpctl == NULL || mpctl->b_cont == NULL) { 17806 return (0); 17807 } 17808 17809 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 17810 return (1); 17811 } 17812 17813 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17814 return (1); 17815 } 17816 17817 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17818 return (1); 17819 } 17820 17821 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17822 return (1); 17823 } 17824 17825 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17826 return (1); 17827 } 17828 17829 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17830 return (1); 17831 } 17832 17833 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17834 return (1); 17835 } 17836 17837 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17838 return (1); 17839 } 17840 17841 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17842 return (1); 17843 } 17844 17845 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17846 return (1); 17847 } 17848 17849 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17850 return (1); 17851 } 17852 17853 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17854 return (1); 17855 } 17856 17857 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17858 return (1); 17859 } 17860 17861 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17862 return (1); 17863 } 17864 17865 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17866 return (1); 17867 } 17868 17869 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17870 return (1); 17871 } 17872 17873 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17874 return (1); 17875 } 17876 freemsg(mpctl); 17877 return (1); 17878 } 17879 17880 17881 /* Get global IPv4 statistics */ 17882 static mblk_t * 17883 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 17884 { 17885 struct opthdr *optp; 17886 mblk_t *mp2ctl; 17887 17888 /* 17889 * make a copy of the original message 17890 */ 17891 mp2ctl = copymsg(mpctl); 17892 17893 /* fixed length IP structure... */ 17894 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17895 optp->level = MIB2_IP; 17896 optp->name = 0; 17897 SET_MIB(ip_mib.ipForwarding, 17898 (WE_ARE_FORWARDING ? 1 : 2)); 17899 SET_MIB(ip_mib.ipDefaultTTL, 17900 (uint32_t)ip_def_ttl); 17901 SET_MIB(ip_mib.ipReasmTimeout, 17902 ip_g_frag_timeout); 17903 SET_MIB(ip_mib.ipAddrEntrySize, 17904 sizeof (mib2_ipAddrEntry_t)); 17905 SET_MIB(ip_mib.ipRouteEntrySize, 17906 sizeof (mib2_ipRouteEntry_t)); 17907 SET_MIB(ip_mib.ipNetToMediaEntrySize, 17908 sizeof (mib2_ipNetToMediaEntry_t)); 17909 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17910 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17911 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 17912 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17913 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 17914 (int)sizeof (ip_mib))) { 17915 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17916 (uint_t)sizeof (ip_mib))); 17917 } 17918 17919 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17920 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17921 (int)optp->level, (int)optp->name, (int)optp->len)); 17922 qreply(q, mpctl); 17923 return (mp2ctl); 17924 } 17925 17926 /* Global IPv4 ICMP statistics */ 17927 static mblk_t * 17928 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 17929 { 17930 struct opthdr *optp; 17931 mblk_t *mp2ctl; 17932 17933 /* 17934 * Make a copy of the original message 17935 */ 17936 mp2ctl = copymsg(mpctl); 17937 17938 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17939 optp->level = MIB2_ICMP; 17940 optp->name = 0; 17941 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17942 (int)sizeof (icmp_mib))) { 17943 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17944 (uint_t)sizeof (icmp_mib))); 17945 } 17946 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17947 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17948 (int)optp->level, (int)optp->name, (int)optp->len)); 17949 qreply(q, mpctl); 17950 return (mp2ctl); 17951 } 17952 17953 /* Global IPv4 IGMP statistics */ 17954 static mblk_t * 17955 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17956 { 17957 struct opthdr *optp; 17958 mblk_t *mp2ctl; 17959 17960 /* 17961 * make a copy of the original message 17962 */ 17963 mp2ctl = copymsg(mpctl); 17964 17965 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17966 optp->level = EXPER_IGMP; 17967 optp->name = 0; 17968 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17969 (int)sizeof (igmpstat))) { 17970 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17971 (uint_t)sizeof (igmpstat))); 17972 } 17973 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17974 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17975 (int)optp->level, (int)optp->name, (int)optp->len)); 17976 qreply(q, mpctl); 17977 return (mp2ctl); 17978 } 17979 17980 /* Global IPv4 Multicast Routing statistics */ 17981 static mblk_t * 17982 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17983 { 17984 struct opthdr *optp; 17985 mblk_t *mp2ctl; 17986 17987 /* 17988 * make a copy of the original message 17989 */ 17990 mp2ctl = copymsg(mpctl); 17991 17992 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17993 optp->level = EXPER_DVMRP; 17994 optp->name = 0; 17995 if (!ip_mroute_stats(mpctl->b_cont)) { 17996 ip0dbg(("ip_mroute_stats: failed\n")); 17997 } 17998 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17999 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18000 (int)optp->level, (int)optp->name, (int)optp->len)); 18001 qreply(q, mpctl); 18002 return (mp2ctl); 18003 } 18004 18005 /* IPv4 address information */ 18006 static mblk_t * 18007 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 18008 { 18009 struct opthdr *optp; 18010 mblk_t *mp2ctl; 18011 mblk_t *mp_tail = NULL; 18012 ill_t *ill; 18013 ipif_t *ipif; 18014 uint_t bitval; 18015 mib2_ipAddrEntry_t mae; 18016 zoneid_t zoneid; 18017 ill_walk_context_t ctx; 18018 18019 /* 18020 * make a copy of the original message 18021 */ 18022 mp2ctl = copymsg(mpctl); 18023 18024 /* ipAddrEntryTable */ 18025 18026 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18027 optp->level = MIB2_IP; 18028 optp->name = MIB2_IP_ADDR; 18029 zoneid = Q_TO_CONN(q)->conn_zoneid; 18030 18031 rw_enter(&ill_g_lock, RW_READER); 18032 ill = ILL_START_WALK_V4(&ctx); 18033 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18034 for (ipif = ill->ill_ipif; ipif != NULL; 18035 ipif = ipif->ipif_next) { 18036 if (ipif->ipif_zoneid != zoneid && 18037 ipif->ipif_zoneid != ALL_ZONES) 18038 continue; 18039 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18040 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18041 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18042 18043 (void) ipif_get_name(ipif, 18044 mae.ipAdEntIfIndex.o_bytes, 18045 OCTET_LENGTH); 18046 mae.ipAdEntIfIndex.o_length = 18047 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18048 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18049 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18050 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18051 mae.ipAdEntInfo.ae_subnet_len = 18052 ip_mask_to_plen(ipif->ipif_net_mask); 18053 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18054 for (bitval = 1; 18055 bitval && 18056 !(bitval & ipif->ipif_brd_addr); 18057 bitval <<= 1) 18058 noop; 18059 mae.ipAdEntBcastAddr = bitval; 18060 mae.ipAdEntReasmMaxSize = 65535; 18061 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18062 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18063 mae.ipAdEntInfo.ae_broadcast_addr = 18064 ipif->ipif_brd_addr; 18065 mae.ipAdEntInfo.ae_pp_dst_addr = 18066 ipif->ipif_pp_dst_addr; 18067 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18068 ill->ill_flags | ill->ill_phyint->phyint_flags; 18069 18070 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18071 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18072 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18073 "allocate %u bytes\n", 18074 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18075 } 18076 } 18077 } 18078 rw_exit(&ill_g_lock); 18079 18080 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18081 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18082 (int)optp->level, (int)optp->name, (int)optp->len)); 18083 qreply(q, mpctl); 18084 return (mp2ctl); 18085 } 18086 18087 /* IPv6 address information */ 18088 static mblk_t * 18089 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 18090 { 18091 struct opthdr *optp; 18092 mblk_t *mp2ctl; 18093 mblk_t *mp_tail = NULL; 18094 ill_t *ill; 18095 ipif_t *ipif; 18096 mib2_ipv6AddrEntry_t mae6; 18097 zoneid_t zoneid; 18098 ill_walk_context_t ctx; 18099 18100 /* 18101 * make a copy of the original message 18102 */ 18103 mp2ctl = copymsg(mpctl); 18104 18105 /* ipv6AddrEntryTable */ 18106 18107 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18108 optp->level = MIB2_IP6; 18109 optp->name = MIB2_IP6_ADDR; 18110 zoneid = Q_TO_CONN(q)->conn_zoneid; 18111 18112 rw_enter(&ill_g_lock, RW_READER); 18113 ill = ILL_START_WALK_V6(&ctx); 18114 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18115 for (ipif = ill->ill_ipif; ipif != NULL; 18116 ipif = ipif->ipif_next) { 18117 if (ipif->ipif_zoneid != zoneid && 18118 ipif->ipif_zoneid != ALL_ZONES) 18119 continue; 18120 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18121 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18122 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18123 18124 (void) ipif_get_name(ipif, 18125 mae6.ipv6AddrIfIndex.o_bytes, 18126 OCTET_LENGTH); 18127 mae6.ipv6AddrIfIndex.o_length = 18128 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18129 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18130 mae6.ipv6AddrPfxLength = 18131 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18132 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18133 mae6.ipv6AddrInfo.ae_subnet_len = 18134 mae6.ipv6AddrPfxLength; 18135 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18136 18137 /* Type: stateless(1), stateful(2), unknown(3) */ 18138 if (ipif->ipif_flags & IPIF_ADDRCONF) 18139 mae6.ipv6AddrType = 1; 18140 else 18141 mae6.ipv6AddrType = 2; 18142 /* Anycast: true(1), false(2) */ 18143 if (ipif->ipif_flags & IPIF_ANYCAST) 18144 mae6.ipv6AddrAnycastFlag = 1; 18145 else 18146 mae6.ipv6AddrAnycastFlag = 2; 18147 18148 /* 18149 * Address status: preferred(1), deprecated(2), 18150 * invalid(3), inaccessible(4), unknown(5) 18151 */ 18152 if (ipif->ipif_flags & IPIF_NOLOCAL) 18153 mae6.ipv6AddrStatus = 3; 18154 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18155 mae6.ipv6AddrStatus = 2; 18156 else 18157 mae6.ipv6AddrStatus = 1; 18158 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18159 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18160 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18161 ipif->ipif_v6pp_dst_addr; 18162 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18163 ill->ill_flags | ill->ill_phyint->phyint_flags; 18164 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18165 (char *)&mae6, 18166 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18167 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18168 "allocate %u bytes\n", 18169 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18170 } 18171 } 18172 } 18173 rw_exit(&ill_g_lock); 18174 18175 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18176 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18177 (int)optp->level, (int)optp->name, (int)optp->len)); 18178 qreply(q, mpctl); 18179 return (mp2ctl); 18180 } 18181 18182 /* IPv4 multicast group membership. */ 18183 static mblk_t * 18184 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 18185 { 18186 struct opthdr *optp; 18187 mblk_t *mp2ctl; 18188 ill_t *ill; 18189 ipif_t *ipif; 18190 ilm_t *ilm; 18191 ip_member_t ipm; 18192 mblk_t *mp_tail = NULL; 18193 ill_walk_context_t ctx; 18194 zoneid_t zoneid; 18195 18196 /* 18197 * make a copy of the original message 18198 */ 18199 mp2ctl = copymsg(mpctl); 18200 zoneid = Q_TO_CONN(q)->conn_zoneid; 18201 18202 /* ipGroupMember table */ 18203 optp = (struct opthdr *)&mpctl->b_rptr[ 18204 sizeof (struct T_optmgmt_ack)]; 18205 optp->level = MIB2_IP; 18206 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18207 18208 rw_enter(&ill_g_lock, RW_READER); 18209 ill = ILL_START_WALK_V4(&ctx); 18210 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18211 ILM_WALKER_HOLD(ill); 18212 for (ipif = ill->ill_ipif; ipif != NULL; 18213 ipif = ipif->ipif_next) { 18214 if (ipif->ipif_zoneid != zoneid && 18215 ipif->ipif_zoneid != ALL_ZONES) 18216 continue; /* not this zone */ 18217 (void) ipif_get_name(ipif, 18218 ipm.ipGroupMemberIfIndex.o_bytes, 18219 OCTET_LENGTH); 18220 ipm.ipGroupMemberIfIndex.o_length = 18221 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18222 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18223 ASSERT(ilm->ilm_ipif != NULL); 18224 ASSERT(ilm->ilm_ill == NULL); 18225 if (ilm->ilm_ipif != ipif) 18226 continue; 18227 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18228 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18229 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18230 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18231 (char *)&ipm, (int)sizeof (ipm))) { 18232 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18233 "failed to allocate %u bytes\n", 18234 (uint_t)sizeof (ipm))); 18235 } 18236 } 18237 } 18238 ILM_WALKER_RELE(ill); 18239 } 18240 rw_exit(&ill_g_lock); 18241 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18242 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18243 (int)optp->level, (int)optp->name, (int)optp->len)); 18244 qreply(q, mpctl); 18245 return (mp2ctl); 18246 } 18247 18248 /* IPv6 multicast group membership. */ 18249 static mblk_t * 18250 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 18251 { 18252 struct opthdr *optp; 18253 mblk_t *mp2ctl; 18254 ill_t *ill; 18255 ilm_t *ilm; 18256 ipv6_member_t ipm6; 18257 mblk_t *mp_tail = NULL; 18258 ill_walk_context_t ctx; 18259 zoneid_t zoneid; 18260 18261 /* 18262 * make a copy of the original message 18263 */ 18264 mp2ctl = copymsg(mpctl); 18265 zoneid = Q_TO_CONN(q)->conn_zoneid; 18266 18267 /* ip6GroupMember table */ 18268 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18269 optp->level = MIB2_IP6; 18270 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18271 18272 rw_enter(&ill_g_lock, RW_READER); 18273 ill = ILL_START_WALK_V6(&ctx); 18274 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18275 ILM_WALKER_HOLD(ill); 18276 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18277 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18278 ASSERT(ilm->ilm_ipif == NULL); 18279 ASSERT(ilm->ilm_ill != NULL); 18280 if (ilm->ilm_zoneid != zoneid) 18281 continue; /* not this zone */ 18282 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18283 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18284 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18285 if (!snmp_append_data2(mpctl->b_cont, 18286 &mp_tail, 18287 (char *)&ipm6, (int)sizeof (ipm6))) { 18288 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18289 "failed to allocate %u bytes\n", 18290 (uint_t)sizeof (ipm6))); 18291 } 18292 } 18293 ILM_WALKER_RELE(ill); 18294 } 18295 rw_exit(&ill_g_lock); 18296 18297 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18298 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18299 (int)optp->level, (int)optp->name, (int)optp->len)); 18300 qreply(q, mpctl); 18301 return (mp2ctl); 18302 } 18303 18304 /* IP multicast filtered sources */ 18305 static mblk_t * 18306 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18307 { 18308 struct opthdr *optp; 18309 mblk_t *mp2ctl; 18310 ill_t *ill; 18311 ipif_t *ipif; 18312 ilm_t *ilm; 18313 ip_grpsrc_t ips; 18314 mblk_t *mp_tail = NULL; 18315 ill_walk_context_t ctx; 18316 zoneid_t zoneid; 18317 int i; 18318 slist_t *sl; 18319 18320 /* 18321 * make a copy of the original message 18322 */ 18323 mp2ctl = copymsg(mpctl); 18324 zoneid = Q_TO_CONN(q)->conn_zoneid; 18325 18326 /* ipGroupSource table */ 18327 optp = (struct opthdr *)&mpctl->b_rptr[ 18328 sizeof (struct T_optmgmt_ack)]; 18329 optp->level = MIB2_IP; 18330 optp->name = EXPER_IP_GROUP_SOURCES; 18331 18332 rw_enter(&ill_g_lock, RW_READER); 18333 ill = ILL_START_WALK_V4(&ctx); 18334 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18335 ILM_WALKER_HOLD(ill); 18336 for (ipif = ill->ill_ipif; ipif != NULL; 18337 ipif = ipif->ipif_next) { 18338 if (ipif->ipif_zoneid != zoneid) 18339 continue; /* not this zone */ 18340 (void) ipif_get_name(ipif, 18341 ips.ipGroupSourceIfIndex.o_bytes, 18342 OCTET_LENGTH); 18343 ips.ipGroupSourceIfIndex.o_length = 18344 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18345 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18346 ASSERT(ilm->ilm_ipif != NULL); 18347 ASSERT(ilm->ilm_ill == NULL); 18348 sl = ilm->ilm_filter; 18349 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18350 continue; 18351 ips.ipGroupSourceGroup = ilm->ilm_addr; 18352 for (i = 0; i < sl->sl_numsrc; i++) { 18353 if (!IN6_IS_ADDR_V4MAPPED( 18354 &sl->sl_addr[i])) 18355 continue; 18356 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18357 ips.ipGroupSourceAddress); 18358 if (snmp_append_data2(mpctl->b_cont, 18359 &mp_tail, (char *)&ips, 18360 (int)sizeof (ips)) == 0) { 18361 ip1dbg(("ip_snmp_get_mib2_" 18362 "ip_group_src: failed to " 18363 "allocate %u bytes\n", 18364 (uint_t)sizeof (ips))); 18365 } 18366 } 18367 } 18368 } 18369 ILM_WALKER_RELE(ill); 18370 } 18371 rw_exit(&ill_g_lock); 18372 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18373 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18374 (int)optp->level, (int)optp->name, (int)optp->len)); 18375 qreply(q, mpctl); 18376 return (mp2ctl); 18377 } 18378 18379 /* IPv6 multicast filtered sources. */ 18380 static mblk_t * 18381 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18382 { 18383 struct opthdr *optp; 18384 mblk_t *mp2ctl; 18385 ill_t *ill; 18386 ilm_t *ilm; 18387 ipv6_grpsrc_t ips6; 18388 mblk_t *mp_tail = NULL; 18389 ill_walk_context_t ctx; 18390 zoneid_t zoneid; 18391 int i; 18392 slist_t *sl; 18393 18394 /* 18395 * make a copy of the original message 18396 */ 18397 mp2ctl = copymsg(mpctl); 18398 zoneid = Q_TO_CONN(q)->conn_zoneid; 18399 18400 /* ip6GroupMember table */ 18401 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18402 optp->level = MIB2_IP6; 18403 optp->name = EXPER_IP6_GROUP_SOURCES; 18404 18405 rw_enter(&ill_g_lock, RW_READER); 18406 ill = ILL_START_WALK_V6(&ctx); 18407 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18408 ILM_WALKER_HOLD(ill); 18409 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18410 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18411 ASSERT(ilm->ilm_ipif == NULL); 18412 ASSERT(ilm->ilm_ill != NULL); 18413 sl = ilm->ilm_filter; 18414 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18415 continue; 18416 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18417 for (i = 0; i < sl->sl_numsrc; i++) { 18418 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18419 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18420 (char *)&ips6, (int)sizeof (ips6))) { 18421 ip1dbg(("ip_snmp_get_mib2_ip6_" 18422 "group_src: failed to allocate " 18423 "%u bytes\n", 18424 (uint_t)sizeof (ips6))); 18425 } 18426 } 18427 } 18428 ILM_WALKER_RELE(ill); 18429 } 18430 rw_exit(&ill_g_lock); 18431 18432 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18433 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18434 (int)optp->level, (int)optp->name, (int)optp->len)); 18435 qreply(q, mpctl); 18436 return (mp2ctl); 18437 } 18438 18439 /* Multicast routing virtual interface table. */ 18440 static mblk_t * 18441 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18442 { 18443 struct opthdr *optp; 18444 mblk_t *mp2ctl; 18445 18446 /* 18447 * make a copy of the original message 18448 */ 18449 mp2ctl = copymsg(mpctl); 18450 18451 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18452 optp->level = EXPER_DVMRP; 18453 optp->name = EXPER_DVMRP_VIF; 18454 if (!ip_mroute_vif(mpctl->b_cont)) { 18455 ip0dbg(("ip_mroute_vif: failed\n")); 18456 } 18457 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18458 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18459 (int)optp->level, (int)optp->name, (int)optp->len)); 18460 qreply(q, mpctl); 18461 return (mp2ctl); 18462 } 18463 18464 /* Multicast routing table. */ 18465 static mblk_t * 18466 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18467 { 18468 struct opthdr *optp; 18469 mblk_t *mp2ctl; 18470 18471 /* 18472 * make a copy of the original message 18473 */ 18474 mp2ctl = copymsg(mpctl); 18475 18476 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18477 optp->level = EXPER_DVMRP; 18478 optp->name = EXPER_DVMRP_MRT; 18479 if (!ip_mroute_mrt(mpctl->b_cont)) { 18480 ip0dbg(("ip_mroute_mrt: failed\n")); 18481 } 18482 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18483 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18484 (int)optp->level, (int)optp->name, (int)optp->len)); 18485 qreply(q, mpctl); 18486 return (mp2ctl); 18487 } 18488 18489 /* 18490 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18491 * in one IRE walk. 18492 */ 18493 static mblk_t * 18494 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18495 { 18496 struct opthdr *optp; 18497 mblk_t *mp2ctl; /* Returned */ 18498 mblk_t *mp3ctl; /* nettomedia */ 18499 mblk_t *mp4ctl; /* routeattrs */ 18500 iproutedata_t ird; 18501 zoneid_t zoneid; 18502 18503 /* 18504 * make copies of the original message 18505 * - mp2ctl is returned unchanged to the caller for his use 18506 * - mpctl is sent upstream as ipRouteEntryTable 18507 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18508 * - mp4ctl is sent upstream as ipRouteAttributeTable 18509 */ 18510 mp2ctl = copymsg(mpctl); 18511 mp3ctl = copymsg(mpctl); 18512 mp4ctl = copymsg(mpctl); 18513 if (mp3ctl == NULL || mp4ctl == NULL) { 18514 freemsg(mp4ctl); 18515 freemsg(mp3ctl); 18516 freemsg(mp2ctl); 18517 freemsg(mpctl); 18518 return (NULL); 18519 } 18520 18521 bzero(&ird, sizeof (ird)); 18522 18523 ird.ird_route.lp_head = mpctl->b_cont; 18524 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18525 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18526 18527 zoneid = Q_TO_CONN(q)->conn_zoneid; 18528 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18529 if (zoneid == GLOBAL_ZONEID) { 18530 /* 18531 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18532 * the sys_net_config privilege, it can only run in the global 18533 * zone, so we don't display these IREs in the other zones. 18534 */ 18535 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18536 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18537 } 18538 18539 /* ipRouteEntryTable in mpctl */ 18540 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18541 optp->level = MIB2_IP; 18542 optp->name = MIB2_IP_ROUTE; 18543 optp->len = msgdsize(ird.ird_route.lp_head); 18544 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18545 (int)optp->level, (int)optp->name, (int)optp->len)); 18546 qreply(q, mpctl); 18547 18548 /* ipNetToMediaEntryTable in mp3ctl */ 18549 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18550 optp->level = MIB2_IP; 18551 optp->name = MIB2_IP_MEDIA; 18552 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18553 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18554 (int)optp->level, (int)optp->name, (int)optp->len)); 18555 qreply(q, mp3ctl); 18556 18557 /* ipRouteAttributeTable in mp4ctl */ 18558 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18559 optp->level = MIB2_IP; 18560 optp->name = EXPER_IP_RTATTR; 18561 optp->len = msgdsize(ird.ird_attrs.lp_head); 18562 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18563 (int)optp->level, (int)optp->name, (int)optp->len)); 18564 if (optp->len == 0) 18565 freemsg(mp4ctl); 18566 else 18567 qreply(q, mp4ctl); 18568 18569 return (mp2ctl); 18570 } 18571 18572 /* 18573 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18574 * ipv6NetToMediaEntryTable in an NDP walk. 18575 */ 18576 static mblk_t * 18577 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18578 { 18579 struct opthdr *optp; 18580 mblk_t *mp2ctl; /* Returned */ 18581 mblk_t *mp3ctl; /* nettomedia */ 18582 mblk_t *mp4ctl; /* routeattrs */ 18583 iproutedata_t ird; 18584 zoneid_t zoneid; 18585 18586 /* 18587 * make copies of the original message 18588 * - mp2ctl is returned unchanged to the caller for his use 18589 * - mpctl is sent upstream as ipv6RouteEntryTable 18590 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18591 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18592 */ 18593 mp2ctl = copymsg(mpctl); 18594 mp3ctl = copymsg(mpctl); 18595 mp4ctl = copymsg(mpctl); 18596 if (mp3ctl == NULL || mp4ctl == NULL) { 18597 freemsg(mp4ctl); 18598 freemsg(mp3ctl); 18599 freemsg(mp2ctl); 18600 freemsg(mpctl); 18601 return (NULL); 18602 } 18603 18604 bzero(&ird, sizeof (ird)); 18605 18606 ird.ird_route.lp_head = mpctl->b_cont; 18607 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18608 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18609 18610 zoneid = Q_TO_CONN(q)->conn_zoneid; 18611 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18612 18613 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18614 optp->level = MIB2_IP6; 18615 optp->name = MIB2_IP6_ROUTE; 18616 optp->len = msgdsize(ird.ird_route.lp_head); 18617 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18618 (int)optp->level, (int)optp->name, (int)optp->len)); 18619 qreply(q, mpctl); 18620 18621 /* ipv6NetToMediaEntryTable in mp3ctl */ 18622 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18623 18624 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18625 optp->level = MIB2_IP6; 18626 optp->name = MIB2_IP6_MEDIA; 18627 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18628 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18629 (int)optp->level, (int)optp->name, (int)optp->len)); 18630 qreply(q, mp3ctl); 18631 18632 /* ipv6RouteAttributeTable in mp4ctl */ 18633 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18634 optp->level = MIB2_IP6; 18635 optp->name = EXPER_IP_RTATTR; 18636 optp->len = msgdsize(ird.ird_attrs.lp_head); 18637 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18638 (int)optp->level, (int)optp->name, (int)optp->len)); 18639 if (optp->len == 0) 18640 freemsg(mp4ctl); 18641 else 18642 qreply(q, mp4ctl); 18643 18644 return (mp2ctl); 18645 } 18646 18647 /* 18648 * ICMPv6 mib: One per ill 18649 */ 18650 static mblk_t * 18651 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18652 { 18653 struct opthdr *optp; 18654 mblk_t *mp2ctl; 18655 ill_t *ill; 18656 ill_walk_context_t ctx; 18657 mblk_t *mp_tail = NULL; 18658 18659 /* 18660 * Make a copy of the original message 18661 */ 18662 mp2ctl = copymsg(mpctl); 18663 18664 /* fixed length IPv6 structure ... */ 18665 18666 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18667 optp->level = MIB2_IP6; 18668 optp->name = 0; 18669 /* Include "unknown interface" ip6_mib */ 18670 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 18671 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 18672 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 18673 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 18674 sizeof (mib2_ipv6IfStatsEntry_t)); 18675 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18676 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 18677 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 18678 sizeof (mib2_ipv6NetToMediaEntry_t)); 18679 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 18680 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18681 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18682 (int)sizeof (ip6_mib))) { 18683 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18684 (uint_t)sizeof (ip6_mib))); 18685 } 18686 18687 rw_enter(&ill_g_lock, RW_READER); 18688 ill = ILL_START_WALK_V6(&ctx); 18689 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18690 ill->ill_ip6_mib->ipv6IfIndex = 18691 ill->ill_phyint->phyint_ifindex; 18692 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 18693 ipv6_forward ? 1 : 2); 18694 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 18695 ill->ill_max_hops); 18696 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 18697 sizeof (mib2_ipv6IfStatsEntry_t)); 18698 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 18699 sizeof (mib2_ipv6AddrEntry_t)); 18700 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 18701 sizeof (mib2_ipv6RouteEntry_t)); 18702 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 18703 sizeof (mib2_ipv6NetToMediaEntry_t)); 18704 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 18705 sizeof (ipv6_member_t)); 18706 18707 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18708 (char *)ill->ill_ip6_mib, 18709 (int)sizeof (*ill->ill_ip6_mib))) { 18710 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18711 "%u bytes\n", 18712 (uint_t)sizeof (*ill->ill_ip6_mib))); 18713 } 18714 } 18715 rw_exit(&ill_g_lock); 18716 18717 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18718 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18719 (int)optp->level, (int)optp->name, (int)optp->len)); 18720 qreply(q, mpctl); 18721 return (mp2ctl); 18722 } 18723 18724 /* 18725 * ICMPv6 mib: One per ill 18726 */ 18727 static mblk_t * 18728 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18729 { 18730 struct opthdr *optp; 18731 mblk_t *mp2ctl; 18732 ill_t *ill; 18733 ill_walk_context_t ctx; 18734 mblk_t *mp_tail = NULL; 18735 /* 18736 * Make a copy of the original message 18737 */ 18738 mp2ctl = copymsg(mpctl); 18739 18740 /* fixed length ICMPv6 structure ... */ 18741 18742 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18743 optp->level = MIB2_ICMP6; 18744 optp->name = 0; 18745 /* Include "unknown interface" icmp6_mib */ 18746 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 18747 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18748 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18749 (int)sizeof (icmp6_mib))) { 18750 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18751 (uint_t)sizeof (icmp6_mib))); 18752 } 18753 18754 rw_enter(&ill_g_lock, RW_READER); 18755 ill = ILL_START_WALK_V6(&ctx); 18756 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18757 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18758 ill->ill_phyint->phyint_ifindex; 18759 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 18760 sizeof (mib2_ipv6IfIcmpEntry_t); 18761 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18762 (char *)ill->ill_icmp6_mib, 18763 (int)sizeof (*ill->ill_icmp6_mib))) { 18764 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18765 "%u bytes\n", 18766 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18767 } 18768 } 18769 rw_exit(&ill_g_lock); 18770 18771 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18772 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18773 (int)optp->level, (int)optp->name, (int)optp->len)); 18774 qreply(q, mpctl); 18775 return (mp2ctl); 18776 } 18777 18778 /* 18779 * ire_walk routine to create both ipRouteEntryTable and 18780 * ipRouteAttributeTable in one IRE walk 18781 */ 18782 static void 18783 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18784 { 18785 ill_t *ill; 18786 ipif_t *ipif; 18787 mib2_ipRouteEntry_t *re; 18788 mib2_ipAttributeEntry_t *iae, *iaeptr; 18789 ipaddr_t gw_addr; 18790 tsol_ire_gw_secattr_t *attrp; 18791 tsol_gc_t *gc = NULL; 18792 tsol_gcgrp_t *gcgrp = NULL; 18793 uint_t sacnt = 0; 18794 int i; 18795 18796 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18797 18798 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18799 return; 18800 18801 if ((attrp = ire->ire_gw_secattr) != NULL) { 18802 mutex_enter(&attrp->igsa_lock); 18803 if ((gc = attrp->igsa_gc) != NULL) { 18804 gcgrp = gc->gc_grp; 18805 ASSERT(gcgrp != NULL); 18806 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18807 sacnt = 1; 18808 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18809 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18810 gc = gcgrp->gcgrp_head; 18811 sacnt = gcgrp->gcgrp_count; 18812 } 18813 mutex_exit(&attrp->igsa_lock); 18814 18815 /* do nothing if there's no gc to report */ 18816 if (gc == NULL) { 18817 ASSERT(sacnt == 0); 18818 if (gcgrp != NULL) { 18819 /* we might as well drop the lock now */ 18820 rw_exit(&gcgrp->gcgrp_rwlock); 18821 gcgrp = NULL; 18822 } 18823 attrp = NULL; 18824 } 18825 18826 ASSERT(gc == NULL || (gcgrp != NULL && 18827 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18828 } 18829 ASSERT(sacnt == 0 || gc != NULL); 18830 18831 if (sacnt != 0 && 18832 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18833 kmem_free(re, sizeof (*re)); 18834 rw_exit(&gcgrp->gcgrp_rwlock); 18835 return; 18836 } 18837 18838 /* 18839 * Return all IRE types for route table... let caller pick and choose 18840 */ 18841 re->ipRouteDest = ire->ire_addr; 18842 ipif = ire->ire_ipif; 18843 re->ipRouteIfIndex.o_length = 0; 18844 if (ire->ire_type == IRE_CACHE) { 18845 ill = (ill_t *)ire->ire_stq->q_ptr; 18846 re->ipRouteIfIndex.o_length = 18847 ill->ill_name_length == 0 ? 0 : 18848 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18849 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18850 re->ipRouteIfIndex.o_length); 18851 } else if (ipif != NULL) { 18852 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 18853 OCTET_LENGTH); 18854 re->ipRouteIfIndex.o_length = 18855 mi_strlen(re->ipRouteIfIndex.o_bytes); 18856 } 18857 re->ipRouteMetric1 = -1; 18858 re->ipRouteMetric2 = -1; 18859 re->ipRouteMetric3 = -1; 18860 re->ipRouteMetric4 = -1; 18861 18862 gw_addr = ire->ire_gateway_addr; 18863 18864 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18865 re->ipRouteNextHop = ire->ire_src_addr; 18866 else 18867 re->ipRouteNextHop = gw_addr; 18868 /* indirect(4), direct(3), or invalid(2) */ 18869 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18870 re->ipRouteType = 2; 18871 else 18872 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18873 re->ipRouteProto = -1; 18874 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18875 re->ipRouteMask = ire->ire_mask; 18876 re->ipRouteMetric5 = -1; 18877 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 18878 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 18879 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18880 re->ipRouteInfo.re_ref = ire->ire_refcnt; 18881 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 18882 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18883 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18884 re->ipRouteInfo.re_flags = ire->ire_flags; 18885 re->ipRouteInfo.re_in_ill.o_length = 0; 18886 18887 if (ire->ire_flags & RTF_DYNAMIC) { 18888 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 18889 } else { 18890 re->ipRouteInfo.re_ire_type = ire->ire_type; 18891 } 18892 18893 if (ire->ire_in_ill != NULL) { 18894 re->ipRouteInfo.re_in_ill.o_length = 18895 ire->ire_in_ill->ill_name_length == 0 ? 0 : 18896 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 18897 bcopy(ire->ire_in_ill->ill_name, 18898 re->ipRouteInfo.re_in_ill.o_bytes, 18899 re->ipRouteInfo.re_in_ill.o_length); 18900 } 18901 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 18902 18903 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18904 (char *)re, (int)sizeof (*re))) { 18905 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18906 (uint_t)sizeof (*re))); 18907 } 18908 18909 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18910 iaeptr->iae_routeidx = ird->ird_idx; 18911 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18912 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18913 } 18914 18915 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18916 (char *)iae, sacnt * sizeof (*iae))) { 18917 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18918 (unsigned)(sacnt * sizeof (*iae)))); 18919 } 18920 18921 /* bump route index for next pass */ 18922 ird->ird_idx++; 18923 18924 kmem_free(re, sizeof (*re)); 18925 if (sacnt != 0) 18926 kmem_free(iae, sacnt * sizeof (*iae)); 18927 18928 if (gcgrp != NULL) 18929 rw_exit(&gcgrp->gcgrp_rwlock); 18930 } 18931 18932 /* 18933 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18934 */ 18935 static void 18936 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18937 { 18938 ill_t *ill; 18939 ipif_t *ipif; 18940 mib2_ipv6RouteEntry_t *re; 18941 mib2_ipAttributeEntry_t *iae, *iaeptr; 18942 in6_addr_t gw_addr_v6; 18943 tsol_ire_gw_secattr_t *attrp; 18944 tsol_gc_t *gc = NULL; 18945 tsol_gcgrp_t *gcgrp = NULL; 18946 uint_t sacnt = 0; 18947 int i; 18948 18949 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18950 18951 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18952 return; 18953 18954 if ((attrp = ire->ire_gw_secattr) != NULL) { 18955 mutex_enter(&attrp->igsa_lock); 18956 if ((gc = attrp->igsa_gc) != NULL) { 18957 gcgrp = gc->gc_grp; 18958 ASSERT(gcgrp != NULL); 18959 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18960 sacnt = 1; 18961 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18962 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18963 gc = gcgrp->gcgrp_head; 18964 sacnt = gcgrp->gcgrp_count; 18965 } 18966 mutex_exit(&attrp->igsa_lock); 18967 18968 /* do nothing if there's no gc to report */ 18969 if (gc == NULL) { 18970 ASSERT(sacnt == 0); 18971 if (gcgrp != NULL) { 18972 /* we might as well drop the lock now */ 18973 rw_exit(&gcgrp->gcgrp_rwlock); 18974 gcgrp = NULL; 18975 } 18976 attrp = NULL; 18977 } 18978 18979 ASSERT(gc == NULL || (gcgrp != NULL && 18980 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18981 } 18982 ASSERT(sacnt == 0 || gc != NULL); 18983 18984 if (sacnt != 0 && 18985 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18986 kmem_free(re, sizeof (*re)); 18987 rw_exit(&gcgrp->gcgrp_rwlock); 18988 return; 18989 } 18990 18991 /* 18992 * Return all IRE types for route table... let caller pick and choose 18993 */ 18994 re->ipv6RouteDest = ire->ire_addr_v6; 18995 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18996 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18997 re->ipv6RouteIfIndex.o_length = 0; 18998 ipif = ire->ire_ipif; 18999 if (ire->ire_type == IRE_CACHE) { 19000 ill = (ill_t *)ire->ire_stq->q_ptr; 19001 re->ipv6RouteIfIndex.o_length = 19002 ill->ill_name_length == 0 ? 0 : 19003 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19004 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19005 re->ipv6RouteIfIndex.o_length); 19006 } else if (ipif != NULL) { 19007 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19008 OCTET_LENGTH); 19009 re->ipv6RouteIfIndex.o_length = 19010 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19011 } 19012 19013 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19014 19015 mutex_enter(&ire->ire_lock); 19016 gw_addr_v6 = ire->ire_gateway_addr_v6; 19017 mutex_exit(&ire->ire_lock); 19018 19019 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19020 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19021 else 19022 re->ipv6RouteNextHop = gw_addr_v6; 19023 19024 /* remote(4), local(3), or discard(2) */ 19025 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19026 re->ipv6RouteType = 2; 19027 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19028 re->ipv6RouteType = 3; 19029 else 19030 re->ipv6RouteType = 4; 19031 19032 re->ipv6RouteProtocol = -1; 19033 re->ipv6RoutePolicy = 0; 19034 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19035 re->ipv6RouteNextHopRDI = 0; 19036 re->ipv6RouteWeight = 0; 19037 re->ipv6RouteMetric = 0; 19038 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19039 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19040 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19041 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19042 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19043 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19044 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19045 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19046 19047 if (ire->ire_flags & RTF_DYNAMIC) { 19048 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19049 } else { 19050 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19051 } 19052 19053 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19054 (char *)re, (int)sizeof (*re))) { 19055 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19056 (uint_t)sizeof (*re))); 19057 } 19058 19059 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19060 iaeptr->iae_routeidx = ird->ird_idx; 19061 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19062 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19063 } 19064 19065 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19066 (char *)iae, sacnt * sizeof (*iae))) { 19067 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19068 (unsigned)(sacnt * sizeof (*iae)))); 19069 } 19070 19071 /* bump route index for next pass */ 19072 ird->ird_idx++; 19073 19074 kmem_free(re, sizeof (*re)); 19075 if (sacnt != 0) 19076 kmem_free(iae, sacnt * sizeof (*iae)); 19077 19078 if (gcgrp != NULL) 19079 rw_exit(&gcgrp->gcgrp_rwlock); 19080 } 19081 19082 /* 19083 * ndp_walk routine to create ipv6NetToMediaEntryTable 19084 */ 19085 static int 19086 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19087 { 19088 ill_t *ill; 19089 mib2_ipv6NetToMediaEntry_t ntme; 19090 dl_unitdata_req_t *dl; 19091 19092 ill = nce->nce_ill; 19093 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19094 return (0); 19095 19096 /* 19097 * Neighbor cache entry attached to IRE with on-link 19098 * destination. 19099 */ 19100 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19101 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19102 if ((ill->ill_flags & ILLF_XRESOLV) && 19103 (nce->nce_res_mp != NULL)) { 19104 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19105 ntme.ipv6NetToMediaPhysAddress.o_length = 19106 dl->dl_dest_addr_length; 19107 } else { 19108 ntme.ipv6NetToMediaPhysAddress.o_length = 19109 ill->ill_phys_addr_length; 19110 } 19111 if (nce->nce_res_mp != NULL) { 19112 bcopy((char *)nce->nce_res_mp->b_rptr + 19113 NCE_LL_ADDR_OFFSET(ill), 19114 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19115 ntme.ipv6NetToMediaPhysAddress.o_length); 19116 } else { 19117 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19118 ill->ill_phys_addr_length); 19119 } 19120 /* 19121 * Note: Returns ND_* states. Should be: 19122 * reachable(1), stale(2), delay(3), probe(4), 19123 * invalid(5), unknown(6) 19124 */ 19125 ntme.ipv6NetToMediaState = nce->nce_state; 19126 ntme.ipv6NetToMediaLastUpdated = 0; 19127 19128 /* other(1), dynamic(2), static(3), local(4) */ 19129 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19130 ntme.ipv6NetToMediaType = 4; 19131 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19132 ntme.ipv6NetToMediaType = 1; 19133 } else { 19134 ntme.ipv6NetToMediaType = 2; 19135 } 19136 19137 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19138 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19139 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19140 (uint_t)sizeof (ntme))); 19141 } 19142 return (0); 19143 } 19144 19145 /* 19146 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19147 */ 19148 /* ARGSUSED */ 19149 int 19150 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19151 { 19152 switch (level) { 19153 case MIB2_IP: 19154 case MIB2_ICMP: 19155 switch (name) { 19156 default: 19157 break; 19158 } 19159 return (1); 19160 default: 19161 return (1); 19162 } 19163 } 19164 19165 /* 19166 * Called before the options are updated to check if this packet will 19167 * be source routed from here. 19168 * This routine assumes that the options are well formed i.e. that they 19169 * have already been checked. 19170 */ 19171 static boolean_t 19172 ip_source_routed(ipha_t *ipha) 19173 { 19174 ipoptp_t opts; 19175 uchar_t *opt; 19176 uint8_t optval; 19177 uint8_t optlen; 19178 ipaddr_t dst; 19179 ire_t *ire; 19180 19181 if (IS_SIMPLE_IPH(ipha)) { 19182 ip2dbg(("not source routed\n")); 19183 return (B_FALSE); 19184 } 19185 dst = ipha->ipha_dst; 19186 for (optval = ipoptp_first(&opts, ipha); 19187 optval != IPOPT_EOL; 19188 optval = ipoptp_next(&opts)) { 19189 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19190 opt = opts.ipoptp_cur; 19191 optlen = opts.ipoptp_len; 19192 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19193 optval, optlen)); 19194 switch (optval) { 19195 uint32_t off; 19196 case IPOPT_SSRR: 19197 case IPOPT_LSRR: 19198 /* 19199 * If dst is one of our addresses and there are some 19200 * entries left in the source route return (true). 19201 */ 19202 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19203 ALL_ZONES, NULL, MATCH_IRE_TYPE); 19204 if (ire == NULL) { 19205 ip2dbg(("ip_source_routed: not next" 19206 " source route 0x%x\n", 19207 ntohl(dst))); 19208 return (B_FALSE); 19209 } 19210 ire_refrele(ire); 19211 off = opt[IPOPT_OFFSET]; 19212 off--; 19213 if (optlen < IP_ADDR_LEN || 19214 off > optlen - IP_ADDR_LEN) { 19215 /* End of source route */ 19216 ip1dbg(("ip_source_routed: end of SR\n")); 19217 return (B_FALSE); 19218 } 19219 return (B_TRUE); 19220 } 19221 } 19222 ip2dbg(("not source routed\n")); 19223 return (B_FALSE); 19224 } 19225 19226 /* 19227 * Check if the packet contains any source route. 19228 */ 19229 static boolean_t 19230 ip_source_route_included(ipha_t *ipha) 19231 { 19232 ipoptp_t opts; 19233 uint8_t optval; 19234 19235 if (IS_SIMPLE_IPH(ipha)) 19236 return (B_FALSE); 19237 for (optval = ipoptp_first(&opts, ipha); 19238 optval != IPOPT_EOL; 19239 optval = ipoptp_next(&opts)) { 19240 switch (optval) { 19241 case IPOPT_SSRR: 19242 case IPOPT_LSRR: 19243 return (B_TRUE); 19244 } 19245 } 19246 return (B_FALSE); 19247 } 19248 19249 /* 19250 * Called when the IRE expiration timer fires. 19251 */ 19252 /* ARGSUSED */ 19253 void 19254 ip_trash_timer_expire(void *args) 19255 { 19256 int flush_flag = 0; 19257 19258 /* 19259 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19260 * This lock makes sure that a new invocation of this function 19261 * that occurs due to an almost immediate timer firing will not 19262 * progress beyond this point until the current invocation is done 19263 */ 19264 mutex_enter(&ip_trash_timer_lock); 19265 ip_ire_expire_id = 0; 19266 mutex_exit(&ip_trash_timer_lock); 19267 19268 /* Periodic timer */ 19269 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19270 /* 19271 * Remove all IRE_CACHE entries since they might 19272 * contain arp information. 19273 */ 19274 flush_flag |= FLUSH_ARP_TIME; 19275 ip_ire_arp_time_elapsed = 0; 19276 IP_STAT(ip_ire_arp_timer_expired); 19277 } 19278 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19279 /* Remove all redirects */ 19280 flush_flag |= FLUSH_REDIRECT_TIME; 19281 ip_ire_rd_time_elapsed = 0; 19282 IP_STAT(ip_ire_redirect_timer_expired); 19283 } 19284 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19285 /* Increase path mtu */ 19286 flush_flag |= FLUSH_MTU_TIME; 19287 ip_ire_pmtu_time_elapsed = 0; 19288 IP_STAT(ip_ire_pmtu_timer_expired); 19289 } 19290 19291 /* 19292 * Optimize for the case when there are no redirects in the 19293 * ftable, that is, no need to walk the ftable in that case. 19294 */ 19295 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19296 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19297 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19298 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19299 } 19300 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19301 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19302 ire_expire, (char *)(uintptr_t)flush_flag, 19303 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19304 } 19305 if (flush_flag & FLUSH_MTU_TIME) { 19306 /* 19307 * Walk all IPv6 IRE's and update them 19308 * Note that ARP and redirect timers are not 19309 * needed since NUD handles stale entries. 19310 */ 19311 flush_flag = FLUSH_MTU_TIME; 19312 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19313 ALL_ZONES); 19314 } 19315 19316 ip_ire_arp_time_elapsed += ip_timer_interval; 19317 ip_ire_rd_time_elapsed += ip_timer_interval; 19318 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19319 19320 /* 19321 * Hold the lock to serialize timeout calls and prevent 19322 * stale values in ip_ire_expire_id. Otherwise it is possible 19323 * for the timer to fire and a new invocation of this function 19324 * to start before the return value of timeout has been stored 19325 * in ip_ire_expire_id by the current invocation. 19326 */ 19327 mutex_enter(&ip_trash_timer_lock); 19328 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19329 MSEC_TO_TICK(ip_timer_interval)); 19330 mutex_exit(&ip_trash_timer_lock); 19331 } 19332 19333 /* 19334 * Called by the memory allocator subsystem directly, when the system 19335 * is running low on memory. 19336 */ 19337 /* ARGSUSED */ 19338 void 19339 ip_trash_ire_reclaim(void *args) 19340 { 19341 ire_cache_count_t icc; 19342 ire_cache_reclaim_t icr; 19343 ncc_cache_count_t ncc; 19344 nce_cache_reclaim_t ncr; 19345 uint_t delete_cnt; 19346 /* 19347 * Memory reclaim call back. 19348 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19349 * Then, with a target of freeing 1/Nth of IRE_CACHE 19350 * entries, determine what fraction to free for 19351 * each category of IRE_CACHE entries giving absolute priority 19352 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19353 * entry will be freed unless all offlink entries are freed). 19354 */ 19355 icc.icc_total = 0; 19356 icc.icc_unused = 0; 19357 icc.icc_offlink = 0; 19358 icc.icc_pmtu = 0; 19359 icc.icc_onlink = 0; 19360 ire_walk(ire_cache_count, (char *)&icc); 19361 19362 /* 19363 * Free NCEs for IPv6 like the onlink ires. 19364 */ 19365 ncc.ncc_total = 0; 19366 ncc.ncc_host = 0; 19367 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19368 19369 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19370 icc.icc_pmtu + icc.icc_onlink); 19371 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19372 IP_STAT(ip_trash_ire_reclaim_calls); 19373 if (delete_cnt == 0) 19374 return; 19375 IP_STAT(ip_trash_ire_reclaim_success); 19376 /* Always delete all unused offlink entries */ 19377 icr.icr_unused = 1; 19378 if (delete_cnt <= icc.icc_unused) { 19379 /* 19380 * Only need to free unused entries. In other words, 19381 * there are enough unused entries to free to meet our 19382 * target number of freed ire cache entries. 19383 */ 19384 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19385 ncr.ncr_host = 0; 19386 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19387 /* 19388 * Only need to free unused entries, plus a fraction of offlink 19389 * entries. It follows from the first if statement that 19390 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19391 */ 19392 delete_cnt -= icc.icc_unused; 19393 /* Round up # deleted by truncating fraction */ 19394 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19395 icr.icr_pmtu = icr.icr_onlink = 0; 19396 ncr.ncr_host = 0; 19397 } else if (delete_cnt <= 19398 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19399 /* 19400 * Free all unused and offlink entries, plus a fraction of 19401 * pmtu entries. It follows from the previous if statement 19402 * that icc_pmtu is non-zero, and that 19403 * delete_cnt != icc_unused + icc_offlink. 19404 */ 19405 icr.icr_offlink = 1; 19406 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19407 /* Round up # deleted by truncating fraction */ 19408 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19409 icr.icr_onlink = 0; 19410 ncr.ncr_host = 0; 19411 } else { 19412 /* 19413 * Free all unused, offlink, and pmtu entries, plus a fraction 19414 * of onlink entries. If we're here, then we know that 19415 * icc_onlink is non-zero, and that 19416 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19417 */ 19418 icr.icr_offlink = icr.icr_pmtu = 1; 19419 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19420 icc.icc_pmtu; 19421 /* Round up # deleted by truncating fraction */ 19422 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19423 /* Using the same delete fraction as for onlink IREs */ 19424 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19425 } 19426 #ifdef DEBUG 19427 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19428 "fractions %d/%d/%d/%d\n", 19429 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19430 icc.icc_unused, icc.icc_offlink, 19431 icc.icc_pmtu, icc.icc_onlink, 19432 icr.icr_unused, icr.icr_offlink, 19433 icr.icr_pmtu, icr.icr_onlink)); 19434 #endif 19435 ire_walk(ire_cache_reclaim, (char *)&icr); 19436 if (ncr.ncr_host != 0) 19437 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19438 (uchar_t *)&ncr); 19439 #ifdef DEBUG 19440 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19441 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19442 ire_walk(ire_cache_count, (char *)&icc); 19443 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19444 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19445 icc.icc_pmtu, icc.icc_onlink)); 19446 #endif 19447 } 19448 19449 /* 19450 * ip_unbind is called when a copy of an unbind request is received from the 19451 * upper level protocol. We remove this conn from any fanout hash list it is 19452 * on, and zero out the bind information. No reply is expected up above. 19453 */ 19454 mblk_t * 19455 ip_unbind(queue_t *q, mblk_t *mp) 19456 { 19457 conn_t *connp = Q_TO_CONN(q); 19458 19459 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19460 19461 if (is_system_labeled() && connp->conn_anon_port) { 19462 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19463 connp->conn_mlp_type, connp->conn_ulp, 19464 ntohs(connp->conn_lport), B_FALSE); 19465 connp->conn_anon_port = 0; 19466 } 19467 connp->conn_mlp_type = mlptSingle; 19468 19469 ipcl_hash_remove(connp); 19470 19471 ASSERT(mp->b_cont == NULL); 19472 /* 19473 * Convert mp into a T_OK_ACK 19474 */ 19475 mp = mi_tpi_ok_ack_alloc(mp); 19476 19477 /* 19478 * should not happen in practice... T_OK_ACK is smaller than the 19479 * original message. 19480 */ 19481 if (mp == NULL) 19482 return (NULL); 19483 19484 /* 19485 * Don't bzero the ports if its TCP since TCP still needs the 19486 * lport to remove it from its own bind hash. TCP will do the 19487 * cleanup. 19488 */ 19489 if (!IPCL_IS_TCP(connp)) 19490 bzero(&connp->u_port, sizeof (connp->u_port)); 19491 19492 return (mp); 19493 } 19494 19495 /* 19496 * Write side put procedure. Outbound data, IOCTLs, responses from 19497 * resolvers, etc, come down through here. 19498 * 19499 * arg2 is always a queue_t *. 19500 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19501 * the zoneid. 19502 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19503 */ 19504 void 19505 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19506 { 19507 conn_t *connp = NULL; 19508 queue_t *q = (queue_t *)arg2; 19509 ipha_t *ipha; 19510 #define rptr ((uchar_t *)ipha) 19511 ire_t *ire = NULL; 19512 ire_t *sctp_ire = NULL; 19513 uint32_t v_hlen_tos_len; 19514 ipaddr_t dst; 19515 mblk_t *first_mp = NULL; 19516 boolean_t mctl_present; 19517 ipsec_out_t *io; 19518 int match_flags; 19519 ill_t *attach_ill = NULL; 19520 /* Bind to IPIF_NOFAILOVER ill etc. */ 19521 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19522 ipif_t *dst_ipif; 19523 boolean_t multirt_need_resolve = B_FALSE; 19524 mblk_t *copy_mp = NULL; 19525 int err; 19526 zoneid_t zoneid; 19527 int adjust; 19528 uint16_t iplen; 19529 boolean_t need_decref = B_FALSE; 19530 boolean_t ignore_dontroute = B_FALSE; 19531 boolean_t ignore_nexthop = B_FALSE; 19532 boolean_t ip_nexthop = B_FALSE; 19533 ipaddr_t nexthop_addr; 19534 19535 #ifdef _BIG_ENDIAN 19536 #define V_HLEN (v_hlen_tos_len >> 24) 19537 #else 19538 #define V_HLEN (v_hlen_tos_len & 0xFF) 19539 #endif 19540 19541 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19542 "ip_wput_start: q %p", q); 19543 19544 /* 19545 * ip_wput fast path 19546 */ 19547 19548 /* is packet from ARP ? */ 19549 if (q->q_next != NULL) { 19550 zoneid = (zoneid_t)(uintptr_t)arg; 19551 goto qnext; 19552 } 19553 19554 connp = (conn_t *)arg; 19555 ASSERT(connp != NULL); 19556 zoneid = connp->conn_zoneid; 19557 19558 /* is queue flow controlled? */ 19559 if ((q->q_first != NULL || connp->conn_draining) && 19560 (caller == IP_WPUT)) { 19561 ASSERT(!need_decref); 19562 (void) putq(q, mp); 19563 return; 19564 } 19565 19566 /* Multidata transmit? */ 19567 if (DB_TYPE(mp) == M_MULTIDATA) { 19568 /* 19569 * We should never get here, since all Multidata messages 19570 * originating from tcp should have been directed over to 19571 * tcp_multisend() in the first place. 19572 */ 19573 BUMP_MIB(&ip_mib, ipOutDiscards); 19574 freemsg(mp); 19575 return; 19576 } else if (DB_TYPE(mp) != M_DATA) 19577 goto notdata; 19578 19579 if (mp->b_flag & MSGHASREF) { 19580 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19581 mp->b_flag &= ~MSGHASREF; 19582 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19583 need_decref = B_TRUE; 19584 } 19585 ipha = (ipha_t *)mp->b_rptr; 19586 19587 /* is IP header non-aligned or mblk smaller than basic IP header */ 19588 #ifndef SAFETY_BEFORE_SPEED 19589 if (!OK_32PTR(rptr) || 19590 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19591 goto hdrtoosmall; 19592 #endif 19593 19594 ASSERT(OK_32PTR(ipha)); 19595 19596 /* 19597 * This function assumes that mp points to an IPv4 packet. If it's the 19598 * wrong version, we'll catch it again in ip_output_v6. 19599 * 19600 * Note that this is *only* locally-generated output here, and never 19601 * forwarded data, and that we need to deal only with transports that 19602 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19603 * label.) 19604 */ 19605 if (is_system_labeled() && 19606 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19607 !connp->conn_ulp_labeled) { 19608 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19609 connp->conn_mac_exempt); 19610 ipha = (ipha_t *)mp->b_rptr; 19611 if (err != 0) { 19612 first_mp = mp; 19613 if (err == EINVAL) 19614 goto icmp_parameter_problem; 19615 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19616 goto drop_pkt; 19617 } 19618 iplen = ntohs(ipha->ipha_length) + adjust; 19619 ipha->ipha_length = htons(iplen); 19620 } 19621 19622 /* 19623 * If there is a policy, try to attach an ipsec_out in 19624 * the front. At the end, first_mp either points to a 19625 * M_DATA message or IPSEC_OUT message linked to a 19626 * M_DATA message. We have to do it now as we might 19627 * lose the "conn" if we go through ip_newroute. 19628 */ 19629 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19630 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 19631 ipha->ipha_protocol)) == NULL)) { 19632 if (need_decref) 19633 CONN_DEC_REF(connp); 19634 return; 19635 } else { 19636 ASSERT(mp->b_datap->db_type == M_CTL); 19637 first_mp = mp; 19638 mp = mp->b_cont; 19639 mctl_present = B_TRUE; 19640 } 19641 } else { 19642 first_mp = mp; 19643 mctl_present = B_FALSE; 19644 } 19645 19646 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19647 19648 /* is wrong version or IP options present */ 19649 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19650 goto version_hdrlen_check; 19651 dst = ipha->ipha_dst; 19652 19653 if (connp->conn_nofailover_ill != NULL) { 19654 attach_ill = conn_get_held_ill(connp, 19655 &connp->conn_nofailover_ill, &err); 19656 if (err == ILL_LOOKUP_FAILED) { 19657 if (need_decref) 19658 CONN_DEC_REF(connp); 19659 freemsg(first_mp); 19660 return; 19661 } 19662 } 19663 19664 /* is packet multicast? */ 19665 if (CLASSD(dst)) 19666 goto multicast; 19667 19668 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19669 (connp->conn_nexthop_set)) { 19670 /* 19671 * If the destination is a broadcast or a loopback 19672 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 19673 * through the standard path. But in the case of local 19674 * destination only SO_DONTROUTE and IP_NEXTHOP go through 19675 * the standard path not IP_XMIT_IF. 19676 */ 19677 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19678 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 19679 (ire->ire_type != IRE_LOOPBACK))) { 19680 if ((connp->conn_dontroute || 19681 connp->conn_nexthop_set) && (ire != NULL) && 19682 (ire->ire_type == IRE_LOCAL)) 19683 goto standard_path; 19684 19685 if (ire != NULL) { 19686 ire_refrele(ire); 19687 /* No more access to ire */ 19688 ire = NULL; 19689 } 19690 /* 19691 * bypass routing checks and go directly to 19692 * interface. 19693 */ 19694 if (connp->conn_dontroute) { 19695 goto dontroute; 19696 } else if (connp->conn_nexthop_set) { 19697 ip_nexthop = B_TRUE; 19698 nexthop_addr = connp->conn_nexthop_v4; 19699 goto send_from_ill; 19700 } 19701 19702 /* 19703 * If IP_XMIT_IF socket option is set, 19704 * then we allow unicast and multicast 19705 * packets to go through the ill. It is 19706 * quite possible that the destination 19707 * is not in the ire cache table and we 19708 * do not want to go to ip_newroute() 19709 * instead we call ip_newroute_ipif. 19710 */ 19711 xmit_ill = conn_get_held_ill(connp, 19712 &connp->conn_xmit_if_ill, &err); 19713 if (err == ILL_LOOKUP_FAILED) { 19714 if (attach_ill != NULL) 19715 ill_refrele(attach_ill); 19716 if (need_decref) 19717 CONN_DEC_REF(connp); 19718 freemsg(first_mp); 19719 return; 19720 } 19721 goto send_from_ill; 19722 } 19723 standard_path: 19724 /* Must be a broadcast, a loopback or a local ire */ 19725 if (ire != NULL) { 19726 ire_refrele(ire); 19727 /* No more access to ire */ 19728 ire = NULL; 19729 } 19730 } 19731 19732 if (attach_ill != NULL) 19733 goto send_from_ill; 19734 19735 /* 19736 * We cache IRE_CACHEs to avoid lookups. We don't do 19737 * this for the tcp global queue and listen end point 19738 * as it does not really have a real destination to 19739 * talk to. This is also true for SCTP. 19740 */ 19741 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 19742 !connp->conn_fully_bound) { 19743 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19744 if (ire == NULL) 19745 goto noirefound; 19746 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19747 "ip_wput_end: q %p (%S)", q, "end"); 19748 19749 /* 19750 * Check if the ire has the RTF_MULTIRT flag, inherited 19751 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19752 */ 19753 if (ire->ire_flags & RTF_MULTIRT) { 19754 19755 /* 19756 * Force the TTL of multirouted packets if required. 19757 * The TTL of such packets is bounded by the 19758 * ip_multirt_ttl ndd variable. 19759 */ 19760 if ((ip_multirt_ttl > 0) && 19761 (ipha->ipha_ttl > ip_multirt_ttl)) { 19762 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19763 "(was %d), dst 0x%08x\n", 19764 ip_multirt_ttl, ipha->ipha_ttl, 19765 ntohl(ire->ire_addr))); 19766 ipha->ipha_ttl = ip_multirt_ttl; 19767 } 19768 /* 19769 * We look at this point if there are pending 19770 * unresolved routes. ire_multirt_resolvable() 19771 * checks in O(n) that all IRE_OFFSUBNET ire 19772 * entries for the packet's destination and 19773 * flagged RTF_MULTIRT are currently resolved. 19774 * If some remain unresolved, we make a copy 19775 * of the current message. It will be used 19776 * to initiate additional route resolutions. 19777 */ 19778 multirt_need_resolve = 19779 ire_multirt_need_resolve(ire->ire_addr, 19780 MBLK_GETLABEL(first_mp)); 19781 ip2dbg(("ip_wput[TCP]: ire %p, " 19782 "multirt_need_resolve %d, first_mp %p\n", 19783 (void *)ire, multirt_need_resolve, 19784 (void *)first_mp)); 19785 if (multirt_need_resolve) { 19786 copy_mp = copymsg(first_mp); 19787 if (copy_mp != NULL) { 19788 MULTIRT_DEBUG_TAG(copy_mp); 19789 } 19790 } 19791 } 19792 19793 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19794 19795 /* 19796 * Try to resolve another multiroute if 19797 * ire_multirt_need_resolve() deemed it necessary. 19798 */ 19799 if (copy_mp != NULL) { 19800 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19801 } 19802 if (need_decref) 19803 CONN_DEC_REF(connp); 19804 return; 19805 } 19806 19807 /* 19808 * Access to conn_ire_cache. (protected by conn_lock) 19809 * 19810 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 19811 * the ire bucket lock here to check for CONDEMNED as it is okay to 19812 * send a packet or two with the IRE_CACHE that is going away. 19813 * Access to the ire requires an ire refhold on the ire prior to 19814 * its use since an interface unplumb thread may delete the cached 19815 * ire and release the refhold at any time. 19816 * 19817 * Caching an ire in the conn_ire_cache 19818 * 19819 * o Caching an ire pointer in the conn requires a strict check for 19820 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 19821 * ires before cleaning up the conns. So the caching of an ire pointer 19822 * in the conn is done after making sure under the bucket lock that the 19823 * ire has not yet been marked CONDEMNED. Otherwise we will end up 19824 * caching an ire after the unplumb thread has cleaned up the conn. 19825 * If the conn does not send a packet subsequently the unplumb thread 19826 * will be hanging waiting for the ire count to drop to zero. 19827 * 19828 * o We also need to atomically test for a null conn_ire_cache and 19829 * set the conn_ire_cache under the the protection of the conn_lock 19830 * to avoid races among concurrent threads trying to simultaneously 19831 * cache an ire in the conn_ire_cache. 19832 */ 19833 mutex_enter(&connp->conn_lock); 19834 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 19835 19836 if (ire != NULL && ire->ire_addr == dst && 19837 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19838 19839 IRE_REFHOLD(ire); 19840 mutex_exit(&connp->conn_lock); 19841 19842 } else { 19843 boolean_t cached = B_FALSE; 19844 connp->conn_ire_cache = NULL; 19845 mutex_exit(&connp->conn_lock); 19846 /* Release the old ire */ 19847 if (ire != NULL && sctp_ire == NULL) 19848 IRE_REFRELE_NOTR(ire); 19849 19850 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19851 if (ire == NULL) 19852 goto noirefound; 19853 IRE_REFHOLD_NOTR(ire); 19854 19855 mutex_enter(&connp->conn_lock); 19856 if (!(connp->conn_state_flags & CONN_CLOSING) && 19857 connp->conn_ire_cache == NULL) { 19858 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19859 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19860 connp->conn_ire_cache = ire; 19861 cached = B_TRUE; 19862 } 19863 rw_exit(&ire->ire_bucket->irb_lock); 19864 } 19865 mutex_exit(&connp->conn_lock); 19866 19867 /* 19868 * We can continue to use the ire but since it was 19869 * not cached, we should drop the extra reference. 19870 */ 19871 if (!cached) 19872 IRE_REFRELE_NOTR(ire); 19873 } 19874 19875 19876 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19877 "ip_wput_end: q %p (%S)", q, "end"); 19878 19879 /* 19880 * Check if the ire has the RTF_MULTIRT flag, inherited 19881 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 19882 */ 19883 if (ire->ire_flags & RTF_MULTIRT) { 19884 19885 /* 19886 * Force the TTL of multirouted packets if required. 19887 * The TTL of such packets is bounded by the 19888 * ip_multirt_ttl ndd variable. 19889 */ 19890 if ((ip_multirt_ttl > 0) && 19891 (ipha->ipha_ttl > ip_multirt_ttl)) { 19892 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19893 "(was %d), dst 0x%08x\n", 19894 ip_multirt_ttl, ipha->ipha_ttl, 19895 ntohl(ire->ire_addr))); 19896 ipha->ipha_ttl = ip_multirt_ttl; 19897 } 19898 19899 /* 19900 * At this point, we check to see if there are any pending 19901 * unresolved routes. ire_multirt_resolvable() 19902 * checks in O(n) that all IRE_OFFSUBNET ire 19903 * entries for the packet's destination and 19904 * flagged RTF_MULTIRT are currently resolved. 19905 * If some remain unresolved, we make a copy 19906 * of the current message. It will be used 19907 * to initiate additional route resolutions. 19908 */ 19909 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19910 MBLK_GETLABEL(first_mp)); 19911 ip2dbg(("ip_wput[not TCP]: ire %p, " 19912 "multirt_need_resolve %d, first_mp %p\n", 19913 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19914 if (multirt_need_resolve) { 19915 copy_mp = copymsg(first_mp); 19916 if (copy_mp != NULL) { 19917 MULTIRT_DEBUG_TAG(copy_mp); 19918 } 19919 } 19920 } 19921 19922 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 19923 19924 /* 19925 * Try to resolve another multiroute if 19926 * ire_multirt_resolvable() deemed it necessary 19927 */ 19928 if (copy_mp != NULL) { 19929 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 19930 } 19931 if (need_decref) 19932 CONN_DEC_REF(connp); 19933 return; 19934 19935 qnext: 19936 /* 19937 * Upper Level Protocols pass down complete IP datagrams 19938 * as M_DATA messages. Everything else is a sideshow. 19939 * 19940 * 1) We could be re-entering ip_wput because of ip_neworute 19941 * in which case we could have a IPSEC_OUT message. We 19942 * need to pass through ip_wput like other datagrams and 19943 * hence cannot branch to ip_wput_nondata. 19944 * 19945 * 2) ARP, AH, ESP, and other clients who are on the module 19946 * instance of IP stream, give us something to deal with. 19947 * We will handle AH and ESP here and rest in ip_wput_nondata. 19948 * 19949 * 3) ICMP replies also could come here. 19950 */ 19951 if (DB_TYPE(mp) != M_DATA) { 19952 notdata: 19953 if (DB_TYPE(mp) == M_CTL) { 19954 /* 19955 * M_CTL messages are used by ARP, AH and ESP to 19956 * communicate with IP. We deal with IPSEC_IN and 19957 * IPSEC_OUT here. ip_wput_nondata handles other 19958 * cases. 19959 */ 19960 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19961 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19962 first_mp = mp->b_cont; 19963 first_mp->b_flag &= ~MSGHASREF; 19964 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19965 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19966 CONN_DEC_REF(connp); 19967 connp = NULL; 19968 } 19969 if (ii->ipsec_info_type == IPSEC_IN) { 19970 /* 19971 * Either this message goes back to 19972 * IPSEC for further processing or to 19973 * ULP after policy checks. 19974 */ 19975 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19976 return; 19977 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19978 io = (ipsec_out_t *)ii; 19979 if (io->ipsec_out_proc_begin) { 19980 /* 19981 * IPSEC processing has already started. 19982 * Complete it. 19983 * IPQoS notes: We don't care what is 19984 * in ipsec_out_ill_index since this 19985 * won't be processed for IPQoS policies 19986 * in ipsec_out_process. 19987 */ 19988 ipsec_out_process(q, mp, NULL, 19989 io->ipsec_out_ill_index); 19990 return; 19991 } else { 19992 connp = (q->q_next != NULL) ? 19993 NULL : Q_TO_CONN(q); 19994 first_mp = mp; 19995 mp = mp->b_cont; 19996 mctl_present = B_TRUE; 19997 } 19998 zoneid = io->ipsec_out_zoneid; 19999 ASSERT(zoneid != ALL_ZONES); 20000 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20001 /* 20002 * It's an IPsec control message requesting 20003 * an SADB update to be sent to the IPsec 20004 * hardware acceleration capable ills. 20005 */ 20006 ipsec_ctl_t *ipsec_ctl = 20007 (ipsec_ctl_t *)mp->b_rptr; 20008 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20009 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20010 mblk_t *cmp = mp->b_cont; 20011 20012 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20013 ASSERT(cmp != NULL); 20014 20015 freeb(mp); 20016 ill_ipsec_capab_send_all(satype, cmp, sa); 20017 return; 20018 } else { 20019 /* 20020 * This must be ARP or special TSOL signaling. 20021 */ 20022 ip_wput_nondata(NULL, q, mp, NULL); 20023 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20024 "ip_wput_end: q %p (%S)", q, "nondata"); 20025 return; 20026 } 20027 } else { 20028 /* 20029 * This must be non-(ARP/AH/ESP) messages. 20030 */ 20031 ASSERT(!need_decref); 20032 ip_wput_nondata(NULL, q, mp, NULL); 20033 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20034 "ip_wput_end: q %p (%S)", q, "nondata"); 20035 return; 20036 } 20037 } else { 20038 first_mp = mp; 20039 mctl_present = B_FALSE; 20040 } 20041 20042 ASSERT(first_mp != NULL); 20043 /* 20044 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20045 * to make sure that this packet goes out on the same interface it 20046 * came in. We handle that here. 20047 */ 20048 if (mctl_present) { 20049 uint_t ifindex; 20050 20051 io = (ipsec_out_t *)first_mp->b_rptr; 20052 if (io->ipsec_out_attach_if || 20053 io->ipsec_out_xmit_if || 20054 io->ipsec_out_ip_nexthop) { 20055 ill_t *ill; 20056 20057 /* 20058 * We may have lost the conn context if we are 20059 * coming here from ip_newroute(). Copy the 20060 * nexthop information. 20061 */ 20062 if (io->ipsec_out_ip_nexthop) { 20063 ip_nexthop = B_TRUE; 20064 nexthop_addr = io->ipsec_out_nexthop_addr; 20065 20066 ipha = (ipha_t *)mp->b_rptr; 20067 dst = ipha->ipha_dst; 20068 goto send_from_ill; 20069 } else { 20070 ASSERT(io->ipsec_out_ill_index != 0); 20071 ifindex = io->ipsec_out_ill_index; 20072 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20073 NULL, NULL, NULL, NULL); 20074 /* 20075 * ipsec_out_xmit_if bit is used to tell 20076 * ip_wput to use the ill to send outgoing data 20077 * as we have no conn when data comes from ICMP 20078 * error msg routines. Currently this feature is 20079 * only used by ip_mrtun_forward routine. 20080 */ 20081 if (io->ipsec_out_xmit_if) { 20082 xmit_ill = ill; 20083 if (xmit_ill == NULL) { 20084 ip1dbg(("ip_output:bad ifindex " 20085 "for xmit_ill %d\n", 20086 ifindex)); 20087 freemsg(first_mp); 20088 BUMP_MIB(&ip_mib, 20089 ipOutDiscards); 20090 ASSERT(!need_decref); 20091 return; 20092 } 20093 /* Free up the ipsec_out_t mblk */ 20094 ASSERT(first_mp->b_cont == mp); 20095 first_mp->b_cont = NULL; 20096 freeb(first_mp); 20097 /* Just send the IP header+ICMP+data */ 20098 first_mp = mp; 20099 ipha = (ipha_t *)mp->b_rptr; 20100 dst = ipha->ipha_dst; 20101 goto send_from_ill; 20102 } else { 20103 attach_ill = ill; 20104 } 20105 20106 if (attach_ill == NULL) { 20107 ASSERT(xmit_ill == NULL); 20108 ip1dbg(("ip_output: bad ifindex for " 20109 "(BIND TO IPIF_NOFAILOVER) %d\n", 20110 ifindex)); 20111 freemsg(first_mp); 20112 BUMP_MIB(&ip_mib, ipOutDiscards); 20113 ASSERT(!need_decref); 20114 return; 20115 } 20116 } 20117 } 20118 } 20119 20120 ASSERT(xmit_ill == NULL); 20121 20122 /* We have a complete IP datagram heading outbound. */ 20123 ipha = (ipha_t *)mp->b_rptr; 20124 20125 #ifndef SPEED_BEFORE_SAFETY 20126 /* 20127 * Make sure we have a full-word aligned message and that at least 20128 * a simple IP header is accessible in the first message. If not, 20129 * try a pullup. 20130 */ 20131 if (!OK_32PTR(rptr) || 20132 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20133 hdrtoosmall: 20134 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20135 BUMP_MIB(&ip_mib, ipOutDiscards); 20136 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20137 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20138 if (first_mp == NULL) 20139 first_mp = mp; 20140 goto drop_pkt; 20141 } 20142 20143 /* This function assumes that mp points to an IPv4 packet. */ 20144 if (is_system_labeled() && q->q_next == NULL && 20145 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20146 !connp->conn_ulp_labeled) { 20147 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20148 &adjust, connp->conn_mac_exempt); 20149 ipha = (ipha_t *)mp->b_rptr; 20150 if (first_mp != NULL) 20151 first_mp->b_cont = mp; 20152 if (err != 0) { 20153 if (first_mp == NULL) 20154 first_mp = mp; 20155 if (err == EINVAL) 20156 goto icmp_parameter_problem; 20157 ip2dbg(("ip_wput: label check failed (%d)\n", 20158 err)); 20159 goto drop_pkt; 20160 } 20161 iplen = ntohs(ipha->ipha_length) + adjust; 20162 ipha->ipha_length = htons(iplen); 20163 } 20164 20165 ipha = (ipha_t *)mp->b_rptr; 20166 if (first_mp == NULL) { 20167 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20168 /* 20169 * If we got here because of "goto hdrtoosmall" 20170 * We need to attach a IPSEC_OUT. 20171 */ 20172 if (connp->conn_out_enforce_policy) { 20173 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20174 NULL, ipha->ipha_protocol)) == NULL)) { 20175 if (need_decref) 20176 CONN_DEC_REF(connp); 20177 return; 20178 } else { 20179 ASSERT(mp->b_datap->db_type == M_CTL); 20180 first_mp = mp; 20181 mp = mp->b_cont; 20182 mctl_present = B_TRUE; 20183 } 20184 } else { 20185 first_mp = mp; 20186 mctl_present = B_FALSE; 20187 } 20188 } 20189 } 20190 #endif 20191 20192 /* Most of the code below is written for speed, not readability */ 20193 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20194 20195 /* 20196 * If ip_newroute() fails, we're going to need a full 20197 * header for the icmp wraparound. 20198 */ 20199 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20200 uint_t v_hlen; 20201 version_hdrlen_check: 20202 ASSERT(first_mp != NULL); 20203 v_hlen = V_HLEN; 20204 /* 20205 * siphon off IPv6 packets coming down from transport 20206 * layer modules here. 20207 * Note: high-order bit carries NUD reachability confirmation 20208 */ 20209 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20210 /* 20211 * XXX implement a IPv4 and IPv6 packet counter per 20212 * conn and switch when ratio exceeds e.g. 10:1 20213 */ 20214 #ifdef notyet 20215 if (q->q_next == NULL) /* Avoid ill queue */ 20216 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20217 #endif 20218 BUMP_MIB(&ip_mib, ipOutIPv6); 20219 ASSERT(xmit_ill == NULL); 20220 if (attach_ill != NULL) 20221 ill_refrele(attach_ill); 20222 if (need_decref) 20223 mp->b_flag |= MSGHASREF; 20224 (void) ip_output_v6(arg, first_mp, arg2, caller); 20225 return; 20226 } 20227 20228 if ((v_hlen >> 4) != IP_VERSION) { 20229 BUMP_MIB(&ip_mib, ipOutDiscards); 20230 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20231 "ip_wput_end: q %p (%S)", q, "badvers"); 20232 goto drop_pkt; 20233 } 20234 /* 20235 * Is the header length at least 20 bytes? 20236 * 20237 * Are there enough bytes accessible in the header? If 20238 * not, try a pullup. 20239 */ 20240 v_hlen &= 0xF; 20241 v_hlen <<= 2; 20242 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20243 BUMP_MIB(&ip_mib, ipOutDiscards); 20244 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20245 "ip_wput_end: q %p (%S)", q, "badlen"); 20246 goto drop_pkt; 20247 } 20248 if (v_hlen > (mp->b_wptr - rptr)) { 20249 if (!pullupmsg(mp, v_hlen)) { 20250 BUMP_MIB(&ip_mib, ipOutDiscards); 20251 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20252 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20253 goto drop_pkt; 20254 } 20255 ipha = (ipha_t *)mp->b_rptr; 20256 } 20257 /* 20258 * Move first entry from any source route into ipha_dst and 20259 * verify the options 20260 */ 20261 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20262 ASSERT(xmit_ill == NULL); 20263 if (attach_ill != NULL) 20264 ill_refrele(attach_ill); 20265 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20266 "ip_wput_end: q %p (%S)", q, "badopts"); 20267 if (need_decref) 20268 CONN_DEC_REF(connp); 20269 return; 20270 } 20271 } 20272 dst = ipha->ipha_dst; 20273 20274 /* 20275 * Try to get an IRE_CACHE for the destination address. If we can't, 20276 * we have to run the packet through ip_newroute which will take 20277 * the appropriate action to arrange for an IRE_CACHE, such as querying 20278 * a resolver, or assigning a default gateway, etc. 20279 */ 20280 if (CLASSD(dst)) { 20281 ipif_t *ipif; 20282 uint32_t setsrc = 0; 20283 20284 multicast: 20285 ASSERT(first_mp != NULL); 20286 ASSERT(xmit_ill == NULL); 20287 ip2dbg(("ip_wput: CLASSD\n")); 20288 if (connp == NULL) { 20289 /* 20290 * Use the first good ipif on the ill. 20291 * XXX Should this ever happen? (Appears 20292 * to show up with just ppp and no ethernet due 20293 * to in.rdisc.) 20294 * However, ire_send should be able to 20295 * call ip_wput_ire directly. 20296 * 20297 * XXX Also, this can happen for ICMP and other packets 20298 * with multicast source addresses. Perhaps we should 20299 * fix things so that we drop the packet in question, 20300 * but for now, just run with it. 20301 */ 20302 ill_t *ill = (ill_t *)q->q_ptr; 20303 20304 /* 20305 * Don't honor attach_if for this case. If ill 20306 * is part of the group, ipif could belong to 20307 * any ill and we cannot maintain attach_ill 20308 * and ipif_ill same anymore and the assert 20309 * below would fail. 20310 */ 20311 if (mctl_present && io->ipsec_out_attach_if) { 20312 io->ipsec_out_ill_index = 0; 20313 io->ipsec_out_attach_if = B_FALSE; 20314 ASSERT(attach_ill != NULL); 20315 ill_refrele(attach_ill); 20316 attach_ill = NULL; 20317 } 20318 20319 ASSERT(attach_ill == NULL); 20320 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20321 if (ipif == NULL) { 20322 if (need_decref) 20323 CONN_DEC_REF(connp); 20324 freemsg(first_mp); 20325 return; 20326 } 20327 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20328 ntohl(dst), ill->ill_name)); 20329 } else { 20330 /* 20331 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20332 * IP_XMIT_IF is honoured. 20333 * Block comment above this function explains the 20334 * locking mechanism used here 20335 */ 20336 xmit_ill = conn_get_held_ill(connp, 20337 &connp->conn_xmit_if_ill, &err); 20338 if (err == ILL_LOOKUP_FAILED) { 20339 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20340 goto drop_pkt; 20341 } 20342 if (xmit_ill == NULL) { 20343 ipif = conn_get_held_ipif(connp, 20344 &connp->conn_multicast_ipif, &err); 20345 if (err == IPIF_LOOKUP_FAILED) { 20346 ip1dbg(("ip_wput: No ipif for " 20347 "multicast\n")); 20348 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20349 goto drop_pkt; 20350 } 20351 } 20352 if (xmit_ill != NULL) { 20353 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20354 if (ipif == NULL) { 20355 ip1dbg(("ip_wput: No ipif for " 20356 "IP_XMIT_IF\n")); 20357 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20358 goto drop_pkt; 20359 } 20360 } else if (ipif == NULL || ipif->ipif_isv6) { 20361 /* 20362 * We must do this ipif determination here 20363 * else we could pass through ip_newroute 20364 * and come back here without the conn context. 20365 * 20366 * Note: we do late binding i.e. we bind to 20367 * the interface when the first packet is sent. 20368 * For performance reasons we do not rebind on 20369 * each packet but keep the binding until the 20370 * next IP_MULTICAST_IF option. 20371 * 20372 * conn_multicast_{ipif,ill} are shared between 20373 * IPv4 and IPv6 and AF_INET6 sockets can 20374 * send both IPv4 and IPv6 packets. Hence 20375 * we have to check that "isv6" matches above. 20376 */ 20377 if (ipif != NULL) 20378 ipif_refrele(ipif); 20379 ipif = ipif_lookup_group(dst, zoneid); 20380 if (ipif == NULL) { 20381 ip1dbg(("ip_wput: No ipif for " 20382 "multicast\n")); 20383 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20384 goto drop_pkt; 20385 } 20386 err = conn_set_held_ipif(connp, 20387 &connp->conn_multicast_ipif, ipif); 20388 if (err == IPIF_LOOKUP_FAILED) { 20389 ipif_refrele(ipif); 20390 ip1dbg(("ip_wput: No ipif for " 20391 "multicast\n")); 20392 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20393 goto drop_pkt; 20394 } 20395 } 20396 } 20397 ASSERT(!ipif->ipif_isv6); 20398 /* 20399 * As we may lose the conn by the time we reach ip_wput_ire, 20400 * we copy conn_multicast_loop and conn_dontroute on to an 20401 * ipsec_out. In case if this datagram goes out secure, 20402 * we need the ill_index also. Copy that also into the 20403 * ipsec_out. 20404 */ 20405 if (mctl_present) { 20406 io = (ipsec_out_t *)first_mp->b_rptr; 20407 ASSERT(first_mp->b_datap->db_type == M_CTL); 20408 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20409 } else { 20410 ASSERT(mp == first_mp); 20411 if ((first_mp = allocb(sizeof (ipsec_info_t), 20412 BPRI_HI)) == NULL) { 20413 ipif_refrele(ipif); 20414 first_mp = mp; 20415 goto drop_pkt; 20416 } 20417 first_mp->b_datap->db_type = M_CTL; 20418 first_mp->b_wptr += sizeof (ipsec_info_t); 20419 /* ipsec_out_secure is B_FALSE now */ 20420 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20421 io = (ipsec_out_t *)first_mp->b_rptr; 20422 io->ipsec_out_type = IPSEC_OUT; 20423 io->ipsec_out_len = sizeof (ipsec_out_t); 20424 io->ipsec_out_use_global_policy = B_TRUE; 20425 first_mp->b_cont = mp; 20426 mctl_present = B_TRUE; 20427 } 20428 if (attach_ill != NULL) { 20429 ASSERT(attach_ill == ipif->ipif_ill); 20430 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20431 20432 /* 20433 * Check if we need an ire that will not be 20434 * looked up by anybody else i.e. HIDDEN. 20435 */ 20436 if (ill_is_probeonly(attach_ill)) { 20437 match_flags |= MATCH_IRE_MARK_HIDDEN; 20438 } 20439 io->ipsec_out_ill_index = 20440 attach_ill->ill_phyint->phyint_ifindex; 20441 io->ipsec_out_attach_if = B_TRUE; 20442 } else { 20443 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20444 io->ipsec_out_ill_index = 20445 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20446 } 20447 if (connp != NULL) { 20448 io->ipsec_out_multicast_loop = 20449 connp->conn_multicast_loop; 20450 io->ipsec_out_dontroute = connp->conn_dontroute; 20451 io->ipsec_out_zoneid = connp->conn_zoneid; 20452 } 20453 /* 20454 * If the application uses IP_MULTICAST_IF with 20455 * different logical addresses of the same ILL, we 20456 * need to make sure that the soruce address of 20457 * the packet matches the logical IP address used 20458 * in the option. We do it by initializing ipha_src 20459 * here. This should keep IPSEC also happy as 20460 * when we return from IPSEC processing, we don't 20461 * have to worry about getting the right address on 20462 * the packet. Thus it is sufficient to look for 20463 * IRE_CACHE using MATCH_IRE_ILL rathen than 20464 * MATCH_IRE_IPIF. 20465 * 20466 * NOTE : We need to do it for non-secure case also as 20467 * this might go out secure if there is a global policy 20468 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20469 * address, the source should be initialized already and 20470 * hence we won't be initializing here. 20471 * 20472 * As we do not have the ire yet, it is possible that 20473 * we set the source address here and then later discover 20474 * that the ire implies the source address to be assigned 20475 * through the RTF_SETSRC flag. 20476 * In that case, the setsrc variable will remind us 20477 * that overwritting the source address by the one 20478 * of the RTF_SETSRC-flagged ire is allowed. 20479 */ 20480 if (ipha->ipha_src == INADDR_ANY && 20481 (connp == NULL || !connp->conn_unspec_src)) { 20482 ipha->ipha_src = ipif->ipif_src_addr; 20483 setsrc = RTF_SETSRC; 20484 } 20485 /* 20486 * Find an IRE which matches the destination and the outgoing 20487 * queue (i.e. the outgoing interface.) 20488 * For loopback use a unicast IP address for 20489 * the ire lookup. 20490 */ 20491 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20492 PHYI_LOOPBACK) { 20493 dst = ipif->ipif_lcl_addr; 20494 } 20495 /* 20496 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20497 * We don't need to lookup ire in ctable as the packet 20498 * needs to be sent to the destination through the specified 20499 * ill irrespective of ires in the cache table. 20500 */ 20501 ire = NULL; 20502 if (xmit_ill == NULL) { 20503 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20504 zoneid, MBLK_GETLABEL(mp), match_flags); 20505 } 20506 20507 /* 20508 * refrele attach_ill as its not needed anymore. 20509 */ 20510 if (attach_ill != NULL) { 20511 ill_refrele(attach_ill); 20512 attach_ill = NULL; 20513 } 20514 20515 if (ire == NULL) { 20516 /* 20517 * Multicast loopback and multicast forwarding is 20518 * done in ip_wput_ire. 20519 * 20520 * Mark this packet to make it be delivered to 20521 * ip_wput_ire after the new ire has been 20522 * created. 20523 * 20524 * The call to ip_newroute_ipif takes into account 20525 * the setsrc reminder. In any case, we take care 20526 * of the RTF_MULTIRT flag. 20527 */ 20528 mp->b_prev = mp->b_next = NULL; 20529 if (xmit_ill == NULL || 20530 xmit_ill->ill_ipif_up_count > 0) { 20531 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20532 setsrc | RTF_MULTIRT, zoneid); 20533 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20534 "ip_wput_end: q %p (%S)", q, "noire"); 20535 } else { 20536 freemsg(first_mp); 20537 } 20538 ipif_refrele(ipif); 20539 if (xmit_ill != NULL) 20540 ill_refrele(xmit_ill); 20541 if (need_decref) 20542 CONN_DEC_REF(connp); 20543 return; 20544 } 20545 20546 ipif_refrele(ipif); 20547 ipif = NULL; 20548 ASSERT(xmit_ill == NULL); 20549 20550 /* 20551 * Honor the RTF_SETSRC flag for multicast packets, 20552 * if allowed by the setsrc reminder. 20553 */ 20554 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20555 ipha->ipha_src = ire->ire_src_addr; 20556 } 20557 20558 /* 20559 * Unconditionally force the TTL to 1 for 20560 * multirouted multicast packets: 20561 * multirouted multicast should not cross 20562 * multicast routers. 20563 */ 20564 if (ire->ire_flags & RTF_MULTIRT) { 20565 if (ipha->ipha_ttl > 1) { 20566 ip2dbg(("ip_wput: forcing multicast " 20567 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20568 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20569 ipha->ipha_ttl = 1; 20570 } 20571 } 20572 } else { 20573 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20574 if ((ire != NULL) && (ire->ire_type & 20575 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20576 ignore_dontroute = B_TRUE; 20577 ignore_nexthop = B_TRUE; 20578 } 20579 if (ire != NULL) { 20580 ire_refrele(ire); 20581 ire = NULL; 20582 } 20583 /* 20584 * Guard against coming in from arp in which case conn is NULL. 20585 * Also guard against non M_DATA with dontroute set but 20586 * destined to local, loopback or broadcast addresses. 20587 */ 20588 if (connp != NULL && connp->conn_dontroute && 20589 !ignore_dontroute) { 20590 dontroute: 20591 /* 20592 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20593 * routing protocols from seeing false direct 20594 * connectivity. 20595 */ 20596 ipha->ipha_ttl = 1; 20597 /* 20598 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20599 * along with SO_DONTROUTE, higher precedence is 20600 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20601 */ 20602 if (connp->conn_xmit_if_ill == NULL) { 20603 /* If suitable ipif not found, drop packet */ 20604 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20605 if (dst_ipif == NULL) { 20606 ip1dbg(("ip_wput: no route for " 20607 "dst using SO_DONTROUTE\n")); 20608 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20609 mp->b_prev = mp->b_next = NULL; 20610 if (first_mp == NULL) 20611 first_mp = mp; 20612 goto drop_pkt; 20613 } else { 20614 /* 20615 * If suitable ipif has been found, set 20616 * xmit_ill to the corresponding 20617 * ipif_ill because we'll be following 20618 * the IP_XMIT_IF logic. 20619 */ 20620 ASSERT(xmit_ill == NULL); 20621 xmit_ill = dst_ipif->ipif_ill; 20622 mutex_enter(&xmit_ill->ill_lock); 20623 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20624 mutex_exit(&xmit_ill->ill_lock); 20625 xmit_ill = NULL; 20626 ipif_refrele(dst_ipif); 20627 ip1dbg(("ip_wput: no route for" 20628 " dst using" 20629 " SO_DONTROUTE\n")); 20630 BUMP_MIB(&ip_mib, 20631 ipOutNoRoutes); 20632 mp->b_prev = mp->b_next = NULL; 20633 if (first_mp == NULL) 20634 first_mp = mp; 20635 goto drop_pkt; 20636 } 20637 ill_refhold_locked(xmit_ill); 20638 mutex_exit(&xmit_ill->ill_lock); 20639 ipif_refrele(dst_ipif); 20640 } 20641 } 20642 20643 } 20644 /* 20645 * If we are bound to IPIF_NOFAILOVER address, look for 20646 * an IRE_CACHE matching the ill. 20647 */ 20648 send_from_ill: 20649 if (attach_ill != NULL) { 20650 ipif_t *attach_ipif; 20651 20652 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20653 20654 /* 20655 * Check if we need an ire that will not be 20656 * looked up by anybody else i.e. HIDDEN. 20657 */ 20658 if (ill_is_probeonly(attach_ill)) { 20659 match_flags |= MATCH_IRE_MARK_HIDDEN; 20660 } 20661 20662 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20663 if (attach_ipif == NULL) { 20664 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20665 goto drop_pkt; 20666 } 20667 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20668 zoneid, MBLK_GETLABEL(mp), match_flags); 20669 ipif_refrele(attach_ipif); 20670 } else if (xmit_ill != NULL || (connp != NULL && 20671 connp->conn_xmit_if_ill != NULL)) { 20672 /* 20673 * Mark this packet as originated locally 20674 */ 20675 mp->b_prev = mp->b_next = NULL; 20676 /* 20677 * xmit_ill could be NULL if SO_DONTROUTE 20678 * is also set. 20679 */ 20680 if (xmit_ill == NULL) { 20681 xmit_ill = conn_get_held_ill(connp, 20682 &connp->conn_xmit_if_ill, &err); 20683 if (err == ILL_LOOKUP_FAILED) { 20684 if (need_decref) 20685 CONN_DEC_REF(connp); 20686 freemsg(first_mp); 20687 return; 20688 } 20689 if (xmit_ill == NULL) { 20690 if (connp->conn_dontroute) 20691 goto dontroute; 20692 goto send_from_ill; 20693 } 20694 } 20695 /* 20696 * could be SO_DONTROUTE case also. 20697 * check at least one interface is UP as 20698 * spcified by this ILL, and then call 20699 * ip_newroute_ipif() 20700 */ 20701 if (xmit_ill->ill_ipif_up_count > 0) { 20702 ipif_t *ipif; 20703 20704 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20705 if (ipif != NULL) { 20706 ip_newroute_ipif(q, first_mp, ipif, 20707 dst, connp, 0, zoneid); 20708 ipif_refrele(ipif); 20709 ip1dbg(("ip_wput: ip_unicast_if\n")); 20710 } 20711 } else { 20712 freemsg(first_mp); 20713 } 20714 ill_refrele(xmit_ill); 20715 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20716 "ip_wput_end: q %p (%S)", q, "unicast_if"); 20717 if (need_decref) 20718 CONN_DEC_REF(connp); 20719 return; 20720 } else if (ip_nexthop || (connp != NULL && 20721 (connp->conn_nexthop_set)) && !ignore_nexthop) { 20722 if (!ip_nexthop) { 20723 ip_nexthop = B_TRUE; 20724 nexthop_addr = connp->conn_nexthop_v4; 20725 } 20726 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 20727 MATCH_IRE_GW; 20728 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 20729 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 20730 } else { 20731 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20732 } 20733 if (!ire) { 20734 /* 20735 * Make sure we don't load spread if this 20736 * is IPIF_NOFAILOVER case. 20737 */ 20738 if ((attach_ill != NULL) || 20739 (ip_nexthop && !ignore_nexthop)) { 20740 if (mctl_present) { 20741 io = (ipsec_out_t *)first_mp->b_rptr; 20742 ASSERT(first_mp->b_datap->db_type == 20743 M_CTL); 20744 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20745 } else { 20746 ASSERT(mp == first_mp); 20747 first_mp = allocb( 20748 sizeof (ipsec_info_t), BPRI_HI); 20749 if (first_mp == NULL) { 20750 first_mp = mp; 20751 goto drop_pkt; 20752 } 20753 first_mp->b_datap->db_type = M_CTL; 20754 first_mp->b_wptr += 20755 sizeof (ipsec_info_t); 20756 /* ipsec_out_secure is B_FALSE now */ 20757 bzero(first_mp->b_rptr, 20758 sizeof (ipsec_info_t)); 20759 io = (ipsec_out_t *)first_mp->b_rptr; 20760 io->ipsec_out_type = IPSEC_OUT; 20761 io->ipsec_out_len = 20762 sizeof (ipsec_out_t); 20763 io->ipsec_out_use_global_policy = 20764 B_TRUE; 20765 first_mp->b_cont = mp; 20766 mctl_present = B_TRUE; 20767 } 20768 if (attach_ill != NULL) { 20769 io->ipsec_out_ill_index = attach_ill-> 20770 ill_phyint->phyint_ifindex; 20771 io->ipsec_out_attach_if = B_TRUE; 20772 } else { 20773 io->ipsec_out_ip_nexthop = ip_nexthop; 20774 io->ipsec_out_nexthop_addr = 20775 nexthop_addr; 20776 } 20777 } 20778 noirefound: 20779 /* 20780 * Mark this packet as having originated on 20781 * this machine. This will be noted in 20782 * ire_add_then_send, which needs to know 20783 * whether to run it back through ip_wput or 20784 * ip_rput following successful resolution. 20785 */ 20786 mp->b_prev = NULL; 20787 mp->b_next = NULL; 20788 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 20789 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20790 "ip_wput_end: q %p (%S)", q, "newroute"); 20791 if (attach_ill != NULL) 20792 ill_refrele(attach_ill); 20793 if (xmit_ill != NULL) 20794 ill_refrele(xmit_ill); 20795 if (need_decref) 20796 CONN_DEC_REF(connp); 20797 return; 20798 } 20799 } 20800 20801 /* We now know where we are going with it. */ 20802 20803 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20804 "ip_wput_end: q %p (%S)", q, "end"); 20805 20806 /* 20807 * Check if the ire has the RTF_MULTIRT flag, inherited 20808 * from an IRE_OFFSUBNET ire entry in ip_newroute. 20809 */ 20810 if (ire->ire_flags & RTF_MULTIRT) { 20811 /* 20812 * Force the TTL of multirouted packets if required. 20813 * The TTL of such packets is bounded by the 20814 * ip_multirt_ttl ndd variable. 20815 */ 20816 if ((ip_multirt_ttl > 0) && 20817 (ipha->ipha_ttl > ip_multirt_ttl)) { 20818 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20819 "(was %d), dst 0x%08x\n", 20820 ip_multirt_ttl, ipha->ipha_ttl, 20821 ntohl(ire->ire_addr))); 20822 ipha->ipha_ttl = ip_multirt_ttl; 20823 } 20824 /* 20825 * At this point, we check to see if there are any pending 20826 * unresolved routes. ire_multirt_resolvable() 20827 * checks in O(n) that all IRE_OFFSUBNET ire 20828 * entries for the packet's destination and 20829 * flagged RTF_MULTIRT are currently resolved. 20830 * If some remain unresolved, we make a copy 20831 * of the current message. It will be used 20832 * to initiate additional route resolutions. 20833 */ 20834 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20835 MBLK_GETLABEL(first_mp)); 20836 ip2dbg(("ip_wput[noirefound]: ire %p, " 20837 "multirt_need_resolve %d, first_mp %p\n", 20838 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20839 if (multirt_need_resolve) { 20840 copy_mp = copymsg(first_mp); 20841 if (copy_mp != NULL) { 20842 MULTIRT_DEBUG_TAG(copy_mp); 20843 } 20844 } 20845 } 20846 20847 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20848 /* 20849 * Try to resolve another multiroute if 20850 * ire_multirt_resolvable() deemed it necessary. 20851 * At this point, we need to distinguish 20852 * multicasts from other packets. For multicasts, 20853 * we call ip_newroute_ipif() and request that both 20854 * multirouting and setsrc flags are checked. 20855 */ 20856 if (copy_mp != NULL) { 20857 if (CLASSD(dst)) { 20858 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 20859 if (ipif) { 20860 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 20861 RTF_SETSRC | RTF_MULTIRT, zoneid); 20862 ipif_refrele(ipif); 20863 } else { 20864 MULTIRT_DEBUG_UNTAG(copy_mp); 20865 freemsg(copy_mp); 20866 copy_mp = NULL; 20867 } 20868 } else { 20869 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20870 } 20871 } 20872 if (attach_ill != NULL) 20873 ill_refrele(attach_ill); 20874 if (xmit_ill != NULL) 20875 ill_refrele(xmit_ill); 20876 if (need_decref) 20877 CONN_DEC_REF(connp); 20878 return; 20879 20880 icmp_parameter_problem: 20881 /* could not have originated externally */ 20882 ASSERT(mp->b_prev == NULL); 20883 if (ip_hdr_complete(ipha, zoneid) == 0) { 20884 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20885 /* it's the IP header length that's in trouble */ 20886 icmp_param_problem(q, first_mp, 0, zoneid); 20887 first_mp = NULL; 20888 } 20889 20890 drop_pkt: 20891 ip1dbg(("ip_wput: dropped packet\n")); 20892 if (ire != NULL) 20893 ire_refrele(ire); 20894 if (need_decref) 20895 CONN_DEC_REF(connp); 20896 freemsg(first_mp); 20897 if (attach_ill != NULL) 20898 ill_refrele(attach_ill); 20899 if (xmit_ill != NULL) 20900 ill_refrele(xmit_ill); 20901 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20902 "ip_wput_end: q %p (%S)", q, "droppkt"); 20903 } 20904 20905 /* 20906 * If this is a conn_t queue, then we pass in the conn. This includes the 20907 * zoneid. 20908 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 20909 * in which case we use the global zoneid since those are all part of 20910 * the global zone. 20911 */ 20912 void 20913 ip_wput(queue_t *q, mblk_t *mp) 20914 { 20915 if (CONN_Q(q)) 20916 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 20917 else 20918 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 20919 } 20920 20921 /* 20922 * 20923 * The following rules must be observed when accessing any ipif or ill 20924 * that has been cached in the conn. Typically conn_nofailover_ill, 20925 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 20926 * 20927 * Access: The ipif or ill pointed to from the conn can be accessed under 20928 * the protection of the conn_lock or after it has been refheld under the 20929 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 20930 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 20931 * The reason for this is that a concurrent unplumb could actually be 20932 * cleaning up these cached pointers by walking the conns and might have 20933 * finished cleaning up the conn in question. The macros check that an 20934 * unplumb has not yet started on the ipif or ill. 20935 * 20936 * Caching: An ipif or ill pointer may be cached in the conn only after 20937 * making sure that an unplumb has not started. So the caching is done 20938 * while holding both the conn_lock and the ill_lock and after using the 20939 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20940 * flag before starting the cleanup of conns. 20941 * 20942 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20943 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20944 * or a reference to the ipif or a reference to an ire that references the 20945 * ipif. An ipif does not change its ill except for failover/failback. Since 20946 * failover/failback happens only after bringing down the ipif and making sure 20947 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20948 * the above holds. 20949 */ 20950 ipif_t * 20951 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20952 { 20953 ipif_t *ipif; 20954 ill_t *ill; 20955 20956 *err = 0; 20957 rw_enter(&ill_g_lock, RW_READER); 20958 mutex_enter(&connp->conn_lock); 20959 ipif = *ipifp; 20960 if (ipif != NULL) { 20961 ill = ipif->ipif_ill; 20962 mutex_enter(&ill->ill_lock); 20963 if (IPIF_CAN_LOOKUP(ipif)) { 20964 ipif_refhold_locked(ipif); 20965 mutex_exit(&ill->ill_lock); 20966 mutex_exit(&connp->conn_lock); 20967 rw_exit(&ill_g_lock); 20968 return (ipif); 20969 } else { 20970 *err = IPIF_LOOKUP_FAILED; 20971 } 20972 mutex_exit(&ill->ill_lock); 20973 } 20974 mutex_exit(&connp->conn_lock); 20975 rw_exit(&ill_g_lock); 20976 return (NULL); 20977 } 20978 20979 ill_t * 20980 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20981 { 20982 ill_t *ill; 20983 20984 *err = 0; 20985 mutex_enter(&connp->conn_lock); 20986 ill = *illp; 20987 if (ill != NULL) { 20988 mutex_enter(&ill->ill_lock); 20989 if (ILL_CAN_LOOKUP(ill)) { 20990 ill_refhold_locked(ill); 20991 mutex_exit(&ill->ill_lock); 20992 mutex_exit(&connp->conn_lock); 20993 return (ill); 20994 } else { 20995 *err = ILL_LOOKUP_FAILED; 20996 } 20997 mutex_exit(&ill->ill_lock); 20998 } 20999 mutex_exit(&connp->conn_lock); 21000 return (NULL); 21001 } 21002 21003 static int 21004 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21005 { 21006 ill_t *ill; 21007 21008 ill = ipif->ipif_ill; 21009 mutex_enter(&connp->conn_lock); 21010 mutex_enter(&ill->ill_lock); 21011 if (IPIF_CAN_LOOKUP(ipif)) { 21012 *ipifp = ipif; 21013 mutex_exit(&ill->ill_lock); 21014 mutex_exit(&connp->conn_lock); 21015 return (0); 21016 } 21017 mutex_exit(&ill->ill_lock); 21018 mutex_exit(&connp->conn_lock); 21019 return (IPIF_LOOKUP_FAILED); 21020 } 21021 21022 /* 21023 * This is called if the outbound datagram needs fragmentation. 21024 * 21025 * NOTE : This function does not ire_refrele the ire argument passed in. 21026 */ 21027 static void 21028 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 21029 { 21030 ipha_t *ipha; 21031 mblk_t *mp; 21032 uint32_t v_hlen_tos_len; 21033 uint32_t max_frag; 21034 uint32_t frag_flag; 21035 boolean_t dont_use; 21036 21037 if (ipsec_mp->b_datap->db_type == M_CTL) { 21038 mp = ipsec_mp->b_cont; 21039 } else { 21040 mp = ipsec_mp; 21041 } 21042 21043 ipha = (ipha_t *)mp->b_rptr; 21044 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21045 21046 #ifdef _BIG_ENDIAN 21047 #define V_HLEN (v_hlen_tos_len >> 24) 21048 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21049 #else 21050 #define V_HLEN (v_hlen_tos_len & 0xFF) 21051 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21052 #endif 21053 21054 #ifndef SPEED_BEFORE_SAFETY 21055 /* 21056 * Check that ipha_length is consistent with 21057 * the mblk length 21058 */ 21059 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21060 ip0dbg(("Packet length mismatch: %d, %ld\n", 21061 LENGTH, msgdsize(mp))); 21062 freemsg(ipsec_mp); 21063 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21064 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21065 "packet length mismatch"); 21066 return; 21067 } 21068 #endif 21069 /* 21070 * Don't use frag_flag if pre-built packet or source 21071 * routed or if multicast (since multicast packets do not solicit 21072 * ICMP "packet too big" messages). Get the values of 21073 * max_frag and frag_flag atomically by acquiring the 21074 * ire_lock. 21075 */ 21076 mutex_enter(&ire->ire_lock); 21077 max_frag = ire->ire_max_frag; 21078 frag_flag = ire->ire_frag_flag; 21079 mutex_exit(&ire->ire_lock); 21080 21081 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21082 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21083 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21084 21085 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21086 (dont_use ? 0 : frag_flag), zoneid); 21087 } 21088 21089 /* 21090 * Used for deciding the MSS size for the upper layer. Thus 21091 * we need to check the outbound policy values in the conn. 21092 */ 21093 int 21094 conn_ipsec_length(conn_t *connp) 21095 { 21096 ipsec_latch_t *ipl; 21097 21098 ipl = connp->conn_latch; 21099 if (ipl == NULL) 21100 return (0); 21101 21102 if (ipl->ipl_out_policy == NULL) 21103 return (0); 21104 21105 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21106 } 21107 21108 /* 21109 * Returns an estimate of the IPSEC headers size. This is used if 21110 * we don't want to call into IPSEC to get the exact size. 21111 */ 21112 int 21113 ipsec_out_extra_length(mblk_t *ipsec_mp) 21114 { 21115 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21116 ipsec_action_t *a; 21117 21118 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21119 if (!io->ipsec_out_secure) 21120 return (0); 21121 21122 a = io->ipsec_out_act; 21123 21124 if (a == NULL) { 21125 ASSERT(io->ipsec_out_policy != NULL); 21126 a = io->ipsec_out_policy->ipsp_act; 21127 } 21128 ASSERT(a != NULL); 21129 21130 return (a->ipa_ovhd); 21131 } 21132 21133 /* 21134 * Returns an estimate of the IPSEC headers size. This is used if 21135 * we don't want to call into IPSEC to get the exact size. 21136 */ 21137 int 21138 ipsec_in_extra_length(mblk_t *ipsec_mp) 21139 { 21140 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21141 ipsec_action_t *a; 21142 21143 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21144 21145 a = ii->ipsec_in_action; 21146 return (a == NULL ? 0 : a->ipa_ovhd); 21147 } 21148 21149 /* 21150 * If there are any source route options, return the true final 21151 * destination. Otherwise, return the destination. 21152 */ 21153 ipaddr_t 21154 ip_get_dst(ipha_t *ipha) 21155 { 21156 ipoptp_t opts; 21157 uchar_t *opt; 21158 uint8_t optval; 21159 uint8_t optlen; 21160 ipaddr_t dst; 21161 uint32_t off; 21162 21163 dst = ipha->ipha_dst; 21164 21165 if (IS_SIMPLE_IPH(ipha)) 21166 return (dst); 21167 21168 for (optval = ipoptp_first(&opts, ipha); 21169 optval != IPOPT_EOL; 21170 optval = ipoptp_next(&opts)) { 21171 opt = opts.ipoptp_cur; 21172 optlen = opts.ipoptp_len; 21173 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21174 switch (optval) { 21175 case IPOPT_SSRR: 21176 case IPOPT_LSRR: 21177 off = opt[IPOPT_OFFSET]; 21178 /* 21179 * If one of the conditions is true, it means 21180 * end of options and dst already has the right 21181 * value. 21182 */ 21183 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21184 off = optlen - IP_ADDR_LEN; 21185 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21186 } 21187 return (dst); 21188 default: 21189 break; 21190 } 21191 } 21192 21193 return (dst); 21194 } 21195 21196 mblk_t * 21197 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21198 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21199 { 21200 ipsec_out_t *io; 21201 mblk_t *first_mp; 21202 boolean_t policy_present; 21203 21204 first_mp = mp; 21205 if (mp->b_datap->db_type == M_CTL) { 21206 io = (ipsec_out_t *)first_mp->b_rptr; 21207 /* 21208 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21209 * 21210 * 1) There is per-socket policy (including cached global 21211 * policy) or a policy on the IP-in-IP tunnel. 21212 * 2) There is no per-socket policy, but it is 21213 * a multicast packet that needs to go out 21214 * on a specific interface. This is the case 21215 * where (ip_wput and ip_wput_multicast) attaches 21216 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21217 * 21218 * In case (2) we check with global policy to 21219 * see if there is a match and set the ill_index 21220 * appropriately so that we can lookup the ire 21221 * properly in ip_wput_ipsec_out. 21222 */ 21223 21224 /* 21225 * ipsec_out_use_global_policy is set to B_FALSE 21226 * in ipsec_in_to_out(). Refer to that function for 21227 * details. 21228 */ 21229 if ((io->ipsec_out_latch == NULL) && 21230 (io->ipsec_out_use_global_policy)) { 21231 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21232 ire, connp, unspec_src, zoneid)); 21233 } 21234 if (!io->ipsec_out_secure) { 21235 /* 21236 * If this is not a secure packet, drop 21237 * the IPSEC_OUT mp and treat it as a clear 21238 * packet. This happens when we are sending 21239 * a ICMP reply back to a clear packet. See 21240 * ipsec_in_to_out() for details. 21241 */ 21242 mp = first_mp->b_cont; 21243 freeb(first_mp); 21244 } 21245 return (mp); 21246 } 21247 /* 21248 * See whether we need to attach a global policy here. We 21249 * don't depend on the conn (as it could be null) for deciding 21250 * what policy this datagram should go through because it 21251 * should have happened in ip_wput if there was some 21252 * policy. This normally happens for connections which are not 21253 * fully bound preventing us from caching policies in 21254 * ip_bind. Packets coming from the TCP listener/global queue 21255 * - which are non-hard_bound - could also be affected by 21256 * applying policy here. 21257 * 21258 * If this packet is coming from tcp global queue or listener, 21259 * we will be applying policy here. This may not be *right* 21260 * if these packets are coming from the detached connection as 21261 * it could have gone in clear before. This happens only if a 21262 * TCP connection started when there is no policy and somebody 21263 * added policy before it became detached. Thus packets of the 21264 * detached connection could go out secure and the other end 21265 * would drop it because it will be expecting in clear. The 21266 * converse is not true i.e if somebody starts a TCP 21267 * connection and deletes the policy, all the packets will 21268 * still go out with the policy that existed before deleting 21269 * because ip_unbind sends up policy information which is used 21270 * by TCP on subsequent ip_wputs. The right solution is to fix 21271 * TCP to attach a dummy IPSEC_OUT and set 21272 * ipsec_out_use_global_policy to B_FALSE. As this might 21273 * affect performance for normal cases, we are not doing it. 21274 * Thus, set policy before starting any TCP connections. 21275 * 21276 * NOTE - We might apply policy even for a hard bound connection 21277 * - for which we cached policy in ip_bind - if somebody added 21278 * global policy after we inherited the policy in ip_bind. 21279 * This means that the packets that were going out in clear 21280 * previously would start going secure and hence get dropped 21281 * on the other side. To fix this, TCP attaches a dummy 21282 * ipsec_out and make sure that we don't apply global policy. 21283 */ 21284 if (ipha != NULL) 21285 policy_present = ipsec_outbound_v4_policy_present; 21286 else 21287 policy_present = ipsec_outbound_v6_policy_present; 21288 if (!policy_present) 21289 return (mp); 21290 21291 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21292 zoneid)); 21293 } 21294 21295 ire_t * 21296 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21297 { 21298 ipaddr_t addr; 21299 ire_t *save_ire; 21300 irb_t *irb; 21301 ill_group_t *illgrp; 21302 int err; 21303 21304 save_ire = ire; 21305 addr = ire->ire_addr; 21306 21307 ASSERT(ire->ire_type == IRE_BROADCAST); 21308 21309 illgrp = connp->conn_outgoing_ill->ill_group; 21310 if (illgrp == NULL) { 21311 *conn_outgoing_ill = conn_get_held_ill(connp, 21312 &connp->conn_outgoing_ill, &err); 21313 if (err == ILL_LOOKUP_FAILED) { 21314 ire_refrele(save_ire); 21315 return (NULL); 21316 } 21317 return (save_ire); 21318 } 21319 /* 21320 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21321 * If it is part of the group, we need to send on the ire 21322 * that has been cleared of IRE_MARK_NORECV and that belongs 21323 * to this group. This is okay as IP_BOUND_IF really means 21324 * any ill in the group. We depend on the fact that the 21325 * first ire in the group is always cleared of IRE_MARK_NORECV 21326 * if such an ire exists. This is possible only if you have 21327 * at least one ill in the group that has not failed. 21328 * 21329 * First get to the ire that matches the address and group. 21330 * 21331 * We don't look for an ire with a matching zoneid because a given zone 21332 * won't always have broadcast ires on all ills in the group. 21333 */ 21334 irb = ire->ire_bucket; 21335 rw_enter(&irb->irb_lock, RW_READER); 21336 if (ire->ire_marks & IRE_MARK_NORECV) { 21337 /* 21338 * If the current zone only has an ire broadcast for this 21339 * address marked NORECV, the ire we want is ahead in the 21340 * bucket, so we look it up deliberately ignoring the zoneid. 21341 */ 21342 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21343 if (ire->ire_addr != addr) 21344 continue; 21345 /* skip over deleted ires */ 21346 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21347 continue; 21348 } 21349 } 21350 while (ire != NULL) { 21351 /* 21352 * If a new interface is coming up, we could end up 21353 * seeing the loopback ire and the non-loopback ire 21354 * may not have been added yet. So check for ire_stq 21355 */ 21356 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21357 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21358 break; 21359 } 21360 ire = ire->ire_next; 21361 } 21362 if (ire != NULL && ire->ire_addr == addr && 21363 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21364 IRE_REFHOLD(ire); 21365 rw_exit(&irb->irb_lock); 21366 ire_refrele(save_ire); 21367 *conn_outgoing_ill = ire_to_ill(ire); 21368 /* 21369 * Refhold the ill to make the conn_outgoing_ill 21370 * independent of the ire. ip_wput_ire goes in a loop 21371 * and may refrele the ire. Since we have an ire at this 21372 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21373 */ 21374 ill_refhold(*conn_outgoing_ill); 21375 return (ire); 21376 } 21377 rw_exit(&irb->irb_lock); 21378 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21379 /* 21380 * If we can't find a suitable ire, return the original ire. 21381 */ 21382 return (save_ire); 21383 } 21384 21385 /* 21386 * This function does the ire_refrele of the ire passed in as the 21387 * argument. As this function looks up more ires i.e broadcast ires, 21388 * it needs to REFRELE them. Currently, for simplicity we don't 21389 * differentiate the one passed in and looked up here. We always 21390 * REFRELE. 21391 * IPQoS Notes: 21392 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21393 * IPSec packets are done in ipsec_out_process. 21394 * 21395 */ 21396 void 21397 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21398 zoneid_t zoneid) 21399 { 21400 ipha_t *ipha; 21401 #define rptr ((uchar_t *)ipha) 21402 queue_t *stq; 21403 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21404 uint32_t v_hlen_tos_len; 21405 uint32_t ttl_protocol; 21406 ipaddr_t src; 21407 ipaddr_t dst; 21408 uint32_t cksum; 21409 ipaddr_t orig_src; 21410 ire_t *ire1; 21411 mblk_t *next_mp; 21412 uint_t hlen; 21413 uint16_t *up; 21414 uint32_t max_frag = ire->ire_max_frag; 21415 ill_t *ill = ire_to_ill(ire); 21416 int clusterwide; 21417 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21418 int ipsec_len; 21419 mblk_t *first_mp; 21420 ipsec_out_t *io; 21421 boolean_t conn_dontroute; /* conn value for multicast */ 21422 boolean_t conn_multicast_loop; /* conn value for multicast */ 21423 boolean_t multicast_forward; /* Should we forward ? */ 21424 boolean_t unspec_src; 21425 ill_t *conn_outgoing_ill = NULL; 21426 ill_t *ire_ill; 21427 ill_t *ire1_ill; 21428 ill_t *out_ill; 21429 uint32_t ill_index = 0; 21430 boolean_t multirt_send = B_FALSE; 21431 int err; 21432 ipxmit_state_t pktxmit_state; 21433 21434 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21435 "ip_wput_ire_start: q %p", q); 21436 21437 multicast_forward = B_FALSE; 21438 unspec_src = (connp != NULL && connp->conn_unspec_src); 21439 21440 if (ire->ire_flags & RTF_MULTIRT) { 21441 /* 21442 * Multirouting case. The bucket where ire is stored 21443 * probably holds other RTF_MULTIRT flagged ire 21444 * to the destination. In this call to ip_wput_ire, 21445 * we attempt to send the packet through all 21446 * those ires. Thus, we first ensure that ire is the 21447 * first RTF_MULTIRT ire in the bucket, 21448 * before walking the ire list. 21449 */ 21450 ire_t *first_ire; 21451 irb_t *irb = ire->ire_bucket; 21452 ASSERT(irb != NULL); 21453 21454 /* Make sure we do not omit any multiroute ire. */ 21455 IRB_REFHOLD(irb); 21456 for (first_ire = irb->irb_ire; 21457 first_ire != NULL; 21458 first_ire = first_ire->ire_next) { 21459 if ((first_ire->ire_flags & RTF_MULTIRT) && 21460 (first_ire->ire_addr == ire->ire_addr) && 21461 !(first_ire->ire_marks & 21462 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21463 break; 21464 } 21465 21466 if ((first_ire != NULL) && (first_ire != ire)) { 21467 IRE_REFHOLD(first_ire); 21468 ire_refrele(ire); 21469 ire = first_ire; 21470 ill = ire_to_ill(ire); 21471 } 21472 IRB_REFRELE(irb); 21473 } 21474 21475 /* 21476 * conn_outgoing_ill is used only in the broadcast loop. 21477 * for performance we don't grab the mutexs in the fastpath 21478 */ 21479 if ((connp != NULL) && 21480 (connp->conn_xmit_if_ill == NULL) && 21481 (ire->ire_type == IRE_BROADCAST) && 21482 ((connp->conn_nofailover_ill != NULL) || 21483 (connp->conn_outgoing_ill != NULL))) { 21484 /* 21485 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21486 * option. So, see if this endpoint is bound to a 21487 * IPIF_NOFAILOVER address. If so, honor it. This implies 21488 * that if the interface is failed, we will still send 21489 * the packet on the same ill which is what we want. 21490 */ 21491 conn_outgoing_ill = conn_get_held_ill(connp, 21492 &connp->conn_nofailover_ill, &err); 21493 if (err == ILL_LOOKUP_FAILED) { 21494 ire_refrele(ire); 21495 freemsg(mp); 21496 return; 21497 } 21498 if (conn_outgoing_ill == NULL) { 21499 /* 21500 * Choose a good ill in the group to send the 21501 * packets on. 21502 */ 21503 ire = conn_set_outgoing_ill(connp, ire, 21504 &conn_outgoing_ill); 21505 if (ire == NULL) { 21506 freemsg(mp); 21507 return; 21508 } 21509 } 21510 } 21511 21512 if (mp->b_datap->db_type != M_CTL) { 21513 ipha = (ipha_t *)mp->b_rptr; 21514 } else { 21515 io = (ipsec_out_t *)mp->b_rptr; 21516 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21517 ASSERT(zoneid == io->ipsec_out_zoneid); 21518 ASSERT(zoneid != ALL_ZONES); 21519 ipha = (ipha_t *)mp->b_cont->b_rptr; 21520 dst = ipha->ipha_dst; 21521 /* 21522 * For the multicast case, ipsec_out carries conn_dontroute and 21523 * conn_multicast_loop as conn may not be available here. We 21524 * need this for multicast loopback and forwarding which is done 21525 * later in the code. 21526 */ 21527 if (CLASSD(dst)) { 21528 conn_dontroute = io->ipsec_out_dontroute; 21529 conn_multicast_loop = io->ipsec_out_multicast_loop; 21530 /* 21531 * If conn_dontroute is not set or conn_multicast_loop 21532 * is set, we need to do forwarding/loopback. For 21533 * datagrams from ip_wput_multicast, conn_dontroute is 21534 * set to B_TRUE and conn_multicast_loop is set to 21535 * B_FALSE so that we neither do forwarding nor 21536 * loopback. 21537 */ 21538 if (!conn_dontroute || conn_multicast_loop) 21539 multicast_forward = B_TRUE; 21540 } 21541 } 21542 21543 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21544 ire->ire_zoneid != ALL_ZONES) { 21545 /* 21546 * When a zone sends a packet to another zone, we try to deliver 21547 * the packet under the same conditions as if the destination 21548 * was a real node on the network. To do so, we look for a 21549 * matching route in the forwarding table. 21550 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21551 * ip_newroute() does. 21552 * Note that IRE_LOCAL are special, since they are used 21553 * when the zoneid doesn't match in some cases. This means that 21554 * we need to handle ipha_src differently since ire_src_addr 21555 * belongs to the receiving zone instead of the sending zone. 21556 * When ip_restrict_interzone_loopback is set, then 21557 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21558 * for loopback between zones when the logical "Ethernet" would 21559 * have looped them back. 21560 */ 21561 ire_t *src_ire; 21562 21563 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21564 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21565 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21566 if (src_ire != NULL && 21567 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21568 (!ip_restrict_interzone_loopback || 21569 ire_local_same_ill_group(ire, src_ire))) { 21570 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21571 ipha->ipha_src = src_ire->ire_src_addr; 21572 ire_refrele(src_ire); 21573 } else { 21574 ire_refrele(ire); 21575 if (conn_outgoing_ill != NULL) 21576 ill_refrele(conn_outgoing_ill); 21577 BUMP_MIB(&ip_mib, ipOutNoRoutes); 21578 if (src_ire != NULL) { 21579 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21580 ire_refrele(src_ire); 21581 freemsg(mp); 21582 return; 21583 } 21584 ire_refrele(src_ire); 21585 } 21586 if (ip_hdr_complete(ipha, zoneid)) { 21587 /* Failed */ 21588 freemsg(mp); 21589 return; 21590 } 21591 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21592 return; 21593 } 21594 } 21595 21596 if (mp->b_datap->db_type == M_CTL || 21597 ipsec_outbound_v4_policy_present) { 21598 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21599 unspec_src, zoneid); 21600 if (mp == NULL) { 21601 ire_refrele(ire); 21602 if (conn_outgoing_ill != NULL) 21603 ill_refrele(conn_outgoing_ill); 21604 return; 21605 } 21606 } 21607 21608 first_mp = mp; 21609 ipsec_len = 0; 21610 21611 if (first_mp->b_datap->db_type == M_CTL) { 21612 io = (ipsec_out_t *)first_mp->b_rptr; 21613 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21614 mp = first_mp->b_cont; 21615 ipsec_len = ipsec_out_extra_length(first_mp); 21616 ASSERT(ipsec_len >= 0); 21617 /* We already picked up the zoneid from the M_CTL above */ 21618 ASSERT(zoneid == io->ipsec_out_zoneid); 21619 ASSERT(zoneid != ALL_ZONES); 21620 21621 /* 21622 * Drop M_CTL here if IPsec processing is not needed. 21623 * (Non-IPsec use of M_CTL extracted any information it 21624 * needed above). 21625 */ 21626 if (ipsec_len == 0) { 21627 freeb(first_mp); 21628 first_mp = mp; 21629 } 21630 } 21631 21632 /* 21633 * Fast path for ip_wput_ire 21634 */ 21635 21636 ipha = (ipha_t *)mp->b_rptr; 21637 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21638 dst = ipha->ipha_dst; 21639 21640 /* 21641 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21642 * if the socket is a SOCK_RAW type. The transport checksum should 21643 * be provided in the pre-built packet, so we don't need to compute it. 21644 * Also, other application set flags, like DF, should not be altered. 21645 * Other transport MUST pass down zero. 21646 */ 21647 ip_hdr_included = ipha->ipha_ident; 21648 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21649 21650 if (CLASSD(dst)) { 21651 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 21652 ntohl(dst), 21653 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 21654 ntohl(ire->ire_addr))); 21655 } 21656 21657 /* Macros to extract header fields from data already in registers */ 21658 #ifdef _BIG_ENDIAN 21659 #define V_HLEN (v_hlen_tos_len >> 24) 21660 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21661 #define PROTO (ttl_protocol & 0xFF) 21662 #else 21663 #define V_HLEN (v_hlen_tos_len & 0xFF) 21664 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21665 #define PROTO (ttl_protocol >> 8) 21666 #endif 21667 21668 21669 orig_src = src = ipha->ipha_src; 21670 /* (The loop back to "another" is explained down below.) */ 21671 another:; 21672 /* 21673 * Assign an ident value for this packet. We assign idents on 21674 * a per destination basis out of the IRE. There could be 21675 * other threads targeting the same destination, so we have to 21676 * arrange for a atomic increment. Note that we use a 32-bit 21677 * atomic add because it has better performance than its 21678 * 16-bit sibling. 21679 * 21680 * If running in cluster mode and if the source address 21681 * belongs to a replicated service then vector through 21682 * cl_inet_ipident vector to allocate ip identifier 21683 * NOTE: This is a contract private interface with the 21684 * clustering group. 21685 */ 21686 clusterwide = 0; 21687 if (cl_inet_ipident) { 21688 ASSERT(cl_inet_isclusterwide); 21689 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 21690 AF_INET, (uint8_t *)(uintptr_t)src)) { 21691 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 21692 AF_INET, (uint8_t *)(uintptr_t)src, 21693 (uint8_t *)(uintptr_t)dst); 21694 clusterwide = 1; 21695 } 21696 } 21697 if (!clusterwide) { 21698 ipha->ipha_ident = 21699 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 21700 } 21701 21702 #ifndef _BIG_ENDIAN 21703 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21704 #endif 21705 21706 /* 21707 * Set source address unless sent on an ill or conn_unspec_src is set. 21708 * This is needed to obey conn_unspec_src when packets go through 21709 * ip_newroute + arp. 21710 * Assumes ip_newroute{,_multi} sets the source address as well. 21711 */ 21712 if (src == INADDR_ANY && !unspec_src) { 21713 /* 21714 * Assign the appropriate source address from the IRE if none 21715 * was specified. 21716 */ 21717 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21718 21719 /* 21720 * With IP multipathing, broadcast packets are sent on the ire 21721 * that has been cleared of IRE_MARK_NORECV and that belongs to 21722 * the group. However, this ire might not be in the same zone so 21723 * we can't always use its source address. We look for a 21724 * broadcast ire in the same group and in the right zone. 21725 */ 21726 if (ire->ire_type == IRE_BROADCAST && 21727 ire->ire_zoneid != zoneid) { 21728 ire_t *src_ire = ire_ctable_lookup(dst, 0, 21729 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 21730 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 21731 if (src_ire != NULL) { 21732 src = src_ire->ire_src_addr; 21733 ire_refrele(src_ire); 21734 } else { 21735 ire_refrele(ire); 21736 if (conn_outgoing_ill != NULL) 21737 ill_refrele(conn_outgoing_ill); 21738 freemsg(first_mp); 21739 BUMP_MIB(&ip_mib, ipOutDiscards); 21740 return; 21741 } 21742 } else { 21743 src = ire->ire_src_addr; 21744 } 21745 21746 if (connp == NULL) { 21747 ip1dbg(("ip_wput_ire: no connp and no src " 21748 "address for dst 0x%x, using src 0x%x\n", 21749 ntohl(dst), 21750 ntohl(src))); 21751 } 21752 ipha->ipha_src = src; 21753 } 21754 stq = ire->ire_stq; 21755 21756 /* 21757 * We only allow ire chains for broadcasts since there will 21758 * be multiple IRE_CACHE entries for the same multicast 21759 * address (one per ipif). 21760 */ 21761 next_mp = NULL; 21762 21763 /* broadcast packet */ 21764 if (ire->ire_type == IRE_BROADCAST) 21765 goto broadcast; 21766 21767 /* loopback ? */ 21768 if (stq == NULL) 21769 goto nullstq; 21770 21771 /* The ill_index for outbound ILL */ 21772 ill_index = Q_TO_INDEX(stq); 21773 21774 BUMP_MIB(&ip_mib, ipOutRequests); 21775 ttl_protocol = ((uint16_t *)ipha)[4]; 21776 21777 /* pseudo checksum (do it in parts for IP header checksum) */ 21778 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21779 21780 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 21781 queue_t *dev_q = stq->q_next; 21782 21783 /* flow controlled */ 21784 if ((dev_q->q_next || dev_q->q_first) && 21785 !canput(dev_q)) 21786 goto blocked; 21787 if ((PROTO == IPPROTO_UDP) && 21788 (ip_hdr_included != IP_HDR_INCLUDED)) { 21789 hlen = (V_HLEN & 0xF) << 2; 21790 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21791 if (*up != 0) { 21792 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 21793 hlen, LENGTH, max_frag, ipsec_len, cksum); 21794 /* Software checksum? */ 21795 if (DB_CKSUMFLAGS(mp) == 0) { 21796 IP_STAT(ip_out_sw_cksum); 21797 IP_STAT_UPDATE( 21798 ip_udp_out_sw_cksum_bytes, 21799 LENGTH - hlen); 21800 } 21801 } 21802 } 21803 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 21804 hlen = (V_HLEN & 0xF) << 2; 21805 if (PROTO == IPPROTO_TCP) { 21806 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21807 /* 21808 * The packet header is processed once and for all, even 21809 * in the multirouting case. We disable hardware 21810 * checksum if the packet is multirouted, as it will be 21811 * replicated via several interfaces, and not all of 21812 * them may have this capability. 21813 */ 21814 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 21815 LENGTH, max_frag, ipsec_len, cksum); 21816 /* Software checksum? */ 21817 if (DB_CKSUMFLAGS(mp) == 0) { 21818 IP_STAT(ip_out_sw_cksum); 21819 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21820 LENGTH - hlen); 21821 } 21822 } else { 21823 sctp_hdr_t *sctph; 21824 21825 ASSERT(PROTO == IPPROTO_SCTP); 21826 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21827 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21828 /* 21829 * Zero out the checksum field to ensure proper 21830 * checksum calculation. 21831 */ 21832 sctph->sh_chksum = 0; 21833 #ifdef DEBUG 21834 if (!skip_sctp_cksum) 21835 #endif 21836 sctph->sh_chksum = sctp_cksum(mp, hlen); 21837 } 21838 } 21839 21840 /* 21841 * If this is a multicast packet and originated from ip_wput 21842 * we need to do loopback and forwarding checks. If it comes 21843 * from ip_wput_multicast, we SHOULD not do this. 21844 */ 21845 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 21846 21847 /* checksum */ 21848 cksum += ttl_protocol; 21849 21850 /* fragment the packet */ 21851 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 21852 goto fragmentit; 21853 /* 21854 * Don't use frag_flag if packet is pre-built or source 21855 * routed or if multicast (since multicast packets do 21856 * not solicit ICMP "packet too big" messages). 21857 */ 21858 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21859 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21860 !ip_source_route_included(ipha)) && 21861 !CLASSD(ipha->ipha_dst)) 21862 ipha->ipha_fragment_offset_and_flags |= 21863 htons(ire->ire_frag_flag); 21864 21865 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21866 /* calculate IP header checksum */ 21867 cksum += ipha->ipha_ident; 21868 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 21869 cksum += ipha->ipha_fragment_offset_and_flags; 21870 21871 /* IP options present */ 21872 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21873 if (hlen) 21874 goto checksumoptions; 21875 21876 /* calculate hdr checksum */ 21877 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21878 cksum = ~(cksum + (cksum >> 16)); 21879 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21880 } 21881 if (ipsec_len != 0) { 21882 /* 21883 * We will do the rest of the processing after 21884 * we come back from IPSEC in ip_wput_ipsec_out(). 21885 */ 21886 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 21887 21888 io = (ipsec_out_t *)first_mp->b_rptr; 21889 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 21890 ill_phyint->phyint_ifindex; 21891 21892 ipsec_out_process(q, first_mp, ire, ill_index); 21893 ire_refrele(ire); 21894 if (conn_outgoing_ill != NULL) 21895 ill_refrele(conn_outgoing_ill); 21896 return; 21897 } 21898 21899 /* 21900 * In most cases, the emission loop below is entered only 21901 * once. Only in the case where the ire holds the 21902 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 21903 * flagged ires in the bucket, and send the packet 21904 * through all crossed RTF_MULTIRT routes. 21905 */ 21906 if (ire->ire_flags & RTF_MULTIRT) { 21907 multirt_send = B_TRUE; 21908 } 21909 do { 21910 if (multirt_send) { 21911 irb_t *irb; 21912 /* 21913 * We are in a multiple send case, need to get 21914 * the next ire and make a duplicate of the packet. 21915 * ire1 holds here the next ire to process in the 21916 * bucket. If multirouting is expected, 21917 * any non-RTF_MULTIRT ire that has the 21918 * right destination address is ignored. 21919 */ 21920 irb = ire->ire_bucket; 21921 ASSERT(irb != NULL); 21922 21923 IRB_REFHOLD(irb); 21924 for (ire1 = ire->ire_next; 21925 ire1 != NULL; 21926 ire1 = ire1->ire_next) { 21927 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21928 continue; 21929 if (ire1->ire_addr != ire->ire_addr) 21930 continue; 21931 if (ire1->ire_marks & 21932 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21933 continue; 21934 21935 /* Got one */ 21936 IRE_REFHOLD(ire1); 21937 break; 21938 } 21939 IRB_REFRELE(irb); 21940 21941 if (ire1 != NULL) { 21942 next_mp = copyb(mp); 21943 if ((next_mp == NULL) || 21944 ((mp->b_cont != NULL) && 21945 ((next_mp->b_cont = 21946 dupmsg(mp->b_cont)) == NULL))) { 21947 freemsg(next_mp); 21948 next_mp = NULL; 21949 ire_refrele(ire1); 21950 ire1 = NULL; 21951 } 21952 } 21953 21954 /* Last multiroute ire; don't loop anymore. */ 21955 if (ire1 == NULL) { 21956 multirt_send = B_FALSE; 21957 } 21958 } 21959 21960 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 21961 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 21962 mblk_t *, mp); 21963 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 21964 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp); 21965 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21966 if (mp == NULL) 21967 goto release_ire_and_ill; 21968 21969 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 21970 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 21971 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 21972 if ((pktxmit_state == SEND_FAILED) || 21973 (pktxmit_state == LLHDR_RESLV_FAILED)) { 21974 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 21975 "- packet dropped\n")); 21976 release_ire_and_ill: 21977 ire_refrele(ire); 21978 if (next_mp != NULL) { 21979 freemsg(next_mp); 21980 ire_refrele(ire1); 21981 } 21982 if (conn_outgoing_ill != NULL) 21983 ill_refrele(conn_outgoing_ill); 21984 return; 21985 } 21986 21987 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21988 "ip_wput_ire_end: q %p (%S)", 21989 q, "last copy out"); 21990 IRE_REFRELE(ire); 21991 21992 if (multirt_send) { 21993 ASSERT(ire1); 21994 /* 21995 * Proceed with the next RTF_MULTIRT ire, 21996 * Also set up the send-to queue accordingly. 21997 */ 21998 ire = ire1; 21999 ire1 = NULL; 22000 stq = ire->ire_stq; 22001 mp = next_mp; 22002 next_mp = NULL; 22003 ipha = (ipha_t *)mp->b_rptr; 22004 ill_index = Q_TO_INDEX(stq); 22005 } 22006 } while (multirt_send); 22007 if (conn_outgoing_ill != NULL) 22008 ill_refrele(conn_outgoing_ill); 22009 return; 22010 22011 /* 22012 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22013 */ 22014 broadcast: 22015 { 22016 /* 22017 * Avoid broadcast storms by setting the ttl to 1 22018 * for broadcasts. This parameter can be set 22019 * via ndd, so make sure that for the SO_DONTROUTE 22020 * case that ipha_ttl is always set to 1. 22021 * In the event that we are replying to incoming 22022 * ICMP packets, conn could be NULL. 22023 */ 22024 if ((connp != NULL) && connp->conn_dontroute) 22025 ipha->ipha_ttl = 1; 22026 else 22027 ipha->ipha_ttl = ip_broadcast_ttl; 22028 22029 /* 22030 * Note that we are not doing a IRB_REFHOLD here. 22031 * Actually we don't care if the list changes i.e 22032 * if somebody deletes an IRE from the list while 22033 * we drop the lock, the next time we come around 22034 * ire_next will be NULL and hence we won't send 22035 * out multiple copies which is fine. 22036 */ 22037 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22038 ire1 = ire->ire_next; 22039 if (conn_outgoing_ill != NULL) { 22040 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22041 ASSERT(ire1 == ire->ire_next); 22042 if (ire1 != NULL && ire1->ire_addr == dst) { 22043 ire_refrele(ire); 22044 ire = ire1; 22045 IRE_REFHOLD(ire); 22046 ire1 = ire->ire_next; 22047 continue; 22048 } 22049 rw_exit(&ire->ire_bucket->irb_lock); 22050 /* Did not find a matching ill */ 22051 ip1dbg(("ip_wput_ire: broadcast with no " 22052 "matching IP_BOUND_IF ill %s\n", 22053 conn_outgoing_ill->ill_name)); 22054 freemsg(first_mp); 22055 if (ire != NULL) 22056 ire_refrele(ire); 22057 ill_refrele(conn_outgoing_ill); 22058 return; 22059 } 22060 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22061 /* 22062 * If the next IRE has the same address and is not one 22063 * of the two copies that we need to send, try to see 22064 * whether this copy should be sent at all. This 22065 * assumes that we insert loopbacks first and then 22066 * non-loopbacks. This is acheived by inserting the 22067 * loopback always before non-loopback. 22068 * This is used to send a single copy of a broadcast 22069 * packet out all physical interfaces that have an 22070 * matching IRE_BROADCAST while also looping 22071 * back one copy (to ip_wput_local) for each 22072 * matching physical interface. However, we avoid 22073 * sending packets out different logical that match by 22074 * having ipif_up/ipif_down supress duplicate 22075 * IRE_BROADCASTS. 22076 * 22077 * This feature is currently used to get broadcasts 22078 * sent to multiple interfaces, when the broadcast 22079 * address being used applies to multiple interfaces. 22080 * For example, a whole net broadcast will be 22081 * replicated on every connected subnet of 22082 * the target net. 22083 * 22084 * Each zone has its own set of IRE_BROADCASTs, so that 22085 * we're able to distribute inbound packets to multiple 22086 * zones who share a broadcast address. We avoid looping 22087 * back outbound packets in different zones but on the 22088 * same ill, as the application would see duplicates. 22089 * 22090 * If the interfaces are part of the same group, 22091 * we would want to send only one copy out for 22092 * whole group. 22093 * 22094 * This logic assumes that ire_add_v4() groups the 22095 * IRE_BROADCAST entries so that those with the same 22096 * ire_addr and ill_group are kept together. 22097 */ 22098 ire_ill = ire->ire_ipif->ipif_ill; 22099 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22100 if (ire_ill->ill_group != NULL && 22101 (ire->ire_marks & IRE_MARK_NORECV)) { 22102 /* 22103 * If the current zone only has an ire 22104 * broadcast for this address marked 22105 * NORECV, the ire we want is ahead in 22106 * the bucket, so we look it up 22107 * deliberately ignoring the zoneid. 22108 */ 22109 for (ire1 = ire->ire_bucket->irb_ire; 22110 ire1 != NULL; 22111 ire1 = ire1->ire_next) { 22112 ire1_ill = 22113 ire1->ire_ipif->ipif_ill; 22114 if (ire1->ire_addr != dst) 22115 continue; 22116 /* skip over the current ire */ 22117 if (ire1 == ire) 22118 continue; 22119 /* skip over deleted ires */ 22120 if (ire1->ire_marks & 22121 IRE_MARK_CONDEMNED) 22122 continue; 22123 /* 22124 * non-loopback ire in our 22125 * group: use it for the next 22126 * pass in the loop 22127 */ 22128 if (ire1->ire_stq != NULL && 22129 ire1_ill->ill_group == 22130 ire_ill->ill_group) 22131 break; 22132 } 22133 } 22134 } else { 22135 while (ire1 != NULL && ire1->ire_addr == dst) { 22136 ire1_ill = ire1->ire_ipif->ipif_ill; 22137 /* 22138 * We can have two broadcast ires on the 22139 * same ill in different zones; here 22140 * we'll send a copy of the packet on 22141 * each ill and the fanout code will 22142 * call conn_wantpacket() to check that 22143 * the zone has the broadcast address 22144 * configured on the ill. If the two 22145 * ires are in the same group we only 22146 * send one copy up. 22147 */ 22148 if (ire1_ill != ire_ill && 22149 (ire1_ill->ill_group == NULL || 22150 ire_ill->ill_group == NULL || 22151 ire1_ill->ill_group != 22152 ire_ill->ill_group)) { 22153 break; 22154 } 22155 ire1 = ire1->ire_next; 22156 } 22157 } 22158 } 22159 ASSERT(multirt_send == B_FALSE); 22160 if (ire1 != NULL && ire1->ire_addr == dst) { 22161 if ((ire->ire_flags & RTF_MULTIRT) && 22162 (ire1->ire_flags & RTF_MULTIRT)) { 22163 /* 22164 * We are in the multirouting case. 22165 * The message must be sent at least 22166 * on both ires. These ires have been 22167 * inserted AFTER the standard ones 22168 * in ip_rt_add(). There are thus no 22169 * other ire entries for the destination 22170 * address in the rest of the bucket 22171 * that do not have the RTF_MULTIRT 22172 * flag. We don't process a copy 22173 * of the message here. This will be 22174 * done in the final sending loop. 22175 */ 22176 multirt_send = B_TRUE; 22177 } else { 22178 next_mp = ip_copymsg(first_mp); 22179 if (next_mp != NULL) 22180 IRE_REFHOLD(ire1); 22181 } 22182 } 22183 rw_exit(&ire->ire_bucket->irb_lock); 22184 } 22185 22186 if (stq) { 22187 /* 22188 * A non-NULL send-to queue means this packet is going 22189 * out of this machine. 22190 */ 22191 22192 BUMP_MIB(&ip_mib, ipOutRequests); 22193 ttl_protocol = ((uint16_t *)ipha)[4]; 22194 /* 22195 * We accumulate the pseudo header checksum in cksum. 22196 * This is pretty hairy code, so watch close. One 22197 * thing to keep in mind is that UDP and TCP have 22198 * stored their respective datagram lengths in their 22199 * checksum fields. This lines things up real nice. 22200 */ 22201 cksum = (dst >> 16) + (dst & 0xFFFF) + 22202 (src >> 16) + (src & 0xFFFF); 22203 /* 22204 * We assume the udp checksum field contains the 22205 * length, so to compute the pseudo header checksum, 22206 * all we need is the protocol number and src/dst. 22207 */ 22208 /* Provide the checksums for UDP and TCP. */ 22209 if ((PROTO == IPPROTO_TCP) && 22210 (ip_hdr_included != IP_HDR_INCLUDED)) { 22211 /* hlen gets the number of uchar_ts in the IP header */ 22212 hlen = (V_HLEN & 0xF) << 2; 22213 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22214 IP_STAT(ip_out_sw_cksum); 22215 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22216 LENGTH - hlen); 22217 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22218 if (*up == 0) 22219 *up = 0xFFFF; 22220 } else if (PROTO == IPPROTO_SCTP && 22221 (ip_hdr_included != IP_HDR_INCLUDED)) { 22222 sctp_hdr_t *sctph; 22223 22224 hlen = (V_HLEN & 0xF) << 2; 22225 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22226 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22227 sctph->sh_chksum = 0; 22228 #ifdef DEBUG 22229 if (!skip_sctp_cksum) 22230 #endif 22231 sctph->sh_chksum = sctp_cksum(mp, hlen); 22232 } else { 22233 queue_t *dev_q = stq->q_next; 22234 22235 if ((dev_q->q_next || dev_q->q_first) && 22236 !canput(dev_q)) { 22237 blocked: 22238 ipha->ipha_ident = ip_hdr_included; 22239 /* 22240 * If we don't have a conn to apply 22241 * backpressure, free the message. 22242 * In the ire_send path, we don't know 22243 * the position to requeue the packet. Rather 22244 * than reorder packets, we just drop this 22245 * packet. 22246 */ 22247 if (ip_output_queue && connp != NULL && 22248 caller != IRE_SEND) { 22249 if (caller == IP_WSRV) { 22250 connp->conn_did_putbq = 1; 22251 (void) putbq(connp->conn_wq, 22252 first_mp); 22253 conn_drain_insert(connp); 22254 /* 22255 * This is the service thread, 22256 * and the queue is already 22257 * noenabled. The check for 22258 * canput and the putbq is not 22259 * atomic. So we need to check 22260 * again. 22261 */ 22262 if (canput(stq->q_next)) 22263 connp->conn_did_putbq 22264 = 0; 22265 IP_STAT(ip_conn_flputbq); 22266 } else { 22267 /* 22268 * We are not the service proc. 22269 * ip_wsrv will be scheduled or 22270 * is already running. 22271 */ 22272 (void) putq(connp->conn_wq, 22273 first_mp); 22274 } 22275 } else { 22276 BUMP_MIB(&ip_mib, ipOutDiscards); 22277 freemsg(first_mp); 22278 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22279 "ip_wput_ire_end: q %p (%S)", 22280 q, "discard"); 22281 } 22282 ire_refrele(ire); 22283 if (next_mp) { 22284 ire_refrele(ire1); 22285 freemsg(next_mp); 22286 } 22287 if (conn_outgoing_ill != NULL) 22288 ill_refrele(conn_outgoing_ill); 22289 return; 22290 } 22291 if ((PROTO == IPPROTO_UDP) && 22292 (ip_hdr_included != IP_HDR_INCLUDED)) { 22293 /* 22294 * hlen gets the number of uchar_ts in the 22295 * IP header 22296 */ 22297 hlen = (V_HLEN & 0xF) << 2; 22298 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22299 max_frag = ire->ire_max_frag; 22300 if (*up != 0) { 22301 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22302 up, PROTO, hlen, LENGTH, max_frag, 22303 ipsec_len, cksum); 22304 /* Software checksum? */ 22305 if (DB_CKSUMFLAGS(mp) == 0) { 22306 IP_STAT(ip_out_sw_cksum); 22307 IP_STAT_UPDATE( 22308 ip_udp_out_sw_cksum_bytes, 22309 LENGTH - hlen); 22310 } 22311 } 22312 } 22313 } 22314 /* 22315 * Need to do this even when fragmenting. The local 22316 * loopback can be done without computing checksums 22317 * but forwarding out other interface must be done 22318 * after the IP checksum (and ULP checksums) have been 22319 * computed. 22320 * 22321 * NOTE : multicast_forward is set only if this packet 22322 * originated from ip_wput. For packets originating from 22323 * ip_wput_multicast, it is not set. 22324 */ 22325 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22326 multi_loopback: 22327 ip2dbg(("ip_wput: multicast, loop %d\n", 22328 conn_multicast_loop)); 22329 22330 /* Forget header checksum offload */ 22331 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22332 22333 /* 22334 * Local loopback of multicasts? Check the 22335 * ill. 22336 * 22337 * Note that the loopback function will not come 22338 * in through ip_rput - it will only do the 22339 * client fanout thus we need to do an mforward 22340 * as well. The is different from the BSD 22341 * logic. 22342 */ 22343 if (ill != NULL) { 22344 ilm_t *ilm; 22345 22346 ILM_WALKER_HOLD(ill); 22347 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22348 ALL_ZONES); 22349 ILM_WALKER_RELE(ill); 22350 if (ilm != NULL) { 22351 /* 22352 * Pass along the virtual output q. 22353 * ip_wput_local() will distribute the 22354 * packet to all the matching zones, 22355 * except the sending zone when 22356 * IP_MULTICAST_LOOP is false. 22357 */ 22358 ip_multicast_loopback(q, ill, first_mp, 22359 conn_multicast_loop ? 0 : 22360 IP_FF_NO_MCAST_LOOP, zoneid); 22361 } 22362 } 22363 if (ipha->ipha_ttl == 0) { 22364 /* 22365 * 0 => only to this host i.e. we are 22366 * done. We are also done if this was the 22367 * loopback interface since it is sufficient 22368 * to loopback one copy of a multicast packet. 22369 */ 22370 freemsg(first_mp); 22371 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22372 "ip_wput_ire_end: q %p (%S)", 22373 q, "loopback"); 22374 ire_refrele(ire); 22375 if (conn_outgoing_ill != NULL) 22376 ill_refrele(conn_outgoing_ill); 22377 return; 22378 } 22379 /* 22380 * ILLF_MULTICAST is checked in ip_newroute 22381 * i.e. we don't need to check it here since 22382 * all IRE_CACHEs come from ip_newroute. 22383 * For multicast traffic, SO_DONTROUTE is interpreted 22384 * to mean only send the packet out the interface 22385 * (optionally specified with IP_MULTICAST_IF) 22386 * and do not forward it out additional interfaces. 22387 * RSVP and the rsvp daemon is an example of a 22388 * protocol and user level process that 22389 * handles it's own routing. Hence, it uses the 22390 * SO_DONTROUTE option to accomplish this. 22391 */ 22392 22393 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22394 /* Unconditionally redo the checksum */ 22395 ipha->ipha_hdr_checksum = 0; 22396 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22397 22398 /* 22399 * If this needs to go out secure, we need 22400 * to wait till we finish the IPSEC 22401 * processing. 22402 */ 22403 if (ipsec_len == 0 && 22404 ip_mforward(ill, ipha, mp)) { 22405 freemsg(first_mp); 22406 ip1dbg(("ip_wput: mforward failed\n")); 22407 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22408 "ip_wput_ire_end: q %p (%S)", 22409 q, "mforward failed"); 22410 ire_refrele(ire); 22411 if (conn_outgoing_ill != NULL) 22412 ill_refrele(conn_outgoing_ill); 22413 return; 22414 } 22415 } 22416 } 22417 max_frag = ire->ire_max_frag; 22418 cksum += ttl_protocol; 22419 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22420 /* No fragmentation required for this one. */ 22421 /* 22422 * Don't use frag_flag if packet is pre-built or source 22423 * routed or if multicast (since multicast packets do 22424 * not solicit ICMP "packet too big" messages). 22425 */ 22426 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22427 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22428 !ip_source_route_included(ipha)) && 22429 !CLASSD(ipha->ipha_dst)) 22430 ipha->ipha_fragment_offset_and_flags |= 22431 htons(ire->ire_frag_flag); 22432 22433 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22434 /* Complete the IP header checksum. */ 22435 cksum += ipha->ipha_ident; 22436 cksum += (v_hlen_tos_len >> 16)+ 22437 (v_hlen_tos_len & 0xFFFF); 22438 cksum += ipha->ipha_fragment_offset_and_flags; 22439 hlen = (V_HLEN & 0xF) - 22440 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22441 if (hlen) { 22442 checksumoptions: 22443 /* 22444 * Account for the IP Options in the IP 22445 * header checksum. 22446 */ 22447 up = (uint16_t *)(rptr+ 22448 IP_SIMPLE_HDR_LENGTH); 22449 do { 22450 cksum += up[0]; 22451 cksum += up[1]; 22452 up += 2; 22453 } while (--hlen); 22454 } 22455 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22456 cksum = ~(cksum + (cksum >> 16)); 22457 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22458 } 22459 if (ipsec_len != 0) { 22460 ipsec_out_process(q, first_mp, ire, ill_index); 22461 if (!next_mp) { 22462 ire_refrele(ire); 22463 if (conn_outgoing_ill != NULL) 22464 ill_refrele(conn_outgoing_ill); 22465 return; 22466 } 22467 goto next; 22468 } 22469 22470 /* 22471 * multirt_send has already been handled 22472 * for broadcast, but not yet for multicast 22473 * or IP options. 22474 */ 22475 if (next_mp == NULL) { 22476 if (ire->ire_flags & RTF_MULTIRT) { 22477 multirt_send = B_TRUE; 22478 } 22479 } 22480 22481 /* 22482 * In most cases, the emission loop below is 22483 * entered only once. Only in the case where 22484 * the ire holds the RTF_MULTIRT flag, do we loop 22485 * to process all RTF_MULTIRT ires in the bucket, 22486 * and send the packet through all crossed 22487 * RTF_MULTIRT routes. 22488 */ 22489 do { 22490 if (multirt_send) { 22491 irb_t *irb; 22492 22493 irb = ire->ire_bucket; 22494 ASSERT(irb != NULL); 22495 /* 22496 * We are in a multiple send case, 22497 * need to get the next IRE and make 22498 * a duplicate of the packet. 22499 */ 22500 IRB_REFHOLD(irb); 22501 for (ire1 = ire->ire_next; 22502 ire1 != NULL; 22503 ire1 = ire1->ire_next) { 22504 if (!(ire1->ire_flags & 22505 RTF_MULTIRT)) 22506 continue; 22507 if (ire1->ire_addr != 22508 ire->ire_addr) 22509 continue; 22510 if (ire1->ire_marks & 22511 (IRE_MARK_CONDEMNED| 22512 IRE_MARK_HIDDEN)) 22513 continue; 22514 22515 /* Got one */ 22516 IRE_REFHOLD(ire1); 22517 break; 22518 } 22519 IRB_REFRELE(irb); 22520 22521 if (ire1 != NULL) { 22522 next_mp = copyb(mp); 22523 if ((next_mp == NULL) || 22524 ((mp->b_cont != NULL) && 22525 ((next_mp->b_cont = 22526 dupmsg(mp->b_cont)) 22527 == NULL))) { 22528 freemsg(next_mp); 22529 next_mp = NULL; 22530 ire_refrele(ire1); 22531 ire1 = NULL; 22532 } 22533 } 22534 22535 /* 22536 * Last multiroute ire; don't loop 22537 * anymore. The emission is over 22538 * and next_mp is NULL. 22539 */ 22540 if (ire1 == NULL) { 22541 multirt_send = B_FALSE; 22542 } 22543 } 22544 22545 out_ill = ire->ire_ipif->ipif_ill; 22546 DTRACE_PROBE4(ip4__physical__out__start, 22547 ill_t *, NULL, 22548 ill_t *, out_ill, 22549 ipha_t *, ipha, mblk_t *, mp); 22550 FW_HOOKS(ip4_physical_out_event, 22551 ipv4firewall_physical_out, 22552 NULL, out_ill, ipha, mp, mp); 22553 DTRACE_PROBE1(ip4__physical__out__end, 22554 mblk_t *, mp); 22555 if (mp == NULL) 22556 goto release_ire_and_ill_2; 22557 22558 ASSERT(ipsec_len == 0); 22559 mp->b_prev = 22560 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22561 DTRACE_PROBE2(ip__xmit__2, 22562 mblk_t *, mp, ire_t *, ire); 22563 pktxmit_state = ip_xmit_v4(mp, ire, 22564 NULL, B_TRUE); 22565 if ((pktxmit_state == SEND_FAILED) || 22566 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22567 release_ire_and_ill_2: 22568 if (next_mp) { 22569 freemsg(next_mp); 22570 ire_refrele(ire1); 22571 } 22572 ire_refrele(ire); 22573 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22574 "ip_wput_ire_end: q %p (%S)", 22575 q, "discard MDATA"); 22576 if (conn_outgoing_ill != NULL) 22577 ill_refrele(conn_outgoing_ill); 22578 return; 22579 } 22580 22581 if (multirt_send) { 22582 /* 22583 * We are in a multiple send case, 22584 * need to re-enter the sending loop 22585 * using the next ire. 22586 */ 22587 ire_refrele(ire); 22588 ire = ire1; 22589 stq = ire->ire_stq; 22590 mp = next_mp; 22591 next_mp = NULL; 22592 ipha = (ipha_t *)mp->b_rptr; 22593 ill_index = Q_TO_INDEX(stq); 22594 } 22595 } while (multirt_send); 22596 22597 if (!next_mp) { 22598 /* 22599 * Last copy going out (the ultra-common 22600 * case). Note that we intentionally replicate 22601 * the putnext rather than calling it before 22602 * the next_mp check in hopes of a little 22603 * tail-call action out of the compiler. 22604 */ 22605 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22606 "ip_wput_ire_end: q %p (%S)", 22607 q, "last copy out(1)"); 22608 ire_refrele(ire); 22609 if (conn_outgoing_ill != NULL) 22610 ill_refrele(conn_outgoing_ill); 22611 return; 22612 } 22613 /* More copies going out below. */ 22614 } else { 22615 int offset; 22616 fragmentit: 22617 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22618 /* 22619 * If this would generate a icmp_frag_needed message, 22620 * we need to handle it before we do the IPSEC 22621 * processing. Otherwise, we need to strip the IPSEC 22622 * headers before we send up the message to the ULPs 22623 * which becomes messy and difficult. 22624 */ 22625 if (ipsec_len != 0) { 22626 if ((max_frag < (unsigned int)(LENGTH + 22627 ipsec_len)) && (offset & IPH_DF)) { 22628 22629 BUMP_MIB(&ip_mib, ipFragFails); 22630 ipha->ipha_hdr_checksum = 0; 22631 ipha->ipha_hdr_checksum = 22632 (uint16_t)ip_csum_hdr(ipha); 22633 icmp_frag_needed(ire->ire_stq, first_mp, 22634 max_frag, zoneid); 22635 if (!next_mp) { 22636 ire_refrele(ire); 22637 if (conn_outgoing_ill != NULL) { 22638 ill_refrele( 22639 conn_outgoing_ill); 22640 } 22641 return; 22642 } 22643 } else { 22644 /* 22645 * This won't cause a icmp_frag_needed 22646 * message. to be gnerated. Send it on 22647 * the wire. Note that this could still 22648 * cause fragmentation and all we 22649 * do is the generation of the message 22650 * to the ULP if needed before IPSEC. 22651 */ 22652 if (!next_mp) { 22653 ipsec_out_process(q, first_mp, 22654 ire, ill_index); 22655 TRACE_2(TR_FAC_IP, 22656 TR_IP_WPUT_IRE_END, 22657 "ip_wput_ire_end: q %p " 22658 "(%S)", q, 22659 "last ipsec_out_process"); 22660 ire_refrele(ire); 22661 if (conn_outgoing_ill != NULL) { 22662 ill_refrele( 22663 conn_outgoing_ill); 22664 } 22665 return; 22666 } 22667 ipsec_out_process(q, first_mp, 22668 ire, ill_index); 22669 } 22670 } else { 22671 /* 22672 * Initiate IPPF processing. For 22673 * fragmentable packets we finish 22674 * all QOS packet processing before 22675 * calling: 22676 * ip_wput_ire_fragmentit->ip_wput_frag 22677 */ 22678 22679 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22680 ip_process(IPP_LOCAL_OUT, &mp, 22681 ill_index); 22682 if (mp == NULL) { 22683 BUMP_MIB(&ip_mib, 22684 ipOutDiscards); 22685 if (next_mp != NULL) { 22686 freemsg(next_mp); 22687 ire_refrele(ire1); 22688 } 22689 ire_refrele(ire); 22690 TRACE_2(TR_FAC_IP, 22691 TR_IP_WPUT_IRE_END, 22692 "ip_wput_ire: q %p (%S)", 22693 q, "discard MDATA"); 22694 if (conn_outgoing_ill != NULL) { 22695 ill_refrele( 22696 conn_outgoing_ill); 22697 } 22698 return; 22699 } 22700 } 22701 if (!next_mp) { 22702 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22703 "ip_wput_ire_end: q %p (%S)", 22704 q, "last fragmentation"); 22705 ip_wput_ire_fragmentit(mp, ire, 22706 zoneid); 22707 ire_refrele(ire); 22708 if (conn_outgoing_ill != NULL) 22709 ill_refrele(conn_outgoing_ill); 22710 return; 22711 } 22712 ip_wput_ire_fragmentit(mp, ire, zoneid); 22713 } 22714 } 22715 } else { 22716 nullstq: 22717 /* A NULL stq means the destination address is local. */ 22718 UPDATE_OB_PKT_COUNT(ire); 22719 ire->ire_last_used_time = lbolt; 22720 ASSERT(ire->ire_ipif != NULL); 22721 if (!next_mp) { 22722 /* 22723 * Is there an "in" and "out" for traffic local 22724 * to a host (loopback)? The code in Solaris doesn't 22725 * explicitly draw a line in its code for in vs out, 22726 * so we've had to draw a line in the sand: ip_wput_ire 22727 * is considered to be the "output" side and 22728 * ip_wput_local to be the "input" side. 22729 */ 22730 out_ill = ire->ire_ipif->ipif_ill; 22731 22732 DTRACE_PROBE4(ip4__loopback__out__start, 22733 ill_t *, NULL, ill_t *, out_ill, 22734 ipha_t *, ipha, mblk_t *, first_mp); 22735 22736 FW_HOOKS(ip4_loopback_out_event, 22737 ipv4firewall_loopback_out, 22738 NULL, out_ill, ipha, first_mp, mp); 22739 22740 DTRACE_PROBE1(ip4__loopback__out_end, 22741 mblk_t *, first_mp); 22742 22743 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22744 "ip_wput_ire_end: q %p (%S)", 22745 q, "local address"); 22746 22747 if (first_mp != NULL) 22748 ip_wput_local(q, out_ill, ipha, 22749 first_mp, ire, 0, ire->ire_zoneid); 22750 ire_refrele(ire); 22751 if (conn_outgoing_ill != NULL) 22752 ill_refrele(conn_outgoing_ill); 22753 return; 22754 } 22755 22756 out_ill = ire->ire_ipif->ipif_ill; 22757 22758 DTRACE_PROBE4(ip4__loopback__out__start, 22759 ill_t *, NULL, ill_t *, out_ill, 22760 ipha_t *, ipha, mblk_t *, first_mp); 22761 22762 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 22763 NULL, out_ill, ipha, first_mp, mp); 22764 22765 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 22766 22767 if (first_mp != NULL) 22768 ip_wput_local(q, out_ill, ipha, 22769 first_mp, ire, 0, ire->ire_zoneid); 22770 } 22771 next: 22772 /* 22773 * More copies going out to additional interfaces. 22774 * ire1 has already been held. We don't need the 22775 * "ire" anymore. 22776 */ 22777 ire_refrele(ire); 22778 ire = ire1; 22779 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 22780 mp = next_mp; 22781 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22782 ill = ire_to_ill(ire); 22783 first_mp = mp; 22784 if (ipsec_len != 0) { 22785 ASSERT(first_mp->b_datap->db_type == M_CTL); 22786 mp = mp->b_cont; 22787 } 22788 dst = ire->ire_addr; 22789 ipha = (ipha_t *)mp->b_rptr; 22790 /* 22791 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 22792 * Restore ipha_ident "no checksum" flag. 22793 */ 22794 src = orig_src; 22795 ipha->ipha_ident = ip_hdr_included; 22796 goto another; 22797 22798 #undef rptr 22799 #undef Q_TO_INDEX 22800 } 22801 22802 /* 22803 * Routine to allocate a message that is used to notify the ULP about MDT. 22804 * The caller may provide a pointer to the link-layer MDT capabilities, 22805 * or NULL if MDT is to be disabled on the stream. 22806 */ 22807 mblk_t * 22808 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 22809 { 22810 mblk_t *mp; 22811 ip_mdt_info_t *mdti; 22812 ill_mdt_capab_t *idst; 22813 22814 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 22815 DB_TYPE(mp) = M_CTL; 22816 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 22817 mdti = (ip_mdt_info_t *)mp->b_rptr; 22818 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 22819 idst = &(mdti->mdt_capab); 22820 22821 /* 22822 * If the caller provides us with the capability, copy 22823 * it over into our notification message; otherwise 22824 * we zero out the capability portion. 22825 */ 22826 if (isrc != NULL) 22827 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22828 else 22829 bzero((caddr_t)idst, sizeof (*idst)); 22830 } 22831 return (mp); 22832 } 22833 22834 /* 22835 * Routine which determines whether MDT can be enabled on the destination 22836 * IRE and IPC combination, and if so, allocates and returns the MDT 22837 * notification mblk that may be used by ULP. We also check if we need to 22838 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 22839 * MDT usage in the past have been lifted. This gets called during IP 22840 * and ULP binding. 22841 */ 22842 mblk_t * 22843 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22844 ill_mdt_capab_t *mdt_cap) 22845 { 22846 mblk_t *mp; 22847 boolean_t rc = B_FALSE; 22848 22849 ASSERT(dst_ire != NULL); 22850 ASSERT(connp != NULL); 22851 ASSERT(mdt_cap != NULL); 22852 22853 /* 22854 * Currently, we only support simple TCP/{IPv4,IPv6} with 22855 * Multidata, which is handled in tcp_multisend(). This 22856 * is the reason why we do all these checks here, to ensure 22857 * that we don't enable Multidata for the cases which we 22858 * can't handle at the moment. 22859 */ 22860 do { 22861 /* Only do TCP at the moment */ 22862 if (connp->conn_ulp != IPPROTO_TCP) 22863 break; 22864 22865 /* 22866 * IPSEC outbound policy present? Note that we get here 22867 * after calling ipsec_conn_cache_policy() where the global 22868 * policy checking is performed. conn_latch will be 22869 * non-NULL as long as there's a policy defined, 22870 * i.e. conn_out_enforce_policy may be NULL in such case 22871 * when the connection is non-secure, and hence we check 22872 * further if the latch refers to an outbound policy. 22873 */ 22874 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 22875 break; 22876 22877 /* CGTP (multiroute) is enabled? */ 22878 if (dst_ire->ire_flags & RTF_MULTIRT) 22879 break; 22880 22881 /* Outbound IPQoS enabled? */ 22882 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22883 /* 22884 * In this case, we disable MDT for this and all 22885 * future connections going over the interface. 22886 */ 22887 mdt_cap->ill_mdt_on = 0; 22888 break; 22889 } 22890 22891 /* socket option(s) present? */ 22892 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 22893 break; 22894 22895 rc = B_TRUE; 22896 /* CONSTCOND */ 22897 } while (0); 22898 22899 /* Remember the result */ 22900 connp->conn_mdt_ok = rc; 22901 22902 if (!rc) 22903 return (NULL); 22904 else if (!mdt_cap->ill_mdt_on) { 22905 /* 22906 * If MDT has been previously turned off in the past, and we 22907 * currently can do MDT (due to IPQoS policy removal, etc.) 22908 * then enable it for this interface. 22909 */ 22910 mdt_cap->ill_mdt_on = 1; 22911 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 22912 "interface %s\n", ill_name)); 22913 } 22914 22915 /* Allocate the MDT info mblk */ 22916 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 22917 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 22918 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 22919 return (NULL); 22920 } 22921 return (mp); 22922 } 22923 22924 /* 22925 * Routine to allocate a message that is used to notify the ULP about LSO. 22926 * The caller may provide a pointer to the link-layer LSO capabilities, 22927 * or NULL if LSO is to be disabled on the stream. 22928 */ 22929 mblk_t * 22930 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 22931 { 22932 mblk_t *mp; 22933 ip_lso_info_t *lsoi; 22934 ill_lso_capab_t *idst; 22935 22936 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 22937 DB_TYPE(mp) = M_CTL; 22938 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 22939 lsoi = (ip_lso_info_t *)mp->b_rptr; 22940 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 22941 idst = &(lsoi->lso_capab); 22942 22943 /* 22944 * If the caller provides us with the capability, copy 22945 * it over into our notification message; otherwise 22946 * we zero out the capability portion. 22947 */ 22948 if (isrc != NULL) 22949 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 22950 else 22951 bzero((caddr_t)idst, sizeof (*idst)); 22952 } 22953 return (mp); 22954 } 22955 22956 /* 22957 * Routine which determines whether LSO can be enabled on the destination 22958 * IRE and IPC combination, and if so, allocates and returns the LSO 22959 * notification mblk that may be used by ULP. We also check if we need to 22960 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 22961 * LSO usage in the past have been lifted. This gets called during IP 22962 * and ULP binding. 22963 */ 22964 mblk_t * 22965 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 22966 ill_lso_capab_t *lso_cap) 22967 { 22968 mblk_t *mp; 22969 22970 ASSERT(dst_ire != NULL); 22971 ASSERT(connp != NULL); 22972 ASSERT(lso_cap != NULL); 22973 22974 connp->conn_lso_ok = B_TRUE; 22975 22976 if ((connp->conn_ulp != IPPROTO_TCP) || 22977 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 22978 (dst_ire->ire_flags & RTF_MULTIRT) || 22979 !CONN_IS_LSO_MD_FASTPATH(connp) || 22980 (IPP_ENABLED(IPP_LOCAL_OUT))) { 22981 connp->conn_lso_ok = B_FALSE; 22982 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 22983 /* 22984 * Disable LSO for this and all future connections going 22985 * over the interface. 22986 */ 22987 lso_cap->ill_lso_on = 0; 22988 } 22989 } 22990 22991 if (!connp->conn_lso_ok) 22992 return (NULL); 22993 else if (!lso_cap->ill_lso_on) { 22994 /* 22995 * If LSO has been previously turned off in the past, and we 22996 * currently can do LSO (due to IPQoS policy removal, etc.) 22997 * then enable it for this interface. 22998 */ 22999 lso_cap->ill_lso_on = 1; 23000 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23001 ill_name)); 23002 } 23003 23004 /* Allocate the LSO info mblk */ 23005 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23006 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23007 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23008 23009 return (mp); 23010 } 23011 23012 /* 23013 * Create destination address attribute, and fill it with the physical 23014 * destination address and SAP taken from the template DL_UNITDATA_REQ 23015 * message block. 23016 */ 23017 boolean_t 23018 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23019 { 23020 dl_unitdata_req_t *dlurp; 23021 pattr_t *pa; 23022 pattrinfo_t pa_info; 23023 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23024 uint_t das_len, das_off; 23025 23026 ASSERT(dlmp != NULL); 23027 23028 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23029 das_len = dlurp->dl_dest_addr_length; 23030 das_off = dlurp->dl_dest_addr_offset; 23031 23032 pa_info.type = PATTR_DSTADDRSAP; 23033 pa_info.len = sizeof (**das) + das_len - 1; 23034 23035 /* create and associate the attribute */ 23036 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23037 if (pa != NULL) { 23038 ASSERT(*das != NULL); 23039 (*das)->addr_is_group = 0; 23040 (*das)->addr_len = (uint8_t)das_len; 23041 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23042 } 23043 23044 return (pa != NULL); 23045 } 23046 23047 /* 23048 * Create hardware checksum attribute and fill it with the values passed. 23049 */ 23050 boolean_t 23051 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23052 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23053 { 23054 pattr_t *pa; 23055 pattrinfo_t pa_info; 23056 23057 ASSERT(mmd != NULL); 23058 23059 pa_info.type = PATTR_HCKSUM; 23060 pa_info.len = sizeof (pattr_hcksum_t); 23061 23062 /* create and associate the attribute */ 23063 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23064 if (pa != NULL) { 23065 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23066 23067 hck->hcksum_start_offset = start_offset; 23068 hck->hcksum_stuff_offset = stuff_offset; 23069 hck->hcksum_end_offset = end_offset; 23070 hck->hcksum_flags = flags; 23071 } 23072 return (pa != NULL); 23073 } 23074 23075 /* 23076 * Create zerocopy attribute and fill it with the specified flags 23077 */ 23078 boolean_t 23079 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23080 { 23081 pattr_t *pa; 23082 pattrinfo_t pa_info; 23083 23084 ASSERT(mmd != NULL); 23085 pa_info.type = PATTR_ZCOPY; 23086 pa_info.len = sizeof (pattr_zcopy_t); 23087 23088 /* create and associate the attribute */ 23089 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23090 if (pa != NULL) { 23091 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23092 23093 zcopy->zcopy_flags = flags; 23094 } 23095 return (pa != NULL); 23096 } 23097 23098 /* 23099 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23100 * block chain. We could rewrite to handle arbitrary message block chains but 23101 * that would make the code complicated and slow. Right now there three 23102 * restrictions: 23103 * 23104 * 1. The first message block must contain the complete IP header and 23105 * at least 1 byte of payload data. 23106 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23107 * so that we can use a single Multidata message. 23108 * 3. No frag must be distributed over two or more message blocks so 23109 * that we don't need more than two packet descriptors per frag. 23110 * 23111 * The above restrictions allow us to support userland applications (which 23112 * will send down a single message block) and NFS over UDP (which will 23113 * send down a chain of at most three message blocks). 23114 * 23115 * We also don't use MDT for payloads with less than or equal to 23116 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23117 */ 23118 boolean_t 23119 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23120 { 23121 int blocks; 23122 ssize_t total, missing, size; 23123 23124 ASSERT(mp != NULL); 23125 ASSERT(hdr_len > 0); 23126 23127 size = MBLKL(mp) - hdr_len; 23128 if (size <= 0) 23129 return (B_FALSE); 23130 23131 /* The first mblk contains the header and some payload. */ 23132 blocks = 1; 23133 total = size; 23134 size %= len; 23135 missing = (size == 0) ? 0 : (len - size); 23136 mp = mp->b_cont; 23137 23138 while (mp != NULL) { 23139 /* 23140 * Give up if we encounter a zero length message block. 23141 * In practice, this should rarely happen and therefore 23142 * not worth the trouble of freeing and re-linking the 23143 * mblk from the chain to handle such case. 23144 */ 23145 if ((size = MBLKL(mp)) == 0) 23146 return (B_FALSE); 23147 23148 /* Too many payload buffers for a single Multidata message? */ 23149 if (++blocks > MULTIDATA_MAX_PBUFS) 23150 return (B_FALSE); 23151 23152 total += size; 23153 /* Is a frag distributed over two or more message blocks? */ 23154 if (missing > size) 23155 return (B_FALSE); 23156 size -= missing; 23157 23158 size %= len; 23159 missing = (size == 0) ? 0 : (len - size); 23160 23161 mp = mp->b_cont; 23162 } 23163 23164 return (total > ip_wput_frag_mdt_min); 23165 } 23166 23167 /* 23168 * Outbound IPv4 fragmentation routine using MDT. 23169 */ 23170 static void 23171 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23172 uint32_t frag_flag, int offset) 23173 { 23174 ipha_t *ipha_orig; 23175 int i1, ip_data_end; 23176 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23177 mblk_t *hdr_mp, *md_mp = NULL; 23178 unsigned char *hdr_ptr, *pld_ptr; 23179 multidata_t *mmd; 23180 ip_pdescinfo_t pdi; 23181 23182 ASSERT(DB_TYPE(mp) == M_DATA); 23183 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23184 23185 ipha_orig = (ipha_t *)mp->b_rptr; 23186 mp->b_rptr += sizeof (ipha_t); 23187 23188 /* Calculate how many packets we will send out */ 23189 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23190 pkts = (i1 + len - 1) / len; 23191 ASSERT(pkts > 1); 23192 23193 /* Allocate a message block which will hold all the IP Headers. */ 23194 wroff = ip_wroff_extra; 23195 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23196 23197 i1 = pkts * hdr_chunk_len; 23198 /* 23199 * Create the header buffer, Multidata and destination address 23200 * and SAP attribute that should be associated with it. 23201 */ 23202 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23203 ((hdr_mp->b_wptr += i1), 23204 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23205 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23206 freemsg(mp); 23207 if (md_mp == NULL) { 23208 freemsg(hdr_mp); 23209 } else { 23210 free_mmd: IP_STAT(ip_frag_mdt_discarded); 23211 freemsg(md_mp); 23212 } 23213 IP_STAT(ip_frag_mdt_allocfail); 23214 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 23215 return; 23216 } 23217 IP_STAT(ip_frag_mdt_allocd); 23218 23219 /* 23220 * Add a payload buffer to the Multidata; this operation must not 23221 * fail, or otherwise our logic in this routine is broken. There 23222 * is no memory allocation done by the routine, so any returned 23223 * failure simply tells us that we've done something wrong. 23224 * 23225 * A failure tells us that either we're adding the same payload 23226 * buffer more than once, or we're trying to add more buffers than 23227 * allowed. None of the above cases should happen, and we panic 23228 * because either there's horrible heap corruption, and/or 23229 * programming mistake. 23230 */ 23231 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23232 goto pbuf_panic; 23233 23234 hdr_ptr = hdr_mp->b_rptr; 23235 pld_ptr = mp->b_rptr; 23236 23237 /* Establish the ending byte offset, based on the starting offset. */ 23238 offset <<= 3; 23239 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23240 IP_SIMPLE_HDR_LENGTH; 23241 23242 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23243 23244 while (pld_ptr < mp->b_wptr) { 23245 ipha_t *ipha; 23246 uint16_t offset_and_flags; 23247 uint16_t ip_len; 23248 int error; 23249 23250 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23251 ipha = (ipha_t *)(hdr_ptr + wroff); 23252 ASSERT(OK_32PTR(ipha)); 23253 *ipha = *ipha_orig; 23254 23255 if (ip_data_end - offset > len) { 23256 offset_and_flags = IPH_MF; 23257 } else { 23258 /* 23259 * Last frag. Set len to the length of this last piece. 23260 */ 23261 len = ip_data_end - offset; 23262 /* A frag of a frag might have IPH_MF non-zero */ 23263 offset_and_flags = 23264 ntohs(ipha->ipha_fragment_offset_and_flags) & 23265 IPH_MF; 23266 } 23267 offset_and_flags |= (uint16_t)(offset >> 3); 23268 offset_and_flags |= (uint16_t)frag_flag; 23269 /* Store the offset and flags in the IP header. */ 23270 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23271 23272 /* Store the length in the IP header. */ 23273 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23274 ipha->ipha_length = htons(ip_len); 23275 23276 /* 23277 * Set the IP header checksum. Note that mp is just 23278 * the header, so this is easy to pass to ip_csum. 23279 */ 23280 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23281 23282 /* 23283 * Record offset and size of header and data of the next packet 23284 * in the multidata message. 23285 */ 23286 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23287 PDESC_PLD_INIT(&pdi); 23288 i1 = MIN(mp->b_wptr - pld_ptr, len); 23289 ASSERT(i1 > 0); 23290 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23291 if (i1 == len) { 23292 pld_ptr += len; 23293 } else { 23294 i1 = len - i1; 23295 mp = mp->b_cont; 23296 ASSERT(mp != NULL); 23297 ASSERT(MBLKL(mp) >= i1); 23298 /* 23299 * Attach the next payload message block to the 23300 * multidata message. 23301 */ 23302 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23303 goto pbuf_panic; 23304 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23305 pld_ptr = mp->b_rptr + i1; 23306 } 23307 23308 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23309 KM_NOSLEEP)) == NULL) { 23310 /* 23311 * Any failure other than ENOMEM indicates that we 23312 * have passed in invalid pdesc info or parameters 23313 * to mmd_addpdesc, which must not happen. 23314 * 23315 * EINVAL is a result of failure on boundary checks 23316 * against the pdesc info contents. It should not 23317 * happen, and we panic because either there's 23318 * horrible heap corruption, and/or programming 23319 * mistake. 23320 */ 23321 if (error != ENOMEM) { 23322 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23323 "pdesc logic error detected for " 23324 "mmd %p pinfo %p (%d)\n", 23325 (void *)mmd, (void *)&pdi, error); 23326 /* NOTREACHED */ 23327 } 23328 IP_STAT(ip_frag_mdt_addpdescfail); 23329 /* Free unattached payload message blocks as well */ 23330 md_mp->b_cont = mp->b_cont; 23331 goto free_mmd; 23332 } 23333 23334 /* Advance fragment offset. */ 23335 offset += len; 23336 23337 /* Advance to location for next header in the buffer. */ 23338 hdr_ptr += hdr_chunk_len; 23339 23340 /* Did we reach the next payload message block? */ 23341 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23342 mp = mp->b_cont; 23343 /* 23344 * Attach the next message block with payload 23345 * data to the multidata message. 23346 */ 23347 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23348 goto pbuf_panic; 23349 pld_ptr = mp->b_rptr; 23350 } 23351 } 23352 23353 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23354 ASSERT(mp->b_wptr == pld_ptr); 23355 23356 /* Update IP statistics */ 23357 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 23358 BUMP_MIB(&ip_mib, ipFragOKs); 23359 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23360 23361 if (pkt_type == OB_PKT) { 23362 ire->ire_ob_pkt_count += pkts; 23363 if (ire->ire_ipif != NULL) 23364 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23365 } else { 23366 /* 23367 * The type is IB_PKT in the forwarding path and in 23368 * the mobile IP case when the packet is being reverse- 23369 * tunneled to the home agent. 23370 */ 23371 ire->ire_ib_pkt_count += pkts; 23372 ASSERT(!IRE_IS_LOCAL(ire)); 23373 if (ire->ire_type & IRE_BROADCAST) 23374 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23375 else 23376 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23377 } 23378 ire->ire_last_used_time = lbolt; 23379 /* Send it down */ 23380 putnext(ire->ire_stq, md_mp); 23381 return; 23382 23383 pbuf_panic: 23384 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23385 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23386 pbuf_idx); 23387 /* NOTREACHED */ 23388 } 23389 23390 /* 23391 * Outbound IP fragmentation routine. 23392 * 23393 * NOTE : This routine does not ire_refrele the ire that is passed in 23394 * as the argument. 23395 */ 23396 static void 23397 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23398 uint32_t frag_flag, zoneid_t zoneid) 23399 { 23400 int i1; 23401 mblk_t *ll_hdr_mp; 23402 int ll_hdr_len; 23403 int hdr_len; 23404 mblk_t *hdr_mp; 23405 ipha_t *ipha; 23406 int ip_data_end; 23407 int len; 23408 mblk_t *mp = mp_orig, *mp1; 23409 int offset; 23410 queue_t *q; 23411 uint32_t v_hlen_tos_len; 23412 mblk_t *first_mp; 23413 boolean_t mctl_present; 23414 ill_t *ill; 23415 ill_t *out_ill; 23416 mblk_t *xmit_mp; 23417 mblk_t *carve_mp; 23418 ire_t *ire1 = NULL; 23419 ire_t *save_ire = NULL; 23420 mblk_t *next_mp = NULL; 23421 boolean_t last_frag = B_FALSE; 23422 boolean_t multirt_send = B_FALSE; 23423 ire_t *first_ire = NULL; 23424 irb_t *irb = NULL; 23425 23426 /* 23427 * IPSEC does not allow hw accelerated packets to be fragmented 23428 * This check is made in ip_wput_ipsec_out prior to coming here 23429 * via ip_wput_ire_fragmentit. 23430 * 23431 * If at this point we have an ire whose ARP request has not 23432 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23433 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23434 * This packet and all fragmentable packets for this ire will 23435 * continue to get dropped while ire_nce->nce_state remains in 23436 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23437 * ND_REACHABLE, all subsquent large packets for this ire will 23438 * get fragemented and sent out by this function. 23439 */ 23440 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23441 /* If nce_state is ND_INITIAL, trigger ARP query */ 23442 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23443 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23444 " - dropping packet\n")); 23445 BUMP_MIB(&ip_mib, ipFragFails); 23446 freemsg(mp); 23447 return; 23448 } 23449 23450 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23451 "ip_wput_frag_start:"); 23452 23453 if (mp->b_datap->db_type == M_CTL) { 23454 first_mp = mp; 23455 mp_orig = mp = mp->b_cont; 23456 mctl_present = B_TRUE; 23457 } else { 23458 first_mp = mp; 23459 mctl_present = B_FALSE; 23460 } 23461 23462 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23463 ipha = (ipha_t *)mp->b_rptr; 23464 23465 /* 23466 * If the Don't Fragment flag is on, generate an ICMP destination 23467 * unreachable, fragmentation needed. 23468 */ 23469 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23470 if (offset & IPH_DF) { 23471 BUMP_MIB(&ip_mib, ipFragFails); 23472 /* 23473 * Need to compute hdr checksum if called from ip_wput_ire. 23474 * Note that ip_rput_forward verifies the checksum before 23475 * calling this routine so in that case this is a noop. 23476 */ 23477 ipha->ipha_hdr_checksum = 0; 23478 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23479 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23480 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23481 "ip_wput_frag_end:(%S)", 23482 "don't fragment"); 23483 return; 23484 } 23485 if (mctl_present) 23486 freeb(first_mp); 23487 /* 23488 * Establish the starting offset. May not be zero if we are fragging 23489 * a fragment that is being forwarded. 23490 */ 23491 offset = offset & IPH_OFFSET; 23492 23493 /* TODO why is this test needed? */ 23494 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23495 if (((max_frag - LENGTH) & ~7) < 8) { 23496 /* TODO: notify ulp somehow */ 23497 BUMP_MIB(&ip_mib, ipFragFails); 23498 freemsg(mp); 23499 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23500 "ip_wput_frag_end:(%S)", 23501 "len < 8"); 23502 return; 23503 } 23504 23505 hdr_len = (V_HLEN & 0xF) << 2; 23506 23507 ipha->ipha_hdr_checksum = 0; 23508 23509 /* 23510 * Establish the number of bytes maximum per frag, after putting 23511 * in the header. 23512 */ 23513 len = (max_frag - hdr_len) & ~7; 23514 23515 /* Check if we can use MDT to send out the frags. */ 23516 ASSERT(!IRE_IS_LOCAL(ire)); 23517 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23518 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23519 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 23520 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23521 ASSERT(ill->ill_mdt_capab != NULL); 23522 if (!ill->ill_mdt_capab->ill_mdt_on) { 23523 /* 23524 * If MDT has been previously turned off in the past, 23525 * and we currently can do MDT (due to IPQoS policy 23526 * removal, etc.) then enable it for this interface. 23527 */ 23528 ill->ill_mdt_capab->ill_mdt_on = 1; 23529 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23530 ill->ill_name)); 23531 } 23532 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23533 offset); 23534 return; 23535 } 23536 23537 /* Get a copy of the header for the trailing frags */ 23538 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23539 if (!hdr_mp) { 23540 BUMP_MIB(&ip_mib, ipOutDiscards); 23541 freemsg(mp); 23542 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23543 "ip_wput_frag_end:(%S)", 23544 "couldn't copy hdr"); 23545 return; 23546 } 23547 if (DB_CRED(mp) != NULL) 23548 mblk_setcred(hdr_mp, DB_CRED(mp)); 23549 23550 /* Store the starting offset, with the MoreFrags flag. */ 23551 i1 = offset | IPH_MF | frag_flag; 23552 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23553 23554 /* Establish the ending byte offset, based on the starting offset. */ 23555 offset <<= 3; 23556 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23557 23558 /* Store the length of the first fragment in the IP header. */ 23559 i1 = len + hdr_len; 23560 ASSERT(i1 <= IP_MAXPACKET); 23561 ipha->ipha_length = htons((uint16_t)i1); 23562 23563 /* 23564 * Compute the IP header checksum for the first frag. We have to 23565 * watch out that we stop at the end of the header. 23566 */ 23567 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23568 23569 /* 23570 * Now carve off the first frag. Note that this will include the 23571 * original IP header. 23572 */ 23573 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 23574 BUMP_MIB(&ip_mib, ipOutDiscards); 23575 freeb(hdr_mp); 23576 freemsg(mp_orig); 23577 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23578 "ip_wput_frag_end:(%S)", 23579 "couldn't carve first"); 23580 return; 23581 } 23582 23583 /* 23584 * Multirouting case. Each fragment is replicated 23585 * via all non-condemned RTF_MULTIRT routes 23586 * currently resolved. 23587 * We ensure that first_ire is the first RTF_MULTIRT 23588 * ire in the bucket. 23589 */ 23590 if (ire->ire_flags & RTF_MULTIRT) { 23591 irb = ire->ire_bucket; 23592 ASSERT(irb != NULL); 23593 23594 multirt_send = B_TRUE; 23595 23596 /* Make sure we do not omit any multiroute ire. */ 23597 IRB_REFHOLD(irb); 23598 for (first_ire = irb->irb_ire; 23599 first_ire != NULL; 23600 first_ire = first_ire->ire_next) { 23601 if ((first_ire->ire_flags & RTF_MULTIRT) && 23602 (first_ire->ire_addr == ire->ire_addr) && 23603 !(first_ire->ire_marks & 23604 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23605 break; 23606 } 23607 23608 if (first_ire != NULL) { 23609 if (first_ire != ire) { 23610 IRE_REFHOLD(first_ire); 23611 /* 23612 * Do not release the ire passed in 23613 * as the argument. 23614 */ 23615 ire = first_ire; 23616 } else { 23617 first_ire = NULL; 23618 } 23619 } 23620 IRB_REFRELE(irb); 23621 23622 /* 23623 * Save the first ire; we will need to restore it 23624 * for the trailing frags. 23625 * We REFHOLD save_ire, as each iterated ire will be 23626 * REFRELEd. 23627 */ 23628 save_ire = ire; 23629 IRE_REFHOLD(save_ire); 23630 } 23631 23632 /* 23633 * First fragment emission loop. 23634 * In most cases, the emission loop below is entered only 23635 * once. Only in the case where the ire holds the RTF_MULTIRT 23636 * flag, do we loop to process all RTF_MULTIRT ires in the 23637 * bucket, and send the fragment through all crossed 23638 * RTF_MULTIRT routes. 23639 */ 23640 do { 23641 if (ire->ire_flags & RTF_MULTIRT) { 23642 /* 23643 * We are in a multiple send case, need to get 23644 * the next ire and make a copy of the packet. 23645 * ire1 holds here the next ire to process in the 23646 * bucket. If multirouting is expected, 23647 * any non-RTF_MULTIRT ire that has the 23648 * right destination address is ignored. 23649 * 23650 * We have to take into account the MTU of 23651 * each walked ire. max_frag is set by the 23652 * the caller and generally refers to 23653 * the primary ire entry. Here we ensure that 23654 * no route with a lower MTU will be used, as 23655 * fragments are carved once for all ires, 23656 * then replicated. 23657 */ 23658 ASSERT(irb != NULL); 23659 IRB_REFHOLD(irb); 23660 for (ire1 = ire->ire_next; 23661 ire1 != NULL; 23662 ire1 = ire1->ire_next) { 23663 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23664 continue; 23665 if (ire1->ire_addr != ire->ire_addr) 23666 continue; 23667 if (ire1->ire_marks & 23668 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23669 continue; 23670 /* 23671 * Ensure we do not exceed the MTU 23672 * of the next route. 23673 */ 23674 if (ire1->ire_max_frag < max_frag) { 23675 ip_multirt_bad_mtu(ire1, max_frag); 23676 continue; 23677 } 23678 23679 /* Got one. */ 23680 IRE_REFHOLD(ire1); 23681 break; 23682 } 23683 IRB_REFRELE(irb); 23684 23685 if (ire1 != NULL) { 23686 next_mp = copyb(mp); 23687 if ((next_mp == NULL) || 23688 ((mp->b_cont != NULL) && 23689 ((next_mp->b_cont = 23690 dupmsg(mp->b_cont)) == NULL))) { 23691 freemsg(next_mp); 23692 next_mp = NULL; 23693 ire_refrele(ire1); 23694 ire1 = NULL; 23695 } 23696 } 23697 23698 /* Last multiroute ire; don't loop anymore. */ 23699 if (ire1 == NULL) { 23700 multirt_send = B_FALSE; 23701 } 23702 } 23703 23704 ll_hdr_len = 0; 23705 LOCK_IRE_FP_MP(ire); 23706 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 23707 if (ll_hdr_mp != NULL) { 23708 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 23709 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 23710 } else { 23711 ll_hdr_mp = ire->ire_nce->nce_res_mp; 23712 } 23713 23714 /* If there is a transmit header, get a copy for this frag. */ 23715 /* 23716 * TODO: should check db_ref before calling ip_carve_mp since 23717 * it might give us a dup. 23718 */ 23719 if (!ll_hdr_mp) { 23720 /* No xmit header. */ 23721 xmit_mp = mp; 23722 23723 /* We have a link-layer header that can fit in our mblk. */ 23724 } else if (mp->b_datap->db_ref == 1 && 23725 ll_hdr_len != 0 && 23726 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 23727 /* M_DATA fastpath */ 23728 mp->b_rptr -= ll_hdr_len; 23729 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 23730 xmit_mp = mp; 23731 23732 /* Corner case if copyb has failed */ 23733 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 23734 UNLOCK_IRE_FP_MP(ire); 23735 BUMP_MIB(&ip_mib, ipOutDiscards); 23736 freeb(hdr_mp); 23737 freemsg(mp); 23738 freemsg(mp_orig); 23739 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23740 "ip_wput_frag_end:(%S)", 23741 "discard"); 23742 23743 if (multirt_send) { 23744 ASSERT(ire1); 23745 ASSERT(next_mp); 23746 23747 freemsg(next_mp); 23748 ire_refrele(ire1); 23749 } 23750 if (save_ire != NULL) 23751 IRE_REFRELE(save_ire); 23752 23753 if (first_ire != NULL) 23754 ire_refrele(first_ire); 23755 return; 23756 23757 /* 23758 * Case of res_mp OR the fastpath mp can't fit 23759 * in the mblk 23760 */ 23761 } else { 23762 xmit_mp->b_cont = mp; 23763 if (DB_CRED(mp) != NULL) 23764 mblk_setcred(xmit_mp, DB_CRED(mp)); 23765 /* 23766 * Get priority marking, if any. 23767 * We propagate the CoS marking from the 23768 * original packet that went to QoS processing 23769 * in ip_wput_ire to the newly carved mp. 23770 */ 23771 if (DB_TYPE(xmit_mp) == M_DATA) 23772 xmit_mp->b_band = mp->b_band; 23773 } 23774 UNLOCK_IRE_FP_MP(ire); 23775 q = ire->ire_stq; 23776 BUMP_MIB(&ip_mib, ipFragCreates); 23777 23778 out_ill = (ill_t *)q->q_ptr; 23779 23780 DTRACE_PROBE4(ip4__physical__out__start, 23781 ill_t *, NULL, ill_t *, out_ill, 23782 ipha_t *, ipha, mblk_t *, xmit_mp); 23783 23784 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 23785 NULL, out_ill, ipha, xmit_mp, mp); 23786 23787 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 23788 23789 if (xmit_mp != NULL) { 23790 putnext(q, xmit_mp); 23791 if (pkt_type != OB_PKT) { 23792 /* 23793 * Update the packet count of trailing 23794 * RTF_MULTIRT ires. 23795 */ 23796 UPDATE_OB_PKT_COUNT(ire); 23797 } 23798 } 23799 23800 if (multirt_send) { 23801 /* 23802 * We are in a multiple send case; look for 23803 * the next ire and re-enter the loop. 23804 */ 23805 ASSERT(ire1); 23806 ASSERT(next_mp); 23807 /* REFRELE the current ire before looping */ 23808 ire_refrele(ire); 23809 ire = ire1; 23810 ire1 = NULL; 23811 mp = next_mp; 23812 next_mp = NULL; 23813 } 23814 } while (multirt_send); 23815 23816 ASSERT(ire1 == NULL); 23817 23818 /* Restore the original ire; we need it for the trailing frags */ 23819 if (save_ire != NULL) { 23820 /* REFRELE the last iterated ire */ 23821 ire_refrele(ire); 23822 /* save_ire has been REFHOLDed */ 23823 ire = save_ire; 23824 save_ire = NULL; 23825 q = ire->ire_stq; 23826 } 23827 23828 if (pkt_type == OB_PKT) { 23829 UPDATE_OB_PKT_COUNT(ire); 23830 } else { 23831 UPDATE_IB_PKT_COUNT(ire); 23832 } 23833 23834 /* Advance the offset to the second frag starting point. */ 23835 offset += len; 23836 /* 23837 * Update hdr_len from the copied header - there might be less options 23838 * in the later fragments. 23839 */ 23840 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 23841 /* Loop until done. */ 23842 for (;;) { 23843 uint16_t offset_and_flags; 23844 uint16_t ip_len; 23845 23846 if (ip_data_end - offset > len) { 23847 /* 23848 * Carve off the appropriate amount from the original 23849 * datagram. 23850 */ 23851 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23852 mp = NULL; 23853 break; 23854 } 23855 /* 23856 * More frags after this one. Get another copy 23857 * of the header. 23858 */ 23859 if (carve_mp->b_datap->db_ref == 1 && 23860 hdr_mp->b_wptr - hdr_mp->b_rptr < 23861 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23862 /* Inline IP header */ 23863 carve_mp->b_rptr -= hdr_mp->b_wptr - 23864 hdr_mp->b_rptr; 23865 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23866 hdr_mp->b_wptr - hdr_mp->b_rptr); 23867 mp = carve_mp; 23868 } else { 23869 if (!(mp = copyb(hdr_mp))) { 23870 freemsg(carve_mp); 23871 break; 23872 } 23873 /* Get priority marking, if any. */ 23874 mp->b_band = carve_mp->b_band; 23875 mp->b_cont = carve_mp; 23876 } 23877 ipha = (ipha_t *)mp->b_rptr; 23878 offset_and_flags = IPH_MF; 23879 } else { 23880 /* 23881 * Last frag. Consume the header. Set len to 23882 * the length of this last piece. 23883 */ 23884 len = ip_data_end - offset; 23885 23886 /* 23887 * Carve off the appropriate amount from the original 23888 * datagram. 23889 */ 23890 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 23891 mp = NULL; 23892 break; 23893 } 23894 if (carve_mp->b_datap->db_ref == 1 && 23895 hdr_mp->b_wptr - hdr_mp->b_rptr < 23896 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 23897 /* Inline IP header */ 23898 carve_mp->b_rptr -= hdr_mp->b_wptr - 23899 hdr_mp->b_rptr; 23900 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 23901 hdr_mp->b_wptr - hdr_mp->b_rptr); 23902 mp = carve_mp; 23903 freeb(hdr_mp); 23904 hdr_mp = mp; 23905 } else { 23906 mp = hdr_mp; 23907 /* Get priority marking, if any. */ 23908 mp->b_band = carve_mp->b_band; 23909 mp->b_cont = carve_mp; 23910 } 23911 ipha = (ipha_t *)mp->b_rptr; 23912 /* A frag of a frag might have IPH_MF non-zero */ 23913 offset_and_flags = 23914 ntohs(ipha->ipha_fragment_offset_and_flags) & 23915 IPH_MF; 23916 } 23917 offset_and_flags |= (uint16_t)(offset >> 3); 23918 offset_and_flags |= (uint16_t)frag_flag; 23919 /* Store the offset and flags in the IP header. */ 23920 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23921 23922 /* Store the length in the IP header. */ 23923 ip_len = (uint16_t)(len + hdr_len); 23924 ipha->ipha_length = htons(ip_len); 23925 23926 /* 23927 * Set the IP header checksum. Note that mp is just 23928 * the header, so this is easy to pass to ip_csum. 23929 */ 23930 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23931 23932 /* Attach a transmit header, if any, and ship it. */ 23933 if (pkt_type == OB_PKT) { 23934 UPDATE_OB_PKT_COUNT(ire); 23935 } else { 23936 UPDATE_IB_PKT_COUNT(ire); 23937 } 23938 23939 if (ire->ire_flags & RTF_MULTIRT) { 23940 irb = ire->ire_bucket; 23941 ASSERT(irb != NULL); 23942 23943 multirt_send = B_TRUE; 23944 23945 /* 23946 * Save the original ire; we will need to restore it 23947 * for the tailing frags. 23948 */ 23949 save_ire = ire; 23950 IRE_REFHOLD(save_ire); 23951 } 23952 /* 23953 * Emission loop for this fragment, similar 23954 * to what is done for the first fragment. 23955 */ 23956 do { 23957 if (multirt_send) { 23958 /* 23959 * We are in a multiple send case, need to get 23960 * the next ire and make a copy of the packet. 23961 */ 23962 ASSERT(irb != NULL); 23963 IRB_REFHOLD(irb); 23964 for (ire1 = ire->ire_next; 23965 ire1 != NULL; 23966 ire1 = ire1->ire_next) { 23967 if (!(ire1->ire_flags & RTF_MULTIRT)) 23968 continue; 23969 if (ire1->ire_addr != ire->ire_addr) 23970 continue; 23971 if (ire1->ire_marks & 23972 (IRE_MARK_CONDEMNED| 23973 IRE_MARK_HIDDEN)) 23974 continue; 23975 /* 23976 * Ensure we do not exceed the MTU 23977 * of the next route. 23978 */ 23979 if (ire1->ire_max_frag < max_frag) { 23980 ip_multirt_bad_mtu(ire1, 23981 max_frag); 23982 continue; 23983 } 23984 23985 /* Got one. */ 23986 IRE_REFHOLD(ire1); 23987 break; 23988 } 23989 IRB_REFRELE(irb); 23990 23991 if (ire1 != NULL) { 23992 next_mp = copyb(mp); 23993 if ((next_mp == NULL) || 23994 ((mp->b_cont != NULL) && 23995 ((next_mp->b_cont = 23996 dupmsg(mp->b_cont)) == NULL))) { 23997 freemsg(next_mp); 23998 next_mp = NULL; 23999 ire_refrele(ire1); 24000 ire1 = NULL; 24001 } 24002 } 24003 24004 /* Last multiroute ire; don't loop anymore. */ 24005 if (ire1 == NULL) { 24006 multirt_send = B_FALSE; 24007 } 24008 } 24009 24010 /* Update transmit header */ 24011 ll_hdr_len = 0; 24012 LOCK_IRE_FP_MP(ire); 24013 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24014 if (ll_hdr_mp != NULL) { 24015 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24016 ll_hdr_len = MBLKL(ll_hdr_mp); 24017 } else { 24018 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24019 } 24020 24021 if (!ll_hdr_mp) { 24022 xmit_mp = mp; 24023 24024 /* 24025 * We have link-layer header that can fit in 24026 * our mblk. 24027 */ 24028 } else if (mp->b_datap->db_ref == 1 && 24029 ll_hdr_len != 0 && 24030 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24031 /* M_DATA fastpath */ 24032 mp->b_rptr -= ll_hdr_len; 24033 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24034 ll_hdr_len); 24035 xmit_mp = mp; 24036 24037 /* 24038 * Case of res_mp OR the fastpath mp can't fit 24039 * in the mblk 24040 */ 24041 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24042 xmit_mp->b_cont = mp; 24043 if (DB_CRED(mp) != NULL) 24044 mblk_setcred(xmit_mp, DB_CRED(mp)); 24045 /* Get priority marking, if any. */ 24046 if (DB_TYPE(xmit_mp) == M_DATA) 24047 xmit_mp->b_band = mp->b_band; 24048 24049 /* Corner case if copyb failed */ 24050 } else { 24051 /* 24052 * Exit both the replication and 24053 * fragmentation loops. 24054 */ 24055 UNLOCK_IRE_FP_MP(ire); 24056 goto drop_pkt; 24057 } 24058 UNLOCK_IRE_FP_MP(ire); 24059 BUMP_MIB(&ip_mib, ipFragCreates); 24060 24061 mp1 = mp; 24062 out_ill = (ill_t *)q->q_ptr; 24063 24064 DTRACE_PROBE4(ip4__physical__out__start, 24065 ill_t *, NULL, ill_t *, out_ill, 24066 ipha_t *, ipha, mblk_t *, xmit_mp); 24067 24068 FW_HOOKS(ip4_physical_out_event, 24069 ipv4firewall_physical_out, 24070 NULL, out_ill, ipha, xmit_mp, mp); 24071 24072 DTRACE_PROBE1(ip4__physical__out__end, 24073 mblk_t *, xmit_mp); 24074 24075 if (mp != mp1 && hdr_mp == mp1) 24076 hdr_mp = mp; 24077 if (mp != mp1 && mp_orig == mp1) 24078 mp_orig = mp; 24079 24080 if (xmit_mp != NULL) { 24081 putnext(q, xmit_mp); 24082 24083 if (pkt_type != OB_PKT) { 24084 /* 24085 * Update the packet count of trailing 24086 * RTF_MULTIRT ires. 24087 */ 24088 UPDATE_OB_PKT_COUNT(ire); 24089 } 24090 } 24091 24092 /* All done if we just consumed the hdr_mp. */ 24093 if (mp == hdr_mp) { 24094 last_frag = B_TRUE; 24095 } 24096 24097 if (multirt_send) { 24098 /* 24099 * We are in a multiple send case; look for 24100 * the next ire and re-enter the loop. 24101 */ 24102 ASSERT(ire1); 24103 ASSERT(next_mp); 24104 /* REFRELE the current ire before looping */ 24105 ire_refrele(ire); 24106 ire = ire1; 24107 ire1 = NULL; 24108 q = ire->ire_stq; 24109 mp = next_mp; 24110 next_mp = NULL; 24111 } 24112 } while (multirt_send); 24113 /* 24114 * Restore the original ire; we need it for the 24115 * trailing frags 24116 */ 24117 if (save_ire != NULL) { 24118 ASSERT(ire1 == NULL); 24119 /* REFRELE the last iterated ire */ 24120 ire_refrele(ire); 24121 /* save_ire has been REFHOLDed */ 24122 ire = save_ire; 24123 q = ire->ire_stq; 24124 save_ire = NULL; 24125 } 24126 24127 if (last_frag) { 24128 BUMP_MIB(&ip_mib, ipFragOKs); 24129 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24130 "ip_wput_frag_end:(%S)", 24131 "consumed hdr_mp"); 24132 24133 if (first_ire != NULL) 24134 ire_refrele(first_ire); 24135 return; 24136 } 24137 /* Otherwise, advance and loop. */ 24138 offset += len; 24139 } 24140 24141 drop_pkt: 24142 /* Clean up following allocation failure. */ 24143 BUMP_MIB(&ip_mib, ipOutDiscards); 24144 freemsg(mp); 24145 if (mp != hdr_mp) 24146 freeb(hdr_mp); 24147 if (mp != mp_orig) 24148 freemsg(mp_orig); 24149 24150 if (save_ire != NULL) 24151 IRE_REFRELE(save_ire); 24152 if (first_ire != NULL) 24153 ire_refrele(first_ire); 24154 24155 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24156 "ip_wput_frag_end:(%S)", 24157 "end--alloc failure"); 24158 } 24159 24160 /* 24161 * Copy the header plus those options which have the copy bit set 24162 */ 24163 static mblk_t * 24164 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 24165 { 24166 mblk_t *mp; 24167 uchar_t *up; 24168 24169 /* 24170 * Quick check if we need to look for options without the copy bit 24171 * set 24172 */ 24173 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 24174 if (!mp) 24175 return (mp); 24176 mp->b_rptr += ip_wroff_extra; 24177 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24178 bcopy(rptr, mp->b_rptr, hdr_len); 24179 mp->b_wptr += hdr_len + ip_wroff_extra; 24180 return (mp); 24181 } 24182 up = mp->b_rptr; 24183 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24184 up += IP_SIMPLE_HDR_LENGTH; 24185 rptr += IP_SIMPLE_HDR_LENGTH; 24186 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24187 while (hdr_len > 0) { 24188 uint32_t optval; 24189 uint32_t optlen; 24190 24191 optval = *rptr; 24192 if (optval == IPOPT_EOL) 24193 break; 24194 if (optval == IPOPT_NOP) 24195 optlen = 1; 24196 else 24197 optlen = rptr[1]; 24198 if (optval & IPOPT_COPY) { 24199 bcopy(rptr, up, optlen); 24200 up += optlen; 24201 } 24202 rptr += optlen; 24203 hdr_len -= optlen; 24204 } 24205 /* 24206 * Make sure that we drop an even number of words by filling 24207 * with EOL to the next word boundary. 24208 */ 24209 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24210 hdr_len & 0x3; hdr_len++) 24211 *up++ = IPOPT_EOL; 24212 mp->b_wptr = up; 24213 /* Update header length */ 24214 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24215 return (mp); 24216 } 24217 24218 /* 24219 * Delivery to local recipients including fanout to multiple recipients. 24220 * Does not do checksumming of UDP/TCP. 24221 * Note: q should be the read side queue for either the ill or conn. 24222 * Note: rq should be the read side q for the lower (ill) stream. 24223 * We don't send packets to IPPF processing, thus the last argument 24224 * to all the fanout calls are B_FALSE. 24225 */ 24226 void 24227 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24228 int fanout_flags, zoneid_t zoneid) 24229 { 24230 uint32_t protocol; 24231 mblk_t *first_mp; 24232 boolean_t mctl_present; 24233 int ire_type; 24234 #define rptr ((uchar_t *)ipha) 24235 24236 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24237 "ip_wput_local_start: q %p", q); 24238 24239 if (ire != NULL) { 24240 ire_type = ire->ire_type; 24241 } else { 24242 /* 24243 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24244 * packet is not multicast, we can't tell the ire type. 24245 */ 24246 ASSERT(CLASSD(ipha->ipha_dst)); 24247 ire_type = IRE_BROADCAST; 24248 } 24249 24250 first_mp = mp; 24251 if (first_mp->b_datap->db_type == M_CTL) { 24252 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24253 if (!io->ipsec_out_secure) { 24254 /* 24255 * This ipsec_out_t was allocated in ip_wput 24256 * for multicast packets to store the ill_index. 24257 * As this is being delivered locally, we don't 24258 * need this anymore. 24259 */ 24260 mp = first_mp->b_cont; 24261 freeb(first_mp); 24262 first_mp = mp; 24263 mctl_present = B_FALSE; 24264 } else { 24265 /* 24266 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24267 * security properties for the looped-back packet. 24268 */ 24269 mctl_present = B_TRUE; 24270 mp = first_mp->b_cont; 24271 ASSERT(mp != NULL); 24272 ipsec_out_to_in(first_mp); 24273 } 24274 } else { 24275 mctl_present = B_FALSE; 24276 } 24277 24278 DTRACE_PROBE4(ip4__loopback__in__start, 24279 ill_t *, ill, ill_t *, NULL, 24280 ipha_t *, ipha, mblk_t *, first_mp); 24281 24282 FW_HOOKS(ip4_loopback_in_event, ipv4firewall_loopback_in, 24283 ill, NULL, ipha, first_mp, mp); 24284 24285 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24286 24287 if (first_mp == NULL) 24288 return; 24289 24290 loopback_packets++; 24291 24292 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24293 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24294 if (!IS_SIMPLE_IPH(ipha)) { 24295 ip_wput_local_options(ipha); 24296 } 24297 24298 protocol = ipha->ipha_protocol; 24299 switch (protocol) { 24300 case IPPROTO_ICMP: { 24301 ire_t *ire_zone; 24302 ilm_t *ilm; 24303 mblk_t *mp1; 24304 zoneid_t last_zoneid; 24305 24306 if (CLASSD(ipha->ipha_dst) && 24307 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 24308 ASSERT(ire_type == IRE_BROADCAST); 24309 /* 24310 * In the multicast case, applications may have joined 24311 * the group from different zones, so we need to deliver 24312 * the packet to each of them. Loop through the 24313 * multicast memberships structures (ilm) on the receive 24314 * ill and send a copy of the packet up each matching 24315 * one. However, we don't do this for multicasts sent on 24316 * the loopback interface (PHYI_LOOPBACK flag set) as 24317 * they must stay in the sender's zone. 24318 * 24319 * ilm_add_v6() ensures that ilms in the same zone are 24320 * contiguous in the ill_ilm list. We use this property 24321 * to avoid sending duplicates needed when two 24322 * applications in the same zone join the same group on 24323 * different logical interfaces: we ignore the ilm if 24324 * it's zoneid is the same as the last matching one. 24325 * In addition, the sending of the packet for 24326 * ire_zoneid is delayed until all of the other ilms 24327 * have been exhausted. 24328 */ 24329 last_zoneid = -1; 24330 ILM_WALKER_HOLD(ill); 24331 for (ilm = ill->ill_ilm; ilm != NULL; 24332 ilm = ilm->ilm_next) { 24333 if ((ilm->ilm_flags & ILM_DELETED) || 24334 ipha->ipha_dst != ilm->ilm_addr || 24335 ilm->ilm_zoneid == last_zoneid || 24336 ilm->ilm_zoneid == zoneid || 24337 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24338 continue; 24339 mp1 = ip_copymsg(first_mp); 24340 if (mp1 == NULL) 24341 continue; 24342 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24343 mctl_present, B_FALSE, ill, 24344 ilm->ilm_zoneid); 24345 last_zoneid = ilm->ilm_zoneid; 24346 } 24347 ILM_WALKER_RELE(ill); 24348 /* 24349 * Loopback case: the sending endpoint has 24350 * IP_MULTICAST_LOOP disabled, therefore we don't 24351 * dispatch the multicast packet to the sending zone. 24352 */ 24353 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24354 freemsg(first_mp); 24355 return; 24356 } 24357 } else if (ire_type == IRE_BROADCAST) { 24358 /* 24359 * In the broadcast case, there may be many zones 24360 * which need a copy of the packet delivered to them. 24361 * There is one IRE_BROADCAST per broadcast address 24362 * and per zone; we walk those using a helper function. 24363 * In addition, the sending of the packet for zoneid is 24364 * delayed until all of the other ires have been 24365 * processed. 24366 */ 24367 IRB_REFHOLD(ire->ire_bucket); 24368 ire_zone = NULL; 24369 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24370 ire)) != NULL) { 24371 mp1 = ip_copymsg(first_mp); 24372 if (mp1 == NULL) 24373 continue; 24374 24375 UPDATE_IB_PKT_COUNT(ire_zone); 24376 ire_zone->ire_last_used_time = lbolt; 24377 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24378 mctl_present, B_FALSE, ill, 24379 ire_zone->ire_zoneid); 24380 } 24381 IRB_REFRELE(ire->ire_bucket); 24382 } 24383 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24384 0, mctl_present, B_FALSE, ill, zoneid); 24385 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24386 "ip_wput_local_end: q %p (%S)", 24387 q, "icmp"); 24388 return; 24389 } 24390 case IPPROTO_IGMP: 24391 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24392 /* Bad packet - discarded by igmp_input */ 24393 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24394 "ip_wput_local_end: q %p (%S)", 24395 q, "igmp_input--bad packet"); 24396 if (mctl_present) 24397 freeb(first_mp); 24398 return; 24399 } 24400 /* 24401 * igmp_input() may have returned the pulled up message. 24402 * So first_mp and ipha need to be reinitialized. 24403 */ 24404 ipha = (ipha_t *)mp->b_rptr; 24405 if (mctl_present) 24406 first_mp->b_cont = mp; 24407 else 24408 first_mp = mp; 24409 /* deliver to local raw users */ 24410 break; 24411 case IPPROTO_ENCAP: 24412 /* 24413 * This case is covered by either ip_fanout_proto, or by 24414 * the above security processing for self-tunneled packets. 24415 */ 24416 break; 24417 case IPPROTO_UDP: { 24418 uint16_t *up; 24419 uint32_t ports; 24420 24421 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24422 UDP_PORTS_OFFSET); 24423 /* Force a 'valid' checksum. */ 24424 up[3] = 0; 24425 24426 ports = *(uint32_t *)up; 24427 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24428 (ire_type == IRE_BROADCAST), 24429 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24430 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24431 ill, zoneid); 24432 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24433 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24434 return; 24435 } 24436 case IPPROTO_TCP: { 24437 24438 /* 24439 * For TCP, discard broadcast packets. 24440 */ 24441 if ((ushort_t)ire_type == IRE_BROADCAST) { 24442 freemsg(first_mp); 24443 BUMP_MIB(&ip_mib, ipInDiscards); 24444 ip2dbg(("ip_wput_local: discard broadcast\n")); 24445 return; 24446 } 24447 24448 if (mp->b_datap->db_type == M_DATA) { 24449 /* 24450 * M_DATA mblk, so init mblk (chain) for no struio(). 24451 */ 24452 mblk_t *mp1 = mp; 24453 24454 do 24455 mp1->b_datap->db_struioflag = 0; 24456 while ((mp1 = mp1->b_cont) != NULL); 24457 } 24458 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24459 <= mp->b_wptr); 24460 ip_fanout_tcp(q, first_mp, ill, ipha, 24461 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24462 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24463 mctl_present, B_FALSE, zoneid); 24464 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24465 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24466 return; 24467 } 24468 case IPPROTO_SCTP: 24469 { 24470 uint32_t ports; 24471 24472 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24473 ip_fanout_sctp(first_mp, ill, ipha, ports, 24474 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24475 IP_FF_IP6INFO, 24476 mctl_present, B_FALSE, 0, zoneid); 24477 return; 24478 } 24479 24480 default: 24481 break; 24482 } 24483 /* 24484 * Find a client for some other protocol. We give 24485 * copies to multiple clients, if more than one is 24486 * bound. 24487 */ 24488 ip_fanout_proto(q, first_mp, ill, ipha, 24489 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24490 mctl_present, B_FALSE, ill, zoneid); 24491 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24492 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24493 #undef rptr 24494 } 24495 24496 /* 24497 * Update any source route, record route, or timestamp options. 24498 * Check that we are at end of strict source route. 24499 * The options have been sanity checked by ip_wput_options(). 24500 */ 24501 static void 24502 ip_wput_local_options(ipha_t *ipha) 24503 { 24504 ipoptp_t opts; 24505 uchar_t *opt; 24506 uint8_t optval; 24507 uint8_t optlen; 24508 ipaddr_t dst; 24509 uint32_t ts; 24510 ire_t *ire; 24511 timestruc_t now; 24512 24513 ip2dbg(("ip_wput_local_options\n")); 24514 for (optval = ipoptp_first(&opts, ipha); 24515 optval != IPOPT_EOL; 24516 optval = ipoptp_next(&opts)) { 24517 opt = opts.ipoptp_cur; 24518 optlen = opts.ipoptp_len; 24519 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24520 switch (optval) { 24521 uint32_t off; 24522 case IPOPT_SSRR: 24523 case IPOPT_LSRR: 24524 off = opt[IPOPT_OFFSET]; 24525 off--; 24526 if (optlen < IP_ADDR_LEN || 24527 off > optlen - IP_ADDR_LEN) { 24528 /* End of source route */ 24529 break; 24530 } 24531 /* 24532 * This will only happen if two consecutive entries 24533 * in the source route contains our address or if 24534 * it is a packet with a loose source route which 24535 * reaches us before consuming the whole source route 24536 */ 24537 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24538 if (optval == IPOPT_SSRR) { 24539 return; 24540 } 24541 /* 24542 * Hack: instead of dropping the packet truncate the 24543 * source route to what has been used by filling the 24544 * rest with IPOPT_NOP. 24545 */ 24546 opt[IPOPT_OLEN] = (uint8_t)off; 24547 while (off < optlen) { 24548 opt[off++] = IPOPT_NOP; 24549 } 24550 break; 24551 case IPOPT_RR: 24552 off = opt[IPOPT_OFFSET]; 24553 off--; 24554 if (optlen < IP_ADDR_LEN || 24555 off > optlen - IP_ADDR_LEN) { 24556 /* No more room - ignore */ 24557 ip1dbg(( 24558 "ip_wput_forward_options: end of RR\n")); 24559 break; 24560 } 24561 dst = htonl(INADDR_LOOPBACK); 24562 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24563 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24564 break; 24565 case IPOPT_TS: 24566 /* Insert timestamp if there is romm */ 24567 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24568 case IPOPT_TS_TSONLY: 24569 off = IPOPT_TS_TIMELEN; 24570 break; 24571 case IPOPT_TS_PRESPEC: 24572 case IPOPT_TS_PRESPEC_RFC791: 24573 /* Verify that the address matched */ 24574 off = opt[IPOPT_OFFSET] - 1; 24575 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 24576 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 24577 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 24578 if (ire == NULL) { 24579 /* Not for us */ 24580 break; 24581 } 24582 ire_refrele(ire); 24583 /* FALLTHRU */ 24584 case IPOPT_TS_TSANDADDR: 24585 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24586 break; 24587 default: 24588 /* 24589 * ip_*put_options should have already 24590 * dropped this packet. 24591 */ 24592 cmn_err(CE_PANIC, "ip_wput_local_options: " 24593 "unknown IT - bug in ip_wput_options?\n"); 24594 return; /* Keep "lint" happy */ 24595 } 24596 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 24597 /* Increase overflow counter */ 24598 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 24599 opt[IPOPT_POS_OV_FLG] = (uint8_t) 24600 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 24601 (off << 4); 24602 break; 24603 } 24604 off = opt[IPOPT_OFFSET] - 1; 24605 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24606 case IPOPT_TS_PRESPEC: 24607 case IPOPT_TS_PRESPEC_RFC791: 24608 case IPOPT_TS_TSANDADDR: 24609 dst = htonl(INADDR_LOOPBACK); 24610 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 24611 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 24612 /* FALLTHRU */ 24613 case IPOPT_TS_TSONLY: 24614 off = opt[IPOPT_OFFSET] - 1; 24615 /* Compute # of milliseconds since midnight */ 24616 gethrestime(&now); 24617 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 24618 now.tv_nsec / (NANOSEC / MILLISEC); 24619 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 24620 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 24621 break; 24622 } 24623 break; 24624 } 24625 } 24626 } 24627 24628 /* 24629 * Send out a multicast packet on interface ipif. 24630 * The sender does not have an conn. 24631 * Caller verifies that this isn't a PHYI_LOOPBACK. 24632 */ 24633 void 24634 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 24635 { 24636 ipha_t *ipha; 24637 ire_t *ire; 24638 ipaddr_t dst; 24639 mblk_t *first_mp; 24640 24641 /* igmp_sendpkt always allocates a ipsec_out_t */ 24642 ASSERT(mp->b_datap->db_type == M_CTL); 24643 ASSERT(!ipif->ipif_isv6); 24644 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 24645 24646 first_mp = mp; 24647 mp = first_mp->b_cont; 24648 ASSERT(mp->b_datap->db_type == M_DATA); 24649 ipha = (ipha_t *)mp->b_rptr; 24650 24651 /* 24652 * Find an IRE which matches the destination and the outgoing 24653 * queue (i.e. the outgoing interface.) 24654 */ 24655 if (ipif->ipif_flags & IPIF_POINTOPOINT) 24656 dst = ipif->ipif_pp_dst_addr; 24657 else 24658 dst = ipha->ipha_dst; 24659 /* 24660 * The source address has already been initialized by the 24661 * caller and hence matching on ILL (MATCH_IRE_ILL) would 24662 * be sufficient rather than MATCH_IRE_IPIF. 24663 * 24664 * This function is used for sending IGMP packets. We need 24665 * to make sure that we send the packet out of the interface 24666 * (ipif->ipif_ill) where we joined the group. This is to 24667 * prevent from switches doing IGMP snooping to send us multicast 24668 * packets for a given group on the interface we have joined. 24669 * If we can't find an ire, igmp_sendpkt has already initialized 24670 * ipsec_out_attach_if so that this will not be load spread in 24671 * ip_newroute_ipif. 24672 */ 24673 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 24674 MATCH_IRE_ILL); 24675 if (!ire) { 24676 /* 24677 * Mark this packet to make it be delivered to 24678 * ip_wput_ire after the new ire has been 24679 * created. 24680 */ 24681 mp->b_prev = NULL; 24682 mp->b_next = NULL; 24683 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 24684 zoneid); 24685 return; 24686 } 24687 24688 /* 24689 * Honor the RTF_SETSRC flag; this is the only case 24690 * where we force this addr whatever the current src addr is, 24691 * because this address is set by igmp_sendpkt(), and 24692 * cannot be specified by any user. 24693 */ 24694 if (ire->ire_flags & RTF_SETSRC) { 24695 ipha->ipha_src = ire->ire_src_addr; 24696 } 24697 24698 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 24699 } 24700 24701 /* 24702 * NOTE : This function does not ire_refrele the ire argument passed in. 24703 * 24704 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 24705 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 24706 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 24707 * the ire_lock to access the nce_fp_mp in this case. 24708 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 24709 * prepending a fastpath message IPQoS processing must precede it, we also set 24710 * the b_band of the fastpath message to that of the mblk returned by IPQoS 24711 * (IPQoS might have set the b_band for CoS marking). 24712 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 24713 * must follow it so that IPQoS can mark the dl_priority field for CoS 24714 * marking, if needed. 24715 */ 24716 static mblk_t * 24717 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 24718 { 24719 uint_t hlen; 24720 ipha_t *ipha; 24721 mblk_t *mp1; 24722 boolean_t qos_done = B_FALSE; 24723 uchar_t *ll_hdr; 24724 24725 #define rptr ((uchar_t *)ipha) 24726 24727 ipha = (ipha_t *)mp->b_rptr; 24728 hlen = 0; 24729 LOCK_IRE_FP_MP(ire); 24730 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 24731 ASSERT(DB_TYPE(mp1) == M_DATA); 24732 /* Initiate IPPF processing */ 24733 if ((proc != 0) && IPP_ENABLED(proc)) { 24734 UNLOCK_IRE_FP_MP(ire); 24735 ip_process(proc, &mp, ill_index); 24736 if (mp == NULL) 24737 return (NULL); 24738 24739 ipha = (ipha_t *)mp->b_rptr; 24740 LOCK_IRE_FP_MP(ire); 24741 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 24742 qos_done = B_TRUE; 24743 goto no_fp_mp; 24744 } 24745 ASSERT(DB_TYPE(mp1) == M_DATA); 24746 } 24747 hlen = MBLKL(mp1); 24748 /* 24749 * Check if we have enough room to prepend fastpath 24750 * header 24751 */ 24752 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 24753 ll_hdr = rptr - hlen; 24754 bcopy(mp1->b_rptr, ll_hdr, hlen); 24755 /* 24756 * Set the b_rptr to the start of the link layer 24757 * header 24758 */ 24759 mp->b_rptr = ll_hdr; 24760 mp1 = mp; 24761 } else { 24762 mp1 = copyb(mp1); 24763 if (mp1 == NULL) 24764 goto unlock_err; 24765 mp1->b_band = mp->b_band; 24766 mp1->b_cont = mp; 24767 /* 24768 * certain system generated traffic may not 24769 * have cred/label in ip header block. This 24770 * is true even for a labeled system. But for 24771 * labeled traffic, inherit the label in the 24772 * new header. 24773 */ 24774 if (DB_CRED(mp) != NULL) 24775 mblk_setcred(mp1, DB_CRED(mp)); 24776 /* 24777 * XXX disable ICK_VALID and compute checksum 24778 * here; can happen if nce_fp_mp changes and 24779 * it can't be copied now due to insufficient 24780 * space. (unlikely, fp mp can change, but it 24781 * does not increase in length) 24782 */ 24783 } 24784 UNLOCK_IRE_FP_MP(ire); 24785 } else { 24786 no_fp_mp: 24787 mp1 = copyb(ire->ire_nce->nce_res_mp); 24788 if (mp1 == NULL) { 24789 unlock_err: 24790 UNLOCK_IRE_FP_MP(ire); 24791 freemsg(mp); 24792 return (NULL); 24793 } 24794 UNLOCK_IRE_FP_MP(ire); 24795 mp1->b_cont = mp; 24796 /* 24797 * certain system generated traffic may not 24798 * have cred/label in ip header block. This 24799 * is true even for a labeled system. But for 24800 * labeled traffic, inherit the label in the 24801 * new header. 24802 */ 24803 if (DB_CRED(mp) != NULL) 24804 mblk_setcred(mp1, DB_CRED(mp)); 24805 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 24806 ip_process(proc, &mp1, ill_index); 24807 if (mp1 == NULL) 24808 return (NULL); 24809 } 24810 } 24811 return (mp1); 24812 #undef rptr 24813 } 24814 24815 /* 24816 * Finish the outbound IPsec processing for an IPv6 packet. This function 24817 * is called from ipsec_out_process() if the IPsec packet was processed 24818 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 24819 * asynchronously. 24820 */ 24821 void 24822 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 24823 ire_t *ire_arg) 24824 { 24825 in6_addr_t *v6dstp; 24826 ire_t *ire; 24827 mblk_t *mp; 24828 ip6_t *ip6h1; 24829 uint_t ill_index; 24830 ipsec_out_t *io; 24831 boolean_t attach_if, hwaccel; 24832 uint32_t flags = IP6_NO_IPPOLICY; 24833 int match_flags; 24834 zoneid_t zoneid; 24835 boolean_t ill_need_rele = B_FALSE; 24836 boolean_t ire_need_rele = B_FALSE; 24837 24838 mp = ipsec_mp->b_cont; 24839 ip6h1 = (ip6_t *)mp->b_rptr; 24840 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24841 ill_index = io->ipsec_out_ill_index; 24842 if (io->ipsec_out_reachable) { 24843 flags |= IPV6_REACHABILITY_CONFIRMATION; 24844 } 24845 attach_if = io->ipsec_out_attach_if; 24846 hwaccel = io->ipsec_out_accelerated; 24847 zoneid = io->ipsec_out_zoneid; 24848 ASSERT(zoneid != ALL_ZONES); 24849 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 24850 /* Multicast addresses should have non-zero ill_index. */ 24851 v6dstp = &ip6h->ip6_dst; 24852 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 24853 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 24854 ASSERT(!attach_if || ill_index != 0); 24855 if (ill_index != 0) { 24856 if (ill == NULL) { 24857 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 24858 B_TRUE); 24859 24860 /* Failure case frees things for us. */ 24861 if (ill == NULL) 24862 return; 24863 24864 ill_need_rele = B_TRUE; 24865 } 24866 /* 24867 * If this packet needs to go out on a particular interface 24868 * honor it. 24869 */ 24870 if (attach_if) { 24871 match_flags = MATCH_IRE_ILL; 24872 24873 /* 24874 * Check if we need an ire that will not be 24875 * looked up by anybody else i.e. HIDDEN. 24876 */ 24877 if (ill_is_probeonly(ill)) { 24878 match_flags |= MATCH_IRE_MARK_HIDDEN; 24879 } 24880 } 24881 } 24882 ASSERT(mp != NULL); 24883 24884 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 24885 boolean_t unspec_src; 24886 ipif_t *ipif; 24887 24888 /* 24889 * Use the ill_index to get the right ill. 24890 */ 24891 unspec_src = io->ipsec_out_unspec_src; 24892 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 24893 if (ipif == NULL) { 24894 if (ill_need_rele) 24895 ill_refrele(ill); 24896 freemsg(ipsec_mp); 24897 return; 24898 } 24899 24900 if (ire_arg != NULL) { 24901 ire = ire_arg; 24902 } else { 24903 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24904 zoneid, MBLK_GETLABEL(mp), match_flags); 24905 ire_need_rele = B_TRUE; 24906 } 24907 if (ire != NULL) { 24908 ipif_refrele(ipif); 24909 /* 24910 * XXX Do the multicast forwarding now, as the IPSEC 24911 * processing has been done. 24912 */ 24913 goto send; 24914 } 24915 24916 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 24917 mp->b_prev = NULL; 24918 mp->b_next = NULL; 24919 24920 /* 24921 * If the IPsec packet was processed asynchronously, 24922 * drop it now. 24923 */ 24924 if (q == NULL) { 24925 if (ill_need_rele) 24926 ill_refrele(ill); 24927 freemsg(ipsec_mp); 24928 return; 24929 } 24930 24931 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 24932 unspec_src, zoneid); 24933 ipif_refrele(ipif); 24934 } else { 24935 if (attach_if) { 24936 ipif_t *ipif; 24937 24938 ipif = ipif_get_next_ipif(NULL, ill); 24939 if (ipif == NULL) { 24940 if (ill_need_rele) 24941 ill_refrele(ill); 24942 freemsg(ipsec_mp); 24943 return; 24944 } 24945 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 24946 zoneid, MBLK_GETLABEL(mp), match_flags); 24947 ire_need_rele = B_TRUE; 24948 ipif_refrele(ipif); 24949 } else { 24950 if (ire_arg != NULL) { 24951 ire = ire_arg; 24952 } else { 24953 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 24954 ire_need_rele = B_TRUE; 24955 } 24956 } 24957 if (ire != NULL) 24958 goto send; 24959 /* 24960 * ire disappeared underneath. 24961 * 24962 * What we need to do here is the ip_newroute 24963 * logic to get the ire without doing the IPSEC 24964 * processing. Follow the same old path. But this 24965 * time, ip_wput or ire_add_then_send will call us 24966 * directly as all the IPSEC operations are done. 24967 */ 24968 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 24969 mp->b_prev = NULL; 24970 mp->b_next = NULL; 24971 24972 /* 24973 * If the IPsec packet was processed asynchronously, 24974 * drop it now. 24975 */ 24976 if (q == NULL) { 24977 if (ill_need_rele) 24978 ill_refrele(ill); 24979 freemsg(ipsec_mp); 24980 return; 24981 } 24982 24983 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 24984 zoneid); 24985 } 24986 if (ill != NULL && ill_need_rele) 24987 ill_refrele(ill); 24988 return; 24989 send: 24990 if (ill != NULL && ill_need_rele) 24991 ill_refrele(ill); 24992 24993 /* Local delivery */ 24994 if (ire->ire_stq == NULL) { 24995 ill_t *out_ill; 24996 ASSERT(q != NULL); 24997 24998 /* PFHooks: LOOPBACK_OUT */ 24999 out_ill = ire->ire_ipif->ipif_ill; 25000 25001 DTRACE_PROBE4(ip6__loopback__out__start, 25002 ill_t *, NULL, ill_t *, out_ill, 25003 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25004 25005 FW_HOOKS6(ip6_loopback_out_event, ipv6firewall_loopback_out, 25006 NULL, out_ill, ip6h1, ipsec_mp, mp); 25007 25008 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25009 25010 if (ipsec_mp != NULL) 25011 ip_wput_local_v6(RD(q), out_ill, 25012 ip6h, ipsec_mp, ire, 0); 25013 if (ire_need_rele) 25014 ire_refrele(ire); 25015 return; 25016 } 25017 /* 25018 * Everything is done. Send it out on the wire. 25019 * We force the insertion of a fragment header using the 25020 * IPH_FRAG_HDR flag in two cases: 25021 * - after reception of an ICMPv6 "packet too big" message 25022 * with a MTU < 1280 (cf. RFC 2460 section 5) 25023 * - for multirouted IPv6 packets, so that the receiver can 25024 * discard duplicates according to their fragment identifier 25025 */ 25026 /* XXX fix flow control problems. */ 25027 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25028 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25029 if (hwaccel) { 25030 /* 25031 * hardware acceleration does not handle these 25032 * "slow path" cases. 25033 */ 25034 /* IPsec KSTATS: should bump bean counter here. */ 25035 if (ire_need_rele) 25036 ire_refrele(ire); 25037 freemsg(ipsec_mp); 25038 return; 25039 } 25040 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25041 (mp->b_cont ? msgdsize(mp) : 25042 mp->b_wptr - (uchar_t *)ip6h)) { 25043 /* IPsec KSTATS: should bump bean counter here. */ 25044 ip0dbg(("Packet length mismatch: %d, %ld\n", 25045 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25046 msgdsize(mp))); 25047 if (ire_need_rele) 25048 ire_refrele(ire); 25049 freemsg(ipsec_mp); 25050 return; 25051 } 25052 ASSERT(mp->b_prev == NULL); 25053 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25054 ntohs(ip6h->ip6_plen) + 25055 IPV6_HDR_LEN, ire->ire_max_frag)); 25056 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25057 ire->ire_max_frag); 25058 } else { 25059 UPDATE_OB_PKT_COUNT(ire); 25060 ire->ire_last_used_time = lbolt; 25061 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25062 } 25063 if (ire_need_rele) 25064 ire_refrele(ire); 25065 freeb(ipsec_mp); 25066 } 25067 25068 void 25069 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25070 { 25071 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25072 da_ipsec_t *hada; /* data attributes */ 25073 ill_t *ill = (ill_t *)q->q_ptr; 25074 25075 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25076 25077 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25078 /* IPsec KSTATS: Bump lose counter here! */ 25079 freemsg(mp); 25080 return; 25081 } 25082 25083 /* 25084 * It's an IPsec packet that must be 25085 * accelerated by the Provider, and the 25086 * outbound ill is IPsec acceleration capable. 25087 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25088 * to the ill. 25089 * IPsec KSTATS: should bump packet counter here. 25090 */ 25091 25092 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25093 if (hada_mp == NULL) { 25094 /* IPsec KSTATS: should bump packet counter here. */ 25095 freemsg(mp); 25096 return; 25097 } 25098 25099 hada_mp->b_datap->db_type = M_CTL; 25100 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25101 hada_mp->b_cont = mp; 25102 25103 hada = (da_ipsec_t *)hada_mp->b_rptr; 25104 bzero(hada, sizeof (da_ipsec_t)); 25105 hada->da_type = IPHADA_M_CTL; 25106 25107 putnext(q, hada_mp); 25108 } 25109 25110 /* 25111 * Finish the outbound IPsec processing. This function is called from 25112 * ipsec_out_process() if the IPsec packet was processed 25113 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25114 * asynchronously. 25115 */ 25116 void 25117 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25118 ire_t *ire_arg) 25119 { 25120 uint32_t v_hlen_tos_len; 25121 ipaddr_t dst; 25122 ipif_t *ipif = NULL; 25123 ire_t *ire; 25124 ire_t *ire1 = NULL; 25125 mblk_t *next_mp = NULL; 25126 uint32_t max_frag; 25127 boolean_t multirt_send = B_FALSE; 25128 mblk_t *mp; 25129 mblk_t *mp1; 25130 ipha_t *ipha1; 25131 uint_t ill_index; 25132 ipsec_out_t *io; 25133 boolean_t attach_if; 25134 int match_flags, offset; 25135 irb_t *irb = NULL; 25136 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25137 zoneid_t zoneid; 25138 uint32_t cksum; 25139 uint16_t *up; 25140 ipxmit_state_t pktxmit_state; 25141 #ifdef _BIG_ENDIAN 25142 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25143 #else 25144 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25145 #endif 25146 25147 mp = ipsec_mp->b_cont; 25148 ipha1 = (ipha_t *)mp->b_rptr; 25149 ASSERT(mp != NULL); 25150 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25151 dst = ipha->ipha_dst; 25152 25153 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25154 ill_index = io->ipsec_out_ill_index; 25155 attach_if = io->ipsec_out_attach_if; 25156 zoneid = io->ipsec_out_zoneid; 25157 ASSERT(zoneid != ALL_ZONES); 25158 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25159 if (ill_index != 0) { 25160 if (ill == NULL) { 25161 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25162 ill_index, B_FALSE); 25163 25164 /* Failure case frees things for us. */ 25165 if (ill == NULL) 25166 return; 25167 25168 ill_need_rele = B_TRUE; 25169 } 25170 /* 25171 * If this packet needs to go out on a particular interface 25172 * honor it. 25173 */ 25174 if (attach_if) { 25175 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25176 25177 /* 25178 * Check if we need an ire that will not be 25179 * looked up by anybody else i.e. HIDDEN. 25180 */ 25181 if (ill_is_probeonly(ill)) { 25182 match_flags |= MATCH_IRE_MARK_HIDDEN; 25183 } 25184 } 25185 } 25186 25187 if (CLASSD(dst)) { 25188 boolean_t conn_dontroute; 25189 /* 25190 * Use the ill_index to get the right ipif. 25191 */ 25192 conn_dontroute = io->ipsec_out_dontroute; 25193 if (ill_index == 0) 25194 ipif = ipif_lookup_group(dst, zoneid); 25195 else 25196 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25197 if (ipif == NULL) { 25198 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25199 " multicast\n")); 25200 BUMP_MIB(&ip_mib, ipOutNoRoutes); 25201 freemsg(ipsec_mp); 25202 goto done; 25203 } 25204 /* 25205 * ipha_src has already been intialized with the 25206 * value of the ipif in ip_wput. All we need now is 25207 * an ire to send this downstream. 25208 */ 25209 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25210 MBLK_GETLABEL(mp), match_flags); 25211 if (ire != NULL) { 25212 ill_t *ill1; 25213 /* 25214 * Do the multicast forwarding now, as the IPSEC 25215 * processing has been done. 25216 */ 25217 if (ip_g_mrouter && !conn_dontroute && 25218 (ill1 = ire_to_ill(ire))) { 25219 if (ip_mforward(ill1, ipha, mp)) { 25220 freemsg(ipsec_mp); 25221 ip1dbg(("ip_wput_ipsec_out: mforward " 25222 "failed\n")); 25223 ire_refrele(ire); 25224 goto done; 25225 } 25226 } 25227 goto send; 25228 } 25229 25230 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25231 mp->b_prev = NULL; 25232 mp->b_next = NULL; 25233 25234 /* 25235 * If the IPsec packet was processed asynchronously, 25236 * drop it now. 25237 */ 25238 if (q == NULL) { 25239 freemsg(ipsec_mp); 25240 goto done; 25241 } 25242 25243 /* 25244 * We may be using a wrong ipif to create the ire. 25245 * But it is okay as the source address is assigned 25246 * for the packet already. Next outbound packet would 25247 * create the IRE with the right IPIF in ip_wput. 25248 * 25249 * Also handle RTF_MULTIRT routes. 25250 */ 25251 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25252 zoneid); 25253 } else { 25254 if (attach_if) { 25255 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25256 zoneid, MBLK_GETLABEL(mp), match_flags); 25257 } else { 25258 if (ire_arg != NULL) { 25259 ire = ire_arg; 25260 ire_need_rele = B_FALSE; 25261 } else { 25262 ire = ire_cache_lookup(dst, zoneid, 25263 MBLK_GETLABEL(mp)); 25264 } 25265 } 25266 if (ire != NULL) { 25267 goto send; 25268 } 25269 25270 /* 25271 * ire disappeared underneath. 25272 * 25273 * What we need to do here is the ip_newroute 25274 * logic to get the ire without doing the IPSEC 25275 * processing. Follow the same old path. But this 25276 * time, ip_wput or ire_add_then_put will call us 25277 * directly as all the IPSEC operations are done. 25278 */ 25279 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25280 mp->b_prev = NULL; 25281 mp->b_next = NULL; 25282 25283 /* 25284 * If the IPsec packet was processed asynchronously, 25285 * drop it now. 25286 */ 25287 if (q == NULL) { 25288 freemsg(ipsec_mp); 25289 goto done; 25290 } 25291 25292 /* 25293 * Since we're going through ip_newroute() again, we 25294 * need to make sure we don't: 25295 * 25296 * 1.) Trigger the ASSERT() with the ipha_ident 25297 * overloading. 25298 * 2.) Redo transport-layer checksumming, since we've 25299 * already done all that to get this far. 25300 * 25301 * The easiest way not do either of the above is to set 25302 * the ipha_ident field to IP_HDR_INCLUDED. 25303 */ 25304 ipha->ipha_ident = IP_HDR_INCLUDED; 25305 ip_newroute(q, ipsec_mp, dst, NULL, 25306 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 25307 } 25308 goto done; 25309 send: 25310 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 25311 /* 25312 * ESP NAT-Traversal packet. 25313 * 25314 * Just do software checksum for now. 25315 */ 25316 25317 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25318 IP_STAT(ip_out_sw_cksum); 25319 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 25320 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25321 #define iphs ((uint16_t *)ipha) 25322 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25323 iphs[9] + ntohs(htons(ipha->ipha_length) - 25324 IP_SIMPLE_HDR_LENGTH); 25325 #undef iphs 25326 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 25327 cksum = 0xFFFF; 25328 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25329 if (mp1->b_wptr - mp1->b_rptr >= 25330 offset + sizeof (uint16_t)) { 25331 up = (uint16_t *)(mp1->b_rptr + offset); 25332 *up = cksum; 25333 break; /* out of for loop */ 25334 } else { 25335 offset -= (mp->b_wptr - mp->b_rptr); 25336 } 25337 } /* Otherwise, just keep the all-zero checksum. */ 25338 25339 if (ire->ire_stq == NULL) { 25340 ill_t *out_ill; 25341 /* 25342 * Loopbacks go through ip_wput_local except for one case. 25343 * We come here if we generate a icmp_frag_needed message 25344 * after IPSEC processing is over. When this function calls 25345 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25346 * icmp_frag_needed. The message generated comes back here 25347 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25348 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25349 * source address as it is usually set in ip_wput_ire. As 25350 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25351 * and we end up here. We can't enter ip_wput_ire once the 25352 * IPSEC processing is over and hence we need to do it here. 25353 */ 25354 ASSERT(q != NULL); 25355 UPDATE_OB_PKT_COUNT(ire); 25356 ire->ire_last_used_time = lbolt; 25357 if (ipha->ipha_src == 0) 25358 ipha->ipha_src = ire->ire_src_addr; 25359 25360 /* PFHooks: LOOPBACK_OUT */ 25361 out_ill = ire->ire_ipif->ipif_ill; 25362 25363 DTRACE_PROBE4(ip4__loopback__out__start, 25364 ill_t *, NULL, ill_t *, out_ill, 25365 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25366 25367 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 25368 NULL, out_ill, ipha1, ipsec_mp, mp); 25369 25370 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25371 25372 if (ipsec_mp != NULL) 25373 ip_wput_local(RD(q), out_ill, 25374 ipha, ipsec_mp, ire, 0, zoneid); 25375 if (ire_need_rele) 25376 ire_refrele(ire); 25377 goto done; 25378 } 25379 25380 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25381 /* 25382 * We are through with IPSEC processing. 25383 * Fragment this and send it on the wire. 25384 */ 25385 if (io->ipsec_out_accelerated) { 25386 /* 25387 * The packet has been accelerated but must 25388 * be fragmented. This should not happen 25389 * since AH and ESP must not accelerate 25390 * packets that need fragmentation, however 25391 * the configuration could have changed 25392 * since the AH or ESP processing. 25393 * Drop packet. 25394 * IPsec KSTATS: bump bean counter here. 25395 */ 25396 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25397 "fragmented accelerated packet!\n")); 25398 freemsg(ipsec_mp); 25399 } else { 25400 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 25401 } 25402 if (ire_need_rele) 25403 ire_refrele(ire); 25404 goto done; 25405 } 25406 25407 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25408 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25409 (void *)ire->ire_ipif, (void *)ipif)); 25410 25411 /* 25412 * Multiroute the secured packet, unless IPsec really 25413 * requires the packet to go out only through a particular 25414 * interface. 25415 */ 25416 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25417 ire_t *first_ire; 25418 irb = ire->ire_bucket; 25419 ASSERT(irb != NULL); 25420 /* 25421 * This ire has been looked up as the one that 25422 * goes through the given ipif; 25423 * make sure we do not omit any other multiroute ire 25424 * that may be present in the bucket before this one. 25425 */ 25426 IRB_REFHOLD(irb); 25427 for (first_ire = irb->irb_ire; 25428 first_ire != NULL; 25429 first_ire = first_ire->ire_next) { 25430 if ((first_ire->ire_flags & RTF_MULTIRT) && 25431 (first_ire->ire_addr == ire->ire_addr) && 25432 !(first_ire->ire_marks & 25433 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 25434 break; 25435 } 25436 25437 if ((first_ire != NULL) && (first_ire != ire)) { 25438 /* 25439 * Don't change the ire if the packet must 25440 * be fragmented if sent via this new one. 25441 */ 25442 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25443 IRE_REFHOLD(first_ire); 25444 if (ire_need_rele) 25445 ire_refrele(ire); 25446 else 25447 ire_need_rele = B_TRUE; 25448 ire = first_ire; 25449 } 25450 } 25451 IRB_REFRELE(irb); 25452 25453 multirt_send = B_TRUE; 25454 max_frag = ire->ire_max_frag; 25455 } else { 25456 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25457 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25458 "flag, attach_if %d\n", attach_if)); 25459 } 25460 } 25461 25462 /* 25463 * In most cases, the emission loop below is entered only once. 25464 * Only in the case where the ire holds the RTF_MULTIRT 25465 * flag, we loop to process all RTF_MULTIRT ires in the 25466 * bucket, and send the packet through all crossed 25467 * RTF_MULTIRT routes. 25468 */ 25469 do { 25470 if (multirt_send) { 25471 /* 25472 * ire1 holds here the next ire to process in the 25473 * bucket. If multirouting is expected, 25474 * any non-RTF_MULTIRT ire that has the 25475 * right destination address is ignored. 25476 */ 25477 ASSERT(irb != NULL); 25478 IRB_REFHOLD(irb); 25479 for (ire1 = ire->ire_next; 25480 ire1 != NULL; 25481 ire1 = ire1->ire_next) { 25482 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25483 continue; 25484 if (ire1->ire_addr != ire->ire_addr) 25485 continue; 25486 if (ire1->ire_marks & 25487 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25488 continue; 25489 /* No loopback here */ 25490 if (ire1->ire_stq == NULL) 25491 continue; 25492 /* 25493 * Ensure we do not exceed the MTU 25494 * of the next route. 25495 */ 25496 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25497 ip_multirt_bad_mtu(ire1, max_frag); 25498 continue; 25499 } 25500 25501 IRE_REFHOLD(ire1); 25502 break; 25503 } 25504 IRB_REFRELE(irb); 25505 if (ire1 != NULL) { 25506 /* 25507 * We are in a multiple send case, need to 25508 * make a copy of the packet. 25509 */ 25510 next_mp = copymsg(ipsec_mp); 25511 if (next_mp == NULL) { 25512 ire_refrele(ire1); 25513 ire1 = NULL; 25514 } 25515 } 25516 } 25517 /* 25518 * Everything is done. Send it out on the wire 25519 * 25520 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25521 * either send it on the wire or, in the case of 25522 * HW acceleration, call ipsec_hw_putnext. 25523 */ 25524 if (ire->ire_nce && 25525 ire->ire_nce->nce_state != ND_REACHABLE) { 25526 DTRACE_PROBE2(ip__wput__ipsec__bail, 25527 (ire_t *), ire, (mblk_t *), ipsec_mp); 25528 /* 25529 * If ire's link-layer is unresolved (this 25530 * would only happen if the incomplete ire 25531 * was added to cachetable via forwarding path) 25532 * don't bother going to ip_xmit_v4. Just drop the 25533 * packet. 25534 * There is a slight risk here, in that, if we 25535 * have the forwarding path create an incomplete 25536 * IRE, then until the IRE is completed, any 25537 * transmitted IPSEC packets will be dropped 25538 * instead of being queued waiting for resolution. 25539 * 25540 * But the likelihood of a forwarding packet and a wput 25541 * packet sending to the same dst at the same time 25542 * and there not yet be an ARP entry for it is small. 25543 * Furthermore, if this actually happens, it might 25544 * be likely that wput would generate multiple 25545 * packets (and forwarding would also have a train 25546 * of packets) for that destination. If this is 25547 * the case, some of them would have been dropped 25548 * anyway, since ARP only queues a few packets while 25549 * waiting for resolution 25550 * 25551 * NOTE: We should really call ip_xmit_v4, 25552 * and let it queue the packet and send the 25553 * ARP query and have ARP come back thus: 25554 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 25555 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 25556 * hw accel work. But it's too complex to get 25557 * the IPsec hw acceleration approach to fit 25558 * well with ip_xmit_v4 doing ARP without 25559 * doing IPSEC simplification. For now, we just 25560 * poke ip_xmit_v4 to trigger the arp resolve, so 25561 * that we can continue with the send on the next 25562 * attempt. 25563 * 25564 * XXX THis should be revisited, when 25565 * the IPsec/IP interaction is cleaned up 25566 */ 25567 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 25568 " - dropping packet\n")); 25569 freemsg(ipsec_mp); 25570 /* 25571 * Call ip_xmit_v4() to trigger ARP query 25572 * in case the nce_state is ND_INITIAL 25573 */ 25574 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 25575 goto drop_pkt; 25576 } 25577 25578 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 25579 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 25580 mblk_t *, mp); 25581 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 25582 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp); 25583 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 25584 if (mp == NULL) 25585 goto drop_pkt; 25586 25587 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 25588 pktxmit_state = ip_xmit_v4(mp, ire, 25589 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 25590 25591 if ((pktxmit_state == SEND_FAILED) || 25592 (pktxmit_state == LLHDR_RESLV_FAILED)) { 25593 25594 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 25595 drop_pkt: 25596 BUMP_MIB(&ip_mib, ipOutDiscards); 25597 if (ire_need_rele) 25598 ire_refrele(ire); 25599 if (ire1 != NULL) { 25600 ire_refrele(ire1); 25601 freemsg(next_mp); 25602 } 25603 goto done; 25604 } 25605 25606 freeb(ipsec_mp); 25607 if (ire_need_rele) 25608 ire_refrele(ire); 25609 25610 if (ire1 != NULL) { 25611 ire = ire1; 25612 ire_need_rele = B_TRUE; 25613 ASSERT(next_mp); 25614 ipsec_mp = next_mp; 25615 mp = ipsec_mp->b_cont; 25616 ire1 = NULL; 25617 next_mp = NULL; 25618 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25619 } else { 25620 multirt_send = B_FALSE; 25621 } 25622 } while (multirt_send); 25623 done: 25624 if (ill != NULL && ill_need_rele) 25625 ill_refrele(ill); 25626 if (ipif != NULL) 25627 ipif_refrele(ipif); 25628 } 25629 25630 /* 25631 * Get the ill corresponding to the specified ire, and compare its 25632 * capabilities with the protocol and algorithms specified by the 25633 * the SA obtained from ipsec_out. If they match, annotate the 25634 * ipsec_out structure to indicate that the packet needs acceleration. 25635 * 25636 * 25637 * A packet is eligible for outbound hardware acceleration if the 25638 * following conditions are satisfied: 25639 * 25640 * 1. the packet will not be fragmented 25641 * 2. the provider supports the algorithm 25642 * 3. there is no pending control message being exchanged 25643 * 4. snoop is not attached 25644 * 5. the destination address is not a broadcast or multicast address. 25645 * 25646 * Rationale: 25647 * - Hardware drivers do not support fragmentation with 25648 * the current interface. 25649 * - snoop, multicast, and broadcast may result in exposure of 25650 * a cleartext datagram. 25651 * We check all five of these conditions here. 25652 * 25653 * XXX would like to nuke "ire_t *" parameter here; problem is that 25654 * IRE is only way to figure out if a v4 address is a broadcast and 25655 * thus ineligible for acceleration... 25656 */ 25657 static void 25658 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 25659 { 25660 ipsec_out_t *io; 25661 mblk_t *data_mp; 25662 uint_t plen, overhead; 25663 25664 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 25665 return; 25666 25667 if (ill == NULL) 25668 return; 25669 25670 /* 25671 * Destination address is a broadcast or multicast. Punt. 25672 */ 25673 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 25674 IRE_LOCAL))) 25675 return; 25676 25677 data_mp = ipsec_mp->b_cont; 25678 25679 if (ill->ill_isv6) { 25680 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 25681 25682 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 25683 return; 25684 25685 plen = ip6h->ip6_plen; 25686 } else { 25687 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 25688 25689 if (CLASSD(ipha->ipha_dst)) 25690 return; 25691 25692 plen = ipha->ipha_length; 25693 } 25694 /* 25695 * Is there a pending DLPI control message being exchanged 25696 * between IP/IPsec and the DLS Provider? If there is, it 25697 * could be a SADB update, and the state of the DLS Provider 25698 * SADB might not be in sync with the SADB maintained by 25699 * IPsec. To avoid dropping packets or using the wrong keying 25700 * material, we do not accelerate this packet. 25701 */ 25702 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 25703 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25704 "ill_dlpi_pending! don't accelerate packet\n")); 25705 return; 25706 } 25707 25708 /* 25709 * Is the Provider in promiscous mode? If it does, we don't 25710 * accelerate the packet since it will bounce back up to the 25711 * listeners in the clear. 25712 */ 25713 if (ill->ill_promisc_on_phys) { 25714 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 25715 "ill in promiscous mode, don't accelerate packet\n")); 25716 return; 25717 } 25718 25719 /* 25720 * Will the packet require fragmentation? 25721 */ 25722 25723 /* 25724 * IPsec ESP note: this is a pessimistic estimate, but the same 25725 * as is used elsewhere. 25726 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 25727 * + 2-byte trailer 25728 */ 25729 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 25730 IPSEC_BASE_ESP_HDR_SIZE(sa); 25731 25732 if ((plen + overhead) > ill->ill_max_mtu) 25733 return; 25734 25735 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25736 25737 /* 25738 * Can the ill accelerate this IPsec protocol and algorithm 25739 * specified by the SA? 25740 */ 25741 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 25742 ill->ill_isv6, sa)) { 25743 return; 25744 } 25745 25746 /* 25747 * Tell AH or ESP that the outbound ill is capable of 25748 * accelerating this packet. 25749 */ 25750 io->ipsec_out_is_capab_ill = B_TRUE; 25751 } 25752 25753 /* 25754 * Select which AH & ESP SA's to use (if any) for the outbound packet. 25755 * 25756 * If this function returns B_TRUE, the requested SA's have been filled 25757 * into the ipsec_out_*_sa pointers. 25758 * 25759 * If the function returns B_FALSE, the packet has been "consumed", most 25760 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 25761 * 25762 * The SA references created by the protocol-specific "select" 25763 * function will be released when the ipsec_mp is freed, thanks to the 25764 * ipsec_out_free destructor -- see spd.c. 25765 */ 25766 static boolean_t 25767 ipsec_out_select_sa(mblk_t *ipsec_mp) 25768 { 25769 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 25770 ipsec_out_t *io; 25771 ipsec_policy_t *pp; 25772 ipsec_action_t *ap; 25773 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25774 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25775 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25776 25777 if (!io->ipsec_out_secure) { 25778 /* 25779 * We came here by mistake. 25780 * Don't bother with ipsec processing 25781 * We should "discourage" this path in the future. 25782 */ 25783 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25784 return (B_FALSE); 25785 } 25786 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25787 ASSERT((io->ipsec_out_policy != NULL) || 25788 (io->ipsec_out_act != NULL)); 25789 25790 ASSERT(io->ipsec_out_failed == B_FALSE); 25791 25792 /* 25793 * IPSEC processing has started. 25794 */ 25795 io->ipsec_out_proc_begin = B_TRUE; 25796 ap = io->ipsec_out_act; 25797 if (ap == NULL) { 25798 pp = io->ipsec_out_policy; 25799 ASSERT(pp != NULL); 25800 ap = pp->ipsp_act; 25801 ASSERT(ap != NULL); 25802 } 25803 25804 /* 25805 * We have an action. now, let's select SA's. 25806 * (In the future, we can cache this in the conn_t..) 25807 */ 25808 if (ap->ipa_want_esp) { 25809 if (io->ipsec_out_esp_sa == NULL) { 25810 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 25811 IPPROTO_ESP); 25812 } 25813 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 25814 } 25815 25816 if (ap->ipa_want_ah) { 25817 if (io->ipsec_out_ah_sa == NULL) { 25818 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 25819 IPPROTO_AH); 25820 } 25821 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 25822 /* 25823 * The ESP and AH processing order needs to be preserved 25824 * when both protocols are required (ESP should be applied 25825 * before AH for an outbound packet). Force an ESP ACQUIRE 25826 * when both ESP and AH are required, and an AH ACQUIRE 25827 * is needed. 25828 */ 25829 if (ap->ipa_want_esp && need_ah_acquire) 25830 need_esp_acquire = B_TRUE; 25831 } 25832 25833 /* 25834 * Send an ACQUIRE (extended, regular, or both) if we need one. 25835 * Release SAs that got referenced, but will not be used until we 25836 * acquire _all_ of the SAs we need. 25837 */ 25838 if (need_ah_acquire || need_esp_acquire) { 25839 if (io->ipsec_out_ah_sa != NULL) { 25840 IPSA_REFRELE(io->ipsec_out_ah_sa); 25841 io->ipsec_out_ah_sa = NULL; 25842 } 25843 if (io->ipsec_out_esp_sa != NULL) { 25844 IPSA_REFRELE(io->ipsec_out_esp_sa); 25845 io->ipsec_out_esp_sa = NULL; 25846 } 25847 25848 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 25849 return (B_FALSE); 25850 } 25851 25852 return (B_TRUE); 25853 } 25854 25855 /* 25856 * Process an IPSEC_OUT message and see what you can 25857 * do with it. 25858 * IPQoS Notes: 25859 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 25860 * IPSec. 25861 * XXX would like to nuke ire_t. 25862 * XXX ill_index better be "real" 25863 */ 25864 void 25865 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 25866 { 25867 ipsec_out_t *io; 25868 ipsec_policy_t *pp; 25869 ipsec_action_t *ap; 25870 ipha_t *ipha; 25871 ip6_t *ip6h; 25872 mblk_t *mp; 25873 ill_t *ill; 25874 zoneid_t zoneid; 25875 ipsec_status_t ipsec_rc; 25876 boolean_t ill_need_rele = B_FALSE; 25877 25878 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25879 ASSERT(io->ipsec_out_type == IPSEC_OUT); 25880 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 25881 mp = ipsec_mp->b_cont; 25882 25883 /* 25884 * Initiate IPPF processing. We do it here to account for packets 25885 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 25886 * We can check for ipsec_out_proc_begin even for such packets, as 25887 * they will always be false (asserted below). 25888 */ 25889 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 25890 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 25891 io->ipsec_out_ill_index : ill_index); 25892 if (mp == NULL) { 25893 ip2dbg(("ipsec_out_process: packet dropped "\ 25894 "during IPPF processing\n")); 25895 freeb(ipsec_mp); 25896 BUMP_MIB(&ip_mib, ipOutDiscards); 25897 return; 25898 } 25899 } 25900 25901 if (!io->ipsec_out_secure) { 25902 /* 25903 * We came here by mistake. 25904 * Don't bother with ipsec processing 25905 * Should "discourage" this path in the future. 25906 */ 25907 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 25908 goto done; 25909 } 25910 ASSERT(io->ipsec_out_need_policy == B_FALSE); 25911 ASSERT((io->ipsec_out_policy != NULL) || 25912 (io->ipsec_out_act != NULL)); 25913 ASSERT(io->ipsec_out_failed == B_FALSE); 25914 25915 if (!ipsec_loaded()) { 25916 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 25917 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 25918 BUMP_MIB(&ip_mib, ipOutDiscards); 25919 } else { 25920 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 25921 } 25922 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 25923 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 25924 return; 25925 } 25926 25927 /* 25928 * IPSEC processing has started. 25929 */ 25930 io->ipsec_out_proc_begin = B_TRUE; 25931 ap = io->ipsec_out_act; 25932 if (ap == NULL) { 25933 pp = io->ipsec_out_policy; 25934 ASSERT(pp != NULL); 25935 ap = pp->ipsp_act; 25936 ASSERT(ap != NULL); 25937 } 25938 25939 /* 25940 * Save the outbound ill index. When the packet comes back 25941 * from IPsec, we make sure the ill hasn't changed or disappeared 25942 * before sending it the accelerated packet. 25943 */ 25944 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 25945 int ifindex; 25946 ill = ire_to_ill(ire); 25947 ifindex = ill->ill_phyint->phyint_ifindex; 25948 io->ipsec_out_capab_ill_index = ifindex; 25949 } 25950 25951 /* 25952 * The order of processing is first insert a IP header if needed. 25953 * Then insert the ESP header and then the AH header. 25954 */ 25955 if ((io->ipsec_out_se_done == B_FALSE) && 25956 (ap->ipa_want_se)) { 25957 /* 25958 * First get the outer IP header before sending 25959 * it to ESP. 25960 */ 25961 ipha_t *oipha, *iipha; 25962 mblk_t *outer_mp, *inner_mp; 25963 25964 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 25965 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 25966 "ipsec_out_process: " 25967 "Self-Encapsulation failed: Out of memory\n"); 25968 freemsg(ipsec_mp); 25969 BUMP_MIB(&ip_mib, ipOutDiscards); 25970 return; 25971 } 25972 inner_mp = ipsec_mp->b_cont; 25973 ASSERT(inner_mp->b_datap->db_type == M_DATA); 25974 oipha = (ipha_t *)outer_mp->b_rptr; 25975 iipha = (ipha_t *)inner_mp->b_rptr; 25976 *oipha = *iipha; 25977 outer_mp->b_wptr += sizeof (ipha_t); 25978 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 25979 sizeof (ipha_t)); 25980 oipha->ipha_protocol = IPPROTO_ENCAP; 25981 oipha->ipha_version_and_hdr_length = 25982 IP_SIMPLE_HDR_VERSION; 25983 oipha->ipha_hdr_checksum = 0; 25984 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 25985 outer_mp->b_cont = inner_mp; 25986 ipsec_mp->b_cont = outer_mp; 25987 25988 io->ipsec_out_se_done = B_TRUE; 25989 io->ipsec_out_tunnel = B_TRUE; 25990 } 25991 25992 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 25993 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 25994 !ipsec_out_select_sa(ipsec_mp)) 25995 return; 25996 25997 /* 25998 * By now, we know what SA's to use. Toss over to ESP & AH 25999 * to do the heavy lifting. 26000 */ 26001 zoneid = io->ipsec_out_zoneid; 26002 ASSERT(zoneid != ALL_ZONES); 26003 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26004 ASSERT(io->ipsec_out_esp_sa != NULL); 26005 io->ipsec_out_esp_done = B_TRUE; 26006 /* 26007 * Note that since hw accel can only apply one transform, 26008 * not two, we skip hw accel for ESP if we also have AH 26009 * This is an design limitation of the interface 26010 * which should be revisited. 26011 */ 26012 ASSERT(ire != NULL); 26013 if (io->ipsec_out_ah_sa == NULL) { 26014 ill = (ill_t *)ire->ire_stq->q_ptr; 26015 ipsec_out_is_accelerated(ipsec_mp, 26016 io->ipsec_out_esp_sa, ill, ire); 26017 } 26018 26019 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26020 switch (ipsec_rc) { 26021 case IPSEC_STATUS_SUCCESS: 26022 break; 26023 case IPSEC_STATUS_FAILED: 26024 BUMP_MIB(&ip_mib, ipOutDiscards); 26025 /* FALLTHRU */ 26026 case IPSEC_STATUS_PENDING: 26027 return; 26028 } 26029 } 26030 26031 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26032 ASSERT(io->ipsec_out_ah_sa != NULL); 26033 io->ipsec_out_ah_done = B_TRUE; 26034 if (ire == NULL) { 26035 int idx = io->ipsec_out_capab_ill_index; 26036 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26037 NULL, NULL, NULL, NULL); 26038 ill_need_rele = B_TRUE; 26039 } else { 26040 ill = (ill_t *)ire->ire_stq->q_ptr; 26041 } 26042 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26043 ire); 26044 26045 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26046 switch (ipsec_rc) { 26047 case IPSEC_STATUS_SUCCESS: 26048 break; 26049 case IPSEC_STATUS_FAILED: 26050 BUMP_MIB(&ip_mib, ipOutDiscards); 26051 /* FALLTHRU */ 26052 case IPSEC_STATUS_PENDING: 26053 if (ill != NULL && ill_need_rele) 26054 ill_refrele(ill); 26055 return; 26056 } 26057 } 26058 /* 26059 * We are done with IPSEC processing. Send it over 26060 * the wire. 26061 */ 26062 done: 26063 mp = ipsec_mp->b_cont; 26064 ipha = (ipha_t *)mp->b_rptr; 26065 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26066 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26067 } else { 26068 ip6h = (ip6_t *)ipha; 26069 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26070 } 26071 if (ill != NULL && ill_need_rele) 26072 ill_refrele(ill); 26073 } 26074 26075 /* ARGSUSED */ 26076 void 26077 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26078 { 26079 opt_restart_t *or; 26080 int err; 26081 conn_t *connp; 26082 26083 ASSERT(CONN_Q(q)); 26084 connp = Q_TO_CONN(q); 26085 26086 ASSERT(first_mp->b_datap->db_type == M_CTL); 26087 or = (opt_restart_t *)first_mp->b_rptr; 26088 /* 26089 * We don't need to pass any credentials here since this is just 26090 * a restart. The credentials are passed in when svr4_optcom_req 26091 * is called the first time (from ip_wput_nondata). 26092 */ 26093 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26094 err = svr4_optcom_req(q, first_mp, NULL, 26095 &ip_opt_obj); 26096 } else { 26097 ASSERT(or->or_type == T_OPTMGMT_REQ); 26098 err = tpi_optcom_req(q, first_mp, NULL, 26099 &ip_opt_obj); 26100 } 26101 if (err != EINPROGRESS) { 26102 /* operation is done */ 26103 CONN_OPER_PENDING_DONE(connp); 26104 } 26105 } 26106 26107 /* 26108 * ioctls that go through a down/up sequence may need to wait for the down 26109 * to complete. This involves waiting for the ire and ipif refcnts to go down 26110 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26111 */ 26112 /* ARGSUSED */ 26113 void 26114 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26115 { 26116 struct iocblk *iocp; 26117 mblk_t *mp1; 26118 ipif_t *ipif; 26119 ip_ioctl_cmd_t *ipip; 26120 int err; 26121 sin_t *sin; 26122 struct lifreq *lifr; 26123 struct ifreq *ifr; 26124 26125 iocp = (struct iocblk *)mp->b_rptr; 26126 ASSERT(ipsq != NULL); 26127 /* Existence of mp1 verified in ip_wput_nondata */ 26128 mp1 = mp->b_cont->b_cont; 26129 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26130 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26131 ill_t *ill; 26132 /* 26133 * Special case where ipsq_current_ipif may not be set. 26134 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26135 * ill could also have become part of a ipmp group in the 26136 * process, we are here as were not able to complete the 26137 * operation in ipif_set_values because we could not become 26138 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26139 * will not be set so we need to set it. 26140 */ 26141 ill = (ill_t *)q->q_ptr; 26142 ipsq->ipsq_current_ipif = ill->ill_ipif; 26143 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26144 } 26145 26146 ipif = ipsq->ipsq_current_ipif; 26147 ASSERT(ipif != NULL); 26148 if (ipip->ipi_cmd_type == IF_CMD) { 26149 /* This a old style SIOC[GS]IF* command */ 26150 ifr = (struct ifreq *)mp1->b_rptr; 26151 sin = (sin_t *)&ifr->ifr_addr; 26152 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26153 /* This a new style SIOC[GS]LIF* command */ 26154 lifr = (struct lifreq *)mp1->b_rptr; 26155 sin = (sin_t *)&lifr->lifr_addr; 26156 } else { 26157 sin = NULL; 26158 } 26159 26160 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 26161 (void *)mp1->b_rptr); 26162 26163 /* SIOCLIFREMOVEIF could have removed the ipif */ 26164 ip_ioctl_finish(q, mp, err, 26165 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26166 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 26167 } 26168 26169 /* 26170 * ioctl processing 26171 * 26172 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 26173 * the ioctl command in the ioctl tables and determines the copyin data size 26174 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 26175 * size. 26176 * 26177 * ioctl processing then continues when the M_IOCDATA makes its way down. 26178 * Now the ioctl is looked up again in the ioctl table, and its properties are 26179 * extracted. The associated 'conn' is then refheld till the end of the ioctl 26180 * and the general ioctl processing function ip_process_ioctl is called. 26181 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26182 * so goes thru the serialization primitive ipsq_try_enter. Then the 26183 * appropriate function to handle the ioctl is called based on the entry in 26184 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26185 * which also refreleases the 'conn' that was refheld at the start of the 26186 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26187 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 26188 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 26189 * 26190 * Many exclusive ioctls go thru an internal down up sequence as part of 26191 * the operation. For example an attempt to change the IP address of an 26192 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26193 * does all the cleanup such as deleting all ires that use this address. 26194 * Then we need to wait till all references to the interface go away. 26195 */ 26196 void 26197 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26198 { 26199 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26200 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 26201 cmd_info_t ci; 26202 int err; 26203 boolean_t entered_ipsq = B_FALSE; 26204 26205 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26206 26207 if (ipip == NULL) 26208 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26209 26210 /* 26211 * SIOCLIFADDIF needs to go thru a special path since the 26212 * ill may not exist yet. This happens in the case of lo0 26213 * which is created using this ioctl. 26214 */ 26215 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26216 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26217 ip_ioctl_finish(q, mp, err, 26218 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26219 NULL, NULL); 26220 return; 26221 } 26222 26223 ci.ci_ipif = NULL; 26224 switch (ipip->ipi_cmd_type) { 26225 case IF_CMD: 26226 case LIF_CMD: 26227 /* 26228 * ioctls that pass in a [l]ifreq appear here. 26229 * ip_extract_lifreq_cmn returns a refheld ipif in 26230 * ci.ci_ipif 26231 */ 26232 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 26233 ipip->ipi_flags, &ci, ip_process_ioctl); 26234 if (err != 0) { 26235 ip_ioctl_finish(q, mp, err, 26236 ipip->ipi_flags & IPI_GET_CMD ? 26237 COPYOUT : NO_COPYOUT, NULL, NULL); 26238 return; 26239 } 26240 ASSERT(ci.ci_ipif != NULL); 26241 break; 26242 26243 case TUN_CMD: 26244 /* 26245 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 26246 * a refheld ipif in ci.ci_ipif 26247 */ 26248 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 26249 if (err != 0) { 26250 ip_ioctl_finish(q, mp, err, 26251 ipip->ipi_flags & IPI_GET_CMD ? 26252 COPYOUT : NO_COPYOUT, NULL, NULL); 26253 return; 26254 } 26255 ASSERT(ci.ci_ipif != NULL); 26256 break; 26257 26258 case MISC_CMD: 26259 /* 26260 * ioctls that neither pass in [l]ifreq or iftun_req come here 26261 * For eg. SIOCGLIFCONF will appear here. 26262 */ 26263 switch (ipip->ipi_cmd) { 26264 case IF_UNITSEL: 26265 /* ioctl comes down the ill */ 26266 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26267 ipif_refhold(ci.ci_ipif); 26268 break; 26269 case SIOCGMSFILTER: 26270 case SIOCSMSFILTER: 26271 case SIOCGIPMSFILTER: 26272 case SIOCSIPMSFILTER: 26273 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 26274 ip_process_ioctl); 26275 if (err != 0) { 26276 ip_ioctl_finish(q, mp, err, 26277 ipip->ipi_flags & IPI_GET_CMD ? 26278 COPYOUT : NO_COPYOUT, NULL, NULL); 26279 return; 26280 } 26281 break; 26282 } 26283 err = 0; 26284 ci.ci_sin = NULL; 26285 ci.ci_sin6 = NULL; 26286 ci.ci_lifr = NULL; 26287 break; 26288 } 26289 26290 /* 26291 * If ipsq is non-null, we are already being called exclusively 26292 */ 26293 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26294 if (!(ipip->ipi_flags & IPI_WR)) { 26295 /* 26296 * A return value of EINPROGRESS means the ioctl is 26297 * either queued and waiting for some reason or has 26298 * already completed. 26299 */ 26300 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26301 ci.ci_lifr); 26302 if (ci.ci_ipif != NULL) 26303 ipif_refrele(ci.ci_ipif); 26304 ip_ioctl_finish(q, mp, err, 26305 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26306 NULL, NULL); 26307 return; 26308 } 26309 26310 ASSERT(ci.ci_ipif != NULL); 26311 26312 if (ipsq == NULL) { 26313 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26314 ip_process_ioctl, NEW_OP, B_TRUE); 26315 entered_ipsq = B_TRUE; 26316 } 26317 /* 26318 * Release the ipif so that ipif_down and friends that wait for 26319 * references to go away are not misled about the current ipif_refcnt 26320 * values. We are writer so we can access the ipif even after releasing 26321 * the ipif. 26322 */ 26323 ipif_refrele(ci.ci_ipif); 26324 if (ipsq == NULL) 26325 return; 26326 26327 mutex_enter(&ipsq->ipsq_lock); 26328 ASSERT(ipsq->ipsq_current_ipif == NULL); 26329 ipsq->ipsq_current_ipif = ci.ci_ipif; 26330 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26331 mutex_exit(&ipsq->ipsq_lock); 26332 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26333 /* 26334 * For most set ioctls that come here, this serves as a single point 26335 * where we set the IPIF_CHANGING flag. This ensures that there won't 26336 * be any new references to the ipif. This helps functions that go 26337 * through this path and end up trying to wait for the refcnts 26338 * associated with the ipif to go down to zero. Some exceptions are 26339 * Failover, Failback, and Groupname commands that operate on more than 26340 * just the ci.ci_ipif. These commands internally determine the 26341 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26342 * flags on that set. Another exception is the Removeif command that 26343 * sets the IPIF_CONDEMNED flag internally after identifying the right 26344 * ipif to operate on. 26345 */ 26346 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26347 ipip->ipi_cmd != SIOCLIFFAILOVER && 26348 ipip->ipi_cmd != SIOCLIFFAILBACK && 26349 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26350 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26351 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26352 26353 /* 26354 * A return value of EINPROGRESS means the ioctl is 26355 * either queued and waiting for some reason or has 26356 * already completed. 26357 */ 26358 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26359 ci.ci_lifr); 26360 26361 /* SIOCLIFREMOVEIF could have removed the ipif */ 26362 ip_ioctl_finish(q, mp, err, 26363 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26364 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 26365 26366 if (entered_ipsq) 26367 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26368 } 26369 26370 /* 26371 * Complete the ioctl. Typically ioctls use the mi package and need to 26372 * do mi_copyout/mi_copy_done. 26373 */ 26374 void 26375 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 26376 ipif_t *ipif, ipsq_t *ipsq) 26377 { 26378 conn_t *connp = NULL; 26379 hook_nic_event_t *info; 26380 26381 if (err == EINPROGRESS) 26382 return; 26383 26384 if (CONN_Q(q)) { 26385 connp = Q_TO_CONN(q); 26386 ASSERT(connp->conn_ref >= 2); 26387 } 26388 26389 switch (mode) { 26390 case COPYOUT: 26391 if (err == 0) 26392 mi_copyout(q, mp); 26393 else 26394 mi_copy_done(q, mp, err); 26395 break; 26396 26397 case NO_COPYOUT: 26398 mi_copy_done(q, mp, err); 26399 break; 26400 26401 default: 26402 /* An ioctl aborted through a conn close would take this path */ 26403 break; 26404 } 26405 26406 /* 26407 * The refhold placed at the start of the ioctl is released here. 26408 */ 26409 if (connp != NULL) 26410 CONN_OPER_PENDING_DONE(connp); 26411 26412 /* 26413 * If the ioctl were an exclusive ioctl it would have set 26414 * IPIF_CHANGING at the start of the ioctl which is undone here. 26415 */ 26416 if (ipif != NULL) { 26417 mutex_enter(&(ipif)->ipif_ill->ill_lock); 26418 ipif->ipif_state_flags &= ~IPIF_CHANGING; 26419 26420 /* 26421 * Unhook the nic event message from the ill and enqueue it into 26422 * the nic event taskq. 26423 */ 26424 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 26425 if (ddi_taskq_dispatch(eventq_queue_nic, 26426 ip_ne_queue_func, (void *)info, DDI_SLEEP) 26427 == DDI_FAILURE) { 26428 ip2dbg(("ip_ioctl_finish: ddi_taskq_dispatch" 26429 "failed\n")); 26430 if (info->hne_data != NULL) 26431 kmem_free(info->hne_data, 26432 info->hne_datalen); 26433 kmem_free(info, sizeof (hook_nic_event_t)); 26434 } 26435 26436 ipif->ipif_ill->ill_nic_event_info = NULL; 26437 } 26438 26439 mutex_exit(&(ipif)->ipif_ill->ill_lock); 26440 } 26441 26442 /* 26443 * Clear the current ipif in the ipsq at the completion of the ioctl. 26444 * Note that a non-null ipsq_current_ipif prevents new ioctls from 26445 * entering the ipsq 26446 */ 26447 if (ipsq != NULL) { 26448 mutex_enter(&ipsq->ipsq_lock); 26449 ipsq->ipsq_current_ipif = NULL; 26450 mutex_exit(&ipsq->ipsq_lock); 26451 } 26452 } 26453 26454 /* 26455 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26456 */ 26457 /* ARGSUSED */ 26458 void 26459 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26460 { 26461 conn_t *connp = arg; 26462 tcp_t *tcp; 26463 26464 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26465 tcp = connp->conn_tcp; 26466 26467 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26468 freemsg(mp); 26469 else 26470 tcp_rput_other(tcp, mp); 26471 CONN_OPER_PENDING_DONE(connp); 26472 } 26473 26474 /* Called from ip_wput for all non data messages */ 26475 /* ARGSUSED */ 26476 void 26477 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26478 { 26479 mblk_t *mp1; 26480 ire_t *ire, *fake_ire; 26481 ill_t *ill; 26482 struct iocblk *iocp; 26483 ip_ioctl_cmd_t *ipip; 26484 cred_t *cr; 26485 conn_t *connp = NULL; 26486 int cmd, err; 26487 nce_t *nce; 26488 ipif_t *ipif; 26489 26490 if (CONN_Q(q)) 26491 connp = Q_TO_CONN(q); 26492 26493 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26494 26495 /* Check if it is a queue to /dev/sctp. */ 26496 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26497 connp->conn_rq == NULL) { 26498 sctp_wput(q, mp); 26499 return; 26500 } 26501 26502 switch (DB_TYPE(mp)) { 26503 case M_IOCTL: 26504 /* 26505 * IOCTL processing begins in ip_sioctl_copyin_setup which 26506 * will arrange to copy in associated control structures. 26507 */ 26508 ip_sioctl_copyin_setup(q, mp); 26509 return; 26510 case M_IOCDATA: 26511 /* 26512 * Ensure that this is associated with one of our trans- 26513 * parent ioctls. If it's not ours, discard it if we're 26514 * running as a driver, or pass it on if we're a module. 26515 */ 26516 iocp = (struct iocblk *)mp->b_rptr; 26517 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26518 if (ipip == NULL) { 26519 if (q->q_next == NULL) { 26520 goto nak; 26521 } else { 26522 putnext(q, mp); 26523 } 26524 return; 26525 } else if ((q->q_next != NULL) && 26526 !(ipip->ipi_flags & IPI_MODOK)) { 26527 /* 26528 * the ioctl is one we recognise, but is not 26529 * consumed by IP as a module, pass M_IOCDATA 26530 * for processing downstream, but only for 26531 * common Streams ioctls. 26532 */ 26533 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26534 putnext(q, mp); 26535 return; 26536 } else { 26537 goto nak; 26538 } 26539 } 26540 26541 /* IOCTL continuation following copyin or copyout. */ 26542 if (mi_copy_state(q, mp, NULL) == -1) { 26543 /* 26544 * The copy operation failed. mi_copy_state already 26545 * cleaned up, so we're out of here. 26546 */ 26547 return; 26548 } 26549 /* 26550 * If we just completed a copy in, we become writer and 26551 * continue processing in ip_sioctl_copyin_done. If it 26552 * was a copy out, we call mi_copyout again. If there is 26553 * nothing more to copy out, it will complete the IOCTL. 26554 */ 26555 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26556 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26557 mi_copy_done(q, mp, EPROTO); 26558 return; 26559 } 26560 /* 26561 * Check for cases that need more copying. A return 26562 * value of 0 means a second copyin has been started, 26563 * so we return; a return value of 1 means no more 26564 * copying is needed, so we continue. 26565 */ 26566 cmd = iocp->ioc_cmd; 26567 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 26568 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 26569 MI_COPY_COUNT(mp) == 1) { 26570 if (ip_copyin_msfilter(q, mp) == 0) 26571 return; 26572 } 26573 /* 26574 * Refhold the conn, till the ioctl completes. This is 26575 * needed in case the ioctl ends up in the pending mp 26576 * list. Every mp in the ill_pending_mp list and 26577 * the ipsq_pending_mp must have a refhold on the conn 26578 * to resume processing. The refhold is released when 26579 * the ioctl completes. (normally or abnormally) 26580 * In all cases ip_ioctl_finish is called to finish 26581 * the ioctl. 26582 */ 26583 if (connp != NULL) { 26584 /* This is not a reentry */ 26585 ASSERT(ipsq == NULL); 26586 CONN_INC_REF(connp); 26587 } else { 26588 if (!(ipip->ipi_flags & IPI_MODOK)) { 26589 mi_copy_done(q, mp, EINVAL); 26590 return; 26591 } 26592 } 26593 26594 ip_process_ioctl(ipsq, q, mp, ipip); 26595 26596 } else { 26597 mi_copyout(q, mp); 26598 } 26599 return; 26600 nak: 26601 iocp->ioc_error = EINVAL; 26602 mp->b_datap->db_type = M_IOCNAK; 26603 iocp->ioc_count = 0; 26604 qreply(q, mp); 26605 return; 26606 26607 case M_IOCNAK: 26608 /* 26609 * The only way we could get here is if a resolver didn't like 26610 * an IOCTL we sent it. This shouldn't happen. 26611 */ 26612 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 26613 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 26614 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 26615 freemsg(mp); 26616 return; 26617 case M_IOCACK: 26618 /* Finish socket ioctls passed through to ARP. */ 26619 ip_sioctl_iocack(q, mp); 26620 return; 26621 case M_FLUSH: 26622 if (*mp->b_rptr & FLUSHW) 26623 flushq(q, FLUSHALL); 26624 if (q->q_next) { 26625 /* 26626 * M_FLUSH is sent up to IP by some drivers during 26627 * unbind. ip_rput has already replied to it. We are 26628 * here for the M_FLUSH that we originated in IP 26629 * before sending the unbind request to the driver. 26630 * Just free it as we don't queue packets in IP 26631 * on the write side of the device instance. 26632 */ 26633 freemsg(mp); 26634 return; 26635 } 26636 if (*mp->b_rptr & FLUSHR) { 26637 *mp->b_rptr &= ~FLUSHW; 26638 qreply(q, mp); 26639 return; 26640 } 26641 freemsg(mp); 26642 return; 26643 case IRE_DB_REQ_TYPE: 26644 /* An Upper Level Protocol wants a copy of an IRE. */ 26645 ip_ire_req(q, mp); 26646 return; 26647 case M_CTL: 26648 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 26649 break; 26650 26651 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 26652 TUN_HELLO) { 26653 ASSERT(connp != NULL); 26654 connp->conn_flags |= IPCL_IPTUN; 26655 freeb(mp); 26656 return; 26657 } 26658 26659 if (connp != NULL && *(uint32_t *)mp->b_rptr == 26660 IP_ULP_OUT_LABELED) { 26661 out_labeled_t *olp; 26662 26663 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 26664 break; 26665 olp = (out_labeled_t *)mp->b_rptr; 26666 connp->conn_ulp_labeled = olp->out_qnext == q; 26667 freemsg(mp); 26668 return; 26669 } 26670 26671 /* M_CTL messages are used by ARP to tell us things. */ 26672 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 26673 break; 26674 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 26675 case AR_ENTRY_SQUERY: 26676 ip_wput_ctl(q, mp); 26677 return; 26678 case AR_CLIENT_NOTIFY: 26679 ip_arp_news(q, mp); 26680 return; 26681 case AR_DLPIOP_DONE: 26682 ASSERT(q->q_next != NULL); 26683 ill = (ill_t *)q->q_ptr; 26684 /* qwriter_ip releases the refhold */ 26685 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 26686 ill_refhold(ill); 26687 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 26688 CUR_OP, B_FALSE); 26689 return; 26690 case AR_ARP_CLOSING: 26691 /* 26692 * ARP (above us) is closing. If no ARP bringup is 26693 * currently pending, ack the message so that ARP 26694 * can complete its close. Also mark ill_arp_closing 26695 * so that new ARP bringups will fail. If any 26696 * ARP bringup is currently in progress, we will 26697 * ack this when the current ARP bringup completes. 26698 */ 26699 ASSERT(q->q_next != NULL); 26700 ill = (ill_t *)q->q_ptr; 26701 mutex_enter(&ill->ill_lock); 26702 ill->ill_arp_closing = 1; 26703 if (!ill->ill_arp_bringup_pending) { 26704 mutex_exit(&ill->ill_lock); 26705 qreply(q, mp); 26706 } else { 26707 mutex_exit(&ill->ill_lock); 26708 freemsg(mp); 26709 } 26710 return; 26711 case AR_ARP_EXTEND: 26712 /* 26713 * The ARP module above us is capable of duplicate 26714 * address detection. Old ATM drivers will not send 26715 * this message. 26716 */ 26717 ASSERT(q->q_next != NULL); 26718 ill = (ill_t *)q->q_ptr; 26719 ill->ill_arp_extend = B_TRUE; 26720 freemsg(mp); 26721 return; 26722 default: 26723 break; 26724 } 26725 break; 26726 case M_PROTO: 26727 case M_PCPROTO: 26728 /* 26729 * The only PROTO messages we expect are ULP binds and 26730 * copies of option negotiation acknowledgements. 26731 */ 26732 switch (((union T_primitives *)mp->b_rptr)->type) { 26733 case O_T_BIND_REQ: 26734 case T_BIND_REQ: { 26735 /* Request can get queued in bind */ 26736 ASSERT(connp != NULL); 26737 /* 26738 * Both TCP and UDP call ip_bind_{v4,v6}() directly 26739 * instead of going through this path. We only get 26740 * here in the following cases: 26741 * 26742 * a. Bind retries, where ipsq is non-NULL. 26743 * b. T_BIND_REQ is issued from non TCP/UDP 26744 * transport, e.g. icmp for raw socket, 26745 * in which case ipsq will be NULL. 26746 */ 26747 ASSERT(ipsq != NULL || 26748 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 26749 26750 /* Don't increment refcnt if this is a re-entry */ 26751 if (ipsq == NULL) 26752 CONN_INC_REF(connp); 26753 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 26754 connp, NULL) : ip_bind_v4(q, mp, connp); 26755 if (mp == NULL) 26756 return; 26757 if (IPCL_IS_TCP(connp)) { 26758 /* 26759 * In the case of TCP endpoint we 26760 * come here only for bind retries 26761 */ 26762 ASSERT(ipsq != NULL); 26763 CONN_INC_REF(connp); 26764 squeue_fill(connp->conn_sqp, mp, 26765 ip_resume_tcp_bind, connp, 26766 SQTAG_BIND_RETRY); 26767 return; 26768 } else if (IPCL_IS_UDP(connp)) { 26769 /* 26770 * In the case of UDP endpoint we 26771 * come here only for bind retries 26772 */ 26773 ASSERT(ipsq != NULL); 26774 udp_resume_bind(connp, mp); 26775 return; 26776 } 26777 qreply(q, mp); 26778 CONN_OPER_PENDING_DONE(connp); 26779 return; 26780 } 26781 case T_SVR4_OPTMGMT_REQ: 26782 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 26783 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 26784 26785 ASSERT(connp != NULL); 26786 if (!snmpcom_req(q, mp, ip_snmp_set, 26787 ip_snmp_get, cr)) { 26788 /* 26789 * Call svr4_optcom_req so that it can 26790 * generate the ack. We don't come here 26791 * if this operation is being restarted. 26792 * ip_restart_optmgmt will drop the conn ref. 26793 * In the case of ipsec option after the ipsec 26794 * load is complete conn_restart_ipsec_waiter 26795 * drops the conn ref. 26796 */ 26797 ASSERT(ipsq == NULL); 26798 CONN_INC_REF(connp); 26799 if (ip_check_for_ipsec_opt(q, mp)) 26800 return; 26801 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 26802 if (err != EINPROGRESS) { 26803 /* Operation is done */ 26804 CONN_OPER_PENDING_DONE(connp); 26805 } 26806 } 26807 return; 26808 case T_OPTMGMT_REQ: 26809 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 26810 /* 26811 * Note: No snmpcom_req support through new 26812 * T_OPTMGMT_REQ. 26813 * Call tpi_optcom_req so that it can 26814 * generate the ack. 26815 */ 26816 ASSERT(connp != NULL); 26817 ASSERT(ipsq == NULL); 26818 /* 26819 * We don't come here for restart. ip_restart_optmgmt 26820 * will drop the conn ref. In the case of ipsec option 26821 * after the ipsec load is complete 26822 * conn_restart_ipsec_waiter drops the conn ref. 26823 */ 26824 CONN_INC_REF(connp); 26825 if (ip_check_for_ipsec_opt(q, mp)) 26826 return; 26827 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 26828 if (err != EINPROGRESS) { 26829 /* Operation is done */ 26830 CONN_OPER_PENDING_DONE(connp); 26831 } 26832 return; 26833 case T_UNBIND_REQ: 26834 mp = ip_unbind(q, mp); 26835 qreply(q, mp); 26836 return; 26837 default: 26838 /* 26839 * Have to drop any DLPI messages coming down from 26840 * arp (such as an info_req which would cause ip 26841 * to receive an extra info_ack if it was passed 26842 * through. 26843 */ 26844 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 26845 (int)*(uint_t *)mp->b_rptr)); 26846 freemsg(mp); 26847 return; 26848 } 26849 /* NOTREACHED */ 26850 case IRE_DB_TYPE: { 26851 nce_t *nce; 26852 ill_t *ill; 26853 in6_addr_t gw_addr_v6; 26854 26855 26856 /* 26857 * This is a response back from a resolver. It 26858 * consists of a message chain containing: 26859 * IRE_MBLK-->LL_HDR_MBLK->pkt 26860 * The IRE_MBLK is the one we allocated in ip_newroute. 26861 * The LL_HDR_MBLK is the DLPI header to use to get 26862 * the attached packet, and subsequent ones for the 26863 * same destination, transmitted. 26864 */ 26865 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 26866 break; 26867 /* 26868 * First, check to make sure the resolution succeeded. 26869 * If it failed, the second mblk will be empty. 26870 * If it is, free the chain, dropping the packet. 26871 * (We must ire_delete the ire; that frees the ire mblk) 26872 * We're doing this now to support PVCs for ATM; it's 26873 * a partial xresolv implementation. When we fully implement 26874 * xresolv interfaces, instead of freeing everything here 26875 * we'll initiate neighbor discovery. 26876 * 26877 * For v4 (ARP and other external resolvers) the resolver 26878 * frees the message, so no check is needed. This check 26879 * is required, though, for a full xresolve implementation. 26880 * Including this code here now both shows how external 26881 * resolvers can NACK a resolution request using an 26882 * existing design that has no specific provisions for NACKs, 26883 * and also takes into account that the current non-ARP 26884 * external resolver has been coded to use this method of 26885 * NACKing for all IPv6 (xresolv) cases, 26886 * whether our xresolv implementation is complete or not. 26887 * 26888 */ 26889 ire = (ire_t *)mp->b_rptr; 26890 ill = ire_to_ill(ire); 26891 mp1 = mp->b_cont; /* dl_unitdata_req */ 26892 if (mp1->b_rptr == mp1->b_wptr) { 26893 if (ire->ire_ipversion == IPV6_VERSION) { 26894 /* 26895 * XRESOLV interface. 26896 */ 26897 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26898 mutex_enter(&ire->ire_lock); 26899 gw_addr_v6 = ire->ire_gateway_addr_v6; 26900 mutex_exit(&ire->ire_lock); 26901 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26902 nce = ndp_lookup_v6(ill, 26903 &ire->ire_addr_v6, B_FALSE); 26904 } else { 26905 nce = ndp_lookup_v6(ill, &gw_addr_v6, 26906 B_FALSE); 26907 } 26908 if (nce != NULL) { 26909 nce_resolv_failed(nce); 26910 ndp_delete(nce); 26911 NCE_REFRELE(nce); 26912 } 26913 } 26914 mp->b_cont = NULL; 26915 freemsg(mp1); /* frees the pkt as well */ 26916 ASSERT(ire->ire_nce == NULL); 26917 ire_delete((ire_t *)mp->b_rptr); 26918 return; 26919 } 26920 26921 /* 26922 * Split them into IRE_MBLK and pkt and feed it into 26923 * ire_add_then_send. Then in ire_add_then_send 26924 * the IRE will be added, and then the packet will be 26925 * run back through ip_wput. This time it will make 26926 * it to the wire. 26927 */ 26928 mp->b_cont = NULL; 26929 mp = mp1->b_cont; /* now, mp points to pkt */ 26930 mp1->b_cont = NULL; 26931 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 26932 if (ire->ire_ipversion == IPV6_VERSION) { 26933 /* 26934 * XRESOLV interface. Find the nce and put a copy 26935 * of the dl_unitdata_req in nce_res_mp 26936 */ 26937 ASSERT(ill->ill_flags & ILLF_XRESOLV); 26938 mutex_enter(&ire->ire_lock); 26939 gw_addr_v6 = ire->ire_gateway_addr_v6; 26940 mutex_exit(&ire->ire_lock); 26941 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 26942 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 26943 B_FALSE); 26944 } else { 26945 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 26946 } 26947 if (nce != NULL) { 26948 /* 26949 * We have to protect nce_res_mp here 26950 * from being accessed by other threads 26951 * while we change the mblk pointer. 26952 * Other functions will also lock the nce when 26953 * accessing nce_res_mp. 26954 * 26955 * The reason we change the mblk pointer 26956 * here rather than copying the resolved address 26957 * into the template is that, unlike with 26958 * ethernet, we have no guarantee that the 26959 * resolved address length will be 26960 * smaller than or equal to the lla length 26961 * with which the template was allocated, 26962 * (for ethernet, they're equal) 26963 * so we have to use the actual resolved 26964 * address mblk - which holds the real 26965 * dl_unitdata_req with the resolved address. 26966 * 26967 * Doing this is the same behavior as was 26968 * previously used in the v4 ARP case. 26969 */ 26970 mutex_enter(&nce->nce_lock); 26971 if (nce->nce_res_mp != NULL) 26972 freemsg(nce->nce_res_mp); 26973 nce->nce_res_mp = mp1; 26974 mutex_exit(&nce->nce_lock); 26975 /* 26976 * We do a fastpath probe here because 26977 * we have resolved the address without 26978 * using Neighbor Discovery. 26979 * In the non-XRESOLV v6 case, the fastpath 26980 * probe is done right after neighbor 26981 * discovery completes. 26982 */ 26983 if (nce->nce_res_mp != NULL) { 26984 int res; 26985 nce_fastpath_list_add(nce); 26986 res = ill_fastpath_probe(ill, 26987 nce->nce_res_mp); 26988 if (res != 0 && res != EAGAIN) 26989 nce_fastpath_list_delete(nce); 26990 } 26991 26992 ire_add_then_send(q, ire, mp); 26993 /* 26994 * Now we have to clean out any packets 26995 * that may have been queued on the nce 26996 * while it was waiting for address resolution 26997 * to complete. 26998 */ 26999 mutex_enter(&nce->nce_lock); 27000 mp1 = nce->nce_qd_mp; 27001 nce->nce_qd_mp = NULL; 27002 mutex_exit(&nce->nce_lock); 27003 while (mp1 != NULL) { 27004 mblk_t *nxt_mp; 27005 queue_t *fwdq = NULL; 27006 ill_t *inbound_ill; 27007 uint_t ifindex; 27008 27009 nxt_mp = mp1->b_next; 27010 mp1->b_next = NULL; 27011 /* 27012 * Retrieve ifindex stored in 27013 * ip_rput_data_v6() 27014 */ 27015 ifindex = 27016 (uint_t)(uintptr_t)mp1->b_prev; 27017 inbound_ill = 27018 ill_lookup_on_ifindex(ifindex, 27019 B_TRUE, NULL, NULL, NULL, 27020 NULL); 27021 mp1->b_prev = NULL; 27022 if (inbound_ill != NULL) 27023 fwdq = inbound_ill->ill_rq; 27024 27025 if (fwdq != NULL) { 27026 put(fwdq, mp1); 27027 ill_refrele(inbound_ill); 27028 } else 27029 put(WR(ill->ill_rq), mp1); 27030 mp1 = nxt_mp; 27031 } 27032 NCE_REFRELE(nce); 27033 } else { /* nce is NULL; clean up */ 27034 ire_delete(ire); 27035 freemsg(mp); 27036 freemsg(mp1); 27037 return; 27038 } 27039 } else { 27040 nce_t *arpce; 27041 /* 27042 * Link layer resolution succeeded. Recompute the 27043 * ire_nce. 27044 */ 27045 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27046 if ((arpce = ndp_lookup_v4(ill, 27047 (ire->ire_gateway_addr != INADDR_ANY ? 27048 &ire->ire_gateway_addr : &ire->ire_addr), 27049 B_FALSE)) == NULL) { 27050 freeb(ire->ire_mp); 27051 freeb(mp1); 27052 freemsg(mp); 27053 return; 27054 } 27055 mutex_enter(&arpce->nce_lock); 27056 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27057 if (arpce->nce_state == ND_REACHABLE) { 27058 /* 27059 * Someone resolved this before us; 27060 * cleanup the res_mp. Since ire has 27061 * not been added yet, the call to ire_add_v4 27062 * from ire_add_then_send (when a dup is 27063 * detected) will clean up the ire. 27064 */ 27065 freeb(mp1); 27066 } else { 27067 if (arpce->nce_res_mp != NULL) 27068 freemsg(arpce->nce_res_mp); 27069 arpce->nce_res_mp = mp1; 27070 arpce->nce_state = ND_REACHABLE; 27071 } 27072 mutex_exit(&arpce->nce_lock); 27073 if (ire->ire_marks & IRE_MARK_NOADD) { 27074 /* 27075 * this ire will not be added to the ire 27076 * cache table, so we can set the ire_nce 27077 * here, as there are no atomicity constraints. 27078 */ 27079 ire->ire_nce = arpce; 27080 /* 27081 * We are associating this nce with the ire 27082 * so change the nce ref taken in 27083 * ndp_lookup_v4() from 27084 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27085 */ 27086 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27087 } else { 27088 NCE_REFRELE(arpce); 27089 } 27090 ire_add_then_send(q, ire, mp); 27091 } 27092 return; /* All is well, the packet has been sent. */ 27093 } 27094 case IRE_ARPRESOLVE_TYPE: { 27095 27096 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27097 break; 27098 mp1 = mp->b_cont; /* dl_unitdata_req */ 27099 mp->b_cont = NULL; 27100 /* 27101 * First, check to make sure the resolution succeeded. 27102 * If it failed, the second mblk will be empty. 27103 */ 27104 if (mp1->b_rptr == mp1->b_wptr) { 27105 /* cleanup the incomplete ire, free queued packets */ 27106 freemsg(mp); /* fake ire */ 27107 freeb(mp1); /* dl_unitdata response */ 27108 return; 27109 } 27110 27111 /* 27112 * update any incomplete nce_t found. we lookup the ctable 27113 * and find the nce from the ire->ire_nce because we need 27114 * to pass the ire to ip_xmit_v4 later, and can find both 27115 * ire and nce in one lookup from the ctable. 27116 */ 27117 fake_ire = (ire_t *)mp->b_rptr; 27118 /* 27119 * By the time we come back here from ARP 27120 * the logical outgoing interface of the incomplete ire 27121 * we added in ire_forward could have disappeared, 27122 * causing the incomplete ire to also have 27123 * dissapeared. So we need to retreive the 27124 * proper ipif for the ire before looking 27125 * in ctable; do the ctablelookup based on ire_ipif_seqid 27126 */ 27127 ill = q->q_ptr; 27128 27129 /* Get the outgoing ipif */ 27130 mutex_enter(&ill->ill_lock); 27131 if (ill->ill_state_flags & ILL_CONDEMNED) { 27132 mutex_exit(&ill->ill_lock); 27133 freemsg(mp); /* fake ire */ 27134 freeb(mp1); /* dl_unitdata response */ 27135 return; 27136 } 27137 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27138 27139 if (ipif == NULL) { 27140 mutex_exit(&ill->ill_lock); 27141 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27142 freemsg(mp); 27143 freeb(mp1); 27144 return; 27145 } 27146 ipif_refhold_locked(ipif); 27147 mutex_exit(&ill->ill_lock); 27148 ire = ire_ctable_lookup(fake_ire->ire_addr, 27149 fake_ire->ire_gateway_addr, IRE_CACHE, 27150 ipif, fake_ire->ire_zoneid, NULL, 27151 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 27152 ipif_refrele(ipif); 27153 if (ire == NULL) { 27154 /* 27155 * no ire was found; check if there is an nce 27156 * for this lookup; if it has no ire's pointing at it 27157 * cleanup. 27158 */ 27159 if ((nce = ndp_lookup_v4(ill, 27160 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27161 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27162 B_FALSE)) != NULL) { 27163 /* 27164 * cleanup: just reset nce. 27165 * We check for refcnt 2 (one for the nce 27166 * hash list + 1 for the ref taken by 27167 * ndp_lookup_v4) to ensure that there are 27168 * no ire's pointing at the nce. 27169 */ 27170 if (nce->nce_refcnt == 2) { 27171 nce = nce_reinit(nce); 27172 } 27173 if (nce != NULL) 27174 NCE_REFRELE(nce); 27175 } 27176 freeb(mp1); /* dl_unitdata response */ 27177 freemsg(mp); /* fake ire */ 27178 return; 27179 } 27180 nce = ire->ire_nce; 27181 DTRACE_PROBE2(ire__arpresolve__type, 27182 ire_t *, ire, nce_t *, nce); 27183 ASSERT(nce->nce_state != ND_INITIAL); 27184 mutex_enter(&nce->nce_lock); 27185 nce->nce_last = TICK_TO_MSEC(lbolt64); 27186 if (nce->nce_state == ND_REACHABLE) { 27187 /* 27188 * Someone resolved this before us; 27189 * our response is not needed any more. 27190 */ 27191 mutex_exit(&nce->nce_lock); 27192 freeb(mp1); /* dl_unitdata response */ 27193 } else { 27194 if (nce->nce_res_mp != NULL) { 27195 freemsg(nce->nce_res_mp); 27196 /* existing dl_unitdata template */ 27197 } 27198 nce->nce_res_mp = mp1; 27199 nce->nce_state = ND_REACHABLE; 27200 mutex_exit(&nce->nce_lock); 27201 ire_fastpath(ire); 27202 } 27203 /* 27204 * The cached nce_t has been updated to be reachable; 27205 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 27206 */ 27207 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27208 freemsg(mp); 27209 /* 27210 * send out queued packets. 27211 */ 27212 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27213 27214 IRE_REFRELE(ire); 27215 return; 27216 } 27217 default: 27218 break; 27219 } 27220 if (q->q_next) { 27221 putnext(q, mp); 27222 } else 27223 freemsg(mp); 27224 } 27225 27226 /* 27227 * Process IP options in an outbound packet. Modify the destination if there 27228 * is a source route option. 27229 * Returns non-zero if something fails in which case an ICMP error has been 27230 * sent and mp freed. 27231 */ 27232 static int 27233 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27234 boolean_t mctl_present, zoneid_t zoneid) 27235 { 27236 ipoptp_t opts; 27237 uchar_t *opt; 27238 uint8_t optval; 27239 uint8_t optlen; 27240 ipaddr_t dst; 27241 intptr_t code = 0; 27242 mblk_t *mp; 27243 ire_t *ire = NULL; 27244 27245 ip2dbg(("ip_wput_options\n")); 27246 mp = ipsec_mp; 27247 if (mctl_present) { 27248 mp = ipsec_mp->b_cont; 27249 } 27250 27251 dst = ipha->ipha_dst; 27252 for (optval = ipoptp_first(&opts, ipha); 27253 optval != IPOPT_EOL; 27254 optval = ipoptp_next(&opts)) { 27255 opt = opts.ipoptp_cur; 27256 optlen = opts.ipoptp_len; 27257 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27258 optval, optlen)); 27259 switch (optval) { 27260 uint32_t off; 27261 case IPOPT_SSRR: 27262 case IPOPT_LSRR: 27263 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27264 ip1dbg(( 27265 "ip_wput_options: bad option offset\n")); 27266 code = (char *)&opt[IPOPT_OLEN] - 27267 (char *)ipha; 27268 goto param_prob; 27269 } 27270 off = opt[IPOPT_OFFSET]; 27271 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27272 ntohl(dst))); 27273 /* 27274 * For strict: verify that dst is directly 27275 * reachable. 27276 */ 27277 if (optval == IPOPT_SSRR) { 27278 ire = ire_ftable_lookup(dst, 0, 0, 27279 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27280 MBLK_GETLABEL(mp), 27281 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 27282 if (ire == NULL) { 27283 ip1dbg(("ip_wput_options: SSRR not" 27284 " directly reachable: 0x%x\n", 27285 ntohl(dst))); 27286 goto bad_src_route; 27287 } 27288 ire_refrele(ire); 27289 } 27290 break; 27291 case IPOPT_RR: 27292 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27293 ip1dbg(( 27294 "ip_wput_options: bad option offset\n")); 27295 code = (char *)&opt[IPOPT_OLEN] - 27296 (char *)ipha; 27297 goto param_prob; 27298 } 27299 break; 27300 case IPOPT_TS: 27301 /* 27302 * Verify that length >=5 and that there is either 27303 * room for another timestamp or that the overflow 27304 * counter is not maxed out. 27305 */ 27306 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27307 if (optlen < IPOPT_MINLEN_IT) { 27308 goto param_prob; 27309 } 27310 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27311 ip1dbg(( 27312 "ip_wput_options: bad option offset\n")); 27313 code = (char *)&opt[IPOPT_OFFSET] - 27314 (char *)ipha; 27315 goto param_prob; 27316 } 27317 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27318 case IPOPT_TS_TSONLY: 27319 off = IPOPT_TS_TIMELEN; 27320 break; 27321 case IPOPT_TS_TSANDADDR: 27322 case IPOPT_TS_PRESPEC: 27323 case IPOPT_TS_PRESPEC_RFC791: 27324 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27325 break; 27326 default: 27327 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27328 (char *)ipha; 27329 goto param_prob; 27330 } 27331 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27332 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27333 /* 27334 * No room and the overflow counter is 15 27335 * already. 27336 */ 27337 goto param_prob; 27338 } 27339 break; 27340 } 27341 } 27342 27343 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27344 return (0); 27345 27346 ip1dbg(("ip_wput_options: error processing IP options.")); 27347 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27348 27349 param_prob: 27350 /* 27351 * Since ip_wput() isn't close to finished, we fill 27352 * in enough of the header for credible error reporting. 27353 */ 27354 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27355 /* Failed */ 27356 freemsg(ipsec_mp); 27357 return (-1); 27358 } 27359 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 27360 return (-1); 27361 27362 bad_src_route: 27363 /* 27364 * Since ip_wput() isn't close to finished, we fill 27365 * in enough of the header for credible error reporting. 27366 */ 27367 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27368 /* Failed */ 27369 freemsg(ipsec_mp); 27370 return (-1); 27371 } 27372 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 27373 return (-1); 27374 } 27375 27376 /* 27377 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27378 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27379 * thru /etc/system. 27380 */ 27381 #define CONN_MAXDRAINCNT 64 27382 27383 static void 27384 conn_drain_init(void) 27385 { 27386 int i; 27387 27388 conn_drain_list_cnt = conn_drain_nthreads; 27389 27390 if ((conn_drain_list_cnt == 0) || 27391 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27392 /* 27393 * Default value of the number of drainers is the 27394 * number of cpus, subject to maximum of 8 drainers. 27395 */ 27396 if (boot_max_ncpus != -1) 27397 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27398 else 27399 conn_drain_list_cnt = MIN(max_ncpus, 8); 27400 } 27401 27402 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 27403 KM_SLEEP); 27404 27405 for (i = 0; i < conn_drain_list_cnt; i++) { 27406 mutex_init(&conn_drain_list[i].idl_lock, NULL, 27407 MUTEX_DEFAULT, NULL); 27408 } 27409 } 27410 27411 static void 27412 conn_drain_fini(void) 27413 { 27414 int i; 27415 27416 for (i = 0; i < conn_drain_list_cnt; i++) 27417 mutex_destroy(&conn_drain_list[i].idl_lock); 27418 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 27419 conn_drain_list = NULL; 27420 } 27421 27422 /* 27423 * Note: For an overview of how flowcontrol is handled in IP please see the 27424 * IP Flowcontrol notes at the top of this file. 27425 * 27426 * Flow control has blocked us from proceeding. Insert the given conn in one 27427 * of the conn drain lists. These conn wq's will be qenabled later on when 27428 * STREAMS flow control does a backenable. conn_walk_drain will enable 27429 * the first conn in each of these drain lists. Each of these qenabled conns 27430 * in turn enables the next in the list, after it runs, or when it closes, 27431 * thus sustaining the drain process. 27432 * 27433 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27434 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27435 * running at any time, on a given conn, since there can be only 1 service proc 27436 * running on a queue at any time. 27437 */ 27438 void 27439 conn_drain_insert(conn_t *connp) 27440 { 27441 idl_t *idl; 27442 uint_t index; 27443 27444 mutex_enter(&connp->conn_lock); 27445 if (connp->conn_state_flags & CONN_CLOSING) { 27446 /* 27447 * The conn is closing as a result of which CONN_CLOSING 27448 * is set. Return. 27449 */ 27450 mutex_exit(&connp->conn_lock); 27451 return; 27452 } else if (connp->conn_idl == NULL) { 27453 /* 27454 * Assign the next drain list round robin. We dont' use 27455 * a lock, and thus it may not be strictly round robin. 27456 * Atomicity of load/stores is enough to make sure that 27457 * conn_drain_list_index is always within bounds. 27458 */ 27459 index = conn_drain_list_index; 27460 ASSERT(index < conn_drain_list_cnt); 27461 connp->conn_idl = &conn_drain_list[index]; 27462 index++; 27463 if (index == conn_drain_list_cnt) 27464 index = 0; 27465 conn_drain_list_index = index; 27466 } 27467 mutex_exit(&connp->conn_lock); 27468 27469 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27470 if ((connp->conn_drain_prev != NULL) || 27471 (connp->conn_state_flags & CONN_CLOSING)) { 27472 /* 27473 * The conn is already in the drain list, OR 27474 * the conn is closing. We need to check again for 27475 * the closing case again since close can happen 27476 * after we drop the conn_lock, and before we 27477 * acquire the CONN_DRAIN_LIST_LOCK. 27478 */ 27479 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27480 return; 27481 } else { 27482 idl = connp->conn_idl; 27483 } 27484 27485 /* 27486 * The conn is not in the drain list. Insert it at the 27487 * tail of the drain list. The drain list is circular 27488 * and doubly linked. idl_conn points to the 1st element 27489 * in the list. 27490 */ 27491 if (idl->idl_conn == NULL) { 27492 idl->idl_conn = connp; 27493 connp->conn_drain_next = connp; 27494 connp->conn_drain_prev = connp; 27495 } else { 27496 conn_t *head = idl->idl_conn; 27497 27498 connp->conn_drain_next = head; 27499 connp->conn_drain_prev = head->conn_drain_prev; 27500 head->conn_drain_prev->conn_drain_next = connp; 27501 head->conn_drain_prev = connp; 27502 } 27503 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27504 } 27505 27506 /* 27507 * This conn is closing, and we are called from ip_close. OR 27508 * This conn has been serviced by ip_wsrv, and we need to do the tail 27509 * processing. 27510 * If this conn is part of the drain list, we may need to sustain the drain 27511 * process by qenabling the next conn in the drain list. We may also need to 27512 * remove this conn from the list, if it is done. 27513 */ 27514 static void 27515 conn_drain_tail(conn_t *connp, boolean_t closing) 27516 { 27517 idl_t *idl; 27518 27519 /* 27520 * connp->conn_idl is stable at this point, and no lock is needed 27521 * to check it. If we are called from ip_close, close has already 27522 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27523 * called us only because conn_idl is non-null. If we are called thru 27524 * service, conn_idl could be null, but it cannot change because 27525 * service is single-threaded per queue, and there cannot be another 27526 * instance of service trying to call conn_drain_insert on this conn 27527 * now. 27528 */ 27529 ASSERT(!closing || (connp->conn_idl != NULL)); 27530 27531 /* 27532 * If connp->conn_idl is null, the conn has not been inserted into any 27533 * drain list even once since creation of the conn. Just return. 27534 */ 27535 if (connp->conn_idl == NULL) 27536 return; 27537 27538 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27539 27540 if (connp->conn_drain_prev == NULL) { 27541 /* This conn is currently not in the drain list. */ 27542 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27543 return; 27544 } 27545 idl = connp->conn_idl; 27546 if (idl->idl_conn_draining == connp) { 27547 /* 27548 * This conn is the current drainer. If this is the last conn 27549 * in the drain list, we need to do more checks, in the 'if' 27550 * below. Otherwwise we need to just qenable the next conn, 27551 * to sustain the draining, and is handled in the 'else' 27552 * below. 27553 */ 27554 if (connp->conn_drain_next == idl->idl_conn) { 27555 /* 27556 * This conn is the last in this list. This round 27557 * of draining is complete. If idl_repeat is set, 27558 * it means another flow enabling has happened from 27559 * the driver/streams and we need to another round 27560 * of draining. 27561 * If there are more than 2 conns in the drain list, 27562 * do a left rotate by 1, so that all conns except the 27563 * conn at the head move towards the head by 1, and the 27564 * the conn at the head goes to the tail. This attempts 27565 * a more even share for all queues that are being 27566 * drained. 27567 */ 27568 if ((connp->conn_drain_next != connp) && 27569 (idl->idl_conn->conn_drain_next != connp)) { 27570 idl->idl_conn = idl->idl_conn->conn_drain_next; 27571 } 27572 if (idl->idl_repeat) { 27573 qenable(idl->idl_conn->conn_wq); 27574 idl->idl_conn_draining = idl->idl_conn; 27575 idl->idl_repeat = 0; 27576 } else { 27577 idl->idl_conn_draining = NULL; 27578 } 27579 } else { 27580 /* 27581 * If the next queue that we are now qenable'ing, 27582 * is closing, it will remove itself from this list 27583 * and qenable the subsequent queue in ip_close(). 27584 * Serialization is acheived thru idl_lock. 27585 */ 27586 qenable(connp->conn_drain_next->conn_wq); 27587 idl->idl_conn_draining = connp->conn_drain_next; 27588 } 27589 } 27590 if (!connp->conn_did_putbq || closing) { 27591 /* 27592 * Remove ourself from the drain list, if we did not do 27593 * a putbq, or if the conn is closing. 27594 * Note: It is possible that q->q_first is non-null. It means 27595 * that these messages landed after we did a enableok() in 27596 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 27597 * service them. 27598 */ 27599 if (connp->conn_drain_next == connp) { 27600 /* Singleton in the list */ 27601 ASSERT(connp->conn_drain_prev == connp); 27602 idl->idl_conn = NULL; 27603 idl->idl_conn_draining = NULL; 27604 } else { 27605 connp->conn_drain_prev->conn_drain_next = 27606 connp->conn_drain_next; 27607 connp->conn_drain_next->conn_drain_prev = 27608 connp->conn_drain_prev; 27609 if (idl->idl_conn == connp) 27610 idl->idl_conn = connp->conn_drain_next; 27611 ASSERT(idl->idl_conn_draining != connp); 27612 27613 } 27614 connp->conn_drain_next = NULL; 27615 connp->conn_drain_prev = NULL; 27616 } 27617 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27618 } 27619 27620 /* 27621 * Write service routine. Shared perimeter entry point. 27622 * ip_wsrv can be called in any of the following ways. 27623 * 1. The device queue's messages has fallen below the low water mark 27624 * and STREAMS has backenabled the ill_wq. We walk thru all the 27625 * the drain lists and backenable the first conn in each list. 27626 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 27627 * qenabled non-tcp upper layers. We start dequeing messages and call 27628 * ip_wput for each message. 27629 */ 27630 27631 void 27632 ip_wsrv(queue_t *q) 27633 { 27634 conn_t *connp; 27635 ill_t *ill; 27636 mblk_t *mp; 27637 27638 if (q->q_next) { 27639 ill = (ill_t *)q->q_ptr; 27640 if (ill->ill_state_flags == 0) { 27641 /* 27642 * The device flow control has opened up. 27643 * Walk through conn drain lists and qenable the 27644 * first conn in each list. This makes sense only 27645 * if the stream is fully plumbed and setup. 27646 * Hence the if check above. 27647 */ 27648 ip1dbg(("ip_wsrv: walking\n")); 27649 conn_walk_drain(); 27650 } 27651 return; 27652 } 27653 27654 connp = Q_TO_CONN(q); 27655 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 27656 27657 /* 27658 * 1. Set conn_draining flag to signal that service is active. 27659 * 27660 * 2. ip_output determines whether it has been called from service, 27661 * based on the last parameter. If it is IP_WSRV it concludes it 27662 * has been called from service. 27663 * 27664 * 3. Message ordering is preserved by the following logic. 27665 * i. A directly called ip_output (i.e. not thru service) will queue 27666 * the message at the tail, if conn_draining is set (i.e. service 27667 * is running) or if q->q_first is non-null. 27668 * 27669 * ii. If ip_output is called from service, and if ip_output cannot 27670 * putnext due to flow control, it does a putbq. 27671 * 27672 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 27673 * (causing an infinite loop). 27674 */ 27675 ASSERT(!connp->conn_did_putbq); 27676 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 27677 connp->conn_draining = 1; 27678 noenable(q); 27679 while ((mp = getq(q)) != NULL) { 27680 ASSERT(CONN_Q(q)); 27681 27682 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 27683 if (connp->conn_did_putbq) { 27684 /* ip_wput did a putbq */ 27685 break; 27686 } 27687 } 27688 /* 27689 * At this point, a thread coming down from top, calling 27690 * ip_wput, may end up queueing the message. We have not yet 27691 * enabled the queue, so ip_wsrv won't be called again. 27692 * To avoid this race, check q->q_first again (in the loop) 27693 * If the other thread queued the message before we call 27694 * enableok(), we will catch it in the q->q_first check. 27695 * If the other thread queues the message after we call 27696 * enableok(), ip_wsrv will be called again by STREAMS. 27697 */ 27698 connp->conn_draining = 0; 27699 enableok(q); 27700 } 27701 27702 /* Enable the next conn for draining */ 27703 conn_drain_tail(connp, B_FALSE); 27704 27705 connp->conn_did_putbq = 0; 27706 } 27707 27708 /* 27709 * Walk the list of all conn's calling the function provided with the 27710 * specified argument for each. Note that this only walks conn's that 27711 * have been bound. 27712 * Applies to both IPv4 and IPv6. 27713 */ 27714 static void 27715 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 27716 { 27717 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 27718 func, arg, zoneid); 27719 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 27720 func, arg, zoneid); 27721 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 27722 func, arg, zoneid); 27723 conn_walk_fanout_table(ipcl_proto_fanout, 27724 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 27725 conn_walk_fanout_table(ipcl_proto_fanout_v6, 27726 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 27727 } 27728 27729 /* 27730 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 27731 * of conns that need to be drained, check if drain is already in progress. 27732 * If so set the idl_repeat bit, indicating that the last conn in the list 27733 * needs to reinitiate the drain once again, for the list. If drain is not 27734 * in progress for the list, initiate the draining, by qenabling the 1st 27735 * conn in the list. The drain is self-sustaining, each qenabled conn will 27736 * in turn qenable the next conn, when it is done/blocked/closing. 27737 */ 27738 static void 27739 conn_walk_drain(void) 27740 { 27741 int i; 27742 idl_t *idl; 27743 27744 IP_STAT(ip_conn_walk_drain); 27745 27746 for (i = 0; i < conn_drain_list_cnt; i++) { 27747 idl = &conn_drain_list[i]; 27748 mutex_enter(&idl->idl_lock); 27749 if (idl->idl_conn == NULL) { 27750 mutex_exit(&idl->idl_lock); 27751 continue; 27752 } 27753 /* 27754 * If this list is not being drained currently by 27755 * an ip_wsrv thread, start the process. 27756 */ 27757 if (idl->idl_conn_draining == NULL) { 27758 ASSERT(idl->idl_repeat == 0); 27759 qenable(idl->idl_conn->conn_wq); 27760 idl->idl_conn_draining = idl->idl_conn; 27761 } else { 27762 idl->idl_repeat = 1; 27763 } 27764 mutex_exit(&idl->idl_lock); 27765 } 27766 } 27767 27768 /* 27769 * Walk an conn hash table of `count' buckets, calling func for each entry. 27770 */ 27771 static void 27772 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 27773 zoneid_t zoneid) 27774 { 27775 conn_t *connp; 27776 27777 while (count-- > 0) { 27778 mutex_enter(&connfp->connf_lock); 27779 for (connp = connfp->connf_head; connp != NULL; 27780 connp = connp->conn_next) { 27781 if (zoneid == GLOBAL_ZONEID || 27782 zoneid == connp->conn_zoneid) { 27783 CONN_INC_REF(connp); 27784 mutex_exit(&connfp->connf_lock); 27785 (*func)(connp, arg); 27786 mutex_enter(&connfp->connf_lock); 27787 CONN_DEC_REF(connp); 27788 } 27789 } 27790 mutex_exit(&connfp->connf_lock); 27791 connfp++; 27792 } 27793 } 27794 27795 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 27796 static void 27797 conn_report1(conn_t *connp, void *mp) 27798 { 27799 char buf1[INET6_ADDRSTRLEN]; 27800 char buf2[INET6_ADDRSTRLEN]; 27801 uint_t print_len, buf_len; 27802 27803 ASSERT(connp != NULL); 27804 27805 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 27806 if (buf_len <= 0) 27807 return; 27808 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 27809 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 27810 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 27811 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 27812 "%5d %s/%05d %s/%05d\n", 27813 (void *)connp, (void *)CONNP_TO_RQ(connp), 27814 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 27815 buf1, connp->conn_lport, 27816 buf2, connp->conn_fport); 27817 if (print_len < buf_len) { 27818 ((mblk_t *)mp)->b_wptr += print_len; 27819 } else { 27820 ((mblk_t *)mp)->b_wptr += buf_len; 27821 } 27822 } 27823 27824 /* 27825 * Named Dispatch routine to produce a formatted report on all conns 27826 * that are listed in one of the fanout tables. 27827 * This report is accessed by using the ndd utility to "get" ND variable 27828 * "ip_conn_status". 27829 */ 27830 /* ARGSUSED */ 27831 static int 27832 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 27833 { 27834 (void) mi_mpprintf(mp, 27835 "CONN " MI_COL_HDRPAD_STR 27836 "rfq " MI_COL_HDRPAD_STR 27837 "stq " MI_COL_HDRPAD_STR 27838 " zone local remote"); 27839 27840 /* 27841 * Because of the ndd constraint, at most we can have 64K buffer 27842 * to put in all conn info. So to be more efficient, just 27843 * allocate a 64K buffer here, assuming we need that large buffer. 27844 * This should be OK as only privileged processes can do ndd /dev/ip. 27845 */ 27846 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 27847 /* The following may work even if we cannot get a large buf. */ 27848 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 27849 return (0); 27850 } 27851 27852 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 27853 return (0); 27854 } 27855 27856 /* 27857 * Determine if the ill and multicast aspects of that packets 27858 * "matches" the conn. 27859 */ 27860 boolean_t 27861 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 27862 zoneid_t zoneid) 27863 { 27864 ill_t *in_ill; 27865 boolean_t found; 27866 ipif_t *ipif; 27867 ire_t *ire; 27868 ipaddr_t dst, src; 27869 27870 dst = ipha->ipha_dst; 27871 src = ipha->ipha_src; 27872 27873 /* 27874 * conn_incoming_ill is set by IP_BOUND_IF which limits 27875 * unicast, broadcast and multicast reception to 27876 * conn_incoming_ill. conn_wantpacket itself is called 27877 * only for BROADCAST and multicast. 27878 * 27879 * 1) ip_rput supresses duplicate broadcasts if the ill 27880 * is part of a group. Hence, we should be receiving 27881 * just one copy of broadcast for the whole group. 27882 * Thus, if it is part of the group the packet could 27883 * come on any ill of the group and hence we need a 27884 * match on the group. Otherwise, match on ill should 27885 * be sufficient. 27886 * 27887 * 2) ip_rput does not suppress duplicate multicast packets. 27888 * If there are two interfaces in a ill group and we have 27889 * 2 applications (conns) joined a multicast group G on 27890 * both the interfaces, ilm_lookup_ill filter in ip_rput 27891 * will give us two packets because we join G on both the 27892 * interfaces rather than nominating just one interface 27893 * for receiving multicast like broadcast above. So, 27894 * we have to call ilg_lookup_ill to filter out duplicate 27895 * copies, if ill is part of a group. 27896 */ 27897 in_ill = connp->conn_incoming_ill; 27898 if (in_ill != NULL) { 27899 if (in_ill->ill_group == NULL) { 27900 if (in_ill != ill) 27901 return (B_FALSE); 27902 } else if (in_ill->ill_group != ill->ill_group) { 27903 return (B_FALSE); 27904 } 27905 } 27906 27907 if (!CLASSD(dst)) { 27908 if (IPCL_ZONE_MATCH(connp, zoneid)) 27909 return (B_TRUE); 27910 /* 27911 * The conn is in a different zone; we need to check that this 27912 * broadcast address is configured in the application's zone and 27913 * on one ill in the group. 27914 */ 27915 ipif = ipif_get_next_ipif(NULL, ill); 27916 if (ipif == NULL) 27917 return (B_FALSE); 27918 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 27919 connp->conn_zoneid, NULL, 27920 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 27921 ipif_refrele(ipif); 27922 if (ire != NULL) { 27923 ire_refrele(ire); 27924 return (B_TRUE); 27925 } else { 27926 return (B_FALSE); 27927 } 27928 } 27929 27930 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 27931 connp->conn_zoneid == zoneid) { 27932 /* 27933 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 27934 * disabled, therefore we don't dispatch the multicast packet to 27935 * the sending zone. 27936 */ 27937 return (B_FALSE); 27938 } 27939 27940 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 27941 connp->conn_zoneid != zoneid) { 27942 /* 27943 * Multicast packet on the loopback interface: we only match 27944 * conns who joined the group in the specified zone. 27945 */ 27946 return (B_FALSE); 27947 } 27948 27949 if (connp->conn_multi_router) { 27950 /* multicast packet and multicast router socket: send up */ 27951 return (B_TRUE); 27952 } 27953 27954 mutex_enter(&connp->conn_lock); 27955 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 27956 mutex_exit(&connp->conn_lock); 27957 return (found); 27958 } 27959 27960 /* 27961 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 27962 */ 27963 /* ARGSUSED */ 27964 static void 27965 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 27966 { 27967 ill_t *ill = (ill_t *)q->q_ptr; 27968 mblk_t *mp1, *mp2; 27969 ipif_t *ipif; 27970 int err = 0; 27971 conn_t *connp = NULL; 27972 ipsq_t *ipsq; 27973 arc_t *arc; 27974 27975 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 27976 27977 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 27978 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 27979 27980 ASSERT(IAM_WRITER_ILL(ill)); 27981 mp2 = mp->b_cont; 27982 mp->b_cont = NULL; 27983 27984 /* 27985 * We have now received the arp bringup completion message 27986 * from ARP. Mark the arp bringup as done. Also if the arp 27987 * stream has already started closing, send up the AR_ARP_CLOSING 27988 * ack now since ARP is waiting in close for this ack. 27989 */ 27990 mutex_enter(&ill->ill_lock); 27991 ill->ill_arp_bringup_pending = 0; 27992 if (ill->ill_arp_closing) { 27993 mutex_exit(&ill->ill_lock); 27994 /* Let's reuse the mp for sending the ack */ 27995 arc = (arc_t *)mp->b_rptr; 27996 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 27997 arc->arc_cmd = AR_ARP_CLOSING; 27998 qreply(q, mp); 27999 } else { 28000 mutex_exit(&ill->ill_lock); 28001 freeb(mp); 28002 } 28003 28004 /* We should have an IOCTL waiting on this. */ 28005 ipsq = ill->ill_phyint->phyint_ipsq; 28006 ipif = ipsq->ipsq_pending_ipif; 28007 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28008 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28009 if (mp1 == NULL) { 28010 /* bringup was aborted by the user */ 28011 freemsg(mp2); 28012 return; 28013 } 28014 ASSERT(connp != NULL); 28015 q = CONNP_TO_WQ(connp); 28016 /* 28017 * If the DL_BIND_REQ fails, it is noted 28018 * in arc_name_offset. 28019 */ 28020 err = *((int *)mp2->b_rptr); 28021 if (err == 0) { 28022 if (ipif->ipif_isv6) { 28023 if ((err = ipif_up_done_v6(ipif)) != 0) 28024 ip0dbg(("ip_arp_done: init failed\n")); 28025 } else { 28026 if ((err = ipif_up_done(ipif)) != 0) 28027 ip0dbg(("ip_arp_done: init failed\n")); 28028 } 28029 } else { 28030 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28031 } 28032 28033 freemsg(mp2); 28034 28035 if ((err == 0) && (ill->ill_up_ipifs)) { 28036 err = ill_up_ipifs(ill, q, mp1); 28037 if (err == EINPROGRESS) 28038 return; 28039 } 28040 28041 if (ill->ill_up_ipifs) { 28042 ill_group_cleanup(ill); 28043 } 28044 28045 /* 28046 * The ioctl must complete now without EINPROGRESS 28047 * since ipsq_pending_mp_get has removed the ioctl mblk 28048 * from ipsq_pending_mp. Otherwise the ioctl will be 28049 * stuck for ever in the ipsq. 28050 */ 28051 ASSERT(err != EINPROGRESS); 28052 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 28053 } 28054 28055 /* Allocate the private structure */ 28056 static int 28057 ip_priv_alloc(void **bufp) 28058 { 28059 void *buf; 28060 28061 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28062 return (ENOMEM); 28063 28064 *bufp = buf; 28065 return (0); 28066 } 28067 28068 /* Function to delete the private structure */ 28069 void 28070 ip_priv_free(void *buf) 28071 { 28072 ASSERT(buf != NULL); 28073 kmem_free(buf, sizeof (ip_priv_t)); 28074 } 28075 28076 /* 28077 * The entry point for IPPF processing. 28078 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28079 * routine just returns. 28080 * 28081 * When called, ip_process generates an ipp_packet_t structure 28082 * which holds the state information for this packet and invokes the 28083 * the classifier (via ipp_packet_process). The classification, depending on 28084 * configured filters, results in a list of actions for this packet. Invoking 28085 * an action may cause the packet to be dropped, in which case the resulting 28086 * mblk (*mpp) is NULL. proc indicates the callout position for 28087 * this packet and ill_index is the interface this packet on or will leave 28088 * on (inbound and outbound resp.). 28089 */ 28090 void 28091 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28092 { 28093 mblk_t *mp; 28094 ip_priv_t *priv; 28095 ipp_action_id_t aid; 28096 int rc = 0; 28097 ipp_packet_t *pp; 28098 #define IP_CLASS "ip" 28099 28100 /* If the classifier is not loaded, return */ 28101 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28102 return; 28103 } 28104 28105 mp = *mpp; 28106 ASSERT(mp != NULL); 28107 28108 /* Allocate the packet structure */ 28109 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28110 if (rc != 0) { 28111 *mpp = NULL; 28112 freemsg(mp); 28113 return; 28114 } 28115 28116 /* Allocate the private structure */ 28117 rc = ip_priv_alloc((void **)&priv); 28118 if (rc != 0) { 28119 *mpp = NULL; 28120 freemsg(mp); 28121 ipp_packet_free(pp); 28122 return; 28123 } 28124 priv->proc = proc; 28125 priv->ill_index = ill_index; 28126 ipp_packet_set_private(pp, priv, ip_priv_free); 28127 ipp_packet_set_data(pp, mp); 28128 28129 /* Invoke the classifier */ 28130 rc = ipp_packet_process(&pp); 28131 if (pp != NULL) { 28132 mp = ipp_packet_get_data(pp); 28133 ipp_packet_free(pp); 28134 if (rc != 0) { 28135 freemsg(mp); 28136 *mpp = NULL; 28137 } 28138 } else { 28139 *mpp = NULL; 28140 } 28141 #undef IP_CLASS 28142 } 28143 28144 /* 28145 * Propagate a multicast group membership operation (add/drop) on 28146 * all the interfaces crossed by the related multirt routes. 28147 * The call is considered successful if the operation succeeds 28148 * on at least one interface. 28149 */ 28150 static int 28151 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28152 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28153 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28154 mblk_t *first_mp) 28155 { 28156 ire_t *ire_gw; 28157 irb_t *irb; 28158 int error = 0; 28159 opt_restart_t *or; 28160 28161 irb = ire->ire_bucket; 28162 ASSERT(irb != NULL); 28163 28164 ASSERT(DB_TYPE(first_mp) == M_CTL); 28165 28166 or = (opt_restart_t *)first_mp->b_rptr; 28167 IRB_REFHOLD(irb); 28168 for (; ire != NULL; ire = ire->ire_next) { 28169 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28170 continue; 28171 if (ire->ire_addr != group) 28172 continue; 28173 28174 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28175 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28176 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 28177 /* No resolver exists for the gateway; skip this ire. */ 28178 if (ire_gw == NULL) 28179 continue; 28180 28181 /* 28182 * This function can return EINPROGRESS. If so the operation 28183 * will be restarted from ip_restart_optmgmt which will 28184 * call ip_opt_set and option processing will restart for 28185 * this option. So we may end up calling 'fn' more than once. 28186 * This requires that 'fn' is idempotent except for the 28187 * return value. The operation is considered a success if 28188 * it succeeds at least once on any one interface. 28189 */ 28190 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28191 NULL, fmode, src, first_mp); 28192 if (error == 0) 28193 or->or_private = CGTP_MCAST_SUCCESS; 28194 28195 if (ip_debug > 0) { 28196 ulong_t off; 28197 char *ksym; 28198 ksym = kobj_getsymname((uintptr_t)fn, &off); 28199 ip2dbg(("ip_multirt_apply_membership: " 28200 "called %s, multirt group 0x%08x via itf 0x%08x, " 28201 "error %d [success %u]\n", 28202 ksym ? ksym : "?", 28203 ntohl(group), ntohl(ire_gw->ire_src_addr), 28204 error, or->or_private)); 28205 } 28206 28207 ire_refrele(ire_gw); 28208 if (error == EINPROGRESS) { 28209 IRB_REFRELE(irb); 28210 return (error); 28211 } 28212 } 28213 IRB_REFRELE(irb); 28214 /* 28215 * Consider the call as successful if we succeeded on at least 28216 * one interface. Otherwise, return the last encountered error. 28217 */ 28218 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28219 } 28220 28221 28222 /* 28223 * Issue a warning regarding a route crossing an interface with an 28224 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28225 * amount of time is logged. 28226 */ 28227 static void 28228 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28229 { 28230 hrtime_t current = gethrtime(); 28231 char buf[INET_ADDRSTRLEN]; 28232 28233 /* Convert interval in ms to hrtime in ns */ 28234 if (multirt_bad_mtu_last_time + 28235 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 28236 current) { 28237 cmn_err(CE_WARN, "ip: ignoring multiroute " 28238 "to %s, incorrect MTU %u (expected %u)\n", 28239 ip_dot_addr(ire->ire_addr, buf), 28240 ire->ire_max_frag, max_frag); 28241 28242 multirt_bad_mtu_last_time = current; 28243 } 28244 } 28245 28246 28247 /* 28248 * Get the CGTP (multirouting) filtering status. 28249 * If 0, the CGTP hooks are transparent. 28250 */ 28251 /* ARGSUSED */ 28252 static int 28253 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28254 { 28255 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28256 28257 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28258 return (0); 28259 } 28260 28261 28262 /* 28263 * Set the CGTP (multirouting) filtering status. 28264 * If the status is changed from active to transparent 28265 * or from transparent to active, forward the new status 28266 * to the filtering module (if loaded). 28267 */ 28268 /* ARGSUSED */ 28269 static int 28270 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28271 cred_t *ioc_cr) 28272 { 28273 long new_value; 28274 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28275 28276 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28277 new_value < 0 || new_value > 1) { 28278 return (EINVAL); 28279 } 28280 28281 /* 28282 * Do not enable CGTP filtering - thus preventing the hooks 28283 * from being invoked - if the version number of the 28284 * filtering module hooks does not match. 28285 */ 28286 if ((ip_cgtp_filter_ops != NULL) && 28287 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 28288 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 28289 "(module hooks version %d, expecting %d)\n", 28290 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 28291 return (ENOTSUP); 28292 } 28293 28294 if ((!*ip_cgtp_filter_value) && new_value) { 28295 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28296 ip_cgtp_filter_ops == NULL ? 28297 " (module not loaded)" : ""); 28298 } 28299 if (*ip_cgtp_filter_value && (!new_value)) { 28300 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28301 ip_cgtp_filter_ops == NULL ? 28302 " (module not loaded)" : ""); 28303 } 28304 28305 if (ip_cgtp_filter_ops != NULL) { 28306 int res; 28307 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 28308 return (res); 28309 } 28310 } 28311 28312 *ip_cgtp_filter_value = (boolean_t)new_value; 28313 28314 return (0); 28315 } 28316 28317 28318 /* 28319 * Return the expected CGTP hooks version number. 28320 */ 28321 int 28322 ip_cgtp_filter_supported(void) 28323 { 28324 return (ip_cgtp_filter_rev); 28325 } 28326 28327 28328 /* 28329 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 28330 * or by invoking this function. In the first case, the version number 28331 * of the registered structure is checked at hooks activation time 28332 * in ip_cgtp_filter_set(). 28333 */ 28334 int 28335 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 28336 { 28337 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28338 return (ENOTSUP); 28339 28340 ip_cgtp_filter_ops = ops; 28341 return (0); 28342 } 28343 28344 static squeue_func_t 28345 ip_squeue_switch(int val) 28346 { 28347 squeue_func_t rval = squeue_fill; 28348 28349 switch (val) { 28350 case IP_SQUEUE_ENTER_NODRAIN: 28351 rval = squeue_enter_nodrain; 28352 break; 28353 case IP_SQUEUE_ENTER: 28354 rval = squeue_enter; 28355 break; 28356 default: 28357 break; 28358 } 28359 return (rval); 28360 } 28361 28362 /* ARGSUSED */ 28363 static int 28364 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28365 caddr_t addr, cred_t *cr) 28366 { 28367 int *v = (int *)addr; 28368 long new_value; 28369 28370 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28371 return (EINVAL); 28372 28373 ip_input_proc = ip_squeue_switch(new_value); 28374 *v = new_value; 28375 return (0); 28376 } 28377 28378 /* ARGSUSED */ 28379 static int 28380 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28381 caddr_t addr, cred_t *cr) 28382 { 28383 int *v = (int *)addr; 28384 long new_value; 28385 28386 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28387 return (EINVAL); 28388 28389 *v = new_value; 28390 return (0); 28391 } 28392 28393 static void 28394 ip_kstat_init(void) 28395 { 28396 ip_named_kstat_t template = { 28397 { "forwarding", KSTAT_DATA_UINT32, 0 }, 28398 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 28399 { "inReceives", KSTAT_DATA_UINT32, 0 }, 28400 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 28401 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 28402 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 28403 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 28404 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 28405 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 28406 { "outRequests", KSTAT_DATA_UINT32, 0 }, 28407 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 28408 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 28409 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 28410 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 28411 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 28412 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 28413 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 28414 { "fragFails", KSTAT_DATA_UINT32, 0 }, 28415 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 28416 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 28417 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 28418 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 28419 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 28420 { "inErrs", KSTAT_DATA_UINT32, 0 }, 28421 { "noPorts", KSTAT_DATA_UINT32, 0 }, 28422 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 28423 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 28424 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 28425 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 28426 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 28427 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 28428 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 28429 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 28430 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 28431 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 28432 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 28433 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 28434 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 28435 }; 28436 28437 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 28438 NUM_OF_FIELDS(ip_named_kstat_t), 28439 0); 28440 if (!ip_mibkp) 28441 return; 28442 28443 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 28444 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 28445 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 28446 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 28447 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 28448 28449 template.netToMediaEntrySize.value.i32 = 28450 sizeof (mib2_ipNetToMediaEntry_t); 28451 28452 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 28453 28454 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 28455 28456 ip_mibkp->ks_update = ip_kstat_update; 28457 28458 kstat_install(ip_mibkp); 28459 } 28460 28461 static void 28462 ip_kstat_fini(void) 28463 { 28464 28465 if (ip_mibkp != NULL) { 28466 kstat_delete(ip_mibkp); 28467 ip_mibkp = NULL; 28468 } 28469 } 28470 28471 static int 28472 ip_kstat_update(kstat_t *kp, int rw) 28473 { 28474 ip_named_kstat_t *ipkp; 28475 28476 if (!kp || !kp->ks_data) 28477 return (EIO); 28478 28479 if (rw == KSTAT_WRITE) 28480 return (EACCES); 28481 28482 ipkp = (ip_named_kstat_t *)kp->ks_data; 28483 28484 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 28485 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 28486 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 28487 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 28488 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 28489 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 28490 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 28491 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 28492 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 28493 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 28494 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 28495 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 28496 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 28497 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 28498 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 28499 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 28500 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 28501 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 28502 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 28503 28504 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 28505 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 28506 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 28507 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 28508 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 28509 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 28510 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 28511 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 28512 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 28513 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 28514 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 28515 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 28516 28517 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 28518 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 28519 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 28520 28521 return (0); 28522 } 28523 28524 static void 28525 icmp_kstat_init(void) 28526 { 28527 icmp_named_kstat_t template = { 28528 { "inMsgs", KSTAT_DATA_UINT32 }, 28529 { "inErrors", KSTAT_DATA_UINT32 }, 28530 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 28531 { "inTimeExcds", KSTAT_DATA_UINT32 }, 28532 { "inParmProbs", KSTAT_DATA_UINT32 }, 28533 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 28534 { "inRedirects", KSTAT_DATA_UINT32 }, 28535 { "inEchos", KSTAT_DATA_UINT32 }, 28536 { "inEchoReps", KSTAT_DATA_UINT32 }, 28537 { "inTimestamps", KSTAT_DATA_UINT32 }, 28538 { "inTimestampReps", KSTAT_DATA_UINT32 }, 28539 { "inAddrMasks", KSTAT_DATA_UINT32 }, 28540 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 28541 { "outMsgs", KSTAT_DATA_UINT32 }, 28542 { "outErrors", KSTAT_DATA_UINT32 }, 28543 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 28544 { "outTimeExcds", KSTAT_DATA_UINT32 }, 28545 { "outParmProbs", KSTAT_DATA_UINT32 }, 28546 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 28547 { "outRedirects", KSTAT_DATA_UINT32 }, 28548 { "outEchos", KSTAT_DATA_UINT32 }, 28549 { "outEchoReps", KSTAT_DATA_UINT32 }, 28550 { "outTimestamps", KSTAT_DATA_UINT32 }, 28551 { "outTimestampReps", KSTAT_DATA_UINT32 }, 28552 { "outAddrMasks", KSTAT_DATA_UINT32 }, 28553 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 28554 { "inChksumErrs", KSTAT_DATA_UINT32 }, 28555 { "inUnknowns", KSTAT_DATA_UINT32 }, 28556 { "inFragNeeded", KSTAT_DATA_UINT32 }, 28557 { "outFragNeeded", KSTAT_DATA_UINT32 }, 28558 { "outDrops", KSTAT_DATA_UINT32 }, 28559 { "inOverFlows", KSTAT_DATA_UINT32 }, 28560 { "inBadRedirects", KSTAT_DATA_UINT32 }, 28561 }; 28562 28563 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 28564 NUM_OF_FIELDS(icmp_named_kstat_t), 28565 0); 28566 if (icmp_mibkp == NULL) 28567 return; 28568 28569 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 28570 28571 icmp_mibkp->ks_update = icmp_kstat_update; 28572 28573 kstat_install(icmp_mibkp); 28574 } 28575 28576 static void 28577 icmp_kstat_fini(void) 28578 { 28579 28580 if (icmp_mibkp != NULL) { 28581 kstat_delete(icmp_mibkp); 28582 icmp_mibkp = NULL; 28583 } 28584 } 28585 28586 static int 28587 icmp_kstat_update(kstat_t *kp, int rw) 28588 { 28589 icmp_named_kstat_t *icmpkp; 28590 28591 if ((kp == NULL) || (kp->ks_data == NULL)) 28592 return (EIO); 28593 28594 if (rw == KSTAT_WRITE) 28595 return (EACCES); 28596 28597 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 28598 28599 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 28600 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 28601 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 28602 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 28603 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 28604 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 28605 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 28606 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 28607 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 28608 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 28609 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 28610 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 28611 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 28612 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 28613 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 28614 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 28615 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 28616 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 28617 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 28618 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 28619 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 28620 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 28621 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 28622 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 28623 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 28624 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 28625 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 28626 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 28627 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 28628 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 28629 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 28630 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 28631 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 28632 28633 return (0); 28634 } 28635 28636 /* 28637 * This is the fanout function for raw socket opened for SCTP. Note 28638 * that it is called after SCTP checks that there is no socket which 28639 * wants a packet. Then before SCTP handles this out of the blue packet, 28640 * this function is called to see if there is any raw socket for SCTP. 28641 * If there is and it is bound to the correct address, the packet will 28642 * be sent to that socket. Note that only one raw socket can be bound to 28643 * a port. This is assured in ipcl_sctp_hash_insert(); 28644 */ 28645 void 28646 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 28647 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 28648 uint_t ipif_seqid, zoneid_t zoneid) 28649 { 28650 conn_t *connp; 28651 queue_t *rq; 28652 mblk_t *first_mp; 28653 boolean_t secure; 28654 ip6_t *ip6h; 28655 28656 first_mp = mp; 28657 if (mctl_present) { 28658 mp = first_mp->b_cont; 28659 secure = ipsec_in_is_secure(first_mp); 28660 ASSERT(mp != NULL); 28661 } else { 28662 secure = B_FALSE; 28663 } 28664 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 28665 28666 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 28667 if (connp == NULL) { 28668 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 28669 mctl_present); 28670 return; 28671 } 28672 rq = connp->conn_rq; 28673 if (!canputnext(rq)) { 28674 CONN_DEC_REF(connp); 28675 BUMP_MIB(&ip_mib, rawipInOverflows); 28676 freemsg(first_mp); 28677 return; 28678 } 28679 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 28680 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 28681 first_mp = ipsec_check_inbound_policy(first_mp, connp, 28682 (isv4 ? ipha : NULL), ip6h, mctl_present); 28683 if (first_mp == NULL) { 28684 CONN_DEC_REF(connp); 28685 return; 28686 } 28687 } 28688 /* 28689 * We probably should not send M_CTL message up to 28690 * raw socket. 28691 */ 28692 if (mctl_present) 28693 freeb(first_mp); 28694 28695 /* Initiate IPPF processing here if needed. */ 28696 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 28697 (!isv4 && IP6_IN_IPP(flags))) { 28698 ip_process(IPP_LOCAL_IN, &mp, 28699 recv_ill->ill_phyint->phyint_ifindex); 28700 if (mp == NULL) { 28701 CONN_DEC_REF(connp); 28702 return; 28703 } 28704 } 28705 28706 if (connp->conn_recvif || connp->conn_recvslla || 28707 ((connp->conn_ipv6_recvpktinfo || 28708 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 28709 (flags & IP_FF_IP6INFO))) { 28710 int in_flags = 0; 28711 28712 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 28713 in_flags = IPF_RECVIF; 28714 } 28715 if (connp->conn_recvslla) { 28716 in_flags |= IPF_RECVSLLA; 28717 } 28718 if (isv4) { 28719 mp = ip_add_info(mp, recv_ill, in_flags); 28720 } else { 28721 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 28722 if (mp == NULL) { 28723 CONN_DEC_REF(connp); 28724 return; 28725 } 28726 } 28727 } 28728 28729 BUMP_MIB(&ip_mib, ipInDelivers); 28730 /* 28731 * We are sending the IPSEC_IN message also up. Refer 28732 * to comments above this function. 28733 */ 28734 putnext(rq, mp); 28735 CONN_DEC_REF(connp); 28736 } 28737 28738 /* 28739 * This function should be called only if all packet processing 28740 * including fragmentation is complete. Callers of this function 28741 * must set mp->b_prev to one of these values: 28742 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 28743 * prior to handing over the mp as first argument to this function. 28744 * 28745 * If the ire passed by caller is incomplete, this function 28746 * queues the packet and if necessary, sends ARP request and bails. 28747 * If the ire passed is fully resolved, we simply prepend 28748 * the link-layer header to the packet, do ipsec hw acceleration 28749 * work if necessary, and send the packet out on the wire. 28750 * 28751 * NOTE: IPSEC will only call this function with fully resolved 28752 * ires if hw acceleration is involved. 28753 * TODO list : 28754 * a Handle M_MULTIDATA so that 28755 * tcp_multisend->tcp_multisend_data can 28756 * call ip_xmit_v4 directly 28757 * b Handle post-ARP work for fragments so that 28758 * ip_wput_frag can call this function. 28759 */ 28760 ipxmit_state_t 28761 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 28762 { 28763 nce_t *arpce; 28764 queue_t *q; 28765 int ill_index; 28766 mblk_t *nxt_mp, *first_mp; 28767 boolean_t xmit_drop = B_FALSE; 28768 ip_proc_t proc; 28769 ill_t *out_ill; 28770 28771 arpce = ire->ire_nce; 28772 ASSERT(arpce != NULL); 28773 28774 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 28775 28776 mutex_enter(&arpce->nce_lock); 28777 switch (arpce->nce_state) { 28778 case ND_REACHABLE: 28779 /* If there are other queued packets, queue this packet */ 28780 if (arpce->nce_qd_mp != NULL) { 28781 if (mp != NULL) 28782 nce_queue_mp_common(arpce, mp, B_FALSE); 28783 mp = arpce->nce_qd_mp; 28784 } 28785 arpce->nce_qd_mp = NULL; 28786 mutex_exit(&arpce->nce_lock); 28787 28788 /* 28789 * Flush the queue. In the common case, where the 28790 * ARP is already resolved, it will go through the 28791 * while loop only once. 28792 */ 28793 while (mp != NULL) { 28794 28795 nxt_mp = mp->b_next; 28796 mp->b_next = NULL; 28797 /* 28798 * This info is needed for IPQOS to do COS marking 28799 * in ip_wput_attach_llhdr->ip_process. 28800 */ 28801 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 28802 mp->b_prev = NULL; 28803 28804 /* set up ill index for outbound qos processing */ 28805 out_ill = ire->ire_ipif->ipif_ill; 28806 ill_index = out_ill->ill_phyint->phyint_ifindex; 28807 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 28808 ill_index); 28809 if (first_mp == NULL) { 28810 xmit_drop = B_TRUE; 28811 if (proc == IPP_FWD_OUT) { 28812 BUMP_MIB(&ip_mib, ipInDiscards); 28813 } else { 28814 BUMP_MIB(&ip_mib, ipOutDiscards); 28815 } 28816 goto next_mp; 28817 } 28818 /* non-ipsec hw accel case */ 28819 if (io == NULL || !io->ipsec_out_accelerated) { 28820 /* send it */ 28821 q = ire->ire_stq; 28822 if (proc == IPP_FWD_OUT) { 28823 UPDATE_IB_PKT_COUNT(ire); 28824 } else { 28825 UPDATE_OB_PKT_COUNT(ire); 28826 } 28827 ire->ire_last_used_time = lbolt; 28828 28829 if (flow_ctl_enabled || canputnext(q)) { 28830 if (proc == IPP_FWD_OUT) { 28831 BUMP_MIB(&ip_mib, 28832 ipForwDatagrams); 28833 } 28834 28835 if (mp == NULL) 28836 goto next_mp; 28837 putnext(q, first_mp); 28838 } else { 28839 BUMP_MIB(&ip_mib, 28840 ipOutDiscards); 28841 xmit_drop = B_TRUE; 28842 freemsg(first_mp); 28843 } 28844 } else { 28845 /* 28846 * Safety Pup says: make sure this 28847 * is going to the right interface! 28848 */ 28849 ill_t *ill1 = 28850 (ill_t *)ire->ire_stq->q_ptr; 28851 int ifindex = 28852 ill1->ill_phyint->phyint_ifindex; 28853 if (ifindex != 28854 io->ipsec_out_capab_ill_index) { 28855 xmit_drop = B_TRUE; 28856 freemsg(mp); 28857 } else { 28858 ipsec_hw_putnext(ire->ire_stq, 28859 mp); 28860 } 28861 } 28862 next_mp: 28863 mp = nxt_mp; 28864 } /* while (mp != NULL) */ 28865 if (xmit_drop) 28866 return (SEND_FAILED); 28867 else 28868 return (SEND_PASSED); 28869 28870 case ND_INITIAL: 28871 case ND_INCOMPLETE: 28872 28873 /* 28874 * While we do send off packets to dests that 28875 * use fully-resolved CGTP routes, we do not 28876 * handle unresolved CGTP routes. 28877 */ 28878 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 28879 ASSERT(io == NULL || !io->ipsec_out_accelerated); 28880 28881 if (mp != NULL) { 28882 /* queue the packet */ 28883 nce_queue_mp_common(arpce, mp, B_FALSE); 28884 } 28885 28886 if (arpce->nce_state == ND_INCOMPLETE) { 28887 mutex_exit(&arpce->nce_lock); 28888 DTRACE_PROBE3(ip__xmit__incomplete, 28889 (ire_t *), ire, (mblk_t *), mp, 28890 (ipsec_out_t *), io); 28891 return (LOOKUP_IN_PROGRESS); 28892 } 28893 28894 arpce->nce_state = ND_INCOMPLETE; 28895 mutex_exit(&arpce->nce_lock); 28896 /* 28897 * Note that ire_add() (called from ire_forward()) 28898 * holds a ref on the ire until ARP is completed. 28899 */ 28900 28901 ire_arpresolve(ire, ire_to_ill(ire)); 28902 return (LOOKUP_IN_PROGRESS); 28903 default: 28904 ASSERT(0); 28905 mutex_exit(&arpce->nce_lock); 28906 return (LLHDR_RESLV_FAILED); 28907 } 28908 } 28909 28910 /* 28911 * Return B_TRUE if the buffers differ in length or content. 28912 * This is used for comparing extension header buffers. 28913 * Note that an extension header would be declared different 28914 * even if all that changed was the next header value in that header i.e. 28915 * what really changed is the next extension header. 28916 */ 28917 boolean_t 28918 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 28919 uint_t blen) 28920 { 28921 if (!b_valid) 28922 blen = 0; 28923 28924 if (alen != blen) 28925 return (B_TRUE); 28926 if (alen == 0) 28927 return (B_FALSE); /* Both zero length */ 28928 return (bcmp(abuf, bbuf, alen)); 28929 } 28930 28931 /* 28932 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 28933 * Return B_FALSE if memory allocation fails - don't change any state! 28934 */ 28935 boolean_t 28936 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28937 const void *src, uint_t srclen) 28938 { 28939 void *dst; 28940 28941 if (!src_valid) 28942 srclen = 0; 28943 28944 ASSERT(*dstlenp == 0); 28945 if (src != NULL && srclen != 0) { 28946 dst = mi_alloc(srclen, BPRI_MED); 28947 if (dst == NULL) 28948 return (B_FALSE); 28949 } else { 28950 dst = NULL; 28951 } 28952 if (*dstp != NULL) 28953 mi_free(*dstp); 28954 *dstp = dst; 28955 *dstlenp = dst == NULL ? 0 : srclen; 28956 return (B_TRUE); 28957 } 28958 28959 /* 28960 * Replace what is in *dst, *dstlen with the source. 28961 * Assumes ip_allocbuf has already been called. 28962 */ 28963 void 28964 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 28965 const void *src, uint_t srclen) 28966 { 28967 if (!src_valid) 28968 srclen = 0; 28969 28970 ASSERT(*dstlenp == srclen); 28971 if (src != NULL && srclen != 0) 28972 bcopy(src, *dstp, srclen); 28973 } 28974 28975 /* 28976 * Free the storage pointed to by the members of an ip6_pkt_t. 28977 */ 28978 void 28979 ip6_pkt_free(ip6_pkt_t *ipp) 28980 { 28981 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 28982 28983 if (ipp->ipp_fields & IPPF_HOPOPTS) { 28984 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 28985 ipp->ipp_hopopts = NULL; 28986 ipp->ipp_hopoptslen = 0; 28987 } 28988 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 28989 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 28990 ipp->ipp_rtdstopts = NULL; 28991 ipp->ipp_rtdstoptslen = 0; 28992 } 28993 if (ipp->ipp_fields & IPPF_DSTOPTS) { 28994 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 28995 ipp->ipp_dstopts = NULL; 28996 ipp->ipp_dstoptslen = 0; 28997 } 28998 if (ipp->ipp_fields & IPPF_RTHDR) { 28999 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29000 ipp->ipp_rthdr = NULL; 29001 ipp->ipp_rthdrlen = 0; 29002 } 29003 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29004 IPPF_RTHDR); 29005 } 29006